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The fragmentation size distribution is an important index to evaluate blasting effect. Based on stress wave theory, a blasting fragmentation distribution model is established, and the key influencing factors were clarified. Then, the distribution characteristics of rock fragmentation in water-coupled blasting and air-coupled blasting were compared and verified by numerical simulation and field test. The results show that the rock blasting fragmentation size is negatively correlated with borehole pressure and unit explosive consumption when blasting rock is determined. The existence of water slows down the attenuation of blasting load, prolongs the duration, and makes the blasting pressure transmitted to hole wall significantly greater than air-coupled one, which is equivalent to increasing the unit explosive consumption. Moreover, the rock fracture development speed and fragmentation degree of water-coupled blasting is significantly higher than air-coupled blasting. Comprehensively determined in same charging parameters, water-coupled blasting compared with air-coupled blasting can improve the degree of rock fragmentation, the average size of rock after blasting is smaller, more uniform particle size distribution. The research results for the control of blasting and optimization of explosive energy utilization have important reference significance.
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1 INTRODUCTION
Compared with coupling charge, the decoupling charge can effectively reduce the borehole pressure, the excessive crushing of rock, so that more explosive energy can be used for crushing and throwing of rock mass, thus improving the blasting effect. It is the most commonly used charge structure in engineering site (Sher and Aleksandrova, 2007; Ye et al., 2017). Water-coupled blasting and air-coupled blasting refer to the blasting methods in which water or air is used as the coupling medium to fill the gap between the explosive and the borehole wall when the charge is decoupled. Air and water, as common coupling media in radial decoupling charge blasting, have different physical properties and dynamic characteristics in improving the explosive energy transfer and blasting effect (Wang et al., 2020; Shi et al., 2022). Considering that different blasting operations have different requirements on rock blasting fragmentation size, the most commonly used bench blasting is taken as an example, study on the influence of different coupling media on fragmentation characteristics.
Scholars at home and abroad have done a lot of researches on the fragmentation size distribution of rock blasting. Dai et al. (2008) deduced the relationship between fragmentation size distribution and blast borehole pressure through theory, and pointed out that the explosive velocity and unit explosive consumption are the key factors affecting rock fragmentation. Jiang et al. (2015) optimized the relationship between unit explosive consumption and bulk rate and small block rate in rock blastability classification, and identified the improvement direction of optimization of block distribution. Yu et al. (2021) determined the influence characteristics of delay time on spatial distribution of blasting fragmentation by blasting tests, and studied the influence of delay time on various indexes such as different particle size and average size of rock fragmentation. Katsabanis et al. (2020) found that the delay time and complex stress wave interaction in basting play an important role in fracture distribution through damage calculation. Chi et al. (2019) studied the effects of decoupling coefficient, free surface and boundary conditions on blasting fragmentation distribution through small-scale blasting tests of rock cylinders.
In terms of research on the change of rock blasting breakage caused by difference of charge structure, Melnikov (1962) believes that a large part of the explosive energy transferred into rock mass is consumed in crushing zone, which reduces the energy utilization rate of rock breaking. Changing charge structure to control the scope of excessive crushing zone is helpful for optimizing the rock blasting breakage effect. It is of great significance to improve the effective utilization rate of explosive energy. Moxon et al. (1993) and Mead et al. (1993) explored the influence of air interval charge on rock breakage, and the test results showed that air interval charge can change rock fragmentation distribution, and the average fragmentation distribution is directly related to the proportion of air intervals. Based on this study, Liu and Katsabanis (1996) determined the optimal air interval through numerical simulation. Yin et al. (2021) put forward the air interval charging structure at the top of high bench blasting, and research shows that it can improve the bottom rock crushing effect. Jang et al. (2018) pointed out that local rock mass fragmentation can be strengthened by adjusting the distribution position of water in borehole, and therefore proposed water-cushion blasting, which effectively improved the stress distribution in borehole bottom area and reduced the generation of blasting toe. Huang et al. (2014) compared the concrete blasting excavation under complex environment, and believed that water-coupled blasting could give consideration to blasting safety and excavation efficiency. Yan and Yu (2009) compared the rock failure characteristics caused by air-coupled blasting and water-coupled blasting under different charge coefficients, and pointed out the matching relationship between excavation demand and charge structure selection. Yang et al. (2019) studied the changes of stress field in rock mass during blasting with different coupling media through high-speed camera technology, and the results showed that differences in coupling media led to differences in explosive energy transfer efficiency. Wang et al. (2008) and Wang and Li (2005) analyzed the shock wave intensity characteristics in rock induced by blasting under coupled blasting, air-coupled blasting and water-coupled blasting, and showed that reasonable decoupling coefficient could reduce or even disappear the crushing zone range, thus reducing the proportion of small and medium particles in rock fragmentation size distribution after blasting.
At present, the analysis of the influence of borehole coupling medium on fragmentation distribution characteristics of rock blasting is mostly limited to a certain medium or different charge forms with same medium, and the analysis of different coupling medium is not involved. Through theoretical analysis, combined with numerical simulation and field test, this paper will explore the influence of coupling medium changes on rock blasting fragmentation size, and make accurate and scientific evaluation of the difference between two-coupling media, which has important guiding significance for the control and utilization of water-coupled blasting.
2 INFLUENCING FACTORS OF ROCK FRAGMENTATION SIZE IN BENCH BLASTING
Joints and cracks in rock mass develop, and the expansion and convergence of internal cracks under the action of blasting load led to rock mass fracture. Grady (1982) deduced the average fragmentation size of rock mass under brittle fracture conditions based on energy balance theory:
[image: The formula depicted is \(\Delta d = \left[\sqrt{20K_{IC} / (\rho c e)}\right]^{2/3}\).]
Where △d represents the average fragmentation size; KIC represents the rock fracture toughness; ρc represents the rock wave impedance; [image: Mathematical symbol representing the letter epsilon with a dot above it, often used in scientific equations to denote strain rate or other derivatives with respect to time.] represents the rock mass particle strain rate.
According to Grady model, the rock fragmentation size distribution is directly related to particle strain rate. Under the action of explosion, the borehole wall particles produce extremely high velocity and pressure value in a short time, and initially radiate outward in the form of high-intensity and strong discontinuity shock wave. With the viscous energy dissipation, the destruction energy dissipation and the diffusion of wave (Dong et al., 2006), the shock wave velocity and pressure decrease and gradually decay into stress wave. Under the application of high intensity shock wave and detonation gas, rock mass will produce strong dynamic response. At present, strain rate and load rate are mainly used to measure the degree of dynamic application of materials, especially the strain rate parameter, which directly reflects the dynamic response of materials (Xie et al., 2023). Due to the difficulty in measuring the strain rate of rock near borehole, it is difficult to measure the spatio-temporal variation of strain rate. Therefore, based on the cylindrical wave displacement comodulation equation, the correlation between radial strain rate and vibration velocity in column coordinate system is introduced (Wei et al., 2021):
[image: Equation showing partial derivatives: epsilon equals the partial derivative of u with respect to x, minus the partial derivative of v with respect to y, denoted as equation (2).]
Where [image: It appears you uploaded a mathematical symbol or notation, specifically the letter "epsilon" with a dot on top, often used to represent the rate of strain in physics or engineering contexts.] represents the particle radial strain rate, r represents the distance from the center of borehole, u represents the displacement at r, and v represents the velocity at r.
According to wave theory, stress waves propagating in medium should satisfy the mass and momentum equations.
[image: An equation is displayed: \(\rho(D - v) = \rho_0(D - v_0)\), followed by a number in parentheses indicating equation reference as 3.]
[image: Equation showing the expression \( p - p_0 = \rho_0 (D - v_0)(v - v_0) \), labeled as equation 4.]
Where subscript 0 represents parameters before disturbance, and the rest are parameters after disturbance; P, ρ, v and D represent the pressure, density, particle velocity and propagation velocity of shock wave, respectively.
There is a certain relationship between the shock wave propagation velocity and the particle velocity, that is, the Hugoniot equation applicable to rock mass:
[image: It seems you've uploaded a mathematical equation: \( D = a + bv \). If there's an image you'd like me to describe, please upload the image or provide a URL.]
Where a and b represent parameters related to lithology, a represents equivalent to the propagation velocity of sound wave in rock mass, b=1∼1.5.
By combining Eqs 3–5, the initial particle vibration velocity vr0 of borehole wall can be obtained as:
[image: Equation labeled as six. Gamma sub zero equals negative a rho sub not plus the square root of open parenthesis rho sub not a squared close parenthesis plus four b rho sub zero p sub not, all divided by two b rho sub not.]
Where Pr0 represents the peak pressure of borehole wall, and its calculation method has been determined by many scholars (Chen et al., 2020; Ye et al., 2021).
At present, the attenuation propagation of shock wave and stress wave is usually studied theoretically and simulated numerically. The exponential attenuation formula can better reflect the propagation law of shock wave and stress wave, namely (Zhang et al., 1990):
[image: The equation shows a mathematical formula: \( \gamma = \gamma_0 \left( \frac{r}{r_0} \right)^{-\alpha} \), labeled as equation (7).]
Where vr represents the peak radial particle velocity at the distance from borehole center r in column coordinate system, α represents the shock wave or stress wave decay index, α=1.5∼3, r0 represents the borehole radius, r represents the distance between the particle and the borehole center (m).
By combining Eqs 2, 6, 7, the variation rule of rock mass strain rate near borehole under column coordinate system is introduced, and the following results are obtained:
[image: The image shows a mathematical equation labeled as equation eight. It is expressed as follows: \(x = \alpha - \frac{a \rho_0 + \sqrt{(\rho_0 a)^2 + 4 b \rho_0 P_{\text{o}}}}{2b \rho_0 r_0}\left(\frac{r}{r_0}\right)^{-(a+1)}\).]
Combined Eqs (1, 8) can obtain:
[image: Equation showing a formula for \(\Delta d\). It is written as the two-thirds power of the fraction \(\frac{2\sqrt{20}K_c br_0^{-\alpha}}{\text{ccr}^{-(\alpha+1)}[-a_0 + \sqrt{(\rho_0 a)^2 + 4b\rho_0 P_{r_0}}]}\). This is labeled as equation (9).]
In Eq. 9 where KIC, ρc, a, b are all parameters related to lithology, which are mainly determined by blasting medium itself. When the blasting medium is determined, the influence of blasting parameters is mainly concentrated on the peak borehole pressure Pr0, and the two are negatively correlated, that is, the greater the peak borehole pressure, the smaller the rock fragmentation size.
In engineering blasting, it is easier to change the blasting load on rock by changing charge structure, so as to meet the requirements of different engineering purposes. At the same time, different charge decoupling values can be adopted to realize different blasting charge amounts under constant hole diameter, and then the rock can be subjected to different explosion load values. Dai Jun et al. research shows that there is a following relationship between explosive charge and rock fragmentation size:
[image: Mathematical equation showing a relationship between variables: \(d \propto V^{\frac{2\gamma}{\gamma - 1}} = \Phi(\theta)V_\Phi^{\frac{2\gamma}{\gamma - 1}} = \frac{q}{p_\Phi}^{\frac{2\gamma}{\gamma - 1}} \cdot q^{-\frac{2\gamma}{\gamma - 1}}\). Labeled as equation 10.]
Where vc represents the charge volume, ρe represents the explosive density, α = 1.5∼3, q represents the borehole charge, γ represents the pressure expansion attenuation index of detonation product.
According to Eq. 10, there is a negative correlation between the rock fragmentation size and the unit explosive consumption, that is, the greater the explosive consumption, the smaller the rock fragmentation size.
3 THE DIFFERENCE OF FRAGMENTATION CHARACTERISTICS IN BENCH BLASTING WITH DIFFERENT COUPLING MEDIA
3.1 Difference induced by changes in borehole pressure
For blasting with different coupling media, the borehole pressure has been determined by many scholars, and the calculation process is not detailed in this paper. Based on the distribution of rock mass types, commonly used blasting parameters and industrial explosive types in actual excavation, taking emulsion explosive blasting in siltstone, limestone and granodiorite three kinds of rock mass with obvious difference in strength properties as an example, a comparative analysis of blasting borehole pressure of two coupling media with typical charging structure is carried out. The unit volume explosive heat of emulsion explosive (ρe=1300 kg/m3, D=4000 m/s) is 4.192e9J/m3. The calculated rock mechanics parameters are shown in Table 1, and the calculated results are shown in Figure 1.
TABLE 1 | Table of calculated rock mass mechanical parameters.
[image: Table showing properties of different rocks. Siltstone has a density of two thousand one hundred seventy kilograms per cubic meter, modulus of elasticity six point seven gigapascals, and Poisson's ratio zero point two five. Limestone: density two thousand six hundred kilograms per cubic meter, modulus thirty-two point five gigapascals, Poisson's ratio zero point two five. Granodiorite: density two thousand seven hundred thirty kilograms per cubic meter, modulus fifty gigapascals, Poisson's ratio zero point two two.][image: Line graph showing peak borehole pressure in megapascals versus decoupling coefficient for six blasting scenarios: granodiorite water-coupled, limestone water-coupled, siltstone water-coupled, granodiorite air-coupled, limestone air-coupled, and siltstone air-coupled. All lines decrease as the decoupling coefficient increases, with water-coupled scenarios generally having higher pressure than air-coupled.]FIGURE 1 | Peak borehole pressure of blasting with different coupling media.
As can be seen from Figure 1, due to large flow viscosity and low compressibility of water compared with air, the shock wave weakens slowly during water-coupled blasting, and the explosion pressure delivered to borehole wall is significantly greater than air-coupled blasting. Combined with above analysis, when blasting medium is determined, the rock average fragmentation size by blasting is negatively correlated with the peak borehole pressure. The greater peak borehole pressure, the smaller rock fragmentation size. It can be concluded that compared with air-coupled blasting, water-coupled blasting can improve the fragmentation degree of rock mass, and the rock average fragmentation size is smaller.
3.2 Difference induced by changes in unit explosive consumption
The energy transferred from explosive to rock mass is related to the properties of explosive, rock mass and charge structure. The author studied and compared the difference of energy transferred to rock mass during blasting with different coupling media (Li et al., 2021). The results show that, compared with air-coupled blasting with same charge amount, water-coupled blasting reduces the attenuation of blasting load in coupling medium and improves the efficiency of explosive energy transfer. The increase factor of energy transfer efficiency is between several times and tens of times, which is related to blasting medium and decoupling coefficient.
Taking the energy transferred into rock as a comparative analysis, water-coupled blasting is equivalent to increasing the explosive charge to a certain extent. In order to facilitate intuitive comparison, air-coupled blasting, which has same energy transmission efficiency as water-coupled blasting, is taken as the equivalent charge structure of water-coupled blasting. Thus, the ratio of actual unit explosive consumption during blasting with two coupling media can be obtained as follows:
[image: Equation showing the ratio of q_water to q_air, represented as (n_air squared over n_e_air squared) equals (n_r_air squared over n_s_air squared), followed by equation number eleven in parentheses.]
Where [image: The text “q_{water}” appears in a mathematical or scientific context, representing a variable related to water.] and [image: It seems there is no image provided. Please upload the image or provide a URL for it, and I can help you create alternate text.] represent the actual unit explosive consumption considering the energy transfer efficiency of water-coupled blasting and air-coupled blasting, respectively; [image: The image depicts the mathematical expression "n" with the subscript "air".] represents the decoupled charge coefficient of air-coupled blasting; [image: Mathematical notation showing "n" with a superscript of "e" and a subscript of "air".] represents the decoupled charge coefficient of air-coupled blasting which has the same energy transfer efficiency as water-coupled blasting.
From Eq. 11 taking the explosion of emulsion explosive in siltstone, limestone and granodiorite with obvious difference in strength properties as an example, a comparative analysis of actual unit explosive consumption in blasting with different coupling media of typical charge structure was carried out. The calculation results are shown in Figure 2.
[image: Line graph showing the relationship between decoupling coefficient and actual unit explosive consumption ratio for three materials: siltstone, limestone, and granodiorite. Siltstone, in red, has the lowest consumption ratio across coefficients, while granodiorite, in green, has the highest. All materials show a general upward trend as the decoupling coefficient increases from 1.5 to 3.5.]FIGURE 2 | Ratio of actual unit consumption in blasting with different coupling media.
It can be seen from Figure 2 that, water-coupled blasting is equivalent to increasing the unit explosives consumption compared with air-coupled blasting, and the improvement coefficient is related to decoupling coefficient. Taking emulsion explosive blasting in granodiorite with decoupling coefficient of 1.28 as an example, the energy of water-coupled blasting transfer into rock is 1.91 times that of air-coupled one, and the actual unit explosive consumption is equivalent to 1.16 times that of air-coupled one, so that more explosive energy is used for rock breaking and the utilization rate of explosive energy is improved. Combined with above analysis, when blasting medium is determined, the rock average fragmentation size by blasting is negatively correlated with unit explosive consumption, that is, the larger unit explosive consumption, the smaller rock fragmentation size. It can be concluded that, water-coupled blasting can effectively increase the unit explosive consumption compared with air-coupled blasting, thus increasing the fragmentation degree of rock mass, and the average fragmentation size is small.
4 NUMERICAL SIMULATION OF ROCK FRAGMENTATION IN BENCH BLASTING
The numerical simulation software used is LS-DYNA, which is widely used in blasting dynamics and other related engineering fields, and can describe the crack growth process more clearly. In order to observe the crack initiation and propagation process of rock mass in bench blasting with different coupling media, a pseudo three-dimensional numerical calculation model is established considering the computational efficiency of real three-dimensional model. This simulation method has been verified to be able to better reflect the actual state of blast hole force (Zhu, 2021). The determination of the model size is based on the conventional excavation footage of the hydropower station slope excavation. The length × height of model is 11 m × 13 m, only one element thickness is taken in thickness direction. The excavation step height is 9 m. The center of borehole is 3 m away from front free surface and 4 m away from the left and right boundaries of model, that is, the width of bench blasting resistance line is 3 m. The step surface and top surface of model are free surfaces, no boundary conditions are applied, and normal constraints are applied in thickness direction to minimize the influence of model size on calculation results. The other parts are non-reflective boundaries, so as to restore the real single-hole bench blasting environment as much as possible.
To ensure that a real explosion effect can be simulated more accurately, the grid size of explosive and coupled medium is controlled at about 2 mm, the size of adjacent rock is approximately the same as explosive/coupled medium. The rock in middle and far region is adopted with a larger size to improve calculation efficiency. The grid of different sizes is gradually transitioned to reduce the influence on calculation accuracy. The model size and mesh division are consistent in different working conditions, and the calculation time step matches the model minimum mesh. The specific model is shown in Figure 3.
[image: Diagram showing a free surface at the top, with a vertical bar labeled "Normal fixation" in the center. The left and lower edges are labeled "Non-reflecting boundary." The background is green. Arrows point to the boundaries and surface, indicating their respective labels.]FIGURE 3 | Numerical calculation model of bench blasting.
The calculated working conditions are shown in Figure 4. The depth of borehole is 10 m, the bottom ultra-deep is 1 m, the diameter of borehole and charge are 90 mm and 70 mm, respectively. The corresponding decoupling coefficient is 1.28. Water or air is filled between the charge and borehole wall to simulate water-coupled blasting and air-coupled blasting. The fluid-solid coupling algorithm is used to simulate the interaction between detonation product, coupling medium and rock mass.
[image: Diagram comparing air-coupled and water-coupled blasting methods. Both have a 7 meter explosive section followed by a 3 meter stemming section. The air-coupled version uses air between the explosive and stemming, while the water-coupled version uses water.]FIGURE 4 | Numerical simulation of bench blasting.
Emulsion explosive and granodiorite are also used in calculation. LS-DYNA’s own high-energy material model *MAT_HIGH_EXPLOSIVE_BURN is used to represent explosives. At the same time, the relationship between pressure and relative volume during explosive explosion is described by combining the *EOS_JWL state equation. The relationship is as follows:
[image: The equation displays a formula for \( p \) as follows: \( p = A \left(1 - \frac{\omega}{R_1 V}\right) e^{-R_1 V} + B \left(1 - \frac{\omega}{R_2 V}\right) e^{-R_2 V} + \frac{\omega E_0}{V} \). Equation number (12) is indicated on the right.]
Where p represents the detonation pressure, V represents the relative volume of detonation product, and the rest is the state equation constant, which is related to explosive type.
A material model with the keyword MAT-NULL can be used to simulate fluids, and the state equations controlled by the keywords *EOS_Linear-Polynomial and *EOS_GRUNEISE can be used to describe the effects of air and water under high pressure, respectively. The relevant calculation parameters of explosives (in Eq. 12), air, and water can be found in references (Chen, et al., 2020; Ye, et al., 2021). RHT damage constitutive model is used to describe the damage characteristics of rocks under blasting load. The RHT model comprehensively considers the strain rate effect, damage softening, failure and other characteristics of materials under dynamic load, and can better describe the damage and failure characteristics of brittle materials such as rock and concrete under dynamic load (Park and Jeon, 2010). The calculation parameters of RHT model for granodiorite are shown in Table 2.
TABLE 2 | Main parameters of the rock RHT model.
[image: Table listing parameter values related to rock mechanics: rock density is 2730 kg/m³, longitudinal wave velocity is 5300 m/s, bulk modulus \( A_1 \) is 29.8 GPa, shear modulus \( G \) is 20.1 GPa, compressive strength \( f_c \) is 146.2 MPa, normalized tensile strength \( f_t/f_c \) is 0.1, normalized shear strength \( f_s/f_c \) is 0.18, intact failure surface constant \( A \) is 1.82, intact failure surface constant \( N \) is 0.75, tensile/compressive meridian ratio \( Q_0 \) is 0.6805, brittle to ductile transition \( B_Q \) is 0.0105, compressive strain rate exponent \( \alpha \) is 9.090 x 10^-3, tensile strain rate exponent \( \delta \) is 1.250 x 10^-2, damage constants \( D_1 \) and \( D_2 \) are 0.04 and 1.00, respectively.]The rock fracture process of water-coupled bench blasting is shown in Figure 5. At the explosive initiation, the rock mass is damaged by blasting load applied to borehole wall rapidly through water, as shown in Figure 5A. After detonation at bottom, with the detonation wave upward propagation, the crushing damage of rock around borehole gradually develops upward until the end of detonation process, and a crushing zone is formed, as shown in Figures 5B, C. With time increases, the blasting stress wave at bottom of borehole, which previously acted on rock, propagated to the bench free surface and reflected, resulting in tension damage near slope foot, as shown in Figure 5D. With the transfer of blasting loads in different areas, the reflected tensile stress near bench surface gradually increased, and surface appeared spalling and bulging, as shown in Figure 5E. Under continuous action of blasting load, the rock is thrown along the direction of minimum resistance line, as shown in Figure 5F. In addition, due to the long acceleration time of inner rock under blasting load, the throwing speed is greater than that of the outer rock. During the throwing process, the phenomenon of secondary extrusion collision and crushing between rock blocks appears, as shown in Figure 5G. The development of water-coupled bench blasting is mainly concentrated on the rock in direction of resistance line, and the overall cracking is small due to rock constraint in back rush. The water-coupled bench blasting rock fracture evolution process of numerical simulation is basically consistent with the theoretical fracture throwing process and the development of the 3D model blasting damage (Cho and Kaneko, 2004).
[image: Seven panels, labeled A to G, showing simulations of particle dispersion around a cylindrical object. The colors range from blue to green, indicating different concentration levels. Panel A shows initial dispersion, while panels B to G show increasing dispersion and complexity with visible flow patterns.]FIGURE 5 | The rock damage evolution development process of water-coupled bench blasting. (A) Detonation. (B) Detonation transmission. (C) Formation of crushing zone. (D) Toe cracking. (E) Spalling and bulging. (F) Initial throwing. (G) Secondary extrusion crushing.
The rock fracture development process of air-coupled bench blasting is basically consistent with water-coupled blasting, so it will not be described here. The comparison of rock mass rupture between water-coupled bench blasting and air-coupled bench blasting with same time is shown in Figure 6. As can be seen, water-coupled bench blasting takes the lead in reflecting tensile failure of free surface and bulging throwing of fractured rock mass. The development speed of rock rupture is significantly better than air-coupled one, and the development of rupture is basically consistent with the damage, which reflects good carrying capacity of water. The experimental results of Li et al. (2009) show that the crack growth speed and extension length are closely related to the dynamic stress intensity factor of crack tip, and generally show the same development trend. The larger the crack growth speed and extension length, the larger the dynamic stress intensity factor of crack tip. From above analysis results, it can be inferred that the dynamic stress intensity factor at crack tip is larger and the disturbance effect on rock is stronger during water-coupled bench blasting. Under the same calculation model and same failure criterion, the difference of blasting crack density can approximately reflect the difference of rock blasting fragmentation size. It can be seen from Figure 6D that at the same time, the crack development degree of water-coupled bench blasting is far higher than air-coupled one, which has a stronger crushing effect on rock, which is conducive to reducing the generation of large blocks after blasting and thus improving construction efficiency.
[image: Four-panel comparison of Droplet-on-Demand jetting: Panel A shows initial air-coupled (left) and water-coupled (right) states. Panel B shows further development with highlighted areas in red ellipses. Panel C indicates more droplet elongation. Panel D illustrates advanced ripple patterns. White droplets are against a green background.]FIGURE 6 | Comparison of rock rupture in bench blasting with different coupling media. (A) 1.5 ms. (B) 2.2 ms. (C) 3.5 ms. (D) 7.6 ms.
5 FIELD TEST
In order to further clarify the difference of fragmentation characteristics of rock blasting with different coupling media, bench blasting tests were carried out on project site.
5.1 Test site and test conditions
The blasting test area is located in right bank slope of Yebatan Hydropower Station. The excavation ladder section and pile number range are EL.2945 ∼ EL.2930 ladder section and 0+85 ∼ 0+155 range. The surrounding environment of test area is shown in Figure 7. The length of blasting area along river is about 70 m, the lateral length is about 15 m, and the blasting area is about 850 m2. The surface of blasting area is undulating, and there are many convex chunks near free surface.
[image: Aerial view of a rocky terrain with horizontal layers labeled with numbers 3000, 2974, 2966, and 2945. A red marker is encircled by a yellow dashed rectangle near the bottom center.]FIGURE 7 | Blasting test area.
A total of 114 main holes were arranged in five rows in test. The hole spacing was 2.5∼3.5 m, and hole array pitch was 2.3–3.2 m. In order to compare the blasting differences of different coupling media, the blasting area is divided into two parts. The upstream side of blasting area is conventional air-coupled blasting, and the downstream side of blasting area is water-coupled blasting. The plane layout of borehole is shown in Figure 8.
[image: Diagram showing air-coupled blasting on the left and water-coupled blasting on the right. Both sections contain evenly spaced circular patterns, divided by a vertical red dashed line.]FIGURE 8 | Layout of borehole.
The diameter of main borehole is 115 mm, and the diameter of cartridge is 70 mm or 32 mm. The charge is mainly 70 mm diameter cartridge, and the single hole charge is distributed in 84∼96 kg. The specific blasting parameters are shown in Table 3. In water-coupled blasting area, water is injected into borehole after charging, and secondary water injection is carried out after plugging to ensure the water-coupled environment.
TABLE 3 | Table of blasting parameters.
[image: Table displaying blasthole parameters: Five rows of main borehole data with columns for the number of blasthole rows, number of holes, hole array pitch, hole spacing, stemming length, and single-hole charge. Values include variations for metrics like pitch and spacing. A note below specifies charge roll sections and weights.]The borehole adopts continuous charge, and two detonators are arranged in the middle and top of charge section respectively. The detonating network adopts the detonating tube detonator network, and the double-detonating MS13 detonator is set in main borehole, and the MS3 detonator is used to transmit the explosion between segments and the MS5 detonator is used to transmit the explosion between rows.
5.2 Test results
Using UAV to collect blasting block image from the upstream side, downstream side, front and top of blasting pile. The artificial high-definition camera is used to collect blasting block image of blasting pile area near the reserved rock. The typical blasting block image collected is shown in Figure 9.
[image: A sequence of four panels illustrating different stages of geological analysis. Panel A shows a vertical divide between "wave-sculpted" and "aeolian-sculpted bluffs" with a yellow dashed line. Panel B offers two close-ups, comparing XL aeolian bluffs and non-sculpted bluffs. Panel C presents a close-up of rough, rocky terrain. Panel D displays scattered, broken rocks. Each image captures the texture and structure of the rocky surfaces.]FIGURE 9 | Typical blasting block image. (A) Front of blasting pile. (B) Top of blasting pile. (C) Upstream side of blasting pile. (D) Downstream side of blasting pile.
In order to quantitatively analyze and process the image, the long sides of explosive pack boxes left in different positions of blasting pile are used as the scale, as shown in Figure 10. The actual size of long sides is 50 cm.
[image: Scattered construction debris, including bricks, lies among rocks and dirt. A red arrow with the measurement "0.50 m" indicates the length of one of the bricks.]FIGURE 10 | Scale for blasting block analysis.
The upstream side of blasting test is air-coupled blasting area, and the downstream side is water-coupled blasting area. Then, the block analysis of two test areas is carried out respectively. The blasting block image taken when the lens was parallel to blasting pile was selected and guided into WipFrag software, the image scale was set, and the software was used to automatically identify the blocking edge and manually correct the wrong edge. Based on the manually corrected results, WipFrag software automatically generates a single blasting block distribution curve, and finally combines multiple blasting block distribution curves to obtain the lumpiness distribution curves of two blasting areas in test, as shown in Figure 11.
[image: Logarithmic graph comparing air-coupled blasting and water-coupled blasting, depicted by red and blue lines respectively. The x-axis shows particle size in millimeters ranging from 0.1 to 10000. The y-axis shows the percentage of particles less than a certain size, ranging from 0 to 100 percent.]FIGURE 11 | Blasting test block distribution curve.
The most intuitive evaluation index of blasting block distribution curve is the mean diameter x50 and the non-uniformity coefficient Cu of graded material. Cu < 5 indicates uniform particle size distribution, and the larger non-uniform coefficient, the more uneven particle size distribution. The calculation formula of non-uniformity coefficient Cu is as follows:
[image: Mathematical expression showing \( C_u = \frac{x_{60}}{x_{10}} \) with equation number (13) on the right.]
Where x60 and x10 represent rock sizes with 60% and 10% cumulative rates under minus mesh material, respectively.
The main parameters of blasting block in different test areas obtained by WipFrag are shown in Table 4. From Eq. 13 the mean diameter of rock blocks in air-coupled blasting is 342.36 mm, and the non-uniformity coefficient is 8.10. The mean diameter of rock blocks in water-coupled blasting area is 283.74 mm, and the non-uniformity coefficient is 4.29. The mean diameter in water-coupled blasting area is smaller than that in conventional blasting area. The particle size distribution is more uniform, which is conducive to improving the rock fragmentation efficiency.
TABLE 4 | Table of fragmentation size distribution parameters of rock after blasting.
[image: Table comparing rock fragmentation metrics for air-coupled and water-coupled blasting. Rows represent test areas. Columns denote rock sizes at 60% and 10% cumulative rates, mean diameter, and non-uniformity coefficient. Air-coupled blasting shows higher values for rock sizes and non-uniformity coefficient than water-coupled blasting.]6 CONCLUSION
The main conclusions are as follows:
	(1) Based on stress wave theory and variation law of strain rate near borehole area, a distribution model of blasting fragmentation is established considering the effect of rock mass strain rate. When blasting medium is determined, the blasting fragmentation size is negatively correlated with the borehole pressure and unit explosive consumption.
	(2) In water-coupled blasting, the existence of water makes the blasting pressure transmitted to hole wall significantly greater than that of air-coupled one, and prolongs the duration of blasting load, improves the work of explosive on rock, and is equivalent to improving the unit explosive consumption. Compared with air-coupled blasting, water-coupled blasting can improve rock fragmentation, and the rock fragmentation size is smaller.
	(3) The pseudo three-dimensional numerical simulation of bench blasting with different coupling media was carried out. The rock rupture development speed of water-coupled blasting is obviously better than that of air-coupled one, and the development degree of final cracks is far higher, that is, water-coupled blasting has a stronger crushing effect on rock, which is conducive to reducing the generation of large blocks after blasting.
	(4) Field tests of bench blasting with different coupling media were carried out, and the lumpiness distribution curves of rock mass after blasting were obtained. The test results show that the mean diameter of rock in water-coupled blasting area is smaller and the particle size distribution is more uniform.
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The rockburst risk prediction based on microseismic (MS) data is an important research task in deep mine safety prevention. However, the lack of systematic research on explicit prediction indexes and the waste of a large amount of unlabeled data are still two main problems that hinder the development of rockburst prediction. In this paper, the acoustic emission (AE) event distribution at each coal rock deformation and failure stage is studied based on the laboratory experiment. The spatial-temporal evolution of rockburst in MS data of coal mine fields is explored. Based on systematic research of the AE and MS distribution features considering the physical logic of coal rock mass failure, nine different rockburst prediction indexes are employed to describe the MS data features before rockburst. Then, according to the rockburst prediction indexes, a new self-supervision rockburst risk prediction algorithm is constructed, consisting of the pre-trained model and fine-tuning model with the same encoder and decoder structure. The pre-trained model is trained with unlabeled MS data to automatically learn rockburst prediction index features by reconstructing the masked indexes. Based on the pre-trained encoder and decoder parameters, the fine-tuning model is trained with the labeled MS data to predict rockburst risk. A large number of experiments show that the proposed rockburst prediction self-supervision algorithm is far superior to previous algorithms, by effectively utilizing unlabeled data. The ablation experiment also proves the validity of the studied rockburst prediction indexes.
Keywords: rockburst prediction, rockburst prediction index, deep learning, self-supervision algorithm, microseismic data

1 INTRODUCTION
Coal mine rockburst is characterized by its sudden occurrence and severe destruction (Aydan et al., 2017; Basnet et al., 2023), which can cause extensive damage to roadways and even casualties, which is one of the most serious disasters threatening the safe production of coal mines. The accuracy of rockburst risk prediction on the basis of reliable data is of great significance in effectively preventing and controlling rockburst. Currently, scholars mainly evaluate the risk of the special area by empirical analytical (Yang et al., 2018), experimental (Cheng et al., 2023), numerical (Manouchehrian and Cai, 2018; Wang et al.,2021), intelligent (Adoko et al., 2013; Adoko and Zvarivadza, 2018; Xue et al., 2023), expert system (Li et al., 2020) and data mining (Askaripour et al., 2022; He et al., 2023; Pu et al., 2019; Li et al., 2019; He et al., 2018) methods. Rockburst predictions are generally categorized into long-termand short-term types (Liang et al., 2020). Long-term predictions emphasize the utilization of rock mechanical parameters to develop a prediction model that assesses the likelihood of rockburst occurrences across varying surrounding rock masses and field conditions (Liang and Zhao, 2022). Conversely, short-term predictions aim to predict the timing and scale of potential rockburst events by the dynamic and continuous analysis of real-time monitoring data during the excavation phase (Jinqiang et al., 2021).
In the studies of short-term rockburst prediction, microseismic (MS) monitoring stands as a highly accepted and efficient tool. It can monitor rockburst occurrences by capturing significant signals that emerge from the fracturing processes within coal rock masses. Recently, a significant number of scholars have focused on rockburst prediction utilizing microseismic (MS) data and machine learning algorithms. Based on the strength of machine learning in handling nonlinear problems, researchers have employed a range of prevalent algorithms for short-term rockburst prediction, encompassing Support Vector Machines (SVM) (Ji et al., 2020; Jin et al., 2022), Convolutional Neural Networks (CNN) (Dong et al., 2023; Zhang et al., 2021; Yin et al., 2021a), diverse Recurrent Neural Network (RNN) variants (Hu et al., 2023; Di et al., 2023a; Di et al., 2023b), ConvLSTM (Chen et al., 2023; Ma et al., 2021), and ensemble-learning techniques (Liang et al., 2020; Yin et al., 2021b; Liang et al., 2021). These algorithms have shown promise in enhancing the accuracy and reliability of rockburst predictions based on MS data. To describe the spatiotemporal relationship of microseismic data and process spatiotemporal indexes of rockburst prediction, Chen et al. (2023) constructed a deep learning model based on a convolutional long short-term memory network (ConvLSTM) to predict the short-term rockburst risks. To effectively capture the progression of rockburst, Zhang et al. (2021) and Yin et al. (2021a) leverage the improved convolutional neural network (CNN) to predict rockburst occurrences. Additionally, ensemble-learning methods (Liang et al., 2020; Yin et al., 2021b; Liang et al., 2021) have been employed to integrate multiple models, resulting in a powerful and robust rockburst prediction model that leverages various MS parameters. By harnessing the strengths of both ConvLSTM and ensemble learning, these advancements are poised to enhance the accuracy and reliability of rockburst predictions significantly. Meanwhile, considering the basic principles of MS and acoustic emission (AE) are similar, the acoustic emission (AE) system is also adapted to monitor the associated AE signals during the rockburst process and to explore the characteristics of micro-cracks position and acoustic emission event distribution at different stages (Hu et al., 2019; Su et al., 2018).
In the aforementioned studies, the initial step involves a thorough analysis of the rockburst impacts on the distribution of microseismic (MS) data. Subsequently, specific and explicit rockburst prediction (ERP) indexes are extracted and calculated based on the MS data, which aims to capture the key features related to rockburst occurrence. Finally, the supervised machine learning (ML) algorithm with rockburst prediction indexes as input is constructed to predict rockburst risk. Almost all previous ML methods for rockburst prediction based on microseismic (MS) data necessitate risk targets for supervised learning. Nevertheless, the process of labeling the rockburst risks for each MS event is not only costly but also labor-intensive. As a result, a large amount of unlabeled MS data cannot be used to train the supervised rockburst prediction algorithms, which represents a significant waste of potentially valuable information for improving prediction accuracy. At present, the explicit rockburst prediction indexes based on MS data are normally analyzed at the data level. There is a lack of systematic research and summary from the physical logic view of coal rock mass failure. Simultaneously, in the deployment of a new mine, these algorithms require a considerable amount of time for training, resulting in a waste of resources and time.
In this paper, to systematically research and summarize the MS data features based on the physical logic of coal rock mass failure, distribution features of experimental acoustic emission (AE) events and spatial-temporal evolution of rockburst in field MS data are studied. A systematic study of explicit rockburst prediction indexes is presented considering the MS data spatiotemporal features and the failure mechanism of coal and rock mass. Then, a new self-supervision algorithm for predicting the rockburst risk is proposed, including self-supervision and fine-tuning models with the same encoder and decoder structure. In the self-supervision framework, the explicit rockburst predictions are randomly masked and the pre-trained algorithm is employed to reconstruct the masked indexes. Based on the pre-trained encoder and decoder weights, the fine-tuning algorithm is properly trained with a small amount of labeled data, which can be directly used for rockburst prediction in new mines. In the MS data sets of three mines, the performance of the proposed algorithm is far better than that of previous methods. Moreover, the algorithm also provides a strategy that utilizes a large amount of data for self-supervision to obtain the pre-trained encoder and decoder weights, and then quickly deploy the algorithm in new mines through fine-tuning.
2 THE DISTRIBUTION FEATURES OF AE EVENTS IN LABORATORY EXPERIMENTS AND MS EVENTS IN THE COAL MINE FILED
Microseismic (MS) system aims to monitor small seismic events caused by stress concentration, rock rupture, or other forms of energy release in geological media, especially in coal rock mass. Acoustic emission (AE) system refers to monitoring the phenomenon of transient elastic waves caused by the initiation and development of material internal defects under the action of external forces until the rapid release of energy. Since the basic principles of MS and AE are similar, the AE events distribution of coal rock mass in the process of deformation and failure and the MS event distribution in the mining process are studied in this section.
2.1 The AE events distribution in the laboratory AE experiment
The AE event distribution features are studied based on the acoustic emission monitoring equipment of the uniaxial compression experiment. In this experiment, coal rock masses from coal mine sites are sampled. Eight 50 mm × 90 mm standard coal samples are made by sample preparation equipment and cutting machine. The uniaxial compression machine is used for loading with 0.05 mm/min displacement control. DS5-8B acoustic emission system is used to monitor the acoustic emission signal during the loading process, and the signal measurement range is 1 kHZ∼3 MHZ. The illustration of the acoustic emission monitoring experiment of coal rock sample deformation and failure is shown in Figure 1. The stress-time-AE energy-AE count curves are shown in Figure 2.
[image: Uniaxial compression equipment on the left with a vertical machine applying force to an object. On the right, acoustic emission equipment includes a computer setup with monitors displaying data.]FIGURE 1 | The illustration of the acoustic emission monitoring experiment of coal rock deformation and failure.
[image: Nine line graphs displaying cumulative confirmed COVID-19 cases per million people across different countries or regions. Each graph has dates on the x-axis and cases on the y-axis, with a red line representing the trend and black and blue bars showing daily new cases. The graphs are arranged in a three-by-three grid layout.]FIGURE 2 | Stress-time-AE energy-AE count curves of different coal samples under uniaxial compression. The AE energy is the max AE energy per unit of time.
AE events gradually extend from both ends of the coal rock sample to the middle of the sample in space during the whole loading process. To more clearly explore the distribution characteristics of events, the distribution of AE events from the process of coal rock mass from loading to failure are analyzed from four stages, including compaction stage, elastic deformation stage, plastic deformation stage, failure stage, and residual deformation stage.
The AE count and the max AE energy per unit time of different coal rock samples in the compaction stage are very small, and the AE event activity is in the silent period. With the continuous increase of axial stress, coal rock samples enter the elastic deformation stage, in which microporous cracks develop stably. The acoustic emission count and the max AE energy have some increase compared with the compaction stage. Then, as the axial stress continues to grow, the coal rock samples enter the plastic deformation stage. The microporous cracks continue to develop, expand, and penetrate. In the coal rock samples, the unstable development of cracks results in plastic deformation. In this stage, the acoustic emission count and the max AE energy increase significantly and show a disordered distribution. When axial stress is loaded to peak stress, the cracks spread through to form a macro failure surface, and the coal rock samples are fractured. Meanwhile, the AE count and max energy of coal rock samples also appear to peak. In the failure stage, most AE events gather at the macro failure surface, showing an ordered distribution state. The final macroscopic damage location is basically the area where acoustic emission events are most dense.
2.2 The spatial-temporal evolution of rockburst in MS data
Microseismic monitoring (MS) data is the typical time series data reflecting the time, 3D location coordinates, and energy (intensity) of the rock failure. The MS data of a representative coal mine in the recent 3 years are studied in this section. The sequential distribution of the normalized microseismic energy is shown in Figure 3. In many long-term MS data, the fluctuation of energy gradient released by MS events is small and disordered, showing a relatively natural calm state. However, the MS event number increases obviously before the rockburst occurs from a frequency perspective. Meanwhile, the max energy of the MS event is obviously increased. During the period before the rockburst occurs, the fluctuation of the energy gradient is obviously different from the natural clam state, showing a drastic float in the energy gradient. The occurrence of dangerous events obviously causes the energy to reach its maximum during a period, resulting in an instantly sharp increase and a steep decrease in the energy fluctuation gradient.
[image: Graph showing seismic event energy over time, with spikes labeled as dangerous events. The x-axis represents dates from 2020 to 2021, and the y-axis indicates seismic energy levels. Normal events are shown in blue, and significant spikes in red denote dangerous events.]FIGURE 3 | Microseismic energy expansion on the time sequence. The energy value is standardized. The red and blue area are the energy range of the dangerous events and normal events.
The projecting results of the MS energy on spatial coordinates are shown in Figure 4. Vast MS events are distributed in several aggregation areas. In one area, the distribution feature of several consecutive MS events is similar to the spatial distribution features of the most related events. When the stress field of the focal region reaches a limited degree, the distribution of time, space, and intensity of the MS event activity changes from disorderly to orderly state. The spatial intensity of MS events increases significantly and gathers at some special regions before the occurrence of dangerous events such as rockburst. Meanwhile, there is no large energy MS event around the rockburst event. This is because, for rockburst events, the stress in the surrounding rock increases from a steady state to a limited value within a long-term accumulation, resulting in a sudden release of energy. The release of large energy events can keep the stress of surrounding coal rock in a stable state for a certain period.
[image: Animated 3D scatter plot showing data points clustered around multiple centers. Points are mostly gray, with several red and one yellow highlights. Axes are labeled one to nine. The animation zooms and rotates to reveal the spatial distribution.]FIGURE 4 | Spatial projection of MS energy. The three-dimensional coordinates are normalized. The size of the point represents the amount of energy.
3 EXPLICIT ROCKBURST PREDICTION INDEXES BASED ON MICROSEISMIC DATA
The occurrence of rockburst is often influenced by various geological and mining conditions. The failure of coal rock mass is the result of continuous macroscopic crack formation from crack propagation to penetration, and MS monitoring technology is an effective means to observe the evolution of cracks in coal and rock.
MS data can reflect the influence of mining on surrounding rock and geological conditions. According to the previous study and the laboratory experiment in Section 2, the process of coal rock mass from loading to failure requires a compaction stage, elastic deformation stage, plastic deformation stage, failure stage, and residual deformation stage. Based on the physical logic of coal rock mass failure and AE/MS distribution features studied in Section 2, multiple rockburst prediction indexes are established to describe the time, spatial and intensity distribution features of MS data in this section.
3.1 Time sequence indexes
The time sequence rockburst prediction indexes aim to study the time distribution features of rockburst and MS events at different stages (Cai et al., 2018), whose key research object is the relationship between the occurrence time and MS event intensity. The time sequence indexes based on the MS data in this section include the temporal concentration, the time interval, and time information entropy.
According to the equipment results in Section 2, when the acoustic emission signal changes from a small number of disordered states to a large number of ordered states, it indicates that the rock mass changes from the stable state to the unstable state. For coal mine engineering, there is an obvious MS activity period before the occurrence of rockburst. This is because the surrounding coal rock mass is undergoing energy exchange with the outside system, and the surrounding rock structure is in an unstable adjustment period, which can be expressed by the temporal concentration and formalized as Equation 1.
[image: Mathematical equation showing the definition of \( Q_T \). It is expressed as the variance of \( T_n \) divided by the change in \( T_r \): \( Q_T = \text{Var}(T_n) / \Delta T_r \).]
where, [image: Mathematical expression showing \( Q_T, \text{Var}(T_n) \).] and [image: The image shows the mathematical expression: uppercase Greek letter delta, capital T, subscript lowercase n.] are temporal concentration, the variance and mean value of the time interval of the last n MS events.
Based on the results of Figure 2 and the studies of MS event distribution in Figure 3, 4, before the coal rock mass failure and rockburst occurrence, the frequency of AE events and MS events increase significantly. Therefore, the time interval [image: Delta T, symbolized as a triangle followed by the letter T, represents a change in temperature or time in scientific notations.] is employed, which can be represented by the interval between the time of the researched MS event and the previous one MS event.
Referring to the basic idea of dissipative structure theory, the process from gestation to the occurrence of AE signals and MS events can be regarded as an open system with energy exchange with the surrounding environment. When the stress field of the focal region reaches a limited degree, the distribution of time, space, and intensity of the MS or AE event activity will change from disorderly to orderly state. It shows that the AE signal and the MS event develop towards a certain trend and have broken away from the natural state. Therefore, the time information entropy Qt is used to describe the aggregation degree of MS events in the time series, reflecting the disorder or order in the evolution of MS time. The time information entropy can be formalized as Equation 2.
[image: Mathematical formula showing \( Q_t = \frac{-\left( \frac{1}{n} \right) \sum_{i=1}^{n} p_i \ln p_i}{\ln(n-1)} \), labeled as equation (2).]
where, n is the total number of selected MS events. [image: Mathematical expression for \( p_i \) is given as the fraction \((t_{i+1} - t_i) / (t_n - t_i)\).], ti is the occurrence time of the i-th MS event, and the value of pi is 0∼1.
3.2 Spatial indexes
The spatial index aims to study the spatial distribution features of AE and MS events before the dangerous event occurs (Tang and Xia, 2010; Lu et al., 2015), including space concentration, spatiotemporal diffusion, etc. Within the scope of the laboratory, the final macroscopic damage location is basically the area where acoustic emission events are most dense. From the macroscopic coal mine scale, when the distribution of MS events in a certain region is dense, it indicates that the region has strong MS activity and high rockburst risk. On the contrary, if the distribution of MS events in this region is scattered, it indicates that the region has low MS activity and low rockburst risk.
Similar to AE events from laboratory experiments, the spatial distribution of MS events corresponds to the occurrence and development process of microfailures in the inner space of rock mass. Therefore, the spatial distribution of MS events is important for understanding the stability of coal rock mass in the mine. The spatial intensity of MS events will increase significantly before the occurrence of dangerous events such as rockburst. Therefore, space concentration is presented as Equation 3.
[image: Formula representing \( Q_D = \text{Var}(R_t) / \Delta R_t \), labeled as equation (3).]
where, [image: The image shows the mathematical notation "Q" with a subscript "D", indicating the demand quantity in economic or mathematical contexts.], [image: Mathematical expression showing "Var" followed by "R" with a subscript "n" enclosed in parentheses.], and [image: The image contains the mathematical expression: Delta R subscript n, with an overbar above the R.] are the space concentration, variance and mean value of the radius corresponding to the last n MS events.
According to the equipment results in Section 2, the occurrence of AE events and MS events often does not exist in isolation, but occurs in a period of time. From the perspective of spatial distribution, AE and MS events tend to occur in a certain area, forming the event cluster. The spatial distribution features of these clusters can reflect the non-uniformity of stress distribution and the complexity of underground structures. The spatiotemporal diffusion is summarized to reflect the dispersion degree of MS events in time and space, which can be formalized as Equation 4.
[image: Mathematical equation showing the formula for the cumulative distribution function, \( F_x \left( \frac{X}{\bar{t}} \right) \), labelled as equation four.]
where, [image: It looks like there was an error trying to display an image. Please try uploading the image again or provide a URL if you can.] is the average distance between sequential MS events. [image: It seems there was an issue with the image upload or the link provided. Please try uploading the image again or provide a URL if you have one. If there's any additional context or specific details about the image you want to include, feel free to add that as well.] is the average time interval between sequential MS events.
3.3 Intensity indexes
The strength index includes total stress equivalent, energy value, energy information entropy, and so on Kracke and Heinrich (2004). Laboratory-wide AE monitoring results show a rapid increase in the frequency and energy of AE events prior to macroscopic failure of loaded coal rock samples. By studying the relationship between the energy and stress during the occurrence of the engineering scale MS events, it is found that the square root of the energy released by the MS event is proportional to the stress variable in the coal rock mass. Therefore, the square root of the energy released by MS events can be used to reflect the strain state of coal and rock mass before the rockburst. The square root of the total energy of coal rock mass in the unit area and unit time is used as the energy prediction index, namely, the energy density. The energy density can be formalized as Equation 5.
[image: The formula represents \(Q = \sum nE/S_n T_n\) in equation format, numbered as equation (5).]
where, Ei is the energy of i-th MS events. Sn and Tn are the area and statistical time window of the n consecutive MS events.
In the laboratory experiments, the peak value of AE counts means that the crack spread through to form macroscopic failure surface. Analogously, before a rockburst occurs in a coal mine, the MS stress in the coal rock mass surrounding the roadway increases from the steady state to the limit value, resulting in a sudden release of energy in the rock mass. The MS event count and energy also increase significantly. Therefore, the energy concentration index is established to reflect the energy change and MS distribution before the rockburst, which can be formalized as Equation 6.
[image: Mathematical equation showing \( Q_t = \text{Var}(E_t) / \Delta E_t \), labeled as equation six in parentheses.]
where, QE, Var(En) and [image: Mathematical expression showing a delta symbol followed by capital E with a bar over it and subscript n.] are the energy concentration, the variance and mean value of the energy corresponding to the continuous n MS events.
Through the study of stress-time-AE energy-AE count curves in Figure 2, the sudden change of energy E and event activity value QS can be regarded as a sign of coal rock failure or rockburst risk. The activity value should be an index that combines the frequency, the maximum energy, the average energy and the distribution concentration of events, which is formalized as Equation 7:
[image: Equation for Q sub S equals 0.117 times log base 10 of open parenthesis N plus 1 close parenthesis plus 0.029 times log base 10 of open parenthesis 1 over N close parenthesis times the summation from i equals 1 to N of 10 raised to the power of 1.5 times M sub i plus 0.015 times M, labeled as equation 7.]
where, N indicates the total number of microseismic events in the statistical period; Mi represents the energy level of the MS event in the statistical period; M is the energy level of the microseismic event in the statistical period. The AE and MS energy E mainly reflect the failure strength of coal rock mass under loads, which is also a prediction index.
Generally, MS data parameters and rockburst prediction indexes have different values and units. If they are directly input into the neural networks, the training performance will be poor. After exploring the solving principle of the neural network, the MS data parameters need to be standardized and processed after the rockburst prediction indexes are established. The standardized calculation equation is shown as Equation 8.
[image: Equation representing the calculation of the standardized value of x. It shows y equals the numerator x-sub-i minus the mean of x over n, divided by the square root of the sum of squared deviations of x-sub-i from the mean, over n minus 1. Equation number eight.]
where, xi and yi represent the i-th data value before and after normalization. n is the total number of selected data.
4 THE SELF-SUPERVISION METHOD FOR ROCKBURST PREDICTION BASED ON MS DATA
In order to make full use of a large amount of unlabeled MS data, this paper presents a self-supervision method for rockburst prediction based on MS data. The self-supervision algorithm consists of a pre-trained model and a fine-tuning model with the same decoder and encoder. By reconstructing the masked prediction indexes, the pre-trained model mainly learns the data features of rockburst prediction indexes based on a large number of MS monitoring data. The fine-tuning model perfectly achieves the purpose of rockburst risk prediction using pre-trained parameters and a few labeled MS data.
4.1 The pre-trained model of self-supervision method
The self-supervision pre-trained model for rockburst risk prediction is mainly trained by reconstructing the masked prediction indexes, using rockburst prediction index features based on a large number of MS data. The model consists of an encoder, a decoder, and an auxiliary task reconstruction head, as shown in Figure 5.
[image: Flowchart depicting a model for rockburst prediction indexing. It starts with inputs undergoing random masking, followed by convolutional layers (Conv1D) of varying sizes and padding. Outputs include true and predicted values of rockburst prediction indexes, compared using MSE loss, leading to a feature fusion module. An auxiliary self-supervision task is highlighted.]FIGURE 5 | The pre-trained model of the self-supervision algorithm for rockburst prediction.
A large number of unlabeled MS data is first calculated to the explicit rockburst prediction indexes based on the Equation 1∼Equation 8. Then, some prediction indexes are randomly masked with a certain probability. The masked and unmasked prediction indexes are input into the encoder to obtain the encoded features. The encoder consists of a five-layer one-dimensional convolutional neural network (1D CNN). Each 1D CNN module consists of a convolution layer, a Batch Normalization layer, and a Relu activation function. The number of convolution kernels in each layer is 12, 12, 12, 24, and 24, respectively. The input and output feature dimensions of the encoder are [Batch size, 9, 1] and [Batch size, 24, 1].
The cosine positional encoding is used to encode the position of encoding features to obtain the input tokens of the decoder model. The decoder of the self-supervision algorithm consists of 3 layers of feature fusion modules, as shown in Figure 6. Each fusion module consists of a layer normalization operation, cross-attention mechanism, layer normalization operation, and a forward neural network (FNN) layer, as shown in Figure 7. In the cross-attention mechanism, the input tokens are calculated to query (Q), key (K), and value (V) vectors, seeing Figure 8. Then, these vectors are fused by the MatMul, SoftMax, and Scale operations. To speed up training, the three vectors can be divided and parallelized. The cross-attention mechanism can be shown as Equation 9.
[image: Formula for the attention mechanism in machine learning: Attention(Q, K, V) equals softmax of the matrix product of Q and K transposed, divided by the square root of D, multiplied by V.]
[image: Flowchart illustrating a neural network module with sequential blocks labeled: "Feedforward" in green, "Layer Norm" in blue, "Multi-Head Cross-Attention" in yellow, another "Layer Norm" in blue, followed by "Learnable Feature Tokens" in orange. The diagram highlights connections between the components with arrows.]FIGURE 6 | The structure of decoder in the self-supervision method.
[image: Diagram illustrating the process of Scaled Dot-Product Attention. It shows a flow chart with components labeled "Linear," "Concat," and "Scaled Dot-Product Attention." The right section is expanded, detailing "MatMul," "Scale," "SoftMax," and connections to "Q," "K," "V." Feature tokens are included at the bottom.]FIGURE 7 | The illustration of cross-attention mechanism.
[image: Flowchart illustrating a rockburst risk prediction model. The process begins with blue blocks labeled with convolutional operations and padding settings. It feeds into an explicit rockburst prediction index section in green, featuring parameters \(Q_r\), \(qT\), \(Q\), \(Q’\), \(q_d\), \(E\), \(Q_e\), \(Q_s\). This is connected to a purple rockburst risk prediction head and a yellow 3×Feature Fusion Module. Arrows demonstrate the flow between components.]FIGURE 8 | The fine tuning model of the self-supervision algorithm for rockburst prediction.
The output of the decoder is the decoding features. The decoding features are reconstructed using a reconstruction head composed of a double-layer forward neural network. The input and output feature dimensions of the decoder are [Batch size, 24, 1] and [Batch size, 24, 1]. Meanwhile, the input and output vector dimensions of the auxiliary task reconstruction head are [Batch size, 24, 1] and [Batch size, 9, 1].
In the pre-trained model of the self-supervision algorithm, the input is the combination of randomly masked and unmasked rockburst prediction indexes, while the label is the original rockburst prediction indexes. The MSE loss function is used to evaluate the difference between the model output and the label.
4.2 The fine-tuning model of self-supervision algorithm
The presented fine-tuning model of the self-supervision algorithm is mainly designed for the rockburst risk prediction task, which is composed of the encoder, decoder, and risk prediction head, seeing Figure 8. The structure of the encoder and decoder is the same as the pre-trained model. The encoder consists of a five-layer one-dimensional convolutional model (CNN). The decoder consists of 3 layers of feature fusion modules.
The risk output head is mainly designed according to the requirement of rockburst risk prediction task. The input and output feature dimensions of the risk output head are [Batch size, 24, 1] and [Batch size, 9, 1]. The occurrence of rockburst is affected by many factors such as overlying strata, geological structure, mining depth, ground stress, coal pillar layout, and stope layout, which can be analyzed by the decoder and encoder. The output of the rockburst prediction algorithms is only the probability of rockburst risk or no rockburst risk. For the risk prediction head of the fine-tuning model, a two-layer forward neural network with ReLU activation function and Batch Normalization layer is constructed.
During training the self-supervision rockburst risk prediction algorithm, MS data is processed based on the calculation formula in Section 3 to obtain the rockburst prediction indexes. Then, the decoder and encoder parameters in the pre-trained model are transferred to the fine-tuning model using the transfer learning method. Finally, a small number of labeled microseismic monitoring data corresponding to rockburst prediction indexes are used to complete the training of the fine-tuning model.
5 EXPERIMENT IMPLEMENT DETAILS
5.1 Dataset construction
The MS monitoring data of two coal mines are used to validate the performance of the proposed self-supervision rockburst risk prediction method. For the first mine, the MS monitoring data includes 13,583 events, monitoring the time, location, and energy information, and the number of dangerous events is 114. For the second mine, the MS monitoring data includes 28,371 events and the number of dangerous events is 195. Firstly, nine calculated rockburst prediction indexes, such as time series concentration, space intensity, time interval, and energy, are calculated according to the MS monitoring data of two coal mines, which are the features of the samples in the dataset. The label is whether dangerous events occur in the future. Then, the dataset is divided into a training set, validation set, and testing set according to the number of 50%, 20%, and 30% on the time scale. The calculations of temporal concentration, time information entropy, space concentration, spatiotemporal diffusion, energy density, energy concentration, and MS activity value need to be fused in consecutive MS event data. By setting n = 5, 6,., 15, thirty datasets for each coal mine are constructed.
To simulate the direct application of the model, the joint data set of the training set, the verification set, and the test set are processed with unbalanced data respectively, so that the data of the test set does not cross with other data sets. Considering the importance of the prediction of dangerous events, this paper sets three test sets, namely, the testing set of single dangerous events (dangerous set), the testing set of single non-dangerous events (non-dangerous set), and the testing set of mixed events (mixed set). In the mixed set, the number of dangerous and non-dangerous events is equal.
5.2 Comparison methods and implementation details
The comparison methods are SVM (Ji et al., 2020), CNN (Zhang et al., 2021), LSTM (Di et al., 2023b), and CNN-GRU (Ma et al., 2021) methods which are the most popular supervised deep-learning methods for rockburst prediction. For the presented self-supervision method, the pre-trained model is trained 100 epochs. Then, by employing the weights of the pre-trained model, the fine-tuning model also trained 100 epochs for rockburst prediction testing. The comparison methods are trained 200 epochs. The masked probability of the rockburst prediction indexes for the pre-trained model input of the presented self-supervision method is 50%. For the training of the pre-trained model, the unlabeled data is the entire MS data of each mine training set.
All experiments are implemented on Pytorch 1.10.2 + CUDA 11.3, in FP32 precision by using two RTX A6000 GPU. The experiments use an AdamW optimizer with a momentum of 0.9, a batch size of 256, a weight decay of 4 × 10−5, an initial learning rate of 5 × 10−4. For the supervised methods and the presented fine-tuning method, the cross-entropy (CE) loss function serves as the metric to assess the discrepancy between predictions and ground truth labels. Conversely, for the pre-trained model of the self-supervision method, the mean squared error (MSE) loss is utilized. The performance of methods is represented by precision (%).
6 EXPERIMENT RESULTS AND DISCUSSION
This section mainly uses the comparison experiment on two selected mines’ MS data to show the performance of the algorithm, in Section 6.1. The structure and parameters of the algorithm are studied by ablation experiments on the MS data of the first mine, in Sections 6.2∼6.6.
6.1 Comparison studies
The comparison study results are shown in Figure 9. For the first and second mine, when fused MS event number n is 8, the proposed method achieves the best performance on the mixed event testing set with an accuracy of 84.64%/83.17%; the accuracy of the method on the dangerous event testing set is 81.78%/80.50%; the accuracy of the model on the non-dangerous event testing set is 87.50%/85.86%. These results on different type datasets are close to the accuracy of the model on the mixed test set, indicating that the model is very effective for both dangerous and non-dangerous event prediction. In contrast, the best accuracy of the comparison methods is 82.19%/79.86%/84.52% on the mixed/dangerous/non-dangerous event testing set.
[image: Six radar charts compare five models: Self-Supervision, SVM, CNN, LSTM, and CNN-GRU. The top row represents the first mine and the bottom row the second mine, with columns labeled (a), (b), and (c). Each chart displays data points for various parameters, highlighted in different colors for each model.]FIGURE 9 | The performance comparison of the presented self-supervision method and different methods on the (A) dangerous set; (B) mixed set; (C) non-dangerous set. The rays of radar maps are the mixed numbers of MS events in prediction indexes.
When different models reach the highest accuracy on different data sets, the corresponding n is similar. This is because the rockburst prediction indexes are mainly physical quantity indexes presented by considering the physical logic of coal rock mass failure. For a working face or mine with the same mining situation, the description content and meaning of these indexes are the same.
6.2 The ablation experiment of rockburst prediction indexes
In order to explore the importance of different rockburst prediction indicators, the performance of the different index combinations on the mixed testing set when n=8 is shown in Figure 10. It is obvious that the energy and spatiotemporal diffusion are very important for the analysis of future rockburst risk. When respectively lack of the temporal concentration, the time interval, time information entropy, space concentration, spatiotemporal diffusion, energy density, energy concentration, energy, and MS activity value, model performance decreased by 3.12%, 1.03%, 2.56%, 2.37%, 5.31%, 3.22%, 2.75%, 6.81%, and 2.65%, respectively.
[image: Bar chart showing precision rates for three datasets: dangerous, non-dangerous, and mixed. The x-axis represents the missing prediction index, while the y-axis shows precision percentages ranging from sixty to ninety. Each index has bars for each dataset, with slight variations in height. The chart legend distinguishes datasets by color: orange for dangerous, green for non-dangerous, and purple for mixed.]FIGURE 10 | The ablation results of missing different rockburst prediction index.
By studying the effectiveness of different index combinations, Figure 10 shows that the impact of missing one type of index on model performance is much greater than that of missing the same number of different types of index. This is because the rockburst or MS event contains three aspects of time, space, and intensity information, and the lack of any one kind of index will result in an inadequate description of rockburst information. Meanwhile, the ablation experiment of the indicators also proved the rationality and correctness of the time-space-intensity indexes established in the paper, because no index would have a negative impact on the performance of the model.
6.3 Random mask probability for rockburst indexes
Random mask probability is a very important parameter for pre-trained models in self-supervision algorithms. In this section, the random mask probability is set as 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, respectively. The ablation results are shown in Table 1. Obviously, when the random probability of the mask is 0.5, the method performance is the best. When the mask probability is too large or too small, the model performance will be greatly reduced. Too large or too small mask probability can cause model performance degradation. This is because when the random mask probability is too small, the pre-trained model of the self-supervision algorithm can easily complete the rockburst index reconstruction. Therefore, the pre-trained model cannot understand the distribution features of the rockburst index. However, when the random mask probability is too large, it is difficult for the pre-trained model to reconstruct the masked indexes because the useful information is too little.
TABLE 1 | The ablation experiment results of random mask probability based on the mixed set. The bold values mean the probability and precision when the model achieve the best performance.
[image: Table displaying probabilities and their corresponding precision values. Probabilities listed are 0.30, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, and 0.80. Precision scores are 83.37, 83.54, 83.81, 84.64, 83.62, 83.08, 82.64, and 82.07, with the highest precision of 84.64 at probability 0.50.]6.4 Training epochs of pre-trained and fine-tuning models
As mentioned in Section 3, the pre-trained model in Figure 4 can automatically explore the distribution features of prediction indexes. Therefore, the pre-trained model can learn useful information from a large number of unlabeled MS events. In this section, the self-supervision model is firstly pretrained with 50/100/150 epochs. Then, the encoder and decoder of the fine-tuning model are initialized using the pre-trained parameters. The supervised fine-tuning model is trained with 150/100/50 epochs using labeled MS data of training datasets. The performance on the mixed set is 83.37%/84.64%/82.86% based on these settings.
In Table 1, an insufficient number of fine-tuning epochs leads to a decrease in the model’s performance, as the model is unable to adequately capture the distribution features of the MS data. Conversely, when the supervised epochs exceed 100, the proposed model demonstrates superior performance, especially when utilizing a significant amount of data for self-supervision pretraining. The introduced self-supervision approach offers a viable option for offline pretraining with vast amounts of data, enabling swift deployment in engineering scenarios.
6.5 The number of unlabeled samples in the pre-trained stage
For the proposed self-supervision method, the unlabeled data is used to train the pre-trained model, and the labeled data is employed to train the fine-tuned model. For the training setting of the first mine in Figure 9, the numbers of unlabeled samples and labeled samples are 6,792 and 6,792. This section increases the number of unlabeled samples by fusing data from the dataset of the second mine. Figure 11 shows the self-supervision algorithm performance changes as the amount of unlabeled data grows from 6,792 to 20,977. The results show that the increase of the number of unlabeled data at the pre-trained stage can improve the rockburst prediction performance of the proposed self-supervision algorithm. This is mainly because a sufficient amount of MS data helps the pre-trained model to fully learn the intra-class variance of the same type of MS events and the inter-class gap of different types of MS events.
[image: Radar chart comparing precision levels across three datasets: dangerous, non-dangerous, and mixed. The precision scores are plotted at various intervals, with a legend indicating the color representation for each dataset: red for dangerous, blue for non-dangerous, and green for mixed.]FIGURE 11 | The ablation experiment results of unlabeled samples.
6.6 The layer number and feature dimension of decoder
In order to explore the optimal structure of the self-supervision algorithm, the layer number and feature dimension of the decoder are studied by the ablation experiments. The layer number of the decoder is set as 1∼5. The feature dimension of the decoder is set as [Batch size, 12, 1], [Batch size, 24, 1], [Batch size, 36, 1] and [Batch size, 48, 1]. The ablation results are shown in Figure 12. When the layer number is less than 3 and the feature dimension is less than 24 ([Batch size, 24, 1]), the performance degradation is significant. However, more layer numbers and feature dimensions of the decoder have limited performance gains with more computational consumption. Therefore, the decoder with the 3-layer number and [Batch size, 24, 1] feature dimension is the optimal structure for trade-off performance and computation cost.
[image: Bar graphs comparing precision across different parameters of a decoder. The left graph shows precision by layer number (one to five), and the right shows precision by feature dimension (five to forty-eight). Each graph displays precision on three datasets: dangerous (orange), non-dangerous (green), and mixed (purple). Green bars consistently have the highest precision followed by purple, then orange.]FIGURE 12 | The ablation experiment results of the decoder layer numbers and decoder feature dimensions. 24 indicates that the feature dimension of the encoder is [Batch size, 24, 1].
7 CONCLUSION
This paper aims to overcome two main rockburst prediction problems, including the absence of comprehensive research on definitive prediction indices and the waste of vast amounts of unlabeled data. Therefore, the distribution features of acoustic emission (AE) events at each stage of coal rock deformation and failure are studied by the laboratory experiment. The spatial-temporal evolution of rockburst in field MS data is explored. Subsequently, nine prediction indexes of rockburst risk are established, including temporal concentration, time interval, and time information entropy, space concentration, spatiotemporal diffusion, total stress equivalent, energy value, and energy information entropy. The formulas of nine different dominant rockburst prediction indexes are summarized.
To intelligent use the unlabeled data, a new self-supervision algorithm consisting of the pre-trained and fine-tuning model is constructed according to the distribution features of MS data and the requirement of rockburst prediction. The pre-trained model of the self-supervision algorithm can automatically learn the distribution features of rockburst prediction indexes by reconstructing the masked indexes. Then, the pre-trained encoder and decoder parameters are transferred to the fine-tuned model using the transfer learning method. Finally, the fine-tuning model is trained using the labeled MS data with rockburst risk.
Abundant experiments report that the performance of the self-supervision algorithm is far superior to previous algorithms. Meanwhile, the ablation experiment also proves that the proposed rockburst prediction indexes are effective and the proposed self-supervision rockburst prediction algorithm can effectively use the unlabeled data.
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Geological parameters of soil exhibit spatial variability. Inverse analysis allows the acquisition of accurate spatial distributions of key geological parameters, which is crucial for structural safety assessment. In this study, an ensemble Kalman filter (EnKF) is employed in the context of data assimilation. Random fields are used as the initial input ensembles for the algorithm. The present study effectively integrates the ensemble Kalman filter with the numerical simulation software ABAQUS, enabling the inversion of parameter fields under various operating conditions. An in-house Python code script is developed to control ABAQUS for finite element computations and to obtain observations at target points. During the stepwise computation process, the algorithm can utilize newly acquired observations to accelerate the convergence of the parameter field to the true field. The effectiveness of the algorithm is validated, and the method is applied to a case study of double-tunnel excavation and a stepwise excavation analysis of a three-layered slope. The impact of the number of ensemble members and the ratio of the horizontal correlation scale to the vertical correlation scale of random fields on the effectiveness of updating the parameter field have also been investigated.
Keywords: geomechanical parameter, spatial variability, data assimilation, EnKF, inverse analysis

1 INTRODUCTION
The stratigraphy of natural environments is formed through prolonged sedimentation, resulting in soil exhibiting heterogeneity. Many scholars regard soil as a complex heterogeneous substance and have demonstrated that soil parameters constitute a spatial stochastic variable (Lumb, 1966), implying that soil parameters possess different values at different locations. Due to the inability to access all material parameters possessed by soil within a given area, rock and soil material parameters are typically treated as stochastic variables. Vanmarcke Erik (1977) presented stochastic models using random fields, achieving more accurate spatial simulations of geological parameters. Building upon the concepts of Vanmarcke’s random field theory, Griffiths and Fenton Gordon (2004) proposed a more rigorous probabilistic analysis method known as the random finite element method (RFEM), which incorporates considerations of spatial correlation length. In RFEM, Monte Carlo methods and random field theory are employed to address the challenge of simulating spatial variability in soil parameters. To tackle the issue of spatial variability in soil parameters, Li X. et al.(2015) focused on the role of conditional random fields. Li et al. (Li et al., 2013; Li Y. J. et al., 2015; Li et al., 2016) concentrated on the domain of three-dimensional slope stability. Furthermore, Li (2017) utilized RFEM to investigate three-dimensional spatial variability in slope stability analysis and conducted performance comparisons with other methods.
Inaccuracies often arise in computational simulations compared to actual engineering scenarios when a crucial geological parameter of the model is crudely defined as a single value. Numerical simulation and monitoring are very important for geohazard and geohazard mitigation (Fang et al., 2023; Fang et al., 2024; Yuan et al., 2024). To address the challenge of obtaining precise soil parameters, the methods of inverse analysis have garnered significant attention in the field of geotechnical engineering. Cividini et al. (1983) employed both the least squares method and Bayesian method to inversely compute Young’s modulus of foundation soil layers based on foundation displacements. Honjo et al. (1994) extended the Bayesian method, while Lee and Kim (1999) applied this approach in tunnel engineering, inversely computing four parameters. Ledesma et al. (1996) provided a brief overview and comparison of four commonly used inverse analysis methods: the least squares method, maximum likelihood method, Bayesian method, and Kalman filtering (KF). Other inverse analysis methods include the Markov Chain Monte Carlo method (MCMC) (Zhang et al., 2010) and the Hamiltonian Monte Carlo method (HMC) (Koch et al., 2020). While inverse analysis methods have shown great potential in geotechnical engineering, they face several challenges, i.e., the bayesian method require numerous forward simulations, which can be computationally expensive for complex geotechnical models. Moreover, traditional methods often struggle to properly account for uncertainties in both measurements and model parameters.
The Kalman filter, particularly the ensemble Kalman filter (Evensen, 1994; Evensen, 2006), and particle filter (Doucet et al., 2000), among other nonlinear methods, have gradually evolved into data assimilation techniques when combined with finite element methods. Among these, EnKF has stood out due to its excellent computational efficiency and has found widespread application. The EnKF has the following advantages over the traditional methods, for example, it provides a probabilistic framework that can handle multiple possible solutions, allowing for sequential updating, which is particularly suited for time-evolving geotechnical problems and it is more computationally efficient. Data assimilation techniques, particularly the Ensemble Kalman Filter (EnKF), have gained significant traction in geotechnical engineering over the past decade. EnKF, originally developed for weather forecasting, has proven to be a powerful tool for integrating observations with numerical models in geotechnical applications. For instance, Chen and Zhang (2006) employed EnKF to update permeability coefficients and pressure heads. Vardon et al. (2016) utilized EnKF to reduce spatial variability in permeability coefficients.
In the context of slope stability, recent studies have shown the potential of data assimilation methods to improve predictions and reduce uncertainties. Liu et al. (2018) proposed a data assimilation framework based on EnKF, utilizing measurements of pore water pressure to improve estimates of hydraulic parameters and consequently predict slope stability. Caballero Perez et al. (2018) enhanced the prediction accuracy of coupled fluid and geomechanical sequential methods at a lower computational cost using EnKF. Li and Liu (2019) combined conditional random fields with EnKF, effectively improving estimates of parameter spatial distributions. Tao et al. (2020) utilized EnKF to investigate key issues in geotechnical and geological domains, such as surface subsidence, and compared simulation results with actual data. Mohsan et al. (2021) combined the EnKF with PLAXIS to investigate the influence of the Mohr-Coulomb model and the Hardening Soil model on the inversion of key parameters in coupled hydro-mechanical slope. Ren et al. (2022) estimated the spatial distribution of the Young’s modulus of an earth-fill dam using EnKF by assimilating arrival times of surface waves.
The use of EnKF for inverse analysis within data assimilation methods requires a forward solver, which in geotechnical engineering is often a custom code script rather than a standardised implementation. In this paper, EnKF is integrated with the numerical simulation software ABAQUS, taking advantage of ABAQUS’ robust problem-solving capabilities. This approach provides a versatile and flexible method for inverse data assimilation analysis, significantly reducing the learning curve associated with this technique.
The main objective of this paper is to achieve parameter updates through EnKF, a data assimilation algorithm. In this process, random fields of critical parameters are generated as the initial input ensemble for filtering. A Python script is employed to control ABAQUS and its subroutines for finite element computations, obtaining observations at each step. This enables the stepwise updating of the parameter field, progressively reducing uncertainties inherent in structural stability analysis. While our work builds upon the foundation laid by Li and Liu (2019), we introduce several innovative aspects. By integrating EnKF with ABAQUS, we extend the applicability of the method to a wider range of complex geotechnical scenarios. Our approach offers enhanced flexibility in problem formulation, improved computational efficiency through optimized scripting, and the ability to handle multi-stage analyses effectively. Furthermore, we provide a comprehensive sensitivity analysis, offering insights into the method’s performance under varying conditions.
The paper is organized into several sections: Section 2 delves into the primary implementation methods of EnKF. A detailed description of the implementation steps and key aspects of the inverse analysis method is provided in Section 3. Section 4 presents a simplified four-step excavation case for comparative analysis and validation of the method’s effectiveness. Section 5 discusses the analysis of a double-tunnel excavation case, focusing on the impact of ensemble size and the ratio of horizontal to vertical fluctuation scales in the random fields on the update results. An analysis of a slope excavation case involving three steps is included in Section 6. The final section is the conclusion of the paper.
2 ENSEMBLE KALMAN FILTER
Under normal circumstances, the outcomes of observations come from the observation space. This can be mathematically expressed as follows in Equations 1, 2:
[image: It looks like the image did not upload correctly. Please try uploading the image again, and I will help you with the alternate text.]
In which,
[image: A mathematical equation showing a vector \(\mathbf{z}\) equal to \((z_1, z_2, \ldots, z_n)\) raised to the power of \(T\).]
in this context, [image: The expression "y belongs to the set of m-dimensional real numbers" is shown.] represents the output at measurement points, and [image: The mathematical expression shows "z" is an element of the n-dimensional real number space, denoted as \( z \in \mathbb{R}^n \).] denotes a combined vector of model parameters and state variables. Here, [image: It looks like the image did not upload correctly. Please try uploading it again, and I will be glad to help with the alt text.] signifies the number of ensembles, while [image: A lowercase, italicized letter "n" in a serif font is displayed in black on a white background.] represents the total count of model parameters and state variables.
Utilizing the algorithm proposed by Evensen (2003), we generate a set of ensembles [image: Please upload the image or provide a URL to it for me to generate appropriate alt text.] (Equation 3) of state variable predictions describing the model’s forecast error at time [image: Please provide the image by either uploading it or sharing a URL. Additionally, you can provide a caption for more context.]. Here, [image: It seems like the image did not upload correctly. Please try uploading it again, ensuring the file is selected and fully uploaded. Let me know if you need any assistance!] denotes the number of ensembles:
[image: A mathematical equation representing a variable \( X_b \) is expressed as a set of elements: \(\{ x_1^b, x_2^b, \ldots, x_n^b \}\).]
In Equation 4, the average value of the set of ensembles of state variables is given by:
[image: Mathematical formula representing the average, denoted as x-bar, equals the sum from i equals one to m of x-sub-i raised to the power of b, divided by m. Equation labeled as four.]
let [image: \( x'^b_i = x^b_i - \overline{x}^b \)] denote the difference of the [image: It seems there was an issue uploading the image. Please try uploading it again, and I will assist you with creating the alt text.]-th ensemble from the mean of ensembles. The matrix representation of these differences can be expressed in Equation 5 as:
[image: A mathematical expression showing a vector \( X_t^p \) is equal to the transpose of vector \( x_k^p, x_{k+1}^p, \ldots, x_m^p \), enclosed in brackets, denoted as equation (5).]
The covariance matrix of the predicted errors in the state variables can be obtained in Equation 6 as follows:
[image: Equation showing \( B^f = \frac{1}{m-1} X^b [X^b]^T \), labeled as equation 6.]
The calculation formula for error statistics in the Kalman Filter is defined as follows in Equations 7, 8:
[image: Mathematical formula showing \( e^F = (Xb - X)(Xb - X)^T \), labeled as equation (7).]
[image: Equation representing the biased covariance matrix: \( B = \overline{(X - \overline{X})(X - \overline{X})^T} \).]
where [image: Mathematical expression displaying the letter B with a superscript of a.] represents the covariance matrix of analysis errors, [image: There is a mathematical expression with "X" raised to the power of "b".] represents the analysis state, and [image: Please upload the image or provide a link to it, and I will create the alt text for you.] denotes the true state. EnKF approximates the ensembles’ mean as the optimal estimate. Centered around the mean, the covariance matrix of the ensembles can be defined as follows in Equations 9, 10:
[image: Mathematical expression showing \( B = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x}\overline{y} - \overline{x}\,\overline{y}} \), where \( x \), \( y \), and overlines indicate variables and means, respectively. Equation number nine is displayed to the right.]
[image: Equation showing \( B^a \approx (X^a - \overline{X^a})(X^a - \overline{X^a})^T \), labeled as equation \(10\).]
Monte Carlo sampling of random numbers is employed to simulate Gaussian white noise with a mean of 0 and a standard deviation equal to the observation multiplied by a noise scaling factor. In this scenario, the displacement vector of measurement points constitutes a set of observations with added perturbations, where the [image: Please upload the image or provide a URL so I can create the alt text for you.]-th sample can be expressed in Equation 11 as:
[image: Mathematical equation with y subscript j equals y plus y subscript j prime in parentheses, labeled eleven.]
where the statistical characteristics of [image: It appears that you've provided a mathematical expression rather than an image. The expression "y sub i prime" typically refers to the derivative or another related value in mathematical contexts, often used in statistics or calculus. If you meant to provide an image, please upload it or provide a URL.] exhibit a mean of 0 and an error covariance of [image: Please upload the image or provide a URL so I can create the alternate text for you.]. The inclusion of perturbed observations is crucial for EnKF. If the observations are not treated as random variables, the updated ensembles, while possessing the correct mean, may result in excessively low variance, leading to eventual divergence of the algorithm (Burgers et al., 1998).
In Equation 12 the Kalman gain matrix is given by:
[image: Equation showing \( K = B_f H^T (H B_f H^T + R)^{-1} \) with the equation number (12) on the right.]
where [image: It seems like there's no image attached. Please try uploading the image again, and I'll help create the alt text for it.] is the observation operator. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is composed solely of 0s and 1s, and by adjusting its composition, one can succinctly describe the linear or nonlinear relationship between the model and the data.
The primary computational burden of the Kalman filter lies in the calculation of the covariance matrix. In EnKF process, it is evident that the observation operator [image: It seems there's no image uploaded. Please upload the image or provide a URL so I can assist you with the alternate text.] and the state error covariance [image: If you'd like to provide an image for alt text creation, please upload the image or provide a URL. You can also add a caption for additional context.] consistently appear in the updating process. Consequently, the operations involving [image: Please upload the image or provide a URL to it, and I can help create the alt text for you.] and [image: Please upload the image or provide a URL for me to create the alternate text.] can be approximated to replace the actual covariance matrix operations, resulting in a substantial simplification of the computations.
Finally, update the state variables by:
[image: Equation for updated state estimate, denoted as \( x_k = \hat{x}_k^- + K (y_k - H \hat{x}_k^-) \), which adjusts the predicted state \(\hat{x}_k^-\) with the innovation term \( K (y_k - H \hat{x}_k^-) \). This is labeled as equation \( (13) \).]
In Equation 14 the optimal estimate is obtained by taking the mean of [image: It seems there was an error with the image upload. Please try uploading the image again, and I will be happy to provide the alternate text for it.] ensembles of state variables:
[image: Mathematical expression showing the average of squared values, denoted as x̅, equals one over m times the sum from i equals one to m of x sub i squared.]
The initial value of the state variable are random fields of key geological parameters, which will be updated through EnKF. Upon completion of all iterations, the ensembles’ mean can be regarded as the optimal estimate.
3 PARAMETER FIELD INVERSION METHOD USING ENKF WITH ABAQUS
ABAQUS, recognized as a robust finite element analysis software, possesses the capability to simulate a diverse range of mechanical problems and intricate engineering scenarios. It has found widespread application in numerical simulations and engineering computations. Notably, the functionality of ABAQUS subroutines is highly potent. By leveraging these subroutines and connecting them within the ABAQUS framework, various functionalities can be achieved through the utilization of customized Python or Fortran code script. This study specifically employs ABAQUS and its subroutines to assign distinct material parameters to all nodes in the model and to extract displacement values for selected nodes. The flexibility afforded by subroutines ensures the theoretical problem-solving capacity of ABAQUS, rendering it’s theoretically capablity of addressing a spectrum of problems through corresponding inverse analyses.
Accurately predicting the stability of a structure through existing observations is crucial for structural maintenance and safety assessments. The main objective of this paper is to achieve parameter updates through EnKF, a data assimilation algorithm. In this process, random fields of critical parameters are generated as the initial input ensemble for filtering. Customized Python code script is employed to control ABAQUS and its subroutines for finite element computations, obtaining displacement values of the observation points at each step. This enables the stepwise updating of the parameter field, progressively reducing uncertainties inherent in structural stability analysis.
This study utilizes random fields of key geological parameters as the initial ensembles for EnKF. The displacements or stresses at measurement points in the corresponding finite element model are considered as observations. ABAQUS and its subroutines are employed as the computational tools for the model, ultimately achieving the update and inversion of the parameter field.
The general steps of the parameter field inversion method using EnKF with ABAQUS are as follows:
	1. Initialization: Generate initial ensemble members using random fields of key parameters. Obtain key parameters such as mean, variance, and spatial correlation from soil data. Use a local averaging subdivision method to generate unconditional random fields of geological parameters to be inverted.
	2. Forward Simulation: For each ensemble member, use ABAQUS to simulate the system response. Map the parameters of the random fields to the Abaqus finite element mesh perform finite element analysis.
	3. Observation Simulation: Extract simulated observations from ABAQUS output corresponding to measurement locations.
	4. EnKF Update: Apply the EnKF update equation to adjust parameter fields based on the difference between simulated and actual observations. The EnKF update equation is given by Equation 13.
	5. Use the updated parameter fields for the next round of finite element calculations. Repeat for a specified number of iterations. Upon completion of all iterations, consider the ensembles’ mean as the optimal estimate of the parameter field to be inverted.

The integration with ABAQUS is achieved through custom Python scripts that control the ABAQUS simulations, extract relevant outputs, and feed them into the EnKF algorithm. This approach allows for seamless coupling between the finite element simulations and the data assimilation process. The detailed flowchart of the parameter field inversion method achieved by coupling EnKF with ABAQUS is illustrated in Figure 1.
[image: Flowchart illustrating the framework of EnKF, showing steps including realizations from random fields, input ensembles for updating, acquiring input files, using a Python script for ABAQUS calculations, obtaining observations from ODB files, updating ensembles, and outputting updated parameter fields.]FIGURE 1 | Flowchart of the parameter field inversion method achieved by coupling EnKF with ABAQUS.
In the section on stochastic finite element analysis, an in-house Python code script is employed to map the input parameter field onto the mesh nodes of the computational model. The size of the input parameter field is [image: Mathematical expression showing the product of \( N_m \) and \( N_{cell} \).], where [image: The image shows the mathematical notation "N" with a subscript "m".] is the number of ensembles, and [image: Equation showing N subscript cell equals n times x times e multiplied by n times y times e.] represents the cell scale of random fields. Initially, the input parameter fields are random fields, serving as the initial ensembles for which the subsequent fields are progressively updated by EnKF. For each ensemble, a parameter field of size [image: The image contains a mathematical expression with an italicized capital letter "N" followed by the subscript "cell" in a smaller font size.] is used as the input for finite element calculations. In ABAQUS, a user subroutine called UFIELD is adopted. This ensures that each node in the finite element model can access its corresponding parameter in the mapped parameter field. Subsequently, customized Python code script is utilized to submit computations and obtain displacement values (or stress values at observed Gauss points) corresponding to the measurement points. A snippet of the code is provided in Supplementary Appendix SA.
4 SIMPLIFIED EXCAVATION CASE FOR VALIDATION
To validate the proposed Abaqus Enkf framework in geotechnical engineering applications, a simplified excavation is considered in this section. Li and Liu (2019) investigated the influence of unconditional and conditional random fields on the inversion of parameter fields. They conducted a computational case study involving the inversion of Young’s modulus for a simplified four-step excavation, as shown in Figure 2. Measurement points were strategically placed within the model, which can obtain observations after each excavation step. These observations were then utilized to update the parameter field. The updated parameter fields were subsequently employed in the next excavation step.
[image: Four grid patterns labeled A, B, C, and D. Grid A has dots following a diagonal path. Grids B, C, and D are L-shaped but contain no dots.]FIGURE 2 | Four-step excavation case: first layer excavation (A) second layer excavation (B) third layer excavation (C) and fourth layer excavation (D) (dots indicate 12 displacement measurement locations).
In this paper, the feasibility of the parameter field inversion method using EnKF with ABAQUS was validated by a reference case study. Li and Liu (2019) used the Enkf with an in-house Fortran finite element code for this case study. The excavation problem assumed in this case had a dimension of [image: It looks like there was a problem uploading the image. Please try uploading it again, and I'll be happy to help with the alt text.]. The domain is divided into eight-node quadrilateral elements, each with a grid size of [image: Certainly! Please upload the image you'd like me to describe. If you prefer, you can also provide a URL or describe it.]. The boundary conditions are fixed base and rollers on left and right sides. The model applied the Mohr-Coulomb failure criterion with [image: Equation displaying "c sub u equals nine kilopascals".], [image: The mathematical notation shows phi equals thirty degrees.], [image: Equation displaying "psi equals zero point one degrees" (ψ = 0.1°).], soil density [image: \( \gamma = 20 \, \text{kN/m}^3 \)], and a Poisson’s ratio of 0.49. The inverted parameter field was Young’s modulus field with a mean [image: The image shows the mathematical notation: μ subscript E equals 1.0 times 10 to the power of 8 pascals.], coefficient of variation [image: The text "V subscript E equals 0.2" displayed in a mathematical style font.], and isotropic fluctuation scale [image: The image shows a mathematical equation: theta equals one meter.]. The model underwent excavations in four steps, with each excavation depth being [image: It looks like text data rather than an image. Please provide an image for me to generate alt text. You can upload an image file or give a URL link to the image.], resulting in a total excavation depth of [image: It seems there's an issue with viewing or accessing the image. Could you please try uploading it again or providing a URL?]. Simultaneously, parameters such as the number and distribution of measurement points, values of observation noise, etc., were consistent with Li and Liu’s setup (Li and Liu, 2019). For the selection of the reference field, it aligned with Li and Liu’s approach.
When generating unconditional random fields as the initial ensembles, an additional reference field was generated specifically for the current parameter field inversion. To facilitate a better comparison of the two methods in parameter field inversion, both methods utilized the same reference field.
The results of the inversion of Young’s modulus field after the first three excavation steps using Fortran code and the parameter field inversion method using EnKF with ABAQUS are illustrated in Figures 3, 4, respectively. In the plots, cells closer to red indicate higher values, while those closer to blue indicate lower values. For better numerical comparison, the maximum and minimum values in the legend of the plots for each step of both methods are kept identical. Additionally, root mean square error (RMSE) is introduced to better evaluate the results of the parameter field inversion:
[image: Formula for Root Mean Square Error (RMSE): \( RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i - S_{0i})^2} \), where \(N\) is the number of observations, \(S_i\) is the observed value, and \(S_{0i}\) is the predicted value. Equation number 15.]
here, [image: Please upload the image or provide a URL so I can generate the alt text for you.] represents the number of parameters in the parameter field, which, in this case study, is 64. [image: Please upload the image or provide a URL so I can generate the alt text for you.] denotes the true parameter field values, and [image: It looks like there is an error in the text provided. Please upload the image or provide a correct URL for assistance with the alternate text.] represents the updated parameter field values. The RMSE values for the corresponding parameter fields after three updates using both methods are shown in Figure 5.
[image: Four grid-based heatmaps labeled A, B, C, and D represent elastic modulus values in pascals. Colors range from blue, indicating lower values, to red, indicating higher values. Each map shows a distinct pattern of color distribution.]FIGURE 3 | Young’s modulus field using Fortran of: reference field (A) first layer excavation and update (B) second layer excavation and update (C) and third layer excavation and update (D).
[image: Four heatmaps labeled A, B, C, and D, display data with color gradients from red to blue, indicating values from 0.80 to 1.38 times ten to the fifth pascals. Each map shows a different pattern of color distribution. A color bar on the right provides the scale.]FIGURE 4 | Young’s modulus field using ABAQUS of: reference field (A) first layer excavation and update (B) second layer excavation and update (C) and third layer excavation and update (D).
[image: Line graph showing the value of RMSE (Root Mean Square Error) on the Y-axis versus output of updated steps on the X-axis, with three steps labeled. Two lines represent different data: a blue line for FORTRAN and an orange line for ABAQUS, both showing a downward trend. The RMSE for FORTRAN starts around 1.6 x 10^4 and ABAQUS starts lower, both decreasing across the steps. A legend differentiates the two lines.]FIGURE 5 | RMSE for Young’s modulus fields after three updates using Fortran and ABAQUS.
Following the first update, the distribution of larger and smaller values in the parameter field is already essentially consistent with the reference field, reflecting the spatial variability of the parameters. However, there is still a significant numerical deviation. This issue sees substantial improvement after the second update, and by the third update, the parameter field is nearly identical to the reference field. As seen in Figure 5, the RMSE values of the parameter fields obtained by the two methods continue to decrease, indicating that the uncertainty of the parameter field decreases continuously under the updating of the algorithm, and the updated parameter field converges to the reference field continuously.
Thus, through the comparison with the results of the four-step excavation case studied by Li and Liu, the feasibility and effectiveness of the parameter field inversion method using EnKF with ABAQUS has been demonstrated.
5 PARAMETER FIELD INVERSION OF DOUBLE-TUNNEL EXCAVATION
In the previous section, the feasibility and effectiveness of the parameter field inversion method using EnKF with ABAQUS was validated using a simplified four-step excavation case. In this section, a more complex and realistic two-dimensional double-tunnel excavation case is introduced. The double-tunnel excavation case is selected to demonstrate the applicability of our method to complex, multi-stage geotechnical problems. This case presents challenges in capturing the spatial variability of soil properties and their evolution during sequential excavations, which are common in urban tunneling projects. By applying our EnKF-ABAQUS integration to this scenario, we aim to show how the method can improve parameter field estimations in realistic engineering contexts.
The schematic diagram of the model is shown in Figure 6, with a length of [image: Blurred text showing "80m" with unclear context or background.] and a height of [image: Please upload the image or provide a URL so I can help create the alternate text for it.]. Moreover, 15 displacement target points are used in this study (the black dot points in Figure 6). The model involves the sequential excavation of two tunnels from left to right, each with a radius of [image: If you upload the image, I can help create alt text for it. Please provide the image file or URL.]. Adjustments have been made to the grids around the tunnels to reduce computational errors. The boundary conditions for the model are fixed base and rollers on left and right sides. The model adopts the Mohr-Coulomb failure criterion, and detailed material parameters are provided in Table 1.
[image: Diagram of a rectangular field labeled with dimensions 80 meters by 40 meters. Two concentric circles are positioned centrally. A row of small dots is placed above the circles, with arrows indicating directions on each side of the field.]FIGURE 6 | Size and boundary conditions of double-tunnel excavation (dots indicate 15 displacement target points).
TABLE 1 | Soil property values of double-tunnel excavation.
[image: Table showing four columns with headers ρ, c, φ, and ν. The values are 2 × 10³ kg/m³, 5 × 10⁴ Pa, 20°, and 0.3, respectively.]According to the parameter sensitivity analysis by Wang et al. (2022), under the Mohr-Coulomb criterion, the sensitivity of displacement values to Young’s modulus is much higher than other parameters. Additionally, since not all elements enter the plastic stage during the simulated excavation process, parameters such as cohesion and friction angle only affect displacement in a few elements. Therefore, in this case, Young’s modulus field is chosen as the parameter field for inversion. To simulate geological stratification and make the inversion results clearer, the reference field is set to have four distinct layers, as shown in Figure 7. Young’s modulus values from top to bottom are: [image: The image shows the scientific notation "2.0 × 10^7 Pa" representing a pressure of twenty million pascals.], [image: The image shows the scientific notation of a pressure measurement, represented as 1.7 times ten to the power of seven pascals (Pa).], [image: The text shows "2.1 times 10 to the power of 7 Pa," indicating a pressure measurement of 21 million pascals.] and [image: The image displays the scientific notation: 2.4 times ten to the power of seven pascals.]. In this Figure, regions closer to red indicate higher Young’s modulus values, while regions closer to blue indicate lower Young’s modulus values.
[image: Dot matrix pattern illustrating different pressure levels represented by colors: cyan for 2.0 x 10^7 Pa, blue for 1.7 x 10^7 Pa, green for 2.1 x 10^7 Pa, and red for 2.4 x 10^7 Pa. Two white shapes interrupt the patterns.]FIGURE 7 | Reference field of Young’s modulus values.
A customized Fortran code was used to generate an unconditional random field of Young’s modulus as the initial ensembles for EnKF. The ensemble size as well as the number of random fields were set to 500. The mean of Young’s modulus was [image: Mu subscript E equals two point zero times ten to the seventh pascals.], the coefficient of variation was [image: \( V_E = 0.15 \)], the horizontal fluctuation scale [image: Theta sub h equals sixteen meters, depicted in a mathematical expression.], the vertical fluctuation scale [image: Mathematical expression showing the angle theta subscript v equals two m.], resulting in an anisotropy ratio of [image: Mathematical expression showing the equation "aniso = θₕ / θᵥ = 8" indicating the anisotropy ratio of a horizontal angle θₕ to a vertical angle θᵥ, calculated to be 8.]. A user subroutine called UFIELD assigned parameter values to all nodes in the model and initiated the computations. Displacement values at measurement points were read from the Odb files, and Gaussian noise with a mean of 0 and a variance of approximately [image: The image shows the text "10%" in a serif font, indicating a numerical percentage.] of the surface maximum settlement (1.8 cm in the reference field) was added to the observations.
After the first excavation, the updated parameters were used for the second excavation. The mean of the parameter fields from the 500 ensembles after the two excavations can be considered the best estimate for the parameter field.
The distribution of the parameter field after two excavations is shown in Figure 8. In this Figure, regions closer to red represent higher values, while those closer to blue represent lower values. From Figure 8, it is evident that after the first excavation and update, the distribution of Young’s modulus field already exhibits a clear four-layer pattern, although the boundaries are not well-defined, and there are mixed regions between every two layers. The inversion results for Young’s modulus field in the left edge and right edge regions of the model are not as pronounced. After the second excavation and update, the four-layer pattern, especially in the central region, has clearer boundaries. Young’s modulus field in the left and right regions of the model is now consistent with the reference field, and the distinguishability of Young’s modulus values between the four layers is higher and closer to the corresponding values in the reference field. The trend of RMSE (Equation 15) values for the random fields and the updated fields after two excavations, as shown in Figure 9, also indicates that the inversion of the parameter field has been quite effective after the two-step excavations.
[image: Two contour plots labeled A and B display colored grids representing elastic modulus in pascals. They show two white elliptical shapes, each with a color scale on the right ranging from blue (low) to red (high), indicating variations in modulus from 1.6 to 2.6 x 10^7 pascals.]FIGURE 8 | Young’s modulus field of: first tunnel excavation and update (A) second tunnel excavation and update (B).
[image: Line graph depicting the value of RMSE decreasing from the initial field to Step 2. The vertical axis represents RMSE values multiplied by ten thousand, ranging from 0.5 to 3.0, while the horizontal axis shows the output of updated steps: Initial Field, Step 1, and Step 2.]FIGURE 9 | RMSE for Young’s modulus fields of random fields and two updates.
The primary focus is to investigate the influence of the ensemble size and the ratio of the horizontal fluctuation scale to the vertical fluctuation scale [image: Equation for anisotropy, "aniso", equals the ratio of θ subscript h to θ subscript v.] on the results of the parameter field inversion.
In the first part of the investigation into the impact of ensemble size on the results of the parameter field inversion, while keeping other parameters constant, the ratio of the horizontal fluctuation scale to the vertical fluctuation scale is set to [image: I'm unable to view the image directly. However, the text you provided appears to be a mathematical expression. If it's related to an image, please upload the image file or provide additional context for a complete description.]. The mean of the observation noise is 0, and the variance is [image: Text displaying "1%" in a serif font style.] of the maximum displacement value. Figure 10 displays the distribution of the parameter field after one step of update for ensemble sizes of 200, 300, 500, and 1,000, along with the reference field.
[image: Four panels labeled A to D display color-coded stress distribution plots, indicating pressure variations from 1.4 to 2.6 x 10^7 Pascal. Each plot shows a gradient, with reds for higher values and blues for lower, centered around two circular areas. The layout and color scale are consistent across all panels.]FIGURE 10 | Young’s modulus field of double-tunnel excavation after one update using: 200 ensembles (A) 300 ensembles (B) 500 ensembles (C) 1,000 ensembles (D).
In this Figure, regions closer to red indicate higher Young’s modulus values, while those closer to blue indicate lower values. When the ensemble size is 200, the four-layer stratification in the distribution of the parameter field after one update is almost invisible, with unclear layer boundaries and even mixing between different layers. This outcome is nearly unusable. However, with an increase in the ensemble size, this situation is significantly improved. After one update, the parameter field already exhibits a more distinct four-layer stratigraphic distribution. When the ensemble size is increased to 500, the stratigraphic distribution becomes more apparent, and the contours between each layer are clearer, with no mixing at the layer edges. Increasing the ensemble size to 1,000 does not show a significant improvement compared to an ensemble size of 500, as the results are already fairly close to the reference field. Meanwhile, the RMSE values of the parameter fields for the four ensemble sizes after one update are shown in Figure 11. From this Figure, it can be seen that the curve converges when the ensemble size reaches 500, and further increasing the ensemble size does not lead to a noticeable improvement. It is essential to note that an increase in ensemble size implies a proportional increase in computational cost (i.e. increase the ensemble size from 500 to 1,000 will double the computational cost), as each ensemble’s parameter field undergoes finite element calculation at least once. Considering these factors, an ensemble size of 500 appears to be a reasonable choice for this case.
[image: Line graph showing the Root Mean Square Error (RMSE) on the y-axis and the output of different numbers of ensembles on the x-axis, ranging from 200 to 1,000. The graph indicates a decreasing trend in RMSE values as the number of ensembles increases.]FIGURE 11 | RMSE for Young’s modulus fields using different numbers of ensembles.
Figure 12 presents the probability density distributions of parameter field values for four ensemble sizes after one update, as part of the investigation into the impact of ensemble size on the results of the parameter field inversion. When the ensemble size is 200, the data distribution is extensive, and the four values corresponding to the reference field ([image: The image shows the scientific notation for pressure, written as \(1.7 \times 10^7\) pascals (Pa).], [image: The image shows the scientific notation for pressure, expressed as 2.0 times ten to the power of seven pascals (Pa).], [image: The expression \(2.1 \times 10^7\) Pa, representing pressure in pascals.] and [image: The expression "2.4 times ten to the power of seven pascals" is shown, representing a pressure value.]) are not prominent. This situation persists when the ensemble size increases to 300. However, when the ensemble size reaches 500, three distinct peaks become evident in the data, indicating a more effective reduction of uncertainty in the parameter field updates. With an ensemble size of 1,000, the distribution plot clearly exhibits four peak intervals, ranging from small to large as follows: [image: Mathematical notation showing the pressure value 1.6725 times ten to the power of seven approximately equals 1.7 times ten to the power of seven pascals.], [image: The image contains a mathematical expression showing an approximation: \(2.0025 \times 10^7\) approximately equal to \(2.03 \times 10^7\) Pascals.], [image: "Mathematical expression showing an approximate equality: \(2.1125 \times 10^7\) is approximately equal to \(2.14 \times 10^7\) Pascals."] and [image: Equation displaying a range of pressures from 2.36 times ten to the power of seven pascals to 2.3875 times ten to the power of seven pascals.]. These values are very close to the four values in the reference field.
[image: Four histograms labeled A, B, C, and D, show the frequency distribution of elastic modulus values in pascals, each with different ensemble sizes: 100, 300, 500, and 1500. The x-axis represents the modulus value, while the y-axis shows the frequency. Dotted vertical lines indicate specific reference points within each distribution.]FIGURE 12 | Probability density distributions of Young’s modulus field values after one update using: 200 ensembles (A) 300 ensembles (B) 500 ensembles (C) 1,000 ensembles (D) (The dashed lines in the illustration denote the parameter values of the reference field).
In the second part, the focus is primarily on exploring the impact of the ratio of horizontal to vertical fluctuation scales, denoted as [image: Equation showing "aniso equals theta sub h divided by theta sub v," where "aniso" represents anisotropy and "theta" symbolizes angles or parameters in horizontal (h) and vertical (v) orientations.], on the results of the parameter field inversion. Other than the aniso values, all other parameters are kept consistent. In this case, the ensemble size is set to [image: A mathematical expression showing "n_{\text{ens}} = 500".], and the mean of the observation noise is 0, with a variance of [image: The number "1%" is displayed in bold, black serif font on a white background.] of the maximum displacement value.
Figure 13 presents the distributions of the reference field and the parameter field after one update for aniso values of 2, 4, 8, 12, 16, and 20. In this Figure, regions closer to red indicate higher values of Young’s modulus, while regions closer to blue indicate lower values. When aniso is set to 2, the parameter field distribution shows almost no discernible four-layer stratification, and the boundaries between layers are relatively unclear, with different layers even exhibiting mixing, making it nearly unusable.
[image: Six heat maps labeled A to F display stress distribution (E(x) in 10^7 Pascals) with color gradients from blue (1.4) to red (2.6). Rectangular blocks are present in the upper central area of each map.]FIGURE 13 | Young’s modulus field of double-tunnel excavation after one update using: [image: Text "aniso = 2" in italic font.] (A) [image: Text stating "aniso = 4" in a serif font.] (B) [image: Text reads "aniso = 8" in italic font.] (C) [image: The text "aniso = 12" is displayed in a mathematical style.] (D) [image: Text showing "aniso = 16" in italicized font.] (E) [image: The image shows the mathematical text "aniso = 20" with a slanted typography style.] (F).
However, when aniso is set to 4 and 8, this situation improves significantly. After one update, the parameter field already exhibits a more apparent stratified distribution, although the contours of the layers are still not very clear, and there are still mixed regions along the edges. When the value of aniso increases to 12, the layer distribution becomes more distinct, with clearer contours between each layer, and the edges of the layers no longer exhibit mixing. When aniso is set to 16 or higher, the parameter field after one update is essentially indistinguishable from the reference field, showing a very clear stratification, and the contours of the layers are highly distinct. Simultaneously, the RMSE values of the parameter field after one update for six values of aniso are shown in Figure 14. From this Figure, it is evident that increasing the value of aniso from 2 to 4 results in a significant improvement in the inversion effectiveness. However, subsequent increases in aniso have a relatively less pronounced impact on the inversion effectiveness. The results depicted in the two Figures can be explained by considering that when the value of aniso is excessively large, the horizontal fluctuation scale approaches the width of the model. As a result, the two-dimensional spatial variability tends to become one-dimensional along the vertical axis, making the inversion much less challenging for one-dimensional data compared to two-dimensional data. In practical geological distributions, layers are unlikely to be so regular and uniformly distributed, rendering excessively large values of aniso meaningless in realistic scenarios.
[image: Line graph showing the RMSE value decreasing as the output of different aniso values increases from two to twenty. The y-axis represents the value of RMSE, starting above 1.4 and ending below 0.6. The x-axis indicates different aniso values.]FIGURE 14 | RMSE for Young’s modulus fields using different values of aniso.
Figure 15 presents the probability density distributions of parameter field values after one update for six values of aniso when investigating the influence of the ratio of horizontal to vertical fluctuation scales, denoted as [image: Aniso equals theta sub h divided by theta sub v.]. When aniso is set to 2, the data distribution is quite wide, and the four values in the reference field ([image: The scientific notation "1.7 times ten to the power of seven pascals" (1.7 × 10^7 Pa).], [image: Text displaying "2.0 × 10⁷ Pa", representing a pressure value of twenty million pascals.], [image: The image shows the mathematical expression "2.1 times ten to the power of seven pascals," representing a pressure measurement in pascals using scientific notation.] and [image: The image shows the mathematical expression "2.4 times 10 to the power of 7 pascals."]) are not particularly prominent. This situation improves when aniso is set to 4, as three peaks become discernible. When aniso is increased to 8, the data clearly exhibits three peaks, indicating that the parameter field’s update has effectively reduced uncertainty. When aniso is further increased to 16, the distribution graph distinctly presents four peak intervals. The four peaks become more pronounced when aniso is set to 20, with values are [image: Mathematical expression showing a range of pressure values from 1.64 times ten raised to the power of seven to approximately 1.66 times ten raised to the power of seven pascals.], [image: Scientific notation comparing two values: 2.0 times ten to the power of seven is approximately equal to 2.02 times ten to the power of seven pascals.], [image: Mathematical expression of pressure range: 2.12 times ten to the power of seven to 2.14 times ten to the power of seven pascals.] and [image: Mathematical expression displaying a range from 2.36 times ten to the power of seven pascals to 2.38 times ten to the power of seven pascals.]. These values are very close to the values in the reference field.
[image: Six histograms labeled A to F show frequency distributions of elastic modulus values with different atomic percentages. Each histogram features vertical bars in orange, with varying peaks and distributions. Dotted lines indicate specific ranges on the x-axis of each graph, representing elastic modulus values, while the y-axis shows frequency. The histograms display changes in distribution patterns with varying atomic percentages.]FIGURE 15 | Probability density distributions of Young’s modulus field values after one update using: [image: Text displaying "aniso = 2".] (A) [image: Text shows "aniso = 4" in italic font with a shadow effect.] (B) [image: Text "aniso = 8" is shown in a stylized italic font.] (C) [image: Text displaying "aniso = 12" in an italicized font.] (D) [image: Text displaying the formula "aniso = 16" in italicized font.] (E), [image: Text displaying "aniso = 20" with a blurred effect, possibly suggesting a graphical or filter adjustment.] (F) (The dashed lines in the illustration denote the parameter values of the reference field).
6 PARAMETER FIELD INVERSION OF SLOPE EXCAVATION
In the previous section, we employed a two-dimensional case of a double-tunnel excavation to validate the accuracy of the algorithm and conducted an analysis of relevant parameters. Building upon that foundation, this section will introduce a simplified two-dimensional layered slope with a three-step excavation case for additional validation. The three-layered slope excavation case was chosen to further validate our method in a different geotechnical context and to explore its performance in capturing distinct stratigraphic features. Slope stability analysis is a critical aspect of geotechnical engineering, and accurate estimation of soil parameters in layered slopes is essential for reliable stability assessments. This case study allows us to demonstrate the method’s capability in handling varying spatial correlations and its effectiveness in updating parameter fields across different geological layers.
The schematic diagram of the model is shown in Figure 16, with a length of 240 m, height of 120 m. The three-step excavation is carried out from top to bottom as indicated in the diagram. Excavation sequence is as follows:
	1) Initial state: Full slope profile;
	2) First excavation: Remove top 20 m from the slope face, part (a) in Figure 16;
	3) Second excavation: Remove additional 20 m from the slope face, part (b) in Figure 16
	4) Third excavation: Remove final 20 m to achieve the target slope profile, part (3) in Figure 16

[image: Diagram illustrating a slope stability assessment with quadrilateral sections labeled A, B, C, and D. The entire area measures 240 meters in width and 120 meters in height. Section D is at the base, with sections A, B, and C stacked above, each with decreasing width. Dotted lines indicate measurement points.]FIGURE 16 | Excavation sequence: first layer excavation (A) second layer excavation (B) third layer excavation (C). (D) Represents the regions involved in the inverse analysis (Black dots indicate displacement measurement locations and the red dot indicates the target point).
Each excavation stage is followed by an EnKF update of the parameter field.
The boundary conditions of the model involve constraining horizontal displacements at both ends, while the bottom is fixed. The model employs the Mohr-Coulomb failure criterion, and detailed material parameters are provided in Table 2.
TABLE 2 | Soil property values of slope excavation.
[image: Table with four columns labeled ρ, c, φ, and ν. The values are 2.5 x 10³ kg/m³, 2 x 10⁶ Pa, 35°, and 0.3, respectively.]Consistent with the double-tunnel excavation case, a parameter inversion will be conducted for Young’s modulus field. In order to simulate geological stratification and enhance the clarity of the parameter inversion results, a reference field is set with an apparent three-layer stratification, as illustrated in Figure 17. Young’s modulus values are assigned from top to bottom as [image: The expression "5.0 times ten to the power of 9" followed by the unit "Pascal" (Pa), indicating pressure.]、 [image: The image shows the scientific notation of pressure as six point zero times ten to the power of nine pascals (Pa).] and [image: The image shows the scientific notation "8.0 times 10 to the power of 9 pascals".]. In this Figure, regions with colors closer to red indicate higher values, while regions with colors closer to blue signify lower values.
[image: Diagram displaying a stepped, three-layered block structure with varying colors representing different elastic modulus values. The top layer is dark blue with \(E = 5.0 \times 10^9\) Pa, the middle is light blue with \(E = 6.0 \times 10^9\) Pa, and the bottom is dark red with \(E = 8.0 \times 10^9\) Pa.]FIGURE 17 | Reference field of Young’s modulus values.
A Fortran code was employed to generate random fields of Young’s modulus for the initial ensembles in EnKF. The ensemble size and the number of random fields remained at 500. The mean of Young’s modulus [image: The equation shows \(\mu_E = 6.0 \times 10^9 \, \text{Pa}\), indicating a modulus value of six point zero times ten to the ninth pascals.], the coefficient of variation [image: Mathematical expression with subscript: V subscript E equals 0.2.], the horizontal fluctuation scale [image: Mathematical expression showing theta sub h equals twenty-four meters.], the vertical fluctuation scale [image: The equation theta subscript v equals two m.], resulting in an anisotropy factor of [image: Mathematical expression stating anisotropic ratio: "aniso = θ_h / θ_v = 12", where θ_h is the horizontal component and θ_v is the vertical component.]. Consistent with the double-tunnel excavation case, a user subroutine named UFIELD was used to assign parameter field values to all nodes of the model. Displacement values at observation points were read from the Odb files, with Gaussian noise added to the observations. The mean of the added Gaussian noise was set to 0, and the variance was approximately 10% of the maximum displacement value. After the first excavation and parameter update, the updated parameters were used for the second excavation. Subsequently, the parameters updated after the second excavation were applied to the third excavation. Finally, the mean of the parameter fields from the 500 ensembles was considered as the best estimate for these parameter fields.
The distribution of the parameter field after the three-step excavation update is depicted in Figure 18. In this Figure, regions closer to red indicate higher values, while regions closer to blue signify lower values. From Figure 18, it is obvious that after the first excavation and update, Young’s modulus field distribution has clearly exhibited a three-layer pattern, with distinct edges. Notably, there is no evident lack of inversion effectiveness for Young’s modulus field in the regions at the left and right ends of the model. The results after the first update are superior to the double-tunnel excavation case, primarily due to the increased value of the anisotropy factor (aniso).
[image: Three contour plots labeled A, B, and C display varying stress levels represented by colors from blue to red, indicating values from 4.7 to 8.3 times ten to the power of nine Pascals. Each plot shows a stepped structure with different stress distributions.]FIGURE 18 | Youngs modulus field of: first excavation and update (A) second excavation and update (B) third excavation and update (C).
In the second and third excavations and updates, the boundary lines of the three-layered region become more distinct. Young’s modulus field at the left and right ends of the model also aligns closely with the reference field, and the discriminability of Young’s modulus values in the three layers is higher, numerically approaching the reference field. The RMSE values for the updated fields of the three-step excavation are shown in Figure 19. After the first excavation and update, the inversion of the parameter field is already quite effective.
[image: Line graph showing the value of RMSE decreasing across three steps, labeled Step 1, Step 2, and Step 3 on the x-axis. The y-axis, labeled as Value of RMSE, ranges from 5.4 to 6.1 times ten to the power of three.]FIGURE 19 | RMSE for Young’s modulus fields of three updates.
As depicted in Figure 16, the red dots therein represent the selected target point. The displacement distribution of this point in both the horizontal and vertical directions under the reference field, as well as within the three successive updating fields, is illustrated in Figure 20. The histograms in the figure depict the distribution of displacements in the horizontal and vertical directions for the target point. The blue curve represents the fitted curve, while the black dashed line signifies the displacements in the horizontal and vertical directions under the reference field for the selected point in the three excavation scenarios. Following each update, the displacement distributions under the parameter fields approximate a normal distribution. Simultaneously, with an increasing number of steps, the mean values of the displacements under the parameter fields converge towards those under the reference field. Additionally, the standard deviation of the displacement distribution progressively decreases. After the three excavation and updating steps, the mean values of the displacements in the horizontal and vertical directions under the updated parameter fields closely resemble those under the reference field, indicating the effectiveness of the parameter field updates.
[image: Six histograms with best fit curves. Panels A, B, and C show X displacements with varying distributions and frequencies. Panels D, E, and F show Y displacements. Each histogram features orange bars and a blue curve fitting the data distribution. The X and Y axes indicate displacement and frequency, respectively, in nanometers or meters.]FIGURE 20 | Probability density distributions of target point’s displacement values: in X direction after step 1 (A) in X direction after step 2 (B) in X direction after step 3 (C) in Y direction after step 1 (D) in Y direction after step 2 (E) in Y direction after step 3 (F) (The dashed lines in the illustration denote the target point’s displacement values of three steps under the reference field).
7 CONCLUSION
This paper presents a parameter field inversion method based on a data assimilation method named EnKF with a finite element analysis tool called ABAQUS. The method employs an ABAQUS subroutine to assign material parameters to nodes, and a customized in-house Python code script is used to control ABAQUS for computations and to read observation points data, which is subsequently utilized for EnKF updates. The method can be applied to various scenarios, including double-tunnel excavation and slope excavation. By using random fields of key parameters as the initial input ensembles for EnKF and utilizing displacement data from observation points, precise inversion of the parameter field can be achieved.
For geological formations characterized by stratified distribution, the ratio of horizontal to vertical fluctuation scales in the random fields, denoted as aniso, significantly influences the results of parameter updates. Similarly, the ensemble size is also a major factor affecting the updating outcomes. In general, a larger ensemble size tends to yield better updating effects. However, a larger ensemble size also implies a greater computational burden. For a specific problem, once the ensemble size reaches a certain value, the improvement in updating results becomes limited.
The results indicate that, owing to higher precision of ABAQUS in finite element computations, this method provides more accurate updates for the parameter field. For multi-step engineering or practical problems, new observations are generated after each step, and these can be utilized for updating the parameter field. Consequently, the parameter field gradually converges to the true values. This characteristic can be beneficial in guiding realistic engineering applications.
The integration with ABAQUS allows for the use of high-performance computing resources to handle more complex and finely discretized models. Future work will focus on optimizing the method for large-scale applications, potentially incorporating techniques such as localization or model reduction to manage computational costs effectively.
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Structurally controlled slope failure in open-pit mining occurs when the shear stress acting on the geological structure exceeds its shear strength. Mining slope stability is an extremely important topic from the ramifications of safety, social, economic, environmental and regulatory factors. This study reports the engineering geological setting of a bedded mining slope in China, and evaluates its stability via a numerical approach. First, a slope profile model is constructed using a synthetic rock mass (SRM) modeling approach. More specifically, the mechanical behavior of colluvium, intact rock and discontinuities are represented by linear contact model, bonded particle model and smooth joint model, respectively. Then, the factor of safety (FOS) and instability process are investigated by integrating the discrete fracture network (DFN)-distinct element method (DEM) and strength reduction technique (SRT). In addition, shear stress analyses of colluvium and bedrock are conducted for revealing the potential failure mechanism. Finally, the well-established limit equilibrium (LEM) and finite element method (FEM) are adopted for simulation results comparison and validation.
Keywords: opencast slope, stability assessment, numerical simulation, distinct element method, strength reduction technique, factor of safety

1 INTRODUCTION
The uncontrolled rock slope failure in open-pit mining operations and quarries may cause many adverse consequences, such as loss of life, operation disruption and closure consideration (Read and Stacey, 2009). Rock slope stability is mainly governed by the discontinuities within the rock mass, e.g., fault, bedding plane and joint. An unfavorable orientation combination of major structural planes and bedding planes commonly yields a structurally controlled failure, i.e., planar, wedge or toppling (Hoek and Bray, 1981; Stead and Wolter, 2015; Gong et al., 2023). As a result, the geometrical features and mechanical behavior of discontinuities should be of great concern when aiming to evaluate rock slope stability.
The available approaches for opencast slope stability assessment include kinematic analysis, rock mass rating, analytical method, numerical method and probabilistic method (Stead and Wolter, 2015; Raghuvanshi, 2019). Kinematic method aims to investigate the potential failure modes of rock slope based on the angular relationship between discontinuities and slope surfaces, without considering the forces that cause the sliding mass to move (Hoek and Bray, 1981; Yan et al., 2022a). For this reason, it is a pure geometric method. Empirical rock mass classification systems for slope stability condition rating have been well developed (Jaiswal et al., 2024). They are effective tools, but the accuracy is strongly limited by the user’s geological experiences. The commonly mentioned analytical method is the limit equilibrium method (LEM). It calculates the factor of safety (FOS) of a generalized rock slope for both moment and force equilibrium using a searching algorithm. Different slip surfaces can be tested by varying the assumptions on the interslice forces (Zhou et al., 2019). Another analytical method is the block theory (Goodman and Shi, 1985). It aims to search key blocks from an excavation slope by integrating geometric topology and simplified LEM. The analytical methods fail to consider the complex stress-strain relationship in the rock mass and usually ignore the resistant shear forces that act on the lateral release surface (Jiang and Zhou, 2017).
To address the limitations in the LEM, numerical simulation methods are developed with the improvement of computation efficiency in the recent decade years. Continuum modelling approaches treat the extremely jointed rock mass as an equivalent medium which is meshed using triangular or quadrilateral elements in 2d (Stead and Wolter, 2015). A constitutive model allows the variety of rock mass mechanical behavior from elastic to elasto-plastic. The most common continuum numerical methods are finite element method (FEM) and finite difference method (FDM) (Bao et al., 2019a; Ren et al., 2020; Chand and Koner, 2024). Discontinuum modelling approaches focus on the simulation of joint media and block separation behavior using force-based contact models. According to the deformability and interpenetrability of the contact objects, distinct element method (DEM) and discontinuous deformation analysis (DDA) method are differentiated (Yan et al., 2020; Ma et al., 2020; Zheng et al., 2021; Cui et al., 2021). Nowadays, discrete fracture network (DFN)-DEM or coupled numerical methods (such as the finite-DEM, FDEM) provide more precise solutions on the simulation of non-persistent joint and crack propagation (Elmo et al., 2022; Li C. et al., 2022; Li X. et al., 2022). The probabilistic methods facilitate to incorporate the variety and uncertainty of rock mass properties by integrating kinematic analysis (Obregon and Mitri, 2019; Yan et al., 2022b), LEM (Du et al., 2022), block theory (Zheng et al., 2015; Xue et al., 2023) or numerical methods (Basahel and Mitri, 2019; Xing et al., 2023; Zhang and Yang, 2023). They express failure criteria in probabilistic terms and provide the probability distribution of the FOS values.
This study describes a bedded opencast slope in China, and evaluates its stability for landslide disaster mitigation. First, a rigorous numerical slope model is constructed using the synthetic rock mass (SRM) modeling approach. Then, its FOS, instability process and failure mechanism are investigated using the DFN-DEM and strength reduction technique (SRT). Finally, the slope stability simulation results are verified by comparing with the LEM and FEM.
2 STUDY AREA
2.1 Engineering geology setting
The studied open-pit mining area is located in the Hubei province, China. It is in a hill region that covered well with plants, and the relative relief height is 120 m. About 50% of the annual precipitation is concentrated from June to September, and the maximum monthly precipitation is 1,600 mm. The tectonic setting is relatively stable and no large faults cut through the mining area. The main lithology of the mining area is Ordovician limestone with a bedding orientation of 130°∠8°, and karrens are observed in the excavation face. Additionally, two steeply inclined discontinuity sets are developed in the rock mass. Their orientation are 230°∠81° and 130°∠78°, respectively. Since there are no known major structures (e.g., faults) within the immediate mining area, the stability of opencast side slope is mainly controlled by the orientation combination of minor structures (Obregon and Mitri, 2019), such as bedding planes and joints.
2.2 Slope failure mode analysis
Nine sectors are differentiated according to the slope dip direction. They are numbered from Ⅰ to Ⅸ. Stereographic analyses are conducted for all sectors, and one plot indicates that sector Ⅵ is a consequent bedding rock slope (Figure 1). Of these, the high steep excavation face is the free surface; the gentle dip bedding plane is the potential sliding surface; and the steeply inclined joints are lateral release surfaces. Under the combination of given orientations, block instabilities or even cataclinal rock slides may be trigged by torrential rainfall or human activities (Wang F. et al., 2022). For this reason, the stability of the sector Ⅵ should be carefully investigated.
[image: Geological stereonet diagram showing intersecting planes labeled as Joint 1, Joint 2, Slope face, and Bedding plane. Each plane is represented by a different colored line: Joint 1 in green, Joint 2 in blue, Slope face in purple, and Bedding plane in red. Cardinal directions N, E, S, W are marked around the circle.]FIGURE 1 | Stereographic analysis plot for sector Ⅵ.
2.3 Slope material properties
A typical pit slope profile of sector Ⅵ is shown in Figure 2. The slope height is 55.8 m. Colluvium deposits with an average thickness of 4.5 m are distributed on the upper and lower slope. These loose materials are a mixture of gravel (25%) and silty clay (75%). The gravel is composed of non-rounded limestone block with a diameter mainly distributed between 5 and 15 cm. The internal friction angle (φc) and cohesion (Cc)of the colluvium deposits refer to a laboratory direct shear test presented by She et al. (2018). They are 30° and 87.8 kPa, respectively. The colluvium deposits are in unconformable contact with the underlying heavy-layer limestone of the Dawan Formation. The spacing of the bedding plane is about 4 m. The strength and deformation parameters of the bedrock refer to a laboratory uniaxial compression test presented by Wang X. et al. (2022). The uniaxial compressive strength (UCS), elastic modulus (E) and Poisson ratio (ν) are 64.5 MPa, 25.1 GPa and 0.24, respectively. The shear strength parameters of discontinuities refer to the empirical values suggested by the Standard for Engineering Classification of Rock Mass. The corresponding internal friction angle (φj) and cohesion (Cj) are 42° and 0.4 MPa, respectively.
[image: Diagram illustrating a cross-section of a geological formation. The section is 139 degrees at the top left and consists of 558 meters of limestone shown in gray, with colluvium on top depicted in yellow. The total length is 130 meters.]FIGURE 2 | Slope profile of sector Ⅵ.
3 METHODOLOGIES
3.1 Distinct element method
The distinct element method (DEM) introduced by Cundall (1971) was originally used for the analysis of rock mechanics problems. It was later applied to granular material by Cundall and Strack (1979). The Particle Flow Code (PFC) can be viewed as a simplified implementation of the DEM because of the strict assumption on non-deformable particles (Itasca Consulting GroupInc, 2021). The dynamic behavior is represented numerically by a timestepping algorithm, and the solution scheme is identical to the explicit finite-difference method in continuum analysis. The calculation cycles performed in the PFC alternate between the application of Newton’s second law to the particles and a force-displacement law at the contacts (Figure 3). Following this, the velocity and displacement of a particle within each timestep can be obtained. In this study, the two dimensional PFC (PFC2D) is used for pit slope stability assessment.
[image: Flowchart depicting a cyclical process in numerical modeling. It starts with "Start of cycle" and follows clockwise: "Timestep determination", "Law of motion", "Advance time", "Contact detection", and "Force-displacement law". Arrows connect the stages.]FIGURE 3 | Calculation cycles in PFC (Itasca Consulting GroupInc, 2021).
3.2 Slope numerical model construction
Ball and wall are two fundamental body types in the PFC. Of these, ball is a rigid disk with unit thickness in 2D, while wall is a manifold surface composed of lines segments in 2D termed facets (Itasca Consulting GroupInc, 2021). Using the two elements, ball-wall and ball-ball models are available for construction of a slope numerical model (Li et al., 2012; Wei et al., 2019). The latter model is adopted mainly because that the slip surface has not been determined in this case.
Regarding the slope materials, colluvium deposits are simulated by an assembly of balls. The large and small ball elements represent soil and gravel, respectively. Note that the mass percentage within two size ranges are in accordance with onsite investigation. The mechanical behavior of colluvium deposits is modeled using the linear contact model. The bedrock is simulated using the synthetic rock mass (SRM) modeling approach (Esmaieli et al., 2010; Mas Ivars et al., 2011). To facilitate reading, an illustration of this approach is shown in Figure 4. Note that the superiority of SRM in characterizing fractured rock mass has been examined by some recent published studies (Bester et al., 2021; Zhang et al., 2021; Xing et al., 2023), thus this study follows their modelling procedures. First, the bonded particle model (BPM) proposed by Potyondy and Cundall (2004) is used to represent intact rock. Then, discrete fractures network (DFN) are generated in the intact rock to represent the in-situ joint network. Finally, by assigning the smooth-joint contact model (SJM) to the ball-ball contact that intersects with fractures, the mechanical behavior of jointed rock mass can be simulated. Regarding the boundary conditions, virtual and boundary walls are separated for model construction (Bao et al., 2019b). Of these, the former is used to create the shape of the slope and partition material zones where particles can be generated; and the latter is used to fix the displacement of the bottom particles.
[image: Diagram showing a process with four panels. The first panel is labeled "Intact rock" and shows a textured gray area. The second panel, labeled "DFN," adds yellow lines to the gray texture. The third panel, "SRM," combines elements of the first two panels. The fourth panel, "Contact map," highlights intersections with labels "BPM" and "SJM."]FIGURE 4 | An illustration of the SRM modeling approach.
The area of colluvium deposits in the slope profile is 413.9 m2, and is filled by 6067 balls with radius between 0.1 and 0.15 m for soil and 0.2 and 0.25 m for gravel (yellow and blue particles in Figure 5). Upper and lower colluvium herein are differentiated by their elevations. The area of bedrock is 4,202.4 m2 where an assembly of 5914 balls with radius between 0.35 and 0.5 m are generated (gray particles in Figure 5). The number of bedding planes and joints are defined as 7 (orange lines in Figure 5) and 46 (pink lines in Figure 5), respectively. Their size and position are determined based on a detailed field investigation. Considering the significant differences in the stochasticity and persistence of the two types of geological structures, multiple geometrical parameters are assigned. More specifically, the position of bedding planes is in accordance with the field rock slope exposure, and full-persistence is assumed for such geological structure. For comparison, the joints in the slope numerical model follows a uniform distribution, and non-persistence is assumed for them. Furthermore, interval values (79–83° and 2.5–5.5 m) are assigned to simulate the variety of orientation and trace length involved in the dominant joint sets.
[image: Cross-sectional diagram of a slope showing geological layers. The legend indicates lower colluvium, upper colluvium, bedrock, bedding plane, joint, and a monitoring zone. The slope is 130 meters long and 55.8 meters high, with a 139-degree angle. Ten numbered monitoring points are marked within different geological layers.]FIGURE 5 | Opencast slope numerical model.
3.3 Contact models and micro-parameters
Contacts are created/deleted automatically during cycling. They are detected via termed piece based on the principles of different contact models. The contact types of piece are ball-ball and ball-facet. The aforementioned BPM and SJM are two built-in contact models in the PFC.
The BPM model provides the behavior of two interfaces: a linear model and a parallel bond (Potyondy and Cundall, 2004) (Figure 6A). In the linear model, rotation is allowed, and slip is adapted to the Coulomb limit on the shear surface. Linear contact is active if the surface gap is less than or equal to zero, and can be activated again when the criterion is satisfied. The micro-parameters of linear group are mainly: friction coefficient (μ), normal stiffness (kn) and shear stiffness (ks). The parallel-bond component acts in parallel with the linear component and establishes an elastic interaction between the pieces. The parallel bonds are broken when the threshold bond strength is exceeded, and cannot be reactivated. The parallel-bond group includes the following micro-parameters: bond normal stiffness ([image: It seems there is an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. If there's a caption or specific context, feel free to share that as well.] n), bond shear stiffness ([image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. You can also include a caption for additional context.] s), tensile strength ([image: It seems like there was an error in the image upload. Please try uploading the image again, and I will assist you with the alternate text.] c), cohesion ([image: Please upload the image or provide a URL so I can help create the alternate text for it.]) and friction angle ([image: It seems there is no image provided. Please upload an image or provide a URL, and I will help you with the alt text.]).
[image: Diagram illustrating three cases of elastic bodies interaction: bonded and unbonded states for interface loading. Case A shows a linear elastic bond, while Case B illustrates separate pieces under unbonded conditions. Diagrams include force, displacement, and spring models.]FIGURE 6 | Behavior and rheological components of (A) BPM model and (B) SJM model (Itasca Consulting GroupInc, 2021).
In the SJM model, smooth joints are created by removing the bond between particles and applying a set of elastic spring uniformly over a rectangular cross section (Mas Ivars et al., 2011) (Figure 6B). Particle pairs intersected by a smooth joint may overlap and pass through each other rather than forced to move around one another (Bahaaddini et al., 2015). The smooth joints remain active while there is a nonzero overlap between particles. The main micro-parameters in the SJM model are normal stiffness per unit area (kn), shear stiffness per unit area (ks), friction coefficient (μ), tensile strength ([image: It seems like there's an issue with the image upload. Please try uploading the image again, and I’ll be happy to help with the alternate text.] c), cohesion (C*) and joint friction angle ([image: It seems there's no image attached. Please upload the image or provide a URL for it, and I can create the alt text for you.]*).
PFC derives macro-scale material properties from the interactions among micro-scale particles (Lu et al., 2014; Yan et al., 2022a). Unfortunately, the universal or accurate analytical equations between micro- and macro-parameters have not been established (Tang et al., 2009; Lu et al., 2014; Lin; Lin and Lin, 2015; Wei et al., 2019). Alternatively, the trial test was used to determine the appropriate micro-parameters. It calibrates micro-parameters from the macroscopic response of a particle assembly by repeating numerical tests until the modeled macro-parameters approach to the laboratory values (Bao et al., 2020; Yan et al., 2022b). For linear contact model and SJM, their micro-parameters can be obtained after several rounds of failed attempts. However, a rational strategy should be adopted for calibrating the micro-parameters of the BPM. Fortunately, some previous studies suggested a straightforward flowchart (Zhang et al., 2012; Lu et al., 2014; Bahaaddini et al., 2015). First, E is matched by adjusting kn, [image: Please upload the image or provide a URL so I can help create the alt text.] n, particle normal/shear stiffness ratio kn and ks (kn/ks) and parallel bond normal/shear stiffness ratio ([image: It seems like the image did not upload correctly. Please try uploading it again or provide a URL so I can help with generating the alternate text.] n/ [image: It seems like you've entered some text that doesn't include an image. Please upload the image or provide a URL for it so I can help you create the alternate text.] s). This is followed by calibration of the ν which is influenced by kn/ks and [image: Please upload the image you want me to describe, and I'll provide the alternate text for it.] n/ [image: Please upload the image or provide a URL so I can help create the alternate text for you.] s. Finally, the best fit of UCS is found by adjusting [image: Please upload the image or provide a URL so I can create the alt text for you.] c, [image: Please upload the image or provide a URL to it so I can create the alt text for you.] and [image: It seems there is no image attached. Please upload an image or provide a URL so I can help create the alt text for it.].
Using the trial and error test, numerical direct shear tests of colluvium and joint and numerical uniaxial compression test of intact rock are repeated by adjusting micro-parameters until the simulated macro-parameters are similar to the reference values (Figure 7). The calibrated micro-parameters of slope materials are listed in Table 1. Then, a balanced numerical slope model is established using these micro-parameters, and a contact map is shown in Figure 8.
[image: Panel A shows a graph of axial versus radial stress against axial strain, with a peak UCS of 63.7 MPa. Panel B displays normal stress with simulation data and a fitted curve, indicating cohesion of 87.4 kPa. Panel C shows normal stress with lower cohesion of 0.39 MPa. Insets in all panels illustrate loading and shear conditions.]FIGURE 7 | Micro-parameter calibration of (A) Intact rock, (B) Colluvium and (C) Discontinuity using numerical uniaxial compression and direct shear tests.
TABLE 1 | Micro-parameters of slope materials.
[image: Table showing micro-parameters for different materials and models. Colluvium with a Linear model has parameters μ = 0.4, \( k_n \) from \( 1 \times 10^7 \) to \( 2 \times 10^8 \), and \( k_s \) from \( 1 \times 10^7 \) to \( 1 \times 10^8 \). Limestone with BMP model lists μ = 0.6, \( k_n = 2 \times 10^8 \), \( k_s = 1 \times 10^8 \), and parallel-bond parameters. Fracture with SJM model has \( k_n = 2 \times 10^{14} \), \( k_s = 2 \times 10^{14} \), μ = 0.7, and other bond group parameters all at zero.][image: Diagram of a slope stability model with a 139-degree angle, showing layers representing different contact models: linear contact model (ball-ball) in blue, BPM in gray, SIM in orange, and linear contact model (ball-facet) in beige. The slope measures five hundred thirty-five point eight meters in height and one hundred thirty meters in length. A legend indicates the color-coded layers.]FIGURE 8 | Contact map of the numerical slope model.
3.4 Strength reduction technique
Factor of safety (FOS) is the most widely used quantitative index in slope stability assessment. The concept of the FOS is derived from the limit equilibrium method (LEM), and can be expressed as Equation 1. To combine FOS with numerical approach, strength reduction technique (SRT) was first introduced by Zienkiewicz et al. (1975). Following this, SRT has gradually became a well-recognized technique for FOS calculation in the finite element (Jiang et al., 2015; Bao et al., 2019a; Jia et al., 2024) or distinct element (Bao et al., 2019b; Su et al., 2019; Li Y. et al., 2022; Xing et al., 2023) analyses of slope stability.
[image: The formula for the factor of safety (FOS) is shown as the integral of \( (C + \sigma \tan \phi) dA \) over the integral of \( \tau dA \), labeled as equation (1).]
where C and [image: It looks like the image did not upload correctly. Please try uploading the image again or provide a URL.] are cohesion and internal friction angle, respectively; σ is the normal stress; τ is the shear strength and A is the area of sliding surface.
In the finite element analysis, the SRT defines two new shear strength parameters (CR and [image: Sure, please upload the image or provide a URL so I can help create the alt text.]R) by dividing the actual shear strength parameters (C and [image: It seems there is no image provided. To upload an image, please use the image upload feature, or provide a URL to the image you want described.]) to a strength reduction factor (SRF). By modifying SRF, a set of CR and [image: It seems there might have been an issue with uploading the image. Please try uploading it again or provide a URL if available.]R are generated for finite element calculations. Of these, the FOS is equal to the SRF when the slope is in a limit failure state. Regarding the distinct element analysis, the procedures are the same as finite element analysis except that the macro-scale parameters need be replaced by the micro-parameters. Considering that the micro-parameters in the BPM and SJM are more than twenty, the reduction parameters can hardly be determined. For this reason, an alternative approach named “gravity increase method” reported by Li et al. (2009) is adopted. In this method, the FOS is defined as the ratio between the gravitational acceleration at the critical slope instability state and the natural gravitational acceleration.
Numerical non-convergence criterion, plastic yield zone connection criterion and displacement mutation criterion are commonly used for judging the limit failure state of a slope (Jiang et al., 2015). Of these, the displacement-based criterion is more clear in the distinct element analysis (Li C. et al., 2022; Xing et al., 2023) and is adopted in this study. Using the SRT, the instability dynamic process of the studied rock slope can be simulated and the FOS can also be obtained.
4 RESULTS
4.1 Stability of the opencast slope
As mentioned above, FOS is equal to SRF when the slope reaches a limit failure state in the SRT. From this, SRF should be preliminarily set as an interval value for seeking the interest value corresponding to the critical stability state. In this study, SRF refers to previous papers (Bao et al., 2019a; Su et al., 2019; Li X. et al., 2022), as well as considers the current geological model. The trial SRF values are tentatively created from 1.0 to 5.0 with an increment of 1.0. The relationship between SRF and the displacement of different slope materials is plotted in Figure 9. The modeled slope is stable when the SRF is equal to 1; and that exhibits significant failure when the SRF is equal to 5. From this, the pre-defined interval value is reasonable.
[image: Line graph depicting displacement in millimeters versus SRF (Strength Reduction Factor) for three materials: bedrock (green), upper colluvium (red), and lower colluvium (blue). Bedrock and upper colluvium show minimal displacement, while lower colluvium increases sharply after an SRF of 2.]FIGURE 9 | SRF vs. displacement of slope materials.
More specifically, the average displacement of the lower colluvium is gradually greater with increasing the SRF values, but the corresponding displacement increment reduces gradually (Figure 9). In contrast, the displacement of the upper colluvium and bedrock is not sensitive to the SRF values. The FOSs of the upper colluvium and bedrock are greater than 4.0 and 5.0, respectively. To obtain a more accurate FOS value for the lower colluvium, a total of four SRF values with a range between 1.5 and 2.0 with an increment of 0.1 are created. The SRF value corresponding to the displacement mutation point is 1.7. Therefore, the current opencast slope is stable in general.
4.2 Slope instability process
The scenario with a SRF equal to 5.0 is used to investigate the potential failure process of the opencast slope. The calculation cycles are terminated when the velocity of slope materials is less 0.01 m/s. The history curves of velocity and displacement of different slope materials are plotted in Figure 10. The major instability process lasts 4 × 106 steps. Of these, the lower colluvium experiences a significant acceleration stage and a deceleration stage. The maximum velocity and displacement are 8.36 m/s and 12.56 m, respectively. The velocity of the upper landslide deposit decreases rapidly after initiation, and the final displacement is only 2.16 m. The velocity of the bedrock converges to 0.1 m/s after 1 × 106 steps, and the associated displacement curve is a near-horizontal line. It indicates that bedrock remains stable even under a high SRF, thus the risk of planar failure is extremely low.
[image: Two graphs comparing optical intensity (A) and phosphorescence intensity (B) over steps (x10^5) for different materials. In both graphs, lines represent bedrock (green), upper colluvium (red), and lower colluvium (blue). Graph (A) shows lower colluvium peaking early, then declining. Graph (B) shows phosphorescence intensity increasing rapidly for lower colluvium, then stabilizing, while upper colluvium rises slightly. Bedrock remains low in both graphs.]FIGURE 10 | (A) Average velocity and (B) Displacement of slope materials vs. step.
The velocity and displacement maps of the slope instability process are shown in Figures 11, 12, respectively. Different instability processes are observed between the upper and lower colluvium because of the difference of slope angle. Regarding the upper gentle colluvium, failure occurs in the shallow layer and a circular slip surface is observed. Maximum deformation of this shallow layer is approximately 10 m, and some surficial particles fall at the toe. For comparison, deformation of the deep layer is not obvious. As for the lower steep colluvium, it slides along the lithologic interface under gravity. More specifically, it accelerates away from the slope toe in the first 2 × 106 steps. Subsequently, the sliding mass moves slower with decreasing slope angle. Finally, the sliding mass deposits at the slope toe.
[image: Six-panel simulation of granular material flow over time. Each panel shows a side view of colored grain layers, with velocity ranging from blue (low) to red (high). Time steps include 750,000; 1,000,000; 1,500,000; 2,000,000; 3,000,000; and 10,000,000. Grains flow progressively forward and spread out in each step.]FIGURE 11 | Velocity map of the opencast slope instability process (SRF=5.0).
[image: Six contour plots display the density of a material across different simulation steps: 750,000, 1,000,000, 1,500,000, 2,000,000, 3,000,000, and 10,000,000. Each plot shows density on the vertical axis with a gradient scale from 0 to 20. Density distributions are predominantly blue, indicating lower density, with some green, yellow, and red areas representing higher densities. The progression shows a gradual change in distribution over time.]FIGURE 12 | Displacement map of the opencast slope instability process (SRF=5.0).
Affected by the relative larger friction coefficient of the bedrock, high velocity layer is observed in the surficial of the sliding mass, while low velocity layer is observed at the bottom of the sliding mass (Figure 11). Since the acceleration distance is very short, the expansion of the landslide deposits is not obvious. Besides the effect of friction coefficient of slip surface on the particle motion, the front particles also obstruct the latter particle motion. For this reason, the front surficial particles have a relative larger displacement (Figure 12).
4.3 Shear stress analysis for slope instability
To investigate the relationship between the variation of shear stress and slope instability process, a total of eleven monitoring balls are set in the slope (Figure 5). Of these, two for the upper colluvium, two for the lower colluvium and seven for the bedrock.
The shear stress in bedrock fluctuates strongly in the first 1 × 106 steps (Figure 13), which is in accordance with the variation characteristics in the velocity map. After 5 × 106 steps, the shear stress of each monitoring ball converges to a constant. The general features of the modelled shear stress field are: 1) the shear stress of the monitoring balls near the slope face is greater than that inside the slope; 2) stress concentration is most significant at the slope toe; and 3) shear stress is related to the slope height. From this, bedrock is generally stable because that the shear strength of rock mass is greater than the shear stress. The material at the slope toe is prone to instability, which is consistent with the simulation results (Figures 11, 12).
[image: Line graph showing shear stress in megapascals on the y-axis against step count on the x-axis, ranging up to ten million steps. Multiple colored lines represent monitoring balls numbered two, three, five, six, seven, eight, and eleven, each showing varying oscillation patterns stabilizing over time.]FIGURE 13 | History curves of monitoring balls in the bedrock.
The history shear stress in the colluvium fluctuates more strongly than that in the bedrock in the first 4 × 106 steps (Figure 14). It is because that instabilities mainly occur in the colluvium layer. Since the lower colluvium has completely slid from its original region, the rear portion of the history curve of the monitoring ball No. 9 is missing. The shear stress in the colluvium is smaller than that in the bedrock due to the differences in the contact models. The lowest shear stress (9.79 kPa) is observed in the lower colluvium because that the landslide deposits reaches a more stable equilibrium state. In general, the modelled shear stress field well explains the mechanism of slope instability process.
[image: Line graph depicting shear stress (kPa) over steps (x10^5) for four monitoring balls. Black, red, blue, and green lines represent No. 1, No. 4, No. 9, and No. 10, respectively, showing variable stress fluctuations across the step range.]FIGURE 14 | History curves of monitoring balls in the colluvium.
5 DISCUSSION
In this section, both LEM and FEM are used to make a result comparison with the DEM. Regarding the LEM, similar slip surfaces are calculated by varying four searching algorithms, i.e., Bishop, Janbu, Ordinary and Spencer (Figure 15). The slight differences in the FOS results are caused by the different pre-defined assumptions on the interslice forces. LEM derives FOS from macro-parameters (e.g., cohesion and internal friction angle), and the complex strain-stress conditions in a slope rock mass is not considered. For comparison, DEM derives FOS from the micro-view of the slope instability process by solving the particle displacement and contact force iteratively. Therefore, different results are obtained from the two methods.
[image: Four side-by-side diagrams illustrate slope stability analyses using different methods. Each diagram shows a slope with colluvium over bedrock and a marked slip surface. Labels indicate the methods: Bishop (FOS: 1.498), Janbu (FOS: 1.537), Ordinary (FOS: 1.548), and Spencer (FOS: 1.664).]FIGURE 15 | Slope stability assessment via LEM.
Further comparison is conducted by using the FEM and SRT. Figure 16 shows the simulated plastic penetration zone of the opencast slope, and the corresponding FOS is 1.63. Both FEM and DEM are numerical methods, and utilize SRT to find the limit failure state. However, since the difference in calculation rationale between continuum-based and discontinuum-based methods (e.g., particle assembly and continuum mesh), as well as the ambiguous relationship between macro- and micro-parameters, different results are also observed from the two methods.
[image: Simulation of a slope stability analysis with a factor of safety (FOS) of 1.63. The image shows a blue slope with a color gradient ranging from blue to red on the right side, indicating pressure magnitude (PEMAG) from zero to 0.10.]FIGURE 16 | Plastic penetration zone simulated via FEM.
Based on the visible distinction among the methods and results, an argument about “How to model more rationally to make the results more referable” is introduced here. In the authors’ opinion, three aspects should be fully considered, i.e., numerical method, slope numerical model and adequate parameter. For the first aspect, continuum-based or discontinuum-based numerical methods should be determined according to the rock mass structure of the studied slope. In other words, FEM-SRT with macro-parameters is suggested for cataclastic slope, while DEM-SRT is more recommended for fractured rock slope. In this study, the latter is adopted due to the slope mass is mainly composed of bedded rock mass. For the second aspect, a numerical slope model should be consistent with the actual geological conditions. In this study, colluvium deposits are simulated by an assembly of balls, and the linear contact model is assigned. The bedrock is simulated using the SRM modeling approach. Of these, the mechanical behavior of intact rock and discontinuities are represented by BPM and SJM models, respectively. It seems that slope materials are explicitly distinguished by assigning different models, which improve the accuracy of the simulation results. For the third aspect, parameters should refer to laboratory tests or remarkable studies. If conditions permit, comparison with in-situ monitoring devices can also verify the simulation results and further make the results more referable.
6 CONCLUSION
The strength reduction DFN-DEM modelling approach is used to investigate the stability of a bedded mining slope. The major findings of this study are summarized as follows. Using a displacement mutation criterion, the FOS of the mining slope is equal to 1.7. The possible sliding mass and slip surface are the lower colluvium with a steep angle and the lithologic interface, respectively. Regarding the underlying bedrock, it is still stable even though the SRF is set as 5.0. A shallow failure for the upper colluvium and a translational slide for the lower colluvium are observed in the simulated instability process. They are explained by a shear stress analysis. LEM and strength reduction FEM yield a lower FOS, but the searched slip surfaces are similar. This can be attributed to the differences of model parameters and media assumptions among the three methods. To make a simulation result more referable, numerical method, slope numerical model and adequate parameter should be well considered on the basis of the actual geological conditions of a rock slope.
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Landslides and geological disasters occur frequently in the mountainous areas of northwest China, seriously threatening people’s life and property of the region. In this study, we investigated the Lijie Beishan landslide as a typical case and combines the results of on-site geological surveys to conduct two-dimensional and three-dimensional numerical simulations of the landslide, evaluating its stability under self-weight, rainfall, and earthquake action. By analyzing the generalized shear strain, displacement, and stability coefficient of the landslide, it is determined that the stability of the landslide shows a decreasing trend under static, rainfall, and earthquake conditions. Landslides exhibit tension controlled failure modes under normal static and rainfall conditions, and translational failure modes under earthquake conditions. Compared with static and rainfall conditions, landslides have the largest volume and sliding distance under earthquake conditions. By combining the transfer coefficient method and the simplified Bishop method, a comparative analysis was conducted on the stability of the landslide. It was found that the stability coefficients under different working conditions were consistent with the simulation results, which verified the reliability of the simulation results. The research results of this paper will assist in clarifying the development mechanism of this type of landslides and provide valuable references for the stability evaluation of landslides in the northwest mountainous areas.
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1 INTRODUCTION
Landslide hazards are characterized by sudden occurrences and complex causes, resulting in extensive devastation and harm (Tian And Lan, 2023; Flentje And Chowdhury, 2018; Wang et al., 2018; Huang et al., 2024a). Landslides not only destroy land resources and engineering structures, but also lead to catastrophic mountain collapses (Luo et al., 2021; Shah et al., 2023; Huang et al., 2024b). It has been studied that the key triggering factors of landslide include rainfall (Bogaard and Greco, 2018; Conte et al., 2022) and seismic (Chen et al., 2021; Chang et al., 2023). Generally, the stability of slope may change under the action of the above factors, even leading to the occurrence of landslide.
Over the last decades, three main research approaches to address the slope stability and landslide failure mechanisms, i.e., analog, coefficient transfer, and numerical simulation, are well-accepted and extensively applied. Due to a limited number of tests and the adverse impact of subjective factors, the analog method, which manipulates geological or mathematical models to build the stability analysis, demonstrates an unmitigated flaw in accurate representation of actual strength parameters (Süzen and Kaya, 2012; Tsangaratos and Benardos, 2014; Lombardo and Mai, 2018; Huang et al., 2024c; Huang et al., 2024d). To further investigate the stability state of the slope under different rainfall conditions, Ye et al. (2018) built a 1:100 scale analog model that was verified with field survey results, and they identified three kinetic stages of sand slope, i.e., dry sand, wet sand, and water-sand flow. Besides, the limit equilibrium method is a well-established approach for engineering applications to analyze slope stability (Bi et al., 2012; Xiao, 2019; Zhang et al., 2021), and it can accurately calculate the stability of landslides under clear geological conditions. Gao et al. (Gao Y. et al., 2023)used the transfer coefficient method to evaluate the landslide stability. The calculated results showed the slope is unstable under rainstorm, which is agree with the numerical simulation results. In recent years, the high-performance computing techniques and the numerical simulation method allow for the visual observation of deformation and stress distribution in the potential sliding area of the slope through model analysis (Jiao et al., 2013; Zhou et al., 2019; Zhang et al., 2020), and they have been widely employed in slope stability analysis to investigate the failure mechanism of landslides. By constructing a well-designed numerical model and analyzing stress concentration within the landslide body, it is possible to infer the position of sliding surface and the degree of deformation, thus providing further verification of the stability status of landslide deposit. Therein, many advanced numerical techniques have been emerged to predict the run-out distance and the evolution of landslide, such as the smoothed particle hydrodynamics method (SPH) (Tayyebi et al., 2022; Gao L. et al., 2023), the material point method (MPM) (Troncone et al., 2023; Troncone et al., 2022), and the coupled Eulerian-Lagrangian method (CEL) (Wang et al., 2021), etc. To incorporate the influence of moisture content into landslide stability analysis, Liu and Su (2023) proposed a new simulated approach considering the influence of moisture content. An USDFLD subrountine of ABAQUS program was used to evaluate the landslide stability of Azhuoluo slope. The results indicated that this proposed double strength discounting method reflected major features of landslide instability. Meanwhile, Ma et al. (2021) proposed a novel approach for seismic landslide stability analysis and numerical simulation to investigate the effect of earthquakes on landslide stability. Therein, the explicit finite element method was utilized to study the stability and failure process of a 2D landslide model based on the ABAQUS platform. The simulated factor of safety and sliding distance of the landslide under earthquake condition indicated that dynamic-mechanical properties and the ground motion response were the critical influencing factor for seismic landslide stability.
However, when analyzing the stability of landslides, the research methods used were single, and the reliability of stability evaluation was low in the past. This paper will use two-dimensional and three-dimensional numerical simulations, transfer coefficient method, and simplified Bishop’s method (Xiao, 2019) to comprehensively analyze the stability of Lijie Beishan landslide under self-weight, rainfall, and earthquake, explore the failure mechanism of the landslide, and develop a quantitative evaluation plan for landslide stability. This study will contribute to improving the comprehensive evaluation method of landslide disasters in the mountainous areas of Northwest China, and provide theoretical references for the investigation of landslides induced by rainfall and earthquakes.
2 OVERVIEW OF THE LIJIE BEISHAN LANDSLIDES
2.1 Geological background
The research area located in Zhouqu county, Longnan city of China, is one of the regions in most severely affected by landslides. The most typical geological hazards in this area is the Lijie Beishan landslide, which is located in a heavily uplifted region of Neogene period and it’s six sliding behaviors were recorded between 1997 and 2018 (Liu et al., 2024). This study area is near the active fault zone of the Bailong river and has experienced frequent geological tectonic activities (see Figure 1). Field surveys demonstrate that the landslide area is located in the middle and upper parts of Beishan mountains, with a rear elevation of 2,547 m and a front elevation of 1742 m. It consists of a complex landslide system that includes a previous landslide that has been deformed, an ancient landslide body, an active landslide body currently exhibiting deformation and damage, and a potential landslide area showing clear signs of deformation prior to the complete penetration of the slip surface. The landslide can be divided into seven blocks based on its deformation characteristics, rock layer distribution, topographical conditions, and sliding direction (Figure 1). The top layer of the landslide primarily consists of the H1 area of the old landslide, which includes the range of the old landslide as well as the H1-1 and H1-2 landslides where clear deformation signs are apparent. However, complete sliding has not taken place. The secondary landslides primarily belong to the H2-H7 landslides, which are characterized by significant deformation and a larger area of influence. Each landslide exhibits distinct characteristics and intricate interrelationships. This landslide has an ongoing high probability of reactivation and seriously threatens the people’s lives and property in Beishan village and Lijie town in this region.
[image: (a) Map highlighting new, old, and ancient landslide areas in Lijie Beishan with distinct color coding. (b) Photo marking the scope of the Lijie Beishan landslide with a village in the foreground and an inset showing location details. (e) Geological map displaying lithology, faults, and hydrology in Beishangou catchment with a detailed legend.]FIGURE 1 | Location and field situation of Lijie Beishan landslide.
2.2 The triggering factors of landslide
The study area is situated in the Zhouqu-Wudu seismic subzone, which is known for its intense tectonic movements. The presence of steep mountains and well-developed river valleys in the region suggests a long-term uplift process and multiple tectonic events. More importantly, on the many accumulation zones generated by landslides in the fault region during their process of development (Qi et al., 2021), as shown in Figure 1. Also, occurrences of landslides in this area are primarily influenced by major faults, which have played a crucial role in the formation of ancient landslides. Consequently, fault activity leads to the slope’s rock and soil disintegration and the formation of minor folds and secondary faults. The intersection of various faulting and folding orientations further exacerbates the fragmentation of rock formations, which create favorable conditions for the occurrence of geological hazards.
The large amount of stockpils found in the field survey confirms that this landslide should be categorized as a deposit landslide, as shown in Figure 2. The upper layer of the slope comprises loose gravelly soil with exposed rock and soil, enabling the infiltration and flow of surface water. In contrast, the lower layer consists of fractured shale debris that is significantly influenced by fault structures and sliding disturbances. This lower layer is highly fragmented and possesses poor engineering properties, which makes it highly susceptible to sliding. The lithology of these formations plays a crucial role in the initiation and progression of landslides. The landslide has underwent long-term creep. Local villagers have extensively engaged in slope cutting for road construction, house building, and land reclamation, with unregulated discharge of domestic sewage. This continuous erosion causes an increasing collapse area on the gully edge, leading to loss of support and subsequent collapse of the upper block. As residential areas and structures continuously evolve, the locations prone to instability and sliding also change. Meanwhile, human impact on the ecological environment is an important factor in inducing landslides along with engineering construction. Inappropriate land use is another reason for the increased impact of landslide disasters (Qi et al., 2021). The deformation traces of landslides investigated in recent years are shown in Figure 2.
[image: A series of six images showing various states of soil and geological conditions. (a) and (b) display rocky terrain with sparse vegetation. (c) shows a highly fragmented state of soil. (d) highlights a steep soil layer. (e) presents a loose area of soil. (f) exhibits a consolidated soil area with visible rock formations.]FIGURE 2 | Field investigation photos of Lijie Beishan landslide (A) Cracks at the rear edge of H1-1 landslide; (B) Cracks of H1-2 landslide; (C) Cracks in the forest on the east side of the H2 landslide; (D) The leading edge of H6 landslide; (E) The H4 landslide surface has slipped; (F) The rear wall of H5 landslide.
3 NUMERICAL ANALYSIS OF LANDSLIDE STABILITY
This paper uses two-dimensional (2D) and three-dimensional (3D) numerical simulation methods to study the stability of landslides under static conditions, rainfall conditions, and seismic conditions, as well as the displacement changes after sliding. The two-dimensional simulation mainly analyzed the main sliding profile 1-1, while the three-dimensional simulation analyzed the overall failure mode of the landslide.
3.1 Principles of numerical simulation calculation
This study uses the finite element software ABAQUS for computational analysis. The model adopts the Hardin-Drnevich backbone loading curve model, which is able to predict the relationship between the dynamic modulus and the damping ratio of soil with dynamic strain. The dynamic shear modulus and the damping ratio of soil can be expressed as functions of dynamic shear strain, as the following Equations 1, 2:
[image: Equation showing the shear modulus ratio: \( \frac{G}{G_{\text{max}}} = \frac{1}{1+\frac{g}{g_{\text{ref}}}} \).]
[image: Equation showing the ratio \( \frac{G}{G_{\text{max}}} = \frac{\left(\frac{y}{\gamma_{\text{ref}}}\right)}{\left(1+\frac{y}{\gamma_{\text{ref}}}\right)} \), labeled as equation (2).]
where [image: Please upload the image or provide a URL so I can help create the alt text for it.] and [image: The mathematical expression "G" with a subscript "max."] are the dynamic and initial shear moduli of the soil, [image: It seems there's an error in the input. Please upload the image or provide a valid URL, and I will help create the alt text for it.] and [image: The image shows the mathematical expression "D" with a subscript "max" in italic font.] are the damping ratio and its maximum value of the soil, [image: Please upload an image for me to provide the alternate text. You can click on the upload button to share the image file.] is the dynamic shear strain of the soil, and [image: Please upload the image or provide a URL to it. You can also add a caption for additional context.] is the reference shear strain ([image: Formula showing gamma sub ref equals tau sub max divided by G sub max.]). Generally, [image: Please upload the image or provide a URL so I can give you an appropriate alt text.] is taken in a generalized shear strain form, which relates the shear modulus and the damping ratio of the soil to the generalized shear strain during dynamic processes. Based on viscoelastic theory, a viscoelastic constitutive model is constructed by the parallel combination of damping and spring elements (Zhu et al., 2021), as the following Equation 3:
[image: Equation shows two expressions for stress components. Sigma ii equals K e plus two G e ii plus eta K e dot plus two eta G e dot ii. Sigma ij equals two G e ij plus two eta e dot ij, where i, j range from one to three with i not equal to j in equation three.]
where K and G are the bulk and shear moduli of the soil, respectively. [image: The formula shows η subscript G equals G D divided by π f.], [image: The equation shows η subscript K equals GD divided by πf.], [image: The Greek letter eta with a subscript "G".] and [image: The image shows the Greek letter eta (η) followed by the subscript "K."] are the dynamic viscosity coefficients during shear and volumetric deformations, respectively, f is the natural frequency of the structure. A program for calculating the dynamic constitutive relationship of the loess is developed using the Visual Fortran language, and the model is imported into the ABAQUS finite element calculation software using the VUMAT subroutine interface.
To validate the applicability of this model, a four-node reduced-integration element is employed to calculate the shear stress-strain relationship of the element, which is then compared with the experimental test data of the loess and the crushed rock soil of the Beishan landslide body. The top horizontal degree of freedom of the element is constrained, and a sinusoidal acceleration time history curve (peak acceleration of 0.04 g) is applied horizontally at the bottom of the element. Note that the above parameters were determined by the authors after extensive experiments based on the trial-error method. The loess has a maximum shear stiffness [image: "G" with a subscript "max" in italic font.] = 29.2 MPa, a maximum damping ratio [image: The image shows the mathematical expression "D subscript max," indicating the maximum value of a variable D.] = 0.159, and a reference shear strain [image: It seems there was an issue with the image upload or link. Please try uploading the image again or provide the URL. Make sure to add a caption if you’d like additional context included.] = 0.03. It can be seen that the dynamic constitutive model of the loess established based on the Hardin-Drnevich backbone loading curve can effectively simulate the stress-strain relationship with hysteresis loop shape of the soil subjected to cyclic loads (cyclic loading-unloading process), as shown in Figure 3.
[image: Comparison of theoretical and experimental results with two graphs. Graph (a) shows theoretical prediction with red and black lines depicting different conditions of deformation. Graph (b) illustrates experimental results with black lines for landslide debris soil and loess under axial strain versus differential stress conditions.]FIGURE 3 | Comparison between theoretical prediction and experimental data of the dynamic stress-strain relationship of the loess. (A) Theoretical prediction (B) Experimental results.
The strength reduction method determines the factor of safety (Fs) by reducing the shear strength parameters, which can be expressed as the following Equation 4:
[image: Formula with two expressions defining angle \(\phi_f\). First expression: \(\phi_f = \frac{c}{SRF} \cdotp \phi'\). Second expression: \(\phi_f = \arctan \left(\frac{\tan \phi}{SRF}\right)\). Equation labeled as (4).]
where [image: Please upload the image you would like me to provide alternate text for. If you have trouble uploading, you can also provide a URL to the image or describe it to me.] and [image: Please upload the image or provide a URL for me to create the alt text.] are the original cohesion and internal friction angle of the slope soil, respectively, [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: Greek letter phi with a subscript "f".] are the cohesion and internal friction angle of the slope soil after reduction, respectively, and SRF is the strength reduction factor.
The reduction coefficient for a sudden increase in slope displacement (the inflection point of the relationship curve between the reduction coefficient and the maximum displacement of the slope) is determined as the Fs, and the corresponding maximum displacement is regarded as the sliding failure displacement of landslide instability.
The comprehensive trial calculation is based on the qualitative evaluation of deformation characteristics of the landslide and the stability state of the current situation. Considering the change in physical and mechanical properties of the rock and soil in the landslide area, the inversion formula can be expressed as the following Equations 5, 6:
[image: Equation showing a formula: \( e = \frac{F_{f} \sum W_{i} \sin \alpha_{i} - \tan f \sum W_{i} \cos \alpha_{i}}{L} \), labeled as equation (5).]
[image: Equation for \( \varphi \) is shown as: \( \varphi = \text{arctg} \left( \frac{F_z \sum W_i \sin \theta_i - cL}{\sum W_i \sin \theta_i} \right) \). This is labeled as equation (6).]
where [image: It seems like there is no image visible in your message. Please try uploading the image again or provide a URL. If you have any specific context or details about the image, feel free to add that as well.] is the internal friction angle of the soil in sliding zone (°), C is cohesion of the soil in sliding zone (kPa), Fs is the factor of safety given according to the calculation condition, L is the total length of the sliding zone ([image: Please upload the image you want described, and I will provide the alt text for it.]).
The height of the slope is 1,060 m with a landslide ratio of 1:2. The calculation parameters of the landslide soil are: Elastic modulus E = 100 MPa, Poisson’s ratio [image: Please upload the image or provide a URL for me to create the alt text.] = 0.25, and the influence of dilation angle is not considered. The static load step Gravity (static, General) is defined, and the gravitational acceleration [image: Please upload the image or provide a URL for the image you'd like described. Then, I can help create the alt text for it.] = 9.81 [image: Unit of acceleration, meters per second squared, abbreviated as "m/s²".] is applied.
The simulations are conducted based on normal static, rainfall, and seismic conditions. The static condition only considers the self-weight, while the rainfall condition considers the influence of self-weight, strength weakening, and saturated capacity. Since the soil is nearly saturated after rainwater infiltration, the matric suction and the shear strength of the soil decreases. Therefore, the soil strength parameters are reduced by 5% based on empirical experience, and the rainfall conditions are calculated and analyzed. The seismic condition considers the influence of gravity and seismic acceleration, where the seismic waves are artificial synthetic seismic waves. The bedrock peak acceleration with a 100-year exceedance probability of 2% is used.
3.2 Numerical models and operating conditions
3.2.1 2D numerical simulation
First, the rainfall and seismic conditions are given. 1) Under heavy rainfall condition, the superficial cover layer of the slope is calculated based on the saturated unit weight (the cover layer is fully saturated). Since the soil is nearly saturated after rainfall infiltration, the matric suction decreases, leading to a reduction in shear strength (Cheng et al., 2024). Based on the strength reduction method (Liu and Su, 2023) and previous research experience (Siahkouhi et al., 2024; Mirnyy and Sidorov, 2016; Lizhong et al., 2024), the soil strength parameters are reduced by 5% for calculation and analysis (Sarkar and Chakraborty, 2021). The relative mechanical parameters obtained from previous field investigations and laboratory tests are summarized in Table 1. Note that the above parameters are obtained and calculated in strict accordance with the relevant experiment standards (https://www.astm.org/). (2) Under seismic condition, artificial synthetic seismic waves are used. The peak ground acceleration of rock with a 2% exceedance probability in a 100-year return period is used to obtain the dynamic amplification factor [image: Greek letter beta followed by the function notation \( T \) in parentheses.] as the following Equation 7:
[image: The image shows a piecewise function for β(T), given by: β(T) equals 1 for T less than or equal to T₀; 1 plus (βₘ minus 1) times (T minus T₀) divided by (T₁ minus T₀) for T between T₀ and T₁; βₘ for T between T₁ and Tₛ; βₘ times (Tₛ over T) to the power of c for T between Tₛ and 6.0.]
where [image: It seems there is a confusion or error with the image reference you provided. Please upload the image file directly or provide a URL so I can help create the alt text.] is the response spectrum period, [image: Lowercase Greek letter beta followed by a subscript lowercase letter m.] is the maximum value of the response spectrum, [image: It seems like there might be a mistake or an incorrect link, as I cannot view the image. Please try uploading the image file directly or provide a working URL.] is the characteristic period of the response spectrum, C is the response spectrum attenuation coefficient, and the maximum value of the seismic influence coefficient is [image: It seems there might have been an error in uploading the image. Please try uploading it again, and I'll be happy to help with the alt text!] = 0.92. The characteristic parameters are listed in Table 2.
TABLE 1 | Mechanical parameters of the soil in landslide zone.
[image: Table comparing real and experimental values for loess and landslide debris soil under dry and saturated conditions. Indexes include gamma (γ) in kilonewtons per cubic meter, cohesion (c) in kilopascals, and angle (φ) in degrees. Loess shows γ dry as 17.1 and saturated 19.5 experimentally; c dry is 33 real and 17.1 experimental. Landslide debris soil indicates γ dry as 15.6 real and 14.9 experimental, c dry as 28 real and 8.9 experimental. Bedrock is noted as an elastomer.]TABLE 2 | Design response spectrum for site bedrock.
[image: Table with headings: Exceeding probability, βₘ, T₀, T₁, T₉, C. The row values are 100, 2%, 2.5, 0.04, 0.1, 0.60, 1.0, respectively.]Thereafter, the above parameters are used to study the deformation stability and failure process of the landslide under normal static, rainfall, and seismic conditions. A 2D plane strain method is adopted to evaluate and analyze the landslide. The landslide body adopts reduced integration elements (C3D8R), with a total of 7,712 nodes and 3,722 elements, as shown in Figure 4. The seismic waves are input from the bottom and sides of the landslide model in both horizontal and vertical directions, and the sides are set as non-reflective boundaries. The failure mode and process of the landslide are analyzed using a 2D finite element method.
[image: Diagram with three parts: (a) a cross-section with a blue slope and red line; (b) a similar section, displaying a grid pattern; (c) a detailed geological map showing stratifications like Holocene landslide bodies, limestone, and the fault fracture zone. An anti-slide pile is marked, highlighting geological features for structural analysis.]FIGURE 4 | Landslide geological model, material partition, and meshing, (A) Stratigraphic division: 1-1’ profile of the landslide, (B) Meshing: 1-1’ profile of the landslide, (C)The geological model: 1-1’ profile of H1.
3.2.2 3D numerical simulation
This section aims to analyze the basic patterns of deformation, stability, and failure process of the landslide body under normal static, rainfall, and seismic conditions. The landslide is analyzed as a 2D plane strain problem, and the reduced integration elements (C3D8R and C3D4) are employed for simulations of the landslide body. There are a total of 283,725 nodes and 272,510 elements, as shown in Figure 5. Under seismic condition, seismic waves are input from the bottom of the landslide model in both the horizontal and vertical directions with non-reflecting boundary conditions on the sides. The stability, failure mode, and failure process of the landslide are analyzed using a 3D finite element method. The calculation follows the sign conventions in continuum mechanics, where stress is positive in compression and negative in tension. Displacement is given as a composite vector displacement (which is always positive, ignoring lateral and vertical components). The sliding surface of the landslide is determined based on the generalized shear strain (localized strain region).
[image: Three-dimensional model showing a terrain with a large, red polygon representing gravelly soil. The model includes a marked area for foundation stone and an indicated measurement of one hundred meters in length.]FIGURE 5 | Meshing of the 3D landslide.
3.3 Results and analysis of numerical simulation
3.3.1 2D numerical simulation
3.3.1.1 Static condition
The stability analysis results of the landslide are presented in the form of generalized shear strain and displacement nephograms. The generalized shear strain reveals the potential sliding surface of the landslide, while the displacement determines the sliding distance of the landslide. Figures 6A, B shows the results obtained through strength reduction analysis when the landslide is in a critical sliding state. Figures 6C, D presents the displacement results for determining the Fs of the landslide (after sliding failure). Figure 7 depicts the displacement nephograms during the landslide failure process. Based on the field monitoring results, it is determined that the overall H1-1 main profile is quasi-stable under normal static condition with signs of localized deformation. Assuming a Fs of 1.03, the strength parameters of each soil layer are back-estimated and rounded to integers, as shown in Table 3.
[image: Four diagrams illustrate landslide analysis. (a) Generalized shear strain in a critical state shows strain distribution on a slope. (b) Displacement in a critical state shows movement vectors. (c) Generalized shear strain post-failure highlights failure patterns. (d) Displacement post-failure indicates movement changes. Each includes a color-coded legend.]FIGURE 6 | Results for the landslide in a critical sliding state and after landslide sliding failure (Fs = 1.03). (A) Generalized shear strain for the landslide in a critical sliding state (B) Displacement for the landslide in a critical sliding state (C) Generalized shear strain after landslide sliding failure (Fs = 1.03) (D) Displacement after landslide sliding failure (Fs = 1.03).
[image: Three simulations showing fluid flow over a slope at different times: (a) 25 seconds, (b) 40 seconds, and (c) 60 seconds. Each simulation includes a color-coded velocity magnitude scale on the right, ranging from blue (lowest) to red (highest). Flow patterns change over time, with arrows indicating direction.]FIGURE 7 | Displacement during the landslide failure process. (A) 25 s (B) 40 s (C) 60 s.
TABLE 3 | Inversion value of strength parameters of landslide soil.
[image: Table comparing experimental and inversion values of different soil types and bedrock. For Loess, cohesion (c) is 17.1 kPa experimentally and 17.0 kPa in inversion; the friction angle (φ) is 22.8° and 23.4° respectively. Completely weathered limestone shows only inversion values with 3.5 kPa and 28.0°. Stone has inversion values of 10.0 kPa and 31.2°. Bedrock is labeled elastomer without specific values.]The stability analysis results of the landslide are presented in the form of generalized shear strain and displacement nephograms. The generalized shear strain indicates the potential sliding surface of the landslide, while the displacement contributes to determining the sliding distance of the landslide. The displacements and velocities during the failure process are extracted to plot the displacement and velocity transformation curves, as shown in Figure 8. The results indicate that the sliding failure initially occurs at the rear edge of the landslide. After the sliding failure at the rear edge, the front edge of the landslide also starts to slide. Under normal static condition, the maximum deformation of the landslide body is 0.78 m when the landslide is in a critical sliding state, while that is 87 m when the landslide is in an unstable sliding state. Therefore, a traction-type landslide is identified for normal static condition, where the sliding surface is predominantly along the residual layer of weathered gray sandstone.
[image: Two graphs are presented. The first graph (a) plots displacement (meters) against time (seconds) and shows a steady increase with labeled points for "Critical State" and "Sliding Failure." The second graph (b) plots velocity (meters per second) against time (seconds), with peaks indicating "Critical State" and "Sliding Failure." Both graphs illustrate the relationship between mechanical states and their critical transitions over time.]FIGURE 8 | The curve of horizontal displacement (A) and variation of horizontal velocity (B) of the sliding body during the landslide process.
3.3.1.2 Rainfall condition
Figures 9A, B shows the results obtained through strength reduction analysis when the landslide is in a critical sliding state. Figures 9C, D shows the displacement results for determining the Fs of the landslide (i.e., sliding failure occurs). The results indicate that the final Fs of the landslide under rainfall condition considering strength reduction is 0.95.
[image: Four diagrams show landslide analysis. (a) Displays generalized shear strain in a critical state, with colored contours indicating intensity. (b) Shows displacement in a critical state, highlighting movement areas. (c) Illustrates generalized shear strain after failure, with significant changes. (d) Displays displacement post-failure, indicating noticeable shifts. Each includes a color-coded scale for reference.]FIGURE 9 | Results for the landslide in a critical sliding state and after landslide sliding failure (Fs = 0.95). (A) Generalized shear strain for the landslide in a critical sliding state (B) Displacement for the landslide in a critical sliding state (C) Generalized shear strain after landslide sliding failure (Fs = 0.95) (D) Displacement after landslide sliding failure (Fs = 0.95).
Figure 10 shows the displacement nephograms during the landslide failure process. The displacements and velocities during the failure process are extracted to plot the displacement and velocity transformation curves, as displayed in Figure 11. The results indicate that the sliding failure initially occurs at the rear edge of the landslide. After the sliding failure at the rear edge, the front edge of the landslide also starts to slide. Under rainfall condition, the maximum deformation of the landslide body is 0.33 m when the landslide is in a critical sliding state, while that is 1,687 m when the landslide is in an unstable sliding state. Therefore, the failure mode of the landslide under rainfall condition is characterized as a tension-controlled type, where the sliding surface is mainly along the weathered residual layer of the tuffaceous limestone.
[image: Three panels show a sliding object down a slope over time. Panel (a) at 25 seconds shows red and yellow colors indicating high magnitude. Panel (b) at 40 seconds shows a shift to green and blue. Panel (c) at 60 seconds depicts dominance of blue, indicating decreased magnitude. Each panel includes a color scale for magnitude.]FIGURE 10 | Displacement during the landslide failure process. (A) 25 s (B) 40 s (C) 60 s.
[image: Two graphs depict sliding failure and critical state over time. The top graph shows displacement in meters versus time in seconds, indicating a sudden increase near 40 seconds. The bottom graph shows velocity in meters per second versus time, also with a sharp rise around the same time. Both graphs are annotated with arrows marking the points of sliding failure and critical state.]FIGURE 11 | The curve of horizontal displacement (A) and variation of horizontal velocity (B) of the sliding body during the landslide process.
3.3.1.3 Seismic condition
Figures 12A, B illustrates the results obtained through strength reduction analysis when the landslide is in a critical sliding state. Figures 12C, D shows the displacement results for determining the Fs of the landslide (i.e., sliding failure occurs). The results indicate that the final Fs of the landslide under seismic condition considering strength reduction is 0.93.
[image: Four panels showing landslide data with color-coded gradients.   (a) Shows generalized shear strain for a critical sliding state.  (b) Illustrates displacement in a critical sliding state.   (c) Depicts generalized shear strain after sliding failure with \( F_s = 0.93 \).   (d) Shows displacement after sliding failure with \( F_s = 0.93 \).   Each panel includes a color scale for values.]FIGURE 12 | Results for the landslide in a critical sliding state and after landslide sliding failure (Fs = 0.93). (A) Generalized shear strain for the landslide in a critical sliding state (B) Displacement for the landslide in a critical sliding state (C) Generalized shear strain after landslide sliding failure (Fs = 0.93) (D) Displacement after landslide sliding failure (Fs = 0.93).
Figure 13 shows the displacement nephograms during the landslide failure process under seismic condition. The displacements and velocities during the failure process are extracted to plot the displacement and velocity transformation curves, as depicted in Figure 14. The maximum deformation of the landslide body is 7.64 m when the landslide is in a critical sliding state, while that is 1764 m when the landslide is in an unstable sliding state. Therefore, the failure mode of the landslide under seismic condition is characterized as a translational type, with multiple sliding surfaces. It primarily slides along the weathered residual layer of the tuffaceous limestone and the bottom of the gravelly soil layer during the early and late stages of the earthquake. Comparison with static condition and rainfall condition shows that the maximum deformation of landslide body when the landslide is in critical sliding state is the largest, then rainfall condition and static condition in that order. However, the above law does not apply in the case of a critical sliding state.
[image: Three simulation images show fluid flow dynamics over time with color-coded velocity magnitudes. At 25 seconds, flow is primarily green with some blue. At 40 seconds, flow increases, showing more yellow and red. By 60 seconds, flow is predominantly red indicating high velocity. Each image has a legend with magnitude values.]FIGURE 13 | Displacement during the landslide failure process. (A) 25 s (B) 40 s (C) 60 s.
[image: Two graphs depicting displacement and velocity over time, labeled (a) and (b). Graph (a) shows displacement in meters with annotations for "Sliding Failure" and "Critical State." Graph (b) illustrates velocity in meters per second, similarly marked for "Sliding Failure" and "Critical State." Time in seconds is on the horizontal axis for both graphs.]FIGURE 14 | The curve of horizontal displacement (A) and variation of horizontal velocity (B) of the sliding body during the landslide process.
Following this approach, the calculated extreme values of stability for various slope profiles can be obtained under static, rainfall, and seismic conditions, as shown in Table 4. The critical sliding state (CS) and unstable sliding state (SF) are measured using the maximum deformation (m) and maximum sliding distance (m), respectively.
TABLE 4 | Extreme values of slope stability.
[image: Table showcasing various datasets labeled \(H_{1-1}\) to \(H_7\), displaying columns for \(F_s\), Condition (CS, SF), and Values. Each dataset includes three rows with different \(F_s\) values and associated conditions. Data is organized in two main sections, each with corresponding values under CS and SF conditions.]3.3.2 3D numerical simulation
The final stability analysis results of the landslide under different conditions are shown in Figures 15A–D–17A–D–––D–D, which are presented in the form of generalized shear strain and displacement nephograms. The results indicate that the determined Fs values of the landslide considering strength reduction under static, rainfall, and seismic conditions are 1.04, 0.98, and 0.96, respectively, showing a decreasing trend. As for the failure process, the displacement results of the landslide under different conditions are illustrated in Figures 15E–H–17E–H–––H–H. Under normal static condition, the maximum deformation of the landslide body is 36.1 m when the landslide is in a critical sliding state, while that is 1,412 m when the landslide is in an unstable sliding state. Under rainfall condition, the maximum deformation is 53.94 m in the critical sliding state and 1,658 m in the unstable sliding state. Under seismic condition, the maximum deformation is 38.26 m in the critical sliding state and 2081 m in the unstable sliding state. Comparison with static condition and rainfall condition shows that the maximum deformation of landslide body when the landslide is in critical sliding state is the largest, then rainfall condition and static condition in that order. It is interesting that the max deformation of greatest under the rainfall condition, followed by seismic condition and normal static condition ini that order. However, the above phenomenon is also confirmed by 2D numerical simulation results, as shown in section 3.3.1. A trustworthy explanation is that rainfall conditions change the strength parameters of the geotechnical body of the slope, making the slope more susceptible to deformation and sliding under rainwater infiltration.
[image: Sequential images (a) to (h) depict a series of colored contour plots on a 3D model, with each plot showing stress or displacement fields under different conditions. Each image includes a color scale for reference and inset enlargements highlighting specific regions with varying color intensities. The changes in color from blue to red indicate variations in the measured parameter, demonstrating stress or displacement distribution across the model.]FIGURE 15 | Generalized shear strain and displacement in the critical sliding state and the sliding failure state under static condition (the Fs is 1.04), and displacement during the landslide failure process under static condition. (A) is the generalized shear strain in the critical sliding state under static condition. (B) is the displacement in the critical sliding state under static condition. (C) is the generalized shear strain in the sliding failure state under static condition. (D) is the displacement in the sliding failure state under static condition. (E–H) is the displacement during the landslide failure process under static condition of 10 s, 20 s, 30 s and 50 s respectively.
[image: Diagram showing eight finite element analysis models of a complex geometrical structure with stress distribution. Each model, labeled (a) to (h), displays color-coded stress areas with a range from blue (low stress) to red (high stress). Insets highlight specific stress regions for detailed visualization.]FIGURE 16 | Generalized shear strain and displacement in the critical sliding state and the sliding failure state under rainfall condition (the Fs is 0.98), and displacement during the landslide failure process under rainfall condition (A) is the generalized shear strain in the critical sliding state under rainfall condition. (B) is the displacement in the critical sliding state under rainfall condition. (C) is the generalized shear strain in the sliding failure state under rainfall condition. (D) is the displacement in the sliding failure state under rainfall condition. (E–H) is the displacement during the landslide failure process under rainfall condition of 10 s, 20 s, 30 s, and 50 s respectively.
[image: Series of contour maps showcasing different stress distribution patterns on a 3D geological model. Each image (a-h) highlights varying stress concentrations with colors ranging from blue to red, indicating low to high stress. Insets provide zoomed-in views for detailed examination. Color legend is consistent across all images.]FIGURE 17 | Generalized shear strain and displacement in the critical sliding state and the sliding failure state under seismic condition (the Fs is 0.96), and displacement during the landslide failure process under seismic condition (A) is the generalized shear strain in the critical sliding state under seismic condition. (B) is the displacement in the critical sliding state under seismic condition. (C) is the generalized shear strain in the sliding failure state under seismic condition. (D) is the displacement in the sliding failure state under seismic condition. (E–H) are the displacement during the landslide failure process under seismic condition of 10 s, 20 s, 30 s, and 50 s respectively.
4 DISCUSSION
4.1 Limit equilibrium analysis of Lijie Beishan landslides
4.1.1 Calculation methods and operating conditions
As two significant and easily-applied approaches for slop stability analysis (Xiao, 2019; Zhang et al., 2017), the transfer coefficient method and the simplified Bishop method are used to quantitatively evaluate the stability of each model under static, rainfall, and earthquake conditions. The possible locations of shear and the most hazardous sliding surfaces for H1, H2, H3, H4, and H5 have been identified based on the principles of cross-section calculation and block division, as well as the findings from field surveys. However, it is not possible to determine the potential locations of shear and backward sliding for H6 and H7. Therefore, the calculated profiles are based on the automatic search results of shear location and backward position (Jia et al., 2024; Shi et al., 2023). There is no overlap between the different landslide blocks, and the cross-sections are divided by considering factors such as the terrain, block positions, and division principles, as demonstrated in Figure 18.
[image: Eight diagrams labeled (a) to (h) show different stages of a terrain or landscape model. Each diagram has alternating yellow and pink striped layers, with variations in shape and arrangement. Diagrams (a) to (f) depict progressively elongated, curved shapes, while (g) is a rectangular block with two contrasting rectangles. Diagram (h) shows a long, narrow form.]FIGURE 18 | Cross-sections for quantitative evaluation of landslide stability. (A) Sliding surface position of H1-1 profile. (B) The sliding surface position of H1-2 profile. (C) Position of sliding surface of H2 profile. (D) The sliding surface position of H3 profile. (E) The sliding surface position of H4 profile. (F) Sliding surface position of H5 profile. (G) Sliding surface position of H6 profile. (H) The sliding surface position of H7 profile.
The stability of colluvial landslides with broken sliding surfaces is evaluated by the transfer coefficient method. This method is applied to calculations of H1, H2, H3, H4, H5, and H7 , which is expressed as the following Equations 8–12:
[image: The image shows a mathematical equation labeled (8). It represents a complex fraction where the numerator is the sum from i equals one to n of the expression containing variables W, t, a, A, f, c, L, and R, multiplied by the product from j equals one to I of y, plus R sub n. The denominator is the sum of a similar expression with variables W, a, A, T, and R, plus T sub n.]
where K is the stability factor, Wi is the weight of the i-block (kN/m), ci is the cohesion of the i-block (kPa), φi is the angle of shearing resistance of the i-block (°), Li is the length of the i-block (m), A is the earthquake acceleration, rv is the ratio of pore water pressure, which is not calculated in this case because the local water content of the sliding body has not yet formed a uniform water level.
[image: Equation showing \( R_t = (W_n (1 - r_n) \cos an - A \sin a_n) \tan \phi_n + C_r L_n \).]
[image: Equation for tension is shown: \( T_x = (W (\sin \alpha_t + A \cos \alpha_t) + T_{Dn}) + T_{Dm} \). The equation is labeled as number 10.]
[image: Mathematical expression showing the product of terms from j equals 1 to t, denoted by the product symbol. The equation is Y indexed by t plus 1 equals the product of Y sub n1, Y sub n2, through Y sub n plus 1. Equation number 11.]
where yi is the transfer coefficient (j =1) when the residual sliding force of the i-block is transferred to the (i+1)-block:
[image: The equation shows \(y_i = \cos(a_i - a_{i+1}) - \sin(a_i - \cos x_{i+1}) \tan f_i\), labeled as equation twelve.]
The simplified Bishop method that evaluates the stability of the colluvial landslide with a single plane or arc sliding surface is applied to the calculation of H6, as the following Equations 13, 14:
[image: K equals the sum of \((Cb + W \tan i) \frac{1}{m_b}\) divided by the sum of \(W \sin \theta\). Equation labeled as thirteen.]
[image: Equation for \( m_{\theta} \) equals cosine of theta plus the fraction sine of theta times tangent of j over K, labeled equation fourteen.]
where K is the stability factor of the residual sliding force calculation of the whole sliding body, b is the length of the single block (m), W is the weight of the single block (KN), θ is the angle between the gravity line of the block and the radius of the midpoint passing through the bottom of the block, C and φ are the cohesion and internal friction angle, respectively, Since no groundwater is identified in the slope area, the groundwater hydrodynamic pressure is not considered in the calculation Pwi.
Calculation conditions: 1) Self-weight, 2) Self-weight + rainfall, and 3) Self-weight + earthquake. Rainfall intensity: the rainfall intensity recurrence period is 100 years. Earthquake load standard:the seismic fortification intensity in Zhouqu County is 8°, the design basic seismic acceleration is 0.20 g, and the design seismic group is the third group. Furthermore, After analyzing the test results of the current samples, parameters of samples collected from neighboring sites, and combining them with the back-calculation of the physical and mechanical parameters of the soil under the current conditions, the calculated values are used as the comprehensive values for the soil investigation of this study, as shown in Table 5.
TABLE 5 | Calculated values of the soil in landslide sliding zone.
[image: Table displaying soil characteristics under different conditions. It includes soil types: Aeolian loess, Gravel silty soil, Clay-containing gravel soil, and Residual slope gravel soil. Indices include gravity, cohesion, and angle of shearing resistance, with dry and saturated values. Applicability for each soil type is specified using different codes like H₆, H₁, and others.]4.1.2 Results of stability analysis
The stability factor value used to determine the stability state of landslide are the most crucial factor that prompted several authors to use it to classify the slope stability and evaluate the landslide disasters (Kamal et al., 2023; Huang et al., 2018). The stability state of landslides can be classified into four categories based on the stability factor. K < 1.00, 1.0 ≤ K < 1.05, 1.05 ≤ K < 1.15, and K ≥ 1.15 indicates that the slope is unstable, slightly stable, essentially stable, and stable, respectively. Based on the back-calculated soil parameters, typical profiles corresponding to each landslide body are selected for stability calculations. The results are listed in Table 6.
TABLE 6 | Stability results of the landslide.
[image: Table comparing stability factors and conditions across different types and calculation conditions. Types H1-1 through H7 are listed. Stability factors vary from 0.88 to 1.077, with conditions labeled as unstable, understable, or quasi-stable.]4.2 The difference between limit equilibrium method and numerical simulation method
The safety factor calculation results of the transfer coefficient method and numerical simulation method both show that the landslide is in an unstable state. The comparison of slope safety factors under the three working conditions is shown in Figure 19. From Figure 19, it can be seen that the safety factor calculation results of the two methods are basically consistent, with a calculation error of less than 0.5. The transfer coefficient method is used to calculate the sliding surface given by the on-site investigation results, while the finite element method is used to calculate the landslide terrain and material strength. The calculation principles of the two methods are different, which leads to subtle differences in the division of sliding surfaces and the calculation results of safety factors. In conclusion, the landslide exhibits a tension-controlled failure mode under normal static and rainfall conditions, while it exhibits a translational failure mode under seismic condition. The above results are in good agreement with the findings of the field survey. As shown in Figure 19, there are visible tensile cracks at the trailing edge of the landslide. Also, it is interesting that the shaking table tests carried by Feng et al. (2024). Indicated that the slope exhibits less stability and many cracks after rainfall, and the development of cracks and the potential sliding surfaces of landslide remained consistent under the seismic condition. It exhibits a translational failure mode controlled by the seismic condition. More importantly, the Fs is the lowest under seismic condition, indicating a higher susceptibility to instability during seismic. Under seismic condition, the landslide has two sliding surfaces along the interface between the loess and the weathered residual layer and the interface between the gravelly soil layer and the bedrock. The landslide has the largest volume and the largest sliding distance under seismic condition compared to the other two conditions. The above findings are in good agreement with the findings of Yunus et al. (2023)’s study, which built the scaling relationship to determine the volume of landslide based on pre- and post- event LiDAR elevation models for 2018 Hokkaido-lburi seimic epicentral region. Similar results have been demonstrated by Valagussa et al. (2021) and Wang et al. (2023). The calculation results of the two methods in this article show high consistency, and the above two methods show that the landslide is in an unstable state.
[image: Three line graphs labeled (a) Calculation conditions 1, (b) Calculation conditions 2, and (c) Calculation conditions 3 depict the relationship between type and two methods: coefficient transfer and numerical simulation. Each graph features data points showing performance across various types, with different markers and colors for the methods. Graph (a) uses black squares and red circles, (b) blue triangles and green diamonds, and (c) pink diamonds and orange triangles. Horizontal and vertical axes represent types and performance metrics, respectively.]FIGURE 19 | Comparison of safety factor calculation results. (A) Calculation conditions 1 (B) Calculation conditions 2 (C) Calculation conditions 3.
4.3 Comprehensive evaluation of stability
The investigation of the landslide indicates that it has undergone years of creep deformation. The local rainstorm and domestic water have a great impact on the landslide. The interaction between continuous precipitation and drainage erosion and human engineering activities is intensifying the deformation of the landslide. The current trend is in an unstable state. Under extreme climatic conditions such as rainstorm, the landslide is in an unstable state as a whole, which may lead to overall shear slip. Meanwhile, the results obtained from the coefficient transfer method and numerical modeling are also in good accordance with the findings of field observation. These two approaches employed in combination with traditional tools and filed investigations, as well as the relationship among the findings from the above methods, are helpful for probing the stability state of the slope under the rainfall and seismic conditions (Xu et al., 2018). Hence, Comprehensive evaluation of slope stability under complex conditions can be attempted by considering the advantages of multiple methods and combining them to form a comprehensive evaluation method to reveal the stability of landslides and predict the intensity of landslide hazards.
5 CONCLUSION
In this study, we presented a comprehensive evaluation of Lijie Beishan landslide based on slope stability analysis and numerical simulation under static, rainfall, and seismic conditions. 2D and 3D numerical modelling were used to reproduce the failure process of this landslide. The coefficient transfer method and the simplified Bishop method are used for verification analysis.
The old landslide (H1) and secondary landslide (H2-7) are spread throughout the Lijie Beishan landslide region. Progressively increasing rainwater, intense tectonic movements driven by the Zhouqu – Wudu seismic subzone and high-intensity human engineering activities (e.g., road construction, buildings, drainage ditches) are the key factor that triggered the landslide disaster.
The 2D numerical simulation results indicate that Fs of landslide considering strength reduction under static, rainfall, and seismic conditions are 1.04, 0.98, and 0.96. The maximum deformation for the critical sliding state and the unstable sliding state is 36.1 m and 1,412 m, 53.94 m and 1,658 m, 38.26 m and 2081 m. The 3D numerical simulation results indicate that final Fs of landslide under normal static, rainfall and seismic conditions is 1.03, 0.95 and 0.93 for Lijie Beishan landslide, respectively. The landslide will be unstable sliding state when the maximum deformation of landslide body reaches 87 m, 1,687 m and 1764 m. The calculation results of The coefficient transfer method and the simplified Bishop method are consistent with the numerical simulation results.
Lijie Beishan landslide exhibits a tension-controlled failure mode under normal static and rainfall conditions, while it exhibits a translational failure mode under seismic condition. The landslide has the largest volume and the largest sliding distance under seismic condition compared to the other two conditions.
With increased geologic and human engineering activities, the area may create more unstable slopes in the future under the influence of climatic factors such as precipitation. Although the stability of the landslide was well evaluated with the help of the method proposed in this paper, and then limited by the complex and variable geological conditions and the limitations of various methods. In the future, it is necessary to comprehensively consider the advantages of a variety of methods, and combine them to form a comprehensive evaluation method for revealing the stability of landslides and predicting the intensity of landslide disasters, which can try to comprehensively evaluate the stability of slopes under complex conditions.
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The variations in seismic response between deep soft soil sites with different shear wave velocities were not fully understood. This study focuses on the seismic response of deep soft soil sites in the lower reaches of the Yangtze River, China. A nonlinear dynamic finite element model was developed for two representative deep soft soil sites with borehole profiles and the shear wave velocity tested by the single borehole method. Two nonlinear cyclic constitutive models are used and thus compared through the site seismic response. To accurately calibrate the nonlinear cyclic model parameters, resonant column tests were conducted on 21 soil samples collected from the two boreholes. The results show that the peak ground acceleration (PGA) under low-frequency (Liuan) input motion was higher for soft soil sites compared to that under medium- and high-frequency (Kobe and Nahanni) input motions. The PGA amplification factor for deep soft soil sites under different input motions can be approximated by an exponential function. The peak ground acceleration tends to be lower as the equivalent shear wave velocity (Vse) decreases. The shapes of the spectral acceleration were similar for the two sites, despite a substantial difference in the Vse between them. Additionally, a crossover point was observed in the spectral acceleration for the two sites. The period corresponding to this crossover point increased with increasing intensity of input motions, indicating that the sites became softer with higher intensity and thus generally exhibited a longer characteristic period of the spectral acceleration. This paper also highlights the significance of selecting nonlinear constitutive models and the precise calibration of model parameters in the seismic response analysis of deep soft soil sites, providing a scientific basis for future similar site analyses.
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1 INTRODUCTION
Soil is a stratified geological body formed through long and complex geological processes. Due to differences in formation environments, the dynamic properties of soil layers within a site exhibit significant heterogeneity (Shiuly, 2019). Deep soft soil deposits are widely distributed in the downstream plains of rivers, which are densely populated, economically developed, and home to significant infrastructure. In the event of a strong earthquake, this area could suffer substantial economic losses and casualties, making seismic safety for deep soft soil sites a critical concern. Existing studies indicate that variations in local soil conditions can lead to significant differences in site seismic responses. Particularly for deep soft soil sites, there are still differing perspectives on seismic response (Zahoor et al., 2024). Thus, studying the impact of soft soil sites on seismic response is of great theoretical and practical importance for seismic microzonation and disaster mitigation in the area of earthquake engineering (Shiuly et al., 2014; Shiuly and Narayan, 2012).
Currently, scholars have conducted several numerical analyses on the seismic response of soft soil sites. (Pires, 1996). emphasized that the constitutive model in seismic response analysis of soft soil sites needs to account for the damping characteristics of soils under large strain conditions. (Villalobos and Romanel, 2019). found that soft soil sites typically reduce short-period spectral accelerations while increasing long-period accelerations. However, (Sun et al., 2019), found that soft soil interlayers do not always reduce peak acceleration within soil layers, as this is highly influenced by the frequency of the input seismic motion. (Cavalieri et al., 2021). analyzed the impact of soil-structure interaction effects on the seismic response of soft soil sites. (Silahtar, 2023). discovered that the spectral accelerations for soft soil sites exceeded the requirements of the Turkish Building Earthquake Code. Xiao et al. (2022) observed that soft soil sites exhibit a more significant weakening effect on peak ground acceleration compared to bedrock sites. Qiao et al. (2023) explored the influence of soil type on site seismic response but assumed the soil profile to be a uniform and single ideal layer. These prior studies have primarily focused on shallow soft soil layers (less than 100 m), leaving limited research on the seismic response of deep soft soil layers exceeding 100 m. While Zhang et al. (2023) examined the seismic response of deep soft soil layers in the Shanghai area, they did not clarify how the parameters for the nonlinear constitutive model were calibrated. Chen et al. (2013) pointed out the need to fully consider the effects of large, distant earthquakes on deep soft soil sites, and further research is needed on the differences in seismic response among deep soft soil sites with varying equivalent shear wave velocities.
Seismic response analysis of soil layers is essential for the seismic safety evaluation of major projects, as the scientific accuracy of these results is critical for earthquake-resistant design. In recent developments, deep learning techniques have been applied to compute site seismic responses (Choi et al., 2024). However, in engineering practice, the most widely used method for seismic response calculation of soil layers at present is the one-dimensional seismic response analysis (Ansal et al., 2024; Shiuly et al., 2017). The one-dimensional seismic response analysis method is divided into frequency-domain equivalent linear methods and time-domain nonlinear methods. Studies have shown that the differences between these two methods can become significant under large strain of soils (Chen et al., 2022; Yee et al., 2013; Kaklamanos et al., 2015; Kim et al., 2016). While many studies have applied the frequency-domain equivalent linear method to site seismic response analysis, there has been less application of time-domain nonlinear methods to deep soft soil sites. The existing time-domain nonlinear methods need improvement when calculating the seismic response of soft soil sites under high-intensity seismic inputs (Griffiths et al., 2016), particularly regarding the damping characteristics of soil under low and high strain conditions (Phillips and Hashash, 2009; Yniesta et al., 2017), which involves the crucial issue of selecting an appropriate nonlinear model. (Groholski et al., 2016). stressed that inaccuracies in the soil maximum shear stress described by the nonlinear constitutive model could lead to underestimation or overestimation of seismic response. Therefore, nonlinear constitutive models require careful calibration of model parameters in seismic response analysis.
This study focuses on the seismic response of deep soft soil sites in the lower reaches of the Yangtze River, China. A nonlinear dynamic finite element model was developed for two representative deep soft soil sites with borehole profiles and shear wave velocity tested using the single borehole method. According to the “GB 50011-2010: Code for Seismic Design of Buildings,” these two deep soft soil sites are classified as Type IV, but their shear wave velocities differ significantly. Two nonlinear cyclic constitutive models were used and compared through site seismic response analysis. To accurately calibrate the nonlinear cyclic model parameters, resonant column tests were conducted on 21 soil samples collected from the two boreholes. This paper discusses in detail the effects of model selection, input seismic intensity and frequency, and the average equivalent shear wave velocity on seismic response of deep soft soil sites. The main objective of this study is to investigate the seismic response of deep soft soil sites with varying equivalent shear wave velocities (Vse), using a nonlinear dynamic finite element model and calibrated constitutive models. By comparing the seismic responses under different input motions, the study aims to provide a scientific basis for seismic site analysis and improve the understanding of how Vse affects peak ground acceleration (PGA) and spectral characteristics of deep soft soil sites.
2 FINITE ELEMENT MODELING OF TWO SOFT SOIL SITES
A nonlinear dynamic finite element model was developed using borehole profiles and resonant column tests to calibrate the parameters of two constitutive models (Wakai and Ugai, 2004; Hardin and Drnevich, 1972). The following sections present the site configuration, governing equation, nonlinear cyclic constitutive models, and input seismic motions.
2.1 Site configurations
The borehole data were obtained, from the lower reaches of the Yangtze River, near Haimen, China. The profile of the two selected typical boreholes, ZK1 and ZK2, is shown in Figure 1. The boreholes revealed that the upper soil layers with a thickness of several tens of meters mainly consist of mud, silty sand, silty soil with interlayers of muddy silty clay, muddy clay with interlayers of silty soil, and silt with fine sand layers. The lower layers are mostly fine sand and gravelly medium to coarse sand, with some areas containing thick silty clay. The depth of the ZK1 and ZK2 boreholes reached 150 m. Table 1 shows that the overburden thickness of the ZK1 and ZK2 boreholes is 111.5 m and 95 m, respectively. The calculation domain and the shear wave velocity tested by the single borehole method for two soft soil sites are provided in Figure 1. The equivalent shear wave velocity for these two boreholes was calculated to be 147.6 m/s and 123.2 m/s. According to the “Code for Seismic Design of Buildings” (GB50011-2010), both the ZK1 and ZK2 boreholes are classified as soft soil sites (Class IV).
[image: Geotechnical log diagram showing two borehole profiles labeled ZK1 and ZK2. Each profile details stratified soil layers with corresponding elevation and shear-wave velocity data. ZK1 includes layers like silt with fine sand, muddy clay, and silty clay. ZK2 features layers such as silty sand, thick silty clay with silt, and fine sand. Shear-wave velocity is displayed with plotted curves alongside each profile.]FIGURE 1 | Profiles of typical boreholes and shear wave velocity: (A) ZK1 and (B) ZK2.
TABLE 1 | The equivalent wave velocity and site classification of two soft soil deposits.
[image: Table showing drill hole data with columns: "Drill hole number," "Overburden thickness (m)," "Vse (m/s)," and "Site classification (GB50011-2010)." ZK1 has 111.5 meters, 123.2 m/s, and classification IV. ZK2 has 95 meters, 147.6 m/s, and classification IV.]2.2 Governing equation for the dynamic response
A finite element model was established in the fully coupled dynamic effective stress finite element analysis software called UWLC (Cai et al., 2002; Forum 8 Co. Ltd, 2005; Xu et al., 2021; Xu et al., 2023a; Xu et al., 2024; Xue et al., 2023), which enables both effective stress and total stress analyses. In this study, the total stress analysis method was used for the site seismic response analysis, and the governing equation for the seismic response is given by Equation 1 (Biot, 1956; Pastor et al., 1990):
[image: Equation representing mechanical system dynamics: \( M \ddot{u} + C \dot{u} + Ku = F \), where \( M \) is mass, \( C \) is damping, \( K \) is stiffness, \( u \) is displacement, \( \dot{u} \) is velocity, and \( F \) is external force.]
where M is the mass matrix, C is Rayleigh damping matrix, K is the stiffness matrix, u is the displacement vector, and fu is the external load vector. The mass coefficient and stiffness coefficient in Rayleigh damping matrix were calculated using a damping ratio of 0.03 at two frequencies (f1 = 0.5 Hz and f2 = 5 Hz) (Wakai and Ugai, 2004; Xu et al., 2023a).
In the finite element (FE) analysis, a static analysis should be performed to provide the initial stress for the site’s seismic response. In the dynamic analysis, Multi-Point Constraints (MPC) boundaries were applied to the lateral sides of the FE model, which is fixed at the bottom.
2.3 Nonlinear cyclic constitutive models
This study employed two nonlinear cyclic constitutive models, the Ugai and Wakai model (Wakai and Ugai, 2004) and the Hardin and Drnevich model (Hardin and Drnevich, 1972), to simulate the nonlinear and hysteretic behavior of the soil. The two models and the differences between these two models are discussed in detail as follows.
2.3.1 Hardin and Drnevich (1972) model
Nonlinear cyclic constitutive models generally consist of backbone and hysteretic curves. The backbone curve of Hardin and Drnevich (1972) model, describing the relationship between the shear stress τ and the shear strain γ, was described by Equation 2:
[image: The equation for tau is given as tau equals G sub zero gamma divided by one plus G sub zero gamma over tau sub f, labeled as equation 2.]
where G0 are τf are the initial shear modulus and shear strength of soils, which are given by Equations 3, 4, respectively:
[image: Equation shown: \( G_{0} = G_{0, p_{0}} \cdot p_{0} \left(\frac{p}{p_{0}}\right)^{n} \), labeled as equation three.]
[image: Equation for shear stress (\(\tau_f\)) includes parameters \(\phi\), \(\phi'\), and \(\Theta\). It uses cosine and sine functions, a square root of three factor, and is divided by \(R_f\).]
where G0,r m, c, φ, and Rf are four model constants, Pa is the standard atmospheric pressure and was taken as 100 kPa in this study, Θ is Lode angle. G0 is determined by [image: Formula: \( G_0 = \rho V_s^2 \), where \( G_0 \) is the initial shear modulus, \( \rho \) is density, and \( V_s \) is shear wave velocity.], where ρ is natural soil density and Vs is the shear wave velocity.
The hysteretic curve of Hardin and Drnevich (1972) model is also described by Equation 5:
[image: The formula depicts a mathematical expression for tau, represented as \(\tau = \frac{G_0 \gamma}{1 + \frac{G_0 \eta}{2 \tau_f}}\). It is labeled as equation number five.]
2.3.2 Ugai and Wakai (2004) model
The backbone curve of the Wakai and Ugai, 2004 (UW) model is the same as that of the Hardin and Drnevich (1972) (HD) model, but the hysteresis curve of the UW model differs from that of the HD model and is given by Equation 6:
[image: Equation labeled as six shows the formula for tau: \(\tau = \frac{a \gamma^n + G_0 \dot{\gamma}}{1 + b \gamma}\).]
where b and n are two model constants that can be used to accurately control the damping ratio of soils (Xu et al., 2023b). When [image: Mathematical expression showing "b" multiplied by "y" raised to the subscript "G" with a subscript "0" equals 0.5.], the hysteresis curve of the UW model can degrade into that of the HD model, where [image: The mathematical equation is \( \gamma_{G_0} = \tau_f / G_0 \).] (Wakai and Ugai, 2004).
The effectiveness of the HD model in dynamic analysis has been validated by simulating the acceleration data measured at the Wildlife site. The results show that the simulated peak ground acceleration and the peak values of the surface acceleration response spectrum match well with the observed data. A detailed description of the model can be found in the literature (Xu et al., 2013; Xu et al., 2014). Similarly, the UW model has also been proven effective in site seismic response analysis and seismic slope failure analysis (Wakai et al., 2010; Iino et al., 2024).
The Hardin and Drnevich (1972) model is a classic dynamic constitutive model, but it tends to overestimate soil damping under large strains. In contrast, the UW model introduces two parameters, b and n, which address this issue and allow for precise control of soil damping. In this study, a comparative analysis of the differences between the UW model and HD model results was conducted based on accurately calibrated model parameters.
2.3.3 Model calibration
To accurately calibrate the nonlinear model parameters, resonant column tests were conducted on 21 soil samples collected from the two (ZK1 and ZK2) boreholes. The testing instrument used was the GZZ-50 resonant column apparatus, which operates based on the principle of torsional free vibration. The test process and data acquisition are controlled by a computer, ensuring high testing accuracy. The test procedure follows (ASTM D4015-15, 2015). Figures 2, 3 shows the experimental normalized shear modulus (G/Gmax)- shear strain (γ) and the damping ration (λ) – shear strain (γ) curves of various soils at the ZK1 and ZK2 boreholes, respectively. The UW model parameters calibrated based on the test data are shown in Table 2. By adjusting the model parameters, the simulated modulus and damping curves were fitted to the experimental values with an R-squared value greater than 0.94. The simulation results using the model parameters are plotted in Figures 2, 3, where it can be seen that the model simulations agree well with the experimental results.
[image: Graph (A) displays the dynamic shear modulus ratio versus shear strain for various soil types, indicating a decreasing trend. Graph (B) shows the damping ratio versus shear strain, demonstrating an increasing trend. Both graphs compare experimental data with different soil models, including sandy, silty, and clay soils with layers.]FIGURE 2 | Comparison between the measured and simulated (A) G/Gmax - γ and (B) λ - γ curves for different soils at ZK1 borehole.
[image: Graph (A) shows the dynamic shear modulus ratio versus shear strain for various soil types, including silty clay, sand with silt layers, and gravelly sand. Graph (B) displays the damping ratio versus shear strain for the same soil types. Both graphs illustrate experimental data compared to theoretical models, with curves indicating the behavior of different soils under varying strain.]FIGURE 3 | Comparison between the measured and simulated (A) G/Gmax - γ and (B) λ - γ curves for different soils at ZK2 borehole.
TABLE 2 | Soil properties and model parameters of different soils.
[image: A table of borehole data displaying soil properties across two boreholes labeled ZK1 and ZK2. Columns include soil type, thickness, density, shear wave velocity (\(V_s\)), shear modulus (\(G_0\)), effective pressure (\(p_0'\)), Poisson's ratio (\(ν\)), cohesion (\(c\)), friction angle (\(φ\)), and other parameters (\(b\), \(n\), \(R_f\)). Soil types vary from silty to gravelly, with various interlayer descriptions. Values are specific to each borehole, capturing a detailed geotechnical profile.]2.4 Input seismic motions
Considering the impact of the spectral characteristics of input motions on site seismic response, this study selected three input motions with distinctly different frequency characteristics: the Liuan input motion, which is rich in low-frequency components; the Kobe input motion, which has a uniform frequency distribution; and the Nahanni input motion, which is rich in high-frequency components. Figure 4 shows the acceleration time history curves and Fourier amplitude for the Liuan, Kobe, and Nahanni input motions with peak horizontal acceleration of 0.1 g. It can be seen that the Liuan, Kobe, and Nahanni input motions represent low-frequency, medium-frequency, and high-frequency waves, respectively.
3 RESULTS AND DISCUSSIONS
This study focuses on the impact of input motion frequency, horizontal input motion amplitude, and equivalent shear wave velocity on the seismic response of soft soil sites (see Table 3), including peak ground acceleration (PGA), peak ground acceleration (PGA) amplification factor, acceleration response spectrum, and Fourier spectrum. The PGA amplification factor is defined as the ratio of PGA to PHA, where PHA is the peak horizontal acceleration of input motions.
TABLE 3 | Detail of the cases in parametric studies.
[image: Table displaying seismic analysis data. Columns include borehole number, constitutive model, seismic input, seismic velocity \(V_{se}\) in meters per second, and peak horizontal acceleration (PHA) in g. Borehole ZK1 uses models by Wakai and Ugai (2004) and Hardin-Drnevich with inputs from Liuan, Kobe, and Nahanni, \(V_{se}\) is 123.2 m/s. ZK2 uses Wakai and Ugai (2004) model with the same inputs, \(V_{se}\) is 147.6 m/s. PHA values are 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8.]The effect of input motion frequency is investigated by inputting seismic motions with three distinctly different frequency components, as shown in Figure 4. The PHA of input motions was adjusted to 0.02 g, 0.05 g, 0.1 g, 0.2 g, 0.3 g, 0.4 g, 0.5 g, 0.6 g, and 0.8 g in the finite element analyses.
[image: Four seismograph plots depict earthquake data. (A) Liuan shows fluctuations over 100 seconds in blue. (B) Kobe displays variations over 40 seconds in red. (C) Nahanni illustrates changes over 20 seconds in black. (D) A frequency spectrum compares all three events up to 10 Hz, with corresponding colors.]FIGURE 4 | Three input motions with significantly different frequency components: horizontal acceleration of (A) Kobe (B) Liuan (C) Nahanni; (D) Fourier amplitude.
Both soft soil sites are classified to Class IV according to GB50011–2010, but they differ significantly in the equivalent shear wave velocity shown in Table 1. Therefore, the effect of equivalent shear wave velocity is studied by comparing the seismic responses of these two soft soil sites. Although both the Wakai and Ugai (2004) (UW) model and the Hardin and Drnevich (1972) (HD) model can simulate the behavior of soil under cyclic loading and unloading conditions, there is a significant difference in the damping characteristics of the soils simulated by the two models. This study investigated the influence of nonlinear model selection on the seismic response of soft soil sites.
3.1 Comparison between the results using two constitutive models
Figure 5 shows the comparison between the peak ground acceleration (PGA) and the PGA amplification factor at the ground surface using two constitutive models under different input motions. The configuration of the ground is from the ZK1 borehole. As the peak horizontal acceleration (PHA) of input motions increased, the PGA calculated by both models showed an increasing trend. However, when the PHA exceeded approximately 0.1 g, the rate of increase in PGA became less pronounced, and after PHA reached 0.5 g, a decreasing trend was observed. At PHA = 0.02 g, the PGA calculated using the UW model was higher than that from the HD model. But as PHA increased further, the PGA from the UW model became significantly lower than that from the HD model. Additionally, the difference in PGA between the two models grew as PHA increased. This indicates that the choice of constitutive models can introduce systematic biases in the seismic response of sites. To avoid this issue, it is recommended that some resonant column tests be conducted in seismic safety assessments to rigorously calibrate the parameters of constitutive models.
[image: Six graphs show comparisons between the Ugai-Wakai 2004 and Hardin-Drnevich models for different parameters. Graphs (A), (C), and (E) plot PGA against PHA for Kobe, Lixuan, and Nahanni, respectively. Graphs (B), (D), and (F) plot FG/PHA against PHA for the same locations. The models are represented by dashed (Ugai-Wakai 2004) and solid (Hardin-Drnevich) lines. Each graph includes a legend identifying the models.]FIGURE 5 | Comparison between the peak ground acceleration (PGA) and acceleration amplification factor at the ground surface using two constitutive models under different input motions: (A) PGA and (B) PGA/PHA under Kobe input motion; (C) PGA and (D) PGA/PHA under Liuan input motion; (E) PGA and (F) PGA/PHA under Nahanni input motion.
Figure 5 also shows that the PGA amplification factor shows a gradually decreasing trend as the PHA increased. However, the difference in the PGA amplification factors calculated by the two constitutive models under low-frequency and high-frequency waves was much greater than that under medium-frequency waves. Additionally, the rate at which the PGA amplification factor decreased with increasing PHA varied depending on the input motion. Under high-frequency input motion, the PGA amplification factor was smaller, but its rate of decrease was the slowest. In contrast, the rate of decrease in the PGA amplification factor was fastest under medium-frequency input motion. Overall, when PHA exceeded 0.3 g, the PGA amplification factor for soft soil sites tended to stabilize, with all amplification factors falling below 1. The minimum PGA amplification factors calculated by the HD model and the UW model were approximately 0.45 and 0.25 respectively.
Figure 6 shows the comparison between the acceleration response spectra at the ground surface using two nonlinear constitutive models at various PHAs. In this study, a uniform damping ratio of 5% was used for the calculation of the acceleration response spectra. It can be observed that the dominant periods of the response spectra obtained from the HD model and the UW model were nearly identical, both around 3 s. However, as PHA increased, the difference in spectral acceleration (Sa) at these dominant periods between the two models became more pronounced. In the long-period range of the response spectrum, such as beyond 5 s, the spectral accelerations calculated by the UW model were higher than those from the HD model, despite the HD model generally yielding higher PGA values. Due to the larger soil damping simulated by the HD model compared to the UW model, the shear strain in the soil calculated by the HD model is smaller, leading to an overestimation of the soil’s shear modulus. This explains that the HD model produced a higher short-period response in the acceleration response spectrum. Therefore, the HD model tends to be conservative for short-period structures, but for long-period structures, it may still underestimate the seismic effects.
[image: Four line graphs labeled A, B, C, and D depict spectral acceleration against period (seconds). Each graph compares two datasets: "Ugai-Wakai 2004" (black line) and "Hardin-Drnevich" (red dashed line), with varying peak horizontal accelerations (PHA) of 0.1g, 0.3g, 0.5g, and 0.8g. All graphs show damping at 5% and ZK1. Vertical axes represent spectral acceleration in g, while horizontal axes display periods ranging from 0.01 to 10 seconds. Each panel reflects similar trends, with varying amplitudes in spectral accelerations.]FIGURE 6 | Acceleration response spectra at the ground surface using two nonlinear constitutive models at various PHAs: (A) PHA= 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g (Liuan input motion).
Figure 7 further shows that Fourier amplitude of the ground acceleration calculated by the HD model was significantly higher than those calculated by the UW model at 0.2 Hz, while for frequencies below 0.2 Hz, the trend of Fourier amplitude is reversed. This also accounts for the higher PGA amplification factor obtained with the HD model and the elevated long-period spectral acceleration observed with the UW model.
[image: Four line graphs labeled A, B, C, and D show Fourier amplitude spectra against frequency (Hz). Each graph compares Ugai-Wakai 2004 and Hardin-Drnevich models at different acceleration levels: (A) 0.1g, (B) 0.3g, (C) 0.5g, and (D) 0.8g. The amplitude generally increases with higher acceleration.]FIGURE 7 | Fourier amplitude at the ground surface using two nonlinear constitutive models at various PHAs: (A) PHA = 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g (Liuan input motion).
3.2 Effect of input motion frequency
Given that a deep soft soil site might result in a stronger response to long-period seismic motions, the UW model was selected for subsequent calculations and analyses. Figure 8 shows the effect of input motion frequency on the PGA and acceleration amplification factor (PGA/PHA). Overall, the PGA under low-frequency (Liuan) input motion was higher for soft soil sites compared to that under medium- and high-frequency (Kobe and Nahanni) input motions. When PHA was below 0.05 g, the PGA amplification factor under high-frequency seismic motion was significantly lower than under low-and medium-frequency input motions. However, when PHA exceeded 0.05 g, the differences in the PGA amplification factors for different input motions were not significant. The PGA amplification factor for the soft soil site under different input motions can be approximated by an exponential function, as shown by Equation 7:
[image: Equation representing a mathematical relationship: PGA over PHA equals \(a_1\) times the exponential function of \(a_2\) multiplied by PHA, plus \(a_3\). The equation is numbered seven.]
where a1, a2, and a3 are fitting parameters and were taken as 3.90, −10.48, and 0.38, respectively. Moreover, the PGA amplification factors from the two references were given in Figure 8B. The range of PGA amplification factors calculated in this study was quite similar to the results obtained for deep soft soil sites by Zhang et al. (2023). In contrast, Tang et al. (2024) observed higher PGA amplification factors for soft soil sites in their shaking table tests, likely due to the shallower soft soil layer in their model (equivalent to a prototype depth of 75 m). Therefore, the effect of soft soil thickness on site seismic response requires careful consideration.
[image: Two charts represent data on ground motion models. Chart A shows \( fC_A(g) \) against \( PHA(g) \) for Kobe, Llun, and Nahanni with distinct dotted and solid lines. Chart B presents \( fC_A/fPHIA \) vs. peak horizontal acceleration, including a fitted curve equation \( y = 3.9 \exp(−10.48x) + 0.38 \) with \( R^2 = 0.92514 \), and data points from Kobe, Llun, Nahanni, Zhang et al. (2023), and Tang et al. (2024).]FIGURE 8 | Effect of input motion frequency on the (A) peak ground acceleration (PGA) and (B) acceleration amplification factor (PGA/PHA) at the ground surface.
Figure 9 shows the effect of input motion frequency on the amplification factor (Sa/PGA) of the spectral acceleration at various PHAs. A noticeable amplification zone forms around 1 s in the acceleration response spectra under different input motions. As the PHA increased, the amplification zone expanded and shifted towards the long-period region. Overall, the amplification factor in the period range above 1 s gradually increased with increasing PHA. This is because the nonlinearity of the soil layer intensifies as the input intensity increases.
[image: Four graphs labeled A, B, C, and D show spectral acceleration versus period for different scenarios with 5% damping. Each graph compares data from Kobe, Luan, and Nahanni, represented by solid, dotted, and dashed lines respectively. The x-axis is labeled "Period (s)" and the y-axis "Spectral Acceleration (S/PGA)." Graphs differ by the PHA values: 0.1g, 0.3g, 0.5g, and 0.8g.]FIGURE 9 | Effect of input motion frequency on the amplification factor of acceleration response spectra at the ground surface at various PHAs: (A) PHA = 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g.
Additionally, it is particularly noteworthy that the shapes of the spectral acceleration amplification factor (Sa/PGA) under high- and medium-frequency input motions were similar, while their shapes differ significantly from those dominated by low-frequency input motions. The amplification factor under low-frequency (Liuan) seismic motion was generally above 2 for periods longer than 1 s, and there was a noticeable peak around 3 s with a value of approximately 5. In contrast, the amplification factors for medium- and high-frequency seismic motions were generally below 2 at around 2 s. This indicates that Liuan input motion, with abundant low-frequency components, may be close to the natural frequency of soft soil sites, leading to a resonance effect. This resonance effect was particularly evident when the PHA was relatively high.
Figure 10 shows that under low-frequency (Liuan) seismic motion, the low-frequency components of the ground acceleration Fourier amplitude had higher values, while under high-frequency (Nahanni) seismic motion, the high-frequency components exhibited higher values. Moreover, under mid-frequency (Kobe) seismic motion, the Fourier amplitude of ground acceleration below 0.2 Hz was the lowest, due to the minimal spectral value in this frequency range for the Kobe input motion (see Figure 4). Additionally, as PHA increased, the Fourier amplitude of ground acceleration below 1 Hz under high-frequency (Nahanni) seismic motion gradually rise, approaching the results seen under low-frequency (Liuan) seismic motion. This is because a higher PHA enhanced the nonlinearity of soils, resulting in increased spectral accelerations in the long-period range.
[image: Four graphs labeled A, B, C, and D display Fourier amplitude against frequency (Hz) for different seismic events: Kobe (red), Liuan (black), and Nahanni (blue). Each graph shows varying peak amplitudes at different frequencies. Panel A is labeled PHA=0.1g, B is 0.3g, C is 0.5g, and D is 0.8g, with amplitude increasing in higher panels.]FIGURE 10 | Effect of input motion frequency on Fourier amplitude at the ground surface at various PHAs: (A) PHA = 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g.
3.3 Effect of shear wave velocity
To study the impact of equivalent shear wave velocity (Vse) on the seismic response of the same site classification, this study selected the ZK2 borehole with Vse = 147.6 m/s for comparison. The Vse of the ZK2 borehole was much higher than the Vse of the ZK1 borehole (123.2 m/s), as shown in Table 1.
Figure 11 illustrates that the variation pattern in PGA for the two sites with increasing PHA was quite similar. However, in general, as PHA increased, the PGA and the amplification factor for the site with a lower Vse were relatively smaller. Figure 12 reveals that the shapes of the spectral acceleration were similar for the two sites, despite a substantial difference in the Vse between them. Additionally, a crossover point was observed in the spectral acceleration for the two sites. When T was less than the period corresponding to this crossover point, the spectral accelerations were lower for the site with a lower Vse. In contrast, when T exceeded the period of the crossover point, the spectral accelerations become relatively higher for the site with a lower Vse. Moreover, the spectral acceleration crossover point signifies the transition in seismic response characteristics between the two sites. This point shifts to longer periods as input motion intensity increases, indicating that the sites became softer with higher PHA and thus generally exhibited a longer characteristic period in the acceleration response spectrum.
[image: Six graphs display the relationship between \( P(C|PHA) \) and PHA (g) for three locations: Kobe (A, B), Liuan (C, D), and Nahanni (E, F). Each graph shows two lines for different shear wave velocities \( V_{S30} \) at 123.2 m/s and 147.6 m/s. Graphs (A, C, E) illustrate \( P(C|PHA) \), while graphs (B, D, F) illustrate \( P(C|R|PHA) \). Red lines represent \( V_{S30} \) at 147.6 m/s, and black dashed lines represent 123.2 m/s. The graphs show variations in conditional probability with changes in shear wave velocity and location.]FIGURE 11 | Effect of equivalent shear wave velocity on the peak ground acceleration (PGA) and acceleration amplification factor at the ground surface under different input motions: (A) PGA and (B) PGA/PHA under Kobe input motion; (C) PGA and (D) PGA/PHA under Liuan input motion; (E) PGA and (F) PGA/PHA under Nahanni input motion.
[image: Four graphs labeled A, B, C, and D show spectral acceleration versus period for different peak horizontal accelerations (PHA) of 0.1g, 0.3g, 0.5g, and 0.8g from the Kobe earthquake with 5% damping. Each graph compares results for velocities of 123.2 m/s and 147.6 m/s, indicated by dashed and solid lines respectively. The x-axis represents the period in seconds, ranging from 0.01 to 10, while the y-axis shows spectral acceleration in g.]FIGURE 12 | Effect of equivalent shear wave velocity motion frequency on acceleration response spectra at the ground surface at various PHAs: (A) PHA = 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g (Kobe input motion).
Figure 13 provides a comparison of Fourier amplitude of ground acceleration for the two soft soil sites under the same input motion. The variation in Fourier amplitudes with frequency was fundamentally consistent with the variation in spectral acceleration with period. Specifically, the soft soil site with a higher Vse showed higher Fourier amplitudes in the high-frequency range, while the Fourier amplitudes were lower in the relatively low-frequency range.
[image: Four graphs labeled A to D showing power amplitude versus frequency for the Kobe earthquake, with varying peak horizontal accelerations of 0.1g, 0.3g, 0.5g, and 0.8g. Each graph compares two scenarios with shear wave velocities, Vse, of 123.2 meters per second (black line) and 147.6 meters per second (blue dashed line). The amplitude decreases with higher frequencies in all graphs.]FIGURE 13 | Effect of equivalent shear wave velocity motion frequency on Fourier amplitude at the ground surface at various PHAs: (A) PHA = 0.1 g, (B) PHA = 0.3 g, (C) PHA = 0.5 g, and (D) PHA = 0.8 g (Kobe input motion).
4 CONCLUSION
Seismic response of two deep soft soil sites were numerically investigated with model parameters accurately calibrated from resonant column tests. Two nonlinear constitutive models, i.e., Wakai and Ugai (2004) and Hardin and Drnevich (1972) models, were compared in this study. From the numerical results, some implications can be found:
	(1) Both the HD and UW models reflect similar dominant periods of the response spectra at the ground surface. Generally, the HD model tends to give higher spectral acceleration within short-period range, but the UW model may better capture the stronger seismic response in the long-period range.
	(2) The PGA under low-frequency (Liuan) input motion was higher for soft soil sites compared to that under medium- and high-frequency (Kobe and Nahanni) input motions. The PGA amplification factor for the soft soil site under different input motions can be approximated by an exponential function.
	(3) The peak ground acceleration tends to be lower as the equivalent shear wave velocity decreases. The shapes of the spectral acceleration were similar for the two sites, despite a substantial difference in the Vse between them. Additionally, a crossover point was observed in the spectral acceleration for the two sites. the period corresponding to this crossover point increased with increasing PHA, indicating that the sites became softer with higher PHA and thus generally exhibited a longer characteristic period in the acceleration response spectrum.

The scope of this study is limited to two specific deep soft soil sites, which may not represent all deep soft soil conditions, further research using field data or full-scale testing is needed to ensure broader applicability of the findings. The findings of this study suggest that the selection of appropriate nonlinear constitutive models and the accurate calibration of model parameters are essential for reliable seismic response analysis of deep soft soil sites. The results provide a scientific basis for improving seismic hazard assessments and site-specific analyses, particularly in regions with deep soft soil conditions similar to those in the lower reaches of the Yangtze River, China.
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Unveiling the prediction model and mechanism of the collapse of bank slope in the lancangjiang area
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This study takes the bank collapse at the left bank of Badi Township of the Lidi Hydropower Station in the Lancang Area as an example. To address the lack of in-depth research on the prediction model and mechanisms of bank collapse, this study conducts field drilling surveys, investigates influencing factors, analyzes causal mechanisms, and proposes prediction methods based on the geological survey data of bank collapse in the reservoir area. The study explores the stratigraphic lithology, determines the key parameters for bank collapse prediction, and studies the failure modes and bank collapse mechanisms. It also proposes the finite element method of bank collapse to predict the width and elevation of bank collapse and provides the influence on the surrounding environment. The results show that the collapsed bank on the left bank of Badi Township is a high and steep soil-like slope, and forms the collapse and retreat type of failure mode after impoundment. The Kachukin method, the bank slope structure method, and the proposed finite element method are used to predict the width and elevation of the collapsed bank. The results indicate that the Kachujin method predicts a larger range of bank collapses and is biased towards safety. In contrast, the prediction ranges of the bank slope structure method and the finite element method are close. The bank collapse position is located in the middle and rear of the residential houses in Badi Township, which is consistent with the on-site investigation and has strong reliability. The predicted width of the bank collapse is about 34 m and the elevation is about 1,845 m. The research results can be directly applied to preventing and controlling bank collapse and have powerful practical application value.
Keywords: reservoir bank collapse, soil slope, impoundment process, retreat type bank collapse, prediction method of bank collapse

1 INTRODUCTION
Reservoir bank collapse means that after the reservoir is filled with water, the groundwater level inside the bank slope also rises. The rock and soil masses are subjected to long-term erosion, soaking, wave erosion, and cyclical changes in water levels, which are coupled. This leads to a significant reduction in the strength of the rock and soil mass, a weakening of its structure, and changes in hydrological and engineering geological conditions. These factors induce deformation and destruction over a certain range of the slope, intensifying the occurrence of new slips, collapses, and retreat of the bank slope, forming a new reservoir bank shape that adapts to the latest environmental conditions, that is, reservoir bank reconstruction (Meng et al., 2024; Yang et al., 2023; Li et al., 2024; Zhang et al., 2024a). The collapse of the reservoir bank slope is a complex problem involving multiple fields such as engineering geology and environmental geology. It can harm the normal operation of the reservoir and the geological environment of the surrounding areas, resulting in a reduction of land resources in the reservoir area, serious soil erosion, forced relocation of surrounding residents, increased river siltation, induced the revival of ancient landslides, and caused serious hazards. It has become a major geological disaster affecting the economic development of the reservoir area and the property safety of the people around the reservoir (Chen and Peng, 2015; Qin et al., 2021; Zhang et al., 2024b). One of the most serious consequences of bank collapse is that it poses a serious threat to railways, roads, and buildings along the collapsed area, leading to the destruction of farmland and houses, traffic interruption, damage to public facilities, and other urgent social problems threatening the stability of life of people on both sides of the reservoir.
China’s large-scale water conservancy projects, in terms of the number of reservoirs and total storage capacity, have secured a leading position globally. During the operation of reservoirs, bank collapse is an inevitable major geological disaster, especially in the river reservoirs in the high mountain and canyon areas of the southwest, where the diversity of topography and landforms and the complexity of geological conditions, coupled with the active geological structure and the strong dynamic effect of reservoir water, have jointly contributed to the diversity of bank collapse phenomena. These collapse points are widely distributed and cover a large area of influence. The Lancang River Basin is primarily characterized by gorge-type reservoirs, with eight cascading hydropower stations planned and arranged in the river’s upper reaches, such as the Lidi, Toba, Wunonglong, and other large-scale hydropower stations mainly for power generation. According to the investigation, it was found that when the reservoirs in the basin were filled, as the water level in the reservoir rises, there may be varying degrees of local adjustments and deformations on the slopes, leading to new areas affected by landslides, deformed reservoir shores, and collapses. This has resulted in the subsidence of infrastructure, collapses, cracks, and deformations in some houses, severely affecting residents’ normal production and life. Lidi Hydropower Station is mainly engaged in power generation, according to incomplete statistics, there are as many as 10 collapsed bank sections of varying sizes in the area, most of which are located at the front edge of the existing landslide and the soil slope section.
Since the 1960s, scholars at home and abroad have already begun to focus on the problem of reservoir bank collapse (Duong and Do, 2019; Ji et al., 2021; Yao et al., 2024; Yin et al., 2022; Zhang et al., 2024c). Bank collapse has always been a very complex comprehensive geological phenomenon of bank slope stability, where the bank slopes are directly affected by reservoir water level, giving rise to various forms of reservoir bank reconstruction. Scholars have conducted comprehensive and in-depth research on aspects of bank collapse, including the influencing factors, the formation mechanism, the destruction mechanism, the collapse patterns and process, and the prediction methods.
Reservoir bank collapse is a complex geological dynamic evolution process, influenced and controlled by many factors. In practice, it is often difficult to meet the in-depth needs of bank collapse prediction due to the large scope of the reservoir bank, poor transportation conditions, and limitations of research methods (Ma et al., 2023a; Chen et al., 2022). The study of the mechanisms of bank collapse typically involves an in-depth investigation of the geological conditions and influencing factors at the collapse site, including the composition and structure of the slopes, morphological characteristics, fluctuations in reservoir water levels, wave action, long-term water immersion, and freeze-thaw cycles, among other factors (Wang et al., 2020; Zhang et al., 2022; Chang et al., 2023). Riverbank erosion is one of the most significant factors in reservoir bank collapse. The characteristics and factors of the collapse depend on hydrological factors (including flow velocity, wave height impacting the shore, and reservoir dynamics) and geological and topographical factors (the attitude of the eroded rock strata, the physical and mechanical properties of the soil, and rock mass, the uniformity of the eroded soil and rock mass, and the morphology of the slope). These two sets of factors determine the level and extent of the bank collapse. Wang and Qiao (2013) started from the perspective of river erosion to study the relationship between the loss of bank slope materials and the changes in river channel topography, proposing some models and methods for calculating the amount of erosion and predicting the bank slope morphology when reaching an equilibrium state. The most common triggers of bank collapse are the deepening of riverbed erosion and the scouring of the riverbank, both of which depend on the flow conditions. The greater the intensity of the water flow, the greater the likelihood and severity of bank collapse will correspondingly increase. Therefore, the occurrence of bank collapse is primarily constrained by the flow conditions, which are closely related to the flow and boundary conditions. The water flow conditions play a key role in the generation and development of bank collapse, being the main driving factor. Other factors, such as geological structure, stability of bank materials, and vegetation cover, typically, indirectly affect the severity of bank collapse by altering the water flow or boundary conditions.
Through extensive field investigations of landslides, bank collapses, debris flows, and other geological disasters at large hydropower stations in the Lancang River Basin, the mechanisms of bank deformation, failure, and instability can be classified into types such as erosion-weathering type, collapse type, sliding type, collapse type, and flow soil type (Zhang et al., 2018). The collapse type of failure mode can generally be divided into retreat after collapse, scouring wave ridge type, and collapse type. The sliding type can be divided into sliding along the base interface or potential sliding surface, surface sliding, and reactivation of ancient landslides. Currently, the classification research on bank collapse modes of reservoir banks at home and abroad is not systematic and perfect, and it is difficult to meet the needs of bank collapse analysis and research in the mountainous areas of Southwest China. Bank collapses in reservoirs in the mountainous areas of Southwest China are often not a single mode but a combination of multiple modes (Ji et al., 2021).
Wang et al. (2000) in the past 10 years, through in-depth investigation and research on dozens of reservoir bank collapse cases, proposed the “two-stage method” to guide the prediction and design work of the Waifeng Railway Line (connecting Waiyang and Fuzhou). Although the “two-stage method” is used to predict the width of bank collapse, in the application process, it still needs to be compared and analyzed with the Kachugin method to comprehensively evaluate its rationality and make a scientific choice. That is, the applicability of the “two-stage method” still needs to be further verified and confirmed through extensive practical application (Han et al., 2022). Ji et al. (2019) based on a deep systematic analysis of existing bank collapse prediction methods, combined with the characteristics of the slope structure of the Three Gorges Reservoir and the analog reservoir, proposed three bank collapse prediction methods, the slope structure method (Maihemuti et al., 2015; Yao et al., 2024; Yin et al., 2022; Huang et al., 2024a), the three-stage method, and the multiple regression analysis methods, forming prediction methods for sliding type bank collapse, collapse type bank collapse, and flow soil type bank collapse. Scholars (Ji et al., 2018; Zhou et al., 2020; Huang et al., 2024b) in the theoretical analysis of the collapsed bank, numerical simulation as an effective method is used to study the stability of bank collapse and predict the width and elevation of bank collapse. This paper, based on the traditional finite element analysis method, has developed a finite element analysis method suitable for soil bank slopes (Guo and Griffiths, 2020; Guo et al., 2020; Huang et al., 2024c).
After the reservoir was filled, the main bank collapses were found in the area of the No. 4 accumulation body at Nongdu and the front edge of the No. 3 accumulation body downstream of Badie Township. Both collapses have led to the subsidence of the foundation of the Dewen Highway, affecting local traffic. Additionally, partial erosion and collapse occurred on the near-water slope of the left bank of Badie Township, but it did not impact the residents. This paper takes the near-water slope on the left bank of Badie Township as an example, investigating the geological conditions, lithology of strata, and groundwater conditions at the collapse points. The most typical collapse section is selected as the geological prototype. Based on different water level elevations, the collapse mode and mechanism of the left bank of Badie Township are analyzed, and the collapse process and mechanism of the slope are studied. Prediction and evaluation methods for bank collapse, such as the Kachugin method, slope structure method, and the finite element method proposed in this paper, are used to predict the width and elevation of the bank collapse on the left bank of Badie Township. This provides a basis for decision-making in the prevention and control of bank collapse on the left bank of Badie Township, which is of great significance for the construction of local resettlement sites, the safety of the relocation of residents, and the promotion of sustainable economic development in the areas on both sides of the reservoir.
2 RESERVOIR BANK COLLAPSE PREDICTION METHODS AND FAILURE MECHANISMS
2.1 Reservoir bank collapse processes
In the upper reaches of the Lancang River Basin, eight cascade hydropower stations have been planned and arranged. After geological disaster surveys, various degrees of landslides, deformed reservoir shores, collapses, bank collapses, and other disaster types were found in the reservoir area. Influenced by different factors, the collapse deformation and destruction patterns and evolution processes in the reservoir area are also different. On-site investigations in the Lancang River found a large number of different bank collapse patterns and mechanisms caused by heavy rain erosion, reservoir water level fluctuations, and wind wave action in the accumulation bodies and slopes (Figure 1), which have caused serious damage to both the rear edge landslides and the traffic lanes as well as the resettlement sites for villagers.
[image: Four images show different types of ground failures. Image (a) depicts a riverbank with surface damage and road collapse. Image (b) shows a steep cliff with undercutting. Image (c) features a soil deformation with block separation. Image (d) highlights a slip-pull crack with a red dashed circle.]FIGURE 1 | Investigate the main failure modes of the Lancang River reservoir bank collapse. (A) Alluvial erosion bank collapse; (B) Scour-notched bank collapse; (C) retreat-type bank collapse; (D) tractional sliding-type bank collapse.
2.2 The collapse retreat type of bank collapse failure process and failure mechanism
Under the continuous scouring and erosion of water flow, the underwater slope gradually forms a relatively gentle erosion accumulation area, namely, a shoal. At the same time, the bank wall after the collapse will show a relatively steep slope, with the lower part usually exceeding 35°, and the upper part may even reach a steepness of 70°–80° in the short term. As relentless wind and waves persistently erode the shoreline, the deterioration of the reservoir bank escalates, prompting a steady recession of the water’s edge. Concurrently, the adjacent underwater shallows expand, mirroring the shoreline’s retreat. This process will cycle repeatedly until the bank wall above the water and the shallow area below the water reach a relatively stable state (Figure 2). At this stage, the destruction of the bank wall by the scouring action of water flow and waves has ended, and the reservoir bank begins to stabilize. In the instance of a collapse retreat type of bank erosion, it is distinguished by a rapid pace of withdrawal and an extensive territory over which the retreat occurs.
[image: Illustration of erosion and deposition processes in five panels. (a) Displays toe erosion occurring below the water level. (b) Shows wave erosion creating a niche. (c) Illustrates underwater accumulation. (d) Demonstrates toe erosion and accumulation processes. (e) Depicts changes in bank slope after collapse, comparing original and post-collapse slopes. Each process is labeled with blue lines indicating water levels.]FIGURE 2 | The evolution process of bank collapse with retreat-type. (A) The initial period of water storage; (B) Appearing wave erosion niches and the embryonic form of underwater shoals; (C) Appearing underwater shoals; (D) The bank wall recedes, and the shoal area expands. (E) Stable bank slope, expansion and termination of shallow shoals.
3 ENGINEERING OVERVIEW AND CAUSAL MECHANISMS OF THE LEFT BANK OF BADI TOWNSHIP
3.1 Engineering overview of the left bank of Badi Township
The bank collapse impact area on the left bank of Badi Township is located on the left bank of the reservoir area, opposite the Badie landslide, about 6 km away from the Lidi Hydropower Station Dam, and is the location of the Badie Township Government in Weixi County. This section of the reservoir bank is relatively open, forming a relatively wide valley section of the Lidi reservoir area. The left bank is a gentle slope of the floodplain accumulation terrace, while the right bank is a gentle slope terrace formed by the middle and lower parts of the Badie landslide. The Lancang River cuts through the terraces on both sides, forming a narrow “V” shaped river channel, with the water surface width near the normal water level of 115–180 m, and the flow direction changes from upstream to downstream from the SN arc to the EW direction. The upstream of the left bank terrace is the Gubu Migrant Bridge, and the downstream is the Badie Gully, which is irregularly shaped on the plane, with a maximum width of about 350 m. The terrain below the normal water level of the left bank terrace is relatively gentle, with a natural slope of 20°–28°. The terrain with a natural slope of 45°–52° is steeper from the normal water level of 1,818 m to the front edge of 1,840 m, and the natural slope of the terrace above 1,840 m is 8°–12°, which is mostly residential and office, commercial and other various building areas, with a small amount of farmland. The geomorphology before and after the water storage is shown in Figures 3, 4.
[image: A town with colorful buildings is situated on a sloping hill above a turquoise river. The river flows at the bottom of the image, contrasting with the earth-toned hillside.]FIGURE 3 | The topography of the left bank of Badi Township before the water storage.
[image: Aerial view of a village situated on a hillside, with numerous white and blue-roofed buildings. The village is bordered by a river with blue water, and there is a dense forested area above the village.]FIGURE 4 | The topography of the left bank of Badi Township after the water storage.
3.2 Analysis of the mechanisms and destruction of the bank collapse
Based on surface surveys and drilling, it is revealed that the geological strata within the site include the Quaternary Holocene artificial filling layer ([image: Mathematical expression displaying the symbol "Q" with a superscript "m" and a subscript "4".]), which consists of plain fill and waste slag, primarily composed of blocks, gravel soil, and broken stone. The filling is dry, loosely to moderately compacted, with the surface layer being a concrete pavement layer, mainly distributed along the highway subgrade and the outer slope surface of the highway. There are Quaternary Holocene colluvial and alluvial layers ([image: \( Q_4^{col+dl} \)]), which consist of blocks, gravel soil, and sandy soil. This layer is densely accumulated, and the thickness revealed by drilling is greater than 30 m. The geological strata consist of alluvial sand and gravel, mainly distributed in the riverbed and along the floodplains on both banks. After impoundment, this stratum is completely submerged underwater. There is Permian System lower series phyllite (P1), characterized by dark black and dark green rocks with a composition of plagioclase sericite quartz phyllite intercalated with a small amount of metamorphic sandstone and microcrystalline schist. The statistical analysis of drilling cores from the Lidi hub and reservoir area indicates that the proportion of metamorphic sandstone and microcrystalline schist in the vertical section is less than 8%. As seen in Figure 5, the surface layer of the affected area is a strongly weathered rock layer.
[image: (a) Eroded soil surface with visible rocks. (b) Rocky terrain with loose, scattered stones. (c) Steep slope with a mix of rocks and soil erosion. (d) Uneven ground with exposed rocks and patches of vegetation.]FIGURE 5 | Overburden on the left bank of Badi Township. (A) The alluvial-diluvial strata exposed above; (B) The alluvial layer exposed at the edge of the highway; (C) The artificial accumulation next to the highway before water storage; (D) The alluvial sand and gravel along the riverbank before water storage.
4 ANALYSIS OF THE MECHANISM AND PROCESS OF BANK COLLAPSE
4.1 The phenomenon of bank slope deformation and destruction
Before the impoundment of the reservoir in 2018, the natural river water level during the flat-water period was below the foundation of the upstream side terrace, and only occasionally reached the foot of the covering layer during high flood levels. When the water level was high on the downstream side, the flood temporarily submerged the first-level terrace, with overall scouring being relatively minor, and the overall stability of the bank slope remained stable for a long time. From the time of reservoir impoundment in 2018 to the start of the rainy season in 2020, this section was generally in a mostly stable state according to patrols and monitoring, and no evidence of bank collapse or deformation had been discovered. At the beginning of 2020, it was found that local erosion had formed a pit-like bank collapse on the slope, while a resident living on the downstream side reported that the soil occasionally collapsed into the water with a loud noise in front of their house, which they believed posed a threat to their living (Figure 6A). During the flood season in 2020, the bank collapse continued to develop, and the resident reported that the walls of their house had cracks and deformation (Figure 6B).
[image: Four images depict a riverbank affected by erosion near buildings. Images (a), (b), and (c) show structures close to the eroded riverbank, with vegetation along the edge. Image (d) focuses on a section of eroded soil, highlighting exposed roots and greenery.]FIGURE 6 | The geomorphological status of the bank collapsed on the left bank of Badi Township. (A) Bank collapse at the downstream side of the site; (B) Bank collapse in the middle of the site; (C) Bank collapse upstream of the site; (D) Bank collapse detail.
Based on on-site investigations, the bank collapse generally occurred in a pre-predicted position, which is different from the flake-like collapses in other parts of the reservoir area. The collapses in this area are mostly in the form of pit-like depressions on the plane, and the bank reconstruction is relatively slight, without exceeding the range predicted earlier. According to the investigation, there are 6 pit-like depressions caused by bank collapse, distributed over a length of 230 m and usually extended into the bank slope-like pockets. The diameter of the pits is generally small, with an average mouth width of 3–5 m, extending into the bank slope by 5–8 m, and the collapse height above the water surface is 1–3 m. The distance to the nearest house foundation is generally 20–30 m (Figures 6A–C). The most severe part of the bank collapse is located below the aforementioned residential area, with 3 pits. The largest pit is elliptical on the plane, slanting towards the downstream right bank along the long axis, with a mouth width of about 6–8 m, and it extends into the bank slope up to about 10 m. The maximum collapse height is about 5 m, near the water surface of the local area, is inclined, and the distance from the bank collapse to the house foundation is about 12 m. Coarse particles are estimated to be exposed on the section, and the content of fine particles is relatively small (Figure 6D).
The resident building is a 3-story building. According to the visit, the foundation was excavated and placed on a relatively compact alluvial layer, and no cracking phenomena were found in the early stage. Upon observation of the house walls, no cracks were found on the exterior walls, while there are some minor cracks on the interior walls, but no obvious signs of expansion were seen.
4.2 Analysis of the deformation mechanism of bank collapse
The current geomorphological status of the bank collapse on the left bank of Badixiang is characterized by typical collapse-type bank collapse features due to long-term erosion of the slope toe by the reservoir water level. The soil near the reservoir water level is softened and eroded, and the upper soil layer peels off layer by layer under the action of its weight. The overall water depth in front of the dam is about 30 m, and the shoreline is relatively straight. However, in terms of fine geomorphological details, there are many original terrain gullies and cuts in this area, where the water depth is relatively deeper, the water flow is prone to form backflow, and the current bank collapse deformation mostly occurs in these areas. From the longitudinal section, the original bank slope is a soil slope with a steep gradient (locally up to 50°–60°), and the stability of the relatively high and steep soil slope deteriorates after being soaked by the reservoir water level.
The upper Quaternary deposits exhibit a dual structure, with the surface layer being a silty loam dominated by fine particles and relatively weak permeability, while the lower part consists of sand and gravel with pebbles and cobble-sized particles, with a small amount of sandy and muddy materials filling the interstices. After water storage, under the action of wind waves and groundwater, processes such as scouring or subsurface erosion occur. The finer particles such as sand and silt within the pores of the gravel and pebbles are washed out, leaving the coarse particles to collapse into the water, forming niches on the scoured face. Over time, the upper soil layer also collapses into the water due to the lack of support. Since subsurface erosion is a slow process, no obvious signs of bank collapse were observed in the early stages of water storage.
From the perspective of hydrogeological conditions, the water in this section of the reservoir is generally deep, and the impact of waves and water currents on the bank slope is intense. The saturation of the soil by the reservoir water not only reduces the soil’s ability to resist sliding but also, when the water level drops, the resulting water level gradient and dynamic water pressure, due to the seepage effect, carry fine particles out of the slope, leading to the collapse of the coarse particles that are left unsupported. Analyzing the stress and strain conditions, changes in the stress conditions of the bank slope after water storage will inevitably lead to local stress adjustments.
After the reservoir water level rises, the water depth in this section is relatively deep, and the slope above the water surface is quite steep. Wind waves and water currents exert infiltration and erosion effects on the soil, causing the soil at the toe of the slope near the water storage level to be eroded into a concave shape. At the same time, due to the dynamic water pressure generated when the water level drops, fine particles in the soil are washed out, leaving the coarse particles unsupported, leading to the collapse of the surface soil. After the bank collapse occurs, its expansion speed and magnitude are relatively large. Since there are local concave terrains on the bank slope, the collapses in the affected area occur at these locations, exhibiting a minor pit-collapse type of bank collapse morphology.
5 RESERVOIR BANK STABILITY ANALYSIS AND PREDICTION
5.1 Constructing the calculation model and selecting parameters
The cross-sectional underwater topography at the bank collapse section has become less steep compared to the original terrain, with an overall slope of approximately 25° and minimal variations in undulation. In comparison with the original terrain, the equilibrium point is located near the elevation of 1818m (Figure 7). To evaluate the compaction and other physical and mechanical properties of the collapsing soil, a large number of exploration works were carried out in the reservoir area during the survey process of the Lidi Hydropower Station. In this survey, multiple sets of heavy dynamic penetration tests (N63.5) were conducted in two boreholes, and due to the presence of many large blocks, 23 sets are available for statistical analysis. Combined with the results of physical and mechanical tests of the soil and rock mass in other parts of the Lidi Hydropower Station reservoir and dam area, the physical and mechanical parameters of the soil and rock mass at the bank collapse section are proposed as shown in Table 1. To analyze and evaluate the bank collapse evaluation parameters of the site in the bank collapse impact area, a rough statistical analysis of the stable slope angle of the soil at the site and its surroundings was conducted, and the results are shown in Table 2.
[image: Cross-sectional diagram of a bank collapse showing various geological features. Key elements include the bank collapse section, prediction range, dead road, and street, along with normal and dead water levels at 1818 meters and 1814 meters, respectively. The diagram marks a strong weathering line and different elevations, labeled with coordinates.]FIGURE 7 | The cross-sectional profile of the bank collapse section on the left bank of Badixiang Township.
TABLE 1 | The physical and mechanical parameters of the bank collapse area.
[image: Table showing stratigraphic properties of three materials: Gravelly soil with a bulk density of 2.0 g/cm³, allowable bearing capacity 200-250 kPa, compressive modulus 3-8, internal friction angle 0.45-0.1, cohesion 25-35 kPa. Sand and pebble gravel with 2.2 g/cm³, 400-450 kPa, 45-50, 0.50-0.55, 5-10 kPa. Permian slate with 2.7 g/cm³, 800-1000 kPa, 550-750, 0.7-0.8, 300-500 kPa.]TABLE 2 | Recommended value for predicting stable slope angle of bank collapse.
[image: Table showing stratigraphic information and slope angles for two materials. For the loose overburden layer: stable slope angle above water is 10-25 degrees, submerged stable slope angle is 15-40 degrees, water level fluctuation zone stable slope angle is 18-30 degrees, and abrasion angle is 18 degrees. For sand and blocky gravelly soil: stable slope angle above water is 12-28 degrees, submerged stable slope angle is 30-69 degrees, water level fluctuation zone stable slope angle is 19-32 degrees, and abrasion angle is 20 degrees.]5.2 Calculation method and result analysis
The Kakuchin Method was first proposed by Kakuchin in 1949 as a reservoir bank collapse prediction method with practical application value. This method takes the point where the still water level is reduced by the wave erosion depth as the starting point, and it is suitable for predicting bank collapses in soil or loess-like soil layers, widely used in soil and loess areas of reservoirs. Through detailed on-site geological surveys, the collapse area is located on the downstream side of the terrace in Badixiang Township, with no bedrock exposure in the collapse area, and it generally belongs to a high and steep soil-like bank slope, where the Kakuchin method can be used for predicting the range of bank collapse.
Starting from the flood season of 2020, the bank slope gradually experienced continuous stripping collapse towards the bank. On 22 May 2021, the intensity of the bank collapse intensified, with the slope occasionally experiencing a stripping collapse of soil into the water, gradually developing into a retreat-type bank collapse similar to a pit collapse. For the prediction of bank collapses of this type, both the general two-stage method and the bank slope structure method are very applicable.
5.2.1 The Kakuchin method
The starting point of the Kakuchin Method is the design low water level minus the wave erosion depth, and the boundary point is the maximum wave erosion height. The reservoir bank slope is divided into above-water and underwater parts. Based on this boundary point, the appropriate above-water stable slope angle and underwater stable slope angle are selected to predict the width and elevation of the bank collapse (Ma et al., 2023b; Zhang et al., 2024d), as shown in Figure 8. The Kakuchin method predicts the width of the reservoir bank collapse as in Formula 1:
[image: Mathematical equation for \( S \) equals \( N \) times \([ (A + h_p + h_q) \cot \alpha + h_2 \cot \beta - (A + h_p) \cot \gamma ]\).]
[image: It seems there is no image attached. Please upload an image or provide a URL, and optionally add a caption for additional context.]
[image: Cross-sectional diagram of a riverbank collapse area. It includes labels for "Dead Rapid" and "Street," with lines indicating "Normal water level 1818m" and "Dead water level 1814m." The weathering line and coordinates are marked, showing potential collapse sections. Arrows indicate flow directions.]FIGURE 8 | Prediction of bank collapse at the left slope of Badi Township by bank slope structure method.
5.2.2 The bank structure method
Based on the previously determined parameters for bank collapse prediction, the width of the bank collapse on the left bank of Badixiang Township is predicted using the universal bisection method. The universal two-stage method only considers the dead water level and the normal water storage level, and the prediction parameters only take into account the erosion angle and the above-water stable slope angle. Using the dead water level as the starting point for the bank collapse, the specific prediction steps for the width of the bank collapse on the left bank of Badixiang Township are as follows:
	(1) Draw the calculated stratigraphy and geological section of the bank slope where the left bank of Badixiang is located, as shown in Figure 8.
	(2) Indicate the normal water storage danger level (normal water storage elevation 1818.0 m) and the dead water level line (design low water level 1,814 m).
	(3) Starting from the intersection point O of the dead water level line with the slope surface profile, use the scouring angle of the loose covering layer soil [image: Mathematical symbol representing Theta with a subscript of one.] =18° as the inclination to draw the prediction line for the lower part of the normal water storage bank collapse, intersecting with the base-rock boundary at point A.
	(4) Taking point A as the starting point, with the scouring angle of sand and gravel, crushed stone soil [image: The Greek letter theta with the subscript two.] =20° as the inclination, continue to draw the bank collapse prediction line, intersecting with the normal water level line of the reservoir at point B. It can be observed from the figure that line AD is steeper than the base-rock boundary, indicating that the strongly weathered rock mass within this range is relatively safe and will not experience bank collapse. Therefore, the base-rock boundary between points A and B is this section’s predicted bank collapse line.
	(5) Taking point B as the starting point, with the stable slope angle of the loose covering layer above water γ=45° as the inclination, draw the bank collapse line to intersect with the topographic line at point C. BC is the predicted bank collapse line above the normal water storage level.
	(6) The horizontal distance between points C and F, denoted as S represents the final predicted horizontal impact width of the bank collapse. According to the elevation on the geological profile, the elevation at point C is the expected impact elevation for the bank collapse profile.

After the Lidi Hydropower Station is filled to an elevation of 1818.00 m, the covering layer soil between elevations 1814.00 m and 1818.00 m will become unstable and collapse under the action of reservoir water level fluctuations and waves, resulting in frontal bank collapse. Taking a typical section of the bank slope, as an example, the final bank collapse elevation is calculated to be 1843.0 m, with a bank collapse width of approximately 35.24 m. The houses of the residents of Badixiang Township and most of the Dewen Highway are distributed between elevations 1840.00–1850.00 m. It is predicted that after the normal water storage of the reservoir, bank collapse and reshaping within this reservoir bank range will occur, which may endanger the safety of public rental housing construction and disrupt road traffic safety.
5.2.3 Finite element method proposed in this paper
The collapses occurring in loose accumulation bodies all manifest step-by-step, and based on the actual analysis of more than 20 cases of bank slope collapses in the Lidi Hydropower Station reservoir area of the Lancang River Deqin-Weixi section, a set of prediction methods for the range of collapses induced by different controlling factors is explored.
1. Analysis of the Main Controlling Factors Affecting the Range of Reservoir Bank Collapse.
The factors considered in predicting the range of collapses mainly include:
Hydraulic Conditions: Collapses are caused by frequent changes in reservoir water levels, with both rising and falling water levels affecting the stability of the bank slope. Therefore, the impact of the reservoir water level is mainly reflected in two aspects, First, the change in the water level difference of surface water affects the stability of the bank slope, with the indicative index represented by the elevation difference [image: A simple black triangle pointing upwards against a white background.] h between the reservoir water level and the shear outlet of the collapsed mass. Second, the frequent changes in the reservoir water level cause changes in the groundwater level within the slope, mainly the impact of changes in water pressure on the stability of the bank slope, with the indicative index represented by the pore water pressure coefficient ru.
The composition of slope materials: This includes the material components that make up the slope (particle size composition), degree of cementation, compaction, etc., which reflect the physical and mechanical properties of the slopes. The indicative index can use strength parameters, namely the dimensionless cohesion strength ratio (c/γH), the internal friction angle [image: If you have an image you'd like me to describe, please upload it or provide a URL.], and the strength ratio between non-uniform rock-soil layers [image: The equation \(c_2/c_1 = \tan \phi_2 / \tan \phi_1\) is shown.].
The geometric form of the slope: The main factor for the stability of loose accumulation bodies is the steepness and height of the terrain. The indicative index is the slope angle [image: Please upload the image you'd like me to describe, and I'll create the alt text for it.] and the custom slope height ratio D (defined as the ratio of the slope height H to the total slope height (or the depth of the geological layer H1), as shown in Figure 9.
	2. Prediction equation of bank collapse stability based on the circular sliding surface search.

[image: Diagram illustrating soil stability and water flow in a reservoir bank. It shows the collapse bank width and height, saturation line, sliding surface, and equipotential lines. Labels indicate areas like reservoir water level and potential cutting outlet, with color-coded lines representing different features.]FIGURE 9 | Generalization model for prediction of collapse bank range.
Combining the above analysis of the bank collapse range of various loose accumulation bodies with different causes in the Lidi Hydropower Station reservoir area (a total of 20 sites), representative cross-sections of bank collapses are selected, and different controlling factors related to the collapses are listed. The relationship curves for slopes with angles less than 45° show a linear change, while the relationship curves for slopes with angles greater than 45° all have a clear turning point of the safety factor. Under different foundation depth ratios, slopes are divided into gentle slopes ([image: It seems there was an issue with uploading the image. Please try uploading the image file directly or providing a URL for me to generate the alt text.] <45°) and slightly steeper slopes ([image: If you have an image you'd like me to describe, please upload it or provide a URL.] >45°) with a boundary line of a 45° slope angle. The relationship curves between the factors affecting the stability of gentle slopes are shown in Figure 10, [image: Text showing the mathematical expression "FS divided by tan phi."] as the fitting regression equations between the dependent variable and the three influencing factors, as shown in Formula 2. The correlation coefficient R2 of the regression equation is 95.91%, indicating very high fitting accuracy. This suggests that changes in strength characteristics and geometric form have a significant impact on the stability of gentle slopes, and all three are sensitive influencing factors. The regression equation is as follows:
[image: Formula showing FS over tan φ equals 0.646 times (c2 over c1) minus 0.032 times β minus 0.769D plus 2.47, with R-squared equals 95.91 percent. Equation is labeled as number 2.]
[image: Graphical data representation comparing a two-dimensional plot and a three-dimensional surface plot. (a) Two-dimensional plot showing scattered data points with a trend line, illustrating relationships between variables labeled as \(C_p^2\) and \(\beta\), with parameters \( \theta = 0.9 \), \(\beta = 4.5\), \(FS\) ranging from \(-2.5\) to \(0.0\). (b) Three-dimensional plot displaying a surface with variables \(D\), \(C_p^2\), and \(FS\) ranging from \(1.0\) to \(4.5\), generating a gradient pattern on the surface.]FIGURE 10 | The relationships of flat slopes have three influence factors. (A) The relationship between strength parameters and slope angle with stability; (B) The relationship between strength parameters, foundation depth ratio, and stability.
From the regression equation, it can be derived that the stability of loose accumulation bodies or soil slopes in the Lidi Hydropower Station reservoir area is positively correlated with the strength ratio of different soil layers, and negatively correlated with the terrain slope angle [image: Please upload the image or provide a URL for me to generate the alt text.] and the custom slope height ratio D. The range of bank collapse is negatively correlated with the strength parameters c, φ, and the terrain slope angle [image: Please upload the image or provide a URL, and I will help you with the alternate text.], and positively correlated with the water level elevation and the area of the groundwater seepage surface on the potential sliding surface.
Selecting the bank collapse section on the left bank of Badixiang Township, as shown in Figure 11, the comprehensive internal friction angle of the covering layer at the collapse section is approximately 42° < 45°. The stability of the bank collapse and the range of instability can refer to Formula 2, and based on the parameters in Tables 1, 2, the position of the potential sliding surface and the morphology of the sliding surface can be calculated, as shown in Figure 12.
[image: Cross-sectional diagram showing layers of soil and rock beside a body of water. Layers include block gravel soil, pebbles and gravels with silt, and bedrock labeled as J3b-Sbr-Ss. Weide Road and Street are marked above the layers. Water level is indicated on the right.]FIGURE 11 | The calculation profile of the left bank of Badi Township.
[image: Cross-sectional diagram showing a slope with a grid pattern. A green line indicates a potential sliding surface labeled “FS=1.058.” A dashed blue line marks the normal water level at eighteen hundred eighteen meters.]FIGURE 12 | The potential sliding surface of the left bank of Badi Township.
The potential sliding surface of the front edge bank collapse at the Cuzhong resettlement site can be seen in Figures 11, 12. The bank collapse area takes into account the main loads such as the self-weight of the slope, the base of the upper building, and the static water pressure. Two critical sliding surfaces appear in the slopes, with the instability mode being the shallow and deep instability of the slopes. The deeper sliding arc is in contact with the base to form a deep instability mode, while the shallower sliding arc does not intersect with the base, is relatively shallow, and finally emerges and converges on the right bank of the slope. The safety factor FS of the shallow sliding surface is 1.058, which is basically in a state of poor stability to basically stable according to the standard of stable state division. The shallow sliding surface is located near the main road of Badixiang Township, and the deep critical sliding surface is mainly concentrated on the Dewen Highway at the top of the slope. The estimated final bank collapse elevation is 1843.0 m, and the bank collapse width is about 33.754 m. The calculation results are quite consistent with the actual collapse situation, and the collapse and sliding are mainly concentrated on the main road inside the front edge.
If this slope is not systematically and permanently treated to greatly enhance its resistance to erosion and self-stability, it can be judged that with the passage of time, the slope will further deform and relax, or when the environmental conditions change, the risk of overall instability of the slope is still large, especially under abnormal conditions such as heavy rain and earthquakes. The potential sliding surface may develop into a deeper sliding surface, which may lead to the collapse and destruction of the housing in Badixiang Township.
5.3 Comparison of calculation results
5.3.1 Comparison results
The engineering region belongs to the Dianxi Mountain and Plain geomorphological unit, located in the Sanjiang Trough Fold System I-level tectonic unit. It has been determined the bank slope gradient, slope surface morphology, valley cutting condition, as well as the composition of the bank material, bank slope structure, and the distribution of special strata. Three different methods were used to predict the range of bank collapse, and the calculation results are displayed in Table 3.
TABLE 3 | Prediction results of bank collapse of the left bank of Badi Township.
[image: Table comparing prediction methods for bank collapse. The Kachujin method predicts a collapse width of 38.018 meters and an elevation of 1848.0 meters. The bank slope structure prediction method forecasts 35.24 meters width and 1843.0 meters elevation. The proposed finite element method predicts 33.754 meters width and 1845.0 meters elevation.]Comparing the calculation results in Table 3, the Kakuchin method predicts a larger width and elevation, with a larger bank collapse range, and the results are biased towards safety. The bank slope structure method and the finite element method used in this paper predict similar final widths and elevations of the bank collapse, with not much difference, indicating that these two methods are more appropriate and the results are reliable. The locations predicted by the bank slope structure method and the finite element method in this paper are also relatively close, located in the middle and slightly towards the rear of the housing in Badixiang Township, which is consistent with the on-site investigation results.
5.3.2 Impact of bank collapse on the surrounding environment
The left bank of Badixiang Township is a broad terrace formed by flood and alluvial deposits. The front edge of the covering layer has a steep slope, which, after water storage, experiences slight pit-collapse type bank collapses due to the weakening of the soil’s physical and mechanical properties and seepage effects. The overall range of the bank collapse is not large and is in line with the early predictions.
According to the analysis, it is unlikely that the natural state of the left bank slope of Badixiang Township will produce a large-scale bank collapse, and the possibility under heavy rain conditions is also not significant. However, there is a potential for a large-scale bank collapse on the front edge under earthquake conditions. Most of the residential houses in this area were newly built during the construction period of the Lidi Hydropower Station and are located near the top of the slope. The load of the buildings has a certain impact on the stability of the slopes.
The analysis suggests that, given the current minor bank collapses and considering the proximity to a resident’s house downstream, which has affected the residence’s safety, it is recommended to relocate and resettle. At the same time, it is recommended to take appropriate protective measures for the front edge of the slope and to strengthen the inspection and monitoring measures during the operation period of the power station.
6 CONCLUSION
This study focuses on the left bank collapse in Badi Township located in the reservoir area of Lidi Hydropower Sta-tion as its research subject. It investigates the collapse modes and mechanisms, proposes the finite element method of this paper, and predicts the width and elevation of the collapse. The main conclusions are as follows:
	(1) The terrace where the collapse section is located is a river alluvial fan of the third order, with a flat surface topography and a higher and steeper soil-like slope at the front edge. The groundwater in the collapse area is mainly pore water in the covering layer, receiving lateral replenishment.
	(2) After impoundment, the soil bank slope was eroded by wind and waves, forming a retreat-type collapse. In May 2021, it collapsed again under the inducement of rainfall and human activities.
	(3) The Kakuchin method predicts a larger range, biased toward safety, while the bank slope structure method and the finite element method of this paper predict a similar range, with strong reliability. The expected collapse width is about 34 m, and the elevation is about 1,945 m.
	(4) Considering the safety of nearby residences, relocation and appropriate protective measures for the front edge of the slopes are recommended, along with strengthened inspection and monitoring during the power station’s operation period.
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Mineral forecasting is of great significance for social development. As an important aspect of geological exploration, its importance lies not only in its direct contribution to economic growth but also in how it employs precise technical methods for mineral exploration. This study utilizes a geological factor analysis method that combines various complex geological observation factors into a few dominant comprehensive factors, followed by causal research and multivariate statistical analysis for classification. Based on this, the study applies principles and methods of elemental geochemistry to identify the dispersion and concentration patterns of associated elements from the distribution characteristics of ordered accompanying factors, providing a scientific basis for mineralization forecasting. Using geochemical experimental data, geological survey comprehensive profiles, and factor score contour maps, this paper analyzes the southern extension segment of the Jiaojia gold mine mineralization belt through geological factor analysis. It was found that the anomalous distribution of chemical elements F4 (Hg, Au, Pb) exhibits certain regularities, which significantly indicate mineralization information and suggest the presence of two main longitudinal mineralization belts.
Keywords: factor analysis, geochemistry, prospecting potential evaluation, gold deposit, ore belt

1 INTRODUCTION
Mineral resources refer to natural resources in solid, liquid, and gas forms that have economic value and are formed through geological processes. The Jiaodong gold mining concentrated area is an important gold production base in China, with dense distributions of gold deposits and significant resource potential. The area’s tectonic-magmatic activity exhibits multi-stage characteristics, providing suitable geological conditions for the activation, migration, and deposition of mineralizing materials. There are numerous gold mines in the region, with gold reserves accounting for one-quarter of the nationally identified reserves, making it the largest known gold-rich area in China. As mining depth increases and shallow resources are gradually depleted, finding alternative resources targeting deep areas of mineral-rich zones or medium to large deposits has become a key challenge for national geological and mineral departments as well as mining enterprises.
The Jiaojia mineralization belt is an important part of the Longlai arc fault zone, consisting of the Jiaojia main fault, the Hexi branch fault, and the Wang’er Mountain branch fault. The Jiaojia main fault controls two super-large gold deposits at Jiaojia and Xincheng, as well as three medium-sized deposits: Matang, Sizhuang, and Dongji. The Wang’er Mountain branch fault governs three medium-sized gold deposits: Wang’er Mountain, Hedong, and Shangzhuang. The Hexi branch fault controls the Hexi super-large gold deposit. Despite differences in scale and development, the fault zones that control gold deposits share a common characteristic of being broad, shattered zones composed of tectonic rocks. The main fracture surfaces within the fault zones consist of fault gouge, with symmetrically developed granitic breccia, brecciated rock, and granodiorite on both sides, showing greater development on the lower side. A metamorphosed hydrothermal zone forms through alteration and mineralization in the mining area. Factors such as alteration degree, ore body characteristics, mineralization intensity, and structural features are strictly constrained by the spatial morphology and scale characteristics of the tectonic rocks in the mineralized area. As exploration difficulties increase and data from geology, geophysics, geochemistry, and remote sensing multiply, effectively extracting key, reliable, practical, and targeted information has become a major goal across disciplines like geology, mathematics, geochemistry, geophysics, and remote sensing, reflecting the current trends and hot topics in geological and geochemical exploration.
Factor analysis, as an effective dimensionality reduction technique, is particularly useful in the era of big data, allowing for the extraction of meaningful composite information from numerous variables. In 1986, Davis pointed out that once the analytical factors are assigned objective and reasonable geological and mineralization interpretations, each factor score for the collected samples serves as a trace of geological and mineralization information for those samples. The magnitude of the scores reflects the degree of membership of the sample attributes; the higher the score, the more representative it is of the sample’s information.
Shi Yanxiang and others applied R-type factor analysis to the geochemical data of Dubao Mountain at a scale of 1:50,000, identifying the geochemical information represented by each factor and creating a geochemical zoning map. This clarified the specific geological-geochemical significance and interconnections of various sub-regions. Shi Lei and colleagues processed geochemical data from stream sediment in a certain area at a scale of 1:200,000 using a factor quantitative model, finding that the extracted factors closely matched the spatial distribution of geological bodies and structures within the survey area. This better reflected the correlation between regional geological structures and anomalies, with the resulting anomalies aligning well with local deposits, suggesting promising exploration targets in other areas. Zhang Hai conducted factor analysis on 39 elemental geochemical data from stream sediments in the Liwu working area of Sichuan as part of a national resource potential evaluation project. He identified nine factors, extracting a few that reflected geological structures and dominant mineralization processes, and created contour maps of the factor scores. These maps intuitively represented the migration and evolution processes of mineralizing fluids, providing comprehensive guidance for new rounds of exploration predictions and geological mapping. Wu Yue and colleagues utilized trend surface analysis to extract residual anomaly components from geochemical data of 12 elements in the western segment of the Feng-Tai mining area in the Western Qinling Mountains, followed by R-type factor analysis of these residual components to identify three factors closely related to mineralization. They described the distribution of geochemical anomalies related to mineralization in the study area using factor score maps, offering solid foundations for selecting exploration targets. Zhao Shaoqing and others analyzed geochemical measurement data from rock fragments in the Shiban Well area of western Inner Mongolia using R-type factor analysis, extracting six representative factors and creating geochemical zoning maps along with factor score contour maps. They discussed the correspondence between each zone and its geological background. Based on the zoning results, and considering the mineralization background of the Beishan area, geological features of the working area, and malachite mineralization points discovered during field investigations, they identified the Cu-Zn zone as a favorable mineralization area.
Although most scholars currently attempt to perform factor analysis on geological foundational data and continually clarify the geological significance represented by each factor, there is limited research on the extraction of structural information using factor analysis. Many researchers simply classify and summarize samples based on the magnitude of R-type factor scores without considering the differences in membership degrees among samples within the same factor group. Furthermore, there has been little analysis of the coupling relationship between geochemical field structures and tectonics. The southern extension of the Jiaojia fault zone has long been a focus for many geological researchers. The extensive Quaternary cover and large scale of the fault zone complicate engineering arrangements (Shi et al., 2022). This paper aims to provide strong evidence for the extension and direction of the fault zone through geological information obtained from fieldwork, combined with geochemical data processing and mapping, using factor analysis methods to support the southern extension of the Jiaojia fault. We have conducted a detailed study on the issue and proposed directions for mineral exploration.
2 GEOLOGICAL CHARACTERISTICS OF JIAOJIA SOUTH EXTENSION SECTION
The research area is located in the south of Zhuqiao Town, Laizhou City, Shandong Province, adjacent to Sizhuang Gold Mine in the north, covering the Xucunyuan Gold Mine Exploration Area, to Yidao Town in the south, and Pinglitian Town in the west. It generally belongs to the southern extension of the famous Jiaojia Fault Zone. The study area is shown in Figure 1 below.
[image: Topographic map of a region showing various towns like Pinglidian and Hukeyijia. A river runs through, marked in blue. Different colored zones represent areas labeled Q, 1, 2, 3, 4, 5, and 6 in the legend. A scale is provided for distance, ranging from zero to two kilometers.]FIGURE 1 | Geologic map of the study area. 1—Quaternary; 2—monzogranite; 3—Neoarchean amphibolite-biotite bearing tonalite; 4—Jiaodong Gr.; 5—alteration zone; 6—extra large and large gold deposits; 7—medium-small gold deposit.
The strata in the area are widely distributed as Cenozoic Quaternary strata, all of which are loose quaternary deposits and distributed in the form of cap layer. It is comprised of residual slope deposits and alluvial deposits composed of gray-brown loam, sandy loam and gravelly sand. The stratum thickness is 0.5–20 m, generally 3–8 m, and the thickest can reach more than 40 m. Archaean medium-fine-grained hornblende-biotite bearing tonalitic gneiss is sporadically exposed.
The Jiaojia Fault Zone is marked by the development of brittle fracture structures. According to the trend, it is divided into 2 groups: NNE-NE trending faults and NW trending faults. The former mainly controls the main structure of the ore body and a few late-stage mineralization structures, while the latter is distributed in the Linglong supertonic in the footwall of the Jiaojia fault zone is small in scale and not well developed. Most of it is occupied by late-stage dikes, and a few of the mineralized alteration zones formed also belong to post-metallogenic structures (Chen, 2017).
The Jiaojia Trunk Fault is part of the Longlai Fault in the region. It proceeds from Huangshanguan, Longkou City in the north, and ends at the south of Xucunyuan Village, Zhuqiao Town, Laizhou City. It is approximately 60 km long and extends from Sizhuang Village to Zhaoyuan along the NNE-NE direction. Gaojiazhuangzi, then pass Xinzhuang and turn NNE to Shuipan. The Xinzhuang-Shuipan section fault runs at about 75°, and enters Longkou City from Shuipan in the 25° direction. The south of Si Zhuang extends to the south of Xucun Yuan Village in a direction of 170°. The shape is very irregular, with an “S” shape on the plane, and obvious characteristics of branching, compounding, expansion and contraction. This fault is developed within the Guojialing supertonic or the Linglong supertonic or in the contact zone between the two. Where the fault structure is improved, thick gray-black fault gouge and fractured altered rock zones of varying sizes are often formed (Cao et al., 2012).
The Lingshangou-Beijie Fault is located on the east side of the Jiaojia Main Fault, with a trend of 50°–60° within the study area, a SE tendency, and a dip angle of 65°–70° (Xie and Sun, 2008).
The southern section of the Jiaojia Fault Zone, starting from Zhuqiao Town in the north, is strongly covered by the Quaternary System after passing through the Xucunyuan Gold Mine, which brings great difficulties to the study of fault trend inference. After many explorations, it was revealed that the fault zone in the Xucunyuan section of the Jiaojia Fault does exist. However, there has been little research on the south area of Ziluojijia. The direction of the fault zone has simply been roughly inferred through geophysical and geochemical exploration. This article will then comprehensively integrate existing data and field geological survey results to derive the direction of the fault zone in the study area.
The Quaternary coverage in the study area is severe, and the magmatic rocks are mainly dominated by the surrounding Neoarchean Qixia super-unit and the Mesozoic and Late Jurassic Linglong super-unit. The derived dikes in the area are not very developed.
2.1 Qixia super-unit
It is distributed in the northern and eastern areas of the area in the form of basement, and is in fault contact with the Linglong super-unit. The lithology is Xinzhuang Formation gneissic medium-fine-grained hornblende-biotite -containing tonalite (Ma, 2019).
The Qixia and Malianzhuang super-unit are a set of intermediate-basic metamorphic plutonic intrusive rock series, which are rock masses that have suffered multiple stages of metamorphic deformation. Through long-term geological research work, it is believed that this super-unit is closely related to the genetic evolution of gold deposits. During the emplacement process of intrusive magma, gold-bearing materials from the mantle were transported to the crust, establishing one of the primary “source layers” for gold deposits.
2.2 Linglong super-unit
The study area is mainly distributed in the east and south. It is produced in the form of basement and is in fault contact with the Qixia super-unit in the hanging wall. It includes medium-grained biotite-containing monzogranite in the Cuizhao Formation and medium-coarse-grained monzogranite in the Guojiadian Formation. This super-unit is related to the remelting and high migmatization of the Qixia super-unit and the Jiaodong Group, and is an “S” type granite (Cui et al., 2008). During the formation process, the Jiaodong Rock Group and Qixia Super-unit were remelted on a large scale, and the mineral-forming materials were successively captured and enriched again, laying a material foundation for further enrichment and mineralization in the later period (Wang et al., 2020).
3 1:50,000 SOIL GEOCHEMICAL CHARACTERISTICS OF THE STUDY AREA
Most of the area is covered by the Quaternary System, mainly river alluvial and residual slope deposits. The lithology is gravelly sandy clay, subsand soil, subclay, etc. of the Linyi Formation, with a thickness of 0.5–20 m. Combined with the actual geological and landscape conditions of the survey area, the 1:50,000 soil geochemical measurement method was used for measurement, with a point spacing of 200 m × 500 m, and a total of 1,200 samples were collected.
3.1 Statistical characteristics of each element
The sampling test data of the 1:50,000 soil geochemical profile in the study area analyzed 12 elements including Au, Ag, Hg, Cu, Pb, Zn, Sn, W, Mo, As, Sb, and Bi. The statistical characteristic values of each element are as follows Table 1. In order to display various indicators of the data more intuitively, SPSS is used to draw a histogram, as shown in Figures 1, 2. It is found that the skewness of the other elements except Bi is less than 20. The skewness of the Bi element is slightly higher, so the elements obey or approximately obey the positive direction. state distribution.
TABLE 1 | Statistical table of element characteristic values in the study area.
[image: Table showing statistical data for chemical elements including Au, Ag, Hg, Cu, Pb, Zn, Sn, W, Mo, As, Sb, and Bi. Columns include sample quantity (1,200 each), range, minimum and maximum values, mean, standard deviation, variance, skewness measure, and kurtosis coefficient. Footnote indicates data from Shandong Geological Research Institute. Hg and Ag are in units of ten to the negative ninth power; other elements in units of ten to the negative sixth power.][image: A grid of twelve blue histograms showing frequency distributions of different datasets. Each histogram varies in shape, with most having a central peak and tapering off on both sides. X and Y axis labels are present, indicating different variables and frequencies across plots.]FIGURE 2 | Distribution histogram of 12 elements of soil geochemistry in the study area.
Combining Table 1 and Figure 2, it can be seen that: ① Reflects the large skewness of the element distribution form. If the Au element has a large skewness and approximately obeys a normal distribution, and the range value and variance are large, it means that Au has a tendency to be concentrated in this area, which is conducive to local enrichment and mineralization. There is no geological data that strictly obeys the normal distribution in nature. Li Fanglin et al. proposed that when the skewness coefficient is less than 20, it can be considered to be similar to the normal distribution, and when the skewness coefficient is greater than 20, it is similar to the lognormal distribution (Li FL. et al., 1999). ②The difference in Cu element reflected is not very obvious and is widely distributed. ③The kurtosis, which reflects the flatness of the data, varies greatly. Au, Hg, W, and Bi are several to hundreds of times larger than other elements, which determines the steepness of the normal distribution in the histogram. ④The coefficient of variation reflecting the degree of dispersion of each element varies greatly. The coefficients of variation of Au, Hg, W, Mo, Cu, and Bi in each geological unit are several to hundreds of times higher than those of other elements, so they are likely to be enriched in the study area.
3.2 Distribution of elements in various geological bodies
Different geological units have different geochemical backgrounds. Using the content change characteristics of elements in each geological unit, we can analyze the spatiotemporal distribution of elements, thereby exploring the relationship between element distribution and geological background, which will help us find more favorable conditions. Mineralizing geological unit.
Based on the geological background of the study area, this paper divides it into two main geological units according to different ages and lithologies. They are the Mesozoic intrusions and Archean basement. The former mainly refers to the Linglong monzogranite., The latter includes medium-fine-grained amphibole-containing biotite tonalites in the Qixia Group, and fine-grained amphibole-containing biotite tonalitic gneisses in the Jiaodong Group. The contents of 12 elements for these two geological units have been statistically analyzed, and some representative values are shown in Table 2, 3.
TABLE 2 | Archean geological bodies Statistical characteristics of elements in geological units.
[image: Table listing chemical elements in Archean geological bodies. It includes columns for sample quantity, range, minimum, maximum, mean values, standard deviation, variance, skewness measure, and kurtosis coefficient, with data for Au, Ag, Hg, Cu, Pb, Zn, Sn, W, Mo, As, Sb, and Bi. Each element has a sample size of 1,057.]TABLE 3 | Mesozoic rock bodies Statistical characteristics of elements in geological units.
[image: Table displaying statistics for chemical elements in Mesozoic rock bodies. Columns include chemical element, sample quantity, range, minimum and maximum values, mean value, standard deviation, variance, measure of skewness, and kurtosis coefficient. Elements like Au, Ag, and Hg show varying statistics, highlighting differences in distribution and variance.]The change trend of Au content varies greatly in these two geological units. The variance of Au content in the Archean basement is nearly 5 times higher than that of the Mesozoic intrusion, indicating that the degree of dispersion in the Archean basement is large and has a tendency of enrichment. This is consistent with the widely-distributed varying scales of mineral deposits (occurrences) throughout the region. The number of abnormal points and high-value points are also mostly concentrated in the Archean basement.
The changing trends of the element content of Ag, Cu, Pb, Zn, Sb, and As are very similar in different geological units, and the average values are almost equal. The degree of dispersion of the elements themselves is large, indicating that the elements are ubiquitous in the two geological units. This is mainly It is closely related to the low-temperature alteration prevalent in the study area.
The behavior of Hg in these two geological units is very different. The maximum value and variance in the Archean basement are several times higher than that of the Mesozoic intrusion rocks, indicating that the degree of dispersion in the Archean basement is relatively large. This is mainly caused by the two fault zones (Miaojia Fault and Jiaojia Fault) that extend into the Archean basement. Furthermore, the result also indicates that tectonic activity is relatively developed in the study area and fissure veins are widely distributed. However, the degree of data dispersion in Mesozoic intrusions is still large, which is closely related to the existence of two faults.
W, Sn, and Mo are all high-temperature elements that are easily active in acidic and alkaline environments and can easily form large-scale anomalies. The data shows that the three elements in the study area are mainly distributed in Archean geological bodies, but the two geological The difference between units is not obvious.
The maximum content of Bi element in Archean rock mass reaches 9.64 ppm, and the variance is 0.91, which is also several times higher than the content in Mesozoic rock mass, indicating a relatively large degree of dispersion. The Bi element kurtosis in the Archean rock mass indicates that the normal distribution of the element is sharper and the content difference is larger, while in the Mesozoic the normal distribution is sharper and the content difference is not obvious.
3.3 Combination relationship of elements
In order to better understand the relationship between various elements in the area, this paper applied SPSS software to conduct correlation analysis on 1,200 1:50,000 soil geochemical test data in the study area, as shown in Table 4. There is a close correlation between most elements. According to the correlation coefficient, the elements can be divided into the following groups: Au, Hg, Pb, W, Cu, Zn, Mo, As, Sb, Bi, Ag, Sn.
TABLE 4 | Correlation analysis of 1:50,000 soil geochemical data in the study area.
[image: Correlation matrix table showing correlations between elements Au, Ag, Hg, Cu, Pb, Zn, Sn, W, Mo, As, Sb, Bi. Diagonal values are all one point zero zero zero, indicating perfect correlation of each element with itself. Other values represent the correlation coefficients between different elements, highlighting varying levels of correlation.]3.4 Element spatial distribution characteristics
When analyzing geochemical maps, the concentration value data of sampling points are usually compiled and processed, and the data are combined to estimate the large-scale variation at the regional or local level, and then compared with each section. Local outliers were eventually discovered, drawing attention to areas where detailed measurements could be made. Geochemical maps can intuitively reflect the spatial distribution status of element combinations or data elements. Therefore, to study the spatial distribution patterns of the two, it is often necessary to draw geochemical maps of elements or element combinations.
The production of 1:50,000 geochemical maps should try to reflect the spatial changes in the content of each element in an objective manner, and at the same time consider the impact of singular values on mapping distortion. Therefore, the production of geochemical maps uses data after robust processing of singular values. This article draws contour maps of 12 elements based on the 1:50,000 soil geochemical test data provided by the Shandong Institute of Geological Survey and Analysis, and analyzes the distribution characteristics of each element in the study area.
From Figure 3, it can be clearly seen that the distribution of Au in the study area is relatively concentrated, with the high-value areas with positive anomalies are regularly distributed in two belts. One belt starts from the Huangjia, to Baowangqinjia and Dayinjia, then to Xiaozhangbu, where areas with high gold value correspond to mineral deposits (occurrences). Due to the typical structural ore-controlling characteristics of Jiaojia, it is speculated that this belt is most likely to be the southern extension of the Jiaojia fault. The second belt extends southwestward from the Qianlijia area to Miaojia and Pinglidian towns. The high-value areas correspond to several quartz vein-type gold deposits (occurrences). The second belt is mainly controlled by the Miaojia Fault, but whether it extends to Pinglitian Town remains to be verified.
[image: A map displaying a heat distribution with varying shades of red and blue across a grid. Red indicates higher intensity, while blue indicates lower intensity. Several labeled locations, such as Dinsdale and Rotowaro, are marked within the grid. A bar scale and a color legend indicating intensity levels accompany the map.]FIGURE 3 | 1:50,000 soil geochemical Au element contour map.
As an element with certain indicative significance for structure, the distribution of Hg element in the positive anomaly high value area is very similar to the distribution of Au element, with a distribution characteristic of approximate band-like shape. In the high-value area near the northeastern barrier, the long axis is nearly east-west. It is speculated that the trend of tectonic activity will change to the north-east during the process of southward extension. As and Sb elements are regional mineralization elements associated with Au, and their distribution patterns are also similar to Au elements.
The medium and high temperature elements W, Sn, Pb, and Bi are concentrated in the northwest and western region of the study area, showing a nearly east-west zoned distribution, and are located close to the medium-coarse-grained monzogranite of the Linglong in the south. It is speculated that the distribution of this group of elements is related to the weathering and denudation products of the rocks. Due to prolonged weathering and denudation processes affecting the rock mass, coupled with the infiltration of several rivers aligned nearly east-west, high-temperature elements have become extensively dispersed within the Quaternary cover in this region, resulting in a distinct abnormal distribution pattern. This anomalous distribution could potentially indicate the presence of a concealed rock mass beneath the affected areas. The high-temperature element Mo is mostly distributed within the Mesozoic intrusions. Ag, Cu, and Zn, as medium-low temperature elements, are also mainly distributed in the Quaternary cover, with few high-value areas occurring in the Mesozoic intrusions.
4 FACTOR ANALYSIS
Factor analysis is a type of multivariate statistical analysis method that uses the idea of dimensionality reduction to analyze the internal structure of the correlation matrix of the original variables and summarize some variables with intricate relationships into a few comprehensive factors (Xiang, 2005). As this discipline continues to develop, its uses have been widely introduced into other subject areas.
4.1 Analysis principles
The geological factor analysis method is to combine many geological observation factors (samples or variables) with intricate relationships and summarize them into a very few leading comprehensive factors (i.e., main factors), so as to facilitate the decomposition of superimposed geological processes, and then carry out the cause and analysis of geological factors. A multivariate statistical analysis method for classification studies. Utilizing this principle and using element geochemistry principles and research methods, we can find out the dispersion and aggregation laws of related elements from the ordered distribution characteristics of related factors, thereby providing scientific basis for structural inference, mineralization prediction, and mineral prospecting (Zhang et al., 2012).
Each comprehensive factor can quantitatively display the unobvious differences contained in samples or original geological markers, and they can better reflect the laws and essence of things. The division of comprehensive factors not only preserves important mineralization information, but also limits the number of variables, making it easier to classify and comprehensively analyze samples or geological markers. There are two main types of factor analysis models in the geological field, Q-type and R-type. Among them, R-type factor analysis is used primarily to study the relationship between variables. This article uses the R-type factor analysis model (Lv et al., 2002).
The specific method is as follows: There are n samples, and each sample observes p variables. First, the variables are standardized to eliminate the influence caused by the different magnitudes of the observation dimensions, and the factor model is obtained under the premise of meeting certain conditions:
Its matrix form is:
[image: Mathematical equation showing "X equals A F plus epsilon."]
A= [image: Matrix illustration with elements from \( a_{11} \) to \( a_{1m} \) in the first row and from \( a_{p1} \) to \( a_{pm} \) in the last row. Ellipses indicate more elements.] is the factor loading matrix, F is the common factor, and ε is the special factor.
Next, the initial factor loading matrix needs to be orthogonally rotated by the Varimax method. The purpose is to make the extracted common factors more interpretable and representative, and to effectively divide the element combinations based on the actual geological characteristics of the study area (Liu et al., 2015).
Geostatistics is mainly used in the following three aspects when studying geochemical information: 1) studying the spatial variation regularity of geochemical information and establishing a mathematical model of spatial variation of elements; 2) studying the spatial distribution characteristics of geochemical information and Enrichment trend; 3) Study the spatial distribution characteristics of element anomalies (Huang, 2007; Rice, 2006).
4.2 Application of factor analysis in structural information extraction
4.2.1 Factor identification related to constructs
Factor analysis was conducted on the 1:50,000 soil geochemical test data in the study area in order to find a factor combination that reflects the structural characteristics. Four factors were determined based on the contribution rate (see Table 5). F1 represents the As-Sb element. Combination; F2 represents Cu-W-Zn element combination; F3 represents Ag-Sn element combination; F4 represents Hg-Au-Pb element combination.
TABLE 5 | Rotation factor score matrix of 1:50,000 soil geochemical test data.
[image: Table showing data for elements across four factors (F1, F2, F3, F4). Values for As, Sb, Cu, Zn, W, Ag, Sn, Hg, Au, and Pb are listed with varying numeric values across the columns, e.g., As has 0.883 for F1 and -0.027 for F4.]Four factor groups are analyzed: F1 factor (As, Sb) represents low-temperature hydrothermal alteration, such as sericization, silicification and other alterations. The F2 factor (Cu, W, Zn) represents the polymetallic mineralization stage, and the F3 factor (Ag, Sn) can be combined into one factor as a regional combination of elements associated with metallurgy. The F4 factor (Hg, Au, Pb) represents the combination of mineralization elements. At the same time, Hg, as an element that indicates structure, is in the same group as Au, which also illustrates the characteristics of structural ore control in the Jiaojia fault zone.
In order to further verify, combined with the current research status of previous people, the alteration brought by the Xucunyuan exploration area project was selected to verify the correctness of the selection of factors. The F4 (Hg, Au, Pb) factor is used to draw a comprehensive geological-chemical prospecting profile, combined with the geological profile of the 512 line exploration line in the Xucunyuan exploration area, and the anomaly information is comprehensively compared with the actual geological information (see Figure 4).
[image: Geological cross-section diagram showing tectonic features. The top section highlights crustal elevations with red and blue areas. The bottom section illustrates various geological layers, including monzogranite and ultramafic rock, marked with different colors and symbols. A legend at the bottom explains each symbol and color used for elements like tectonic position and rock type.]FIGURE 4 | Comprehensive geological-geochemical profile of Exploration Line 512. Note: A-A’ is the 1:50,000 soil geochemical F4 (Hg, Au, Pb) geochemical profile of the south extension section of Jiaojia, and the geological survey of line 512 is shown in Figure 1.
The right side of the 512 line section in Figure 4 shows the southern extension of the Jiaojia main fault exposed by the project. Comparing the flat section of the test data, it can be clearly found that the peak position of the positive anomaly is accurately consistent with the main fault on the right and the main fault on the left. Corresponds to the secondary fracture location.
Figure 5 selects the geological profile of the exploration line of the Dayinjia Gold Mine in the study area. Comparing the location of the positive anomaly peak of the F4 factor with the actual geological bodies revealed in the profile, it is found that the location of the positive anomaly peak is where the tectonic activity is relatively high. Lots of locations. On the west side is the southern section of the Miaojia fault, which has the same shape as the northern section, and has a tendency to intersect with the inferred Jiaojia fault in the deeper parts. The exposure of diorite porphyry veins and alteration zones on the east side indicate the existence of faults in this area, and it is inferred that the southern section of the Jiaojia Fault passes here.
[image: Geological cross-section diagram depicting element combinations and geological features between points A and A'. The top section features positive and negative element exceptions, shown in red and blue. The bottom section illustrates geological formations such as an alteration zone, quaternary system, and ore body, with various patterns and colors. A scale indicates distances up to three hundred meters.]FIGURE 5 | Comprehensive geological-geochemical of Dayinjia No. 8 exploration line. Note: A-A’ is the soil geochemical F4 (Hg, Au, Pb) geochemical profile of 1:50,000 in the south extension section of Jiaojia.
Through the above analysis, it is inferred that the selected F4 factor has important indicative significance for the identification of structural locations, and provides a very reliable basis for the subsequent trend of the southern extension of the Jiaojia Fault Zone.
4.2.2 Extraction of structural information and structural inference
Draw a geological profile (Figure 6) based on the F4 factors (Hg, Au, Pb) obtained above that reflect structural information, and summarize the locations of positive and negative anomalies in order to extract effective information indicating the structure.
[image: Geological map with multicolored areas and symbols representing different formations and structures. Red lines and rectangles highlight specific regions, while towns like Jiadengyu, Baoxingfangjiajia, and Ziliujingjia are marked. The map includes a scale in the bottom right corner.]FIGURE 6 | 1: 50,000 soil geochemical F4 factor (Hg, Au, Pb) geological profile map.
A total of two main fault structures have been demarcated within the study area. One is distributed on the west side of the study area, starting from the west side of Ziluo Liu’s house in the north and extending southward through Hu Lei’s Yujia, Miaojia Town, Jiadeng Yangjia, In Pinglitian Town, the direction changes near Miaojia Town, with a westward trend, which is speculated to be the Miaojia Fault. The other one starts from the vicinity of Xucunyuan in the north of Huang’s house, and extends southward through Dayin’s house, Baowang Jiang’s house, Xiaolanbu, Xiaobeiling, and Zhanjiawa. It starts from Dayin’s house and goes the same slow way. Changes, with a westward trend, are speculated to be the southern extension of the Jiaojiazhu fault.
Through the two main fault structures inferred in Figure 6, it is found that the inferred southern extension of the Jiaojia Main Fault has the characteristics of strong and weak zoning along the general trend. Comparing the geological maps, it was found that there are mineral deposits (points) distributed in all strong belts. Among them, the strong belt I is close to the Xucunyuan exploration area, and the current project has exposed the ore body; the strong belt II contains the Dayinjia deposit, and the survey work has discovered 5 gold-bearing alteration zones. The strong III zone is located near Zhangcun in the northeast, with small mineral spots scattered around it and no formed deposits. No mineral deposits (points) were found in the two weak zones, which illustrates the rationality of the zoning.
According to previous research, the ore deposits distributed in the northern section of the Jiaojia Fault Zone are also zoned (Li JX. et al., 1999; Lv et al., 1999). The distance between the main ore bodies of the two deposits is about 1,400 m. Combining the above analysis results, it was found that the northern section It is similar to the structural ore-controlling characteristics of the southern section, further enriching the theoretical basis for structural inference.
4.3 Application of factor analysis in extracting mineralization anomaly information
4.3.1 Identification of factors related to mineralization and alteration
Most of the gold deposits (points) in the Jiaojia Fault Zone exist near the main fault, and the corresponding mineralization and alteration are closely related to the structure. Analyzing the mineralization and alteration information in the study area can determine the location and direction of the fault To the role of verification. This article selects factors containing gold elements as the main analysis objects to explore the distribution characteristics of mineralization alteration in this area.
Through the above factor analysis of the 1:50,000 soil geochemical test data, it is found that the F4 (Hg, Au, Pb) factor contains the main mineralization element Au, the Hg element closely related to the structure, and the middle element related to the hydrothermal fluid. The low-temperature element Pb reflects specific tectonic activities to a certain extent (Han, 2019). Previous people have done factor analysis on the mineralized elements of the Jiaojia gold mine and found that the Au element is highly correlated with Hg and Pb elements (Guo et al., 2008). In Figure 3, on the plane section made using the F4 factor score data, two Xucunyuan gold deposits and Dayinjia gold deposits that fit well with the F4 factor peak positions were selected to analyze the mineralization conditions of the two deposits. authenticating.
Among them, 14 alteration zones have been discovered in the Dayinjia gold deposit, of which 5 have gold mineralization. The larger one is the No. 1 alteration zone, which has a surface control length of 600 m, a maximum width of 40 m in the middle, and an average width of 3 m. No. I-1 gold ore body is developed in the middle of the alteration zone. The ore body has a controlled length of 150 m, an average width of 2.43 m, and an average grade of 3.67 × 10−6.
Lines 504 and 488 of the Xucunyuan mining area saw two gold ore (chemical) bodies controlled by a single project respectively, with grades reaching 0.81 × 10−6 and 2.21 × 10−6, and thicknesses of 1.08 m and 1.18 m respectively. The gold ore (chemical) body controlled by 488ZK13 is distributed at the bottom of the pyrite-sericite cataclastic zone below the main fracture surface. The ore-controlling elevation is −52 m. Below it is the pyrite-sericite granitocatlastic rock. zone; 504 ZK14-controlled gold deposits are distributed in the pyrite-seritic granite zone, with an ore-controlling elevation of −55 m, and are controlled by secondary ore-controlling fissures (Cui, 2007).
Based on the previous examples, it can be inferred that the establishment of the F4 factor confirms that the southern extension of the Jiaojia Fault Zone has the same mineralization element combination characteristics as the northern section, which has important indications for the mineralization alteration in the area.
4.3.2 Delineation of abnormal information
The factor scores obtained in R-type factor analysis are used to draw geochemical contour maps, which are widely used in current geological work. The factor score contour map can intuitively reflect the distribution of element combinations, and its geochemical and geological significance is more clear (Li et al., 2017). Drawing a contour map (Figure 7) based on the F4 (Hg, Au, Pb) factor score can clearly identify areas with abnormally higher background values. These areas provide directions for the search and development of mineral resources.
[image: Topographic map with contour lines and color gradients indicating elevation changes. Red lines and markers highlight specific routes or areas of interest. A scale bar is present in the bottom right corner.]FIGURE 7 | Isogram of 1:50,000 soil geochemical F4 (Hg, Au, Pb) factor scores.
According to the position of the positive anomaly area in the factor score contour map 5–5, it is found that the high-value areas are mainly distributed in two belts, labeled No. I and No. II respectively. The shape of Zone I is very similar to the structural shape on the east side inferred in Figure 6. From north to south, the abnormally high value area is divided into Zone 1 (Huangjia), Zone 2 (Dayinjia), and Zone 3 (Northeast barrier, Xiaobeiling). The shape of Zone II is also very similar to the structural shape of the west side inferred in Figure 6. From north to south, it is divided into Zone 1 (Hu Lei Yujia), Zone 2 (Miaojia Town), and Zone 3 (Ping). Lidian Town.
4.3.3 Exception explanation and evaluation
Comparing the position of Zone I in Figure 7, it is found that it extends to the same position and direction as the fault zone revealed by the Xucunyuan Mineral Deposit Project, and is inferred to be the southern extension of the Jiaojia Main Fault Zone. The No. Ⅱ zone is inferred to be the southern extension of the Miaojia fault zone that is basically consistent with the trend of the Jiaojia fault zone.
Combined with the strong and weak zoning in Figure 3, it can be found that the isometric characteristics reflected in the two pictures are very similar. Previous studies have shown that there are isometric characteristics between the various deposits in the northern section of the Jiaojia Fault Zone. This paper believes that the mineralization patterns of the deposits in the study area have the same characteristics. There are dispersion and accumulation of elements in any area, and this feature is closely related to the geological background of the area (Zhao et al., 2012). Based on the above findings, it is proved that analyzing soil geochemical information through factor analysis and selecting appropriate factors can correctly reflect the actual geological information. Based on the abnormal distribution and the actual observed geological conditions in the field, the prospecting direction can be effectively clarified and the prospecting target area can be determined.
5 CONCLUSION
This paper addresses the main issues and shortcomings in the southern extension of the Jiaojia mineralization belt. Based on 1:50,000 soil geochemical exploration data from this area, R-type factor analysis was used to identify multiple factors (principal components) and clarify the geological significance of each. With careful consideration of the geochemical properties of various elements, the study examined the geochemical field structure information related to factors closely associated with tectonics in the region. Geological-geochemical comprehensive profile maps, geological cross-sections, and factor score contour maps were created, revealing that F4 (Hg, Au, Pb) has significant indicative value for discerning fault structures and identifying mineralization information. Continuing with the factor analysis approach, we processed 1:1,000 detailed exploration profile test data to extract the F2 (Pb, As, Sb, Hg) factor, which is significant for distinguishing fault structures. The positive anomaly peak positions aligned well, confirming that the F4 factor can reflect important structural and mineralization information in the area. This has notable implications for recognizing tectonic and mineralization information.
Based on the spatial enrichment patterns of mineralization in the Jiaojia mineralization belt from north to south, this paper suggests that the depth of ore body occurrence tends to increase gradually to the south. Additionally, the tectonic activity in the region is more developed compared to the northern section, which facilitates the migration and accumulation of mineralizing materials. This paper identifies two main longitudinal mineralization belts: the southern extension of the Jiaojia fault. Considering the current engineering control conditions, as well as the geological conditions, mineralization characteristics, and spatial distribution (isotropy) patterns of the gold deposits, it is proposed that this area may serve as a favorable zone for the formation of altered rock-type gold deposits.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
ZM: Methodology, Writing–original draft. YQ: Methodology, Resources, Validation, Writing–original draft. MJ: Supervision, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was supported by the Cores and Samples Center of Natural Resources, China Geological Survey, “Selection, Collection and Service Application Demonstration of Strategic Mineral Physical Geological Data” (No: DD20240126).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Cao, C. G., Yu, Y. W., Guo, G. Q., et al. (2012). Analysis on ore-forming model in deep part of jijia gold deposit in sanshandao by using integrated geophysical exploration method. Shandong Land Resour. 28 (04), 19–24. 
	 Chen, Y. Y. (2017). Geochemical characteristics and deposit genesis of Jiaojia gold deposit in Shandong Province, China. Xi’an: Chang’an University. 
	 Cui, S. X. (2007). Analysis on south widening and ore prospecting future of Jiaojia Fault belt. Shandong Land Resour. (10), 7–10. 
	 Cui, S. X., Yuan, W. H., and Yang, Z. L. (2008). Geological characteristics in the deep of SizhuangGold deposit in Laizhou city. Northwest. Geol. 41 (04), 82–92. 
	 Guo, T., Deng, J., Lv, G. X., et al. (2008). Factor analysis of elements related to mineralization in Jiaojia gold deposit. Contributions To Geol. Mineral Resour. Res. 90 (02), 106–112. 
	 Han, B. N. (2019). Characteristics of Jiaodong gold deposits and mineralization prospection of southern and deep part of jiaojia fault. World Nonferrous Met. 535 (19), 84+86. 
	 Huang, J. N. (2007). Delineation and estimation of geochemical AnomalyUsing geostatistical methods. Beijing: China University of Geosciences. 
	 Li, F. L., Bao, Z. Y., and Pei, T. (1999a). Principle and software system of Geochemical date processing. Earth Science-Journal China Univ. Geosciences (03), 101–104. 
	 Li, J. X., Guo, T., and Lv, G. X. (1999b). Discussion on gold mineralization type and its relation with tectonic in northwestern Jiaodong. J. precious metallic Geol. (2), 24–28. 
	 Li, P. Y., Shi, W. J., and Wei, J. H. (2017). An evaluation of ore-prospecting potential for copper polymetallic deposits in a certain area of Xinghai County, Qinghai Province, based on processing and anomaly extraction for 1:50000 soil geochemical survey. Geophys. Geochem. Explor. 41 (02), 194–202. 
	 Liu, H., Huang, H. X., Li, G. M., et al. (2015). Factor analysis in geochemical survey of the Shangdu gold deposit, northern Tibet. Geol. China 42 (04), 1126–1136. 
	 Lv, G. X., Guo, T., and Liu, D. J. (2002). Ceological and structural characteristics of the linglong-jiaojia type cold deposits and FactorAnalysis of their metallogenic tectonic physicochemical parameters—exemplified by the fushan gold deposit. Acta Geol. Sin. (05), 409–416. 
	 Lv, G. X., Wu, J. C., Zheng, X. L., et al. (1999). A study and prognosis of deep resources along the second enrichment belt of the Linglong gold orefield, Shandong Province. Mineral. deposits (2), 24–28. 
	 Ma, J. S. (2019). Geological characteristics and prospecting direction of Shuangshan fluorite deposit in Penglai, Shandong Province. Technol. Innovation Appl. 262 (06), 79–80. 
	 Rice, J. (2006). Mathematical statistics and data analysis[M]. United States: Cengage Learning. 
	 Shi, G. F., Qu, W. L., and Yu, Y. (2022). Geological characteristics of gold deposits in Jiaodong area andProspect of south extension and deep prospecting of Jiaojia Fault Zone. China Resour. Compr. Util. 40 (04), 79–82. 
	 Wang, Q. Y., Du, L. M., Hu, C. Y., et al. (2020). Analysis and comprehensive of geophysical characteristics and prospecting prediction in Linglong fault belt, Shandong Province. Gold Sci. Technol. 35 (03), 1061–1067. 
	 Xiang, D. J. (2005). Practical multivariate statistical analysis[M]. Wuhan: China University of Geosciences Press, 157–171. 
	 Xie, Y. F., and Sun, Z. Q. (2008). Gold mine survey in xucunyuan area, Laizhou city, Shandong Province. Gansu Sci. T echnolo gy (02), 70–71+66. 
	 Zhang, Y. H., Liu, Y. P., and Zhang, H. (2012). The application of factor analysis to geochemical prospecting by the example of the Liwu ore district. Acta Geol. Sichuan 32 (01), 112–115. 
	 Zhao, S. Q., Wei, J. H., Gao, X., et al. (2012). Factor analysis in the geochemical subdivisions: taking 1:50000 debris geochemical survey in the shibanjing area of inner Mongolia as an example. Geol. Sci. Technol. Inf. 31 (02), 27–34. 

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Ma, Qiao and Jing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 18 November 2024
doi: 10.3389/feart.2024.1494898


[image: image2]
Susceptibility assessment of geological hazards in Shenzhen Town, Ninghai county based on the APH-CF model
Shuai Han1, Ran Li2,3,4*, Shujun Hui5, Qiang Sun1 and Taili Zhang1
1Nanjing Center, China Geological Survey, Nanjing, China
2Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China
3Observation and Research Station of Geological Disaster in Baoji, Ministry of Natural Resources, Baoji, Shaanxi Province, China
4Technology Innovation Center for In-situ Stress, Ministry of Natural Resources, Beijing, China
5Water Supply and Soil and Water Conservation Technology Department, Zaozhuang Urban and Rural Water Affairs Development Center, Zaozhuang, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Pengju An, Ningbo University, China
Jianquan Ma, Xi’an University of Science and Technology, China
Teng-To Yu, National Cheng Kung University, Taiwan
* Correspondence: Ran Li, 13261553306@163.com
Received: 11 September 2024
Accepted: 30 October 2024
Published: 18 November 2024
Citation: Han S, Li R, Hui S, Sun Q and Zhang T (2024) Susceptibility assessment of geological hazards in Shenzhen Town, Ninghai county based on the APH-CF model. Front. Earth Sci. 12:1494898. doi: 10.3389/feart.2024.1494898

Introduction: This work employs a coupled evaluation model that integrates deterministic coefficients with the Analytic Hierarchy Process to conduct a comprehensive assessment of geological disaster susceptibility in Shenzhen Town, Ninghai County.Methods: Cascading geological disasters induced by typhoons and rainfall in the southeast coastal area of China are a major concern and cause huge losses of life and property every year. To effectively prevent and mitigate such disasters, it is necessary to evaluate the susceptibility of geological disasters. Taking geological disasters in Shenzhen Town, Ninghai County as the research object, eight influencing factors in terms of topographic and geomorphological conditions, engineering geological conditions, and human activities were selected based on the geographic information platform (GIS) in this work. The coupling model of the certainty factor model and analytic hierarchy process method was used to evaluate the susceptibility of geological hazards in the study area.Results: The evaluation results illustrate that the coupling model can accurately and objectively assess the susceptibility of geological hazards in this region, with a high evaluation accuracy of 80.8%. The susceptibility is greatly affected by slope, stratigraphic lithology, and human activities. The areas with extraordinarily high and high susceptibility were identified in the northwestern part of the study, where the ignimbrite is exposed in the steep topography.Discussion: The research method provides a reference for evaluating the susceptibility of geological hazards in the southeastern coastal region of China, and the evaluation results can provide recommendations for decision-making on disaster prevention and mitigation in this region.Keywords: geological hazard, susceptibility assessment, APH-CF model, typhoon and rainfall, southeast China
1 INTRODUCTION
The southeastern coastal areas of China are frequently struck by typhoons every year, and the ensuing torrential rainfall generally induces cascading geological hazards in this region (Li et al., 2021; Han et al., 2022; Chang et al., 2023). The storm brought by Typhoon Morakot in 2009 led to the average rainfall reaching 350 mm in the Ninghai mountain area of Ningbo City. Long-term continuous rainstorms caused more than 100 landslides in mountainous villages and towns in Ninghai County, such as Sangzhou, Huangtan, Shenzhen Town, and Chalu Town. In 2023, Typhoon Dusurei and Typhoon Kanu caused cascading landslides in Ninghai County, and cascading landslides resulted in severe traffic tie-ups.
Geological hazard susceptibility assessment is an essential part of disaster prevention and mitigation and land use, which refers to the evaluation of the likelihood of geological hazards in a particular area (Wang et al., 2020; Zhang et al., 2022; Huang et al., 2020; Huang et al., 2024a; Huang et al., 2024b). In recent years, a series of studies on evaluation methods of geological hazards have been conducted by many researchers, including the Analytic Hierarchy Process, the Information Value Method, the Fuzzy Comprehensive Evaluation Method, the Certain Factors Method, the Delphi Method, the Weight of Evidence Method, the Logistic Regression Model, the Support Vector Machine Method, the Coefficient of Variation Method, and the Contributing Weight Model (Sun et al., 2018; Zhao D. et al., 2021; Wen et al., 2022; Jia and Chen, 2024; Huang et al., 2024c). With the convenience of data acquisition, the improvement of computing power, and the increasingly sophisticated model evaluation algorithms, machine learning has become more widely applied in the evaluation of geological hazard susceptibility, such as the gradient boosting trees, the artificial neural networks, the decision trees, the random forests (Huang et al., 2024d; Shao et al., 2023; Wu et al., 2024; Devkota et al., 2013; Yang et al., 2024; Catani et al., 2013; Dou et al., 2019; Zhou et al., 2021; Wu et al., 2021; Chen et al., 2017). In practical applications, researchers often adopt a combination weighting method to improve the scientificity and accuracy of geological hazard evaluations due to the advantage of combining multiple evaluation methods and avoiding the limitation of the single evaluation method. A coupling method of the Information Value Model and Scoops 3D was applied to obtain accurate evaluation results on the susceptibility of geological hazards along the Guizhou-Chongqing pipeline (Yu et al., 2024). A detailed susceptibility assessment on a county scale was conducted, adopting the coupling model of the Analytic Hierarchy Process and the Coefficient of Determination Method (AHP-CF) (Zhao et al., 2021b). The geological hazard susceptibility in the Three Gorges Reservoir area was evaluated through the coupling model of weighted information value and iterative self-organization clustering (Chen et al., 2021). A coupling model of the Information Value Method and the Logistic Regression Model was employed to evaluate the geological hazard susceptibility in the Manas River Basin of Xinjiang and Wu Yuan County in Jiangxi Province (Bi et al., 2022; Huang et al., 2023). These combination weighting methods significantly improve the credibility and accuracy of the evaluation results. However, there are few relevant studies on geological hazards around the southeastern coastal areas of China. It is necessary to evaluate the vulnerability of rainfall-induced geological hazards based on the coupling model. In this study, the coupling model of the Analytic Hierarchy Process (AHP) and the Certain Factors Method (CF) was adopted to evaluate the susceptibility of geological hazards in the Shenzhen Town of Ninghai county, applying the GIS spatial analysis platform and SPSS software. In this process, factors, including geological and environmental conditions, formation mechanisms of geological hazards, and human activities, were comprehensively considered (Sun et al., 2024). The results of this work can provide technical support for land-use planning, social development strategies, geological disaster prevention, and early warning systems in the region. Furthermore, they offer theoretical guidance and technical references (An et al., 2024) for evaluating geological disaster susceptibility in other township-level areas along the southeastern coast.
2 OVERVIEW OF STUDY AREA
Ningbo City is located northeast of Zhejiang Province, adjacent to the East China Sea. Geomorphologically, it belongs to the low mountain and hilly area, with a higher elevation in the southwest and a lower elevation in the northeast (Figure 1). The exposed strata comprise the Cretaceous volcanic sedimentary rock series, with sparsely exposed Lower Jurassic volcanic rocks and Upper Neogene basalt. Shenzhen Town belongs to the subtropical monsoon climate, which features abundant rainfall and sunshine. The average annual precipitation is generally 1,600–1800 mm, with rainfall mainly concentrated during the plum rain period from May to June and the typhoon period from August to October. The precipitation from May to October accounts for about 70% of annual rainfall. Rivers and streams are densely distributed (Figure 1).
[image: Two maps labeled "a" and "b". Map "a" shows regions in Zhejiang, China, with cities marked such as Hangzhou and Ningbo, and includes a location inset. Map "b" focuses on the Ningbo area with varying elevations indicated by color gradients. Both maps use a scale and north arrow.]FIGURE 1 | Location of the study area. (A) Location map of Zhejiang Province; (B) Location of the study area.
Controlled by topographic, geological, hydrological and climatic factors, geological hazards in Ningbo City are generally characterized by small scale, cascading occurrence and uneven spatial distribution. They are classified as channelized and hillslope landslides (Schneider et al., 2008) (Figures 2A, B). The composition of sliding mass is relatively simple in general, and silty clay or silty clay with gravel is commonly observed in the sliding area. The sliding mass in the volcanic rock is mainly composed of fully weathered layers. The thickness of the landslide mass generally ranges from 1 to 5 m, and the volume is mostly below several thousand cubic meters, with small ones only tens of cubic meters (Figures 2C, D) (Han et al., 2023).
[image: Aerial and ground views of a landscape affected by a landslide. Panel (a) shows an aerial view with a long landslide path through a forest. Panel (b) displays a close-up of a hillside with erosion marked by a dotted line, with a small structure nearby. Panel (c) depicts a forest with trees leaning due to the landslide. Panel (d) shows an area with exposed red soil and sparse vegetation.]FIGURE 2 | Characteristics of typical geological hazards in Ningbo. (A) Channelized landslide; (B) Hillslope landslide; (C) Exposed scarp due to mass movement; (D) Shallow sliding mass.
Spatially, geological hazards in the study area often occur in the low mountain and hilly areas in the western and southern regions. Yuyao City and Fenghua District register the largest number of geological disasters, with 158 and 112, respectively. Followed by Yinzhou District, Ninghai County, and Xiangshan County, the number of l geological hazards is 97, 70, and 66, respectively. The number of geological hazards in Cixi City and Beilun District was 54 and 51, respectively. Geological hazards in Haishu District and Jiangbei District are relatively underdeveloped, with 25 and 10 geological hazards, respectively. Chronologically, due to the rapid economic development and the increase in human engineering activities, the impact of artificial destruction of the geological environment on the development of geological disasters has become increasingly serious. The number of geological hazards has shown an increasing trend from 2006 to 2013, although the phenomenon of anomalous peaks in interannual variability occurred (mainly in 2005, 2012, 2013, and 2019). Affected by the rainstorms resulting from Typhoon “Fitter” in 2013 and Typhoon “Lekima” in 2019, cascading geological disasters have been triggered by rainstorms in this region (Figure 3A). In terms of the distribution of geologic hazards during the year, geological hazards in this area mainly occur during the flood season from June to September, with a strong correlation with the cumulative average monthly precipitation distribution. Among them, the geologic hazards in October and December are mainly due to the impact of a single extreme weather event (Figure 3B).
[image: Two bar charts show the distribution of events. The top chart (a) represents the number of events per year from 2000 to 2020, peaking at 74 in 2013. The bottom chart (b) shows monthly distribution within a year, with the highest in August at 112 events. Both charts use an orange color scheme.]FIGURE 3 | Statistical map of inter-annual and monthly distribution of historical geological hazards in Ningbo City (A) Yearly distribution charts; (B) Monthly distribution charts.
This study centers on Shenzhen Town, a region notable for its high incidence of geological hazards, to conduct an in-depth susceptibility assessment of geological hazards at the town level. Given its unique geological features and the frequent occurrence of geological disasters, Shenzhen Town serves as an essential site for this research. In our assessment, we will consider a comprehensive range of factors, including topography, climate, geological characteristics, vegetation cover, and soil types. This multifaceted approach will enable us to systematically evaluate the various geological hazards present in the area, ensuring a thorough understanding of the underlying risk factors. The distribution of geological hazards within the study area is depicted in Figure 4. This figure clearly delineates the occurrence of different types of geological hazards and illustrates their relationships with the surrounding environment. By visualizing these spatial patterns, we aim to provide valuable insights into the factors influencing geological hazard susceptibility in Shenzhen Town, ultimately contributing to more effective disaster prevention and mitigation strategies.
[image: Topographic map depicting a region with varying elevations. Red and orange areas indicate higher elevations, while green areas represent lower elevations. Blue lines denote rivers, and black lines indicate roads. Red dots mark landslides, and gray lines outline fault lines. A legend on the right explains symbols and colors.]FIGURE 4 | Geological disaster distribution map of Shenzhen Town.
3 EVALUATION METHOD OF GEOLOGICAL HAZARD SUSCEPTIBILITY
Based on field geological surveys and the application of the GIS platform, the coupling model of certain factors (CF) and analytic hierarchy process (AHP) was applied to evaluate the susceptibility of geological hazards in Shenzhen Town, Ninghai County. By reflecting the degree of contribution of different element sections in the hazard factors, the certain factors model can solve the sensitivity problem of different characteristic values within the evaluation factors on susceptibility. However, it cannot determine the relative weight among the impact factors (Equation 1). The Analytic Hierarchy Process (AHP) has advantages in calculating the relative weight among impact indicators. According to the hierarchical relationship, the target layer A is constrained by the constraint factor layer B, and each constraint factor layer Bi is constrained by several secondary factor layers Ci. The factors in each layer are compared pairwise based on the pre-set scale of 1–9 (Table 1). According to the prescribed scale quantification, a judgment matrix is constructed to calculate the weights of each factor. The comprehensive weight is determined according to the principle of maximum weight to determine the optimal solution. However, this model cannot effectively solve the sensitivity problem of different characteristic values of evaluation factors on susceptibility. Therefore, it can simultaneously compensate for both models’ shortcomings in replacing the artificial spatial information quantification process in the Analytic Hierarchy Process with the probability quantification values obtained from the specific factor model.
[image: CF is defined by a piecewise function:   - For PPa greater than or equal to PPs, CF equals (PPa - PPs) divided by PPa times (1 minus PPs). - For PPa less than PPs, CF equals (PPa - PPs) divided by PPs times (1 minus PPa).]
TABLE 1 | Scale of judgment matrix and meaning.
[image: Table displaying a judgment scale with values and their connotations. Values 1 to 9 express increasing importance of factor i over factor j, ranging from equally important to definitely more important. Values 2, 4, 6, 8 are intermediate states. The reciprocal indicates the opposite impact situation.]In Equation 1, PPa is the conditional probability of geological hazards occurring in impact factor classification a, which is defined as the ratio of the number of geological hazard points developed in impact factor classification a to the area of the impact area of impact factor classification a. PPS the prior probability of geological hazard events occurring, which is the ratio of the total number of geological hazard points in the study area to the total area of the study area. The value range of CF belongs to [-1, 1], and the positive value or negative value represents the high certainty or low certainty of geological hazard occurrence in the study area.
The certain factors (CF) model captures the contribution of different factor intervals to hazard formation, addressing the sensitivity of feature values within individual evaluation factors to susceptibility. However, it cannot determine the relative weights between factors. In contrast, the Analytic Hierarchy Process (AHP) excels at calculating relative weights, particularly in areas with limited samples, but it struggles to account for the influence of varying feature values within factors on susceptibility. By replacing the subjective quantification of spatial information in AHP with the probability values generated by the CF model, the shortcomings of both methods are mitigated. This approach resolves challenges related to determining factor weights and merging heterogeneous data, resulting in more accurate and reliable susceptibility assessments. The study considers the interactions between factors, constructs a judgment matrix, and calculates their weights, integrating them seamlessly. The coupling of the AHP and CF models will greatly enhance the precision of geological disaster susceptibility evaluations in the study area.
3.1 Slope unit division
Slope is the primary terrain and landform unit for landslide occurrence. Compared with traditional grid units, slope units can comprehensively reflect the influence of terrain conditions such as slope, aspect, and elevation difference, improving consistency with actual terrain and landform. The slope structure is the same as hydrogeological conditions, of which the evaluation factors can reflect essential characteristics. Slope units can reflect terrain relief, geological environmental conditions, and the actual development status of landslides. The evaluation results are more reasonable and accurate than grid units due to containing a larger number of geological hazard points in a smaller area (Liu et al., 2018; Liu et al., 2023; Tian et al., 2019). The evaluation index system has a significant difference between gully-type debris flow and slope-type debris flow. The study area was dominated by slope-type debris flow. Considering the development mechanism of typhoon storm-type geological hazards in the study area, the slope unit was selected to evaluate the susceptibility of collapse, landslide, and slope-type debris flow in Shenzhen Town. Slope unit division was completed based on the numerical elevation model (DEM) using the hydrological analysis module in ArcGIS software (Figure 5). Ridge and valley lines were extracted from depression-free positive and negative terrain. The resulting catchment and inverse catchment basins were merged, with any unreasonable units manually adjusted using Digital Orthophoto Map (DOM) data. This process produced slope units defined by drainage and watershed lines. Ultimately, the study area was divided into 2,577 slope units, with the smallest area being 0.01 km2, the largest being 0.56 km2, and the average being 0.068 km2. In the subsequent susceptibility assessment, we employed the “To Raster” tool in ArcGIS to convert the defined slope units into raster data. For each slope unit, the raster values were derived by calculating the average of all raster cells contained within that unit. This method ensures that the characteristics of each slope unit are accurately represented in the resulting raster dataset.
[image: Flowchart illustrating a hydrological modeling process. It starts with DEM and Reverse DEM, followed by filling and flow direction calculations. Flow accumulation and stream link settings define watersheds. Data converges at a water outlet, undergoing raster-vector transformation. Polygon merge, manual corrections, and slope units complete the process.]FIGURE 5 | Flowchart illustrating the process of slope unit delineation.
3.2 Selection and classification of evaluation factors
According to the background and conditions of geological hazards in the southeastern coastal areas, eight evaluation factors, including slope curvature, slope, aspect, terrain relief, distance to fault, engineering geological groups, normalized difference vegetation index, and land-use development intensity, were selected to conduct a susceptibility evaluation of geological hazards in Shenzhen Town. The quantitative value of the indicator is determined according to the contribution of the graded indicators of each evaluation factor to the vulnerability to geologic hazards (Table 2). The relationship between landslide distribution and different factors is shown in Figure 6, and the grading chart for each evaluation factor is shown in Figure 7.
TABLE 2 | CF value of geological hazard impact factor classification.
[image: Table displaying various evaluation factors, classifications, number of disaster points, area in square kilometers, and CF values for slope curvature, slope, aspect, terrain relief, distance to fault, engineering geological group, NDVI, and land-use development intensity. Each category lists specific ranges or types with corresponding data, such as "concave slope" with 21 disaster points, 79.95 area, and -0.03 CF, and "0–250" distance to fault with 9 disaster points, 30.26 area, and 0.13 CF. The table organizes data into easily comparable columns and rows.][image: Eight circular charts showing monthly average concentrations of various pollutants in different cities. Each panel, labeled (a) through (h), features a central circle with radial bars representing pollutant levels. Colors vary across charts, indicating different pollutants. City names are at the center: (a) Beijing, (b) Chengdu, (c) Guangzhou, (d) Kunming, (e) Shanghai, (f) Shenyang, (g) Xi'an, (h) Zhengzhou. Months are labeled around the outer edge. Each chart has unique color distributions reflecting differing pollution patterns.]FIGURE 6 | The relationship between landslide distribution and different factors. LN is landslide number, LND is landslide number density, LA is landslide area, LAP is land-slide area percentage, CA is classification area and CF is certainty coefficient. (A) Slope curvature; (B) Slope; (C) Aspect; (D) Terrain relief; (E) Distance to fault; (F) Engineering geological groups; (G) NDVI; (H) Land-use development intensity.
[image: Map series showing various environmental parameters in a region. Panel a depicts slope variation, panel b shows elevation classes, panel c illustrates soil types, panel d indicates erosion severity, panel e represents landforms, panel f displays major land use, panel g presents drainage density, and panel h gives geological information. Each map includes color-coded legends for easy reference.]FIGURE 7 | Evaluation factor Classification of geological disasters (A) Classification of slope curvature; (B) Classification of slope; (C) Classification of aspects; (D) Classification of terrain relief; (E) Classification of distance to fault; (F) Classification of engineering geological groups; (G) Classification of NDVI; (H) Classification of land-use development intensity.
3.2.1 Slope curvature
The slope curvature plays a crucial role in influencing surface water convergence, infiltration, groundwater movement, and the gravitational distribution within the slope’s rock and soil layers. This makes slope morphology a key indicator in assessing susceptibility to geological hazards. Concave slopes tend to collect rainwater, promoting significant deep infiltration, which can weaken the strength of the underlying rock and soil. This process increases the risk of landslides and mudflows. Conversely, convex slopes usually have a gentler gradient at the rear, facilitating greater water infiltration, while the steep front section provides limited resistance to sliding. This combination elevates the likelihood of collapses and landslides. Linear slopes allow rainwater to predominantly drain as surface runoff. Under moderate gradients, these slopes tend to maintain relative stability, as the runoff reduces water retention and infiltration, thereby decreasing the risk of geological hazards.
The DEM was processed through the GIS platform to extract surface curvature and obtain slope curvature value. The slope curvature was reflected by the curvature value of the slope, where −0.1<curvature<0.1 was a straight slope; Curvature<−0.1 was a concave slope; If the curvature was greater than 0.1, it was a convex slope. The con-vex slope had the largest area in the research area, followed by the concave slope, and the straight slope had the smallest area. Their areas were 87.56 km2, 79.95 km2, and 6.91 km2, respectively. Convex slopes had the highest CF value and were more prone to geological disasters (Figure 6A). The distribution of slope curvature is shown in Figure 7A.
3.2.2 Slope
The slope (gradient) plays a critical role in determining the types and mechanisms of slope failure. It primarily influences the occurrence of geological hazards by affecting internal seepage and stress distribution within the slope. Statistical data indicate that landslides predominantly occur on slopes with gradients between 20° and 45°. In contrast, slopes steeper than 45° are more prone to collapses rather than landslides, while slopes with gradients less than 20° seldom experience landslides. A 10 m × 10 m grid was generated from the DEM, and the average slope within the slope unit was taken as the slope value. To reduce subjective influence, the slope was divided into eight levels: <15°, 15°–20°, 20°–25°, 25°–30°, 30°–35°, 35°–40°, 40°–45°, and >45°. According to statistical analysis and certain factor methods, the slope range was mainly concentrated in steep slopes of 30°–40°, accounting for 41.96% of the total area. The CF values were relatively high in the slope ranges of 30°–35° and 35°–40° (Figure 6B). The distribution of slope is shown in Figure 7B.
3.2.3 Aspect
The slope aspect leads to differences in weathering degree, affecting the thickness and distribution of weathered layers and significantly impacting slope stability. During the typhoon season, the southeastern coastal regions are primarily affected by winds from the east and southeast, which have a considerable impact on the windward slopes. A grid layer was generated by dividing the slope direction into eight directions: N (337.5°–22.5°), NE (22.5°–67.5°), E (67.5°–1,125°), SE (112.5°–157.5°), S (157.5°–202.5°), SW (202.5°–247.5°), W (247.5°–292.5°), and NW (292.5°–337.5°). According to statistical data analysis, the distribution of aspects in the region was relatively uniform, and geological hazards mainly developed in four aspects: E, SE, S, and SW, accounting for 68.09%. This was related to the geographical location along the coast of the area, which was the direction of typhoon landfall and was more conducive to geological disasters, resulting in the CF value being higher than other intervals (Figure 6C). The distribution of aspects is shown in Figure 7C.
3.2.4 Terrain relief
The terrain relief is the difference between the extreme elevation values of slope units, which determines the intensity and impact range of geological hazards (Wu et al., 2022). In areas of significant topographic relief, the presence of numerous cutting surfaces enhances the likelihood of landslides. These local terrain features create optimal conditions for the acceleration and deceleration of landslide events, exerting a considerable influence on their dynamics. Consequently, in regions characterized by substantial elevation changes, both the distance traveled and the speed of landslide movement can be significantly affected. To reduce the influence of subjective factors, the elevation difference was divided into five levels of equal spacing: 0–20 m, 20–40 m, 40–60 m, 60–80 m, and >80 m. The maximum CF value was 0.42 between 0 and 20 m; Next is 20–40 m, with a CF value of 0.10 (Figure 6D). The distribution of terrain relief is shown in Figure 7D.
3.2.5 Distance to fault
Fault structures are closely related to the development of geological hazards. Rock masses within fault zones become highly fragmented due to tectonic activity, establishing essential conditions that facilitate the occurrence of landslides. This fragmentation is particularly pronounced in active fault zones, where frequent historical tectonic movements have weakened the rock, significantly reducing its mechanical strength. Consequently, regions along active fault zones are especially susceptible to geological disasters. The shortest distance between the slope unit and the fault was used as the evaluation index, and the equidistant intervals were divided into nine levels: 0–250 m, 250–500 m, 500–750 m, 750–1,000 m, 1,000–1,250 m, 1,250–1,500 m, 1,500–1,750 m, 1,750–2,000 m, and>2,000 m. Most slopes were less than 1,000 m away from the fault, and geological hazards were most developed within a range of 25 m from the fault (Figure 6E). The distribution of distance to fault is shown in Figure 7E.
3.2.6 Engineering geology groups
Engineering geological groups are the carriers of geological hazard development, determining the intensity of geological hazard development (Lara and Sepúlveda, 2010). Loose accumulation layers and highly weathered strata possess a loose structure, limited resistance to weathering, and reduced mechanical strength. When influenced by water, their properties can undergo significant changes, rendering them particularly vulnerable to landslides. There were four engineering geological groups developed in the area, namely the rock formation dominated by hard blocky fused tuff (Hi), the rock formation dominated by relatively hard blocky-layered tuffaceous sedimentary clastic rocks (Hs), the acidic rock formation dominated by hard blocky granite (Qg), and the acidic rock formation dominated by hard blocky rhyolite (Rr). The slope unit rock groups mainly comprised Hi and Hs, accounting for 65.34% and 27.45% of the total area; 23 and 24 disaster points existed, respectively. The CF value showed that Qg was most prone to geological disasters, with a CF value of 0.343. Next was Hif, with a CF value of 0.23 (Figure 6F). The distribution of engineering geology groups is shown in Figure 7F.
3.2.7 Normalized difference vegetation index (NDVI)
The Vegetation plays a vital role in the development of geological hazards. When a typhoon rainstorm occurs in the southeast coastal area, the wind acts on the slope through shrubs such as bamboo and provides sliding force for the hill through “lever-age”, thus increasing the frequency of geological disasters (Sun et al., 2022). In the study area, regions lacking vegetation cover are predominantly composed of hard rock formations, which significantly reduces their susceptibility to geological hazards. According to the NDVI value in the research area, the value was divided into four intervals of 50–100, 100–150, 150–200, and 200–250. The NDVI was mainly between 200 and 250, with the most geological hazards (Figure 6G). The distribution of NDVI is shown in Figure 7G.
3.2.8 Land-use development intensity
Geological hazards are closely related to irrational human engineering activities. Human activities, such as slope cutting and road construction, often create steep, exposed surfaces that significantly enhance the risk of landslides. Construction on slopes adds weight to the slope mass, increasing downslope forces and further elevating the potential for geological hazards. Additionally, agricultural irrigation promotes water infiltration into the soil, weakening the slope’s internal structure and amplifying its instability, thereby increasing the likelihood of slope failure. According to the current land application situation in Shenzhen Town, Ninghai County, the land application was divided into eight categories: construction land, paddy fields, dry land, grassland, garden land, bamboo forest land, shrub forest land, and tree forest land. Based on the intensity of human engineering activities, each land-use type was assigned a corresponding development intensity index (Table 3). Among them, the development intensity index with a larger CF value was 0.7–0.8 and 0.6–0.7, which were 0.85 and 0.75, respectively (Figure 6H). The distribution of land-use development intensity is shown in Figure 7H.
TABLE 3 | Utilization types and development intensity index of land.
[image: Table showing land-use development intensity for different utilization types. Construction land and paddy fields have an intensity of 0.9, dry land 0.8, grassland 0.7, garden and bamboo forest land 0.6, shrub forest land 0.3, and tree forest land 0.2.]4 SUSCEPTIBILITY ANALYSIS OF GEOLOGICAL HAZARD
4.1 Evaluation result
A hierarchical structure was constructed based on the AHP principles and impact fac-tors of geological hazard (Figure 8).
[image: Flowchart illustrating geological hazard susceptibility assessment. The main category is divided into three subcategories: Topography, Geological, and Human activity. Topography includes slope curvature, slope, and aspects. Geological includes terrain relief, distance to fault, and engineering geological group. Human activity includes NDVI and land-use development intensity.]FIGURE 8 | Hierarchical structure of vulnerability evaluation factor of disaster.
To ensure the efficiency and accuracy of model construction, it is essential to conduct a correlation analysis of the eight factors. The Spearman’s correlation analysis was used to assign weights to evaluation factors. This method ranks two variable data and solves the correlation coefficient using rank difference. The larger the absolute value, the greater the correlation. The calculation formula is as follows (Equation 2):
[image: Formula for Spearman's Rank Correlation Coefficient. It shows the equation: rho equals one minus six times the sum of d sub i squared from i equals one to n, divided by n times n minus one. This is labeled as equation two.]
In this equation, ρ is the Spearman rank correlation coefficient, di is the rank difference of the sorted variables, and n is the number of samples.
The Spearman correlation results of eight evaluation factors (Figure 9) indicate that the correlation between slope gradient and terrain undulation is 0.95, indicating a strong positive correlation between these two factors. The correlation between terrain undulation and human activity intensity is −0.56, indicating a strong negative correlation between the two factors. The correlation between the slope gradient and normalized vegetation index was 0.54, indicating a strong positive correlation between the two factors.
[image: Correlation matrix heatmap displaying relationships between variables such as slope, aspect, terrain relief, distance to faults, engineering geological groups, NDVI, and land-use development intensity. Positive correlations are in red, negative in blue, with varying intensities indicating strength. Each square shows the correlation coefficient value, ranging from -1 to 1, with a color gradient bar on the right for reference. Diagonal squares show perfect correlation of 1.]FIGURE 9 | The result of Spearman rank analysis of the factors.
Based on the correlation analysis of eight evaluation factors, a judgment matrix was established to solve the weights of each factor (Table 4) and organically combine each factor to evaluate its susceptibility. The mathematical model for comprehensive evaluation based on the AHP-CF model is (Equation 3):
[image: Equation displaying \( C_{\text{evaluation}} = CF_{\text{curvature}} \times 0.09 + CF_{\text{slope}} \times 0.263 + CF_{\text{aspect}} \times 0.032 + CF_{\text{elevation}} \times 0.05 + CF_{\text{fault-distance}} \times 0.124 + CF_{\text{rock-group}} \times 0.24 + CF_{\text{NDVI}} \times 0.061 + CF_{\text{intensity}} \times 0.14 \).]
TABLE 4 | Calculation results of geological hazards influencing factors weight.
[image: A table displaying pairwise comparison values among factors including slope curvature, slope, aspect, terrain relief, distance to fault, engineering geological group, NDVI, and land-use development intensity. Each row and column intersects with specific fractional or whole number values, with a final column labeled "Weight" indicating weights ranging from 0.032 to 0.263.]According to the comprehensive evaluation model, the CF values of 8 layers were superimposed to obtain the total CF value of each slope unit, namely the slope geological hazard susceptibility index. The natural interruption method was used to divide the susceptibility of slope geological hazards into four levels: the most-high susceptibility zone, high susceptibility zone, medium susceptibility zone, and low susceptibility zone (Figure 10). The highly susceptible area covers an area of 51.09 km2, mainly distributed in the northwest of Shenzhen Town, including Chiao Village, Zhekengzhang Village, Zhekengdai Village, Lingxu Village, accounting for 29.29% of the total area. There are 35 geological hazard points, accounting for 74.47% of the total quantity. The high-risk area covers an area of 56.46 km2, mainly distributed in villages such as Dacai Village, Qingtan Village, and Konghengshan Village, accounting for 32.37% of the total area. Eight geological hazard points account for 17.02% of the total quantity. The mid-susceptibility area covers an area of 44.45 km2, mainly distributed on the west and south sides of Shenzhen Village, the north side of Nanxi Village, and the southeast side of Changyang Village, accounting for 25.48% of the total area. One geological hazard point accounts for 2.13% of the total quantity. The low-risk area covers an area of 22.42 km2, mainly distributed on the northeast side of Shenzhen Village, the south side of Longgong Village, Nanxi Forest Farm, and other areas, accounting for 12.86% of the total area. Three geological hazard points have been identified, accounting for 6.38% of the total quantity.
[image: Map showing geological disaster susceptibility across a region, with areas marked from low to most high-susceptibility in green, yellow, orange, and red shades. Red dots indicate geological disasters. A scale bar and a north arrow are included.]FIGURE 10 | Results of vulnerability evaluation of geological hazards in Shenzhen Town.
4.2 Verification of geological hazard vulnerability assessment results
The evaluation results were inspected from two aspects: rationality and accuracy. The rationality of evaluation results was verified by the distribution of geological hazard points in various prone areas, and the receiver operating characteristic curve (ROC) was used to verify the accuracy of evaluation results.
According to the inspection results of the geological hazard-prone zones in Shenzhen Town (Table 5), the disaster points in the highest susceptibility areas have the highest proportion; the percentage of disaster points in each level of the prone regions (Gi) and the percentage of the area of each prone areas to the total area of the study area (Si) decreased with the decrease of susceptibility levels. The ratio of slopes in each susceptibility level to the total quantity of slopes in the study area (Mi) decreases with the decrease in susceptibility levels. Applying the coupling model to Shenzhen’s geological hazard-prone zoning results is reasonable.
TABLE 5 | Rationality test results of geological hazard zoning.
[image: A table categorizing susceptibility to disasters. It lists four classifications: Most high susceptibility, High-susceptibility, Mid-susceptibility, and Low-susceptibility. Columns include area in square kilometers, number of disaster points, number of slopes, area proportion, proportion of disaster points, slope proportion, Gi/Si ratio, and the Gi/Si ratio. Each row provides specific data for these metrics under the respective classifications.]In the accuracy verification of geological hazard susceptibility evaluation, the receiver operating characteristic curve (ROC) verification method was mainly used (Yang et al., 2024). The ROC curve is a graphical method for evaluating the effectiveness of classification, where the horizontal axis represents the false positive rate (also known as 1-specificity), and the vertical axis represents the true positive rate (also known as sensitivity). The area under the curve (AUC) is often used to evaluate the accuracy of the model, and the larger the AUC value, the higher the accuracy of the model. The evaluation index was normalized and imported into SPSS 27 software to draw the ROC curve (Figure 11), where the vertical axis sensitivity was the proportion of correctly predicted units with geological hazards, and the horizontal axis specificity was the proportion of correctly predicted units without geological hazards. The AUC value calculated using SPSS software was 0.808, indicating that the CF and AHP coupling model can accurately and objectively evaluate the susceptibility of geological hazards in Shenzhen Town, Ninghai County.
[image: ROC curve showing the true positive rate versus false positive rate with an area under the curve (AUC) of 0.808. The curve bows towards the upper left, indicating a decent model performance. Diagonal line represents random chance.]FIGURE 11 | ROC curve of geological hazard susceptibility evaluation with coupling model.
5 CONCLUSION

	(1) Comprehensively considering the formation mechanism of typhoon-rainfall-induced geological disasters, based on the CF value of 8 impacted factors, including slope curvature, slope, aspect, terrain relief, distance to fault, engineering geological groups, NDVI, and land-use development intensity, the slope, engineering geological groups, and land-use development intensity had a greater impact on the susceptibility of geological hazards in the study area. Under the effect of rainfall, geo-logical hazards were more likely to occur in the melting tuff area with larger slopes and frequent human activities.
	(2) The evaluation results indicated that most high-susceptibility zones and high-susceptibility zones in Shenzhen were distributed in a northeast-southwest direction, and are significantly affected by the lithology and slope of the strata. They were mainly distributed in the northwest of the study area, including Chi’ao Village, Zhek-eng Zhang Village, Zhekeng Dai Village, and Lingxu Village, accounting for 61.7% of the total area; The low- susceptibility zones were mainly distributed in the middle and low mountain areas in the northeast and south, accounting for 12.9% of the total area. The evaluation results indicated that most high-susceptibility zones and high-susceptibility zones in Shenzhen were distributed in a northeast-southwest direction and are significantly affected by the lithology and slope of the strata. They were mainly distributed northwest of the study area, including Chiao Village, Zhekengzhang Village, Zhekengdai Village, Lingxu Village, accounting for 61.7% of the total area. The low-susceptibility zones were mainly distributed in the middle and low mountain areas in the northeast and south, accounting for 12.9% of the total area.
	(3) The CF model can solve the sensitivity of different characteristic values to susceptibility in evaluating factors. The AHP model can combine expert experience to determine the weight of influencing factors. It can effectively solve the problem of determining the weight of geological hazard influencing factors by combining the deterministic coefficient model with the analytic hierarchy process model. The results of rationality and accuracy tests showed that the evaluation results of the coupling model were consistent with the actual occurrence of geological hazards, with a model accuracy of 80.8%, and can accurately, objectively, and reasonably evaluate the susceptibility of geological hazards in the study area.
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Accurate landslide susceptibility assessment is vital for disaster prevention, but current mapping lacks systematic analysis of the underlying mechanisms between multi-scale factors and model performance. Taking Zhenxiong County as an example, this paper combines the IV, WOE, LR models, and PCA to reveal the impact of methodological differences and scale selection on mapping results, and quantitatively evaluates them using ROC curves and landslide density statistics. Results show that: 1) The scale effect of influencing factors is significant. Natural factors such as topography, geological conditions, and rainfall play dominant roles at the regional scale, while the impacts of human activities, geological features, and soil erosion intensity are more pronounced at local and moderate scales. 2) The landslide susceptibility mapping results of the three models at different spatial scales show similar spatial distribution trends. As the spatial scale increases, high/very high susceptibility areas and low/very low susceptibility areas spread outward, while the spatial distribution of medium susceptibility areas shows a fragmented expansion outward first and then agglomeration and contraction inward. 3) Scale selection significantly affects the accuracy of landslide susceptibility mapping, and expanding the spatial scale appropriately improves mapping precision. The IV and WOE models show the highest AUC at the 600-m buffer, while the LR model peaks at 400 m. In terms of landslide identification accuracy, the IV model performs best at 400-m buffer, WOE at 600-m buffer, and LR at 100 -meter buffer. 4) Different methods have different mapping performances. Overall, the IV model performs best, followed by the WOE model, with the LR model lagging behind. In terms of high-risk area recognition, the LR model excels, followed by the IV model, while the WOE model performs relatively poorly. 5) Scale and method selection significantly impact landslide susceptibility mapping outcomes. The IV model excelled in global prediction at the 600-m buffer, whereas the LR model was effective in pinpointing high-risk areas at the 100-m buffer. This paper proposes a landslide susceptibility evaluation method that integrates model performance and scale effects, enhancing disaster assessment and prevention capabilities.
Keywords: landslide susceptibility mapping, principal component analysis, statistics-based model, multiscale analysis, ROC

1 INTRODUCTION
Landslides are one of the most common and destructive geological disasters in the world, causing a large number of casualties and huge economic losses every year (Di Napoli et al., 2021). As an important tool for landslide hazard research, landslide susceptibility mapping (LSM) can effectively identify the spatial distribution areas of potential landslides, provide a scientific basis for early warning, risk assessment, and disaster prevention and mitigation decisions of landslide disasters, and is of great significance to reducing the impact of landslide disasters.
With the advancement of GIS and remote sensing technologies, landslide susceptibility mapping using statistical and machine learning models has become widespread. Traditional statistical models such as IV (Guo et al., 2023), WOE (Thiery et al., 2007), and LR (Zhao et al., 2019) have achieved good predictive results by analyzing the statistical relationship between landslides and influencing factors, establishing a mathematical model between landslide occurrence probability and influencing factors (Guzzetti et al., 2006). It has the advantages of high computational efficiency, relatively low data requirements, and strong model interpretability (Lima et al., 2021). However, there are limitations in dealing with complex nonlinear relationships, which greatly affect the accuracy of landslide susceptibility mapping. In contrast, machine learning models such as Support Vector Machines (SVM) (Huang and Zhao, 2018), Random Forests (RF) (Dou et al., 2019), and Artificial Neural Networks (ANN) (Conforti et al., 2014; Nanehkaran et al., 2023) have significantly improved the accuracy of landslide susceptibility mapping due to their powerful non-linear fitting and classification capabilities (Dou et al., 2021; Feng et al., 2022)。 In addition, some studies have attempted to integrate different machine learning models, such as AdaBoost, Bagging, etc., to further improve prediction accuracy (Binh Thai et al., 2017; Chen and Li, 2020; Wu et al., 2020)。 Although machine learning models perform well in landslide susceptibility mapping, they have some inherent limitations, such as high requirements for data quality and quantity, complex models, and poor interpretability (Huang et al., 2020; Zhang et al., 2024)。 To address these issues, some studies have proposed methods to optimize data quality (Sun et al., 2023; Yang et al., 2023), Or enhance the interpretability of the model by introducing fuzzy logic based multi decision methods (Mallick et al., 2018; Nanehkaran et al., 2021)。 However, in situations where data is limited and in-depth exploration of landslide mechanisms is needed, statistical models still have certain advantages (Merghadi et al., 2020).
In view of the data characteristics and research objectives, this paper selects statistical models and focuses on the impact of the scale effect of influencing factors on landslide susceptibility mapping. However, through the analysis of existing statistical model studies, we found that the following two aspects seriously affect the accuracy and reliability of landslide susceptibility mapping. First, the choice of mapping method directly affects the accuracy of the results, that is, different models perform differently when dealing with complex geological conditions (Pourghasemi and Rahmati, 2018). Second, the choice of spatial scale also significantly affects the mapping results, and there are significant differences in mapping results at different spatial scales (Lin et al., 2021). Therefore, it is urgent to carry out multi-model and multi-scale landslide susceptibility mapping research, quantitatively analyze the relationship between model performance and scale, and select the optimal model and scale combination to improve the accuracy and reliability of landslide prediction.
Situated in the Wumeng Mountains of the northeastern region of Yunnan Province, Zhenxiong County exhibits varied topography and intricate geological characteristics, rendering it prone to precarious geological hazards like landslides. A major landslide catastrophe occurred in Liangshui Village in Tangfang Town on 22 January 2024. The landslide volume was estimated to be 50,000 cubic meters, resulting in the loss of 44 lives and causing substantial casualties and property damage. This tragic event highlights the urgent need to improve landslide susceptibility mapping and implement effective risk prevention measures.
In view of the shortcomings of existing studies in multi-scale analysis and scale effects of influencing factors, this paper takes Zhenxiong County, Yunnan Province as the research area, uses principal component analysis to quantitatively analyze the scale effects of influencing factors, and combines three statistical models, namely, information content (IV), weight of evidence (WOE) and logistic regression (LR), to explore the performance of landslide susceptibility mapping of different models at different scales. The models are evaluated by ROC curve and landslide density statistical indicators, and finally the optimal model and scale combination is proposed. The multi-model and multi-scale analysis framework developed in this study provides new insights for optimizing landslide susceptibility mapping and serves as a scientific basis for improving the precision and effectiveness of landslide disaster prevention and mitigation.
2 MATERIALS AND METHODS
2.1 Materials
2.1.1 Study area
Zhenxiong County, administered by Zhaotong City in Yunnan Province, is located in the northeastern part of Yunnan, where the borders of Yunnan, Guizhou, and Sichuan provinces converge (Figure 1). The county spans geographical coordinates from approximately 104°18′E to 105°19′E longitude and 27°17′N to 27°50′N latitude, covering a total area of 3,696 square kilometers. The county is located on the mountainous slopes of the northern foothills of the Wumeng Mountains, at the northern edge of the Yunnan-Guizhou Plateau. Positioned within the source region of the Chishui River, Zhenxiong County is characterized by multiple plateau canyon-type rivers. The area boasts relatively complete strata and welldeveloped geological structures, with mountains and rivers following structural lines and stratigraphic trends. Zhenxiong County experiences a subtropical plateau monsoon climate. Its topography facilitates the entry of cold air but hampers its dissipation, resulting in persistent fog and mist throughout the year. The climate is characterized by moderate temperatures, infrequent clear skies, significant temperature fluctuations, frequent frosts, and distinct dry and wet seasons. Zhenxiong County showcases distinctive vertical climate zones due to significant elevation differences, frequently facing cold waves during winter and spring as a result of its unique 'three-dimensional climate. With an average yearly temperature of 13.7°C and average annual rainfall of 935 mm, the area’s climatic characteristics are notable.
[image: Map illustrating the topography and landslide points in Yunnan Province, China. Insets show buffer zones around landslide areas at different distances. The main map highlights elevation and landslide locations.]FIGURE 1 | Research location map (A): China, (B): Yunnan Province, (C): Zhenxiong County.
2.1.2 Data source
This study utilizes a wide array of data sources, including digital elevation models, topographic maps, geological maps, land use data, remote sensing imagery, rainfall data, landslide reports, geological hazard records, national spatial planning data, mineral resource planning data, geomorphological maps, and engineering geological rock group classification maps. Detailed information is provided in Table 1.
TABLE 1 | Data sources used in this study.
[image: Table listing data sources, their scale or resolution, origin, and aim. Includes digital elevation models, topographic maps, geological data, remote sensing, rainfall data, landslide reports, hazard records, national planning data, and geological classifications. Aims range from slope analysis to driving factor analysis and inventory mapping.]2.1.3 Landslide inventory mapping
Through on-site investigations, verification of statistical data from Zhenxiong County, remote sensing interpretation, and newly identified landslide-prone points during the survey process, a total of 217 landslides were identified in Zhenxiong County as of July 2022. The analysis of Figure 1 indicates that landslides predominantly occur in close proximity to valley areas and at the entrances of mountain gullies. Based on the investigation data and collected information, landslides in Zhenxiong County can be classified into two categories: natural landslides (caused by rainfall, earthquakes, river erosion, and other natural factors) and engineering landslides (resulting from cutting slopes and other human engineering activities). Among the 217 landslides, 156 (71.82%) were triggered by natural factors, while 61 (28.18%) were triggered by a combination of natural and human factors. No landslides were solely attributed to human factors.
2.1.4 Determination of landslide influence area
This study provides a comprehensive assessment of landslide impact by incorporating key factors such as landslide scale, thickness, and the potentially affected area. Using statistical analysis of landslides in Zhenxiong County, the buffer zone method was employed to determine the extent of landslide influence, following the approach of Dagdelenler et al. (2016). Previous studies have shown that the extent of landslide influence is often related to their size and type. Small, shallow landslides generally affect areas ranging from tens of meters to over a hundred meters, while large, shallow landslides can impact areas extending from several hundred meters to over a kilometer (Meier et al., 2020). Given that landslides in Zhenxiong County are predominantly small to medium in size and mostly shallow, a buffer distance of 100 m is chosen as the standard. This distance not only covers the direct impact range of most landslides but also strikes a balance between computational efficiency and result interpretability. To further explore the effects of various influencing factors across different spatial scales, this study also uses a multi-scale analysis by establishing buffer zones around individual landslide points at intervals of 200 m, 400 m, 600 m, 800 m, and 1,000 m. This approach allows for a more nuanced understanding of landslide dynamics across varying distances, following the methodology of similar studies (Wei et al., 2024), which have shown that using multiple buffer distances can better capture the variations in landslide influencing factors from local to regional scales.
2.1.5 Pretreatment of landslide influencing factors
The selection of influencing factors is crucial in the process of mapping landslide susceptibility. Both domestic and international research have extensively discussed various influencing factors. While some factors, such as slope angle and lithology, are widely accepted, others—like aspect, land use, soil types, and the topographic wetness index—remain subjects of debate (Segoni et al., 2012; Shu et al., 2019; Arabameri et al., 2020). The effectiveness of landslide susceptibility models is influenced by several factors, including data availability and the geological characteristics of the study area (Van Westen et al., 2006; Pereira et al., 2012; Catani et al., 2013). Therefore, the contribution of individual factors to landslides can vary across different study locations. Despite these variations, we selected factors that are commonly discussed and supported in the literature. Additionally, after a comprehensive evaluation of different factors, this study introduces an innovative factor—slope height (represented as the product of slope length and slope gradient)—to more comprehensively and accurately characterize the terrain.
Utilizing findings from both domestic and international research, as well as taking into account the specific conditions within the research field, this study has identified 15 key factors for developing a comprehensive index system for mapping landslide susceptibility, and thematic layers for these factors generated in ArcGIS. Given that the selected factors consist of both discrete and continuous variables, it is imperative to categorize the continuous variables into distinct categories with fixed intervals when utilizing a statistical model. Currently, there is no consistent criterion for determining the quantity of classification intervals for continuous variables. Considering that using too many or too few intervals can lead to model complexity issues, and referring to the 4-9 intervals commonly used in existing studies, this paper divides all continuous factors into 4-9 intervals (Chen et al., 2017; Huang et al., 2017; Park et al., 2018). The selected impact factors and their classification results are shown in Figure 2.
[image: A series of seventeen maps depict different land characteristics. Each map uses distinct colors and patterns to represent factors such as soil types, vegetation, elevation, slope, moisture levels, geological features, and land cover classes. The maps are labeled from (a) to (q) and include legends indicating measurement scales and categories specific to each map, such as slope degrees, altitude ranges, soil classifications, geologic periods, and vegetation types. Each map provides unique insight into various geological and environmental factors within a specific region.]FIGURE 2 | Drivers used in landslide susceptibility modeling (A) Distance from mining areas, (B) Distance from roads, (C) Distance from settlements, (D) Distance from structures, (E) Distance from rivers, (F) Digital elevation models (DEM), (G) Slope, (H) Slope height, (I) Rainfall, (J) Land use, (K) Normalized vegetation index (NDVI), (L) Soil erosion intensity (SEI), (M) Landform type, (N) Slope structure factor, (O) Engineering rock group.).
2.2 Methodology
2.2.1 Principal component analysis
Principal component analysis (PCA) is a dimensionality reduction technique widely used in multivariate data analysis. It transforms a set of possibly correlated variables into a set of linearly uncorrelated variables through linear transformation (Sabokbar et al., 2014). In landslide susceptibility research, PCA is often used to reduce the redundancy and correlation between influencing factors, while evaluating the contribution of each factor to landslide susceptibility. Its main steps are as follows:
The initial dataset (X) can be represented in matrix form by Equation 3:
[image: Matrix X is displayed as a rectangular array of elements with dimensions n by m, where elements follow the pattern x_ij. The matrix includes ellipses to indicate continuation both horizontally and vertically.]
where m is the number of causal factors, n is the landslide number, and xij (i = 1, 2, … , n; j = 1, 2, … , m) is the jth factor of the ith landslide. The mean and standard deviation of these factors can be calculated as follows:
[image: Equation showing the calculation of the mean of variable \( x_j \) as the sum of \( x_{ij} \) from \( i = 1 \) to \( n \), divided by \( n \), labeled as equation (2).]
[image: Formula of the standard deviation \( S_{j} \) for a set of data points is shown. It is defined as the square root of the sum of squared differences between each data point \( x_{ij} \) and the mean \( \bar{x}_{j} \), divided by \( n - 1 \), where \( n \) is the number of data points and \( j \) ranges from one to \( m \).]
Where [image: The image shows the mathematical notation "x sub j," where "x" is the base variable and "j" is the subscript.] and Sj are the mean and standard deviation of factor j, respectively. These two parameters can be used to normalize the original data X and obtain the correlation matrix R = (rjk)m × m:
[image: Formula for standardizing data: \( y_{ij} = \frac{x_{ij} - \overline{x_j}}{S_j} \), where \( i = 1, 2, \ldots, n \) and \( j = 1, 2, \ldots, m \).]
[image: Mathematical formula for calculating \( \bar{y}_k \), showing a summation over indexed terms: \(\bar{y}_k = \frac{1}{n-1} \sum_{j=1}^{n} \frac{(x_{ij} - \bar{x}_i)(x_{ik} - \bar{x}_k)}{S_j S_k}\). Indices \( j \) and \( k \) range from one to \( m \). Equation is labeled (5).]
The eigenvalue and eigenvector of matrix R can be determined by Equation 8:
[image: It appears there might be some confusion. To provide alternate text, I would need an actual image to describe. Please upload the image or provide a link, and I can help create the alt text for it.]
where λi (i = 1, 2, … , m) and li (i = 1, 2, … , m) are the eigenvalues and eigenvectors of matrix R, respectively, li corresponds to the principal components, and λi corresponds to the variance obtained from each principal component. The effect of each eigenvalue is given by the contribution rate. A larger contribution rate indicates a larger eigenvalue. The largest eigenvalues represent the principal components regarding most of the variability in the observed data. The cumulative contribution rate α for a specific eigenvalue λk (i = 1, 2, … , m) can be obtained as follows:
[image: Equation showing \( x = \frac{\lambda_{1} + \lambda_{2} + \ldots + \lambda_{k}}{\lambda_{1} + \lambda_{2} + \ldots + \lambda_{n}} \times 100\% \) as Equation 7.]
If the value of α is equal to or more than 90%, k principal components are considered to contain sufficient information to represent the complex original data array. The matrix (Fij)n × k, composed of k principal components, can be expressed by:
[image: Mathematical equation showing the formula for \( F_{ij} \). It is the sum from \( t = 1 \) to \( m \) of \( \gamma_{ij} r_{ij} \psi \). The variables \( i \), \( j \), and \( k \) range over specified integer values: \( i = 1, 2, \ldots, n \); \( j = 1, 2, \ldots, k \); \( t = 1, 2, \ldots, m \). Equation labeled as (8).]
In this matrix, the largest contribution rate is given by the first principal component, followed by the other components, which have gradually decreasing contribution rates.
2.2.2 Susceptibility modelling for landslide
This study utilized IV, LR, and WOE models for landslide susceptibility analysis. The main steps of the modeling process are as follows.
	(1) The landslide inventory map is prepared, which includes historical landslide points;
	(2) We Generat thematic layers of landslide influencing factors using GIS;
	(3) PCA is used to calculate the weight of each factor, and conduct subsequent analysis based on these weights.
	(4) We calculate the IV, LR, and WOE indices for each factor category and summarize the values across all categories (per unit area). According to relevant research (Lee et al., 2004; Huang et al., 2020a), the landslide susceptibility index (LSI) for each unit in GIS is as follows:

[image: Mathematical equation for the Landscape Stress Index (LSI): \( LSI = \sum_{i=1}^{n} w_i \times s_{ij} \), labeled as equation nine.]
Where wi represents the weight of the ith factor, sij denotes the statistical index value obtained from the three models, and j refers to the jth class of the ith factor in the given cell. Subsequently, landslide susceptibility indices (LSIs) were calculated to create susceptibility maps, and the GIS-based natural breakpoint method was applied to categorize the mapping results into five susceptibility levels ranging from extremely high to extremely low.
(5) Result validation and accuracy comparison analysis are conducted. Based on historical landslide data, 75% of the samples are selected as training data, while the remaining 25% are reserved for validation purposes. The training samples provide the model with information on past landslide occurrences, while the validation samples are used to verify accuracy (Erener et al., 2017; Sameen et al., 2020). To ensure the randomness of selecting training and validation samples, this study utilized the random selection tools available in ArcGIS. The specific workflow of this study is illustrated in Figure 3.
[image: Flowchart depicting the process of landslide susceptibility mapping. It includes different landslide types, causal factor layers, testing and training samples, principal component analysis, and statistically based models. Factors such as slope, aspect, and rainfall are considered. The workflow covers optimal scale screening, model comparison, and output of spatial distribution patterns.]FIGURE 3 | Technical flow chart.
2.2.3 Information value model
The information value model, a statistical evaluation technique rooted in information theory, was introduced by American information theorist Claude Shannon (Xu et al., 2013). Within susceptibility research, this method proves useful in pinpointing crucial factors influencing susceptibility and assessing the impact of various factors on susceptibility (Yang et al., 2020). The formula for this method is outlined as follows:
[image: The formula depicts the measure \( I_i = \ln \frac{N_i / N}{A_i / A} \), labeled as equation (10).]
Where N represents the total number of landslides that have occurred in the study area, Ni represents the number of landslides that occurred within the index Xi. A represents the total area of the study area. Ai represents the area occupied by Xi.
2.2.4 Weight of evidence model
The WOE model is a binary statistical method based on Bayesian probability statistics. It is characterized by its intuitive form, transparent modeling process, and ease of understanding. These advantages align well with the analytical approach needed for geological problem-solving, making it widely applied in landslide susceptibility assessment (Guo et al., 2021). The calculation formula is as follows:
[image: Equation of logarithmic form representing a weight calculation: \( W_i^* = \ln \left( \frac{P(B|L)}{P(B|\overline{L})} \right) \).]
[image: Equation for \( W_i \) using logarithm of the ratio of probabilities: \( W_i = \ln \left( \frac{P(\overline{B}|L)}{P(B|L)} \right) \). Equation number twelve.]
[image: Mathematical expression showing \( W = W_{1}^{+} + W_{1}^{-} \), labeled as Equation 13.]
Where [image: Equation showing the symbol "W" with a dagger symbol as a superscript and "i" as a subscript.] represents the probability of landslide occurring within the current impact factor level, [image: The image shows the mathematical notation "W" with a subscript "i".] represents the probability of landslide occurring in parts other than the impact factor level, P is the probability of landslide, B is the landslide area under this level after classification, and L refers to the total area of the study area. , [image: Please upload the image or provide a URL for me to generate the alternate text.] is the total area covered by landslides in the study area, and W is the final weight.
2.2.5 Logistic regression model
The logistic regression model is a widely used statistical tool that falls under the category of generalized linear models, specifically designed to analyze binomial categorical variables (Shirzadi et al., 2012). In the context of landslide susceptibility research, this model is particularly useful because it directly relates the influencing factors to the binary outcome of landslide occurrence (whether a landslide occurs or not) (Cemiloglu et al., 2023). Due to its ability to effectively model this binary response, the logistic regression model has been extensively applied in landslide susceptibility mapping. The specific formula is as follows:
[image: The image shows a mathematical equation representing a linear regression model: \( Y = a_0 + a_1X_{1j} + a_2X_{2j} + \ldots + a_nX_{nj} \). Equation number 14.]
[image: Formula for probability \( P \) expressed as the exponential function of \( Y \) divided by one plus the exponential function of \( Y \), labeled as equation 15.]
where Y is the landslide event, P is the probability of the event, ai (i = 0,1,.n) represents the regression coefficient of the explanatory variable, Xij (i = 0, 1, 2. n) represents the jth class of the ith explanatory variable.
2.2.6 Accuracy analysis
The Receiver Operating Characteristic (ROC) curve is a commonly used method in landslide susceptibility studies to evaluate the accuracy of models. It provides a simple and intuitive way to analyze the relationship between specificity and sensitivity fairly accurately (Pradhan, 2013; Corsini and Mulas, 2017). In this study, the Area Under the ROC Curve (AUC) is used to compare and analyze the accuracy of the models. The specific formula is as follows:
[image: A mathematical equation for AUC is shown as an integral from zero to one of the fraction with the numerator exp of the fraction a over (1-b) times x times (1-x) to the power of (1+b)/(1-b), and a denominator of 1 plus exp of the fraction b minus a over F times x times (1-x) to the power of (1+b)/(1-b). It is labeled equation 16.]
Where the coefficients a and b represent the dependence of test accuracy on the threshold; x is the value of ROC.
However, in actual landslide susceptibility assessment, more attention is paid to the model’s ability to identify highly landslide-prone areas, because these areas often mean greater disaster risks, and the AUC value cannot fully reflect the model’s performance in this regard. In order to more comprehensively evaluate the assessment accuracy of the model, the landslide density index (Tang et al., 2020) was introduced in this paper to conduct a comparative analysis of the model recognition ability. The formula for landslide density is as follows:
[image: The image shows a mathematical equation: \( D_L = P_{SV} / P_{LV} \), labeled as equation (17).]
Where DL is the proportion of landslides within a specific susceptibility level, PSL is the number of pixels that have landslides within that level, and PTL is the total number of pixels that have landslides within the entire area.
3 RESULTS
3.1 Selection and analysis of influencing factors
Landslides are complex geological hazards influenced by a combination of natural and human factors. Accurate identification and quantification of these factors are essential for landslide susceptibility mapping, which enhances the accuracy of risk assessment and improves our understanding of the driving mechanisms behind landslides. Different methods may yield varying results when quantifying these factors, due in part to the methods themselves and in part to the spatial scale effect—where the influence and mechanism of the same factor may vary across different scales. To better understand these variations and improve mapping accuracy, this section first uses principal component analysis (PCA) to explore the weight changes of each factor at different scales, revealing the multi-scale effect. Subsequently, the IV, WOE, and LR methods are applied to quantitatively assess the contribution of each factor to landslide susceptibility and analyze the mechanisms underlying these internal differences.
3.1.1 Scale effect of influencing factors
To further explore the influence of various factors on landslides at different scales, this study uses PCA (Equations 1–8) to calculate the weights of 15 factors at different scales and analyze the weights. The results show (Table 2) that the weights of the 15 factors at different scales are quite different, and some factors have obvious scale effects. The weights of slope height, rainfall, landform type and engineering rock group increase with the increase of buffer zone, suggesting that these factors play a more significant role in landslide occurrence at broader scales. Specifically, high and steep slopes provide greater gravitational potential energy, promoting landslide occurrence; different landform types reflect regional topographic characteristics, influencing the spatial distribution of landslides; the properties of engineering rock groups determine rock mass strength and stability, affecting landslide development; rainfall infiltration leads to soil saturation and increased pore water pressure, reducing slope shear strength and triggering landslides. The weights of DEM, land use type, distance from structure, distance from road, and distance from mining area at medium scale (400–600 m) are higher than those at other scales. This indicates that human activities and geological characteristics influence landslide development at medium scales by altering slope structure, stress conditions, and rock fragmentation. Specifically, DEM reflects regional topographic variations, with landslide susceptibility differing across elevation ranges; changes in land use (e.g., vegetation removal, road construction) can destabilize slopes and increase landslide risk; the distribution of structures, roads, and mining areas controls rock fragmentation and stress conditions, thereby influencing landslide development. The distance to the river, soil erosion, and slope have high weights at the local scale (100–200 m), and then decrease with the increase of the buffer zone, indicating that these factors directly act on the slope surface in a small range and significantly affect the movement and stability of the sliding body. Specifically, river erosion can weaken slope support, increasing landslide susceptibility near riverbanks; soil erosion alters slope roughness and permeability, impacting slope stability; and slope, as a key topographic factor, directly controls the movement of the sliding mass at the local scale. Notably, the weight of vegetation cover (NDVI) remains low across all buffer zones, indicating it has a relatively minor impact on landslides. This may be due to the fact that the vegetation coverage in the study area is generally good, the impact on landslides is relatively uniform, and the differences at different scales are not obvious.
TABLE 2 | Weight of landslide influence factors at different scales.
[image: Table displaying various environmental factors across buffer areas measured in meters: 100, 200, 400, 600, 800, and 1,000. Factors include distance from roadway, DEM, landform types, geological structures, watercourses, rainfall, NDVI, slope height, residential settlements, soil erosion, slope, land use, mining area, slope structure, and geological groups, with associated values for each buffer.]3.1.2 IV, WOE, LR coefficient determination
To improve the accuracy of landslide susceptibility mapping, the intrinsic driving mechanisms of landslides were thoroughly examined. Each driving factor was divided into four to nine categories, and the IV, WOE, and LR were calculated by Equations 10–15 for each category of the 15 influencing factors (Table 3).
TABLE 3 | IV、WOE and LR coefficient index of each landslide interval.
[image: A detailed table displays various factors related to geographical and environmental features, such as distance from mining area, roadway, residential settlement, geological structure, and river. Each factor includes a range of distances or measurements and their corresponding IV (Information Value), WOE (Weight of Evidence), and LR (Likelihood Ratio) values. Additional factors like rainfall, NDVI, soil erosion, land use, DEM, slope, slope height, landform types, slope structure, and engineering geological rock group are also present, each with specific categorizations and values. The table is complex, providing a comparative analysis of these factors.]The results indicate that IV and WOE exhibit strong consistency in quantifying the classification information and predictive power of variables. However, the regression coefficient does not always align with IV and WOE in certain cases. For example, in the category where the distance to the mining area is less than 200 m, the RC (Regression coefficient) is 1.25, significantly higher than the IV of 0.55 and the WOE of 0.5. This suggests that proximity to the mining area has a clear and substantial influence on the assessment of landslide risk. Furthermore, the IV and WOE values for distances from the mining area in different intervals (such as 300m–600m and 600m–1000 m) show a decreasing trend, indicating that as the distance increases, the predictive efficacy diminishes. In contrast, the RC shows an increasing trend in these intervals, indicating that the logistic regression model captures more complex relationships. This may be because logistic regression, based on maximum likelihood estimation, can flexibly adjust parameters to account for nonlinear relationships or interaction effects in the data. These findings highlight the complexity of selecting appropriate methods for landslide susceptibility mapping. Relying solely on one model may introduce significant bias in the results. Therefore, a comprehensive comparison of multiple models’ performance is necessary during the modeling process. To enhance the accuracy and reliability of the mapping, model selection should be based on the specific context and characteristics of the study area.
3.2 Landslide susceptibility mapping and comparative analysis of performance
The above analysis deeply explores the mechanism of action and scale effect of landslide influencing factors. On this basis, this section will focus on the landslide susceptibility mapping effect and prediction performance of different models at different scales. By comparing and analyzing the spatial distribution pattern, ROC curve and landslide density evaluation indicators of the IV, WOE and LR at multiple scales, we can comprehensively evaluate the advantages and disadvantages of each model and select the optimal model and scale combination to provide a scientific basis for landslide risk assessment and disaster prevention and mitigation.
3.2.1 Spatial distribution patterns of susceptibility mapping from various models at multiple scales
To obtain the susceptibility results of landslides at different scales, multiply and sum the IV, WOE, and LR coefficients of the internal subcategories of influencing factors determined by PCA. The levels of susceptibility to landslides are classified into five categories: extremely low, low, moderate, high, and extremely high through the application of the natural breakpoint technique. The calculated susceptibility results for landslides are shown in Figures 4–6.
According to Figure 4, at the 100-m scale, high/extremely high prone areas are mainly concentrated in the narrow river valley areas in the north, southwest, and east of the study area, as well as the lowland areas in the southeast. Areas with low and extremely low susceptibility are mainly distributed in the lowlands and flat regions in the central, southwest, and west. Medium-susceptibility areas are mainly found in the transition zones between high/extremely high and low/extremely low susceptibility areas, showing a cross-distribution pattern with these levels. As the spatial scale increases to 200 m, the high and extremely high susceptibility areas begin to expand outward, gradually encroaching on some of the medium-susceptibility areas. However, the spatial distribution of low and extremely low susceptibility areas remains largely unchanged. At a 400-m scale, the high/extremely high and low/extremely low susceptibility areas continue to expand outward, displaying a clear trend of forming contiguous patches. Meanwhile, the medium-susceptibility areas start to occupy parts of the space originally classified as high/extremely high and low/extremely low susceptibility, leading to a certain degree of spatial contraction and fragmentation in these two levels. At scales beyond 400 m, as the spatial scale continues to increase, the outward expansion of high/extremely high and low/extremely low susceptibility areas persists, further forming more continuous patches. Although medium-susceptibility areas experience noticeable spatial contraction, they also exhibit a clear tendency to form contiguous patches.
[image: Six-panel graphical comparison of landslide susceptibility maps. Panels (a) to (f) display different models with areas categorized into susceptibility levels: very low (green), low (light green), moderate (yellow), high (orange), and very high (red). The maps also indicate landslide points and the study area, with a north arrow and scale bar at the bottom right.]FIGURE 4 | Landslide susceptibility maps at different scales based on the IV model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D) 600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer).
As can be seen from Figures 5, 6, in the multi-scale modeling results of the WOE model and the LR model, the trend of the spatial distribution of low-susceptibility areas, extremely low-susceptibility areas, high-susceptibility areas, and extremely high-susceptibility areas with scale changes is consistent with the modeling results of the IV model. Specifically, with the increase of spatial scale, the spatial distribution of low/extremely low-susceptibility areas and high/extremely high-susceptibility areas shows a trend of spreading outward, while the spatial distribution of medium-susceptibility areas shows the characteristics of first spreading and then contracting.
[image: Six-panel maps displaying landslide susceptibility in a study area. Each map shows levels from very low to very high, marked in green to red. Blue dots represent landslide points. The maps are labeled (a) to (f) with a key indicating susceptibility levels and a compass for orientation.]FIGURE 5 | Landslide susceptibility map at different scales based on the WOE model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D) 600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer).
[image: Six-panel map illustrating landslide susceptibility in a study area with varying levels from very low (green) to very high (red). Each panel, labeled (a) to (f), represents different susceptibility scenarios. Luetiion marks landslide points in blue. A legend beneath provides color coding for susceptibility levels and a scale with compass orientation.]FIGURE 6 | Landslide susceptibility map at different scales based on the LR model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D) 600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer.
3.2.2 Comparative analysis of performance of susceptibility mapping of different models at multiple scales
3.2.2.1 Performance comparison analysis based on ROC
The above analysis reveals significant variations in susceptibility mapping across different scales and methods. To quantitatively assess these differences and validate the accuracy of the landslide susceptibility maps at various scales, 25% of the landslide data is used as test samples. The model’s performance is evaluated using the AUC value as a metric (Equation 16).
Based on Figure 7A, he AUC value initially increases and then decreases as the buffer scale expands. The highest value of 0.828 is achieved at the 600-m scale, indicating an optimal scale for landslide susceptibility modeling. The 600-m buffer scale emerges as the most suitable modeling scale for landslide susceptibility mapping using the IV model. A comparative analysis with the benchmark 100-m scale shows that moderately increasing the buffer scale can enhance mapping accuracy. However, an excessively large scale reduces accuracy, likely due to the smoothing of local geological and topographic features, which limits the model’s ability to capture micro-environmental factors critical to landslide occurrence. Figure 7B shows a similar trend for the WOE model, where the AUC value rises, falls, and then rises again as the buffer scale increases. The AUC reaches its highest value of 0.811 at the 600-m scale, suggesting this as the optimal scale for susceptibility mapping. As with the IV model, an appropriate scale enlargement improves mapping accuracy, but overly large scales result in decreased accuracy. This similarity may be due to the shared weight calculation mechanisms between the WOE and IV models, leading to comparable responses to scale changes. Figure 7C illustrates that the AUC value fluctuates with increasing buffer scale in the LR model, peaking at 0.771 at the 400-m scale. This indicates that the 400-m buffer is the most suitable scale for landslide susceptibility mapping using the LR model. Comparing this with the benchmark scale, the LR model shows improved mapping accuracy with larger buffer scales, except at the 200-m scale. This may be related to the principle of LR. The logistic regression model relies on parameter estimation and the distribution characteristics of sample data. An appropriate buffer zone scale can help the model better capture the environmental variables of landslide occurrence. However, an excessively large scale may lead to over-smoothing of environmental variables, making it difficult for the model to capture local geological differences, thus affecting the model’s predictive performance.
[image: Three ROC curve plots, labeled (a), (b), and (c), each displaying sensitivity versus 1-specificity for different sample sizes. The x-axis represents 1-specificity, and the y-axis represents sensitivity. Each plot includes lines for various sample sizes, indicated by different colors, with corresponding AUC values in legends. Plot (a) shows AUC values from 0.510 to 0.817, plot (b) from 0.570 to 0.830, and plot (c) from 0.742 to 0.762. Each panel has a reference line indicating a random classifier.]FIGURE 7 | ROC curves and AUC values of susceptibility mapping for three models at different scales (A): IV, (B): WOE, (C): LR).
In addition to the significant differences in ROC curves caused by the difference in scale, the choice of model also has a significant impact on the ROC curve. As shown by the AUC values of each model in Figure, the IV model achieves the highest AUC values, ranging from 0.804 to 0.828, indicating the best overall performance in landslide susceptibility mapping and accurate identification of landslide-prone areas. The WOE model’s AUC values range from 0.791 to 0.811, ranking second. Although slightly lower than the IV model, the WOE model still performs well in identifying most landslide-prone areas. The LR model has the lowest AUC values, ranging from 0.742 to 0.771, suggesting weaker performance in landslide susceptibility mapping, with potentially missed or misclassified landslide-prone areas. Based on these AUC values, the IV model demonstrates the best overall mapping accuracy, followed by the WOE model, while the LR model shows the weakest performance.
3.2.2.2 Performance comparison analysis based on landslide density
The AUC is a crucial metric for assessing a model’s overall mapping performance, providing insight into its ability to differentiate between positive and negative samples. However, in the realm of assessment of landslide susceptibility, greater emphasis is placed on the model’s capacity to pinpoint highly landslide-prone areas, which pose higher disaster risks. The AUC value may not fully capture the model’s effectiveness in this specific aspect. To offer a more comprehensive assessment of the model’s mapping accuracy, this paper introduces the landslide density index (Equation 17) for a more in-depth analysis of the model’s identification capabilities.
Among the statistical indicators of landslide density, the proportion of high/extremely high prone areas reflects the accuracy of the model. As shown in Figure 8A, the accuracy of the IV model increases initially and then decreases with scale. The highest accuracy, 78.21%, occurs at the 400-m scale, indicating that this is the optimal mapping scale for the IV model. Compared to the benchmark scale, the accuracy at all scales, except for the 1000-m scale, is higher, suggesting that moderate scale increases can improve the IV model’s prediction accuracy. However, excessively large scales may reduce performance. This may be because moderate scaling helps capture regional geological characteristics, enhancing prediction accuracy, while overly large scales introduce too much heterogeneity, reducing performance. Figure 8B shows a similar trend for the WOE model, where accuracy fluctuates, increasing first and then decreasing. The highest accuracy, 74.52%, is achieved at the 600-m scale, identifying it as the optimal scale for the WOE model. Most scales show higher accuracy compared to the benchmark, further confirming that considering scale can improve landslide susceptibility mapping accuracy. The WOE model’s response to scale changes is similar to that of the IV model, suggesting both models might be influenced by similar scale effects. In contrast, Figure 8C shows that the LR model’s accuracy decreases as scale increases, with the highest accuracy at the 100-m scale. This indicates that the 100-m scale is the optimal mapping scale for the LR model. Notably, the LR model performs better at smaller scales (100 and 200 m), while larger scales (800 and 1,000 m) result in lower accuracy. This suggests that smaller scales are more suitable for landslide susceptibility mapping using the LR model, whereas larger scales may degrade accuracy. The reason for this difference may be related to the characteristics of the LR model. As a parametric statistical model, the LR model can better fit the nonlinear relationship between high-risk areas and environmental factors at a smaller scale. However, at a larger scale, this complex nonlinear relationship may be oversimplified, resulting in a decrease in the model’s predictive performance.
[image: Three line graphs labeled (a), (b), and (c) show susceptibility levels: Very Low, Low, Moderate, High, and Very High. Different lines represent varying conditions (e.g., M_{200}, M_{400}, etc.). Graph (a) shows an upward trend from Very Low to Very High. Graph (b) peaks at Moderate level. Graph (c) shows a consistent upward trend.]FIGURE 8 | Statistical values of landslide density in susceptibility mapping of three models at different scales (A): IV, (B): WOE, (C): LR).
Further analysis, as shown in Figure 8A, reveals that across the six scales of the IV model, less than 10% of landslides are categorized as having low or very low susceptibility. This indicates that only a small fraction of landslides are mistakenly classified in lower susceptibility categories. In contrast, over 70% of landslides are classified as having high or very high susceptibility, suggesting that the majority of landslide assessments are accurate. In conjunction with Figure 8B, the results from the six-scale WOE model reveal that less than 10% of landslides are categorized as having low or very low susceptibility, while the proportion of those classified as high or very high susceptibility exceeds 50%, with the highest value reaching 74.52%. This indicates that the majority of landslide assessments are accurate, and the model’s predictive performance is acceptable. Similarly, Figure 9C shows that the LR model, using six scales, classifies less than 5% of landslides as having low or very low susceptibility, while over 87% are classified as having high or very high susceptibility. This underscores the LR model’s high success rate in landslide identification and demonstrates its accuracy. Overall, the LR model exhibits the highest assessment accuracy, followed by the IV model and the WOE model. Additionally, the mapping results from the LR model, displayed in Figure 9C, further validate its effectiveness in predicting high-risk areas, as evidenced by the proportion of landslide-prone zones: extremely high vulnerability zone > high vulnerability zone > medium vulnerability zone > low vulnerability zone > very low vulnerability zone.
[image: Three stacked bar charts labeled (a), (b), and (c) show susceptibility ranges: very high, high, moderate, low, and very low. Each chart displays different percentages within these categories, with percentages changing across the stability axis. The colors correspond to each susceptibility range: very high (red), high (orange), moderate (yellow), low (light green), and very low (green). The y-axis represents frequency in percentages.]FIGURE 9 | The proportion of each prone area in the results of susceptibility mapping with different methods and different scales (A): IV, (B): WOE, (C): LR.
3.2.2.3 Optimal selection of different models and scale combinations
By analyzing two evaluation indicators, the AUC and landslide density, we comprehensively assess the mapping performance of various models at different scales. In terms of overall assessment performance, the IV model demonstrates the greatest effectiveness, followed by the WOE model. Conversely, the LR model shows relatively weaker predictive capabilities. In terms of the optimal scale, the IV model and WOE model exhibit superior assessment accuracy at the 600-m buffer scale, whereas the LR model excels at the 400-m buffer scale. To achieve the best overall assessment accuracy, selecting the 600-m buffer scale for the IV model is advisable.
In terms of identifying high-risk landslide areas, the LR model demonstrates the superior performance, followed by the IV model, with the WOE model showing relatively weaker performance. In terms of optimal scale selection, the IV model demonstrates the highest recognition effect at the 400-m buffer scale, while the WOE model shows the best recognition effect at the 600-m buffer scale, and the LR model excels at the 100-m buffer scale. To improve the identification of landslide hazard areas, using a 100-m buffer scale in the LR model is recommended.
In practical applications, it is essential to consider the assessment performance of various models and scales comprehensively. The optimal combination should be chosen depending on the research objectives and particular requirements for reducing and averting disasters. To enhance both the overall assessment accuracy and the ability to identify highly susceptible areas, consider utilizing the 600-m buffer scale of the IV model. This scale not only improves the overall assessment accuracy but also enhances the detection of zones that are highly susceptible to landslides. The choice of specific combination should be carefully considered in light of factors such as the study area’s characteristics, data accessibility, and computing resources.
4 DISCUSSION
4.1 Scale effect of influencing factors
This paper demonstrates that the weights of landslide influencing factors exhibit significant variations as the spatial scale changes through multi-scale analysis. The study concluded that topography, geology, and rainfall are the primary factors influencing landslides at a regional scale ranging from 800 to 1,000 m. This finding aligns with the research by Guzzetti et al. (Guzzetti et al., 1999), which indicates that geological and hydrological factors play a significant role in the occurrence of landslides at the basin scale. There is also a certain similarity with the view of Yang (Yang Yang et al., 2019) and others that “topography is the main factor in landslides on a regional scale”. At the buffer zone scale of 400–600 m, human activities and geological features exert the most significant influence on landslides. This finding is consistent with Carrara et al.'s research conclusion (Carrara et al., 1995), which asserts that at smaller scales, human activities and geological features notably impact the occurrence of landslides. When the analysis range is narrowed down to a small local area (100–200 m), the impact of erosion intensity and topographic factors on landslides becomes more pronounced. When focusing on a smaller local area (100–200 m), the influence of erosion intensity and topographic factors on landslides becomes more significant. This is a degree of correlation with Van et al.'s (Van Westen et al., 2008) conclusion that topographic factors are suitable for modeling geological hazards in local areas.
It is worth noting that the vegetation cover (NDVI) within each buffer zone has a low weight, suggesting a limited impact on landslide occurrences. This finding contrasts with the results of HU et al.'s study in a forested area of eastern Mongolia, Yunnan, China, where they concluded that NDVI is a significant predictor of landslide susceptibility (Hu et al., 2024). There are several possible reasons for this difference: (1) Significant differences in topography, geology, climate, and other natural conditions between the study area and the eastern Mongolian forest area in Yunnan Province may lead to varying degrees of influence of vegetation cover on landslides. (2) The protective effect of vegetation on landslides can be influenced by factors such as vegetation type, growth status, and the development of vegetation root systems in various areas. It is important to consider that the vegetation types and growth conditions in the study area of this article may differ from those in the Mengdong forest area of Yunnan. (3) The research methods, data types, and accuracy employed in this study might differ from those utilized in HU et al.'s study, potentially impacting the comparability of the research findings. (4) Landslide occurrences are impacted by a variety of factors, with varying weights in different regions. In the research area discussed in this paper, factors such as topography and precipitation may have a more significant impact on landslides, potentially overshadowing the role of vegetation coverage.
4.2 Performance of different statistical models in landslide susceptibility evaluation
The research employs three frequently utilized statistical models (IV, WOE, LR) to assess landslide susceptibility. It then conducts a comparative analysis of their evaluation performance. From the overall evaluation performance, the IV model shows better effectiveness than the WOE model, whereas the WOE model performs better than the LR model. Sweta et al. confirms this view (Sweta et al., 2022). In terms of evaluation effectiveness in high-risk areas, the LR model demonstrates the best performance, with the IV model coming in second place, while the WOE model shows relatively weaker evaluation results. This conclusion is consistent with Tang et al.'s study on the Loess Plateau in Shanxi Province, which found that the LR model’s forecasting accuracy exceeds that of the IV and WOE models (Tang et al., 2020). However, some studies have reached different conclusions. For instance, Khanna et al. conducted a study in India and discovered that the WOE model demonstrated superior assessment accuracy compared to the IV and LR models (Khanna et al., 2021). There are several possible reasons for this difference: (1) The geological environmental conditions vary in different study areas, leading to different dominant factors influencing the occurrence of landslides. (2) Various studies utilize different numbers and types of influencing factors, potentially impacting the assessment accuracy of the model. (3) Variations in the quantity, distribution, and quality of landslide data across different studies can impact the model’s performance.
In this research, both the IV model and the LR model demonstrated superior performance. This may be because the IV model excels in accurately evaluating the contribution of a factor to a landslide by quantifying the information in each factor class, whereas the LR model is adept at capturing intricate relationships in the data through maximum likelihood estimation. In contrast, the WOE model primarily relies on Bayesian theory and assumes that variables are unrelated to one another, which might not completely align with real-world scenarios, leading to slightly lower predictive accuracy. Nevertheless, each of the three models comes with its own set of strengths and weaknesses, and can be selected according to particular requirements and the data situation in real-world applications. For instance, the WOE model may be more suitable when dealing with small amounts of data and few influencing factors, while the IV and LR models may be more advantageous in scenarios with large amounts of data, numerous influencing factors, and complex nonlinear relationships. At the same time, it is also possible to consider the integration of different models, using their complementarity to improve the robustness of the evaluation.
4.3 The significance of selecting the optimal model and scale
This study compares methods in terms of overall assessment performance and the identification of high-risk areas, ultimately selecting the optimal scale. The research shows that the highest overall assessment accuracy is achieved by the IV model at the scale of a 600-m buffer, whereas at a 100-m buffer scale, the LR model exhibits the most successful identification of high-risk regions. This result has important theoretical and practical significance. Theoretically, this finding suggests that there exists an optimal combination of models and scales for evaluating landslide susceptibility. Traditional research often employs a single model and fixed scale for analysis, overlooking the influence of model and scale selection on assessment outcomes. This study, through systematic comparative analysis, demonstrates that the selection of model and scale greatly affects assessment accuracy, with notable variations in assessment performance among different model and scale combinations. These findings contribute to enhancing the theoretical framework of landslide susceptibility evaluation and offer novel insights for future research. In practice, utilizing the optimal model and scale combination when assessing landslide susceptibility can greatly enhance the accuracy and reliability of assessments. Compared to analyzing a single model and scale, the optimal combination can more accurately depict the spatial distribution patterns of landslides, identify high-risk areas, and offer a more solid foundation for landslide risk management and disaster prevention decisions. This has crucial implications for land use planning, project construction site selection, and emergency plan development in areas prone to landslides.
The 600-m buffer zone scale of the IV model and the 100-m buffer zone scale of the LR model, as determined in this study, can be effectively utilized for landslide risk asessment and prevention measures in the research area. For application in different regions, one can consider the concepts and methodologies presented in this article, conduct analogous analyses depending on regional circumstances and data accessibility, and choose the most suitable model and scale combination for the area. This empirical approach is deemed more scientifically sound and dependable compared to solely relying on a specific model or scale.
4.4 Limitations and future prospects of the study
While this study yielded significant results, there are limitations that still exist. The study area has a limited scope, uses a small number of influencing factors, and requires improved accuracy in field verification data. These limitations could impact the applicability and reliability of the study results. In the future, incorporating more high-precision impact factor data on a larger scale, along with high-resolution remote sensing images and field investigations, can enhance the evaluation method of landslide susceptibility. Furthermore, the potential for utilizing emerging technologies like artificial intelligence in conjunction with conventional statistical approaches should be investigated to improve assessment precision.
5 CONCLUSION
This paper focuses on landslides in Zhenxiong County as the research subject and employs principal component analysis (PCA) to reveal the scale effect of influencing factors. Additionally, three statistical models—IV, WOE, and LR—are combined to map landslide susceptibility. ROC curves and landslide density metrics are used to quantitatively assess the impact of method and scale selection on the accuracy of landslide susceptibility mapping. The main conclusions are as follows.
	(1) The weight of landslide influencing factors shows obvious difference with the change of spatial scale. The factors of topography, geology, and rainfall have a more significant influence on landslides at a regional scale. Human activities and geological features have the most pronounced impact on landslides at a medium scale, whereas erosion intensity and topographic factors are notably more significant at a smaller, localized level.
	(2) The prediction results of landslide susceptibility by the three models at different spatial scales show similar spatial distribution trends. As the spatial scale increases, the spatial distribution of high/very high susceptibility areas and low/very low susceptibility areas both show a trend of spreading outward and gradually connecting into pieces, while the spatial distribution of medium susceptibility areas first experiences a stage of fragmentation and outward expansion, and then gradually gathers and shrinks inward into pieces.
	(3) The choice of scale affects the accuracy of mapping. Appropriately expanding the spatial scale can help improve the accuracy of landslide susceptibility mapping, but too large a scale may smooth the geological and topographic features, resulting in a decrease in accuracy, especially for the LR model, where a small scale performs better.
	(4) Mapping accuracy is closely related to scale selection. Considering the overall assessment performance and scale effect: the IV model and WOE model exhibit the best overall assessment performance at the 600 m scale, while the LR model shows the best performance at the 400 m scale. Considering the identification of high-risk areas and scale effect: the LR model shows the best mapping effect at the 100 m buffer zone, the IV model exhibits the best mapping effect at the 400 m buffer zone, and the WOE model demonstrates the best mapping effect at the 600 m buffer zone.
	(5) The choice of method and scale influences the effectiveness of landslide susceptibility mapping. The IV model demonstrated superior global assessment performance at the 600-m buffer scale, whereas the LR model excelled in identifying high-risk areas at the 100-m buffer scale.
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Introduction: The Loess Plateau has long been plagued by cascading loess landslides. The rapid identification of these landslides, along with the accurate determination of their failure modes, is essential for conducting precise disaster assessments in the region. Such assessments are critical for minimizing both human casualties and economic losses. However, the lack of reliable reference data for the early identification of landslide failure modes has resulted in limited detection accuracy, complicating the differentiation between various failure modes. Therefore, investigating the deformation and failure characteristics of loess landslides under different failure modes is crucial for providing a scientific foundation for early hazard detection and the accurate assessment of risk profiles.Methods: This work examines the pre-slip deformation and post-slip damage characteristics of the rotational-sliding Huzhu Landslide and the translational-sliding Zhongzhai Landslide through a combination of field investigations, unmanned aerial vehicle surveys, and remote sensing interpretation. Physical model tests were conducted to simulate the instability and failure processes of both rotational and translational loess landslides. Meanwhile, three-dimensional models and orthophoto graphic images at various stages of the landslides were generated using Contexcapture.Results: The initial stages of rotational sliding landslides are marked by the formation of distinct tensile cracks at the trailing edge of the slope and minor uplift at the front. As the uplift at the front progresses and numerous extension fissures develop, the stability of the landslide reduces progressively. Upon reaching instability, the sliding velocity of the sliding mass initially accelerates before decelerating, with majority of the mass remaining on the sliding surface and retaining relatively well structural integrity. At the trailing edge of the landslide, characteristic features such as falling scarps, fractured walls, and sunken grooves can be observed, while the front displays significant bulging phenomena. In contrast, translational sliding landslides are initially characterized by minor tensile cracks at the trailing edge and pronounced deformation at the front. As these tensile cracks propagate, the landslide are prone to sudden instability under external triggering factors. Following the onset of instability, the sliding mass undergoes rapid movement, with only a small part of the mass remaining on the sliding surface.Discussion: Landslides triggered by different factors and occurring under varying water content conditions may exhibit significant differences in their pre-failure behavior and post-failure characteristics. Thus, it is imperative to conduct further research in this field to better understand these complex dynamics.Keywords: early identification, rotational landslide, translational landslide, field investigation, physical model test
1 INTRODUCTION
Loess in China is primarily concentrated in the northwest, north, and east regions, covering approximately 6.6% of the land area. The loess regions are prone to frequent and diverse geological hazards, resulting in significant economic losses. Among these hazards, loess landslides are among the most widespread and destructive geodisasters. According to statistics, nearly one-third of all landslides nationwide occur in loess regions (Peng et al., 2019; Saleem et al., 2019). Recently, the increasing frequency of loess landslides has been linked to intensified human engineering activities and the northward shift of the equal precipitation line in China, with rotational and translational sliding being the most common failure modes (Zhang and Li, 2011). Despite extensive research on the distribution characteristics, developmental patterns, causes, and mechanisms of loess landslides (Zhu et al., 2013; Lan et al., 2021; Yao et al., 2022), identifying potential landslide hazards remains a difficulty for researchers due to the unique properties of loess (Peng et al., 2020). Landslide identification is the foundation for landslide risk assessment and other related studies (Tie et al., 2022; Wang et al., 2024). It is estimated that 80% of landslides occur outside the existing catalog, with only less than 1% of the world’s areas being cataloged for landslides (Brabb, 1991; Zhang Q. et al., 2022; Shao et al., 2022). Rapid identification of potential landslide hazards not only reduces casualties and economic losses but also enables precise analysis of landslide risks in loess regions.
In the early stages, the identification of potential landslides was primarily achieved through field investigations conducted by researchers, which requires substantial time, manpower, and financial resources when dealing with large numbers of landslides distributed over wide areas (Dou et al., 2023). With the advancement of remote sensing technology, which provides rich information, rapid data acquisition, and extensive coverage, the limitations of field surveys have been effectively mitigated, leading to its increasing application in landslide identification. For example, after the landslide in Xinmo Village, Maoxian County, Sichuan Province, in 2017, which involved a high elevation and invisibility, the development of a “three-step” integrated system for potential landslide identification was proposed, encompassing satellite, aerial, and ground-based monitoring (Xu, 2018; Xu et al., 2019). This approach highlighted the critical role that comprehensive remote sensing technologies can play in geological hazard investigations (Ge, 2018; Ge et al., 2019; Li et al., 2019; Zhang et al., 2018; Dong et al., 2018a; Dong et al., 2018b; Zhao et al., 2019; Lu et al., 2019; Xu, 2020; Guo et al., 2021; Huang et al., 2024a). However, the previous studies on landslide hazard identification have predominantly focused on determining whether a landslide will occur based on detecting deformation indicators. In contrast, research on using these indicators and damage characteristics to predict failure modes remains limited. Since landslides with different failure modes exhibit significantly varying disaster-causing potentials, using landslide hazard identification to predict failure modes is of great significance for disaster prevention and mitigation.
This study focuses on two typical loess landslide events. Through field investigations and physical model experiments, it examines the pre-sliding deformation characteristics and post-sliding failure features under different failure modes of loess landslides. The findings provide a reference for further research on the identification of potential hazards related to landslide failure modes.
2 CASE STUDY
The failure modes of loess landslides typically include rotational sliding and translational sliding. Significant differences exist in the landslide characteristics and the extent of the hazard under different failure modes. This section selects two case studies for analysis: a rotational sliding instability loess landslide that occurred on 1 September 2022, in Huzhu County, Qinghai Province, China, and a translational sliding instability loess landslide that occurred on 5 October 2021, in Niangniangba Town, Gansu Province, China. The deformation and failure characteristics of loess landslides under these two failure modes are summarized, providing criteria for identifying potential hazards of loess landslides and determining their failure modes.
2.1 Huzhu landslide
At 1:05 a.m. on 1 September 2022, the Huzhu landslide occurred on the northwest side of Hongya Village, Weiyuan Town, Huzhu County, Qinghai Province, resulting in seven fatalities and an estimated direct economic loss of 85.51 million RMB. The Huzhu landslide (101°56′3.00″E; 36°51′41.04″N) developed in the transitional zone between the low mountains and hilly areas on the right bank of the Nanmenxia River and the adjacent river valley plain, northwest of Hongya Village. The landslide’s overall planform resembles a “broad tongue” shape (Figure 1A), with the primary sliding direction ranging from 103° to 167°. The trailing edge of the landslide lies at an elevation between 2726.0 and 2666.0 m, while the front edge sits at an elevation between 2547.0 and 2580 m, yielding a total vertical drop of 114–152 m. The landslide measures approximately 370–740 m in length and 470–1,050 m in width, covering an area of about 53.2×104 m2. With an average thickness of around 40 m, the Huzhu landslide has an estimated volume of approximately 2108 ×104 m³, and it belongs to a huge landslide. After the Huzhu landslide occurred, four secondary landslides formed, covering areas of 25,700 m2 (1#), 97,300 m2 (2#), 13,100 m2 (3#), and 90,900 m2 (4#) (Figure 1A). The initial slope failure began as early as 17:00 (UTC +8) on 31 August 2022, with the 1# landslide occurring in a slow-moving state and impacting the driving school at the foot of the hill. Subsequently, the 2#, 3#, and 4# landslides occurred around 1:05 (UTC +8) on 1 September 2022. The primary triggering factor was the intense rainfall experienced in August, which initiated the landslides (Zhang et al., 2023).
[image: Composite image depicting geological features and deformation processes. Central image shows an aerial view with geological boundaries and scarps marked. Insets include a main scarp (b), a sliding terrain (c), a tension gully (d), a shifting cliff (e), reverse slope topography with a person for scale (f), and swelling deformation (g). A legend explains the symbols on the central map.]FIGURE 1 | Overview of the Huzhu landslide. Planar view of the Huzhu landslide (A). Slip cliff (B). Shingled terrain (C). Tension sunk grooves (D). Trailing-edge cracks (E). Reverse-slope terrain (F). Bulging cracks (G).
The Huzhu landslide has an overall armchair-like shape with well-defined boundaries on all sides. The slip cliff at the trailing edge of the landslide extends approximately 480 m and forms a curved steep face (Figure 1B), with slopes typically ranging from 60° to 70° and heights between 8 and 40 m. The sliding movement at the trailing edge has formed a distinct shingled terrain (Figure 1C). The slope surface is characterized by well-developed shear scarps and cracks (Figure 1A), along with numerous sunk scarps, slip cliffs, and tension grooves (Figures 1D, E). The heights of the shear scarps, cliffs, and natural step-like scarps typically vary between 3 and 5 m, while the tension grooves are generally 2–4 m deep and 3–5 m wide. The overall displacement of the landslide is relatively small (9 m), and the landslide mass remains largely intact, retaining its original slope profile and forming a stepped appearance (Figure 2). A noticeable reverse-slope terrain can be observed in the mid-to-rear section (Figure 1F). The eastern boundary at the front exhibits a series of swelling deformations, with the surface development of bulging cracks (Figure 1G). These characteristics further confirm that the Huzhu landslide is a rotational landslide.
[image: Cross-section diagram illustrating a landslide profile. It shows the pre-failure and post-failure surfaces, redeposited loess and sliding mass, Neogene mudstone, and the sliding surface. Key features include main and minor scarps, zones of depletion and accumulation, and elevation changes. A crown near the starting point and a high school at 560 meters are marked. Elevations range from 2,450 to 2,650 meters.]FIGURE 2 | Profile of the Huzhu landslide.
According to the research report provided by the local government, prior to July 2022, the cumulative deformation of the Huzhu landslide was relatively minor, ranging from approximately −30 mm–60 mm. However, after July 2022 (about 2 months before the landslide occurred), the cumulative displacement exhibited a more pronounced pattern: at the rear of the landslide, displacements ranged from −120 mm to −60 mm; in the middle, from −60 mm to −30 mm; and at the front, from 30 mm to 90 mm. This deformation pattern was characterized by subsidence at the rear, sliding in the middle, and uplift at the front. Interestingly, despite these changes, no significant deformation signs were detected in the historical imagery available (Figure 3). Prior to the landslide failure, deformation increased in the front and rear part of the sliding mass, and the extent of internal deformation expanded. Overall, the landslide exhibited a complex deformation failure pattern: initial creeping deformation at the front, followed by deformation in the middle and rear. Deformation in the rear part of the landslide exerted pressure, pushing the middle and front sections, manifesting a combination of front-end traction and rear-end thrust (Zhang et al., 2023).
[image: Satellite images showing a landslide area at different times: (a) July 24, 2018, with the landslide boundary in pink; (b) February 1, 2022, showing more exposed soil; (c) July 20, 2022, with vegetation; (d) October 31, 2022, showing significant erosion.]FIGURE 3 | Historical deformation process of the Huzhu landslide.
2.2 Zhongzhai landslide
The Zhongzhai landslide occurred in the early morning of 5 October 2021,burying and destroying the houses and courtyards of two households located at the foot of the slope, as well as damaging farmland in the area. The economic loss is estimated at approximately 500,000 RMB. The Zhongzhai landslide (105°47′59″E; 34°17′59″N) developed on the hilly slope north of Zhongzhai Village. The landslide has a bottleneck shape in plain view, being wider at the front and trailing edge and narrower in the middle (Figure 4A). The main sliding direction is 183°, with a vertical height difference of about 70 m from the top to the foot of the slope. The average width of the landslide is approximately 150 m, and its axial length is about 150 m, covering a plan area of 22×103 m2. The average thickness of the landslide is approximately 3 m, with a total volume of about 67.5×103 m³, being classified as a small-scale landslide. Furthermore, from October 2 to 5, the landslide area experienced continuous heavy rainfall. The substantial infiltration of rainwater increased the weight of the slope and reduced the shear strength of the sliding layer, ultimately triggering the landslide.
[image: Composite image illustrating a landslide area with five panels. Panel a shows a map with pathways, tension cracks, and geological activity. Panel b highlights the main scarp with a curved yellow line. Panel c displays a man near a tension crack. Panel d focuses on a sliding surface marked with an arrow. Panel e shows the accumulation area beside a building.]FIGURE 4 | Overview of the Zhongzhai landslide. Planar view of the Zhongzhai landslide (A). Slip cliff (B). trailing-edge cracks (C). Sliding striation (D). Front edge of the landslide (E).
The eastern and western boundaries of the landslide are clearly defined, with no significant differences in terrain, both demarcated by the slope itself. The slip cliff on the northern trailing edge of the landslide is mainly defined by a grooved terrain (Figure 4B), with a noticeable elevation difference between the trailing edge and the surrounding area. Distinct tension cracks are visible along the slip cliff (Figure 4C). The slope of the landslide ranges from 30° to 40°, with the trailing edge forming a steep slope and the front edge presenting a gentler slope. The slope surface is relatively straight. The sliding velocity was relatively high during the landslide movement, resulting in a smooth sliding surface (Figure 4D). Additionally, most of the sliding mass accumulated at the foot of the slope, leaving little debris in the channel (Figure 4E).
The Zhongzhai landslide is a typical loess-bedrock interface landslide, with the sliding surface at the interface between the underlying silty slate and the overlying Malan loess (Figure 5). Analysis of historical satellite imagery (Figure 6) reveals that a previous landslide occurred in the study area in 2013. Before the 2013 Zhongzhai landslide, a small valley was visible at the lower slope, while the upper slope remained relatively intact (Figure 6A). During a heavy rainstorm in June 2013, the slope experienced sliding and buried four houses. An abandoned road can be seen at the foot of the slope after the 2013 landslide (Figure 6B). From 2013 to 2019, there were no signs of significant deformation in the Zhongzhai landslide area (Figures 6B–D). The vegetation growth on the slope indicates that rainfall during this period was sufficient for plant growth but not enough to trigger further landslides. In Figure 6E, tension cracks appeared at the top of the main scarp, indicating that failure was gradually evolving. In October 2021, after a heavy rainstorm, the slope failed again (Figure 6F). Based on high-resolution topographic data, multi-temporal orthophotos, and field investigations, it is concluded that the tension cracks at the top of the main scarp in 2020 extended under prolonged infiltration from heavy rainfall, eventually leading to crack penetration and rapid slope destabilization (Zhang S. et al., 2022).
[image: Cross-sectional diagram of a landslide, showing elevation versus distance. Labeled sections include the crown, main scarp, zone of depletion, and zone of accumulation. Lines represent pre-failure and post-failure surfaces, with sliding mass indicated. Slope angles are marked as 1:273’/59°. Areas are labeled silty slate.]FIGURE 5 | Profile of the Zhongzhai landslide.
[image: Six-panel series of aerial images showing land changes over time at a landslide site. Panels labeled (a) through (f) display dates from 2010 to 2021, highlighting the landslide boundary, vegetation, and tension crack developments. Maps include scale bars and north indicators.]FIGURE 6 | Historical deformation process of the Zhongzhai landslide.
Due to various limitations during the field investigation and the possibility that the original deformation signs of the landslide may have been covered after landslide occurrence, the inquiry may have yet to capture the deformation and failure characteristics of the landslide fully. In recent years, many researchers have gradually improved and favored the model test method (Hu et al., 2023; Fang et al., 2023a; Fang et al., 2023b). Therefore, through indoor physical model experiments, this study will further explore the deformation and failure characteristics of rotational sliding and translational sliding in loess landslides.
3 PHYSICAL MODEL TESTS
Rotational sliding and translational sliding loess landslides are two major typical landslide types in the northwest region of China. Although the signs of failure may vary due to factors such as topography, these two types of landslides exhibit some common failure characteristics due to the differences in their failure modes. To investigate the early failure characteristics of both rotational and translational loess landslides, this work designs model experiments for each type of landslide to reveal their early-stage failure behaviors. By rigorously comparing the experimental results with the previously discussed case studies (Huzhu rotational landslide and Zhongzhai translational landslide), the study summarizes the early identification markers for both rotational and translational landslides, ensuring the validity and reliability of the findings. It is important to note that the model experiments for these two types of landslides are not based on specific case studies, but rather are designed to reflect the characteristics of the two distinct landslide failure modes. The ultimate goal is to apply these findings to identify potential loess landslide hazards. At the start of the experiment, one end of the slope model is gradually lifted at a uniform speed using a lifting device. Once the slope reaches a certain angle, it can destabilize and slide according to the pre-set sliding mode. During the test, deformation signs of the landslide at different stages are captured, and the images are imported into ContextCapture for 3D modeling. This process yields a 3D model and orthophotos of the landslide for further analysis. The specific testing process is outlined as follows.
3.1 Sample collection and soil properties
The loess (Malan loess) used for the model experiment was collected from the Zhongzhai landslide. Through laboratory tests, the physical and mechanical properties of the loess were studied, and the results are presented in Table 1. Additionally, the particle size distribution of the loess was obtained (Figure 7).
TABLE 1 | The physical properties of loess samples.
[image: Table displaying soil characteristics: natural moisture content is 2.1 percent; density is 1.22 grams per cubic centimeter; gravity is 2.78; liquid limit is 31.2 percent; plastic limit is 14.9 percent; and plastic index is 16.3.][image: A graph displaying a curve labeled "Test loess" showing the relationship between grain size in millimeters on the x-axis and percentage finer by weight on the y-axis. The curve rises steeply, indicating a larger percentage of finer grains for smaller grain sizes.]FIGURE 7 | Particle size distribution curve of the loess sample.
3.2 Model preparation
The soil samples collected from the field were crushed and sieved through a 2 mm mesh, then dried (at 105°C for 24 h). The experimental materials were prepared according to the natural moisture content of the loess slope in the field for use in the model experiment. The physical model test was conducted using an acrylic box with internal dimensions of 80 cm in length and 40 cm in width, which was applied to build the loess slope. The side walls of the model box are constructed from highly polished glass, ensuring that the experiment is unaffected by any external interference. Through preliminary experimentation, the slope model was designed with a height of 22.5 cm. Loess with a total mass of 94 kg was then filled into the model box in layers and compacted. After the final compaction, the loess reached the designed model height. At this point, the density of the slope model was 1.3 g/cm³, closely approximating the natural density of loess slopes (Figure 8A), which closely approximates the density of natural loess slopes. Considering the smooth nature of Teflon film, it was used as the sliding surface material. The slope model was then excavated to create a flat or circular sliding surface (Figures 8B, C). The depth of the curved sliding surface was approximately 3.4 times the depth of the shallow sliding surface. The Teflon film was laid on the excavated sliding surface, after which the loess was backfilled, and the surface of the slope model was leveled. As a result, two typical slope models with different failure modes were obtained: rotational sliding failure mode and translational sliding failure mode.
[image: Panel a shows a vertical drop test setup with a metal frame and a suspended weight. Panel b displays a damaged fabric with a distinct rectangular impact area. Panel c shows a similar fabric with a visible, lighter impact section.]FIGURE 8 | Physical model test preparation. Experimental device (A). Flat sliding surface (B). Circular sliding surface (C).
3.3 Test process and data collection
In order to study the deformation and failure characteristics of slope failure at different stages, eight camera positions were set up around the model box (Figure 9) to capture image data from various angles simultaneously. This setup allowed for a comprehensive analysis of surface deformation during the slope failure (Wen et al., 2017; Zhang et al., 2021; Zhang et al., 2024a). The specific steps are outlined as follows. Before the experiment, all smartphones were set to the same camera resolution (1080p/60fps) and positioned parallel to the slope surface above the model box (Figure 9), ensuring that the orthophoto of the slope could be captured. This arrangement allowed for a certain degree of overlap among the images from the various phones, ensuring complete coverage of the slope surface. Once the experiment commenced, a hand winch was used to slowly and uniformly elevate the model box. During this process, the eight Android phones were connected to a control software on a computer, enabling simultaneous capture of images at different stages of the landslide. Each capture session yielded eight images at once. The model box was raised until instability and failure occurred, at which point the elevation was halted. The images obtained during the experiment were then imported into ContextCapture for modeling, resulting in a three-dimensional model and orthophotos of the landslide at various stages for further analysis. Both trials were conducted following this procedure.
[image: Panel a shows a laboratory setup with a transparent, elevated structure connected to tubing, resting on a tilted wooden platform. Panel b displays a schematic of a network with nine dark rectangles connected by thin lines, arranged in a grid-like pattern.]FIGURE 9 | Experimental data acquisition system. Physical device diagram (A). Mobile phone location diagram (B).
3.4 Analysis of landslide failure characteristics
During the slope test for rotational sliding, failure occurred when the model box was tilted to an angle of 44°. As shown in Figure 10A, the slope model after rotational sliding failure exhibits a distinct arcuate steep scarp with a slope angle ranging from 60° to 70°. In the middle to rear portion of the landslide, a reversed platform develops, accompanied by numerous shear cracks, and a depression forms in the trailing edge of the landslide (Figure 10B). Although the landslide mass is not completely disintegrated, its internal structure is significantly damaged. The landslide mass fully disintegrates at the shear outlet and gradually accumulates downslope. The topographic features reveal a notable depression in the middle and rear portions of the landslide, while the front experiences severe uplift (as shown in Figure 10C). The entire landslide mass moves downslope toward the foot of the slope, with the slope gradient exhibiting a marked anti-dip characteristic compared to the original slope, with an anti-dip angle ranging from 3° to 8° (Figure 10C).
[image: Diagram and cross-section of a slope failure. Part (a) shows a 3D diagram with pre-failure surface (dotted line), post-failure surface (solid line), and slip zone (red dashed line). Part (b) displays a grayscale cross-section with highlighted areas. Part (c) presents a color-coded topographic map indicating elevation changes from -70 to 80 millimeters.]FIGURE 10 | Rotational landslide. 3D model (A). Image after landslide failure (B). The terrain undulation after landslide damage (C).
During the slope test for translational sliding, failure occurred when the model box was tilted to an angle of 37°. The mode of slope failure is illustrated in Figure 11A. Small cracks initially appear at the rear of the slope as the model is uplifted, while no significant indications of deformation are observed in other areas of the slope. As the rear cracks propagate and eventually penetrate through, the soil mass at the front of the landslide rapidly disintegrates and slides downward. The remaining landslide mass quickly exits the shear outlet and accumulates at the lower part of the slope. The rear of the landslide forms a steep slope, while the front slope presents a gentle, relatively straight surface (Figures 11B, C).
[image: Diagram of a slope landslide with three panels. Panel a: a 3D illustration showing pre-failure (dashed line), post-failure (solid line), and slip zone (red line). Panel b: an image of the slope material. Panel c: a heat map of slope displacement, with a color scale indicating displacement from -25 to 50.]FIGURE 11 | Translational landslide. 3D model (A). Orthograph after landslide failure (B). The terrain undulation after landslide damage (C).
3.5 Analysis of differences between rotational and translational landslide
To investigate the differences in failure mechanisms of landslides under various modes, a graph was created to illustrate the relationship between slope angle and soil deformation. The results indicate that during translational sliding, once the rear cracks fully penetrate (Figure 12A) and the crack width reaches only 0.3 mm, the front of the landslide begins to deform rapidly, exhibiting sliding behavior (Figure 12A). This instability occurs before any further changes in the slope angle, causing the slope failure and the rapid slide and plunge downward of the sliding mass (Figure 12B). In contrast, even after the rear cracks penetrate and the crack width reaches approximately 1 mm for rotational landslide, the front of the slope exhibits bulging without any immediate sliding of the soil mass (Figure 12C). As the slope angle increases, the slope ultimately experiences instability and failure (Figure 12D). However, the integrity of the landslide mass remains relatively intact, and the sliding during the failure process occurs more gradually. In addition, the deformation of the sliding mass gradually becomes slow when the slope angle stops increasing (Figure 12E). It indicates that rotational sliding landslides tend to exhibit a slower and more gradual failure process in the absence of external triggering forces.
[image: Graph illustrating the relationship between slope angle and deformation in millimeters, showing a steep increase in deformation for rotational landslides compared to translational landslides. Accompanied by six inset images displaying different angles of slope failure.]FIGURE 12 | Slope deformation process of landslides in two failure modes.
4 DISCUSSION
The current research on landslide hazard identification often needs a unified reference basis, leading to divergent interpretations of the same hazard point by individuals from different professional backgrounds. Meanwhile, many uncertainties exist in predicting landslide susceptibility (Chang et al., 2023; Huang et al., 2024b; Huang et al., 2024c; Zhang et al., 2024a; Zhang et al., 2024b). Furthermore, there needs to be more understanding of assessing failure modes based on identifiable landslide deformation and failure characteristics. Through field investigation, this study investigates the deformation and failure features of loess landslides under two distinct failure modes. It successfully simulates the instability process by physical model tests, which refines the deformation and failure characteristics associated with different failure modes. This work can provide a basis for identifying landslide failure modes through hazard recognition. For rotational sliding loess landslides, early deformation is marked by the formation of distinct tensile cracks perpendicular to the slope direction at the rear of the slope, while minor bulging is observed at the front of the slope. Even after the rear crack penetrates through the slope, instability has not yet occurred. As deformation progresses, the bulging at the front of the slope develops numerous bulging cracks, leading to partial front disintegration and eventual slope failure. After the landslide occurs, a significant portion of the mass typically remains on the sliding bed with good integrity. Rear features include shingle-like topography, while the middle to rear sections of the slope display distinct anti-slope formations, with shear scarps and well-developed cracks, forming numerous steep scarps, slip cliffs, and grooves. Bulging phenomena are prominent at the front of the landslide. The sliding speed of the landslide mass in rotational sliding typically shows an initial increase followed by a decrease.
In translational sliding loess landslides, the appearance of small tensile cracks at the trailing edge of the slope, along with noticeable deformation at the front, serves as an early warning sign of potential failure. As deformation progresses and rear cracks penetrate through the slope, the soil mass at the front gradually disintegrates, followed by rapid sliding as the landslide mass exits through the shear outlet, leading to overall slope instability. The presence of penetrating rear cracks is a critical indicator of imminent translational sliding failure in loess landslides. Post-failure, the landslide mass mostly accumulates at the foot of the slope, with little mass remaining in the channel, and tensile cracks parallel to the rear wall are observable.
The failure process of the translational sliding observed in the experiments closely mirrors real-world cases. However, there are significant discrepancies in the failure process of the rotational sliding compared to the mutual assistance landslide documented in the case study. The mutual assistance landslide, triggered by continuous rainfall, exhibited phenomena such as initial sliding followed by flow and movement liquefaction, leading to rapid movement after instability. This contrasts with the experimental observations of rotational sliding, where the sliding speed initially increased before subsequently decreasing. Despite these differences, the early deformation and failure characteristics of both types of landslides are largely consistent. This suggests that landslides induced by various factors, such as rainfall or earthquakes, can exhibit pronounced differences in their post-failure movement dynamics, highlighting the need for further research in this area.
Furthermore, several preliminary experiments with varying moisture content levels were conducted in this study. However, the method of inducing slope deformation and failure through rotational elevation revealed significant limitations. When the moisture content was high, the cohesive properties of the loess effectively prevented any visible deformation in the slope model, even when the model box was rotated to its maximum angle. Although a sliding surface was pre-established within the slope, the model maintained its overall integrity and did not exhibit failure. After evaluating multiple slope models with different moisture contents, a model with a moisture content of 2.1% was selected for the main experiments due to its clear signs of deformation and comprehensive failure characteristics. However, it is important to note that the deformation and failure features of slope models at varying moisture levels exhibited some differences, indicating the need for further investigation in this area.
5 CONCLUSION
This paper systematically investigates the deformation and failure characteristics of rotational and translational sliding loess landslides through a combination of case studies and physical model experiments. The study provides a basis for early identification and assessment of landslide failure modes in loess regions, leading to the following conclusions:
	1. The early signs of rotational sliding in loess landslides are characterized by the presence of distinct tensile cracks at the trailing edge and minor bulging at the front edge. Obvious bulging at the front and numerous bulging cracks parallel to the slope indicate an impending rotational sliding event. After the landslide occurs, a significant portion of the sliding mass remains on the sliding surface with relatively good integrity. Features such as sunk scarps, slip cliffs, and tension-falling grooves at the trailing edge are evident. At the same time, bulging phenomena are prevalent at the front, serving as typical indicators of rotational loess landslide occurrence.
	2. Early indicators of translational sliding include small tensile cracks at the trailing edge and significant deformation at the front. The progressive disintegration of the front soil mass and the penetration of rear cracks, signals an imminent landslide. After the landslide, most of the sliding mass accumulates at the foot of the slope, and tensile cracks parallel to the slip cliff become visible, typical post-failure indicators of translational loess landslides.
	3. In a rotational sliding landslide, the sliding mass exhibits a velocity trend of increasing initially and then decelerating after its initial slope failure. The sliding velocity of the sliding mass of the translational sliding landslide is fast after its initial slope failure and this kind of landslide features an abrupt occurrence.
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Introduction: The engineering geological characteristics of Yunnan’s lateritic soil are quite unique, making it prone to shallow group landslides under rainfall conditions. This study focused on an old lateritic soil landslide as a case study.Methods: Soil column ponding infiltration experiment was conducted to investigate the infiltration behavior of the lateritic soil. Numerical simulation software was employed to analyze the rainfall-induced seepage characteristics of the landslide, and a comprehensive assessment of the failure mechanisms of the lateritic soil landslide was conducted.Results: The study findings are as follows: (1) During water infiltration, the infiltration time curve of the lateritic soil column showed a parabolic growth trend. The migration rate of the wetting front rapidly decreased from 0.15 to 0.2 cm/min to 0.1 cm/min and then stabilized at approximately 0.04 cm/min. (2) Long-term heavy rainfall is the condition for the formation of this old lateritic soil landslide. By coupling the seepage process, the stability coefficient of the lateritic soil slope was calculated, revealing that the instability rainfall threshold of the slope under prolonged rainfall conditions is generally 120 mm/d. (3) The main changes in the seepage field occurred in the shallow soil layer. In the later stages of rainfall, the infiltration rate of the slope was controlled by the permeability coefficient of the lateritic soil. As the rainfall intensity increased, the depth of rainfall impact increased, and the pore water pressure in the shallow soil layer tended to gradually increase and then stabilize under different rainfall intensities. (4) Under long-term rainfall conditions, the volumetric water content of the soil at the toe of the lateritic soil slope first peaked. After the rainfall ended, moisture in the slope continued to migrate to the toe, keeping the soil at the toe in a saturated state. (5) The formation and evolution of this lateritic soil landslide could be divided into five stages: initial natural stage, rainfall infiltration-crack expansion, shallow creep-progressive collapse of the front edge, sliding surface penetration-overall instability, and landslide braking accumulation.Conclusion: The research results provide significant theoretical guidance and practical implications for understanding the causes and prevention of lateritic soil landslides in similar areas.Keywords: lateritic soil, landslide, rainfall infiltration, instability threshold, failure evolution
INTRODUCTION
Lateritic soil is residual soil formed from iron-bearing parent rock through lateritization in a hot and humid climate and is widely distributed in the southwestern region of China (Fu et al., 1997; Chantruthai et al., 2017; Sani and Eisazadeh, 2023). The surface layer of lateritic soil on slopes is relatively dry, loose, and of low strength, making it susceptible to water erosion. The deeper the soil is, the greater the strength and density. The instability of slopes composed of lateritic soil is closely related to rainfall.
Under natural conditions, slopes are generally in an unsaturated state, and rainfall is the most significant external dynamic factor affecting slope stability. Rainwater infiltration can lead to changes in internal stress within slopes, potentially causing slope instability (Fourie et al., 1999; Ye et al., 2015; Froude and Petley, 2018; Tao et al., 2024). Researchers have conducted extensive studies on the seepage characteristics and stability variations of unsaturated soil slopes under rainfall conditions via physical model experiments (Chen, 2014; Song et al., 2021; Lu et al., 2023) and numerical simulation methods (Zeng et al., 2017; Wang et al., 2019; Yuan et al., 2020; Xu et al., 2022; Li et al., 2021).
For example, Zhou et al. (2023) conducted an analysis via Geo-studio software to study the characteristics of pore water pressure variation within unsaturated soil slopes and the impact of different rainfall conditions on slope stability. Tran et al. (2018) developed a slope model based on instantaneous rainfall infiltration to analyze the dynamic changes in the seepage field within a slope and the corresponding stability variations. Cheng et al. (2024) proposed a rigorous limit equilibrium method and, using SEEP/W software in conjunction with this method, investigated the effects of rainfall intensity, rainfall pattern, and duration on soil slope stability. Bai et al. (2023) conducted a field rainfall experiment on a natural double-layer loess slope, combined with finite element software simulations to analyze the rainfall infiltration characteristics of the slope and the infiltration effects at the soil layer interface. The results indicated that as the rainfall intensity increased, the infiltration effects at the interface became more pronounced.
When the rainfall volume and intensity exceed critical thresholds, geological hazards may occur in clusters (Sun et al., 2022). Many researchers have proposed reasonable rainfall thresholds for triggering landslide instability by considering various influencing factors on the basis of hydrological and landslide stability models (Liu et al., 2023; Gong et al., 2024; Bhavithra et al., 2024; Sun et al., 2024). Both short-term intense rainfall and long-term continuous rainfall can potentially lead to slope instability (Fu et al., 2012; Shi et al., 2016; Ma et al., 2021; Hou et al., 2021). Cui et al. (2007) utilized numerical methods to investigate the failure process of a highway slope under prolonged continuous rainfall conditions. The results indicated that the loss of soil suction caused by rainfall was the primary factor leading to slope failure. Zheng et al. (2016) developed a finite element model for gravel soil slopes to analyze the seepage process and stability under prolonged heavy rainfall. Li et al. (2023b) conducted physical model experiments and numerical simulations on layered soil slopes under heavy rainfall. The results showed that infiltration under heavy rainfall primarily occurred in the shallow layers of the slope. The rainfall increased pore water pressure, thereby weakening the shear strength of the soil. Liu et al. (2012) analyzed the changes in soil moisture content and shear strength during the infiltration process under continuous low-intensity rainfall. Using FLAC3D, they studied the dynamic changes in the slope safety factor. The results indicated that during continuous low-intensity rainfall, the critical sliding surface of the slope had not yet become saturated.
In summary, considerable research has been conducted on the rainfall infiltration process and slope stability of unsaturated soils, with most studies focusing on the effects of rainfall intensity and duration on the stability of unsaturated slopes. However, lateritic soils, which exhibit high shrinkage and unique engineering geological characteristics, have been less studied in terms of their seepage properties and slope stability. To address this gap, this study focused on an old lateritic landslide in Yunnan Province. On the basis of field investigations, laboratory tests, and an analysis of local rainfall characteristics, the rainfall-induced seepage behavior and instability thresholds of the lateritic slope were examined. The findings provide valuable theoretical insights and practical implications for understanding the causes of lateritic landslides and mitigating geological hazards in similar regions.
GEOLOGICAL CHARACTERISTICS OF THE LANDSLIDE
The lateritic soil landslide in the study area is an old landslide with a long, tongue-shaped platform and a main sliding direction of 94°. The landslide site is located on the eastern side of the central Hengduan Mountains and the northern edge of the Yunnan Plateau, with geographic coordinates of N26°11′15.45″, E101°57′38.23″. The landslide is 480–500 m long and approximately 200–400 m wide, with a height difference of 117–120 m between the leading and rear edges. The landslide boundaries are distinct, with a steep, chair-shaped landslide back wall at the rear edge, approximately 32 m in height. After slope instability, a pull-down trench formed at the rear of the slope and was filled with gravel soil. The boundaries on both sides are steep, nearly vertical walls (Figure 1).
[image: Top left shows a map of Yunnan Province, highlighting a specific location. Top right is a topographic map of a county with varying elevation colors. Bottom left illustrates a landslide zone with marked boundaries and sliding directions. Bottom right combines two photos: one showing the pull-out trench and the other the front edge of the landslide site.]FIGURE 1 | Landslide overview (A). Overall view of the landslide; (B). Rear edge of the landslide; (C). Front edge of the landslide).
During its formation, the landslide developed multiple terraces. The quartz albite schist is exposed at the front edge. Currently, most landslide masses have been converted into agricultural land by local residents. According to field geological investigations, the slope is steeper in the middle and front sections, whereas the middle to rear sections form a terrace. The steep front and gentle rear topography provided favorable conditions for landslide development. The gentle slope has an open surface, which prolongs surface water retention, facilitating rainfall infiltration. A stream runs along the front edge of the slope, with a significant increase in flow during the rainy season. Continuous scouring and erosion of the opposite bank weaken the soil strength at the front, causing the front soil to become unstable and be carried away by the water flow. This process continuously pulls the rear soil, ultimately leading to the formation of the landslide. The longitudinal profile of the main sliding direction is shown in Figure 2.
[image: Cross-section diagram showing terrain elevation over distance. It illustrates residual slope deposits, landslide deposits, and silty clay with gravel. A red line indicates the sliding surface, and a shaded area represents the sliding mass. Elevations range from 1830 to 2010 meters. Key labels include "Pull-down trench" and "Original terrain line."]FIGURE 2 | The main sliding direction profile of the landslide.
ONE-DIMENSIONAL SOIL COLUMN INFILTRATION TEST
Test equipment and sensor installation
The soil samples used in the soil column experiment were collected from the middle front and the left side of the landslide body, where vegetation cover is sparse. Disturbed soil samples were obtained by first using shovels and picks to remove approximately 10 cm of the surface layer, which had been significantly influenced by external factors. Large boulders with excessive particle sizes were discarded during the process. A sampling pit with a depth of 50 cm was then excavated for sample collection.
The one-dimensional soil column infiltration test equipment consists primarily of a cylindrical tube containing the lateritic soil sample, a data acquisition system, sensors, a water supply device, and imaging equipment. The cylindrical tube is made of acrylic material, with a height of 100 cm and inner and outer diameters of 25 cm and 27 cm, respectively. The top of the tube was opened, and the bottom was sealed, with a 2 cm diameter drainage outlet near the base. Six volumetric water content sensors and three matric suction sensors were embedded in the soil column at different depths from top to bottom (Figure 3). The water supply device consists of a medical-grade infusion bottle and drip line, with the flow rate controlled by adjusting the air pressure. A water pump was used to quickly fill the space above the soil sample to a water head height of 10 cm for a constant head ponded infiltration test. During the infiltration process, a sufficient water supply was maintained to ensure a stable water head.
[image: A lab setup featuring a data acquisition system with a laptop and electronic devices on the left. A large transparent cylinder labeled "soil column device" appears on the right with marked levels at intervals. A water supply system connected to the setup is visible in the background against a blue backdrop. Components are labeled, including "Volumetric water content sensor," "Moisture outflow sensor," and "Water supply device."]FIGURE 3 | Soil column test equipment.
Analysis of test results
The data collected by the sensors were used to plot the variation curves of the volumetric water content of the lateritic soil over time and depth (Figures 4, 5). As shown in the figures, the initial volumetric water content at different depths varied slightly, ranging between 10% and 15%. As rainfall slowly infiltrated, the sensors responded sequentially, with the volumetric water content first increasing sharply and then rising more gradually until stabilizing. The changes in water content were more pronounced in the shallow soil than in the deeper soil. Once the soil above the wetting front became saturated, water movement was no longer driven by the matric potential, resulting in a decrease in the infiltration rate. As the wetting front moved downward, the moisture at the leading edge was not replenished in time. The rate of increase in the volumetric water content recorded by each sensor gradually decreased with increasing sensor burial depth.
[image: Graph illustrating volumetric water content over time for different temperatures ranging from ten to sixty degrees Celsius. Each temperature curve shows the progression of water content, with higher temperatures reaching saturation more quickly. A legend indicates color-coded temperatures.]FIGURE 4 | Time‒variation curve of the volumetric water content.
[image: Graph showing the relationship between depth (cm) and volumetric water content (%). Two lines represent initial and saturated conditions. The initial line rises from 5% to about 15% at 50 cm depth, while the saturated line increases from around 55% to 65%.]FIGURE 5 | Depth‒variation curve of the volumetric water content.
Figure 6 shows the time series curve of matric suction in the lateritic soil. In the initial state, the soil was dry, and the initial matric suction at the sensor locations was close to 700 kPa, representing the maximum value. The response pattern of matric suction was opposite to that of the volumetric water content. As the soil gradually saturated with water infiltration, the matric suction decreased sharply as water passed through the sensors, decreasing to a minimum value of approximately 10 kPa within a short period. The matric suction subsequently remained unchanged despite further water infiltration.
[image: Line graph showing matrix suction (kPa) over time (minutes). Three lines represent different conditions: 1.0 (orange) drops around 60 minutes, 2.0 (blue) drops around 140 minutes, and 3.0 (green) maintains stability till about 460 minutes before dropping sharply. The y-axis ranges from 0 to 700 kPa, and the x-axis spans 0 to 500 minutes.]FIGURE 6 | Time‒variation curve of matric suction.
Figure 7 presents the time series curves of the wetting front migration depth and migration velocity in the lateritic soil. The migration depth curve shows a parabolic growth trend, with the infiltration depth decreasing gradually over time at the same infiltration duration. The distance advanced by the wetting front per unit time represents the migration velocity of the wetting front. In the early stage of infiltration, the wetting front migration velocity decreased significantly, dropping rapidly from the initial maximum rate to less than 0.1 cm min−1. As infiltration continued, the rate stabilized, approaching approximately 0.04 cm min−1.
[image: Graph showing two data sets over time in minutes. One set shows the depth of the wetting front, rising steadily, and another shows the velocity of the wetting front, initially decreasing and then leveling off. Velocity is measured in centimeters per minute, and depth in centimeters.]FIGURE 7 | Time-varying curves of wetting front migration depth and migration velocity.
NUMERICAL ANALYSIS OF THE SEEPAGE FIELDS
Model establishment and selection of calculation conditions
Some undisturbed lateritic soils were taken for basic physical and mechanical tests in the laboratory to obtain the necessary calculation parameters for the simulation (Table 1).
TABLE 1 | Calculation parameters.
[image: Table showing geotechnical properties of Lateritic soil: Unit weight is 19.5 kilonewtons per cubic meter, cohesion is 21 kilopascals, internal friction angle is 13 degrees, saturated permeability coefficient is 1.7 x 10^-5 centimeters per second, and natural water content is 28.8 percent.]A seepage calculation model was established via Geo-studio software on the basis of the geological section along the main sliding direction of the lateritic soil landslide. The model assumed an impermeable boundary at the base with a constant head of 1950 m on the left side and 1878 m on the right side. The slope surface was defined as a unit flux boundary to simulate rainfall infiltration, allowing for the subsequent design of rainfall intensity scenarios. Eight monitoring points were selected along the slope surface from top to bottom, and two characteristic profiles, 1–1′ and 2–2′, were chosen (Figure 8) to analyze changes during the seepage process. Considering the presence of favorable fracture pathways for rainfall infiltration in the actual slope, the permeability coefficient of the intact lateritic soil in the study area was increased by an order of magnitude to define the effective permeability coefficient of the red soil (Zhang, 2015). The soil‒water characteristic curve was obtained via built-in sample functions within the software, and the experimental saturated permeability coefficient of the lateritic soil was fitted to the Fredlund and Xing model to derive the permeability coefficient function (Yu et al., 2017).
[image: Line graph showing elevation in meters versus distance in meters, with eight monitoring points marked with red dots and labeled 1# through 8#. The elevation decreases steadily, with significant drops between points 1#, 2#, and 8#. Two vertical bars highlight elevation changes at points 1# and 8#.]FIGURE 8 | Layout of the model monitoring points and characteristic profiles.
Calculation conditions
On the basis of the rainfall conditions in the study area, daily rainfall amounts of 24.9, 49.9, 99.9, and 249.9 mm were selected for subsequent analysis of the seepage characteristics of the lateritic soil slope. The rainfall duration was set to 2 days, followed by an 8-day rainless period. The calculation scenarios and load combinations are presented in Table 2.
TABLE 2 | Table of calculation conditions and load combinations.
[image: Table showing computational conditions and load combinations for different states. Normal state has ID 1 with natural conditions and load of dead weight plus groundwater. Non-normal state includes IDs 2 to 5 with conditions ranging from continuous moderate rain to downpour, with corresponding load combinations and rainfall intensities.]Infiltration characteristics analysis
The process of rainfall infiltration caused the soil to transition from an unsaturated state to a saturated state. During this process, changes in the soil pore water pressure, moisture content, and matric suction occurred, which in turn affected the stability of the lateritic soil slope.
As shown in the time series curves of the pore water pressure on the slope surface (Figure 9), the monitoring points in the upper part of the slope were farther from the groundwater table, resulting in greater initial negative pore water pressure values. Conversely, the initial negative pore water pressure values at the slope toe were relatively low. As rainfall progressed, the upper slope experienced the greatest variation in pore water pressure, ranging from −467 kPa to −30 kPa. With increasing rainfall intensity, the time required for each monitoring point to reach the peak pore water pressure decreased, and the rate of increase was greater in the upper slope than in the lower slope. The saturated permeability coefficient of the lateritic soil was lower than the rainfall intensity, meaning that the infiltration rate at later stages of rainfall was controlled by the permeability coefficient of the lateritic soil. After 2 days of rainfall at different intensities, the soil at the slope toe reached saturation, whereas the soil in the middle and upper parts of the slope remained in a nearly saturated state.
[image: Graph showing pore water pressure (kPa) over time (days) at varying depths for two scenarios of water flow at 24.9 mm/day. Subplot (a) shows a gradual increase in pressure, while subplot (b) shows a rapid initial increase, then stabilization. Each line represents a different depth.]FIGURE 9 | Time-variation curves of pore water pressure at slope monitoring points under different rainfall intensities. (A) 24.9 mm/d. (B) 249.9 mm/d.
The spatial variation curves of pore water pressure under different rainfall intensities (Figures 10, 11) reveal that the primary changes in the seepage field during the entire rainfall process occurred in the shallow soil layers. A significant amount of rainfall infiltrated the slope surface, but owing to the fine particles and low permeability of the lateritic soil, the water could not migrate to deeper layers, resulting in a greater variation in pore water pressure in the shallow layers. As the rainfall intensity increased, the depth of influence also increased. In the upper part of the slope, the depth of influence was approximately 9–2 m, with little to no change in pore water pressure at greater depths as the rainfall intensity increased. In the lower part of the slope, the depth of influence was approximately 8–11 m, and deeper soil layers exhibited some fluctuations in pore water pressure with increasing rainfall intensity.
[image: Two graphs show the relationship between elevation (m) and pore water pressure (kPa) over several days. In graph (a), labeled 1-1', data points from "Initial" to "Day 7" show a decrease in both elevation and pore water pressure. In graph (b), labeled 2-2', the same trend is observed from "Initial" to "Day 10". Both graphs illustrate a decreasing pattern in pore water pressure as elevation decreases.]FIGURE 10 | Elevation-variation curves of pore water pressure for different profiles under 24.9 mm/d rainfall intensity. (A) 1–1’. (B) 2–2’.
[image: Two graphs compare elevation versus pore water pressure over ten days. Graph (a) shows data from -500 to 0 kilopascals, with elevation decreasing from 1990 to 1940 meters. Graph (b) shows data from -80 to 160 kilopascals, with elevation decreasing from 1890 to 1880 meters. Each graph tracks measurements from the initial state and every subsequent two days.]FIGURE 11 | Elevation-variation curves of pore water pressure for different profiles under 249.9 mm/d rainfall intensity. (A) 1–1’. (B) 2–2’.
The pore water pressure variation trends at each monitoring point during the rainfall infiltration process were generally similar. Initially, the shallow soil layers in the slope gradually became saturated due to the influence of the rainfall infiltration rate. However, in the later stages, the low permeability coefficient of the lateritic soil impeded further infiltration, causing most of the rainfall to accumulate as surface runoff and discharge at the slope toe. After the rainfall ended, the low permeability of the lateritic soil resulted in very slow water drainage, causing the pore water pressure at various points on the slope surface to remain near their peak values for an extended period, requiring a long time to return to the initial state.
As rainfall infiltrated from the shallow to deeper parts of the slope, the unsaturated zone gradually transitioned to a saturated zone. The pore water pressure variation was more significant in the middle and upper parts of the slope than in the lower part, whereas the deeper soil layers were less affected by rainfall, with minimal changes in pore pressure. Throughout the entire rainfall event, the saturation zone within the slope was confined to the shallow soil layers, where the matric suction decreased, leading to a reduction in soil strength. Stability calculations for the lateritic soil slope under different rainfall intensities indicate that, even after 2 days of rainfall, the landslide remained relatively stable. For the maximum rainfall intensity of 249.9 mm/d, the calculated stability factor of the landslide was 1.213.
SLOPE INSTABILITY THRESHOLD STUDY
Calculation scheme
The intensity and duration of rainfall are key factors determining whether instability occurs. To study the rainfall threshold for laterite slope instability, the rainfall intensity was gradually increased beyond the original level, without considering evaporation, to explore the stability of the laterite slope. Two calculation scenarios were designed: (1) Instability threshold under short-term heavy rainfall: the rainfall intensities were set at 400, 500, 600, 700, and 750 mm/d, with a rainfall duration of 2 days; (2) Instability threshold under long-term rainfall: the rainfall intensities were set at 50 mm/d for heavy rain, 100 mm/d for very heavy rain, and 120 mm/d for very heavy rain. Extensive data collection and surveys revealed that before the occurrence of large-scale landslides in Huili, Sichuan, the rainfall duration was often approximately 1 week. Therefore, in this study, the rainfall duration was set at 5 days to analyze the slope instability threshold under long-term rainfall.
Using the determined rainfall intensities, the stability coefficient of the lateritic soil slope was calculated via the Morgenstern‒Price method in the SLOPE/W module. The local stability coefficients of the slope under rainfall intensities of 400, 500, 600, 700, and 750 mm/d were 1.188, 1.171, 1.088, 1.062, and 1.057, respectively.
Typically, when the slope stability factor falls below 1.05, deformation is likely to occur. Under a rainfall intensity of 750 mm/d, the slope stability factor approaches 1.05, indicating that this intensity is the threshold for instability under short-term intense rainfall conditions. However, an analysis of rainfall data from 1956 to 2022 revealed that the maximum single-day rainfall in the area over the past 66 years was 298.96 mm, indicating that it is unlikely that rainfall will reach the instability threshold under short-term intense rainfall conditions. Therefore, the lateritic soil landslide was not easily triggered by short-term intense rainfall, and subsequent analyses focused solely on seepage characteristics under long-term rainfall conditions.
Analysis of seepage characteristics under long-term rainfall conditions
Under rainfall intensities of 50, 100, and 120 mm/d, after 5 days of continuous rainfall followed by cessation, Figure 12 shows the variation curves of the volumetric water content at the slope surface monitoring points over time under rainfall intensities of 50 and 120 mm/d.
[image: Two line graphs display volumetric water content over time for different treatments. Graph (a) shows data at 50 mm/d, with varying treatments peaking between 0.20 and 0.35 m³/m³ by day 10. Graph (b) at 120 mm/d shows a similar trend, peaking slightly higher, between 0.25 and 0.38 m³/m³. Treatment lines are identified by different colors and markers.]FIGURE 12 | Time‒variation curves of the volumetric water content at the slope monitoring points under the different rainfall intensities. (A) 50 mm/d. (B) 120 mm/d.
As shown in the figure, the volumetric water content at each monitoring point on the slope surface gradually increased with the continuation of rainfall, with the soil at the toe and crest of the slope reaching peak values first and the soil at the toe becoming saturated first. As the rainfall intensity increased, the rate of increase in the volumetric water content at each monitoring point accelerated. Overall, the rate of increase was as follows: upper slope > middle slope > lower slope. The time required for the monitoring points on the upper slope to reach peak values was significantly shorter, and after reaching the peak, the values stabilized. By the fifth day of rainfall, most monitoring points had reached peak values. Under a rainfall intensity of 120 mm/d, the soil at monitoring points 6# and 7# also approached saturation, indicating a significant rise in the groundwater level. After the rainfall ceased, moisture within the slope continued to migrate toward the toe, with the volumetric water content at the middle and upper monitoring points decreasing at the fastest rate. The water table retreated, with the volumetric water content at the monitoring point near the slope toe (7#) initially dropping sharply before stabilizing, while the soil at the toe remained saturated. Overall, even long time after the cessation of rainfall, the volumetric water content of the slope did not return to its initial state.
Figure 13 shows the variation in volumetric water content with elevation at the 2–2’ profile near the slope toe under the two rainfall intensities of 50 and 120 mm/d. The figure indicates that the soil below the groundwater level was in a saturated state, whereas the range of volumetric water content variations in the shallow soil increased progressively with increasing rainfall intensity. The closer the soil was to the slope surface, the sooner it reached saturation. After the rainfall ended, the deeper the soil was, the slower the decrease in volumetric water content was.
[image: Two line graphs show the relationship between elevation (in meters) and volumetric water content (in cubic meters per cubic meter) over several days. Graph (a) for 50 millimeters of rainfall and graph (b) for 120 millimeters both display data points for the initial condition and days one to six. Elevation slightly decreases with higher water content in both scenarios, with water content increasing more noticeably over time.]FIGURE 13 | Elevation‒variation curves of the volumetric water content for profile 2–2’ under the different rainfall intensities. (A) 50 mm/d. (B) 120 mm/d.
A comparative analysis revealed that the slope toe was a vulnerable area. The greater the rainfall intensity was, the more water migrated toward the slope toe, continuously infiltrating and eroding the soil at the toe. This process gradually deteriorated the mechanical properties of the soil, leading to a reduction in its strength and, consequently, a decrease in slope stability.
Rainfall threshold analysis
The local stability characteristics of the lateritic soil slope under long-term rainfall conditions were as follows: In a continuous 5-day rainfall environment, the stability coefficient was 1.210 when the rainfall intensity was 50 mm/day, 1.171 when the rainfall intensity was 100 mm/day, and 1.049 when the rainfall intensity was 120 mm/day. When the rainfall intensity was 120 mm/day and it rained continuously for 5 days, the local stability of the lateritic soil slope approached 1.05. This rainfall intensity can be regarded as the threshold for slope instability under prolonged rainfall conditions. The curve of the stability coefficient of the lateritic soil slope over time under a rainfall intensity of 120 mm/day is shown in Figure 14.
[image: Line graph showing stability coefficient over a time period of ten days. The coefficient starts at 1.146 and decreases steadily, leveling off around 1.028. A red dashed line at 1.05 marks a reference point.]FIGURE 14 | Time‒variation curves of the slope stability coefficient under a 120 mm/d rainfall intensity.
The study area experiences an average of 127 rainy days per year, with a maximum of 192 days. Rain occurs in almost one-third of the year, and in the wettest years, rain can occur up to half of the year. However, owing to the lack of detailed rainfall data, continuous rainfall for 5 days or more is possible in years with a high number of rainy days. Additionally, a continuous rainfall intensity exceeding 100 mm/day and even surpassing 120 mm/day can occur. On the basis of the analysis of a large amount of landslide data and investigations, large-scale landslides in the study area tend to form after approximately 5 days of heavy rainfall. Under long-term rainfall conditions, the instability threshold of slopes is approximately 120 mm/day.
Comprehensive analysis of slope instability and failure
The slope where the lateritic soil landslide occurs possesses both internal and external factors favorable for landslide occurrence. Rainfall and water erosion weaken the strength of the soil at the slope front edge, causing destabilization and removal of the front soil by water flow. This process continually pulled down the lateritic soil, ultimately leading to the formation of the landslide. On the basis of actual geological field investigations, combined with indoor physical and mechanical tests, rainfall infiltration tests, and slope seepage simulations, the formation process of this landslide can be divided into five stages, as shown in Figure 15.
	(1) Initial natural stage (Figure 15A): In this stage, the soil in the shallow range of the lateritic soil slope was in full contact with the air and underwent intense physical and chemical weathering. The soil exhibited reddish-brown and yellow-brown hues, with the surface layer being relatively loose under natural conditions. Randomly developed cracks of varying degrees are present within the soil.
	(2) Rainfall infiltration and crack expansion stage (Figure 15B): The front part of the slope was steeper, while the middle and rear sections formed a platform. The continuous scouring of the front edge by flowing water led to further steepening of the slope, improving free-face conditions. After long-term rainfall, the slope exhibited a tendency for downward creeping, and tensile cracks gradually develop in the middle and rear sections. Rainwater infiltrated through these preferentially developed cracks, softening the soil around the cracks and reducing its shear strength. Additionally, the flowing water exerted hydrodynamic pressure on the cracks, causing further crack propagation under prolonged rainfall.
	(3) Intensified shallow sreep and progressive collapse of the front slope (Figure 15C): Under continued rainfall, the expansion of shallow cracks accelerated water infiltration, altering the slope’s seepage field and facilitating water migration to the middle and lower parts of the slope. The shallow slope body experienced increased creep movement. Crack propagation in the rear section formed the rear boundary of the potential landslide, and a sliding surface gradually developed. Due to the low permeability of the lateritic soil, rainwater accumulated and flowed toward the slope toe. Combined with fluvial scouring and erosion, this caused a reduction in the shear strength of the local soil at the slope’s front, leading to progressive collapse in localized areas.
	(4) Sliding surface penetration and overall instability stage (Figure 15D): The local collapse of the front slope enhanced free-face conditions, further exacerbating the pulling effect on the rear slope. The landslide involved a larger planar area, located in a surface water collection and runoff zone. With continued rainwater infiltration, the slope undergone progressive downslope creep, and the cracks along the lateral boundaries and the potential sliding surface gradually connected, resulting in overall slope failure. Portions of the front slope’s material accumulate at the base.
	(5) Landslide braking and accumulation stage (Figure 15E): During the landslide, the different sliding speeds of the upper and lower sections formed landslide terraces in the upper part. The sliding mass overcame sliding resistance, dissipated kinetic energy, and the front sliding mass spread and accumulated to the sides. The overall sliding distance was short, and the sliding speed gradually decreased to zero. The landslide gradually stabilized, eventually forming the current lateritic soil landslide.

[image: Five panels illustrate the stages of landslide development. (a) Initial natural stage shows cracks and tension at the edge of a slope. (b) Rainfall infiltration leads to crack propagation and instability. (c) Shallow creep causes progressive collapse. (d) Surface penetration results in overall instability and sliding. (e) Landslide braking accumulation depicts final debris accumulation at the slope's base. Each panel includes labels for cracks, infiltration, and various instability mechanisms.]FIGURE 15 | Formation stages of the lateritic soil landslide. (A) Initial natural stage. (B) Rainfall infiltration-crack propagation stage. (C) Intensified Shallow creep-front progressive collapse stage. (D) Sliding surface penetration-overall instability stage. (E) Landslide braking accumulation stage.
DISCUSSION
This study analyzed the seepage characteristics and stability changes of the lateritic landslide under rainfall conditions. Based on existing rainfall data, two simplified uniform rainfall patterns were considered: short-term intense rainfall and long-term rainfall. In reality, rainfall data vary continuously over time and space, making accurate measurement difficult. Therefore, variations in rainfall are often neglected in slope stability analyses (Ruette et al., 2014). Most previous studies have focused on the effects of rainfall intensity and duration on the stability of unsaturated slopes (Jeong et al., 2017; Liu et al., 2023). However, rainfall in a given region is not always uniform, and various combinations of rainfall patterns can occur. Different rainfall patterns can alter the boundary conditions of slopes and influence water movement within the slope, particularly with prolonged rainfall, which allows for buffering time during the infiltration process, leading to a continuous decrease in matric suction within the slope (Tsai and Wang, 2011). Ma et al. (2024) investigated the impact of rainfall patterns on the stability of loess slopes and found that using a uniform rainfall pattern for slope stability analysis tends to yield conservative results. Additionally, they validated their findings with rainfall and landslide data from similar regions (Luo et al., 2023; Wang et al., 2022; Shao et al., 2023; Zhuang et al., 2018), indicating that landslide instability often occurs during continuous rainfall or when heavy rain follows preceding rainfall events. The conclusion that the old lateritic landslide in the study area resulted from long-term rainfall aligns with these findings.
Moreover, during the numerical analysis using Geo-studio software, the soil is assumed to be homogeneous, with constant values for soil parameters. The determination of these parameters is subject to uncertainties and requires parameter inversion to obtain final values. Due to variations in geological processes and changing climatic conditions, the pore structure of natural soils exhibits temporal and spatial variability, leading to uncertainties in soil hydraulic parameters, which may reduce the overall stability of slopes. Li et al. (2023a) highlighted that soil heterogeneity can influence the infiltration process within soil slopes, as well as the post-rainfall stability and failure timing of the slopes. In the study area, cracks and vertical joints were observed in certain regions of the lateritic soil (Figure 16), similar to those found in loess (Zhao et al., 2020; Feng et al., 2020). These features can form preferential pathways for water infiltration. During the infiltration process, the uneven distribution of water can result in heterogeneity in infiltration rates, matric suction, and pore water pressure changes. Figure 17 illustrates the concept of water infiltration in slopes with preferential pathways and spatial variability of soil properties.
[image: Six-panel image showing erosion and cracks in a landscape. Panel (a) depicts vertical cracks on a back wall. Panel (b) shows a crack at the rear edge. Panel (c) illustrates crack development after one year. Panel (d) displays vertical cracks in a side wall. Panel (e) highlights more vertical cracks. Panel (f) features tensile cracks on the side wall. Red lines indicate crack locations.]FIGURE 16 | Spatial variability characteristics of the lateritic soil in the study area (A). Vertical cracks on the back wall; (B, C). Crack at the rear edge; (D, E) vertical cracks in the side wall; (F) tensile crack in the side wall).
[image: Illustration of soil and water interaction during rainfall. It shows rain penetrating the soil, forming a wetting front with downward movement, a perched river, and soil spatial variability. Arrows indicate water flow direction.]FIGURE 17 | Schematic diagram of preferential flow pathways (modified from Ma et al., 2024).
CONCLUSION
Taking a lateritic soil landslide in Yunnan Province as the research object, the slope seepage characteristics were analyzed through seepage and stability coupling. Two schemes, short-term heavy rainfall and prolonged rainfall, were designed to analyze the instability threshold of the slope, leading to the following conclusions:
	(1) During water infiltration, the infiltration time curve of the lateritic soil column shows a parabolic growth trend. The migration rate of the wetting front rapidly decreased from 0.15 to 0.2 cm/min to 0.1 cm/min and then stabilized at approximately 0.04 cm/min.
	(2) Long-term rainfall is the inducing condition for the formation of this lateritic soil landslide. Considering the changes in the stability of the lateritic soil slope under different rainfall conditions, the instability threshold of the slope under 5 days of prolonged rainfall is approximately 120 mm/day.
	(3) Due to the low permeability of lateritic soil, the main changes in the seepage field during rainfall occurred in the shallow soil layer. In the later stages of rainfall, the infiltration rate of the slope was controlled by the permeability coefficient of the lateritic soil. As the rainfall intensity increased, the depth of rainfall impact increased, and the pore water pressure in the shallow soil layer tended to gradually increase and then stabilize under different rainfall intensities.
	(4) Under long-term rainfall conditions, the volumetric water content of the soil at the toe of the lateritic soil slope first peaked. After the rainfall ends, the moisture in the slope continues to migrate to the toe, keeping the soil at the toe in a saturated state.
	(5) Comprehensive analysis divided the formation process of this lateritic soil landslide into five stages: initial natural stage, rainfall infiltration-crack expansion, shallow creep-progressive collapse of the front edge, sliding surface penetration-overall instability, and landslide braking and accumulation.
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On 8 October 2017, persistent heavy rainfall triggered a rock collapse on Fenghuang Mountain in Wuxi Town, located within the Three Gorges Reservoir region of China. Subsequent field investigations and monitoring identified several potentially unstable rock masses in the area, posing a significant threat to the safety of nearby residents and their property. In this study,the Rapid Mass Movement Simulation (RAMMS) numerical tool was used to perform a back analysis of the rock collapse event. The well calibrated numerical model was then used to assess the risk of the potential unstable rock masses in the study area. The rock collapse on Fenghuang Mountain descended rapidly along the slope, with the dislodged material accumulating at the base and obstructing the road at the foot of the slope. Some debris breached the embankment and entered the Daning River. The computed maximum velocity during the rock collapse event was approximately 9.14 m/s, with an average maximum deposit thickness of around 4.48 m. The back-analysis of the rock collapse event closely aligns with the observed failure process and deposit morphology documented through field investigation. Using the well calibrated numerical model, a dynamic analysis was conducted on the potential unstable rock mass. The risk assessment indicates that the potential unstable rock mass is prone to instability, with a high likelihood of a subsequent rockfall under extreme rainfall conditions. The computed average maximum velocity for the potential rockfall is 33.83 m/s, with an average maximum deposit thickness of 2.20 m. The computed maximum impact pressure is about 164 kPa, which would result in significant damage to the road below. Additionally, a maximum wave height of 1.38 m from the surge caused by potential rockfall entering the Daning River was calculated by a semi-empirical model. This research offers a novel approach and methodology for assessing the risk of such hazardous events in similar geological setting globally.
Keywords: three gorges reservoir area, back analysis, ramms, dangerous rock collapse -surge, risk assessment

1 INTRODUCTION
The collapse of dangerous rock masses is a common geological hazards in the mountainous areas of southwest China (Zhang et al., 2021a; Cheng et al., 2023). These events are characterized by sudden onset, high impact energy, and frequent occurrences, posing serious threats to the safety of residents’ lives and property (He, 2015). The Three Gorges Reservoir area in China exhibits complex and variable geological conditions, strong tectonic activity, intricate geomorphological evolution, sensitive climate changes, and the development of high and steep terrain (Zhang et al., 2024). These factors collectively create favorable conditions for hazardous rock collapses (Zhang Q. et al., 2021). During such events, the collapsed debris move along the slope surface, erodes sliding bed along its path. The volume of the debris accumulates, causing severe damage to everything it encounters and generating a series of cascading hazards. Table 1 lists catastrophic rock collapse events worldwide in recent years, which have resulted in significant losses for local populations.
TABLE 1 | Catastrophic rock collapsing events all around the world.
[image: Table listing six rock collapse events with columns for name, date, location, and disaster details. Events include Yigong mountain collapse, Wulong Jiwei collapse, and others occurring from 2000 to 2022 in China, India, and Brazil, causing fatalities, injuries, infrastructure damage, and economic losses.]Due to the complexity of the movement of the unstable mass and the limitations of research methods, these phenomena are primarily studied through field surveys and remote sensing imagery. The duration of rock collapse events is brief, making it challenging to observe the entire movement process comprehensively. To analyze rock collapse movements, many scholars predominantly employ physical models and numerical simulation methods. (Hunger and Morgenstern, 1984; Liu et al., 2023; Xiao et al., 2023). Several scholars have investigated the dynamic characteristics of particle flow during rock collapse events using open channel flow experiments (Pollet and Schneider, 2004; McClung, 2001; Friedmann et al., 2006). Zeng (2022) studied the dynamic response characteristics and stability of typical dangerous rock masses in the Three Gorges Reservoir area through shaking table model tests. Wang et al. (2020) focused on columnar dangerous rock masses along the banks of the Three Gorges Reservoir, conducting experiments with a generalized physical model at a 1:300 scale to determine the failure mode, deposits characteristics, and surge height. Zhang et al. (2021b) performed physical tests on surges caused by the collapse of particle columns, finding that the failure mode of dangerous rock masses is similar to the composite collapse-sliding movement observed in the physical models. Saghir (2021) analyzed the geometry, collapse points, and collapse range of Chalk cliffs based on field investigations, and then predicting the size and endpoint of rockfalls under extreme conditions using the Dips program. Hungr and Evans, (2004) established a scale and frequency curve as a theoretical basis for risk assessment. Pradhan, 2010 selected ten influencing factors, such as slope, aspect, rainfall, and proximity to rivers, to evaluate the risk of collapse. Zhang XL. et al. (2023) used RAMMS Rockfall software to conduct three-dimensional numerical simulations of the collapse movement process of high-level dangerous rock masses, assessing the risk of geological disasters in the collapse area. Zhang YG. et al. (2023) analyzed the catastrophic characteristics and movement laws of ultra-high dangerous rock masses using RocPro3D. Huang et al. (2024a) studied the selection and optimal combination of conditional factors and the influence of random errors on the prediction of sliding bodies.
Existing numerical simulation research primarily focuses on the back analysis of specific cases, with limited studies addressing the prediction of dynamic processes in recurrent disasters and dangerous rock surges in similar areas. When an unstable rock mass collapses, continuous deformation may occur in multiple adjacent deformation zones, posing serious threats to the safety of lives and property in the vicinity. For instance, following two dangerous rock collapses on the Fenghuangshan mountain in Wuxi, numerous unstable rock masses remain on the slope. If these rock masses were to collapse, they would once again endanger the lives and property of nearby residents. This paper takes the collapse of dangerous rock in Fenghuang Mountain, Wuxi County, Chongqing as an example. Firstly, the back analysis of the rock collapse event in Fenghuang Mountain, Wuxi, Three Gorges Reservoir area in 2017 was carried out by numerical modeling Then, the well calibrated model were used to assess the whole failure characteristics and dynamic processesof potential rock collapses. Lastly, the wave height from the surge caused by potential rockfall entering the Daning River was calculated by a semi-empirical model. This research offers a novel approach and methodology for assessing the risk of such hazardous events in similar geological setting globally.
2 ANALYSIS OF DEFORMATION AND FAILURE MECHANISM
2.1 Engineering geological conditions of the study area
Fenghuang Mountain dangerous rock belt is located in Wuxi County, Chongqing (Figure 1). It is located on the left bank of the Daning River and features a low-mountain canyon landform shaped by structural dissolution erosion. The elevation ranges from 197.23 to 452.46 m, with a relative height difference of 255.23 m. The study area is characterized by a developed syncline structure, which strikes approximately 102°. The rock formation surfaces on the north wing of the syncline have orientations of 190°–230° with dips ranging from 35° to 60°, while those on the south wing have orientations of 350°–30° with dips ranging from 22° to 50°. The overall slope exhibits a combination of steep and moderately steep sections, forming an ‘L' shape in the plane view.
[image: Map series highlighting a landslide area: (a) shows the location relative to Beijing and Chongqing; (b) indicates the Fengjie-Mountainous region; (c) captures the slope collapse in 2017, near National Trunk Highway S201 and a residential area; (d) zooms in on a dangerous rock bounded by red dots.]FIGURE 1 | General map of dangerous rock mass in Fenghuang Mountain: (A) Geographical position, (B) General situation of dangerous rock engineering geology, (C) Location of dangerous rock zone, (D) Physical picture of BW99.
The exposed strata in the study area are Quaternary Holocene artificial miscellaneous fill layer (Q4ml), alluvial-diluvial layer (Q4al+pl), residual slope layer (Q4el+dl), colluvial layer (Q4col+dl), Triassic Jialingjiang Formation (T1j), and the exposed bedrock is mainly limestone. The karst development in the study area is evidently influenced by lithology, geological structure, and topography. Fenghuang Mountain has undergone extensive dissolution and erosion over time, resulting in a diverse array of surface and subsurface karst features. These features primarily include karst ditches, troughs, holes, caves, and vertical pipelines. Such formations create conditions conducive to the deformation and failure of hazardous rock.
2.2 Deformation and failure mechanism
From October 7 to 8, 2017, Wuxi County experienced continuous rainfall. The infiltration and erosion caused by the rainfall increased both hydrostatic and hydrodynamic pressures within the dangerous rock mass, leading to the formation of instantaneous high-pressure heads in the developed fractures. This process resulted in wedge splitting, accelerated fracture expansion, and ultimately compromised the stability of the rock mass. Rainwater infiltration softened the filler material within the structural planes, reduced the normal stress on these weak planes, and decreased the shear strength of the rock mass. When the water pressure within the fractures exceeded the normal stress, the rock mass failed. In the BW23 dangerous rock mass, clay filling was present in the cracks of the back wall and bottom surface. The swelling force generated by the liquefaction of this clay further destabilized the rock mass, promoting collapse and instability. The engineering geological profile of the BW23 dangerous rock mass is shown in Figure 2.
[image: Cross-section diagram showing geological layers and features of a slope. Elevation in meters runs vertically, while distance in meters runs horizontally. Key features include a sliding plane, rockfall zone, and dangerous rock (BW23). A highway, river, and buildings are marked along the base. Geological layers are labeled with different formations and materials, such as the Quaternary Holocene artificial layer. A legend highlights different geological formations and materials with specific colors.]FIGURE 2 | Engineering geological profile of dangerous rock collapse in 2017.
Investigations of the study area revealed that the slope structure type in the collapse and landslide zones is tangential. The trend of the dangerous rock mass intersects the slope direction, and there is a free surface in both the apparent and true dip directions of the slope. Due to the unloading effect, redistributed stress formed tensile cracks in the unloading area of the slope, which combined with other cracks and the main control surface of the rock mass. Under the influence of overlying gravity, a layered fracture surface gradually formed. Once the vertical fractures penetrated the layer, shear failure occurred at the base of the rock mass. Additional vibrations or external forces could then cause the rock mass to separate from the parent body and either slide or collapse.
Following the 2017 collapse of the dangerous rock in Fenghuang Mountain, the surrounding area of the slip zone continued to deform, with some rock masses showing a tendency to collapse. The BW99 dangerous rock mass, located above the sliding area, has a total volume of approximately 2,500 m³. There are roads and numerous residential buildings below, posing potential hazards. Field investigations revealed that the BW99 rock mass has a polyhedral shape, with rock occurrence at 30°∠40°, slope inclination at 313°, leading edge inclination of the dangerous rock at 80°, and a collapse direction of 330° (Figure 3). The rock mass is cut into polyhedrons by extroverted structural fractures, with free sides and gully terrain on both sides. During rainfall, surface and subsurface water easily accumulate and scour, driving debris to slide. The trailing edge fractures are rough, generally flat, and wide, controlled by two sets of structural planes. The cracks in the perilous rock are well-developed, with plant roots further exacerbating the situation. Under the influence of precipitation, weathering, earthquakes, gravity, and human activities, these cracks can gradually expand until they penetrate the weak basement, leading to deformation and instability failure.
[image: Geological cross-section diagram showing various rock formations and features at different elevations and distances. Key formations include the Lower Triassic Jiafutang Formation in beige and light green, Quaternary Holocene artificial fill in purple, and alluvial accumulation in blue. Features like a main crack, a dangerous rock at elevation 409.09 and distance 150, and landmarks like a highway, river, and buildings are labeled. A legend explains the color coding of the formations. The elevation is shown on the left scale, while the horizontal distance is marked at the bottom.]FIGURE 3 | Engineering geological profile of dangerous rock mass BW99.
3 BACK ANALYSIS OF THE ROCK COLLAPSE EVENT
3.1 Introduction to RAMMS software
The RAMMS software, developed by the Swiss Federal Institute for Snow and Avalanche, is designed to simulate the entire evolution of geological events such as avalanches, rock avalanches, debris flows and shallow landslides (Christen M et al., 2010). The software‘s three-dimensional terrain simulation function covers the whole process from initial rupture to final deposition. The DEBRIS-FLOW module has the ability to predict the spatial distribution characteristics of the movement path, velocity, depth and pressure of the collapse debris flow, which provides a powerful tool for the numerical simulation of the dynamic state of the debris flow and significantly promotes the development of the field of geological disaster analysis.
The RAMMS model regards the debris flow as a fluid with rheological properties. The Voellmy-Salm rheological continuum model is used to deal with its rheological behavior. The movement and accumulation process of the debris flow are simulated by the principle of motion conversion between matter and energy. In addition, the model also introduces a stochastic kinetic energy model to adjust and analyze the dynamic changes of parameters to provide accurate simulation results.
The motion characteristics of debris flow are represented by two main parameters: debris flow depth H (x, y, t) and flow velocity V (x, y, t) (Dai Z et al., 2023).
The flow depth expression is as follows:
[image: Equation depicting fluid dynamics with continuity equation: partial derivative of H with respect to t plus partial derivative of HU with respect to x plus partial derivative of HV with respect to y equals Q, a function of x, y, and t.]
In the formula: H represents the height of the fluid; Q is the mass source. When Q = 0, there is no material deposition.
The flow velocity expression is as follows:
[image: Magnitude of vector V is equal to the square root of V sub x squared plus V sub y squared. The equation is labeled as number two in parentheses.]
In the formula: [image: The Roman numeral for six, "VI", in a serif font.] is the absolute average value of the velocity V, ensuring that V is a strictly positive velocity in the vector space. The direction of fluid velocity is:
[image: Equation depicting y subscript v equals one over the norm of the Nabla operator applied to a function v subscript p, comma v subscript f. Numbered as equation three.]
The frictional resistance of the Voellmy-Salm rheological model is determined by the following formula:
[image: Mathematical expression showing T sub e equals the fraction of the sum of S sub F gamma and S sub gamma divided by E to the power of four.]
[image: Mathematical equation displaying surface shear stress, \( S_x = n V_x \left[ \mu_c g H + \frac{g \| V \|^2}{\xi} \right] \), annotated with the number five in parentheses to indicate the equation number.]
[image: Mathematical equation showing \( \xi_k = n V T \left[ \frac{\mu g H + g \| V \|^r}{\xi} \right] \), labeled as equation (6).]
In each formula: x, y, z are the plane coordinates x, y and elevation z in the Cartesian coordinate system; h is the depth of debris flow; v is the average velocity of debris flow; [image: Please upload an image or provide a URL so I can help create the alt text for it.] is the frictional resistance; [image: The Greek letter "mu" in a stylized italicized font.] is the coulomb friction coefficient; [image: A stylized lowercase Greek letter xi.] is the flow friction coefficient; t is the movement time of debris flow; g is the acceleration of gravity.
The RKE model can adjust and correct the simulation process of debris flow in real time with the change of time. Due to the disorder of fluid velocity direction, the RKE model divides the velocity V into average velocity and instantaneous velocity. The velocity in x and y directions is the vector sum of average velocity and instantaneous velocity, and the average velocity in z direction is set to 0, so as to better show the real-time motion characteristics of debris flow. The friction coefficient and turbulence coefficient play an important role in the RKE model (Bartelt P et al., 1999).
The expression of the friction coefficient [image: The image shows the Greek letter "mu" in a bold, stylized serif font.] is as follows:
[image: The image shows a mathematical formula: \( n(R) = n_0 \exp\left( -\frac{R}{R_0} \right) \) labeled with equation (7).]
The expression of the turbulence coefficient [image: It seems there was a formatting issue with your request. Please upload the image or provide a URL, and if you like, add a caption for additional context.] is as follows:
[image: The image shows a mathematical equation: \(\xi(R) = \xi_0 \exp\left(\frac{R}{R_0}\right)\) labeled as equation eight.]
In the formula: [image: It appears there was an error in uploading the image. Please try uploading the image again or provide a URL.] is the friction coefficient, [image: It seems there is a special character in your message that may not have displayed correctly. Please upload the image file directly or provide more details about it, and I will help create appropriate alt text.] is the turbulence coefficient; [image: The image shows the mathematical notation "R" with a subscript "0," commonly used to represent the basic reproduction number in epidemiology.] is a constant (defined as the friction exponential growth rate representing the random kinetic energy density function), and [image: Certainly! Please upload the image, and I will provide the alt text for you.] is the depth-averaged random kinetic energy.
3.2 Back analysis of the rock collapse event in 2017
In order to accurately describe the collapse process of dangerous rock in Fenghuang Mountain, the numerical model method was used to invert the 2017 event and check the relevant calculation parameters and calculation model. Then, the same set of parameters and models are used to calculate the BW99 of the dangerous rock mass and predict its movement and failure process.
Based on UAV aerial image data, a digital elevation model (DEM) with a resolution of 0.98 m was established. After importing it into RAMMS software, the grid size was set to 5 m, and the watershed range and collapse area were delineated. According to the actual situation, the source thickness was assigned, the simulation parameters were adjusted, and the flow curve was generated by the three-point method.
According to the field investigation, after the instability of the dangerous rock, the extrusion collision with the lower rock mass leads to the disintegration of the dangerous rock to form a collapse debris flow. Under the action of gravity, the collapse debris flow moves downward along the slope, and the collapse debris flow slides to the highway, causing serious impact damage to the highway pavement. About 3,500 m3 collapse body is fan-shaped and accumulates on the road surface. About 3,500 m3 collapse body enters the Daning River at high speed. The maximum thickness of the simulated collapse accumulation is 4.48 m, which is basically consistent with the actual trajectory, accumulation range and accumulation thickness in 2017. Therefore, it is of high accuracy and reliability to use the calculation model and parameters (Table 2) to invert the dangerous rock collapse events that occurred in 2017.
TABLE 2 | Inversion parameter values of dangerous rock collapse events in 2017.
[image: Table displaying values for five parameters: Density is two point six three grams per cubic centimeter, gravitational acceleration is nine point eight meters per second squared, average grade is forty-seven degrees, friction coefficient is zero point two five, and turbulence coefficient is three hundred.]3.3 Dynamic process of rock collapse
In the 2017 perilous rock collapse event, the depth of the collapse debris flow at t = 0 s, 2.5 s, 5 s, and 10 s is as shown in Figure 4. When t = 0 s, the collapse debris flow of perilous rock has not yet begun to slide, and the depth of the collapse debris flow at this time indicates the thickness of the rock and soil on the surface of the perilous rock. At the end of the start-up area, especially in the collapse area, the phenomenon of collapse and slope slip is particularly obvious, and a large amount of loose rock and soil accumulates, making the source thickness of this area larger. When t = 1.5 s, the front end of the collapse debris flow reaches the outlet position through the circulation area, and begins to drive a large amount of loose rock and soil materials in the collapse area to move downward, and forms a small amount of rock and soil accumulation in the narrow part of the accumulation area. When t = 2.5 s, the main body of the dangerous rock and the lower rock mass are squeezed and collided, resulting in the disintegration of the main body of the dangerous rock and the conversion of the debris flow. The generated debris flow rushes out of the circulation outlet to the highway pavement, resulting in damage to the highway pavement. When t = 5 s, the collapse debris flow continues to move along the slope. After being blocked by the road surface, the debris flow accumulates and diffuses around the highway in a fan shape. At this time, the highway traffic about 30 m below the collapse area has been completely paralyzed. When t = 8 s, the main body of the collapse has basically disintegrated, and a large amount of rock and soil debris is accumulated on the road surface, and some of the collapse debris flows out of the road into the Daning River. When t = 10 s, the collapse debris flow stops moving, and the depth formed at this time is the thickness of the debris accumulation. The maximum accumulation thickness reaches 2.36 m. About 50% of the total amount of collapse debris flows into the Daning River, which is basically consistent with the actual movement loss of the collapse body.
[image: Four-panel diagram showing snow thickness over time. Panel (a) T=0s shows minimal snow. Panel (b) T=2.5s displays slight increase in colored regions. Panel (c) T=5s indicates further snow accumulation. Panel (d) T=10s reveals significant snow coverage with high thickness. Each panel includes a color scale indicating thickness levels.]FIGURE 4 | The computed thickness variation of debris accumulated from the rock collapse: (A) The collapse area began to collapse locally, (B) The collapse of dangerous rock produced debris flow out of the outlet, (C) The debris flow continues to move and accumulates along its path, (D) The debris flow front breaks off the road and enters the Daning River.
The 2017 perilous rock collapse event is about 10 s in the whole process of perilous rock collapse, and the farthest horizontal movement distance is about 85 m (Figure 5). It is assumed that the velocity at the beginning of the collapse is 0 m/s, and the front and rear edges of the collapse body begin to move at the same time. In the start-up stage, due to the extrusion of the middle part of the source and the friction of the slope surface, the velocity of the leading edge and the trailing edge increased sharply within 0–1 s, and the energy accumulation inside the dangerous rock was released in large quantities, with the maximum velocity of 9.14 m/s. When t = 2.5 s, the unstable rock collapses and produces debris flow, and the front edge rushes out of the slope toe. In the circulation stage, the average velocity is 7.42 m/s in 2.5 ∼ 8s. When t = 5 s, the front edge is smooth, the front edge velocity reaches 9.05 m/s, and the rear edge velocity reaches 7.31 m/s. When t = 8s, a large amount of debris flow accumulates on the road surface, and the movement speed slows down as a whole. The rear edge movement speed drops to 1.34 m/s, and the front edge speed drops to 2.47 m/s. In the accumulation stage, a large amount of rock and soil debris is accumulated on the road surface within 8–10 s, and the velocity of the trailing edge is attenuated to 0 m/s. Some rock and soil debris rushes out of the river embankment, and the leading edge debris enters the Daning River at an average speed of 4.80 m/s. When t = 10 s, the leading edge debris moves to the horizontal farthest distance of about 85m, and the collapse stops (Figure 6).
[image: Four diagrams illustrate slope stability over time, showing elevation versus distance with different water levels: (a) 0 meters, (b) 2.5 meters, (c) 5 meters, and (d) 7.5 meters. Each diagram indicates locations such as highways, rivers, and buildings, and different geological layers using distinct colors. The legend identifies various formations and layers such as the Maokkeng Formation, Quaternary Holocene deposits, and collapse debris flow.]FIGURE 5 | Profile of the rock collapse BW23: (A) The dangerous rock is in an unstable state, (B) The collapse debris flow moves rapidly along the slope, (C) The collapse debris flow is caused by the front of accumulation at the foot of slope breaking off the road surface, (D) The collapse debris flow accumulates in large quantities on the road surface and the front enters Daning River and accumulates.
[image: Chart depicting maximum average sliding velocity and thickness over time, labeled with key events like debris impact and accumulation. Blue line represents velocity, peaking initially, while the orange line shows thickness changes. Arrows indicate significant collapse events and flow obstructions.]FIGURE 6 | Curve of maximum average velocity and maximum average deposit thickness of the collapse in 2017.
4 RISK ASSESSMENT OF THE POTENTIAL DANGEROUS ROCK MASS
Using the well calibrated numerical model, risk assessment of the dangerous rock mass BW99 with the largest scale and the strongest deformation is carried out. The thickness of accumulated debris at each time of BW99 collapse is shown in Figure 7. The total time of collapse debris flow movement of BW99 dangerous rock mass is 15 s, and the total distance of movement level is 83 m (Figure 8). At the beginning of the collapse, due to the sudden fall of the rock mass instability, the initial velocity accelerated rapidly from zero. Due to the high altitude of the dangerous rock mass and the free space below, the velocity of the main body of the collapse increased sharply in 0–2.5 s. Under the action of gravity, the rockfall accelerates along the slope, and the slope gradually increases, and the acceleration of rockfall is more significant. When t=3 s, the rock and soil debris rushed out of the toe of the slope and entered a relatively flat accumulation section. At this time, the velocity reached a maximum of 33.83 m/s, and some rock and soil debris began to accumulate at the toe of the slope in a fan shape. In 3–5 s, the rockfall is blocked by the ground, and the resistance increases continuously, and the rock and soil avalanche speed decreases in fluctuation. When t=9 s, the rockfall rolls on the road, and the rolling deceleration is affected by the increase of friction force. Then the rock and soil rush out of the river embankment and rush out of the river embankment at a speed of about 10.05 m/s into the Daning River channel. When t=15 s, the maximum horizontal distance of the landslide body is 83 m, the maximum average accumulation thickness in the whole process of movement is 2.20 m, the front edge velocity is reduced to 0 m/s, and the collapse stops (Figure 9).
[image: A series of four contour plots showing the progression of a process over time with increasing thickness. Each subplot, labeled (a) T=0s, (b) T=3s, (c) T=9s, and (d) T=15s, features shaded regions that change from blue to red, indicating rising thickness over time. A color bar to the right of each plot represents thickness in millimeters, ranging from blue (lower values) to red (higher values).]FIGURE 7 | The thickness of the collapse accumulation debris of BW99 dangerous rock at each time point: (A) The dangerous rock is in an unstable state, (B) The dangerous rock mass breaks apart and generates debris flow down the slope, (C) Debris flow continues to accumulate on the road surface, (D) The accumulation area of debris flow at slope foot and road surface expands.
[image: Four panel diagrams depicting geological cross-sections with varying distances and elevations. Each panel represents different geological formations, including layers of the Lower Triassic Jiuliping Formation and Quaternary-Holocene artificial fill. Key features like highways, rivers, and buildings are labeled. The layers include alluvial accumulation, collapse debris flow, and different geological members with distinct colors. A legend explains the symbols and color codes used.]FIGURE 8 | Profile of the rock collapse BW99: (A) The critical rock fissure runs through the foundation in an unstable state, (B) The debris flow travels rapidly along the slope, (C) The debris flow accumulates at the foot of slope and road surface and rushes into Daning River at the front, (D) The deposit thickness at the back margin of the collapse debris flow increased and the front accumulated at the bottom of Daning River.
[image: Graph showing velocity and stacking thickness against time in seconds. A blue line represents minimum energy falling debris velocity, peaking around two seconds and features labeled points indicating key events like impact and debris accumulation. An orange line indicates minimum energy sliding friction stacking thickness, remaining relatively stable. Arrows further annotate events such as edge collapse and debris accumulation.]FIGURE 9 | Curve of the maximum average collapse velocity and maximum average accumulation thickness of dangerous rock BW99.
From the accumulation of dangerous rock after collapse, after t=15 s, there are still high-density collapse debris left at the foot of the collapse area to form a fan-shaped accumulation area, and the maximum average accumulation thickness in the whole process of movement is 2.20 m. When t=15s, although the collapse debris has not completely stopped moving, the movement speed is basically lower than 0.4 m/s at this time, and the speed of the leading edge debris after entering the river channel is lower than 0.1 m/s. In the subsequent accumulation process, the shape of the accumulation body still has dynamic micro-adjustment, and the accumulation shape has been basically formed at this time. At this time, about 70% of the total collapse body and geotechnical debris accumulate at the foot of the slope, road surface and river bank. After the collapse of the main body and the road surface, the debris diverges 4∼5 m around the main body, and shows the characteristics of midpoint concentration and divergence around. A large number of rock and soil debris rushed out of the highway and gathered on the bank of the river. The accumulation body continued to accumulate and eventually showed a ladder shape. About 30% of the total amount of collapse entered the Daning River.
5 DISCUSSION
5.1 Impact force from the potential rock collapse
From February 2017 to May 2018, there have been more than 40 collapse and falling block events in the dangerous rock zone of Fenghuang Mountain, resulting in different degrees of damage to residential buildings. The impact force of rockfall is an important index to evaluate the resistance of buildings to damage. The main factors affecting the impact force include the volume, mass, impact velocity and thickness of buffer soil layer of rock and soil mass. It is particularly important to determine the impact force of rockfall in the evaluation and treatment of dangerous rock mass collapse. In this paper, the impact force of rockfall is calculated by the Japanese road corporation method, which is recognized by the industry and is in good agreement with the field test value, and the damage degree of dangerous rock mass collapse to the road is predicted.
The Japanese road corporation method is a semi-empirical and semi-theoretical method based on the test data of rockfall impact force and Hertz elastic collision theory (Japan Road Association, 2000). The complete calculation of the maximum impact force of rockfall is as follows:
[image: Equation displaying P equals 2.108 times \(mg^{0.5}\) times \(\lambda^{1.5}\) times \(H^{1.5}\), denoted as equation nine.]
In the formula: P is the rockfall impact force (kN); m is the rockfall mass (t); λ is the Lame constant, and 1,000 kN/m2 is recommended for very soft objects and 3,000–5,000 kN/m2 for soft objects; hard objects take 10,000 kN/m2. H is the free falling height of rockfall (m).
According to the field investigation, the filling weight is 18.7 kN/m3, the elastic modulus is 35 MPa, the Lame constant is 1,000 kN/m2, the Poisson‘s ratio is 0.37, and the rockfall weight is 25 kN/m3. It is calculated by Formula 9 that the collapse of dangerous rock BW99 produces an impact force of 4724.2 KN, and the road will be seriously damaged and the road will be interrupted.
5.2 Risk assessment of potential wave surge
The prediction and analysis of the maximum amplitude of the first wave is one of the most critical parts in the study of the collapse surge. (Qin, 2023). The predicted value has important theoretical and guiding significance for the prediction and disaster prevention and mitigation of the collapse surge of the dangerous rock in the reservoir area. Huang Bolin et al.proposed the first wave eigenvalue calculation equation (Huang BL et al., 2012).
The calculation formula of surge amplitude generated by the whole water entry of dangerous rock mass is as follows:
[image: Equation showing the ratio \( \frac{a}{h} \) equals 0.529 times \( \left( \frac{v}{Qfh} \right)^{0.334} \) times \( \left( \frac{b}{s} \right)^{0.754} \) times \( \left( \frac{l}{s} \right)^{0.506} \) times \( \left( \frac{s}{h} \right)^{1.631} \), labeled as equation 10.]
In the formula: a is the amplitude; h is the water depth; v is the water entry speed of the slumped mass; b is the width of slumped mass; s is the thickness of slumped mass; l is the length of slumped mass.
In this paper, taking the instability and collapse of dangerous rock mass in Fenghuang Mountain of Wuxi as an example, the maximum amplitude of surge caused by the collapse of dangerous rock mass is calculated by Formula 10. The Fenghuang Mountain collapse body is located in the Wuxia section of the Three Gorges Reservoir area, and the rock mass is a fractured layered structure. After the collapse occurred, through on-site investigation, on 8 October2017, through the measurement of the total station on the water, the exposed fresh surface was nearly fan-shaped; the amount of unstable collapse is about 7,000 m3, the upper part is 13 m wide, the water surface is 22 m wide, and the longitudinal length of the collapse body is 24 m. The upper part of the slope is 64°, the lower part is 44°, and the impact angle of the landslide into the water is about 70°. After comparing and calculating the terrain before and after, the sliding direction is 313°, the average thickness is 2.2 m, and about 3,500 m3 landslide body enters the Daning River at a speed of 10.83 m/s, with a water depth of about 10 m.
The numerical simulation of the collapse movement in 2017 shows that about 50% of the total amount of collapse debris accumulates at the foot of the slope, the road surface and the river bank, and about 50% of the collapse debris pours into the Daning River, which is basically consistent with the actual situation. Considering the volume reduction, the surge amplitude of 2.38 m is calculated by Formula 10, which is basically consistent with the real situation. Similarly, the whole process of the collapse of the dangerous rock BW99 is broken and dispersed, and the accumulation volume is about 1750 m3, accounting for 70% of the total volume of the collapse. After considering the volume reduction in the process of the collapse of the dangerous rock, according to Formula 10, it is calculated and predicted that the rock and soil debris produced after the instability and collapse of the BW99 dangerous rock mass will enter the Daning River to produce a 1.38 m high surge.
6 CONCLUSION

	(1) In 2017, the volume of the collapsed rock mass in Fenghuang Mountain was 7,000 m³, and the failure mode was toppling slip failure. Post-collapse, an unstable rock mass BW99 remains on the slope with a volume of approximately 2,500 m³. Field investigations and monitoring data indicate that BW99 is prone to collapse under heavy rainfall conditions, with a failure mode similar to that observed in 2017.
	(2) The RAMMS software was utilized to back-analyze the 2017 rock collapse event in Fenghuang Mountain. The computed results were consistent with the observed. The back-analysis showed that the collapse process lasted approximately 10 s, with a total horizontal movement distance of about 85 m, a maximum movement speed of 9.14 m/s, and a maximum accumulation thickness of 4.53 m. Predictions for the BW99 rock mass indicate that the debris flow movement lasted 15 s, with a maximum horizontal movement distance of about 83 m, an average maximum speed of 33.83 m/s, and a maximum accumulation thickness of 2.20 m. Upon reaching the highway, the collapsing rock entered the Daning River at a speed of 10.05 m/s.
	(3) The impact force from the potential rock collapse BW99 on the road has been calculated to be approximately 4724.2 kN using a semi-empirical model. It is anticipated that the road surface will be severely damaged, leading to traffic interruptions.
	(4) Taking the 2017 collapse event in Fenghuang Mountain as a case study, this paper thoroughly considers the characteristics of fragmentation, dispersion, and accumulation throughout the movement process of the dangerous rock on the bank slope post-collapse. The debris flow generated from the unstable collapse of the BW99 rock mass is expected to breach the riverbank and enter the Daning River, potentially generating a maximum surge wave height of 1.38 m.
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Colluvial landslides widely developed in mountainous and hilly areas have the characteristics of mass occurrence and sudden occurrence. How to reveal the spatial distribution rules of potential landslides quickly and accurately is of great significance for landslide warning and prevention in the study area. Landslide susceptibility prediction (LSP) modeling provides an effective way to reveal the spatial distribution of regional landslides, however, it is difficult to accurately divide slope units and select prediction models in the processes of LSP modeling. To solve these problems, this paper takes the widely developed colluvial landslides in Dingnan County, Jiangxi Province, China as the research object. Firstly, the multi-scale segmentation (MSS) algorithm is used to divide Dingnan County into 100,000 slope units, to improve the efficiency and accuracy of slope unit division. Secondly, 18 environmental factors with abundant types and clear meanings, including topography, lithology and hydrological environment factors, were selected as input variables of LSP models. Then, a widely representative Support Vector Machine (SVM) and Random Forest (RF) models were selected to explore the difference characteristics of various machine learning models in predicting landslide susceptibility. Finally, the comprehensive evaluation method is proposed to compare the accuracy of various slope unit-based machine learning methods for LSP. The results show that the MSS algorithm can divide slope units in Dingnan County efficiently and accurately. The RF model (AUC = 0.896) has a higher LSP accuracy than that of the SVM model (AUC = 0.871), and the landslide susceptibility indexes (LSI) predicted by the RF model have a smaller mean value and a larger standard deviation than those of the SVM model. Conclusively, the overall performance of RF model in predicting landslide susceptibility is higher than that of SVM model.
Keywords: landslide susceptibility prediction, machine learning, multi-scale segmentation method, random forest, support vector machine

1 INTRODUCTION
Landslide susceptibility prediction refers to the determination of the spatial probability distribution pattern of landslide occurrence at a specific location based on historical landslide cataloguing data, taking into account the nonlinear coupling effects of multiple disaster-causing environmental factors such as topography, hydrological environment, lithology, and surface coverage (Rohan et al., 2023). It is achieved through various quantitative methods including conventional mathematical statistics and machine learning. Landslide susceptibility prediction (LSP) is to calculate the nonlinear coupling rules of various disaster environmental factors such as topography, hydrology, stratigraphic lithology and land cover on slope evolution on the basis of historical landslide inventory data, using conventional mathematical statistics and machine learning quantitative methods, so as to predict the spatial probability of a specific slope evolving into a landslide. The crux of landslide susceptibility prediction modeling lies in establishing the intricate nonlinear statistical correlations between landslide inventory information and environmental factors (Sameen et al., 2020; Huang et al., 2024a). As of now, landslide susceptibility is among the most popular research topics worldwide. Scholars at home and abroad have attained remarkable achievements in the domain of regional landslide disaster monitoring and prevention and control.
The evaluation of landslide susceptibility began to be quantitatively analyzed after the 1990s. Pack (1985) draws the landslide susceptibility map (LSM) by analyzing the relevant environmental factors in the landslide area, and then using the discrete discrimination of a simple polynomial classification model. Al-Daghastani (1987); Gao (1992) initiated the introduction of remote sensing (RS) and geographic information system (GIS) platforms in the LSP, significantly improving the standardization, accuracy, and efficiency of the LSP. With the in-depth study of various prediction methods, numerous scholars have employed diverse mathematical statistics and machine learning models, such as the analytic hierarchy process (Kayastha et al., 2013; Shahabi et al., 2014), logistic regression (Felicisimo et al., 2013; Althuwaynee et al., 2014), and support vector machines (Kavzoglu and Teke, 2022) in LSP, thereby further enhancing the LSP performance. A Deep-Convolutional Neural Network was used to study the susceptibility of Isfahan Province in Iran with excellent results (Azarafza et al., 2021).
Hua et al. (2021) utilized multi-source and multi-temporal regional landslide monitoring data (such as geological, topographic, hydrological, and remote sensing images, etc.) to disclose the dynamic variation law of landslide susceptibility in the Badong-Zigui section of the Three Gorges Reservoir area over time. Huang et al. (2024a) employed diverse screening approaches to combine environmental factors and chose multiple classical machine learning models to train and test various types of environmental factor combinations in order to investigate the modeling rules of landslide susceptibility. Eventually, a well-developed environmental factor combination system was constructed. Ping et al. (2024) constructed a landslide susceptibility assessment model on the basis of integrating slope units and semantic segmentation methods, attaining the purpose of fully considering the impact of the geometric shape information of slope units on landslide susceptibility. Chang et al. (2023a) innovatively uses MSS method to divide slope units, realizes automatic divide of slope units and improves the prediction accuracy of LSP.
At present, the methods for LSP are increasing day by day, and the prediction accuracy of various machine learning and deep learning models is constantly improving. The selection of prediction units is of vital importance to the application of prediction results, while the intrinsic relationship between environmental factors and landslides remains unclear. Therefore, it is necessary to combine more environmental factors, select appropriate prediction unit, and adopt typical machine learning models to further deepen the research on LSP.
2 RESEARCH METHODS
2.1 LSP modeling process
Landslide susceptibility modeling is to predict and assess the probability and degree of landslide occurrence in a specific area by comprehensively analyzing the landslide inventory data, topography and geomorphology, and other related factors within the study area, using statistical analysis methods and machine learning models. The main modeling process is as follows (As illustrated in Figure 1).
	(1) Basic Data Collection: Gather data to obtain the landslide inventory data of Dingnan County, and acquire the necessary data for the study by analyzing attributes such as topographic and geomorphic features, surface coverage, meteorological and hydrological conditions, and stratigraphic lithology.
	(2) Extract environmental factors and divide slope units: Select well-defined and diverse hazard-causing environmental factors to construct a spatial data set, and employ the multi-scale segmentation (MSS) method to extract slope units and serve as the basic evaluation unit for the study.
	(3) Landslide susceptibility modeling: Two machine learning models, namely, SVM and RF, are chosen for the LSP, thereby obtaining the LSM of the region.
	(4) Susceptibility result analysis: An evaluation index system for landslide disaster susceptibility is constructed by analyzing the ROC curve and the distribution of susceptibility indices.

[image: Flowchart for landslide susceptibility analysis: 1. Acquire the data of landslide cataloging. 2. Extract environmental factors and divide slope units. 3. Translate the training set by 7:3. 4. Use RF and SVM models to model landslide susceptibility. 5. ROC accuracy evaluation and landslide susceptibility index distribution. 6. Outcome uncertainty analysis of landslide susceptibility.]FIGURE 1 | Modelling flow chart of this study.
2.2 The principle of multi-scale segmentation method
The MSS method is an image segmentation technique based on the principle of minimizing regional integration heterogeneity. The fundamental principle is to combine pixels or objects with similar features, such as color, shape, and texture, into continuous, uniform, and closed image objects. This approach aims to achieve the minimum heterogeneity within image objects and maximize the heterogeneity between them, in order to better reflect the actual structure and characteristics of the ground features (Huang et al., 2024e). Moreover, this approach enables the automatic division of slope units on a large regional scale and with high-precision data, significantly enhancing the efficiency of slope unit division.
The procedures of generating slope units by the MSS method mainly comprise basic data processing, acquisition of slope aspect and hill-shade, image segmentation, division of slope units, and post-processing (Yu and Xiong, 2020; Xie et al., 2024b). Firstly, the slope aspect map and hill-shade map are extracted from the DEM data, and the basic characteristics of the terrain are analyzed. Then, the MSS method is employed for image segmentation, merging pixels or objects with similar internal characteristics and significant external differences to form the preliminary main segmentation layer. Finally, in combination with the main segmentation layer, fine division of the slope units is conducted, along with post-processing operations such as smoothing and optimization to enhance the quality and practicability of the units. When generating slope units by applying the multi-scale segmentation algorithm, the selection of parameters is of paramount importance. The main parameters include the settings of scale, spectral factor, shape factor and its weight, compactness and smoothness and their weights (Chang et al., 2023b). These parameter settings directly determine the quality and accuracy of the segmentation results. When selecting parameters, an improved trial-and-error method is employed, combined with the morphological and scale characteristics of the landslide. The optimal parameter combination is sought by calculating relevant quantitative indicators. Specifically, the rationality of the segmentation is verified by comparing the mean and standard deviation of the extracted object with the corresponding values of the landslide area, and by evaluating whether the shape index is within a reasonable range. Additionally, the consistency between the position of the landslide and the position of the image object needs to be evaluated. Eventually, the reliable slope unit is confirmed by the image object that best matches the landslide record. This comprehensive optimization process not only enhances the accuracy and credibility of the ground features, but also provides guidance for the optimization of the multi-scale segmentation algorithm. The entire process is conducted using the eCognition Developer 8.7 software. The specific process is depicted in Figure 2.
[image: Flowchart illustrating a process for generating landslide units using data processing. It begins with inputs like a landslide catalog database and digital elevation model, leading to factors such as landslide shape, mountain shadows, and slope. Parameters for scale, shape, and compactness are set, resulting in a multiscale partition of slope elements. Initial object units are generated, then refined through segmentation, merging, and post-processing to produce the final range unit.]FIGURE 2 | Flowchart of slope units division by MSS method.
2.3 Evaluation model for landslide susceptibility
To avoid the uncertain impact of different machine learning models on the evaluation results of landslide susceptibility, it is proposed to adopt the random forest model based on the ensemble algorithm and the support vector machine model based on the kernel algorithm to carry out the research on landslide susceptibility (Wu et al., 2021; Wang et al., 2024).
2.3.1 Random forest model
RF is a potent ensemble learning model. The core concept is to construct multiple decision trees and integrate them to enhance the performance and generalization capacity of the overall model (Sun et al., 2021; Sahin, 2023). RF employs the bagging technique to generate multiple distinct training subsets from the original dataset through bootstrap sampling and constructs decision trees on each subset. When constructing each decision tree, instead of selecting the optimal splitting point from all features, RF randomly selects a portion of features and selects the optimal feature among these for tree splitting. Each decision tree is built based on different features and sample subsets, thereby being discrepant. Each decision tree in RF independently makes judgments and predictions on the input samples. Finally, by integrating the prediction results of all decision trees through methods such as voting or averaging, the final prediction outcome is obtained. Due to the integration of multiple decision trees, RF is typically capable of providing more accurate and stable predictions. The random forest model possesses several remarkable merits: (1) It can effectively mitigate the risk of overfitting and enhance the generalization ability of the model; (2) It demonstrates a considerable tolerance towards outliers and noise and is not readily influenced by individual trees; (3) Owing to the employment of Bagging technology and random feature selection, the random forest does not require feature selection when dealing with high-dimensional data and exhibits a strong adaptability to data sets; (4) The training speed of the model is relatively rapid, being applicable to large-scale data sets.
2.3.2 SVM model
Support Vector Machine (SVM) is a classification algorithm that is widely applied in the domain of machine learning. Its core concept is to seek an optimal hyperplane that maximizes the total distance of support vectors to the hyperplane, thereby separating data points of different classes (Huang et al., 2017; Luo et al., 2019; Huang et al., 2024c). During the training process, SVM emphasizes maximizing the margin between the hyperplane and the support vectors, among which the support vectors are the data points nearest to the hyperplane. This optimization issue can be addressed by means of convex optimization approaches. SVM incorporates regularization parameters to control the complexity of the model and prevent overfitting. SVM exhibits outstanding performance in addressing classification issues in high-dimensional spaces, particularly when the quantity of features far exceeds the number of samples. Suitable kernel functions can be selected based on the requirements of specific problems. Different kernel functions correspond to distinct feature mapping approaches, thereby facilitating the handling of various types of nonlinear problems (Wang et al., 2022).
2.4 Evaluation methods for the accuracy of susceptibility models
2.4.1 ROC curve accuracy
The ROC curve constitutes an essential instrument for assessing the performance of classification models, particularly in binary classification issues (Sun et al., 2020; Xie et al., 2024a). The ROC curve takes the True Positive Rate (TPR) as the ordinate and the False Positive Rate (FPR) as the abscissa, and assesses the accuracy of the model by comparing the performance indicators under different threshold values (Frattini et al., 2010; Pham et al., 2018). The area under the curve (AUC) characterizes the precision of the model, with its numerical range between 0 and 1. The closer the AUC value is to 1, the higher the precision of the model and the more superior its performance. Through the comparison of the magnitudes of AUC values, the performance of different machine learning models can be objectively evaluated. As indicated in Equation 1, where n0 denotes the number of negative samples, n1 indicates the number of positive samples, and ri represents the position sequence of the ith negative sample within the entire test sample.
[image: Formula for the area under the curve (AUC) is displayed. AUC equals the sum from \( i = 1 \) to \( n_0 \) of \( r_i \) minus \( n_0(n_0 + 1) \) divided by 2, all over \( n_0 \times n_1 \).]
2.4.2 Distribution law of landslide susceptibility index
The two statistical indicators, namely, the mean value and the standard deviation (SD), can embody the average level and dispersion degree of the LSI (Liu et al., 2022; Huang et al., 2024b). The mean is the average of the LSI prediction set, offering a measurement of the overall trend of the LSI and reflecting the average prediction level of the model for the overall landslide susceptibility. By comparing the magnitudes of the means, the average prediction effect of the model on the entire dataset can be preliminarily evaluated. The calculation method is as shown in Equation 2, where [image: The text shows the variable "x" with a subscript "i" in a mathematical expression, typically representing the i-th element in a sequence or series.] is an individual value of the LSI and n is the total number of the landslide susceptibility indices.
[image: Mathematical formula representing the mean value. Mean value equals one over n multiplied by the sum from i equals one to n of x sub i. This is equal to x sub one plus x sub two plus ... plus x sub n divided by n.]
The SD gauges the degree of dispersion of the LSI. The higher the SD, the lower the uncertainty in LSP and the stronger the ability to identify landslide samples. The calculation method is shown in Equation 3, which [image: Please upload the image or provide a URL for me to generate accurate alternate text.] is a single value of the LSI, and n is the total number of LSI. If the mean of the susceptibility index is relatively low while the standard deviation is relatively high, the model exhibits a superior discrimination capacity for the landslide susceptibility in the study area. Through the comparison of the distribution regularities of the susceptibility index of different models, a more detailed comprehension of the differences in model performance can be achieved, providing targeted information and thereby facilitating the improvement and optimization of the landslide susceptibility prediction model.
[image: Standard deviation formula: SD equals the square root of one over n times the sum from i equals one to n of (x sub i minus Mean) squared, equation 3.]
3 BRIEF INTRODUCTION OF THE STUDY AREA AND BASIC DATA
3.1 Brief introduction of the study area and basic data sources
Dingnan County is subordinate to Ganzhou City and lies at the southernmost end of Jiangxi Province, with its geographical location ranging from 114°46′ to 115°23′ east longitude and 24°32′to 25°03′ north latitude, as depicted in Figure 3. Dingnan County has a length of approximately 58.4 km in the east-west direction and about 56.2 km in the north-south direction. The landform within the county is dominated by low mountains and hills, and the majority of the altitude ranges from 300 m to 500 m. Dingnan County is affiliated with the mid-subtropical monsoon humid climate region, with an average annual rainfall reaching 1,593 mm. Based on relevant data statistics, during the 30-year period from 1980 to 2010, a total of 735 geological disaster points that occurred or had potential hazards were recorded, among which landslides accounted for as high as 89%, totaling 655. The landslides are mainly distributed in the eastern part of Dingnan County and mountainous areas in other regions. These landslides are mainly composed of accumulative soil landslides. In terms of scale, approximately 85% of the landslides are small shallow soil landslides, and large-scale landslides are relatively rare. The thickness of the soil layer on the slope is approximately between 2.0 m and 8.0 m. The basic data sources of the study area are presented as shown in Table 1.
[image: Map showing Dingnan County in Jiangxi Province, China. Inset maps display Jiangxi's location within China. Red dots represent landslide locations in Dingnan County. North is indicated by a compass rose. Scale bars provide distance measurements in kilometers.]FIGURE 3 | Location map of Dingnan County.
TABLE 1 | Basic data sources.
[image: Table displaying three rows with columns for data type, spatial resolution, and data purpose description. The rows are: DEM with 15 meters for extracting elevation, slope, and other data; geologic map with 1:100,000 for extracting stratigraphic lithology; Landsat TM8 remote sensing image with multispectral 30 meters for extracting factors like land cover.]3.2 Selection of environmental factors for landslides
In this study, based on the geographical characteristics of the study area and by referring to relevant literature (Dou et al., 2019; Huang et al., 2024d), a total of 18 environmental factors in four categories, namely, topography and geomorphology, stratum lithology, hydrological environment, and surface cover factors, were ultimately selected. They are as follows: (1) Topography and geomorphology factors: elevation, slope, aspect, slope length, plan curvature, profile curvature, surface roughness, topographic relief, and valley depth; (2) Surface cover factors: normalized difference vegetation index, normalized difference built-up index, road density, and total radiation; (3) Hydrological environment factors: average annual rainfall, topographic wetness index, and modified normalized difference water index; (4) Stratum lithology factors: rock and soil types, and fault density. Partial environmental factors are shown in Figure 4.
[image: Series of twelve geographic maps depicting different spatial analyses of a region. Each map represents distinct parameters: (a) Digital Elevation Model (DEM), (b) Slope, (c) Aspect, (d) Slope length, (e) Plan curvature, (f) Profile curvature, (g) Normalized Difference Vegetation Index (NDVI), (h) Normalized Difference Built-up Index (NDBI), (i) Profile curvature (in specific zoom), (j) Highway density, (k) Fault density, (l) Topographic Wetness Index (TWI). Each map varies in color to indicate data intensity and includes a compass rose and scale bar.]FIGURE 4 | Part of the environmental factor diagram: (A) elevation; (B) Slope; (C) slope direction; (D) Slope length; (E) Plane curvature; (F) profile curvature; (G) NDVI; (H) NDBI; (I) Average annual rainfall; (J) Road density; (K) fault density; (L) topographic humidity index.
3.3 Results of slope unit division
In light of the topographic and geomorphological features as well as the landslide development characteristics of Dingnan County, the conventional trial-and-error approach was employed to establish five different scale magnitudes (10, 15, 20, 25, 30), five distinct shape parameters (0.5, 0.6, 0.7, 0.8, 0.9), and five compactness parameters (0.5, 0.6, 0.7, 0.8, 0.9), altogether constituting 125 parameter combinations. Under each set of parameter combinations, the MSS method was respectively adopted to divide the slope units. Through comparison with the statistical characteristics of the area and shape index of the landslides within the study area, it was discovered that when the parameters of scale, shape, and compactness were set at 20, 0.8, and 0.8 respectively, the division effect of the slope units was the most optimal. Due to the fact that the areas of some initial slope units were relatively small and their shapes were long and narrow, not conforming to the actual circumstances, further processing was conducted on these units. Ultimately, a total of 54,493 slope units in the study area were extracted using the MSS, as depicted in Figure 5.
[image: Map featuring red-colored slope units within a region, accompanied by four inset satellite images at the corners. A compass rose indicates orientation, and a scale bar shows a 20-kilometer distance.]FIGURE 5 | Division diagram of slope units.
3.4 Construction of landslide susceptibility model
In this research, the SPSS Modeler 18.0 software was utilized for the modeling of the SVM, the widely employed Radial Basis Function (RBF) was chosen, and two significant parameters were determined: the penalty coefficient C and the kernel function parameter γ (Dou et al., 2019; Pham et al., 2019). The C parameter refers to the tolerance for errors. When the value of C is large, the tolerance of the model for misclassifications reduces, the classification margin narrows, and the generalization ability of the model may decline. The γ parameter governs the nonlinearity degree of the SVM model and the complexity of the model. When the value of the γ parameter is relatively large, the fitting degree of the model to the training samples increases and the complexity of the model rises, which might result in overfitting, that is, the model performs well on the training set but poorly on new data.
In order to determine the optimal C and γ parameters, the cross-validation approach was adopted. The dataset was partitioned into n subsets, followed by training the model and conducting evaluations. Subsequently, the results were analyzed to determine the final parameters. Eventually, the penalty coefficient C and the kernel function parameter γ were fixed at 10 and 0.1, respectively. Simultaneously, other parameters in this paper were set to default values to guarantee that the SVM model possessed both adaptability and generalization ability during the establishment process. Meanwhile, an RF model was established by utilizing the sklearn package in Python. Among them, the two parameters, namely, the number of decision trees and the optimal number of features, have a considerable influence on the performance of the model (Merghadi et al., 2020; Xiao et al., 2020). Increasing the number of decision trees in a random forest can improve the model’s accuracy, but it also increases the computing time. The optimal number of features refers to the maximum number of environmental factors considered by each tree during training. Increasing the value of the optimal number of features will increase the variance of the model, which may lead to overfitting; while the optimal number of features being too small may result in an increase in bias, thereby reducing the model’s accuracy. In the research presented herein, the grid search method was employed to determine the optimal parameters. Through defining the parameter range, splitting the dataset, training the model and evaluating the performance of the model, the number of decision trees in the random forest was ultimately determined as 600, the optimal number of features was set at 5, and the remaining parameters adopted the default values.
The well-trained SVM and RF models were applied to the pre-demarcated slope units to obtain the LSI of the study area, whose value range was between 0 and 1. Corresponding LSM were generated, and the natural breaks method was employed to classify the evaluation results of landslide susceptibility into five grades: very high, high, medium, low, and very low.
4 UNCERTAINTY ANALYSIS OF THE MODELING RESULTS OF LANDSLIDE SUSCEPTIBILITY
4.1 The results of LSP based on SVM model and RF model
The results of landslide susceptibility based on the SVM model and the RF model are depicted in Figure 6. On the whole, the LSP results of the SVM and RF models exhibit certain similarities. In terms of the regional scope of susceptibility distribution, there are differences in the delineation of very high and high susceptibility areas between the RF model and the SVM model. Furthermore, the high and very high susceptibility areas identified by the RF model are relatively fewer. This implies that, under the prediction of the RF model, more regions are assessed as areas with lower landslide risk. Such a division might be more consistent with the actual situation, as in reality, landslide incidents tend to be concentrated in a few high-risk areas, while the risk in the majority of areas is relatively low. Consequently, the RF model yields better results in the evaluation of landslide susceptibility.
[image: Two maps comparing land use classifications in a region using SVM and RF methods. Both maps are color-coded to indicate levels from very low to very high, with a legend. A compass rose and scale bar are included.]FIGURE 6 | LSP divie diagram of SVM model and RF model.
4.2 Analysis on the results of LSP
4.2.1 Comparative analysis of AUC precision
In this study, the AUC value was employed as an indicator to assess the prediction accuracy of different models. As depicted in Figure 7, the AUC value of the RF model is 0.896, while that of the SVM model is 0.871. This suggests that in landslide susceptibility modeling, both the SVM and RF models have exhibited relatively good predictive capabilities. The RF model demonstrates superior predictive ability overall compared to the SVM model, which might be attributed to its stronger capacity in handling complex nonlinear relationships and data feature selection.
[image: ROC curve comparing two models: Random Forest (RF) and Support Vector Machine (SVM). The RF curve is in blue with an AUC of 0.896, and the SVM curve is in magenta with an AUC of 0.871. The plot displays True Positive Rate versus False Positive Rate, illustrating model performance.]FIGURE 7 | ROC curves of SVM model and RF model.
4.2.2 Comparison of the distribution of LSP index
In this research, by analyzing the mean and standard deviation of the LSI under the two machine learning models of RF and SVM, the uncertainty issues in the modeling process are explored. The distribution pattern of the landslide susceptibility index is shown in Figure 8. The mean value of the RF model is 0.258, and the mean value of the SVM model is 0.330, indicating that the LSI predicted by the RF model is relatively low. Meanwhile, the SD of the RF model (0.269) is greater than that of the SVM model (0.210), suggesting that the RF model has better discrimination and lower uncertainty when LSP. To sum up, in the process of LSP modeling, the RF model not only has higher prediction accuracy but also has lower uncertainty in assessing the susceptibility among different slope units.
[image: Two histograms compare landslide susceptibility using Support Vector Machine (SVM) and Random Forest (RF) models. Panel (a) for SVM shows a wider distribution with a mean of 0.320 and a standard deviation of 0.210. Panel (b) for RF shows a concentrated distribution near zero with a mean of 0.258 and a standard deviation of 0.269. Both histograms have the count on the y-axis and landslide susceptibility on the x-axis.]FIGURE 8 | Distribution of landslide susceptibility index: (A) SVM model; (B) RF model.
5 CONCLUSION
In this paper, by selecting the MSS method to divide slope units and using them as prediction units and choosing the SVM and RF models for LSP modeling, the main conclusions are as follows: The uncertainty laws of the LSP results are consistent. However, the LSP accuracy of the RF model is significantly higher than that of the SVM model, and the uncertainty is lower than that of the SVM model. The LSP accuracy of the RF model is 0.896, and the mean and SD are 0.258 and 0.269, respectively. The LSP accuracy of the SVM model is 0.871, and the mean and SD are 0.330 and 0.210, respectively. It can be seen that the RF model performs better in machine learning and can conduct predictions more effectively. In this study, only the RF and SVM models were utilized to investigate the landslide susceptibility in Dingnan County. In the subsequent research, more environmental factors and models will be employed to conduct a further study on the landslide susceptibility, and different methods will be adopted for its evaluation.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
YL: Writing–original draft, Writing–review and editing. YX: Writing–original draft, Writing–review and editing. JH: Data curation, Writing–review and editing. HL: Software, Writing–review and editing. YF: Validation, Writing–review and editing. YY: Data curation, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. Special Fund Project for the Protection and Utilization of Natural Resources in Jiangxi Province in 2025, Subsidy Project for the Construction of the Disaster Prevention and Control System in 2024, Science and Technology Innovation Project of Jiangxi Provincial Department of Natural Resources in 2024 (No. ZRKJ20242413).
GENERATIVE AI STATEMENT
The author(s) declare that no Generative AI was used in the creation of this manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Al-Daghastani, N. S. (1987). The application of remote sensing to geomorphological mapping and mass movement study in the vicinity of Provo. Utah: Purdue University. 
	 Althuwaynee, O. F., Pradhan, B., Park, H.-J., and Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114, 21–36. doi:10.1016/j.catena.2013.10.011
	 Azarafza, M., Azarafza, M., Akgun, H., Atkinson, P. M., and Derakhshani, R. (2021). Deep learning-based landslide susceptibility mapping. Sci. Rep. 11, 24112. doi:10.1038/s41598-021-03585-1
	 Chang, Z., Huang, F., and Jiang, S. J. A. E. S. (2023a). Slope unit extraction and landslide susceptibility prediction using multi-scale segmentation method. Adv. Eng. Sci. 55, 184–195. 
	 Chang, Z., Huang, J., Huang, F., Bhuyan, K., Meena, S. R., and Catani, F. (2023b). Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models. Gondwana Res. 117, 307–320. doi:10.1016/j.gr.2023.02.007
	 Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z. F., et al. (2019). Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 662, 332–346. doi:10.1016/j.scitotenv.2019.01.221
	 Felicisimo, A., Cuartero, A., Remondo, J., and Quiros, E. (2013). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10, 175–189. doi:10.1007/s10346-012-0320-1
	 Frattini, P., Crosta, G., and Carrara, A. (2010). Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 111, 62–72. doi:10.1016/j.enggeo.2009.12.004
	 Gao, J. (1992). Modeling landslide susceptibility from a DTM in Nelson County, Virginia: a remote sensing-GIS approach. University of Georgia. 
	 Hua, Y., Wang, X., Li, Y., Xu, P., and Xia, W. J. L. (2021). Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 18, 281–302. doi:10.1007/s10346-020-01444-0
	 Huang, F., Li, R., Catani, F., Zhou, X., Zeng, Z., and Huang, J. (2024a). Uncertainties in landslide susceptibility prediction: influence rule of different levels of errors in landslide spatial position. J. Rock Mech. Geotechnical Eng. 16, 4177–4191. doi:10.1016/j.jrmge.2024.02.001
	 Huang, F., Li, R., Catani, F., Zhou, X., Zeng, Z., Huang, J., et al. (2024b). Uncertainties in landslide susceptibility prediction: influence rule of different levels of errors in landslide spatial position. J. Rock Mech. 16, 4177–4191. doi:10.1016/j.jrmge.2024.02.001
	 Huang, F., Liu, K., Jiang, S., Catani, F., Liu, W., Fan, X., et al. (2024c). Optimization method of conditioning factors selection and combination for landslide susceptibility prediction. J. Rock Mech. Geotechnical Eng. doi:10.1016/j.jrmge.2024.04.029
	 Huang, F., Mao, D., Jiang, S.-H., Zhou, C., Fan, X., Zeng, Z., et al. (2024d). Uncertainties in landslide susceptibility prediction modeling: a review on the incompleteness of landslide inventory and its influence rules. Geosci. Front. 101886. doi:10.1016/j.gsf.2024.10188616749871
	 Huang, F., Xiong, H., Jiang, S.-H., Yao, C., Fan, X., Catani, F., et al. (2024e). Modelling landslide susceptibility prediction: a review and construction of semi-supervised imbalanced theory. Earth-Science Rev. 104700. doi:10.1016/j.earscirev.2024.104700
	 Huang, J., Fenton, G., Griffiths, D., Li, D., and Zhou, C. (2017). On the efficient estimation of small failure probability in slopes. Landslides 14, 491–498. doi:10.1007/s10346-016-0726-2
	 Kavzoglu, T., and Teke, A. (2022). Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arabian J. Sci. Eng. 47, 7367–7385. doi:10.1007/s13369-022-06560-8
	 Kayastha, P., Dhital, M. R., and De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput. and Geosciences 52, 398–408. doi:10.1016/j.cageo.2012.11.003
	 Liu, L. L., Zhang, Y. L., Zhang, S. H., Shu, B., and Xiao, T. (2022). Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment. Geocarto Int. 37, 15683–15713. doi:10.1080/10106049.2022.2102221
	 Luo, X., Lin, F., Zhu, S., Yu, M., Zhang, Z., Meng, L., et al. (2019). Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PloS one 14, e0215134. doi:10.1371/journal.pone.0215134
	 Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., et al. (2020). Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Science Rev. 207, 103225. doi:10.1016/j.earscirev.2020.103225
	 Pack, R. (1985). “Multivariate analysis of relative landslide susceptibility,” in Davis county (Logan, Utah: Utah State University). 
	 Pham, B. T., Jaafari, A., Prakash, I., and Bui, D. T. (2019). A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 78, 2865–2886. doi:10.1007/s10064-018-1281-y
	 Pham, B. T., Shirzadi, A., Bui, D. T., Prakash, I., and Dholakia, M. (2018). A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: a case study in the Himalayan area, India. Int. J. Sediment Res. 33, 157–170. doi:10.1016/j.ijsrc.2017.09.008
	 Ping, Z., Siyi, Z., Yu, S., Xudong, R., Ning, W., and Shuheng, Z. (2024). Landslide susceptibility assessment in southern Anhui Province based on slope units and semantic segmentation. Chin. J. Geol. 59, 562–574. 
	 Rohan, T., Shelef, E., Mirus, B., and Coleman, T. (2023). Prolonged influence of urbanization on landslide susceptibility. Landslides 20, 1433–1447. doi:10.1007/s10346-023-02050-6
	 Sahin, E. K. (2023). Implementation of free and open-source semi-automatic feature engineering tool in landslide susceptibility mapping using the machine-learning algorithms RF, SVM, and XGBoost. Stoch. Environ. Res. Risk Assess. 37, 1067–1092. doi:10.1007/s00477-022-02330-y
	 Sameen, M. I., Pradhan, B., and Lee, S. (2020). Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena 186, 104249. doi:10.1016/j.catena.2019.104249
	 Shahabi, H., Khezri, S., Bin Ahmad, B., and Hashim, M. (2014). RETRACTED: landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 115, 55–70. doi:10.1016/j.catena.2013.11.014
	 Sun, D., Shi, S., Wen, H., Xu, J., Zhou, X., and Wu, J. (2021). A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology 379, 107623. doi:10.1016/j.geomorph.2021.107623
	 Sun, D. L., Wen, H. J., Wang, D. Z., and Xu, J. H. (2020). A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 362, 107201. doi:10.1016/j.geomorph.2020.107201
	 Wang, Y., Sun, X., Wen, T., and Wang, L. J. B. o.E. G. (2024). Step-like displacement prediction of reservoir landslides based on a metaheuristic-optimized KELM: a comparative study. Bull. Eng. Geol. Environ. 83, 322. doi:10.1007/s10064-024-03819-2
	 Wang, Y., Tang, H., Huang, J., Wen, T., Ma, J., and Zhang, J. (2022). A comparative study of different machine learning methods for reservoir landslide displacement prediction. Eng. Geol. 298, 106544. doi:10.1016/j.enggeo.2022.106544
	 Wu, R., Hu, X., Mei, H., He, J., and Yang, J. (2021). Spatial susceptibility assessment of landslides based on random forest:A case study from hubei section in the three Gorges reservoir area. Earth Sci. 46, 321–330. 
	 Xiao, T., Segoni, S., Chen, L., Yin, K., and Casagli, N. (2020). A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides 17, 627–640. doi:10.1007/s10346-019-01299-0
	 Xie, J., Huang, J., Zhang, F., He, J., Kang, K., and Sun, Y. (2024a). Enhancing the resolution of sparse rock property measurements using machine learning and random field theory. J. Rock Mech. Geotechnical Eng. 16, 3924–3936. doi:10.1016/j.jrmge.2024.03.016
	 Xie, J., Zeng, C., Huang, J., Zhang, Y., and Lu, J. (2024b). A back analysis scheme for refined soil stratification based on integrating borehole and CPT data. Geosci. Front. 15, 101688. doi:10.1016/j.gsf.2023.101688
	 Yu, X., and Xiong, S. (2020). Landslide susceptibility assessment based on spatial multi-scale analysis: a case study of zigui to Badong in the three Gorges reservoir area. J. Geodesy Geodyn. 40, 187–192. 

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Liu, Xu, Huang, Liu, Fang and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 13 December 2024
doi: 10.3389/feart.2024.1515670


[image: image2]
Study on lateral friction resistance of concrete pouring structure in coral reef limestone formation
Yongtao Zhang1, Ruiyuan Zhang1*, Peishuai Chen1, Fuquan Ji1, Huiwu Luo1 and Enlong Liu2
1CCCC Second Harbour Engineering Company Ltd., Wuhan, China
2State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Zhanping Song, Xi’an University of Architecture and Technology, China
Wang Zhongchang, Dalian Jiaotong University, China
Kaifang Fan, Nanjing Hydraulic Research Institute, China
Mingfei Zhang, Zhengzhou University of Aeronautics, China
Dongxue Hao, Northeast Electric Power University, China
* Correspondence: Ruiyuan Zhang, 13554082150@163.com
Received: 23 October 2024
Accepted: 25 November 2024
Published: 13 December 2024
Citation: Zhang Y, Zhang R, Chen P, Ji F, Luo H and Liu E (2024) Study on lateral friction resistance of concrete pouring structure in coral reef limestone formation. Front. Earth Sci. 12:1515670. doi: 10.3389/feart.2024.1515670

This study investigates the effects of interface shape and bonding conditions on the side friction resistance of the cast-in-place pile in coral reef limestone stratum of the China-Maldives Friendship Bridge area. Large-scale direct shear tests are performed on the coral reef limestone-concrete interface to investigate the exertion mechanism of interfacial strength. A finite-discrete element coupling method (FDEM) is employed to develop a constitutive model for coral reef limestone. A numerical calculation method for the side friction resistance capacity of pile foundations in coral reef limestone strata is proposed based on the bearing characteristics of side friction resistance in pile-coral reef limestone interactions. The shear tests on seven shapes of pile-rock interfaces indicate that bonding condition is the primary factor influencing interface strength, while interface shape has a minimal impact. The cement slurry fills the pores to form an interface reinforcement that possesses a strength greater than that of the coral reef limestone. The computational results from the constitutive model of coral reef limestone match well with the laboratory test results, demonstrating that the FDEM can effectively simulate the effects of high porosity and bonding strength on the mechanical properties of coral reef limestone. The FDEM-based numerical results for the interface strength between cast-in-place pile and coral reef limestone exhibit good consistency with the laboratory shear test results, which validates the effectiveness and accuracy of the numerical calculation method for side friction resistance of cast-in-place pile in coral reef limestone strata. These findings can provide valuable reference for the design and construction of pile foundations in marine island and reef projects.
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1 INTRODUCTION
Coral reefs are geological structures formed from the remnants of reef-building coral colonies after their death over a long geological period (Cortés, 1997). The Great Barrier Reef in Australia (Scoffin and Tudhope, 1985) and the Maldives (Agassiz, 1903) are prominent examples of such formations (Sun and Huang, 1999). Different from the high-temperature and high-pressure diagenesis of land-sourced rocks (Dorobek, 1984), coral reef limestone is formed through biochemical cementation, compaction, and cold metamorphic (Nohl and Munnecke, 2019), and thus coral reef rocks are characterized by high porosity (Armstrong et al., 1980), low strength (Burton et al., 2001), and brittleness (Madin, 2005; Clark and Walker, 1977).
Research on the engineering mechanical properties of coral reef sediments and the load-bearing characteristics of pile foundations in these strata began internationally in the 1970s (Ghazali et al., 1990). Areas involved in the design and construction of offshore platform pile foundations include Australia (Nyland, 1988), South Africa (Ebelhar et al., 2021), the Bass Strait (Angemeer et al., 1973), the Philippines (Dutt et al., 1985), the Suez Bay (Dutt and Cheng, 1984), the Red Sea (Hagenaar, 2021; Ghazali et al., 1988), and Cuba (Puech et al., 1990). Researchers have investigated the vertical load-bearing capacity of pile foundations in coral reef strata and have proposed load-bearing capacity parameters as well as design and construction methods for piles. Falney and Jewell (1988) and Ghazali et al. (1988); Ghazali et al. (1987) conducted field comparative tests on driven piles and bored cast-in-place post-grouting piles based on the NRA platform area of the northwest Australian continental shelf and the coral reef strata offshore the Red Sea, respectively. Their findings indicated that the load-bearing capacity of driven piles in coral reef strata is significantly lower than that of bored cast-in-place post-grouting piles (Zhang et al., 2022a). To ascertain the vertical load-bearing capacity of piles, numerous researchers have examined the mechanical properties of the pile-coral reef limestone interface. Ooi and Carter (1987) performed direct shear tests on coral reef limestone under constant normal stiffness conditions and suggested that the shear strength of the concrete-coral reef limestone is related to its interface shape. Indraratna et al. (Indraratna et al., 1998) demonstrated that the interface dilation angle under constant normal stress condition was greater than that under constant normal stiffness condition, while the peak shear stress was lower under constant normal stiffness condition. Liu et al. (Liu et al., 2021)and Li et al. (Li et al., 2022) analyzed the mechanisms behind the high strength at the coral reef limestone interface from a microstructural perspective. They stated that due to the high porosity of coral reef limestone, the cement slurry diffuses extensively within it, leading to the formation of embedded occlusal and strongly cemented reinforcement at the concrete-coral reef limestone interface. Wan (WAN et al., 2021) confirmed through static load tests on end post-grouting piles that the pressure grout can fill the voids and cavities in the rock mass, thereby improving weak areas within the coral reef limestone strata. Existing research indicates that pile foundations in coral reef limestone strata exhibit high side friction resistance capacity (Fan et al., 2023a); however, the load-bearing mechanisms of these piles are not well understood (Fan et al., 2022), and there is a lack of theoretical and computational methods for assessing the side friction resistance capacity of pile foundations in coral reef limestone strata (Fan et al., 2023b).
The combined finite discrete element method (FDEM) is an efficient method for simulating the entire process of rock materials from fracture to failure. Since its proposal by Munjiza et al. (1995), this method has been widely applied in the field of geotechnical engineering. FDEM is not limited by the number of cracks and can simulate the entire process of rock materials in indoor tests such as uniaxial compression and direct shear (Liu et al., 2024). FDEM has demonstrated strong numerical simulation capabilities in predicting crack propagation in rock materials. Zheng et al. (2023) proposed an improved joint element constitutive model for finite discrete element method (FDEM). The revised model addresses the stress on both sides of the crack by considering the aperture of the fracture joint element rather than the contact. Hu et al. (2024) used a combination of finite element and discrete element methods (FDEM) to study the mechanical properties of rockfill materials and developed an improved constitutive model that can effectively capture their hysteresis behavior. At present, there are no FDEM program development cases for the constitutive model of reef limestone. Reef limestone is a porous cemented rock and soil material, and its instability and disintegration process belongs to a large deformation discontinuous mechanical phenomenon. FDEM can accurately and efficiently describe the failure process of reef limestone.
This study firstly performs large-scale direct shear tests on cast-in-place pile-coral reef limestone and analyzes the failure mechanism of the cast-in-place pile-coral reef limestone interface. Subsequently, based on the mechanical properties of coral reef limestone, the FDEM is used to develop a constitutive model for coral reef limestone, which is then validated against results from laboratory uniaxial compression tests. Finally, based on the bearing characteristics of side friction resistance in pile-coral reef limestone interactions, a numerical method for calculating the side friction resistance capacity of pile foundations in coral reef limestone strata is proposed.
2 SHEAR CHARACTERISTICS AND STRENGTH EXERTION MECHANISM OF PILE-CORAL REEF LIMESTONE INTERFACE
2.1 Design of large-scale direct shear model test on pile-coral reef limestone interface
Coral reef limestone is brittle and porous, which makes it prone to forming jagged interfaces during grouting and hole formation. Based on the field scan results from the China-Maldives Friendship Bridge, as shown in Figures 1A, B, the interface shapes are classified into seven types: vertical pile, sloped jagged, stepped jagged, outer arc jagged, outer V-shaped jagged, inner arc jagged, and inner V-shaped jagged. Shear tests are conducted for each type. To ensure sampling quality, coral reef limestone with lower porosity is selected. Fine processing of coral reef limestone, partially prepared into blocks with dimensions of 100 mm × 100 mm × 50 mm, and partially made into irregular rock samples based on the actual dimensions of each working condition. C30 concrete with standard dimensions of 150×150×50 mm is used to simulate the pile foundation and modify the shape of the concrete according to the corresponding irregular rock sample. Three sets of tests are conducted for each interface shape under normal stresses of 100, 200, and 400 kPa. Concrete is cast on coral reef limestone with different interface shapes. The sample sizes and molding effects are illustrated in Table 1. Loading is performed using a DZJ-15 direct shear apparatus (Li et al., 2023). Considering the effect of loading rate on shear test results (Tang and Wong, 2016), the preloading rate for normal stress is set at 0.1 kN/s, and the shear rate is 0.002 mm/s.
[image: Two side-by-side vertical plots labeled (a) and (b). Plot (a) shows irregular, wavy patterns, while plot (b) features straighter, more consistent vertical lines. Both have scales on the sides.]FIGURE 1 | Scanning results of pile construction site. (A) Scan result 1; (B) Scan result 2.
TABLE 1 | Sample dimensions for various test scenarios.
[image: Table showing seven different interface shapes and their model dimensions, each accompanied by a sample image. Shapes include vertical pile, sloped jagged, stepped jagged, outer arc jagged, outer V-shaped jagged, inner arc jagged, and inner V-shaped jagged, with respective measurements in millimeters. Sample images visually represent each shape.]2.2 Shear mechanical characteristics of cast-in-place pile-coral reef limestone interface
2.2.1 Interface failure modes
Various failure modes from the interface shear tests are displayed in Figure 2. Figures 2A–D show the results of interface failure under normal pressures of Vertical pile, Sloped jagged, Outer arc jagged, and Outer V-shaped jagged, respectively. Due to the high porosity of coral reef limestone, the cement slurry fills the pores to form an interface reinforcement with strength greater than the coral reef limestone. Most failure surfaces are located within the coral reef limestone, which indicates that the bearing mechanism of the pile side friction resistance in coral reef limestone strata is rock failure rather than interface friction (Zhao et al., 2020).
[image: Four close-up images of masonry bricks with flaking surfaces. Each pair shows a brick with varying degrees of surface deterioration. Labeled from (a) to (d), the bricks display different patterns and extents of material loss, with visible rough and uneven textures. The condition seems indicative of wear or damage.]FIGURE 2 | Failure modes of each interface shape. (A) Vertical pile; (B) Sloped jagged; (C) Outer arc jagged; (D) Outer V-shaped jagged.
2.2.2 Relationship between shear stress and shear displacement
The shear stress-shear displacement curve for the vertical pile interface is displayed in Figure 3A. The shear stress-shear displacement curve for the sloped jagged interface is displayed in Figure 3B. The shear stress-shear displacement curve for the stepped jagged interface is illustrated in Figure 3C. The shear stress-shear displacement curve for the outer arc jagged interface is depicted in Figure 3D. The shear stress-shear displacement curve for the outer V jagged interface is shown in Figure 3E. The shear stress-shear displacement curve for the inner arc jagged interface is shown in Figure 3F. The shear stress-shear displacement curve for the inner V jagged interface is presented in Figure 3G. The peak cohesion and friction angle of the interface shear test are summarized in Table 2.(Zhao and Liu, 2012).
[image: Six line graphs show shear strength versus shear displacement for various normal stress conditions in kilopascals (kPa) for soils with different cement contents. Each graph depicts multiple curves representing different stress levels of 100 kPa, 200 kPa, and 400 kPa. The graphs differ in shear displacement ranges and peak shear strength values, illustrating how varying cement content influences shear strength.]FIGURE 3 | Shear stress and displacement curve of interface shear test. (A) vertical pile interface.; (B) sloped jagged interface; (C) stepped jagged interface; (D) jagged interface; (E) V-shaped jagged interface; (F) inner arc jagged interface; (G) inner V-shaped jagged interface.
TABLE 2 | Summary table of peak cohesion and friction angle in interface shear test.
[image: Table showing interface shapes with their corresponding peak cohesion and peak friction angle values. The seven interface shapes are: Vertical pile, Sloped jagged, Stepped jagged, Outer arc jagged, Outer V-shaped jagged, Inner arc jagged, and Inner V-shaped jagged. Peak cohesion values range from 508.5 to 3,585.4 c/kPa. Peak friction angles are either zero or above 60 degrees, except for Outer arc jagged with 83.9 degrees, and Vertical pile with 67.3 degrees.]In Figures 3B, C, E, G, there are some cases where the confining pressure is high but the peak strength of the rock is low. This is because coral reef limestone is a porous bonding material with high brittleness and fragility. Therefore, when the confining pressure is high, the reef limestone may undergo local fragmentation, leading to lower peak strength.
2.2.3 Influence of normal stress on interface shear strength
During concrete casting, the shear stress-shear displacement curve is given in Figure 4. Figures 4A–C show the results corresponding to vertical pressures of 100kPa, 200kPa, and 400kPa, respectively. The shear displacement initially increases rapidly with shear stress, then drops sharply and stabilizes (Zhao et al., 2019). The residual shear strength is about 5%–10% of the interface shear strength, and the failure strain is about 2%–4%.
[image: Three graphs display the relationship between shear stress and shear displacement for different pile types. Graph (a) covers displacement up to 20 millimeters. Graph (b) focuses on a range up to 14 millimeters. Graph (c) shows data up to 16 millimeters. Each graph includes multiple lines representing different pile configurations, such as vertical, outer V-shaped, and sloped jagged piles. The graphs use different colors for each line, with the y-axis indicating shear stress in kilopascals.]FIGURE 4 | Shear stress versus shear displacement curve. (A) 100kPa; (B) 200kPa; (C) 400 kPa.
The influence of normal stress on the shear strength of cast samples is presented in Figure 5. For the same interface shape, normal stress has little effect on interface shear strength (Zuo et al., 2024). For the same normal stress, there is no significant relationship between interface shape and shear strength. Overall, the bonding condition of the interface has a greater impact on shear strength than the interface shape.
[image: Bar chart comparing shear strength at different normal stress levels for six pile types: vertical, sloped jagged, stepped jagged, outer V-shaped jagged, outer arc jagged, and inner V-shaped jagged. The x-axis indicates normal stress in kilopascals, ranging from 100 to 400. The y-axis measures shear strength in kilopascals, ranging from 0 to 5000. Each pile type is represented with distinct shading or patterns.]FIGURE 5 | Shear strengths of each interface shape.
Regarding the degree of interface bonding, the shear strengths of jagged and vertical pile interfaces under different normal stresses are displayed in Figure 6. Both have similar bonding strengths of about 2.6 MPa. The saturated uniaxial compressive strength ranges from 6.0 MPa to 7.6 MPa, and the ratio of interface bonding strength to uniaxial compressive strength is about 0.34–0.43.
[image: Scatter plot comparing shear strength versus normal stress for vertical pile and sloped jagged conditions. Red dots represent vertical pile with a trend line equation of y = 23.865x + 2605 and R² = 0.933. Blue dots represent sloped jagged with a trend line equation of y = 1.7142x + 2594.1 and R² = 1. The normal stress ranges from 100 to 400 kilopascals, and shear strength ranges from 2800 to 3600 kilopascals.]FIGURE 6 | Average shear strengths of jagged and vertical pile interfaces.
2.3 Exertion mechanism of interface shear strength
According to the typical shear stress-shear displacement curve shown in Figure 7, the exertion of interface shear strength can be divided into five stages: initial stage, compaction stage, bearing stage (elastic deformation stage), failure stage, and friction stage. The characteristics of each stage are presented in Figure 8.
[image: Graph showing shear stress versus shear displacement. Key stages labeled are compaction, bearing, and failure. The curve shows crack initiation at 2 mm and crack penetration at 4 mm. Friction stage follows. Stress is measured in kilopascals.]FIGURE 7 | Shear stress-shear displacement curve of vertical pile interface.
[image: Four-panel diagram showing material stages under pressure: Top left is the initial stage with a blue block on a surface. Top right is the bearing stage with the block compressed. Bottom left is the failure stage, showing cracks. Bottom right is the friction stage, depicting sliding motion.]FIGURE 8 | Mechanism diagram of interface interaction between cast-in-place pile and coral reef limestone.
Initial Stage: The high-porosity coral reef limestone bonds with the concrete interface. The cement slurry fills the pores of the coral reef limestone near the interface to form an interface reinforcement with strength greater than that of the coral reef limestone.
Bearing stage: At the beginning of loading, the pores of the coral reef limestone near the interface reinforcement are compacted, and the shear stress increases non-linearly with shear displacement. As shear displacement increases, the compaction of the pores near the interface reinforcement is completed, and shear stress increases linearly at a rate higher than that in the compaction stage. The rock sample, interface reinforcement, and concrete are in an elastic state, in which the bonded elements of the rock sample bear the load.
Failure stage: As loading progresses, cracks start to develop in the weaker areas near the lower part of the loading point. The bonded elements begin to transform into frictional elements, while the coral reef limestone farther from the loading point remains undamaged. This asynchronous damage generates an uneven sliding surface with an upward trend. As shear displacement further increases, the interface strength is gradually controlled by the tensile strength of the coral reef limestone. Once interface strength exceeds the tensile strength, the cracks penetrate, and the shear stress drops rapidly.
Friction stage: As shear displacement continues to increase, the rock sample slid along the penetrated cracks, and the shear stress remains unchanged. At this stage, the frictional elements of the rock sample bear the load (Huang et al., 2024).
In summary, the majority of the failure zone at the pile-coral reef limestone interface was located within the coral reef limestone. Initially, the interface strength was controlled by the shear strength of the coral reef limestone, resulting in the formation of an uneven sliding surface. Later, it was controlled by the tensile strength of the coral reef limestone, leading to the penetrative failure. Overall, the interface strength of the pile-coral reef limestone is the result of the combined effects of the tensile and shear strengths of the coral reef limestone.
Figure 9A shows the physical image of cement slurry filling the pores of reef limestone (Wang et al., 2024). It can be clearly seen from the figure that the gray cement slurry penetrates into the pores of the reef limestone, filling the pores and forming a denser interface. Figure 9B shows the microscopic interface image of the bond between the reef limestone and concrete (Cheng et al., 2022). From the image, it can be seen that the concrete fills the pores of the reef limestone, forming a more tightly embedded interface reinforcement at the interface between the two. Compared with the original porous state, this interface reinforcement significantly improves the stress characteristics of the interface between the reef limestone and concrete. Therefore, most shear failure surfaces do not occur at the interface and are located inside the reef limestone with more pores (Cheng et al., 2024).
[image: (a) Close-up of a hand holding a rough rock with a textured surface. (b) Microscopic image showing labeled areas: concrete, reef limestone, and interface. Scale indicates 500 micrometers.]FIGURE 9 | Macroscopic and microscopic images of the bonding interface between reef limestone and concrete. (A)Physical picture of cement slurry filling the pores of reef limestone; (B) Microscopic image of the interface between reef limestone and concrete after bonding.
3 DEVELOPMENT OF MECHANICAL ANALYSIS PROGRAM FOR CORAL REEF LIMESTONE
The understanding of the strength exertion mechanism of the pile-coral reef limestone interface discussed in the previous section reveals that developing a constitutive model suitable for coral reef limestone is crucial for the analysis of vertical load-bearing of piles. Assuming that the damage to coral limestone follows a Weibull distribution, a combined macro-micro approach is used to propose an elastoplastic damage constitutive model considering the bonding properties and porosity of coral reef limestone (Chen et al., 2023; Zhang et al., 2022b). This model reveals the strength exertion mechanism and evolution law of coral reef limestone. During the programming of the elastoplastic constitutive model for coral reef limestone, problems such as non-convergence of strain-softening integration and difficulty in determining the post-softening modulus generally arise, which makes secondary development based on large finite element programs challenging. This study focuses on the calculation of the vertical load-bearing capacity of piles in coral reef limestone strata and the engineering practice, with emphasis on the stage from the onset of strength exertion to peak strength. The programming procedure for the proposed constitutive model of coral reef limestone is as follows. The coral reef limestone at the early stage of loading is a bonded continuous medium, which can be simulated by the finite element method with high computational efficiency. In the middle and later stages of loading, the bonded material of the coral reef limestone gradually fails and disintegrates, while the load mainly carried by friction between particles, which can be simulated by the discrete element method. Throughout the process, joint elements are used to identify and store the transition from bonded elements to frictional elements.
3.1 Development of FDEM-based mechanical analysis program for coral reef limeston
The finite-discrete element coupling method (FDEM) that integrates the finite element method based on constitutive relationships and the discrete element method based on contact rules allows for detailed analysis of the whole failure process (Gibson, 1997).
3.1.1 Calculation principle of the FDEM
Before loading, the foundation or structure is divided into variable triangular elements. Joint elements, which have no thickness, are embedded between the triangular elements to connect them. After loading, the triangular elements are calculated according to the principles of the finite element method to obtain their stresses and displacements. When the stress state of certain elements reaches the failure criterion, the elements break at the joints and become rigid triangles. The movement, collision, and friction of the rigid bodies are computed with the rigid body dynamics to achieve continuous to discrete computations. Locally broken triangular rigid bodies transmit forces and displacements through nodes at the contact points of the original continuous medium (Amiri et al., 2024).
3.1.2 Contact and judgment principles of finite and discrete elements
Each discrete element in the FDEM model corresponds to an independent mesh, which determines the shape, boundary, and contact relationships between discrete elements. The interaction between discrete elements can cause the elements to fracture and break, so as to generate more elements and contact interactions. Special treatments of element contacts are required to avoid overlapping between elements during calculations and to accurately analyze each contact relationship. The contact interaction algorithm can simulate the interactions after discrete elements come into contact. It searches among numerous discrete elements and once contact is detected between a group of elements, it computes the interaction force between the two elements. The interactions between discrete bodies in FDEM can be calculated using a potential function, where the discrete bodies at the contact points can penetrate each other to form distributed contact forces, as illustrated in Figure 10.
[image: Diagram showing two overlapping regions labeled as "target" βt and "contactor" βc, with shaded intersection area labeled S = βt ∩ βc. Points Pt and Pc are marked near the intersection. Areas are defined by boundary lines labeled Γt and Γc. Labels dA and df indicate differential areas within and around the intersection.]FIGURE 10 | Contact force generated by infinitesimal overlap between Pc and Pt points.
3.1.3 Transition from finite element to discrete element
The FDEM model employs triangular elements to describe two-dimensional problems (Figure 11), with element division directly following the meshing rules of the finite element method. The discrete fracture model is crucial for the transition from continuous to discontinuous behavior in FDEM. This model introduces a joint cohesion element, which has no thickness, connects adjacent triangles, and contacts the four endpoints of the neighboring edges, between two triangular elements. This joint element, which has no thickness but possesses a certain strength, does not exist in reality, and it becomes active only when the joint or triangular elements break.
[image: Illustration of a geometric figure with nine vertices forming an outer polygon connected by diagonal lines to a smaller inner polygon. The shape resembles a nonagon and the internal lines create symmetrical segments.]FIGURE 11 | Triangular finite elements and embedded joint elements in FDEM.
The joint element has two failure modes: 1) Tension failure mode, where adjacent elements experience relative motion perpendicular to their shared edge, and tensile strength determines the peak strength prior to cracking. 2) Shear failure mode, where adjacent elements undergo relative motion parallel to their shared edge, and frictional force that is governed by the Mohr-Coulomb criterion determines the peak strength before cracking. Once the fracture energy of the material is fully released, the joint cohesion element ruptures, leading to the formation of real joints corresponding to the cracks generated by the joint element. The damaged joint elements are simultaneously removed from the continuous calculation cycle, thus completing the transition from continuous to discontinuous behavior. The constitutive form of the fracture unit is shown in Figure 12.
[image: Two diagrams labeled I and II show rhombus shapes with opposing arrows. Diagram I has horizontal arrows pointing inward on the sides and outward on the ends. Diagram II displays vertical forms with horizontal arrows pointing outward on the sides.]FIGURE 12 | Constitutive form of the fracture element.
3.1.4 Macro-micro connections and FDEM computational process
Changes, damage, yielding, or failure of the microscopic structural elements is the root cause of the eventual fracture of the material. Given the potential defects and stress concentration within the material, the fracture model in the program needs to be modified. The FDEM employs a strain-based cohesive crack model that integrates single crack and dispersed crack models, and its computational process is illustrated in Figure 13.(Li et al., 2024)
[image: Flowchart depicting a process starting with "File input," followed by "Meshing," "Fracture assessment," "Contact detection," and "Contact interaction." It loops back to "Meshing" at "Next time step." At the bottom, it states, "Calculate the displacements of elements and readjust the position of the discrete elements."]FIGURE 13 | Calculation flow of FDEM program.
First, the finite element program computes the stress and strain fields of coral reef limestone in the elastic stage, after which the data are imported into a discrete element program to analyze the process from crack propagation to rock failure. The detailed steps are as follows.
	① Use preprocessing software to output the ELIST.lis (element information file), NLIST.lis (node information file), and DLIST.lis (load information file).
	② Employ an existing format conversion program to convert the three files into formats recognizable by the computational program, i.e., n.y (node file) and e.y (element file).
	③ Input the determined parameters into the *.y files according to the specified format.
	④ Use the computational program to compute the set file information.
	⑤ The LS-PrePost post-processing software visualizes the generation, development, and penetration of cracks in the sample, as well as the disintegration, rolling, and collision of elements. It also simultaneously outputs the shear force-displacement curves.

3.1.5 Mechanical parameters of coral reef limestone based on FDEM
The parameters required for analyzing the mechanical properties of coral reef limestone using FDEM are divided into two main categories: 1) structural element parameters, and 2) joint element parameters. Structural element parameters primarily include Lamé constants λ and μ, density, viscous damping, friction coefficient, normal contact penalty function factor, and tangential contact penalty function factor. Joint element parameters include tensile strength, maximum fracture energy, cohesion, friction coefficient, and fracture penalty function factor. The Lamé constants can be derived from the elastic modulus and Poisson’s ratio. In conjunction with the constitutive model for coral reef limestone, the expression of elastic modulus considering mesoscale parameters is shown in Equation 1, where parameter a is the expression of elastic modulus and shear modulus, as shown in Equation 2, the expression of shear modulus is shown in Equation 3, and the expression of Lame constant is shown in Equation 4.
[image: Equation labeled (1): \( E = E' \left[ \frac{1 + f_t^2 \frac{1}{1 - \alpha (1 - f_t)}}{E^s} \right] E^s \).]
[image: The equation \( x = \frac{3E^s}{3E^s + 4G^s} \) is shown, labeled as equation 2.]
[image: The formula \( G^s = \frac{E^s}{2(1+\mu)} \) is shown, with equation number (3) on the right side.]
[image: Equation for lambda equals the product of E and mu, divided by the product of one plus mu and one minus two mu. Labeled as Equation four.]
This study adopts the viscous damping formula proposed by Munjiza (Munjiza and Latham, 2004), where the viscous damping is ks=2.9 × 107. The values of the normal and tangential penalty function factors are related to computational time and accuracy (Mahabadi, 2012).
3.2 Verification of mechanical analysis program for coral reef limestone
The mechanical analysis program for coral reef limestone is developed based on the constitutive model of coral reef limestone. Firstly, it is necessary to clarify the constitutive model of coral reef limestone and obtain relevant parameter values through relevant experiments. Among them, the porosity is determined as [image: The image shows a mathematical notation with a stylized letter "f" followed by a subscript "c".] through porosity testing, and the matrix parameters of the disintegration modulus and shear modulus are obtained through bonding strength and uniaxial testing to form the constitutive model of the coral reef limestone in the area where the sample is located. (Zhang et al., 2024c)
To demonstrate the reliability of the rock constitutive model, the stress-strain curves of reef limestone under uniaxial compression were compared and verified with the calculated results of the model, as shown in Figure 15. The calculation parameters are as follows: the porosity of samples I, II, and III is 0.17, 0.20, and 0.18, respectively; The values of [image: Please provide the image by uploading it, or share a URL where I can access it.], [image: It seems there is an error with your image upload. Please try uploading the image again or provide a URL if it's hosted online. Additionally, you can add a caption for context if needed.], [image: The expression "K" raised to the power of "M", where both "K" and "M" are capital letters and "M" is superscripted.] and [image: Mathematical expression showing the letter G with an exponent M.] are shown in Table 3, where [image: Mathematical symbol representing the Greek letter kappa, displayed in a serif font, commonly used in mathematical and scientific contexts.] and [image: It seems like there might have been an error. Please upload the image or provide a URL to it, and I can help you create the alternate text.] are determined by the test results of the specimen during the initial loading stage, and [image: Mathematical expression showing "K" raised to the power of "M".] and [image: Mathematical expression showing "G" raised to the power of "M".] are determined by the test results of the specimen during the residual loading stage; The porosity value of the friction element is 1.1 times that of the bonding element. As shown in Figure 22, the calculated results are basically consistent with the experimental results, which can reflect the phenomenon of strain softening. After clarifying the key parameter values characterizing porosity and bond strength in the constitutive analysis of coral reef limestone, a mechanical analysis program for coral reef limestone can be established.
TABLE 3 | Parameter values of constitutive model.
[image: Table showing measurements for three samples in megapascal (MPa). For Sample I: \( K^s = 7,430.4 \), \( G^s = 1,218 \), \( K^M = 39.84 \), \( G^M = 31.51 \). For Sample II: \( K^s = 15,170.4 \), \( G^s = 4,350 \), \( K^M = 83.01 \), \( G^M = 38.15 \). For Sample III: \( K^s = 18,808.2 \), \( G^s = 4,640 \), \( K^M = 86.33 \), \( G^M = 39.81 \).][image: The letter "K" in a serif font style.] and [image: Capital letter "G" with a superscript "s" following it.] are the bulk modulus and shear modulus of the reef limestone matrix, respectively; [image: Mathematical notation depicting "K" raised to the power of "M".] and [image: Mathematical notation showing "G" with a superscript "M".] are the elastic parameters of the solid soil skeleton in the constitutive model friction element, namely, the bulk modulus and shear modulus.
To validate the reliability of the FDEM-based mechanical analysis method for coral reef limestone (Zhang et al., 2024a), a numerical model is established, as displayed in Figure 14. The model parameters are taken from corresponding test values of coral reef limestone. For the main structural element parameters, the density, friction coefficient, as well as tangential and normal penalty factors are set at 2,150 kg/m³, 0.55, 45 MPa, and 450 MPa, respectively. For the joint element parameters, the tensile strength, fracture energy, cohesion, internal friction coefficient, and fracture penalty factor are at 2.30 MPa, 25 g/s2, 130 kPa, 0.65, and 3.5 GPa, respectively. The viscous damping ks is set at 2.9 × 107 kg/(m.s) (Wang et al., 2023; Meng et al., 2024).
[image: Diagram illustrating the Penrose stairs, an impossible object where a staircase loops continuously upward, giving the illusion of an endless climb. The structure creates a paradoxical ascent, defying typical spatial logic.]FIGURE 14 | Computational model for uniaxial compression test of coral reef limestone.
The stress-strain relationships at different porosities and bonding strengths are depicted in Figure 15. Figures 15A–C correspond to the results of Sample I, Sample II, and Sample III, respectively. In the early stage of loading, the stress gradually increases and peaks with occurrence of strain softening. In contrast to the measured values and the elastoplastic model for coral reef limestone that accounts for porosity and bonding characteristics, the strain-softening phenomenon is more pronounced in the FDEM-based numerical simulation. The main reason is that the FDEM does not account for the connections between macro and micro scales and suffers from certain defects in describing the prevalent joint load-bearing behavior of bonded and frictional elements. In summary, the FDEM can effectively simulate the effects of high porosity and bonding strength on the mechanical properties of coral reef limestone.
[image: Three graphs show principal stress difference versus axial strain, with plots for FDEM calculation values, constitutive model values, and measured values. Graph (a) peaks around 0.015; (b) peaks higher at about 0.015; (c) shows a broader peak slightly past 0.01.]FIGURE 15 | Comparison between calculated values of coral reef limestone (based on FDEM calculation and constitutive model calculation) and measured values. (A) Sample I; (B) Sample II; (C) Sample III.
4 NUMERICAL CALCULATION METHOD FOR SIDE FRICTION RESISTANCE OF CAST-IN-PLACE PILES IN CORAL REEF LIMESTONE STRATA
4.1 Calculation approach
Shear tests on the pile-coral reef limestone interface indicate that the cement slurry fills the pores of the coral reef limestone to an interface reinforcement. This results in most failure surfaces being located within the coral reef limestone, while the interface shape has minimal impact on the side friction resistance. The pile-coral reef limestone interface characteristics can be simulated using either shared nodes or interface reinforcement. Since the latter approach requires consideration of factors such as porosity and the range of the reinforcement, this study employs the shared node approach.
4.2 Validation through case study
The FDEM for assessing the side friction resistance capacity of the pile in coral reef limestone strata requires determining three key parameters: 1) structural element parameters; 2) joint element parameters; and 3) loading block parameters. Structural and joint element parameters are obtained from laboratory test data of the coral reef limestone. The stiffness of the loading block should be maximized within permissible limits, with Lamé constants set at λ = 4.8 × 1012 and μ = 8.5 × 1012, and a friction coefficient of 0.1 to avoid dispersion of the computational domain. Since the loading block is not meshed, parameters such as viscous damping, normal penalty function factor, and tangential penalty function factor are not meaningful and can be selected based on the rules of the structural block. Considering factors such as peak material strength, elastic modulus, Poisson’s ratio, and time step, the fracture penalty function factor is set at five times the elastic modulus, i.e., 10 × 1010, while the maximum fracture energy is set at 20 g/s2. The chosen parameters for various elements are detailed in Table 4.
TABLE 4 | Parameters of elements.
[image: Table listing model parameters for loading and concrete blocks. Both blocks have Lamé constants λ and μ of \(4.8 \times 10^{12}\) and \(8.5 \times 10^{12}\) respectively. Viscous damping is \(9.2 \times 10^8\) for loading and \(2.9 \times 10^8\) for concrete. Normal contact penalty is \(20 \times 10^{12}\), and tangential penalty is \(20 \times 10^{13}\) for both. Friction coefficient is \(0.1\).]The numerical simulations are compared with experimental results to verify the reliability of the simulation approach. The interface shear strength tests can be simplified into a two-dimensional problem, and then a two-dimensional model can be established, as presented in Figure 16. The concrete part is 150 mm long and 50 mm high (blue part), while the coral reef limestone measures 100 mm in length and 50 mm in height (green part), with a large stiffness loading block on the left side (red part). The meshing is performed using the meshing tool in the computational program based on solid-4 node 182 elements, with a minimum mesh size of 2 mm.
[image: Illustration of a geometric design featuring a green rectangle with a red triangular end resting on a larger blue rectangle. The shapes are filled with a pattern of lines and triangles.]FIGURE 16 | Meshing of the computational model.
Through repeated trial calculations, the time step and loading block velocity are determined to be 5 × 10−6 s and 0.25 m/s, respectively. The analysis focuses on a shear test with a vertical load of 100 kPa to examine the interface failure process during loading. At loading time t = 0 m, the failure status of the model is illustrated in Figure 17, where the joint elements between the structural and concrete elements are undamaged, with no cracks present.
[image: Diagram showing two rectangular blocks stacked, with a green block on top of a larger blue block. A red circle highlights the contact surface with a magnified view of the triangular grid pattern on the interface.]FIGURE 17 | Model failure and local magnification (t=0 m).
At loading time t = 30 m, the failure status of the model is depicted in Figure 18. In the early loading stage, the stress field of the elements connecting the structural and loading blocks is disturbed, while the joint elements begin to fail (green), but the cracks are not fully developed. The cracks appear, extend, and widen within the joint elements between the structural block and the concrete. The fracture surface begins to penetrate, forming long and narrow gaps that eventually propagate along the contact surface.
[image: Diagram showing a structure with a network of red triangles. An enlarged section in a red circle highlights the triangular pattern. The structure is composed of interconnected triangular units.]FIGURE 18 | Model failure and local magnification (t=30 m).
At the loading time t=50 m, the failure state of the model is shown in Figure 19. As the loading continues, the stress field of the components connecting the structure and the loading block is disturbed, causing the connecting components to fail and cracks to fully develop. Cracks appear, extend, and widen within the joint elements between structural blocks and concrete. The fracture surface begins to penetrate, forming narrow gaps and eventually propagating along the contact surface.The shape of the crack shows a slight upward trend, indicating that the failure location of the fracture is located inside the reef limestone.
[image: Technical diagram showing a structure with triangular mesh lines. An area marked "Failure location" is highlighted with an ellipse, indicating where structural failure is anticipated.]FIGURE 19 | Model failure and local magnification (t=50 m).
Figure 20 compares the simulation results under various vertical stresses with the shear test results of planar concrete and coral reef limestone. Figures 20A–C correspond to the results of vertical pressures of 100kPa, 200kPa, and 400kPa, respectively. As shear displacement increases, the shear force first increases, then decreases, and finally stabilizes, and the peak shear force rises gradually as vertical stress increases. The reasons for this phenomenon are as follows. As horizontal shear displacement increases, the shear force gradually rises to a peak. However, the generation and propagation of cracks on the contact surface leads to a decrease in shear strength. With increasing vertical stress, the interlocking and embedding effects occur between contact surface elements, causing an increase in friction, which consequently enhances the shear strength. The experimental and simulation curves exhibit similar trends under various vertical stresses, suggesting that the FDEM effectively simulates the side friction resistance characteristics of the concrete-coral reef limestone interface.
[image: Three graphs labeled (a), (b), and (c) display shear force versus shear displacement data. Each graph compares measured values in red with simulated values in blue. All graphs show a peak in the shear force around the mid-range of displacement, indicating similar trends with slight variations between measured and simulated values.]FIGURE 20 | Comparison of simulated and measured shear force vs. shear displacement. (A) 100kPa; (B) 200kPa; (C) 400 kPa.
The calculation Formula 5 for the allowable axial compressive bearing capacity of single rock socketed drilled piles in the “Code for Design of Highway Bridge and Culvert Foundation”.
[image: Mathematical equation displaying \( R_d \) as a function of various terms: \( c_1 A_p f_k + u \sum_{h=1}^{m} c_{2h} h f_{hk} + \frac{1}{2} u^2 \sum_{j=1}^{n} a_{qj} \). The equation is labeled as equation (5).]
In the formula: [image: Mathematical notation showing the symbol "R" with a subscript "a" enclosed within square brackets.] is the allowable vertical bearing capacity of a single pile (kN), [image: Please upload the image or provide a URL for me to generate the alt text.] is the end resistance coefficient determined based on factors such as rock integrity, [image: It looks like you're describing a mathematical symbol, not an image. The symbol \( A_p \) typically represents a parameter \( A \) subscripted by \( p \). If you meant to describe an image, please provide the image file for a detailed description.] is the cross-sectional area of the pile end (m2), [image: The image shows the mathematical expression \( f_{rk} \), indicating a function or variable with subscripts "r" and "k".] is the standard value of the saturated uniaxial compressive strength of the rock at the pile end (kPa), [image: Please upload the image or provide a URL so I can help create the alternate text.] is the lateral resistance coefficient of the i-th layer of rock determined based on factors such as rock integrity and density, [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or additional context, feel free to include that as well.] is the circumference of the pile body in each soil layer or rock layer (m), [image: It seems there is an error in your request as the input appears to display as mathematical notation or text, not an image. Please provide a clear and accessible image or describe its content for assistance with alt text creation.] is the thickness of the pile embedded in each rock layer (m), [image: Please provide the image by uploading it or sharing a URL so I can generate the alt text for you.] is the number of layers of rock layers, [image: Greek letter zeta, denoted as a stylized 'z' shape, often used in mathematics and science.] is the lateral resistance coefficient covering the coral reef soil, [image: Please upload the image or provide a URL for me to generate the alt text.] is the thickness of each coral reef soil layer (m), and [image: Mathematical expression with a lowercase letter 'q' followed by subscript 'i' and 'k'.] is the standard value of lateral resistance of the i-th layer of soil on the pile side (kPa), where [image: Black lowercase italic letter "n" on a white background.] is the number of layers in the soil layer.
After studying the mechanism of lateral resistance in the injection section of coral reef limestone, combined with the FDEM calculation method of coral reef limestone, it is recommended to revise the value of the lateral resistance coefficient [image: It seems there was no image uploaded. Please try uploading the image again, and I will be happy to provide the alternate text for it.] of the rock layer.
5 CONCLUSION
In the light of the high efficiency of side friction resistance exertion of cast-in-place piles in coral reef limestone strata (Pitchumani et al., 2024), this study firstly examines the mechanical properties of the pile-coral reef limestone interface (Zhang et al., 2024b). After that, a computational program for the constitutive model of coral reef limestone is developed, which is validated through laboratory uniaxial compression tests. Finally, a numerical method for calculating pile side friction resistance applicable to coral reef limestone strata is proposed based on the exertion characteristics of side friction resistance in pile-coral reef limestone interactions. The following conclusions are drawn.
	(1) The interface between coral reef limestone and case-in-place pile can be categorized into seven types: vertical pile, sloped jagged, stepped jagged, outer arc jagged, outer V-shaped jagged, inner arc jagged, and inner V-shaped jagged. The bonding strength has a significant impact on the interface strength, while the interface shape has a relatively small impact on it.
	(2) The shear process at the pile-coral reef limestone interface consists of initial stage, compaction stage, bearing stage, failure stage, and friction stage. Most shear failure surfaces are located within the coral reef limestone, which is primarily due to its high porosity. The cement slurry fills these pores to form an interface enhancement with strength greater than that of the coral reef limestone. Under shear stress, the internal pores of the coral reef limestone become the relatively weak points that fail first.
	(3) Based on the unique phenomenon of the prevalent coexistence of bonding and damage in coral reef limestone, a finite-discrete element coupling method, in which the undamaged and damaged coral reef limestones are simulated by finite and discrete elements, respectively, and the damage process is judged by joint elements, is proposed to realize the programming development of the constitutive model for coral reef limestone. Based on the exertion mechanism of the pile-coral reef limestone interface strength, a shared node interface treatment method is proposed to consider porosity and interface reinforcement, which addresses the computational issues at the interface between case-in-place pile and coral reef limestone. Finally, a numerical method for calculating side friction resistance of the case-in-place pile in coral reef limestone strata is proposed.
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The accurate rockburst prediction is crucial for ensuring the safety of underground engineering construction. Among the various methods, machine learning-based rockburst prediction can better solve the nonlinear relationship between rockbursts and influencing factors and thus has great potential for engineering applications. However, current research often faces certain challenges related to the feature selection of prediction indices and poor model optimization performance. This study compiled 342 rockburst cases from domestic and international sources to construct an initial database. In order to determine the relevant prediction indicators, a feature selection method based on the ReliefF-Kendall model was proposed. The initial database was equalized and visualized using the Adasyn and t-SNE algorithms. Five rockburst prediction models [support vector machine (SVM), least-squares support vector machine (LSSVM), kernel extreme learning machine (KELM), Random Forest (RF), and XGBoost] were established by employing the Secretary Bird Optimization (SBO) algorithm and 5-fold cross-validation to optimize performance. The optimal model was selected based on a comprehensive assessment of generalization ability (accuracy, kappa, precision, recall, and F1-score) and stability (average accuracy). The reliability of the proposed feature selection, model optimization, and data balancing methods was verified by comparing the optimal model with other methods. The results indicate that the PSO-SVM model demonstrated superior prediction accuracy and generalization performance; the accuracy can reach 81.4% (optimal) and 80.1% (average). The main factors affecting the occurrence of rockburst are Wet, maximum tangential stress (MTS), D, and uniaxial compressive strength (UCS). Finally, the model was applied to the domestic rockburst engineering cases, achieving a prediction accuracy of 90% and verifying its engineering applicability.
Keywords: rockburst prediction, secretary bird optimization algorithm, feature selection, data balance, machine learning

1 INTRODUCTION
Rockburst is a dynamic instability disaster occurring in deep underground engineering under high ground stress, caused by the release of elastic strain energy within the surrounding rock during excavation and unloading (Xia et al., 2022; Xue et al., 2022; Ma et al., 2024). The random suddenness and the strong destructiveness characterize it. It can delay the construction period and cause substantial economic losses, posing a severe threat to construction personnel and equipment safety. Suppose the potential rockburst risk can be effectively predicted and evaluated (Esmatkhah Irani et al., 2022) in advance in the early stage of underground engineering. In that case, the risk of a rockburst disaster can be reduced by reasonable site selection and strengthening support measures. A significant issue in the risk control management of deep underground engineering construction is the reasonable and accurate rockburst prediction.
The current methods for predicting rockburst can be classified into three primary categories: 1) the single-criterion methods based on rockburst mechanisms, 2) the comprehensive prediction methods considering various factors influencing rockburst, and 3) the rockburst prediction methods reliant on field monitoring. Most single-criterion methods have poor engineering applicability and prediction accuracy, often failing to meet the requirements. Despite their effectiveness, methods such as microseismic monitoring have high operational costs, limiting their widespread application. The comprehensive rockburst prediction methods using mathematical theory or machine learning are widely adopted owing to their simplicity, convenience, and high engineering practicality.
The first category is based on the uncertainty theory. It includes methods such as the fuzzy mathematics method (Wang et al., 2019), grey theory method (Gao, 2008), attribute recognition theory method (Qu et al., 2022), set pair analysis method (Wang et al., 2020), efficacy coefficient method (Qiu et al., 2013), matter-element extension method (Xue et al., 2019), evidence theory method (Zhang F. et al., 2024) target closeness method (Liu et al., 2015), fuzzy matter-element theory method (Wang et al., 2015), cloud model method (Sun et al., 2024a), catastrophe progression method (Xing et al., 2024), unascertained measure theory method (Hu et al., 2023), projection pursuit method (Xu and Xu, 2010), and approximation ideal point method based on distance sorting theory (Xu et al., 2018a). The second category is based on machine learning. It involves neural networks (Zhang Q. et al., 2024), deep neural networks (Zhang et al., 2023), support vector machine (Pu et al., 2018b) naive Bayes (Zhang S. et al., 2024), logistic regression (Li and Jimenez, 2018), K nearest neighbor (Kamran et al., 2022), extreme learning machine (Li et al., 2023b), random forest (Yang, 2024), gradient boosting decision tree (Liang et al., 2020) extreme gradient boosting tree (Qiu and Zhou, 2023a), light gradient boosting machine (Qiu and Zhou, 2023b), extreme tree (Li et al., 2022), and adaptive boosting (Wang et al., 2023). The first category relies on mathematical theory and requires the determination of rockburst level thresholds and index weights, which are affected by human subjectivity. The second category, which is based on machine learning, is entirely data-driven, less subjectively affected, and can continuously update sample libraries. It can be well explained to deal with the nonlinear action relationship between rockbursts and influencing factors.
Tan et al. (2022) established a fusion method combining the diversity and accuracy weights of Stacking and Voting for the rockburst intensity classification prediction, effectively improving the performance compared to ordinary machine learning algorithms. Liu et al. (2022) proposed three Stacking ensemble algorithms considering multiple rockburst prediction indices, successfully predicting the rockburst in the vertical shaft of Zhongnanshan Tunnel. Li et al. (2021) utilized six machine learning algorithms with cross-validation for rockburst prediction models, compared the prediction accuracies to select the optimal model and predicted the rockburst in the Jinping II hydropower station diversion tunnel. Tang and Xu (2020) established nine rockburst prediction models after preprocessing the original dataset, achieving better results than the traditional theoretical criteria. Tan et al. (2021) proposed a data preprocessing method combining the LOF and improved SMOTE algorithms and established six machine learning models based on the processed dataset, significantly improving the prediction accuracy. These studies have demonstrated that machine-learning-based rockburst prediction has broad engineering application prospects. However, this method currently has three main areas for improvement: the algorithm model optimization, the prediction input index selection, and the insufficient data quality. Intelligent optimization algorithms are primarily integrated with prediction algorithms to address or avoid the issue of models becoming trapped in local optima. The commonly used optimization algorithms include the particle swarm optimization algorithm (Yuan et al., 2023), the genetic algorithm (Wei et al., 2020), the sparrow search algorithm (Xu et al., 2022), the grey wolf optimization algorithm (Kamran et al., 2024), the African vulture optimization algorithm (Qiu and Zhou, 2024), the differential evolution optimization algorithm (Deng et al., 2024)and the improved multi-verse optimization algorithm (Xie et al., 2021). Existing optimization algorithms (e.g., PSO) and others have several areas for improvement, including a tendency toward locally optimal solutions, slow convergence, and sensitivity to parameter settings. Therefore, developing an algorithmic model with exploration ability, greater adaptability, and higher efficiency is essential to improve the model’s generalization ability and predictive performance.
The accuracy of the model predictions is largely contingent upon the reliability of the input indicators. An insufficient or excessive number of prediction indicators affects the model’s performance, and there is no uniform standard for input indicators in current prediction models. Most indicators are selected through the qualitative analysis of factors influencing rockbursts or trial-and-error methods with various feature combinations, often resulting in solid subjectivity or increased computational complexity. The existing prediction index determination methods make it challenging to ensure the efficiency and objectivity of the prediction model index selection. The data-driven feature selection method based on real rockburst cases needs further study. The feature selection, an essential step in the machine learning data preprocessing phase, aims to extract the most relevant features for object recognition and classification. There are fewer studies related to data-driven feature selection for rockburst prediction metrics. Kidega et al. (2022) developed a gradient boosting (GBM) prediction model based on decision uncertainty to analyze combinations of factors affecting rock bursts. The model, combined with a 3-fold cross-validation optimization approach, found that the most important factor affecting rock bursts is the maximum tangential stress. Sun et al. (2024b) selected the microseismic characteristics of underground mines based on the correlation feature selection (CFS) algorithm and proposed the OFS-Bayes-WPS model for short-term rockburst intensity prediction. The feature selection methods can be categorized into filtering, wrappers, and embedded (Zhang et al., 2020). The ReliefF algorithm is a straightforward and effective filtering method for feature selection. In this study, we selected the optimal features for the rockburst prediction model by integrating the ReliefF algorithm with the correlation analysis to ensure the objectivity and rationality of the choice of indicators for predictive characterization. The major data quality issue is the imbalance of the data categories. In machine learning, the imbalanced datasets lead models to overemphasize the majority samples while neglecting the minority samples, thereby reducing the generalization performance. Selecting an appropriate data balancing method is crucial for improving the predictive accuracy of the models.
Based on the shortcomings of previous research, this study initially selected the rockburst prediction index set through literature reviews and analyses of the rockburst influencing factors. A total of 342 groups of rockburst engineering cases were collected from domestic and international sources. The prediction indices were determined using the established ReliefF-Kendall feature selection method. The initial database was balanced and visualized using the Adasyn oversampling and t-SNE algorithms. An optimization method combining the Secretary Bird Optimization (SBO) algorithm and 5-fold cross-validation was proposed, establishing five rockburst prediction models. The optimal prediction model was selected based on its generalization ability and stability. The reliability of feature selection, the SBO algorithm, and the Adasyn data processing algorithm were compared and analyzed using the optimal model and other methods. Finally, the engineering applicability of the model was verified through rockburst engineering cases in China.
2 METHODOLOGY
2.1 SBO algorithm
The SBO algorithm is a swarm intelligence optimization method inspired by the survival behavior of the secretary bird in nature, which involves constant hunting and predator evasion. The algorithm consists of three primary stages: initialization, exploration (hunting behavior), and development (escape behavior). During the exploration stage, the algorithm simulates the secretary bird hunting snakes (Fu et al., 2024). In the developmental stage, it mimics the bird escaping predators and finding the safest route to a haven. These stages are iteratively repeated until the model attains the maximum number of iterations, ultimately identifying the optimal solution to the optimization problem. When applied to model optimization, it shows excellent global search ability and adaptability, effectively alleviates the risk of converging to the local optimum, and the calculation efficiency is more efficient, which improves the overall optimization performance.
2.1.1 Initialization stage
This stage involves constructing and randomly initializing the positions of the secretary birds within the population space (Fu et al., 2024). Each bird’s position in the search space corresponds to the value of the decision variable. The initial positions are generated randomly according to Equation 1.
[image: Mathematical equation showing a matrix \( X = (x_{ij}) \), where each element \( x_{ij} = lb_j + r \times (ub_j - lb_j) \), for \( i = 1, 2, \ldots, N \) and \( j = 1, 2, \ldots, M \). The matrix elements are arranged in rows and columns, featuring ellipses to indicate continuation.]
where ubj and lbj are the upper and lower bounds; r denotes a random number between 0 and 1; X denotes the population of the secretary bird; xi denotes the ith secretary bird; xij denotes the jth problem variable value of the ith secretary bird; N denotes the number of individuals in the population; and m denotes the dimension of the problem variable (Fu et al., 2024).
2.1.2 Exploration stage
The hunting behavior of secretary birds is generally categorized into three stages: searching for prey, consuming prey, and attacking prey (Fu et al., 2024). The time intervals define these stages: the first stage (t < 1/3 T), the second stage (1/3 T < t < 2/3 T), and the third stage (2/3 T < t < T).
2.1.2.1 Searching for prey
This stage employs the difference between individuals and uses the differential evolution strategy to iteratively update the position of the secretary bird through Equation 2.
[image: Mathematical equation showing that \( x_{ij}^{(\text{new}, P)} = x_{ij} + (x_{\text{random}_1} - x_{\text{random}_2}) \times R_1 \) if \( t < \frac{1}{3}T \). Equation labeled as number 2.]
Where xijnewP1 denotes the value of dimension j; t denotes the current number of iterations; T denotes the maximum number of iterations; xrandom_1 and xrandom_2 denote the randomly generated candidate solutions during the initial iteration phase; R1 is the array of 1 × M randomly generated in the interval [0,1]; and M is the dimension of the solution space.
2.1.2.2 Consuming prey
The secretary bird delays its attack upon detecting prey, opting to observe the snake’s movements closely instead. By circling and jumping, the bird aims to deplete its snake stamina. Consequently, the snake’s random motion trajectory was simulated using Brownian motion during this phase, as shown in Equation 3. The position of the secretary bird in the Consuming Prey stage can be updated using Equation 4.
[image: Please upload the image or provide a URL for me to create the alternate text.]
[image: Equation labeled as Equation 4. The equation describes \( x_{ij}^{\text{new}}(t+1) \) as being equal to \( x_{\text{best}} \) plus the exponential of negative \( t \) divided by \( T \) to the power of four, multiplied by \( (\text{RB} - 0.5) \), further multiplied by \( (x_{\text{best}} - x_{ij} ) \). This is subject to the condition where \( T \) divided by three is less than \( t \) which is less than two times \( T \) divided by three.]
Where randn (1,M) denotes an array of dimensions 1 × M generated randomly from the standard normal distribution; and xbest denotes the current optimal value.
2.1.2.3 Attacking prey
Once the prey is exhausted, the secretary bird discerns the optimal moment to initiate an attack. At this stage, the location of the secretary bird is updated using the Lévy flight strategy, as shown in Equation 5.
[image: Equation representing a mathematical formula with variables and parameters. It includes a condition where \( x_{ij}^{\text{new}} \) is calculated based on \( x_{\text{best}} \), and a function involving \( T \), \( x_{ij} \), and \( RL \), with a condition \( t > \frac{2}{3}T \). Also, \( RL = 0.5 \times \text{Levy}(M) \), annotated as equation (5).]
Where [image: Mathematical expression showing the quantity one minus \( \frac{t}{T} \) raised to the power of two times \( \frac{t}{T} \).] denotes nonlinear perturbation factor; and RL denotes the weighted Levy flight coefficient.
Levy (M) denotes the Levy flight distribution function, it is calculated as Equation 6.
[image: Mathematical equation depicting a formula for Levy function: Levy of M equals s times fraction with numerator u times sigma and denominator absolute value of v raised to the power of three minus one, represented as equation six.]
Where s is a constant valued at 0.01; n is a constant equal to 1.5; and u and v are random numbers in the interval [0,1].
2.1.3 Development stage
When a secretary bird encounters danger, it employs two escape strategies: camouflage (C1) and flight (C2). It is assumed that both strategies occur with equal probabilities. Upon detecting a threat, the bird initially seeks an appropriate environment for camouflage. Without nearby safe concealment, it resorts to flight or rapid movement to evade the danger. The individual positions corresponding to these two escape strategies are expressed in Equation 7.
[image: Equation for \(x_{\text{ij}}^{\text{new,JP}}\) includes two conditions:  1. If \(r < r_l\), then \(C_1x_{\text{best}} + (2 \times \text{RB} - 1) \times \left(1 - \frac{t}{T}\right) \times x_{\text{ij}}\).  2. Else, \(C_2 x_{\text{ij}} + R_2 \times (x_{\text{random}} - K \times x_{\text{ij}})\).  \(K\) equals \(\text{round}(1 + \text{rand}(1,1))\).  Refer to equation (7).]
Where r = 0.5, R2 denotes an array with a dimension of (1 × M) randomly generated from the normal distribution; xrandom denotes the random candidate solution for the current iteration; and k denotes a randomly selected integer, either 1 or 2.
Figure 1 shows the optimization search process based on the SBO algorithm.
[image: Flowchart illustrating an optimization algorithm. It starts with parameter initialization, followed by population initialization to calculate fitness values. The chart includes decision points evaluating conditions and updating variables \(X1\) and \(X2\) using various equations, ultimately determining the optimal position. The process concludes by returning the result.]FIGURE 1 | Flowchart of Secretary Bird Optimization algorithm.
2.2 Machine learning algorithms
2.2.1 Support vector machine
The support vector machine (SVM) is a supervised machine learning algorithm recognized for its strong generalization ability with minor-to-medium data samples and in addressing nonlinear and high-dimensional classification problems. The fundamental concept involves the application of a kernel function to execute a nonlinear transformation, thereby mapping the original data space into a higher-dimensional space to elucidate the nonlinear relationships between inputs and outputs. This process facilitates the identification of the optimal classification surface. Given the complex nonlinear relationship between influencing factors and rockbursts, this study employed a nonlinear SVM classification model based on the Gaussian radial basis kernel function. The principle of SVM algorithm is shown in Figure 2A. The optimal classification decision function of the SVM is expressed as Equation 8.
[image: A mathematical formula for a function \( f(x) \) is depicted. It shows \( f(x) = \text{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b\right) \), where \(\text{sgn}\) denotes the sign function, \(\alpha_i\), \(y_i\), \(x_i\), and \(b\) are parameters, and \(K\) is a kernel function.]
Where sgn [ ] is the sign function; ai* is the optimal solution; and b* is the classification threshold.
[image: Diagram with four panels labeled A, B, C, and D. Panel A shows a scatter plot of two classes with a separating line. Panel B illustrates a neural network structure with input and output layers. Panel C depicts a decision tree model showing data samples branching into classifications. Panel D demonstrates a boosting algorithm with multiple decision trees combining into a strong classifier.]FIGURE 2 | The principle of commonly used machine learning classification prediction algorithm: (A) SVM; (B) ELM; (C) RF; (D) XGBoost.
2.2.2 Least squares support vector machine
The least-squares support vector machine (LSSVM) is an improved SVM algorithm that substitutes the inequality constraint in the original SVM loss function with a linear least-squares criterion. This adjustment transforms the parameter optimization problem from a convex quadratic programming problem into a linear one. Consequently, the computational complexity is significantly reduced while the accuracy is preserved, enhancing the model’s generalization ability.
2.2.3 Kernel based extreme learning machine
The kernel extreme learning machine (KELM) enhances the extreme learning machine (ELM) algorithm by using a kernel function instead of random mapping. The principle of ELM algorithm is shown in Figure 2B. This improvement involves generating connection weights and bias terms from the input layer to the hidden layer randomly and then applying the kernel function to map the input sample’s low-dimensional data to a high-dimensional feature space. The model was trained by solving the weights of the output layer. This approach provides increased robustness and generalization capabilities for nonlinear classification and regression problems. The optimization function of the KELM algorithm is as Equation 9.
[image: Mathematical equation showing F of x equals a column matrix with elements K of x comma x subscript 1 through K of x comma x subscript n, multiplied by the inverse of the sum of one over C and Omega subscript EIM, all multiplied by L. Equation number 9.]
Where K is the kernel function; (x1, x2, xn) denotes the given training samples; n is the number of samples; and C represents the regularization coefficient.
2.2.4 Random forest algorithm
Random Forest (RF) is an ensemble learning algorithm that is founded on decision tree methodologies. It creates multiple training sets through random sampling and constructs the decision trees by randomly splitting node features. The final classification result is obtained by aggregating the outcomes of all terminal nodes of the decision trees through a voting mechanism. The principle of RF algorithm is shown in Figure 2C. RF is known for its strong generalization ability and adaptability to various data types. The classification function is as Equation 10.
[image: Mathematical expression showing a function \( f(x_m) = p[h(x_m)]^{N}_{i=1} \) with equation number ten in parentheses at the end.]
Where p is the majority vote; and NT is the number of trees in a random forest.
2.2.5 Extreme gradient boosting
Gradient Boosting Decision Tree (XGBoost) is an ensemble algorithm that employs the regression trees as the base learners. It iteratively optimizes each base learner using a gradient-boosting approach. Compared with the traditional boosting methods, XGBoost integrates regularization terms into the objective function to reduce overfitting and employs the second-order Taylor expansion of the loss function to improve both model efficiency and accuracy. The principle of XGBoost algorithm is shown in Figure 2D. The XGBoost objective function is as Equation 11.
[image: Mathematical equation: \( y_{i} = \phi(x_{i}) = \sum_{k=1}^{K} f_{k}(x)(f_{k} \in F) \), labeled as equation 11.]
Where yi is the output result; fk is the kth base model classifier, with each fk is related to an independent tree structure q and leaf fraction w; and F is the space of the classification and regression tree.
2.3 Feature selection
ReliefF is a multi-class filtering feature selection method that assesses the correlation between features and categories by evaluating the capacity of each feature to distinguish between similar samples. The process involves the following steps: First, a sample (Ri) is randomly selected from the training set (Zhang et al., 2022). Then, the k-nearest neighbour samples of the same class [denoted as (Pj)] and of different classes [denoted as (Qj)] are identified within the training set. Finally, the weight for each feature was updated iteratively using the weight update (Tian et al., 2022) Equation 12 over n iterations, resulting in the final feature weights after processing all samples. 
[image: Equation showing the calculation of a weight, denoted as \( w_i^1 \), equal to \( w_i^c(A_t) \), minus the sum from \( j = 1 \) to \( k \) of \( \text{diff}(A_t, R_j, P_j) \) over \( nk \), plus the sum over all classes of \( R \), class \( R \), of the expression inside brackets. The bracketed expression is the ratio \( \frac{P(C_j)}{1 - P(\text{class}(R_j))} \) times the sum from \( j = 1 \) to \( k \) of \( \frac{\text{diff}(A_t, R_b, Q_j(C))}{nk} \), labeled as equation 12.]
Where ωi (Al) is the weight of the lth feature A in the ith sample; Pj (j = 1, 2, …, k) is the jth sample of the k nearest neighbors of the same class as (Ri); P(C) is the proportion of samples belonging to category C in the training samples; P [class (Ri)) is the ratio of samples with the same type of Ri to the total sample; class (Ri) is the label category of Ri; Qj(C) (j = 1, 2, … , k) is the jth sample of k nearest neighbor samples of different classes with Ri (label category is C); and n is the number of cycles (Tian et al., 2022; Zhang et al., 2022).
The Kendall correlation coefficient τ evaluates the correlation between the features and categories. Let the feature set be represented as X = {x1, x2, …, xM}, and the corresponding category set as Y = {y1, y2, …, yM}. The combination of each feature sequence X and its corresponding category sequence Y is denoted as Z. The calculation formula is as Equation 13.
[image: The image contains mathematical formulas. The formula for tau is shown as the fraction \((C-D)\) over the square root of \((M_0 - M_1)(M_0 - M_2)\). The variables \(M_0\), \(M_1\), and \(M_2\) are defined as follows: \(M_0 = \text{[M(M-1)]}/2\); \(M_1 = \sum_{i=1}^{s_1} \frac{1}{2} U_i(U_i - 1)\); \(M_2 = \sum_{i=1}^{s_2} \frac{1}{2} V_i(V_i - 1)\). Equation number thirteen is noted beside the formulas.]
Where C and D denote the number of consistent element pairs and inconsistent element pairs in set Z, respectively; M represents the total number of samples; s1 and s2 denote the number of recurring element types in X and Y, respectively; and Ui and Vi denote the number of elements in the ith set composed of the same elements in X and Y.
The obtained correlation coefficient τ is calculated using Equation 14 to obtain the index weight ω2l:
[image: \( \omega_{l}^{2} = \frac{\left| \tau_{l} \right|}{\sigma \sum_{t=1}^{n} \left| \tau_{t} \right|} \) (Equation 14).]
Where τl is the correlation coefficient of the nth index; and o is the number of indexes.
3 INDICES AND DATA
3.1 Rockburst classification
The first step in predicting rockbursts is to classify their levels. Based on Chinese standards (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2015), rockbursts are categorized according to the degree of damage and acoustic deformation resulting from surrounding rock ruptures. The classifications were as follows: no rockburst (None, N), light rockburst (Light, L), moderate rockburst (Moderate, M), and strong rockburst (Strong, S).
3.2 Selection of prediction indices
Owing to the complex mechanism underlying rockburst, which involves multiple influencing factors, their causes can be classified into internal and external aspects. The internal causes refer to the lithological characteristics of the surrounding rock, whereas the external causes include factors such as the project’s burial depth, excavation size and shape, and construction methods. Although excavation parameters and methods can influence the rockburst occurrences, they are not essential prerequisites owing to the project variability. Engineering practices indicate that the rockburst typically occurs in the intact brittle surrounding rocks under high-ground stress conditions. The primary conditions for rockbursts are the lithology of the surrounding rock and stress conditions. The hard, brittle rock stores elastic strain energy, whereas high-stress environments supply sufficient energy. This study selected the prediction indices based on two aspects: the lithology of the surrounding rock (including strength, brittleness, and energy storage) and stress conditions. This study summarized the rockburst prediction indices based on machine learning from the literature. Table 1 presents the selected indices from various sources, and Figure 3 shows the frequency of use for each index.
TABLE 1 | Part of the rockburst prediction model based on machine learning.
[image: A table comparing different studies related to characteristic parameters and methods for analysis. It includes columns for reference, characteristic parameters, and method. Methods include AdaBoost, BP, SVM, V-SVR, FDA, BDA, and others, corresponding to studies from various years. Characteristic parameters involve variables such as elastic energy index and rock brittleness index. The table presents two sets of studies, one on the left and one on the right, each with its own references and methods. Detailed notes below explain the symbols and acronyms used.][image: Bar chart showing usage counts of various variables. Each bar represents a variable on the y-axis, with numbers on the bars indicating counts. Values range from 2 to 32, with the highest being 32 for the first variable.]FIGURE 3 | Number of times the rockburst prediction indices used.
As shown in Figure 3, the prediction indices include burial depth D, maximum tangential stress σθ, maximum principal stress σ1, uniaxial compressive strength σc, uniaxial tensile strength σt, stress concentration coefficient σθ/σc, strength-to-stress ratio σc/σ1, brittleness coefficients σc/σt and σc-σt/σc + σt, elastic energy index Wet, and surrounding rock integrity coefficient Kv. Among these, σ1, σc/σ1, Kv, σc-σt/σc + σt, and D are predicted to be used less frequently. In order to avoid the redundancy of specific indices, such as σθ and σ1 representing the ground stress levels, σθ/σc and σc/σ1 indicating the ratio of strength to stress, and σc/σt and σc-σt/σc + σt reflecting the rock brittleness, the indices with similar meanings were consolidated. Obtaining the integrity coefficient Kv can be challenging in practical engineering applications. Therefore, the following indices were selected as the predictive indicators for rockbursts, including maximum tangential stress σθ (MTS), uniaxial compressive strength σc (UCS), uniaxial tensile strength σt (UTS), stress concentration coefficient σθ/σc (SCF), brittleness coefficient σc/σt (B), elastic energy index (Wet), and burial depth (D).
3.3 Data sources and analysis
The data from typical rockburst engineering cases, both domestic and international, were collected through a literature investigation (Pu et al., 2019b; Xue et al., 2022). After excluding the missing and duplicate samples, a rockburst dataset comprising 342 samples was compiled. The scatter matrix for this dataset is shown in Figure 4. The dataset consisted of 50 samples with no rockburst (14.6%), 97 samples with light rockburst (28.4%), 122 samples with moderate rockburst (35.7%), and 73 samples with strong rockburst (21.3%). The statistical characteristics of the data are presented in Table 2. Based on the analysis of the median and mean values, it is evident that the MTS, SCF, and Wet exhibit a gradual increase corresponding to the escalation of rockburst grades. In contrast, the rest of the statistical indicators have noticeable change rules. Furthermore, the standard deviation and coefficient of variation indicate a higher degree of data dispersion. Although most machine-learning-based rockburst prediction studies exclude outliers, this study included the abnormal data in the rockburst database to account for the variability in actual rockburst projects for training and prediction purposes.
[image: Scatterplot matrix showing relationships between variables: MTS, UCS, UTS, SCF, B, Wa, and D. Each plot includes data points color-coded by rockburst levels: none, light, moderate, and strong. Diagonal elements display variable histograms.]FIGURE 4 | Scatter matrix diagram of rockburst prediction indices.
TABLE 2 | Statistical parameters of indices of rockburst data.
[image: Table showing rockburst levels (N, L, M, S) with statistical parameters (Max, Min, Mean, Med, Std, CV) and characteristic parameters (MTS/MPa, UCS/MPa, UTS/MPa, SCF, B, Wₑ, D/m). Data varies across levels, highlighting differences in strength and deformation metrics.]A single index criterion was employed to evaluate the accuracy of the original dataset, and the grading criteria and accuracy for the index are detailed in Table 3 (Kidybiński, 1981; Xu and Wang, 1999; Zhang et al., 2010). Table 3 demonstrates that the prediction accuracy of rockbursts using a single index was generally low, with the Wet criterion achieving the highest prediction accuracy at 52%.
TABLE 3 | Classification standard and accuracy of rockburst prediction indexs.
[image: Table showing rockburst levels related to various indices, including MTS, UCS, UTS, SCF, B, Wet, and D. Each index is categorized under rockburst levels: N, L, M, and S, with associated ranges. Accuracy percentages for each index are provided: MTS (43%), UCS (31%), UTS (24%), SCF (44%), B (19%), Wet (52%), and D (31%).]4 ESTABLISHMENT OF PREDICTION MODEL
4.1 Model feature selection
To determine the input indices for the model more effectively, this study implemented the ReliefF-Kendall model to identify the feature set for the input indices (Figure 5). The process involved the following steps.
	Step 1: The weights of the feature indexes relative to the rockburst level were calculated using the ReliefF algorithm and Kendall correlation coefficient.
	Step 2: These weights were averaged to obtain the combined weight.
	Step 3: A weight threshold was established to exclude the indices with weights below this threshold.
	Step 4: The Spearman correlation coefficient was applied to retain the indices with the highest correlation to the rockburst level.

[image: Flowchart outlining a process to determine an optimal feature index set. It begins with initializing and normalizing data, selecting samples, and calculating weights. It checks for sample and feature weight convergence, using Kendall and Spearman's correlation to adjust and sort weights. The goal is to finalize the optimal feature index set. Steps are color-coded: green for initial processes, red for conditional checks, and yellow for concluding actions.]FIGURE 5 | Feature selection flowchart.
The calculation parameters for the ReliefF algorithm included the number of nearest neighbor samples set to 10 with 50 datasets used in each iteration and the weighted mean calculated after 20 repetitions. The weights of the rockburst prediction indices are shown in Figure 6 in the following order: Wet (0.26) > MTS (0.18) > D (0.16) > SCF (0.15) > UCS (0.13) > UTS (0.10) > B (0.04). With a feature selection weight threshold of 0.10, the UTS and B indexes were excluded. Figure 7 presents the Spearman correlation coefficients for the prediction indices, which revealed a strong correlation between MTS and SCF, leading to the retention of the MTS index. Consequently, the final selected rockburst prediction indices were Wet, MTS, D, and UCS.
[image: Three-dimensional chart with cone-shaped data points representing weights across different methods: SCF, UTS, UCS, MTS, Average, ReliefF, and Kendall. The weights range from 0.00 to 0.30 on the vertical axis, with varied patterns and colors for each method.]FIGURE 6 | Weight of rockburst prediction indices.
[image: Correlation matrix showing relationships among five variables: MTS, UCS, SCF, Wet, and D. The color scale ranges from red to blue, indicating positive and negative correlations. High correlations are visible as red boxes, such as MTS with itself, showing a value of 1.]FIGURE 7 | Spearman correlation coefficient of rockburst prediction indices.
4.2 Data balancing and visualization
Most current machine learning-based rockburst prediction models effectively address the data category imbalance using the Synthetic Minority Over-sampling Technique (SMOTE). This method generates the additional samples for the minority categories through linear interpolation, often without considering the distribution characteristics between sample categories, which may result in category overlap. The adaptive synthetic sampling (Adasyn) algorithm designed to address the data imbalance adaptively can calculate the density distribution characteristics based on the “complexity” of each minority class sample. This information guides the synthesis of new samples and updates the class boundaries, gradually reducing the class imbalance. The core concept of Adasyn is to dynamically generate synthetic samples based on the distribution of samples within each category. For each minority class sample, the proportion of majority class samples among its nearest neighbours is first calculated (a higher proportion indicates more incredible difficulty in classifying the sample, leading to a more significant number of synthesized samples). New samples are then generated through linear interpolation between the minority class samples and their nearest neighbours. This study applied the Adasyn adaptive oversampling algorithm to expand the original dataset from 342 to 485 samples. The dataset consists of 121 samples of no, light, strong, and 122 moderate rockbursts. To better understand the rockburst data distribution, the t-SNE algorithm was employed for dimensionality reduction of the balanced dataset, as illustrated in Figure 8.
[image: Scatter plot showing data points categorized into four groups: N, L, M, and S. The x-axis represents "The first dimension" while the y-axis represents "The second dimension". Each group is represented by different symbols and colors.]FIGURE 8 | Data distribution after t-SNE dimensionality reduction.
4.3 Dataset partitioning and algorithm selection
This study established five rockburst prediction models using MATLAB 2021b, divided into two categories: conventional algorithms (SVM, LSSVM, and KELM) and ensemble algorithms (RF and XGBoost). To ensure the consistent model performance between the training and test sets, the balanced rockburst dataset was randomly divided into a training set comprising 340 samples and a test set comprising 145 samples, adhering to a 7:3 ratio. The proportion of samples in each category of the two data sets is consistent with the total data set.
4.4 Hyperparameter optimization
In order to improve the model’s generalization ability and performance while preventing overfitting, this study used a combination of the SBO algorithm and 5-fold cross-validation to identify the optimal model parameters. The training set was divided into five equal parts, with four parts used for training based on a specific combination of sampled parameters and the remaining part serving as the validation set. This process was repeated five times, ensuring that each data point was validated once. The parameters that achieved the highest prediction accuracy were selected as optimal. Table 4 lists the parameters and their respective ranges for optimization across different machine learning classification models. The basic parameters of the SBO algorithm were set as follows: population size set as 20; maximum number of iterations set as 100.
TABLE 4 | Optimized hyperparameters and corresponding sampling ranges required by different models.
[image: Table listing machine learning models with corresponding hyperparameters and their empirical scopes. Models include SVM, LSSVM, KELM, RF, and XGBoost. Hyperparameters such as \(c\), \(g\), \(C\), \(N_{\text{estimators}}\), \(Max_{\text{depth}}\), and others are shown with ranges, e.g., \(c\) and \(g\) for SVM are \([2^{-10}, 2^{10}]\). Note explains \(c\) as penalty coefficient, \(g\) as kernel function parameter, and \(C\) as regularization coefficient.]4.5 Model performance evaluation
To assess the generalization ability of the established classification prediction model, precision (PRE), recall (REC), and F1-score (F1) were used to evaluate local classification performance. Additionally, the accuracy (ACC) and Kappa coefficient were employed to assess the global classification performance. Table 5 includes the calculation formulas and significance of the performance evaluation metrics. The total number of samples in the test set is represented by Q, where NN, LL, MM, and SS denote the number of correctly predicted samples and the remaining values denote the number of incorrectly predicted samples. Figure 9 illustrates the rockburst level prediction process using the machine learning model established in this study.
TABLE 5 | The calculation formula and significance of performance evaluation metrics.
[image: Evaluation metrics table with columns for Metric, Equation, and Significance. Metrics include Accuracy, Kappa coefficient, Precision, Recall, and F1-score. Equations define each metric, while the Significance describes their roles, such as measuring correctness, reducing error, and calculating harmonic means. Equations involve various variables and mathematical operations. Notes at the bottom describe variable representations.][image: Flowchart depicting the process of predicting engineering rockburst. It consists of four main steps: 1) Identification framework, including predicting rockburst index. 2) Data pre-processing with feature selection and dataset balancing techniques. 3) Data partitioning into training (seventy percent) and test (thirty percent) sets. 4) Prediction model build using machine learning models, optimized with SBO algorithm and cross-validation. Metrics include accuracy, precision, recall, F1-score, and kappa. The optimal ensemble model is used for rockburst prediction.]FIGURE 9 | Flowchart of rockburst prediction based on the machine learning model.
5 MODEL CLASSIFICATION PERFORMANCE ANALYSIS
Table 6 displays the optimal hyperparameter combinations for the model, determined using the SBO algorithm and 5-fold cross-validation. Figure 10A presents the confusion matrix for the model predictions, with green, orange, and red indicating the precision, recall, and accuracy, respectively, for the different types of rockburst predictions. Figures 10B, C presents the comparison of the performance evaluation of the model. The prediction accuracies of the different models were ranked as follows: RF (82.8%) > LSSVM (82.1%) > SVM (81.4%) > KELM (80.7%) > XGBoost (67.3%). These results were notably higher than the 70.0% prediction accuracy reported by Li (2023). However, the poor prediction performance of the XGBoost model resulted in a significant difference in accuracy compared to RF, LSSVM, SVM, and KELM. The prediction accuracies of the five models that were not optimized using the SBO algorithm are shown in Table 7, from which it can be seen that the prediction accuracies were increased by 1.6%–4.0% after optimization using SBO, thus verifying the optimization effect of SBO.
TABLE 6 | Hyperparameter optimization results of different models based on the SBO algorithm.
[image: Table comparing different models with their hyperparameters, values, and accuracy percentages. SVM shows hyperparameters \( c = 40.59 \), \( g = 1.86 \) with 81.4% accuracy. LSSVM lists \( c = 54.97 \), \( g = 0.16 \) reaching 82.1% accuracy. KELM has \( C = 55.01 \), \( g = 1 \) with 80.7% accuracy. RF uses \( N\_estimators = 138 \), \( Max\_depth = 10 \), \( Min\_samples\_split = 3.43 \) achieving 82.8% accuracy. XGBoost includes \( N\_estimators = 29 \), \( Max\_depth = 12 \), \( Learning\_rate = 0.16 \), \( Subsample = 0.83 \) with 67.3% accuracy.][image: Five sub-images display different model evaluations.  Sub-image A features confusion matrices for four models: (a) SVM, (b) LSSVM, (c) KELM, and (d) RF, showing predicted vs. real labels with accuracy percentages.  Sub-image B and sub-image C are radar charts comparing models (SVM, LSSVM, KELM, RF, XGBoost).  Sub-image B compares precision (PRE), recall (REC), and F1 scores.  Sub-image C compares accuracy (ACC) and Kappa statistics.]FIGURE 10 | Comparison of performance evaluation indices of different models based on the SBO algorithm: (A) Best prediction confusion matrix diagram of different models; (B) Local evaluation; (C) Global evaluation.
TABLE 7 | Optimization results of different algorithms.
[image: Table comparing algorithm accuracies and changes. SBO-SVM has 81.4% accuracy, 2.1% increase. SBO-LSSVM shows 82.1%, 3.5% increase. SBO-KELM reaches 80.7%, 4.0% boost. SBO-RF displays 82.8%, 3.7% rise. SBO-XGBoost achieves 67.3%, 1.6% uplift.]Figures 10B, C demonstrates that the RF model excelled across all evaluation metrics. However, the performance accuracy of the RF, LSSVM, SVM, and KELM models was relatively similar, with the accuracy rates ranging from 80.9% to 84.0%, the recall rates from 80.7% to 82.7%, the F1 scores from 80.8% to 83.4%, and the Kappa values from 74.3% to 77.1%. The analysis of the F1 index indicated that the LSSVM achieved the highest prediction accuracy for mild and medium rockburst classifications, whereas RF was superior in predicting the strong rockburst, with an accuracy exceeding 80%. Account for the randomness in the model training and test data. Each model was trained ten times to reduce variability. Figure 11 illustrates the prediction accuracy of the test set across the various models.
[image: Graph A shows accuracy versus training frequency for five models: SVM, LSSVM, KELM, RF, and XGBoost. XGBoost consistently performs lower. Graph B displays mean accuracy in a bar chart: SVM (80.1%), LSSVM (79.6%), KELM (76.8%), RF (78.6%), and XGBoost (64.4%).]FIGURE 11 | Prediction accuracy of different models based on the SBO algorithm: (A) Prediction accuracy of each training test set; (B) Average accuracy.
Figure 11 shows that the prediction accuracy of the different models ranged from 60.5% to 82.8%. The average prediction accuracy was ranked as follows: SVM (80.1%) > LSSVM (79.6%) > RF (78.6%) > KELM (76.8%) > XGBoost (64.4%). Although the RF model achieved a slightly higher prediction accuracy than the SVM model, the SVM model exhibited superior classification stability. Additionally, the average computation time for the SVM model was 90.77 s less than that of the RF model, which took 262.21 s. Considering the models’ generalization performance, stability, and optimization time, the SVM was selected as the preferred rockburst prediction model.
In order to verify the possibility of the SBO algorithm, the PSO, MFO, DBO, SSA, WOA, and GridSearch (GS) algorithms were adopted to optimize the SVM with the same dataset. All the models were set to the maximum of 100 iterations, with the classification prediction error rate of the model test set as the optimization objective function. Figure 12 illustrates the optimization iteration process for the different algorithms, and Table 8 presents the optimization results. The analysis of Figure 12; Table 8 revealed that the SBO, WOA, and MFO algorithms achieved superior optimization effects on the prediction accuracy, with the accuracy rates reaching or exceeding 80%. Notably, the SBO and WOA algorithms avoided the local optima and achieved the global optima in the fifth and third generations. In contrast, the MFO algorithm encountered the local optima multiple times, reaching the global optimum only in the 35th generation. Moreover, the SBO algorithm demonstrated a slightly better optimization speed than the MFO algorithm. These results confirmed the feasibility of using the SBO algorithm for the parameter optimization in the SVM model.
[image: Line graph comparing the fitness values over iterations for different SVM algorithms: SBO-SVM, MFO-SVM, SSA-SVM, GS-SVM, PSO-SVM, DBO-SVM, and WOA-SVM. The x-axis represents iterations ranging from zero to one hundred. The y-axis shows fitness values from zero to 0.7. Each algorithm shows varying performance, with most converging towards lower fitness values over time.]FIGURE 12 | Fitness iterative curves.
TABLE 8 | Prediction results of different optimization algorithms based on the SVM model.
[image: Table comparing algorithms with columns for c, g, accuracy percentage, and optimization time in seconds. Algorithms listed include SBO-SVM, PSO-SVM, MFO-SVM, DBO-SVM, SSA-SVM, WAO-SVM, and GS-SVM. SBO-SVM has an accuracy of 81.4% with 50.34 seconds, while GS-SVM has 64.8% with 60.80 seconds.]The SHAP method was employed to prove the validity of the feature selection approach proposed in this study. This method assigns contributions based on the marginal impact of each feature on the overall model performance. Specifically, a member’s benefits were equal to the average marginal benefits provided by the group to which they belonged. One feature was removed from the original dataset, while the remaining six were retained for prediction. The prediction results for each reduced feature set were compared with those obtained using all the features. The difference between these outcomes reflected the marginal contribution of the removed features, with a larger difference indicating a more significant influence on the prediction results. All feature sets were denoted as FS, with the feature sets with the first to seventh indicators removed labeled FS1 through FS7, respectively. In order to minimize the variability, each feature set was trained 50 times, and the average prediction accuracy was calculated for analysis. The prediction accuracy of the model is shown in Figure 13.
[image: A 3D line chart depicts accuracy percentages over a series of trainings, showing different sets labeled FS1 to FS7. Each set displays a distinct color, with accuracy generally improving as the number of trainings increases from 0 to 50. The accuracy ranges from 40% to 100%.]FIGURE 13 | Prediction accuracy of different feature sets.
Table 9 lists the average prediction accuracy for different feature sets. The difference in accuracy between FS1 and FS7 and FS was denoted as Diff. A positive Diff indicated an improvement in the prediction accuracy after removing the feature index, suggesting that the index was a redundant disturbance variable in rockburst prediction. Conversely, a negative Diff indicated a decrease in the prediction accuracy after removing the feature index, implying that the index was a crucial correlating variable for rockburst prediction. Furthermore, the larger value of Diff signified the greater importance of the index for rockburst prediction. The analysis of Table 9 revealed the importance of rockburst prediction indicators in the following order: Wet, MTS, D, SCF, UCS, UTS, and B. Wet, MTS, D, and UCS were identified as the influential correlating variables, while SCF, UTS, and B were categorized as the redundant disturbance variables. This ranking of rockburst prediction indicators was consistent with the results obtained from the feature selection method established in this study.
TABLE 9 | Comparison of average prediction accuracy of different feature sets.
[image: Table showing mean accuracy percentages for different feature sets FS to FS7. FS has 66.14%, FS1 65.25%, FS2 65.72%, FS3 66.29%, FS4 66.81%, FS5 66.20%, FS6 63.51%, and FS7 65.33%. Differences from FS are noted as FS1: −1.89, FS2: −0.42, FS3: 0.15, FS4: 0.67, FS5: 0.06, FS6: −2.63, FS7: −0.81.]In order to verify the reliability of the Adasyn algorithm for data balancing, the comparative analysis was performed using three datasets: the original dataset (103 groups), the SMOTE-balanced dataset (146 groups), and the Adasyn-balanced dataset (145 groups), with the SBO-SVM model. Table 10 presents the prediction accuracy for each dataset. The analysis indicated that the Adasyn-based dataset achieved the highest prediction accuracy, surpassing the original and SMOTE-balanced datasets by 5.7% and 3.2%, respectively. Compared to the original dataset, Adasyn has improved the classification and prediction accuracy for the non-rockburst and slight rockburst categories.
TABLE 10 | Prediction accuracy of different datasets based on the SBO-SVM model.
[image: Comparison table showing dataset performance across three methods: Initial, Smote, and Adasyn. Each has columns for sample numbers and accuracy percentages for categories N, L, M, and S. Initial shows overall accuracy of 75.7%, Smote has 78.2%, and Adasyn 81.4%.]6 ENGINEERING VERIFICATION
In order to assess the applicability of the model, the optimized SBO-SVM model was used to predict the rockburst events in domestic projects, including the Jiangbian Hydropower Station. Table 11 presents the predicted indices and actual rockburst levels, and Figure 14 illustrates the rockburst prediction results. Figure 14 shows that the predicted grades for the 12th and 13th sample groups were lower than the actual grades, likely owing to issues with the reliability of the extracted characteristic index data. Despite this, the model achieved a prediction accuracy of 90%, demonstrating the feasibility of applying the SBO-SVM model for rockburst prediction.
TABLE 11 | Cases of rockburst engineering.
[image: Table listing various engineering cases with columns: Number, Engineering Cases, Mean Total Stress (MTS) in MPa, Unconfined Compressive Strength (UCS) in MPa, \(W_{et}\), Diameter in meters (D/m), and Real Rockburst Level. It includes data for sites like Sangzhuling Tunnel, Zhongnanshan Tunnel, and Zijin Gold Mine, with different levels of rockburst indicated as M, L, S, and N.][image: Bar chart showing rockburst levels, labeled as S, M, L, and N, against numbers one to twenty. Red bars represent real data and blue bars represent predictions. Both data sets largely overlap, indicating similar values.]FIGURE 14 | Comparison of prediction results of rockburst SBO-SVM model.
7 CONCLUSION
Rockburst is a dynamic disaster in underground engineering. If it can be reasonably and accurately predicted in advance, corresponding measures can be taken to reduce the risk of loss. In this study, a data-driven feature selection method and a meta-heuristic optimization algorithm are proposed and combined with five basic algorithms (SVM, LSSVM, KELM, RF and XGBoost) for underground engineering rockburst prediction. The rationality of the proposed method is verified by comparing it with other methods. The main conclusions are as follows:
	(1) Based on existing research and a literature review of rockburst influencing factors, the following indices were selected as predictors: maximum tangential stress (MTS), uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), stress concentration coefficient (SCF), brittleness coefficient (B), elastic energy index (Wet), and burial depth (D). These indices were selected considering the surrounding rock lithology and in situ stress. The feature selection using the ReliefF-Kendall model and correlation analysis yielded Wet, MTS, D, and UCS as the final feature set. The model can remove the redundant features of rockburst, identify the most significant features that affect rockburst, enhance the interpretability of the model, reduce the risk of over-fitting in model prediction, and make hyperparameter tuning more efficient. The rationality of the selected indicators was validated using the SHAP method.
	(2) 342 rockburst datasets were collected, balanced, and visualized using the Adasyn oversampling technique and the t-SNE algorithm. Five rockburst prediction models, SVM, LSSVM, KELM, RF, and XGBoost, were developed using the SBO algorithm and 5-fold cross-validation. The results indicated that RF achieved the highest prediction accuracy, with the RF, LSSVM, SVM, and KELM models exceeding 80% accuracy. However, only the SVM model achieved an average prediction accuracy exceeding 80%. Considering the prediction accuracy and stability, SVM was selected as the preferred rockburst prediction algorithm.
	(3) Compared to six other algorithms used to optimize the SVM model, the SBO-SVM model demonstrated superior prediction accuracy and optimization speed, indicating robust generalization capability. Predictions were made using the original SMOTE-processed and Adasyn-processed datasets to verify the reliability of the Adasyn algorithm for data balancing. The prediction accuracies of the Adasyn dataset were 5.7% and 3.2% higher than those of the original and SMOTE datasets, respectively. Furthermore, the comprehensive prediction accuracy for rockbursts using machine learning (75.7%) was significantly higher than that of single-index predictions (52.0%).
	(4) The established SBO-SVM model was applied to domestic rockburst projects, such as the Sangzhuling Tunnel, achieving a prediction accuracy of 90%. This result demonstrated the strong applicability of the model in engineering contexts.

DATA AVAILABILITY STATEMENT
Publicly available datasets were analyzed in this study. This data can be found here: https://doi.org/10.24425/AMS.2019.128683.
AUTHOR CONTRIBUTIONS
TY: Conceptualization, Methodology, Software, Writing–original draft, Writing–review and editing. XG: Conceptualization, Methodology, Resources, Writing–review and editing. LW: Funding acquisition, Project administration, Resources, Writing–review and editing. YX: Investigation, Writing–review and editing. HF: Methodology, Writing–review and editing. ZZ: Supervision, Writing–review and editing. JZ: Resources, Writing–review and editing. BD: Methodology, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was supported by the China Railway Construction Co Ltd 2019 Annual Science and Technology Major Project (Grant No. 2019-A05) and the Natural Science Foundation of Hebei (Grant No. E202310057). China Railway 18th Bureau Group Limited Science and Technology Development Project (Grant No. G21-13). The authors declare that this study received funding from China Railway Construction Co., Ltd. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Bai, Y., Deng, J., Dong, L., and Li, X. (2009). Fisher discriminant analysis model of rock burst prediction and its application in deep hard rock engineering. J. Cent. South Univ. Sci. Tech. 40 (5), 1417–1422. 
	 Chen, H., Li, N., Nie, D., and Shang, Y. (2002). A model for prediction of rockburst by artificial neural network. Chin. J. Geotech. Eng. 24 (2), 229–232. doi:10.3321/j.issn:1000-4548.2002.02.023
	 Deng, L.-C., Zhang, W., Deng, L., Shi, Y.-H., Zi, J.-J., He, X., et al. (2024). Forecasting and early warning of shield tunnelling-induced ground collapse in rock-soil interface mixed ground using multivariate data fusion and Catastrophe Theory. Eng. Geol. 335, 107548. doi:10.1016/j.enggeo.2024.107548
	 Dong, L.-j., Li, X.-b., and Kang, P. (2013). Prediction of rockburst classification using Random Forest. Trans. Nonferrous Met. Soc. China. 23 (2), 472–477. doi:10.1016/s1003-6326(13)62487-5
	 Esmatkhah Irani, A., Azadi, A., Nikbakht, M., Azarafza, M., Hajialilue Bonab, M., and Behrooz Sarand, F. (2022). GIS-Based settlement risk assessment and its effect on surface structures: a case study for the Tabriz Metro—line 1. Geotech. Geol. Eng. 40 (10), 5081–5102. doi:10.1007/s10706-022-02201-x
	 Fu, Y., Liu, D., Chen, J., and He, L. (2024). Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems. Artif. Intell. Rev. 57 (5), 123–102. doi:10.1007/s10462-024-10729-y
	 Gao, W. (2008). Non-linear dynamic model of rock burst based on evolutionary neural network. Int. J. Mod. Phys. B 22 (09n11), 1518–1523. doi:10.1142/s0217979208047018
	 Gao, W. (2015). Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm. Nat. Hazards. 76, 1625–1649. doi:10.1007/s11069-014-1561-1
	 Ge, Q., and Feng, X. (2008). Classification and prediction of rockburst using AdaBoost combination learning method. Rock Soil Mech. 29 (4), 943–948. doi:10.16285/j.rsm.2008.04.031
	 Gong, F., Li, X., and Zhang, W. (2010). Rockburst prediction of underground engineering based on Bayes discriminant analysis method. Rock Soil Mech. 31 (1), 370–377. doi:10.16285/j.rsm.2010.s1.018
	 Hu, X., Huang, L., Chen, J., Li, X., and Zhang, H. (2023). Rockburst prediction based on optimization of unascertained measure theory with normal cloud. Complex Intell. Syst. 9 (6), 7321–7336. doi:10.1007/s40747-023-01127-y
	 Jia, Y., Lu, Q., and Shang, Y. (2013). Rockburst prediction using particle swarm optimization algorithm and general regression neural network. Chin. J. Rock Mech. Eng. 32 (2), 343–348. doi:10.3969/j.issn.1000-6915.2013.02.016
	 Kamran, M., Chaudhry, W., Taiwo, B. O., Hosseini, S., and Rehman, H. (2024). Decision Intelligence-based predictive modelling of hard rock pillar stability using K-nearest neighbour coupled with grey wolf optimization algorithm. Processes 12 (4), 783. doi:10.3390/pr12040783
	 Kamran, M., Ullah, B., Ahmad, M., and Sabri, M. M. S. (2022). Application of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projects. Front. Public Health 10, 1023890. doi:10.3389/fpubh.2022.1023890
	 Kidega, R., Ondiaka, M. N., Maina, D., Jonah, K. A. T., and Kamran, M. (2022). Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms. Geomech. Eng. 30 (3), 259–272. doi:10.12989/gae.2022.30.3.259
	 Kidybiński, A. (1981). Bursting liability indices of coal. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18 (4), 295–304. doi:10.1016/0148-9062(81)91194-3
	 Lan, M., Liu, Z., and Feng, F. (2014). Attempt to study the applicability of the online sequential extreme learning machine to the rock burst forecast. J. Saf. Environ. 14 (2), 90–93. doi:10.13637/j.issn.1009-6094.2014.02.020
	 Li, D., Liu, Z., Armaghani, D. J., Xiao, P., and Zhou, J. (2022). Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. Sci. Rep. 12 (1), 1844. doi:10.1038/s41598-022-05594-0
	 Li, J. (2023). Research on mechanism and comprehensive prediction of rockburst regarding deep buried tunnel in tectonic active area. Changsha, China: Central south university. PhD thesis. doi:10.27661/d.cnki.gzhnu.2023.000465
	 Li, K., Wu, Y., Du, F., zhang, X., and Wang, Y. (2023a). Prediction of rockburst intensity grade based on convolutional neural network. Coal Geol. Expl. 51 (10), 94–103. doi:10.12363/issn.1001-1986.23.01.0018
	 Li, M., Li, K., and Qin, Q. (2023b). A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application. Tunn. Undergr. Space Technol. 134, 104978. doi:10.1016/j.tust.2022.104978
	 Li, M., Li, K., Qin, Q., Wu, S., Liu, Y., and Liu, B. (2021). Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction. Chin. J. Rock Mech. Eng. 40, 2806–2816. doi:10.13722/j.cnki.jrme.2020.1088
	 Li, N., Feng, X., and Jimenez, R. (2017). Predicting rock burst hazard with incomplete data using Bayesian networks. Tunn. Undergr. Space Technol. 61, 61–70. doi:10.1016/j.tust.2016.09.010
	 Li, N., and Jimenez, R. (2018). A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards. 90, 197–215. doi:10.1007/s11069-017-3044-7
	 Liang, W., Sari, A., Zhao, G., McKinnon, S. D., and Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods. Nat. Hazards. 104, 1923–1946. doi:10.1007/s11069-020-04255-7
	 Liu, D., Dai, Q., Zuo, J., Shang, Q., Chen, G., and Guo, Y. (2022). Research on rockburst grade prediction based on stacking integrated algorithm. Chin. J. Rock Mech. Eng. 41 (S1), 2915–2926. doi:10.13722/j.cnki.jrme.2021.0831
	 Liu, L., Zhang, S., Wang, X., and Hao, Z. (2015). Application of target approaching with variable weight in prediction of rockburst intensity. Explos. Shock Waves 35 (1), 43–50. doi:10.13722/j.cnki.jrme.2021.0831
	 Liu, Z., Zheng, B., Liu, J., and Lan, M. (2019). Rockburst prediction with GA-ELM model for deep mining of metal mines. Min. Metall. Eng. 39 (3), 1–4. doi:10.3969/j.issn.0253-6099.2019.03.001
	 Ma, K., Peng, Y., Liao, Z., and Wang, Z. (2024). Dynamic responses and failure characteristics of the tunnel caused by rockburst: an entire process modelling from incubation to occurrence phases. Comput. Geosci. 171, 106340. doi:10.1016/j.compgeo.2024.106340
	 Ministry of Housing and Urban-Rural Development of the People's Republic of China (2015). GB/T 50218-2014 Standard for engineering classification of rock mass. Beijing: China Planning Publishing House. 
	 Pu, Y., Apel, D. B., and Lingga, B. (2018a). Rockburst prediction in kimberlite using decision tree with incomplete data. J. Sustain. Min. 17 (3), 158–165. doi:10.1016/j.jsm.2018.07.004
	 Pu, Y., Apel, D. B., Pourrahimian, Y., and Chen, J. (2019a). Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks. Arch. Min. Sci. 64 (2), 279–296. doi:10.24425/AMS.2019.128683
	 Pu, Y., Apel, D. B., Wang, C., and Wilson, B. (2018b). Evaluation of burst liability in kimberlite using support vector machine. Acta geophys. 66, 973–982. doi:10.1007/s11600-018-0178-2
	 Pu, Y., Apel, D. B., and Xu, H. (2019b). Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier. Tunn. Undergr. Space Technol. 90, 12–18. doi:10.1016/j.tust.2019.04.019
	 Qiu, D. H., Li, S. C., and Zhang, L. W. (2013). Study on rockburst intensity prediction based on efficacy coefficient method. Appl. Mech. Mater. 353, 1277–1280. doi:10.4028/www.scientific.net/amm.353-356.1277
	 Qiu, Y., and Zhou, J. (2023a). Short-term rockburst damage assessment in burst-prone mines: an explainable XGBOOST hybrid model with SCSO algorithm. Rock Mech. Rock Eng. 56 (12), 8745–8770. doi:10.1007/s00603-023-03522-w
	 Qiu, Y., and Zhou, J. (2023b). Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotech. 18 (12), 6655–6685. doi:10.1007/s11440-023-01988-0
	 Qiu, Y., and Zhou, J. (2024). Novel rockburst prediction criterion with enhanced explainability employing CatBoost and nature-inspired metaheuristic technique. Underg. Space. 19, 101–118. doi:10.1016/j.undsp.2024.03.003
	 Qu, H., Yang, L., Zhu, J., Chen, S., Li, B., and Li, B. (2022). A multi-index evaluation method for rockburst proneness of deep underground rock openings with attribute recognition model and its application. Int. J. Rock Mech. Min. Sci. 159, 105225. doi:10.1016/j.ijrmms.2022.105225
	 Shao, L., and Zhou, Y. (2018). MIV-MA-KELM model based prediction of rockburst intensity grade. China Saf. Sci. J. 28 (2), 34–39. doi:10.16265/j.cnki.issn1003-3033.2018.02.006
	 Sun, J., Wang, W., and Xie, L. (2024a). Predicting Short-Term rockburst using RF-CRITIC and improved cloud model. Nat. Resour. Res. 33 (1), 471–494. doi:10.1007/s11053-023-10275-4
	 Sun, J., Wang, W., and Xie, L. (2024b). Predicting short-term rockburst intensity using a weighted probability stacking model with optimal feature selection and Bayesian hidden layer. Tunn. Undergr. Space Technol. 153, 106021. doi:10.1016/j.tust.2024.106021
	 Tan, W., Hu, N., Ye, Y., Wu, M., Huang, Z., and Wang, X. (2022). Rockburst intensity classification prediction based on four ensemble learning. Chin. J. Rock Mech. Eng. 41, 3250–3259. doi:10.13722/j.cnki.jrme.2022.0026
	 Tan, W., Ye, Y., Hu, N., Wu, M., and Huang, Z. (2021). Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm. Chin. J. Rock Mech. Eng. 40 (6), 1186–1194. doi:10.13722/j.cnki.jrme.2020.1035
	 Tang, Z., and Xu, Q. (2020). Rockburst prediction based on nine machine learning algorithms. Chin. J. Rock Mech. Eng. 39 (4), 773–781. doi:10.13722/j.cnki.jrme.2019.0686
	 Tian, R., Meng, H., Chen, S., Wang, C., and Zhang, F. (2020). Prediction of intensity classification of rockburst based on deepneural network. J. China Coal Soc. 45 (S1), 191–201. doi:10.13225/j.cnki.jccs.2019.1763
	 Tian, Y., Zhang, J., Chen, Q., and Liu, Z. (2022). A novel selective ensemble learning method for smartphone sensor-based human activity recognition based on hybrid diversity enhancement and improved binary glowworm swarm optimization. IEEE Access 10, 125027–125041. doi:10.1109/access.2022.3225652
	 Wang, C., Wu, A., Lu, H., Bao, T., and Liu, X. (2015). Predicting rockburst tendency based on fuzzy matter–element model. J. Rock Mech. Min. Sci. 75, 224–232. doi:10.1016/j.ijrmms.2015.02.004
	 Wang, M., Liu, Q., Wang, X., Shen, F., and Jin, J. (2020). Prediction of rockburst based on multidimensional connection cloud model and set pair analysis. Int. J. Geomech. 20 (1), 04019147. doi:10.1061/(asce)gm.1943-5622.0001546
	 Wang, R., Chen, S., Li, X., Tian, G., and Zhao, T. (2023). AdaBoost-driven multi-parameter real-time warning of rock burst risk in coal mines. Eng. Appl. Artif. Intell. 125, 106591. doi:10.1016/j.engappai.2023.106591
	 Wang, X., Li, S., Xu, Z., Xue, Y., Hu, J., Li, Z., et al. (2019). An interval fuzzy comprehensive assessment method for rock burst in underground caverns and its engineering application. Bull. Eng. Geol. Environ. 78, 5161–5176. doi:10.1007/s10064-018-01453-3
	 Wei, M., Wang, E., and Liu, X. (2020). Assessment of gas emission hazard associated with rockburst in coal containing methane. Process Saf. Environ. Prot. 135, 257–264. doi:10.1016/j.psep.2020.01.017
	 Wu, S., Wu, Z., and Zhang, C. (2019a). Rock burst prediction probability model based on case analysis. Tunn. Undergr. Space Technol. 93, 103069. doi:10.1016/j.tust.2019.103069
	 Wu, S., Zhang, C., and Cheng, Z. (2019b). Prediction of intensity classification of rockburst based on PCA-PNN principle. J. China Coal Soc. 44 (9), 2767–2776. doi:10.13225/j.cnki.jccs.2018.1519
	 Xia, Z., Mao, J., and He, Y. (2022). Rockburst intensity prediction in underground buildings based on improved spectral clustering algorithm. Front. Earth Sci. 10, 948626. doi:10.3389/feart.2022.948626
	 Xie, C., Nguyen, H., Bui, X.-N., Nguyen, V.-T., and Zhou, J. (2021). Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms. J. Rock Mech. Geotech. Eng. 13 (6), 1452–1465. doi:10.1016/j.jrmge.2021.07.005
	 Xie, X., Li, D., Kong, L., Ye, Y., and Gao, S. (2020). Rockburst propensity prediction model based on CRITIC-XGB algorithm. Chin. J. Rock Mech. Eng. 39 (10), 1975–1982. doi:10.13722/j.cnki.jrme.2019.1049
	 Xing, W., Wang, H., Fan, J., Wang, W., and Yu, X. (2024). Rockburst risk assessment model based on improved catastrophe progression method and its application. Stoch. Environ. Res. Risk Assess. 38 (3), 981–992. doi:10.1007/s00477-023-02609-8
	 Xu, C., Liu, X., Wang, E., Zheng, Y., and Wang, S. (2018a). Rockburst prediction and classification based on the ideal-point method of information theory. Tunn. Undergr. Space Technol. 81, 382–390. doi:10.1016/j.tust.2018.07.014
	 Xu, F., and Xu, W. (2010). Projection pursuit model based on particle swarm optimization for rock burst prediction. Chin. J. Geotech. Eng. 32 (5), 718–723. 
	 Xu, G., Li, K., Li, M., Qin, Q., and Yue, R. (2022). Rockburst intensity level prediction method based on FA-SSA-PNN model. Energies 15 (14), 5016. doi:10.3390/en15145016
	 Xu, J., Chen, J., Liu, C., Wang, J., Long, G., and Li, C. (2018b). Application research of DHNN model in prediction of classification of rockburst intensity. Ind. Mine Autom. 44 (1), 84–88. doi:10.13272/j.issn.1671-251x.2017050027
	 Xu, L., and Wang, L. (1999). Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road. Chin. J. Geotech. Eng. (5), 569–572. doi:10.3321/j.issn:1000-4548.1999.05.009
	 Xue, Y., Li, G., Li, Z., Wang, P., Gong, H., and Kong, F. (2022). Intelligent prediction of rockburst based on Copula-MC oversampling architecture. Bull. Eng. Geol. Environt. 81 (5), 209. doi:10.1007/s10064-022-02659-2
	 Xue, Y., Li, Z., Li, S., Qiu, D., Tao, Y., Wang, L., et al. (2019). Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation. Bull. Eng. Geol. Environ. 78, 417–429. doi:10.1007/s10064-017-1117-1
	 Yang, T. (2024). Recognition and prediction of precursory feature signals of coal mine rock burst based on random forest and MK trend test. Front. Comput. Intell. Syst. 8 (3), 1–5. doi:10.54097/5xwgxa77
	 Yuan, H., Ji, S., Liu, G., Xiong, L., Li, H., Cao, Z., et al. (2023). Investigation on intelligent early warning of rock burst disasters using the PCA-PSO-ELM model. Appl. Sci. 13 (15), 8796. doi:10.3390/app13158796
	 Zhang, F., Zhang, L., Liu, Z., Meng, F., Wang, X., Wen, J., et al. (2024). An improved dempster–shafer evidence theory based on the Chebyshev distance and its application in rock burst prewarnings. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 10 (1), 04023055. doi:10.1061/ajrua6.rueng-1201
	 Zhang, L., Zhang, D., Li, S., and Qiu, D. (2012). Application of RBF neural network to rockburst prediction based on rough set theory. Rock Soil Mech. 33 (S1), 270–276. doi:10.16285/j.rsm.2012.s1.008
	 Zhang, L., Zhang, D., and Qiu, D. (2010). Application of extension evaluation method in rockburst prediction based on rough set theory. J. China Coal Soc. 35 (9), 1461–1465. doi:10.13225/j.cnki.jccs.2010.09.031
	 Zhang, L., Zhang, X., Wu, J., Zhao, D., and Fu, H. (2020). Rockburst prediction model based on comprehensive weight and extension methods and its engineering application. Bull. Eng. Geol. Environ. 79, 4891–4903. doi:10.1007/s10064-020-01861-4
	 Zhang, Q., Zheng, T., Yuan, L., Li, X., Li, W., and Wang, X. (2024). A semi-Naïve Bayesian rock burst intensity prediction model based on average one-dependent estimator and incremental learning. Tunn. Undergr. Space Technol. 146, 105666. doi:10.1016/j.tust.2024.105666
	 Zhang, S., Mu, C., Feng, X., Ma, K., Guo, X., and Zhang, X. (2024). Intelligent dynamic warning method of rockburst risk and level based on recurrent neural network. Rock Mech. Rock Eng. 57 (5), 3509–3529. doi:10.1007/s00603-023-03715-3
	 Zhang, W., Lu, H., Zhang, Y., Li, Z., Wang, Y., Zhou, J., et al. (2022). A fault diagnosis scheme for gearbox based on improved entropy and optimized regularized extreme learning machine. Mathematics 10 (23), 4585. doi:10.3390/math10234585
	 Zhang, Y., Zhang, M., Li, J., and Chen, G. (2023). Rockburst intensity grade prediction model based on batch gradient descent and multi-scale residual deep neural network. Comput. Syst. Sci. Eng. 47 (2), 1987–2006. doi:10.32604/csse.2023.040381
	 Zhao, G., Liu, L., Wang, J., Liu, H., Zhao, J., and Fan, Z. (2019). PCA-OPF model for rock burst prediction. Min. Metall. Eng. 39 (4), 1–5. doi:10.3969/j.issn.0253-6099.2019.04.001
	 Zhao, H. (2005). Classification of rockburst using support vector machine. Rock Soil Mech. 26 (4), 642–644. doi:10.16285/j.rsm.2005.04.029
	 Zhou, J., Guo, H., Koopialipoor, M., Jahed Armaghani, D., and Tahir, M. (2021). Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 37, 1679–1694. doi:10.1007/s00366-019-00908-9
	 Zhou, J., Li, X., and Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 50 (4), 629–644. doi:10.1016/j.ssci.2011.08.065
	 Zhu, Y., Liu, X., and Zhou, J. (2008). Rockburst prediction analysis based on v-SVR algorithm. J. China Coal Soc. 33 (3), 277–281. doi:10.3321/j.issn:0253-9993.2008.03.009

Conflict of interest: Authors YX and JZ were employed by China Railway 18th Bureau Group Corporation Limited.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Yang, Gao, Wang, Xue, Fan, Zhu, Zhao and Dong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 17 January 2025
doi: 10.3389/feart.2024.1522279


[image: image2]
Envelope and intelligent prediction of horizontal bearing capacity for offshore wind monopiles in sandy seabed under HM combined loading
Xin-Yu You1, Shi-Yi Qian2, Bin Li2, Jun Wang3 and Ling-Yu Xu2*
1Nanjing Urban Construction Tunnel and Bridge Intelligent Management Co., Ltd., Nanjing, China
2Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing, China
3School of Civil Engineering, Nanjing Tech University, Nanjing, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Zhen-Chao Teng, Northeast Petroleum University, China
Govardhan Bhatt, National Institute of Technology Raipur, India
Cunbao Zhao, Shijiazhuang Tiedao University, China
* Correspondence: Ling-Yu Xu, xulingyu2008@126.com
Received: 04 November 2024
Accepted: 27 December 2024
Published: 17 January 2025
Citation: You X-Y, Qian S-Y, Li B, Wang J and Xu L-Y (2025) Envelope and intelligent prediction of horizontal bearing capacity for offshore wind monopiles in sandy seabed under HM combined loading. Front. Earth Sci. 12:1522279. doi: 10.3389/feart.2024.1522279

This study presents a practical finite element model for evaluating laterally loaded monopiles embedded in sandy seabed, verified through comparison with field test data from the PISA project. The classical Mohr-Coulomb model, used for soil plasticity in this study, provides reliable predictions and required parameters that are straightforward to determine, enhancing its utility in engineering practice. The numerical model, combines with an artificial neural network (ANN), provides a feasible approach to predict the bearing capacity of monopiles in offshore wind applications, even under different seabed conditions and combined horizontal (H) and moment (M) loads. Results reveal that the horizontal bearing capacity significantly varies depending on slope direction, with increased capacity in the slope upward direction and decreased capacity in the slope downward direction. An elliptical equation is developed to represent the horizontal bearing capacity envelope in the HM plane, accurately predicting ultimate horizontal force (Hu) and bending moment (Mu) across different length-to-diameter (L/D) ratios and seabed slopes. To further enhance predictive capability, an ANN surrogate model is developed, trained on 288 scenarios. Using L/D ratio, seabed slope, horizontal displacement and rotation angle at the monopile head as inputs, the ANN successfully predicts the horizontal bearing capacity with error margins within ±10%. This research offers a practical, validated finite element and ANN-based approach for modeling and predicting the lateral bearing capacities of monopiles in complex offshore environments, making it a valuable tool for the construction and measurement of offshore wind turbine foundations under HM loading conditions.
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1 INTRODUCTION
In the fields of geotechnical and offshore engineering, monopiles are favored for their advantages, including simple installation, cost-effectiveness, stability, and high strength and stiffness. These qualities make them particularly effective in withstanding horizontal loads (Xu et al., 2013; Xu et al., 2017a; Xu et al., 2017b). However, in complex offshore environments, under the excitation of wind and earthquake, monopiles are often subjected to combined loads, among which the most common is the combined action of horizontal force H and bending moment M (Raj et al., 2019; Xu et al., 2023a; Xu et al., 2023b; Xu et al., 2023c). The horizontal bearing capacity of monopiles refers to the boundary curve that represents the relation of the maximum lateral loads and bending moments that the monopile can withstand under certain conditions. This boundary reflects the safe bearing limit that a pile foundation can achieve when subjected to horizontal forces. Studying the horizontal bearing capacity envelope of monopile foundations for wind turbines is of great significance. By plotting the envelope, the safe bearing range of the pile under various working conditions can be clearly defined, providing scientific guidance for the design of wind turbine tower foundations.
Rigid piles are widely used for offshore winds. In recent years, scholars in this field have conducted many valuable studies on the horizontal bearing capacity of monopiles. Sawant and Shukla (2012) developed a procedure for evaluating the response of piles to horizontal forces in inclined sites based on the analysis of 3D finite element software. Keawsawasvong and Ukritchon (2020) used finite element method to perform three-dimensional analysis and conducted a comprehensive study and discussion on the effect on cover stress on the bearing capacity of monopiles under undrained conditions under the combined action of lateral load and bending moment load. Shao et al. (2024) discussed the failure envelope of offshore rigid monopiles in undrained clay under lateral and moment loads. Many scholars have also studied the failure envelope of monopiles under the combined action of horizontal force (H), vertical force(V) and bending moment(M). Graine et al. (2021) developed a generalized failure criterion monopiles installed in cohesive soil under combined H-M-V load. Li et al. (2014) conducted numerical simulations using radial displacement method and sliding tests, determined the envelope of failure under H-M-V action, and presented analytical equations that were consistent with the 3D analysis results, which can be used to design and simplify finite element models. Zhao et al. (2024) studied monopile body parameters, load parameters and horizontal bearing capacity of rigid pile groups under the combined action of H-M-V load. For the horizontal bearing capacity of monopiles on slopes. Muthukkumaran (2014) conducted extensive indoor model tests to investigate the effects of slope and load direction on the horizontal bearing capacity and p-y curve of monopiles in non-cohesive soil (Muthukkumaran and Almas Begum, 2015). Jiang et al. (2020) conducted an analysis of the monopiles on non-cohesive soil slopes under composite of loads and derived the balance equation of the pile-soil system based on the moment balance theory Lin et al. (2022) put forward a method to calculate the nonlinear lateral response of monopiles in the sandy seabed under slope effects. From the above research, it can be seen that significant progress has been made in studying the horizontal bearing capacity and bearing capacity envelopes of rigid piles. However, according to present situation, most of these studies focused on the impact of flat ground or slope effects on the lateral response of monopiles, while there are relatively few studies on the influence of micro-inclination in sandy seabed on the horizontal bearing capacity envelope of monopiles.
With the growing maturity of machine learning and AI algorithms, their application in geotechnical engineering is also expanding. In recent years, AI algorithms have rapidly developed in the prediction of pile bearing capacity. Das and Basudhar (2006) applied an ANN model to predict the horizontal bearing capacity of monopiles in clay. Muduli et al. (2013) compared the applicability of different AI algorithms in predicting the horizontal bearing capacity of monopiles in clay. Benbouras et al. (2021) demonstrated the effectiveness of deep neural networks in predicting the bearing capacity of driven monopiles. Wang and Heo (2022) studied artificial neural networks (ANNs) using a comprehensive database and found their applicability for alternative modeling. They developed a multilevel neural network with multiple output variables to accurately capture the lateral displacement and moment responses of offshore wind turbine monopiles under different hazardous conditions such as earthquakes, wind, and waves. Taherkhani et al. (2023) established a surrogate model based on a hybrid neural network for predicting the horizontal bearing capacity of monopiles in sandy soil. It can be seen that AI algorithms have broad prospects, but their training requires a large amount of data. This paper will further extend the application of AI algorithms to predict the horizontal bearing capacity of monopiles in the slightly inclined sandy seabed.
In this study, a practical finite element model for a laterally loaded monopile in sand is proposed, requiring fewer input parameters while maintaining accuracy. The soil is modeled using the Mohr-Coulomb constitutive model, which allows for easy determination of soil parameters. The numerical model is validated using field test results from the Pile Soil Analysis (PISA) project, confirming its applicability for monopiles at different embedment depths. The effect of seabed slope angle and length-to-diameter ratio on the load-displacement curve, equivalent plastic strain around the pile, and bearing capacity envelope is analyzed. Finally, an artificial neural network (ANN)-based surrogate model is developed to predict the ultimate horizontal load and bending moment of monopiles. The surrogate model is trained and validated using 288 cases. For small datasets like this, ANNs can automatically identify and learn key features in the data and construct reliable predictive models. This significantly reduces workload and saves time in marine geotechnical engineering.
2 FINITE ELEMENT MODEL
In this study, the finite element model is developed based on the field test in the Pile–Soil Analysis (PISA) project. Figure 1A presents a schematic diagram of the monopile model under horizontal loading from the PISA project (Zdravković et al., 2020). The PISA project focused on the evaluation and improvement of monopile foundations for offshore wind turbines by developing advanced methods to predict pile-soil interactions under lateral load. The project is primarily divided into three components: 1) Conducting field tests on a scaled-down monopile, 2) Developing a novel design method for single piles, and 3) Creating a three-dimensional finite element model to simulate the behavior of each monopile configuration. The monopile is a hollow steel pipe pile, and its geometric properties are shown in Table 1. Since this study uses a symmetric model, the load applied at the top of the monopile is half of the total load. Numerical simulations were conducted on monopiles subjected to horizontal loading in sandy soil, with three working conditions in total, where the length-to-diameter ratios (L/D) vary across different conditions (see Table 1).
[image: Two graphics depict rectangular prisms with different orientations. The first, labeled (a), features an orange prism with a vertical rod, labeled with dimensions, positioned at one end. The second, labeled (b), shows a blue prism with a similar rod placed centrally along its length.]FIGURE 1 | Finite element model for laterally loaded piles: (A) Configuration of the test and (B) Typical finite-element mesh for L/D = 8.
TABLE 1 | Geometric characteristics of piles.
[image: Table showing three cases of monopile specifications. Each case involves a monopile with a diameter (D) of 0.762 meters and load eccentricity (e) of 10 meters, yielding an e/D of 13.2. Case 1 has an embedded length (L) of 6.1 meters, L/D of 8.0, thickness (t) of 25 millimeters, and D/t of 30.0. Case 2 has an L of 4.0 meters, L/D of 5.25, t of 14 millimeters, and D/t of 54.0. Case 3 has an L of 2.3 meters, L/D of 3.0, t of 10 millimeters, and D/t of 76.0. Note clarifies parameters.]Figure 1B shows the 3D finite element model of pile-soil interaction created using Abaqus software (Dassault Systèmes, 2014), with the monopile and soil modeled using C3D8 elements. The monopile is assumed to be a purely elastic material, the pile and soil are in frictional contact, and the elastic-plastic behavior of the sand is described by the modified Mohr-Coulomb model. The lateral boundary is horizontally constrained, while the bottom boundary is fixed. The upper boundary is entirely free, and the displacement loading is applied to the monopile at a height of 10 m above the ground. As reported by Xu et al. (2023b), Xu et al. (2023c), the mesh size around the monopile was refined to 0.1 times its diameter. Furthermore, when the finite element mesh size was halved and the simulation was repeated, the results deviated by less than 3% from those of the original model, confirming that the mesh size adopted in this study ensures adequate calculation accuracy.
The input parameters of monopiles and soil are shown in Table 2. According to the triaxial compression experiment of sand, the friction angle (φ) is 40°, and the shear expansion angle ([image: The Greek letter psi, written in lowercase, often used in mathematics and physics.]) is estimated according to the formula [image: The equation shows the mathematical expression: psi equals phi minus thirty degrees.] (Tatsuoka, 1993). Young’s modulus (E) is derived from Equations 1, 2.
[image: The text shows the equation: \( E = 2(1 + \nu)G_0 \), labeled as equation (1), where \( E \) is a variable, \( \nu \) is another variable, and \( G_0 \) is a constant or variable.]
where [image: Please upload the image or provide a URL, and I can help you create the alt text for it.] is Poisson’s ratio and [image: Mathematical expression with an uppercase G followed by a subscript zero, written in a serif font style.] is the shear modulus (Hardin and Black, 1968)
[image: Equation showing \( G_0 = \frac{B p_{\text{ref}}}{0.3 + 0.7 e^2} \sqrt{\frac{p'}{p_{\text{ref}}}} \). Marked as equation 2.]
where B is the model parameter.
TABLE 2 | Parameters of the pile–soil system.
[image: Table comparing properties of sand and monopile models. For sand: unit weight 18 kN/m³, Poisson ratio 0.3, friction angle 40°, dilation angle 10°, cohesive force 3 kPa, model parameter 600, reference stress 101.3 kPa, void ratio 0.91. For monopile: unit weight 78.5 kN/m³, Young’s modulus \(2 \times 10^8\) kPa, Poisson ratio 0.3. Young’s modulus for sand refers to an external equation. Friction angle, dilation angle, and cohesive force are not applicable to monopile.]Figure 2 compares the simulated the horizontal force (H) -ground-level horizontal displacement (y0) curves with the measured data from the PISA project. Analysis shows that under the condition of different L/D, simulation curves are in good agreement with the experimental results. Taborda et al. (2020) used an advanced constitutive model based on sand state to simulate the load-displacement curves of monopiles at different embedment depths. Figure 2 also compares the simulation results with those of Taborda et al. (2020), showing that the difference between the simulations and those predicted by Taborda et al. (2020) was minimal for L/D = 8 and L/D = 5.25. However, for L/D = 3, the simulation results in this study were closer to the experimental data than those of Taborda et al. (2020). This indicates that the 3D finite element model established in this study has sufficient accuracy to evaluate the effects of different pile embedment lengths. Furthermore, this study utilizes a finite element model based on the Mohr-Coulomb constitutive model, which simplifies the acquisition of soil parameters and offers greater benefits for practical engineering applications. As a result, the model is referred to as a practical finite element model.
[image: Three graphs labeled (a), (b), and (c) show horizontal force versus ground-level horizontal displacement for different studies. Each graph compares data from "Field data," "This study," and "Taborda et al. (2020)" with a focus on a 0.1D marker. Graph (a) reaches about 700 kN, (b) about 300 kN, and (c) about 500 kN. Each graph highlights differences in force-displacement behavior among the studies.]FIGURE 2 | Comparison of horizonal force-displacement curves of monopile measured and simulated by finite element method (A) L/D = 8; (B) L/D = 5.25; and (C) L/D = 3.
3 DISCUSSIONS ON VARIOUS INFLUENTIAL FACTORS
This section explores the influence of L/D and seabed slope angle (α) on the H-y0 curve of OWT monopiles, equivalent plastic strain around the pile, and the bearing capacity envelope. In this study, the L/D of monopiles was taken as 3, 5.25, and 8, as designed from the PISA project. The seabed was assumed to have a slight incline, with slope angles of 5° and 10°. The seabed slope angle was altered based on the flat seabed in the test of the PISA project. Figures 3A, B show the finite element mesh for α = 5° and α = 10°, respectively.
[image: Two 3D models show a rectangular block with grid lines. Model (a) is a uniform shape, while model (b) has a concave deformation on top. Both include a vertical rod in the center. Dimensions are labeled as forty meters long, eight meters wide, and eight meters high.]FIGURE 3 | Finite element mesh with different slope angles: (A) 5° and (B) 10° (L/D = 8).
3.1 Effect of slope angle (α) of the seabed
The change in slope angle also impacts the bearing capacity of the monopile, which is analyzed in this study. Figure 4 shows the effect of α on the H-y0 relationship. In the slope downward direction. Note that only H was applied at the mudline in Figure 4. The ultimate horizonal force (Hu) decreased as the slope angle increased, primarily because of the reduction in effective stress in the soil downstream of the monopile as the slope angle increases, where Hu was defined when the monopile’s horizontal displacement at the mudline reaches 0.1D. When α rose from 0° to 5° and 10°, the Hu of the monopile decreased by1% and 6%, respectively. However, in the slope upward direction, the horizontal bearing capacity increased with increasing slope angle. When α increased from 0° to 5° and 10°, the horizontal bearing capacity increased by 17% and 35%, respectively. This demonstrates that the slope angle had a greater impact on the horizontal bearing capacity in the slope upward direction compared to the slope downward direction.
[image: Two line graphs labeled (a) and (b) show the relationship between horizontal force in kilonewtons and ground-level horizontal displacement in millimeters. Both graphs feature multiple curves for varying angles: alpha equals zero degrees, alpha equals five degrees, and alpha equals ten degrees. In graph (a), L divided by D equals eight point zero, and in graph (b), L divided by B equals eight greater than zero. Both show an increasing trend in force with displacement, with curves becoming steeper at higher angles.]FIGURE 4 | Effect of slope angle on the H-y0 curve of monopiles: (A) slope downward direction; (B) slope upward direction (L/D = 8).
To provide a more intuitive comparison of the effects of slope angles, Figure 5 illustrates the effect of slope angle on the equivalent plastic strain around the monopile when the horizontal displacement of monopile at the mudline is 0.1D. Overall, the equivalent plastic strain (εp) was localized primarily in the shallow layers of the seabed. Noticeable εp also occurred at the monopile tip, mainly due to the monopile rotation under lateral loading. Additionally, in the slope downward direction, the slope angle had little effect on the distribution of the εp around the monopile. However, in the slope upward direction, the distribution of εp around the monopile decreased as α increased.
[image: Simulation results show the propagation of perturbations in both downward and upward slope directions at angles zero degrees, five degrees, and ten degrees. The diagrams use color gradients to visualize perturbation intensity, with a legend indicating magnitude levels. Arrows demonstrate flow direction.]FIGURE 5 | Effect of slope angle on the equivalent plastic strain surrounding the monopiles at the slope downward and slope upward directions (L/D = 8).
3.2 Effect of L/D
Figure 6 illustrates the effect of the L/D on the H-y0 curves of monopiles in the gently sloping sandy seabed. It can be seen that, in both the slope downward direction and the slope upward direction, Hu increased as L/D increased. When L/D increases from 3 to 5.25 and 8, Hu increases by 2.7 and 7.2 times in the downslope direction, respectively, and by 2.7 and 6.5 times in the upslope direction, respectively. This is primarily because the increased pile length restricted the rotation at the monopile tip. Additionally, the increase in the Hu is more pronounced in the slope upward direction.
[image: Two line graphs (a and b) showing horizontal force versus ground-level horizontal displacement for different L/D ratios, with three curves for each ratio (3.0, 5.25, 8.0). Graph (a) shows higher forces for all ratios compared to graph (b). Each graph includes a vertical line at 0.1D and follows a consistent legend format with color-coded lines.]FIGURE 6 | Effect of L/D on the H-y0 curve of monopiles: (A) slope downward direction; (B) slope upward direction (α = 5°).
Similarly, to directly demonstrate the influence of L/D, Figure 7 illustrates the effect of the L/D ratio on the εp around the monopile when the horizontal displacement of monopile at the mudline is 0.1D. Generally, the εp around the monopile increased as the L/D decreased, primarily because the monopile’s rotation angle grew with decreasing the L/D.
[image: Simulations displaying velocity fields in a two-row wave barrier model. The top row shows wave behavior with a slope downward direction, and the bottom row with a slope upward direction. Each image includes a color scale signifying velocity magnitude, ranging from blue (low) to red (high). The left column represents a slope ratio of LD equals two point five, and the right column a ratio of LD equals three point zero.]FIGURE 7 | Effect of L/D on the equivalent plastic strain surrounding the monopiles at the slope downward and slope upward directions (α = 5°; see L/D = 8 in Figure 5).
3.3 Horizontal bearing capacity envelope of monopiles in the HM plane
Offshore wind monopiles are mainly subjected to combined HM loading caused by wind and waves. Horizontal bearing capacity envelope provide an efficient tool of the design of monopiles and is therefore investigated in HM plane in this study. Figure 8 defines the positive direction for H and M acting on the monopile in both flat and sloping seabed. The H applied in the slope downward direction (positive X-axis) is considered positive, as is the M that moves the monopile head in the same direction.
[image: Two diagrams illustrate forces on structures. Diagram (a) shows a rectangular structure with an upright column, indicating horizontal force and bending moment. Diagram (b) shows a triangular structure with a similar column and forces. An axis with X and Z labels is depicted on the left.]FIGURE 8 | Sign definition for H and M force applied to the monopile: (A) flat seabed and (B) sloping seabed.
In this study, the horizontal bearing capacity, including the ultimate lateral load (Hu) and ultimate bending moment (Mu), was determined by applying both horizontal displacement (h) and rotation (θ) at the mudline. During the loading process, the ratio h/Dθ remains constant, and by adjusting this ratio, the horizontal bearing capacity under different H-M load combinations was obtained, enabling the construction of a horizontal bearing capacity envelope.
Figure 9 presents the load path for monopiles under various L/D and slope angle (α) combinations, with nine sets of conditions. Each set covers a range of h/Dθ values from −1 to 10, resulting in 32 load cases per set and 288 total cases. For the flat seabed (α = 0°), the load paths under different H-M combinations exhibited central symmetry. Additionally, as L/D increased, the rise in Mu was more pronounced than the increase in the Hu. In contrast, monopile load paths on the gently sloping seabed lost this symmetry due to the difference in the horizontal bearing capacity between the slope downward direction and the slope upward direction (refer to Figures 4, 6). As the slope increased, it is observed that the Hu and Mu increased in the second quadrant, while they gradually decreased in the fourth quadrant. This is because, in the second quadrant, the horizontal displacement was generally applied in the upward slope direction, whereas in the fourth quadrant, it was applied in the downward slope direction. This result was also confirmed in Figure 5.
[image: Grid of nine graphs comparing \( h(MN) \) to \(\log(NS, 0)\) across angles \(\alpha = 0^\circ, 5^\circ, 10^\circ\) and LDP values 0, 2.5, 3.0. Each graph shows data points, a fitted line, and a diagonal reference line.]FIGURE 9 | Loading paths of laterally loaded monopiles for varying L/D and α.
3.4 Theoretical analysis of the horizontal bearing capacity envelope of monopiles in the HM plane
Figure 10 shows that the envelope of the monopile’s horizontal bearing capacity forms an inclined elliptical shape. To confirm this observation, we used a general elliptical equation (i.e., Equation 3) to fit various Hu - Mu data points:
[image: Mathematical equation: \(C_1H_1 + C_2H_2M_2 + C_3M_3^2 + C_4H_4 + C_5M_5 + 1 = 0\).]
where C1, C2, C3, C4, and C5 are constants controlling the shape of the ellipse. These five constants help define the coordinates of the ellipse’s center (H0, M0), with R1 and R2 representing the lengths of the ellipse’s major and minor axes, respectively, and ψ representing the rotation angle of the major axis. H0, M0, R1, R2, and ψ were given in Equation 4:
[image: Mathematical equations presented in a vertical format with variables and constants. The equations show calculations for \( H_0 \), \( M_0 \), \( R_1 \), \( R_2 \), and \(\psi\), involving terms with \( C_1 \), \( C_2 \), \( C_3 \), \( C_4 \), \( C_5 \) and square roots. Each equation reflects relationships and transforms between these constants.]
[image: Nine scatter plots arranged in a 3x3 grid show linear discriminant analysis results for angles of zero degrees, five degrees, and ten degrees. Each row represents a different level of linear discriminant, with LDA values of 8.0, 5.25, and 3.0. The x-axis is labeled HM(N) and the y-axis is labeled ΔF/M(N). Red ellipses highlight the data clusters in each plot.]FIGURE 10 | Failure envelope of lateral bearing capacities of monopiles.
Figure 10 shows that the elliptical equation effectively described the relationship between Hu and Mu of laterally loaded piles under varying L/D, slope angle α, and h/Dθ. Figures 11A–C further illustrate the effect of L/D and α on R1, R2, and ψ, respectively. It can be seen that as L/D increased, both R1 and R2 increased. This is because the Hu and Mu increased with L/D. Additionally, the α had little effect on the R1 likely because the increase in the horizontal bearing capacity in the second quadrant was nearly equal to the decrease in the fourth quadrant for the sloping seabed. However, the seabed slope angle had a more significant impact on R2. This can be attributed to the fact that when H is applied in the slope upward direction, the increase in Hu was greater than the increase in Mu, causing the fitted ellipse to expand outward. This trend became more pronounced as α and L/D increased, indicating that under this load combination, the slope angle had a larger impact on the ultimate horizontal load than on the ultimate moment.
[image: Three 3D scatter plots show data for different length-to-diameter (L/D) ratios: 8.0, 5.25, and 3.0, represented by red circles, pink triangles, and blue squares respectively. Plot (a) shows angle psi, plot (b) shows angle beta, and plot (c) shows alpha absolute, each against angle phi and delta/beta. Lines connect points of the same L/D ratio in each plot.]FIGURE 11 | Effect of L/D and α on the dominating parameters of the ellipse of lateral bearing capacities of monopiles: (A) the length of the major axis (R1), (B) the length of the minor axis (R2), and (C) the rotation angle of the major axis (ψ).
4 INTELLIGENT PREDICTION OF THE HORIZONTAL BEARING CAPACITY OF MONOPILES
This paper introduces an artificial neural network (ANN) as a surrogate model to predict the ultimate horizontal load and ultimate moment of monopiles. Inspired by biological neural systems, ANNs are computational models commonly used for complex tasks such as data classification, regression, and prediction. These models simulate how information is transmitted between neurons in the brain, with adaptive learning abilities that enable them to adjust internal parameters during training to match input data. For a simple feedforward neural network, as illustrated in Figure 12, the output of the ith hidden neuron hi is described by Equation 5:
[image: Mathematical equation depicting a neural network activation function. The output \( h \) is a function \( a \) of the weighted sum of inputs \( z_j \) and weights \( w_j \), summed from \( j = 1 \) to \( m \), plus a bias \( b \).]
where wj represents the regression coefficient for the jth node in the previous layer (e.g., input node xj in Figure 12), m is the number of nodes in pervious layer, b is the bias term, and σ is the activation function that introduces nonlinearity into the network. ReLU was taken as the activation function in this study. Neural network modeling fundamentally involves calculating the regression coefficients and bias terms between layers. The coefficients were determined using stochastic gradient descent (Amari, 1993) by minimizing the loss function within a certain tolerance. In this study, Mean Squared Error (MSE) was used as the loss function in Equation 6:
[image: Formula for mean squared error (MSE) is shown. It is defined as the average of the squared differences between observed, y_i, and predicted values, ŷ_i, of the ith instance, summed over all n instances.]
where [image: Mathematical notation displaying "y sub i superscript (s)".] and [image: The image depicts the mathematical notation for \( \hat{y}_{i}^{(s)} \).] are the observed and predicted values, respectively, with i representing the ith data point in a total of n data points. For neural networks with multiple output nodes, the overall loss function is the sum of [image: Mathematical notation showing "MSE" with a superscript in parentheses "(s)".] across all outputs.
[image: Diagram of a neural network. Panel (a) shows a multi-layer perceptron with three layers: input, hidden, and output. Panel (b) illustrates the process for a single neuron, with inputs x1 to xm, weights, bias, summation, activation function, and output h.]FIGURE 12 | Schematic illustration of artificial neural network with multiple input and multiple output variables: (A) the entire artificial neural network (B) computing a hidden neuron.
In this study, 288 scenarios were used, with 70% (201 cases) chosen as the training set and the remaining 30% (87 cases) as the test set This process involved random sampling, where a certain proportion of samples were randomly selected to create a test set while retaining the original data distribution, with the remaining samples used as the training set. The inputs to the ANN model included four parameters: L/D, α, the horizontal displacement of the pile at the seabed h, and rotational load θ, as listed in Table 3, while the outputs were the ultimate horizontal load Hu and ultimate moment Mu.
TABLE 3 | Data limits of input variables associated with ultimate horizontal load and ultimate moment.
[image: Table displaying variables and their values or ranges. Variables include L/D with values 3, 5, 8; Seabed slope angle α(deg.) with values 0, 5, 10; Horizontal displacement h(m) ranging from -0.0762 to 0.0762; Rotational load θ(deg.) ranging from -5.73 to 5.73.]Based on Wang and Heo (2022), the neural network was designed with two hidden layers, each containing 12 neurons. Figure 13 shows the comparison between the predicted and measured Hu and Mu for the 87 test scenarios, demonstrating a small error margin. Specifically, most errors between predicted and observed values remain within ±10% for the Hu and Mu responses. Certainly, some data bias is also observed in the predictions of the test set, which is primarily related to the MSE values and the limited number of data points. In this study, the MSE for the training and test sets are 0.24 and 0.26, respectively. As the number of iterations increases, the training set MSE decreases by an order of magnitude. However, the MSE for the test set reaches its minimum and no longer changes, indicating the occurrence of overfitting. Therefore, increasing the amount of data in the training set can further reduce the MSE and the bias of some data points. Nevertheless, these results demonstrate the effectiveness of the multi-layer neural network as a surrogate model for predicting the horizontal bearing capacity envelope of offshore wind turbine monopiles under various HM loading combinations.
[image: Two scatter plots show predicted versus measured values. Plot (a) compares predicted and measured \( H_L \) in meganewtons, illustrating a close alignment along the line \( y = x \) with variations of plus and minus ten percent marked. Plot (b) compares predicted and measured \( M_Q \) in meganewton meters, similarly aligned with the \( y = x \) line and similar variation markers. Red circles represent data points on both plots.]FIGURE 13 | Comparison of output parameters of test sets: (A) Ultimate horizonal force (Hu) and (B) Ultimate bending moment (Mu).
5 CONCLUSION
A practical finite element model was developed and validated against the PISA project’s field test data for monopiles under lateral loads in sandy soils. The classical Mohr-Coulomb model, used for soil plasticity in this study, provided reliable predictions and required parameters that are straightforward to determine, enhancing its utility in engineering practice. The model’s effectiveness was confirmed for various L/D ratios, proving its applicability in complex offshore scenarios. Based on the numerical investigations, some conclusions were summarized:
	(1) In the slope upward direction, the horizontal bearing capacity increased significantly with greater slope angle, while the opposite effect was observed in the slope downward direction. The slope angle (α) of the sloping seabed had a greater impact on the ultimate lateral load in the slope upward direction compared to the slope downward direction.
	(2) For the flat seabed, the load paths under different HM combinations exhibited central symmetry; however, the load paths on the gently sloping seabed lost this symmetry due to the difference in the horizontal bearing capacity between the slope downward direction and the slope upward direction.
	(3) The horizontal bearing capacity envelope of monopiles in the HM plane exhibited an elliptical shape for both the flat seabed and sloping seabed. This elliptical equation proved to be accurate in describing load capacity under different L/D ratios and seabed slope angles. Both the short-axis (R2) and long-axis (R1) lengths increased as L/D increased. The slope angle had little effect on the R1, but it had a more significant impact on R2.
	(4) An artificial neural network (ANN) surrogate model was developed to predict ultimate horizontal load and bending moment, with training and testing on 288 scenarios. With L/D ratio, α, and the horizontal displacement h and rotation angle θ at the monopile head as inputs, the ANN effectively predicted the horizontal bearing capacity, with most errors remaining within ±10% across the test dataset.
	(5) The numerical model, along with the surrogate ANN, offers a viable approach for predicting the horizontal bearing capacity of monopiles in offshore wind applications, even under varying seabed conditions and loading scenarios.
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The occurrence of class-imbalanced datasets is a frequent observation in natural science research, emphasizing the paramount importance of effectively harnessing them to construct highly accurate models for rockburst prediction. Initially, genuine rockburst incidents within a burial depth of 500 m were sourced from literature, revealing a small dataset imbalance issue. Utilizing various mainstream oversampling techniques, the dataset was expanded to generate six new datasets, subsequently subjected to 12 classifiers across 84 classification processes. The model incorporating the highest-scoring model from the original dataset and the top two models from the expanded dataset, yielded a high-performance model. Findings indicate that the KMeansSMOTE oversampling technique exhibits the most substantial enhancement across the combined 12 classifiers, whereas individual classifiers favor ET+SVMSMOTE and RF+SMOTENC. Following multiple rounds of hyper parameter adjustment via random cross-validation, the ET+SVMSMOTE combination attained the highest accuracy rate of 93.75%, surpassing mainstream models for rockburst prediction. Moreover, the SVMSMOTE technique, augmenting samples with fewer categories, demonstrated notable benefits in mitigating overfitting, enhancing generalization, and improving Recall and F1 score within RF classifiers. Validated for its high generalization performance, accuracy, and reliability. This process also provides an efficient framework for model development.
Keywords: oversampling techniques, machine learning, shallow rockburst intensity prediction, assessment, generalization capability

1 INTRODUCTION
As humanity explores the natural world, encountering geological hazards (Ma and Mei, 2021) like earthquakes (Kanamori and Brodsky, 2004), volcanic eruptions (Milford et al., 2023), and extreme weather is common (Newman and Noy, 2023). Despite their destructive potential, advancements in artificial intelligence enable their prediction (Varsha et al., 2024; Abid et al., 2021). Rockburst, a significant hazard in underground engineering, stem from factors such as excavation-induced stress and rock properties like elasticity and brittleness (Zhou et al., 2018). Extensive literature review and field research reveal (Dong et al., 2016) that rockburst occur not only in deep but also shallow underground projects, underscoring the need for accurate prediction to safeguard lives, health, and sustainable development. Furthermore, in the era of big data, diverse datasets abound (Borgman, 2017), yet often exhibit uneven distributions, termed class imbalance (Longadge and Dongre, 2013). This phenomenon is prevalent in research, posing a challenge to data-driven modeling. Maximizing the utility of such datasets presents a key hurdle in academia’s pursuit of effective modeling. In the field of sample imbalance dataset research, it can be broadly categorized into three categories, one is the undersampling technique, the second is the oversampling technique, and the third is a mixture of the two techniques (Luo et al., 2023). Due to the small number of shallow rock burst data cases, in order to fully utilize the data used, so the general use of oversampling techniques. In the field of oversampling technology, the most researched is the SMOTE oversampling technology, from which a number of oversampling methods have been derived. This paper focuses on the impact of mainstream oversampling techniques on rock burst data sets in the study of oversampling techniques.
In recent years, the field of rockburst prediction had witnessed a surge in research leveraging machine learning algorithms (Yin et al., 2024a; Yin et al., 2024b; Yin et al., 2021; Yin et al., 2022; Yin et al., 2023; Rao et al., 2024). This trend was fueled by the increasing development of artificial intelligence. Moreover, amidst considerations regarding the class imbalance of rockburst case data, these studies underscore the growing interest in employing machine learning for rockburst engineering prediction. Liu Q. et al. (2023) used KMeansSMOTE oversampling method and SMOTE(Synthetic Minority Oversampling Technique, SMOTE) oversampling method to put into the machine learning field for detection found that ultimately 25% accuracy improvement can be realized. Sun et al. (2022) improved the model prediction accuracy up to 0.3636 based on algorithms such as KMeansSMOTE oversampling method, the stacking technical. Li et al. (2023) utilized the FS+t-SNE+GMM method for the reselection of feature labels, which ultimately achieved an accuracy of about 90% in the voting integration model.
According to the above literature review and the real stress situation, this study considers that the depth of burial of 500 m as the boundary with other types of rock bursts is scientific and reasonable. There are three reasons: First, the buried depth of 500 m within the horizontal stress and vertical stress gap is huge, the maximum horizontal principal stress and the minimum horizontal principal stress and vertical stress ratio can reach up to 7 and 5 (Feng et al., 2007); Second, the buried depth of 500 m within the rockburst occurrence mechanism is more or less the same, mainly in the hard rock tectonic stress damage is dominant; Third, it is conducive to the revelation of different buried depth caused by the occurrence of the rock burst law, facilitating further refinement prediction and improve the accuracy of the prediction model.
To enhance the efficiency of tackling complex rockburst problems, integrating novel technical modeling approaches is essential. There are few comparative analytical studies on oversampling techniques in mainstream rockburst prediction models. While oversampling techniques and integrated models have gained traction in various fields, their application in shallow rockburst prediction remains limited. Overall, this study mainly realizes the following innovations: (1) Analyzing and evaluating multiple mainstream oversampling techniques, and deriving the best-performing oversampling technique in unbalanced small rockburst datasets from the data quantity and quality levels. (2) Propose a model with high accuracy and generalization ability, which performs best compared with mainstream rockburst prediction models. (3) Distinguish between shallow and deep rockburst based on depth of burial, and for the first time model rockburst from this perspective, and the resulting model accuracy exceeds that of some mainstream full-depth rockburst case models. Based on the above issues, the framework study and model development in this study considered six oversampling techniques (SMOTE (Fernández et al., 2018); ADASYN (He et al., 2008); KMeansSMOTE (Douzas et al., 2018); SMOTENC (Fonseca and Bacao, 2023); BordenlineSMOTE (Han et al., 2005); SVMSMOTE (Wang et al., 2021),12 classifiers (Decision Tree, DT (Song and Ying, 2015); Extra Trees, ET (Geurts et al., 2006); Gradient Boosting, GBD (Natekin and Knoll, 2013); Gaussian Process Regression, GPR (Schulz et al., 2018); K-Nearest Neighbor, KNN (Peterson, 2009); Light Gradient Boosting Machine, LGB (Fan et al., 2019); Multilayer Perceptron, MLP (Tang et al., 2015); Naive Bayes model, NBM (Murphy, 2006); Quadratic Discriminant Analysis Algorithm, QDA (Kim et al., 2011); Random Forest, RF (Biau and Scornet, 2016); Support Vector Classification, SVC (Hsu et al., 2003); EXtreme Gradient Boosting, XGB (Chen et al., 2015)). Eighty-four algorithm combinations were systematically evaluated, leading to the selection of the top-performing two. Stochastic cross-validation (Xu et al., 2018) optimized hyper parameter to enhance model performance. The RF+SMOTENC hybrid model emerged as the best, showcasing excellent predictive metrics (Accuracy = 0.9375, Precision = 0.9531, Recall = 0.9375, F1 score = 0.9375) after comprehensive evaluation. Notably, ET+SVMSMOTE demonstrated notable generalization and reduced overfitting compared to other models.
2 MATERIALS AND METHODS
2.1 Construction of a representative shallow rockburst dataset
Accurate data collection is fundamental in machine learning algorithms. Besides diversity, data quality and representativeness are crucial considerations. Hence, constructing a high-quality dataset is paramount. This study manually collected and compiled diverse rock burst data from published sources, aiming to develop a highly accurate and reliable model. Various oversampling techniques were employed to enhance dataset quality.
To ensure dataset representativeness, various actual engineering rock burst cases were collected (Wang et al., 1998; Zhangjun et al., 2008; Afraei et al., 2019; Liu G. et al., 2023; Yu et al., 2013; Zhou et al., 2022; SUN, 2019; Feng and Wang, 1994; Mengguo et al., 2008; Xue-pei, 2005; Lai Feng, 2008; Zhang et al., 2011; Yu Xuezhen, 2009; Zhou et al., 2016), detailed in Supplementary Table S1. With a burial depth of 500 m as the delineation, the dataset comprised 69 rock burst cases, spanning hydroelectric power station construction, tunneling, and underground mining. Data collection mirrored the original approach (Yunzhang and Xuezhen, 2015). The input features included maximum tangential stress ([image: It seems like there's no image included. Please upload the image or provide a URL, and I can help generate the alternate text for it.]), uniaxial compressive strength ([image: Please upload the image or provide a URL so I can create the alt text for you.]), uniaxial tensile strength ([image: If you upload the image or provide a URL, I can help create the alternate text. You can also include a caption for additional context if needed.]), and elastic energy index ([image: The image shows a stylized letter "W" with a subscript "et" formatted in italics.]), while rockburst intensity levels—categorized as None, Light, Moderate, and Strong—served as output prediction values. Violin plots in Figure 1 illustrate feature distributions, predominantly ranging from 20 to 80 MPa ([image: Please upload the image you would like me to describe.]), 80–180 MPa ([image: It seems like there's an issue with the image upload or display. Please ensure you upload the image file or provide a correct URL so I can help create the alt text.]), 2–10 MPa ([image: It seems like you've provided a mathematical symbol rather than an image. If you have an image you'd like described, please upload it, and I'll help you with the alt text.]), and 2–8 ([image: The formula shows the letter "W" with the subscript "et".]). Category percentages are depicted in Figure 2.
[image: Two violin plots compare data distributions. The left plot shows a blue and yellow violin, labeled "α" in MPa. The right plot displays purple and orange violins, labeled "ω" and "Wei." Both plots include a legend indicating range, average value, and data points.]FIGURE 1 | Rockburst data display violin diagram.
[image: Pie chart showing percentages of four categories: 30.4% light, 27.5% moderate, 27.5% strong, and 14.5% none. Categories are represented in shades from blue to red.]FIGURE 2 | Percentage of the number of categories of rock burst datasets.
2.2 Overview of oversampling techniques
In real-world data scenarios, imbalances often arise where certain sample categories are underrepresented compared to others. This imbalance can cause some classifiers to favor results with more samples, thus exaggerating the accuracy of the model. But this may not accurately reflect reality. Correctly addressing sample imbalance is therefore crucial for improving model accuracy. Two main approaches are commonly employed: adjusting or integrating algorithmic models and reducing the sample number gap between classifications through sampling techniques.
The former approach involves analyzing the model and application cases comprehensively to make informed choices, albeit sometimes without satisfactory outcomes. The latter approach, favored by scholars for its simplicity and applicability at the dataset preprocessing stage, aims to bridge the sample number gap and enhance the realism of simulated data. Prior to this study, several popular oversampling techniques were outlined, providing the foundation for comparative analysis. See Supplementary Table S2 for details. These techniques provide diverse approaches to addressing sample imbalance and enhancing the realism and effectiveness of predictive models.
2.3 Overview of the classifiers
Suitable classifiers are the basis for building models with excellent performance. In this study, 12 mainstream classifiers were used. They are described in Supplementary Table S3.
2.4 Framework developed
The framework’s development process, depicted in Figure 3, entails several key steps.
	(1) Initially, rockburst case data were collected from literature sources, revealing a deficiency in Strong class data.
	(2) The significant impact of class imbalance on classifier performance prompted the exploration of six new datasets formed through various sampling techniques. Twelve machine learning algorithms were combined with hierarchical 5-fold cross-validation for evaluation. Notably, data normalization enhanced efficiency and reduced dimensionality interference.
	(3) The best oversampling techniques and classifier combinations were identified based on evaluation scores, with comparison to top-performing classifiers in the original dataset. Key parameters of each classifier were identified through literature review. Data were randomly split into 8:2 ratios, and the three classifiers were optimized using 5-fold random cross-validation.
	(4) Extensive performance comparisons were conducted, highlighting the contribution of oversampling techniques in addressing underclassification based on model learning outcomes.

[image: Diagram showing a data analysis process. It starts with an original dataset of sixty-nine cases, followed by oversampling using several methods: SMOTE (N1, eighty-two cases), ADASYN (N2, seventy-nine cases), KMeansSMOTE (N3, eighty-seven cases), SMOTENC (N4, eighty-four cases), BorderlineSMOTE (N5, eighty-four cases), and SVMSMOTE (N6, seventy-nine cases). Stratified five-fold cross-validation is performed on all datasets. Eighty percent is used for training models and twenty percent for testing. The process concludes with model validation, including estimation and screening to determine validity.]FIGURE 3 | Framework flowchart.
2.5 Indicators for the evaluation of oversampling techniques
To accurately gauge the performance of the six oversampling techniques across specific datasets and models, it is essential to employ appropriate evaluation metrics. In this context, the cross-validation method emerges as a suitable choice. Given the class-imbalanced nature of the collected dataset, the stratified 5-fold cross-validation score method is selected for evaluation. This approach involves dividing the entire dataset into five equally-sized subsets, ensuring that each subset includes representative data from all classes in the same proportion as the entire dataset. Moreover, random sampling of the data further enhances the model’s generalization ability. Figure 4 illustrates the specific process involved in implementing this approach. This methodology facilitates robust assessment of oversampling technique performance while accounting for dataset characteristics, contributing to more reliable model evaluation in real-world scenarios.
[image: Diagram illustrating a K-fold cross-validation process. It shows data organized into folds with various classes from Class 1 to Class n. Each class is divided into a series of folds labeled Fold 1 to Fold n. Specific k-folds, like K-1, K-2, are highlighted within different folds. Arrows point from these folds to versions labeled Ver 1 to Ver n.]FIGURE 4 | Layered cross-validation process.
2.6 Model evaluation indicators
Once the rockburst prediction model was established, selecting appropriate metrics becomes crucial for assessing its performance. In classification models, accuracy serves as a key indicator, reflecting the model’s overall error rate. During model training, errors manifest in two forms: training error within the training set and testing error within the test set. While higher accuracy was desirable, it was imperative to prevent overfitting during training, ensuring robust performance on unseen data.
However, generalization error, occurring during testing on unseen data, was inherently unpredictable. To evaluate the model’s generalization performance, additional metrics were essential. Precision and recall emerge as complementary metrics, focusing on the model’s ability to correctly identify true positive instances. Precision quantifies the proportion of true positives among all predicted positives, while recall measures the proportion of true positives among all actual positives. These metrics assume particular significance in rockburst damage scale prediction, where accurately identifying hazardous conditions was paramount.
The F1 score, a harmonized average of precision and recall, offers a balanced assessment, capturing the trade-off between these two metrics. This score provides a unified metric that accounts for the model’s capacity to accurately predict positive instances while minimizing false positives. Utilizing these metrics, as depicted in Figure 5, ensures a comprehensive evaluation of model performance in this study, facilitating more reliable and accurate predictions.
[image: Confusion matrix diagram with predicted and actual classes showing True Positive, False Positive, False Negative, and True Negative values. Includes formulas for F1 score, accuracy, recall, and precision.]FIGURE 5 | Calculation process.
3 RESULTS AND DISCUSSION
3.1 Comparative study of oversampling techniques
The dataset analysis reveals a class imbalance, particularly in the Strong class. To address this, the dataset was expanded using six sampling methods: SMOTE, ADASYN, KMeansSMOTE, SMOTENC, BordenlineSMOTE, and SVMSMOTE, resulting in seven datasets including the original. These datasets are labeled as N1 to N6, respectively, with the original dataset labeled as OD (Table 1). SMOTENC and BordenlineSMOTE emerged as effective techniques for achieving balanced class distributions at the sample level, ensuring consistency across all four classifications. KMeansSMOTE notably increased sample numbers the most, while ADASYN and SVMSMOTE exhibited the smallest increases.
TABLE 1 | Comparison of the number of sample increases.
[image: A table displaying numeric data categorized by rows and columns. Rows are labeled None, Light, Moderate, Strong, and Aggregate. Columns are labeled OD, N1, N2, N3, N4, N5, and N6. Each cell contains a numeric value, such as 19, 21, or 79, corresponding to the intersection of each row and column. The Aggregate row sums up each column's values, with OD totaling 69 and N6 totaling 79.]In addition to quantitative comparisons, Principal Component Analysis (PCA) (Abdi and Williams, 2010) is utilized as a dimensionality reduction technique. PCA aims to map N-dimensional features to K-dimensions while retaining the original high-dimensional features. Figure 6 illustrates this process, with the blue ball representing the original data and the red ball depicting the synthesized data.
[image: Six scatter plots compare clustering algorithms: SOMPWV3, KNNPWV3, RandonintervalsPWV3, KmeansPWV3, ABAGP3N, and SVMGP3N. Blue and red dots represent different data groupings, with varying distributions across the plots.]FIGURE 6 | Two-dimensional map after PCA transformation.
Downsizing 5-dimensional data to two dimensions enables visualization of both the data distribution and the distribution of synthesized data.
To comprehensively assess oversampling techniques’ performance on seven datasets (OD, N1-N6), twelve machine learning algorithms (DT, ET, GBD, GPR, KNN, LGB, MLP, NBM, QDA, RF, SVC, XGB) were employed. The evaluation metric utilized was the 5-fold hierarchical cross-validation score, with default hyper parameter. Figure 7 presents the obtained data, revealing that among horizontal comparisons, the ET classifier + SVMSMOTE oversampling technique achieved the highest score, while the NBM classifier + original dataset attained the lowest, with a notable difference of 0.291. This underscores the significance of classifier selection. In longitudinal comparisons, varied sampling techniques exhibited distinct effects on classifiers. Notably, the GPR classifier displayed the highest discrepancy, with a potential difference of 0.1958 between selected sampling techniques.
[image: Line graph comparing different data sampling methods on various classifiers. The x-axis lists classifiers like DT, ET, GBD, while the y-axis shows the S-fold cross-validated scores. Colored lines represent methods such as Original, ADASYN, and SMOTE, showing performance variations across classifiers.]FIGURE 7 | Scores of different sampling techniques in different models.
To elucidate the impact of oversampling techniques across multiple models, Figure 8 presents the average scores of each technique. Notably, KMeansSMOTE demonstrates the highest average improvement across models, with a notable enhancement of 0.0998. This underscores the efficacy of KMeansSMOTE across diverse model architectures. Conversely, SVMSMOTE exhibits the lowest average improvement at 0.0178. Nonetheless, it is evident that employing oversampling techniques generally enhances model performance across various scenarios.
[image: Bar chart depicting average five-fold cross-validation scores for different models labeled N3, N4, N1, N5, N2, N6, and OD. Scores range from 0.5962 for OD to 0.698 for N3. The horizontal axis represents scores, and the vertical axis lists the model labels.]FIGURE 8 | Average scores for different sampling techniques.
3.2 Models performance comparison
While various oversampling techniques were explored, the primary aim of the comparison study was to attain a highly accurate and reliable model. Consequently, the top-performing combinations—ET+SVMSMOTE and RF+SMOTENC—were selected for comparison. Additionally, the best-performing ET model from the original dataset was included for training and optimization.
Each dataset was randomly split in an 8:2 ratio, with 80% allocated to training and 20% to testing, ensuring models did not overfit (Zhang et al., 2024). Hyper parameter optimization was conducted using randomized 5-fold cross-validation, targeting key parameters—Estimators, Min samples split, Min samples leaf, Max features, Max depth, and Bootstrap. These parameters, being part of ensemble models built on decision trees, exhibited consistency across models. Subsequently, the training set was divided into five folds, with four utilized for model fitting and one for validation. Hyper parameter values were selected based on average accuracy across the five folds, as detailed in Table 2. These parameters were then used to evaluate overall classifier performance metrics—Accuracy, Precision, Recall, and F1 score—while other hyper parameter remained at default values.
TABLE 2 | Hyperparameter values.
[image: Comparison table of hyperparameters for different models: ET and ET+SVMSMOTE have the same settings. RF+SMOTENC differs in estimators (1131), min samples split (2), min samples leaf (4), max depth (50). Other parameters are identical across models.]The F1 score (Chicco and Jurman, 2020) is effective in incarnating the impact of class imbalance and serves as a key performance metric for classifiers. Comparison of the three classifiers with the test set prior to optimization, as depicted in Figure 9, reveals the significant impact of hyper parameter adjustments. Specifically, the combination of ET with the original dataset exhibits a notable improvement of 7.5 percentage points, while the pairing of ET with SVMSOTE demonstrates a substantial enhancement to 0.9375, compared to the original. Similarly, the combination of RF with SMOTENC notably improves by 18.4 percentage points. Notably, the ET with SVMSOTE combination attains the highest F1 score of 0.9375. Overall, hyper parameter tuning is crucial for achieving highly accurate modeling, underscoring its essential role in the process.
[image: Bar chart comparing F1 scores before and after adjusting hyperparameters for three models: ET, ET+SVMOTE, and RF+SMOTEENC. Darker bars indicate scores after adjustment, showing improvement across all models.]FIGURE 9 | Comparison of classifiers before and after adjustment of parameters.
After hyper parameter adjustment, detailed evaluation of classifiers for overfitting or insufficient generalization ability is essential. The ideal model should exhibit high accuracy with minimal discrepancy between training and test sets. Figures 10, 11 provide visualizations for such assessments, with detailed data in Table 3. Overall, all three classifiers demonstrate sufficient accuracy post-hyper parameter tuning (Liu et al., 2024).
[image: Scatter plot comparing training set accuracy and test set accuracy for different models. Models ET and ET+SVMSMOTE are clustered near the top right with high accuracy, while RF+SMOTE is lower on both axes. A diagonal red line indicates equal train-test accuracy.]FIGURE 10 | Analysis of model performance on training and test sets.
[image: Bar chart comparing performance metrics Accuracy, Precision, Recall, and F1-score for three models: ET, ET+SVMSMOTE, and RF+SMOTENC. Each model shows scores above 0.8 for all metrics, with notable variations in Recall and F1-score, particularly for RF+SMOTENC.]FIGURE 11 | Test set performance.
TABLE 3 | Evaluation results.
[image: Performance table comparing ET, ET+SVMSMOTE, and RF+SMOTENC models on test and training sets across precision, recall, F1 score, and accuracy. ET achieves accuracy of 0.9286 on test and 0.9818 on training. ET+SVMSMOTE scores 0.9375 and 0.9841, respectively. RF+SMOTENC shows 0.8824 test accuracy and 0.9254 training accuracy. Metrics are further divided by categories N, L, M, S.]From the two-dimensional visualization in Figure 10, the ET and SVMSMOTE combination surpasses others in terms of generalization ability and test set accuracy, underscoring its superior performance.
Generalization ability is one of the main evaluation indexes for assessing the applicability of models. Good generalization ability can fully reflect the model’s ability to predict new data sets, and can greatly avoid the model overfitting, underfitting and non-convergence and other problems. In order to intuitively assess and compare the generalization ability of different models, Figure 10 is plotted. In this study, three combinations of models are evaluated together for their generalization ability, with the X-axis as the accuracy of the test set and the Y-axis as the accuracy of the training set, and the graph of the generalization ability of the three models evaluated is shown in the figure. Ideally, the model should show high accuracy both on the training set and the test set, with a small gap between the two. In this study, with this visualization, it can be clearly observed that the ET+SVMSMOTE model exhibits good generalization ability, highlighting the superiority of the data enhancement strategy.
Further analysis in Figure 11 reveals that the ET and SVMSMOTE combination outperforms in Accuracy, Precision, Recall, and F1 score. Notably, Accuracy improves to 0.9375, Precision to 0.9537, Recall to 0.9375, and F1 score to 0.9375.
In-depth exploration through Table 3 elucidates the superior performance of the ET and SVMSMOTE combination. Analysis by category reveals that SVMSMOTE effectively balances the number of Strong categories, thereby enhancing model performance in this category. Specifically, in the test set evaluation metrics, Strong category Recall improves from 0.6667 to 1, and F1 score from 0.8 to 0.8751. In the validation set, Strong category Recall improves from 0.8571 to 1, and F1 score from 0.9231 to 0.9653. This highlights the efficacy of oversampling techniques in achieving balanced datasets and subsequently improving model performance.
3.3 Comparison with state-of-the-art studies
In contrast to prior studies, this research aims to develop an efficient modeling framework focusing on validating the resulting model’s performance. This model integrates the SVMSMOTE oversampling technique, Extra Trees integration method, and stochastic cross-validation of optimized hyper parameter to enhance reliability and accuracy in shallow rockburst prediction. Emphasis is placed not only on prediction accuracy but also on the oversampling technique’s significance in deeply analyzing various assessment indicators to ensure high reliability, accuracy, and generalization capabilities of the model. This contributes to safer, more reliable, and efficient underground engineering construction operations.
Furthermore, comparative analysis of different oversampling techniques across classifiers reveals their effectiveness in improving model performance by adjusting category numbers. Notably, KMeansSMOTE exhibits the most comprehensive improvement, increasing by 9.98 percentage points. However, at the individual model level, the ET+SVMSMOTE combination demonstrates the best performance, achieving a five-fold hierarchical cross-validation score as high as 0.7833. Additionally, this study conducts an in-depth analysis of the impact of SVMSMOTE oversampling on the ET classifier, validated through the analysis of category composition and evaluation metrics.
Table 4 presents a comparative analysis between the novel model proposed in this study and previous rockburst prediction models. Previous research indicates that while achieving high accuracy in modeling all rockburst is feasible, it remains challenging to further enhance accuracy to accommodate diverse stress state variations. Segmenting the rockburst dataset based on burial depth emerges as a crucial method for enhancing prediction accuracy. Remarkably, the ET+SVMSMOTE combination methods obtained through this approach consistently outperform mainstream model predictions in terms of accuracy.
TABLE 4 | Comparison of the proposed model with previously reported models.
[image: Comparison table of different models with columns for model names, depth of burial, number of original datasets, accuracy, and references. Models like "KMeansSMOTE+SVM" and "ET+SVMSMOTE" are evaluated, with accuracy ranging from 85.59% to 93.75%. Depth of burial varies as "All" or "Shallow," with datasets from 69 to 344. References include Luo et al. (2023) and Yin et al. (2024).]3.4 Limitations of the study
A current limitation of this study is the inability to discern the interactions between oversampling techniques, hyper parameter tuning, and model performance. Future research endeavors should prioritize analyzing the significance of both factors on model interpretability, thereby enhancing overall model understanding. In addition, modeling all depths of rockburst occurrence based on previous studies could improve accuracy. However, it is critical to address the complex environmental factors associated with the occurrence of rockbursts at different depths. Future investigations should therefore distinguish between shallow, medium, and deep depths’ influences on rockburst prediction models and develop corresponding models to enhance accuracy and applicability.
4 CONCLUSION
Rockburst pose a significant threat to various underground projects, including open-pit and underground ore mining, water conservancy and hydropower ventures, as well as tunnelling activities, thereby jeopardizing the safety of workers. Accurate assessment of rockburst intensity is paramount for mitigating these hazards. In this study, this study propose a novel hybrid model with superior generalization performance, accuracy, and reliability, achieved through the integration of multiple sampling techniques and classifiers.
This model, ET+SVMSMOTE, was developed using a dataset comprising 69 shallow rockburst samples. This study considered six oversampling techniques (SMOTE, ADASYN, KMeansSMOTE, SMOTENC, BordenlineSMOTE, and SVMSMOTE) and 12 classifiers (DT, ET, GBD, GPR, KNN, LGB, MLP, NBM, QDA, RF, SVC, and XGB), resulting in 84 algorithm combinations that were meticulously evaluated. Through this rigorous process, this study identified the top-performing combinations, employing stochastic cross-validation to fine-tune hyperparameters and mitigate overfitting.
The RF+SMOTENC hybrid model emerged as the most promising, boasting exceptional predictive performance with an accuracy of 0.9375, precision of 0.9531, recall of 0.9375, and F1 score of 0.9375. Notably, this model exhibited superior generalization performance compared to others, demonstrating a marked reduction in overfitting.
Furthermore, its analysis revealed that oversampling techniques significantly enhance model performance by altering category distributions. Particularly, KMeansSMOTE demonstrated the most substantial improvement, enhancing performance by 9.98 percentage points across all combinations. However, individual model evaluation identified ET+SVMSMOTE as the top performer, achieving a five-fold hierarchical cross-validation score of 0.7833.
Moreover, this conducted an in-depth examination of the impact of SVMSMOTE oversampling on the ET classifier, corroborated by analysis of category compositions and evaluation metrics. Despite the notable achievements of this study which acknowledge the limitation concerning the intricate interplay between oversampling techniques, hyper parameter tuning, and model performance. Future research should prioritize elucidating the synergistic effects of these factors to further enhance model efficacy.
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Introduction: Vibration-induced densification of loose particle material is an important phenomenon in deformation and instability study of large spoil heap. To investigate the vibration-induced densification characteristics and deformation mechanisms of a low-density spoil heap under small seismic effects, a spoil heap located in western Sichuan Province was selected as the research subject, and a large-scale shaking table test was performed.Methods: The settlement and acceleration response behaviors of the slope model during the vibration process were analyzed using three-dimensional point cloud data and acceleration time-history data, with horizontal and horizontal-vertical bi-directional seismic waves applied at progressively increasing amplitudes. Simultaneously, the natural frequency and damping characteristics of the slope model were determined using the transfer function. The deformation and damage modes, as well as the characteristics of vibration-induced densification, were also analyzed and discussed.Results: The results indicate that vibration-induced densification of low-density spoil heaps under small seismic forces exists and becomes more pronounced with increasing excitation intensity. This vibration-induced densification leads to a progressively more significant elevation amplification effect.Discussion: During the vibration-induced densification process, the medium undergoes self-organization in three phases, including settlement, dynamic equilibrium, and expansion. Based on the experimental observations, the deformation process of low-density spoil heaps can be divided into three stages: settlement and densification, collapse and disintegration, and downward misalignment and slippage. The findings of this study provide valuable insights and recommendations for the prevention and control of low-density spoil heap deformation in future engineering practices.Keywords: shaking table test, low-density particle material, spoil heap, vibration-induced densification, selforganizing mechanism
1 INTRODUCTION
The rapid economic development in the country has led to a continuous increase in various infrastructure projects. During the implementation of these projects, a significant amount of spoils is often generated. As these spoils gradually accumulate and have a loose structure, the stability of the excavated spoil heaps presents considerable challenges. The spoil heap, an artificially formed accumulation of loose material, necessitates specific compaction during both the design and filling stages. However, considering the variations in compaction during construction, the overall state of the spoil heap remains relatively loose, with significant voids and gaps between the particles. This results in characteristics of dispersibility, complexity, and susceptibility to deformation, which differ significantly from conventional soil and rock materials (Cui et al., 2020). Spoil heaps consist of a discontinuous aggregation of numerous individual particles, each of which is distinct and independent. Consequently, their stress and force transmission characteristics differ from those of conventional soil and rock materials, exhibiting unique propagation properties. Under seismic loading, the inertia forces generated by the earthquake cause displacements and relative movements between the particles. The interaction between larger particles reduces voids and facilitates the migration of finer particles to fill larger gaps, resulting in a significant densification (Liu C. Q et al., 2014; Chen et al., 2021) After seismic action, the deformation of spoil heaps is primarily controlled by two components: structure and particles (Xu, 2011). When the particle system is subjected to external forces, the structure deforms, while the particles themselves undergo compression and collision with one another. These interactions lead to changes in the system’s geometric configuration. Force transmission between particles is limited to contact interactions and is not constrained by the equations governing deformation compatibility (Chang et al., 2012). The internal force distribution within the discarded spoil exhibits significant spatial heterogeneity and characteristics of pressure expansion. Additionally, due to the dynamic properties of the particle medium, phenomena such as settlement, densification, and expansion can occur under seismic loading. Therefore, accurately assessing the response state of the spoil heaps during an earthquake is crucial for the design and monitoring of related spoil heaps. Currently, many scholars (Du et al., 2010; Sun et al., 2015; Wan et al., 2021; Ding, 2005) have conducted extensive experimental analyses on discontinuous assemblies such as loose accumulations and loess slopes, summarizing various seismic response patterns. However, research on the densification phenomenon during the vibration processes of large loose accumulations is relatively scarce (Gu et al., 2024). To achieve progress in understanding the characteristics and mechanisms of vibration-induced densification under seismic action, large-scale shaking table tests were used in this study. It is important for the design, stability evaluation, and safety mitigation of spoil heaps.
2 STUDY AREA
The spoil heap is located in the western part of Sichuan Province, an area prone to frequent earthquakes, with peak ground accelerations reaching up to 0.4 g (Figure 1).
[image: A map of China highlights the Sichuan province in blue, indicating its provincial administrative area. To the right, a photograph shows a landscape with a labeled haul road, spoil heap, and original ground level, illustrating terrain changes.]FIGURE 1 | Study area and spoil heap.
The spoil heap in the study area, one of the largest along the entire railroad, making it an ideal test prototype for analysis, and the most hazardous profile within the study area was selected as the experimental prototype.
A partitioned, graded stacking method with a layered filling approach, as per the requirements was adopted at the spoil heap. Stacking begins at the toe wall position (Figure 1), considering the characteristics of the excavation material, construction organization, and topographic conditions. A haul road will be reserved at each platform level to meet construction needs.
The elevation range of the spoil heap along this profile is between 3,298 and 3,388 m, with a longitudinal length of 350 m and a natural slope gradient varies between 10° and 25°. The Quaternary substrate is predominantly composed of angular gravel, with an average thickness of 20 m and a maximum height of 73 m. A model of the spoil heap was developed using similarity calculations, with tests conducted at a 1:100 scale to construct a conceptual model (Figure 2).
[image: Diagram showing a cross-section of terrain with elevation labeled on both sides. Includes original ground level, spoil heap, Quaternary alluvial and debris deposits, and granite. Features a retaining wall. The legend marks stratigraphic code details.]FIGURE 2 | Engineering geologic profile of the spoil heap in the study area.
3 METHODOLOGY
3.1 Construction and instrumentation
The shaking table system is used for this experiment in the State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology (Figure 3). In addition, a 3D laser scanner (Reegl VZ-4000) was used to collect point cloud data during the test, and Cloud Compare (Liang et al., 2021) software was used to process the data. Cumulative settlement at each stage was represented by the distance difference between the point clouds under successive loading conditions. A 95% confidence band was applied to fit the scattered data more precisely, facilitating a clearer visualization of the model’s settlement trend.
[image: Shaking table setup for structural testing with a 15-meter platform. Includes a test model, a Riegl VZ-4000 3D laser scanner, and a data acquisition system.]FIGURE 3 | Laboratory vibration table experiment.
The table is 6.0 m in length and 4.0 m in width, with a frequency range of 0.1–60 Hz. The system can achieve maximum accelerations of ±1.5 g, ±1.2 g, and ±1.0 g, velocities of ±1.5 m/s, ±1.2 m/s, and ±1.0 m/s, and displacements of ±300 mm, ±250 mm, and ±150 mm in the X, Y, and Z directions, respectively. The system can apply both sinusoidal and real earthquake waves, meeting the experimental requirements.
The scaled model dimensions are 280 cm in length, 80 cm in width, and 120 cm in height. Tri-axial accelerometers are placed within the model. This sensor arrangement not only enables the monitoring of acceleration changes at critical locations, such as the shoulder of the slope, but also supports the collection of extensive data without disrupting the test.
To minimize experimental errors from boundary effects, sensors and monitoring equipment are positioned as centrally as possible within the model. Additionally, 8 cm thick foam boards were placed near the side panels of the model box to minimize boundary effects during the experiments. The layout of the slope model and measurement points is shown in Figure 4.
[image: Cross-sectional diagram of a slope showing labeled layers: Quaternary strata, spoil heap, and foam board. Accelerometer positions are marked as black squares throughout the slope. The base layer is labeled as bedrock.]FIGURE 4 | Slope model and measurement point arrangement.
3.2 Test materials
Based on the Buckingham π theorem and previous experiments (Ren, 2007; Yang et al., 2019; Gao et al., 2022) on physical similarity ratios, similarity indicators were selected, including model dimensions, density, elastic modulus, cohesion, internal friction angle, Poisson’s ratio, gravitational acceleration, stress, frequency, time, strain, and velocity (Table 1). This study aims to reveal the motion characteristics of the spoil heap, as the test is constrained by the site’s geological prototype and the size of the equipment. Therefore, density, modulus of elasticity, dimensions, and time are used as key indicators. The similarity ratios for the physical quantities tested are presented in Table 1.
TABLE 1 | Main similarity coefficients of the model.
[image: Table listing physical quantities, derived formulas, and similarity coefficients. Density is \(C_\rho\), coefficient 1. Elastic modulus is \(C_E = C_I^2 C_\rho C_t^{-2}\), coefficient 100. Poisson’s ratio is \(C_\mu\), coefficient 1. Cohesion is \(C_c = C_E\), coefficient 100. Internal friction angle is \(C_\Phi\), coefficient 1. Stress is \(C_\sigma = C_E C_\epsilon\), coefficient 100. Strain is \(C_\epsilon = C_\rho C_g C_I C_E^{-1}\), coefficient 1. Length is \(C_I\), coefficient 100. Time is \(C_t\), coefficient 10. Frequency is \(C_f = C_t^{-1}\), coefficient 0.1. Velocity is \(C_v = C_u C_t^{-1}\), coefficient 10. Acceleration is \(C_a = C_u C_t^{-2}\), coefficient 1. Gravitational acceleration is \(C_g\), coefficient 1. Note: \(a\) denotes a fundamental dimension.]In this study, controls the density of spoil heap is determined using similarity theory. To investigate the response characteristics of the spoil heap under seismic conditions at low compaction densities. Tests are conducted at a compaction density of 0.5, with primary control parameters kept constant. Selecting appropriate similar materials is crucial for the successful execution of the shaking table model tests. The range of suitable materials is broad, with selection principles that include stable physical and chemical properties, ease of parameter control, low cost, availability, and non-toxicity, as well as environmental friendliness. Most importantly, the physical and mechanical properties of the model must meet the similarity requirements. This experiment focuses on observing the movement of spoil heap particles during loading and simulating the failure and movement of the slope model, with the bedrock considered as an invariant layer. Figure 5 shows the particle size distribution curves for the spoil heap and the Quaternary cover layer in the study area. Material ratios are based on previous studies (Cui et al., 2019). The source of the material consists of two main components, one from fieldwork while the other from similar materials. The materials and their proportions for each layer are as follows, Spoil heap: Particles with a diameter of less than 1 mm are selected from the site for the model. Quaternary Layer: Particles with a diameter of less than 1 mm are selected from the on-site angular gravel soil for the Quaternary layer. Bedrock Model Material: The material ratios of similar materials based on previous studies (Huang, 2009), Barite powder: Quartz sand: Gypsum: Iron powder: Water: Glycerin = 37.5:37.5:7:18:11.48:2.3 (Table 2).
[image: Line graph showing mass percentage of gold particles versus particle size in micrometers, comparing spool loop (red line) and quaternary structure (black line). Both lines decline from left to right, starting at 100% mass for the smallest particle size.]FIGURE 5 | Grading curves of the spoil heap and the quaternary overburden in the study area.
TABLE 2 | Comparison of mechanical parameters of bedrock prototype and model materials.
[image: Table comparing geological and laboratory models of bedrock. Both models have a density of 2.6 grams per cubic centimeter. The geological model has an elastic modulus of 27,800 MPa, compressive strength of 200 MPa, cohesion of 18,000 MPa, and an internal friction angle of 42 degrees. The laboratory model has an elastic modulus of 278 MPa, compressive strength of 2.0 MPa, with cohesion and internal friction angle not specified.]3.3 Experimental program
To obtain the dynamic response characteristics and failure modes of the spoil heap, dynamic loading is applied using sinusoidal waves interspersed with natural waves (Figure 6). In addition to unidirectional X-axis vibrations, bidirectional composite vibrations in the Z and X directions are applied to simulate natural wave effects. Prior to localized deformation or overall failure, the maximum possible input wave loading is completed to gather sufficient vibration data for a comprehensive analysis of the model’s dynamic response. The loading sequence for input wave conditions is designed according to amplitude, frequency, and duration, progressing from low to high (Table 3), in line with the loading principles. Based on seismic case study analysis in the research area, the dominant frequency of earthquakes is typically below 20 Hz. Consequently, the input wave frequencies for this experiment are set at 6, 12, and 18 Hz, with subsequent loading frequencies increased to 30 Hz to induce model failure. The effective duration of each seismic loading is approximately 20 s, while the shaking table test input waves last about 18 s.
[image: Graph (a) displays seismic acceleration over time in seconds, peaking around 40 seconds. Graph (b) shows Fourier amplitude against frequency in Hertz, with multiple peaks between 0.1 and 10 Hz.]FIGURE 6 | Natural wave acceleration spectrum and Fourier spectrum. (A) Natural wave acceleration spectrum (B) Fourier spectrum of natural waves.
TABLE 3 | Shaker model test loading system.
[image: A table displaying 24 loading scenarios with columns for loading number, amplitude, waveform, direction, frequency, and time. Amplitudes range from 0.05 g to 1.0 g. Waveforms include white noise, natural wave, and sine wave. Directions are noted as "X" or "ZX." Frequencies are either 18 Hz, 6 Hz, or 30 Hz. Time is consistently 18 or 30 seconds.]4 RESULTS
4.1 Settlement displacement
The collected point cloud data were processed to better understand the settlement process of the model during the experiment. Rectangular regions of point cloud data, where significant settlement was observed, were selected for analysis. These regions included the rear edge platform of the test model and the third and fourth stages.
The result of point cloud data processing is the change in displacement of the model surface under different conditions. Horizontal displacements of the model surface are inevitable during the vibration process, resulting in a slight accumulation, labeled as a positive displacement value. Additionally, label the vertical settlement displacements as negative displacement values. When the displacements in the observation area are predominantly negative, it indicates that the settlement of the model surface exceeds the accumulation, resulting in settlement deformation of the model.
To enhance clarity, the loading process was divided into three stages: early stage (0.1 g–0.35 g), middle stage (0.35 g–0.6 g), and late stage (0.6 g–1.0 g) (Table 4). Point cloud data from various loading stages were processed and compared using Cloud Compare software. During the early stage of vibration loading (Figures 7A), the model demonstrates typical settlement behavior under loading conditions 1–4, 4–7, and 7–10, with a maximum local settlement of 0.59 cm and an overall average settlement of 0.193 cm.
TABLE 4 | Stages of the test process.
[image: Table showing experimental stage divisions with corresponding loading number ranges and magnitudes. Initial stage: 1-10 numbers, 0.1-0.35 g. Intermediate stage: 10-16 numbers, 0.35-0.6 g. Final stage: 16-24 numbers, 0.6-1.0 g.][image: Three graphs show horizontal position data under different GNSS conditions. The left graph (a) compares four conditions for Y081, with significant variation in the brown data. The middle graph (b) shows Y085, highlighting discrepancies in the red data. The right graph (c) of Y193, highlights discrepancies primarily affecting observations without SBAS corrections. Each graph includes clear legends and labels detailing the conditions and exclusion dates.]FIGURE 7 | Cumulative settlement of the model during vibratory load loading plots. (A) Cumulative settlement of the model during the early stage of vibration loading. (B) Cumulative settlement of the model during the middle stage of vibration loading. (C) Cumulative settlement of the model during the late stage of vibration loading.
In the mid-stage of vibration loading (Figures 7B), significant accumulation and particle movement at the rear edge platform of the deposit were observed (loading conditions 10–12), with an average accumulation of 0.351 cm. Although particle movement of surface predominated during this stage, settlement also occurred under conditions 14–16, with an average settlement of 0.11 cm.
In the late stage of loading (Figures 7C), the model experienced noticeable deformation and failure, trending toward collapse, with the rear edge accumulating toward the front edge. During this phase, cumulative settlement primarily reflects the vertical displacement of the collapsed spoil heap rolling toward the front edge, with settlement characterized mainly by loss, reaching a maximum of 3.12 cm.
4.2 Accelerated response
Following the input of seismic waves, the acceleration response and patterns provide essential data for analyzing the model’s dynamic behavior. To facilitate analysis and accurately reflect the model’s response, Figure 8 shows the acceleration response time histories for the spoil heap model under loading conditions 3 (0.15 g), 6 (0.25 g), and 9 (0.35 g). The acceleration of the spoil heap model initially increases rapidly before stabilizing at the end of the vibration. The figure shows that the A8-2 monitoring point, located at the toe of the spoil heap model near the shaking table surface, displays an acceleration time history curve that closely matches the input excitation acceleration for the corresponding loading conditions. As elevation increases, the A2-4 monitoring point at the shoulder of the model shows a significant amplification of acceleration.
[image: Three graphs labeled (a), (b), and (c), show time on the x-axis, amplitude on the y-axis, with signals in blue and green. The blue signal amplitude is wider than the green in all graphs, depicting variations over time.]FIGURE 8 | Acceleration time histograms for different loading conditions. (A) Monitoring points: A2-4, A8-2 (under working condition 3). (B) Monitoring points: A2-4, A8-2 (under working condition 6). (C) Monitoring points: A2-4, A8-2 (under working condition 9).
Figure 9 shows the displacement changes at the monitoring points during the early vibration phase (0.1 g–0.3 g), derived from the double integration of acceleration data. The downward vertical direction and the horizontal direction toward the front edge of the model are defined as positive displacements. Under dual-directional excitation (horizontal and vertical), a comparison of displacement amplitudes shows that the vertical deformation response is more pronounced during the early vibration phase.
[image: Nine graphs showing horizontal and vertical displacements over time. Each graph contains red and black lines representing different data points, with additional trend lines and annotations. The x-axis is labeled "Time" and the y-axis measures displacements, providing insights into variations or correlations within the data set.]FIGURE 9 | Displacement at each monitory point. (A) point A1-1 at 0.1 g; (B) point A2-4 at 0.1 g; (C) point A3-4 at 0.1 g; (D) point A1-1 at 0.2 g; (E) point A2-4 at 0.2 g; (F) point A3-4 at 0.2 g; (G) point A1-1 at 0.3 g; (H) point A2-4 at 0.3 g; (I) point A3-4 at 0.3 g.
Figures 9B, D, F, G shows that throughout the early loading phase, vertical displacements are consistently greater than horizontal displacements, indicating that vertical movement predominates, with horizontal movement as a secondary response. Vertical displacements at the rear edge platform of the model remain relatively stable, suggesting a stronger vertical deformation response at this location. However, in Figures 9A, E, H, I, localized vertical displacements are observed to be negative and smaller than the horizontal displacements. Based on the particle ejection phenomenon described in previous studies (Liu H. X. et al., 2014), the accumulation and jump behavior observed at the rear edge of the spoil heap in this experiment may result from the model surface being at a free interface. Under the effects of elevation amplification and bidirectional excitation, many particles undergo translation and rolling at the surface, while a few experience collisions that generate vertical jumps. This leads to minimal displacement variations or no significant change in the model’s displacement.
4.3 Natural frequency and damping ratio
This section uses the MATLAB tfestimate function to analyze the evolution of the damping ratio and natural frequency of the model under seismic loading (Meng et al., 2021). To investigate the model’s settlement during the early loading stages, white noise frequency sweep results were calculated for loading conditions 1–4, 4−7, and 7–10, based on the spoil model’s measurement point layout (Figure 7). Figures 10A shows results with the A2-3 monitoring point as the excitation signal and the A2-4 monitoring point as the response signal. Figures 10B illustrates results with the A3-3 monitoring point as the excitation signal and the A3-4 monitoring point as the response signal.
[image: Two graphs compare damping parameters and natural frequency against test conditions. Graph (a) shows damping ratio, damping rate, and natural frequency. Graph (b) shows damping ratio, damping rate, and natural frequency with different scaling. The natural frequency decreases while damping metrics fluctuate across test conditions.]FIGURE 10 | Variation of self-oscillation frequency and damping ratio of the test model. (A) Changes in the natural frequency and damping ratio at the rear slope shoulder (B) Changes in the natural frequency and damping ratio at the fourth-level haul road.
The settlement at the rear edge of the model during the early loading phase (0.1 g–0.35 g) is characterized by similar trends in natural frequency and damping ratio, as shown in the variation curves in Figure 10 for two different locations under loading condition 1–4. In Figures 10A, the natural frequency increases significantly by 83.4%, while the damping ratio decreases by 24.1%. In Figures 10B, the natural frequency increases by 73.3%, and the damping ratio decreases by 26%. The initial rise in natural frequency, followed by a decline, and the initial decrease in damping ratio, followed by an increase, suggest that this behavior results from the relatively low intensity of vibrations at the start. Upon loading initiation, the particle medium of the spoil heap is subjected to sudden external seismic forces, disrupting the supporting structures between particles and breaking the original equilibrium. The particle medium enters a temporary disordered state, and during subsequent vibrations, particles undergo motion and reorganization, transitioning from a loose, chaotic state to a stable, dense state, thereby enhancing the model’s stability under vibration. In loading condition 4–7, the natural frequency and damping ratio stabilize. In loading condition 7–10, a sudden change occurs at the rear edge platform, with natural frequency decreasing by 11.58% and damping ratio increasing by 15.5%. This change is hypothesized to result from the location reaching a balanced state after the previous loading conditions. Under additional vibrational loading, internal particles exhibit behaviors such as filling voids, arching, and self-organization, causing anomalies in the curves. The natural frequency and damping ratio at the fourth-level platform show upward and downward trends, respectively, similar to those in loading condition 1–4, with increases of 16.8% and decreases of 11.5%. This suggests that the region is undergoing further densification under vibration.
4.4 Deformation failure characteristics
Seismic waves were applied in a sequence from low to high amplitudes to observe the complete development of model deformation and failure. The test results show that the model remained relatively stable until the 0.6 g condition. However, once the sine wave acceleration amplitude reached 0.6 g, noticeable local deformation and damage were observed on the model. The complete process of deformation to failure of the model is shown in the following Figure. Before the acceleration amplitude reached 0.6 g, the model underwent overall vibrational settlement (Figures 12A), resulting in significant settlement relative to the original slope interface, while the surface morphology remained largely unchanged. When the acceleration amplitude increased to 0.6 g, clear rolling and jumping of particles on the model surface were observed, along with significant and persistent collapse. At this point, the surface morphology began to change, with pathways gradually disappearing and accumulation occurring at the front edge, transforming the surface into a flat inclined plane (Figures 12B). After reaching the 0.6 g condition, continued loading caused downward sliding, leading to complete collapse and failure of the model (Figures 12C).
5 DISCUSSION
5.1 Deformation and failure modes
The analysis of acceleration, natural frequency, damping ratio, and damage phenomena in the results clearly demonstrates the impact of vibration-induced densification on the dynamic behavior of the spoil heap. This subsection will focus on the mechanism of vibration-induced densification.
Figure 10 shows that even under minor seismic activity, the vibration-induced densification phase of the model exhibits distinct characteristics. The densification phase can be divided into three stages, during the Self-Organized Settlement Phase, as seismic loading begins, particles transition rapidly from rest to motion, interlocking and filling voids under continuous external forces, which increases the model’s density. In the Self-Organized Dynamic Equilibrium Phase, the particles reach dynamic equilibrium, leading to overall model stability, where the seismic load no longer exceeds the threshold for internal failure. Finally, in the Self-Organized Expansion Phase, as seismic loading intensifies, it approaches the equilibrium threshold between particles. Continued loading disrupts this equilibrium, leading to deformation and structural failure. The three distinct phases of vibration-induced densification are shown in Figure 11. The stage of the particles within the spoil heap can be determined through in-situ soil density measurement tests conducted in the field. If the average of multiple measurements exceeds the initial density, the spoil heap is in the Self-Organized Dynamic Equilibrium Phase. Deformation in this phase helps maintain the stability of the spoil heap. If the measurement results are lower than the initial density, the spoil heap is in the Self-Organized Expansion Phase. Deformation in this phase accelerates the destruction of the spoil heap.
[image: Diagram showing three phases of particle organization: Settlement, Dynamic Equilibrium, and Expansion. In the Settlement Phase, particles are densely packed. The Dynamic Equilibrium Phase shows vibration-induced densification. The Expansion Phase illustrates disruption of equilibrium. Arrows indicate seismic wave influence. Legend identifies particle sizes and colors.]FIGURE 11 | The evolution of vibration-induced deformation of low-density particle material.
The complete failure process of the model is described in Section 4.4, This section summarizes and analyzes the deformation and failure modes of the test model, based on experimental observations, the deformation and failure modes of the spoil heap with low-density under minor seismic conditions are categorized into three stages. Rear Settlement and vibration-induced densification Phase. A schematic of this phase is shown in Figures 12A. Under low-density conditions, numerous voids exist within the spoil heap, after continuous minor seismic vibrations, the model does not fail, and no accumulation occurs at the front edge. Seismic forces are thought to enhance the arching and void-filling effects among the particles, gradually filling larger voids. The particles self-organize, transitioning from a disordered to a more ordered state, resulting in closer contacts among particles. Surface Disintegration Phase. A schematic of this phase is shown in Figures 12B, after vibration-induced densification, the spoil heap gradually stabilizes. However, under stronger seismic loading and elevation amplification, the equilibrium between particles is disrupted, causing disintegration in stress concentration areas such as the crown and slope shoulder. Under excitation, some particles jump, eject, or accumulate, while most of the remaining particles continue to roll toward the front edge, gradually leveling the surface. Internal Sliding Phase, a schematic of this phase is shown in Figures 12C. In this stage, the structure of the spoil heap is completely destroyed, and the internal particles are out of equilibrium. Under the influence of seismic inertial forces and gravity, the spoil heap flows like sand, sliding downward and accumulating at the front edge.
[image: Diagram and photographs illustrating soil layer changes after an earthquake event. (A) Initial slope before and after the earthquake with a visible surface alteration. (B) Partial particle line deposition and surface failure depicted, with photographs showing surface flows and lower accumulation areas. (C) Original slope and particle flow changes highlighted, with images showing the disappearance of the horizontal road and altered surface signs.]FIGURE 12 | Deformation and Failure Modes. (A) Settlement at the rear slope and Compaction stage of the spoil mass. (B) Surface failure and disintegration stage of the spoil mass. (C) Downward sliding and misalignment stage of the spoil mass.
5.2 Self-organizing mechanism of particles in vibration-induced densification
In addition to the low-density model discussed, experiments were also conducted on a high-density model as a control group. The high-density model was constructed with a compaction level of 0.8, while all other conditions were identical to those of the low-density model. The amplification factor of peak ground acceleration (PGA) at any monitoring point is defined as the ratio of the peak acceleration response at that point to the peak acceleration at monitoring point A8-1. The elevation is measured from the bottom of the model as the vertical distance from each monitoring point to the reference plane. Figure 13 compares the PGA amplification factors of two models with identical experimental conditions but different compaction levels. Using Working Conditions 3 (0.15 g) and 6 (0.25 g) as examples, the model’s bottom serves as the reference plane. The figure shows the incremental changes in the PGA amplification factors at different elevations on the rear edge platform of both models. As the amplitude increases, the incremental PGA amplification factor at each point in the low-density model is consistently higher than that of the high-density model, with the largest difference reaching 4.5% and the smallest at 0.27%. Under the influence of initial minor seismic activity, the low-density model shows a progressively higher response due to the self-organizing densification effect (Liu Q. W et al., 2014).
[image: Two line graphs compare the vertical height versus PGA amplification factor for high and low density degrees. The left graph shows high density with red and orange lines, indicating increments of 1.4% to 2.4%. The right graph shows low density with blue and cyan lines, indicating increments of 1.4% to 6.9%. Different colors represent PGA values of 0.15g and 0.25g.]FIGURE 13 | Comparison of PGA amplification factor increments for different compaction models.
Research on bulk materials typically uses spherical or cubic particles as ideal models for granular materials.
Previous studies (Peng et al., 2024) on non-cohesive cubic particle stacks have shown that force transmission occurs through random contact points. When particles are arranged symmetrically, the application of external loads is influenced by their arrangement, leading to both symmetrical and asymmetrical behaviors. After external loads are applied, asymmetrical force transmission causes a decrease in peak force displacement with increasing transmission distance, resulting in a parabolic transmission range. Force transmission between particles primarily occurs in two forms, including unidirectional and diffusive transmission (Figure 14). When particles are arranged asymmetrically, force transmission can cause uneven stress distribution. Asymmetrical conditions dominate in waste accumulation material, significantly increasing stress unevenness (Yang et al., 2021).
[image: Diagram comparing two geometric patterns: (a) shows a grid of overlapping circles in a square lattice, and (b) shows the same circles arranged in a rhombic pattern with interconnected triangles.]FIGURE 14 | Schematic diagram of force transfer between particles. (A) Unidirectional transfer. (B) Diffusive transfer.
Under external loads, the granular medium and its particles deform, leading to relative displacements and self-organizing behavior (Li et al., 2024). The primary interaction forces between loose particles are shear resistance (friction and interlocking forces), which help maintain the stability of the granular material. When the forces on the particles exceed shear resistance, the granular material loses stability and undergoes movement-induced failure.
Vibrational loading introduces external forces that disrupt the original equilibrium, causing the particles to rearrange. Larger particles provide mutual stability and support, while smaller particles fill the gaps between them. This reduces porosity and increases density. These movements enhance the physical and mechanical properties of the material (Duan, 2010). Figure 15 shows the particle vibration-induced densification and force analysis (assuming ideal spherical particles) under seismic load F In the absence of boundary constraints on the slope, all particles are in motion. Taking particle D as an example, it experiences reaction forces from particles A and B, dynamic loads from particles F and G, and total shear resistance f from its neighbors. Although surrounded by other particles, D can maintain stability only through shear resistance. Once the external force exceeds D’s shear resistance, it will begin to move. In the spoil heap, particle D remains stable when the shear resistance exceeds the applied forces. Conversely, when shear resistance is lower than the applied forces, particle D becomes unstable, resulting in displacement and settlement. Similarly, the upper particles settle downward, causing the entire model to undergo settlement. At this point, the ratio of spoil heap settlement to lateral deformation is approximately 1:1. Previous studies (Gao, 2008) have shown that particle shape and roughness significantly influence inter-particle shear resistance. Greater particle deformation and roughness enhance shear resistance, thereby increasing stability.
[image: Diagram on the left shows seven connected circles labeled A to G, forming a hexagonal pattern with D at the center. The diagram on the right highlights circle D with directional lines pointing to N₁, N₂, N₃, N₄, and G, indicating connections or forces.]FIGURE 15 | Particle D force analysis.
5.3 Influencing factors of vibration-induced densification
Vibration-induced densification of granular materials is primarily driven by two factors, densification influenced by self-organization and particle packing, and external loads causing particle breakage (Golovanevskiy et al., 2011). As dynamic loads increase, densification intensifies while particle self-organization diminishes. Section 4.2 analyzes significant differences in the acceleration response of the model after vibration-induced densification at varying compaction levels. The second factor involves external loads generating compressive stresses greater than a particle’s crushing strength, causing breakage and subsequent settlement of the bulk material (Jia et al., 2011). When seismic activity affects spoil heaps, particles transition from a stable to a dynamic state, causing varying degrees of deformation. Research (Li et al., 2021; Wartman J. et al., 2005) shows that the relative motion between granular particles exhibits stick-slip behavior. External forces on the spoil heap material induce self-organized settlement, usually in localized regions. Particle movement must overcome shear resistance, transitioning from static to dynamic states instantaneously under shear stress, leading to stick-slip behavior. The periodic nature of stick-slip motion promotes self-organization within the particle pile. Stick-slip is the underlying cause of self-organization, with larger displacements and amplitudes indicating a stronger self-organization effect (Cengiz and Guler 2020).
6 CONCLUSION
This study, based on large-scale vibration table model tests of spoil heaps, reveals the phenomenon of particle vibration-induced densification in low-density spoil heaps under minor seismic conditions. The spoil heap undergoes vibration-induced densification when subjected to seismic forces, especially under low-amplitude loading. Vibration-induced densification enhances elevation amplification.
As particle self-organization occurs, the density of the spoil material increases, enhancing the stability of the spoil heap. However, this also results in a stronger amplified response. Vibratory-induced densification accelerates the destruction of the spoil heap under more intense seismic.
Vibration-induced densification is a staged process, which can be classified into three phases: self-organizing settlement, dynamic equilibrium, and expansion. The deformation and failure modes of low-density spoil heaps can be categorized into three stages: settlement densification, disintegration, and downward sliding. The numerical simulation method can be applied in future work to further analyze the particle transport process and the interactions between particles during the vibration process at the spoil heap.
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Assessing the lethal resistance levels of buildings during earthquakes is crucial for reducing disaster losses and human casualties. This study proposes a novel model that integrates an improved genetic algorithm (IGA) with an optimized backpropagation neural network (OBPNN) to address data imbalance in classifying building types for lethal resistance levels assessment. The Synthetic Minority Class Oversampling Technique was applied to balance class distributions in the training set by oversampling minority classes. To address overfitting, L2 regularization was combined with a genetic algorithm to optimize the backpropagation neural network (BPNN)'s weights and biases, enhancing global search capability and classification accuracy. Momentum parameters and the Adam optimizer were incorporated to smooth gradient updates, prevent oscillations during training, and accelerate convergence. Additionally, domain adaptation techniques were employed to improve test set performance through feature adaptation, enhancing the model’s robustness under varying data distributions and its generalization ability. The experimental results show that the proposed improved model achieves excellent performance in classifying the level of lethal resistance levels of buildings, with an accuracy of 97% and an AUC value of 1, which indicates that the model’s generalization and discriminative abilities are more excellent.
Keywords: genetic algorithm, Back Propagation, Synthetic minority class oversampling Technique, building lethality resistance Levels, Earthquake

1 INTRODUCTION
Assessing the seismic capacity and level of lethal risk of buildings is essential to minimize disaster-related losses and casualties. Accurate categorization of building types and their vulnerability to seismic events is vital in designing effective mitigation strategies. Feng et al. assessed the seismic resilience of urban neighborhoods through the spatial factors of the community (Feng et al., 2007). Ellingwood et al. assessed the building vulnerability of steel frames with welded connections through probability-based uncertainty in response to future building seismic strengthening (Ellingwood, 2001). Yang et al. calculated the damage state of buildings under the influence of 7-degree and 8-degree earthquakes according to the capability spectrum method, based on which they carried out urban seismic planning by classifying urban buildings into four categories, namely, reinforced concrete, masonry, steel frames, and wood structures, and then obtained the probability of the various damage states of the buildings and the seismic damage indices by using the capability spectrum method (Yang et al., 2010). Betti analyzed Romanesque masonry churches by using quasistatic methods to evaluate seismic loads to assess their structural behavior and their seismic vulnerability in their actual state of protection (Betti and Vignoli, 2008). Adhikari performs seismic vulnerability and risk assessment of school infrastructure in a region by identifying and categorizing these structures into a varying number of structure types characterized by vulnerability profiles and describing the representative index structures of the different types for detailed vulnerability quantification (Adhikari et al., 2023). Alothman compares the vulnerability analysis of buildings of different heights exposed to ground motions with different characteristics, three different seismic packages are used to study the seismic performance assessment of frame buildings, and the finite element software Open Sees is used to assess the seismic performance of three multistory RC buildings (Alothman et al., 2023). Li incorporates a Gaussian regression algorithm to propose a nonlinear regression model that can be used to assess the seismic vulnerability of regional hospital and school buildings (Li et al., 2024). Fan (2014) combined with the latest research progress of machine learning algorithms, and proposed a single building seismic damage assessment method based on improved genetic algorithm optimized BP neural network. Taking Sichuan as an example, an assessment model is established by optimizing the BP neural network through the improved genetic algorithm, and the damage levels of different structural types of single buildings in the region are outputted to assess the damage of single buildings under the combined effect of various seismic influencing factors, so as to evaluate the seismic damage of single buildings.
Evaluating the risk of buildings under seismic effects mainly relies on statistical methods. However, with the rapid development of information technology, machine learning methods have shown great efficiency and accuracy in dealing with complex nonlinear problems due to their strong adaptive ability and fault tolerance. In recent years, numerous researchers have realized the great potential of machine learning algorithms and their derived methods in the field of disaster assessment, such as earthquakes, and have conducted related studies (Bergen et al., 2019; Reichstein et al., 2019). Although these studies have achieved significant results in advancing the field of earthquake hazard assessment, they tend to focus on the application of standard machine learning algorithms and fail to adequately address key issues such as data imbalance, overfitting, and insufficient model generalization capabilities. Yu et al. developed a three-layer BPNN earthquake disaster casualty prediction model for earthquake disaster casualty assessment (Yu et al., 2005). Yang, Wu et al. Establishment of BPNN for fast prediction of post earthquake casualties (Yang et al., 2009; Wu et al., 2017). Beyza has developed an artificial intelligence based loss assessment algorithm that can accurately and quickly differentiate between structural and non-structural damage (Gultekin and Dogan, 2024). Chen et al. screened 42 historical earthquake cases and constructed a particle swarm optimization extreme learning machine earthquake fatality prediction model by performing principal component analysis on earthquake related impact indicators (Chen et al., 2024). Kim constructed a simulated dataset using a probabilistic deep neural network model, which replaces the widely used nonlinear static procedure, to improve the accuracy of individual structural response prediction for pre-earthquake loss assessment for assessing regional losses (Kim et al., 2020). Li analyzed the influencing factors of building seismic capacity, determined the basic causal events of the assessment objectives based on the broken tree analysis (FTA), classified and summarized the basic causal events in the FTA model, and constructed the judgment system for building seismic capacity. The weight of each index factor in the system was calculated using the Gini index and the importance of the index was analyzed (Li et al., 2023). However, when dealing with earthquake related data, it is challenging to achieve high accuracy in such assessments due to the inherent category imbalance in real world data, where samples of severely vulnerable buildings are typically small (Nie et al., 2021). This imbalance can significantly hinder the performance of traditional machine learning models, which tend to be biased towards the majority of categories, resulting in suboptimal predictions for the few categories that are critical for disaster risk management.
Although the aforementioned studies have made remarkable progress in the field of seismic hazard assessment, either focusing on the optimization of the model structure, or on the prediction of specific loss types, or on the analysis of influencing factors, few of them have been able to comprehensively address the key issues of data imbalance, model overfitting, and limited generalization ability. These methods mentioned above face many challenges when dealing with large datasets and high-dimensional inputs.
Traditional statistical methods tend to have high computational complexity when dealing with large datasets and have difficulty capturing complex relationships and patterns in the data. In addition, when the inputs are high dimensional, traditional methods can suffer from “dimensionality catastrophe”, which can lead to a dramatic performance degradation. In contrast, machine-learning-based approaches show significant advantages in dealing with such problems.
Specifically, machine learning algorithms, especially deep learning algorithms, have powerful feature extraction and pattern recognition capabilities. They are able to automatically extract useful features from high-dimensional input data and capture nonlinear relationships in the data through complex network structures. This allows machine learning algorithms to maintain high accuracy and efficiency when dealing with large datasets and high-dimensional inputs.
Therefore, to address the above issues, the contribution of this study is as follows:
In this study, an innovative hybrid model is proposed to solve the problems of unbalanced dataset, overfitting, and insufficient model generalization ability in the assessment of building seismic damage by using representative villages in 18 townships, including Calamus Township, Daying Township, Xin’an Township, and Jinji Township, in Anhui Province, as the study area. The model combines genetic algorithm (Holland, 1992; Kramer and Kramer, 2017; Reeves, 2010; Coello, 2000) and OBPNN (Ding et al., 2011; Jin et al., 2000; Li et al., 2012; Chen et al., 2023) to improve classification accuracy and robustness. Genetic algorithms are used to optimize the parameters of the BPNN to avoid falling into local optimal solutions and to improve the global search capability. This combined approach is able to search the parameter space more efficiently when dealing with large datasets, thus finding better model parameters. In addition, to address the problem of unbalanced datasets, we employ the SMOTE technique (Wang et al., 2021; Jeatrakul et al., 2010; Jiang et al., 2016). This technique makes the dataset more balanced in terms of categories by synthesizing minority class samples, which improves the prediction accuracy of the model for minority class samples. We also introduced L2 regularization to reduce the risk of overfitting (Yang and Ma, 2017; Lv and Shen, 2015; Shi et al., 2024). L2 regularization improves the generalization ability of the model by penalizing the sum of squares of the model parameters so that the model will not be overly complex during the training process. Meanwhile, the integration of momentum parameters and Adam optimizer accelerates the model convergence. In addition, the introduction of domain adaptation technology enhances the generalization ability of the model (Fan et al., 2021; Liang et al., 2019; Weiss et al., 2016; Wang and Deng, 2018), which provides a powerful tool for seismic risk assessment and helps to improve the disaster prevention and resilience of urban planning.
Therefore, this machine learning-based approach effectively solves the problems that are difficult to be solved by traditional methods through automatic feature extraction, complex pattern recognition, parameter optimization, and dataset balancing when dealing with large datasets and high-dimensional inputs. This makes machine learning algorithms have a broad application prospect in the field of earthquake hazard assessment.
2 ANALYSIS AND QUANTIFICATION OF FACTORS INFLUENCING THE LEVEL OF LETHAL RESISTANCE LEVELS IN EACH BUILDING
2.1 Determination of anti lethal level factors for each building
When a building encounters an earthquake, its lethal resistance levels are determined by a variety of factors. The so-called lethal level is the comprehensive possibility or level of various factors that may cause the death of people after an earthquake in a certain area. The best indicator to describe lethal is the mortality rate caused by the earthquake. The results of various death factors caused by each earthquake are comprehensively reflected in the mortality rate of the disaster area, especially the mortality rate by intensity (Xia et al., 2020). In this paper, considering the comprehensive reasons such as field investigation and lethal resistance levels calculation, based on the field investigation Table 1, we extracted the factors affecting the lethal resistance levels of each type of building according to the adjusting factors in the lethal resistance levels of various types of buildings as shown in the table, including the type of building and roof, structural columns, trap beams, maximum column spacing, and the maximum span of the beams, Maximum floor height, mean value, building age and other eight influencing factors as the input indexes of the model in this paper. And the buildings are classified according to the lethal resistance levels classification shown in the Table 2.
TABLE 1 | Anti lethal resistance levels for various types of buildings.
[image: Table displaying types of building structures, including steel construction, framework, wood frames, brick hybrid structures, masonry, and civil engineering. Each type has secondary classifications, adjustment factors like building age and structural elements, and lethal resistance level intervals ranging from 0.95 to 0.1.]TABLE 2 | Grading of lethal resistance levels.
[image: Table showing anti-lethal resistance levels and corresponding lethal resistance level intervals. Levels A to K range from 0% to 100% anti-lethal resistance, with lethal resistance intervals from 0%–10% to 95%–100%.]There are 579,057 buildings in the entire dataset and the lethal resistance levels were categorized into 11 classes of A-K. The lethal resistance levels of the buildings are categorized and calculated with the following methods and formulas:
	(1) Calculation of lethal resistance levels at the administrative village (neighborhood committee) level: according to the actual situation of the research sites.

[image: The formula shown is "AL equals the summation from i equals one to n of P sub i times L sub i". It is labeled as equation one.]
where AL (Anti-lethal) is the lethal resistance levels at the research site, Pi is the proportion of buildings in category i, and Li is the lethal resistance levels (coefficient) for buildings in category i.
	(2) Calculation of the lethal resistance levels at the township (street) level: Calculation by combining the lethal resistance levels of the research sites.

[image: Mathematical equation showing \( A_{L_{town}} = A_{L_{township}} \times \alpha + (A_{L_{country1}} \times \gamma + A_{L_{country2}} \times \delta) \times \beta \), followed by equation number (2).]
Where ALtown is the lethal resistance levels of the township as a whole, ALtownship is the lethal resistance levels of the research site where the township is located, ALcountry1 and ALcountry2 are the lethal resistance levels of the rural research sites of the township, α is the proportion of the population of the township to the population of the entire township, β is the proportion of the rural population to the population of the entire township, and α + β = 1, γ is the proportion of the population of the rural site 1, and δ is the proportion of the population of the rural site 2, and γ + δ = 1. γ is the proportion of population in rural research site 1, δ is the proportion of population in rural research site 2, γ + δ = 1 (Xia et al., 2020).
2.2 Quantification of anti lethal level factors for each building
The BPNN algorithm can only deal with numerical data, and the above influencing factors used to assess the lethality rating are mostly textual data, so this paper synthesizes the relationship between the lethality rating and various types of buildings in Table 1 and quantifies the influencing factors through the quantitative criteria given in Table 3.
TABLE 3 | Quantitative criteria for impact factors.
[image: Table listing impact factors, types, and corresponding values. Categories include building and roof type, structural columns, ring beam, column spacing, beam span, floor height, mean value, and building age. Specific values are assigned to types such as steel mix cast, elevator corners, and lethal resistance levels from E to J.]After clarifying the above-influencing factors and their quantification criteria, it should be pointed out that although “lethal resistance levels” (with a value ranging from 5 to 10, where 9 represents one of the higher lethal resistance levels) are used as an important index for assessing the structural performance of buildings in this paper, it is not a direct objective of this paper per se. In fact, the core research objective of this paper is to explore and quantify the effects of different building structural features (e.g., building and roof cover types, structural column configurations, ring beam conditions, etc.) on the lethal resistance levels and how these influencing factors combine to contribute to the overall building resistance performance. By deeply analyzing the association between these influencing factors and the lethal resistance levels, we aim to propose strategies and recommendations for improving the structural design of buildings to enhance their disaster resistance. Therefore, the value of 9 (i.e., the higher level in the lethal resistance levels scale) is used more as an assessment benchmark and outcome variable in this study to verify and quantify the validity of our proposed hypotheses and models.
3 MODELING OF LETHAL RESISTANCE LEVELS IN BUILDINGS
3.1 Data preparation
This study is based in Anhui Province, China, and the study area map is shown in Figure 1 From the disaster data investigated and counted by the Anhui Provincial Seismological Bureau, representative data on building structure types of villages and townships in 18 townships in Anhui Province of China, such as Calamus Township, Daying Township, Xin’an Township, and Jinji Township, are collected and collated, and from them, eight influencing factors and seismic-resistant level data are screened out to form the sample data set of this paper, which is used to construct seismic-resistant level for various types of buildings, and part of the sample data are as shown in Table 4. The lethality ratings in the dataset are classified by professional evaluators based on the results of field evaluations at the building sites and by the lethality rating methodology for buildings commonly used in China.
[image: Map of China with Henan province highlighted in blue. Henan is located in the central part of the country.]FIGURE 1 | Regional map of anhui province, China.
TABLE 4 | Selected sample data for classification of buildings into lethality resistance levels.
[image: Table showing structural details of buildings including cover type, tectonic column, ring girder, and other measurements. Dates of construction range from 1985 to 2023 with anti-lethal level ratings from E to H.]3.2 Data preprocessing
Aiming at the problem of limited and unbalanced data sources in seismic hazard risk assessment, this paper adopts a dual strategy to optimize the model: applying the SMOTE technique to increase a few categories of samples in the training set to balance the data distribution, and at the same time, utilizing the domain adaptive technique in the testing set (through the MMD loss function) to achieve adaptive matching of the feature distributions, so as to effectively enhance the model’s generalization ability and prediction accuracy.
3.2.1 Sample equalization
In this paper, based on the characteristics of the data source, data enhancement techniques are added to the model, using the SMOTE technique with Feature Adaptation in order to realize the problem of unbalanced class samples in the dataset. In this study, the representative villages and towns are used as examples to optimize the original unbalanced data, and the results after equalization by the SMOTE technique are shown in Table 5.
TABLE 5 | Sample dataset equalization.
[image: Table showing data volumes for various townships before and after SMOTE optimization. Calamus and Xin’an Townships remain unchanged at one thousand two hundred thirty-five and one thousand four hundred fifty-seven, respectively. Daying Township grows from two hundred forty-nine to one thousand one hundred ninety-eight. Jinji, Wangren, Zhangou, and Yongxing Townships experience increases from their original volumes to one thousand three hundred nine, one thousand two hundred twenty-six, one thousand one hundred seventy-two, and one thousand one hundred seventy-five, respectively.]3.2.1.1 SMOTE technique for training set equalization
The SMOTE algorithm generates new samples based on the k nearest neighbors of the minority class samples (commonly k = 5) to ensure the diversity and representativeness of the new samples. By this method, the proportion of samples in the training set is balanced, and the discrimination ability of the classification model on minority classes is significantly improved.
3.2.1.2 Feature Adaptation technique for test set domain adaptation
MMD loss optimizes the model by calculating the difference between the source and target domain features and using this difference as part of the loss. During training, the model tries to reduce the difference in distribution between the source and target domains to achieve better feature adaptation.
3.2.2 Sample normalization
Due to the different dimensions of the attributes of different influencing factors, there is an order of magnitude difference, which may affect the accuracy of the model output results. For this reason, this paper adopts the data extreme value method to normalize the attributes of each influencing factor and transform them into dimensionless pure values.
3.2.3 Data set segmentation
In this paper, the dataset is divided into a training set and a test set by randomly disrupting it in the ratio of 8:2 to ensure the generalization ability of the model. Specifically, the split_data_set function first receives the feature set (data_set) and label set (target_set), as well as the division ratio (rate) and whether to disrupt (ifsuf) as parameters. The function randomly disrupts the index of the dataset through the random_number method, thus eliminating the potential effect of data order on the model. Then, the training and test sets are divided according to the given division ratio, where the size of the training set is 1-rate times the size of the whole dataset and the size of the test set is rate times. In this way, the data set is divided randomly and representatively, providing a more reasonable database for model training and testing.
3.3 BPNN model structure design and optimization
3.3.1 Introduction to BPNN
BPNN is a classical feed-forward artificial neural network, which consists of input, hidden, and output layers. It adjusts the weights in the network through the backpropagation algorithm to optimize the prediction performance. BPNN are widely used in the fields of pattern recognition, data classification, and function approximation, with powerful adaptive and nonlinear fitting capabilities.
3.3.2 BPNN model structure design
In the study of this paper, a BPNN is used to evaluate the lethality resistance level of buildings. The network consists of three main parts: the input layer, the hidden layer, and the output layer. The topology of the BPNN is the specific network structure design, and topology is shown in Figure 2.
[image: Neural network diagram showing three layers: input, hidden, and output. The input layer comprises factors like building cover type and date of construction. The hidden layer connects to the input factors. The output layer predicts building lethality levels E to J.]FIGURE 2 | Topology of BPNN.
3.3.2.1 Input layer
The number of neurons in the input layer corresponds to the factors related to the lethal resistance level of the building, and a total of eight input nodes are set up, which are: eight factors related to the lethal resistance level of the building, such as building and roof cover type, structural columns, ring beams, maximum column spacing, maximum beam span, maximum storey height, maximum column spacing, the mean value of the maximum span of the beams and the maximum storey height, and the age of the building. These factors are used as inputs to the network for predicting the damage level of the building. The mathematical expressions are given below:
[image: Please upload the image or provide a URL so I can generate the alt text for it.]
where [image: A series of mathematical symbols representing variables \( x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \) displayed in a linear sequence.] represent the eight input factors described above.
3.3.2.2 Hidden Layer
The number of nodes in the hidden layer was tuned through repeated experiments and finalized to 17 neurons. Each hidden layer neuron is computed by weighting and activation functions to get the output of that layer. The output of the hidden layer can be expressed as:
[image: It seems there's no image attached for reference. Please upload the image or provide a URL so I can create the alt text.]
where [image: Mathematical expression depicting \( h_j(j = 1, 2, \ldots, 17) \).] is the neuron output of the hidden layer.
3.3.2.3 Output Layer
The number of neurons in the output layer corresponds to the number of states of the building’s damage level, which is set to 5 output nodes, representing the 5 damage levels of the building. The nodes of the output layer represent the predicted damage levels of the building, which can be represented by the following mathematical expression:
[image: It seems like you've provided a mathematical expression instead of an image. If you intended to share an image, please upload it so I can assist with creating the alt text.]
Where [image: Mathematical notation representing \( y_j(i = 1, 2, \ldots, 5) \).] denotes the corresponding level of lethality resistance of the building, and the activation value of each output node reflects the probability or confidence that the building belongs to that level of damage.
In this structure, the connection weight between the input layer and the hidden layer is [image: It seems like there might be an error, as no image is provided. Please upload the image or provide a URL, and I will create the alternate text for you.], the connection weight between the hidden layer and the output layer is [image: Mathematical notation representing the variable \( V \) with subscripts \( i \) and \( j \).], and [image: Text displaying "ReLU()" in italicized font, representing the Rectified Linear Unit activation function used in neural networks.] is the activation function between the input layer and the hidden layer, which can effectively alleviate the problem of gradient vanishing and enhance the nonlinear representation ability of the network.
[image: Graph of the ReLU (Rectified Linear Unit) function, which plots \(y = \max(0, x)\). The x-axis represents input values, and the y-axis shows the output, with a linear increase from the origin for positive x and zero for negative x.]
And the hidden function between the hidden layer and the input layer is [image: The text "LogSoftmax()" is displayed in a stylized italic font.]. nn.LogSoftmax (dim = 1) denotes a softmax operation on the second dimension (i.e., the output dimension), and then takes its logarithm with the expression:
[image: Mathematical expression showing the log-softmax function: \( \text{LogSoftmax}(x_i) = \log \left( \frac{\exp(x_i)}{\sum_j \exp(x_j)} \right) \). Equation labeled as 7.]
This activation function is used in this model to compute the probability distribution more consistently and avoid numerical overflow when performing the cross entropy loss function. The final output reflects the prediction of the building damage level, and the network optimizes the weights by backpropagation algorithm to improve the accuracy of the prediction.
3.3.3 OBPNN model
The design and selection of the optimizer directly affect the training efficiency and convergence speed of the neural network. In this paper, in order to make the training process of BPNN more stable and efficient, this paper adds the optimizer with momentum to the original BPNN, which accelerates the convergence and reduces the gradient oscillations by introducing the historical gradient information; and through the Adam optimizer, the learning rate of each parameter is adjusted adaptively, which further improves the training efficiency and convergence. In addition, L2 regularization is achieved by setting the weight_decay parameter in the optimizer. For a basic loss function and the weight parameters of the model, the loss function with L2 regularization can be expressed as:
[image: Equation showing L total equals L plus gamma over three times the L2 norm of W squared, labeled as equation eight.]
where [image: It appears there is no image provided. Please upload the image or provide a URL, and I will help create the alt text for you.] is the total loss function with a regularization term; [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the original classification loss; [image: Double vertical bars enclosing the Greek letter mu subscript four, squared.] is the square of the L2 paradigm of the model weight [image: Please upload the image or provide a URL for me to generate the alt text.], i.e., the sum of squares of all weight parameters; and [image: If you have an image to provide, please upload it, and I can help create the alt text for you.] is the regularization coefficient, which corresponds to the weight_decay parameter.
3.4 GA-OBPNN model design
3.4.1 Introduction to genetic algorithm
GA is a global optimization algorithm that simulates the process of biological evolution and optimizes a population of candidate solutions through operations such as selection, crossover, and mutation to approximate the global optimal solution. It is widely used in solving complex problems with powerful search and optimization capabilities. However, traditional genetic algorithms have limitations in the optimization process, such as fixed crossover and mutation rates, slow convergence, easy to fall into local optimums, lack of domain knowledge guidance and a single way of fitness assessment.
3.4.2 GA-OBPNN model structure design
In traditional BPNN, the weight parameters are usually randomly initialized, which may cause the network to easily fall into local optima, especially in non-convex complex loss surfaces. In addition, traditional BPNN relies only on gradient descent for weight updating, which is slow to train and sensitive to initial weights. Therefore, to address the shortcomings in the traditional BPNN, as well as the shortcomings of the traditional genetic algorithm mentioned above, in this paper, the genetic algorithm is used to optimize the weights before the training of the BPNN model, so that the network starts to be trained under a more optimal initial value of the weights, which effectively avoids local optimums and accelerates the convergence of the model, and thus improves the model’s performance and the training effect. The specific improvements are as follows:
In this paper, by dynamically adjusting the crossover rate and variation rate, the parameter search space is increased, and the diversity of weight search is improved. It focuses on local optimization in the later stage, thus improving the convergence speed and global search ability. The formulas are:
3.4.2.1 Crossover operation:

[image: Mathematical equation showing a child's value as a weighted combination of two parents. Child subscript i equals theta times parent 1 plus one minus theta times parent 2.]
Where [image: It seems like there's an issue with the image link or upload. Please try uploading the image again or provide a URL for me to access it. If you have any additional context, feel free to include that as well.] denotes the crossover rate, ranging between [min_crossover, max_crossover].
3.4.2.2 Mutation operations:

[image: Equation displayed: \( \text{mutated}_{\text{gene}} = \text{gene} + \omega \cdot \text{random}_{\text{noise}} \).]
Where [image: Please upload the image you would like me to describe.] is the mutation rate, ranging between [min_mutation, max_mutation].
In this paper, the cross entropy loss of BPNN is introduced as an evaluation index in the evaluation of fitness, which makes the fitness of each individual in each generation reflect the effect of optimization more accurately, which in turn enhances the optimization efficiency and accuracy and accelerates the convergence of the algorithm. Specifically, the adaptation score of each individual is calculated by the following formula:
[image: The equation shown is: \( \text{Fitness}(\omega) = \frac{1}{\text{Loss}(\omega) + \epsilon} \).]
where [image: "Loss of omega."] is the cross entropy loss of that set of weights on the training set.
In this paper, the genetic algorithm is designed to optimize the weight initialization of the neural network, making the optimization results more suitable for neural network training. In addition, the introduction of MMD loss is also designed for the specific needs of neural networks. In this paper, MMD loss is introduced to further improve the generalization effect of the model by dynamically adjusting the mutation rate, which reduces the risk of falling into the local optimum.
The MMD loss is used to constrain the distributional differences between the source and target domains with the following formula:
[image: Mathematical formula for Maximum Mean Discrepancy (MMD) between sets \(S\) and \(\mathcal{T}\). The equation consists of three terms: the average of the kernel \(k(x_i^s, x_j^s)\) over samples from \(S\), the average of the kernel \(k(x_i^t, x_j^t)\) over samples from \(\mathcal{T}\), and the cross-term \(k(x_i^s, x_j^t)\) averaged over both sets.]
Where, [image: Please upload the image or provide a URL so I can create the alt text for you.] is a Gaussian kernel function, which is used to calculate the distribution difference between the source domain [image: It seems there's no image uploaded. Please try uploading the image again, or ensure the URL is correct. If you have any issues, feel free to add more context or a description.] and the target domain [image: It seems like you've included some text or symbols but not an actual image. Please upload the image or provide a URL so I can help create the alt text.].
After improving the traditional genetic algorithm to optimize the BPNN and further optimizing the neural network, its basic flowchart is shown in Figure 3.
The genetic algorithm searches for suitable network weights by simulating an evolutionary process to bring the model closer to the global optimum before the BPNN is trained. The genetic algorithm first generates a number of individuals in the initialized population, each representing a set of candidate solutions for the neural network weights. By defining a fitness function, the algorithm evaluates the performance of each individual, i.e., the performance of that set of weights on the training data. Then, through selection, crossover, and mutation operations, the genetic algorithm optimizes the weight distribution generation by generation. Individuals with high fitness are preferred, crossover operations fuse the weight information of different individuals, and mutation operations introduce diversity to prevent the algorithm from falling into a local optimum.
Eventually, through several iterations, the genetic algorithm outputs a set of optimized weights that are used in the initial setup of the neural network to accelerate convergence and improve the generalization performance of the model in subsequent training. This combination of IGA and BPNN shows strong advantages in high dimensional nonlinear optimization problems, avoids the blindness of random initialization, and enhances the robustness and prediction ability of the model.
[image: Flowchart detailing a process involving genetic algorithms and neural networks. The chart begins with data preprocessing and loading, followed by initialization of genetic algorithm parameters. It progresses through generating the initial population, assessment, and operations to update the population. Upon satisfaction of a stopping rule, the optimal individual is output, initialized as weights for a backpropagation neural network. The right side refines weights using optimizers, calculates network error, and checks a stopping rule. The process ends with optimal weight output.]FIGURE 3 | Flowchart of GA-OBPNN.
4 RESULTS
In order to verify the model reliability, this paper compares the evaluation results of the BPNN Model, OBPNN Model, GA-OBPNN Model, and IGA Combined OBPNN Model on a test set and evaluates the performance of the different models using the results of Accuracy, Loss Ratio, AUC (Area Under the Curve) (ROC Curve) and Confusion Matrix.
4.1 Accuracy, loss ratio
Accuracy and loss are important metrics for evaluating the results of a neural network model, and the lower the quasi-loss rate, the better the model’s performance. It is complementary to the accuracy rate and can be calculated by a simple formula. The expressions for accuracy and loss rate are:
[image: Accuracy formula showing accuracy equals true positives plus true negatives divided by the sum of true positives, true negatives, false positives, and false negatives. Equation number thirteen.]
[image: Mathematical formula for loss: \(\text{Loss} = \frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}\), labeled as equation 14.]
Where TP (True Positive) is the true positive, the number of samples in which the positive class was correctly predicted as positive; FP (False Positive) is the false positive: the number of samples in which the negative class was incorrectly predicted as positive; TN (True Negative) is the true negative: the number of samples in which the negative class was correctly predicted as negative; FN (False Negative) False Negative: the number of samples in which the positive class was incorrectly predicted to be negative.
The performance of the four model test sets in terms of accuracy and loss rate is shown below:
Gradual increase of training accuracy: if the training accuracy gradually increases with epoch and eventually stabilizes, it indicates that the model gradually reaches the best learning effect on the training set.
Gradual increase in test accuracy: If the test accuracy gradually increases with training and eventually reaches a high and stable value, this indicates that the model performs well on the test set, which means that the model not only learns well on the training set, but also shows high accuracy on the unseen data (test set).
As can be seen in Figure 4, when training with the BPNN model, the loss rate of both the training and test sets decreases rapidly at the beginning of the training period, and the accuracy increases rapidly, indicating that the model successfully learns the features of the data and gradually fits the training data. However, as the training progresses, after about 100 epochs, the loss rate of the test set starts to increase, while the accuracy stabilizes and does not continue to increase. Meanwhile, the loss rate of the training set is still decreasing with some fluctuations, while the accuracy continues to increase slowly. This situation indicates that the model is overfitting in the late stage of training, i.e., the model is overfitting the training set, but its generalization ability to the test set is decreasing, resulting in a failure to improve the performance of the test set further. Figure 5 illustrates the training results of the OBPNN model. Compared with the BPNN model, the loss rates of both the training and test sets of the OBPNN show a gradual decrease, which indicates that the model alleviates the overfitting problem in the training of the BPNN to a certain extent. In addition, the accuracy performance of the training and test sets is more stable and the overall level is higher than that of BPNN, indicating that the optimized model is more efficient in learning data features. In Figure 6, the training results using the GA-OBPNN model further demonstrate the effectiveness of the optimization. The loss rate of both the training and test sets of this model is decreasing, and the accuracy of the test set is stable above 80%. This shows the effectiveness of the GA algorithm in weight optimization, which improves the convergence speed of the model and enhances the generalization ability to some extent.
[image: Two graphs depict model performance over one thousand epochs. The left graph shows the loss curve with training loss decreasing and stabilizing, while test loss initially decreases but then increases. The right graph shows the accuracy curve with both training and test accuracy increasing and stabilizing, with training accuracy slightly higher than test accuracy.]FIGURE 4 | BPNN model loss rate, accuracy curve.
[image: Loss and accuracy curves for a model over 1000 epochs. The loss curve shows both train and test loss decreasing, with convergence below 1.0 around epoch 500. The accuracy curve indicates train and test accuracy improving, stabilizing at approximately 0.9.]FIGURE 5 | OBPNN model loss rate, accuracy curve.
[image: Two graphs display model performance. The left graph shows loss over epochs, with train loss decreasing steadily and test loss stabilizing lower. The right graph shows accuracy over epochs, with both train and test accuracy increasing and stabilizing near the top. Train data is in blue, and test data is in orange.]FIGURE 6 | Loss rate, accuracy curve of GA-OBPNN model.
Figure 7 shows the training results of the IGA-OBPNN model. From the figure, it can be seen that the accuracy of the model is greatly improved in both the training and test sets, where the accuracy of the test set reaches 97%, which is even higher than the accuracy of the training set. This indicates that IGA-OBPNN has stronger generalization ability, i.e., the model not only fits the training data well, but also achieves excellent performance on the test data. In addition, compared with GA-OBPNN, IGA further optimizes the model parameters, which makes the training process more stable and effectively avoids the local optimum problem that is prone to occur in the traditional BPNN training process. In summary, compared with the traditional BPNN model, OBPNN and its improved version effectively alleviate the overfitting problem and improve the generalization ability of the model. Among them, GA-OBPNN achieves better results in optimizing the weights, while IGA-OBPNN further improves the convergence stability and accuracy with the best performance. This indicates that the improved model is able to ensure the training performance with stronger generalization ability.
[image: Two line graphs show model performance over epochs. The left graph displays the loss curve, with train loss decreasing and fluctuating, and test loss steadily decreasing. The right graph shows the accuracy curve, with train accuracy increasing gradually and test accuracy exhibiting larger jumps.]FIGURE 7 | IGA combined with OBPNN model loss rate, accuracy curve.
4.2 AUC (ROC curve)
AUC, which is commonly used to describe the area under the ROC curve, is also known as ROC-AUC. The ROC (Receiver Operating Characteristic) curve is a graphical tool that describes the classification effect of a model.
The ROC curve plots all possible classification thresholds as points on a graph, with the False Positive Rate (FPR) as the horizontal coordinate and the True Positive Rate (TPR) as the vertical coordinate. Rate, TPR). For an ideal classifier, the ROC curve will be as close to the upper left corner as possible, i.e., the True Positive Rate is high and the False Positive Rate is low.
The AUC, on the other hand, is the area under the ROC curve, with a value range between 0.5 and 1. The closer a model’s AUC value is to 1, the better its classification performance.
As can be seen from the comparison results in Figure 8, it can be seen that in the ROC curves of the BPNN and the GA-OBPNN, the recall (Recall) of each category is significantly lower than that of the remaining two models due to the lack of data enhancement of the training data. In particular, in the combined model of IGA and OBPNN, the AUC value is 1, which indicates that the discriminative ability of the model is enhanced and the classification task is more reliable.
[image: Four ROC curves for multi-class classification are displayed. Each panel (a, b, c, d) represents a different model: MLP, Naive Bayes, LDA, and QDA, respectively. The x-axis shows the false positive rate and the y-axis shows the true positive rate. Each curve corresponds to a different class, with various AUC scores indicated in the legends, showing the models' performance in distinguishing between classes. The diagonal line represents random chance.]FIGURE 8 | ROC curve. (A) BPNN model, (B) OBPNN model, (C) GA-OBPNN model, (D) IGA combined with OBPNN model.
4.3 Confusion Matrix
Confusion matrix is a visualization tool for evaluating the performance of classification models. It is usually represented as a two-dimensional table where the rows represent the actual categories (true labels) and the columns represent the categories predicted by the model. The number in each cell represents the number of samples under the corresponding combination of actual and predicted categories.
The results in Figure 9 show that the performance of the BPNN model has some limitations. Specifically, 1 sample in the category 0 sample was misclassified to category 1. In addition, 3 real samples in the class 2 sample were misclassified to class 3, and 4 samples in class 4 were also misclassified to class 5. These misclassifications indicate that the BPNN model has some difficulties in dealing with categories with similar features and is prone to make wrong judgments between two similar categories. OBPNN model has improved its classification performance, but there are still some misclassification cases. In category 0, there is likewise 1 sample misclassified as category 1; and in category 1, there is also 1 sample misclassified as category 0. In addition, 2 samples in category 4 were misclassified to category 5. Although the optimized model performs better in some aspects, there is still a need to continue to work on handling similar class features. GA-OBPNN model further reduced the number of misclassifications. There was still one sample misclassified as class 1 in class 0, but the number of misclassifications in class 4 has been reduced to one misclassified as class 5. This shows that GA optimization plays a role in improving the model’s ability to distinguish features from similar classes. IGA combined with optimized BPNN model has achieved significant improvement in classification performance. In this model, only one sample in category 1 was misclassified as category 0, which is a significant reduction in the misclassification rate compared to other models. This indicates that the IGA-optimized model performs more accurately on most of the categories, and in particular, it shows a stronger ability in distinguishing similar category features.
This indicates that the IGA combined with optimized BPNN model performs more accurately on most of the categories, especially showing a stronger ability in distinguishing similar category features. This is mainly due to the global and efficient nature of the IGA algorithm in searching for the optimal solution, which enables the BPNN model to better learn the complex features and laws in the data, thus improving the accuracy of classification.
[image: Four confusion matrices labeled (a), (b), (c), and (d), each showing true vs. predicted labels. Diagonal cells are darker, indicating higher accuracy, while off-diagonal cells are lighter, showing misclassifications.]FIGURE 9 | Confusion matrix diagram. (A) BPNN model, (B) OBPNN model, (C) GA-OBPNN model, (D) IGA combined with optimized BPNN model.
5 CONCLUSION
This study focuses on proposing a model that combines an improved genetic algorithm with an optimized BP neural network for assessing the lethal resistance levels of various types of buildings. The main contributions and conclusions are as follows:
	1. Significant performance improvement: the data imbalance problem is effectively solved by oversampling the training set with a few classes of samples using the SMOTE technique. Combined with the L2 regularization technique reduces the risk of overfitting, which makes the model’s performance on the test set more stable. The experimental results show that the model achieves significant performance improvement in the multi-class classification task, with an accuracy of 97% and an AUC value of 1, which indicates that the model has strong generalization and discriminative abilities.
	2. Effective classification of classes: the weights and bias of the BP neural network are optimized using a genetic algorithm to avoid local optimal solutions, which improves the global search ability and classification accuracy of the model. The integration of momentum parameters and Adam optimizer further accelerates the model convergence. The model can effectively classify the llethal resistance levels of buildings into different grades, which provides a scientific basis for earthquake risk assessment.
	3. Enhancement of urban planning and disaster prevention and resilience: By deeply analyzing the effects of different building structural features on the lethal resistance levels, this study puts forward strategies and suggestions to improve the structural design of buildings in order to enhance their resilience. The construction and application of this model can help to improve urban planning disaster prevention and resilience, which is of great significance in reducing the damage and casualties of earthquakes.

Despite the remarkable results achieved in this study, there are still some limitations. First, although the hybrid model performs well in handling large datasets and high-dimensional inputs, its relatively high computational complexity may limit real-time applications to some extent. Second, despite the adoption of various techniques to optimize the model performance, the specific performance of the model may still be affected by the quality of the dataset, feature selection, and other factors in practical applications. In addition, this study mainly focuses on some townships in Anhui Province, and the generalizability and cross-regional applicability of the model need to be further verified. Future research can explore more efficient computational methods, expand the coverage of the dataset, and deeply optimize the model parameters to further enhance the model’s practicality and accuracy.
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Existing image processing and target recognition algorithms have limitations in complex underwater environments and dynamic changes, making it difficult to ensure real-time and precision. Multiple noise sources interfere with sonar signals, which affects both data precision and clarity. This article studies the dynamic display algorithm of sonar data based on grayscale distribution model and computational intelligence. It proposes to construct a grayscale distribution model for sonar images, analyze the grayscale histogram, determine the threshold selection of the maximum entropy threshold segmentation method, and finally complete the target segmentation. The segmented images can be used to train the convolutional neural network object recognition model constructed in this article. To verify the effectiveness of the proposed method, a test set was used to evaluate the trained target recognition model. The precision of the model recognition was 87.95%, the recall was 87.97%, and the F1 value was 0.8794, which is significantly higher than the traditional model (Such as Otsu and SVM is below 80%). The recognition speed reached 37 m, which is a certain improvement compared to the traditional model.
Keywords: sonar data, grayscale distribution model, convolutional neural network, maximum entropy threshold, target recognition

1 INTRODUCTION
In the 21st century, the rapid development of technology not only greatly promotes the progress of human society, but also provides unprecedented opportunities for people to develop and utilize marine resources. The ocean, as the largest ecosystem on Earth, not only possesses rich biodiversity, but also harbors enormous energy and mineral resources. With the continuous growth of the global economy and population expansion, the gradual depletion of land resources has made the development and utilization of marine resources particularly important (Jia-lin et al., 2022; Sandoval-Castillo et al., 2022; Barendse et al., 2023). In the process of marine resource development, sonar technology, as an important detection method, is widely used in fields such as marine terrain mapping, fish resource investigation, and seabed mineral exploration (Zhang et al., 2022; Shen et al., 2024). Sonar data can provide detailed underwater environmental information through the reflection and scattering of sound waves. Dynamic display of sonar data can provide real-time underwater environmental information, helping scientists and engineers make timely and accurate decisions in tasks such as ocean resource development, underwater construction, and exploration. Real-time dynamic display can detect underwater obstacles early, but processing large sonar data in real-time is computationally intensive. The complex underwater environment and multiple noise sources interfere with sonar signals, affecting data precision and clarity. Existing image processing and target recognition algorithms struggle with localization in complex, dynamic environments, limiting real-time precision and sonar imaging resolution. Especially in deep sea or long-distance situations, the precision of target recognition is limited, and how to efficiently process and display this data in real time has become an urgent problem to be solved (Ghavidel et al., 2022; Wang et al., 2023).
This article explores dynamic display algorithms for sonar data using grayscale distribution models and computational intelligence. The grayscale distribution model identifies echo signals of varying intensities by analyzing the distribution of grayscale values in sonar data. This simplifies complex data, enhances data contrast, and filters out noise, improving data quality (Mo and Pei, 2023; Zhao et al., 2022). Given the high-dimensional nature of sonar data, this model simplifies representation and extracts key features for more efficient processing. Integrating computational intelligence enables precise and efficient sonar data analysis, supporting marine resource development and utilization (Chen et al., 2022; Liu et al., 2022).
This article evaluates sonar data dynamic display algorithms based on grayscale distribution models and computational intelligence through a series of experiments. Results indicate that the proposed model outperforms traditional models, achieving an average precision of 87.95%, a recall rate of 87.97%, an F1 score of 0.8794, and a processing speed of 37 m. The research results of this article have certain academic value for the academic community in sonar data processing, target recognition, and dynamic display algorithms, providing new research ideas and practical experience for related fields.
2 RELATED WORK
With the continuous increase of marine resource development and underwater operations, sonar image underwater target recognition has become a hot research field. However, the complex underwater environment and scarcity of samples make this task even more challenging. Scholars such as Huang Haining (Haining et al., 2024) have conducted in-depth discussions on typical imaging sonar technologies, summarizing the problems of small sample size, class imbalance, weak target features, target diversity, and poor interpretability of target recognition in current technologies. Scholars such as Chen Peng (Peng et al., 2020) proposed a speckle reduction method for side scan sonar images based on adaptive 3D block matching filtering to address the issue of introducing speckle noise in imaging using echo intensity in side scan sonar. This method first performs power and logarithmic transformations on the side scan sonar image, and then uses wavelet transform to estimate the overall noise level of the image. Meanwhile, the parameters of the adaptive 3D block matching filtering algorithm are continuously updated based on the results of local noise estimation. During this process, the effects of global noise estimation and local noise estimation can be compared, and the most suitable parameters can be selected to solve the problem of uneven noise distribution. Through experiments, it has been proven that the equivalent number of views has increased by at least 6.83%. However, the adaptive 3D block matching filtering algorithm itself requires a large amount of computation, especially when processing high-resolution side scan sonar images, which may result in slow processing speed and affect the efficiency of real-time applications. Tueller et al. (2020) proposed a framework to predict seabed types based on the spatial distribution of features for reliable object detection in sonar images. They demonstrated through experiments that feature extraction-based detection methods have high adaptability and detection rates in sonar images. However, further research and optimization are needed in practical applications, such as adaptability, computational complexity, and false alarm rate control.
The grayscale distribution model is a statistical model used in image processing and computer vision to describe the distribution of pixel grayscale values in images. It has important application value in the research of dynamic display of sonar data, and can be used to enhance image quality, improve object detection and classification, and improve image segmentation precision. Scholars such as Gu Ming (Gu and Yuan, 2023) designed a splitting detection algorithm based on grayscale distribution curves to detect the splitting condition of the ice spoon head. By calculating the average grayscale image of the ice spoon head in the vertical direction, and then performing grayscale correction, the influence of uneven lighting can be eliminated. Next, concave line segments can be extracted from the corrected grayscale image and their absolute amplitudes can be calculated. Finally, the feature values of the splitting position can be calculated based on preset criteria. The advantage of this algorithm lies in its ability to effectively handle uneven lighting and small split openings through grayscale correction and feature extraction, improving detection precision, reducing missed and false detections, and adapting to different lighting conditions and changes in split opening sizes, with strong robustness. Pan Xinyu et al. (Pan and Yan, 2023) proposed a gas leakage detection algorithm based on gas shape characteristics and grayscale distribution. Experimental results show that the algorithm can accurately detect gas leakage areas and is robust to interference factors in videos.
Computational intelligence technology is commonly used to solve complex optimization problems, pattern recognition, data mining, decision support, and other tasks. In the research of dynamic display algorithms for sonar data, computational intelligence can help optimize the parameters of grayscale distribution models, improve the precision and efficiency of object detection and recognition. It mainly includes neural networks, fuzzy logic, evolutionary algorithms, simulated annealing algorithms, deep learning, etc. Fu et al. (2023) proposed an underwater small target detection method that combines region extraction and improved convolutional neural networks. They successfully achieved the detection of underwater small targets using convolutional neural network technology, and proved through experiments that this method can effectively improve the detection probability and correct alarm rate of underwater small targets. Compared with other object detection methods, this method has better detection performance and generalization. Zhang and Zhu, (2022) proposed an underwater target sonar detection system based on convolutional neural networks, which utilizes convolutional neural networks to optimize nonlinear excitation function calls. It can enhance and extract features from sonar images, simplify training and image processing, and achieve more convenient and efficient detection of linear underwater targets with high robustness. Computational intelligence technologies such as machine learning and deep learning algorithms can be utilized to effectively process and analyze large amounts of sonar data. Key features can be extracted from it to accurately identify and classify targets in the image, improving the efficiency and precision of data processing.
3 METHOD
3.1 Image enhancement and optimization
Sonar systems are affected by various background noises in marine environments, including underwater natural noise, environmental noise, reverberation and self-noise. Among them, reverberation has a significant impact on sonar imaging (Kazimierski and Zaniewicz, 2021; Yuan et al., 2021; Jin et al., 2019). Reverberation mainly includes reflection noise and scattering noise, which are mainly caused by the reflection of sound waves when encountering obstacles during underwater propagation, such as the seabed, sea surface, and underwater objects. Sound waves are noise formed by the scattering of irregular objects or media during propagation, as shown in Figure 1. The presence of these background noises can affect the detection and positioning precision of sonar systems. In order to improve the performance and reliability of the system, effective noise suppression and image enhancement techniques need to be adopted.
[image: Four small, grainy black-and-white images showing various scenes potentially from space or the moon. The top left shows a shadowy figure; the top right, a footprint or small object on a textured surface; the bottom left features several linear impressions; the bottom right depicts another shadowy figure or shape.]FIGURE 1 | Sonar imaging noise.
The current algorithms used for noise removal in sonar images include mean filtering, non local mean filtering, median filtering, Gaussian filtering, wavelet transform, and Fourier transform (Elhoseny and Shankar, 2019; Sahu et al., 2019). In order to achieve better denoising results, this article chooses to first use Gaussian filtering for preliminary denoising, and then combine it with wavelet transform for further refinement processing. Gaussian filtering is based on the Gaussian distribution function to perform weighted averaging on the image, which can smooth out small noise in the image (He et al., 2022; Gao et al., 2020). The weight of a Gaussian filter is calculated using a Gaussian function, and the specific formula is as follows:
[image: Gaussian function formula \( G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \) with the equation labeled as (1).]
Among them, [image: It seems like there is no image uploaded. Please provide the image or a URL to it, and I will help you create the alt text.] is the standard deviation of the Gaussian function, which determines the smoothness of the filter.
Wavelet transform has the ability of multi-resolution analysis, which can simultaneously process the local time-domain and frequency-domain characteristics of signals. It performs excellently in signal and image denoising, compression, and feature extraction (Guo et al., 2022; Rhif et al., 2019). Discrete wavelet transform uses discrete wavelet functions and scales for transformation, and decomposes the signal into coefficients of different scales and positions through multi-resolution analysis:
[image: Mathematical equation for a function f of n, expressed as the sum of two series. The first series is the sum over k of c sub zero of k times phi sub zero of k of n. The second series is from j equals zero to infinity of the sum over k of d sub j of k times psi sub j of k of n. This is equation two.]
Among them, [image: Mathematical expression showing the Greek letter phi with a subscript "j zero, k".] is the scale function, [image: Mathematical expression depicting psi sub j, k, of n in square brackets.] is the wavelet function, [image: Mathematical expression showing the coefficient \( c_{j_0}[k] \), where \( c \) is indexed by \( j_0 \) and parameterized by \( k \).] and [image: Mathematical notation showing "d" subscript "j" followed by square brackets enclosing "k".] are the scale and wavelet coefficients. Figure 2 shows the sonar image processed by Gaussian filtering and wavelet transform.
[image: Three-panel image comparison: Left shows a noisy original image of a person, center shows improved clarity after denoising with Gaussian filtering, and right shows enhanced detail after Gaussian filtering and wavelet denoising.]FIGURE 2 | Sonar image denoising.
3.2 Building a grayscale distribution model
The grayscale distribution model describes the distribution of grayscale levels in sonar images, which helps identify targets (Sun et al., 2019; Wang et al., 2022). Therefore, after removing the noise from the image, a grayscale distribution model is established by statistically analyzing the grayscale value distribution of each pixel in the sonar image.
The detailed process for establishing a grayscale distribution model is as follows:
	(1) Remove noise.

This article employs denoising methods based on Gaussian filtering and wavelet transformation for preprocessing sonar images, ensuring the accuracy of the grayscale distribution model. This has been completed in Section 3.1.
	(2) Extract pixel grayscale value distribution.

Extracting grayscale values from denoised sonar images:
The grayscale value range for each pixel is [0, 255] (for an 8-bit grayscale image).
Count the gray values of all pixels in the entire image to obtain the gray histogram.
Formula: 
[image: Please upload the image or provide the URL for me to create the alt text.]
Among them, H(i) represents the number of pixels at gray level i.
	(3) Establish a grayscale distribution model.

Based on the histogram statistical data, a gray value distribution model is fitted, Calculate the following feature values through the gray-level histogram.
	①Mean value: The average value of overall brightness.

[image: The image displays a mathematical formula for calculating the mean, represented as \(\mu\). The formula is \(\mu = \sum_{{i=0}}^{255} i \times H(i)\), where \(i\) is an index and \(H(i)\) represents a function or value at \(i\). The equation is labeled as equation (4).]

	②Variance: The degree of dispersion of grayscale values

[image: Formula showing the calculation of variance (\(\sigma^2\)) using a summation. The expression is \(\sigma^2 = \sum_{i=0}^{255} (i - \mu)^2 \times H(i)\), where \(\mu\) is the mean and \(H(i)\) is a function of \(i\).]

	③Skewness: symmetry of distribution

[image: The formula shown is an expression for \( y_1 \), defined as \( \frac{1}{\sigma} \sum_{i=0}^{255} (i - \mu)^3 \times H(i) \), where \( \sigma \), \( \mu \), and \( H(i) \) are variables or constants, and \( i \) ranges from \( 0 \) to \( 255 \). The equation is labeled as equation \( (6) \).]

	④Kurtosis: The degree of sharpness of a distribution.

[image: Equation showing \( y_2 = \frac{1}{\sigma} \sum_{i=0}^{255} (i - \mu)^3 \times H(i) - 3 \).]
Then, the gray-level distribution model based on the mixture of Gaussian distributions is expressed as:
[image: The image shows the formula for the probability density function of a Gaussian mixture model: \(p(x) = \sum_{k=1}^{K} w_k \times \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x - \mu_k)^2}{2\sigma_k^2}\right)\) where \(K\) is the number of components, \(w_k\) is the weight, \(\mu_k\) is the mean, and \(\sigma_k^2\) is the variance for each component.]
In order to distinguish the background and target in sonar images, this article selects an appropriate grayscale threshold based on grayscale distribution information, compares the grayscale values of each pixel in the image, and achieves the goal of target segmentation. Threshold segmentation is a commonly used method in image processing, which is divided into two types: global segmentation and local segmentation (Pare et al., 2020; Abdel-Basset et al., 2021). The global threshold segmentation approach is straightforward, user-friendly, and very computationally efficient, which primarily consists of the maximum entropy threshold segmentation method, Otsu’s method, and optimal threshold method (Amiriebrahimabadi et al., 2024; Xie et al., 2019). This article processes sonar images using the maximum entropy threshold segmentation approach. To achieve image segmentation, the ideal threshold is determined by maximizing the entropy of the image. The specific formula steps of the algorithm are as follows:
When the sonar image is composed of a target image O with pixel grayscale values lower than x and a background image P with pixel values higher than x, the range of x values is 0–255. The background entropy is:
[image: Formula for entropy: \(H_p(x) = -\sum_{{i=0}}^{k} (y_i/y_x) \times \log(y_i/y_x)\) with an annotation \((9)\).]
The target entropy is:
[image: Equation illustrating \( H_0(x) \) as the negative sum from \( j = s \) to \( L - 1 \) of \( (y_j / y_{255-x}) \times \log(y_j / y_{255-x}) \), labeled as equation (10).]
Among them, [image: The equation shows \( y_x = \sum_{i=0}^{x} y_i \), representing a summation of \( y_i \) from \( i = 0 \) to \( x \).] , [image: Mathematical equation displaying \( y_{255-x} = \sum_{x}^{255} y_i \).] ,i = 0,1, … ,255, [image: It seems there's no image provided. Please upload the image or provide a URL so I can help create the alt text.] represent the probability of pixels with grayscale values of i appearing, and [image: Mathematical expression displaying the polynomial hash function notation \( H_p(\mathbf{x}) \).] and [image: The mathematical expression \( H_0(x) \), where \( H_0 \) is likely a function or operator applied to the variable \( x \).] are measured in bits per pixel.
The entropy function [image: Greek letter Psi subscript one, often used in scientific and mathematical contexts.] is the sum of [image: Mathematical expression showing H subscript p of x, representing a function or operation with variable x.] and [image: Mathematical expression showing "H subscript 0" in parentheses, with a variable "x".]. To select the optimal threshold by maximizing the entropy function, the formula is:
[image: If you upload the image or provide a URL, I'll be able to help create alt text for it. Let me know if you need assistance with that!]
The grayscale histogram that can be drawn for sonar data collected from the network is shown in Figure 3.
[image: On the left, a grayscale image with white curved lines labeled as "Original image." On the right, a histogram of the image's gray levels, showing a high frequency of low gray levels that decrease as the levels increase, ranging from 0 to 255.]FIGURE 3 | Grayscale histogram.
The histogram displays the pixel distribution of each grayscale level in the image, and by analyzing the histogram, the grayscale distribution characteristics of the target and background can be distinguished (Li et al., 2019; Guo et al., 2023). It can perform grayscale distribution statistics and analysis on images, establish grayscale distribution models, help identify grayscale features of targets and backgrounds, and apply them to tasks such as noise suppression, image enhancement, and object detection. The maximum threshold segmentation can be achieved based on the drawn grayscale histogram, as shown in Figure 4.
[image: Four images display a road with varying edge detection thresholds of 50, 100, 120, and 150. As the threshold increases, the number of detected edges decreases, showing less detail in each subsequent image.]FIGURE 4 | Implementation diagram of maximum entropy threshold segmentation under different thresholds.
It can be seen that when the threshold is set to 50, the image displays too much background noise, and the target area is also disturbed by many noise points, resulting in poor separation effect between the target and the background. When the threshold is set to 100, the image display effect is good, the target is well preserved, and it can effectively separate the target and background. When the threshold is set to 120, although the background noise is reduced, there is still some noise present, and the details of the target begin to be lost, especially in darker target areas that become difficult to distinguish. When the threshold is set to 150, the background noise is further reduced, but a large amount of information in the target area is also lost, and the target details in the image cannot be clearly displayed, resulting in poor overall performance. In contrast, setting the threshold to 100 shows significant superiority, with background noise effectively suppressed at this threshold, making the target more prominent, and considering both target retention and background noise comprehensively. A threshold of 100 can minimize background noise while preserving target information, resulting in the best display effect of the image.
3.3 Building a target recognition model
Convolutional neural networks are a type of deep learning model that excels in processing image data. By simulating the working principle of the human visual system, image features can be extracted layer by layer to achieve tasks such as image classification, object detection, and semantic segmentation (Li et al., 2021; Ketkar and Moolayil, 2021). Fully connected, pooling, and convolutional layers make up its fundamental structure. Among these, the pooling layer reduces and compresses the dimensionality of data, the convolutional layer uses convolutional operations to extract local information from the image, and the fully connected layer is utilized for tasks involving classification or regression. At present, CNN has achieved significant results in image classification, object detection, semantic segmentation, and other fields, greatly surpassing traditional methods in image processing and computer vision tasks (Krichen, 2023; Zhang et al., 2019; Huang et al., 2024).
In recent years, convolutional neural networks (CNN), as a crucial tool in deep learning, have played a significant role in the processing and application of sonar imaging. Due to its pivotal role in underwater detection, target recognition, and environmental modeling, sonar imaging, when combined with CNN algorithms, can notably enhance the accuracy of target recognition, segmentation capabilities, and the ability to adapt to complex environments. However, this technology also faces certain limitations, including high computational costs, strong data dependency, and a lack of interpretability regarding physical mechanisms (Krithika and Jayanthi, 2024; Banu et al., 2024; Ayaz et al., 2024; Lim et al., 2024).
This article chooses CNN as the basis for constructing a target recognition model, because CNN can automatically extract effective features from the original sonar images and perform accurate target classification, greatly improving the precision and efficiency of target detection. It has strong robustness to changes in various sonar images and can demonstrate good generalization ability on different sonar image datasets, suitable for different underwater detection environments.
Convolutional Neural Network (CNN) is a type of neural network widely used in deep learning for image processing and object recognition. By simulating the biological visual system, CNN can effectively extract features from images and complete object recognition tasks. The architecture of a standard CNN for object recognition tasks typically includes several main components: convolutional layers, pooling layers, fully connected layers, etc.
In this article, VGG-16 CNN model is utilized to extract multi-level features of sonar images, and its analysis is carried out. VGG-16 is a typical CNN, which includes a 16 layer convolutional layer, a complete connection layer, and a maximum soft layer. The characteristic of this method lies in its relatively simple network structure, deeper layers, consistent convolutional kernel size, and increasing channel numbers in the feature map, thus possessing good generalization ability and high recognition accuracy. In the first two levels of VGG-16, based on the basic theory of CNN, the network is improved by using the dropout algorithm and L2 regularization algorithm, so as to effectively suppress the “over fitting” phenomenon. For the first layer of VGG-16, convolution operations can be expressed as:
[image: Mathematical equation showing \( G_k(i, j) = \sum_{k=0}^{n} \sum_{i=1} \sum_{j=i} \alpha_k(i-u_j-v)p_{k}(u,v) + \beta_k \). This is equation number 12.]
In Formula 1, i and j represent the size of the image. Among them, [image: Equation representing a function \(G_k(i, j)\), where \(G\) is indexed by \(k\) and is a function of variables \(i\) and \(j\).] represents the output of the first layer, which represents the operation of the convolutional layer. The maximization operation of the pooling layer can be expressed by the following formula:
[image: Mathematical equation showing \[ G_b(i, j) = \max(\alpha, (2i - u, 2j - v)) \] followed by equation number (13).]
In Formula 2, after convolution and pooling operations in the first few layers, a certain size of feature map can be obtained. The obtained feature map is transformed into high-dimensional vectors as input to the fully connected layer. This transformation process is represented as:
[image: Mathematical expression showing \( x_k = F(G_k) \), where \( k \) ranges from one to \( n \). Equation labeled as equation fourteen.]
In Formula 3, n represents the dimension size of the feature map. The Activation function used by VGG-16 is softmax, and the Cross entropy Loss function is used. The expression of the Activation function is as follows:
[image: Equation for the softmax function \( q_k \) is shown as \( \text{softmax}(G_i) = \frac{e^{G_i}}{\sum_{i=1}^{N} e^{G_i}} \). This is labeled as equation (15).]
In Formula 4, [image: The image contains the mathematical expression: "softmax(G sub i)", written in italics.] means Activation function. In addition, the Cross entropy Loss function is expressed as follows:
[image: The formula represents the entropy \( E = - \sum_{i=1}^{N} x_i \log a_i \), where the summation runs from \( i = 1 \) to \( N \), and each term is \( x_i \log a_i \).]
Formula 5 represents the Loss function of VGG-16. In the process of extracting sonar image features, the pre trained VGG-16 model is first loaded and used as a feature extractor. The sonar images are converted into appropriate formats and preprocessing steps are applied to each sonar image. Subsequently, the VGG-16 model is utilized to extract the features of each sonar image. The first few convolutional layers of the model can extract lower level features, such as edges and textures, while deeper layers can extract higher level features, such as the shape and contour of the object. Each extracted image feature vector is standardized and normalized to ensure that they have the same scale and distribution. Finally, dimensionality reduction techniques are applied to each image feature vector, and other features are extracted from each sonar image to provide grayscale histograms, texture features, and shape features of the sonar features.
The focus of this article’s system design is on a target recognition model based on convolutional neural networks. The training process of the CNN model is roughly as follows: first, initialize the network weights and biases, set hyperparameters such as learning rate, batch size, and number of training rounds, and divide the sonar image dataset into training and testing sets.
The image data in the dataset can be preprocessed according to the previous method to obtain the denoised image and then calculate the grayscale histogram. The most suitable threshold in the maximum entropy threshold segmentation method can be analyzed through the obtained grayscale histogram, and then the data can be segmented using the maximum entropy threshold segmentation method to obtain the enhanced image of the target based on the obtained threshold. The enhanced image can be used to train convolutional neural networks to improve the model’s generalization ability and robustness, thereby improving the precision and efficiency of object detection and recognition. During the model training phase, unsupervised learning methods can be used to initialize network parameters and generate initial feature representations using the training set data. The weights and biases of the network can be adjusted layer by layer using backpropagation algorithms. The loss function usually uses cross entropy loss function or mean square error function, combined with optimization algorithms to update parameters. At the end of each training round, the loss and precision on the test set can be calculated to monitor the training process and avoid overfitting. When the training error converges to the preset value or reaches the maximum number of training rounds, the training can be stopped to obtain a well trained network model. In order to optimize the model, a nonlinear excitation function Sigmoid function is introduced on the basis of training error convergence to enhance the nonlinear expression ability of the network. The flowchart for building the model is shown in Figure 5.
[image: Flowchart illustrating the process of developing a CNN network model. It begins with the acquisition and parsing of raw sonar data to create a sonar image dataset, followed by dataset enhancement. The process continues with setting hyperparameters and adjusting the nonlinear activation function to optimize the network model, leading to the final CNN network model. The chart progresses from start to finish.]FIGURE 5 | Construction of CNN target recognition model flowchart.
It can preprocess, enhance, and segment sonar image data, which is of great significance and importance for sonar image target recognition models based on convolutional neural networks. It makes it easier for the model to learn useful features, prevent overfitting, and improve the model’s generalization ability. This not only enhances the robustness of the model during training, but also enhances its precision and efficiency in practical applications, making target recognition tasks more reliable and effective.
4 EXPERIMENT
4.1 Experimental plan design
In order to verify the effectiveness of the target recognition and detection model based on grayscale distribution model and computational intelligence for sonar data dynamic display algorithm, simulation experiments were conducted to verify the model’s target recognition of sonar image data. The specific experiments are divided into the following parts:
	(1) Data preparation: A set of 2,874 sonar image data of various types of targets (pipelines, sunken ships, airplanes, organisms, etc.) can be collected through the network. After preprocessing operations such as normalization, denoising, and labeling can be performed on the data in the dataset, 70% of it can be divided into a training set. The remaining 30% is divided into the test set and expanded by flipping, mirroring, scaling, and rotating the training set. The number of training set data obtained is shown in Table 1. Some datasets are shown in Figure 6.
	(2) Data augmentation: the grayscale distribution model proposed earlier can be used to process the dataset, complete target segmentation, and improve the generalization ability and robustness of the target recognition model.
	(3) Training model: the enhanced training set can be used to train the model.
	(4) Model evaluation: the trained model can be tested using test set data to calculate recognition precision and other indicators to complete the evaluation of the model.

TABLE 1 | Data size of model training set.
[image: Table showing sonar image data types, total samples, invalid samples, and actual sizes. Seabed topography includes ups and downs (342 total, 8 invalid), sandbanks and reefs (336 total, 4 invalid), canyons and rift valleys (232 total, 6 invalid), mountains and plateaus (272 total, 4 invalid). Specific goals involve shipwrecks (201 total, 2 invalid), airplanes (227 total, 9 invalid), subsea pipelines and cables (203 total, 3 invalid), and halobios (305 total, 12 invalid). Total samples are 2,118, with 48 invalid, resulting in 2,070 actual samples.][image: Sixteen grayscale ultrasound images are arranged in a four-by-four grid. Each image appears to show different textures and patterns, possibly representing varying medical conditions or anatomical features. The images vary in brightness and contrast.]FIGURE 6 | Partial data of the dataset.
4.2 Experimental environment
The experiment was deployed under the Ununtu 20.04 operating system, and the main software and hardware environments are shown in Table 2.
TABLE 2 | Experimental environment.
[image: Table displaying hardware and software environment configurations. Hardware includes CPU i9-12900K, GPU RTX 4080, and 32 GB DDR4 memory. Software comprises Ubuntu 20.04 LTS operating system, TensorFlow 2.2.0 frame, Keras 2.3.1 deep learning libraries, and OpenCV 4.10.0 image processing library.]4.3 Experimental results and analysis
The test set data can be input into a trained CNN network model for testing, and the performance of the model can be evaluated by calculating recognition precision, recall ratio, F1 score, and other indicators. The precision refers to the proportion of samples predicted by the model to be positive, but actually positive. Recall rate refers to the proportion of samples that are actually positive and correctly predicted by the model as positive. The F1 score is the harmonic mean of precision and recall, and the formula is:
[image: Formula for F1 Score: two times precision times recall divided by the sum of precision and recall.]
The detection results of the model for various types of targets are shown in Table 3.
TABLE 3 | Experimental results of various types of targets.
[image: Table showing sonar image data types with corresponding precision, recall, and F1 scores. Categories include seabed topography and specific goals like shipwrecks and airplanes. Precision ranges from 84.31% to 93.14%, recall from 82.52% to 96.27%, and F1 scores from 0.8341 to 0.9468. Average precision is 87.95%, recall is 87.97%, and F1 score is 0.8794.]From Table 3, it can be seen that the CNN model has achieved an precision rate of over 84% for target recognition of various categories, with an average precision rate of 87.95%, indicating that the model’s ability to recognize targets of different categories is relatively stable. In terms of recall rate, the model has achieved a recall rate of over 80% for all types of molds, with an average recall rate of 87.97%. This means that the model has a high coverage of true positive examples and can correctly identify most targets. From the F1 scores in Table 3, it can be seen that the F1 scores of most types of targets are between 0.85 and 0.95, with an average F1 score of 0.8794. This indicates that the model has good balance in identifying different types of targets.
The confusion matrix generated by the model for the detection results of various types of targets is shown in Figure 7.
[image: Confusion matrix showing predicted versus true labels for eight classes. Diagonal values, representing correct predictions, range from 180 to 293. Color gradient indicates the frequency of predictions, with yellow for higher counts and blue for lower.]FIGURE 7 | Model test confusion matrix.
Tags 1-8 represent different types of identification targets, including undulations, sandbars and reefs, canyons and rifts, mountains and plateaus, sunken ships, airplanes, underwater pipelines and cables, and marine organisms. The elements on the diagonal represent the number of correctly predicted samples by the model, while the elements on the non diagonal represent the number of incorrectly predicted samples by the model. In Figure 7, it can be seen that when the model identifies the first and second types of targets, it is easy to confuse each other. However, overall, the precision of the model’s recognition is relatively high, and the number of errors in identifying various types of targets is relatively small.
In order to verify the improvement of the CNN network model’s target recognition performance by using a grayscale distribution model for target segmentation of sonar image data, this article compares the recognition precision, recall, F1 score, and average recognition time required for each image between the traditional CNN network model and the proposed model. The results are shown in Table 4.
TABLE 4 | Comparison of this article’s model with other models.
[image: Comparison table of three models showing performance metrics. "This article model" has 87.95% precision, 87.97% recall, 0.8794 F1 score, and 37 ms speed. "CNN-Softplus" has 63.47% precision, 65.28% recall, 0.5476 F1 score, and 69 ms speed. "Visual Geometry Group Network" has 78.24% precision, 74.39% recall, 0.7391 F1 score, and 46 ms speed.]The proposed model outperforms traditional models in precision, recall, F1 score, and recognition speed. It uses a grayscale distribution model for target segmentation of sonar images and inputs preprocessed data into a CNN for recognition, enhancing feature extraction and precision. The grayscale model effectively removes noise and redundant information, while the CNN improves processing efficiency and precision. The average recognition time per image is shorter.
5 CONCLUSION
This article explores a sonar data display algorithm using grayscale distribution and computational intelligence, proposing a CNN model for object detection. The grayscale distribution model improves segmentation and enhances CNN training and accuracy. Experiments show the proposed model surpasses traditional ones in precision, recall, F1 score, and recognition speed.Traditional object recognition models mainly include support vector machine (SVM), random forest (RF), and K-nearest neighbor classifier (KNN), The accuracy of traditional models (such as Otsu and SVM) is below 80%,The recall rate or F1 score of traditional models is relatively low (below 0.7), and the recognition speed of other traditional algorithms is 25–30 m.The average precision rate reached 87.95%, the average recall rate reached 87.97%, the average F1 score was 0.8794, and the average recognition speed was 37 m, which is significantly higher than other models and has the potential to be applied in practical sonar systems.This provides a more accurate technical means for improving the target recognition ability of sonar systems, achieving more intelligent sonar data processing, and for target recognition of sonar data. This is of great significance for sonar data dynamic display algorithms with high real-time requirements, which can achieve timely and accurate display of the position and status of underwater targets. However, in terms of object selection for recognition, the classification proposed in this article is limited and cannot cover all types included in the sonar data. Due to the limitations of the experimental environment and the complexity of sonar images, the training amount of the model is relatively small, and the generalization ability of the model may be insufficient, which may lead to the risk of overfitting. Therefore, it is necessary to increase the types of target recognition in sonar images, collect as much and richer sonar image data as possible, cover more types and scenes, and diversify training data to solve these problems.
The dynamic display algorithm for sonar data, based on grayscale distribution models and computational intelligence, holds tremendous potential for future development. By incorporating more advanced models, more powerful computational intelligence algorithms, and smarter display strategies, the visualization effect and information extraction efficiency of sonar data can be significantly improved, bringing profound impacts to fields such as underwater exploration, resource management, and environmental protection.
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The fracture features and failure mechanisms of tunnels excavated in shallow and deep rock masses are investigated using a series of three-dimensional heterogeneous models that incorporate cross section, tunnel alignment, faults and tunnel support system. The strength reduction method is embedded in the rock failure process analysis method to achieve the gradual fracture process, macro failure mode and safety factor, and to reproduce the characteristic fracture phenomenon of surrounding rock masses. The mechanical mechanisms and acoustic emission energy of deep rocks at the different stages of the whole formation process of zonal disintegration are further discussed. The results indicate that the zonal disintegration process is triggered by the stress redistribution; cross section influences the stress buildup, stress shadow and stress transfer as well as the failure mode of surrounding rock mass; the dip of faults and tunnel support system can affect zonal disintegration pattern near the tunnel surface along their strikes; the twin-tunnel layout makes zonal disintegration pattern more intricate. These insights advance our understanding of the zonal disintegration in deep engineering.
Keywords: tunnel failure, strength reduction, cross section, faults, support system, tunnel layout

1 INTRODUCTION
As transportation networks expand into hilly and mountainous regions, the development of tunnels is experiencing rapid growth. However, the construction of mountain tunnels often encounters complex geological challenges, including high ground stress, weak and fragmented surrounding rock, and well-developed geological structures. These conditions significantly increase the difficulty and risk of tunnel construction, requiring advanced engineering techniques and careful planning to ensure safety and stability (Karahan and Gokceoglu, 2025; Basirat, 2025; Feng et al., 2025a; Liu et al., 2023). The deformation of surrounding rock is substantial and persistent after tunnel excavation in high ground stress and weak shattered surrounding rock, resulting in a constant rise in stress on the supporting structures. Initial support could shatter, surrounding rock could intrude into the tunnel clearance, and even severe engineering disasters could happen if the stress surpasses the bearing capacity of surrounding rock and lining, posing huge threats to the safety of tunnel structures and constructors (Xue et al., 2024; Ko and Jeong, 2017). Hence, more attention should be given to the failure mechanism in a detailed geotechnical engineering analysis. Subsurface construction is technically possible and has fewer problems with land expropriation and environmental effects, which are key issues in today’s development projects (Kovari, 1994). Tunnel engineering parameters such as displacement stress distribution, properties of adjacent rock masses, faults, tunnel cross section, and others should be taken into account in tunnel design (Deng et al., 2021; Hu et al., 2021). Squeezing situations and excessive loads around the excavation may impair the integrity of deep tunnels with large overburden and poor rock mass characteristics, causing extensive collapse (Chen et al., 2013; He et al., 2021). The primary challenge in deep excavation lies in accurately understanding and simulating the rock failure process. This is essential for designing an effective rock support system that ensures both the stability of the construction and cost-efficiency. By comprehensively analyzing the mechanisms of rock failure, engineers can develop tailored support solutions that mitigate risks and optimize the construction process, ultimately achieving a balance between safety and economic viability (Armand et al., 2014; Fujiyama and Kaku, 2023; Liu et al., 2024a). From literature, it can be found that numerous research and laboratory tests were conducted on different design parameters of tunnel design (Lin et al., 2015; Qian and Zhou, 2018; Feng et al., 2025b; Liu et al., 2024).
The process of tunnel stability and crack propagation of an underground tunnel has been investigated by many researchers from the perspective of the cross-sectional shape of the tunnel. Wang et al. (2018) performed a field test on 50 sections of a tunnel built using clay layers with high plasticity. They analyzed the deformation features of adjacent rocks and the influencing laws induced by burial depth, soft clay invasion thickness, and atmospheric precipitation. Ova (2004) discussed the influence of various cross-sectional shapes of the tunnel (including circles and horseshoes) on the tunnel of the Hanoi metro system and stated that circular tunnels are more appropriate when earthquake happened. Mobaraki and Vaghefi (2015) examined and compared semi-ellipse, circular, and horseshoe shape tunnels and discovered that the circular and horseshoe tunnels are less resistant to demolition than the box shape tunnel. Yang et al. (2019) investigated dynamic behavior on tunnel models with three distinct cross-sectional shapes (circle, rectangle, and horseshoe) and stated that cross-sectional shape effects on tunnel response are primarily in the nearfield, and that the influence reduces as the distance from the excitation source increases. Chen et al. (2022) revealed the fracture features and mechanisms of circle tunnels excavated in deep jointed rock masses by employing a series of three-dimensional heterogeneous models considering different joint dip angles. Lu et al. (2014) analyzed the optimal shape of a tunnel that meets the optimization criterion by using the conformal mapping method for a plane elasticity complex function.
However, there is still a gap in research on the influence of section shape on deep and shallow tunnel stability. Clearly, while individual studies have examined specific tunnel shapes, there is a lack of comprehensive comparative studies that systematically evaluate the performance of different shapes under identical conditions, and there is limited research on how the optimal shape changes with depth. Meanwhile, most studies assume homogeneous ground conditions, but real-world geological settings are often heterogeneous, with varying rock properties. As mining depth and stress environment increase in complexity, the effect of stress magnitude and loading rate on the stability of tunnels with different cross-sectional shapes needs a comparative study (Bobet, 2011; Kim et al., 2020). Thus, this research aims to quantify the effects of section shape on the process of crack propagation and tunnel failure, by examining stress redistribution, displacement, geometric characteristics and their effects on the crack propagation, and development of damage (Lin et al., 1984; Tang, 1997; Jia and Zhu, 2015).
Structural planes are a critical geological risk factor that can influence the stability of tunnel, slope, dam construction, etc., and substantially lower the strength of rock masses (Wang et al., 2023a; Feng et al., 2024; Yu et al., 2024). In tunnels, faults can enlarge stress relaxation zones during excavation and create instabilities in ground stress that may lead to collapse. Due to their low shear and tensile strength, as well as the loosening of the rock mass caused by excavation-induced unloading, rock masses are prone to sliding along structural planes or experiencing detachment, flexing, and fracturing. These behaviors are particularly concerning in deep excavations, where the redistribution of stress can destabilize the surrounding rock, leading to potential failures. Understanding these mechanisms is critical for implementing effective stabilization measures to prevent structural collapse and ensure the safety and integrity of the excavation site (Wu et al., 2019; Li et al., 2024; Zhang et al., 2024; Zhong et al., 2025). Under some conditions, the faults may cause big disasters for tunnel construction. Zhang et al. (2020) performed scaled model tests to investigate the effect of a fault and grouting on the stability of a tunnel. Seo et al. (2016) conducted a parametric study using two-dimensional discontinuous deformation analysis to study the effects of the attribute of joints in a rock mass on the stability of a tunnel excavated in the rock mass. Manouchehrian and Ming (2018) investigated the influence of some parameters of a fault on tunnel stability.
Complex geological conditions have been encountered in the development of underground space in recent years, especially in squeezing ground areas, resulting in many tunnel construction problems such as excessive deformation, support structure failure, and even collapse (Mahabadi et al., 2012; Luo et al., 2020). The type of support, the excavation method, and the nature of the ground are all interdependent. However, some types of lining are better than others depending on the tunnel layout and construction method (Barton et al., 1995; Wu and Shao, 2019; Zhang and Zhao, 2015; Ghorasaini and Singh, 2019). A thorough understanding of the primary influencing factors and mechanisms of structural deterioration in such challenging geological conditions is essential to minimize problems during tunnel excavation (Shaalan et al., 2019; Chakeri et al., 2011; Simser, 2019). Tunneling or constructing underground structures in tight ground often presents significant technical challenges due to the complex and unpredictable nature of the geology, which can lead to numerous tunneling difficulties. Rational design in these scenarios requires a comprehensive knowledge of support system requirements, criteria for effective performance, familiarity with the capabilities of available systems, and analysis methods validated by practical experience. Future advancements in tunneling practices are expected to stem from a clear understanding of the limitations and requirements of current methodologies.
In this study, the extensive investigation into the fracture characteristics and failure mechanisms of tunnels excavated within deep rock formations are conducted. A comprehensive series of three-dimensional heterogeneous models that incorporate various parameters such as cross-section profiles, tunnel alignments, fault structures, and tunnel support systems are utilized. To simulate the gradual fracture process, macro failure modes, and safety factors, the strength reduction method is integrated into the rock failure process analysis (RFPA) method. This approach allows to accurately replicate the distinct fracture phenomena commonly observed in deep rock masses. Furthermore, our research delves into the mechanical mechanisms at play and the acoustic emission (AE) energy patterns exhibited by the surrounding rock formations throughout the various stages of zonal disintegration. This analysis sheds light on the intricate processes affecting the stability of deep rock tunnels.
2 METHODOLOGY
The tectonic denudation hilly area between the two major water systems of the Yangtze River and Jialing River is where the planned Hongyancun tunnel and Xietaizi connection ramp project pass through. The landform of the project site is a structural denudation shallow hill landform, with no adverse geological events such as landslides or faults, and with typical layer succession. The site rock and soil mass are stable overall. The site features an undulating original terrain with elevations ranging from 260 m to 360 m, resulting in a relative height difference of approximately 100 m. The area has undergone significant infrastructure engineering activities and transformations. Two primary gullies are present in the original terrain: one is located within the current site, specifically in the residential area of Xiexin Yunqigu, where the gully has been backfilled. The other gully is situated in the northeast part of the laboratory of the China Post Engineering College and has been repurposed as a training ground for an aircraft school following backfilling. This gully’s centerline runs diagonally, intersecting the X-B ramp at K0 + 250, then the X-A ramp at K1 + 650 to the southeast, and finally extending further to intersect the X-C ramp at K2 + 050. The gully is characterized by a wide and gentle topography, with its centerline elevation originally around 290 m. Currently, the gully has been backfilled to an elevation of 305 m–315 m. The surrounding rock of the tunnel is mainly sandy mudstone with relatively complete block mosaic structure. The classification of surrounding rock is grade IV. The moderately weathered sandy mudstone at the top of the tunnel is 12 m∼17 m thick. The possible problems of site and foundation stability caused by engineering construction are mainly the stability of the underground tunnel and subgrade slope, which should be considered in a reasonable design. The construction site of the Hongyancun tunnel is shown in Figure 1.
[image: Construction work inside a partially illuminated tunnel. Heavy machinery and construction workers are visible along the tunnel, which has rough, unlined walls and a slightly arched ceiling.]FIGURE 1 | The underground tunnel excavation.
In order to solve the stability problem related to rock engineering structures, we combined the fundamental principles of strength reduction method into the RFPA method (Tang et al., 2020; Feng et al., 2022). RFPA has been applied in simulating rock failure by many researchers (Wang et al., 2023b; Liu et al., 2024b; Gong et al., 2025a; Gong et al., 2025b). We also employed the AE event rate as the criterion for rock engineering failure. The main feature of the RFPA improved by strength reduction method for stability analysis of rock engineering is that they can obtain the factor of safety without any assumption for the shape and location of the failure surface. We initially considered that all FEM elements were elastic, with their elastic properties defined by Young’s modulus and Poisson’s ratio. We used the maximum tensile strain (or stress) criterion and the Mohr-Coulomb criterion to set the damage criteria. In the tensile failure mode, element damage was evaluated based on the maximum tensile strain criterion. For elements remaining intact under tensile conditions, shear-induced failure was subsequently assessed using the Mohr-Coulomb strength criterion.
The essential notion of strength reduction is introduced into the constitutive model of the element as an alternate solution to the failure analysis problem connected to geological or rock engineering. Each element is subjected to the shear strength reduction technique, and the constitutive model’s strength f0 is determined linearly using Equation 1:
[image: The equation shows \( f^{\text{trial}}_{0} = \frac{f_{0}}{f^{\text{trial}}_{s}} \), labeled as equation (1).]
In the formula, fstrial is the trial safety factor and f0trial is the trial strength of the element. The trial strength f0trial will be used in RFPA to investigate the strength of the rock masses.
Two kinds of cavities with different section shapes are selected, i.e., circular cavity and horseshoe cavity. The section size and boundary condition of the cavity are shown in Figure 2. We established numerical models with the size of 15 m × 15 m × 15 m in the X, Y and Z directions, respectively, and divided them into 100 × 100 × 100 = 100,000 units. In RFPA, the rock is assumed to be composed of many mesoscopic elements of the same size, and the mechanical properties of these elements are assumed to follow a given Weibull distribution (Gong et al., 2024; Gong et al., 2025c).
[image: Six illustrations of green cubes with different notches and supports. (a) Cube with a circular notch, dimensions included. (b) Cube with a semi-circular notch, dimensions shown. (c) Cube under load with a slanted cut. (d) Cube under load with a filled circular notch. (e) Cross-section labeled "Plain concrete." (f) Cross-section labeled "SFRH concrete" with added dimension details.]FIGURE 2 | Configuration of cross sections and numerical models. (A) Model (MC). (B) Model (MH). (C) Model (MF). (D) Model (MP and MS). (E) Plain concrete. (F) SFR concrete.
For shallow tunnel, we applied vertical stress of 2.75 MPa on the upper part of the model, horizontal stress of 4 MPa on both sides, and fixed the bottom, respectively, i.e., models MC0 and MH0. For deep tunnel, the vertical stress is kept unchanged and the horizontal stress of 8 MPa is applied, i.e., models MC1 and MH1. The rock mass yield criterion is based on the Mohr-Coulomb criterion. The parameters of rock mass are determined according to the field test and relevant literature (Liang, 2005), as shown in Table 1.
TABLE 1 | Physical and mechanical parameters of numerical simulation.
[image: Table displaying the properties of rock: Young's Modulus \(E_0\) is seventy megapascals, Cohesion \(C\) is sixty megapascals, Poisson's ratio is 0.3, Friction angle is thirty degrees, and Density is two thousand four hundred kilograms per cubic meter.]Numerical simulations employed the strength reduction method with a constant boundary stress condition. Both the rock mass strength and joint strength were progressively reduced at an increment of 0.01 until instability occurred, which was determined based on the critical number of failed elements. The corresponding safety factor was then calculated. A comprehensive parametric study was conducted to investigate: (1) the stability influence of faults (MF) positioned 1 m above the tunnel with varying dip angles (α = 0°, 30°, 60°, 90°) and (2) the effect of lateral pressure coefficients (k = 0.8, 1.0, 1.2, 1.4). The model geometry and boundary conditions are illustrated in Figures 2A, B and 2D. Material parameters for both rock mass and joints were determined through field tests and validated against existing literature (Liang, 2005), with detailed mechanical properties provided in Table 2.
TABLE 2 | Physical and mechanical parameters of fault.
[image: Table displaying properties of a fault material: Modulus of elasticity (70 MPa), Cohesion (30 MPa), Poisson's ratio (0.3), Friction angle (30 degrees), Density (2400 kg/m³).]The failure mechanisms of both rigid and flexible tunnel support systems were numerically analyzed, respectively, i.e., Models MP and MS. As illustrated in Figures 2E,F, the circular tunnel support system was evaluated under plane strain conditions. Two distinct support configurations were modeled: (1) rigid support: conventional plain concrete lining and (2) flexible support: steel fiber-reinforced (SFR) concrete lining. The SFR concrete demonstrates post-cracking tensile strength. The fibers within it function as micro-reinforcements, effectively distributing stresses in a more uniform manner and regulating crack propagation. Concurrently, SFR concrete can be regarded as a single composite material featuring homogenized properties. This approach significantly reduces computational complexity when contrasted with modeling discrete rebars and their complex interactions with concrete.
In this simulation, the thickness of the support lining under consideration is set at 0.3 m. The calculation domain is discretized into 100 × 100 × 100 quadrilateral isoparametric elements. A static loading scheme is implemented in the numerical model to mimic the deep - seated ground stress environment of the rock mass surrounding the laneway. The bottom of the model is fully fixed. A uniform static load of 8 MPa is applied on both lateral sides of the model, while a vertical load of 2.75 MPa is imposed on the model’s top surface. The average self-weight of the overburden strata in the model is assumed to be 25 kN/m3. The mechanical parameters of the elements are assigned following a Weibull distribution, and the values of the physical and mechanical parameters are determined based on in-situ tests and relevant literature (Liang, 2005), as presented in Table 3. Three distinct models with horizontal, inclined, and vertical alignments are designed. In each model, a circular tunnel with a radius of 2.00 m is excavated along the respective alignment. As depicted in Figure 3, the distances L between the centers of two adjacent tunnels are 2.00 m for the horizontal alignment, 2.83 m for the inclined alignment, and 2.00 m for the vertical alignment.
TABLE 3 | Physical and mechanical parameters of model material.
[image: A table comparing properties of rigid and flexible materials. Rigid material has an E₀ of 31 MPa, C of 80 MPa, Poisson ratio of 0.2, friction angle of 30 degrees, and density of 2400 kg/m³. Flexible material has an E₀ of 41 MPa, C of 200 MPa, Poisson ratio of 0.2, friction angle of 30 degrees, and density of 2400 kg/m³.][image: Six diagrams depict geometric shapes and vectors. Diagrams (a), (b), and (c) illustrate wireframe structures with vectors on circular paths. Diagrams (d), (e), and (f) feature green cubes with black circular markings indicating the paths, viewed from slightly different angles.]FIGURE 3 | Configuration and numerical model of twin tunnels. (a) Horizontal alignment. (b) Inclined alignment. (c) Vertical alignment. (d) Model of horizontal alignment. (e) Model of inclined alignment. (f) Model of vertical alignment.
3 RESULTS AND DISCUSSION
3.1 Section optimization effect
3.1.1 Failure process of tunnels with circular cavity
The maximum principal stress diagram and its corresponding AE diagram of tunnels with circular cavity are shown in Figure 4. In the AE diagrams, the red and blue dots represent the locations of AE events. The red color means that the AE event is generated because the tensile failure happens, while the blue color indicates that the AE event occurs because the compression-shear failure is triggered. The failure process of circular cavity in shallow tunnel are similar to the top of horseshoe where roof damage precedes the floor damage and is more severe than the latter. Discontinuous spalling occurred at the mid height of the side wall of the circular tunnel after excavation, and micro cracks in the surrounding rock were initially generated from the mid height of the side wall at the 66th reduction step. Under the increasing external load, the cracks then extended concentrically to greater depth in the rock mass surrounding the tunnel. At 74th step, the zonal disintegration becomes obviously and continuously, the cracks penetrated on the deep masses of surrounding rock. The cracks of the sidewall, bottom and roof are completely detached from the surrounding rock resulting in the tunnel losing its stability.
[image: Two rows of images depict airflow simulations. The top row (a1-a4) shows a cube with a color gradient representing pressure distribution and corresponding red point cloud projections. The bottom row (b1-b4) displays similar cubes and projections with varied flow patterns, indicating changes in the simulation. Each panel is labeled sequentially from a1 to b4.]FIGURE 4 | Shear stress and AE diagram of shallow (series (a)) and deep (series (b)) circular tunnels. (a1) Step 14. (a2) Step 71. (a3) Step75. (a4) Step 76-2. (b1) Step 14. (b2) Step 68. (b3) Step77. (b4) Step 78.
The maximum principal stress diagram and its corresponding acoustic emission diagram in the failure process of circular cavity in deep tunnel are shown in Figure 4. Due to the excavation under high overburden stresses in deep tunneling, the distribution of the zonal disintegration tends to appear on all the periphery of model due to the rock overstressing. The failure process is somehow similar to the shallow tunnel, it also shows the continuous damage evolution under the loading state. At the 73rd step, the concentration of the stress tends to appear at both the sidewall, the zonal disintegration in the left and right sidewall of tunnel seems to begin simultaneously. When the strength of the rock mass continues weakening and at the 77-1st step, the cracks in the left sidewall develop into deeper surrounding rock, the disintegration on the roof and bottom is not prominent. Finally, at the 78-2nd step, the side wall, the vault and invert of the tunnel completely lose their stability.
3.1.2 Failure process of tunnels with horseshoe cavity
For the shallow tunnel with horseshoe cavity in Figure 5, continuous spalling is found to occur at the foot of the tunnel and micro cracks in the surrounding rock are initially generated from the foot of the side wall at the 42nd step. Under the increasing external load, the cracks develop upwards to form a conjugate sliding shape at the foot of the arch roof, where the cracks finally coalesce. At the 59th reduction step, cracks are initially generated at the two right sides of the tunnel base, the vault is next damaged. However, the cracks at the top of horseshoe shaped tunnels generate and propagate to form smaller triangular zonal disintegration. Similarly, with the further reduction of the surrounding rock strength, the stress transfers to the deeper part of the further reduction of the surrounding rock again. When the strength of the rock mass continues weakening and at the 75-7th step, the roof and floor of the tunnel are obviously damaged, the right bottom corner displays the detachment. The tunnel detaches from the surrounding rock and completely loses its stability.
[image: A series of visualizations showing volumetric data through color-coded scalar fields and 2D projections. Each row contains four frames. The top row displays cubic segments with color gradients ranging from blue to red, indicating different scalar values. The bottom row shows corresponding 2D projections with red and blue patterns. Each frame is labeled from (a1) to (a4) and (b1) to (b4), with variations in the distribution and intensity of the colors and patterns across frames.]FIGURE 5 | Shear stress and AE diagram of shallow (series (a)) and deep (series (b)) horseshoe cavity. (a1) Step 42. (a2) Step 67. (a3) Step74. (a4) Step 75. (b1) Step 38. (b2) Step 66. (b3) Step71. (b4) Step 72.
For deep tunnel, the zonal disintegration with horseshoe cavity in Figure 5 seems to appear early than the shallow tunnel. Unlike the shallow tunnel, the concentration of stress tends to appear at floor and the bottom of the tunnel. Then, the cracks extend to the center of the roof and floor of the tunnel. Then, zonal disintegrations starting from the cavity wall are mainly on the left sides along the joint extension. Under the increasing external load, the cracks also develop on the left side wall of the tunnel to some extent. The zonal disintegration on the left and right sidewall shows the huge damages, which is highly consistent with the classical rib spalling during tunnel excavation in Figure 6. The middle part of the floor also shows the ridgeline damages but unlike the shallow tunnel, the roof of the tunnel does not generate damages. Finally, considering that the zonal fractures of surrounding rocks generally happen in high-stress environments in deep engineering, which may result in unimaginable accidents, it is necessary to further study more effective support methods.
[image: Illustration showing a sequence of three images: a diagram with deformed slip surfaces, a photograph with a highlighted rib spalling area, and a 3D model showing a slip surface. Arrows indicate progression between images.]FIGURE 6 | The classical rib spalling during tunnel excavation.
3.1.3 AE distribution and safety factor
Figure 7 presents the AE counts and accumulated energy from excavation to instability in shallow and deep tunnels with different cross-sections. The safety factors are: 4.00 (MC0), 2.38 (MH0), 1.44 (MC1), and 3.00 (MH1). Before macro-instability, over 2,000 AE events occur, with a sharp upward trend preceding failure, indicating clear precursory characteristics in heterogeneous rock. AE energy is released from damaged elements, but the quantity, distribution continuity, and accumulated energy frequency vary significantly. Circular tunnels exhibit better AE distribution continuity than horseshoe-shaped ones, suggesting lower stability in the latter. Circular tunnels also fail later, confirming their superior stability. Figure 7 shows a rapid increase in AE counts and energy ratios before macroscopic failure. This occurs because stress redistribution under load creates localized concentrations, triggering microcracking. As microcracks coalesce into larger fractures, AE activity intensifies, accelerating as failure approaches. This process leads to a sharp rise in AE signals just before collapse.
[image: Four bar graphs labeled (a), (b), (c), and (d) display AE counts and accumulated AE energy over steps. Each graph shows a similar increasing trend where AE counts are plotted in orange bars with AE energy as a blue line starting around step 70. Both datasets rise sharply towards the final steps, highlighting an accumulation trend.]FIGURE 7 | AE results of circular and horseshoe cavities. (a) Shallow circular tunnel. (b) Deep circular tunnel. (c) Shallow horseshoe tunnel. (d) Deep horseshoe tunnel.
3.2 Influence of existing fault
3.2.1 Effect of dip angles on the stability of tunnel
Fault located at different locations can lead to different influences on the deformation, stress and zonal disintegration of surrounding rock mass. Figure 8 shows the stress distribution of surrounding rock under different fault dip angles and their corresponding acoustic emissions at failure state. It can be seen that during the initial excavation, the surrounding rock stress is concentrated at the arch waist, and the stress shows symmetry. Under the increasing external load, the surrounding rock is damaged at the arch waist, and the stress concentration area also moves to the tip of the propagation crack. At the same time, there is also a high stress area at the fault, and finally a through crack appears between the tunnel and the fault. It can also be seen from the figure that the stress concentration degree of surrounding rock near the fault side is significantly higher than that on the without fault side.
[image: Four 3D models labeled (a) to (d) show stress distribution on a cube with a cavity. Colors range from blue (low stress) to red (high stress), highlighting stress intensity around the cavity edges. Each cube depicts a different stress pattern or condition.]FIGURE 8 | Shear stress diagrams with different dip angles of fault. (a) α = 0°. (b) α = 30°. (c) α = 60°. (d) α = 90°.
When α = 0°, the stress first appears in the arch waist and shows symmetry, which leads to damage and then extends to both sides; with the increase of fault dip angle, the stress distribution changes from the symmetrical distribution of intact rock mass and close to the fault stress migration. From the acoustic emission distribution in Figure 9, we can understand that the fault has great influence on the transmission of stress, strain and strain energy. When the tunnel is excavated, the rock mass between the fault and the tunnel will bear greater stress and store more energy, resulting in large deformation of the rock mass in this area, collapse or even rock burst at the tunnel boundary can occur, and the crack extends to the depth, which may eventually cause the relative sliding of the upper and lower walls of the fault.
[image: Four 3D scatter plots labeled (a) to (d), each showing data points clustered in red within a transparent cubic space. Each plot has a different orientation of the point distribution, highlighted by blue lines.]FIGURE 9 | Acoustic emission distribution with different dip angles of fault. (a) α = 0°. (b) α = 30°. (c) α = 60°. (d) α = 90°.
3.2.2 Effect of lateral pressure coefficient on the stability of tunnel
A series of lateral pressure coefficient of 0.8, 1.0, 1.2 and 1.4 are applied on models with dip angle of 30°, respectively, and the failure patterns at four typical reduction steps are shown in Figure 10. When k = 0.8 and k = 1.0, the detachment of joints is confined in the regions near the left shoulder of tunnel. At k = 1.2, cracks initiate at the bottom of left sidewall and the jointed place of right sidewall. For k = 1.4, fractures only occur at roof of tunnels, and there are no fracture zones at both sidewalls. The failure pattern of tunnel is spalling, flexing and breaking of tunnel rock mass, for which the shape of fractured zones on the roof is triangle. The faults have obvious effect on the failure mode of tunnel, and the high tectonic stress will have dominate effect on the failure of tunnel.
[image: Four colored contour plots show fluid flow patterns around a cylindrical object in a square domain. Each plot is labeled with different Reynolds numbers: 0.8, 1.0, 1.2, and 1.4. The colors range from red to green, indicating flow intensity variations.]FIGURE 10 | Effect of lateral pressure coefficient on the stability of tunnel.
3.3 Tunnel support system
The numerical results that portray the failure process of the surrounding rock of the laneway are presented in Figure 11. In this simulation, plain shotcrete serves as the rigid support under static loading conditions. As the external load gradually increases, due to the inherent heterogeneity of the model, the relatively weaker units within the rigid support start to sustain minor damage. By the 86-7th loading step, a large number of units in the rigid roof suddenly fail. The damage is especially conspicuous at all four corners of the vault. As the damage continues to develop and reaches the 86-23rd reduction step, the laneway roof undergoes substantial deformations and widespread failure. Meanwhile, both sides of the laneway also suffer significant destruction. At this point, the rigid support is forced outward and loses its ability to bear loads. An instance of slabbing during the excavation of a circular tunnel is shown in Figure 12, which further clarifies the failure mechanism.
[image: Four-part image showing 3D visualizations of stress distributions in cubes with defects. Each cube is color-coded by stress magnitude: (a) mostly green; (b) more varied with red; (c) increased red zones; (d) predominantly red. Below each, a corresponding sparse red dot pattern in a wireframe cube represents stress data points.]FIGURE 11 | Shear stress diagram and acoustic emission distribution of rigid tunnel support. (a) Step 55. (b) Step 86-7. (c) 86-23. (d) Step 98-11.
[image: Diagram illustrating the deformation and slip surfaces. The first circle shows deformed lines. The second image highlights a crack with a labeled "Nucleus of earthquake," and the third is a 3D model indicating the slip surface location.]FIGURE 12 | An example of slabbing during circle tunnel excavation.
As external load increases, laneway undergoes shear failure. However, the flexible support shows far less element damage. Under static loading, only a few roof units of the flexible support are damaged. By the 98-11th reduction step, damage emerges at the tunnel’s bottom and top left corner, yet sidewalls and roof remain largely intact, with no collapse or spalling. The steel fiber-reinforced flexible support stays undamaged, enhancing rock load - bearing. Tensile stress dominates its failure area. As load rises, it uses tensile properties to absorb deformation energy, preventing fractures. For varying excavation conditions, grouted rock bolts and lattice girders can be used for support.
3.4 Influence of tunnel alignment
3.4.1 Tunnels with horizontal alignment
The maximum principal stress diagram and corresponding acoustic emission diagram in the failure process with horizontal alignment tunnel are shown in Figure 13. With the rock mass strength weakening under the triaxial stress state, from which can be observed that the first fractured zone adjacent to the tunnel wall appear at the 39th reduction step. Then, the stress and damage from the cavity wall on both sides along the joint extension, left and right sides of the expansion rate are similar. When the damages continue and reach the 81st reduction step, the damage in both side of tunnel begins to appear. When the compressive/tensile strength continues reducing to the 87th step, the rock mass at a certain distance away from the first fracture starts to show the obvious damages. When it reaches to the 87-19 reduction step, the tunnel loses stability from the bottom and along the horizontal line of the two tunnels.
[image: Four panels (a-d) show 3D visualizations of pore pressures in a drilled geological formation. The top row displays colored stress distributions in cubes, with a scale indicating pressure levels. The bottom row shows corresponding pore pressure projections in red within wireframe cubes.]FIGURE 13 | Shear stress and AE diagram of horizontally aligned tunnel. (a) Step 39. (b) Step 86. (c) Step87-4. (d) Step 87-19.
3.4.2 Tunnels with inclined alignment
The shear stress and AE diagram of inclined aligned tunnel are shown in Figure 14. The strength of the rock mass contuses weakening and when reaches the 85 reduction step, the damage in both the tunnel becomes obvious. However, the upper left tunnel shows the damage mainly on the right wall and the lower right tunnel shows the damage on the and left wall. When it reaches the 85th reduction step, the bottom of both the tunnel shows the obvious damage, the damage on the lower tunnel is more prominent, the roof wall starts to detach from the surrounding rock. At the reduction step 87-6, the tunnel completely loses its stability and along with the radial damages around cavity, the damage seems to be more concentrated diagonally and around the cavity.
[image: Four panels labeled a to d display simulations of particle distribution within cubic spaces. Each panel has a colored upper diagram representing stress or pressure levels and a lower diagram showing red particles' dispersion. The color scale indicates varying pressure or stress intensity, with red signifying higher and blue lower values. Panel (a) shows fewer scattered particles, while panel (d) depicts more densely clustered particles. The diagrams depict changes in particle behavior under different conditions.]FIGURE 14 | Shear stress and AE diagram of vertically inclined tunnel. (a) Step 41. (b) Step 85-1. (c) Step 85-4. (d) Step 87-6.
3.4.3 Tunnels with vertical alignment
The shear stress and AE diagram of vertically aligned tunnel are shown in Figure 15. When it reaches the 85-4 reduction step, the damage on the lower tunnel is more severe than the upper tunnel, the floor of the tunnel completely detaches, and the vault collapses. Compared with the horizontal tunnel, the zonal fracture modes of vertical aligned tunnel show similarities to a certain extent. Consequently, the rapture area of the fracture ring located above the tunnel develops along the vertical line of the tunnel.
[image: Four panels showing 3D models of deformation analysis on cubic structures with color-coded stress levels. Top boxes display stress gradients, ranging from blue (low stress) to red (high stress). Bottom boxes illustrate red clustered stress points. Panels are labeled (a), (b), (c), and (d), each showing different stress distributions.]FIGURE 15 | Shear stress and AE diagram of vertically aligned tunnel. (a) Step 63. (b) Step 85. (c) Step 85-4. (d) Step 86-5.
4 CONCLUSION
To understand the fracture features and reveal the failure mechanisms of circle tunnels excavated in deep rock masses, a series of three-dimensional heterogeneous models considering the effects of the tunnel cross section, tunnel spacing, tunnel alignment, support system, dip angle of faults and the lateral pressure coefficient of faulted rock mass on the stability of the tunnel are established. The strength reduction method is embedded to achieve the gradual fracture process, final failure mode and safety factor and to reproduce the characteristic fracture phenomenon of tunnels under high geo-stress level, i.e., zonal disintegration. The following conclusions could be drawn:
	(1) The circle cross-section is considered to be the optimal cross-section because the force around the vault and the arch bottom is symmetrical. The horseshoe cross-section should be avoided in the tunnel design. Meanwhile, because of obvious obstruction, the rock mass between the fault and the tunnel bears high stress, and the tunnel cavity is easy to be damaged near the fault, and the degree of damage is severe. When k = 0.8 and 1.0, the detachment of joints is confined in the regions near the left shoulder of tunnel. At k = 1.2, cracks initiate at the bottom of left sidewall and the jointed place of right sidewall. For k = 1.4, fractures only occur at roof of tunnels, and there are no fracture zones at both sidewalls.
	(2) The alignment of a tunnel significantly influences its stability, with zonal fracture modes along the tunnel alignment exhibiting certain similarities. Overall, the rupture area of the fracture ring above the tunnel tends to develop in alignment with the tunnel’s longitudinal axis. Additionally, an analysis of stress distribution, fracture progression, and cumulative acoustic emissions highlights distinct behavioral patterns in the tunnel support systems. These patterns provide critical insights into the interaction between the tunnel structure and the surrounding rock mass, aiding in the design of more effective support strategies.
	(3) In terms of the rigid support, significant deformation and eventual collapse of the roof are observed, alongside noticeable damage to the two tunnel sidewalls. In contrast, the flexible support structure demonstrates minimal and controllable deformation, resulting in an overall stable condition of the laneway. To address the varying ground conditions and stress regimes encountered during excavation, the grouted rock bolts can be used to rigidly anchor the rock mass and transfer loads to deep stable zones, and lattice girders can be installed as rigid structural elements to support the tunnel roof and walls.
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K2 Wakai and Ugai (2004) Livan 1476
ZK2 Wakai and Ugai (2004) Nahanni 1476

PHA(g)

0.02,0.05,0.1,0.2,0.3,04,0.5,0.6, 0.8






OPS/images/feart-12-1515670/inline_8.gif





OPS/images/feart-12-1488519/feart-12-1488519-t002.jpg
Borehole Soil Thicknesses  Density Po

type (m) (g/cm3) (kPa)
Silt with fine 59 19 18 2 36 033 | 8 13 10580 169 | 096
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with
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fine silt
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medium to
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Silt layers@
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7K2 : | |
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medium to
coarse sand®
Fine sand® 155 1.93 518 503 1,465 033 | 1 35 2337 | 179 | 108
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Initial 15 40.0 29 724 37 ‘ 86.5 22 86.4 75.7
Smote 36 722 ‘ 37 784 36 ‘ 73.0 37 ’ 89.2 782

Adasyn 36 86.1 ‘ 36 ‘ 833 37 ‘ 78.4 ‘ 36 ‘ 77.8 814
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Mean accuracy/% 66.14 65.25 65.72 66.29 66.81 66.20 6351 65.33
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Algorithms g Accuracy/% on time-consuming/s
SBO-SVM 40,5894 18590 814 50.34
PSO-SVM 32.3943 66420 793 1312
MFO-SVM 10 2.8998 800 7412
DBO-SVM 8.4431 96,6125 79 39.57
SSA-SVM 216.4093 149.7526 76.6 4295
WAO-SVM 7.3467 132.6783 807 50.76
GS-SVM 711765 8 618 60.80
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Algorithms  Accuracy/% Value of change in

accuracy/%

SBO-SVM 814
421

sYM 793

SBO-LSSVM 821
1 +35

LLSVM 786

SBO-KELM 807
+4.0

KELM 767

SBO-RE 828
+3.7

RF 79.1

SBO-XGBoost 673
+1.6

XGBoost 657
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Model eters Value Accuracy/%
¢ 4059
SVM 814
g 186
¢ 54.97
LSSVM 82.1
g 0.16
c 55.01
KELM 807
g 1
N_estimators 138
RE Max_depth 10 828
Min_samples_split 343
N_estimators 29
Max_depth 12
XGBoost 673
Learning_rate 016
Subsample 083
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Prediction method Prediction width of the collapse bank (m)  Prediction elevation of the collapse bank

(m)
Kachujin method 38.018 1848.0
Bank slope structure prediction method 3524 1843.0
‘The proposed finite element method 33.754 1845.0
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Evaluation metrics Equation

Accuracy ACC= (NN +LL+ MM +58)/Q
Kappa
Kappa coefficient "
@
N:iRy = NN'NL'NM'NS LRy =
s M s 8
Reesion L mis SRS = Sestas
Ry Ry
REC = Btttk
)
IN+NL+NM+N LRi= IN+LL+LM+LS
Recall S Mg s
LA SRS
ReRoRoR
REC = Btk
Fl-sorce Fl1 =2 x (PRE x REC)/(PRE + REC)

Significance

‘The proportion of correct samples in the total number
of samples predicted

‘The proportion of errors produced by classification
and completely random classification is reduced

“The proportion of samples whose predicted labels are
positive and whose actual labels are also positive in the
samples whose predicted labels are positive

‘The proportion of samples with positive predicted
Tabels and positive actual labels in the actual positive
samples

Harmonic mean of precision and recall

W i i Al Gepienl i STl iiabi of rodl sOSB cilnaloe el B B B, S B obasanat thi habal remcbi b sndcind rockhures cabaceiss sespactiveln
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Stratigraphic name Stable slope angle Submerged stable Water level Abrasion angle 6(°)
above water a(°) slope angle £(°) fluctuation zone

stable slope angle y
©)

@ Loose overburden layer 10-25 15-40 18-30 18

@ Sand and blocky gravelly 12-28 30-69 19-32 20
soil
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Model Hyper parameters

Empirical scope

% (29,29
SVM
g 279,2%)
€ (107,10°)
LSSVM
g 102, 10%]
e (1073, 10°)
KELM
g (107, 10°]
N_estimators 20, 800]
RF Max_depth [1,20]
Min_samples_split [1,10]
N_estimators 100, 400)
Max_depth (0,15)
XGBoost
Learning rate .1
Subsample ((3))

Note: ¢ denotes the penalty coefficient, g denotes the kernel function parameter, and C

denotes the requlatization:coeficient:
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Stratigraphic
name

Internal friction
angle tang

Cohesion ¢ (kPa)

® Gravelly soil

@ Sand and pebble
gravel

© Permian slate

Bulk density Allowable Compressive
(g/cm?®) bearing capacity modulus Es
(kPa) 1-0.2)
20 200-250 3-8
22 400-450 ‘ 45-50
27 800-1,000 ‘ 550-750

045-0.1

050-0.55

07-.08

300-500
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Rockburst level

Accuracy/%

(L M

MTSIMPa | <24 | 24~60 | 60~126 | >126 43
UCS/MPa | <80 | 80~120 | 120~180 | >180 31
UTSIMPa | <80 | 8~86 86~10 >10 2
SCF <03 | 03~05 | 05~07 | >07 4

B <10 10~14 14~18 >18 19

W <20 | 2035 | 3550 | >50 52
Dim <50 50~200 | 200700 | >700 31
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Rockburst level Statistical parameters acteristic parameters

MTS/MPa UCS/MPa UTS/MPa Neg

Max 77.69 241 17.66 1.05 47.93 7.80 1,373
Min 2.60 20 040 0.05 538 081 100
Mean 25.85 10226 620 0.31 19.81 284 529.72
N
Med 23.16 97.49 523 023 155 211 510
std 16.61 50.83 391 025 1188 199 267.36
v 0.64 050 063 0.81 0.60 070 0.50
Max 126.72 263 226 0.90 69.69 9 2372
Min 10.90 30 1.90 0.09 252 085 194
Mean 44,51 n73 676 041 2146 380 780.60
L
Med 43.62 116 590 038 23.60 320 764
std 21.20 40.25 395 0.19 1025 161 337.64
v 0.48 034 058 0.46 048 042 0.43
Max 118.77 237.20 17.66 127 80 21 1,606
Min 13.02 30 130 0.10 015 120 150
Mean 5249 120.12 621 047 25.19 524 686.81
M
Med 51.79 11330 530 0.46 2170 5 691
std 23.20 4587 377 0.20 16 269 197.34
v 0.44 038 061 043 064 051 029
Max 297.80 304.20 226 4.87 80 30 1,170
Min 1643 30 150 0.10 553 203 203
Mean 106.05 13337 928 1, 18.84 822 735.11
s | | | |
Med 80.04 127.37 8.30 0.65 1443 6.60 689
std 77.20 50.66 465 1.07 1502 545 19241
cv 073 038 050 1.07 0.80 0.66 0.26
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Reference

Reference

aracteristic para

Note: gy is the maximum tangential stress (MPa), 0, is the uniaxial compressive strength (MPa),

Ge and Feng (2008) 0 03l 0,10, Wy AdaBoost Puetal. (20182) 0 0 0 Wiy DT
Chen etal. (2002) 0 0 0 Weg BP Shao and Zhou (2018) 0 0103 0 0101, 01T, W K, KELM
Zhao (2005) 0, 0,00 W SVM Xuetal. (2018b) 04l0, 0o, We DHNN
Zhu etal. (2008) 0 G O 04l0, 010, W V-SVR Pucetal. (20192) D, 0,0, 03y 04/, 0,10 W (0,-0)/(0,+5) GRNN
Bai etal. (2009) 04l 010 W FDA Wuetal. (20192) 0 0 0 00, 010, W LSSVM
Gong etal. (2010) 0 0 0 Wey BDA Pucetal. (2019b) 0y 0 0 0410, 0,10, (0,-0)/(0,40), W SVM
Zhoucetal. (2012) D, 04,0, 0 03/, 0,10, Wig SVM Wu etal. (2019b) 0 0 G 00, 0T, W PNN
Zhang et al. (2012) 0,00, 0,10, 04/0, Wy Ky D SVM Zhao et al. (2019) 00 0y/0, 010, W K, OPF
Dongetal. (2013) 0 04l 010 Wi RF Liuetal. (2019) 04l0, 0o, We ELM
Jia et al. (2013) 0 0,0 Wey GRNN Zhou etal. (2021) 0y 0 0 00, 0T, W ANN
Lan etal. (2014) 04l 0 Wy ELM Xie et al. (2020) 0y 03l 00, W XGBoost
Gao (2015) D, 0400, 0,15, W,y AACC Tian et al. (2020) 000 00 Wiy DNN
Lietal. (2017) D, 0 0y 0 Wiy BN Lietal. 20232) 0 0 O Wepp 04/, 0,10, CNN

the uniaxial tensile strength (MPa), 0y/o, is referred to as the stress concentration factor,

(0.-0,)/(0+0,) is the rock brittleness index, W, is the elastic energy index, o,/a, is another rock brittleness index, o, is the maximum principal stress (MPa), D represents the buried depth
reflecting the levels of in situ stresses (m), 0/, represents the stress condition factor, K., represents the index of integrality of rock mass. AdaBoost denotes Adaptive Boosting algorithm, BP,
denotes Error BackPropagation algorithm, SVM, denotes Support Vector Machine algorithm, V-SVR, denotes an algorithm in SVM, FDA, denotes Fisher Discriminant Analysis algorithm;
BDA, denotes Bayesian Discriminant Analysis algorithm; RF, denotes Random Forest algorithm; GRNN, denotes Generalized Regression Neural Networks algorithm; ELM, denotes Extreme
Learning Machine algorithm; AACC, denotes Abstraction Ant Colony Clustering algorithm; BN, denotes Bayesian Networks algorithm; DT, denotes Decision Tree algorithm; KELM, denotes
Kernel Based Extreme Learning Machine algorithm; DHNN, denotes Dynamic Hypergraph Neural Networks algorithm; LSSVM, denotes Least Squares Support Vector Machine algorithm;
PNN, denotes Product-based Neural Networks algorithm; OPF, denotes Optimal Power Flow algorithm; ANN, denotes Artificial Neural Networks algorithm, XGBoost denotes Extreme
Gradiont Boostiog alosiih, DN, donobes Detp Noncal Natworks algasittinn: CNI deictis Comvolational Noval Netwntks aloocitlin
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F1 3 F3 F4
As 0.883 0.083 0.046 -0.027
sb 0.873 0.011 0.053 0.19
Cu 0.115 0.873 -0.059 -0.126
Zn 0.067 0.868 0.096 0.137
w -0.156 0275 -0.059 0231
Ag 0.019 0.062 0.86 0.106
Sn 0.067 -0.066 0.835 -0.048
Hg 0.046 0.043 0.028 0727
Au -0.051 0.048 0.105 0.659
Pb 0.261 -0013 -0.07 0542
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Ag Hg Pb Sn Mo As Sb
Au 1000 0019 0.261 0022 0081 0.061 0026 -0.014 0018 0016 0.068 0.014
Ag 1000 0070 -0.017 0,066 0011 0762 0.001 ~0075 0028 ~0.044 0.009
Hg 1000 0.008 0185 0115 0013 0.001 0.037 0051 0114 0.066
Cu 1.000 ~0040 0612 ~0027 0.065 0144 0200 0.037 0.005
Pb 1.000 0.116 0031 0141 0131 0067 0247 0.050
Zn 1.000 0039 0129 0133 0020 0.079 0.028
sn 1000 -0.047 ~0.086 0082 0.037 ~0.002
w 1.000 0332 0034 ~0.057 0027
Mo 1.000 0.111 0.129 0.023
As 1.000 0.636 0057
b 1.000 0123
Bi 1.000
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Chemical Sample Minimum Maximum Standard Variance Measure = Kurtosis

element = quantity value value deviation of coefficient
skewness
Au 1,200 819 06 825 2745 3.3966 11537 13.668 273115
Ag 1,200 p22) 20 242 79.97 28,538 ‘ 814436 1360 4043
Hg 1,200 1,3459 | 100 1,355.9 46414 62.5602 3,913.779 12320 203219
Cu 1,200 1633 27 1660 . 19.067 114435 130954 5.147 144246
Pb 1,200 448 33 48.1 20.396 40124 16.100 0730 6.061
Zn 1,200 1182 192 1374 47.950 13.0201 169.524 2215 9.452
sn 1,200 102 06 108 3022 10347 1071 1574 6.382
w 1,200 1322 050 1372 11907 0.73580 0541 8.484 104.894
Mo 1,200 229 030 259 04954 017935 0032 4745 38.841
As 1,200 239 11 250 8.086 21796 4751 0.951 6.817
sb 1,200 197 012 209 0.5876 0.14055 0020 0.991 12480
Bi 1,200 961 004 964 02536 028597 0082 29740 971076

Nawtation: The dits wers sakei o 1400000 868 seochembcal sampltis sirvey dat of Dendons Goolspical Ressstol Fsttbats: Mo, Ag. Aiiifilte 107 Crinoak of olin elientil0rs.
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Slope Slope Aspect Terrain Distance Engineering NDVI Land-use Weight

curvature relief to fault geological development
group intensity
Slope curvature 1 73 2 2 12 14 3 12 0090
Slope 3 1 7 4 3 2 5 3 0263
Aspect 12 7 1 12 14 18 12 3 0032
Terrain relief 12 14 2 1 12 14 12 73 0050
Distance to 2 3 4 2 1 73 3 12 0124
fault
Engineering 4 12 8 4 3 1 3 2 0240
geological
group
NDVI 73 15 2 2 173 173 1 173 0061
Land-use 2 3 3 3 2 12 3 1 0.140
development
intensity
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Utilization = Construction Paddy Dryland Grassland Garden Bamboo Shrub

types land fields land forest forest
land land
Land-use 09 09 08 07 06 06 03 02
development

intensity
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Evaluation
factor

Slope
curvature

Slope/*

Aspect

Terrain relief
/m

Classification Evaluation Classification Number Area
factor of /km?
disaster disaster
points points
concave slope 21 79.95 ~0.03 0-250 9 3026 013
Concave slope 21 87.56 -0.14 250-500 7 27.89 -0.09
Straight slope 5 691 086 500-750 4 2629 -051
<5 3 10.14 012 750-1,000 5 2087 0.5
15-20 3 1022 150 | Distnceto 1,000-1,250 8 1854 051
fault/m
20-25 3 2335 20-25 1,250-1,500 5 1165 051
25-30 15 333 25-30 1,500-1750 1 1157 -0.74
30-35 9 37.14 30-35 1750-2000 0 9.00 ~1.00
35-40 12 36.05 35-40 >2000 8 1834 052
40-45 3 1829 40-45 Hi 39 11396 029
>45 0 609 ~100 | Engineering Hs 5 4788 -0.68
geological
N 5 2191 -020 group Qg 3 1193 -0.09
NE 4 2373 045 Rr 0 064 -1
E 7 2113 026 50-100 0 006 -1.00
SE 12 2415 063 100-150 1 233 051
NDVI
s 6 2.9 ~0.05 150-200 6 1054 072
W 7 1937 035 200-250 40 16149 011
w 4 19.05 -028 0-02 0 13.05 -1.00
NW 2 21.90 -073 0203 3 5350 084
0-20 6 1537 042 03-04 6 2388 -0.09
20-40 30 10322 010 Land-use 04-05 10 2580 042
development
40-60 11 54.22 -0.31 intensity 0.5-0.6 11 2854 0.41
60-80 0 143 -1.00 06-07 13 2168 075
07-08 4 568 085
>80 0 019 -1.00
08-0.9 0 229 -1.00
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Connotation

1 ‘The factor i is equally important as the factor j
3 ‘The factor i is slightly more important than the factor j
5 The factor i is moderately more important than the factor j
7 ‘The factor i is extremely more important than the factor j
9 ‘The factor i is definitely more important than the factor j

2,468 Scale values corresponding to two intermediate states for

judgment
Reciprocal Contrary to the above impact situation
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pllkg/m3) E,/GPa
Siltstone 2,170 6.7 0.25
Limestone 2,600 325 0.25
Granodiorite 2,730 50.0 0.22
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Parameters Value
Rock density/(kg/m?) 2,730
Longitudinal wave velocity/(m/s) 5,300
Bulk modulus A,/(GPa) 298
Shear modulus G/(GPa) 201
Compressive strength £./(MPa) 1462
Normalized tensile strength f,/f, 0.100
Normalized shear strength £/f; 0180
Intact failure surface constant A 1820
Intact failure surface constant N 0.750
‘Tensile/compressive meridian ratio Q, 0.6805
Brittle to ductile transition By 00105
Compressive strain rate exponent a 9.090 x 107
Tensile strain rate exponent § 1250 x 1072
Damage constant Dy 0.04
100

Damage constant D,
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Blasthole Number of Number of Hole array Hole Stemming Single-hole

type blasthole holes pitch/(m) spacing/(m) length/(m) charge/(kg)
rows
‘ ] 18
‘ 2 28
‘Main borehole [ 3 22 2.3~32 2.5~3.5 3.0~4.0 84~96
" 4 23
| & 23

Note: 70 mm charge roll a section of 50 cm, 2.0 kg; 32 mm charge roll a section of 20 cm, 200 g.
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Test area Rock sizes with 60% Mean diameter Rock sizes with 10% Non-uniformity

cumulative rates Xs0/(mm) cumulative rates coefficient C,,
under minus mesh under minus mesh
material Xgo/(mm) material x30/(mm)

Air-coupled blasting : 7235

Water-coupled blasting 87.39
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Impact factor Type of impact REGEVEEREIT

factor
Steel mixed cast in place 1
Building and roof type Swedimied )
prefabricated
Floor 2
Elevator corners 1
Structural col
R Columns at the corners 0
of external walls
No structural columns -1
Layers of closed ring 2
girders
Ring beam Partially closed ring 1
beam
No structural columns 0
Maximum column - Values according to
spacing actual column spacing
Maximum span of = Value according to the
beam actual span
Maximum floor height - ‘Taken according to the
actual floor height
Mean value = Average value
according to the
relevant impact factor
of the same type of
building
Building age - Values according to the
actual building age
E 5
2 6
G : 4
Lethal resistance levels
H 8
1 L
J 10
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NO. Level Anti lethal Lethal resistance

resistance levels level intervals

1 A 0% 0%-10%

2 B 10% 10%-15%
3 c 20% 15%-25%
4 D 30% 25%-35%
5 E 40% 35%-45%
6 F 50% 45%-55%
7 G 60% 55%-65%
8 H 70% 65%-75%
9 1 80% 75%-85%

T

10 ] 90% 85%-95%
1 K 100% 95%-100%
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Type of building structure Lethal

resistance level

Building type Secondary classification j intervals
Steel construction Building age, quality 095-0.85
Fa Building age, structural columns
Framework T 09-075
b Building age, structural columns
Cba Age of construction, quality of columns
Wood frame with pierced combinations T 08-0.65
CDb Age of construction, quality of columns
Ba Structural columns, ring beams, cast-in-place roofs 0.75-06
Bb Structural columns, ring beams, prefabricated roof 0.6-0.55
panels
Brick hybrid structure T 075-04
Be Nosstructural columns, ring beams, prefabricated roofs | 0.55-0.45
Bd No structural columns, no ring beams, prefabricated 045-0.4
slab roofs
Ma Wall type, bond, foundation, roof, age
Masonry T 04-01
Mb ‘Wall type, bond, foundation, roof, age
Civil engineering ‘Wall type, bond, foundation, roof, age 02-0
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Representative

Original data

SMOTE

villages and volume optimization
towns

Calamus Township 1235 1235
Daying Township 249 1,198
Xinfan Township 1457 1457
Jinji Township 859 1,309
‘Wangren Township 293 1,226
Zhangou Township 352 1172
‘Yongxing Township 278 1175
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Building cover
type

Steel hybrid castin
Place

Stee Mixed
Prefabricated

Steel Mised
Prefabricated

Steelhybrid
castin-plce

Tectonic
column

Four comners of the
outer wall

None

Four corners o the
outer vall

None

Ring girder

Closed ring beams at
eachlevel

None
Closed ring beams at.
eachlevel

Partilly enclosed ring
ginders

Maximum Maximum
column beam span/m
spacing/m

1 3
15 N
6 6

Maximum floor
height/m

35

32

35

a7

152

Date of

construction

(e.g., of
building)

012

03

1985

Anti lethal level
rating
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Probability 030 0.40 045 ‘ 0.50 055 ‘ 0.60 0.70 0.80

Precision 8337 83.54 8381 ‘ 84.64 83.62 ‘ 83.08 82.64 82.07
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Hardware environment configuration Software environment configuration

Configuration items Model Configuration items Version
CPU 19-12900K Operating system Ubuntu 20.04 LTS
GPU . RTX 4080 . Frame TensorFlow 2.2.0

Memory 32GBDDR4 Deep Learning Libraries Keras 2.3.1

Image processinglibrary OpenCV 4.10.0
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The sonar image data type Total number of samples umber of invalid samples  Actual sample si:

Ups and downs 342 8 334
Sandbanks and Reefs 336 4 332
Seabed topography 1
Canyons and Rift Valleys 232 6 226
Mountains and Plateaus 272 ' 4 268
Shipwreck 201 2 199
Specific goals Airplane 227 9 218
Subsea pipelines and cables 203 3 200
Halobios 305 2 293
Total 2,118 48 2070
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Precision (%) Recall (%) Average recognition speed (ms)

‘This article model 87.95 87.97 0.8794 37
CNN-Softpuls 6347 65.28 05476 69

Visual Geometry Group Network 7824 74.39 07391 46
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The sonar image data type Precision (%) Recall (%) F1score
Ups and downs 8617 8451 08533
Sandbanks and Reefs 8431 82.52 0.8341
Seabed topography T
Canyons and Rift Valleys 87.22 8322 08517
Mountains and Plateaus v 93.14 96.27 0.9468
Shipwreck 89.36 91.20 09027
Specific goals Airplane 87.14 87.46 08730
Subsea pipelines and cables 85.71 8475 08523
Halobios 90.55 93.82 09216
Average value 87.95 87.97 08794
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Classification ~ Area/km? Number Area Proportion Slope Gi/S; Gi/S;

of slopes proportion of proportion
disaster Sil% disaster M/%
points points
G/%

Most high 5109 35 685 2929% 7447% 26.58% 2542 2802
susceptibility

High- 5646 8 849 3237% 17.02% 32.95% 0526 0517
susceptibility

Mid- 4445 1 677 25.48% 213% 2627% 0083 0081
susceptibility

Low- 242 3 366 12.86% 638% 1420% 0496 0449

susceptibility
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Variable (Unit) Value and range

D :8
Seabed slope angle a(deg.) 0,510
Horizontal displacement h(m) ~0.0762; 0.0762

Rotational load 6(deg.) -5.73-5.73
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Model Sand

Unit weight y (kN/m*) 18 78.5

Young’s modulus E (kPa) Equation 1 210°
Poisson ratio v 03 03
Friction Angle g (deg) 40 -
Dilation angle y (deg.) 10 -
Cohesive force ¢ (kPa) 3 -
Model parameter B 600 -
References stress - (kPa) 1013 —
Void ratio ¢ 091 -
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Monopile

1 Pl 0.762 10 132 6.1 80 25 300
2 P2 0.762 10 132 4.0 14 540
3 P3 0.762 10 132 23 . 10 760

Note: D is monopile diameter, L is the monopile embedded length, e is the load eccentricity, ¢ is the monopile wall thickness.
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Depth of burial Number of original datasets Accuracy References

KMeansSMOTE+SVM All 226 90.8% Luo etal. (2023)
KMeansSMOTE+ stacking All 1 275 85.59% Yin et al. (2024a)
FS + t-SNE + GMM-+Vote All 344 90% Yin et al. (2024b)
ET Shallow 69 92.86% | |
RE+SMOTENC Shallow 1 69 88.64% “This work
ET+SVMSMOTE Shallow 69 93.75%
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Test set Training set

Precision Recall Fiscore Accuracy Precision Recall Flscore Accuracy
N 1 1 1 1 1 1
i
L 1 1 1 09375 1 09677
ET [ 0.9286 T 09818
M 0.7500 1 08571 1 1 1
s 1 0.6667 0.8000 1 08571 09231
N 1 1 1 1 1 1
L 1 1 1 1 09333 09655
ET+ |
i T 09375 T 09841
MSMOTE.
P M 1 0.7500 08571 1 1 1
s 0.7500 1 08571 09286 1 09653
N 0 0 0 1 | 1
- L 08333 1 09091 0.8000 | 08889
t |
WOC 0.8824 09254
M 1 0.8000 0.8889 1 08125 0.8966
s 08571 1 09231 09286 0.8667 08966
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Factor \" WOE LR
<200m 055 | 050 125
200m~300 m 072 068 140
Distance from mining | 3001\ 600 m 058 | 054 0.98
area
600m~1000m | 019 | 018 104
21000 m 020 | 030 —143
<100 m 0.36 -0.08 0.71
100-200m —015 | 010 | -0
200-300m 061 | -054 | -051
Distance from roadway
300-400 m 064 | 060 | -093
400-500 m 083 | 081 | 047
>500m S180 | <176 | -189
<100m 033 | 032 014
100-200m 052 | 050 103
; 200-300m 010 | 009 002
Distance from
residential settlement
300-400 m 021 | 020 061
400-500 m 059 | 055 0.46
>500m 009 | 028 053
<500 m 035 | 029 0.49
500m~1000m | 044 | 037 0.68
1000m~1500m | 005 | 0.04 038
1500m~2000m | 0.03 | 0.02 009
Distance from
. 2000m~2500m | 0.1 | 0.10 009
geological structure
2500m~3000m | -080 | -075 | 097
3000m~3500m | -086 | -0.83 | -092
>3500m 013 | 007 | 024
<200 m 0.86 0.74 114
200-400 m 037 033 0.68
Distance from river
400-600 m 019 017 029
600-800 m 033 0.29 0.62
800-1,000m 020 | -018 | -010
>1,000m 033 | 005 095
<1,000m 013 013 0.82
1000-1500m | 044 | 013 108
DEM
1,500-2000 m 027 | 003 090
>2000m -133 | -129 | -l4s
0-5° 027 | -026 | -040
15% -0.04 -0.02 =0.11
1525 006 | 003 | -006
Slope 25045° 013 007 0.23
15°~60° 000 | 000 013
60°~90° 053 | 053 | 068
<10m -004 | oMl 034
10-20m 015 on 034
20-30m 014 ol 023
Slope height
30-10m 000 | 000 0.00
10-50m 000 | 000 0.00
50-60m 000 | 0.00 0.00
>60m 000 | 000 0.00

Factor

Rainfall

Land use

NDVI

Soil erosion

Landform types

Landform types

Slope structure

Engineering geological
rock group

<900 mm 0.00 0.00 -3.64
900-1100 mm -0.39 -0.29 -0.92
1,100-1,300 mm 0.16 -0.11 0.80
>1,300 mm -0.09 -0.07 -0.11
Farmland 0.37 0.11 0.85
Forest -0.28 0.08 -0.84
Shrub 0.09 0.09 0.26
Grassland 0.31 0.31 -0.18
Water body 145 145 =0.50
Impervious surface 0.00 0.00 114
Bare soil 0.45 045 0.85
0-0.1 0.54 0.40 0.67
0.1-0.2 0.36 0.31 0.42
0.2-03 0.17 0.14 0.32
0.3-04 -0.06 -0.04 0.01
0.4-0.5 -0.62 ~0.45 -0.91
>05 -1.18 -1.14 -1.44
Slight erosion -0.52 -0.29 0.88
Light erosion 0.11 0.04 -0.91
Moderate erosion 0.38 0.32 022
Intense erosion 0.47 042 0.59
Severe erosion 0.43 042 0.77
Violent erosion -0.57 -0.57 0.48
Extremely violent 0.00 0.00 0.68
erosion

Tectonic erosion of 0.28 0.04 0.80
mountainous terrain

Erosion and dissolution -0.82 0.08 -1.05
of canyon terrain

Terrain with alternating. -0.40 =021 -0.75
tectonic and erosional

features

Karst landform with 0.07 0.08 0.21
peaks and depressions

“Tectonic erosion of low -0.28 0.00 -0.70
mountain terrain

Exfoliation of low -0.33 -047 -0.33
mountainous terrain

Karst landform with 0.11 0.04 0.10
low to medium peaks

Downhill slope 0.06 0.04 0.17
Uphill slope 011 | 008 016
Sloping terrain —027 | -021 —022
Transverse slope 0.15 0.08 0.16
Horizontal rock layer 0.00 0.00 -0.87
Massive rock formation -0.51 -0.47 -0.77
bedded hard rock 0.00 0.00 -2.60
formation

‘massive hard rock -0.35 -0.32 -0.56
formation

bedded semi-hard rock 0.71 0.64 1.00
formation

bedded soft rock 0.46 -0.05 1.58
formation

medium-thick bedded

moderately hard strong

lithified limestone

formation

medium-thickbedded | 16| M9 | 173
moderately hard strong

lihified limestone

formation

Toose soil mass

bedded hard rock -0.79 -0.62 -1.27
formation

loose rock formation =111 -1.05 -1.22
loose soil mass 0.00 0.00 -2.81
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None 19 21 19 23 21 21 21
Light 21 21 21 21 21 21 21
Moderate 19 19 19 2 21 21 21
Strong 10 21 20 21 21 21 16
Aggregate 69 82 79 87 84 84 79
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Buffer area

Distance from roadway 0.051 0062 0.051 0075 0012 0016
Digital Elevation Model (DEM) 0.065 0055 0153 0.059 0.061 0063
Landform types 0,030 0029 0032 0.042 0.040 0044

Distance from geological structure 0017 0018 0.028 0.021 0.000 0,003
Distance from watercourse 0,058 0059 0.041 0,051 0,035 0034
Rainfall 0.169 0.187 0.054 0.181 0228 0219

Normalized Difference Vegetation Index (NDVI) 0.000 0,000 0.000 0.000 0.001 0.000
Slope height 0.203 0212 0205 0.197 0243 0231

Distance from residential settlement 0026 0,007 0013 0016 0017 0028
Soil erosion 0.072 0065 0.068 0.057 0.040 0040

Slope 0072 0059 0.049 0.040 0,038 0042

Land use 0.093 0.089 0126 0.078 0.079 0.072

Distance from mining area 0.014 0014 0.034 0.036 0.017 0019
Slope structure 0.062 0.065 0.062 0.067 0.063 0065
Engineering geological group 0.070 0079 0.084 0079 0127 0124
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Serial number

10

1

12

Data
Digital elevation models

Topographic maps

Geological maps

Land use data

Remote sensing images

Rainfall data

Landslide reports

2021 geological hazard records

National spatial planning data

Mineral resource planning

data

Geomorphic type maps

Engineering geological rock
group classification maps

Scale/Resolution
30m

1:10,000+ 1:50,000

1:50,000

30m

30m

Average annual rainfall

1:10,000

1:10,000

1:10,000

1:50,000

Source
https//www.gscloud.cn/

Yunnan surveying and
mapping data Archives

Yunnan surveying and
mapping data Archives

Resources and Environment
Science Data Center of
Chinese Academy of Sciences
(https://wwwresdc.cn/)

Landsat T™ (20224F)
Zhenxiong county
‘meteorological Bureau

Zhenxiong County natural
resources Bureau

Zhenxiong County natural
resources Bureau

Zhenxiong County natural
resources Bureau

Zhenxiong County natural
resources Bureau

Yunnan Geological
Engineering Survey Co., LTD

Yunnan Geological
Engineering Survey Co., LTD

Aim
Slope. Slope height

Driving factor analysis

Driving factor analysis

Driving factor analysis

Normalized vegetation index

and soil erosion intensity map

Rainfall distribution map

Landslide inventory map

Landslide inventory map

Driving factor analysis

Driving factor analysis

Driving factor analysis

Driving factor analysis
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Hyperparameter ET+SVMSMOTE RF+SMOTENC

Estimators 2394 2394 1131
Min samples split 5 5 2
Min samples leaf 1 1 4

Max features sart sart sart

Max depth None None 50

Bootstrap False False False
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Experimental stage division Loading number range Range of loading magnitudes

Initial stage of the experiment 1-10 01g-035g
Intermediate stage of the experiment 10-16 035g-06g

Final stage of the experiment 16-24 06g-10g
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Loading number Waveform Direction

1 005g ‘White noise 305
7 0lg Natural wave 23 185
3 015g Sine wave X 18 Hz 185
4 005g ‘ ‘White noise 305
5 02g Natural wave 23 185
6 025g Sine wave X 18 Hz 185
7 005g ‘White noise 305
8 03g Natural wave X 185
9 035g Sine wave X 18 Hz 185
10 0.05g ‘White noise 305
11 0.4g Natural wave X 185
12 005g ‘White noise 305
13 05g Sine wave X 18 Hz 185
1 005g ‘White noise 305
15 06g Sine wave X 18 Hz 185
16 005g ‘White noise 305
17 08g Sine wave X 18 Hz 185
18 005g ‘White noise 305
19 09g Sine wave X 6Hz 185
20 005g ‘White noise 305
2 09g Sine wave X 30Hz 185
2 0.05g ‘White noise 305
23 10g Sine wave X 6Hz 185
2 005g White noise 305
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Material type Density Elastic modulus Compressive Cohesion Internal friction
strength angle

p/lg/em’) E/(MPa) a/(MPa) C/(MPa) 9 (2

Geological model . 27,800

Laboratory model X 278
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Physical Derived formula Similarity

quantity coefficient
Density p C, i
Elastic modulus E ' C;=C?C,C? 100°
Poissors ratio T 1
Cohesion ¢ ‘ C=C 100
Internal friction angle ¢ Co 1
Stress & C,=C;C, 100
Strain & C.=C,C,C Gt 1
Length | [} 100*
Time ¢ < 100
Frequency f 01
Velocity v 10
Acceleration a CymGyC> 1
Gravitational €3 1
acceleration g

Note:
i o e s





OPS/images/feart-12-1456186/math_8.gif
B = (X* - XV[X* - X7 (8)





OPS/images/feart-12-1504864/feart-12-1504864-g005.gif
Elevation (m)

3

t]

H

i

5o

o
I i Scarp
-
‘ - w
| o
| zovsctaspieton

Distance (m)





OPS/images/feart-13-1537936/feart-13-1537936-g015.gif





OPS/images/feart-12-1456186/math_7.gif
()





OPS/images/feart-12-1504864/feart-12-1504864-g004.gif





OPS/images/feart-13-1537936/feart-13-1537936-g014.gif





OPS/images/feart-12-1504864/feart-12-1504864-g003.gif





OPS/images/feart-13-1537936/feart-13-1537936-g013.gif
Vertical Heaght (cm)
5 2

=

igh density degree Low deasity degree
e e
e ——o1sg
ey o2y
N B T

'PGA amplification fctor

PGA snplification fhctor






OPS/images/feart-12-1504864/feart-12-1504864-g002.gif
Nt

[Posttonure surtace g:m::» Mg
i






OPS/images/feart-13-1537936/feart-13-1537936-g012.gif





OPS/images/feart-13-1537936/feart-13-1537936-g011.gif
Self-Orguniacd
SenlerentPhse

Self-Organized

@@ Particles of iffveot sizes.





OPS/images/feart-13-1537936/feart-13-1537936-g010.gif





OPS/images/feart-12-1438277/feart-12-1438277-g006.gif





OPS/images/feart-12-1438277/feart-12-1438277-g005.gif
Logend S Loner ot
| [——
‘w

S —






OPS/images/feart-12-1504864/crossmark.jpg
©

|





OPS/images/feart-12-1464775/math_9.gif
©





OPS/images/feart-13-1537936/feart-13-1537936-g009.gif





OPS/images/feart-12-1464775/math_8.gif
Fy= Y ndy =12

m) ®





OPS/images/feart-13-1537936/feart-13-1537936-g008.gif





OPS/images/feart-12-1464775/math_7.gif
Ath+oth
Yy

x100% @





OPS/images/feart-13-1537936/feart-13-1537936-g007.gif





OPS/images/feart-12-1464775/math_6.gif





OPS/images/feart-13-1537936/feart-13-1537936-g006.gif





OPS/images/feart-12-1464775/math_5.gif
)





OPS/images/feart-13-1537936/feart-13-1537936-g005.gif





OPS/images/feart-12-1464775/math_4.gif
@





OPS/images/feart-13-1537936/feart-13-1537936-g004.gif





OPS/images/feart-12-1464775/math_3.gif
[©





OPS/images/feart-13-1537936/feart-13-1537936-g003.gif





OPS/images/feart-12-1464775/math_2.gif
@





OPS/images/feart-13-1537936/feart-13-1537936-g002.gif





OPS/images/feart-13-1537936/feart-13-1537936-g001.gif





OPS/images/feart-13-1537936/crossmark.jpg
©

|





OPS/images/feart-12-1504864/feart-12-1504864-g001.gif





OPS/images/feart-12-1438277/inline_23.gif





OPS/images/feart-12-1438277/inline_2.gif





OPS/images/feart-12-1438277/inline_15.gif





OPS/images/feart-12-1478570/feart-12-1478570-g017.gif





OPS/images/feart-12-1438277/inline_14.gif





OPS/images/feart-12-1478570/feart-12-1478570-g016.gif





OPS/images/feart-12-1438277/inline_13.gif





OPS/images/feart-12-1478570/feart-12-1478570-g015.gif
o~

———— ERMNRE...un
= /
ity el o e o o N B

() Landelide beaking sccumutation stape.





OPS/images/feart-12-1438277/inline_12.gif





OPS/images/feart-12-1478570/feart-12-1478570-g014.gif





OPS/images/feart-12-1438277/inline_11.gif





OPS/images/feart-12-1478570/feart-12-1478570-g013.gif
TRy 1

[ ——
ey





OPS/images/feart-12-1438277/inline_10.gif





OPS/images/feart-12-1478570/feart-12-1478570-g012.gif





OPS/images/feart-12-1438277/inline_1.gif





OPS/images/feart-12-1478570/feart-12-1478570-g011.gif
P )
Lrs—
@

e o W W
[Re—
ot X2





OPS/images/feart-12-1438277/feart-12-1438277-t001.jpg
Materi Model nam cro-parameters
[AG] k, (N-m™) K, (N-m®)
Colluvium Linear
04 1x107-2x10° 1x107-1x10°
Linear group Parallel-bond group
Limestone BMP “) { K, (Nem®) ‘ k, (N-m) ¥, (Nm?) k, (Nm?) 7, (MPa) E(MPa) Be)
0.6 ‘ 2x10° ‘ 1x10% 1x10° 1x10° 50 30 30
K, (Nm™) k (N-m) ) . (MPa) C* (MPa) " ©
Fracture M = - =
2x 10" 2x10" 07 0 0 0






OPS/images/feart-12-1478570/feart-12-1478570-g010.gif





OPS/images/feart-12-1478570/feart-12-1478570-g009.gif
L

iR e

Vb r,,,,

EEERSR

i s g





OPS/images/feart-12-1478570/feart-12-1478570-g008.gif





OPS/images/feart-12-1438277/feart-12-1438277-g015.gif





OPS/images/feart-12-1438277/feart-12-1438277-g014.gif
G sane s






OPS/images/feart-12-1478570/feart-12-1478570-g007.gif





OPS/images/feart-12-1438277/feart-12-1438277-g013.gif
pr——





OPS/images/feart-12-1478570/feart-12-1478570-g006.gif





OPS/images/feart-12-1438277/feart-12-1438277-g012.gif
. ‘Step 1,000,000
I Step 200,00
I Step 10000000





OPS/images/feart-12-1478570/feart-12-1478570-g005.gif





OPS/images/feart-13-1546716/feart-13-1546716-g009.gif





OPS/images/feart-12-1438277/feart-12-1438277-g011.gif
I . Step 750,000 I Step 1.000.000

I Step 1500000 I Step 2000000
I sepsamoom aI Step 10.000.00






OPS/images/feart-12-1478570/feart-12-1478570-g004.gif





OPS/images/feart-13-1546716/feart-13-1546716-g008.gif





OPS/images/feart-12-1438277/feart-12-1438277-g010.gif
] ——
i -
4

JR——

et

) PR ®

et





OPS/images/feart-12-1478570/feart-12-1478570-g003.gif





OPS/images/feart-13-1546716/feart-13-1546716-g007.gif





OPS/images/feart-12-1438277/feart-12-1438277-g009.gif





OPS/images/feart-12-1478570/feart-12-1478570-g002.gif
& T e e
[ st ety [t

T emctieitin [ P






OPS/images/feart-13-1546716/feart-13-1546716-g006.gif
o P 13 e





OPS/images/feart-12-1438277/feart-12-1438277-g008.gif





OPS/images/feart-12-1478570/feart-12-1478570-g001.gif





OPS/images/feart-13-1546716/feart-13-1546716-g005.gif





OPS/images/feart-12-1438277/feart-12-1438277-g007.gif
Wld E
2w 2PN e e






OPS/images/feart-12-1478570/crossmark.jpg
©

|





OPS/images/feart-13-1546716/feart-13-1546716-g004.gif





OPS/images/feart-12-1504864/feart-12-1504864-t001.jpg
Natural moisture content Density Gravity Liquid limit (%) Plastic limit (%) Plastic index

2.1% 1.22 g/em® 278 312 149 163





OPS/images/feart-13-1546716/feart-13-1546716-g003.gif





OPS/images/feart-12-1504864/feart-12-1504864-g012.gif





OPS/images/feart-13-1546716/feart-13-1546716-g002.gif
e PO,





OPS/images/feart-13-1546716/feart-13-1546716-g001.gif





OPS/images/feart-13-1546716/crossmark.jpg
©

|





OPS/images/feart-12-1438277/feart-12-1438277-g016.gif





OPS/images/feart-12-1470083/feart-12-1470083-g008.gif
Stding Faiae.
~N
i e
‘ Tty i
Siding Failue

- Critical Sate





OPS/images/feart-12-1470083/feart-12-1470083-g007.gif
N

(a) 25 seconc

r’

(b) 40 seconds

AN

(c) 60 seconds






OPS/images/feart-12-1470083/feart-12-1470083-g006.gif
() Generaizedshear s foche landslide () Dislacement for he andside i i
il sing st stidig sote

S

RS
o
-

() Geneaivd shese sirinaflr ol (4 ) Displacementafer e sding
sliding failure (Fs = 1.03) lure (Fs = 103).





OPS/images/feart-12-1497757/inline_5.gif





OPS/images/feart-12-1470083/feart-12-1470083-g005.gif





OPS/images/feart-12-1497757/inline_4.gif





OPS/images/feart-12-1470083/feart-12-1470083-g004.gif
@ o

(] b e it

[ el et
T S —
N [ [

17—

©





OPS/images/feart-12-1497757/inline_3.gif





OPS/images/feart-12-1470083/feart-12-1470083-g003.gif
P

(a) Theoretical prediction

(b) Experimental results





OPS/images/feart-12-1497757/inline_2.gif





OPS/images/feart-12-1470083/feart-12-1470083-g002.gif





OPS/images/feart-12-1497757/inline_10.gif





OPS/images/feart-12-1470083/feart-12-1470083-g001.gif





OPS/images/feart-12-1497757/inline_1.gif





OPS/images/feart-12-1470083/crossmark.jpg
©

|





OPS/images/feart-12-1497757/feart-12-1497757-t002.jpg
Densityp (g/cm?) Gravitational Average gradey(°)  Friction coefficient 1 Turbulence coefficient §
acceleration g (m/s?)

263 9.80 ‘ 47 ‘ 025 300





OPS/images/feart-12-1438277/math_1.gif
s Jeraunpaa
[raa

[0





OPS/images/feart-12-1497757/feart-12-1497757-t001.jpg
Name

Yigong mountain collapse (Shang et al., 2003)

‘Wulong Jiwei mountain collapse (Yin Y et al,, 2018)
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2012)

Chamoli ice rock avalanche (Shugar D H et al,, 2021)
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Tibet, China

Chongging, China

Guizhou, China

Sichuan, China

India

Brazilian

Disaster

‘The disaster caused 94 deaths, 2.5 million people were homeless,
and some roads and railways were paralyzed

“The disaster caused at least 87 people buried and 26 people died

21 dead, 14 missing, 8 injured.More than 250 houses collapsed,
with direct economic losses of more than 15 million yuan

K752+080-150 of National Highway 212 was interrupted

“Two hydroelectric plants were destroyed, more than 20 people
were killed and 177 others were missing

‘Ten people were killed and more than 20 injured
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Residual slope gravel soil (Q, )

Index Condition Recommended value Applicability
Dry 17.5
Gravity y (kN/m®)
Saturated 19.5
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Cohesion ¢ (kPa) Hy
Saturated 164
Dry 27
Angle of shearing resistance ¢ (°) |
Saturated 216
Dry 156
Gravity y (kN/m?*)
Saturated 19.0
Dry 131
Cohesion ¢ (kPa) Hy, Hy
Saturated 127
Dry 19
Angle of shearing resistance ¢ (°) 1
Saturated 187
Dry 149
Gravity y (kN/m*)
Saturated 18.4
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