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Editorial on the Research Topic 


Advancements in multi-omics and bioinformatics for the management of solid malignancies


In an era where precision oncology is paramount, the fusion of multi-omics and bioinformatics has emerged as a revolutionary force in the battle against solid malignancies, which constitute a predominant portion of cancer cases globally. In this Research Topic, several studies highlight the development of innovative computational tools to identify molecular drivers of cancer progression and drug resistance, key insights that enable the design of targeted therapies and strategies to overcome treatment resistance. For instance, a study by Zhao et al. evaluated the accuracy of a robotic magnetic navigation system for intraoral osteotomy in mandibular tumor surgery. Using 3D-printed models from patient CT data, researchers compared traditional surgery to robot-assisted osteotomy. The experimental group demonstrated significantly lower positional and angular errors than the control group, confirming improved accuracy. Despite limitations like soft tissue simulation and potential magnetic interference in clinical settings, the findings support the system’s feasibility. Moreover, the study highlights the potential of electromagnetic navigation in enhancing surgical precision while minimizing tissue damage, emphasizing the need for further refinement of hardware, software, and workflow for broader clinical application. Another study developed and validated a hepatocellular carcinoma (HCC) prognosis-related gene signature (HPRGS) to improve survival prediction and treatment guide. Using transcriptome data from multiple HCC cohorts and 101 machine learning algorithms, four key genes (SOCS2, LCAT, ECT2, TMEM106C) were identified. The HPRGS effectively stratified patients into high- and low-risk groups with distinct survival outcomes, treatment responses, and mutation profiles. Low-risk patients showed better responses to immunotherapy, while linifanib was identified as a potential treatment for high-risk patients. A nomogram incorporating HPRGS supports clinical decision-making, highlighting its utility as an independent prognostic tool for personalized HCC management (Zheng et al.). Regarding glioma, this study tackled the poor prognosis of glioma by integrating multi-omics data and using Non-negative Matrix Factorization to identify two metabolic subtypes with distinct clinical and molecular profiles. Key genes were identified through Weighted Gene Correlation Network Analysis (WGCNA), and a prognostic model was built using 101 machine learning methods. Such results provide novel prognostic framework and highlight the metabolic and immune heterogeneity of glioma, offering deeper insights into its biology and potential therapeutic targets (Hu et al.).

Building on recent advances in cancer genomics, this study explored the underexamined role of chromatin regulators (CRs) in lung adenocarcinoma (LUAD) by constructing a chromatin regulator-related signature (CRRS). This signature, developed using a comprehensive 429-combination machine learning framework to predict patient survival, was robustly validated across multiple datasets. The CRRS was also found to modulate the immune microenvironment, with high-risk patients exhibiting distinct pathway activities, mutation profiles, and immune responses. Notably, Trefoil Factor 1 (TFF1), a chromatin regulator, was identified as a key therapeutic target, as its knockdown in LUAD cells significantly inhibited proliferation, induced apoptosis, and suppressed in vivo tumor growth, concluding that chromatin regulators hold promise for prognostic modeling and immune modulation in LUAD (Fan et al.).

An intriguing study was conducted by Luo et al. that investigated the impact of exercise on breast cancer progression using a murine model. Mice subjected to 21 days of voluntary running showed reduced tumor size and weight. RNA sequencing revealed significant upregulation of THSD7B and changes in pathways related to cancer, including microRNAs and calcium signaling. Pan-cancer analyses indicated that THSD7B is variably expressed and associated with favorable prognosis in several cancers. Functional studies confirmed its role in inhibiting breast cancer cell proliferation, migration, and invasion. Therefore, exercise could modulate tumor biology and THSD7B may serve as a prognostic biomarker and therapeutic target in cancer management (Luo et al.). Furthermore, another study by Fang et al. aimed at developing a nomogram to predict survival in hormone receptor-positive mucinous breast carcinoma (HR+ MBC) patients and assessed the impact of neoadjuvant chemotherapy (NAC). Using data from 6,927 patients, eight independent prognostic factors were identified. The nomogram accurately stratified risk, with high-risk patients showing poorer survival. Notably, NAC did not improve long-term survival compared to adjuvant chemotherapy, suggesting limited benefit in this group (Fang et al.).

Colon adenocarcinoma (COAD), a highly prevalent and lethal malignancy, has a complex pathogenesis where ubiquitin-mediated regulation of key cellular processes plays a significant role. This study investigated the role of ubiquitination in COAD by integrating transcriptomic, single-cell, and clinical data to develop a prognostic risk signature. Using Cox and LASSO regression, researchers identified ubiquitination-related genes that stratify patients by survival risk, with high-risk scores linked to poorer outcomes and increased immune cell infiltration. Functional assays showed that silencing ASNS, a key gene in the signature, significantly reduced COAD cell activity and migration. Thus, ubiquitination features could be effective prognostic indicators with ASNS as a promising biomarker and potential therapeutic target in COAD (Wang et al.).

On the other hand, another study identified key stem cell-related genes in prostate adenocarcinoma (PRAD) using single-cell analysis and machine learning (Wang et al.). Among 15 crucial genes, HSPE1 emerged as a vital marker associated with PRAD diagnosis, prognosis, and immune infiltration. HSPE1 was identified through random forest analysis and validated by immunofluorescence staining in 60 PRAD tissue samples, confirming its upregulation and correlation with poor patient outcomes. Molecular docking further explored HSPE1’s interactions with therapeutic compounds. These findings highlight HSPE1 as a promising biomarker and therapeutic target, offering new avenues for early detection and personalized treatment strategies in PRAD (Wang et al.). Similar approaches were explored in a study of osteosarcoma (OS), where they investigated the tumor microenvironment (TME) of OS using bulk and single-cell RNA sequencing data. Analysis revealed high transcriptional heterogeneity in OS cells, with cluster 1 showing strong aggressiveness and poor prognosis. A tumor-infiltrating immune cell (TIIC)-based gene signature was developed using 20 machine learning algorithms to predict survival and immunotherapy response. High TIIC scores correlated with lower immune infiltration and worse outcomes. Also, CLK1 was identified as an oncogene that promotes OS cell proliferation and migration. These findings offer new prognostic tools and highlight CLK1 as a potential therapeutic target in OS treatment (Zhang et al.). Another study on OS used bibliometric analysis of Web of Science literature (2014-2023) to map the evolution of OS metabolomics research, identify key contributors, and predict future trends. The analysis of authors, citations, and keywords revealed research clusters and suggests that upcoming work will likely focus on the TME, molecular mechanisms (including autophagy), and targeted therapies/inhibitors (Tu et al.).

Hypoxia is a hallmark of the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC), contributing to its aggressive behavior, therapeutic resistance, and poor prognosis by promoting immune evasion, metabolic reprogramming, and resistance to cell death mechanisms such as ferroptosis. By integrating multi-omics data, researchers identified a correlation between hypoxia levels, sulfide quinone oxidoreductase (SQOR) expression, and survival outcomes. A deep learning model was developed to predict hypoxia from whole slide images, and experimental models confirmed that SQOR promotes tumor progression by enhancing ferroptosis resistance. Notably, SQOR inhibition increased ferroptosis sensitivity, and combining SQOR inhibitors with ferroptosis inducers had synergistic anti-tumor effects, highlighting a promising strategy for targeted PDAC therapy (Lin et al.). A comprehensive analysis of gastric adenocarcinoma (STAD) was conducted by Yin et al. through integrating large-scale genomic datasets, spatial transcriptomics, and single-cell RNA sequencing to investigate the prognostic significance of lactylation-related gene sets and mitochondrial functions, as well as to delineate the TME and cellular heterogeneity. The research identified distinct molecular subtypes within STAD associated with unique survival outcomes and immune profiles, leading to the development of prognostic models with enhanced predictive capabilities. Furthermore, the analysis revealed that variations in lactylation could influence immune cell infiltration and responsiveness, suggesting potential for tailored immunotherapy (Yin et al.).

Other approaches including assessment of non-coding RNAs was performed in the study by Zhang et al. with a special focus on the role of circular RNA circTAF4B in bladder cancer (BCa) progression. Researchers identified MFN2 as a binding partner of circTAF4B using RNA pull-down and mass spectrometry. Silencing MFN2 enhanced the inhibitory effects of circTAF4B overexpression on BCa cell growth and migration. Additionally, circTAF4B knockdown suppressed tumor progression by upregulating p27 and blocking AKT signaling. Although circTAF4B binds to MFN2 without altering its expression, it influences BCa through distinct regulatory pathways. These findings highlight circTAF4B as a promising biomarker and therapeutic target in BCa, warranting further exploration of its molecular mechanisms and clinical applications (Zhang et al.).

Published review articles in this Research Topic included a review that highlights the immunoproteasome’s pivotal role in enhancing anti-tumor immune responses by promoting antigen processing and presentation via MHC class I molecules. It explored its involvement in immune surveillance, TME modulation, and its emerging potential as a therapeutic target in cancers such as melanoma, lung, colorectal, and breast cancer. The review discussed immunoproteasome inhibitors like ONX 0914, their synergy with checkpoint inhibitors, and strategies to boost immunoproteasome activity. Challenges including toxicity, resistance, and the need for predictive biomarkers are addressed. Overall, targeting the immunoproteasome offers a promising avenue for improving precision and durability of cancer immunotherapy (Shi et al.). Another review by Diab et al. discussed the role of P-glycoprotein (P-gp) in cancer chemoresistance and the potential of natural products to overcome it. P-gp, a drug efflux transporter, contributes to chemotherapeutic failure by reducing intracellular drug accumulation. Long noncoding RNAs (lncRNAs) such as ODRUL, MALAT1, and ANRIL regulate P-gp and are linked to drug resistance. In silico molecular docking identified Delphinidin and Asparagoside-f as potent natural P-gp inhibitors capable of reversing multidrug resistance. Such findings highlight the promise of natural compounds in enhancing chemotherapy sensitivity, though further in vitro and in vivo validation is essential to confirm their therapeutic potential.

Looking at the immunological aspect of tumors, this study assessed the impact of M2 macrophage infiltration on prognosis in serous ovarian cancer (SOC) and explored the use of histopathological imaging features (HIF) to predict M2 levels using deep learning (Zhao et al.). Analysis of TCGA and external patient data revealed high M2 macrophage infiltration as an independent risk factor for poor survival. A ResNet18-based deep multiple instance learning model using the Mean Probability Method effectively predicted M2 infiltration from histological images, achieving an AUC of 0.75. These findings support the integration of image-based AI tools into SOC prognosis and personalized treatment planning by identifying immune microenvironment markers (Zhao et al.). Another study analyzed the immunological mechanisms and hypertension profiles associated with VEGF inhibitors (VEGFi) and VEGF receptor inhibitors (VEGFRi) using the FDA Adverse Event Reporting System (FAERS), clinical data, and preclinical models. Both inhibitors significantly increased the risk of immune-mediated, blood pressure-related adverse events. VEGFRi induced a more rapid onset, greater blood pressure elevation, and higher incidence of immune-related hypertension compared to VEGFi. The study identified key signaling pathways, such as MAPK and nitric oxide dysregulation, involved in these effects. The findings highlight the need for early and continuous blood pressure monitoring in patients treated with these inhibitors to prevent cardiovascular complications (Kuang et al.). A pan-cancer study investigated the potential of necroptosis as a predictive biomarker for immunotherapy responses. The researchers developed a necroptosis-related gene signature, Necroptosis.Sig, using bulk RNA sequencing data and employed multi-omics approaches to identify key pathways and regulators, highlighting HMGB1 as a critical modulator. Functional validation in A549 lung cancer cells demonstrated that HMGB1 knockdown suppressed tumor proliferation and malignancy, supporting the therapeutic relevance of targeting necroptosis. The study concluded that necroptosis and its regulators, like HMGB1, represent promising tools for advancing precision oncology and improving patient outcomes in immunotherapy (Gao et al.).

Another angle of immunotherapy was investigated in the study which addressed the critical challenge of predicting immunotherapy-related adverse reactions (irAEs) in hepatitis B virus-positive hepatocellular carcinoma (HBV-HCC) patients treated with immune checkpoint inhibitors (ICIs). Analyzing data from 274 patients, researchers developed machine learning models, with the Random Forest model showing the best predictive accuracy. Antiviral therapy and HBV DNA levels were key factors, with antiviral treatment linked to a lower risk of irAEs, possibly through B cell modulation. The findings suggest that antiviral therapy may reduce irAE severity, even without complete viral suppression, offering a potential strategy to improve the safety of immunotherapy in HBV-HCC patients (Pan et al.).
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Background

Mandibular tumor surgery necessitates precise osteotomies based on tumor boundaries; however, conventional osteotomies often lack accuracy in predicting osteotomy positions and planes, potentially leading to excessive resection of normal bone tissues or residual tumors, thus compromising postoperative quality of life and clinical outcomes. Robotic-assisted surgery (RAS) augmented with artificial intelligence (AI) offers precise localization capabilities, aiding surgeons in achieving accurate osteotomy positioning. This study aimed to evaluate the feasibility and accuracy of a robotic magnetic navigation system for positioning and osteotomy in an intraoral surgical trial of a mandibular tumor model.





Methods

Patient computed tomography (CT) imaging data of mandibular chin and body tumors were utilized to create 3D printed models, serving as study subjects for mandibular tumor resection. Ten pairs of models were printed for the experimental and control groups. The experimental group (EG) underwent osteotomy using a robot-assisted surgical navigation system, performing osteotomy under robotic navigation following alignment based on preoperative design. The control group (CG) underwent traditional surgery, estimating osteotomy position empirically according to preoperative design. Postoperative CT scans were conducted on both models, and actual postoperative results were compared to preoperative design. Osteotomy accuracy was evaluated by positional and angular errors between preoperatively designed and actual osteotomy planes.





Results

For ten randomly selected spots on the left and right sides, respectively, the EG group had mean distance errors of 0.338 mm and 0.941 mm. These values were obtained from the EG group. In the EG group, on the left side, the mean angular errors were 14.741 degrees, while on the right side, they were 13.021 degrees. For the 10 randomly selected spots on the left and right sides, respectively, the CG had mean distance errors of 1.776 mm and 2.320 mm. This is in contrast to the results obtained by the EG. It was determined that the left side had a mean angle error of 16.841 degrees, while the right side had an error of 18.416 degrees in the CG group. The above results indicated significantly lower point errors of bilateral osteotomy planes in the experimental group compared to the control group.





Conclusion

This study demonstrates the feasibility of electromagnetic navigation robot-assisted intraoral osteotomy for mandibular tumors and suggests that this approach can enhance the precision of clinical surgery.





Keywords: mandibular tumor, surgical robot, electromagnetic navigation system, injury repair, intelligent planning





Introduction

The mandible is the only bone in the face’s bottom region capable of movement. It is pivotal for essential oral functions such as chewing, speaking, and maintaining proper bite alignment. Tumors affecting the mandible can arise as primary growths or secondary manifestations, posing significant challenges to cosmetic appearance and functional capacity within the craniofacial region. The growth and invasion of these tumors can result in pronounced cosmetic deformities and impairments in masticatory function, thus profoundly impacting the overall prognosis and quality of life for affected individuals (1). Furthermore, managing mandibular tumors imposes substantial economic burdens on society and the healthcare system (2–4). Repairing tissue injuries within the mandibular region is intricate and multifaceted, involving a complex interplay of cellular and molecular mechanisms. These mechanisms undergo dynamic regulation across various stages of healing. Traditional approaches to mandibular tumor resection often entail extensive surgical intervention, leading to sizable incisions, prolonged postoperative recovery periods, and a notable decline in the quality of life for patients in the aftermath of surgery. Consequently, achieving optimal outcomes in mandibular tumor surgery necessitates the implementation of precise surgical techniques. Without advanced technologies such as computer-assisted surgery, surgeons historically relied on preoperative computed tomography (CT) scans and their clinical expertise to delineate the optimal osteotomy line. However, making sure that the bone is correctly positioned along the planned osteotomy line before surgery has been a persistent problem when osteotomies are done through intraoral incisions for mandibular tumors. Still, recent improvements in surgical navigation systems and computer-guided techniques have made mandibular tumor surgery more accurate and predictable, leading to better cosmetic and functional outcomes for patients.

With advancements in imaging and computer technology, preoperative three-dimensional reconstruction of mandibular tumors using CT and MRI combined with techniques such as radiomics and deep learning has enabled the operator to locate the boundaries of tumor invasion (5, 6) accurately. However, applying this valuable imaging information to the osteotomy during surgery poses challenges. Traditional surgical methods rely heavily on the operator’s clinical experience and skill, which increases the risk of deviating from the preoperative resection boundaries and makes it difficult to precisely control the angle of the osteotomy plane. As a result, achieving precise osteotomies and optimal reconstruction outcomes post-surgery becomes challenging. Surgical robots, known for their precision, stability, and efficiency, are widely used in various fields, including endoscopic surgery, orthopedics, neurosurgery, and otolaryngology. Combined with artificial intelligence technology (7–9), robots can intelligently assist in preliminary surgical planning, while their precise positioning capabilities aid surgeons in performing osteotomies (10).

In recent years, robot-assisted surgical technology has rapidly developed and expanded into more fields due to its high accuracy, stability, and ability to reduce surgical fatigue among operators (11). Previous studies have highlighted robot-assisted craniomaxillofacial surgery’s effectiveness, accuracy, and safety. However, the prevalent optical navigation systems in this field are limited by light. They cannot fulfill the requirements for intraoral osteotomy line positioning and guided osteotomies in patients with mandibular tumors. Ensuring precise alignment of robot coordinates and target position with intraoperative dynamic tracking and guidance poses a primary challenge in the clinical application of craniomaxillofacial robotic surgery. Among the latest navigation systems introduced in the craniomaxillofacial robotics field, the electromagnetic navigation system stands out for its compact size, freedom from light interference, high positioning accuracy, and real-time tracking and guidance capabilities for the operator (12). Nonetheless, studies confirming the feasibility and accuracy of the electromagnetic navigation system for mandibular tumors in intraoral incisional osteotomies are yet to be conducted.

Building upon prior research, we conducted a model surgical experiment to assess the feasibility and navigational accuracy of electromagnetic navigation robot-assisted intraoral osteotomy for mandibular tumors. Our experimental setup included a custom magnetic surgical navigation robot comprising a UR5 robotic arm, a computer base, and an electromagnetic navigation system (Aurora V3, NDI) to align occlusal tablets automatically. Additionally, we utilized a self-designed metal template. To evaluate the potential clinical application of this system, we analyzed the position of the osteotomy surface based on measurements obtained from model surgical CT scans.





Methods




Ethical approval

All procedures involved in the fabrication of the experimental model were conducted in compliance with ethical standards and guidelines. Approval for the experimental protocols was obtained from our independent ethical committee (Approval No. SH9H-2020-T267-3), and all methods were performed under relevant regulations and guidelines.





Surgical robot based on magnetic navigation localization

The surgical robot employed in this study comprised several components: a computerized workbench, a UR5 robot, an end-effector for the robotic arm, surgical navigation software, and an electromagnetic navigation and positioning system (Aurora V3, NDI) (see Figures 1, 2). The robot assembly included the robot controller and arm, which possessed six degrees of freedom. Each joint of the robotic arm was driven by a motor and moved to the predetermined surgical position as controlled by the computerized workbench’s control commands, allowing for precise intraoperative positioning. Throughout the movement, the surgical navigation software displayed the real-time position of the end-effector. It halted movement upon reaching the planned position, locking the joints to maintain the current position. During intraoperative procedures such as osteotomy, the end-effector of the robotic arm could be substituted with a different subtend guide. The surgical navigation software facilitated preoperative surgical path planning, data collection from the robotic arm and electromagnetic navigation system, and control of the robotic arm’s movement. The electromagnetic navigation system employed fields to localize magnetic marker points, enabling real-time three-dimensional spatial measurements even under occlusion and establishing a spatial mapping transformation between the image and the robotic arm.

[image: Flow chart illustrating a surgical robot based on magnetic navigation. The left shows preoperative design with 3D modeling and osteotomy planning. The center depicts intraoperative navigation in an operating room, highlighting robotic arms and patient positioning. The right section features data analysis with measurements and visualizations, including charts and graphics.]
Figure 1 | Flow chart of surgical robot based on magnetic navigation.

[image: Surgical setup with a medical professional operating a robotic arm labeled UR5. The robotic system includes components like a computer base, an electromagnetic system (Aurora V3, NDI), and a robotic end-effector. A screen displays a skull model used for navigation, and the setup includes a mandibular model with an occlusal registration piece and a fixator.]
Figure 2 | The magnetic navigation surgical robot was utilized in this study. Equipped with a magnetic navigation and localization system, the robot was deployed in an environment conducive to standard model surgical experiments. It primarily comprised a computerized base, a UR5 robotic arm, end fittings attachable to the arm, an electromagnetic navigation system (Aurora V3, NDI), and other essential components. The robot’s navigation and localization systems were tailored for cranial and maxillofacial surgery. A brown headgear simulated the mandibular tumor model’s surgical environment during model surgical experiments, with an occlusal registration piece affixed to the fixator.





Fabrication of the mandibular tumor model

The experimental model of mandibular tumors was constructed using 3D-CT data obtained from patients with mandibular tumors who were treated at our hospital. The 3D-CT data of these patients were imported into Mimics 21.0 software (Materialise, Leuven, Belgium), which is compatible with Digital Imaging and Communication in Medicine (DICOM) format, to generate three-dimensional images of the mandible. Subsequently, the reconstructed mandibles were saved as STL files (3D Systems, USA) for rapid printing.





Design and production of occlusal alignment tablets

This study utilized an occlusal alignment piece designed by the researchers. It comprised three components: an electromagnetic sensor base, a connecting piece, and an occlusal splint. The electromagnetic sensor base connected the sensor, while the connecting piece featured a 2 mm diameter steel ball to aid in positioning. The occlusal splint was customizable to fit the mandibular dentition (refer to Supplementary Figure 1). It was essential for the occlusal splint to be easily removable or worn without abnormal wobbling, ensuring it maintained a consistent relative position to the mandible even under high-stress surgical conditions. This feature was crucial for fulfilling the requirements of clinical noninvasive alignment applications.





Preoperative design

The customized alignment piece was affixed to the corresponding mandibular tumor model, and 3D-CT images were obtained to document the relative position information of the mandible to the alignment piece, which was then stored in DICOM format. Subsequently, the DICOM data were imported into Mimics software for 3D reconstruction. Utilizing the imaging data from patients with mandibular tumors, digital 3D reconstructions were performed to delineate the extent of the tumor. The preoperative design of the osteotomy plane for mandibular tumor patients was a collaborative effort between an experienced oral oncologist and an imaging surgeon. This design was based on the extent of tumor invasion in the mandible and was saved in STL format (see Figures 3A, B).

[image: Two sets of 3D skull models labeled A and B, showcasing variations in jaw and mandibular structures. Red and green highlights indicate bone reconstructions, with gray planes suggesting surgical cuts or views. Skulls are viewed from different angles, emphasizing the anatomical differences in sections of the jaw and mouth.]
Figure 3 | Preoperative mandibular tumor visualization in Mimics software (chin, ascending mandible). Design of mandibular tumor osteotomy planes. (A) Digital 3D reconstruction illustrating the extent of a chin tumor in a patient with a mandibular tumor; the osteotomy planes are tailored according to the extent of tumor invasion in the mandible, with a schematic representation of the osteotomized portion of the mandibular chin tumor in 3D. (B) Digital 3D reconstruction depicting the extent of a tumor in the ascending mandibular branch; based on the extent of tumor invasion in the mandible, the osteotomy plane is designed, accompanied by a schematic of the osteotomized portion of the tumor in the ascending mandible in 3D.





Magnetic navigation robot registration and surgical path generation

To ensure the stability of the mandibular tumor model during the procedure, a pneumatic arm was employed to secure the mandible onto the experimental table, maintaining it in a fixed position relative to the robot. Registration pieces were then appropriately affixed to the model, while any metal objects near the magnetic navigation electromagnetic sensors were removed to minimize electromagnetic interference. Subsequently, the preoperative design data was integrated into the craniomaxillofacial navigation and localization system. Alignment of the image with the model was achieved by identifying a steel ball with magnetic properties on the alignment piece. The robot was then aligned with the model by capturing the position information of the robot through the electromagnetic sensor within the same field. Following alignment, the system automatically generated a surgical path indicating the position of the robot’s end-motion target in the visualization interface of the software (see Figures 4A, B).

[image: CT scans and 3D models of a skull in two panels labeled A and B. Panel A shows different cross-sections and a 3D model with highlighted jaw areas in red, and vertical bars in yellow, blue, and green. Panel B displays additional cross-sections and a side view of the skull with similar highlights on the jaw and colored structures.]
Figure 4 | Magnetic navigation surgical operation system. (A) The operation interface of the mandibular tumor navigation and localization system software, illustrating the registration of the mandibular chin tumor model and relevant information regarding machine localization marker position. Additionally, the design of the robot end guide position and planning of the chin osteotomy path are depicted. (B) The operation interface of the mandibular tumor navigation and localization system software for registering the mandibular ascending tumor model and relevant information regarding machine localization marker position. Furthermore, the design of the robot end guide position and planning of the ascending mandibular osteotomy path are presented.





Intraoral osteotomy of the mandibular tumor with robot-assisted navigation

During the surgical procedure, a headgear is positioned over the anatomical markers of the mandible and covered with plastic wrap to mimic the intraoperative view of the intraoral incision. Using a pull hook, the surgical assistant retracts the headgear to simulate the intraoral incision of the mandibular tumor, allowing the surgeon to perform mandibular debridement with a stripper. Once adequate exposure is ensured, an execution command is initiated, and the robot automatically moves the template to the planned osteotomy line. As the mandible is immobilized, the alignment piece can be removed before osteotomy, facilitating maneuverability in confined spaces. The template serves to guide the saw blade, with the operator holding the saw and executing the osteotomy on the lateral aspect of the mandible from posterior to anterior, following the angle of inclination of the template.

Throughout the osteotomy, the robot’s end-effector moves smoothly and uniformly along the mandibular surface along the planned path, providing real-time tracking and navigation (refer to Figures 5A, B).

[image: Series of surgical images depicting a cranial procedure on a medical model. Panel A shows a close-up of hands in gloves manipulating tools on an exposed area of the model. Panel B shows a similar procedure from different angles, highlighting various tools and techniques used for the operation.]
Figure 5 | Magnetic navigation robot-assisted positioning osteotomy. (A) Following the preoperative setup of the magnetic navigation robot and the mandibular chin tumor model, osteotomy of the mandibular chin tumor model was performed under the positioning guidance of the magnetic navigation robot. At the same time, the control group underwent osteotomy without magnetic navigation guidance. (B) Following the preoperative setup of the magnetic navigation robot and the mandibular ascending tumor model, osteotomy of the mandibular ascending tumor model was performed under the positioning guidance of the magnetic navigation robot. At the same time, the control group underwent osteotomy without magnetic navigation guidance.





Postoperative osteotomy plane error analysis

The DICOM data from preoperative planning and the dissected mandible were processed using Mimics 21.0 for 3D reconstruction and saved in STL format. This data was then imported into Geomagic Control 2015 (3D Systems, Inc., USA) for reverse engineering. The pre-surgical design served as a reference (Figures 6A, 7A), while post-surgical data served as test data (Figures 6B: EG, F: CG; Figures 7B: EG, G: CG). Optimal alignment was conducted to generate 3D color maps (Figures 6C: EG, G: CG; Figures 7C: EG, H: CG), showing the deviation of postoperative results from the preoperative design. In the fitted mandibular model, 10 points were randomly selected. Error-values between the preoperative design and actual osteotomy plane of the mandibular tumor were measured, with the average values recorded as locus errors for auto-aligned points (Figures 6D (EG), Figures 7D, E (EG); Figure 6H, (CG), Figures 7I, J (CG)). The accuracy of robot-assisted mandibular osteotomy was assessed by analyzing distance and angle error values between the preoperative design of the mandibular osteotomy plane and the actual osteotomy [Figures 6E (EG), 7F (EG); Figures 6I, (CG), 7K (CG)].

[image: 3D renderings of a human jawbone from different angles and analysis stages. Panels A, B, C, F, and G depict blue and yellow models showing structural differences. Panels D and H highlight a green model with labeled deviation data on side sections. Panels E and I present a blue model with overlaying grids and measurement labels.]
Figure 6 | Geomagic Control software assesses errors in the osteotomy plane for mandibular chin tumors. (A-E) depict osteotomies guided by magnetic navigation robots, while (F-I) show unguided osteotomies.

[image: Three-dimensional models of a mandible in various colors and views labeled A to K. Models A, C, and H are red, model B is yellow, and model G is green, showcasing surface textures. Models D, E, I, and J display a color gradient from red to blue, indicating different measurements with labeled reference points. Model F and K include transparent planes intersecting the mandible, providing a spatial reference.]
Figure 7 | Geomagic Control software evaluates errors in the osteotomy plane for mandibular ascending branch tumors. (A-F) illustrate osteotomies guided by magnetic navigation robots, whereas (G–K) display unguided osteotomies.





Statistical analysis

The distribution of errors at various sites was assessed following automatic alignment using Geomagic Control software. To ensure the alignment accuracy met the evaluation criteria, a test value of “1” was established based on the inherent bias of the CT data, corresponding to a layer thickness of 1 mm, and a single sampling was conducted. A normality test was conducted on the measured data to determine the appropriate statistical test for positional and angular errors. A nonparametric test was employed if the data did not exhibit a normal distribution; otherwise, a t-test was utilized. Additionally, correlations between variables were analyzed using Pearson correlation analysis. A p-value of less than 0.05 was considered statistically significant. All statistical analyses were performed using R software (version 4.3.1).






Results




Error analysis of osteotomy planes

Data from ten pairs of mandibular tumor models (5 pairs of mandibular chin and five pairs of mandibular ascending tumors) were analyzed. Preoperative design and automatic fitting of postoperative CT data were performed using Geomagic Control. Subsequently, 3D color deviation maps were generated to illustrate the disparities between the preoperative design and the dissected mandible. The baseline characteristics of point errors for the ten pairs of mandibular osteotomy planes were depicted using ring heatmaps (refer to Figure 8A), along with clustered heatmaps indicating significant differences in clustering between the point errors of the EG and CG groups (refer to Figure 8B). Baseline characterization results revealed no statistically significant differences in the length, width, height, volume, and surface area of the osteotomies between the EG and CG groups (see Table 1).

[image: Chart montage featuring supplementary data analyses. Panel A displays a circular heat map showing point deviations across groups. Panel B is a rectangular heat map illustrating point deviation values and clustering. Panels C to J present bar graphs comparing means and deviations in variables like point, angle, height, and volume between two groups (CG and EG) with statistical annotations. Panel K shows a colorful correlation matrix of variables. Panels L to O contain scatter plots with trendlines and Spearman correlation statistics, indicating relationships between point deviation and other metrics.]
Figure 8 | Statistical Analysis of Model Experimental Results. (A) Circular heatmap illustrating the baseline characteristics of the osteotomy plane point error. (B) The clustering heatmap provides further analysis of osteotomy plane point deviation, revealing differences in clustering between EG and CG groups. (C-J) The bar chart presents the statistical test of metrics between the EG and CG groups. (K) Heatmap depicting correlation analysis between the metrics in all the models. (L-O) Correlation scatter plot. *P < 0.05, **P < 0.01, ***P < 0.001.

Table 1 | Statistical analysis of baseline characteristics between EG and CG groups.


[image: A data table compares two groups, EG and CG, across various measurements: length, width, height, volume, and surface. Each measurement includes mean and standard deviation (sd) values. The Wilcoxon test is used for p-value calculations. Length, width, height, volume, and surface show p-values of 0.449, 0.739, 0.307, 0.481, and 0.481, respectively.]
In the EG group, the mean distance errors for the 10 randomly selected points on the left and right sides were 0.338 mm and 0.941 mm, respectively. In the EG group, the mean angular errors were 14.741 degrees for the left side section and 13.021 degrees for the right side. Conversely, in the CG, the mean distance errors were 1.776 mm and 2.320 mm for each of the 10 randomly selected points on the left and right sides, respectively. The mean angular errors were 16.841 degrees for the left side section and 18.416 degrees for the right side in the CG group. Tables 2,3 present the statistical analysis of deviations in variables between the EG and CG groups.

Table 2 | Statistical analysis (t.test) of deviations of variables between EG and CG groups.


[image: A table comparing experimental group (EG) and control group (CG) data. Variables include Point Deviation R Mean, Angle Deviation L, Angle Deviation R, and Width Deviation. It provides mean and standard deviation for both groups, method (t-test), and p-values. Notable p-values are 0.002 for Point Deviation and 0.049 for Width Deviation, indicating statistical significance.]
Table 3 | Statistical analysis (wilcox.test) of deviations of variables between EG and CG groups.


[image: Table comparing variables between two groups, EG and CG, with medians and interquartile ranges for five variables: Point Deviation, Length Deviation, Height Deviation, Volume Deviation, and Surface Deviation. Statistical method used is Wilcox test, with p-values provided for each variable.]
In the EG group, the mean values of left and right-side point deviations were significantly lower than those in the CG group (refer to Figures 8C, D). In contrast, angular deviations did not show statistically significant differences between the two groups (refer to Figures 8E, F). Additionally, there were no statistically significant differences in height and volume between the EG and CG groups (refer to Figures 8G, I). However, compared to the CG group, the EG group exhibited significantly fewer height deviations (refer to Figure 8H) and smaller volume deviations (refer to Figure 8J). In summary, the osteotomy of mandibular tumors using the magnetic navigation robot demonstrated superiority over the control group in terms of both random point error and height and volume deviations. Furthermore, we analyzed two of the aforementioned metrics using spearman correlation (refer to Figure 8K). The results indicated that the mean values of left-side and right-side point deviation were positively correlated and statistically significant (refer to Figure 8L). In contrast, the mean values of left-side point deviation were positively correlated and statistically significant with height deviation (refer to Figure 8M). Moreover, the mean value of right-side point deviation was positively correlated and statistically significant with surface area deviation and height deviation (refer to Figures 8N, O). Additionally, we demonstrated the baseline characteristics of the modeled point deviations using other types of clustered heatmaps (refer to Supplementary Figure 2A). To better illustrate the differences in metrics between the EG and CG groups, we combined box-and-line and violin plots to depict the distributions of point deviation, angular deviation, height, height deviation, volume, and volume deviation across samples (refer to Supplementary Figures 2B–I).

To delve deeper into the correlation differences between the metrics within the EG and CG groups, correlation heatmaps and scatter plots were utilized for visualization. The findings indicated that the left-side point deviation exhibited a positive correlation with the right-side point deviation in the EG group, although it was not statistically significant. Similarly, the left-side point deviation positively correlated with height deviation, lacking statistical significance. However, the right-side point deviation demonstrated a positive correlation with both surface area deviation and height deviation, and these correlations were statistically significant (refer to Supplementary Figure 3A). In contrast, within the CG group, the right-side point deviation displayed a negative correlation with height deviation, which is not statistically significant (refer to Supplementary Figure 3B).






Discussion

Mandibular tumors encompass a variety of benign and malignant tumors that develop in the craniomaxillofacial region (13). These tumors are categorized as odontogenic or non-odontogenic based on their tissue origin (14). Treatment principles for mandibular tumors parallel those for bone tumors in other locations, involving surgical resection (15, 16), as well as combination therapies such as chemotherapy and radiotherapy (17, 18). Tumor growth and invasion in this region can result in cosmetic deformities and impaired mastication, significantly impacting patients’ prognosis and quality of life. However, osteotomy of mandibular tumors via intraoral incision can notably minimize surgical trauma to soft tissues in the maxillofacial region, thereby reducing postoperative cosmetic defects. Achieving precise osteotomy during intraoral mandibular tumor procedures is essential, requiring accurate alignment with the tumor border. Nonetheless, conventional osteotomy methods often struggle to precisely control the intended osteotomy position and plane, resulting in excessive resection of normal bone tissue or residual tumor, adversely affecting postoperative quality of life and clinical outcomes. Consequently, achieving accurate positioning of the osteotomy line to match the preoperative design has remained a significant surgical challenge for many years.

Computer-aided design, virtual surgical planning, surgical modeling, rapid prototyping, intraoperative navigation, and other techniques have gained widespread usage (19–21). Surgical assistive guides have been employed to enhance surgical precision, reduce operative time, and lower complication rates (22, 23). However, challenges may arise during actual intraoperative scenarios with the use of surgical guides. Soft tissues such as ligaments, muscles, or mucous membranes may become trapped between the template and bone surface if the mandible is not adequately cleared. Also, the template might move horizontally or perpendicularly to the sagittal plane of the mandible because of tissue extrusion, or it might be hard to remove because of bleeding and instrument pressure, which could cause changes to the plan made before the surgery. The rapid advancement of digital technology has propelled the rapid growth and widespread adoption of robot-assisted techniques in various fields, owing to their precision, stability, and resistance to fatigue. Robot-assisted maxillofacial surgery has been shown to be safe, effective, and accurate in the past. However, because it relies on optical navigation systems, the surgery can only be done in well-lit areas with a wider field of view, which may not be ideal for mandibular tumor cases requiring intraoral incision surgery. The precise alignment and dynamic tracking of the robot’s coordinates with the target position during surgery pose significant challenges in the clinical application of robots. The electromagnetic navigation system represents a promising solution characterized by its compact size, independence from lighting conditions, and real-time tracking and localization capabilities. Sun et al. (7) initially demonstrated the feasibility of combining electromagnetic navigation technology with robot-assisted surgery in a surgical setting. However, to date, no experiments have been combining electromagnetic navigation with robot-assisted surgery for mandibular tumor procedures.

Using a robot-assisted surgical navigation system to get accurate localization during intraoperative osteotomy is what this study suggests should be done as a model surgical experiment for osteotomy for mandibular chin and ascending branch tumors. We employed an in-house robot with an electromagnetic navigation and localization system that amalgamates various technologies, including computer-aided design, three-dimensional image processing, and intraoperative electromagnetic navigation. This system made it easier to carry out motion commands inside a deep intraoral incision, which allowed for accurate localization during surgery. Previous studies have explored surgical navigation and robot-assisted techniques for mandibular angle osteotomy through model-based and animal experiments. At the same time, clinical trials have assessed the capabilities of augmented reality technology.

In this study, we effectively implemented an electromagnetically guided robotic surgical system in 10 sets of tumor osteotomies with intraoral incisions for mandibular tumors. This demonstrates the practicality and precision of system-based surgical assistance in localizing mandibular tumors with intraoral incisions. Our findings revealed that the accuracy of osteotomy in the experimental group surpassed that of the control group, where the surgeon determined the position based on preoperative planning and clinical expertise. The osteotomy site for intraoral incisions in mandibular tumors is often deep and obscured by soft tissues, prompting us to assess the utility of the robotic system in this context to ascertain its definitive role in intraoral surgery. To mimic the surgical scenario more accurately, we employed a mask with a brown elastic headgear to obscure the mandibular model, replicating the limited field of view encountered in actual surgical settings. The experimental results demonstrated significantly lower point error in the robotic group’s osteotomy plane position than the control group, indicating superior accuracy when utilizing the robotic system. The robotic system employed in this study utilizes electromagnetic navigation technology, offering the advantage of being noninvasive and convenient, as the use of an occlusal splint enables the alignment of the surgical plan with the natural environment. Automated positioning using small steel balls on positioning tablets simplifies the navigation process, reduces surgical exposure, and eliminates the inaccuracies associated with manually selecting positioning points.

Therefore, the outcomes of the model pilot study on mandibular tumors indicated that this protocol is straightforward and viable. However, no statistically significant distinction was observed in the osteotomy angle deviation between the experimental and control groups in this investigation, possibly due to the interference of metal or electrical equipment in the operating room with the magnetic navigation system. The experimental findings regarding mandibular tumors thus suggest that the robotic group still encounters a certain level of technical inaccuracies, which could stem from various sources: discrepancies between the model’s actual data and the results from CT scans; instability and uneven distribution of the magnetic field during magnetic navigation (e.g., interference from other metal objects in the magnetic field); registration inaccuracies; and/or minor shifts or deformations of the model during the experiment. To mitigate interference errors during magnetic navigation, some researchers have utilized simultaneous localization and mapping algorithms and preoperative calibration to reduce tracking errors in metallic environments effectively.





Conclusions

Despite the commendable outcomes of our current study, our modeling experiments did not consider the influence of actual soft tissue factors, even when we used a brown elastic headgear to conceal the anatomical markings of the mandible and closely simulate the surgical environment. Also, getting around in the small space of an accurate intraoral incision is still hard because you have to avoid obstacles while positioning the robot, keep its end attached to nearby tissues while it’s moving, and look out for things that could get in the way of the operator’s view or the device’s closeness. Additionally, electrical devices in the operating room environment can interfere with the magnetic field of the robotic navigation system. Therefore, we need to conduct further research to create surgical instruments and beds made of materials that do not interfere with magnetic fields. It is imperative to continuously improve the system’s hardware and software in subsequent trials, such as by optimizing workflow to facilitate technology adoption and consolidating hardware facilities to reduce space requirements. Even though there are still problems and more applied research needs to be done, our results show that magnetic navigation techniques could be useful in model surgery for mandibular tumors because they are accurate, easy to use, and don’t require much damage.
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Supplementary Figure 1 | Self-aligning plastic on dental molds with occlusal registers, comprising sensor base, connecting part, occlusal splint, and steel positioning bead. (A) Front view; (B) Back view.

Supplementary Figure 2 | Statistical Analysis of Model Experiment Results. (A) Clustered heatmap demonstrating the baseline characteristics of osteotomy plane point deviation. (b - I) Violin plot illustrating the statistical test of metrics between EG and CG groups, along with a box plot.

Supplementary Figure 3 | Correlation Analysis of Model Experiment Results. (A) Heatmap and scatterplot of correlation analysis between metrics within the EG group. (B) Heatmap and scatterplot of correlation analysis between metrics within the CG group.
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Background

Breast cancer, one of the most prevalent malignancies among women worldwide, has rising incidence rates. Physical activity, particularly exercise, has emerged as a significant modifier of cancer prognosis, influencing both tumor biology and patient outcomes.





Methods

In this study, we utilized a murine breast cancer model, dividing mice into a control group and an exercise group; the latter underwent 21 days of voluntary running. We conducted RNA sequencing, bioinformatics analysis, pan-cancer analysis, and cellular experiments to investigate the underlying mechanisms influenced by exercise.





Results

Exercise led to a significant reduction in tumor size and weight. Post-exercise mRNA sequencing indicated a notable upregulation of THSD7B in the exercised mice, with significant alterations observed in pathways such as MicroRNAs in cancers and the Calcium signaling pathway. In a broader cancer context, THSD7B showed considerable expression variability, being significantly downregulated in several cancers, correlating with positive prognostic outcomes in PRAD, LAML, KIRC, and GBM and highlighting its potential role as a prognostic marker and therapeutic target. THSD7B expression was also negatively associated with processes of breast cancer cell proliferation, migration, and invasion.





Conclusion

This study underscores the dual role of exercise in modulating gene expression relevant to tumor growth and highlights the potential of THSD7B as a therapeutic target in cancer. Future research should further explore the specific mechanisms by which exercise and THSD7B influence cancer progression and develop immunotherapy-enhanced strategies to change patient outcomes in clinical settings.
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1 Introduction

Breast cancer, one of the most prevalent malignancies among women, continues to see rising incidence rates globally (1, 2). According to the World Health Organization, it ranks as a leading cause of cancer-related fatalities among women worldwide (3). The disease’s impact is not only profound on health, as it aggressively invades nearby tissues and metastasizes through the lymphatic and circulatory systems to distant vital organs like the bones, liver, lungs, and brain, which significantly complicates treatment strategies and increases their complexity (4–9). Moreover, the socioeconomic effects of breast cancer are substantial, often resulting in significant financial strain during prolonged treatment periods and adversely affecting family and social dynamics due to the psychological burden associated with the illness (10, 11). Consequently, there is an urgent need to enhance our understanding of breast cancer’s underlying biological mechanisms and to develop new, more effective targeted treatments (12, 13).

The positive effects of physical activity on health and cancer prevention are extensive (14, 15). Engaging in regular exercise improves cardiovascular function and muscular strength, enhances bone density, and plays a crucial role in preventing osteoporosis (16, 17). Metabolically, it boosts the body’s energy expenditure, helping to maintain a healthy weight and physique. From an immunological perspective, physical activity elevates lymphocyte counts, fortifying the immune system’s capacity to combat diseases, including cancer (18). Additionally, exercise is effective in reducing psychological and alleviating symptoms of anxiety and depression (19), which contributes to improved mood and overall well-being, indirectly lowering the risk of cancer. Consistent physical activity has been demonstrated to be associated with reduced cancer incidence, possibly due to its role in enhancing antioxidative mechanisms and facilitating the rapid elimination of carcinogens (20–22). Cutting-edge research has further highlighted the therapeutic potential of exercise in the field of oncology. A pivotal study by Luo et al. demonstrated how physical activity could alter the immune landscape of non-small cell lung cancer, shifting it from an immunologically “cold” to a “hot” state (23). This shift suggests that exercise not only boosts the presence of CD8+ T cells and M1 macrophages but also diminishes immunosuppressive cell populations, thus potentiating the efficacy of immunotherapy. The transformative influence of exercise underscores its potential as a valuable complement to traditional cancer therapies, proposing that integrating physical activity into treatment protocols could significantly improve therapeutic outcomes (24–26).

The role of exercise in modulating gene expression has garnered significant attention in recent years, particularly in the context of cancer. Numerous studies have demonstrated that physical activity can influence the expression of various genes involved in cancer progression and response to treatment. For instance, exercise has been shown to modulate the expression of genes related to apoptosis, DNA repair, and immune response, thereby potentially impacting tumor growth and metastasis. For example, exercise such as long-distance running activates oncogenes such as p53 in mouse liver cells. In this paper we used sequencing data focusing on the THSD7B gene that is most significantly altered after exercise.

THSD7B encodes for the thrombospondin type 1 domain-containing protein 7B, a membrane component that plays a critical role in actin cytoskeleton reorganization and is involved in post-translational modifications and glycosylation of proteins (27). Mutations in the THSD7B gene may inhibit signaling pathways related to cell death while enhancing pathways associated with invasion, metastasis, and downregulating immune response pathways, potentially affecting the prognosis of patients with small cell lung cancer (27, 28). THSD7B is associated with cell adhesion, and THSD7B is involved in angiogenesis and oncogenic activities, hence mutations in these genes are frequently observed during cancer progression. Heterozygous variations in THSD7B can lead to reduced cell adhesion, while concurrently increasing the invasiveness and metastatic potential of tumor cells (29, 30).

This research has pinpointed THSD7B as a pivotal target through gene sequencing of mice engaged in voluntary running wheel exercises, positioning it as a strategy against breast cancer. By delving deeper into THSD7B using bioinformatics and cellular biology experiments, this study seeks to elucidate its role in tumor development and progression. Our findings illuminate the mechanisms by which THSD7B influences cancer biology and highlight the potential of exercise-induced molecular responses as a proactive measure in the prevention and treatment of cancer.




2 Materials and methods



2.1 Cell culture

The 4T1 mouse cancer cell line (catalog KGG2224-1) and MDAMB231 (catalog KGG3220-1) were procured from KeyGEN (Nanjing, China). MDA-MB-468 was procured from FengHui ShengWu, China. 4T1 cells were cultured in RPMI-1640 medium enriched with 10% fetal bovine serum (FBS) and sustained at 37°C in either an ambient atmosphere or one containing 5% CO2. MDAMB231 and MDAMB468 cells were cultured in the MEM media with 1% non-essential amino acid and 1 mM sodium pyruvate. All media were added with 10% FBS at 37°C with or without 5% CO2.




2.2 Animal interventions

Female BALB/c mice, aged 5-6 weeks, were sourced from the Shanghai Laboratory Animal Center (SLAC). To develop a model of triple-negative breast cancer (TNBC), we subcutaneously injected 4T1 cells (5 × 10^6) into the abdomens of the mice. The selection of this particular strain and demographic was due to its suitability for breast cancer research and its reliable response to exercise interventions. Each mouse’s health was confirmed by a veterinarian before the study began. The mice were kept in a controlled setting with a 12-hour light/dark cycle and had unrestricted access to food and water. We stratified the mice into two cohorts: an exercise group (E) and a non-exercise group (NE), with each group containing five mice. Over a 21-day period, the exercise group engaged in voluntary running, while the non-exercise group was kept under standard care conditions without dietary limitations (no speed or distance limitation). Following the 21-day period, all mice were humanely euthanized, and their tumor tissues were harvested for subsequent mRNA sequencing analysis. Animal experiments were granted by Ethics Committees at Nanjing Medical University (IACUC-2312041).




2.3 mRNA sequencing and bioinformatics analysis

Twenty-one days after initiating treatment, tumor samples were meticulously collected from mice for mRNA sequencing analysis. Subsequently, cell samples from these treatments were carefully harvested. Total RNA extraction from these samples was conducted using the esteemed RNeasy Mini Kit (Qiagen, Hilden, Germany). Following RNA extraction, the construction of paired-end libraries was meticulously performed using the TruSeq RNA Sample Preparation Kit (Illumina, USA), strictly following the protocol outlined by TruSeq (31). The responsibility for constructing and sequencing these libraries was entrusted to the Shanghai Biotechnology Corporation. We have uploaded the raw sequencing results to a public cloud storage space “NutCloud” as requested. The access link is below: https://www.jianguoyun.com/p/DR7owysQv4LSDBiz5sQFIAA.

For accurate mapping of clean reads to the Rnor 6.0 reference genome, with an allowance for up to two mismatches, the highly acclaimed Hisat2 software (version 2.0) was employed (32). After genome mapping, the revered Stringtie software (version 1.3.0) was used to generate and annotate Fragments per kilobase of exon per million (FPKM) values. Statistical significance was established with a P-value threshold set according to the false discovery rate (FDR). mRNAs demonstrating a fold change of ≥ 2 and an FDR ≤ 0.05 were classified as differentially expressed.

To further elucidate the biological pathways impacted by the treatments, an exhaustive KEGG pathway analysis was conducted using the esteemed KEGG database (http://www.genome.ad.jp/kegg) within the R environment (33). Additionally, Gene Set Enrichment Analysis (GSEA) was carried out using the R BiocManager to provide deeper insights into the molecular mechanisms affected by the treatments.




2.4 Pan-cancer analysis



2.4.1 Gene expression and datasets obtained

We employed the Human Protein Atlas (HPA) to aggregate extensive RNA and protein expression profiles of THSD7B from human samples (34). Additional insights into THSD7B expression across various tissues and cell lines were derived from the Harmonizome database. To further enrich our analysis, we integrated mRNA expression data for THSD7B from cancerous, paracancerous, and normal tissues sourced from the TCGA and GTEx databases. Our examination covered a broad spectrum of 33 cancer types, including, Adrenocortical carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid Leukemia (LAML), Brain Lower Grade Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell Tumors (TGCT), Thyroid carcinoma (THCA), Thymoma (THYM), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Uveal Melanoma (UVM).

The analytical phase of our study utilized R software (version 4.2.2) with the ggplot2 package to visualize THSD7B expression across these diverse cancer types. We defined the median expression level as the cutoff for determining differential expression. To analyze differences between expression levels among groups, we employed the Wilcoxon rank-sum test, allowing us to rigorously evaluate the expression patterns of THSD7B and their statistical significance across various oncological contexts.




2.4.2 Survival analysis of THSD7B in the 33 cancers

To assess the prognostic significance of THSD7B expression in a variety of cancers, we performed survival analysis using the “survival” package in R (35). Kaplan-Meier curves were generated and Cox regression models were applied to examine differences in survival rates between patient groups characterized by high versus low THSD7B expression levels. The effects of THSD7B on patient survival were depicted in forest plots, constructed with the help of the “survminer” and “ggplot2” packages.




2.4.3 Genetic alteration analysis of THSD7B

We explored the genetic alterations of THSD7B by leveraging data from cBioPortal. Our study detailed the frequencies of somatic mutations and provided comprehensive genomic information, shedding light on the mutation spectrum of THSD7B across various cancer contexts.




2.4.4 Immunogenomic analyses of THSD7B in the 33 cancers

Our immunogenomic analysis spanned 33 different cancer types, utilizing the “GSVA” package and “ssGSEA” algorithm to evaluate the associations between THSD7B expression and a range of immune components, such as tumor-infiltrating lymphocytes, immunostimulators, immunoinhibitors, MHC molecules, chemokines, and chemokine receptors (36). We determined the correlations using Spearman’s correlation coefficient, considering p-values below 0.05 as statistically significant. The relationships were visually represented in heatmaps created using the “ggplot2” package, providing a clear and comprehensive depiction of the immune landscape influenced by THSD7B expression.




2.4.5 Functional enrichment analysis of THSD7B

We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the biological functions and pathways linked to genes that interact significantly with THSD7B. These interacting genes were pinpointed using the STRING database and assessed via the “clusterProfiler” and “org.Hs.eg.db” packages in R. A rigorous cutoff threshold of p-value < 0.01 was applied to both GO and KEGG enrichment analyses to ensure statistical significance. The results of these analyses were visually depicted using bubble charts, which were crafted using the “ggplot2” package in R.





2.5 Cellular experiments



2.5.1 Silencing of THSD7B gene expression

To silence the THSD7B gene in tumor cells, small interfering RNAs (siRNAs) specifically designed to target THSD7B mRNA were synthesized (32). These siRNAs were algorithmically optimized for effective gene targeting. The silencing process involved the following steps: siRNA Transfection: Cells were transfected with siRNA using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. Briefly, 24 hours post-cell seeding, a mixture of Lipofectamine 2000 and siRNA was prepared to form complexes, which were then introduced to the cells. Evaluation of Knockdown Efficiency: 48 hours following transfection, the reduction in THSD7B mRNA and protein levels was quantified using real-time quantitative PCR (qPCR) to assess the knockdown efficacy.




2.5.2 Overexpression of THSD7B gene

To augment the expression of THSD7B, we engineered a plasmid encoding the full-length coding sequence of THSD7B under the control of the CMV promoter. The overexpression protocol included the following steps: Plasmid Construction: THSD7B cDNA was cloned into the pCMV expression vector. The accuracy of the inserted sequence was confirmed through gene sequencing. Plasmid Transfection: Similar to the siRNA transfection, cells were transfected with the constructed plasmid using Lipofectamine 2000, 24 hours after cell seeding. Verification of Expression: The levels of THSD7B mRNA and protein were measured 48 hours post-transfection by qPCR to validate the effectiveness of the overexpression strategy.




2.5.3 Viability/proliferation/migration/invision

To assess the viability of cancer cells, the cells were cultured in suspension before being plated at a density of 5 × 10^3 cells/mL (100 μL per well) into a 96-well plate, which was then incubated at 37°C. After 24 hours, 10 μL of CCK-8 reagent (catalog KGA9305, KeyGEN, Nanjing, China) was added to each well. The mixture was incubated for an additional two hours, after which the optical density was measured at 450 nm using a microplate reader to determine cell proliferation (37).

For migration and invasion assays, Transwell chambers were used, with migration assays performed without Matrigel coating and invasion assays conducted with a Matrigel coating (38). Cancer cells (5×10^4) in 200 μL of serum-free medium were placed in the upper chamber, while the lower chamber contained 600 μL of medium with 10% FBS to stimulate cell migration and invasion.

To determine levels of cell proliferation, we analyzed the proliferation rate using a 5-Bromo-2′ -deoxyuridine (BrdU) incorporation assay kit (Cell Signaling Technology, MA, USA) following the manufacturer’s instructions (39).




2.5.4 Real-time quantitative polymerase chain reaction

To quantify mRNA levels, total RNA was extracted from cells and tissues using Trizol reagent (Invitrogen) and measured precisely using a Nanodrop instrument (Thermo Scientific, USA) (40). The extracted RNA was then converted into cDNA, which served as the template in qPCR assays conducted with the TB Green™ Premix Ex Taq™ II kit (Takara; RR820A). GAPDH served as the internal reference gene. qPCR primers were synthesized by Bioengineering (Shanghai, China), specifically designed for mRNA amplification. The relative mRNA expression levels were determined by the comparative Ct method (2^-ΔΔCt), ensuring the robustness of our findings through multiple independent experiments. All experimental data were normalized to the control conditions to maintain consistency across measurements. Detailed primer sequences are listed in Supplementary Table 1.





2.6 Statistical methods

Statistical analysis and figure generation were performed with R language version 4.0.2 and GraphPad Prism 9.0. For the comparison of continuous variables between two groups, the choice between the Student t-test and the Mann-Whitney test depended on specific conditions. When comparing multiple groups, either one-way ANOVA or the Kruskal-Wallis test with subsequent multiple comparisons was used, depending on the circumstances. The prognostic significance of categorical variables was determined using the log-rank test. Statistical significance was set at a P value <0.05 across all analyses.





3 Results



3.1 Impact of voluntary running on tumor growth and gene expression

Following the intervention of exercise, a significant reduction in tumor size and weight was observed at day 21, with minimal changes in the body weight of the mice (Supplementary Figures 1A, B). We then conducted mRNA sequencing analysis on five matched pairs (Figure 1A). The quality control results confirmed normal parameters, with high intra-group consistency and notable expression differences between groups (Supplementary Figure 2B). Volcano plots and heatmaps revealed differential expression of 46 genes, among which THSD7B expression was significantly increased in the exercise group (E), representing more than 2 times that in the non-exercise group (NE), with a p-value of 0.009 (Figures 1B–D). Gene enrichment analysis highlighted significant alterations in extracellular components, with the most pronounced changes observed in the Ferroptosis, Estrogen signaling pathway, and TNF-α signaling pathway. In details, it is shown that the estrogen signaling pathway, antigen processing and presentation, and IL-17 signaling pathway exhibit the highest significance in the samples studied (-log10(p-value) close to 2.6), while the ferroptosis pathway (-log10(p-value) around 2.1) also exhibits a particularly significant variation, marked in red. Other notable pathways include MicroRNAs in cancer and lipid- and atherosclerosis-related pathways, reflecting the important biological roles and potential research value of these pathways under this experimental condition (Figure 1E, Supplementary Figure 2A).

[image: Diagram explaining a study on breast cancer in mice. Panel A shows the process: 4T1 injection in mice, voluntary wheel running, collection of tumors, and RNA sequencing. Panel B displays a heatmap of gene expression. Panel C features a volcano plot highlighting Thsd7b gene with significance. Panel D shows a KEGG enrichment bar chart comparing 29 upregulated and 17 downregulated pathways. Panel E provides a detailed KEGG pathway enrichment chart, listing pathways like estrogen signaling and ferroptosis.]
Figure 1 | Voluntary wheel running exercise inhibits breast cancer growth. (A) Schematic diagram of the experiment. (B) Heatmap of Hierarchical clustering analysis of changed mRNAs. (C, D) Volcano plot and column of mRNAs differentially expressed between NE and E group. (E) Histogram plot showing KEGG enrichment by all the differentially expressed mRNAs expressed in tumors, including biological process, cellular component, and molecular function.




3.2 Pan-cancer analysis



3.2.1 Expression variability of THSD7B in pan-cancer

To evaluate the expression of THSD7B mRNA in normal human tissues, we analyzed data from the GTEx, HAP, and Consensus datasets. In-depth evaluation using RNA-seq data from TCGA and GTEx databases revealed significant expression differences in THSD7B across 33 types of cancer. In unmatched samples (Figure 2A, Supplementary Figure 3A), THSD7B was notably upregulated in cancers like ACC, KICH, LUSC, OV, PPAD, PCPG, STAD, THYM, UCEC and UCS, and downregulated in BLCA, BRCA, KIRP, PRAD, and THCA. In matched samples (Figure 2B, Supplementary Figure 3B), upregulation was not significant in all the cancer types, while downregulation was noted in BLCA, BRCA, COAD, KIRC, KIRP, and PRAD. The Human Atlas database further assessed the protein expression of THSD7B across various cancers, showing upregulation in Thyroid cancer, Stomach cancer, Prostate cancer, Liver cancer, Pancreatic cancer, Lung cancer, and Colorectal cancer without significant downregulation in any cancer type (Figure 2C).

[image: Panel A shows the expression of THSD7B in various cancer types, represented by violin plots, comparing tumor (red) and normal (yellow) tissues. Panel B presents a dot plot of THSD7B expression across different cancers with significant differences noted. Panel C displays a bar chart of patient percentages for various cancers, each bar in different colors, indicating the prevalence of THSD7B expression.]
Figure 2 | Differential expression pattern of THSD7B. (A) Differential THSD7B mRNA expression between unpaired samples in TCGA cancers. The red dot represents cancer samples, and the yellow one represents paired normal samples. Radargrams visualize and compare THSD7B expression in different tumors. *p < 0.05, **p < 0.01, and ***p < 0.001, ns: no significance. (B) Differential THSD7B mRNA expression paired samples in TCGA cancers. The red column represents cancer samples, and the blue column represents normal samples. The normal group was normal tissue in TCGA and GTEX databases. (C) THSD7B protein expression in different cancer types in Human Atlas.




3.2.2 Prognostic impact of THSD7B in pan-cancer

For overall survival (OS) and disease-specific survival (DSS), THSD7B posed a risk factor in STAD and KIRC, while it acted as a protective factor in PRAD, LAML, KIRC, and GBM (Figures 3A, B). For disease-free interval (DFI) and disease-free survival (DFS), THSD7B was a risk factor in STAD and a protective factor in THCA and BRCA (Figure 3A). For progression-free interval (PFI), THSD7B was a risk factor in STAD and READ, however, it acted as a protective factor in THYM, THCA, OV, MESO, KIRC, and GBM.

[image: Panel A shows forest plots depicting the hazard ratios (HR) of THSD7B across different cancer types, categorized by outcome types: overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), disease-free survival (DFS), and progression-free interval (PFI). Significant results are color-coded as non-significant, risky, or protective. Panel B presents a series of Kaplan-Meier survival curves for various cancer types, showing survival probability over time. Each graph includes HRs, p-values, and confidence intervals, with survival lines differentiated in color.]
Figure 3 | High expression of THSD7B increased patient survival period. (A) Forest plot of hazard ratios (HR) for overall survival (OS), PFI, DSS, DFS, and DFI for different cancer types associated with THSD7B expression. Dots indicate log-transformed hazard ratios, red indicates significant risk, blue indicates protective associations, and gray indicates non-significant associations. (B) Individual OS figures for each cancer type.




3.2.3 Correlation analysis of THSD7B in pan-cancer

Copy number variations (CNVs), a common form of genomic instability in cancer, can lead to altered gene expression affecting cell proliferation, differentiation, and death. Bar graphs (Figure 4A) showed changes in THSD7B copy numbers across various cancers, with significant variations in KICH. Further correlation analysis indicated a positive correlation between UCEC and LUSC (Figure 4B). Additionally, the relationship between tumor mutational burden (TMB) and THSD7B expression was investigated, revealing a positive correlation in CHOL and KICH, and a negative correlation in BRCA, LUAD, STAD, UCEC, and PRAD (Figures 4C, D). Promoter methylation, a critical epigenetic regulatory mechanism affecting gene expression without altering the DNA sequence, was analyzed to explore its relationship with THSD7B expression across multiple cancer types. Both unmatched and matched tumor samples showed a negative correlation between THSD7B expression and methylation, particularly in COAD and LIHC (Figure 4E).

[image: Chart A displays a bar graph showing THSD7B expression across various cancer types, with bars ranging from above 20% to below -60%. Chart B is a scatter plot illustrating positive correlations and P-values of THSD7B in cancer types, with red indicating high correlation. Chart C shows a scatter plot with blue dots representing negative correlations of THSD7B with cancers. Chart D is a radar chart depicting THSD7B expression variances across cancer types. Chart E displays a scatter plot with mostly gray dots illustrating delta values of THSD7B expression in cancers.]
Figure 4 | Correlation analysis of THSD7B in pan-cancer. (A) Bar graphs illustrate THSD7B copy number variation in different cancers. (B) THSD7B copy number and pan-cancer direct correlation analysis. (C, D). The correlation between tumor mutational burden (TMB) and THSD7B expression. (E) The correlation between the methylation status of gene promoter regions and THSD7B in multiple cancer types.




3.2.4 Analysis of THSD7B on the immune microenvironment across cancers

Heatmap analysis from Figure 5A intricately details the correlations between THSD7B expression and various immune cell subtypes across different types of cancers. Notably, in cancers such as UCS (Breast Cancer) and GBM (Colorectal Adenocarcinoma), a significant positive correlation exists between THSD7B expression and the rest of mast cells, suggesting that elevated expression of THSD7B may promote mast cell release of immune factors, antigen presentation, and other effects, thereby allowing the tumor to present under immune surveillance, which is conducive to tumor growth and metastasis. Other cells such as, B cells, CD8+ T cells or NK cells are positively correlated with ThSD7B and this correlation is statistically significant (as shown by p<0.05), then this could mean that ThSD7B can promote the function of these immune cells, which may suggest that ThSD7B can improve the tumor microenvironment and promote anti-tumor immunity. Additionally, in most certain cancer types, THSD7B shows a negative correlation with regulatory T cells (Tregs), which play a critical role in modulating the immune system, particularly in maintaining immune tolerance and suppressing excessive immune responses. Increased THSD7B expression might inhibit the functionality of Tregs, thereby fostering an immune-enhanced tumor microenvironment favorable for tumor survival and progression. Conversely, in Lung Adenocarcinoma (GBM), THSD7B exhibits a negative correlation with natural killer (NK) cells, although this association generally lacks statistical significance (Figure 5B). This trend implies that in certain cancer contexts, THSD7B expression may inversely affect the immunosurveillance capabilities of NK cells, potentially contributing to mechanisms of immune escape.

[image: Three heatmaps depicting correlations between various cancer types and immune cells. Image A shows correlations (ranging from -1.0 to 1.0) with significance indicated by squares and asterisks. Image B focuses on a subset with annotated categories. Image C displays correlations between THSD7B and different immune cells, highlighting significant findings with stars for p-values less than 0.05. A color gradient from blue to red indicates correlation strength.]
Figure 5 | Analysis of immune microenvironmental cellular regulation of pan-cancer by THSD7B. (A) Heatmap of immune cell infiltration in pan-cancer analyzed using the Cibersort method. Each cell represents the correlation between THSD7B expression and the level of a specific immune cell type, and the intensity and sign of the color correspond to the strength and direction of the correlation, respectively. Statistical significance is indicated by the box around the cell. (B) THSD7B pan-cancer immuno-infiltration analysis using Cibersort. (C) Gene Commons data analysis of correlations between single genes and immune infiltration results, using heatmap format to present results. Significance was calculated with Student’s t test. *P < 0.05.

EPIC analysis, a vital tool in studying the tumor microenvironment, enables researchers to understand the dynamic variations of different cell types within tumors, which is crucial for advancing tumor immunology and developing new therapeutic strategies. From the heatmap, it is evident that THSD7B’s correlations with various immune cells vary, illustrating the heterogeneity of tumor microenvironments. For instance, in DLBC and LIHC, endothelial cells show a strong positive correlation with THSD7B expression, suggesting their significant role in supporting or enhancing tumor growth and invasion, closely linked with the expression of this gene. Moreover, in cancers like DLBC, the activity of CD8+ T cells significantly correlate with THSD7B expression, reflecting their importance in the tumor immune response and the potential regulatory role of this gene. Further analysis using the TCGA database’s pan-cancer dataset revealed a broadly positive correlation between THSD7B and various immune cells across different cancer types, which suggested THSD7B can be a positive factor for immune microenvironment and immunotherapy (Figure 5C).




3.2.5 Pathway enrichment and key gene mutation analysis of THSD7B across cancers

Our further evaluation of THSD7B’s function in pan-cancer contexts revealed significant findings via the GSEA methodology. THSD7B notably suppresses G2M checkpoint and E2F target pathways, potentially hindering conditions favorable for tumor cell proliferation. Additionally, THSD7B significantly enhances pathways such as angiogenesis and epithelial-mesenchymal transition (EMT), all of which are documented to potentially regulate tumor growth and metastasis (Figure 6).

[image: Dot plot illustrating various pathways against different cancer types. Each dot represents a normalized enrichment score (NES) with colors ranging from blue (-2) to red (2) and sizes indicating -log10 of FDR/2 values. Pathways like "KRAS_SIGNALING_DN" and "EPITHELIAL_MESENCHYMAL_TRANSITION" are highlighted.]
Figure 6 | Pathway enrichment of THSD7B and mutational analysis in pan-cancer. Dot plots represent pan-cancer GSEA results using the official immunization gene set (GMT file) as a reference. Functional pathways are from GM7 files and are shown on the y-axis, with different cancer types shown on the x-axis. Dot color indicates correlation with THSD7B expression; red indicates positive correlation and blue negative correlation. The size of the dots represents the -log10(FDR) value, indicating the significance of the enrichment. Analysis of mutation frequency and CNV in TCGA-COAD/READ. The mutation frequency of RNA modification “writers” among 20 cancer types in the TCGA cohort. The horizontal axis represents cancer types, and the number of samples is given in the parentheses. The vertical axis lists the names of the genes.

A heatmap depicting the frequency of key gene mutations across various cancers highlights the high mutation rates of genes such as TP53 in LUSC, APC in READ, and PTEN in UCEC, indicating their common involvement in these cancers. Specific cancer types like UCEC, LUAD, and LUSC show frequent mutations in genes like TP53 and CDH10, providing insights that may guide therapeutic strategies (Supplementary Figure 5A).





3.3 Impact of THSD7B on breast cancer cells

Finally, our study delves into the cellular functions of THDSD7B. We validated the expression of the THDSD7B gene after siRNA or plasmids intervention (Supplementary Figure 6). Compared to control cells, overexpression of THDSD7B in MDAMB468 and MDAMB231 breast cancer cells leads to suppressed proliferation and cell viability, while suppression of THDSD7B expression promotes proliferation and cell viability (Figures 7A, B). Furthermore, overexpression of THDSD7B significantly inhibits the migratory and invasive capabilities of these tumor cells, whereas its inhibition increases these properties (Figures 7C, D). Overall, upregulated targeting THDSD7B could directly inhibit tumor cells, significantly impeding cancer progression and presenting a novel therapeutic target (Figure 8).

[image: Figure displaying multiple experiments on MDA-MB-468 and MDA-MB-231 cell lines. Panel A shows bar graphs of CCR9 percentage, highlighting differences between control, Thsd7b-si, and Thsd7b-OE conditions. Panel B includes microscopy images of BRDU-stained cells with accompanying bar graph showing BRDU-positive cell percentages. Panel C and D present invasion and migratory assays respectively, with images and bar graphs comparing control, Thsd7b-si, and Thsd7b-OE conditions across both cell lines. Statistical significance is indicated with asterisks in panels B, C, and D.]
Figure 7 | THSD7B promotes breast cancer tumor cell growth. (A) The proliferative capacity of control, THSD7B-inhibited, and THSD7B-overexpressed tumor cells was examined at 24h, 48h, and 72h after transfection by CCK-8 assay. Data are presented as mean ± SD. Significance was calculated with student t test. *P < 0.05, **P < 0.01, ***P < 0.001. (B) The apoptotic level of control, THSD7B-inhibited, and THSD7B-overexpressed tumor cells was examined at 24h after transfection by flow cytometry. Significance was calculated with student t test. *P < 0.05, **P<0.01. (C, D). The migratory and invasive capacity of control, THSD7B-inhibited, and THSD7B-overexpressed tumor cells were examined at 24h after transfection by Boyden chamber assay. Total original magnification, 200×. Significance was calculated with student t test. **P<0.01, ***P<0.001.

[image: Schematic illustrating the effects of voluntary exercise on breast cancer. A mouse in an exercise wheel is linked to increased blood circulation, leading to elevated levels of cytokines, exosomes, and metabolites. This augmentation causes an increase in THSD7B, which correlates with reduced cancer proliferation and metastasis, enhanced immune cell infiltration, and a better prognosis shown by a survival graph with low and high-risk scores.]
Figure 8 | Schematic graph of this study. Exercise increased THSD7B expression of cells in breast cancer through a circulatory effect, which promotes immune cell infiltration, decreased tumor cell metastases/proliferation, and improves the prognosis of tumor patients.





4 Discussion

Our study underscores the formidable challenge posed by breast cancer, a leading cause of cancer-related deaths among women globally (41). Given the disease’s capacity to metastasize and its substantial socioeconomic impact, innovative treatment strategies that extend beyond conventional therapies are urgently needed. In this context, our research provides compelling evidence for the potential of physical activity as an adjunct therapy in breast cancer management, an approach that could revolutionize current treatment paradigms. Our findings indicate that THSD7B may positively affect prognosis and inhibit tumor progression across a range of cancers. Additionally, exercise appears to inhibit breast cancer progression potentially by up-regulating THSD7B.

The results presented in our study illustrate the profound effects of voluntary running on tumor growth and gene expression, particularly highlighting the modulation of the THSD7B gene. This protein, involved in crucial cellular processes such as actin cytoskeleton reorganization, has shown significant overexpression in response to exercise, with the expression levels in the exercise group being more than double those in the non-exercise group. Such findings are critical as they suggest that physical activity can influence cellular functions that are directly linked to cancer progression, such as cell adhesion and metastatic potential (42). Gene enrichment analysis further demonstrated significant alterations in pathways associated with ferroptosis and estrogen signaling—both of which are pivotal in the context of breast cancer. These changes not only provide insights into the molecular mechanisms by which exercise could retard tumor growth but also highlight potential therapeutic targets for future interventions.

The relationship between genes and pan-cancer prognosis in cancer patients could potentially reflect its influence on tumor progression and also facilitate the development of tumor markers (43). Our pan-cancer analysis revealed variable expression of THSD7B across different cancer types, suggesting a complex role in oncogenesis (44). The differential expression patterns observed across various cancers underscore the gene’s potential as a biomarker for cancer progression and prognosis. Notably, upregulation of THSD7B’s in most tumors seems to imply a better prognosis, suggesting that there may be a potential regulatory role of THSD7B on tumor progression and microenvironment. However, THSD7B’s upregulation in aggressive cancers such as ovarian and pancreatic suggests a possible role in promoting malignancy, which could be mitigated by targeted therapies. The prognostic implications of THSD7B expression were evident, with its expression correlating with both risk and protective factors across different cancer types. This duality emphasizes the need for a nuanced understanding of THSD7B’s function in the tumor microenvironment, where it may play different roles depending on the specific cellular context and cancer type. The ability of exercise to inhibit cancer as well has been widely reported, our initial dataset was analyzed from a breast cancer model in mice voluntarily exercising and therefore the significantly high expression of THSD7B was selected for pan-cancer analysis. Thus, the use of THSD7B as a mediator molecule of exercise against cancer can be explained in most models, but in some cancers THSD7B plays a poor role, so the expression pattern of THSD7B cannot be generalized across all cancers, but rather its association with cancer needs to be viewed dialectically. Specifically, in certain cancers, high THSD7B expression may enhance cell proliferation and metastasis, possibly through the activation of specific MicroRNAs. Conversely, in other cancers, THSD7B can inhibit tumor growth by inducing apoptosis and reducing angiogenesis.

Our study also delved into the interactions between THSD7B expression and the immune microenvironment, revealing significant correlations with various immune cell types. In a detailed examination of THSD7B’s interaction with the immune microenvironment, our analysis reveals a nuanced and primarily beneficial role for THSD7B in modulating immune responses across various cancers. THSD7B’s positive correlation with key immune effector cells such as mast cells, B cells, CD8+ T cells, and NK cells supports its function in promoting immune activation and enhancing antitumor activity. This contrasts with the typically suppressive behavior of Tregs, where THSD7B exhibits a negative correlation, potentially reducing their immunosuppressive effects in the tumor milieu. Comparatively, literature on other immune-modulating genes suggests a variable influence on the immune landscape depending on the cancer type and genetic context. For instance, studies like those by Guo et al. on PD-L1 have shown that while some genes suppress immune activity (45), others like THSD7B can facilitate a more robust immune response by altering cell populations and their functional state. Our findings suggest that increasing THSD7B expression could disrupt the usual immune evasion tactics by tumors, thereby making the tumor environment more hostile to cancer progression and more amenable to immunotherapeutic interventions. Moreover, our EPIC analysis indicates that THSD7B’s influence extends beyond just lymphoid cells, impacting the endothelial components within tumors, which could affect tumor angiogenesis and metastasis, aligning with findings from Folkman which highlighted similar impacts by other angiogenic modulators (46). This broad impact of THSD7B underscores its potential as a therapeutic target, with implications for both direct cancer therapy and adjunctive immunotherapy.

Our comprehensive analysis of THSD7B’s function in cancer through GSEA has elucidated its complex role in modulating key cellular pathways that influence tumor behavior. Notably, THSD7B appears to actively suppress the G2M checkpoint and E2F target pathways (38, 47), which are crucial for cell cycle progression and DNA replication. This suppression could impede the conditions that typically favor rapid tumor cell proliferation, suggesting a potential tumor suppressor role for THSD7B in these regulatory pathways. Conversely, THSD7B significantly enhances the angiogenesis and epithelial-mesenchymal transition (EMT) pathways. These pathways are essential for tumor growth and metastasis, as angiogenesis facilitates the tumor’s blood supply, and EMT contributes to tumor cell dissemination (48–50). The dual role of THSD7B, both inhibiting and promoting cancer progression through different pathways, underscores the gene’s potential as a multifaceted target for therapeutic intervention. Additionally, our mutation analysis across various cancers has revealed a pattern of frequent mutations in genes such as TP53, APC, and PTEN, particularly in cancers like LUSC, READ, and UCEC. These genes are known for their pivotal roles in regulating cell growth, apoptosis, and genomic stability (51, 52). The prevalence of mutations in these genes, alongside alterations in THSD7B, provides valuable insights into the molecular landscape of these cancers and could inform the development of targeted treatment strategies that address these specific genetic alterations.

From a mechanistic point of view, the upstream signaling molecules that exercise regulates THSD7B and how THSD7B regulates pathways such as estrogen signaling pathway, antigen processing and presentation, IL-17 signaling pathway, ferroptosis pathway, MicroRNAs in cancer, and lipid- and atherosclerosis-associated pathways have not been explored in this paper. Interestingly we searched a range of literature and found that no direct link has been reported for the THSD7B pathway, which needs to be further explored in future studies. In addition, a large body of literature reports that exercise brings about a series of physiological changes, including changes in related molecules in the metabolome, proteins, and genome (53–55). Specifically, we hypothesized that exercise-induced changes in systemic factors (e.g., serum circulating exosomes, muscle-derived cytokines, and hormones) may affect transcription factors, such as the known gene transcription regulators NF-κB and STAT3 (56–59). In addition, the roles of epigenetic modifications (including DNA methylation and histone acetylation) in the regulation of gene expression in physical activity could also affect THSD7B expression (57, 60–62). Furthermore, the direct upstream transcription factors by which exercise regulates THSD7B expression in tumor cells remain unknown. We propose that exercise activates AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which are central to tumor cell expression (63, 64). These molecules may affect transcription factors and co-regulators that control THSD7B expression. In addition, exercise regulates the expression of cellular miRNAs, which may post-transcriptionally regulate THSD7B (65, 66).

In addition, reports on THSD7B in the field of oncology are limited, with few explorations of its specific anti-cancer mechanisms. Only one article reported that mutation of THSD7B in patients inhibits cell death-related pathways, up-regulates cell invasion and metastasis pathways, and down-regulates immune response pathways, which ultimately leads to a poor prognosis in lung cancer (27). And in our study stem also found that THSD7B overexpression can inhibit tumor value-added invasion, and vice versa inhibition of its expression leads to stronger tumor cell value-added invasion. In addition, THSD7B also significantly inhibited the expression of immunosuppressive cells, suggesting its potential tumor immune microenvironment regulation function. In this process of THSD7B up-regulation, many downstream pathways will have a series of effects, and the specific mechanism needs to be confirmed by further studies.

In general, the use of specific therapeutic modalities to enhance THSD7B expression (e.g., material carrier-targeted delivery of THSD7B agonists, etc.) holds great promise for tumor-targeted therapy and has clinical translational value (67, 68). Finally, we can also consider THSD7B as a genetic marker to cluster tumor patients and predict their prognosis. In addition, we can use the intervention of exercise prescription for patients with low expression of THSD7B to improve their response to immunotherapy. Implementation of exercise interventions as cancer therapy involves addressing individual differences, designing effective exercise programs, and ensuring patient compliance. We recommend that multicenter randomized controlled trials be conducted to assess the actual effects of exercise interventions in cancer patients. To explore the therapeutic potential of exercise-induced THSD7B expression, we propose the following research directions: Mechanistic studies: To further elucidate the molecular mechanisms by which THSD7B interacts with other pathways and genes in different cancer types (69–71). Clinical trials: Design and implement large-scale, long-term clinical trials to evaluate the effects of exercise interventions on cancer progression and patient prognosis (72, 73). Personalized medicine: Develop personalized exercise programs based on individual cancer types and THSD7B expression levels to maximize efficacy (74, 75).

Our study on the impact of exercise on breast cancer and the role of THSD7B gene expression, while insightful, has limitations. It primarily relies on animal models and in vitro experiments, which may not fully replicate human cancer biology (64). The focus on a single gene, THSD7B, might not capture the complexity of cancer’s multifactorial nature. While murine models are invaluable in cancer research, they have inherent differences in immune response and metabolism compared to humans. Therefore, our results need validation in larger-scale human studies. Additionally, the exercise protocol used does not reflect the diversity of human exercise habits, and the findings’ clinical applicability requires validation in diverse human populations through prospective studies to confirm THSD7B’s prognostic and therapeutic potential (16).




5 Conclusions

In conclusion, our findings advocate for the integration of physical activity into breast cancer treatment regimes, emphasizing its potential to modulate key genes and pathways involved in tumor progression. The insights gained into the role of THSD7B across various cancers further enhance our understanding of its potential as a therapeutic target, paving the way for more effective and personalized cancer treatments.
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Purpose

The study aimed to develop a nomogram model for individual prognosis prediction in patients with hormone receptors positive (HR+) mucinous breast carcinoma (MBC) and assess the value of neoadjuvant chemotherapy (NAC) in this context.





Methods

A total of 6,850 HR+ MBC patients from the SEER database were identified and randomly (in a 7:3 ratio) divided into training cohorts and internal validation cohorts. 77 patients were enrolled from the Chongqing University Cancer Hospital as the external validation cohort. Independent risk factors affecting overall survival (OS) were selected using univariate and multivariate Cox regression analysis, and nomogram models were constructed and validated. A propensity score matching (PSM) approach was used in the exploration of the value of NAC versus adjuvant chemocherapy (AC) for long-term prognosis in HR+ MBC patients.





Results

Multivariate Cox regression analysis showed 8 independent prognostic factors: age, race, marital status, tumor size, distant metastasis, surgery, radiotherapy, and chemotherapy. The constructed nomogram model based on these 8 factors exhibited good consistency and accuracy. In the training group, internal validation group and external validation group, the high-risk groups demonstrated worse OS (p<0.0001). Subgroup analysis revealed that NAC had no impact on OS (p = 0.18), or cancer specific survival (CSS) (p = 0.26) compared with AC after PSM.





Conclusions

The established nomogram model provides an accurate prognostic prediction for HR+ MBC patients. NAC does not confer long-term survival benefits compared to AC. These findings provide a novel approach for prognostic prediction and clinical practice.





Keywords: SEER, mucinous breast carcinoma, nomogram, propensity score matching analysis, prognosis, neoadjuvant chemotherapy




1 Introduction

Mucinous breast carcinoma (MBC) is a special subtype of breast cancer characterized by a significant presence of extracellular mucin. It has a low incidence rate, accounting for only 1% to 4% of all breast cancer cases (1, 2). The median age of onset for MBC is 68 years, which is older compared to invasive ductal carcinoma (IDC) (3). Importantly, MBC generally carries a more favorable prognosis (4, 5). The majority of MBC belong to the Luminal type (6), with over 90% positive expression of hormone receptors (HR) (7, 8). The majority of MBC cases exhibit HR positivity, which generally confers a better prognosis compared to HR- MBC. According to the NCCN guidelines, the treatment of HR-positive (HR+) MBC is different from that of HR-negative (HR-) patients. Despite many new advancements in tumor treatment (9, 10), treatment strategies for HR+ MBC primarily involve chemotherapy and hormonal therapy (11), whereas HR- MBC treatment aligns more closely with triple-negative breast cancer, focusing predominantly on chemotherapy. Previous research on MBC has predominantly centered on HR+ MBC cohorts, with minimal investigation into HR- MBC. Furthermore, numerous studies have demonstrated that HR status is an independent prognostic factor influencing the outcomes of MBC (4, 12). To mitigate bias in our data analysis and better study MBC, we excluded HR- MBC data, opting solely for HR+ MBC, which better represents the biological and prognostic characteristics of MBC. Therefore, the focus of this study is to specifically investigate the HR+ MBC population.

Due to the relatively small number of patients and significant biological differences compared to IDC, there are no specific diagnostic and treatment guidelines for MBC currently. In the existing guidelines and clinical practice, surgery and adjuvant therapy are still the main treatment strategies for HR+ MBC. Because mucinous carcinoma grows slowly and is often diagnosed with a large mass (13), neoadjuvant chemotherapy (NAC) is often involved in clinical treatment. However, whether NAC has long-term survival benefits for MBC than adjuvant chemotherapy (AC) has not yet been confirmed by studies. Therefore, the value of NAC of MBC is a clinical question that needs to be evaluated.

Currently, the development of bioinformatics has significantly contributed to advancing prognostic prediction and tumor treatment (14). However, there is a lack of reliable prognostic evaluation systems for personalized treatment of HR+ MBC. Previous study have demonstrated certain method for predicting breast cancer survival (15). Nomogram as a novel cancer prediction model, has the ability to identify and stratify clinical patients on an individual basis (16–18). It offers a more accurate and intuitive approach compared to traditional TNM staging and has emerged as a new standard for tumor prognosis prediction. The objective of our study is to develop a nomogram model based on clinicopathological features to predict the prognosis of HR+ MBC and to evaluate the benefit of NAC in HR+ MBC.




2 Methods



2.1 Study design and data sources

The data for this study were obtained from the Surveillance, Epidemiology, and End Results (SEER) database of the US National Cancer Institute (NCI), and the data were obtained by SEER Stat 8.4.1 software. 24087 cases diagnosed with MBC between 2010-2018 in SEER database were initially collected. The inclusion criteria were as follows (1): ICD-O-3, Hist/behave, malignant = “8480/3: mucinous adenocarcinoma”; (2) hormone receptor positive (HR+) (includes estrogen receptor and progesterone receptor); (3) MBC as the first and only cancer diagnosis; (4) patients with complete general clinicopathological information; (5) well-established follow-up to ensure reliable patient status. The exclusion criteria were given as follows: (1) male patients; (2) patients with bilateral breast cancer; (3) patients with missing information (N stage, T stage, Grade stage, HR/Her2 status, marital status and surgical experience) (Figure 1).

[image: Flowchart depicting a study on breast mucinous carcinoma from the SEER database (2010-2018) with 24,087 cases. 17,237 cases were excluded for factors like unknown N stage and male gender. 6,850 HR-positive cases were analyzed, split into a train group (4,798) for nomogram establishment and an internal validation group (2,052). An external validation group included 77 cases. 707 cases received chemotherapy, with further division by propensity score into adjuvant (104) and neoadjuvant (104) groups. The study assessed prognosis nomogram via C-index, calibration, and ROC curves.]
Figure 1 | Flowchart for patients' selection.




2.2 Cohort definition and information extraction

6850 HR+ MBC patients were randomly assigned to the training cohort and validation cohort according to a ratio of 7:3. The external validation cohort was comprised of HR+ MBC patients treated at the Chongqing University Cancer Hospital between 2012 and 2019. The diagnosis of hormone receptor status is determined by evaluating the immunohistochemistry results of the patient’s lesion. We applied identical eligibility criteria as those utilized for the patients extracted from the SEER database, culminating in the enrollment of 77 patients. Follow-up procedures were conducted through telephone interviews, follow-up of more than 5 years with the final follow-up date recorded as May 10, 2024. All patients have obtained follow-up results. This study is a retrospective analysis grounded in clinical data, informed consent from patients was not necessitated.

The training cohort is used to build models and filter variables, and the validation cohort is used to verify the models. The following variables was extracted from SEER: age, race, marital status, laterality, histological grade, tumor size, axillary lymph nodes, metastatic status, human epidermal growth factor receptor 2 (HER2) status, surgery, radiotherapy, chemotherapy, survival data. Similarly, external validation data were collected for the clinical variables mentioned above and corresponding statistical analyses were conducted. It is worth noting that, due to the Chinese origin of the external data, the race category only includes the “other” class.




2.3 Statistical analysis

Statistical analysis was performed using R version 4.3.0. Differences in clinical characteristics of patients in the training and validation cohorts were compared using the chi-square test. Using univariate and multivariate Cox analysis, independent prognostic factors (p < 0.05) were identified, and then the nomogram prognostic models of MBC 3-year and 5-year overall survival (OS) rates were constructed using the selected variables. Concordance index (C-index) and area under the receiver operating characteristic (ROC) curve were used to evaluate discriminative ability. C-index and ROC values range between 0.5 - 1, where 0.5 means no predictive ability, 1.0 means full accuracy. An estimate that is greater than 0.7 is usually considered reasonable. The mode’s accuracy is evaluated by the calibration curve. Model accuracy increases as the actual probability line approaches the reference line.

In order to reduce data selection bias and confounding factors, we used a propensity score-matched (PSM) analysis of patients receiving NAC and AC, respectively (caliper = 0.05). 10 variables including age, race, marital status, laterality, grade, tumor size, axillary lymph nodes, surgery, radiotherapy, and luminal subtype that may affect HR+ MBC patients’ survival were selected for matching, and a ratio of 1:1 was obtained. OS and cancer-specific survival (CSS) was determined using the Kaplan-Meier and log-rank tests. Two-sided p values < 0.05 were considered statistically significant.





3 Results



3.1 Patients’ baseline characteristics

This study included a total of 6850 HR+ MBC cases from SEER database, with 4798 cases (70.0%) in the training cohort and 2052 cases (30.0%) in the internal validation cohort. The two groups of patients showed no differences in clinical pathological and demographic characteristics. The majority of patients were ≥ 50 years old (87.6%) and white (75.8%), and there were no significant differences in marital status or breast cancer affected side. Most cases had favorable histological grading, with grade I accounting for 59.2% and grade II accounting for 37.2%. Breast masses at diagnosis were generally ≤ 5 cm, with T1 accounting for 66.8%, T2 for 27.2%, T3 for 4.6%, and T4 for only 1.4%. Most patients did not have axillary lymph node metastases (91.6%), indicating a mild biological behavior of HR+ MBC. The majority of patients were HER2-negative (92.4%), while only 322 patients (4.7%) were HER2-positive. 6600 patients (92.4%) received surgery, and 793 patients (11.6%) received chemotherapy, including NAC and AC. The external validation cohort from the Chongqing University Cancer Hospital had 77 patients. All patients were Asian females, with 98.7% being married. The distribution of patients aged ≥50 years and <50 years was roughly equivalent. The vast majority presented with HER2-negative breast cancer and without distant metastasis. Surgical treatment was administered to 92.2% of the patients, while 26.0% underwent radiotherapy and 83.1% received chemotherapy. The clinicopathological characteristics of all patients are outlined in Table 1.

Table 1 | Demographics and pathological characteristics of patients with mucinous breast carcinoma.


[image: A detailed table compares different cohorts across several variables in a study, such as age, race, marital status, laterality, grade, and treatments like surgery, radiation, and chemotherapy. Columns represent overall data, training cohort, internal validation cohort, external validation cohort, and p-values for different comparisons. Each variable is expressed in numbers and percentages.]



3.2 Identification of risk factors for HR+ MBC

We conducted both univariate and multifactorial Cox regression analyses to identify the risk factors that affect OS. The results of the univariate analysis showed that age, race, marital status, T stage, metastasis, surgery, radiotherapy, and chemotherapy were all significantly associated with OS (p < 0.05). Additionally, the multivariate analysis identified age, race, marital status, mass size, metastasis, and treatment as independent prognostic factors for HR+ MBC in the nomogram model. The Cox regression survival analysis based on OS is presented in Table 2.

Table 2 | Univariate and Multivariate Analysis of Overall Survival in the Training Group.


[image: Table displaying hazard ratios and p-values from univariate and multivariate analyses across several variables, including age, race, marital status, and treatment factors like surgery, radiation, chemotherapy, and HER2 status. Each variable shows a reference category with comparative hazard ratios and confidence intervals. Analyses highlight significant factors affecting outcomes, indicated by low p-values.]



3.3 Nomogram construction and validation

A visual nomogram model was developed based on the prognostic risk factors identified from Cox analysis. Each variable was assigned a score ranging from 1 to 100 based on its corresponding coefficient. The scores for each variable were then summed to obtain a total score, which was associated with the 3-year and 5-year OS rates. Higher scores indicate lower OS rates. The nomogram prediction plots are presented in Figure 2.

[image: Graphical nomogram depicting survival prediction for cancer patients based on factors like age, race, marital status, tumor size (T), metastasis (M), and treatments such as surgery, chemotherapy, and radiation. Each factor is associated with points contributing to total score, predicting 3-year and 5-year survival probabilities. Horizontal scales illustrate point values and survival likelihoods.]
Figure 2 | Nomogram model for prognostic prediction of HR+ MBC patients. Each variable is quantified as a different value corresponding to a point at the top of the chart, the sum of all variable values represents the total number of points on the bottom scale, reflecting the overall survival rate at 3- and 5- years, respectively.

The predictive ability of the nomogram model was evaluated by calculating the C-index using R software. For the training cohort, the C-index was 0.735 (95% CI: 0.7154 ~ 0.7546), for the internal validation cohort, it was 0.733 (95% CI: 0.7036 ~ 0.7624), and for the external validation cohort, it was 0.967 (95% CI: 0.938 ~ 0.996). These results suggest that the model accurately assesses prognosis. The calibration plots revealed that the calibration curves for the training cohort as well as the internal and external validation cohorts, pertaining to both 3-year and 5-year OS predictions, closely adhered to the ideal 45° reference line as depicted in Figure 3. It demonstrated that the predicted values are in good consistency with the actual 3-year and 5-year OS rates.

[image: Calibration plots A to F show comparisons of nomogram-predicted versus actual survival probabilities for different cohorts and time frames. Each plot includes a diagonal reference line, data points with error bars, and a trend line, illustrating the accuracy of predictions against observed outcomes for three-year and five-year survival across training, internal validation, and external validation cohorts.]
Figure 3 | Calibration curve of the nomogram for predicting the probability of 3-year and 5-year OS of MBC. (A, B) training cohort; (C, D) internal validation cohort; (E, F) external validation cohort.

The ROC curves were performed to predict 3-year and 5-year OS, and areas under the curve (AUCs) were all > 0.7 in the training, internal and external validation cohorts in Figure 4. It indicating that the nomogram exhibits excellent discriminatory ability. In conclusion, the model improved the estimation of OS in HR+ MBC and provide guidance for clinical prognosis evaluation and therapeutic decision-making.

[image: Set of six Receiver Operating Characteristic (ROC) curves displaying model performance across different cohorts and times. Panels A, C, and E show three-year survival ROC curves with AUC of 0.751, 0.747, and 0.897, respectively, in training, internal, and external validation cohorts. Panels B, D, and F show five-year survival ROC curves with AUC of 0.743, 0.746, and 0.815. Diagonal lines represent random chance, while curves indicate model performance.]
Figure 4 | ROC curves were used to test the prediction ability of the model for 3-, and 5-year overall survival. (A, B) training cohort; (C, D) internal validation cohort; (E, F) external validation cohort.




3.4 Survival analysis for OS

To further confirm the impact of risk predictor stratification on OS in HR+ MBC, we performed a Kaplan-Meier survival analysis. Patients aged ≥ 50 years (p < 0.0001, HR = 5.559, 95% CI [4.631-6.673]), unmarried (p < 0.0001, HR = 1.962, 95% CI [1.731-2.223]), M1 (p < 0.0001, HR = 8.128, 95% CI [3.651-18.095]), and those with an advanced T-stage (p < 0.0001, HR = 1.163 [1.413-1.887]) had lower OS rates; surgery (p < 0.0001, HR = 0.158, 95% CI [0.105-0.236]), chemotherapy (p < 0.0001, HR = 0.529, 95% CI [0.440-0.637]), and radiotherapy (p < 0.0001, HR = 0.413, 95% CI [0.364-0.468]) increased OS benefit (Figure 5).

[image: Eight Kaplan-Meier survival probability plots comparing different subgroups over time. Panel A shows age groups below fifty and fifty or above. Panel B compares White, Black, and Other races. Panel C contrasts married and unmarried individuals. Panel D shows stages T1 to T4. Panel E contrasts M0 and M1 stages. Panel F distinguishes non-surgery and surgery groups. Panel G compares radiotherapy status. Panel H shows non-chemo versus chemo treatment. Each plot displays survival probability over months, highlighting statistical significance with p-values below 0.0001.]
Figure 5 | Kaplan-Meier survival curves for overall survival in HR+ MBC patients. (A) Age; (B) race; (C) marital status; (D) T stage; (E) metastasis status; (F) surgery; (G) radiotherapy; (H) chemotherapy.

Finally, based on the nomogram model, we calculated the linear predicted values corresponding to the total scores of each patient of training cohort, using the median risk score as the cut-off value to allocate patients into high-risk group and a low-risk group. Kaplan-Meier curves demonstrated significantly better OS in the low-risk group compared to the high-risk group in the overall cohort (p < 0.0001, HR = 0.287, 95% CI [0.253-0.326]), training cohort (p < 0.0001, HR = 0.280, 95% CI [0.241-0.327]), internal validation cohort (p < 0.0001, HR = 0.284, 95% CI [0.227-0.356]) and external validation cohort (p = 0.00056, HR = 0.148, 95% CI [0.030-0.739]) (Figure 6). This suggests that the nomogram model can provide accurate risk stratification for HR+ MBC patients.

[image: Survival probability graphs are shown for different cohorts across time in months. Panels A, B, and C show the overall, training, and internal validation cohorts, respectively, with high and low risk groups. Panel D illustrates the external validation cohort. Survival probability decreases over time, with significant differences between high and low risk groups noted across all panels (p < 0.0001 for A, B, and C; p = 0.00056 for D). Each graph includes a legend distinguishing high and low risk lines and a number at risk table underneath.]
Figure 6 | Kaplan-Meier survival curves for the low and high- risk groups in the (A) overall cohort, (B) training cohort, (C) internal validation cohort and (D) external validation cohort.




3.5 Prognostic value of neoadjuvant chemotherapy in HR+ MBC

NAC has been shown to improve survival in some breast cancers such as triple negative and HER2-positive breast cancers, but its value in MBC has not been confirmed in studies. To mitigate selection bias and confounding factors, we conducted PSM analysis on a cohort of 707 HR+ MBC patients who received NAC or AC. The details of the original and matched cohorts before and after PSM are presented in Table 3. Before PSM, there was no statistical difference in OS between patients who underwent NAC and AC (p = 0.053, HR = 1.833, 95% CI [0.882-3.811]), and patients receiving NAC had worse CSS (p = 0.00057, HR = 4.128, 95% CI [1.366-12.478]). But after 1:1 matching, there was no difference in OS (p = 0.18, HR = 1.973, 95%CI [0.710-5.480]) and CSS (p = 0.26, HR = 1.994, 95% CI [0.610-6.517]) between the two groups (Figure 7). These findings suggest that NAC does not confer a survival benefit in HR+ MBC.

Table 3 | The baseline characteristics of patients undergoing chemotherapy before and after PSM.


[image: Table compares patient characteristics before and after propensity score matching (PSM) for adjuvant and neoadjuvant chemotherapy groups. Variables include age, race, marital status, laterality, grade, T and N stages, stage, radiation, and subtype. P values assess statistical differences. Percentages are presented for each group.]
[image: Four Kaplan-Meier survival curves labeled A to D compare adjuvant and neoadjuvant treatments. A and B show overall survival before and after propensity score matching, with p-values of 0.053 and 0.18. C and D show cancer-specific survival before and after propensity score matching, with p-values of 0.00057 and 0.26. Each graph includes a table indicating the number at risk over time.]
Figure 7 | Kaplan-Meier survival curves for (A, B) overall survival and (C, D) cancer-specific survival of the adjuvant chemotherapy and the neoadjuvant chemotherapy groups before and after PSM.





4 Discussion

Mucinous breast carcinoma is a distinct and rare subtype of breast cancer characterized by unique clinicopathological features. Compared to invasive ductal carcinoma, MBC exhibits a more favorable prognosis (19, 20). In our study, we conducted Cox analysis to identify eight risk factors that influence the prognosis of HR+ MBC. These factors include age, race, marital status, tumor size, distant metastasis, surgery, radiotherapy, and chemotherapy. Our results revealed that a majority of HR+ MBC patients (87.6%) were initially diagnosed at an advanced age (≥50 years). Importantly, we observed that patients below 50 years of age exhibited better OS outcomes compared to those aged 50 years and above, consistent with previous research findings (5, 12, 21). Furthermore, our study found that white and black individuals had a higher risk of mortality than other races, which aligns with the findings reported by Zhu et al. (21). This suggests the existence of racial disparities in the prognosis of HR+ MBC, with Asian populations experiencing a lower prognostic risk (12).

The influence of tumor size on the prognosis of MBC has been a topic of debate. While the National Comprehensive Cancer Network (NCCN) guidelines recommend the consideration of axillary lymph node metastasis rather than mass size when determining adjuvant chemotherapy for HR+ MBC, the effect of tumor size remains uncertain. J.C. Paramo et al. concluded that mass size was not associated with lymph node metastasis, raising concerns about its significance in predicting prognosis (22). However, some investigators suggested that the masses are larger in lymph node positive patients (23). This ambiguity arises due to the unique structural characteristics of mucinous carcinoma masses, which contain large pools of mucus (4, 24). As a result, the actual size of the mass does not accurately represent the tumor boundaries, making it challenging to delineate the precise size of the tumor lesion (8, 25). However, our multivariate analysis of HR+ MBC demonstrated that tumor size independently affects prognosis. Specifically, larger masses were associated with lower OS rates as the previous study has shown (12), indicating the potential for improved prognosis through early detection and resection. These findings emphasize the importance of timely intervention in HR+ MBC cases. Interestingly, married patients exhibit superior OS compared to unmarried patients, which may be attributed to a later age at diagnosis and the receipt of more comprehensive treatment and care among married individuals. Furthermore, MBC patients underwent surgery, radiotherapy and chemotherapy exhibited prolonged OS, particularly those who underwent surgery. This highlights surgery as the paramount therapeutic approach for MBC patients, while concurrent adjunct therapies such as chemotherapy and radiotherapy offer maximal survival benefits.

Currently, a systematic and personalized treatment guideline for mucinous carcinoma is lacking. The main treatment modalities for this subtype include endocrine therapy and chemotherapy. In cases which axillary lymph nodes are negative or micro-metastasis (≤ 2mm), endocrine therapy is recommended. For patients with positive axillary lymph nodes, a combination of adjuvant endocrine therapy and chemotherapy is recommended (26, 27). However, the indications for NAC and radiotherapy remain unclear in HR+ MBC. In the context of invasive ductal carcinoma, radiotherapy plays a crucial role in breast-conserving surgery and high-risk patients (28, 29). Previous studies have demonstrated that both postoperative adjuvant chemotherapy and radiotherapy improve the prognosis of MBC (27, 30–32). In our study, a considerable proportion of patients (48.0%) received radiotherapy, while 11.6% underwent chemotherapy, indicating significant improvements in OS with the use of both treatments. Notably, while some previous studies have identified lymph node metastasis as a prognostic risk factor (33–35), our findings did not reveal any significant differences, consistent with the results of Zhu et al. (21). This discrepancy can be attributed to the enrollment of predominantly estrogen receptor-positive patients with a favorable prognosis, along with a high proportion (91.6%) of lymph node-negative individuals, which diminished the risk stratification associated with lymph node metastasis.

NAC is commonly administered to patients with IDC who present with large tumor masses, as well as those with triple-negative and HER2-positive subtypes. Extensive clinical studies have demonstrated its prognostic benefits in these cases (36–40). However, the value and indications of NAC in HR+ MBC have been rarely reported. To explore the potential benefits of NAC in HR+ MBC, we conducted a subgroup analysis focusing on patients who received either NAC or AC. To mitigate selection bias, PSM was performed on both groups. Our analysis revealed no statistically significant difference in OS between patients who underwent NAC and those who received AC, both before and after PSM. Notably, after PSM, the original differences in CSS between the two groups were also eliminated. These findings indicate that NAC does not seem to confer long-term survival advantages than AC in patients with HR+ MBC. Consequently, caution and careful consideration should be exercised when selecting patients for NAC in the HR+ MBC context. The therapeutic efficacy of antitumor drugs is contingent upon a multitude of mechanisms (41). The potential reasons why NAC may not confer long-term benefits to HR+ MBC in this study include: the majority of the enrolled population consisted of patients with T1/2 (93%), N0 (91.6%), and AJCC stage I or IIa, indicating a relatively early stage of the disease. Moreover, all patients had HR+ MBC, which typically has a favorable prognosis, with 5-year overall OS and BCSS rates exceeding 90%. Under these circumstances, the advantages of NAC may not be readily apparent. In this cohort, we identified 707 patients who underwent NAC, a sample size that is relatively small and may not fully reflect the value of NAC in the overall MBC population. Regarding this issue, we plan to collect more patients with MBC who have received NAC in the future and conduct further stratified analyses. Through subgroup analyses, we aim to identify specific populations that may benefit from NAC.

In this study, we successfully developed and validated a prognostic risk prediction model for HR+ MBC, which exhibited reliable predictive ability. Nonetheless, several limitations should be acknowledged. Firstly, this retrospective study relied on the SEER database, and therefore, there may be inherent selection bias in data screening. Further validation through additional clinical data and prospective studies is warranted. Secondly, endocrine therapy represents a vital treatment modality for HR+ MBC; however, the SEER database lacked information regarding its administration, thus precluding its integration into the analysis. Additionally, the number of my external validation queues is relatively small, we plan to collaborate with other hospitals in subsequent studies to conduct multicenter data collection and enhance the validation power. Finally, for patients receiving NAC and AC, it would be valuable to conduct further stratified analyses considering tumor size and lymph node metastasis, in order to more accurately identify the population that would benefit from chemotherapy.




5 Conclusion

In summary, this study successfully constructed and verified a nomogram model to predict the survival of HR+ MBC patients. Age, race, marital status, mass size, metastasis, and treatment modality were identified as independent prognostic factors. Our study offers valuable insights into prognosis prediction and clinical decision-making for HR+ MBC patients. Furthermore, the study demonstrated that NAC does not confer long-term survival benefits than AC in HR+ MBC patients and should be carefully considered on an individual basis prior to surgery.





Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.





Ethics statement

The studies involving humans were approved by Chongqing University Cancer Hospital Ethics Committee. The studies were conducted in accordance with the local legislation and institutional requirements. The ethics committee/institutional review board waived the requirement of written informed consent for participation from the participants or the participants’ legal guardians/next of kin because The study was a retrospective study based on clinical data, informed consent from patients was not required.





Author contributions

HF: Data curation, Formal analysis, Investigation, Methodology, Writing – original draft. JY: Data curation, Methodology, Software, Validation, Writing – original draft. HL: Investigation, Project administration, Supervision, Writing – review & editing. TL: Data curation, Validation, Visualization, Writing – original draft. PW: Formal analysis, Validation, Visualization, Writing – review & editing. GR: Conceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China (NO. 82173166, 82372886, and 81472475), Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0015), and Chongqing Graduate Tutor Team Construction Project, Chongqing Education Commission Foundation (cqmudstd202216), and CQMU Program for Youth Innovation in Future Medicine (NO. W0094).




Acknowledgments

The authors thank the SEER program for providing high-quality data to researchers and the medical records department of Chongqing University Cancer Hospital for collecting the data of the patients.





Conflict of interest

The authors affirm that the research was carried out without any commercial or financial relationships that could be interpreted as a potential conflict of interest.



References
	1. Rosen, PP. Rosen's Breast Pathology 2nd Edition. Philadelphia: Lippincott Williams & Wilkins. (2001).
	2. Tavassoli, FA, and Devilee, P. Pathology and genetics of tumours of the breast and female genital organs. World Health Organ Classification Tumours. Lyon: IARC Press. (2003).
	3. Anderson, WF, Chu, KC, Chang, S, and Sherman, ME. Comparison of age-specific incidence rate patterns for different histopathologic types of breast carcinoma. Cancer Epidemiol Biomarkers Prev. (2004) 13:1128–35. doi: 10.1142/S0217751X09043997
	4. Bae, SY, Choi, MY, Cho, DH, Lee, JE, Nam, SJ, and Yang, JH. Mucinous carcinoma of the breast in comparison with invasive ductal carcinoma: clinicopathologic characteristics and prognosis. J Breast Cancer. (2011) 14:308–13. doi: 10.4048/jbc.2011.14.4.308
	5. Li, CI. Risk of mortality by histologic type of breast cancer in the United States. Horm Cancer. (2010) 1:156–65. doi: 10.1007/s12672-010-0016-8
	6. Weigelt, B, Geyer, FC, and Reis-Filho, JS. Histological types of breast cancer: how special are they? Mol Oncol. (2010) 4:192–208. doi: 10.1016/j.molonc.2010.04.004
	7. Di Saverio, S, Gutierrez, J, and Avisar, E. A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat. (2008) 111:541–7. doi: 10.1007/s10549-007-9809-z
	8. Komenaka, IK, El-Tamer, MB, Troxel, A, Hamele-Bena, D, Joseph, KA, Horowitz, E, et al. Pure mucinous carcinoma of the breast. Am J Surg. (2004) 187:528–32. doi: 10.1016/j.amjsurg.2003.12.039
	9. Yang, H, Li, C, and Xie, Q. Advances in the use of nanomaterials in tumour therapy: challenges and prospects. Cancer Insight. (2023) 2:80–101. doi: 10.58567/ci02020004
	10. Ejaz, SA, Sarfraz, M, Aziz, M, Wani, TA, Ruby, T, Zargar, S, et al. Evaluation of cytotoxic activity and apoptosis-inducing potential of 5, 6, 7-trihydroxyflavone against breast cancer and cervical cancer cell lines. J Of Biol Regulators And Homeostatic Agents. (2024) 38:303–17. doi: 10.23812/j.biol.regul.homeost.agents.20243801.24
	11. Min, J, Liu, X, Peng, R, Chen, C-C, Wang, W, and Guo, R-T. New generation estrogen receptor-targeted agents in breast cancer: present situation and future prospectives. Acta Materia Med. (2024) 3:57–71. doi: 10.15212/AMM-2024-0006
	12. Lu, K, Wang, X, Zhang, W, Ye, H, Lao, L, Zhou, X, et al. Clinicopathological and genomic features of breast mucinous carcinoma. Breast. (2020) 53:130–7. doi: 10.1016/j.breast.2020.07.010
	13. Lannigan, AK, Going, JJ, Weiler-Mithoff, E, and Cooke, TG. Mucinous breast carcinoma. Breast. (2002) 11:359–61. doi: 10.1054/brst.2002.0417
	14. Zhang, L, Cui, Y, Mei, J, Zhang, Z, and Zhang, P. Exploring cellular diversity in lung adenocarcinoma epithelium: Advancing prognostic methods and immunotherapeutic strategies. Cell Prolif. (2024), e13703. doi: 10.1111/cpr.13703
	15. Gu, Y, Wang, M, Gong, Y, Li, X, Wang, Z, Wang, Y, et al. Unveiling breast cancer risk profiles: a survival clustering analysis empowered by an online web application. Future Oncol. (2023) 19:2651–67. doi: 10.2217/fon-2023-0736
	16. Kattan, MW. Nomograms are superior to staging and risk grouping systems for identifying high-risk patients: preoperative application in prostate cancer. Curr Opin Urol. (2003) 13:111–6. doi: 10.1097/00042307-200303000-00005
	17. Stephenson, AJ, Scardino, PT, Eastham, JA, Bianco, FJ Jr., Dotan, ZA, DiBlasio, CJ, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. (2005) 23:7005–12. doi: 10.1200/JCO.2005.01.867
	18. White, R, Kattan, M, Haney, J, Clary, B, Pappas, T, Tyler, D, et al. Evaluation of preoperative therapy for pancreatic cancer using a prognostic nomogram. Ann Surg Oncol. (2006) 13:1485–92. doi: 10.1245/s10434-006-9104-y
	19. Zhang, H, Zhang, N, Moran, MS, Li, Y, Liang, Y, Su, P, et al. Special subtypes with favorable prognosis in breast cancer: A registry-based cohort study and network meta-analysis. Cancer Treat Rev. (2020) 91:102108. doi: 10.1016/j.ctrv.2020.102108
	20. Budzik, MP, Fudalej, MM, and Badowska-Kozakiewicz, AM. Histopathological analysis of mucinous breast cancer subtypes and comparison with invasive carcinoma of no special type. Sci Rep. (2021) 11:5770. doi: 10.1038/s41598-021-85309-z
	21. Zhu, X, Li, Y, Liu, F, Zhang, F, Li, J, Cheng, C, et al. Construction of a prognostic nomogram model for patients with mucinous breast cancer. J healthcare Eng. (2022) 2022:1230812. doi: 10.1155/2022/1230812
	22. Paramo, JC, Wilson, C, Velarde, D, Giraldo, J, Poppiti, RJ, and Mesko, TW. Pure mucinous carcinoma of the breast: is axillary staging necessary? Ann Surg Oncol. (2002) 9:161–4. doi: 10.1007/BF02557368
	23. Isozaki, H, Yamamoto, Y, Sakai, K, Sho, T, Ishihara, K, Murakami, S, et al. Mucinous carcinoma of the breast: clinicopathological features and long-term prognosis in comparison with invasive ductal cancer; A single hospital's 30+-year experience. Acta Med Okayama. (2020) 74:137–43. doi: 10.18926/AMO/58272
	24. Tan, PH, Tse, GM, and Bay, BH. Mucinous breast lesions: diagnostic challenges. J Clin Pathol. (2008) 61:11–9. doi: 10.1136/jcp.2006.046227
	25. Kim, D, Jung, WH, and Koo, JS. Expression of MUC1, MUC2, MUC5AC and MUC5B in mucinous lesions of the breast. Pathobiology. (2012) 79:144–53. doi: 10.1159/000334086
	26. Gradishar, WJ, Moran, MS, Abraham, J, Aft, R, Agnese, D, Allison, KH, et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. (2022) 20:691–722. doi: 10.6004/jnccn.2022.0030
	27. Gao, HF, Li, WP, Zhu, T, Yang, CQ, Yang, M, Zhang, LL, et al. Adjuvant chemotherapy could benefit early-stage ER/PR positive mucinous breast cancer: A SEER-based analysis. Breast. (2020) 54:79–87. doi: 10.1016/j.breast.2020.09.003
	28. Fisher, B, Anderson, S, Bryant, J, Margolese, RG, Deutsch, M, Fisher, ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. (2002) 347:1233–41. doi: 10.1056/NEJMoa022152
	29. Boyages, J. Radiation therapy and early breast cancer: current controversies. Med J Aust. (2017) 207:216–22. doi: 10.5694/mja16.01020
	30. Zhang, H, Zhang, N, Li, Y, Liang, Y, and Yang, Q. Evaluation of efficacy of chemotherapy for mucinous carcinoma: a surveillance, epidemiology, and end results cohort study. Ther Adv Med Oncol. (2020) 12:1758835920975603. doi: 10.1177/1758835920975603
	31. Wu, SG, Li, FY, Wang, J, Lian, CL, Zhou, J, and He, ZY. Omission of adjuvant radiotherapy following breast-conserving surgery for elderly women with early-stage pure mucinous breast carcinoma. Radiat Oncol. (2019) 14:190. doi: 10.1186/s13014-019-1394-x
	32. Chevli, N, Wang, K, Haque, W, Schwartz, MR, Nangia, J, Sasaki, J, et al. Prognostic impact of radiation therapy in pure mucinous breast carcinoma. Clin Breast Cancer. (2022) 22:e807–17. doi: 10.1016/j.clbc.2022.06.005
	33. Wu, S, Gai, J, Yu, X, Mao, X, and Jin, F. A novel nomogram and risk classification system for predicting lymph node metastasis of breast mucinous carcinoma: A SEER-based study. Cancer Med. (2022) 11:4767–83. doi: 10.1002/cam4.4804
	34. Roux, P, Knight, S, Cohen, M, Classe, J, Mazouni, C, Chauvet, M, et al. Tubular and mucinous breast cancer: results of a cohort of 917 patients. Tumori. (2019) 105:55–62. doi: 10.1177/0300891618811282
	35. Rasmussen, B. Human mucinous breast carcinomas and their lymph node metastases. A histological review of 247 cases. Pathology Res Pract. (1985) 180:377–82. doi: 10.1016/s0344-0338(85)80110-2
	36. Cortazar, P, Zhang, L, Untch, M, Mehta, K, Costantino, JP, Wolmark, N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. (2014) 384:164–72. doi: 10.1016/S0140-6736(13)62422-8
	37. Giannone, G, Milani, A, Geuna, E, Galizia, D, Biello, F, and Montemurro, F. What is the best pharmacotherapeutic strategy for HER-2 positive breast cancer? Expert Opin Pharmacother. (2019) 20:5–9. doi: 10.1080/14656566.2018.1543406
	38. von Minckwitz, G, Blohmer, JU, Costa, SD, Denkert, C, Eidtmann, H, Eiermann, W, et al. Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. (2013) 31:3623–30. doi: 10.1200/JCO.2012.45.0940
	39. Spring, LM, Fell, G, Arfe, A, Sharma, C, Greenup, R, Reynolds, KL, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: A comprehensive meta-analysis. Clin Cancer Res. (2020) 26:2838–48. doi: 10.1158/1078-0432.CCR-19-3492
	40. Krishnan, Y, Alawadhi, SA, P, SS, Gopal, M, and Thuruthel, S. Pathological responses and long-term outcome analysis after neoadjuvant chemotheraphy in breast cancer patients from Kuwait over a period of 15 years. Ann Saudi Med. (2013) 33:443–50. doi: 10.5144/0256-4947.2013.443
	41. Li, Z, Zhou, H, Xia, Z, Xia, T, Du, G, Franziska, SD, et al. HMGA1 augments palbociclib efficacy via PI3K/mTOR signaling in intrahepatic cholangiocarcinoma. biomark Res. (2023) 11:33. doi: 10.1186/s40364-023-00473-w




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Fang, Yue, Li, Luan, Wang and Ren. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 29 August 2024

doi: 10.3389/fimmu.2024.1464698

[image: image2]


Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy


YaXuan Wang 1,2†, Li Ma 3†, Jiaxin He 2†, HaiJuan Gu 1* and HaiXia Zhu 1*


1 Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China, 2 Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China, 3 Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China




Edited by: 

Pengpeng Zhang, Nanjing Medical University, China

Reviewed by: 

Jingwei Zhao, Shanghai Jiao Tong University, China

Qianqian 

Ma, Jiangnan University, China

Haitian Fu, Affiliated Hospital of Jiangnan University, China

*Correspondence: 

HaiJuan Gu
 guhaijuan@ntu.edu.cn 

HaiXia Zhu
 00zlingling@163.com











†These authors have contributed equally to this work



Received: 14 July 2024

Accepted: 12 August 2024

Published: 29 August 2024

Citation:
Wang Y, Ma L, He J, Gu H and Zhu H (2024) Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy. Front. Immunol. 15:1464698. doi: 10.3389/fimmu.2024.1464698






Background

Cancer stem cells (CSCs) are a subset of cells within tumors that possess the unique ability to self-renew and give rise to diverse tumor cells. These cells are crucial in driving tumor metastasis, recurrence, and resistance to treatment. The objective of this study was to pinpoint the essential regulatory genes associated with CSCs in prostate adenocarcinoma (PRAD) and assess their potential significance in the diagnosis, prognosis, and immunotherapy of patients with PRAD.





Method

The study utilized single-cell analysis techniques to identify stem cell-related genes and evaluate their significance in relation to patient prognosis and immunotherapy in PRAD through cluster analysis. By utilizing diverse datasets and employing various machine learning methods for clustering, diagnostic models for PRAD were developed and validated. The random forest algorithm pinpointed HSPE1 as the most crucial prognostic gene among the stem cell-related genes. Furthermore, the study delved into the association between HSPE1 and immune infiltration, and employed molecular docking to investigate the relationship between HSPE1 and its associated compounds. Immunofluorescence staining analysis of 60 PRAD tissue samples confirmed the expression of HSPE1 and its correlation with patient prognosis in PRAD.





Result

This study identified 15 crucial stem cell-related genes through single-cell analysis, highlighting their importance in diagnosing, prognosticating, and potentially treating PRAD patients. HSPE1 was specifically linked to PRAD prognosis and response to immunotherapy, with experimental data supporting its upregulation in PRAD and association with poorer prognosis.





Conclusion

Overall, our findings underscore the significant role of stem cell-related genes in PRAD and unveil HSPE1 as a novel target related to stem cell.
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1 Introduction

Prostate adenocarcinoma (PRAD) ranks as the second most prevalent form of cancer and stands as the fifth highest contributor to cancer-related mortality among males across the globe (1, 2). Patients often lack significant clinical symptoms in the early stages, leading to advanced disease at diagnosis. Late-stage diagnosis results in missed treatment opportunities. While early-stage PRAD generally carries a good prognosis, outcomes worsen when patients progress to castration-resistant stages or develop metastasis. The introduction of targeted drugs like abiraterone acetate, bicalutamide, and enzalutamide has significantly improved the prognosis for PRAD patients (3). However, patient responses to drug treatments for PRAD vary, and there is a lack of specific markers for diagnosing the disease (4). While PSA is widely used as a serum marker for PRAD, its specificity and sensitivity have limitations. Recent advancements in PSA testing, including the use of indicators like free PSA and the free PSA/total PSA ratio, have enhanced the screening effectiveness for PRAD. Despite these improvements, the overall impact remains unsatisfactory. This underscores the critical need for identifying new diagnostic and prognostic markers to enhance outcomes for PRAD patients.

Cancer stem cells (CSCs) are a unique cell population that possesses the ability to self-renew and acquire diverse mutations over time, leading to resistance to cancer treatments, metastasis, and recurrence. Essentially, CSCs sustain tumor cell populations by continuously renewing themselves and proliferating limitlessly, while their migration capabilities contribute to tumor metastasis. These cells can remain inactive for extended periods and harbor various drug-resistant molecules, making them impervious to external factors that typically eradicate tumor cells. Consequently, even after conventional treatments eliminate the majority of tumor cells, relapse is still likely. PRAD Stem Cells (PCSC), along with prostate progenitor cells or prostate initiating cells, are present in PRAD and facilitate the progression of the disease (5). Growing evidence suggests that they are involved in the initiation, advancement, and response to androgen receptor-targeted therapies in PRAD, contributing to treatment resistance (6). The most recent study has revealed that berbamine is effective in targeting cancer stem cells and reversing cabazitaxel resistance in PRAD by inhibiting IGF2BP1 and p-STAT3 (7). Additionally, RCC2 has been found to promote proliferation and migration of PRAD cells through the Hh/GLI1 signaling pathway and cancer stem-like cells (8). Moreover, Lupeol, an inhibitor of the androgen receptor, has been shown to improve the sensitivity of PRAD stem cells to treatment with the anti-androgen enzalutamide (9). The significance of understanding the stemness characteristics of tumors in PRAD cannot be overstated, as it holds great promise for addressing clinical challenges associated with PRAD.

Single-cell RNA sequencing (scRNA-seq) represents a revolutionary technology that has markedly improved our understanding of the variety and behavior of cellular transcriptomes in various organisms (10). Numerous studies have illustrated the heterogeneity present in various tumor tissues, such as PRAD, through the use of scRNA-seq. Lai and Xu et al. identified CAFs-related genes using single-cell analysis and developed an online tool to predict clinical outcomes and radiotherapy prognosis for PRAD (11). Fan et al. demonstrated through single-cell sequencing analysis that the loss of AR-regulated AFF3 contributes to prostate cancer progression and decreases sensitivity to ferroptosis by downregulating ACSL4 (12). Cheng et al. revealed that autocrine IL11 mediates docetaxel resistance in prostate cancer by activating the JAK1/STAT4 pathway, as shown through single-cell deconvolution algorithm analysis (13). Single-cell analysis holds significant promise in the medical field by offering novel perspectives and tools for basic research, as well as making a substantial impact on clinical applications (14–16). With the ongoing technological advancements, single-cell analysis is anticipated to have a greater role in precision medicine, understanding disease mechanisms, and drug development. Through the analysis of clinical data and medical images from patients, machine learning algorithms can assist healthcare professionals in swiftly and accurately diagnosing diseases (17). In conclusion, the integration of single-cell analysis and machine learning techniques is becoming more prevalent in the medical field and is proving to be crucial. Our own research focused on identifying signature genes among stem cell markers through single-cell analysis, examining their correlation with prognosis, diagnosis, and immunotherapy in PRAD. By categorizing PRAD patients based on stem cell-related genes and analyzing their prognosis and response to immunotherapy using NMF clustering, we constructed an optimal diagnostic model that combines machine learning techniques and multiple datasets for validation. The core significance of HSPE1 was determined through the Random Forest (RF) algorithm and Friend analysis. The role of HSPE1 in PRAD was investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, with experimental validation confirming its expression and prognostic significance in this context. In summary, our research provides novel perspectives on potential markers and therapeutic targets for the diagnosis, prognosis, and immunotherapy of patients with PRAD.




2 Materials and methods



2.1 Datasets and patient samples

Four PRAD samples from the GSE168668 dataset were analyzed at the single-cell level. Additionally, RNAseq data and clinical details from the TCGA database’s prostate adenocarcinoma (PRAD) dataset were incorporated into the study. Various datasets, including TCGA-PRAD, GSE6956, GSE16120, GSE14206, and GSE32571, were used to create and validate diagnostic models. Sixty PRAD tissue samples, along with their adjacent tissue counterparts, were obtained from Shanghai Aoduo Biotechnology Company. The tissue chip study involved individuals who underwent surgical procedures between January 2011 and December 2014, with follow-up extending until November 2021, covering a period ranging from 6 to 10 years.




2.2 Processing of single-cell RNA-seq data

Four PRAD samples from the GSE168668 data set were utilized for single-cell analysis (18). Utilizing the Seurat package, we generated objects and filtered out poor-quality cells, ensuring that only high-quality data was included in our analysis. A standard data preprocessing procedure was then performed to examine the percentage of gene number, cell number, and mitochondrial content. The filtering criteria we used included genes detected in less than 3 cells and cells with fewer than 200 genes. Each cell was normalized by scaling the UMI count with a scale factor of 10,000, ensuring that the data was standardized and comparable across samples. After log transformation of the data, the Seurat (v3.0.2) ScaleData function was applied to further enhance the quality of the normalized data. The top 10 variable genes were selected for principal component analysis (PCA), allowing us to identify the key genes contributing to the variability in the dataset. We retained the first 11 principal components for UMAP visualization and clustering, providing insights into the underlying structure of the data. Cell clustering was performed using the FindClusters function within the Seurat R package, with a resolution set at 0.5 to ensure clear and distinct clustering patterns among the cells.




2.3 Negative matrix factorization cluster analysis and difference analysis in TCGA-PRAD dataset

The NMF algorithm is used to identify biologically significant coefficients in the gene expression matrix, organizing genes and samples to emphasize the internal structural characteristics of the data, which helps in grouping samples (19). Differential expression analysis comparing clusters A and B was performed using the ‘Limma’ R package with criteria of |logFC| > 0.5 and an adjusted p-value of <0.05. Subsequently, the ‘NMF’ R package was employed to cluster all samples based on the DEGs identified within the subclusters, aiming to unveil potential molecular subtypes. The ‘brunet’ algorithm with 100 iterations for each specified value and a range of 2 to 10 clusters was utilized. The optimal number of clusters was determined by considering cophenetic correlation, dispersion, and silhouette width (20). The Limma package in R software (version 3.40.2) was utilized to analyze the differential expression of mRNA between cancer and para-cancerous tissues in the TCGA-PRAD dataset.




2.4 Immune infiltration analysis

To ensure the credibility of the immune score results, we employed immunedeconv, an R software package (21). Thorough testing was conducted on each algorithm, revealing unique advantages. The selection of the XCELL method for this study was based on its ability to assess a wider range of immune cell types (22, 23).




2.5 Constructing diagnostic model

We combined multiple machine learning algorithms to create various algorithmic combinations aimed at developing diagnostic models related to PRAD. The algorithms employed include Random Forest (RF), Extreme Gradient Boosting (XGBoost), Elastic Net (Enet), Least Absolute Shrinkage and Selection Operator (Lasso), Ridge, Stepglm, glmBoost, Linear Discriminant Analysis (LDA), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), and Naive Bayes. Training was conducted on the TCGA-PRAD dataset, with validation on the GSE6956, GSE16120, GSE14206, and GSE32571 datasets. Each combination was assessed based on its AUC value, and the best model was chosen based on the combination with the highest average AUC. The ROC curve analysis was conducted using the pROC [1.18.0] package, and the outcomes were visualized using ggplot2 [3.3.6].




2.6 Gene enrichment analysis

The study utilized GO to focus on molecular function (MF), biological pathways (BP), and cellular components (CC). KEGG Enrichment Analysis was used to explore gene functions and genome functional details. For further analysis of mRNA carcinogenesis, the ClusterProfiler package in R was utilized for GO function analysis of potential targets and KEGG pathway enrichment (24–26).




2.7 Expression and prognostic relevance of HSPE1 in PRAD tissue microarrays analyzed by immunofluorescence methods

First, immerse the paraffin sections in two tanks of xylene, soaking them for 15 minutes each. Subsequently, transfer the sections into absolute ethanol, followed by 95% ethanol, 85% ethanol, 75% ethanol, and distilled water, allowing 5 minutes for each solution. Upon completion of these steps, place the slices in a repair box containing pH 9.0 EDTA alkaline antigen repair solution and heat them in a pressure cooker for 2 minutes. After natural cooling, the sections should be placed in PBS (pH 7.4) and washed three times while shaking on a destaining shaker for 5 minutes each time. Next, immerse the slices in a 3% hydrogen peroxide solution and incubate at room temperature in the dark for 15 minutes. Following this, apply the blocking solution dropwise to ensure even coverage of the tissue, and allow it to block at room temperature for 30 minutes. Then, add the HSPE1 antibody (bs-7026R), diluted with antibody diluent, onto the sections and incubate overnight at 4°C. The next day, wash the sections three times with PBS for 5 minutes each time. After gently shaking the slices dry, add a poly-HRP secondary antibody corresponding to the species of the primary antibody dropwise, and incubate at room temperature in the dark for 10-20 minutes. The TSA fluorescent dye reaction solution should then be evenly applied to the sections and incubated at room temperature for 15 minutes. Afterward, apply DAPI ready-to-use dye on the sections and incubate at room temperature for 10 minutes in the dark. Finally, mount the slides and capture images under a fluorescence microscope. Immunostaining intensity was evaluated using a scale ranging from 0 to 3 to assess reaction strength, and another scale from 1 to 4 to determine the percentage of positive staining. The final expression score was calculated by multiplying the intensity score by the percentage scale score, yielding a total score that ranged from 0 to 5 for low expression, and from 6 to 12 for high expression (27).




2.8 Statistical analysis

The expression level of HSPE1 in both PRAD and normal tissues was assessed via the Wilcoxon rank-sum test. The log-rank test was utilized for conducting the prognostic analysis. Spearman correlation analysis was used to analyze the correlation between genes and stemness scores. A p-value of less than 0.05 was set as the threshold for statistical significance.





3 Result



3.1 Single-cell RNA-seq analysis and screening of stem cell-related marker genes

Four PRAD samples from the GSE168668 dataset were initially selected for single-cell analysis. Cell quality control criteria included a minimum of 200 RNAs per cell, a maximum of 5000 RNAs per cell, and a maximum of 10% mitochondrial RNAs per cell (Figure 1A). The filtered data underwent analysis using the HARMONY method focusing on highly variable genes, followed by batch removal analysis using these feature sets (Figures 1B–D). Variance analysis highlighted the top 10 genes that exhibited significant differential expression across cell samples, which include KLK3, KLK2, SYT4, S100P, and PLA2G2A (Figures 1E, F). The four PRAD samples were divided into 11 different cell groups through single-cell analysis, including Monocytes, Stem Cells, Neural Precursor Cells, Mitotic Fetal Germ Cells, B Cells, Leydig Cells, Epithelial Cells, Tex Cells, NKT Cells, Sertoli Cells, and Proliferating Cells (Figures 1G, H). Finally, an analysis of the function of these cell populations revealed that the stem cell populations were associated with extracellular matrix (ECM) related genes (Figure 1I).

[image: A scientific diagram showcases multiple graphs and plots related to RNA expression data. Panel A displays violin plots for nFeature_RNA, nCount_RNA, and percent.mt across identities. Panel B presents a scatter plot in a two-dimensional harmony space with color-coded identities. Panels C and D feature dot plots of gene expressions associated with different harmony values. Panel E shows a volcano plot highlighting variable and non-variable counts. Panel F displays a similar plot with additional labeled genes. Panel G and H include UMAP visualizations of different cell types. Panel I is a heatmap illustrating expression profiles across various cell types and pathways.]
Figure 1 | Identification of stem cell marker genes. (A) Quality control of scRNA-seq for cell sub-population. (B–D) Plot of PCA analysis after combined removal of batch effects. (E, F) Batch removal postcounts to find highly variable genes. (G, H) Stratification of PRAD samples by the umap method. (I) Functional analysis of different cell populations.




3.2 Screening for stem cell-related prognostic differential genes

Using ‘ P < 0.05 and Log2 (Fold Change) >1.3 or Log2(Fold Change) < −1.3’ as the criteria for differential analysis, 2110 genes exhibiting significantly increased expression in PRAD compared to normal prostate tissue were identified (Figure 2A). The 2110 genes that are highly expressed in PRAD were intersected with the stem cell-related genes identified previously and analyzed for their prognostic significance. Ultimately, 15 differential genes exhibiting stem cell characteristics related to PRAD prognosis were identified (Figures 2B, C). Further single-cell analysis showcased the abundance of these 15 genes within each cell population (Figure 2D).

[image: Panel A shows a volcano plot illustrating gene expression changes with significance markers. Panel B features box plots comparing gene expression between normal and PRAD groups. Panel C presents a forest plot listing genes with hazard ratios and significance levels. Panel D displays UMAP plots of various genes showing their expression distribution.]
Figure 2 | 15 stem cell-related differential genes identified as associated with PRAD prognosis. (A) Variance analysis volcano chart. (B) Expression of stem cell-related differential genes. (C) Prognostic analysis of stem cell-associated differential genes. (D) Abundance of stem cell-associated differential genes in different cell populations. ****p< 0.0001.




3.3 Molecular typing based on stem cell-related genes

A NMF clustering algorithm was used to cluster the TCGA-PRAD samples. In order to determine the most suitable approach for dividing the TCGA-PRAD samples into subgroups for our subsequent studies, the current standard of judging based on the cophenetic curve is the clearest method. The optimal grouping is identified by the top point with the largest decrease in the cophenetic curve. Our study revealed that dividing the TCGA-PRAD samples into three groups according to the cophenetic curve is the most appropriate approach (Figures 3A–C). Analysis of the expression of specific genes related to stem cells was conducted across various groups. The results indicated a marked variance in gene expression among the groups, whether the TCGA-PRAD samples were categorized into 2 or 3 distinct groups. Moreover, when the samples were separated into 2 groups, individuals in cluster 1 showed a significantly superior prognosis in comparison to those in cluster 2. Conversely, when the samples were split into 3 groups, patients within cluster 3 displayed the most favorable prognosis while those in cluster 2 experienced the poorest prognosis. (Figures 3D–G).

[image: Heatmaps A and B show consensus matrices with dendrograms indicating clustering analysis. Panel C displays a non-negative matrix factorization (NMF) rank survey with six plots: cophenetic, dispersion, error, residuals, RSS, and silhouette, analyzed across factorization ranks. Kaplan-Meier plots D and E illustrate progression-free survival probability for clusters C1 and C2, and C1, C2, and C3, respectively, with significant p-values. Panels F and G present violin plots for gene expression levels across clusters C1 and C2, and C1, C2, and C3, with significant markers.]
Figure 3 | Clustering of PRAD samples based on NMF cluster analysis methods. (A, B) Consensus map of NMF clustering. (C) Assessment of performance and stability pertaining to clusters through multiple methods. (D, E) Survival differences between clusters. (F, G) Differences in the expression of stem cell-related genes between different clusters. ***p< 0.001; ns, not significant.




3.4 Analysis of the correlation between stem cell-related genes and immunotherapy for PRAD

The therapy known as immune checkpoint blockade (ICB) has revolutionized cancer treatment in humans (28). For this research, we made use of the TIDE algorithm, which focuses on Tumor Immune Dysfunction and Exclusion, to forecast how effective immune checkpoint inhibitors will be for every specimen included in the TCGA-PRAD dataset (Figure 4A). The algorithm TIDE assesses two different ways of tumor immune avoidance, namely the impairment of cytotoxic T lymphocytes (CTLs) infiltrating the tumor and the resistance of CTLs to immunosuppressive elements. A high score of TIDE is linked to low effectiveness of ICB and decreased survival after ICB therapy. Upon dividing the TCGA-PRAD samples into two clusters, we observed a discrepancy in the response to ICB treatment between the clusters. However, this discrepancy was not evident when the samples were divided into three clusters (Figures 4B, C). xCell is a tool that evaluates the presence of immune cells by analyzing gene expression data in order to detect possible subgroups of immune cells and assess their proportion in tissues. In our study, we employed a specific algorithm to analyze variations in immune cell infiltration levels in TCGA-PRAD samples across different clusters. Our results suggest significant differences in various immune cell types, such as T cell CD4+ memory, T cell CD4+ central memory, T cell CD4+ effector memory, Common lymphoid progenitor, Endothelial cell, Macrophage M1, Mast cell, NKT cell, T cell CD4+ Th1, T cell CD4+ Th2, and Tregs, regardless of whether the samples were grouped into 2 or 3 clusters (Figures 4D–G).

[image: Composite image consisting of multiple panels: (A) Line graph and heat map comparing TME scores between non-responders and responders, with color-coded groups. (B) and (C) Violin plots illustrating RNAss and TME scores among different clusters, with significant differences marked. (D) and (E) Heat maps of immune cell cluster expression, color-coded for clusters C1 and C2, with annotations for specific cell types. (F) and (G) Violin plots depicting XCELL scores for various immune cell types across clusters, color-coded for C1, C2, and C3 groups, with statistical significance indicated.]
Figure 4 | Stem cell marker genes are associated with immune infiltration in PRAD. (A) TIDE-based algorithm to assess responsiveness of TCGA-PRAD samples to immunotherapy. (B, C) Analysis of differences in TIDE scores between clusters. (D, E) Immune cell score heatmap. (F, G) Immune Cell Score Box Plot. *p< 0.05, **p< 0.01, ***p< 0.001,****p< 0.0001.




3.5 Combination of machine learning algorithms to build diagnostic models

For early detection in PRAD patients, a diagnostic model centered on PRAD was developed. The training utilized the TCGA-PRAD dataset, while the validation involved four datasets: GSE6956, GSE32571, GSE16120, and GSE14206. Out of 108 tested algorithmic combinations, the RF+NaiveBayes pair proved to be the most effective for model construction (Figure 5A). The AUC value for the TCGA-PRAD training data was 0.927, and the corresponding AUC values for the validation datasets GSE6956, GSE32571, GSE16120, and GSE14206 were 0.857, 0.664, 0.831, and 0.877, respectively. The RF+NaiveBayes algorithm helped identify four critical genes: NME1, IMPDH2, PDCD5, and HSPE1 (Figure 5B). Additionally, ROC curves were plotted for these four genes across all the datasets, including TCGA-PRAD, GSE6956, GSE32571, GSE16120, and GSE14206 (Figures 5C–G).

[image: Heatmap and bar chart displaying gene selection models with AUC values and number of genes included. Panel A shows a heatmap with AUC values across cohorts. Panel B is a bar chart ranking models by the number of genes. Panels C to G present ROC curves for different datasets, highlighting the AUC for specific models.]
Figure 5 | Identification of optimal diagnostic models based on machine learning algorithms. (A) Comparison of AUC values among diagnostic models created by various algorithm combinations. (B) Number of genes incorporated in diagnostic models built using different algorithm combinations. (C–G) Diagnostic significance of genes within diagnostic models across various datasets.




3.6 HSPE1 identified as the most relevant gene among stem cell marker genes for PRAD prognosis and diagnosis

Utilizing the random forest algorithm, we conducted an analysis on stem cell-related genes in TCGA-PRAD samples to determine their association with patient overall survival (OS) and progression-free survival (PFS). HSPD1, HSPE1, SFPQ, PRELID1, AP1S1, NHP2, APRT, and GNG emerged as the top ten genes significantly linked to both OS and PFS in these patients (Figures 6A, B). The Friends analysis, a method that compares similarities between genes based on gene ontology, revealed HSPD1 and HSPE1 as the most crucial genes in this context (Figure 6C). We also discovered notable differences in the expression levels of HSPE1, SFPQ, PRELID1, and NHP2 when comparing various groups based on pathological stages, survival outcomes, and cancer progression status (Figures 6D–G). To quantify this, we employed the one-class logistic regression (OCLR) algorithm created by Malta et al. to calculate mRNAsi, a metric that represents the stemness of cells based on gene expression profiles. This analysis allowed us to gain insights into the molecular characteristics associated with cancer progression and prognosis based on the differential expression of these specific genes. Initially, we presented the expression profiles of stemness score and stem cell marker genes, followed by the calculation of correlation between stem cell marker genes and stemness score. Our findings indicated that HSPD1 and HSPE1 exhibited the strongest correlation with stemness score (Figures 6H, I). Considering these results and the genes incorporated in the diagnostic model, HSPE1 emerged as the most relevant and significant gene among stem cell marker genes for further investigation in PRAD progression.

[image: Graphical data shows gene expression analysis in various contexts. Panels A and B display bar graphs from RandomForest analysis, highlighting gene importance for overall survival (OS) and progression-free survival (PFS). Panel C employs Friends analysis with a scatter plot to show correlations. Panels D to G feature box plots comparing expression levels across factors like pathologic T-stage, N-stage, survival, and tumor progression. Panel H includes rank plots and heat maps indicating expression levels. Panel I presents a scatter plot with lines of best fit, showing correlations between gene expression and stemness scores.]
Figure 6 | Multiple machine learning approaches identify genes most relevant to prognosis in PRAD. (A) Random forest algorithm identifies the top 10 genes most associated with OS in PRAD. (B) Random forest algorithm identifies the top 10 genes most associated with PFS in PRAD. (C) Friend analysis identifies key genes in stem cell-related genes. (D–G) Histogram of stem cell-related gene expression in different clinicopathologic parameters. (H) Dryness score and gene expression distribution map. (I) Correlation analysis of dryness score and gene expression. *p< 0.05, **p< 0.01, ***p< 0.001.




3.7 Functional analysis of HSPE1 in PRAD

The samples in the TCGA-PRAD dataset were grouped according to the median expression levels of HSPE1. Samples exhibiting expression higher than the median were assigned to the high HSPE1 expression group, whereas those with lower expression were classified into the low HSPE1 expression group. Following this categorization, differential expression analysis was performed with P < 0.05 and Log2 (Fold Change) >1.3 or Log2(Fold Change) < −1.3 as the criteria for identifying significant differences (Figures 7A, B). The functions of HSPE1 were analyzed based on differential genes using GO. Among the upregulated genes, HSPE1 was found to be most related to the structural constituent of ribosome in the MF module, ATP metabolic process in the BP module, and mitochondrial inner membrane in the CC module. Among the genes exhibiting lower expression levels, HSPE1 showed strong correlation with actin binding in the MF category, organization of the extracellular matrix in the BP category, and collagen-containing extracellular matrix in the CC category. The utilization of KEGG enrichment analysis serves as an effective approach for dissecting gene functionalities and advanced genomic functional insights. Conversely, in the case of genes displaying higher expression levels, HSPE1 demonstrated predominant relevance to Huntington disease, while in contrast, among the genes displaying lower expression levels, HSPE1 was primarily associated with the PI3K-Akt signaling pathway (Figures 7C–F). GSEA results indicated a correlation between HSPE1 and the activation of MYC (Figure 7G). MYC, a widely recognized oncogene, has been linked to the advancement of PRAD. Given that MYC functions as a transcription factor, our analysis explored the possibility of a transcriptional regulatory association between HSPE1 and MYC, which was validated by our findings (Figure 7H). Consequently, we hypothesize that HSPE1 may promote oncogenesis by activating MYC.

[image: Multiple panels display data visualizations related to gene expression and enrichment analysis. Panel A shows a volcano plot comparing high versus low HSPE1 expression. Panel B features a circular heatmap of gene expression. Panels C and E illustrate the most enriched GO terms for upregulated and downregulated genes respectively, categorized by biological process, molecular function, and cellular component. Panels D and F depict KEGG pathway enrichment for upregulated and downregulated genes, with dot sizes indicating gene count. Panel G presents a MYC active pathway plot. Panel H shows genomic data tracks for LNCaP cells at the HSPE1 gene locus.]
Figure 7 | Functional analysis of HSPE1. (A) Variance analysis volcano map. (B) Differential Gene Expression Circle Map. (C–F) Functional analysis of HSPE1 in PRAD based on KEGG and GO methods. (G) Gene enrichment analysis results identify HSPE1 as associated with MYC activation in PRAD. (H) HSPE1 is associated with MYC transcriptional regulation in PRAD.




3.8 Analysis of the correlation of immune infiltration of HSPE1 in PRAD

The TCGA-PRAD dataset samples were grouped based on HSPE1 expression to analyze differences in immune cell infiltration levels between the groups. Variations in B cell plasma, Mast cell, T cell CD4+ Th2, macrophage M2, and Granulocyte-monocyte progenitor infiltration levels were observed (Figure 8A). The distribution of immune cells infiltrating tumors in each TCGA-PRAD specimen was also illustrated (Figure 8B). Additionally, a correlation network diagram was generated to display the relationship between HSPE1 expression and scores of immune cell infiltration calculated using the XCELL algorithm and TIP algorithm, as well as the correlation analysis among the scores of different immune cells (Figure 8C). Finally, we also verified the above conclusions by single-cell analytical methods (Figures 8D–I).

[image: A series of scientific visualizations showcasing different data types: A) Heatmap clustering grouped by color indicating various cell types. B) Bar graph in diverse colors displaying cell proportion distribution. C) Correlation matrix with circular visualizations representing different data interactions. D) Heatmap with shades of red denoting expression levels of the gene HSPE1 across various datasets. E-I) Scatter plots in different colors demonstrating cell type distribution across multiple samples and their HSPE1 expression levels, represented with color gradients from blue to white.]
Figure 8 | Investigating the relationship between HSPE1 expression and infiltration of immune cells. (A) Heatmap showing scores of immune cells. (B) Percentage of tumor-infiltrating immune cells in each sample. (C) Visual representation of the connection between HSPE1 expression and immune cell infiltration scores. (D–I) Analysis at the single-cell level revealing the link between HSPE1 expression and immune cell infiltration.




3.9 Analysis of HSPE1-related targeted drugs

To develop targeted drugs related to HSPE1, we initially identified 50 genes that interact with HSPE1 using the STRING website. Subsequently, we cross-referenced these genes with those positively associated with HSPE1 in the TCGA-PRAD dataset, resulting in the identification of 10 key genes that not only correlated with HSPE1 but also interacted with it (Figures 9A, B). Network analysis revealed the central role of HSPE1 among these genes (Figure 9C). Additionally, we analyzed the correlation of HSPE1-related genes with androgen-related compounds using the CMAP website, identifying five compounds with correlation scores exceeding 70 or falling below -70 in prostate cancer cells PC3 and VCAP (Figures 9D, E). To further verify the affinity of these compounds for HSPE1, we conducted molecular docking studies. It is widely accepted that a Vina score of less than -7 indicates a favorable docking effect. Our analysis demonstrates the strong binding affinity of these five compounds to HSPE1 (Figures 9F–H).

[image: A composite image featuring various scientific analyses: Panel A shows a network diagram illustrating protein interactions with colored nodes. Panel B presents a bar chart and heat map displaying HSPB1 expression levels in different samples. Panel C contains plots for Friends analysis of several proteins. Panels D and E list compounds with scores in PC3 and VCAP cell lines, respectively. Panel F features molecular structures of various compounds. Panel G depicts a 3D protein structure of HSPE1. Panel H shows binding interactions of different molecules with vina scores.]
Figure 9 | Identification of compounds with high HSPE1 relevance. (A) Network Diagram of HSPE1 Interacting Genes. (B) Heatmap of co-expression of HSPE1-interacting genes. (C) Similarity of HSPE1-related genes analyzed based on the Friends analysis method. (D, E) Analysis of HSPE1-related compounds based on the CMAP website. (F–H) Molecular docking of HSPE1 with HSPE1-related compounds.




3.10 HSPE1 is highly expressed in PRAD and is associated with poor patient prognosis

This study underscores the pivotal role of HSPE1 as a gene linked to PRAD metastasis. A total of 60 PRAD samples, along with corresponding normal prostate tissue samples, were collected, and immunofluorescence staining was conducted to investigate the differences in HSPE1 expression and its correlation with the prognosis of PRAD patients. The blue staining represents the cell nucleus, while the red staining indicates the expression of HSPE1. The findings demonstrated a notably higher HSPE1 expression in PRAD when compared to normal prostate tissue (Figure 10A). Furthermore, boxplots were employed to visually represent the variations in HSPE1 expression between PRAD and normal tissues (Figure 10B). Additionally, the analysis revealed a correlation between the expression of HSPE1 and the prognosis of PRAD patients, indicating that individuals with heightened levels of HSPE1 had a worse prognosis (Figure 10C). The tumors were classified based on their HSPE1 expression, and the relationship between tumor invasion and HSPE1 expression was evaluated. Remarkably, the occurrence of tumor invasion in the high-expression category of HSPE1 was notably higher than that in the low-expression category (Figure 10D).

[image: Panel A contains immunofluorescence images showing HSPE1 expression in prostate cancer tissues, stained with red, and compared to normal tissues. Panels B and C provide box plots and survival curves illustrating HSPE1 expression differences and survival probabilities between low and high HSPE1 expression groups. Panel D depicts a bar chart summarizing the HSPE1 expression distribution among 60 patients, divided into high and low expression groups, associated with tumor invasion statistics and p-values.]
Figure 10 | HSPE1 is highly expressed in PRAD and is associated with poor patient prognosis. (A, B) Differential expression of HSPE1 in PRAD. (C) KM curve of overall survival of HSPE1 in PRAD. (D) Analysis of the correlation between HSPE1 expression and tumor invasion. ***p< 0.001.





4 Discussion

Analysis at the single-cell level can offer more precise and detailed cellular data, allowing for a deeper exploration of the dynamic changes and interactions among cells (29). By utilizing single-cell analysis, researchers can acquire a comprehensive understanding of cell functions, metabolism, signaling pathways, and other biological features, ultimately providing more precise information for disease diagnosis and treatment (30). PRAD is a prevalent malignancy affecting the male urinary tract, often diagnosed in advanced stages with metastasis (31, 32). Early detection is crucial for enhancing patient outcomes. In this study, we utilized single-cell analysis on 4 PRAD samples to identify stem cell marker genes. Furthermore, the advancement of tumors is closely associated with alterations in the tumor microenvironment, as tumor cells manipulate their surroundings by secreting different chemokines and cytokines (33–36). Our analysis also explored the correlation between stem cell marker genes and immune infiltration. Overall, our findings offer new insights into potential markers for early PRAD detection and improved patient prognosis.

In spite of notable progress in treatments that have enhanced the survival rates of cancer patients, the disease remains a leading global cause of death. Recent findings suggest that one significant reason many therapeutic approaches fail is their incapacity to eradicate stem cells, which are essential for initiating and sustaining tumor growth. Therefore, effectively targeting stem cells offers a hopeful strategy for managing cancer patients (37). In the context of single-cell analysis, 15 marker genes have been identified, some of which have established regulatory relationships with stem cells. For instance, an essential function in the self-renewal of embryonic stem cells and the viability of differentiated cells derived from them is carried out by the expression of HSPD1 (38). CCT2 has been found to sustain CSC properties and drive tumor advancement in epithelial ovarian cancer by inhibiting the proteasomal degradation of β-catenin (39). Additionally, the upregulation of SFPQ in extracellular vesicles derived from induced pluripotent stem cells has been demonstrated to safeguard retinal Müller cells from damage induced by hypoxia (40). The functional analysis of these cell populations revealed that the stem cell population is associated with ECM-related genes. There exists a significant interactive relationship between the ECM and CSCs, which plays a crucial role in the occurrence, development, and metastasis of tumors. For instance, the ECM provides a supportive microenvironment for CSCs, facilitating the maintenance of their stem cell properties, proliferation, and survival. Components of the ECM, such as collagen, fibronectin, and glycosaminoglycans, can activate signal transduction pathways and promote the self-renewal and differentiation of stem cells by interacting with receptors on the surface of CSCs (41). Cluster analysis was conducted on PRAD samples in the TCGA-PRAD dataset using the NMF algorithm based on the expression of 15 selected stem cell-related genes. The cophenetic curve suggested that dividing PRAD samples into 3 groups yielded the best grouping. Regardless of whether PRAD samples were divided into 3 groups or 2 groups, significant differences in patient prognosis were observed between the groups, with patients in cluster 2 consistently having the worst prognosis. To investigate the reasons behind these differences in patient prognosis, the response of patients to immune checkpoint inhibitor treatment among different clusters was analyzed using the TIDE algorithm. Results showed that patients in cluster 2 exhibited higher TIDE scores and poorer responses to immunotherapy, potentially contributing to the unfavorable prognosis observed in this cluster.

Due to the absence of clear diagnostic markers for PRAD patients, many individuals are unfortunately diagnosed at an advanced stage of the disease (42). To address this issue, we conducted a comprehensive follow-up analysis. Our study involved the development of a PRAD diagnostic model utilizing various machine learning algorithms. This model, which focused on the genes NME1, IMPDH2, PDCD5, and HSPE1, yielded promising results. In the training set, our model demonstrated strong performance, achieving an AUC value of 0.927. To further validate the effectiveness of our diagnostic model, we tested it against four different datasets. While one dataset showed suboptimal results, the remaining three datasets consistently confirmed the robustness and reliability of the diagnostic model we have constructed. The stemness score of each sample in PRAD samples was calculated using the OCLR algorithm developed by Malta et al. (43). Within the TCGA-PRAD dataset, out of the 15-stem cell-related marker genes that were chosen, only one gene’s expression did not show a significant correlation with the stemness score. This further validates the accuracy of the selected genes.

Utilizing the random forest algorithm, we identified the top 10 genes from a pool of 15 stem cell marker genes that exhibited associations with both OS and PFS in PRAD patients. By integrating the expression levels of these genes across various pathological stages, we pinpointed HSPE1 as a significant stem cell marker gene linked to the prognosis and progression of PRAD. KEGG functional analysis confirmed that HSPE1 exhibits the strongest correlation with the PI3k-Akt signaling pathway. This pathway, known as PI3K/Akt/mTOR, plays a crucial role in CSCs by regulating stemness, proliferation, differentiation, epithelial-to-mesenchymal transition, migration, and autophagy (44). Therefore, we inferred that HSPE1 may affect the stemness of PRAD cells by regulating the PI3k signaling pathway. The GSEA results indicated a robust correlation between HSPE1 and the transcription factor MYC. Additionally, our analysis revealed a significant enrichment of MYC in the HSPE1 promoter, thus confirming a direct regulatory relationship between HSPE1 and MYC. The role of the oncogene MYC in regulating stem cells in various tumors is well-established (45–49). It is highly probable that HSPE1 influences the stemness properties of PRAD by interacting with MYC. To develop targeted drugs related to HSPE1, we analyzed the correlation between HSPE1 and androgen receptor-related drugs using the CMAP website. Our findings indicate a significant relationship between HSPE1 and bicalutamide, a targeted drug commonly utilized in the clinical treatment of PRAD patients. Furthermore, the molecular docking results corroborate these findings. Molecular docking can predict potential interactions between drug molecules and their targets, thereby serving as a foundation for drug development. The results of docking studies yield critical insights into the mechanisms of drug action and are essential for a comprehensive understanding of how drugs influence cellular biological processes. Numerous studies have validated the significance of genes as drug targets through the application of molecular docking methods (50). Our results highlight the potential of HSPE1 as a candidate for PRAD-targeting drug development. In addition, we conducted immunofluorescence experiments to examine the expression levels and prognostic implications of HSPE1 in PRAD samples. The findings from our study further support the significance of HSPE1 in both the diagnosis and prognosis of PRAD. Our primary analyses utilized the TCGA-PRAD dataset. To enhance the robustness of our findings, it is crucial to include a larger sample size and a diverse validation set. Furthermore, additional experiments are necessary to confirm our conclusions.




5 Conclusion

Through single-cell analysis and utilization of multiple machine learning algorithms, our research has established a significant correlation between stem cell marker genes and the prognosis, diagnosis, and immune infiltration in patients with PRAD. Among these genes, HSPE1, identified as a key stem cell marker gene, emerges as particularly crucial in the progression of PRAD. Notably, HSPE1 exhibits a strong association with the diagnosis, prognosis, and immune infiltration patterns in PRAD patients. Furthermore, through experimental validation, the study underscores the pivotal role of HSPE1 in PRAD. Ultimately, our findings contribute valuable insights by introducing novel biomarkers and potential therapeutic targets for early detection of PRAD and enhancement of patient outcomes.
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Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
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1 Introduction

The immunoproteasome is a variant of the standard proteasome with distinct catalytic subunits that degrade ubiquitinylated proteins (1, 2). It is activated in both immune and non-immune cells in response to inflammatory cytokines, especially interferon-gamma (IFN-γ), and oxidative stress (3, 4). Nevertheless, the primary function of the immunoproteasome is to cleave intracellular viral or oncogenic proteins into peptides, which are then displayed by the major histocompatibility complex (MHC) class I molecules for CD8+ T cells (1, 5). The immunoproteasome differs from the standard proteasome in terms of both enzymatic activity and subunit composition (6, 7). The β1, β2, and β5 catalytic subunits of the standard proteasome (8, 9) are respectively substituted with β1i (LMP2), β2i (MECL-1), and β5i (LMP7) in the immunoproteasome (1, 10) (Figure 1). These substitutions alter the proteolytic activity of the immunoproteasome, allowing efficient production of peptides with hydrophobic or basic C-terminal residues, which are preferentially bound by the MHC class I molecules for antigen presentation (2, 11, 12). Thus, immunoproteasomes boosts the ability of the immune system to recognize and respond to intracellular infections and tumor cells by increasing the efficacy and specificity of peptide generation.
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Figure 1 | Structure and function of proteasomes (A) Constitutive proteasome (cP) vs. Immunoproteasome (iP): The cP includes the subunits β1, β2 and β5, which are respectively substituted with β1i, β2i, and β5i in the iP upon stimulation by pro-inflammatory cytokines such as IFN-γ. The iP is naturally present in hematopoietic cells. IFN-γ also upregulates the regulatory particle PA28, which can bind to both the cP and iP with equal affinity and enhance their activity. (B) Proteasome inhibitors can selectively target iP, or both cP and iP, offering potential immunomodulatory and therapeutic strategies against cancer.

Solid tumors are abnormal masses of tissue that can be benign (non-cancerous) or malignant (cancerous) (13, 14). Depending on the tissue of origin, solid tumors are broadly classified as carcinomas that originate from epithelial cells (e.g., breast, lung, colorectal cancers), and sarcomas that arise from connective tissues (e.g., bones, muscles). Other specific types include gliomas (brain) and hepatomas (liver) (15–17). Solid tumors are often detected in the advanced stages, which can render the conventional therapies, such as radiation therapy, chemotherapy and surgery, less effective (18–20). In addition, solid tumors frequently develop resistance to these therapies, leading to recurrence and metastasis. The presence of immune cells, blood vessels, and the extracellular matrix in the tumor microenvironment (TME) significantly influences tumor progression and treatment resistance. The heterogeneity of solid tumors further complicates treatment, as different regions of the same tumor can respond differently to the same therapeutic modality. These challenges underscore the need for novel approaches, including immunotherapy.

Immunotherapy harnesses the host immune system to recognize and eliminate cancer cells. For instance, checkpoint inhibitors can augment the anti-tumor immune response by reversing the inhibitory signals on the effector T cells. Likewise, immune cells engineered to effectively recognize and eliminate tumor cells (i.e., adoptive cell transfer) and cytokines have also been shown to enhance immune-based clearance of the malignant cells. Furthermore, cancer vaccines can stimulate the immune system to target specific tumor antigens (21–25). However, tumor cells have developed adaptive mechanisms to escape immune detection, such as decreasing antigen presentation or inducing an immunosuppressive TME. Immunotherapeutic strategies can overcome these challenges by promoting the recognition of tumor-specific antigens. In addition, immunotherapies also offer the potential for long-lasting protection against cancer by establishing immunological memory, as well as a viable alternative for tumors that are resistant to conventional therapy. The therapeutic potential of targeting immune-related pathways has been highlighted by the success of checkpoint inhibitors against melanoma and lung cancer among other malignancies (26–28).

In this review, we have explored the role of immunoproteasome in anti-tumor immune responses and its potential as a therapeutic target for cancer. We have also discussed the current research, clinical applications, and the challenges associated with targeting the immunoproteasome in solid tumors, and identified areas for future research and clinical development.




2 Structure and function of immunoproteasomes

The immunoproteasome differs from the standard proteasome on account of three inducible catalytic subunits. The β1i subunit, also referred to as low molecular weight protein 2 (LMP2), is encoded by a gene located within the MHC class II locus, which emphasizes its significant role in immune function (29, 30). Unlike the β1 subunit, LMP2 primarily generates peptides with hydrophobic C-termini, which are preferred by MHC class I molecules. LMP2 is upregulated by inflammatory cytokines, which ensures that the immunoproteasome is optimized for processing antigens during immune responses (31, 32). The β2 subunit of the standard proteasome is replaced with the β2i subunit, also referred to as multi-catalytic endopeptidase complex-like 1 (MECL-1) (10, 33). MECL-1 enhances cleavage of substrates after basic residues, which generates a broader range of antigenic peptides suitable for MHC class I presentation. The induction of MECL-1 by pro-inflammatory cytokines is an essential step for the activation of CD8+ T cells and the ensuing adaptive immune response (34, 35). Furthermore, the presence of MECL-1 is essential for maintaining the unique substrate specificity of immunoproteasomes. The β5i subunit, also known as LMP7, is the third inducible catalytic subunit of the immunoproteasome, and promotes the generation of hydrophobic peptides or those with basic C-terminal residues. The gene encoding LMP7 is also located in the MHC region, which underscores its role in immune function. It is induced by IFN-γ and other pro-inflammatory cytokines, and is necessary for the effective processing of tumor and viral antigens (36, 37).

IFN-γ is a key effector cytokine involved in the immune responses against viral infections and tumors. Exposure to IFN-γ leads to upregulation of immunoproteasome subunits in the immune cells (38). The tumor necrosis factor-alpha (TNF-α) also contributes to the immunoproteasome induction (39, 40). Both cytokines facilitate the assembly of the β1i, β2i, and β5i subunits into the immunoproteasome during immune responses. Various chaperones are involved in this process to ensure correct incorporation and folding of the subunits (41–43). This regulated assembly ensures that the immunoproteasome is formed efficiently during times of immune activation, providing a tailored response to pathogenic challenges (44–46).

The transporter associated with antigen processing (TAP) cleaves proteins into smaller peptides during protein degradation, which are then transported into the endoplasmic reticulum (47, 48). Within the endoplasmic reticulum, these peptides are loaded onto MHC class I molecules. When MHC class I molecules are present on the surface of malignant or infected cells, CD8+ T cells are able to recognize and respond to these antigens (49, 50).




3 Immunoproteasome in tumor immunology



3.1 Recognition and elimination of cancer cells

Immune cells have the ability to recognize and eliminate cells that express abnormal or cancer-specific antigens, a phenomenon known as immunosurveillance. The immunoproteasome is pivotal to this process, as it generates a wide repertoire of antigenic peptides that are more likely to be recognized by the effector immune cells. The presentation of these peptides by the MHC class I molecules is crucial for the activation of anti-tumor CD8+ cytotoxic T lymphocytes (CTLs) (11, 51). Consequently, the immunoproteasome plays a critical role in the prevention and control of cancer progression by assisting the immune system in detecting and eliminating nascent tumor cells.

Solid tumors have developed several mechanisms to avoid immune detection and clearance, even in the face of effective immune surveillance. For instance, tumor cells can downregulate the expression of MHC class I molecules, which reduces antigen presentation and subsequent recognition by CTLs. Additionally, tumors can create an immunosuppressive microenvironment by secreting factors such as TGF-β, IL-10, and VEGF (52). Likewise, immune checkpoint molecules like PD-L1 that cause T cell exhaustion by triggering inhibitory signals are also typically upregulated on the tumor cells. Finally, mutations or alterations in the immunoproteasome subunits can lower generation of antigenic peptides, and contribute to immune evasion.




3.2 Role of immunoproteasome in modulating the microenvironment

Apart from ensuring effective presentation of tumor-associated antigens (TAAs) on the MHC class I molecules and thus promoting activation of CTLs (53, 54), the immunoproteasome also maintains the balance between immune activation and tolerance, and keeps the immunosuppressive elements of the TME in check (35, 52). It can either promote or inhibit the anti-tumor immune response by modulating the activity of various immune cells and the production of cytokines.

Tumor-infiltrating lymphocytes (TILs) are a subset of immune cells that penetrate the tumor stroma, and are indicative of the immune response against malignant cells. Enhanced antigen processing by the immunoproteasome can boost the responsiveness and cytotoxic function of the TILs against tumor cells (55, 56), which is vital for sustained anti-tumor immune response within the TME. However, tumors often employ immunosuppressive strategies that can hinder TIL function, such as upregulation of checkpoint molecules and the secretion of immunosuppressive cytokines. Targeting the immunoproteasome within the TME can potentially counteract these strategies, and enhance the infiltration, activation, and cytotoxic function of TILs (57, 58).




3.3 Immunoproteasome activity in antigen-presenting cells

Antigen-presenting cells (APCs), including macrophages and dendritic cells (59, 60), process and present antigens to T cells, thereby initiating and modulating immune responses. The immunoproteasome enhances the production of high-quality antigenic peptides, which results in a wide and robust array of tumor-associated antigens being displayed on the surface of APCs. This, in turn, leads to a more effective activation and expansion of CTLs, promoting a stronger and more targeted antitumor immune response. Additionally, by affecting cytokine production and lowering immunosuppressive factors, the immunoproteasome can modify the tumor microenvironment and improve the immune response against tumors as a whole.





4 Immunoproteasome as a therapeutic target



4.1 Enhancing antigen presentation

Enhancing immunoproteasome activity through cytokines, small molecules, or genetic modifications (Figure 2) can boost the ability of the immune system to recognize and destroy cancer cells (61). For instance, administration of IFN-γ and TNF-α, which are potent inducers of immunoproteasome subunits, have been shown to increase the expression and activity of the immunoproteasome (62). Furthermore, small molecules that mimic the effects of these cytokines or directly activate signaling pathways involved in immunoproteasome regulation are also under investigation. Finally, genetic engineering methods like CRISPR-Cas9 have been used to increase the expression of immunoproteasome subunits in tumor or immune cells, and enhance antigen processing and presentation (63–65).
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Figure 2 | Schematic overview of immunoproteasome activities in cancer. (A) Increasing tumor antigen presentation: Immunoproteasomes degrade tumor-associated antigen (TAA) peptides encoded by mutated or cancer germline genes. The transporter associated with antigen processing (TAP) then delivers these peptides into the endoplasmic reticulum (ER). The TAA peptides are trimmed by the ER-associated aminopeptidase (ERAAP), and loaded on MHC I molecules by a complex of tapasin, calreticulin, and ERP57. The MHC I complex loaded with the TAA peptides migrate to the cell surface for presentation to the CTLs. (B) Maintaining protein homeostasis: Immunoproteasomes maintain protein homeostasis and protect cells from proteotoxic stress by degrading non-functional and misfolded proteins. (C) Degrading tumor suppressor protein IkBa: Immunoproteasome-mediated degradation of IkBa leads to NF-kB activation and cytokine secretion, which in turn recruits neutrophils and initiates colitis-associated cancers (CAC). (D) Promoting T cell differentiation: Immunoproteasomes trigger the differentiation of the pro-inflammatory Th1 and Th17 cells, resulting in increased production of IL-17, IL-22, TNF, and IFN-γ.




4.2 Combination therapies

The combination of immunoproteasome inhibitors with immune checkpoint blockers represents a synergistic approach to cancer treatment. Antibodies targeting checkpoint molecules like PD-1, PD-L1, and CTLA-4 have been shown to enhance T cell-mediated elimination of cancer cells. However, the therapeutic efficacy of checkpoint inhibitors can be limited by the immunosuppressive TME and insufficient antigen presentation. Selective inhibition of the immunoproteasome can relieve the immunosuppression in some solid tumors by enhancing antigen presentation. Preclinical studies using animal models have shown that combining immunoproteasome inhibitors and checkpoint blockers prolonged the survival of tumor-bearing animals through enhanced anti-tumor activity. Furthermore, clinical trials are currently exploring this combination strategy in various cancers to evaluate its safety and therapeutic potential.

Immunoproteasome inhibitors can also augment the efficacy of adoptive cell therapies, such as the CAR-T cell therapy or TCR-engineered T cell therapy, by increasing the availability of target antigens within the TME. Similarly, cancer vaccines, which aim to elicit a strong immune response against tumor-specific antigens, can benefit from immunoproteasome inhibitors due to more effective presentation of vaccine-derived peptides. The activation and proliferation of effector T cells can also be increased by combining immunoproteasome inhibitors and cytokines like IL-2 or IL-15, resulting in a potent anti-tumor response.




4.3 Case studies of specific solid tumors

Bladder cancer is difficult to treat due to its recurrence and resistance to conventional therapies. Cathro et al. showed that immunoproteasome inhibitors synergistically improved the therapeutic effects of checkpoint blockade in an animal model of bladder carcinoma by increasing antigen presentation and infiltration of CTLs (66). Furthermore, several clinical trials are investigating the impact of combining immunoproteasome inhibitors with standard treatments, such as Bacillus Calmette-Guerin (BCG) therapy, on the overall immune response and recurrence rates in bladder cancer patients (67–69).

Bone cancers, including osteosarcoma and Ewing sarcoma, are aggressive malignancies that primarily affect children and young adults, and are difficult to treat due to their ability to evade the immune system. Niewerth et al. showed that immunoproteasome inhibitors sensitized bone cancer cells to immune-mediated destruction in a preclinical model by increasing the repertoire of presented antigens and promoting CTL infiltration. In addition to the direct destruction of tumor cells, this strategy also induced a pro-inflammatory TME with sustained immune surveillance. Current research efforts are focused on combining immunoproteasome-targeted therapies with other immunotherapies, such as CAR-T cell therapy, to achieve more favorable outcomes for bone cancer patients (70).

The immunoproteasome is also a promising therapeutic target for colorectal cancer (CRC). Studies have shown that upregulating immunoproteasome activity in CRC cells can improve antigen presentation and enhance the efficacy of immunotherapies, such as checkpoint blockade (11). Additionally, immunoproteasome inhibitors have been shown to reduce the immunosuppressive environment of CRC tumors by modulating cytokine production and inhibiting the function of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (64, 71). At present, clinical trials are being conducted to assess the safety and efficacy of combining immunoproteasome-targeted therapies with chemotherapy and immunotherapy (72).

Due to its aggressive nature and the absence of targeted therapies, breast cancer, particularly triple-negative breast cancer (TNBC), presents significant treatment challenges. The immunoproteasome is a promising therapeutic target in breast cancer (73, 74). Studies show that immunoproteasome activity is crucial for the effective presentation of breast cancer-associated antigens and the activation of CTLs (75). Furthermore, immunoproteasome inhibitors have been shown to enhance antigen presentation and promote immune cell infiltration in preclinical models of breast cancer. These findings suggest that targeting the immunoproteasome could be an effective strategy to improve the efficacy of existing immunotherapies, such as checkpoint inhibitors, in breast cancer patients. Furthermore, in order to enhance the overall anti-tumor response and raise survival rates for patients with breast cancer, clinical trials are investigating the combination of immunoproteasome-targeted therapies with traditional treatments like radiation therapy and chemotherapy.

Hepatocellular carcinoma (HCC) is one of the main causes of cancer-related death worldwide. Studies in preclinical models have shown that immuneproteasome inhibitors can increase the presentation of antigenic peptides and foster a pro-inflammatory TME, which can improve the effectiveness of immune checkpoint inhibitors, leading to a more effective activation of CTLs against liver cancer cells (76, 77). This combination approach has reduced tumor growth and improved survival rates in liver cancer models. Furthermore, immunoproteasome-targeted therapies in combination with other treatments, such as transarterial chemoembolization (TACE) and radiofrequency ablation (RFA), are also being investigated to enhance the overall anti-tumor response and improve clinical outcomes in liver cancer patients (Figure 3).
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Figure 3 | Schematic overview of immunoproteasome mechanisms in different cancer types (A) Enhancing tumor antigen presentation: The immunoproteasome enhances the presentation of tumor antigens in cancers like acute promyelocytic leukemia, breast cancer, non-small cell lung cancer, renal cell carcinoma, melanoma, and colorectal cancer that is negative for microsatellite instability (MSI). This leads to greater T-cell infiltration and subsequent tumor cell death. (B) Shifting proteasome population in solid and hematologic cancers: In solid cancers such as prostate, glioblastoma, and gastric cancer, the proteasome population is shifted towards immunoproteasomes by IFN-γ and phosphorylated proline-rich Akt substrate of 40 kDa (PRAS40), which is induced by hyperactivated mTOR complex 1 (mTORC1). Increased oxidative stress boosts immunoproteasome expression in hematologic malignancies, including multiple myeloma (MM), acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL). Increased oxidative stress boosts immunoproteasome expression in hematologic malignancies, including multiple myeloma (MM), acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL). Increased cancer cell survival is a result of the overexpressed immunoproteasome maintaining protein homeostasis. (C) Promoting tumorigenesis in colitis-associated cancer: The immunoproteasome degrades IκB in colitis-associated cancer, promoting the differentiation of T cells into the pro-tumorigenic inflammatory T helper cells.





5 Clinical applications

Numerous clinical trials are currently investigating the efficacy, safety, and optimal use of immunoproteasome-targeted therapies, both inhibitors and enhancers, against various types of solid tumors. For example, several early-phase trials are evaluating the efficacy of immunoproteasome inhibitors such as ONX 0914 in combination with checkpoint inhibitors like pembrolizumab and nivolumab (78–80). In addition, preliminary results of some clinical trials show that a combination treatment of immunoproteasome inhibitors and anti-PD-1 antibody achieved better response rates and prolonged progression-free survival in patients with melanoma and lung cancer compared to monotherapy. Similarly, cytokine therapies that upregulate immunoproteasome activity have been shown to enhance the anti-tumor immune response. Therefore, targeting the immunoproteasome can improve the effectiveness of current immunotherapies and offer patients with solid tumors new alternatives. However, further studies are required to validate these results and determine the long-term benefits and safety profiles of these combination therapies.

The identification of reliable biomarkers that can predict patient response is essential for the clinical success of immunoproteasome-targeted therapies. For instance, the expression levels of immunoproteasome subunits (β1i, β2i, and β5i), cytokine profiles, and the presence of particular tumor antigens can predict therapeutic efficacy, as well as help screen patients who will most likely to benefit from these therapies. Furthermore, the immunoproteasome activity in tumor tissues and immune cells can serve as an indicator to guide the selection and optimization of immunoproteasome-targeted personalized therapies as per the unique tumor and immune system characteristics of individual patients. For instance, patients with low baseline immunoproteasome activity may benefit from therapies that upregulate its function. In contrast, those with high activity might respond better to inhibitors that modulate their activity. Thus, personalized treatment strategies can enhance the efficacy and minimize the side effects of immunoproteasome-targeted therapies, leading to more effective and individualized cancer care.




6 Challenges and future directions

Immunoproteasome inhibitors can also target the proteasomes in normal cells, resulting in the accumulation of damaged or misfolded proteins, which trigger cellular stress and apoptosis. In fact, several side effects of immunoproteasome inhibitors have been reported in clinical trials, such as fatigue, gastrointestinal issues, and hematological toxicities. Developing inhibitors with greater specificity for cancer cells or optimizing dosing regimens can minimize these adverse effects. Furthermore, cancer cells can develop resistance to immunoproteasome inhibitors through various mechanisms, such as upregulation of compensatory proteolytic pathways, mutation of target subunits, or altered expression of proteasome-related genes, leading to relapse and treatment failure. Therefore, it is crucial to elucidate these mechanisms and develop novel strategies to overcome resistance to immunoproteasome inhibitors, such as combining other therapeutic agents that target complementary pathways or using sequential treatment approaches.

Future research should also focus on identifying novel targets within the immunoproteasome pathway. High-throughput screening and advanced genomic techniques can facilitate the discovery of new subunits or regulatory proteins. Additionally, understanding the complex interactions between the immunoproteasome and other cellular pathways can reveal new therapeutic opportunities. For instance, targeting regulatory proteins that control immunoproteasome assembly and activity could provide alternative strategies for modulating its function. Furthermore, advances in drug delivery systems can significantly enhance the efficacy and safety of immunoproteasome-targeted therapies. Nanotechnology-based delivery systems, such as liposomes, nanoparticles, and micelles, can improve the selective targeting of immunoproteasome inhibitors to tumor cells while sparing normal tissues. These systems can also provide controlled and sustained release of the therapeutic agents, reducing the frequency of administration and improving patient compliance. Finally, developing targeted delivery systems that exploit tumor-specific markers or the unique microenvironment of tumors can enhance the precision and effectiveness of immunoproteasome inhibitors.

Immunoproteasome-targeted therapies also hold promise for hematological malignancies such as multiple myeloma and lymphoma due to the high immunoproteasome activity that is frequently observed in these cancers. Exploring the efficacy of these therapies in a broader range of cancers can uncover new clinical applications and benefit a larger patient population. Furthermore, the development of more tailored and effective treatments requires a greater understanding of the differential expression and activity of immunoproteasomes across various cancer types. There is also evidence of a regulatory role of the immunoproteasome in autoimmune diseases and persistent infections. Thus, blocking immunoproteasome activity in autoimmune diseases could mitigate the aberrant immune responses, and reduce inflammation and tissue damage. For instance, immunoproteasome inhibitors have shown promising results in preclinical models of rheumatoid arthritis and lupus. Similarly, enhancing immunoproteasome activity could boost the immune response against chronic infections by improving antigen presentation and T-cell activation. Future research should explore these novel therapeutic possibilities for autoimmune diseases and chronic infections.

In conclusion, the clinical translation of immunoproteasome-targeted therapies will rely on addressing toxicity and resistance mechanisms and exploring novel targets and delivery systems, in order to optimize the therapeutic potential of the immunoproteasome.




7 Conclusion

The immunoproteasome is a key determinant of the response to cancer immunotherapy as it ensures the activation of anti-tumor CTLs by promoting generation of antigenic peptides and their presentation on MHC class I molecules, which in turn improves identification and elimination of cancer cells. Goven its role in modulating the TME and anti-tumor immune responses, the immunoproteasome has garnered considerable interest as a therapeutic target for cancer treatment. Recent studies have greatly improved our understanding of its structure, function, and regulation. Furthermore, clinical trials have reported promising results of immunoproteasome inhibitors, such as ONX 0914, against melanoma and lung cancer. Immunoproteasome-targeted therapies have also been shown to enhance the efficacy of checkpoint blockade therapy and improve patient outcomes. Additionally, strategies that upregulate immunoproteasome activity are also being explored to boost immune responses against tumors.

Future studies should focus on comprehending the mechanisms underlying immunoproteasome inhibitor resistance and developing strategies to address these challenges. Additionally, identifying reliable biomarkers for predicting patient response to immunoproteasome-targeted therapies will be crucial for personalizing treatment plans and maximizing therapeutic efficacy. Novel drug delivery systems and integrating immunoproteasome-targeted therapies with existing treatment regimens could offer new hope for patients with solid tumors, particularly those who do not respond well to conventional therapies. Tailoring treatments based on immunoproteasome activity and patient-specific biomarkers can enhance the precision and effectiveness of cancer therapy, leading to better patient outcomes and reduced side effects.

In conclusion, immunoproteasome-targeted therapies can enhance immune responses and overcome tumor-induced immunosuppression, resulting in more effective and durable treatment for cancer patients.
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Background

Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene signature (HPRGS) and explore its clinical application value.





Methods

TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and HCC cDNA microarray were used for validation. Machine learning algorithms constructed a prognostic gene label for HCC. Kaplan–Meier (K-M), ROC curve, multiple analyses, algorithms, and online databases were used to analyze differences between high- and low-risk populations. A nomogram was constructed to facilitate clinical application.





Results

We identified 119 differential genes based on transcriptome sequencing data from five independent HCC cohorts, and 53 of these genes were associated with overall survival (OS). Using 101 machine learning algorithms, the 10 most prognostic genes were selected. We constructed an HCC HPRGS with four genes (SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis showed significant differences between the low- and high-risk patients. The low-risk group had a higher response to transcatheter arterial chemoembolization (TACE) and immunotherapy. Treatment response of high- and low-risk groups to small-molecule drugs was predicted. Linifanib was a potential drug for high-risk populations. Multivariate analysis confirmed that HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram provided a clinical practice reference.





Conclusion

We constructed an HPRGS for HCC, which can accurately predict OS and guide the treatment decisions for patients with HCC.





Keywords: hepatocellular carcinoma, prognosis signature, treatment, machine learning framework, TCGA




1 Introduction

Hepatocellular carcinoma (HCC) is a major challenge in global health, ranking sixth among common malignancies and third in terms of tumor mortality. HCC is the most common pathological type of liver cancer, accounting for approximately 80% of primary liver malignancies (1). Previous studies have shown that only 36% of liver cancer cases in China are diagnosed early and meet the criteria for radical treatment. Among the remaining cases, 9% and 55% of patients are in the intermediate and advanced stages, respectively (2).

Radical treatment is recommended for patients with early-stage HCC, including surgical treatment (resection and liver transplantation) and local-regional surgery (radiofrequency ablation) (3). Patients with intermediate-stage HCC are recommended to undergo transarterial local-regional therapy (4). For patients with advanced HCC, comprehensive systemic treatment based on chemotherapy, targeted therapy, and immunotherapy is the main treatment strategy (4). In recent years, because of the rapid development of targeted therapy and immunotherapy, significant changes have occurred in the treatment and prognosis of advanced HCC. The results of two clinical trials, SHARP and ORIENTAL, both showed that sorafenib can prolong the survival of patients with advanced HCC. Therefore, sorafenib has been approved as a first-line treatment for patients with advanced HCC since 2007 (5, 6). The REFLECT study showed that lenvatinib is not inferior to sorafenib, and the median overall survival (OS) of lenvatinib and sorafenib is similar, but the objective response rate (ORR) and progression-free survival of lenvatinib are higher (7). The IMbrave150 study showed that the combination of atezolizumab and bevacizumab is more effective in improving OS, and was approved for first-line treatment of patients with advanced HCC in China in 2021 (8). There are currently several ongoing studies on immunotherapy-based combination therapy. However, because of the high heterogeneity of liver cancer and other factors, the annual recurrence rate of HCC is as high as 15%–20%. Currently, the accuracy of biomarkers, such as alpha-fetoprotein (AFP), programmed cell death 1 ligand 1 (PD-L1), and tumor mutation burden, is still insufficient to guide the precision diagnosis and treatment of HCC. Therefore, it is of great significance to explore more accurate and effective biomarkers for optimizing the clinical diagnosis and treatment of patients with HCC and improving prognosis.

The pathogenesis and progression of malignant tumors cover a wide range of complex multistage processes. In the past few decades, thanks to breakthroughs in the fields of genomics, transcriptomics, proteomics, and metabolomics, significant progress has been made in precision medicine strategies for cancer diagnosis and treatment (9, 10). The occurrence and development of liver cancer have been confirmed to be driven by molecular variations at the genetic and epigenetic levels (11). In the field of HCC, the application of next-generation sequencing technology provides important evidence for revealing molecular changes (12–14). Given the differences in molecular biological characteristics, even patients at the same stage of the disease may have similar tumor morphology and clinical manifestations but still respond differently to the same treatment strategy. Therefore, the increasing use of genome analysis technology to deeply explore tumor biology and assist in the development of individualized treatment plans for patients with HCC could improve their prognosis (15). Prediction models based on cancer gene expression are one of the important research directions of gene transcriptomics in cancer research. In several cancers, such prediction models have been successfully applied to molecular subtypes, prognosis, and treatment prediction in clinical practice (16). However, previous studies have developed many prediction models related to HCC and demonstrated relatively good performance in some cohorts. However, considering that these prediction models are constructed based on messenger ribonucleic acid (mRNA), microRNA (miRNA), or long noncoding ribonucleic acid (lncRNA) in specific pathways (such as immunogenic cell death, necroptosis, ferroptosis, and cuproptosis), the utilization of data is insufficient (17–19). In addition, because of the uniqueness and inappropriateness of the selected modeling methods, prognostic models based on multiple genes have significant shortcomings, which limit their widespread clinical application (20).

Therefore, in this study, we aimed to establish a comprehensive and accurate prognostic signature for HCC by integrating multiple machine learning methods and applying multiple independent cohort datasets to construct and validate an HCC prognosis-related gene signature (HPRGS). The characteristics and clinical application value of this signature will be analyzed to provide a reference for the clinical diagnosis and treatment of HCC.




2 Materials and methods



2.1 Data acquisition

We downloaded 7 cohorts (GSE13845, GSE25097, GSE84402, GSE174570, GSE54236, GSE14520 and GSE104580) from the GEO database (https://www.ncbi.nlm.nih.gov/geo/), and the data were subjected to log2 transformation for subsequent analysis (21). The TCGA-LIHC and LIRI-JP cohorts were obtained from the Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) and the ICGC database (https://dcc.icgc.org/releases), respectively. Additionally, somatic mutation data for the TCGA-LIHC cohort was obtained from the TCGA database. Only patients with complete clinical follow-up information and survival data were included in the TCGA-LIHC and LIRI-JP cohorts. After screening, 365 patients with hepatocellular carcinoma were retained in the TCGA-LIHC cohort, and 231 patients were retained in the LIRI-JP cohort. To improve comparability between cohorts, the RNA-sequencing (RNA-seq) was converted to transcripts per million (TPM) forma. Then, the batch correction was performed on the TCGA-LIHC cohort and the LIRI-JP cohort using the “Combat “ method from the “sva” R package.

In addition, the HCC cDNA microarray was purchased from Shanghai Outdo Biotech Co.,Ltd (Shanghai, China) with 87 samples (including 21 normal liver samples and 66 HCC samples, Ethics No.SHYJS-CP-1707015). The clinical characteristics of these cohorts were integrated in Table 1.

Table 1 | The clinical characteristics of TCGA-LIHC, LIRI-JP and HCC cDNA microarry cohorts.


[image: Comparison table showing patient characteristics across three datasets: TCGA-LIHC, LIRI-JP, and HCC cDNA microarray. It includes numbers and percentages for age (>60, <=60), gender (male, female), grade (G1-2, G3-4, unknown), and stage (I-II, III-IV, unknown). For instance, TCGA-LIHC has 365 patients with 52.6% over 60, 67.4% male, and 63% in grade G1-2. LIRI-JP has 231 patients with 78.8% over 60, and HCC cDNA microarray has 66 patients with 34.8% over 60.]



2.2 Quantitative reverse transcription PCR

Relative quantitation was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR; SuperScript IV Reverse Transcriptase 18090010; Thermo Fisher, United States). The amplification reactions were performed as described previously (22). LCAT-specific primers were: forward primer, 5’-GTGACTTCCAACGCTTCTT-3’ and reverse primer, 5’-TCATAGAGCACACCCACAG-3’. SOCS2-specific primers were: forward primer, 5’-CCTTGCCTTCTTAGGTTCTT-3’ and reverse primer, 5’-CTTGGTTCCTTCCCACTT-3’. ECT2-specific primers were: forward primer, 5’-TGTAGTCACGGACTTTCAGGA-3’ and reverse primer, 5’-GTACAATACAACGGGCGACAT-3’. TMEM106C-specific primers were: forward primer, 5’-TTCACCGGGAGAGATAGCATC-3’ and reverse primer, 5’-AAGGACTGAATGCGGAAACAG-3’.




2.3 Differential gene analysis

The “Limma” package (23) in R software was used to screen for differentially expressed genes (DEGs) between normal tissue and HCC tissue in the TCGA-LIHC, GSE13845, GSE25097, GSE84402, and GSE174570 cohorts. Multiple testing with a FDR<0.05 and |log2Foldchange|≥ 1 were used as screening criteria.




2.4 The establishment of HPRGS

This study followed the following steps to construct HPRGS:

Firstly, the “survival” package in R software was used to perform univariate Cox regression analysis to screen for DEGs with potential prognostic value in the gene expression profiles of patients in the TCGA-LIHC cohort.

The TCGA-LIHC cohort was used as the training cohort, and the LIRI-JP cohort was used as the validation cohort. In the training cohort, 101 combinations of 10 algorithms were used for variable selection based on a ten-fold cross-validation framework. The 10 machine learning algorithms included Least Absolute Shrinkage and Selection Operator Regression Algorithm (Lasso, “glmnet” R package), Ridge Regression Algorithm (Ridge, “glmnet” R package), Stepwise Cox Proportional Hazards Regression Algorithm (stepwise Cox, “stepwise” R package), CoxBoost Algorithm (CoxBoost, “CoxBoost” R package), Random Survival Forest Algorithm (RSF, “RandomForestSRC” R package), Elastic Net Regression Algorithm (Enet, “glmnet” R package), Partial Least Squares Regression To Cox Models Algorithm (plsRcox, “plsRcox” R package), Supervised Principal Components for regression Algorithm (SuperPC, “superpc” R package), Gradient Boosting Machine Algorithm (GBM, “gbm” R package), and Survival support vector machines Algorithm (survival-SVM, “survivalsvm” R package). For each model, we calculated the C-index on the training and validation sets. Then, we ranked the predictive performance of the models based on the average C-index. Finally, we selected a robust combination of algorithms.

Finally, we performed multivariate Cox regression analysis to further screen genes to construct HPRGS and established the risk score for quantification using the gene expression values and coefficients. The scoring formula is as follows:

[image: Formula for calculating risk score, represented as the sum from i equals one to n of Coefficient(i) multiplied by x(i).]	

Based on the scoring formula, we determined the risk score for each HCC patient in the TCGA-LIHC, LIRI-JP and HCC cDNA microarray cohorts and classified them into high-risk and low-risk groups based on the median risk score (24).




2.5 The evaluation of HPRGS

The “survival” package in R software was used to conduct survival analysis to investigate whether there was a significant difference in OS between low- and high-risk groups. The results were visualized using the “survminer” package in R software. Additionally, the “timeROC” package in R software was used to perform receiver operating characteristic (ROC) curve analysis to assess the sensitivity and specificity of risk scores in predicting OS in HCC patients.




2.6 Gene function analysis

The “org.Hs.eg.db, clusterProfiler, GOplot” packages in R software were used to perform gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for prognostic-related differentially expressed genes based on the gene set files “c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” from the Molecular signatures database (MSigDB). The enrichment of prognostic-related DEGs in GO and KEGG was calculated, and signaling pathways with multiple testing P<0.05 were obtained, displaying the biological processes (BP), cellular components (CC), molecular functions (MF), and pathways involved in the differentially expressed genes. Subsequently, gene set enrichment analysis (GSEA) was conducted to explore the biological differences between the high- and low-risk groups. Additionally, single-sample gene set enrichment analysis (ssGSEA) based on the “c1.hallmark.v7.4.symbols.gmt” gene set file from MSigDB was performed using the “GSVA” package in R software to calculate scores for 50 hallmark pathways. Then, the “limma” package in R software was used to analyze the significantly different pathways between the high-risk and low-risk groups, and the “Hmisc” package was used to calculate the correlation between the 50 hallmark pathways and risk scores (25). Furthermore, the “survival” package in R software was used to analyze the relationship between each pathway and OS.




2.7 Genomic variation analysis

Mutant-allele tumor heterogeneity (MATH) is a method that quantitatively measures intra-tumor heterogeneity (ITH) based on the distribution of mutant alleles. MATH scores are obtained through whole-exome sequencing of tumor and matched normal samples, providing a measurable and quantitative assessment of ITH, and the higher MATH scores were associated with more severe ITH (26). The prognostic significance of MATH has been explored in head and neck cancer, colorectal cancer, and breast cancer (27). In this study, the MATH algorithm was used to evaluate ITH in HCC patients. Additionally, to investigate somatic mutations associated with HCC, mutation waterfall plots were generated for HCC patients in the high- and low-risk groups using the “maftools” package in R software.




2.8 Analysis of immune microenvironment

To examine the association between risk scores and immune cell infiltration in the HCC tumor microenvironment, this study first used the ESTIMATE algorithm to calculate the abundance of stromal cells and immune cells, as well as tumor purity. Then, the CIBERSORT deconvolution algorithm was used to quantify the infiltration of 22 immune cell types (28). The anticancer immune cycle is an important component of tumor immunotherapy, consisting of seven key steps: cancer antigen release (step 1), cancer antigen presentation (step 2), priming and activation (step 3), immune cell trafficking to the tumor (step 4), immune cell infiltration into the tumor (step 5), T-cell recognition of cancer cells (step 6), and killing of cancer cells (step 7). These seven steps together constitute the anticancer immune cycle. The activity scores of the seven anticancer immune steps for TCGA-LIHC samples were obtained from the Tracking Tumor Immunophenotype (TIP) platform (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (29).




2.9 Drug sensitivity analysis

The “oncoPredict” package of R software was used to predict the chemotherapy sensitivity of HCC patients with different HPRGS based on the Genomics of Drug Sensitivity in Cancer (GDSC) database (30). The “oncoPredict” package of R software fits the tissue gene expression profiles of patients with the expression profiles of cancer cell lines to calculate the half maximal inhibitory concentration (IC50). Drugs with significant differences in IC50 between the high- and the low-risk group were screened.




2.10 Prediction of immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/) is used to assess the possibility of tumor immune evasion in the gene expression profiles of tumor samples (31). The Immunophenoscore (IPS) algorithm, which uses machine learning methods to calculate the IPS score based on unbiased gene expression of representative cell types (32). The IPS scores of TCGA-LIHC patient samples were obtained from the Cancer Immunome Atlas (TCIA, https://tcia.at/home) database. Based on the IPS score, immune checkpoint inhibitors (ICI) treatment was divided into the following four categories (1): CTLA4+/PD1+ treatment, (2) CTLA4+/PD1- treatment, (3) CTLA4-/PD1+ treatment, (4) CTLA4-/PD1- treatment.




2.11 Exploration of potential therapeutic drugs

We explored potential therapeutic drugs for patients with high-risk HCC based on previous protocols (33). First, we obtained drug sensitivity data of cancer cell lines (CCLs) from Cancer Therapeutics Response Portal (CTRP, https://portals.broadinstitute.org/ctrp) website and Profiling relative Inhibition Simultaneously In Mixtures (PRISM, https://depmap.org/portal/prism/) drug reuse resources, and obtained CCLs expression data from Cancer Cell Line Encyclopedia (CCLE) database. CTRP contains sensitivity data of 481 compounds to 835 CCLs, and PRISM contains sensitivity data of 1448 compounds to 482 CCLs. Both cohorts provide dose-response AUC values as a measure of drug sensitivity, with lower AUC values indicating increased sensitivity to treatment. In addition, as a first-line chemotherapeutic drug for HCC, we further selected gemcitabine to verify the scientificity and rigor of this method. We used the “Hmisc” package of R software to perform correlation analysis to further screen compounds with negative correlation coefficients between AUC values and HPRGS (setting the threshold R<-0.3). Then, we performed differential analysis of the selected drugs between high- and low- risk groups, and selected compounds with significantly lower AUC values in the high risk group. Connectivity Map (CMap, https://clue.io/) is a publicly available web tool for exploring candidate compounds that may target HPRGS-related pathways based on gene expression profiles (34, 35). Based on differential expression analysis and correlation analysis, we used CMap to identify potential compounds in HCC to further validate the results obtained from CTRP and PRISM databases.




2.12 Construction and evaluation of nomogram

Firstly, univariate and multivariate Cox regression analysis were used to evaluate the correlation with OS between different clinicopathological factors and HPRGS in TCGA-LIHC cohort. In both univariate and multivariate Cox analysis, factors with P<0.05 were determined to have an independent correlation with OS in patients with HCC. The “RMS” package of R software was used to construct the nomogram. The nomogram was constructed by combining HPRGS with other independent prognostic factors. To evaluate the predictive effect of the nomogram on patient prognosis, this study used the “RMS” package of R software to predict the prognostic calibration curves for 1-, 2-, and 3-year survival rates in the TCGA-LIHC cohort. Then, the timeROC R package was used for 1-, 2-, and 3-year ROC curve analysis to evaluate the sensitivity and specificity of the nomogram in predicting OS in HCC patients.




2.13 Statistical analysis

All statistical analyses in this study were performed using R studio (versions: R 4.1.0 and R 4.3.0). Continuous variables were analyzed using the Wilcoxon rank-sum test. Categorical variables were statistically compared using the chi-square test. Unless otherwise specified, statistical significance was set at P <0.05.





3 Results



3.1 Identification of prognostic genes and functional annotations related to HCC

The flow chart of this study is shown in Figure 1. To identify the differential genes in HCC, differential expression analysis was performed on normal and HCC tissues in TCGA-LIHC, GSE13845, GSE25097, GSE84402, and GSE174570 cohorts. The specific results were 5,703 differential genes screened from TCGA-LIHC cohort (Figure 2A), 5,346 from the GSE25097 cohort (Figure 2B), 1,230 from the GSE13845 cohort (Figure 2C), 1,403 from the GSE84402 cohort (Figure 2D), and 399 from the GSE174570 cohort (Figure 2E) (Supplementary Table 1). Further intersection analysis of the differential genes resulted in 119 common differentially expressed genes (DEGs) (Figure 2F). Through univariate Cox analysis of these 119 DEGs, 53 genes with prognostic significance were selected for subsequent analysis (all P<0.05, Figure 2G).

[image: Flowchart detailing a scientific process for identifying and evaluating HPRG genes. It starts with data collection from sources like GDC and GEO, progresses through DEG analysis and uniCox, and identifies HPRG genes. Machine learning is used to construct the HPRG score (HPRGS), followed by evaluation with an ROC curve and subgroup analysis. Characteristics of HPRGS are analyzed in bulk transcriptome and genome, along with correlation with the immune microenvironment. Treatment strategies like TACE and drug therapy are evaluated. The process concludes with the establishment and verification of a nomogram for predicting clinical outcomes.]
Figure 1 | The entire analytical process of the study.

[image: Volcano plots for datasets TCGA-LIHC (A), GSE25097 (B), GSE13845 (C), GSE84402 (D), and GSE174570 (E) show differentially expressed genes categorized as upregulated, downregulated, or normal. Panel F presents a Venn diagram illustrating overlap between datasets. Panel G displays a forest plot of hazard ratios with confidence intervals for various genes. Panel H is a bar graph showing gene ontology enrichment, specifying biological processes, cellular components, molecular functions, and KEGG pathways, with gene counts for each category.]
Figure 2 | The identification and functional annotation of prognostic genes in HCC. The volcano plots showed the differentially expressed genes in TCGA-LIHC cohort (A), GSE25097 cohort (B), GSE13845 cohort (C), GSE84402 cohort (D), and GSE174570 cohort (E). (F) The venn plot illustrated the overlapping differentially expressed genes in multiple cohorts, including TCGA-LIHC, GSE25097, GSE13845, GSE84402, and GSE174570. (G) The forest plot depicted the common differentially expressed genes associated with the prognosis of HCC. (H) The results of the enrichment analysis for GO and KEGG were presented.

To explore the function of prognosis-related differential genes, we performed GO and KEGG enrichment analysis on the 53 genes with prognostic significance. GO enrichment analysis showed that these genes were highly enriched in DNA replication regulation, apoptotic nuclear changes, cell component disassembly involved in apoptotic execution, macrophage activation regulation, positive regulation of phagocytosis, steroid catabolism, immune effect process regulation, and immune response activation. KEGG enrichment analysis showed that these genes were highly enriched in the P53 signaling pathway, cellular senescence, histidine metabolism, and cell cycle pathways (Figure 2H).




3.2 Construction of HCC HPRGS

TCGA-LIHC cohort was used as the training cohort, and the LIRI-JP cohort was used as the validation cohort. During the training process, 101 prediction models were combined using a 10-fold cross-validation framework, and the C-index was calculated for all training and validation cohorts (Figure 3A). Among the models constructed using 101 machine learning algorithms, the average C-index evaluation showed that although the first four prediction models performed well in the training cohort, their performance in the validation cohort was significantly different, indicating possible overfitting. Therefore, these models that overfit the training cohort were excluded from further selection. Subsequently, the CoxBoost+GBM model was selected because it exhibited good predictive ability in both the validation cohort and the training cohort (C-index > 0.7). The model included 10 genes (LCAT, CCDC34, SOCS2, EZH2, ANXA10, TPX2, ZIC2, ECT2, TMEM106C, and VSIG4), and further model construction was performed using multivariable Cox analysis to identify four key genes (SOCS2, LCAT, ECT2, and TMEM106C). Subsequently, the expression levels of these four genes were weighted using regression coefficients from the Cox model to calculate the risk score for each patient (Figure 3B). We defined this signature as HPRGS, with the formula: HPRGS = 0.245484853986847*TMEM106C gene expression + 0.233006449350621*ECT2 gene expression - 0.4709503811778*SOCS2 gene expression - 0.161437679389049*LCAT gene expression. Based on the median value of HPRGS, all patients in the training cohort and validation cohort were divided into high- and low-risk groups. In both the validation cohort and the training cohort, the number of deaths increased gradually with increasing HPRGS scores (Figures 3C, D). Further survival analysis showed that in the training cohort, the OS of patients in the high-risk group was significantly lower than that in the low-risk group (P<0.001, HR=3.04, Figure 3E), and consistent results were observed in the validation cohort (P<0.001, HR=4.06, Figure 3F).

[image: Composite image showing multiple data visualizations: A) A heatmap displays C-index values for different models across two cohorts, TCGA-LIHC and ICGC-LIRI. B) A bar chart illustrates gene coefficients, showing SOCS2 and LCAT with positive, and ECT2, TMEM106C with negative values. C and D) Risk score plots with survival data for TCGA-LIHC and LIRI-JP cohorts, differentiating low and high risk groups, marked as alive or dead. E and F) Kaplan-Meier survival curves compare overall survival between low and high risk groups in TCGA-LIHC and LIRI-JP cohorts, with hazard ratios and p-values.]
Figure 3 | The development of a prognostic signature for HCC. (A) A total of 101 kinds of prediction signatures via a ten-fold cross-validation framework and further calculated the C-index of each signatures across all validation datasets. (B) The barplot showed the regression coefficients of 4 genes obtained in multivariate Cox regression. The risk factor plot of the TCGA-LIHC cohort (C) and the LIRI-JP cohort (D). The Kaplan–Meier curves of OS according to the HPRGS in the TCGA-LIHC cohort (E) and LIRI-JP cohort (F).




3.3 Evaluation of HCC HPRGS

To evaluate the prognostic effectiveness of HPRGS, ROC curve analysis was conducted. In TCGA-LIHC training cohort, the AUCs of HPRGS reached 0.786, 0.757, and 0.736 at 1-, 2-, and 3-years, respectively, and in the LIRI-JP validation cohort, they reached 0.700, 0.723, and 0.713, respectively (Figures 4A, E). Then, the clinical information (including age, sex, grade, and stage) for each patient in the training cohort was compared with their corresponding HPRGS through ROC curve analysis. The results showed that the prognostic effectiveness of HPRGS at 1-, 2-, and 3-years was better than other clinical characteristics (Figures 4B–D), and consistent results were obtained in the validation cohort (Figures 4F–H). Furthermore, they were compared with nine published HCC prognostic models, including the anoikis-related genes signature (ARG) (36), lactic acid metabolism-related gene signature (LMRG) (37), cuproptosis-related gene signature (CRG) (19), epithelial-mesenchymal transition-related gene signature (EMTRG) (38), fatty acid metabolism gene signature (FMRG) (39), cancer-associated fibroblast signature (CFG) (40), necroptosis-related gene signature (NRG) [21], inflammatory response-related gene signature (RRG) (41), and immunotherapy-related gene signature (IRG) (17). We used the C-index to evaluate the predictive ability of the models, and the results showed that HPRGS had the highest C-index in both the training and validation cohorts (Figures 4I, J). These results indicated that the HPRGS has good accuracy in predicting the prognosis of patients with HCC.

[image: Grouped image with panels A to J showing ROC curves and bar graphs. Panels A-D display ROC curves for TCGA-LIHC, showing performance metrics like AUC for different factors such as age and gender. Panels E-H show similar ROC curves for LIRI-JP. Panels I and J present bar graphs comparing C-index values for different gene groups in TCGA-LIHC and LIRI-JP datasets, highlighting HPRGs, ARGs, and others.]
Figure 4 | The assessment of HPRGS. ROC curves showed the specificity and sensitivity of HPRGS and clinical characteristics in predicting 1, 2, and 3-year OS in the TCGA-LIHC cohort (A–D) and LIRI-JP cohort (E–H). C-index of 10 prognostic signatures in TCGA-LIHC (I) and LIRI-JP (J).

In addition, since clinical features are commonly used in clinical practice to assess the prognosis of patients with HCC, subgroup analysis was performed on high- and low-risk groups of patients with HCC based on age (Supplementary Figures 1A, B), sex (Supplementary Figures 1C, D), pathological grade (Supplementary Figures 1E, F), and pathological stage (Supplementary Figures 1G, H) in the training cohort. Similar to the results in the training and validation cohorts, patients with HCC in the high-risk group with different clinical characteristics exhibited poorer survival rates than the low-risk group (all P<0.05). In addition, ROC curve analysis showed that HPRGS had comparable predictive ability at 1-, 2-, and 3-years for patients with different clinical characteristics.




3.4 Biological functions of patients in high- and low-risk groups

To further explore the differences in biological functions between patients in high- and low-risk groups, we performed functional enrichment analysis on the DEGs in these two groups. In the gene set enrichment analysis (GSEA) based on the GO gene set, the low-risk group was highly enriched in amino acid catabolism, amino acid metabolism, cellular amino acid catabolism, fatty acid oxidation, and fatty acid catabolism, whereas the high-risk group was highly enriched in adaptive immune response, B cell activation, B cell receptor signaling pathway, cell division, and chromosome segregation (Figures 5A, B). The GSEA based on the KEGG gene set showed that the low-risk group had higher activity in complement and coagulation cascades, drug metabolism cytochrome P450, fatty acid metabolism, amino acid metabolism, and fatty acid catabolism, whereas the high-risk group had higher activity in cell adhesion molecules, cell cycle, and DNA replication (Figures 5C, D).
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Figure 5 | Disparities in biological functionality between high- and low-risk groups. GO terms enriched in the low- (A) and high-risk group (B) by GSEA analysis. KEGG terms enriched in the low- (C) and high-risk group (D) by GSEA analysis. Differences in hallmark pathway activities between the high- and low-risk groups scored by GSVA (E).Correlation between the HPRGS and hallmark pathway activities scored by GSVA (F). (G) The forest map depicted the relationship between hallmark pathway activities scored by GSVA and OS in the TCGA-LIHC cohort.

Further GSVA analysis based on the hallmark gene set revealed that the high-risk group had higher activity in G2/M checkpoint, E2F transcription factors, mTOR signaling pathway, PI3K-AKT-mTOR signaling pathway, whereas the low-risk group had higher activity in lipogenesis, fatty acid metabolism, bile acid metabolism, and oxidative phosphorylation (Figure 5E). Additionally, the correlation analysis between HPRGS and the scores of oncogenic-related hallmarks indicated that HPRGS was closely related to cancer-related biological processes and metabolic pathways (Figure 5F). To investigate whether the oncogenic-related hallmark scores were associated with the prognosis of patients with HCC, we performed a survival analysis. The results showed that the pathways positively correlated with HPRGS, such as the G2/M checkpoint, E2F transcription factors, mTOR signaling pathway, and PI3K-AKT-mTOR signaling pathway, were adverse prognostic factors for patients with HCC. In contrast, the pathways negatively correlated with HPRGS, such as lipogenesis, fatty acid metabolism, bile acid metabolism, and oxidative phosphorylation, were associated with good prognosis (all P<0.05, Figure 5G). In our study, we found that the biological functions of patients in the high-risk group were mainly enriched in functions and pathways related to cancer development, whereas the biological functions of patients in the low-risk group were mainly enriched in metabolic-related functions and pathways. The activation or inhibition of these pathways may contribute to the different prognostic outcomes observed in the high- and low-risk groups.




3.5 Genomic variation landscapes and intratumor heterogeneity in high- and low-risk patient groups

ITH, as a cancer genomic feature, results from the accumulation of gene mutations (42). Studies have confirmed that ITH is positively correlated with chemotherapy resistance in malignant tumors (43). The calculation results showed that in high-risk patients with HCC, the MATH score was relatively high, indicating a more severe degree of ITH (P<0.01, Figure 6A). To investigate the relationship between ITH and prognosis in patients with HCC, a survival analysis was conducted. The results showed that the MATH score was positively correlated with poor prognosis in patients with HCC (P = 0.018, HR = 1.54, Figure 6B). By combining the MATH score with HPRGS, the prognosis of patients in the “high-risk + high-MATH” group was significantly worse than that of patients in the “low-risk + low-MATH” group (P<0.001, Figure 6C).
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Figure 6 | The genomic disparities between high- and low-risk populations. (A) Violin plot showed MATH scores between the high- and low-risk groups. (B) Kaplan-Meier curve shows the difference in OS between high- and low-MATH score groups. (C) Kaplan-Meier curve analysis for OS by combining the MATH score and the HPRGS risk score. The waterfall plot of the somatic mutation landscape in high- (D) and low-risk patients (E) in the TCGA-LIHC cohort. (F) The waterfall plot of the differential somatic mutation landscape in high- and low-risk groups. ns P>0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.

To explore the differences in genomic mutation frequencies between the high- and low-risk groups, we depicted the mutation landscapes of both groups. The results showed distinct mutation spectra between the high- and low-risk groups (Figures 6D, E). As shown in the figure, TP53 was the most common mutated gene in the high-risk group, whereas CTNNB1 was the most common mutated gene in the low-risk group. To further analyze, we combined the top 10 mutated genes in the high- and low-risk groups and conducted a differential analysis to investigate whether there were differences in mutation rates between the two groups. After removing duplicate genes, 14 genes were obtained, among which TP53 and OBSCN had significantly different mutation frequencies between the high- and low-risk groups, with higher mutation frequencies in the high-risk group (both P<0.05, Figure 6F).




3.6 Patients in high- and low-risk groups have different tumor immune microenvironments

To assess the immune infiltration status of patients with HCC, this study used the ESTIMATE algorithm to calculate the immune score, stromal score, comprehensive score, and tumor purity score of the high- and low-risk groups. The results showed that the high-risk group performed poorly in the comprehensive score of the microenvironment, whereas the tumor purity score was relatively high (all P<0.05, Figure 7A). To further explore the differences in specific immune cell infiltration between high- and low-risk groups, we quantitatively analyzed the abundance of immune cell infiltration in each sample using the CIBERSORT deconvolution algorithm. The results showed that the tumor immune microenvironment of patients in the high-risk group was rich in regulatory T cells, M0 macrophages, activated memory CD4+ T cells, follicular helper T cells, M1 macrophages, and neutrophil infiltration. In contrast, the tumor immune microenvironment of patients in the low-risk group was rich in resting memory CD4+ T cells and monocytes (all P<0.05, Figure 7B). The correlation analysis results were also similar (Figure 7C). In addition, we explored the relationship between different tumor microenvironment (TME) cell types and OS in patients with HCC. The results showed that the infiltration abundance of six cell types was correlated with the prognosis of patients with HCC (all P<0.05, Figure 7D). Combining the results of differential analysis, correlation analysis, and survival analysis, we finally identified two types of intersecting cells, namely, resting memory CD4+ T cells and M0 macrophages (Figure 7E). This may mean that the infiltration of these two immune cells is of significant importance in the prognosis and development of HCC.
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Figure 7 | Disparities in the immune microenvironment between high- and low-risk groups. (A) The violin plots showed the differential between low- and high-risk groups in immune score, stromal score, the ESTIMATE score, and the tumor purity. (B) The abundance of each infiltrated cell type between high- and low-risk groups, quantified by the CIBESORT algorithm. (C) Correlation analysis between infiltrated cells and HPRGS. (D) Kaplan-Meier curves showed the association between the abundance of 6 infiltrated cell types and OS. (E)Venn plot showed the intersecting cell types of differential analysis, correlation analysis, and survival analysis. (F) The histogram showed the difference in the seven-step anti-cancer immunity cycle activity between high- and low-risk populations. ns P>0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.

Given the complexity of intratumoral immune responses and the microenvironment, the degree of immune cell infiltration alone cannot fully reflect immune activation and exhaustion. By assessing the activity of various aspects of the anti-cancer immune cycle, a deeper understanding of the role of immune cells in the anti-tumor process can be achieved, thereby improving the accuracy of immunotherapy guidance [49]. Calculations revealed that the high-risk group performed more prominently in antigen release from cancer cells, recruitment of regulatory T cells, infiltration of tumor-suppressing myeloid cells derived from bone marrow, recognition of cancer cells by T cells, and cancer cell killing (all P<0.05, Figure 7F). These results suggest that the high-risk group may exhibit a reduced anti-cancer efficacy in the immune cell function cycle compared to the low-risk group.




3.7 Evaluation and prediction of HCC treatment strategies

To explore the application of HPRGS in predicting the treatment response of HCC, including tumor volume doubling time (TVDT), response to transarterial chemoembolization (TACE) treatment, and prediction of immune and targeted drug treatment responses, potential therapeutic drugs for patients in the high-risk group were explored.



3.7.1 Prediction of the response to transarterial chemoembolization

In the GSE54236 cohort, we observed a negative correlation between HPRGS and TVDT (R = -0.489, P < 0.001, Figure 8A). Additionally, in the GSE14520 cohort, a correlation between HCC and tumor size was further confirmed, with higher HPRGS observed in patients with larger tumors compared to those with smaller tumors (P< 0.01, Figure 8B). Subsequently, HPRGS was used for validation in the GSE104580 cohort, and the results showed that the proportion of responders was higher in the low-risk group than in the high-risk group (70% vs. 41%, Figure 8C). Furthermore, the AUC value for predicting the TACE treatment response rate in patients with HCC using HPRGS was 0.662 (CI: 0.574–0.750, Figure 8D). Therefore, HPRGS can be used to predict the efficacy of TACE treatment in patients with HCC.
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Figure 8 | Differences in benefit from different treatment options in the high- and low- risk groups. (A) Correlation between HPRGS score and TVDT in GSE54236. (B) The boxplot showing the difference in main tumor size between high- and low-risk populations in GSE14520. (C) Comparing TACE treatment response rates between high- and low-risk populations in GSE104580. (D) ROC curve to predict TACE treatment response using the HPRGS score. (E)The cloud rain plot showed the difference in TIDE scores between high- and low-risk groups. (F) Comparing the immunotherapy response rate predicted by TIDE algorithm between high- and low-risk populations. (G) The violin plots showed the difference in IPS scores between high- and low-risk groups. (H) Sensitivity comparison of small molecule drugs in high - and low-risk groups. (I) Comparison of estimated gemcitabine’s sensitivity between high and low SOCS3 expression groups. (J) Barplot of CMap scores for the top 5 drugs in the high-risk group. (K)The results of Spearman’s correlation analysis of CTRP-derived compounds and PRISM-derived compounds. (L)The results of differential drug response analysis of CTRP-derived compounds and PRISM-derived compounds, the lower values on the y-axis of boxplots imply greater drug sensitivity. *P < 0.05, **P < 0.01, and ***P < 0.001.




3.7.2 Prediction of immunotherapy sensitivity

To predict the sensitivity of patients with HCC in the high and low-risk groups to immunotherapy, patients in the low-risk group exhibited higher TIDE scores and a higher immunotherapy response rate. This suggests that patients in the low-risk group may benefit more from ICI treatment (P< 0.001, Figures 8E, F). Further IPS scoring analysis revealed that compared to the high-risk group, the low-risk group had significantly higher IPS scores for PD-1 and CTLA4 inhibitors, indicating that patients in the low-risk group were more sensitive to PD-1 and CTLA4 inhibitor treatments than those in the high-risk group (both P< 0.05, Figure 8G). In summary, patients in the low-risk group are more likely to benefit from immunotherapy.




3.7.3 Drug sensitivity analysis

Drug resistance is currently a major cause of poor prognosis in tumors, and the emergence of drug resistance seems to be an inevitable consequence of tumor exposure to kinase-targeted therapy (44). Therefore, we used the GDSC database to predict drug sensitivity in patients with HCC with different HPRGS. The results showed that the IC50 of 5-fluorouracil, gemcitabine, sorafenib, cabozantinib, and sunitinib was significantly lower in the high-risk group, whereas the IC50 of axitinib, erlotinib, and gefitinib was significantly lower in the low-risk group (all P< 0.05, Figure 8H). These findings suggest that patients in the low-risk group may respond better to axitinib, erlotinib, and gefitinib treatment, whereas patients in the high-risk group may be more sensitive to 5-fluorouracil, gemcitabine, sorafenib, cabozantinib, and sunitinib.




3.7.4 Exploration of potential drugs for high-risk group patients

To explore potential therapeutic drugs for high-risk patients with HCC, we analyzed data based on the CTRP database and the relative inhibition database in PRISM (45). To ensure the reliability of our plan, gemcitabine was used as a reference drug to study whether the estimated sensitivity was consistent with clinical practice. An experimental study showed that increased resistance to gemcitabine in HCC was associated with decreased SOCS3 expression, whereas increased SOCS3 expression could inhibit resistance to gemcitabine in HCC (45). Consistent with this study, our results confirmed that patients with higher SOCS3 expression levels had significantly lower predicted AUC values, indicating higher sensitivity to gemcitabine (P < 0.001, Figure 8I). Next, we used this formula to identify potentially sensitive drugs for high-risk group patients and screened out 31 drugs in CTRP and PRISM. The predicted AUC values of these drugs were statistically negatively correlated with HPRGS and were significantly lower in the high-risk group (all R < -0.3, Figure 8J). In addition, based on the difference analysis between the high- and low-risk groups of HCC (all P < 0.001, Figure 8K), we further applied the CMap tool to determine the candidate compounds of HCC. After cross-analysis of the results obtained from CTRP and PRISM, we finally screened out five potential candidate compounds: the tyrosine kinase inhibitor linifanib, cytochalasin B, puromycin, amifetipine, and simvastatin. Among them, linifanib exhibited high sensitivity in the high-risk patient population with a CMap score of -95.88, indicating that it may be a potential therapeutic drug for high-risk group patients (Figure 8L).





3.8 Construction and evaluation of nomogram

To enhance the clinical utility of HPRGS, univariate and multivariate Cox regression analysis was performed on patients with HCC in TCGA-LIHC cohort. The results showed that in univariate analysis, HPRGS were independent prognostic factors for OS (HR>1, P<0.001, Figure 9A). In multivariate analysis, HPRGS remained independent prognostic factors for OS (HR>1, P<0.001, Figure 9B), indicating that HPRGS have reliable prognostic evaluation ability in patients with HCC. We constructed a nomogram by combining the HPRGS and independent prognostic clinicopathological characteristics (Figure 9C).
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Figure 9 | Establishment and verification of the nomogram. Univariate (A) and multivariate (B) analyses of the clinical characteristics and HPRGS for the OS in the TCGA-LIHC cohort. (C) Construction of the nomogram based on the HPRGS and independent prognostic clinical characteristics. (D) Calibration curve of the nomogram for 1-, 2-, and 3-year OS. (E) ROC curves showed the prediction performance of the nomogram in 1-, 2-, and 3-year OS. (F) The comparison of the AUC between the nomogram and other clinical characteristics. (G) Decision curve analysis showed net benefits by applying a nomogram and other clinical features at 1-, 2-, and 3-year OS.

The calibration curve showed excellent consistency between the nomogram predictions and actual observations (Figure 9D). ROC curve analysis showed that the AUC values of the nomogram at 1-, 2-, and 3-years were 0.814, 0.760, and 0.788, respectively, confirming its high prediction accuracy (Figure 9E). In addition, the multi-index AUC curve graph confirmed the stability and robustness of the nomogram, which was superior to other clinical characteristics in predicting 1- to 5-year survival rates (Figure 9F). Decision curve analysis at 1-, 2-, and 3-years showed that the nomogram had better net clinical benefit compared to other clinical characteristics (Figure 9G). These findings revealed that the nomogram can provide reliable and accurate evidence for personalized prognosis prediction in HCC.




3.9 Verification of HPRGS in HCC cDNA microarray cohorts

To verify the accuracy of HPRGS in the real world, we further validated HPRGS in HCC cDNA microarray cohorts using qRT-PCR. Firstly, the results of the differential analysis showed that SOSC2 and LCAT genes were highly expressed in normal tissues, and ECT2 and TMEM106C were overexpressed in tumor tissues, regardless of paired or unpaired samples (all P<0.05, Figures 10A–H). Then, K-M curve analysis showed that SOSC2 and LCAT were positively correlated with good prognosis, whereas ECT2 and TMEM106C were positively correlated with poor prognosis, which was consistent with previous findings (all P<0.05, Figures 10I–L). Finally, patients were divided into high- and low-risk groups by using the median risk score. The results showed that HPRGS were positively correlated with poor prognosis in HCC cDNA microarray cohorts (P<0.05, Figures 10M, N), and 1-, 2-, and 3-year ROC curves exhibited excellent predictive efficacy (the AUCs of HPRGS were 0.750, 0.797, and 0.722 at 1-, 2-, and 3-years, respectively; Figure 10O).
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Figure 10 | Verification of HPRGS by qRT-PCR in HCC cDNA microarray cohorts. Differential expression of SOCS2 among paired samples (A) and unpaired samples (B) in HCC cDNA microarray by qRT-PCR. Differential expression of LCAT among paired samples (C) and unpaired samples (D) in HCC cDNA microarray by qRT-PCR. Differential expression of ECT2 among paired samples (E) and unpaired samples (F) in HCC cDNA microarray by qRT-PCR. Differential expression of TMEM106C among paired samples (G) and unpaired samples (H) in HCC cDNA microarray by qRT-PCR. The Kaplan–Meier curves showed the prognosis of the patients grouped by the median expression value of SOCS2 (I), LCAT (J), ECT2 (K), TMEM106C (L) in HCC cDNA microarray cohorts. (M) The risk factor plot of the HCC cDNA microarray cohorts. (N) The Kaplan–Meier curves of OS according to the HPRGS in the HCC cDNA microarray cohort. (O) ROC curves showed the specificity and sensitivity of HPRGS and clinical characteristics in predicting 1-, 2-, and 3-year OS in the HCC cDNA microarray cohort. **P < 0.01 and ***P < 0.001.





4 Discussion

In this study, we used a new computing framework to identify stable and reliable prognostic features. Through validation, the HPRGS we constructed has good predictive performance. In addition, we explained the potential reasons for the prognostic differences in different HPRGS groups through mutation, immune infiltration, and functions analysis, and guided clinical diagnosis and treatment through drug sensitivity analysis and the construction of nomograms.

The framework includes 10 machine learning algorithms and 101 combinations (46). We used this framework to screen genes and construct a prognostic model with high predictive accuracy and interpretability through multivariable Cox regression analysis. In recent years, with the advancement of high-throughput sequencing technologies, the development of cancer prediction models based on gene expression has become a significant research focus. Notably, models such as the prognostic signature constructed by Tang et al. based on genes associated with aging (47), the prognostic signature by Chen et al. based on features regulating glycosylation (48), and the prognostic signature by Guo et al. related to genes associated with the heterogeneity of NK cells (49), have all demonstrated excellent predictive efficacy. However, most current research is predicated on specific gene sets (50, 51), often overlooking the roles of other genes outside these defined sets. Machine learning can leverage its capacity for dimensionality reduction and variable selection in large datasets to identify and incorporate the most critical variables in model construction. Additionally, in this study, we compared our recently published models and found that our HPRGS has a favorable prognostic predictive role for HCC patients. Using survival analysis and single and multivariable Cox analysis, we found that HPRGS can stratify the risk of patients with HCC in terms of OS and are independent prognostic factors. In addition, the predictive accuracy of HPRGS is significantly better than other clinical features. The stability of prognostic stratification among clinical subgroups further confirms the robustness of HPRGS.

In our study, the biological functions of patients with HCC in the high-risk group were mainly enriched in functions and pathways related to cancer development, such as cell division, cell adhesion molecules, cell cycle, and DNA replication. Conversely, the biological functions of patients with HCC in the low-risk group were mainly enriched in metabolism-related functions and pathways. The activation or inhibition of these pathways may affect the different prognostic outcomes observed in the high- and low-risk groups. In addition, the hallmark pathway positively correlated with HPRGS is considered to be an oncogenic pathway, including the MYC and PI3K-AKT-mTOR signaling pathways. As mentioned earlier, these pathways show abnormal hyperactivation in various types of cancer. This abnormal hyperactivation has been shown to drive cancer cell proliferation, invasion, and metastasis, and is usually associated with poor clinical prognosis (52, 53). We explored the mutation spectrum and ITH of patients in different high- and low-risk groups. Previous studies have shown that the higher the degree of ITH, the higher the possibility of tumor infiltration and drug resistance (54). This finding is consistent with our observations that patients in the high-risk group have relatively higher drug resistance and poor clinical prognosis compared to the low-risk group.

In the high-risk group, the mutation rates of TP53 and OBSCN genes increased significantly. TP53 is a well-known tumor suppressor gene, and its mutation is closely related to the poor prognosis of HCC (33). An increasing number of studies have confirmed that p53 has a significant impact on the metabolism of normal cells and cancer cells. In tumor cells, mutant p53 can positively regulate glycolysis, whereas negatively regulates cell production, tricarboxylic acid cycle, and lipid metabolism (55, 56). In addition, a large number of copy number changes and mutations have been observed in the OBSCN gene in many cancer types. Some studies on this gene have also demonstrated that the decrease or alteration of OBSCN gene expression largely disrupts cell integration and activates the occurrence of cancer; furthermore, several studies on OBSCN gene mutations have revealed its potential role in melanoma, glioblastoma, colorectal cancer, lung cancer, breast cancer, and pancreatic cancer. Therefore, the OBSCN gene may have the characteristics of a tumor suppressor gene and can prevent cell transformation (57–59). Further studies have explored the immune microenvironment of patients with HCC in the high- and low-risk groups and the results showed that the high-risk group had more infiltrating regulatory T cells, but there was higher infiltration of resting memory CD4+ T cells in the low-risk group. In addition, through the analysis of immune function and anti-tumor immune cycle, the immune effector cell activity of the high-risk group was lower, suggesting that the TME of the high-risk group patients may be in a suppressed state.

HCC exhibits significant heterogeneity in molecular characteristics and biological behavior, posing significant challenges for clinicians in managing cancer patients (60). Therefore, it is crucial to predict the best treatment strategy before treatment to improve patient prognosis and minimize treatment-related costs. Hence, there is an urgent need to optimize personalized treatment plans for HCC. The HPRGS developed in this study can predict the efficacy of TACE treatment for patients with HCC. Although TACE is considered the preferred treatment for patients with intermediate-stage HCC, studies have shown that its ORR is only 52.5% (61). Therefore, it is particularly important to seek better predictors of TACE treatment response. Previous studies have revealed that patients with shorter TVDT often have lower survival rates, increased risk of recurrence, and poor response to TACE treatment (62, 63). Accurate prediction of TVDT can help avoid overdiagnosis and overtreatment, reduce economic losses, and improve patient quality of life without negatively affecting prognosis (64). In this study, patients in the high-risk group had shorter TVDT and lower response rates to TACE treatment compared to those in the low-risk group. This finding is consistent with previous studies. ICI has brought significant survival benefits to cancer patients by activating the immune system to eliminate cancer cells (65). However, its clinical application is limited by its low response rate in cancer treatment (66). This study used TIDE and IPS algorithms to predict that patients in the low-risk group had lower TIDE scores, higher immunotherapy response rates, and higher IPS scores. This suggests that patients in the low-risk group may exhibit better outcomes in receiving ICI treatment compared to those in the high-risk group. Furthermore, we predicted the sensitivity of small-molecule drugs in the treatment of HCC in both high- and low-risk groups. The results showed significant differences in IC50 values between the two groups, which may help improve the precision of treatment plans and achieve more effective liver cancer treatment. Interestingly, the high-risk group exhibits increased sensitivity to 5-fluorouracil and gemcitabine, two drugs that affect DNA synthesis, which may be related to the significant activation of pathways such as the cell cycle and DNA replication in the high-risk group. Because the above studies suggest that patients in the low-risk group may benefit more from immunotherapy, we integrated the results of CTRP, PRISM, and CMap to specifically identify drugs that may be effective for patients in the high-risk group (33–35). Finally, we identified the tyrosine kinase inhibitor lenvatinib as a potential drug for patients in the high-risk group. Lenvatinib (ABT-869) is a tyrosine kinase inhibitor whose anti-angiogenic activity has been explored in many clinical trials (67). Given its potential efficacy in the HPRGS high-risk group of patients with HCC, this finding may provide a reference for future research. To provide a convenient tool for quantifying HCC survival analysis, we constructed a nomogram that integrates HPRGS and independent prognostic clinical features. The nomogram exhibits good discrimination, and ROC curves, C-indices, and calibration curves indicate its high predictive accuracy. Decision curve analysis showed that the nomogram outperforms other clinical features in terms of net clinical benefit.

Although our study has yielded promising results, several limitations should be acknowledged. First, the limited clinical data available in the public cohort may have masked potential associations between HPRGS and certain clinical variables. Therefore, it is necessary to conduct more comprehensive and standardized data collection to further explore the clinical value of HPRGS. Second, although we evaluated and validated the HPRGS in training and validation cohorts, large-scale, multicenter prospective studies are needed to further confirm our findings. In addition, in vitro and in vivo studies are required to reveal the biological functions of HPRGS-related genes in HCC. Finally, although we predicted the sensitivity of high- and low-risk groups to various small-molecule drugs, our predictions need to be validated through in vitro drug screening and clinical trials. Despite these limitations, our findings provide useful insights for risk assessment and precision medicine treatment of HCC and lay a foundation for further research in this area.




5 Conclusions

In conclusion, our study presents the development and validation of the HPRGS, offering a potent tool for predicting survival outcomes and treatment responses in HCC patients. The signature’s ability to delineate distinct subgroups with unique pathway activities and tumor microenvironments provides insights into HCC heterogeneity. Moreover, our exploration of potential therapeutic agents for high-risk patients, aiming to improve prognoses and refine treatment strategies in HCC management.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Materials. Further inquiries can be directed to the corresponding authors.





Ethics statement

The studies involving humans were approved by Shanghai Outdo Biotech Co.,Ltd. Ethics No.SHYJS-CP-1707015. The studies were conducted in accordance with the local legislation and institutional requirements. The human samples used in this study were acquired from primarily isolated as part of your previous study for which ethical approval was obtained. Written informed consent for participation was not required from the participants or the participants’ legal guardians/next of kin in accordance with the national legislation and institutional requirements.





Author contributions

SZ: Conceptualization, Formal analysis, Investigation, Methodology, Software, Supervision, Visualization, Writing – original draft, Writing – review & editing. ZS: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Software, Writing – original draft, Writing – review & editing. YH: Conceptualization, Data curation, Methodology, Software, Visualization, Writing – original draft. LY: Conceptualization, Data curation, Investigation, Writing – original draft. GZ: Conceptualization, Methodology, Visualization, Writing – original draft. JC: Conceptualization, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing. LL: Conceptualization, Data curation, Formal analysis, Project administration, Supervision, Validation, Visualization, Writing – review & editing. ZL: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Joint Funds for the Innovation of Science and Technology, Fujian Province (No.2023Y9342). Special Grant for Education and Scientific Research of Fujian Provincial Department of Finance (Fujian Finance Document (2023) 834).




Acknowledgments

We sincerely thank the researchers and study participants for their contributions to this study. We are also grateful to the data providers of the various public databases.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1454977/full#supplementary-material


References
	1. Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I, Jemal, A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660
	2. Park, JW, Chen, M, Colombo, M, Roberts, LR, Schwartz, M, Chen, PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int. (2015) 35:2155–66. doi: 10.1111/liv.12818
	3. Kim, E, and Viatour, P. Hepatocellular carcinoma: old friends and new tricks. Exp Mol Med. (2020) 52:1898–907. doi: 10.1038/s12276-020-00527-1
	4. Brown, ZJ, Tsilimigras, DI, Ruff, SM, Mohseni, A, Kamel, IR, Cloyd, JM, et al. Management of hepatocellular carcinoma: A review. JAMA Surg. (2023) 158:410–20. doi: 10.1001/jamasurg.2022.7989
	5. Llovet, JM, Ricci, S, Mazzaferro, V, Hilgard, P, Gane, E, Blanc, JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. (2008) 359:378–90. doi: 10.1056/NEJMoa0708857
	6. Cheng, AL, Kang, YK, Chen, Z, Tsao, CJ, Qin, S, Kim, JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. (2009) 10:25–34. doi: 10.1016/s1470-2045(08)70285-7
	7. Kudo, M, Finn, RS, Qin, S, Han, KH, Ikeda, K, Piscaglia, F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. (2018) 391:1163–73. doi: 10.1016/s0140-6736(18)30207-1
	8. Cheng, AL, Qin, S, Ikeda, M, Galle, PR, Ducreux, M, Kim, TY, et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. (2022) 76:862–73. doi: 10.1016/j.jhep.2021.11.030
	9. Ronot, M, Chernyak, V, Burgoyne, A, Chang, J, Jiang, H, Bashir, M, et al. Imaging to predict prognosis in hepatocellular carcinoma: current and future perspectives. Radiology. (2023) 307:e221429. doi: 10.1148/radiol.221429
	10. Sammarco, G, Varricchi, G, Ferraro, V, Ammendola, M, De Fazio, M, Altomare, DF, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci. (2019) 20. doi: 10.3390/ijms20092106
	11. Yang, JD, Hainaut, P, Gores, GJ, Amadou, A, Plymoth, A, and Roberts, LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. (2019) 16:589–604. doi: 10.1038/s41575-019-0186-y
	12. Vasaikar, SV, Straub, P, Wang, J, and Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. (2018) 46:D956–d963. doi: 10.1093/nar/gkx1090
	13. Peng, A, Mao, X, Zhong, J, Fan, S, and Hu, Y. Single-cell multi-omics and its prospective application in cancer biology. Proteomics. (2020) 20:e1900271. doi: 10.1002/pmic.201900271
	14. Chakraborty, S, Hosen, MI, Ahmed, M, and Shekhar, HU. Onco-multi-OMICS approach: A new frontier in cancer research. BioMed Res Int. (2018) 2018:9836256. doi: 10.1155/2018/9836256
	15. Sarhadi, VK, and Armengol, G. Molecular biomarkers in cancer. Biomolecules. (2022) 12. doi: 10.3390/biom12081021
	16. Qian, Y, Daza, J, Itzel, T, Betge, J, Zhan, T, Marmé, F, et al. Prognostic cancer gene expression signatures: current status and challenges. Cells. (2021) 10. doi: 10.3390/cells10030648
	17. Gong, J, Yu, R, Hu, X, Luo, H, Gao, Q, Li, Y, et al. Development and validation of a novel prognosis model based on a panel of three immunogenic cell death-related genes for non-cirrhotic hepatocellular carcinoma. J Hepatocell Carcinoma. (2023) 10:1609–28. doi: 10.2147/jhc.S424545
	18. Tao, Q, Lang, Z, Li, Y, Gao, Y, Lin, L, Yu, Z, et al. Exploration and validation of a novel signature of seven necroptosis-related genes to improve the clinical outcome of hepatocellular carcinoma. BMC Cancer. (2023) 23:1029. doi: 10.1186/s12885-023-11521-x
	19. Chen, S, Liu, P, Zhao, L, Han, P, Liu, J, Yang, H, et al. A novel cuproptosis-related prognostic lncRNA signature for predicting immune and drug therapy response in hepatocellular carcinoma. Front Immunol. (2022) 13:954653. doi: 10.3389/fimmu.2022.954653
	20. Li, W, Wang, Q, Lu, J, Zhao, B, Geng, Y, Wu, X, et al. Machine learning-based prognostic modeling of lysosome-related genes for predicting prognosis and immune status of patients with hepatocellular carcinoma. Front Immunol. (2023) 14:1169256. doi: 10.3389/fimmu.2023.1169256
	21. Zhang, Y, Yang, Z, Tang, Y, Guo, C, Lin, D, Cheng, L, et al. Hallmark guided identification and characterization of a novel immune-relevant signature for prognostication of recurrence in stage I-III lung adenocarcinoma. Genes Dis. (2023) 10:1657–74. doi: 10.1016/j.gendis.2022.07.005
	22. Su, Z, He, Y, You, L, Zhang, G, Chen, J, and Liu, Z. Coupled scRNA-seq and Bulk-seq reveal the role of HMMR in hepatocellular carcinoma. Front Immunol. (2024) 15:1363834. doi: 10.3389/fimmu.2024.1363834
	23. Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007
	24. Zhang, L, Su, Z, Hong, F, and Wang, L. Identification of a methylation-regulating genes prognostic signature to predict the prognosis and aid immunotherapy of clear cell renal cell carcinoma. Front Cell Dev Biol. (2022) 10:832803. doi: 10.3389/fcell.2022.832803
	25. Hänzelmann, S, Castelo, R, and Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7
	26. Ma, D, Jiang, YZ, Liu, XY, Liu, YR, and Shao, ZM. Clinical and molecular relevance of mutant-allele tumor heterogeneity in breast cancer. Breast Cancer Res Treat. (2017) 162:39–48. doi: 10.1007/s10549-017-4113-z
	27. Mroz, EA, and Rocco, JW. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. (2013) 49:211–5. doi: 10.1016/j.oraloncology.2012.09.007
	28. Rajput, A, Bocklage, T, Greenbaum, A, Lee, JH, and Ness, SA. Mutant-allele tumor heterogeneity scores correlate with risk of metastases in colon cancer. Clin Colorectal Cancer. (2017) 16:e165–70. doi: 10.1016/j.clcc.2016.11.004
	29. Xu, L, Deng, C, Pang, B, Zhang, X, Liu, W, Liao, G, et al. TIP: A web server for resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575–80. doi: 10.1158/0008-5472.Can-18-0689
	30. Maeser, D, Gruener, RF, and Huang, RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. (2021) 22. doi: 10.1093/bib/bbab260
	31. Jiang, P, Gu, S, Pan, D, Fu, J, Sahu, A, Hu, X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8. doi: 10.1038/s41591-018-0136-1
	32. Charoentong, P, Finotello, F, Angelova, M, Mayer, C, Efremova, M, Rieder, D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. (2017) 18:248–62. doi: 10.1016/j.celrep.2016.12.019
	33. Yang, C, Huang, X, Li, Y, Chen, J, Lv, Y, and Dai, S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform. (2021) 22. doi: 10.1093/bib/bbaa164
	34. Subramanian, A, Narayan, R, Corsello, SM, Peck, DD, Natoli, TE, Lu, X, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. (2017) 171:1437–1452.e1417. doi: 10.1016/j.cell.2017.10.049
	35. Malta, TM, Sokolov, A, Gentles, AJ, Burzykowski, T, Poisson, L, Weinstein, JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. (2018) 173:338–354.e315. doi: 10.1016/j.cell.2018.03.034
	36. Chen, Y, Huang, W, Ouyang, J, Wang, J, and Xie, Z. Identification of anoikis-related subgroups and prognosis model in liver hepatocellular carcinoma. Int J Mol Sci. (2023) 24. doi: 10.3390/ijms24032862
	37. Zhang, J, Dong, K, Zhang, X, Li, C, Yu, J, and Wang, W. Characteristics of lactate metabolism phenotype in hepatocellular carcinoma. Sci Rep. (2023) 13:19674. doi: 10.1038/s41598-023-47065-0
	38. Gao, X, Yang, C, Li, H, Shao, L, Wang, M, and Su, R. EMT-related gene risk model establishment for prognosis and drug treatment efficiency prediction in hepatocellular carcinoma. Sci Rep. (2023) 13:20380. doi: 10.1038/s41598-023-47886-z
	39. Yan, P, Luo, Y, Huang, Z, Mou, T, Yang, H, Peng, D, et al. Establishment of a prognostic signature based on fatty acid metabolism genes in HCC associated with hepatitis B. BMC Gastroenterol. (2023) 23:390. doi: 10.1186/s12876-023-03026-5
	40. Ye, J, Tian, W, Zheng, B, and Zeng, T. Identification of cancer-associated fibroblasts signature for predicting the prognosis and immunotherapy response in hepatocellular carcinoma. Med (Baltimore). (2023) 102:e35938. doi: 10.1097/md.0000000000035938
	41. Lin, Z, Xu, Q, Miao, D, and Yu, F. An inflammatory response-related gene signature can impact the immune status and predict the prognosis of hepatocellular carcinoma. Front Oncol. (2021) 11:644416. doi: 10.3389/fonc.2021.644416
	42. Vogelstein, B, Papadopoulos, N, Velculescu, VE, Zhou, S, Diaz, LA Jr., and Kinzler, KW. Cancer genome landscapes. Science. (2013) 339:1546–58. doi: 10.1126/science.1235122
	43. Dagogo-Jack, I, and Shaw, AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. (2018) 15:81–94. doi: 10.1038/nrclinonc.2017.166
	44. Bagrodia, S, Smeal, T, and Abraham, RT. Mechanisms of intrinsic and acquired resistance to kinase-targeted therapies. Pigment Cell Melanoma Res. (2012) 25:819–31. doi: 10.1111/pcmr.12007
	45. Tang, B, Xie, L, Tang, X, Tian, J, and Xiao, S. Blood exosome marker miRNA-30d-5p: Role and regulation mechanism in cell stemness and gemcitabine resistance of hepatocellular carcinoma. Mol Cell Probes. (2023) 71:101924. doi: 10.1016/j.mcp.2023.101924
	46. Liu, Z, Liu, L, Weng, S, Guo, C, Dang, Q, Xu, H, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6
	47. Tang, Y, Guo, C, Chen, C, and Zhang, Y. Characterization of cellular senescence patterns predicts the prognosis and therapeutic response of hepatocellular carcinoma. Front Mol Biosci. (2022) 9:1100285. doi: 10.3389/fmolb.2022.1100285
	48. Tang, H, Yang, Q, Tang, Q, Li, X, Ding, W, and Chen, W. Integrated transcriptomics unravels implications of glycosylation-regulating signature in diagnosis, prognosis and therapeutic benefits of hepatocellular carcinoma. Comput Biol Med. (2022) 148:105886. doi: 10.1016/j.compbiomed.2022.105886
	49. Guo, C, Tang, Y, Li, Q, Yang, Z, Guo, Y, Chen, C, et al. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med. (2023) 158:106872. doi: 10.1016/j.compbiomed.2023.106872
	50. Zeng, F, Zhang, Y, Han, X, Zeng, M, Gao, Y, and Weng, J. Employing hypoxia characterization to predict tumour immune microenvironment, treatment sensitivity and prognosis in hepatocellular carcinoma. Comput Struct Biotechnol J. (2021) 19:2775–89. doi: 10.1016/j.csbj.2021.03.033
	51. Li, X, Zhao, K, Lu, Y, Wang, J, and Yao, W. Genetic analysis of platelet-related genes in hepatocellular carcinoma reveals a novel prognostic signature and determines PRKCD as the potential molecular bridge. Biol Proced Online. (2022) 24:22. doi: 10.1186/s12575-022-00185-9
	52. Sanchez-Vega, F, Mina, M, Armenia, J, Chatila, WK, Luna, A, La, KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. (2018) 173:321–337.e310. doi: 10.1016/j.cell.2018.03.035
	53. Glaviano, A, Foo, ASC, Lam, HY, Yap, KCH, Jacot, W, Jones, RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. (2023) 22:138. doi: 10.1186/s12943-023-01827-6
	54. McGranahan, N, and Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. (2017) 168:613–28. doi: 10.1016/j.cell.2017.01.018
	55. Lacroix, M, Riscal, R, Arena, G, Linares, LK, and Le Cam, L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab. (2020) 33:2–22. doi: 10.1016/j.molmet.2019.10.002
	56. Kang, R, Kroemer, G, and Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. (2019) 133:162–8. doi: 10.1016/j.freeradbiomed.2018.05.074
	57. Perry, NA, Vitolo, MI, Martin, SS, and Kontrogianni-Konstantopoulos, A. Loss of the obscurin-RhoGEF downregulates RhoA signaling and increases microtentacle formation and attachment of breast epithelial cells. Oncotarget. (2014) 5:8558–68. doi: 10.18632/oncotarget.2338
	58. Shriver, M, Stroka, KM, Vitolo, MI, Martin, S, Huso, DL, Konstantopoulos, K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. (2015) 34:4248–59. doi: 10.1038/onc.2014.358
	59. Sjöblom, T, Jones, S, Wood, LD, Parsons, DW, Lin, J, Barber, TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. (2006) 314:268–74. doi: 10.1126/science.1133427
	60. Hsieh, JJ, Purdue, MP, Signoretti, S, Swanton, C, Albiges, L, Schmidinger, M, et al. Renal cell carcinoma. Nat Rev Dis Primers. (2017) 3:17009. doi: 10.1038/nrdp.2017.9
	61. Lencioni, R, de Baere, T, Soulen, MC, Rilling, WS, and Geschwind, JF. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology. (2016) 64:106–16. doi: 10.1002/hep.28453
	62. Purcell, Y, Sartoris, R, Paradis, V, Vilgrain, V, and Ronot, M. Influence of pretreatment tumor growth rate on objective response of hepatocellular carcinoma treated with transarterial chemoembolization. J Gastroenterol Hepatol. (2020) 35:305–13. doi: 10.1111/jgh.14816
	63. Hirsch, AT, Haskal, ZJ, Hertzer, NR, Bakal, CW, Creager, MA, Halperin, JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. (2006) 113:e463–654. doi: 10.1161/circulationaha.106.174526
	64. Nathani, P, Gopal, P, Rich, N, Yopp, A, Yokoo, T, John, B, et al. Hepatocellular carcinoma tumour volume doubling time: a systematic review and meta-analysis. Gut. (2021) 70:401–7. doi: 10.1136/gutjnl-2020-321040
	65. Yap, TA, Parkes, EE, Peng, W, Moyers, JT, Curran, MA, and Tawbi, HA. Development of immunotherapy combination strategies in cancer. Cancer Discovery. (2021) 11:1368–97. doi: 10.1158/2159-8290.Cd-20-1209
	66. Bagchi, S, Yuan, R, and Engleman, EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741
	67. Aversa, C, Leone, F, Zucchini, G, Serini, G, Geuna, E, Milani, A, et al. Linifanib: current status and future potential in cancer therapy. Expert Rev Anticancer Ther. (2015) 15:677–87. doi: 10.1586/14737140.2015.1042369




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2024 Zheng, Su, He, You, Zhang, Chen, Lu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 04 October 2024

doi: 10.3389/fimmu.2024.1477196

[image: image2]


Circular RNA TAF4B targeting MFN2 accelerates cell growth in bladder cancer through p27 depression and AKT activation


Xiaoting Zhang 1†, Jia Xu 2†, Guangzhen Zhuang 3, Yiting Wang 1, Xiaofeng Li 4* and Xiaohui Zhu 3*


1 Central Laboratory, Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China, 2 Department of Medicine and Health, The University of Sydney, Sydney, NSW, Australia, 3 College of Pharmacy, Shenzhen Technology University, Shenzhen, China, 4 Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China




Edited by: 

Pengpeng Zhang, Nanjing Medical University, China

Reviewed by: 

Kai Miao, University of Macau, China

Xu Chegn, The First People’s Hospital of Taicang, China

Yunzhao Xu, Affiliated Hospital of Nantong University, China

*Correspondence: 
 Xiaofeng Li
 1155043519@link.cuhk.edu.hk 

Xiaohui Zhu
 zhuxiaohui@sztu.edu.cn












†These authors have contributed equally to this work



Received: 07 August 2024

Accepted: 16 September 2024

Published: 04 October 2024

Citation:
Zhang X, Xu J, Zhuang G, Wang Y, Li X and Zhu X (2024) Circular RNA TAF4B targeting MFN2 accelerates cell growth in bladder cancer through p27 depression and AKT activation. Front. Immunol. 15:1477196. doi: 10.3389/fimmu.2024.1477196






Introduction

Bladder cancer (BCa) is a common malignancy in the urinary tract. It has high recurrence rates and often requires microscopic examination, which presents significant challenges in clinical treatment. Previous research has shown that circular TAF4B (circTAF4B) is significantly upregulated in BCa and is associated with a poor prognosis. However, the specific targets and molecular mechanisms by which circTAF4B functions in BCa are still not well - understood.





Methods

In this study, an RNA pull - down assay and mass spectrometry were utilized to identify MFN2 as a binding protein of circTAF4B. Additionally, siRNA was used to silence MFN2 to observe the amplification of the inhibitory effects of circTAF4B overexpression on cell growth and migration in BCa cells. Moreover, circTAF4B shRNA lentiviral particles were employed to study their impact on BCa progression by examining the regulation of p27 and the blocking of AKT signaling.





Results

It was found that MFN2 is a binding protein of circTAF4B. Silencing MFN2 with siRNA enhanced the inhibitory effects of circTAF4B overexpression on cell growth and migration in BCa cells. Also, circTAF4B shRNA lentiviral particles inhibited BCa progression by upregulating p27 and blocking AKT signaling.





Discussion

In conclusion, the physical binding of circTAF4B to MFN2 is a crucial process in the tumorigenesis and progression of BCa. Targeting circTAF4B or its complexes may have potential as a therapeutic strategy for BCa diagnosis and treatment.





Keywords: bladder cancer, circTAF4B, MFN2, p27, Cell Cycle, AKT signaling




1 Introduction

Bladder cancer (BCa) ranks as the ninth most common cancer in terms of incidence and thirteenth in mortality worldwide (1). The American Cancer Society reported 82,290 new cases and 16,710 deaths in the United States in 2023, with male cases outnumbering female ones by more than two to one. Among male-specific tumors, BCa is the fourth most prevalent in incidence (62,420 cases) and eighth in mortality (12,160 deaths) (2). Microscopy remains the gold standard for diagnosing BCa in clinical practice (3). Despite a notable yearly decline in urinary BCa rates over the past decade (4), the disease’s high recurrence rate and the need for frequent microscopic examinations contribute significantly to patient discomfort and elevated treatments (5). Consequently, a comprehensive and thorough investigation into the pathogenesis of BCa holds immense clinical and social value, potentially easing patient suffering and improving treatment outcomes.

According to the criteria set by the WHO International Society of Urological Pathology, BCa is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) (6).An increasing body of clinic evidence indicates that cell proliferation is closely associated with lymphatic metastasis in BCa, which is modulated by circular RNAs (circRNAs) (7). CircRNAs, possess a closed circular structure without a 5′ cap and a 3′ poly(A) tail, which grants them greater stability than linear RNAs (8, 9). As research into circRNAs deepens, numerous studies have explored their relationship with BCa. For example, circ_0000851 binds directly to miR-1183, enhancing the expression of its target gene PDK1, which promotes BCa cell proliferation and migration by activating the PDK1/p-AKT signaling pathway (10). Other circRNAs, such as circATIC, foster BCa development by modulating CDK6 expression (11), while circTCF25 and CircZFR promotes BCa cell proliferation and migration through the miR-107/FOX-K1 axis and by acting as a sponge of miR-377 to enhance parental gene ZEB2 expression (12, 13). Conversely, circSHPRH inhibits BCa cell proliferation by targeting miR-942 and upregulating BARX2 expression (14).

TATA-box binding protein-associated factor 4b (TAF4B) is a cell type-specific TBP-associated transcriptional factor found on chromosome 18’s long arm (q) of (15). It combines with TAF12 to facilitate the binding of transcription factor IID (TFIID) with core promoter elements (16). Specifically, its physical interactions with various proteins to form complexes is essential for initiating and regulating gene transcription. Dysregulation of the TAF4B gene is implicated in diseases and abnormal cellular processes such as uncontrolled meiosis, chromatin modification disorders, and inappropriate expression of X-linked genes (17). TAF4B also plays a role in follicular development in pigs, regulated by follicle-stimulating hormone (FSH) (18). However, its specific functions vary by context, as ongoing research across different fields reveals.

CircTAF4B (hsa_circ_0047322, http://www.circbase.org/) arises from the alternative back-splicing of exons 10-13 of the TAF4B gene, resulting in a 484 nt circRNA (19). Mediated by the spliceosome machinery, this unconventional splicing event connects the downstream end of exon 13 to the upstream end of exon 10, bypassing intervening exons and resulting in circularization of the exons to form circTAF4B. Previously, we identified circTAF4B as significantly upregulated in BCa, associated with poor prognosis. Its inhibition disrupted cell growth, metastasis, and epithelial-mesenchymal transition (EMT) by sponging miR-1298-5p and promoting transforming growth factor A (TGFA) expression in BCa cells (20). However, the precise targets and molecular mechanisms of circTAF4B in BCa remain to be fully understood.

In this study, we first identified mitochondrial fusion protein 2 (MFN2) as one of the binding proteins of circTAF4B. The downregulation of MFN2 enhanced the inhibitory effects of circTAF4B on BCa cell growth and migration. Mechanistically, the inhibition of circTAF4B suppressed BCa progression through p27-mediated cell cycle arrest and AKT signaling blocking. Therefore, thorough elucidation of the role and molecular mechanisms of circTAF4B holds significance clinical relevance for treating BCa and potentially other tumors.




2 Materials and methods



2.1 Reagents

Dulbecco’s modified Eagle’s medium (Cat#11965118, Gibco, Grand Island, NY, United States) and fetal bovine serum (Cat#10099141C, Gibco, Grand Island, NY, United States) were obtained from Thermo Fisher Scientific Inc. The following antibodies were used to targeting specific markers in western blotting: p27 (Cat# 3686, Cell Signaling Technology, Danvers, MA, United States), cyclin D1 (Cat# 2978, Cell Signaling Technology, Danvers, MA, United States), cyclin D3 (Cat# 2936, Cell Signaling Technology, Danvers, MA, United States), Phospho-EGFR (Cat# 4407, Cell Signaling Technology, Danvers, MA, United States), EGFR (Cat# 71655, Cell Signaling Technology, Danvers, MA, United States), Phospho-AKT (Cat# 9271, Cell Signaling Technology, Danvers, MA, United States), AKT (Cat# 9272, Cell Signaling Technology, Danvers, MA, United States), GAPDH (Cat# 5174, Cell Signaling Technology, Danvers, MA, United States), rabbit IgG (Cat# 3900, Cell Signaling Technology, Danvers, MA, United States), and mouse IgG (Cat# 5415, Cell Signaling Technology, Danvers, MA, United States) from Cell Signaling Technology; eIF4A3 (17504-1-AP, Proteintech, Wuhan, Hubei, China), DDX10 (17857-1-AP, Proteintech, Wuhan, Hubei, China), RINT1 (14567-1-AP, Proteintech, Wuhan, Hubei, China), and MFN2 (12186-1-AP, Proteintech, Wuhan, Hubei, China) from Wuhan Sanying BioTech. Co. Ltd.; Raf1 (R25538, ZenBio, Chengdu, Sichuan, China) was purchased from ZEN-BIOSCIENCE Co. Ltd.; and MEF2 (ab170946, Abcam, Cambridge, CB2 0AX, UK) was form Abcam Limited.




2.2 Cell lines

The following cell lines were used: T24 (TCH-C352), 5637 (TCH-C104), SW780 (TCH-C344), and J82 (TCH-C221) from Haixing Biosciences Co., Ltd. (Suzhou, China); SV-HUC1 (CRL-9520) and HEK 293T (CRL-3216) from American Type Culture Collection (ATCC, Manassas, VA, USA).




2.3 Primers, siRNAs, and lentiviral particles

All primers (Table 1) and siRNAs (Table 2) were synthesized by GenePharma Co., Ltd. (Suzhou, China). U2 snRNA and β-actin were used as internal references. CircTAF4B shRNA lentiviral particles were produced by GenePharma Co., Ltd. CircTAF4B overexpression lentiviral particles were prepared in our laboratory.

Table 1 | qPCR primers for circTAF4B and detected genes.


[image: Table listing primers for different RNA types. It shows the name, forward primer, and reverse primer sequences. For circTAF4B: forward TAAGGCAGCAAGAGTCGTT, reverse TAAGGTTGACCCCTGCCATA. For TAF4B: forward TAAGGCAGCAAGAGTCGTT, reverse AGCTGCAAGAGCTGTGAGATTA. For β-actin: forward ACAGAGCCTCGCCTTTGCCGAT, reverse CTTGCACATGCCGGAGCCGTT. For U2 snRNA: forward CTTCTCGGCCTTTTGGCTAAGA, reverse AGTGGACGGAGCAAGCTCCTAT.]
Table 2 | siRNAs and shRNAs.


[image: A table with three columns: Name, Sense (5'-3'), and Antisense (5'-3'). The entries are sh_circTAF4B with sense sequence GAAAGCCAAAGAGAGATGAGG and antisense sequence ACGUGACACGUUCGAGAAdTdT; NC with sense UUCUCCGAACGUGUCACGUdTdT and antisense sequence ACGUGACACGUUCGAGAAdTdT; si_MFN2 with sense GGAAGAGCACCUGGAUCAAdTdT and antisense sequence UUGAUCACGGUGCUCUUCCdTdT.]



2.4 qPCR detection

Total RNA was extracted from the samples and reverse-transcribed into cDNA. In a PCR tube or a qPCR well, the following components were combined: cDNA template, forward and reverse primers (β-actin as a positive control), and qPCR reaction mix. The reaction setup was placed in a qPCR instrument and subjected to the following cycling steps: initial denaturation at a high temperature, followed by multiple cycles of denaturation, annealing, and extension, with fluorescence detection at each cycle. After completion, cycle threshold (Ct) values were calculated and standard curves were generated for absolute or relative quantification.




2.5 Nuclear/cytoplasmic RNA isolation

The nuclear and cytoplasmic RNA was isolated using a Kit (Cat. 21000, Norgen, Biotek Corp., ON, Canada). Following the separation of nuclear and cytoplasmic RNA as the manufacturer’s instructions, the expression of the target gene was quantified by qRT-PCR with β-actin and U2 serving as controls.




2.6 MTS assay

Cells transfected with indicated siRNAs and plasmids were seeded into 96-well plates at an appropriate density. At 0, 24, 48, 72, 96, and 120 hours, the fresh medium was replaced with MTS reagent (v/v = 9:1) according to the manufacturer’s instructions. Absorbance was measured after incubation for 3 hours 37° in 5% CO2.




2.7 Colony formation

Cells transfected with specified siRNAs and plasmids were seeded into 24-well plates at 500-1000 cells/well. Cells were incubated at 37° in 5% CO2 for 10-14 days to allow for growth and colony formation. Post-incubation, cells were fixed with 4% paraformaldehyde for 15 min and stained with 0.1% crystal violet for 15 min. Colonies were counted under a microscope or by alternative methods.




2.8 RNA pull down

Biotinylated circTAF4B and scramble probes were synthesized by RiboBio Co., Ltd. (Guangzhou, China). HEK 293T cells transfected with pLC5-circTAF4B plasmids were lysed using NP-40 lysis buffer (Cat. P0013F, Beyotime, Shanghai, China), supplemented with RNase inhibitor (Cat. 3335399001, Roche, Basel, Switzerland) and protease inhibitor cocktail (Cat. 4693116001, Roche, Basel, Switzerland). Following centrifugation, the supernatant of lysates was incubated with 2 μg of the corresponding probes at room temperature for 4 hours. Subsequently, 50 μL of streptavidin-coated magnetic beads (Cat:65306, Invitrogen, Vilnius, Lithuania) were added to the tubes and rotated for 30 min at room temperature. The magnetic bead-probe-circTAF4B-protein complexes were then analyzed by mass spectrometry, reserving 20 μL of the complex for Western blot analysis.




2.9 Western blot

Proteins separated by SDS-PAGE were transferred to a PVDF membrane. The membrane was then blocked and incubated with primary and secondary antibodies, followed by detection using with chemiluminescence to visualize protein bands.




2.10 Cell cycle analysis

Cells were transfected with specified siRNAs and plasmids for 48 hours, collected and washed with PBS, and fixed with 70% ethanol at 4° overnight. Subsequently, cells were stained with propidium iodide (PI) for 15 min in the dark and analyzed using flow cytometry to determine the cellular distribution in various phases.




2.11 Wound healing assay

Cells transfected with specified siRNAs and plasmids were seeded in 6-well plates at 2×105 cells/well. A scratch was created on the cell monolayer. The cells were then intubated at 37° in 5% CO2. The closure of the wound was monitored and measured at specified time points (0, 6, 12, 24, 36, 48 hours) to assess cell migration and healing abilities.




2.12 Statistical analyses

Statistical analyses were performed using GraphPad Prism 8.0 (GraphPad Inc., La Jolla, CA, USA). Inter-group differences were evaluated using Student’s t-test or one-way ANOVA, as appropriate. p < 0.05 was statistically significant.





3 Results



3.1 Expression and localization of circTAF4B and TAF4B gene

Utilizing circRNA sequencing data sourced from the reputable databases circBase (http://www.circbase.org) and circBank (http://www.circbank.cn), we discerned an ectopic circular RNA, circTAF4B, with a length of 484 nucleotides, which is derived from exons 10 to 13 of the TAF4B gene (Figure 1A). Through qPCR validation, we confirmed that circTAF4B (hsa_circ_0047322, http://www.circbase.org/) is significantly upregulated in BCa cell lines, with particularly high expression levels in the SW780 and J82 cell lines (Figure 1B). To evaluate the intracellular distribution of circTAF4B, we conducted nuclear and cytoplasmic RNA extractions, followed by qPCR analysis in the SW780 and J82 cells. Our findings indicated a predominant cytoplasmic localization of circTAF4B (Figures 1C, D). This observation intimates that circTAF4B may modulate the stability and translation of cytoplasmic mRNAs and potentially perturb signaling pathways. Given that circRNAs often manifest biological functions that are closely associated with their parental genes, a sophisticated regulatory network is implicated. Employing the Xiantao platform (xiantaozi.com), our observations revealed that TAF4B expression was generally subdued across a spectrum of cancer tissues, including BCa (Figure 1E), and displayed variability in expression levels correlating with different stages and subtypes of bladder cancer (Figure 1F). Further analysis via the Kaplan-Meier plotter platform (http://kmplot.com/analysis/) suggested a correlation between lower TAF4B expression and improved overall survival (OS) rates among patients, in contrast to those with elevated expression levels (Figure 1G).

[image: Diagram and charts illustrating data on circTAF4B expression in various cell lines and cancer types. Panel A shows exon structure and circularization of circTAF4B. Panel B presents a bar graph of circTAF4B expression across different bladder cancer cell lines, with statistical significance noted. Panels C and D display the distribution of circTAF4B in nuclear and cytoplasmic fractions of SW780 and J82 cells. Panel E provides a box plot of TAF4B expression in normal and tumor samples across multiple cancer types. Panel F shows TAF4B expression in bladder cancer subtypes. Panel G depicts a survival curve comparing high and low expression levels of TAF4B with statistical significance indicated.]
Figure 1 | Characterization of circTAF4B and expression patterns of TAF4B mRNA in BCa cell lines and human GC tissues. (A) Verification of the junction site of circTAF4B by Sanger sequencing; (B) RT-qPCR analysis of circTAF4B expression levels in BCa cell lines, three independent experiments, two-group differences were evaluated using Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001; (C, D) RT-qPCR analysis of the distribution of circTAF4B in the nuclei and cytoplasm of SW780 and J82 cells, with β-actin and U2 as cytoplasmic and nuclear controls, respectively, and three independent experiments were conducted; (E) Expression of the TAF4B gene in normal and primary tumor samples analyzed using the GENT2 platform; (F) Stage-wise expression of the TAF4B gene across BCa subtypes analyzed using the GENT2 platform; and (G) K-M curve depicting the association between TAF4B gene expression levels and overall survival (OS) of BCa patients analyzed using the Kaplan-Meier Plotter platform.




3.2 circTAF4B promoting cell growth and colony formation in BCa cells

To investigate circTAF4B’s role in BCa, we developed an overexpression plasmid (pLC5_ circTAF4B) and a knockdown lentiviral system (LV3_sh_circTAF4B). Overexpression of circTAF4B sharply increased circTAF4B levels in T24 cells, and did not alter TAF4B mRNA levels (Figure 2A). While knockdown of circTAF4B significantly decreased circTAF4B levels in J82 cells, and did not alter TAF4B mRNA levels (Figure 2B). MTS assays demonstrated that forced-expression of circTAF4B promoted cell proliferation in T24 cells (Figure 2C), whereas knockdown of circTAF4B inhibited proliferation in J82 cells (Figure 2D). Colony formation assays showed increased colony numbers following circTAF4B overexpression in T24 cells (Figure 2E) and reduced colony numbers following circTAF4B knockdown in J82 cells (Figure 2F).

[image: Graphs and bar charts comparing the expression, growth, and colony formation of TAF4B RNA in T24 and J82 cells under different conditions. In panels A and B, relative expression levels of circTAF4B and linear TAF4B are shown for two cell conditions, with significant differences indicated. Panels C and D depict growth curves, indicating changes over time with significant differences marked. Panels E and F display colony formation percentages, with sample colony images above the bars. Statistical significance is noted by asterisks (*, **, ***).]
Figure 2 | Effects of circTAF4B on cell growth in T24 and J82 cells. (A) Forced expression of circTAF4B did not affect TAF4B mRNA levels; (B) Knockdown of circTAF4B did not affect TAF4B mRNA levels; (C) Forced expression of circTAF4B promoted cell proliferation in T24 cells; (D) Knockdown of circTAF4B suppressed cell proliferation in J82 cells; (E) Forced expression of circTAF4B promoted colony formation in T24 cells; and (F) Knockdown of circTAF4B inhibited colony formation in J82 cells. At least three independent experiments were conducted, and two groups were statistically analyzed with Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001.




3.3 Identification of MFN2 as a circTAF4B binding protein

To elucidate the molecular mechanisms underlying circTAF4B’s function in BCa, we performed RNA pull-down assay using biotinylated circTAF4B probes in HEK 293T cells transfected with pLC5_circTAF4B plasmids in order to capture circTAF4B binding proteins (Figure 3A). Subsequent mass spectrometry (MS) analysis identified 656 proteins. Gene set enrichment analysis (GSEA), Gene Ontology (GO), and KEGG pathway analysis indicated that these proteins could modulate cell proliferation and the cell cycle in BCa (Figures 3B–D). Through further analysis based on the probe/scramble ratio and signal intensity of the MS-identified proteins, we narrowed down six candidates (DDX10, RINT1, MFN2, Raf1, MEF2, eIF4A3). Western blotting subsequently confirmed MFN2 as a circTAF4B binding protein (Figure 3E).

[image: A composite image with five panels labeled A to E. Panel A shows a Western blot with protein bands across inputs, scramble, and circTAF4B probes. Panel B displays a line graph of enrichment scores for hallmarks like apical junction and G2M checkpoint across a ranked dataset. Panel C presents a bar chart of biological processes with enrichment scores, highlighting RNA splicing and cell cycle checkpoint. Panel D features a bar chart for pathway analysis, emphasizing spliceosome involvement and bladder cancer. Panel E shows Western blot images detecting proteins like DDX10, RINT1, and MFN2 across different conditions.]
Figure 3 | Identification of MFN2 as a circTAF4B binding protein. (A) CircRNA pull-down assay using circTAF4B and scramble probes followed by silver staining, two independent experiments were conducted; (B–D) Identification of proteins pulled down by circTAF4B probes via mass spectrometry. 656 proteins were selected based on an iBAQ circTAF4B probe/scramble probe ratio of > 5.0. Gene set enrichment analysis (GSEA), Gene Ontology (GO), and KEGG pathway analysis of the 656 proteins; and (E) Western blot confirmation of MFN2 as a binding partner of circTAF4B, at least three independent experiments were conducted.




3.4 Impact of MFN2 knockdown on circTAF4B shRNA’s inhibitory effects

To explore how the circTAF4B/MFN2 complex functions in BCa cells, we transfected MFN2 siRNAs in various circTAF4B context cells. The results revealed that MFN2 deficiency inhibited cell proliferation in both SW780 and J82 cells (Figures 4A, B) and enhanced the inhibitory effects of circTAF4B shRNA in J82 cells (Figure 4B). Colony formation assay manifested that MFN2 siRNAs inhibited the capability of colony formation, while circTAF4B overexpression promoted the colony formation in T24 cells (Figure 4C). Meanwhile, knocking down MFN2 amplified the inhibitory effects of circTAF4B shRNA on colony formation (Figure 4D). Flow cytometry analysis showed that MFN2 siRNAs induced G1 stage cell cycle arrest in T24 cells (Figures 4E, F). Knocking down circTAF4B by shRNA viral particles combined MFN2 siRNAs enhanced the cell cycle blocking in G2/M stage in J82 cells (Figures 4G, H). Wound healing assays demonstrated that circTAF4B promoted cell migration and that MFN2 siRNAs inhibited cell migration in T24 cells (Figures 4I, J) while enhancing the inhibitory effects of circTAF4B shRNA on cell migration in J82 cells (Figures 4K, L).

[image: Graphs and images depict various cellular analyses, including growth curves (A, B), colony formation assays (C, D), flow cytometry for cell cycle distribution (E, G), and wound healing assays (I, L). Bar charts (F, H, J, K) show quantitative comparisons with statistical significance marked. The experiments compare different treatments' effects on T twenty-four and J eighty-two cell lines, notably involving conditions like siMFN2 and circTAF4B. Results are denoted by symbols indicating significance levels for group comparisons.]
Figure 4 | Knockdown of MFN2 enhanced circTAF4B shRNA’s inhibitory effects on cell growth, colony formation, and cell migration in BCa cells. (A) Forced expression of circTAF4B promoted cell proliferation, while MFN2 siRNAs inhibited cell proliferation in T24 cells; (B) Knockdown of MFN2 enhanced circTAF4B shRNA’s inhibitory effects on cell growth in J82 cells; (C) Forced expression of circTAF4B promoted colony formation, while MFN2 siRNAs inhibited colony formation in T24 cells; (D) Knockdown of MFN2 enhanced circTAF4B shRNA’s inhibitory effects on colony formation in J82 cells; (E, F) Forced expression of circTAF4B did not affect cell cycle significantly, while MFN2 siRNAs blocked cell cycle in T24 cells; (G, H) Knockdown of MFN2 enhanced G2/M cell cycle arrest of circTAF4B shRNA in J82 cells; (I, J) Forced expression of circTAF4B promoted cell migration, while MFN2 siRNAs inhibited cell migration in T24 cells; and (K, L) Knockdown of MFN2 enhanced circTAF4B shRNA’s inhibitory effects on cell migration in J82 cells. At least three independent experiments were conducted, and two groups were statistically analyzed with Student’s t-test, Inter-group differences between more than two groups were evaluated using one-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.




3.5 Anti-cancer effects of circTAF4B shRNA through MFN2-mediated AKT signaling

To further investigate the anti-cancer effects of circTAF4B shRNA, we conducted RNA-seq on HEK 293T cells (transfected with pLC5_ciR or pLC5_circTAF4B plasmids respectively), 5637 cells (transfected with pLC5_ciR or pLC5_circTAF4B plasmids respectively), and SW780 cells (infected with LV3 vector or LV3_sh_circTAF4B lentiviral particles respectively), and identified 144 genes as overlapping sets of the six experimental groups (Figure 5A). Furthermore, we analyzed the expression levels of the top 19 genes in various groups using hierarchical clustering (Figure 5B). Volcano plot analyses of the circTAF4B-high versus circTAF4B-low groups revealed significant upregulation of 15 genes and downregulation of 9 genes (Figure 5C).

[image: Diagram panel with multiple biological data visualizations.   Panel A shows a Venn diagram with four overlapping circles representing gene comparisons between different controls and conditions, with numbers indicating gene overlaps.  Panel B is a heatmap displaying gene expression profiles with color gradients from blue to pink indicating expression levels.  Panel C includes a volcano plot illustrating gene expression changes, with points above a threshold representing upregulated (in red) and downregulated (in blue) genes.  Panel D shows a line graph depicting enrichment scores for different biological pathways.  Panels E to J depict Western blot images analyzing various proteins across different treatments. Specific proteins analyzed include MFN2, Raf1, p27, Cyclin D1, Cyclin D3, GAPDH, pEGFR, EGFR, pAKT, and AKT in cell lines T24 and J82.]
Figure 5 | Mechanism of circTAF4B and MFN2 in BCa. (A) RNA-seq analysis of HEK 293T_pLC5_ciR cells and HEK 293T_pLC5_circTAF4B cells, 5637_pLC5_ciR cells and 5637_pLC5_circTAF4B cells, and SW780_LV3 cells and SW780_LV3_sh_circTAF4B cells, identifying 144 genes as overlapping sets; (B) Hierarchical clustering map for the top 19 genes in overlapping sets; (C) Volcano plot analysis comparing the circTAF4B-high group to the circTAF4B-low group; (D) Gene set enrichment analysis (GSEA) for the 144 overlapping genes; (E, F) Western blot analysis of cyclin D1, cyclin D3, p27, and MFN2 in circTAF4 overexpressed T24 cells and circTAF4 shRNA J82 cells; (G, H) Western blot analysis of p27 expression in circTAF4/siMFN2 and sh_circTAF4/siMFN2 contexts. (I, J) Western blot analysis of phosphorylation of ATK and EGFR in circTAF4/siMFN2 and sh_circTAF4/siMFN2 contexts. At least three independent western blots were conducted for (E–J).

GSEA for the 144 overlapping genes suggested a possible regulatory role for circTAF4B in the cell cycle and cell proliferation in BCa (Figure 5D). To confirm this hypothesis, we performed Western blotting on the cell cycle proteins (cyclin D1, cyclin D3, p27) and circTAF4B binding protein MFN2 under circTAF4-high/low context. The results showed that circTAF4B accelerated the cell cycle progression by enhancing cyclin D1 and D3 levels and suppressing CKI p27 levels (Figures 5E, F). Knockdown of circTAF4B combined with MFN2 deficiency significantly upregulated p27 expression, more effectively than circTAF4B shRNAs alone (Figures 5G, H).

Despite confirming the physical interaction between circTAF4B and MFN2, their cooperative function remained unclear. To address this, we analyzed downstream targets of MFN2 using Western blot analysis, revealing that the combination of circTAF4B shRNA and MFN2 siRNA distinctly suppressed phosphorylated AKT, suggesting that circTAF4B shRNA might exert anti-cancer effects through MFN2-mediated AKT signaling (Figures 5I, J).





4 Discussion

In recent years, advancements in RNA sequencing technology have led to the discovery of numerous circRNAs, which are now recognized as novel regulators in the modulation of tumorigenesis and aggressiveness of cancer cells (21, 22). Our prior research identified an intergenic circRNA, circTAF4B, upregulated in BCa. We established that circTAF4B could enhance the proliferation, migration, invasion, and EMT in BCa cells by regulating the miR-1298-5p/TGFA axis (20). In the current study, RNA pull-down assays coupled with mass spectrometry and Western blot analysis demonstrated that circTAF4B interacts with the MFN2 protein but does not affect its expression in BCa cell lines. Mechanistically, we confirmed that circTAF4B promotes cell cycle progression and AKT signaling in vitro.

CircRNAs represents a unique class of non-coding RNAs implicated in the development of diseases, particularly in various cancers including BCa, affecting such processess as proliferation, metabolism, metastasis, and invasion (23, 24). Functionally, most studies on cytoplasmic circRNAs have highlighted their role as “miRNA sponges” in tumors (25–27). For example, circTAF4B has been shown to sponge miR-1298-5p in our previous research (20). Increasing evidence suggests that circRNAs can also interact with proteins, thereby regulating transcription or splicing (28, 29). Notable examples include circNEIL3, which recruits the E3 ubiquitin ligase Nedd4L to degrade YBX1, inhibiting tumor metastasis (30); circCDYL2, which enhances colorectal cancer (CRC) migration by binding to Ezrin and promoting AKT phosphorylation through its upregulation (31); and circARID1A, which binds to IGF2BP3 protein, forming a ternary complex with SLC7A5 that boosts gastric cancer proliferation via the AKT/mTOR pathway (32). Additionally, circACTN4, potentially mediated by USF2, interacts with FUBP1 to facilitate breast cancer progression by upregulating MYC expression (33).

To elucidate the mechanisms underlying circTAF4B-mediated proliferation in BCa cells, we employed RNA pull-down assays that identified MFN2 as a circTAF4B binding protein. Known primarily for its role in mitochondrial dynamics and homeostasis, MFN2 also exhibits intriguing oncogenic or tumor-suppressing activities, depending on the cellular context. For instance, MFN2 has been shown to suppress rat HSC activation and proliferation via the PI3K-AKT pathway by targeting p-PDGFR-β during fibrosis progression (34). Furthermore, it has demonstrated inhibitory effects on tumor growth and metastasis in clear cell renal cell cancer through suppression of the EGFR signaling pathway (35).

The role of MFN2 in cancer appears to be context-dependent, which varies with the types of cancer and the molecular alterations within tumor. For example, suppression of MFN2 has been shown to enhance neural differentiation of embryonic stem cells by activating the AKT signaling pathway (36), while MFN2 inhibits hepatic stellate cell proliferation and attenuates liver fibrosis in rat models through the PI3K/AKT signaling pathway (34). The AKT pathway, a well-established oncogenic signaling cascade, regulates vital cellular processes such as proliferation, migration, metastasis, autophagy, and angiogenesis through its downstream effectors (37).

Previously, we identified circTAF4B, an intergenic circular RNA that exhibits upregulation in bladder cancer (BCa). In our current research, we have uncovered a potential role for circTAF4B as a critical modulator of cell cycle dynamics and proliferation in BCa. Our results demonstrate that circTAF4B promotes the advancement of the cell cycle by upregulating the expression of cyclins D1 and D3, and concurrently diminishing the levels of the cyclin-dependent kinase inhibitor p27. As TAF4B is a cell type-specific TBP-associated transcriptional factor, considering that TAF4B is the parent gene of circTAF4B, we suppose circTAF4B may downregulate the mRNA levels of p27, thus reducing p27 protein expression. This regulatory function of circTAF4B may have significant implications for the proliferative behavior of BCa cells. Our study presents compelling data demonstrating that the confluence of circTAF4B shRNA viral particles with MFN2 siRNA profoundly reduced the levels of phosphorylated AKT. Our data also demonstrated that knockdown of circTAF4B combined MFN2 siRNA raised p27 protein levels (Figure 5H) and weakened active AKT protein levels (Figure 5J). Given that circTAF4B physically bound MFN2, we speculate that circTAF4B/MFN2 complex may exerted stronger oncogenic activities than that of MFN2 alone, while circTAF4B shRNA attenuates its interaction capability leading to suppression of MFN2-mediated cell growth in BCa cells. These significant findings intimate that the therapeutic potential of circTAF4B shRNA may be realized, at least in part, through its capacity to modulate the MFN2-dependent AKT signaling pathway, thereby exerting its anti-neoplastic influence.

Our investigation has established that circTAF4B forms a physical complex with MFN2. Nonetheless, this interaction does not modulate the protein expression levels of MFN2, suggesting that the influence of circTAF4B is exerted through distinct regulatory pathways. The underlying mechanisms facilitating the collaboration between circTAF4B and MFN2 in the context of bladder cancer (BCa) are yet to be fully delineated. Consequently, our findings posit circTAF4B as a compelling target for BCa diagnosis and therapeutic intervention, potentially through its influence on MFN2 and the associated AKT signaling cascade.
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Background

As one of the malignant tumors with the highest incidence and fatality in the world, colon adenocarcinoma (COAD) has a very complex pathogenic mechanism, which has not yet been fully elucidated. Ubiquitin can regulate cell proliferation, cell cycle, apoptosis, DNA damage repair, and other processes by changing the activity of substrate proteins or causing ubiquitin-proteasome degradation. These are the key links in the pathogenesis of COAD, and ubiquitin plays an important role in the occurrence and development of COAD.





Methods

We integrated transcriptomics, single-cell and clinical omics, and TCGA and GEO databases of COAD patient data. Cox and Lasso regression was employed to assess ubiquitination genes in COAD for generating ubiquitination-related features. The aim was to evaluate the prognostic value of these features for tumors and their impact on the immune microenvironment. At the same time, the expression level of model genes was further analyzed using single-cell data. Finally, the expression and function of ASNS, a key gene for this trait, were detected in vitro.





Results

In our study, based on identifiable changes in the expression of marker genes, this feature can be used to classify patients with COAD. Kaplan-Meier survival analysis indicated that those with elevated risk scores in each cohort experienced inferior outcomes. There is good validation in both the training queue and the validation queue. The results of the immune infiltration analysis showed that the immune infiltration rate was significantly increased in the high-risk group. After the knockdown of ASNS, an important gene in the signature, the activity and migration capacity of SW620 and RKO cell lines and colony formation capacity were dramatically reduced in cell tests.





Conclusion

We screened ubiquitination-related genes and constructed ubiquitination-related features, which can be used as reliable prognostic indicators of COAD. ASNS was identified as a possible biomarker for COAD.





Keywords: colon adenocarcinoma, prognostic signature, single-cell transcriptome sequencing, ASNS, immunotherapy




1 Introduction

As per the GLOBOCAN 2022 report from the International Agency for Research on Cancer (IARC), colon adenocarcinoma holds the third position in global cancer incidence, following lung cancer and female breast cancer. In terms of mortality, it ranks second globally, trailing only lung cancer in the spectrum of cancer-related deaths (1, 2). Surgical excision, radiotherapy, chemotherapy, targeted therapy, and immunotherapy can significantly improve the treatment outcome of COAD patients, but the prognosis of patients with advanced COAD remains poor (3). Therefore, it is critical to explore the tumor microenvironment of colon adenocarcinoma and develop new biomarkers to aid in the prognostic assessment and treatment of COAD.

In eukaryotic systems, post-translational modifications like ubiquitination, phosphorylation, acetylation, and glycosylation play crucial roles in upholding the biological functions of proteins (4, 5). Ubiquitination, centrally involved in numerous cellular processes, influences functions such as cell proliferation, apoptosis, differentiation, and DNA replication repair (6). Cells regulate protein degradation through protein quality control (PQC) signaling pathways that recognize substrates and direct their refolding or removal, thereby avoiding the accumulation of abnormal proteins in the cell (7, 8). Dominating the degradation of misfolded proteins, the ubiquitin-proteasome system (UPS) stands as the primary pathway for protein breakdown, participating in over 80% of intracellular protein degradation. Wang et al. found that UBE2J1 inhibits colorectal cancer progression by promoting ubiquitination and degradation of RPS3 (9). Wang et al. found that immune-associated NRC-SOX9-4 promotes colorectal cancer progression by inhibiting YBX1 polyubiquitination and degradation (10). Consequently, it is prudent to investigate the role of ubiquitination in COAD (11, 12).

Within tumor cells, the processes of ubiquitination and deubiquitination play pivotal roles in orchestrating the metabolic reprogramming observed in cancer cells (13). The metabolic adaptation of cancer cells has been associated with the ubiquitination of various molecules, namely mTOR, AKT, AMPK, c-Myc, p53, NRF2, KRAS, and HIF (14–16). In addition, ubiquitination in cancer cells is also associated with autophagy (17). For example, polyubiquitination modification of the K63 junction of ULK1 complex and type III PI3K complex can promote the stability of the complex and thus promote the activation of autophagy. Of course, there are many other functions associated with ubiquitination/deubiquitination (18).

Single-cell transcriptomics and bioinformatics analysis play a key role in cancer research (19, 20). They combine high-throughput techniques to deeply explore the transcriptome characteristics of individual tumor cells and reveal the distribution of intra-tumor heterogeneity and cell subsets, contributing to the understanding of the mechanisms of cancer development, invasion, and metastasis (21). Bioinformatics analysis can process and interpret these massive data, helping us to deeply understand the biological characteristics of tumors at the global and cellular level, providing an important basis for precision medicine (22).

In this study, we combined bioinformatics analysis of COAD data from TCGA and GEO data to investigate the involvement of ubiquitination-related genes in COAD. Ubiquitination-related prognostic features were developed to classify COAD patients into high-low risk groups. Moreover, within the context of COAD, ubiquitin signatures offer a means to detect alterations in immune infiltration as well as immune checkpoint activity (23). Our investigation aims to enrich prognostic evaluations and facilitate the advancement of treatments for COAD.




2 Materials and methods



2.1 Data obtainability

In this research, scRNA-seq data for 23 COAD tumor samples and 8 normal samples were sourced from the GSE132465 database available on the GEO website. The training and validation cohort included RNA expression data and corresponding clinical details for COAD from the TCGA database and GEO datasets GSE39582 (https://portal.gdc.cancer.gov/). Furthermore, a scrutiny encompassed 2634 ubiquitination-associated genes (URGs) sourced from the GeneCards database, each demonstrating a correlation score greater than 3.




2.2 Data processing

The analysis commenced with a differential assessment to discern the variances in gene expression between tumor and normal samples in TCGA, subsequently culminating in the generation of a heatmap and a volcano plot. Subsequently, we combined the COAD samples from TCGA and GSE39582 into a merged cohort. The function normalize between arrays in R was employed to remove batch effects, and data were converted to a log2 scale before the analysis. The overall survival (OS) of the merged cohort was analyzed using a univariate Cox regression, identifying prognostically significant URGs at a p-value of less than 0.05.




2.3 Identification of ubiquitination-related molecular subtypes

Utilizing gene expression profiles, 1017 COAD samples were stratified into distinct molecular subtypes. This classification was conducted using the ConsensusClusterPlus package, which incorporates a K-means clustering algorithm to organize the samples into robust clusters, with the maximum number of clusters set at nine (maxK = 9). Employing the cumulative distribution function (CDF) curve analysis and the CDF delta area curve, the identification of the optimal number of ubiquitination-associated subtypes was undertaken, in addition to the generation of a consensus matrix heatmap to visually depict cluster affiliations. Further analysis was undertaken to explore the spatial distribution and relationship among the identified subtypes. Incorporated within this analysis were PCA and UMAP, furnishing a graphical portrayal of subtype dispersion across the samples. Additionally, differential expression of URGs and survival disparities among the subtypes were investigated using a heatmap for gene expression visualization and the ‘survival’ package for survival analysis, respectively.




2.4 Enrichment analysis

Utilizing R packages “clusterProfiler” and “org.Hs.eg.db,” the analysis of differentially expressed genes across various subtypes involved leveraging Kyoto Encyclopedia of KEGG, GO enrichment, and GSEA (24). Furthermore, ssGSEA was utilized to quantify enrichment scores related to immune cell infiltration and immune functions.




2.5 The establishment and validation of a prognostic risk signature were undertaken

Subjects with comprehensive clinical data were randomly divided into training and testing cohorts at a 1:1 ratio. Utilizing the R package “survival,” a univariate Cox regression analysis was conducted to pinpoint genes associated with prognosis (25). These genes formed the foundation for constructing a prognostic model linked to ubiquitination, employing Lasso and multivariate Cox regression methodologies (26). Post-construction, individuals were categorized into high- and low-risk groups depending on their median risk scores. Each individual’s risk score was calculated using a specific formula: [image: Risk score equation showing the sum from j equals one to n of beta sub j times exp sub j.] , where expi represents the expression level of each URG, and βi denotes the respective gene coefficient within the signature. The Kaplan-Meier method was then used to examine overall survival (OS) differences between the two risk groups. Furthermore, the signature’s predictive accuracy was appraised with the ROC curve. Additionally, multivariate Cox regression analyses were performed in both cohorts to verify the risk score’s role as an independent prognostic marker (27).




2.6 Nomogram formulation

The creation of a nomogram involved integrating the risk score, age, and pathological stage as independent prognostic variables for evaluating the likelihood of overall survival (OS) at 1, 3, and 5 years (28). To appraise the nomogram’s predictive precision, we employed the ROC, calibration, and cumulative hazard curves.




2.7 Tumor immune characteristics

Utilizing the CIBERSORT algorithm, we computed the proportions of immune infiltrating cells in each COAD sample. Based on this data, we assessed the differences in immune cell expression across various risk groups, analyzed the correlations among immune cells, and examined their relationships with risk scores. Additionally, comparisons of tumor microenvironment (TME) scores were conducted using the R package “estimate” (29). The activation of immune checkpoints between the two groups was visualized using a barplot.




2.8 Therapies and drugs

We utilized the ‘oncoPredict’ package to compute the IC50 values for various chemotherapy drugs across the two patient risk groups, aiming to gauge their sensitivity to chemotherapy. Variations between subtypes were analyzed using the Wilcoxon test.




2.9 Processing scRNA-seq data and annotating cells

The cell types annotated within the GSE132465 dataset were derived from prior studies. We conducted quality control on the scRNA-seq data using the “Seurat” and “SingleR” R packages. We included cells that had less than 10% of mitochondrial gene expression, more than 200 overall genes, and genes that were expressed in at least three cells, with expression levels ranging from 200 to 7000, to ensure the data's quality remained high. Subsequent analyses were conducted using the “Seurat” R package. We identified the top 2000 highly variable genes (HVGs) and employed the top 15 principal components in conjunction with these HVGs (30). Dimensionality reduction and visualization were achieved through UMAP to classify each cell type. Distinct cell types, such as T cells, B cells, and epithelial cells, were identified based on marker genes (31, 32).




2.10 CellChat analysis

We employed CellChat to assess the primary signaling inputs and outputs across all cell clusters, utilizing CellChatDB.human as the reference database. Subsequently, we applied the netVisual_circle function to illustrate the relative strength of cell-cell communication networks among the different cell clusters.




2.11 qRT-PCR

The tissue specimens were provided by Anqing First People’s Hospital affiliated with Anhui Medical University and preserved at -80°C. Ten tissue pairs, including tumor tissue (T) and precancerous tissue (N), were collected from CORD patients who underwent colon tumor resection between May 2023 and May 2024. This experiment was performed according to the previous research. All primers, along with their precise sequences, were provided by Tsingke Biotech (Beijing, China) and are detailed in Supplementary Table 1.




2.12 Cell proliferation assay

For the assessment of cell proliferation, we employed the CCK-8; Vazyme, Nanjing, China). Cells were seeded at a density of 5×103 cells per well in 96-well plates. Subsequently, the plate underwent a two-hour incubation in the absence of light at 37°C with 10 μl of CCK-8 labeling reagent per well. Cell viability was evaluated by measuring the absorbance at 450 nm using an enzymatic label reader (A33978, Thermo, USA) at intervals of 0, 24, 48, 72, 96, and 120 hours (33).




2.13 Wound healing

Upon reaching 95% confluency, the transfected cells were transferred to 6-well plates. A sterile pipette tip (200 μL) was used to create a straight line, followed by gentle rinsing with PBS to eliminate unattached cells and debris. The serum-free medium was then substituted to sustain cell culture. Images were taken at 0 and 48 hours in the identical position (34).




2.14 Colony formation

After transfecting 1000 cells, we incubated them in 6-well plates for about 14 days. At the end of this period, the cell clones became visible to the naked eye. Subsequently, the cells underwent a 15-minute fixation in 4% paraformaldehyde (PFA). Following this, staining with Crystal Violet (Solarbio, China) was conducted for 20 minutes, and the cells were air-dried at room temperature before being counted per well.





3 Results



3.1 Identification of subtypes of COAD based on ubiquitination-related genes.

The flowchart of our study is shown in Figure 1. We first screened 581 differential expressed genes (DEGs) from a set of ubiquitination-related genes Supplementary Figures 1, 2. Using 137 ubiquitination-related prognostic genes derived from univariate Cox regression analysis, consensus clustering was employed to identify the optimal number of ubiquitination-related subtypes Supplementary Figure 3. The cumulative distribution function (CDF) diagram indicated that the CDF curve stabilized at K = 2, reflecting a robust clustering consistency. Additionally, the area under the CDF curve demonstrated notable slope alterations beyond the K values of 2 and 3. Consequently, K = 2 was selected as the most appropriate number of clusters (Figure 2A). Subsequently, 1017 colon cancer samples were segregated into two distinct clusters. Cluster A comprised 706 samples, while Cluster B included 311 samples. Dimensionality reduction techniques such as PCA and UAMP confirmed that the clusters occupied divergent positions and were distinctly separable, affirming the reliability of the clustering results (Figure 2B). Examination of gene expression and survival disparities between the clusters showed that ubiquitination-related genes were markedly upregulated in Cluster A (Figure 2C). Survival analysis further highlighted a significant difference in survival outcomes between the two subtypes (P < 0.001), with Cluster B exhibiting poorer survival (Figure 2D).

[image: Diagram titled "URG Signature in COAD" illustrating the process flow from datasets TCGA-COAD and GSE132465 to ubiquitination modification, leading to URGs-suppressed or URGs-activated groups. These pathways move into prognostic modeling with multi-omics characteristics, prognostic signature, clinical characteristics, and nomograph, as well as validation analysis through immunoassay, single-cell analysis, drug sensitivity, and in vitro experiments. Includes icons of colon and figures representing URGs status.]
Figure 1 | The flowchart of our study.

[image: Panel A displays a consensus matrix and CDF plots showing clustering stability. Panel B includes scatter plots from PCA and UMAP analyses differentiating two clusters, A and B, in blue and orange. Panel C presents a heatmap with hierarchical clustering of samples, accompanied by a color-coded legend of variables. Panel D shows a Kaplan-Meier survival curve, comparing survival probabilities between clusters A and B, with statistical significance indicated by p<0.001.]
Figure 2 | The ubiquitination-related molecular subtypes of COAD. (A) Consensus clustering was performed on 1017 samples from the TCGA and GEO databases based on genes related to ubiquitination. The cumulative distribution function (CDF) plot indicated that the curve remained relatively flat at K = 2. The relative change in the area under the CDF curve between K and K-1 showed a more pronounced slope change after K values of 2 and 3. Consequently, K = 2 was selected as the optimal number of clusters, and the consistency matrix was presented. (B) Principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) diagrams illustrated the two clusters. (C) The expression heatmap of ubiquitination-related genes was shown for the two clusters, along with clinical features. (D) Survival curves for the two clusters were depicted.




3.2 Enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted on the DEGs, revealing their involvement in several biological processes (BP) such as nuclear division and organelle fission. Regarding cellular components (CC), they were primarily associated with the collagen-containing extracellular matrix and chromosomal region. Concerning molecular function (MF), the differentially expressed genes (DEGs) were predominantly linked to extracellular matrix structural constituent and glycosaminoglycan binding (Figures 3A, B). Importantly, the activity of glycosaminoglycan binding has been reported to be associated with the prognosis of colon adenocarcinoma. Concerning KEGG analysis, we found that differential genes are mainly enriched in cell cycle and focal adhesion pathways (Figures 3C, D). Additionally, Gene Set Enrichment Analysis (GSEA) was conducted on both clusters, leading to the identification of enriched pathways in cluster A, such as cell cycle, DNA replication, and spliceosome (Figure 3E). A comparison of hallmark pathway gene signatures between the two clusters revealed distinct patterns. In contrast, cluster B exhibited enrichment in ECM-receptor interaction, focal adhesion, and cell adhesion molecule pathways as the top three signatures (Figure 3F). The single sample gene set enrichment analysis (ssGSEA) scores of immune cells in group A and group B were compared. The ssGSEA scores in group B were higher, and the immune infiltration and risk scores were consistent (Figure 3G).

[image: Composite image showing various data visualizations. Panels A and C feature horizontal bar charts displaying gene-related counts and categories with color-coded e-values. Panels B and D show dot plots representing gene ratio against categories, with varying dot sizes signifying count levels. Panels E and F present line graphs with enrichment scores for different KEGG pathways in Clusters A and B, respectively. Panel G illustrates a box plot comparing gene expression levels between two clusters, annotated with significance markers.]
Figure 3 | Enrichment analysis of different subtypes. (A, B) The Gene Ontology (GO) enrichment analysis results are presented in bar plots and bubble plots, categorized into biological process (BP), cellular component (CC), and molecular function (MF). The top five significant GO enrichment results are displayed. (C, D) The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results are shown using bar plots and bubble plots. (E, F) Gene Set Enrichment Analysis (GSEA) indicated that the cell cycle was particularly active in cluster (A, G) Single-sample Gene Set Enrichment Analysis (ssGSEA) scores for immune cells were compared between cluster A and cluster B groups, with higher ssGSEA scores observed in the cluster B.




3.3 Establishment of a prognostic-related signature

Initially, a univariate Cox proportional hazards regression analysis was conducted on a merged dataset from TCGA and GEO, identifying 137 ubiquitination marker genes significantly associated with overall survival (OS, P<0.05). These genes formed the basis of a prognostic signature. The most beneficial prognostic genes were selected using a LASSO Cox regression model, and a final set of 12 genes was established through multivariate Cox regression analysis (Figures 4A, B). A heatmap of model gene expression is shown in Supplementary Figure 4. The risk score was then calculated using the formula: “ (-0.815)*USP26 + (-0.193)*MYC + 0.345*OGT + (-0.408)*PRMT1 + 0.546*SNAI1 + 0.566*RPS17 + (-0.45)*RPN2 + (-0.394)*ACACA + 0.419*RNF112 + 0.503*ASNS + 0.333*MC1R + 0.46*FBXO39”. This scoring algorithm was also applied to the combined validation and overall datasets. Patients were categorized into high- and low-risk groups based on the median risk score. Notably, cluster B, as previously defined, also exhibits a higher risk score in this model (Figure 4C). Kaplan-Meier survival curves illustrated that individuals in the high-risk category experienced significantly worse overall survival (OS) compared to those in the low-risk group (P<0.05) (Figures 4D–F). The areas under the ROC curves for 1, 2, and 3 years were 0.697, 0.722, and 0.732 for the training cohort; 0.702, 0.679, and 0.673 for the testing cohort; and 0.698, 0.698, and 0.700 across all cohorts, respectively (Figures 4G–I). The independence of the risk score from clinical characteristics was confirmed through multivariate Cox regression analyses, as depicted in Figure 4J. The Multi-Cox regression analysis unveiled that solely age and the risk score stood as autonomous variables, wherein the hazard ratio for the risk score was determined to be 1.180 (P<0.05). The concordance index curve also underscored that the risk signature provided better predictive accuracy than other clinical features (Figure 4K). Furthermore, a three-dimensional scatter plot of PCA analysis illustrated the ability of the 12-gene Prognostic Risk Score (PRS) to discriminate COAD samples effectively, indicating its superior discriminatory power (Figure 4L).

[image: Composite image with multiple panels. Panel A shows a plot of partial likelihood deviance against Log Lambda. Panel B is a coefficient trajectory plot for LASSO analysis. Panel C presents a boxplot comparing risk scores between subclusters A and B, with a significant p-value. Panels D, E, and F are Kaplan-Meier survival curves showing distinct survival probabilities for low and high-risk groups in training, test, and all datasets respectively, with significant p-values. Panels G, H, and I display time-dependent ROC curves for training, test, and overall cohorts, showing AUC values at 1, 2, and 3 years. Panel J is a forest plot showing hazard ratios for various factors. Panel K illustrates a plot of the concordance index over time for different risk factors. Panel L presents a 3D PCA plot differentiating low-risk and high-risk groups.]
Figure 4 | Establishment and identification of the risk signature. (A, B) The potential prognostic genes underwent LASSO-Cox regression analysis in the training cohort to develop a prognostic risk signature. (C) The risk scores for the two clusters were computed using the derived scoring formula. (D–F) To validate the reliability of the risk model, survival analysis was conducted between the high-risk and low-risk groups in the training cohort, the testing cohort, and the all cohort. (H, I) The ROC curves for patient survival over different years were plotted for the training, testing, and all cohorts. (J) Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic factor in BRCA patients. (K) The concordance index curve indicated that the risk signature offered strong predictive accuracy. (L) PCA analysis showcased the proficiency of the PRS in distinguishing COAD samples.




3.4 Clinical phenotypes and Nomogram formulation

In our effort to elucidate distinctions between risk groups, we analyzed clinical data from our merged cohort. A chi-squared test revealed significant differences in the distribution of COAD cohorts across age groups (P < 0.05) between varying risk groups, alongside notable variations in TNM stages (Figure 5A). Older age and more advanced TNM stages typified the high-risk cohort. To illustrate, 17% of individuals within the high-risk category were designated as stage M1, in contrast to only 10% in the low-risk subset (Figures 5B–E).

[image: Panel A shows a heatmap representing risk, age, gender, and stage classification (T, M, N). Panels B to E present bar graphs comparing risk scores with variables like age, tumor stage, and metastasis. Panel F provides a nomogram for visualizing total points and survival probabilities. Panel G is a graph of nomogram-predicted versus observed survival outcomes over one, three, and five years. Panel H shows a survival curve differentiated by risk levels. Panels I to L display ROC curves assessing sensitivity and specificity for various predictors.]
Figure 5 | The clinical characteristics of two risk groups and the formulation of a nomogram. (A) A heatmap displayed the correlation between clinical factors and the risk groups. (B–E) The proportions of samples in the two risk groups were compared across various clinical data. (F) A nomogram was constructed by integrating clinical features with the risk score. (G) Calibration plots assessed the consistency between actual overall survival (OS) rates and predicted survival rates, with the 45° line indicating perfect prediction. (H) The cumulative hazard curve was used to evaluate the nomogram’s predictive performance. (I–L) ROC curves for 1, 3, and 5 years illustrated the AUC values for various clinical factors and nomogram scores.

The construction of a nomogram aimed to assess patient risk by amalgamating clinical particulars with risk classification. Figure 5F provides a comprehensive overview of patient characteristics, including gender, age, T, N, and M stages, and risk classification. This predictive tool enables a more accurate estimation of patient risk and aids in formulating tailored therapeutic strategies (Figure 5G). The cumulative hazard curve indicates that patients with elevated nomogram risk exhibit a greater hazard (Figure 5H). To rigorously assess the predictive accuracy of the nomogram, a prognostic ROC analysis was performed, demonstrating superior performance compared to other clinical models and risk scores. The AUC values were 0.802, 0.789, and 0.760 at 1, 3, and 5 years, respectively (Figures 5I–L).




3.5 Immune analysis and therapy analysis

The figure illustrates that we used the CIBERSORT method to quantify and compare immune cell infiltration levels between the two risk groups employing the Wilcoxon test (Figure 6A). The violin plot presented in the study clearly demonstrates that there is a significant increase in the proportion of resting CD4 memory T cells within the low-risk group when compared to their counterparts in the high-risk group.  This finding suggests a potential immune profile that is more favorable in the low-risk cohort, highlighting the importance of resting CD4 memory T cells in this context.  Conversely, the high-risk group exhibited markedly higher levels of both M2 macrophages and activated mast cells, with statistical significance indicated by a p-value of less than 0.05 (Figure 6B). These observations can provide valuable insights into the differing immune landscapes present in varying risk categories. Furthermore, Figure 6C elaborates on the relationship between the risk score and the relative abundance of several immune cell types.  It was observed that the risk score exhibited an inverse correlation with the presence of activated CD4 memory T cells, resting CD4 memory T cells, and regulatory T cells, indicating that as the risk score increases, the abundance of these beneficial T cell populations tends to decrease.  In contrast, the risk score showed a positive correlation with the levels of eosinophils, neutrophils, and M2 macrophages, suggesting that higher risk scores are associated with an increase in these cell types. This differential distribution of immune cells based on risk scores points toward underlying mechanisms that may influence disease progression and patient outcomes.. In the model, the expression of the ASNS gene is inversely correlated with naive B cells, potentially indicating that the ASNS gene modulates changes in TME by regulating B cell proliferation (Figure 6D). We explored the relationship between risk scores and frequently identified immunotherapy biomarkers in the combined cohort. The analysis revealed that nearly all immune checkpoint genes (ICGs), including CD28 and CD70, were significantly overexpressed in the high-risk group (Figure 6E). The ESTIMATE methodology was employed to evaluate immune infiltration among various risk cohorts. The corresponding Figure 6F substantiated the preceding study, demonstrating that the high-risk cohort exhibited elevated estimate, stromal, and immune scores in comparison to another group.

[image: Panel A shows a stacked bar chart representing immune cell proportions in low and high-risk groups. Panel B presents violin plots comparing the fraction of various immune cells between these groups. Panel C displays scatter plots with correlation details linking risk scores to immune cell expressions. Panel D is a heatmap indicating the correlation between different immune cells, with varying levels of statistical significance. Panel E shows box plots illustrating differences in gene expression between risk categories. Panel F features a violin plot comparing TIME, StromalScore, ImmuneScore, and ESTIMATEScore between low and high-risk groups.]
Figure 6 | Analysis related to immune between two groups. (A) The proportions of immune cells in each sample were analyzed using CIBERSORT. (B) A violin plot compared the fractions of immune cells between the two subtypes, with statistical differences tested using the Wilcoxon test (P < 0.05). (C) The correlations between the risk score and various immune cell types were evaluated. (D) Correlations between immune cells/functions and risk signature genes were examined. (E) The expression levels of immune checkpoint genes differed between the two groups, with higher expression observed in the high-risk group (***P<0.001). (F) Immune-related scores, including stromal score, immune score, and ESTIMATE score, were compared between the two risk groups.




3.6 Single-cell

After processing and refining the data, gene expression profiles from 53844 cells of 12 COAD samples were gathered for further analysis. Employing dimensionality reduction and log-normalization, 26 distinct cell clusters were identified (Figure 7A). The characterization of cell types within each cluster was achieved by comparing differentially expressed genes with canonical markers (Figure 7B). Differential expression of marker genes was employed to differentiate between various cellular groupings, as illustrated in Figure 7C. We then studied the ASNS gene in the model in detail. In Figures 7D, E, it is evident that the ASNS gene is highly expressed in the epithelial cells of the tumor sample. In Figure 7F, epithelial cells and stromal cells have strong cellular communication, suggesting that ASNS genes may be involved in the interaction between epithelial and stromal cells to regulate the development of colon adenocarcinoma.

[image: A series of data visualizations showing cell analysis: A) UMAP plot with clusters labeled 0-13. B) UMAP plot with cell types like B cells, epithelial cells, mast cells, and T cells. C) Six UMAP plots showing gene expression for GATA2, MS4A1, PECAM1, ACTA2, CD3E, EPCAM, with color intensity bar. D) UMAP plots comparing normal and tumor cells. E) Scatter plot of ASNS expression levels across different cell identities. F) Network diagram illustrating interactions among B cells, epithelial cells, mast cells, T cells, myeloids, and stromal cells, with numbered links.]
Figure 7 | Single-cell classification and cell chat. (A) The UMAP plot displayed all the cells divided into 26 clusters. (B) Another UMAP plot indicated that COAD samples can be classified into 6 cell types. (C) Marker genes were identified for each cluster. (D) A feature plot illustrated the distribution of the gene ASNS across each cluster. (E) A violin plot depicted the expression levels of ASNS in each cluster. (F) Cell-cell communication between the six main cell types was analyzed using CellChat.




3.7 Drugs sensitivity

Additionally, by utilizing the GDSC database, we forecasted the responsiveness of 198 drugs concerning the two risk cohorts. Within this analysis, 52 drugs exhibited varying degrees of sensitivity based on the risk stratification of the cohorts (Figures 8A–L). Drugs that are more sensitive to high-risk groups and have therapeutic significance are selected and shown in Figure 8. Studies have found that potent and selective CDK9 inhibitors target transcriptional regulation in triple-negative breast cancer (35). Mitoxantrone and gemcitabine are effective in the treatment of metastatic breast cancer (36). JQ-1 (carboxylic acid), BET bromine domain inhibitors have a strong killing effect on triple-negative breast cancer cells (37). Topotecan is useful in lung cancer (38).

[image: Twelve box plots labeled A through L compare drug sensitivity between low and high-risk groups. Each plot shows substantial differences in sensitivity, with p-values indicating statistical significance. Drugs analyzed include CQRP-S-638, Erlotinib, Gemcitabine, and others, illustrating changes in sensitivity linked to risk categories.]
Figure 8 | Prediction of COAD patients’ sensitivity to chemotherapeutic drugs. (A–L) IC50 values of patients in the high-low risk group.




3.8 Biological function and ASNS expression in melanoma are confirmed

We knock down the ASNS gene in both SW620 and RKO cells. Figure 9A shows the transfection efficiency of the two cell types. To verify the expression level of ASNS in 10 pairs of tissues, the results showed that ASNS was highly expressed in colon cancer tissues (Figure 9B). Following in vitro testing, we gained additional insights into the function of ASNS. The CCK-8 study observed a notable decrease in proliferative activity in ASNS knockdown cells (Figures 9C, D). Similarly, the healing and migration ability of the examined cell lines were notably diminished following ASNS knockdown (Figures 9E, F). Moreover, the colony formation experiments indicated a significant reduction in the proliferation capacity of colon cancer cells after ASNS knockdown (Figures 9G, H).

[image: A composite image showing various scientific graphs and panels related to ASNS expression analysis:  A. Bar graph comparing relative ASNS mRNA expression in SW620 and RKO cell lines under different conditions (NC, Si-1, Si-2), with significant differences marked.  B. Line graph depicting ASNS mRNA expression levels in normal versus tumor samples, showing an increase in tumor samples.  C and D. Line graphs showing OD values measured over five days in SW620 and RKO cell lines, respectively, under different treatments (Si-NC, Si-ASNS-1, Si-ASNS-2), with statistical significance indicated.  E. Images displaying wound healing assays in SW620 and RKO cells at 0 hours and 48 hours under various conditions (NC, Si-ASNS-1, Si-ASNS-2).  F. Bar graph quantifying healing percentage in SW620 and RKO cells, with significance highlighted.  G. Colony formation assays showing varying colony densities in SW620 and RKO cells under different treatments.  H. Bar graph of colony numbers indicating the effects of different treatments on colony formation in SW620 and RKO cells, with statistical significance marked.]
Figure 9 | In vitro experiment about ASNS. (A) Transfection efficiency of ASNS gene. (B) Expression level of ASNS gene in tissues. (C, D) CCK-8. After ASNS knockdown, the proliferative ability of SW620 and RKO cell lines decreased significantly. (E, F) Healing test. After ASNS knockdown, the migration ability of SW620 and RKO cell lines decreased significantly. (E, F) Healing test. After ASNS knockdown, the migration ability of SW620 and RKO cell lines decreased significantly. (G, H) Clone formation. After ASNS knockdown, the proliferative ability of the two cell lines decreased significantly. (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.)





4 Discussion

Colon adenocarcinoma represents a prevalent malignant digestive tract tumor, posing a significant threat to human health due to its heterogeneity (39). With the rapid development of medical technology, precision diagnosis, and treatment have become an important focus and have developed rapidly (40). The development of personalized treatment strategies requires an in-depth understanding of the molecular characteristics of COAD to provide patients with more effective and personalized treatment options (41). On the road to exploring COAD precision diagnosis and treatment, the application of various biomarkers and technologies continues to lead the innovation and optimization of diagnosis and treatment strategies (42).

We utilized univariate Cox regression to identify 12 ubiquitin-related genes with prognostic significance. USP26, a member of the specific ubiquitin protease family, is closely associated with tumorigenesis, development, and other pathological processes due to its abnormal regulation (43). MYC, a broad-acting transcription factor, modulates cell differentiation and proliferation through various mechanisms, including transcriptional expansion of target genes (44).

O-linked N-acetylglucosamine transferase (OGT) is a key protein in post-translational modification of O-linked n-acetylglucosamine (O-GlcNAc) that regulates multiple biological processes by linking GlcNAc of glycosyl donors to protein Ser/Thr residues (45). Protein arginine methyltransferase 1 (PRMT1), a member of the arginine methyltransferase family, is often a marker of transcriptional activation and is involved in gene transcription control, mRNA splicing, protein stability regulation, DNA damage signaling, and cell fate determination (46). SNAI1, a nuclear protein, plays a crucial role in the induction of epithelial-mesenchymal transition, formation, and sustenance of embryonic mesoderm, growth arrest, as well as the regulation of cell survival and migration (47). RPS17 is a large RNA molecule that codes for a protein that plays an important biological function in cells and is also a drug target (48). Ribosome binding glycoprotein 2 (RPN2) is a highly conserved glycoprotein that is localized primarily in the rough endoplasmic reticulum (49). Acetyl-CoA carboxylase 1 is a protein encoded by the ACACA gene in the human body. Catalyze rate-limiting reactions during the biological production of long-chain fatty acids (50). RNF112 belongs to the RNF1 family, which includes a variety of transcription factors that play an important role in the regulation of intracellular signaling pathways (51). In a variety of diseases, RNF112 has been shown to have important biological functions (52). Melanocortin 1 receptor (MC1R) is an important gene controlling melanin synthesis in animals (53). The protein encoded by the FBXO39 gene is a member of the F-box protein family and plays a role in regulating protein degradation in cells (54). FBXO39 interacts with the SCF (Skp1-Cullin-F-box) complex through its F-box structure to mediate the ubiquitination degradation of waste proteins (55). Asparagine synthase (ASNS) is a key enzyme in endogenous de novo biosynthesis of asparagine (56). ASNS expression is significantly up-regulated in a variety of human tumors, including liver cancer, lung cancer, and other malignant tumors (57). By activating the expression of oncogene KRAS, ASNS promotes the malignant proliferation of tumor cells and leads to tumor progression (58). In our study, ASNS was also found to be a potential target for COAD.

Our study's significant findings hold profound clinical implications. By employing Lasso regression to identify ubiquitination-related gene features in colon adenocarcinoma (COAD), the researchers were able to calculate individualized risk scores for each patient. This risk score not only serves as a tool for risk stratification but also assists clinicians in devising personalized treatment plans to optimize patient outcomes. Moreover, immunological analyses revealed marked differences in immune infiltration levels between the high-risk and low-risk groups. Although the high-risk group demonstrated increased expression of immune checkpoint-related genes, it also exhibited lower microsatellite instability. This may suggest that the tumor microenvironment of the high-risk group possesses characteristics that suppress immune responses. These findings could provide crucial insights for the development of immunotherapy strategies, particularly for high-risk patients, emphasizing the need to address immune evasion mechanisms to formulate more effective therapeutic approaches (59, 60). The single-cell analysis further enables a comprehensive understanding of gene expression across different cell types within the identified features, aiding in the elucidation of COAD's heterogeneity and the complexity of its immune microenvironment. This cell-level analysis lays the groundwork for identifying potential therapeutic targets, especially through the exploration of the ASNS gene, which demonstrates a critical role in COAD. This indicates that ASNS may not only function as a biomarker but also emerge as a novel target for therapeutic intervention.

While immunotherapy has shown initial success in various solid tumors and is a groundbreaking advancement in cancer treatment, its application in COAD is limited, and our comprehension of the COAD immune microenvironment remains inadequate. Consequently, further research on the immune microenvironment of COAD is crucial for advancing immunotherapy. The study revealed higher expression of immune checkpoint-related genes in high-risk COAD patients, along with lower microsatellite instability. This insight can serve as a basis for COAD immune stratification and guide COAD immunotherapy.




5 Conclusions

In summary, ubiquitin-associated prognostic markers in COAD facilitate robust patient stratification and comprehensive immunological evaluation. This research holds the potential to inspire novel strategies for COAD detection and therapeutic intervention.
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Object

Osteosarcoma is a malignant tumor originating from the bones, commonly found in children and adolescents, especially in rapidly growing bone areas such as the knees and upper arms. In this study, we aim to delineate the evolution and convergence of research themes in osteosarcoma metabolomics over the past decade, identify major contributors, and forecast emerging trends that could direct future research efforts.





Method

The bibliometric method has been applied to systematically analyze the literature in the field of osteosarcoma metabolomics. The relevant literatures were collected from the Web of Science Core Collection, spanning from January 1, 2014, to December 31, 2023. Tools such as CiteSpace, Bibliometrix, and VOSviewer were used for the visual analysis of the collected literatures. The focused information includes institutions, journals, countries, authors, keywords, and citations.





Result

Various aspects in the field of osteosarcoma metabolism were analyzed. Shanghai Jiao Tong University has published the most papers in the past ten years, followed by Central South University and Zhejiang University. Among the sources, the international journal of molecular sciences publishes the most articles, and oncotarget is the journal with the highest H index. According to Bradford’s law, there are 34 core journals identified. A total of 5501 authors participated in the creation of papers in this field. The distribution of authors follows Lotka`s Law, and 85.3% of authors have only one article. 46% of the corresponding authors are from China, but most of these corresponding authors are not good at international cooperation. China also has the largest number of publications, followed by the United States. It can be confirmed that China dominates this field. Among the keywords, “expression” is the keyword that has received the most attention in the past ten years. All keywords can be divided into 9 clusters. Based on the explosive words and hot topics each year, we speculate that future research will focus on the tumor microenvironment, molecular mechanisms and autophagy, targeted therapies and inhibitors.





Conclusion

In summary, this study comprehensively analyzed the current state of research in the field of osteosarcoma metabolism through bibliometric methods. The findings revealed the development trends and research hotspots in this field, which may provide valuable references for future research directions.





Keywords: osteosarcoma, metabolism, research hots, Web of Science, publication volume





Introduction

Osteosarcoma is a malignant tumor originating in the bones, commonly affecting children and adolescents, particularly in rapidly growing skeletal regions like the knees and upper arms (1). It is characterized by high heterogeneity and aggressiveness, often accompanied by early lung metastasis. Treatment typically includes surgical resection and chemotherapy (2).

Metabolomics, as a branch of systems biology, is dedicated to the comprehensive analysis of metabolites in organisms. In the study of osteosarcoma, metabolomics provides a new perspective for understanding tumor treatment (3). By analyzing metabolite differences between osteosarcoma cells and normal bone cells, researchers were able to reveal how tumor growth, metastasis, and response to treatment are linked to metabolic processes. For example, studies on energy metabolism have found that osteosarcoma cells favor glycolysis over oxidative phosphorylation (4). Research into amino acid metabolism has found that abnormally high levels of glutamate may be related to osteosarcoma’s ability to proliferate and survive (5). Studies of lipid metabolism have found that the concentrations of specific lipid molecules in osteosarcoma tissue are significantly different from normal bone tissue (6).

Research into the metabolism of osteosarcoma not only helps in understanding the development and progression of the disease but also holds potential for developing new treatment strategies in the future. Moreover, monitoring specific metabolic products can provide valuable insights for personalized treatment plans, tailoring therapies based on the unique metabolic profile of each patient’s tumor (7).

Bibliometric analysis is an internationally recognized method of information processing. It not only assists governments in making important budgetary decisions (8) but also helps in understanding emerging fields of study in rapidly developing areas.

This study systematically analyzes the collected data on institutions, journals, authors, countries or regions, keywords, and cited references using bibliometric methods. The software tools utilized include Cite Space, VOSviewer and R language. These tools enable performance analysis and visualization of the data, providing predictive references for future research directions.

Cite Space is an open-source software tool for bibliometric and visual analysis, designed to help researchers explore relationships in academic literature, research trends, and collaboration networks (9, 10). Developed by Professor Chaomei Chen of Drexel University, it offers robust features that aid in better understanding literature data.

Bibliometrix is a program package (www.bibliometrix.org) developed based on the r language, which provides a range of tools and features for bibliometric analysis and scientometric analysis (11). Benefiting from the powerful statistical analysis and graphical representation capabilities of the r language, Bibliometrix is capable of performing a wide range of complex analytical tasks, such as author collaboration network analysis, co-citation analysis, time series analysis, keyword rendering, and so on. With this package, users can easily perform statistical analysis and visualization of collected data.

VOSviewer is a software tool developed by Nees Jan van Eck and Ludo Waltman at Leiden University’s Centre for Science and Technology Studies in the Netherlands. It is specifically designed to construct and visualize bibliometric networks. These networks can include journals, researchers, or individual articles, which can be linked by citations, co-citations, bibliographic couplings, or co-authorship relations (12). The primary function of VOSviewer is to visually explore these networks to better understand the relationships and major trends within a specific scientific domain. Its intuitive interface allows users to effectively map and examine the intricate network of scientific publications, facilitating a deeper insight into the landscape of academic research.

As time progresses, more research is being conducted in the field of osteosarcoma metabolism, but currently, there is no study that systematically analyzes the status of this field. This study was guided by a fundamental research question: How have research topics in the field of osteosarcoma metabolism evolved over the past decade? Who are the major contributors in this field? Focusing on these two questions, We conducted this research. By delving into this issue, we aim to shed light on the evolution of themes in this field and identify the main contributors. This question not only allows us to chart the historical trajectory of metabolomic research in osteosarcoma but also to predict emerging trends and propose a roadmap for future research efforts.





Methods




Search strategies and data acquisition methods

The data for this study was collected from the Web of Science Core Collection(WoSCC), which is considered a high-quality literature repository and is widely recognized by scholars (13). Considering the need to exclude some less important papers, we decided to collect literature from only one database, WoSCC. The search formula “TS = (osteosarcoma and metaboli*)” was entered in the advanced search bar of WoSCC, with the time frame set from January 1, 2014, to December 31, 2023. A total of 938 search results were included. Metaboli* contains all terms related to metabolism, and it serves our purpose well by expanding the scope of the search as much as possible but not retrieving beyond metabolism. The collection of data was done by J. Long and J-F. Li, followed by a screening session by J. Long, J-F. Li and X. Wang, with X. Wang judging and deciding when there was a difference of opinion in the screening. Through a screening process, excluding certain types with few publications like “early access,” “meeting abstract,” and “data paper.” Non-English literature was also removed due to its rarity and the current inability of analysis software to process non-English languages. Ultimately, 917 publications were selected for this study. This data includes institutions, journals, authors, countries or regions, keywords, titles, and cited references. The access and search strategy is illustrated in Figure 1. The search results were exported by clicking ‘export’, selecting ‘plain text file’, and ‘full record and cited references’.

[image: Flowchart illustrating the selection process of publications from the Web of Science Core Collection. Initially, 938 publications were identified. After excluding 21 publications for reasons such as early access, meeting abstracts, and other categories, 917 publications remained, which were then processed and duplicates removed.]
Figure 1 | The rough process of this experiment.





Data analysis

Rename the filtered data as “download” and import it into citespace (cite space 6.3.R1): select “import/export” under “Data” to remove duplicates. Save the results separately. Select “New” to create a new project, and select the data path to save the results of the previous step. “Time Slicing” is “From 2014 JAN to 2023 DEC”, “Years Per Slice” option 2. And keeping the defaults for the other projects, and select the corresponding projects in Node Types for the visual analysis.

Select “Create” in the main page of VOSviewer, choose “Create a map based on bibliographic data” in “Choose type of data” and click “Next”. Then select “Read data form bibliographic database files” in “Choose data source” and click “Next”. Under “Web of Science”, select the path to save the filtering results. Under “Fields from which terms will be extracted”, select “Title and abstract fields” and click “Next”. In “Choose type of analysis and counting method”, select “Co authorship”, “Authors” and “Full counting” and click “Finish”. Under the main page, perform the corresponding visualization and analysis (leave the default settings unmentioned).

With the Bibliometrix package loaded in R language, users can directly import data and run analyses, resulting in comprehensive visual analytics.






Result




Overview of publications

This study includes literature submitted in 2023, expected to be published in 2024. This inclusion causes Bibliometrix to account for 2024 in its analysis, but to maintain the integrity of the 2023 research, these documents are retained. Figure 2A shows the overall situation of the collected literature, such as the time span, number of sources, and number of authors. Figure 2B illustrates the annual scientific output in this field, showing an upward trend in publications until 2022, followed by a decline. Figure 2C depicts the annual average citations of these articles, showing fluctuations before 2019 but mostly ranging between 3-4, and a declining trend afterward, with 2019 being a peak. This suggests that significant research addressing key issues was published in 2019, after which the focus of research shifted away from mainstream attention. Table 1 lists the top ten most cited papers, with the most cited being a 2015 paper by PIRES RA et al. on new cancer treatment methods, widely tested in osteosarcoma (14). The paper with the highest standardized citation frequency is by FU JK et al., published in 2021, discussing solutions to drug resistance in solid tumors, contributing to the effectiveness of chemotherapy (15).

[image: Group of visuals containing three sections: A) Summary information displaying data such as timespan 2014-2024, 444 sources, 917 documents, annual growth rate -25.51%, 5,501 authors, and other metrics. B) Line graph titled "Annual Scientific Production," showing an increasing trend from about 50 articles in 2014 to over 100 in 2022 with a decline in 2024. C) Line graph titled "Average Citations per Year," showing fluctuations from about 3.5 citations in 2014 to a decline in 2024.]
Figure 2 | The general situation of publications in this field: (A) Main information; (B) Annual scientific product map; (C) Average citation frequency in each year.

Table 1 | The list of top ten most cited papers.


[image: Table listing academic papers with columns for title, DOI, total citations, citations per year, and normalized total citations. Papers include titles from J Am Chem Soc, Nat Prod Rep, and others, with total citations ranging from 119 to 226.]




Institution analysis

The volume of publications by research institutions can reflect their interest and research capabilities in a particular field. In the field of osteosarcoma metabolism, the institution with the most publications is Shanghai Jiao Tong University (16), followed by Central South University (17), and Zhejiang University (18), as shown in Figure 3A. The top ten publishing institutions are listed in Figure 3A. The relationship between their publications and time is depicted in Figure 3B, indicating an upward trend in publications from these institutions. Using the Cite Space clustering algorithm, these institutions have been clustered based on the keywords of their publications into 13 categories (Figure 3C).

	Fatty Acid Synthase: Institutions under this cluster may wish to pursue therapeutic options through the role of fatty acid synthase in osteosarcoma. For example, some studies indicate that FASN plays a crucial role in the progression and metastasis of osteosarcoma, making it a promising target for therapeutic interventions (19, 20).

	Pioglitazone: Several institutions are working on the effects of pioglitazone in osteosarcoma. The potential of pioglitazone as a resistance modulator and as a component of combination therapy in osteosarcoma points to more effective strategies to overcome chemoresistance in cancer treatment (21–23).

	Metabolic Reprogramming: Some institutions are interested in Metabolic Reprogramming. Their studies collectively demonstrate the importance of metabolic pathways in the progression of osteosarcoma and suggest potential biomarkers and targets for therapeutic intervention (24–26).

	Red Sea: The research of this part of the institution is based on the Red Sea Metagenomic Library, hoping to find ways to treat cancer from the genes of Red Sea microorganisms (27).

	Complete Metabolic Response: These institutions hope to understand the complete metabolic process of osteosarcoma to provide new insights into the occurrence and development of osteosarcoma (28).

	Glycolysis: The research center of these institutions is glycolysis, and they hope to find treatment options for osteosarcoma through the glycolysis pathway (4, 29).

	Tumor Microenvironment: These institutions provide a broad overview of how the tumor microenvironment influences osteosarcoma development, progression, and response to treatment, offering insights into potential targeted therapies (30, 31).

	LDLR -/-: Research at these institutions revolves around the low-density lipoprotein receptor, looking for its relationship with osteosarcoma (32).

	HIF-1 Alpha: These institutions are committed to demonstrate the central role of HIF-1α in the progression, metastasis, and chemoresistance of osteosarcoma, making it a significant target for developing new therapeutic strategies (18, 33).

	Osteoblast: These institutions provide insights into the complex interactions between osteosarcoma cells and osteoblasts, highlighting the potential for targeted therapeutic strategies based on these relationships (17).

	Ankylosing Spondylitis: These institutions provide a broader understanding of the complex interactions between inflammatory processes and bone remodeling in ankylosing spondylitis, which could indirectly relate to the pathology of osteosarcoma (34, 35).

	And Excretion: These institutions have delved into different aspects of excretion relevant to osteosarcoma, providing valuable data on bone metabolism and potential diagnostic biomarkers (36, 37).

	These institutions are committed to finding A possible treatment for osteosarcoma in Aldolase A (38).



[image: Chart A shows a bubble graph of relevant affiliations by article count, with Shanghai Jiao Tong University leading at 40 articles. Chart B is a line graph depicting article production over time from 2014 to 2024 for five universities, showing steady growth. Chart C is a cluster map titled CiteSpace, displaying topics such as "metabolic reprogramming" and "tumor microenvironment," with color-coded clusters.]
Figure 3 | Institutional information: (A) Ranking of institutions by publication volume; (B) Annual scientific output of the top five institutions by publication volume; (C) Clustering of institutions by keywords.

All institutions in this field can be roughly classified into these thirteen clusters, reflecting the complexity and multidisciplinarity of osteosarcoma metabolism research. Using Cite Space, we obtained a burst table (Table 2) for institutions, including 8 institutions. Some institutions, like Free University of Berlin, Charite Universitatsmedizin Berlin, and Humboldt University of Berlin, showed keen interest in this field between 2014-2016, notably all from Berlin, Germany. Additionally, two institutions, Zhengzhou University and Nanchang University from China, have increased their research in this field starting from 2021.

Table 2 | Top 8 institutions with the strongest citation bursts.


[image: Table listing institutions with columns for year, strength, begin, end, and a timeline from 2014 to 2023. Institutions include Free University of Berlin, Charite Universitatsmedizin Berlin, Humboldt University of Berlin, among others. The timeline includes red and cyan bars indicating specific durations within the timeline range. Strength values vary from 2.45 to 3.45.]




Source analysis

For the analysis of journals, we extracted the number of publications, h-index and citation frequency as references. The top ten journals by publication volume are shown in Figure 4A. The top three are international journal of molecular sciences (29), oncotarget (24), Frontiers in oncology (21) and plos one (21). The top ten journals with H index are shown in Figure 4B. The top three are oncotarget (14), plos one (13), international journal of molecular sciences (11) and biochemical and biophysical research communications (11). Frontiers in oncology ranks tenth on the h-index list, which is a positive phenomenon. However, compared with other journals that are also in the top three publications, Frontiers in Oncology has a big gap. Perhaps frontiers in oncology should raise the inclusion threshold to include more valuable studies. Oncology Reports does not appear in the top ten by number of published articles, but its h-index ranks fifth, indicating that although this journal publishes fewer articles, its average quality is higher. The number of local citations can evaluate the influence of a journal in the industry. The journal with the most citations is cancer res (979), followed by j biol chem (870) and plos one (868). The remaining seven highly cited journals are shown in Figure 4C. Bradford’s law is a law used to evaluate the distribution of journals in a certain field. It is generally divided into three areas: core journals, secondary journals and tertiary journals. Figure 4D shows the distribution of journals in the field of osteosarcoma metabolism. The shaded area contains the core journals in this field. The specific list is shown in Table 3.

[image: Four charts labeled A, B, C, and D present different analyses of academic sources. Chart A shows the most relevant sources by the number of documents, with the "International Journal of Molecular Sciences" leading. Chart B displays sources' local impact using the H-index, led by "Oncotarget." Chart C illustrates the most locally cited sources, with "Cancer Res" at the top. Chart D depicts a Bradford’s Law graph, highlighting core sources based on a distribution curve.]
Figure 4 | Journal information: (A) Journal publication volume ranking; (B) Journal H index ranking; (C) Journal citation ranking; (D) Core journal distribution.

Table 3 | Core journals in the field of osteosarcoma metabolomics.


[image: A table listing journal names, ranks, frequencies, and cumulative frequencies. The top journal is the International Journal of Molecular Sciences with a rank of 1, a frequency of 27, and a cumulative frequency of 27. The table continues with similar data for other journals, totaling 34 entries. The last journal listed is the Journal of Cellular Biochemistry, ranked 34, with a frequency of 5 and a cumulative frequency of 307.]




Author analysis

The author collaboration network displays authors who have published 3 or more articles, as shown in Figure 5A. The authors in the figure are divided into several clusters, and the authors in each cluster have a close cooperation relationship. For example, the groups represented by Zhou, Yang and Shen, Yifei have close cooperation. The size of the label represents the author’s relative publication volume. For example, Baldini, Nicola, Kuban-Jankowska, and Alicja have more publications. We have collected the number of articles published by some authors who have detailed information in WOSCC (the authors of some articles have only one article and their initials are the same, but these authors have not claimed the article in WOS), and they are displayed in Table 4. The color of the node represents the year in which the author was active, and the year corresponding to the color is shown as the label in the lower right corner of the figure. A total of 5501 authors participated in this field in the past ten years. Most of these authors published only one article, which is similar to Lotka`s Law that describes the distribution of authors’ publications. Figure 5B compares the distribution of authors in this field (solid line) with Lotka`s Law (dashed line). Lotka’s Law was introduced by Alfred Lotka in 1926 and is used primarily to describe the distribution of scholarly output by scientists, authors, or artists (39). The approximate meaning of this law is that a very small number of people create most of the work, while the majority of people contribute only a very small portion. Table 5 shows the authors with different numbers of publications. 85.3% of the authors published only one article, indicating that a large number of new authors have poured into this field in the past ten years, but the investment of these authors still needs to increase to publish more valuable research. It should be pointed out that some documents are attributed to one author because they are not claimed by the author, and he has published more articles than the author with detailed attribution.

[image: Network visualization of authors clustered by collaboration, with colors indicating publication years from 2018 to 2022. A graph plots author productivity against Lotka's Law, showing a steep decline in the percentage of authors as documents written increases.]
Figure 5 | Author information: (A) Author collaboration network; (B) Author distribution by output.

Table 4 | The number of articles published by authors who have detailed information in WOSCC.


[image: A table displaying authors and the number of articles they have published. Sofia Avbet leads with twelve articles, followed by Nicola Baldini with ten. Alicja Kuban-Jankowska has seven. Peng Shang, Massimo Serra, Margherita Cortini, and Yifei Shen each have six. Several authors, including Ilhan Lim, Katia Scotlandi, and Wonseok Song have five articles. The table continues with other authors, concluding with four articles by Eisuke Kobayashi.]
Table 5 | Distribution of authors by number of publications.


[image: Table displaying the number of authors and their corresponding document contributions. Authors who wrote one document total 4693, making up 85.3% of authors. Those with two documents are 575, comprising 10.5%. Three documents have 118 authors, 2.1%. The count decreases for higher document numbers, with several levels showing only a single author or none for specific document counts.]




Country or region situation analysis

We first determined the country of the corresponding author in the collected documents (Figure 6A). The largest number of corresponding authors are from China, accounting for 46% of the total corresponding authors (Table 6), followed by the United States and Italy. In the figure, MCP represents the corresponding author of international cooperation, and SCP represents the corresponding author of domestic cooperation. It is obvious that most of the corresponding authors in China cooperate with domestic personnel, and their international cooperation relationships are relatively weak. The United States has the close number of MCPs as China. Since the total number of people is smaller than that of China, the proportion of MCPs is larger. The situation in Italy is similar to that in China. Of course, there are also a small number of countries that are good at cooperating with other countries, such as Germany and the United Kingdom. Their MCP Ratio is greater than 40%. The details are shown in Table 6. Figure 6B shows the number of publications of each country or region in the form of a map, with regional colors. The depth of the represents the amount of articles published in the region. China has the darkest color in the picture, which means it has the largest amount of articles published, followed by the United States. All countries and regions are roughly divided into four levels. China and the United States are level one and level two respectively; countries with lighter colors than the United States, such as Germany, the United Kingdom, and Italy, are level three; countries or regions in gray plates are level four. Most of these countries are underdeveloped areas with relatively low scientific research capabilities. There have been no articles published in this field within the selected ten-year time span. Figure 6C is a diagram of cooperation between countries. Every time there is cooperation between two countries, there will be a connection. It can be seen that the cooperation between China and the United States is close. These two countries also have the most frequent international cooperation at the national level. Finally, there is the total citations of national output (Figure 6D). China leads all countries with a citation frequency of 6785, and the gap is huge, followed by the United States and Italy, whose citation frequencies are 2745 and 1280 respectively. China has the highest citation frequency, and it also has the highest number of publications. In both aspects China is in the leading position. However, it cannot be ignored that due to the large number of publications, one possible problem is that although there are many citation frequencies, the average citation frequency is not necessarily leading, and the citation frequency only provides a certain reference basis for judging the extent of a country’s contribution.

[image: A four-panel visualization shows various aspects of scientific publication and collaboration by country. Panel A is a bar chart titled "Corresponding Author's Countries," highlighting China as the leading country with over 450 documents, mostly single country publications. Panel B is a world map titled "Country Scientific Production," with China and the USA in darker shades indicating higher production. Panel C is a "Country Collaboration Map" showing international collaborations, with lines connecting countries, especially prominent links to China. Panel D is a dot plot of "Most Cited Countries," showing China with the highest number at over 6,000 citations.]
Figure 6 | Country or region information: (A) The source of the corresponding author; (B) The status of scientific products in each country or region; (C) The cooperative relationship between countries or regions; (D) The citation status of each country or region.

Table 6 | Corresponding authors and collaborations in different countries.


[image: Table showing data for various countries. Columns include Country, Articles, SCP, MCP, Freq, and MCP_Ratio. China leads with 422 articles and a ratio of 0.076, while France has the lowest count with 14 articles and a ratio of 0.143. Other countries listed are USA, Italy, Japan, Germany, India, Korea, Poland, and the United Kingdom, each with varied statistics.]




Keyword analysis

The keywords for our study were sourced from the Web of Science Core Collection, which includes author-provided keywords and ‘Keywords Plus’—terms from cited references’ titles. This ensures a wide-ranging representation of central themes in osteosarcoma metabolomics research.

Analyzing keywords is of great significance, as it helps us discover the research hot spots of scientific researchers in the past ten years and speculate on the problems and research progress in this field. Based on the research hot spots in recent years, the next research direction can also be predicted. Figure 7A shows the 15 most relevant keywords in the past ten years and their frequency of occurrence. These keywords are presented in the form of a word cloud as shown in Figure 7B. expression is the keyword that has received the most attention in the past decade, which may mean that the expression of certain osteosarcoma metabolism-related genes is very important for this disease. According to the explosive word list (Table 7), we can find explosive words in different years. These words are active in researchers’ articles in different years. For example, gene expression was a research hotspot from 2014 to 2017, with an intensity of 4.95. The higher it is, the more relevant research there is in the same year. Tumor microenvironment, mutations, and inhibitors have been active since 2021 until now. These three keywords may be closely related to the next research trends. Figure 7C is a keyword co-occurrence network. If two keywords appear together in an article, there will be a connection. The thicker the connection, the closer the connection between the two keywords. The more connected keywords are with the more relevant the other keywords are. The three keywords of cancer, metabolism, and expressions are highly correlated. According to the algorithm of bibliometrix, these keywords are roughly divided into four categories, which are replaced by four colors. The red cluster represents treatment ideas for malignant osteosarcoma in children; the green cluster represents the associations that exist between osteosarcoma and other cancers; the purple cluster represents metabolism-related treatments for osteosarcoma and their effects; and the blue cluster represents expression of related genes in osteosarcoma. These keywords are closely related in their respective categories. We used citespace to conduct a more detailed cluster analysis of keywords (Figure 7D). They are:

[image: A group of six visualizations labeled A to F illustrates various aspects of research topics. A is a chart showing relevant words with their occurrences. B is a word cloud highlighting prominent terms like "cancer" and "expression." C displays a network graph indicating term connections, with larger nodes representing important words. D is a cluster plot mapping research areas with different colors and terms like "positron emission tomography" and "osteosarcoma." E shows a trend flow diagram with research themes over time, each color-coded. F presents a trend analysis graph depicting how term frequency changes by year.]
Figure 7 | Keyword information: (A) Keyword frequency ranking; (B) Keyword word cloud diagram; (C) Keyword co-occurrence network; (D) Keyword clustering; (E) Timeline diagram of clustering; (F) trending topics.

Table 7 | Top 22 keywords with the strongest citation bursts.


[image: A table lists keywords related to medical research from 2014 to 2023, including terms like "gene expression" and "acute lymphoblastic leukemia". Each entry has a strength score and start and end years. A visual bar graph on the right represents the timeline of each keyword's relevance, with varying red and blue segments indicating different periods of strength.]
0 positron emission tomography

1 osteosarcoma

2 reactive oxygen species

3 tumor microenvironment

4 prostate cancer

5 signaling pathways

6 mitophagy

7 osteogenesis imperfecta

8 liquid chromatography

Distributing these clusters according to the time axis can explore the active status of each cluster in each time period (Figure 7E). The large nodes of the first seven clusters all started in 2014, which may have been a lot of research on these nodes in 2014 or before. The two clusters #7 and #8 appear for a shorter time. There are five clusters that continue to this day and have continuing trends. They are #0, #1, #3, #4, and #6. The theme trends also have certain reference significance. Figure 7F has appeared in the past ten years. Trend topics, these topics have persisted for a period of time, and some even continue to the present, such as molecular-mechanisms, signature, autophagy, and inflammation.





Citation analysis

We collected the ten most frequently cited documents in this field and explored what theoretical foundations these documents provide, which can help us understand important information in this field. The collected results are presented in Table 8. The most frequently cited reference is by Michael S. Lsakoff, Stefan S. Bielack et al., who discuss biology, preclinical and clinical trial efforts and future international collaboration strategies with the aim of improving the treatment of cancer patients. Treatment results (45). This article became an explosive citation in this field between 2016 and 2020, reflecting the importance of this article. Table 9 displays burst citations over the years. Examining the temporal characteristics of citations in these articles can determine the high interest in this field at a specific time. One of the earliest Breakout citations was by Daniela Caronia, Ana Patiño-Garcia, et al., who investigated whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes for drugs used in standard osteosarcoma treatments could predict and Correlations between four SNPs in two ATP-binding cassettes and overall survival were found Caronia (46). Anja Luetke, Paul A Meyers, et al. discuss the treatment experience of systemic osteosarcoma (47). Outbreak Citation in Recent Years Jeremy S Whelan, Lara E Davis discuss the treatment of osteosarcoma, chondrosarcoma and chordoma (48). Stefan S Bielack, Jeremy Whelan and others explore survival and prognosis in osteosarcoma (49). In addition, Ingrid Lilienthal and Nikolas Herold summarized the treatment strategies of osteosarcoma in their review, providing a reference for rational treatment (50).

Table 8 | Top ten lists of citations in the field of osteosarcoma metabolomics.


[image: List of cited references with corresponding citation numbers in parentheses. References include articles from journals like the Journal of Clinical Oncology, Nature Reviews Cancer, Cancer Treatment Reviews, Science, and others. Each entry includes the author, year, journal name, volume, page, and DOI. Citation numbers range from 16 to 44.]
Table 9 | Top 25 references with the strongest citation bursts.


[image: Table of research references with columns for authors, publication year, strength score, begin and end years, and a bar chart showing activity from 2014 to 2023. Each row lists different studies, with varying metrics and activity durations indicated by red and blue bars.]





Discussion

Tumors have always been a problem that plagues mankind, and osteosarcoma is no different. Osteosarcoma is a malignant tumor that originates from bone tissue and is highly invasive. It usually occurs in children and adolescents (51). Treatment of osteosarcoma is a challenge, but there are several treatment options available for osteosarcoma. Examples include surgical treatment, chemotherapy, radiation therapy, and targeted therapy. Surgery is the cornerstone of osteosarcoma treatment, and the lesion is removed surgically. Limb-sparing surgery can be performed to avoid amputation when the lesion is confined, but may be necessary when the lesion is more extensive. Chemotherapy is indispensable in the treatment of osteosarcoma. Chemotherapy before surgery can reduce the size of the tumor and create conditions for surgery, and chemotherapy after surgery can remove undetected metastatic cancer cells. Commonly used drugs include cisplatin, adriamycin and methotrexate. Radiation therapy also plays a role in the treatment of osteosarcoma, which is usually used when the tumor cannot be removed by surgery or recurs. Targeted therapy is a relatively new treatment. It uses drugs such as IGF-1R or mTOR to inhibit tumor growth in order to achieve a therapeutic effect. Immunotherapy is also being developed, which aims to induce the body’s immune system to recognize and attack cancer cells. In conclusion, in addition to traditional treatment options, more and more new treatment options are being developed (1).

Osteosarcoma is defined as a rare disease, and research on osteosarcoma has been ongoing, but due to the small number of patients, less research has been conducted on this field. Not only is there a lack of researchers, but limited by theories and technology, research in this area is also difficult to carry out. With the development of medical technology, more and more advanced instruments are used in medical research, and more relevant theories have been discovered. Benefiting from these, research in the field of osteosarcoma metabolism has begun to develop rapidly, and more and more metabolic pathways are being explored, which also means that there will be more therapeutic options to try.

Studying the metabolic processes of osteosarcoma can help understand the development of this cancer. Metabolic abnormalities in osteosarcoma cells may cause them to proliferate excessively and evade immune system attack (44). Researchers study the metabolic pathways of osteosarcoma, which may lead to new treatment strategies and drugs (52).

Bibliometrics is the study of quantitative analysis methods of scientific literature and academic output. Bibliometrics is widely used. It can use statistical methods and mathematical tools to analyze and evaluate the characteristics, trends and influence of documents in terms of academic output, citations, cooperation relationships, etc. In this study, we used bibliometrics to analyze the products of osteosarcoma metabolism research from 2014 to 2023. We used cite space and bibliometrix to analyze 917 documents, and systematically analyzed institutions, journals, countries or regions, authors, keywords, and citations. Through these analyses, we can speculate on the current research status and future trends in this field.




Knowledge base

Judging from the number of publications in this field, there is an overall upward trend, but there has been a downward trend since 2022. The citations of literature in this field have declined significantly since 2019, largely attributable to a series of pioneering studies that introduced novel therapeutic approaches and advanced molecular insights into osteosarcoma. These studies not only provided innovative solutions, such as the development of liposome-encapsulated curcumin-loaded 3D printed scaffolds and the use of black phosphorus for treatment (43, 53), but also delved into the intricate molecular mechanisms underpinning cancer progression, such as m6A methylation and its regulatory roles (54). The interdisciplinary methodologies employed, combining elements from genetic engineering, material science, and biochemistry, have paved the way for potential clinical translations, directly impacting patient care and treatment protocols (55). Such contributions are critically important not only for their immediate academic and clinical implications but also for their broader relevance to public health, given the severe impact of osteosarcoma on younger populations. The high citation rates of these publications underscore their significant influence on the field, driving forward the boundaries of research and offering new avenues for improving outcomes in osteosarcoma treatment. After this, the quality of the articles began to decline, and researchers may need to look for new ideas to conduct more meaningful experiments.

In terms of institutions, Shanghai Jiao Tong University ranks first in the number of publications. Shanghai Jiao Tong University is a famous comprehensive university in China, located in Shanghai, China. Shanghai Jiao Tong University has a long history, which can be traced back to the 1890s (https://www.sjtu.edu.cn). Their research results include that miR-22 effectively inhibits tumor growth and metastasis by targeting and inhibiting ATP citrate lyase (ACLY), providing potential therapeutic benefits for osteosarcoma, prostate cancer, cervical cancer, and lung cancer (56). M6A alpha Base transferase METTL3 enhances osteosarcoma progression by increasing m6A methylation of LEF1 mRNA, thereby activating the Wnt/β-catenin signaling pathway and promoting cancer cell proliferation, migration, and invasion (54). In addition to Shanghai Jiao Tong University, there are five institutions originating from China, namely Central South University, Zhejiang University, Nanjing Medical University, Chinese Academy of Sciences and Fudan University. From this information, it can be seen that China’s interest in this field is higher than that of other countries. The fourth-ranked University of Texas System is a public university located in Texas, USA(https://www.utsystem.edu). Founded in 1876, it is a university with a high reputation in many aspects. Contributions to medicine in the University of Texas System usually originate from its medical and biological research institutions. Among them, the University of Texas MD Anderson Cancer Center has a high reputation in cancer research, and most of its contributions in the field of osteosarcoma metabolism come from this health science center.

The top three core journals among the journals are INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, ONCOTARGET, and FRONTIERS IN ONCOLOGY. They are all important journals in the field of biology. The International Journal of Molecular Sciences is an open international academic journal that focuses on research in the molecular field, such as molecular biology, molecular physics, etc. Research on the molecular mechanisms of osteosarcoma metabolism will be accepted by this journal. Oncotarget’s focus is mainly on oncology research. In addition to oncology, the topics involved include neuroscience, endocrinology, cardiovascular disease and other disciplines. As a type of malignant tumor, related research on osteosarcoma can also be published in this journal. Frontiers in Oncology is a sub-journal of Frontiers. This sub-journal also focuses on the field of oncology. This journal is more inclined to multidisciplinary discussions and covers various branches of oncology. In this journal, you can see research on the metabolism of osteosarcoma. Recent advances in molecular mechanism research, emerging treatment options, and cancer metabolism.

Among the authors, two authors whose identities have been clearly identified have more than 10 publications, namely Avbet, Soflia (12), and Baldini, Nicola (10). These two authors have a close cooperative relationship. Avbet, Soflia and Baldini, Nicola are both from the Department of Biomedicine and Neuromotor Sciences of the University of Bologna, Italy. Their academic focus is on applied medical technology and methodology. Avbet, Soflia is a senior assistant professor with an extensive educational background including a degree in medical biotechnology, a PhD in the same field, a master’s degree in cell and molecular biology, etc. (https://www.unibo.it/sitoweb/sofia.avnet3/cv-en). Baldini, Nicola is a full professor and not only that, he works as an orthopedist and oncologist at the Istituto Ortopedico Rizzoli (https://www.unibo.it/sitoweb/nicola.baldini5/en). The two of them had many collaborative relationships in the past ten years, and the most cited article during the period was jointly published by multiple authors, titled The human tumor microbiome is composed of tumor type-specific intracellular bacteria (42). This study provided a comprehensive analysis of tumor microbiome, Includes 7 types of cancer. Study finds each tumor type has unique microbial composition, with breast cancer in particular having a rich and diverse microbiome. The most recent article was published in cancers on February 21, 2023, and was also published by two people. This article studied the contribution of mitochondrial activity to doxorubicin resistance in osteosarcoma cells. The study pointed out that compared with sensitive cells, doxorubicin-resistant clones showed higher activity and lower oxygen-dependent metabolism. and had significantly reduced mitochondrial membrane potential, mitochondrial mass, and reactive oxygen species (2) production. Reduced TFAM gene expression in drug-resistant cells is often associated with mitochondrial biogenesis, and combining doxorubicin (a chemotherapy drug) with quercetin (a known inducer of mitochondrial biogenesis) Drug-resistant osteosarcoma cells can be resensitized to doxorubicin (57). In addition to these two authors, there are still a few authors who have been conducting research in this field for a long time, but most of them have low scientific output. Governments should increase funding or formulate relevant policies to encourage researchers to conduct more valuable research.

Among countries or regions, China is the main leader. Our study reveals China’s prominent role in advancing osteosarcoma metabolomics research and demonstrates China’s strategic investment in cancer research and innovation. There are the largest number of corresponding authors from China, China has the largest scientific output, and China has the largest total number of citations. But most authors in China are not good at international cooperation, which is a negative phenomenon. The analysis shows a relatively isolated research landscape with limited international collaboration. Strengthening global research partnerships can accelerate translation of metabolomics findings into clinical practice. International cooperation among academics is conducive to promoting information exchange among countries and accelerating progress in this field. There are many reasons for failure to cooperate, such as distance, policy, scientific research level, etc. Judging from the status of the authors’ publications, we speculate that some authors in China have low scientific research levels and have not reached the threshold for international cooperation. This is reflected in a large number of low-publishing authors. In general, China has many authors, but the quality of articles still needs to be improved. We recommend that researchers continue to conduct more valuable research to improve the overall quality of articles, and that the government increases investment to help researchers conduct research by formulating relevant policies.

To promote broader international collaboration and enhance dissemination of research results in the field of osteosarcoma metabolomics, we propose the establishment of a global alliance. The organization will provide a platform for researchers from various countries to share their results, discuss methods and achieve breakthroughs in the treatment and understanding of osteosarcoma at a faster pace by promoting open dialogue and collaboration.

In the realm of keywords, “express” has consistently garnered attention. Commonly referring to gene expression, this focus is sustained due to ongoing research into genes related to the metabolism of osteosarcoma. For instance, a review published in 2023 revisited the miR-30 gene family prior to that year, with previous studies indicating that low expression of miR-30c correlates with higher malignancy and shorter survival in osteosarcoma (41). Other genes within the same family play crucial roles in bone metabolism. Another review from 2020 discussed the expression of autocrine motility factors in bone tumors, finding that these factors and their receptors collectively alter the bone microenvironment (58). Additionally, autocrine motility factors are involved in processes such as glycolysis, gluconeogenesis, and protein degradation. More recent research has shown that patients with osteosarcoma, rhabdomyosarcoma, and angiosarcoma tend to express higher levels of AMF, while patients with multiple myeloma show higher expression of AMFR. A 2019 review summarized studies on low-density lipoprotein in metabolism, noting that during the study period, LRP5 was proven to play a role in osteosarcoma and in non-cancer conditions such as the chondrocytic subtype of prostate cancer and osteoporosis (32). Furthermore, a 2021 review revisited the relationship between LOX-1 and cancer, discussing the correlation between tumors, metabolic disorders, and new therapeutic strategies (40). The authors highlighted the role of the LOX-1 receptor in various cancers, such as glioblastoma and osteosarcoma, and evidence of its interaction with the WNT/APC/beta-catenin signaling pathway. They also mentioned that targeting LOX-1 to inhibit angiogenesis and metastasis represents a promising anti-cancer strategy.





Research trends

Figure 7F shows the evolution of research topics from 2014 to 2023. It is clear that some topics have maintained a stable presence in academic discussions over the years, with “gene expression” continuing to attract attention, indicating continued research interest and potential for continued breakthroughs in this area. On the other hand, terms such as “autophagy” and “transmission” have significantly increased in frequency, suggesting that these fields have gained momentum, possibly due to new discoveries or technological developments that make research in these areas more feasible or relevant of. Node sizes corresponding to “inflammation” and “metabolism” also grew significantly and remained prominent around 2018, reflecting the growing awareness of the role of inflammation in disease and the surge in metabolism-related research, likely due to for their importance in diseases such as cancer. Notably, “osteosarcoma” has peaked, reflecting a specific period of concentrated research effort, which may be associated with important publications or clinical trials reporting significant findings. In contrast, topics such as “acute lymphoblastic leukemia” and “cellular lung cancer” appear less frequently, which may represent a shift or maturation of research focus in these areas. Overall, the focus of this research area continues to evolve under the influence of technological advances, clinical needs, and scientific discoveries.

Based on the keyword clustering, trending topics and explosive words that continue to this day, we can speculate on the research hot spots in the short term. It can be roughly divided into three aspects: tumor microenvironment, molecular mechanism and autophagy, targeted therapy and inhibitors.




Tumor microenvironment

The tumor microenvironment is the environment around tumor cells, including various cells and extracellular components for the occurrence and development of tumor cells. Cells include immune cells, vascular endothelial cells, fibroblasts, etc. These cells play an important role in tumor development, treatment and tumor cell metastasis. Extracellular components include growth factors, chemical factors, pro-inflammatory cytokines, tumor necrosis factor, etc., which can all affect tumor cells. Studying the tumor microenvironment helps to understand the development of cancer, explore new treatment strategies, immune evasion mechanisms and drug resistance of cancer cells (59, 60). In July 2023, Qiu Xinzhu, He Hongbo and others systematically correlated MYBL2 with immune signatures in the pan-cancer tumor microenvironment, and used their risk score to predict the prognostic ability of osteosarcoma. They pointed out that MYBL2 regulates the proliferation development and immune infiltration of osteosarcoma and pan-cancer, and MYBL2 can be used as a potential marker in the osteosarcoma microenvironment to predict prognosis (61). An article published in January 2024 used single-cell sequencing data to identify exhausted T cells in the osteosarcoma microenvironment, investigated the role of T cell depletion in the osteosarcoma microenvironment, and provided insights into osteosarcoma development. New insights into mechanisms and their therapeutic strategies (62). In the same month, Wang Yang, Zhou Xueru and others published an article on the use of capsaicin in the adjuvant treatment of osteosarcoma. The study pointed out that capsaicin can induce ferroptosis, relieve hypoxia, destroy redox homeostasis, and enhance the effect of photodynamic therapy (63).





Molecular mechanisms and autophagy

The molecular mechanisms related to osteosarcoma metabolism mainly involve signal transduction pathways, gene expression regulation, and cell proliferation and apoptosis mechanisms. Research mainly focuses on the occurrence, development and treatment response mechanisms of osteosarcoma, especially the key molecules and pathways that lead to tumor growth and metastasis. Autophagy is an important process that maintains cellular homeostasis. This process is complex and involves the removal of damaged proteins and organelles. In osteosarcoma, autophagy may play a dual role, that is, it can induce cell death and maintain the survival of tumor cells. Understanding molecular mechanisms and autophagy can provide insights into the mechanisms of cancer and can also help develop new treatment strategies. For example, the cancer-promoting protein IF1 helps tumor cell growth by promoting mitochondrial renewal and energy conservation (64). Sergio Almansa-Gomez, Francisco Prieto-Ruiz and others made a review on the regulation of autophagy in osteosarcoma. They believed that many results have been achieved in the regulation of autophagy in osteosarcoma in the past, but future research still needs to elucidate the role of autophagy. Molecular mechanisms and their relationship to osteosarcoma (65).





Targeted therapies and inhibitors

The identification of new molecular targets, such as specific mutations or pathways active in osteosarcoma cells, is a key area. The development of inhibitors that target these molecules or pathways may provide new treatment options for osteosarcoma. CAR-T cell therapy, which has attracted much attention since its discovery, involves targeting tumor antigens and releasing immune factors. This technology has made significant progress in hematological malignancies, but is subject to many limitations in osteosarcoma. Nonetheless, this is still a potential treatment and research is ongoing (66). A study published in January 2024 showed that the use of a first-in-class RNA polymerase mitochondrial inhibitor IMT1 can inhibit the survival, proliferation, migration and other activities of osteosarcoma cells (67). Another study in the same month verified that inhibiting stearoyl-CoA desaturase can impair the proliferation and invasion of osteosarcoma and become a therapeutic target for new drugs (68).

In the context of tumors, metabolomics research continues, and significant research results have been achieved in various types of tumors. Even one metabolic pathway can be mapped to multiple types of tumors, highlighting the interconnected nature of metabolic processes across different cancers. This cross-tumor applicability suggests that discoveries in osteosarcoma can often provide valuable insights into others, potentially leading to broader therapeutic applications. For instance, alterations in glycolysis and lipid metabolism pathways, frequently observed in several cancers, have inspired new approaches to treatment that target these shared metabolic changes. Such findings underscore the importance of metabolomics not only in understanding the unique metabolic fingerprints of each cancer type but also in uncovering universal targets that could lead to more effective, multi-faceted treatment regimens.






Limitation

First, due to software limitations, we were unable to cross-validate with other databases, which may have led to biased findings. Second, it’s important to acknowledge that the results of the bibliometric analysis could be influenced by the authors’ comprehension of the subject matter and certain subjective factors. Third, bibliometric analyses have a certain timeliness due to the dynamic nature of database updates.






Conclusion

Using bibliometric methods, we conducted a comprehensive visual analysis of the field of osteosarcoma metabolism, revealed research hotspots in each period, and predicted future trends. It is noteworthy that China occupies a major leadership position in this field, but most authors from China still need to improve their scientific research standards. There is still much room for collaboration among individual authors, institutions, and countries. At present, it seems that the next research may focus more on the three directions of tumor microenvironment, molecular mechanism and autophagy, as well as targeted therapy and inhibitors.
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Gastric adenocarcinoma (STAD) is characterized by high heterogeneity and aggressiveness, leading to poor prognostic outcomes worldwide. This study explored the prognostic significance of lactylation-related gene sets and mitochondrial functions in STAD by integrating large-scale genomic datasets, including TCGA and several GEO datasets. We utilized Spatial transcriptomics and single-cell RNA sequencing to delineate the tumor microenvironment and assess the heterogeneity of cellular responses within the tumor. Additionally, the study identified distinct molecular subtypes within STAD that correspond with unique survival outcomes and immune profiles, enhancing the molecular classification beyond current paradigms. Prognostic models incorporating these molecular markers demonstrated superior predictive capabilities over existing models across multiple validation datasets. Furthermore, our analysis of immune landscapes revealed that variations in lactylation could influence immune cell infiltration and responsiveness, pointing towards novel avenues for tailored immunotherapy approaches. These comprehensive insights provide a foundation for targeted therapeutic strategies and underscore the potential of metabolic and immune modulation in improving STAD treatment outcomes.
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1 Introduction

Gastric cancer (GC), particularly gastric adenocarcinoma (STAD), stands as a significant public health challenge worldwide (1, 2). It is the fifth most common cancer and the third most common cause of cancer-related deaths globally (3, 4). The aggressive nature of the tumor and the disease’s often late diagnosis strongly contribute to its mortality rate (5). Patients with advanced STAD continue to have a poor prognosis, with a poor five-year survival rate, despite improvements in surgical methods and systemic therapies (6–8). While our primary focus is on gastric adenocarcinoma (STAD), we also included GEO datasets from lung adenocarcinoma and urothelial carcinoma to explore whether the observed lactylation-related gene expressions and their impact on immune response were consistent across different cancer types. This comparative analysis aims to provide a broader understanding of lactylation’s role in cancer biology. Among the lactylation-related genes identified, PTMA was selected for further experimental validation due to its significant association with mitochondrial dysfunctions and its prognostic value in gastric adenocarcinoma. PTMA’s role in immune modulation and cancer progression makes it a promising candidate for understanding the molecular mechanisms underlying lactylation’s impact on cancer biology.

The complexity of gastric cancer, characterized by its genetic, epigenetic, and environmental heterogeneity, complicates effective treatment strategies (9, 10). The integration of molecular biology and gene expression profiling has started to illuminate the diverse molecular mechanisms underlying the pathogenesis of STAD (11, 12). These insights have led to the classification of gastric cancer into distinct molecular subtypes, each with unique prognostic and therapeutic implications (13–15). However, the clinical application of these classifications and the development of targeted therapies have been hindered by a limited understanding of the molecular drivers and systemic immune responses’ interaction with the tumor microenvironment.

Recent advancements in high-throughput technologies and bioinformatics tools have provided unprecedented opportunities to explore the complex biological landscape of gastric cancer (16, 17). Transcriptomic profiling, particularly through Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA), has offered valuable resources for identifying key molecular signatures and pathways that could serve as potential diagnostic, prognostic, and therapeutic targets (18, 19).

One of the pivotal aspects of this research is the study of gene expression modulation via post-translational modifications (PTMs), such as lactylation, which have recently been recognized for their roles in cancer biology (20, 21). Lactylation, a relatively new addition to the list of PTMs, has been implicated in various cellular processes, including metabolism, immune response, and gene expression regulation (22, 23). Exploring lactylation-related gene sets in STAD may help identify novel aspects of gastric cancer pathophysiology and identify promising targets for therapy.

Furthermore, the tumor microenvironment (TME), which includes a complex array of fibroblasts, immune cells, and other stromal elements, plays a vital role in the progression and response to therapy in gastric cancer (24, 25). Modern methods like spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) provide a thorough analysis of the tumor microenvironment (TME), offering valuable information about the cellular variability and dynamic interactions inside the tumor that contribute to cancer progression and treatment resistance (26–28).

In this context, the prognostic value of gene expression profiles has been increasingly recognized. Building robust prognostic models based on differential gene expression could significantly improve the stratification of patients for tailored therapeutic strategies. Additionally, with the advent of immunotherapy as a powerful modality in cancer treatment, understanding the interaction between the immune landscape of STAD and its molecular subtypes could guide the development of more effective immune-based therapies.

However, despite these technological advancements, the translation of molecular findings into clinical practice remains slow, and the impact on patient survival has been modest. This underscores the need for continued research into the molecular mechanisms of gastric cancer, leveraging the latest technologies to bridge the gap between bench research and bedside application.

The present study aims to address these challenges by employing comprehensive bioinformatic analyses to explore the correlations between lactylation-related gene expressions and mitochondrial-related genes and to identify those with prognostic significance in gastric cancer. By integrating data from TCGA and multiple GEO datasets, we utilized the TCGA dataset as the primary training set for constructing the prognostic model. The GEO datasets were subsequently used for validation to assess the robustness and generalizability of our findings. This research seeks to refine the molecular classification of gastric cancer, enhance the understanding of its biological underpinnings, and identify novel prognostic markers and therapeutic targets. By applying cutting-edge technologies such as scRNA-seq and spatial transcriptomics, the study will dissect the complex interactions within the gastric cancer microenvironment, offering new perspectives on the cellular processes that govern tumor behavior and response to treatment. Lactylation, a newly recognized post-translational modification, has been implicated in the regulation of various metabolic processes crucial for cancer cell survival and proliferation. In the context of cancer, particularly gastric adenocarcinoma (STAD), lactylation can significantly impact metabolic pathways, including glycolysis, oxidative phosphorylation (OXPHOS), and the tricarboxylic acid (TCA) cycle. This modification can promote the glycolytic phenotype of cancer cells, known as the Warburg effect, which supports rapid cell growth and proliferation by enhancing glucose uptake and lactate production. Additionally, lactylation has been associated with alterations in mitochondrial function, leading to a shift from oxidative phosphorylation to glycolysis, thereby influencing the overall metabolic reprogramming in cancer cells. Understanding the role of lactylation in these metabolic pathways could reveal novel insights into cancer metabolism and potential therapeutic targets.




2 Materials and methods



2.1 Acquisition and processing of transcriptomic data

RNA expression profiles and corresponding clinical data for gastric adenocarcinoma (STAD) were selected from the TCGA database, comprising 350 samples as the training set. This set was utilized for model construction, while its stability and accuracy were assessed in a validation group. All data were log2-transformed after being converted to TPM format for further analysis. Additionally, chip datasets from the GEO database were used for validation, including GSE15459 (n=192), GSE15460 (n=248), GSE57303 (n=70), GSE62254 (n=300), and GSE84437 (n=433), with GSE55696 (T=56, N=19) and GSE79973 (T=10, N=10) specifically for differential gene analysis. The normalizeBetweenArrays function from the limma package was utilized to standardize the data across chip datasets. In addition to the TCGA-STAD dataset, we analyzed GEO datasets from lung adenocarcinoma (GSE91061, GSE78220) and urothelial carcinoma (IMvigor210) to examine the potential impact of lactylation-related gene expressions on immune response across various cancer types. This was intended to validate our findings in STAD and investigate whether similar patterns could be observed in other cancers.




2.2 Acquisition and processing of single cell and spatial transcriptomics data

Single-cell datasets were sourced from the GEO database under GSE184198, encompassing one primary tumor sample with 13,424 cells. R software and R packages, including Seurat, were used to analyze the data. Quality control criteria for cells included mitochondrial content under 20% and limits for UMI counts, and gene counts set between 200-30,000 and 200-5,000, respectively. Data normalization, selection of 2,000 variable genes, and scaling were conducted using Seurat’s NormalizeData, FindVariableFeatures, and ScaleData functions, with cell cycle effects regressed out (vars.to.regress = c(“S.Score”, “G2M.Score”)). The subsequent analysis involved dimension reduction techniques UMAP and t-SNE, and the Louvain clustering algorithm, all implemented via Seurat. To find differential genes between cell types or clusters, the FindAllMarkers function was used, with thresholds set at log2FC > 0.25, expression proportion > 0.1, and p-value < 0.05. Spatial transcriptomics data were obtained from GEO’s GSE251950, comprising 10 tumor samples analyzed using quality-controlled results from SpaceRanger software. Data transformation, normalization, and highly variable gene selection were performed using the SCTtransform algorithm, with average spot numbers at 3229 and average UMI, gene counts, and mitochondrial content at 9885.8, 3372.8, and 2%, respectively. Analysis and visualization were conducted using Seurat software. The conditional autoregression-based deconvolution (CARD) algorithm was used for deconvolution analysis, utilizing single-cell annotation data to predict cell types for each spot in spatial data. Visualization of cell types in spatial datasets was performed using CARD software. The AUCell package was employed to calculate the activity scores for gene signatures related to lactylation, immune response, and stromal characteristics. These scores were used to evaluate the enrichment of these signatures across different cell types, providing insights into their functional implications within the tumor microenvironment.




2.3 Cell annotation analysis

Initially, we identified markers for various cell types: epithelial cells (“EPCAM,” “KRT18”, “KRT19”, “CDH1”); fibroblasts (“DCN,” “THY1”, “COL1A1”, “COL1A2”); endothelial cells (“PECAM1”, “CLDN5”, “FLT1”, “RAMP2”); T cells (“CD3D”, “CD3E”, “CD3G”, “TRAC”); NK cells (“NKG7”, “GNLY,” “NCAM1”, “KLRD1”); B cells (“CD79A”, “IGHM,” “IGHG3”, “IGHA2”); and mast cells (“KIT”, “MS4A2”, “GATA2”). We specifically isolated and clustered epithelial cells based on these markers to investigate tumour heterogeneity. To illustrate these analyses, various visualizations were created, including UMAP, t-SNE, bar charts, and heatmaps.




2.4 Acquisition of lactylation gene sets and mitochondrial pathways

We acquired 332 lactylation-related genes from the “MSigDB database”. Additionally, we retrieved a set of 177 human mitochondrial-related genes from the msigdbr package and utilized the ssGSEA algorithm to calculate their scores. After filtering out gene sets containing fewer than five genes, 170 gene sets remained for further analysis.




2.5 Prognostic gene identification and consensus clustering analysis

We performed a correlation analysis between the scores of 332 lactylation-related genes and 170 mitochondrial-related gene sets, identifying 304 genes associated with mitochondria. Subsequent univariate Cox analysis was conducted with TCGA and five GEO validation datasets, from which 12 genes were identified as having prognostic significance (p < 0.05 in at least three datasets). Clustering analysis using these 12 prognostic genes was performed in the TCGA-STAD cohort using a method called nonnegative matrix factorization (NMF), executed by the NMF package. The optimal number of clusters was determined using the cophenetic correlation. Based on the bioinformatic analysis, PTMA was selected for wet lab experiments because it was identified as one of the 12 prognostic genes showing significant differential expression and association with mitochondrial dysfunctions. Its involvement in immune regulation in gastric cancer was further explored through in vitro experiments to validate its potential role in cancer progression and therapeutic targeting.




2.6 SNV analysis

Single nucleotide variant (SNV) mutation data were downloaded from the TCGA database. To compare samples’ tumor mutation burdens (TMB), the maftools package was utilized. Furthermore, we used the Wilcoxon test to do a differential analysis between the risk groups, setting the significance level at p < 0.05.




2.7 Analysis of cell communication

The CellChat package was utilized to evaluate communication between cells. To generate a CellChat object, the CellChat function was used to import the normalized gene expression matrix. ProjectData, identifyOverExpressedGenes, and identifyOverExpressedInteraction functions were used to preprocess the data using their default settings. Subsequently, potential ligand-receptor interactions were identified using computeCommunProb, filterCommunication, and computeCommunProbPathway functions. Finally, the aggregateNet function was used to generate cell communication networks.




2.8 Differential gene analysis and enrichment analysis

Differential gene expression between tumor and adjacent normal samples in the GEO and TCGA datasets was computed using the limma package. A gene was considered significant if its absolute fold change was more than 1.2 and its adjusted p-value (Padj) was less than 0.05. Enrichment analysis for upregulated and downregulated genes was performed separately using the clusterProfiler package, employing the GSEA algorithm. Functional databases included HALLMARK, GOBP, and KEGG, with functional signatures sourced from the msigdb database. The enrichplot package was used to visualize the enrichment results.




2.9 Establishment of tumor-related risk features

A total of 101 different machine learning algorithm combinations were evaluated to create a prognostic model. The final model was selected based on the highest average C-index across the testing sets, enabling the risk score to be created for each patient. The prognostic model was initially constructed using the TCGA dataset, which included 350 samples. This model was then validated using five independent GEO datasets (GSE15459, GSE15460, GSE57303, GSE62254, and GSE84437). The same model parameters and thresholds were consistently applied across all datasets to ensure comparability and validity of the results. The TCGA and other cohorts’ cutoff values for grouping patients into high-risk and low-risk groups were determined using the surv_cutpoint function. We then studied how predictions between the two groups varied and assessed the model’s accuracy.




2.10 Risk features generated by machine learning-based ensemble methods

We developed the highly accurate and stable AI-Driven Prognostic Signature (AIDPS) model using 10 machine learning algorithms and 101 algorithm combinations. The combined algorithms included Supervised Principal Component (SuperPC), Generalized Boosting Regression Model (GBM), Cox Partial Least Squares Regression (plsRcox), CoxBoost, Ridge, Lasso, Stepwise Cox, Random Survival Forest (RSF), Elastic Net (Enet), and Survival Support Vector Machine (survival-SVM). The signature was generated as follows: Univariate Cox regression analysis was conducted to (a) identify prognostic genes across six datasets, including TCGA-STAD (as previously mentioned); (b) fit predictive models in the TCGA-STAD cohort using 101 algorithm combinations within a leave-one-out cross-validation (LOOCV) framework; (c) test each model across five validation datasets (GSE datasets); and (d) calculate Harrell’s Concordance Index (C-index) for each model across all validation datasets, selecting the model with the highest average C-index as the optimal one.




2.11 Prediction of immune therapy response and IPS analysis and immune checkpoint analysis

The prediction of immune therapy responses involved gathering datasets from GSE91061 (lung adenocarcinoma), GSE78220 (lung adenocarcinoma), IMvigor210 (urothelial carcinoma, UC), and Braun (renal cell carcinoma, RCC), and calculating risk scores within each dataset to predict immune therapy responses. Additionally, immune responses in the TCGA dataset were predicted using the TIDE online analysis tool (http://tide.dfci.harvard.edu/). Relevant Immune Prediction Score (IPS) data were obtained from the TCIA database to examine differences in IPS across risk groups. Correlations were analyzed between the expression levels of immune checkpoint genes “HAVCR1”, “CD28”, “ICOS,” “TNFRSF9”, “IL2RB”, “CD27”, “TNFSF14”, “CD40”, “TNFSF18”, “TNFRSF18”, “CD276”, “PVR,” “VTCN1”, “CD200”, “C10orf54”, “CD200R1”, “BTLA,” “IDO1”, “TIGIT,” “LAG3”, “CD80”, “CD86”, “LAIR1”, “ADORA2A”, “CTLA4”, “KIR3DL1”, “CEACAM1”, and risk scores.




2.12 Tumor immune infiltration analysis

The IOBR package was used to assess the level of immune infiltration in STAD patients using data from six evaluation methods (CIBERSORT, TIMER, MCPcounter, Estimate) and the TCGA database. Heatmaps were created with this data to measure the relative amounts of immune cell infiltration into the tumor microenvironment (TME). The Estimate algorithm’s output allowed for comparing the relative abundances of tumor, immune, and stromal cells across various risk categories.




2.13 Drug sensitivity analysis

The R package “oncoPredict” enabled investigators to evaluate the association between risk ratings and dose sensitivity by calculating a popular chemotherapeutic drug’s half-maximal inhibitory concentration (IC50). The Wilcoxon rank-sum test was used to compare the IC50 values between the two risk groups.




2.14 Patients and specimens

Tissue samples from STAD patients were systematically collected at Jiangsu Province Hospital of Chinese Medicine (Nanjing, China). Patients who underwent surgery as the primary mode of treatment and who had completed clinical and follow-up data met the inclusion criteria. Patients who had already received preoperative chemotherapy or who had additional malignant tumors were excluded. A total of 30 patients were selected for the database. Both cancerous and paracancerous tissues resected during the operation were collected for the study. The study protocol was approved by the Jiangsu Province Hospital of Chinese Medicine’s Ethics Committee (approval no. 2022NL12902), and informed consent was obtained from each participating patient.




2.15 Cell culture and transfection

GES-1 and BGC-823 cells were sourced from the Chinese Academy of Sciences Cell Bank, while AGS, NCI-N87, and MKN45 cells were obtained from Procell Life Science & Technology (Wuhan, China). The GES-1, MKN45, and NCI-N87 cells were kept in the RPMI-1640 culture medium (Procell Life Science & Technology, China), whereas BGC-823 and AGS cells were cultured in a DMEM high glucose medium. Incubated at 37°C in a 5% CO2 environment, all cell lines were supplemented with 10% fetal bovine serum (Procell Life Science & Technology, China). Subsequently, 1 µg of short hairpin (sh)RNA targeting PTMA (sh-PTMA; Guangzhou RiboBio Co., Ltd.) and 1 µg of negative control shRNA (sh-NC; Guangzhou RiboBio Co., Ltd.) were transfected into MKN45 and NCI-N87 cells. Real-time quantitative PCR was used to verify the transfection efficiency (Figure 1A).

[image: Two violin plots comparing relative PTMA expression levels. Panel A shows higher expression in tumor tissue compared to adjacent tissue. Panel B compares expression across five samples: GES-1, AGS, NCI-N87, BGC823, and MKN45, with MKN45 showing the highest expression. Double asterisks indicate significant differences.]
Figure 1 | (A) Relative expression of PTMA in adjacent normal tissues and tumor tissues: The comparison was made between adjacent normal tissues (blue) and tumor tissues (red). Statistical significance: “**” indicates p < 0.01 between adjacent and tumor groups. (B) Relative expression of PTMA in different cell lines: The comparison was made between the normal gastric mucosa cell line GES-1 (blue) and gastric cancer cell lines AGS (red), NCI-N87 (green), BGC-823 (purple), and MKN45 (orange). Statistical significance: “**” indicates p < 0.01 compared to GES-1. “**” denotes statistical significance (“*” p < 0.05, “**” p < 0.01). Sample sizes are indicated within the plots. Statistical comparisons were made using the Student’s t-test.




2.16 Real-time PCR

Trizol reagent (TaKaRa Bio Inc., Japan) was used to extract total RNA from tissues or cells, and a two-step RNA reverse transcription kit (TaKaRa Bio Inc., Japan) was utilized for transforming the extracted RNA into cDNA. The cDNA and primers were mixed with RT-PCR SYBR Green (TaKaRa Bio Inc., Japan) for the RT-PCR reaction. The reaction was conducted with the following cycling parameters: an initial denaturation at 95°C for 30 seconds, followed by 40 cycles of denaturation at 95°C for 5 seconds, annealing at 60°C for 30 seconds, and extension at 72°C for 30 seconds.




2.17 Cell proliferation assay

With the use of the CCK-8 kit (Seven, China), cell viability was evaluated. A 96-well plate was seeded with a single-cell suspension at a density of 5 × 10³ cells per well. After that, each well was filled with a volume of 10 μL of CCK-8 solution every 24 hours, and each well was left to incubate for two hours. A multifunctional enzyme-linked immunosorbent assay reader was used to detect the optical density (OD) at 450 nm.




2.18 Cell apoptosis

Following the manufacturer’s instructions, a Cell Apoptosis Detection Kit with Annexin V-mCherry and SYTOX Green (Beyotime, Shanghai, China) was used to identify cell apoptosis. After incubating with Annexin V-mCherry and SYTOX Green for 20 minutes in a light-proof conditions, cells were rinsed with PBS and combined with 400 µL of binding buffer for 30 minutes. An FACSCanto II flow cytometer (BD Biosciences, San Jose, CA) was used to analyze the apoptosis rate.




2.19 Cell migration and invasion assays

Transwell chambers having a pore size of 8.0 μm were utilized to measure cell invasion and migration (Procell Life Science & Technology, China). A 500 μL medium containing 10% FBS was added to the lower chamber, while 1 × 104 cells were seeded onto the upper chamber in a serum-free medium. For invasion assays, the transwell membrane was coated with 1 mg/ml Matrigel (Procell Life Science & Technology, China). After a 24-hour incubation at 37°C, cotton swabs were used to delicately remove non-migrating or non-invading cells. Crystal violet was utilized to stain and count the cells that invaded or migrated to the bottom of the membrane. The cells were preserved with 4% paraformaldehyde.




2.20 Wound healing assay

A 6-well plate was seeded with cells, which were then cultured until they reached 100% confluence. A scratch was produced in the cell monolayer using a pipette tip. The cells were cultivated in a serum-free medium for 24 hours following PBS washing. Images were captured at 0 and 48 hours, and cell mobility within the scratched area was analyzed using Image J.




2.21 Western blot

For 30 minutes, cell lysates were produced on ice using the radioimmunoprecipitation assay (RIPA) buffer. Then, using a bicinchoninic acid (BCA) kit (Beyotime, China), protein concentrations were calculatedSample preparation involved mixing the protein solution with 5× loading buffer (Beyotime, China) at a 1:4 ratio and heating the mixture for 10 minutes at 95°C. The proteins were first separated on a 10% SDS-PAGE gel and transferred to PVDF membranes (Millipore, USA). The membranes were blocked with 5% skim milk for two hours at room temperature. Following blocking, the membranes were incubated with the following primary antibodies: β-actin (1:5000; Proteintech, USA), c-caspase3 (1:1000; Abcam, USA), Bax (1:1000; Proteintech, USA), Bcl-2 (1:1000; Abcam, USA), E-cadherin (1:1000; PTM Biolabs, China), and Vimentin (1:1000; PTM Biolabs, China) at 4°C for 12 hours. The membranes were treated with primary antibodies for one hour, followed by two hours of washing and secondary antibody incubation at room temperature. Enhanced chemiluminescence (Thermo Scientific, USA) was used to visualize protein bands.




2.22 Statistical analysis

All data processing, statistical analysis, and graphing were done using R software version 4.1.3. Pearson correlation coefficients were used to assess the correlation between two continuous variables. The T-test or the Wilcoxon rank-sum test was used to compare continuous variables, while the chi-square test was used to analyze categorical variables. We utilized the survival package to do Kaplan-Meier and Cox regression analyses.





3 Results



3.1 Characterization of target gene sets

The heatmap illustrates the correlation between 332 lactylation-related genes and 170 mitochondrial-related gene sets (Figure 2A). A total of 304 lactylation-related genes were identified as relevant, which associated with tumor microenvironment regulation, immune response modulation, cell proliferation and apoptosis, metabolic reprogramming, and potential prognostic markers for patient outcomes. Subsequently, their expression differences between tumors and adjacent normal tissues were analyzed using data from TCGA, GSE55696, and GSE79973 (Figure 2B), identifying 280 differentially expressed genes in at least one dataset. Next, a heatmap of the expression correlation of these differential genes across TCGA, GSE55696, and GSE79973 was generated (Figure 2C). Finally, these genes underwent univariate Cox analysis in TCGA, five additional GEO validation datasets were used, and a forest plot was constructed (Figure 2D). Twelve prognostic genes were ultimately selected, which showed prognostic significance in at least three datasets.

[image: Panel A shows a heatmap of gene expression data with a gradient from blue to red. Panel B includes three volcano plots highlighting differential gene expression with points marked in red, blue, and gray. Panel C displays three correlation matrix heatmaps with varying color intensities. Panel D consists of multiple forest plots from Cox regression analyses illustrating hazard ratios for various genes, with risk and protective factors marked by different colors.]
Figure 2 | Characterization of target gene sets. (A) Correlation heatmap between 332 lactylation genes and 170 mitochondrial-related gene sets. (B) Volcano plots were generated to illustrate the differential expression of lactylation genes between tumors and adjacent normal tissues in the TCGA, GSE55696, and GSE79973 datasets. (C) Heatmap of expression correlation of differential genes across TCGA, GSE55696, and GSE79973. (D) Forest plot of hazard ratios (HR) for the combined analysis in TCGA and five GEO validation datasets.




3.2 Functional characterization and molecular subtyping

Using the Non-negative Matrix Factorization (NMF) algorithm, the 12 prognostic genes were consistently clustered. Clustering results indicated that dividing into three groups was most appropriate. A consistency clustering heatmap and survival analysis results for the three groups are shown, with significant survival differences between groups C1 and C3, where C1 is associated with a poorer prognosis (Figure 3A). Further analysis was conducted to compare the composition of clinical indicators such as age, gender, stage, and pathological grading among the three groups, revealing differences that were not statistically significant (Figure 3B). A comparison of immune subtypes from TCGA with NMF grouping was also performed (Figure 3C). Due to the significant survival differences between C1 and C3, a differential gene analysis was conducted (Figure 3D). Gene enrichment analysis was performed separately for upregulated and downregulated genes, focusing on the functions associated with C1 and C3 (Figure 3E). The pathways enriched from these genes were calculated for their ssGSEA scores related to the 12 lactylation genes, and a correlation heatmap analysis was performed (Figure 3F).

[image: A series of visual data analyses. Panel A displays various graphs related to NMF rank surveys and a consensus matrix, along with a Kaplan-Meier survival chart for three clusters. Panel B includes bar charts depicting demographic and clinical statistics across clusters, highlighting factors such as age, gender, pM, pN, pT, and cancer stage. Panel C shows a Sankey diagram linking immune subtypes, NMF clusters, and TCGA subtypes. Panel D features a volcano plot illustrating gene expression differences. Panel E presents enrichment plots for gene sets across ranked datasets. Panel F contains a heat map detailing correlations between gene sets and clinical factors.]
Figure 3 | Functional characterization and molecular subtyping. (A) NMF clustering results, consistency heatmap, and survival analysis for 12 prognostic genes. Clusters C1, C2, and C3 represent gene clusters identified based on expression patterns in the cohort. The clustering was performed using hierarchical clustering, and the genes within each cluster exhibit distinct expression profiles. (B) Bar charts of clinical indicators such as age, gender, stage, and pathological grading in NMF subgroups. (C) Sankey diagram showing the composition of immune subtyping from TCGA and NMF grouping. (D) Volcano plot of gene differences between groups C1 and C3. (E) GSEA plots for upregulated and downregulated genes. (F) Heatmap of pathway enrichments correlated with ssGSEA scores of 12 lactylation genes.




3.3 Functional characterization—single cell and spatial transcriptomics

The cell classification results from single-cell data are displayed, using the 12 prognostic genes with the AUCell package to calculate lactylation scores in each cell. Cells classified as stromal, including fibroblasts and other supportive tissue types within the tumor microenvironment, exhibited higher lactylation scores compared to epithelial cells. The function AUCell_exploreThresholds within the AUCell package was used to determine thresholds and divide cells into two groups. Differential gene and enrichment analyses were conducted to explore functional differences between these groups (Figure 4A). We present the analysis results of a spatial transcriptomics sample, showing the distribution differences of immune, epithelial, and stromal cells. Lactylation scores in the spatial samples were also calculated, revealing high lactylation areas, primarily in the stromal regions, consistent with the single-cell results (Figure 4B). The results indicated a negative correlation between epithelial cells and lactylation scores, while immune and stromal cells showed positive correlations. Subsequently, functional enrichment analysis for the high lactylation group was conducted (Figure 4C).

[image: Figure A includes UMAP plots showing cell clusters, lactation AUC group distribution, and lactation AUC scores, with a violin plot and enrichment plots. Figure B presents spatial maps indicating immune, epithelial, stromal, and lactation scores, using color gradients to denote intensity. Figure C contains scatter plots correlating lactation with epithelial and stromal factors, a line graph of lactation proportions over a range, and enrichment plots.]
Figure 4 | Single-cell analysis of lactylation-related gene expression and its association with immune, epithelial, and stromal cell populations in the tumor microenvironment. (A) Single-cell analysis showing lactylation scores across various cell types, including immune cells, fibroblasts (considered as stromal cells), and epithelial cells, lactylation grouping, UMAP plots of lactylation scores, violin plots of lactylation analysis, and GSEA plots for functional enrichment in high and low lactylation groups. The gradient from blue to cyan reflects a continuum of lactylation levels, indicating transitional states between low (blue) and high (cyan) lactylation scores among the cell populations. (B) H&E staining images of immune, epithelial, and stromal cells and lactylation scores in spatial transcriptomics data. (C) Correlation plots of epithelial (Pearson’s r = -0.21, p < 2.2e-16) and stromal scores (Pearson’s r = 0.53, p < 2.2e-16) with lactylation, curve plots of epithelial, immune, and stromal scores arranged by ascending lactylation, and GSEA plots for high lactylation functional enrichment.




3.4 Development of a prognostic model based on differential genes

Using the 12 prognostic genes, 101 algorithms were used to build models; the training set was TCGA, and the testing sets were five GEO datasets. The best model, determined by the average C-index across the five testing sets, was identified as RSF+SuperPC (Figure 5A). The AUC values for 1, 3, and 5 years were computed using the six datasets (Figure 5B). Bar charts displaying the C-index of the optimal model across different datasets are shown (Figure 5C). The survival analysis results from the six datasets indicated that the high-risk group had a poorer prognosis (Figure 5D).

[image: Panel A displays a heatmap of risk assessment models across different cohorts, using various color scales. Panel B consists of bar charts showing the AUC values for 1, 3, and 5-year periods across different datasets, with color coding for each period. Panel C contains bar charts indicating the C-index values for several datasets, each bar accompanied by error bars. Panel D features Kaplan-Meier survival curves comparing high-risk and low-risk groups across multiple datasets, with significance levels indicated by p-values.]
Figure 5 | Construction of prognostic models based on differential genes. (A) Heatmap of C-indexes for 101 algorithms and five validation datasets. (B) AUC values for 1, 3, and 5 years across six datasets. (C) Bar chart of the optimal model’s C-index across various datasets. The error bars represent the standard error of the C-index values across these datasets. (D) Survival analysis results for six datasets.




3.5 Comparison of prognostic models

Risk and PCA plots for the six datasets are presented (Figures 6A, B). Subsequently, risk scores were compared with other clinical indicators, and the risk score’s C-index was found to be superior to most clinical indicators (Figure 6C). We then collected 15 prognostic models published in the last 1-2 years and compared their C-index. While our prognostic model did not perform the best in the TCGA cohort, it generally outperformed most other models in the remaining five testing datasets (Figure 6D).

[image: Panel A displays multiple line charts with heatmaps, showing data distributions across different datasets. Panel B includes principal component analysis plots with clustered data points. Panel C features bar charts comparing variables across datasets. Panel D presents vertical dot plots for various studies, highlighting data points' distribution and confidence intervals.]
Figure 6 | Comparison of prognostic models. (A, B) Risk plots and PCA diagrams for six datasets. Heatmap showing the expression of the 12 prognostic genes across patient samples in the TCGA-STAD cohort. Rows represent genes, and columns represent patient samples. The colors indicate the gene expression levels, with darker colors representing higher expression. The heatmap illustrates the association between gene expression and risk scores. (C) Bar chart of C-indexes comparing risk scores with other clinical indicators. (D) C-index chart comparing our prognostic model with 15 other recent models across six datasets.




3.6 Development of the nomogram model

Results of the analyses, both univariate and multivariate, of risk scores and clinical indicators are shown (Figure 7A) with the corresponding forest plots. A nomogram incorporating risk scores and clinical indicators is displayed (Figure 7B). Decision curve analysis (DCA) reveals that the outcomes from the nomogram and risk scores demonstrate superior performance compared to other clinical indicators (Figure 7C). Calibration curves for 1, 3, and 5 years are presented (Figure 7D). Survival analysis using the nomogram scores found that higher scores are associated with poorer prognosis (Figure 7E).

[image: Panel A displays forest plots showing hazard ratios for various traits affecting survival rates. Panel B features a survival nomogram illustrating points associated with clinical traits to predict overall survival probability. Panel C shows a decision curve analysis graph comparing model efficiency at different risk thresholds. Panel D provides a calibration plot comparing nomogram-predicted and observed overall survival at one, three, and five years. Panel E includes a Kaplan-Meier survival curve comparing high and low point groups, with accompanying risk tables and censoring information.]
Figure 7 | Development of a nomogram model. (A) Forest plots of univariate and multivariate analysis results for risk scores and clinical indicators. (B) Nomogram integrating risk scores with clinical indicators. (C, D) DCA plots and calibration curves for 1, 3, and 5 years. (E) Survival analysis results using Nomogram scoring.




3.7 Tumor immune infiltration and TMB analysis

Risk values for the three NMF classified groups are displayed, showing significant differences (Figure 8A). A correlation analysis was conducted between risk scores and the ‘50 hallmark gene sets’ from the Molecular Signatures Database (MSigDB), which represent distinct biological states and processes, commonly used to assess pathway activity in cancer research (Figure 8A). Tumor Mutational Burden (TMB) was calculated using mutation data, revealing significant differences among risk groups (Figure 8A). The differences between the two groups’ stromal, immunologic, and ESTIMATE scores are shown. The immune cell infiltration variations between the groups were depicted using the CIBERSORT algorithm. Further estimations of immune infiltration levels were made using other algorithms such as MCP-counter and TIMER, correlating them with risk scores, and displayed using a heatmap (Figure 8B).

[image: Cluster analysis visualizations are displayed in two sections, A and B. Section A includes a boxplot comparing clusters 1, 2, and 3 with significant p-values, a heatmap of correlations, and a boxplot analyzing log-transformed data with high and low categories using the Wilcoxon test. Section B presents boxplots for different scores (Stromal, Immune, ESTIMATE, and Tumor Purity) with risk categories, a heatmap detailing various cell types, and a boxplot series of cell abundance data compared by risk level. Statistical significance is noted by asterisks.]
Figure 8 | Immune infiltration and tumor mutation burden (TMB) analysis across different risk groups in cancer patients. (A) Boxplot of Risk Scores (RS) across Clusters, Correlation Heatmap of Gene Expression and Boxplot of Log10(TMB) in High vs. Low-Risk Groups. (B) Boxplots of Various Immune Scores in High vs. Low-Risk Groups. StromalScore: Measures the presence of stromal cells in tumor tissue. ImmuneScore: Quantifies the infiltration of immune cells in the tumor microenvironment. ESTIMATEScore: Represents the combined presence of stromal and immune cells. TumorPurity: Estimates the proportion of tumor cells in the sample. Heatmap of Immune Cell Infiltration and ssGSEA Results of Immune Cell Populations. Heatmap showing immune cell infiltration levels across patient samples. Rows represent different immune cell types, and columns represent patient samples. The color intensity reflects the level of immune cell infiltration, with darker colors indicating higher infiltration. This heatmap helps to visualize the relationship between immune infiltration and risk stratification.




3.8 Immunotherapy analysis and drug sensitivity analysis

Correlation analysis was conducted between immune scores and commonly used immune checkpoint genes, showing mostly negative correlations. Using the TCGA dataset, the TIDE algorithm was utilized to predict immune response scenarios. The results showed notable variations in the response compositions of the two risk groups, with the non-responsive group exhibiting higher risk scores. Results incorporating the Immune Phenotype Score (IPS) indicated that the low-risk group had higher IPS scores (Figure 9A). Survival analysis results from datasets including GSE91061 (lung adenocarcinoma), GSE78220 (lung adenocarcinoma), IMvigor210 (urothelial carcinoma, UC), and Braun (renal cell carcinoma, RCC) are displayed along with the risk scores for the two immune response groups (Figure 9B). Drug sensitivity analysis showed that Bortezomib_1191 and Dactinomycin_1911 were sensitive in the low-risk group, while Dasatinib_1079 and BMS-754807_2171 were sensitive in the high-risk group (Figure 9C). The analysis of GEO datasets from lung adenocarcinoma and urothelial carcinoma revealed similar trends in immune cell infiltration and responsiveness associated with lactylation-related gene expressions, suggesting that these variations could have broader implications beyond STAD. These findings support the hypothesis that lactylation may play a universal role in modulating the tumor immune microenvironment across different cancer types.

[image: Panel A shows a stacked bar chart indicating response rates, a correlation matrix, and several boxplots analyzing RS across different conditions. Panel B includes Kaplan-Meier survival curves comparing high and low RS categories across multiple studies, accompanied by boxplots for RS in specific genes. Panel C presents boxplots comparing high and low groups for three gene expressions with Wilcoxon p-values.]
Figure 9 | Analysis of immune therapy and drug sensitivity. (A) Heatmap of correlations between risk scores and immune checkpoint genes, bar charts for TIDE composition, box plots of TIDE risk values, and IPS box plots. (B) Survival analysis results and risk scores for immune response groups in GSE91061 (lung adenocarcinoma), GSE78220 (lung adenocarcinoma), IMvigor210 (urothelial carcinoma, UC), and Braun (renal cell carcinoma, RCC) datasets. (C) Box plots showing differential sensitivity to Bortezomib_1191, Dactinomycin_1911, Dasatinib_1079, and BMS-754807_2171 between high and low-risk groups.




3.9 Differential cell communication in single-cell high and low prognostic risk cells

In the single-cell RNA sequencing dataset GSE184198, risk scores were calculated using the risk model for each cell, and the median value was used to group the cells. A Cellchat cell communication study was then conducted to compare the differences between the two groups (Figure 10). The differences in communication between the groups between epithelial, myeloid, and T & NK cells are displayed.

[image: Scatter plots showing ligand-receptor interaction networks in high_RS signaling. Panel A illustrates pathways with increased signaling, and Panel B displays those with decreased signaling. Each point represents a ligand-receptor pair, color-coded by the communication probability intensity. Labels include pathways like MIF, TNF, and VEGFA, with statistical significance indicated by dot size. The x-axes list biological processes, such as regulation of cell death and inflammation, while y-axes specify specific ligand-receptor interactions. A color bar reflects communication probability, with scales ranging from low to high.]
Figure 10 | Differences in cell communication between high and low prognostic risk cells at the single cell level. (A) Bubble plot demonstrating enhanced cell communication differences between high-risk and low-risk groups in myeloid, epithelial, and T&NK cells. (B) A bubble plot illustrates the reduction in cell communication differences between high-risk and low-risk groups in T&NK, myeloid, and epithelial cells.




3.10 Expression of PTMA in tissues and cells

Based on our differential gene expression analysis, the PTMA gene was identified as significantly overexpressed in gastric cancer tissues compared to adjacent non-cancerous tissues. Among the 12 identified prognostic genes, most were part of the initial set of 304 lactylation-related and mitochondrial-related genes. However, PTMA, while not included in the initial sets of 332 lactylation-related genes or 170 mitochondrial-related genes, was identified as one of the 12 prognostic markers based on its significant association with mitochondrial dysfunction and its role in cancer progression, as determined through univariate Cox analysis. Subsequent RNA extraction from clinical samples confirmed the elevated expression of PTMA in tumor tissues, as demonstrated in Figure 1A. Furthermore, PTMA expression was determined in four gastric cancer cell lines (AGS, NCI-N87, BGC-823, and MKN45) and the normal gastric mucosa cell line GES-1. The findings were consistent with the trend observed in human tissues, indicating higher PTMA expression in gastric cancer cells (Figure 1B). These results suggest that the PTMA gene is highly expressed in gastric cancer.




3.11 Silencing PTMA inhibited the malignant behavior of gastric cancer cells

The PTMA gene, one of the 12 identified prognostic markers, exhibited significant overexpression in gastric cancer tissues compared to normal tissues. Functional assays demonstrated that PTMA knockdown led to reduced proliferation, increased apoptosis, and decreased migration and invasion of gastric cancer cells, aligning with its predicted role in modulating tumor behavior as suggested by the bioinformatic analysis. To explore the role of the PTMA gene in STAD, we selected two cell lines, MKN45 and NCI-N87, and knocked down the PTMA gene (Figure 11A). As shown in Figures 11B, C, the proliferation ability of both gastric cancer cell lines was significantly reduced at all time points following PTMA knockdown. Figure 11D demonstrates that the apoptosis rate of tumor cells notably increased after PTMA knockdown. Furthermore, PTMA knockdown significantly raised the expression of the apoptosis-promoting proteins Bax and c-caspase3 while lowering the expression of the apoptosis-inhibiting protein Bcl-2, according to Western blot data (Figure 11E). This suggests that PTMA knockdown promotes apoptosis in gastric cancer cells.

[image: Charts and graphs illustrating PTMA expression and cell viability. (A) Bar chart shows reduced PTMA expression in sh-PTMA compared to sh-NC in NCI-N87 and MKN45 cell lines. (B and C) Line graphs display decreased cell viability over 72 hours in sh-PTMA for MKN45 and NCI-N87, respectively. (D) Flow cytometry plots and a bar chart indicate higher apoptosis in sh-PTMA compared to sh-NC. (E) Immunoblotting shows protein levels of c-caspase3, bax, bcl-2, and β-actin for MKN45, with differences between sh-NC and sh-PTMA.]
Figure 11 | (A) RT-qPCR detected the knock-down efficiency of PTMA in NCI-N87 and MKN45 cell lines. (B) Cell viability of the MKN45 cell line before and after PTMA knockdown was detected by CCK8. (C) The cell viability of the NCI-N87 cell line before and after PTMA knockdown was detected by CCK8. (D) The apoptosis level of the MKN45 cell line before and after PTMA knockdown was detected by flow cytometry. (E) Western blot analysis assessed the expression of apoptosis-related proteins before and after PTMA knockdown in the MKN45 cell line. “**” denotes statistical significance (“**” p < 0.01). Sample sizes are indicated within the plots. Statistical comparisons were made using the Analysis of Variance (ANOVA).

In the Transwell invasion and migration assays (Figure 12A), MNK45 with PTMA knockdown exhibited significantly reduced invasion and migration abilities. Wound healing assays (Figure 12B) also showed a marked reduction in migration following PTMA knockdown. Western blot data shows PTMA knockdown expression with decreased Vimentin protein expression and increased E-cadherin protein expression (Figure 12C). These results strongly suggest that inhibiting PTMA expression negatively correlates with the malignant behavior of gastric cancer cells.

[image: (A) Two sets of microscopic images show cell migration and invasion for sh-NC and sh-PTMA groups, with a bar graph indicating a significant reduction in invaded cells for sh-PTMA. (B) Images display wound healing assays for sh-NC and sh-PTMA groups at 0 and 48 hours. (C) Western blot analysis results for E-cadherin, vimentin, and β-actin in sh-NC and sh-PTMA groups.]
Figure 12 | (A) A Transwell assay detected cell migration and invasion capability alterations before and after PTMA knockdown. (B) The capacity of cells to migrate was tested using the wound healing assay before and after PTMA knockout. (C) Western blot analysis of the changes in the expression levels of invasion and migration-related proteins before and after PTMA knockdown. “**” denotes statistical significance (“**” p < 0.01). Sample sizes are indicated within the plots. Statistical comparisons were made using the ANOVA.





4 Discussion

The study presented here offers a comprehensive analysis of lactylation-related gene sets and mitochondrial-related genes in the context of gastric adenocarcinoma (STAD), leveraging large datasets like TCGA and various GEO datasets. A greater understanding of the tumor microenvironment and the cellular dynamics at work is made possible by integrating single-cell RNA sequencing and spatial transcriptomics, which is essential for improving our comprehension of STAD’s molecular pathogenesis and therapeutic responses. This discussion will highlight the findings, contrast them with existing research, and consider the implications of these results for future gastric cancer research and treatment strategies. Our findings indicate that lactylation-related genes significantly influence mitochondrial function and metabolic reprogramming in STAD. Specifically, lactylation can enhance glycolysis by modifying key glycolytic enzymes and histones, which promotes the expression of glycolytic genes and supports cancer cell proliferation. Additionally, by altering mitochondrial proteins and enzymes involved in oxidative phosphorylation (OXPHOS) and the TCA cycle, lactylation contributes to a metabolic shift favoring glycolysis. This metabolic reprogramming is a hallmark of cancer cells, allowing them to thrive in the hypoxic tumor microenvironment. These insights suggest that targeting lactylation and its related metabolic pathways could offer new therapeutic strategies for STAD by disrupting cancer cell metabolism and enhancing the efficacy of existing treatments.

Our study has highlighted several critical areas in the pathology of STAD. While our findings indicate significant correlations between lactylation-related gene expressions and mitochondrial-related genes, it is important to note that these results are exploratory. The lactylation-related gene sets offer a novel perspective on metabolic reprogramming in cancer cells and its potential impact on tumor behavior, which warrants further investigation to establish any causal relationships. First, the prognostic gene sets identified through differential expression analysis and their correlation with patient outcomes provide valuable insights into the biological underpinnings of STAD. The lactylation-related gene sets offer a novel perspective on metabolic reprogramming in cancer cells and its impact on tumor behavior. Second, single-cell and spatial transcriptomics have uncovered significant heterogeneity within the tumor microenvironment, especially in the distribution and role of stromal and immune cells, which are pivotal in modulating tumor progression and response to therapies. By extending our analysis to include lung adenocarcinoma and urothelial carcinoma, we demonstrated that the variations in lactylation-related gene expressions and their effects on immune response might be applicable across multiple cancer types. This not only reinforces our findings in STAD but also opens avenues for further research into the universal roles of lactylation in cancer biology. The experimental validation of PTMA underscores its potential as a key regulator in gastric adenocarcinoma. The results support its role in modulating both mitochondrial function and immune responses, which are critical aspects of cancer progression. These findings provide a foundation for considering PTMA as a therapeutic target, potentially enhancing the effectiveness of treatments that disrupt lactylation processes.

Recent studies have begun to explore the role of lactylation in cancers. For instance, Zhang et al. reported that lactylation of histone lysine residues could promote gene expression related to glycolysis in cancer cells, thereby facilitating cancer progression (29). Our findings align with this perspective, suggesting lactylation may play a similarly critical role in STAD. However, our research extends this by mapping specific lactylation-related genes that correlate with prognosis, which has not been extensively documented in previous studies. Our study further refines molecular subtyping in STAD by incorporating novel biomarkers from our analysis. This approach has been foundational in studies like The Cancer Genome Atlas Research Network’s 2014 publication, which classified gastric cancer into four molecular subtypes. While this classification has significantly advanced the field, our study provides additional layers of molecular characterization, particularly highlighting the importance of metabolic reprogramming and mitochondrial dysfunction. Our prognostic models, built on differential gene expression and validated across multiple datasets, have shown superior performance compared to many existing models. For instance, Cristescu et al. developed a prognostic model that utilized gene expression data but did not incorporate the latest single-cell and spatial profiling technologies, which may account for the enhanced accuracy of our models (30).

The immune landscape of STAD, particularly as related to immunotherapy, has been a focus of recent research. A study by Thorsson et al. highlighted the variability of the immune environment across cancers and its implications for immunotherapy (31). In addition to our findings on lactylation-related pathways in STAD, it is important to consider broader therapeutic and diagnostic implications for gastric cancer treatment. For example, understanding the incidence and outcomes of secondary infections in septic cancer patients is crucial for managing complications associated with STAD treatment (32). Incorporating this knowledge could lead to more effective and holistic patient management strategies. Furthermore, investigating traditional herbal medicines as adjunctive therapies has shown potential in enhancing treatment outcomes in colorectal cancer, and similar strategies might be applicable to gastric cancer to improve therapeutic efficacy and patient outcomes (33). Recent advances in cancer nanotechnology, such as the development of dendrimeric nanosystems and mesoporous silica/organosilica nanoparticles, have shown great promise in overcoming drug resistance and improving cancer immunotherapy (34, 35). These innovative technologies could be applied to target lactylation-related pathways, potentially enhancing the therapeutic effectiveness for STAD. Additionally, emerging diagnostic techniques like single-exosome profiling have identified specific exosome subpopulations as early diagnostic biomarkers and therapeutic targets in colorectal cancer (36). Utilizing similar approaches in STAD could facilitate earlier detection and more targeted treatment strategies.

Moreover, the therapeutic potential of natural products derived from various microorganisms for treating cancers, such as cervical cancer, underscores the importance of exploring diverse therapeutic avenues (37). These natural products could be repurposed for STAD treatment, offering new, less toxic options for patients. Finally, targeting specific proteins, such as HJURP, which play key roles in cancer progression across multiple types of cancer, could provide new insights and pathways for developing targeted therapies in STAD (38). These broader perspectives highlight the need for future research to adopt a multifaceted approach that integrates molecular findings with advanced therapeutic strategies, ultimately enhancing the effectiveness of cancer treatments and improving patient outcomes.

Our analysis complements this by showing how lactylation influences the immune microenvironment in STAD, providing a potential link between metabolic states and immune responsiveness. This could lead to more tailored immunotherapeutic strategies that consider the tumor’s molecular and immunological profiles.

The findings from our study on STAD emphasize the potential for novel research directions, particularly in targeting metabolic pathways and enhancing immunotherapy efficacy. Given the significant role that lactylation and mitochondrial functions play in STAD, future therapeutic strategies could involve the development of inhibitors that specifically disrupt lactyl-CoA production or the lactylation process itself, aiming to impair the tumor’s ability to thrive under metabolic stress. Moreover, understanding the interaction between lactylation and the immune microenvironment offers opportunities to enhance the efficacy of immunotherapy. Modifying lactylation levels may increase the visibility of cancer cells to immune cells, potentially making immunotherapies more effective. While our study primarily focuses on the role of lactylation-related genes in STAD, we acknowledge the potential interactions between lactylation and other post-translational modifications (PTMs), such as acetylation and phosphorylation. These interactions could have significant implications for mitochondrial function and tumor metabolism. Although a comprehensive investigation into these crosstalk mechanisms is beyond the scope of the present study, we propose this as an important direction for future research to further elucidate the regulatory networks involved in cancer metabolism. Additionally, our study’s detailed molecular and cellular characterization supports the advancement of precision medicine approaches. By identifying specific molecular drivers and cellular interactions within individual tumors, treatments can be more effectively tailored to the unique characteristics of each patient’s cancer, offering a pathway to more personalized and effective treatment strategies for STAD. While the prognostic model developed in this study demonstrates strong predictive power, its translation into clinical practice presents several challenges. First, the requirement for advanced genomic sequencing and specialized bioinformatics analyses may not be feasible in all clinical settings, potentially limiting its immediate application. Additionally, variability in gene expression across different patient populations poses a challenge to the model’s generalizability. To address these limitations, further validation in diverse patient cohorts and the development of more accessible testing methodologies are necessary. Furthermore, standardization of protocols and compliance with regulatory requirements will be crucial for the successful integration of this model into clinical practice. Future efforts will focus on overcoming these barriers to facilitate the clinical adoption of this prognostic tool, with the aim of enhancing personalized treatment strategies for patients with gastric adenocarcinoma.

This study enriches the current understanding of gastric adenocarcinoma through an intricate gene expression analysis, especially focusing on novel areas like lactylation. The application of cutting-edge technologies has uncovered layers of complexity within the tumor microenvironment previously unexplored in such depth. By contrasting these findings with existing literature, it is evident that this research not only corroborates many known aspects of gastric cancer but also provides new avenues for therapeutic intervention and prognostic evaluation. As we move forward, it will be essential to integrate these findings into clinical trials and therapeutic development to truly transform patient care in gastric adenocarcinoma.
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Introduction

This study aimed to elucidate the differential immunological mechanisms and characteristics of hypertension induced by VEGF inhibitors (VEGFi) and VEGF receptor inhibitors (VEGFRi), with the goal of optimizing monitoring strategies and treatment protocols.





Methods

We investigated the risk of immune-related adverse events associated with VEGFi/VEGFRi-induced hypertension by analyzing the FDA Adverse Event Reporting System (FAERS) database. Findings were corroborated with blood pressure characteristics observed in clinical patients and preclinical models exposed to various VEGF/VEGFRi. Clinical and preclinical studies were conducted to compare immunological responses and hypertension profiles between inhibitor classes. An integrative analysis across cancer types and species was performed, focusing on key signaling pathways.





Results

Analysis of FAERS data, in conjunction with clinical observations, revealed that both VEGFi and VEGFRi significantly elevated the risk of immune-mediated, blood pressure-related adverse events (ROR=7.75, 95% CI: 7.76-7.95). Subsequent clinical and preclinical studies demonstrated differential immunological responses and hypertension profiles between inhibitor classes. VEGFRi exhibited a more rapid onset, greater blood pressure elevation, and higher incidence of immune-mediated adverse events compared to VEGFi (Systolic BP: ROR=0 for VEGFi vs. ROR=12.25, 95% CI: 6.54-22.96 for VEGFRi; Diastolic BP: ROR=5.09, 95% CI: 0.60-43.61 for VEGFi vs. ROR=12.90, 95% CI: 3.73-44.55 for VEGFRi). Integrative analysis across cancer types and species, focusing on key signaling pathways, revealed that VEGF/VEGFRi-induced blood pressure elevation was associated with immunomodulation of the mitogen activated protein kinase (MAPK) pathway (R=-0.379, P=0.0435), alterations in triglyceride metabolism (R=-0.664, P=0.0001), modulation of myo-inositol 1,4,5-trisphosphate-sensitive calcium release channel activity (R=0.389, P=0.0378), and dysregulation of nitric oxide eNOS activation and metabolism (R=-0.439, P=0.0179).





Discussion

The temporal dynamics of these effects demonstrated greater significance than dose-dependent responses. Both VEGFi and VEGFRi significantly augmented the risk of immune-mediated, blood pressure-related adverse events, with VEGFRi inducing a more rapid and pronounced onset of blood pressure elevation and a higher incidence of immune-related, blood pressure-associated adverse events compared to VEGFi.





Keywords: vascular endothelial growth factor inhibitors, vascular endothelial growth factor receptor inhibitors, cancer, immune-mediated hypertension, cardiovascular risk




1 Introduction

Malignant tumors are one of the major diseases that seriously threaten public health, with a complex pathogenesis resulting from the interaction of multiple factors (1, 2). The combination of various risk factors has led to a year-on-year increase in cancer incidence, with an estimated 19.3 million new cancer cases and nearly 1 million deaths worldwide in 2020 (3, 4), imposing a considerable economic and healthcare burden globally. For early-stage tumors, traditional treatments such as radiotherapy and chemotherapy can achieve eradication or symptomatic relief; however, they often have profound side effects that may destroy normal cells, resulting in decreased immunity and potentially increasing the risk of other tumors (5, 6). Compared to conventional treatment, immunotherapy is relatively less harmful to patients, but only a small percentage of patients can benefit from immunotherapy in the long term (7). Therefore, the search for suitable targeted drugs has become the focus of attention in clinical tumor therapy.

Vascular endothelial growth factor (VEGF) is a highly specific pro-vascular endothelial cell growth factor that promotes increased vascular permeability, extracellular matrix degeneration, vascular endothelial cell migration, proliferation, and angiogenesis. The high-affinity receptor that binds specifically to VEGF is VEGFR, which is mainly classified into three categories: VEGFR-1, VEGFR-2, and VEGFR-3 (8, 9). Current studies have confirmed that the biological role of VEGF extends far beyond its regulation of angiogenesis, as it is overexpressed in the vast majority of tumors and is widely considered to be a key factor mediating tumor angiogenesis (10). Consequently, the core role of the VEGF pathway in tumors makes it a rational target for anti-cancer therapy. Angiogenesis inhibitors targeting any component of the VEGF pathway, including VEGF inhibitors (VEGFi), VEGF receptor inhibitors (VEGFRi), and small molecule complex kinase inhibitors, can inhibit endothelial proliferation and disrupt the vascular supply of nutrients and oxygen, thereby achieving the goal of curbing tumor growth and metastasis (11, 12). Evidence has shown that VEGFi can significantly increase overall survival (OS) (HR=0.83, 95% CI [0.74-0.93]) and progression-free survival (PFS) (HR=0.49, 95% CI [0.40-0.61]) (13). Additionally, evidence-based medicine has demonstrated that the risk of death in patients with metastatic renal cell carcinoma was reduced by 13% (HR=0.87, 95% CI=0.80-0.95) after VEGFi/VEGFRi treatment (14). In patients with nasopharyngeal carcinoma treated with VEGFi/VEGFRi, the objective response rate (ORR) and disease control rate (DCR) were 37% (95% CI [17-60%]) and 70% (95% CI [51-85%]), respectively, with 1-year OS and PFS of 34% and 62% (15).

Although VEGF pathway inhibitors are generally well-tolerated, adverse effects such as anemia, gastrointestinal reactions, bleeding, and proteinuria still exist (16, 17). Moreover, it is very common for inhibitors of the VEGF pathway to induce hypertension (18, 19), which may lead to an enhanced risk of cardiovascular diseases, such as hypertension-associated cerebral hemorrhage, myocardial infarction, and heart failure. These cardiovascular toxicities have harmful implications for patients with cancers, potentially requiring dose adjustments or cessation of therapy. Previously, for cancer patients with limited life expectancy, the monitoring and control of blood pressure (BP) were not prioritized; however, in the last 20 years, cardiovascular mortality induced by anti-cancer drugs has been found to exceed cancer mortality (18, 20). Therefore, long-term monitoring of BP and antihypertensive management is critical for patients treated with VEGF/VEGFRi. Notably, a dose correlation has been identified between the degree of BP elevation and VEGF(R) inhibitors, although evidence of a time dependence is lacking (21, 22). Meanwhile, it remains unclear whether different VEGF pathway inhibitors differ in their effects on BP in cancer patients and how to choose an appropriate treatment regimen by combining the characteristic trends of hypertension induced by VEGF pathway inhibitors.

Therefore, this study utilizes the FAERS database and combines evidence from hospital observations of BP levels after using different types of VEGF/VEGFRi. It further validates the effects and onset time of VEGFi and VEGFRi on BP to provide theoretical support for the monitoring and management of BP in cancer patients receiving VEGF(R) inhibitors during the course of treatment.




2 Methods



2.1 FEARS

We conducted a pharmacovigilance study of blood pressure-related adverse reactions to inhibitors of VEGF and its receptor (VEGFR) based on the FAERS database (23). The FAERS is a publicly available database of safety reports submitted by patients, healthcare professionals, and pharmaceutical companies. In this study, we specifically focused on the following VEGFi and VEGFRi: VEGFi: Bevacizumab, Ranibizumab, Brolucizumab, Aflibercept, Conbercept, Pegaptanib; VEGFRi: Ramucirumab, Nintedanib, Apatinib, Axitinib, Sunitinib, Sorafenib, Regorafenib, Vandetanib, Cabozantinib, Pazopanib, Lenvatinib, Anlotinib, Fruquintinib, Tivozanib, Cediranib, Brivanib (Supplementary Table S1) (24). Using these drug names as keywords, we obtained the reported data from FAERS from January 1, 2013, to December 31, 2023, and screened cases with the primary suspicion of using these VEGFi and VEGFRi for the study.

Adverse reactions reported in the FAERS database were based on the preferred terms (PT) from the Medical Dictionary for Regulatory Activities (MedDRA, version 25.1), which provides a unique description of medical concepts, including signs, symptoms, and disease diagnoses, through its five-level logical structure. We paid special attention to PTs related to “blood pressure” and identified a total of 72 adverse reactions related to blood pressure (Supplementary Table S2).



2.1.1 Data processing flow

Among the VEGFi- and VEGFRi-related reports obtained from the FAERS database, we first performed the step of removing duplicates by identifying and excluding those reports with identical values in the fields of gender, age, country, date of event, adverse reaction, drug, and indication to ensure uniqueness and accuracy of the data (25). The remaining reports were screened to include only those whose indications were related to malignant diseases, from which 1,768,701 patients with malignant tumors were included. This step was taken to ensure that the focus of the study was on our population of interest and to exclude blood pressure-related adverse events that may have been caused by other factors, such as conditions that may be suggestive of a blood pressure problem in a reported adverse reaction but are not directly related to malignant diseases (26). We identified the patient reports needed for the study and ultimately obtained the overall FAERS database adverse reaction reports used for further analyses. This included 62,253 patients with malignant tumors treated with VEGFi and 124,969 patients with malignant tumors treated with VEGFRi (Figure 1).

[image: Pharmacovigilance analysis using FAERS data from the first quarter of 2013 to the fourth quarter of 2023 focuses on malignant tumors and adverse reactions related to VEGF and EGFR inhibitors. Blood pressure profiling includes clinical and animal models, showing normal, high normal, and hypertension levels. Different treatment groups for animal models such as PBS, Bevacizumab, DMSO, and Semaxanib are shown. Hypertension-related pathway analysis in cancer genomics uses TCGA data for gene expression and pathway analysis across various cancer types, illustrating pathways A, B, C, and D.]
Figure 1 | The flowchart illustrates the multidimensional research framework of this paper, which includes monitoring and analysis of drug safety in the FAERS database, monitoring of blood pressure changes in clinical and animal models, and cancer genomics analysis using the TCGA database.




2.1.2 Signal analysis

In the current study, we focused on VEGFi and VEGFRi and provided a comprehensive analysis of the blood pressure-related adverse events that may occur during treatment with these agents (27). We employed disproportionality analysis, a statistical method frequently used in pharmacovigilance studies, to evaluate the strength of the association between a specific drug and a particular adverse event (28). By comparing the reporting probability of an event of interest for a specific drug to its reporting probability for other drugs in the FAERS database, we were able to identify signals of blood pressure abnormalities associated with VEGFi and VEGFRi. Specifically, we utilized the reporting odds ratio (ROR) to assess the relative risk of a specific adverse event occurring (29), while the statistical significance and strength of these signals were determined by the information component (IC) and its lower limit value (IC025) (30). To perform this analysis, we extracted adverse event reports related to VEGFi and VEGFRi from the FAERS database and generated a comprehensive Adverse Drug Reactions league table, which served as the foundation for the subsequent ROR and IC calculations. The ROR calculation reveals the relative frequency at which a specific adverse event is reported for a particular drug compared to other drugs (31). Additionally, the IC and its lower limit value, IC025, provide further evidence of the signal strength and reliability of these adverse events.

The ROR and its 95% confidence interval (CI) were calculated as follows:

[image: ROR equals the fraction of a over c divided by b over d.]	

[image: The formula represents a 95% confidence interval calculation: 95% CI equals e to the power of ln(ROR) plus or minus 1.96 times the square root of 1 over a plus 1 over b plus 1 over c plus 1 over d.]	

The information component (IC) and its lower limit value (IC025) are calculated as follows:

[image: The image shows the formula for IC, which is the logarithm base two of a divided by the fraction: the total sum of a, b, c, and d over the product of the sum of a and b and the sum of c and d.]	

[image: Mathematical expression displaying the formula for IC025 as IC025 equals e raised to the power of the natural logarithm of IC minus one point nine six times the square root of the sum of the inverses of a, b, c, and d.]	

We considered blood pressure-related adverse events to be highly associated with the use of VEGFi and VEGFRi if the number of reports of blood pressure-related adverse events was at least three, and the lower limit of the 95% confidence interval of their ROR was greater than one, and the lower bound of the information component (IC025) was greater than zero. Overall, we included 5,664 patients with malignancies who used VEGFi and experienced blood pressure-related adverse events, and 16,638 patients with malignancies who used VEGFRi and experienced blood pressure-related adverse events.




2.1.3 Analysis of the time to onset of adverse reactions related to blood pressure

We initially compared the onset time of blood pressure-related adverse reactions between VEGFi and VEGFRi. We then selected eight drugs, each with over 1,000 cases, for detailed analysis. Among them, Bevacizumab was identified as a VEGFi, while the other seven drugs—Lenvatinib, Cabozantinib, Sunitinib, Pazopanib, Axitinib, Regorafenib, and Sorafenib—were classified as VEGFRi. Additionally, we identified 12 hypertension-related adverse reactions and thoroughly compared how the selected drugs influenced these reactions.





2.2 Analysis of pre- and post-medication blood pressure changes in patients from local hospitals

In our analysis at Zhujiang Hospital of Southern Medical University, we examined how VEGFi and VEGFRi affect diastolic and systolic blood pressure. After a thorough data cleaning process, we included 1,087 patients treated with VEGFi and 529 with VEGFRi (32). The study complied with international and national ethics guidelines and was approved by the Ethics Committee of Zhujiang Hospital of Southern Medical University (33).

To ensure the accuracy of the data, we recorded the maximum systolic and corresponding diastolic blood pressure values before and after the first medication dose, ensuring consistency in measurement. This approach allowed us to capture possible blood pressure maxima and thus more accurately assess the potential impact of the medication on the patient’s blood pressure. In our analysis, we compared the overall diastolic and systolic blood pressure before and after medication. Further, we referred to the 2023 European Guidelines for the Diagnosis of Hypertension (34) and categorized blood pressure as normotensive (<130/85 mmHg), high normotensive (130-139/85-89 mmHg), and hypertensive (>140/90 mmHg). These definitions helped us to categorize the patients’ blood pressure changes into different clinically relevant categories and provide a comprehensive assessment of the changes in blood pressure levels before and after medication (35).




2.3 Calculation of enrichment scores for biological pathways in TCGA pan-cancer

To gain a deeper understanding of the adverse effects of VEGFi and VEGFRi associated with blood pressure at the molecular level, we downloaded transcriptome data for 35 cancer types from The Cancer Genome Atlas (TCGA) program via the UCSC Xena database for this study. We converted expression data from Fragments Per Kilobase of transcript per Million mapped reads (FPKM) to Transcripts Per Million (TPM) format (36) and conducted single-sample gene set enrichment analysis (ssGSEA) using the GSVA package (37). For each cancer sample, we calculated enrichment scores of biological pathways using annotated gene sets from the Molecular Signatures Database (MSigDB) (38), including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways for the analysis. The score reflects the level of activity of a particular gene set in a biological process, as evidenced by a uniform up- or down-regulation of the member genes. Our study aimed to uncover biological mechanisms linked to blood pressure-related adverse events by analyzing the correlation between the ROR of adverse reactions to VEGFi and VEGFRi and pathway activation levels in different cancers.




2.4 Animal experiments



2.4.1 Experimental groups

Forty-eight male C57BL/6J mice, aged 6-8 weeks and weighing 25 g, were purchased from Jiangsu Huachuang Xinnuo Pharmaceutical Technology Co. The experimental procedures were approved by the Ethics Committee of the Animal Experimentation Center of the Second Affiliated Hospital of Chongqing Medical University. Bevacizumab (a VEGF ligand inhibitor, No. 216974-75-3) and Semaxanib (a VEGFRi, 204005-46-9) were purchased from MedChemExpress (MCE). Bevacizumab was solubilized in phosphate-buffered saline (PBS), and Semaxanib was solubilized in dimethyl sulfoxide (DMSO).

Animals were divided into two models according to the randomized numeric table method: the Chronic Cardiac Toxicity (CCT) model (n=24) and the Acute Cardiac Toxicity (ACT) model (n=24). In the CCT model, 24 mice were randomly divided into four groups: PBS (Bevacizumab control, n=6), Bevacizumab (n=6), DMSO (Semaxanib control, n=6), and Semaxanib (n=6). The dose of Bevacizumab was 5 mg/kg (twice per week) (39), and Semaxanib was 10 mg/kg (twice per week) (40) in a volume of 200 μL, administered for 4 weeks. In the ACT model, 24 mice were randomly divided into four groups: PBS (Bevacizumab control group, n=6), Bevacizumab (n=6), DMSO (Semaxanib control, n=6), and Semaxanib (n=6). The dose was double that of the CCT model, i.e., 10 mg/kg (twice per week) for Bevacizumab and 20 mg/kg (twice per week) for Semaxanib in a volume of 200 μL, with an intervention time of 2 weeks.




2.4.2 Blood pressure measurement

Noninvasive tail cuff measurements were used to monitor the blood pressure of mice from all groups at consistent time points to minimize the effect of blood pressure rhythm. Ambient temperature was recorded prior to each measurement. After acclimating the mice, the inflatable tail sleeve was placed at the base of the mouse’s tail, ensuring a close fit with the tail artery. The blood pressure monitoring system was activated once the mice were sufficiently calm, and blood pressure levels were recorded when pulse fluctuation signals appeared on the screen.





2.5 Statistical analysis

In this study, the cumulative distribution function (CDF) was employed to plot the timeline of adverse reactions to VEGFi and VEGFRi, visualizing the duration from drug initiation to reaction onset and illustrating the time span from initial drug use to the onset of adverse reactions. The Mann-Whitney U test was used to assess differences in the median onset time of blood pressure-related adverse reactions between VEGFi and VEGFRi (41). Additionally, patient blood pressure data from Zhujiang Hospital of Southern Medical University were analyzed to compare changes before and after drug administration. For animal experiments, the data represented six independent samples, and the results were expressed as mean ± standard error of measurement (SEM) to ensure the accuracy of data analysis. The n value represents the number of biological replicates, emphasizing the biological significance of the experimental repetitions rather than mere technical repetitions. To ensure that the data were normally distributed for accurate statistical analysis, the Shapiro-Wilk normality test was performed for each group, and Student’s t-test was used to compare significant differences between two independent samples. In analyzing the biopathway data from the TCGA pan-cancer project, single-sample gene set enrichment analysis (ssGSEA) and Spearman correlation analysis were applied to reveal the correlation between the level of biopathway activation and drug-induced blood pressure-related adverse effects. All data are presented as mean ± standard error of the mean (SEM), and the specific group size (n) of each experiment is clearly labeled, emphasizing the importance of biological replication. A P-value < 0.05 was considered statistically significant. All data processing, statistical analyses, and visualization of graphs were performed using R software (version 4.3.1, https://www.r-project.org/) and GraphPad Prism 9.0 software.





3 Results



3.1 Blood pressure-related adverse effects of VEGFi and VEGFRi

In our analysis of the FAERS database, we focused on blood pressure-related adverse reactions associated with VEGFi and VEGFRi therapy (Supplementary Table S3). Among these 18 adverse reactions, 11 were directly related to hypertension, suggesting that hypertension was a significant component of these adverse reactions. Actually, ROR for hypertension was 7.75 [7.56-7.95] with an IC of 2.14 [2.11], indicating a strong association with the use of VEGFi and VEGFRi, as evidenced by the stable confidence intervals.

Further analysis of these 18 positive adverse reaction signals revealed that both VEGFi and VEGFRi presented multiple signals in blood pressure-related adverse reactions; however, we noted that VEGFi showed fewer positive signals for blood pressure-related adverse reactions compared to VEGFRi (Figures 2A, B). Although the use of both classes of drugs should be closely monitored for blood pressure-related markers, VEGFRi had more significant signals in certain adverse reactions. For example, the ROR for diastolic hypertension induced by VEGFRi was 12.90 [3.73-44.55] with an IC of 2.20 [0.64], compared to 5.09 [0.60-43.61] for VEGFi with an IC of 1.08 [-2.71], and the ROR for systolic hypertension induced by VEGFRi was 12.25 [6.54-22.96] with an IC of 2.60 [1.83], compared to 0 for VEGFi, where the IC was -1.27 [-11.59]. These results suggest the need for more stringent blood pressure monitoring of patients receiving VEGFRi at the time of treatment, as such drugs may increase the risk of specific blood pressure-related adverse events.
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Figure 2 | Blood pressure-related ROR, IC, and TTO analysis of VEGFi and VEGFRi. (A) Log10 (ROR) comparison of blood pressure-related adverse reactions of VEGFi vs. VEGFRi. (B) IC025 and IC comparison of blood pressure-related adverse reactions of VEGFi vs. VEGFRi. (C) Heatmap of ROR of specific VEGFi vs. VEGFRi. (D) Heatmap of IC of specific VEGFi vs. VEGFRi. (E) Comparative analysis of time to onset of blood pressure-related adverse reactions of VEGFi vs. VEGFRi. (F) Comparative analysis of time to onset of hypertension adverse reactions induced by specific VEGFi vs. VEGFRi.

Our analysis focused on eight VEGFi and VEGFRi, selected based on their usage frequency in the FAERS database for reporting blood pressure-related adverse events, including one VEGFi (bevacizumab) and seven VEGFRi (lenvatinib, cabozantinib, sunitinib, pazopanib, axitinib, regorafenib, and sorafenib). The analysis revealed significant ROR and IC025 values for hypertension across all examined drugs (Figures 2C, D), indicating a strong risk signal for blood pressure elevation associated with both VEGFi and VEGFRi.

In particular, compared to the seven VEGFRi, bevacizumab (a VEGF inhibitor) exhibited higher ROR and IC values for conditions such as secondary and malignant hypertension. Lenvatinib and other VEGFR inhibitors demonstrated signals across various adverse categories, suggesting a link to a wider range of blood pressure issues. Sorafenib and sunitinib showed high signal intensity in various adverse categories, indicating their potential impact on diverse blood pressure-related events. Different inhibitors showed different propensities for inducing specific blood pressure abnormalities.




3.2 Analysis of time to onset of adverse blood pressure reactions to VEGFi and VEGFRi

When comparing the overall time to onset of hypertension with VEGFi versus VEGFRi, we discovered that the time to onset of blood pressure-related adverse events was significantly shorter with VEGFRi than with VEGFi. Cumulative distribution curve analysis revealed that the group of patients receiving VEGFRi had significantly shorter median times to the onset of hypertension-related adverse reactions compared with the group of patients receiving VEGFi, 21.0 days (IQR 7.0-66.0) and 59.0 days (IQR 21.0-171.0), respectively. The results of the Wilcoxon test (P < 0.001) further indicated that there was a statistically significant difference in time to onset between the two groups (Figure 2E, P < 0.05). These findings suggest that in clinical settings, VEGFRi could lead to a quicker onset of blood pressure-related adverse events.

When we compared in-depth the time to onset due to specific VEGFi versus VEGFRi, significant temporal differences in the adverse effects associated with elevated blood pressure caused by these drugs were revealed. Specifically, the median time to onset for bevacizumab was 63.0 days [IQR 21.0-184.8], which was the longest of all the drugs, suggesting that bevacizumab induced blood pressure-related adverse effects later than the VEGFRi. Among the seven VEGFRi, regorafenib had the shortest median onset time of 8.0 days [IQR 3.0-29.0], whereas sunitinib had the longest time of 41.0 days [IQR 14.0-179.0], revealing significant differences in the rate of inducing BP-related adverse effects between the drugs (Supplementary Figure S1). The results of the Mann-Whitney U-test showed that all the drugs except comparisons between ramucirumab and regorafenib (P = 0.175) and sorafenib and regorafenib (P=0.148) did not show significance, whereas comparisons between all other drug combinations showed significant differences (all P < 0.05).

In our detailed analysis, we narrowed our focus to 11 out of 18 identified adverse reactions that were directly related to hypertension. This approach helped us precisely evaluate the impact of various drugs on inducing hypertension. This stratification strategy allowed us to accurately assess the impact of different drugs on inducing hypertension. Our analysis reconfirmed that bevacizumab exhibited a significant prolongation of onset time relative to other VEGFRi. Among the VEGFRi analyzed in combination, regorafenib maintained the shortest median time to onset of 7.0 days [IQR 3.0-34.2], while the other drugs showed significant differences in time to onset (Figure 2F). Consistent with prior results, the Mann-Whitney U-test validated significant differences in the onset times across drugs, further substantiating the importance of timing in hypertension onset.




3.3 Analysis of blood pressure changes in clinical patients

By evaluating patient data from Zhujiang Hospital of Southern Medical University, we provided insights into the potential effects of VEGFi and VEGFRi on patients’ blood pressure in clinical applications. After performing a comprehensive data analysis, we observed significant increases in both diastolic and systolic blood pressures across different treatment regimes. Specifically, for VEGFi (Figure 3A), the median systolic blood pressure increased from 128 mmHg (IQR 117-143) pre-treatment to 140 mmHg (IQR 125-154) post-treatment, and the median diastolic pressure rose from 78 mmHg (IQR 70-85) to 80 mmHg (IQR 73-89). For VEGFRi (Figure 3B), the median systolic pressure rose from 125 mmHg (IQR 114-137) to 132 mmHg (IQR 122-147), and the median diastolic pressure increased from 77 mmHg (IQR 69-85) to 81 mmHg (IQR 73-90) after treatment. Statistical tests confirmed that these increases reached significance levels in all treatment groups (P < 2e-16). These results emphasize that the increases in blood pressure were strongly associated with both types of medication, affecting patients regardless of the specific inhibitor used (Figure 3C).
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Figure 3 | Analysis of blood pressure in clinical patients using VEGFi and VEGFRi. (A) Comparative analysis of pre- and post-treatment blood pressure in VEGFi patients: This graph shows the impact on both diastolic and systolic blood pressure in patients receiving VEGFi therapy, highlighting significant increases post-treatment. (B) Blood pressure changes post-VEGFRi therapy: This graph displays comparative plots of diastolic and systolic blood pressure before and after VEGFRi treatment, documenting notable shifts towards higher pressures. (C) Overall impact on blood pressure by VEGFi or VEGFRi treatment: This graph summarizes the effects on diastolic and systolic blood pressure across the patient cohort treated with both inhibitors. (D) Transition dynamics in blood pressure status due to VEGFi: Sankey diagram illustrating shifts in blood pressure categories before and after treatment with VEGFi, visualizing both deterioration and improvements in patient statuses. (E) Blood pressure category shifts following VEGFRi administration: This Sankey plot details the changes in blood pressure status for patients treated with VEGFRi. (F) Combined effects of VEGFi or VEGFRi on blood pressure status: This Sankey plot summarizes the changes in blood pressure status across the patient cohort treated with both inhibitors. (G) Quantitative changes in blood pressure status in VEGFi-treated patients: Bar graph detailing the counts of patients across different hypertension status transitions post-VEGFi therapy. (H) Hypertension status changes post-VEGFRi treatment: Bar chart quantifies the transitions in blood pressure status for post-VEGFRi therapy. (I) The collective outcomes for patients treated with VEGF or VEGFR inhibitors: Bar chart detailing the predominant trends in hypertension status transitions with both inhibitors.

In our detailed analysis of hypertension status changes visualized through Sankey diagrams and quantified by bar charts, we observed variations in blood pressure outcomes among patients treated with VEGF and VEGFR inhibitors. The effect of VEGFi (Figures 3D, G), where a notable proportion of patients experienced an escalation in blood pressure status: 150 patients transitioned from normal to hypertension and 140 from normal to high normal, indicating a significant worsening. Conversely, a positive shift was observed in 54 patients transitioning from hypertension to normal, with 225 patients remaining normotensive. Similarly, depicting the impact of VEGFRi (Figures 3E, H), showed 57 patients progressing from normal to hypertension and 81 to high normal. Here, fewer patients, 13 in total, improved from hypertension to normal, with 159 patients remaining normotensive. When considering the combined effects of both inhibitors (Figures 3F, I), the trend towards increasing hypertension was even more pronounced, with 207 patients moving from normal to hypertension and 221 to high normal. Collectively, these findings underscore the substantial impact of VEGFi and VEGFRi on blood pressure.




3.4 Effect of VEGFi and VEGFRi on blood pressure in animal models

In animal models, there was no statistically significant difference in body weight at baseline among mice in each group (Supplementary Figure S2), and none of the mice died. The BP levels of mice treated with PBS and bevacizumab were examined at 2 and 4 weeks. It was found that compared with the PBS group, the BP levels of mice from the bevacizumab (10 mg/kg) group were dramatically increased after 2 weeks of treatment, where SBP increased by 35.22 ± 5.81 mmHg, MBP increased by approximately 30.32 ± 6.75 mmHg, and DBP increased by approximately 29.23 ± 9.31 mmHg. After 4 weeks of treatment with bevacizumab (5mg/kg) or PBS, the BP in the bevacizumab group was significantly elevated compared to that in the PBS group (ΔSBP: 57.94 ± 6.05 mmHg; ΔMBP: 43.72 ± 4.77 mmHg; ΔDBP: 40.56 ± 6.55 mmHg). Moreover, the SBP/MBP/DBP of mice from the bevacizumab group in the CCT model were significantly higher than those in the ACT model (p<0.05) (Figures 4A–C).
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Figure 4 | Effect of VEGFi/VEGFRi on blood pressure. (A-C), Effect of VEGFi (Bevacizumab) on SBP (A), MBP (B), and DBP (C) at different intervention times; (D-F), Effect of VEGFRi (Semaxanib) on SBP (D), MBP (E), and DBP (F) at different intervention times. (Beva=Bevacizumab, Sema=Semaxanib, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns=not significant).

Regarding semaxanib, it was found that compared with the DMSO group, semaxanib (20 mg/kg) intervention for 2 weeks caused a sharp increase in SBP of about 32.33 ± 13.74 mmHg (P<0.05). Although there were increases in MBP and DBP, the differences were not statistically significant. In the early BP response induced by semaxanib, SBP would be abnormal and significantly elevated very quickly, but the elevation of MBP and DBP was not significant in some individuals. We further evaluated the chronic cardiotoxicity of semaxanib and found that compared with the DMSO group, mice showed significant elevations in SBP/MBP/DBP after 4 weeks of semaxanib intervention, which were approximately 56.89 ± 12.62 mmHg (P=0.001), 39.25 ± 9.47 mmHg (P=0.002), and 31.47 ± 9.01 mmHg (P=0.006), respectively. Compared with the ACT group, mice in the CCT group showed a sustained increase in SBP, which was significantly higher than that in the ACT group (P<0.05), but there was no statistically significant elevation in MBP and DBP (Figures 4D–F).




3.5 Acute and chronic effects of VEGFi and VEGFRi on blood pressure

We evaluated the acute and chronic responses of BP levels induced by VEGFi and VEGFRi, indicating that a 2-week intervention of Bevacizumab or Semaxanib both contributed to an increase in BP, with no statistically significant difference (Figures 5A–C). Further analysis of chronic cardiotoxicity revealed that there was also no significant difference in SBP/MBP/DBP between animal models treated with Bevacizumab and Semaxanib for 4 weeks (Figures 5D–F), suggesting that VEGFi and VEGFRi induced comparable effects on BP responses. Interestingly, we found that the BP of mice in the Bevacizumab groups from the CCT model and ACT model was relatively concentrated. However, the differences in BP among independent samples of mice in the Semaxanib group were very significant, with SBP fluctuating from 102.5 mmHg to 195 mmHg in the Semaxanib group during the acute phase, and from 130 mmHg to 187.67 mmHg during the chronic phase. These outcomes suggested that VEGFRi may have a significant difference in the acute and chronic effects on blood pressure in different individuals compared with VEGFi.
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Figure 5 | Acute and chronic effects of VEGFi and VEGFRi on blood pressure. (A-C) Acute effects of VEGFi and VEGFRi on SBP (A), MBP (B), and DBP (C). (D-F) Chronic effects of VEGFi and VEGFRi on SBP (D), MBP (E), and DBP (F). (Beva=Bevacizumab, Sema=Semaxanib, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns=not significant).




3.6 Cross-cancer analysis and discovery of key signaling pathways

We further explored the association between VEGF(R) inhibitors and hypertension-related adverse effects in the different cancer types examined. Our pan-cancer analysis revealed a significant association between VEGF(R) inhibitors and hypertension-related adverse effects in every cancer type studied (Figure 6A). In particular, we observed the highest reported rate in head and neck squamous cell carcinoma (HNSC) (ROR = 18.35, 95% CI [9.54, 35.28]) and the lowest ROR in prostate adenocarcinoma (PRAD) (ROR = 2.40, 95% CI [1.73, 3.33]). By combining the analysis of transcriptomic data from TCGA pan-cancer, we further found that the occurrence of hypertension-related adverse effects was significantly associated with changes in four specific signaling pathways. These included negative feedback regulation of the MAPK pathway (R = -0.379, P = 0.0435) (Figure 6B), negative regulation of triglyceride metabolic processes (R = -0.664, P = 0.0001) (Figure 6C), modulation of myo-inositol 1,4,5-trisphosphate-sensitive calcium release channel activity (R = 0.389, P= 0.0378) (Figure 6D), and nitric oxide eNOS activation and regulation of metabolism (R = -0.439, P = 0.0179) (Figure 6E).
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Figure 6 | Assessment of the correlation between VEGF(R) inhibitor-associated hypertension adverse effects and key signaling pathways. (A) Rates of reporting (ROR) of VEGF(R) inhibitor-associated hypertensive adverse reactions in 29 cancer types; tumor types with fewer than 5 cases were not included in the analysis. (B) Correlation analysis of negative feedback regulation of the MAPK pathway with ssGSEA enrichment scores of hypertensive adverse reactions. (C) Correlation analysis of negative regulation of triglyceride metabolic processes with ssGSEA enrichment scores of hypertensive adverse reactions. (D) Correlation analysis of the regulation of inositol 1,4,5-trisphosphate-sensitive calcium release channel activity with ssGSEA enrichment scores for adverse reactions to hypertension. (E) Correlation analysis of nitric oxide eNOS-activated and regulated metabolism with ssGSEA enrichment scores for adverse reactions to hypertension. Cancer types included: PRAD, prostate adenocarcinoma; OV, ovarian cancer; COAD, colon adenocarcinoma; THCA, thyroid cancer; CHOL, cholangiocarcinoma; KIRP, renal pelvis adenocarcinoma; LUAD, lung adenocarcinoma; LIHC, hepatocellular carcinoma; LAML, acute myeloid leukemia; PAAD, pancreatic adenocarcinoma; STAD, gastric adenocarcinoma; MESO, mesothelioma; READ, rectal adenocarcinoma; ESCA, esophageal cancer; BRCA, breast invasive carcinoma; KIRC, kidney clear cell carcinoma; BLCA, bladder urothelial carcinoma; UCS, uterine sarcoma; SARC, soft tissue sarcoma; CRC, colorectal carcinoma; DLBC, diffuse large B-cell lymphoma; LUSC, lung squamous cell carcinoma; ACC, adrenal cortical cancer; GBM, glioblastoma; CESC, cervical squamous cell carcinoma and cervical adenocarcinoma; NSCLC, non-small cell lung cancer; SKCM, skin melanoma; UCEC, endometrial carcinoma; HNSC, head and neck squamous cell carcinoma.





4 Discussion

Cardiovascular diseases and tumors are the leading causes of death worldwide (42). Growing evidence has suggested a strong interrelationship between the two main causes, with an elevating global healthcare burden. With the widespread use of VEGF pathway inhibitors in cancer patients, drug-induced cardiovascular disease-related adverse effects have a serious impact on the prognosis of cancer patients. The most common cardiovascular adverse effects caused by VEGF pathway inhibitors are hypertension, which is considered to be associated with an imbalance in vasoconstrictor-diastolic homeostasis (43), structural changes in the microvasculature (44), and an increase in oxidative stress (45). Few studies have focused on whether there are differences in the time to onset of hypertension and the degree of blood pressure elevation caused by different drugs of VEGF pathway inhibitors. Therefore, we analyzed the risk and onset time of hypertension caused by different VEGF and VEGFR inhibitors in the FAERS database and verified the findings using clinical data. Subsequently, animal experiments were conducted to verify the differences in the onset time of BP elevation and the degree of hypertension caused by VEGF and VEGFR inhibitors. Lastly, cross-cancer analysis was conducted to reveal the key signaling pathways of VEGFi/VEGFRi-induced hypertension.

ROR and IC are used to quantify the association between hypertension and the use of VEGF and VEGFR inhibitors, while also considering the reduction of false correlations driven by reporting biases or data anomalies. ROR provides a measure of the relative odds of an adverse event occurring with the use of a drug compared to not using the drug. On the other hand, IC reflects direct clinical relevance, providing a logarithmic measure to assess how frequently a specific adverse event occurs with a drug compared to what would be expected under independent conditions, adjusted for the total number of reports. In our study, if both the ROR and IC for specific hypertension-related adverse reactions associated with VEGF or VEGFR inhibitors are significant, it indicates a robust link between drug usage and the reported adverse events.

Data from the FAERS database, combined with clinical profiles, confirmed that VEGF and VEGFR inhibitors significantly increase the risk of hypertension-related adverse events (46). Animal experiments revealed that short-term intervention with VEGF and VEGFR inhibitors could lead to BP elevation, and data from the CCT models compared with ACT models showed that lasting therapy with VEGF and VEGFR inhibitors could lead to a continuous increase in BP. This suggests that the body may have a certain tolerance to the cardiotoxicity induced by VEGF and VEGFR inhibitors, but the elevated BP effects continue to accumulate time-dependently, even if the dosage is reduced by half. Thus, we found that VEGF(R) inhibitors were not only dose-dependent (22) but also significantly time-dependent, and the latter effect was significantly greater than the former. Therefore, long-term continuous monitoring of BP for patients treated with VEGF(R)i is required, regardless of whether the regimen is adjusted or the dosage is reduced.

We found that different inhibitors of the VEGF pathway showed different tendencies in inducing specific BP abnormalities, where VEGF inhibitors showed more positive signals for blood pressure-related adverse reactions compared to VEGF inhibitors. Additionally, there were significant differences in the overall time to onset of hypertension caused by VEGFi and VEGFRi. Meanwhile, VEGFRi showed a significantly shorter overall time to onset of hypertension and hypertension-related adverse events than VEGFi. There were also significant differences in the time to onset of hypertension due to different drugs, with Bevacizumab showing a significantly longer onset time relative to other VEGFR inhibitors. Further experimental animal studies verified that there was significant heterogeneity in the BP response induced by Semaxanib (a VEGFRi) when compared with Bevacizumab. This suggested that some cancer patients experienced a sharp elevation in BP (SBP>180 mmHg), unlike the smooth increase of VEGFi, which significantly increased the risk of hypertensive encephalopathy, cerebral hemorrhage, and other acute cardiovascular events in patients. This difference may be related to SNP polymorphisms in the gene encoding VEGFR in cancer patients (47, 48). Therefore, early and close monitoring of blood pressure and timely antihypertensive treatment are more necessary for VEGFRi-treated patients. Meanwhile, hypertension induced by VEGFi and VEGFRi may serve as a biomarker of treatment tumor effects and patient prognosis (49). Several clinical reports have indicated that the overall survival (OS) and progression-free survival (PFS) of hypertensive patients caused by VEGF(R)i are significantly higher than those of patients with normal blood pressure and are significantly positively correlated with blood pressure (50, 51), which may be associated with tumor vascular hypersensitivity (52, 53). Animal models proved that both Bevacizumab and Semaxanib could lead to hypertension in both acute and chronic treatment, and the VEGFi/VEGFRi-induced elevated BP effect was comparable, which may suggest that the overall therapeutic effect of VEGFi and VEGFRi on tumors is comparable. Additionally, the anti-cancer effect of VEGFRi generally appeared earlier for a sharp elevation of BP, but the effect of VEGFRi may be suboptimal in some patients due to the significant heterogeneity of the BP response.

The mechanisms related to the development of hypertension caused by VEGFi and VEGFRi in patients with various tumors were further explored, and it was found that the MAPK pathway showed significant negative feedback regulation after treatment with VEGFi and VEGFRi (R = -0.379, P = 0.0435). The MAPK pathway, by promoting the proliferation, differentiation, migration, and apoptosis of vascular endothelial cells, exerts a significant impact on vascular function and structure (54). Interestingly, it showed a significant negative regulation of triglyceride metabolic processes (R = -0.664, P = 0.0001) which implies the imbalanced lipid metabolism and increased lipid accumulation. Since lipids and their metabolites are increasingly recognized as key players in complex signaling pathways, abnormalities in lipid metabolism and accumulation of lipids due to VEGFi/VEGFRi can modulate the immune responses in a variety of ways, including lipid metabolite responses to pathogens, phagocytosis and inflammation. At the same time, abnormal lipid metabolism can lead to lipid peroxidation, which promotes vascular endothelial damages. It is a risk factor for adverse cardiovascular events such as hypertension (55–57). A recent study has showed that immunobiomaterials can attenuate local inflammation in tumors by modulating the function of immune cells, and that they may reduce the infiltration of vascular endothelial inflammatory cells and endothelial damage caused by VEGFi/VEGFRi (58). Regarding the activity of inositol 1,4,5-trisphosphate-sensitive calcium release channels, an enhancement was observed (R = 0.389, P = 0.0378), revealing enhanced Ca(2+) signaling and increased responsiveness to vasoconstrictors in the vascular smooth muscle, providing evidentiary support for the rise in blood pressure (59). As for the metabolic pathways activated and regulated by nitric oxide eNOS, they showed a tendency to be suppressed (R = -0.439, P = 0.0179). Considering the central role of nitric oxide (NO) in the regulation of blood flow and blood pressure, the downregulation of eNOS led to a significant reduction in the vasodilatory response of vascular endothelial cells, which further contributed to the increase in systolic and diastolic blood pressure (60).

Early monitoring and effective control of blood pressure in oncology patients with VGEFi/VEGFRi as VEGFi/VEGFRi can rapidly lead to an increase in blood pressure. In addition to conventional blood pressure monitoring, nanomaterial-assisted metabolic profiling can be used to monitor biological markers in the patient’s blood for early diagnosis and to assist in treatment (61). Meanwhile, for people with VEGFi/VEGFRi-induced hypertension, conventional antihypertensive regimens can be utilized, including CCBs, ACEIs, and ARBs used singly or in combination. And now there are scholars using different methods to quantify the dose of antihypertensive drugs and analyze and record the dose of drug combinations, which is more accurate for monitoring the use of different antihypertensive drugs to help the effective control of blood pressure (62–64). Therefore, the rational selection and concentration monitoring of antihypertensive drugs in VEGFi/VEGFRi-treating patients could help to reduce the incidence of adverse cardiovascular events and effectively improve cardiovascular mortality in this subset of tumor patients.

The following limitations exist in this study: 1) We confirmed that there were significant differences in the time of blood pressure rise between different VEGFi and VEGFRi drugs through the FAERS database, clinical data, and animal experiments. The animal study found that the degree of blood pressure rise in the early stage of VEGFRi was significantly higher than that of VEGFi, but with a large degree of dispersion, which needs to be supported by more preclinical and clinical data. 2) Clinical data have not been available on VEGFi and VEGFRi cancer patients with hypertension grading and staging, and the risk of acute cardiovascular events such as hypertensive encephalopathy and cerebral hemorrhage caused by VEGFi and VEGFRi needs to be assessed to further evaluate the clinical role and risk of different VEGF pathway inhibitors.




5 Conclusions

In this study, we demonstrated that VEGFi and VEGFRi significantly increased the risk of blood pressure-related adverse events, with the time-dependent effect being significantly greater than the dose-dependent effect. We also found that the onset of hypertensive events resulting from VEGFRi treatment was earlier, and the short-term sharp increase in BP was more pronounced, and it showed more positive signals for blood pressure-related adverse reactions compared to VEGFi. Therefore, long-term blood pressure monitoring should be performed in VEGFi and VEGFRi-treated cancer patients. Especially in VEGFRi patients, BP levels should be monitored as early as possible, which can help reduce the risk of other cardiovascular complications including heart failure, stroke, arrhythmia, and myocardial infarction, and further improve the long-term prognosis of cancer patients.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.





Ethics statement

The Human Ethics were approved by the Ethics Committee Center of Zhujiang Hospital. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required from the participants or the participants’ legal guardians/next of kin in accordance with the national legislation and institutional requirements. The animal study was approved by Ethics Committee of the Animal Experimentation Center of the Second Affiliated Hospital of Chongqing Medical University. The study was conducted in accordance with the local legislation and institutional requirements.





Author contributions

HK: Conceptualization, Data curation, Formal analysis, Methodology, Software, Writing – original draft. QY: Data curation, Formal analysis, Methodology, Software, Writing – original draft. ZL: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original draft. AL: Formal analysis, Methodology, Software, Validation, Writing – original draft. KL: Validation, Investigation, Writing – review & editing. JZ: Conceptualization, Methodology, Supervision, Writing – review & editing. PL: Conceptualization, Investigation, Methodology, Supervision, Visualization, Writing – review & editing. YY: Conceptualization, Methodology, Supervision, Validation, Writing – review & editing.





Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488853/full#supplementary-material

Supplementary Figure 1 | Comparative analysis of time to onset of blood pressure-related adverse reactions of specific VEGFi vs. VEGFRi.

Supplementary Figure 2 | Body Weights of Mice at Baseline. (A) Body weights of different groups of mice in the ACT groups. (B) Body weights of different groups of mice in the CCT groups.

Supplementary Table 1 | The standard and trade names for VEGFi and VEGFRi, ensuring accuracy and consistency in patient data retrieval mentioned in the text.

Supplementary Table 2 | A list of hypertension-related adverse reactions included in the study, ensuring the accuracy of risk analysis for patients using VEGFi or VEGFRi discussed in the text.

Supplementary Table 3 | The results of positive signal detection for hypertension-related adverse reactions, treating VEGF and VEGFR inhibitors as a collective entity.
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Introduction

Lung cancer is a leading cause of cancer-related deaths, with its incidence continuing to rise. Chromatin remodeling, a crucial process in gene expression regulation, plays a significant role in the development and progression of malignant tumors. However, the role of chromatin regulators (CRs) in lung adenocarcinoma (LUAD) remains underexplored.





Methods

This study developed a chromatin regulator-related signature (CRRS) using a 429-combination machine learning approach to predict survival outcomes in LUAD patients. The CRRS model was validated across multiple independent datasets. We also investigated the impact of CRRS on the immune microenvironment, focusing on immune cell infiltration. To identify potential therapeutic targets, TFF1, a chromatin regulator, was knocked down using siRNA in LUAD cells. We assessed its impact through apoptosis analysis, proliferation assays, and in vivo tumor growth studies. Additional validation was performed using Ki67 expression and TUNEL assays.





Results

The CRRS accurately predicted survival outcomes and was shown to modulate immune cell infiltration in the tumor microenvironment. High-risk patients demonstrated increased activity in cell cycle regulation and DNA repair pathways, along with distinct mutation profiles and immune responses compared to low-risk patients. TFF1 emerged as a key therapeutic target. Knockdown of TFF1 significantly inhibited LUAD cell proliferation, induced apoptosis, and suppressed in vivo tumor growth. Ki67 and TUNEL assays confirmed the role of TFF1 in regulating tumor growth and cell death.





Discussion

These findings highlight the potential of chromatin regulators in prognostic modeling and immune modulation in LUAD. TFF1 was identified as a promising therapeutic target, suggesting that targeting TFF1 could provide new treatment strategies. Further research is warranted to explore its full potential and therapeutic applicability.
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Introduction

Lung adenocarcinoma (LUAD) represents a significant global health challenge, with its incidence steadily increasing (1, 2). While traditional treatments such as surgery and chemotherapy remain key options, recent advances in molecular biology and technology have provided new opportunities to identify molecular targets and develop targeted therapies for LUAD (3–5). Some patients with LUAD have specific genetic mutations, such as alterations in EGFR, ALK, and HER2, which allow them to benefit from targeted therapies (6, 7). Despite significant progress in innovative therapies, the overall survival rate post-diagnosis remains below 5%, driving continuous efforts to find more effective treatments and early detection methods (6, 8). However, despite advancements in treatment, the overall survival rate for LUAD remains below 5%, prompting ongoing research efforts to discover more effective therapies and improve early detection6,8. Resistance to current treatments is widespread, further emphasizing the need for the development and validation of new therapeutic strategies (9–11). The advent of immunotherapy has been a breakthrough in cancer treatment, yielding promising results (12, 13). However, not all patients respond equally to immunotherapy, and understanding this variability is a key challenge (14).

Epigenetics, first defined by Waddington in 1942 as the study of heritable changes that do not involve alterations to the DNA sequence (15, 16). Epigenetic processes primarily involve changes surrounding nuclear material, including the regulation of chromatin structure, nucleosome positioning, histone modifications, DNA methylation and demethylation, and interactions between enhancers and promoters (17–19). Epigenetic regulation is mediated by chromatin regulators (CRs), which are categorized into three main groups: DNA methylation regulators, histone modification regulators, and chromatin remodeling factors. Each group plays an indispensable role in epigenetic control (20, 21). In the realms of DNA methylation and histone modifications, CRs are further classified as readers, writers, and erasers. Readers recognize specific modifications on DNA or histones through unique domain structures, while writers and erasers are responsible for adding and removing these modifications, such as acetylation or deacetylation (22, 23). Chromatin remodeling functions include repositioning, ejecting, or altering the state of nucleosomes. The cumulative effects of CR-mediated epigenetic activities regulate DNA accessibility, influence polymerase transcriptional utilization, and thereby affect gene expression levels (24).

CRs are involved in numerous biological processes, including inflammation, memory, apoptosis, autophagy, and cancer development (25). By modulating chromatin structure, CRs can respond to both internal and external signals to regulate gene expression epigenetically. When CRs are mutated or misexpressed, they can cause widespread changes in the epigenetic landscape, leading to various diseases, including cancer (26, 27). Although much is known about the role of CRs in general cancer biology, their specific functions in LUAD and their impact on immunotherapy outcomes remain poorly understood, necessitating further research. A deeper understanding of CRs could lead to new insights into LUAD progression and novel therapeutic opportunities (28–30).

In this study, we employed an innovative artificial intelligence framework using 429 machine learning algorithms (31) and ten-fold cross-validation to develop a chromatin regulator-related signature (CRRS) based on TCGA-LUAD data. This CRRS was evaluated through analysis of both intrinsic and extrinsic immune landscapes using integrated multi-omics data, focusing on the expression patterns and prognostic significance of CRs in LUAD. We successfully constructed and validated a prognostic model based on 29 CRs, which accurately predicted survival outcomes for LUAD patients in both internal and external datasets, as well as pan-cancer analyses. Importantly, experimental validation demonstrated that silencing the CR TFF1 inhibited tumor growth and reduced the malignant behavior of LUAD cells in vitro and in vivo, indicating that TFF1 may be a promising therapeutic target for lung cancer treatment.





Material and methods




Data acquisition

Multi-omics data and clinical information relevant to LUAD were obtained from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov), encompassing RNA sequencing data, mutational profiles, and survival outcomes. For the purpose of validating our model, an additional six datasets were procured from the Gene Expression Omnibus (GEO) database, including GSE42127, GSE31210, GSE30219 (32), GSE29016 (33), GSE26939 (34) and GSE13213 (35) (http://www.ncbi.nlm.nih.gov/geo).

A dataset, comprising normalized transcriptomic and genome across 33 The Cancer Genome Atlas (TCGA) cohorts, was obtained from the University of California Santa Cruz (UCSC) Xena database (https://xenabrowser.net) to identify the predictive ability of our signature for pan-cancer.

To maintain consistency in data formatting from the onset of analysis, all datasets were subjected to log2 transformation. In order to address the possibility of batch effects, the ‘ComBat’ function within the ‘sva’ package for R was employed (36).





Different expression and enrichment analysis

Chromatin-related genes are derived from FACER database (37). The ‘limma’ package was utilized to identify differentially expressed chromatin regulators (DECRs) between LUAD specimens and normal lung tissue, applying a significance criterion of P. adjust < 0.05 and an absolute log2 fold change (log2FC) of 1 or greater. To decipher the biological implications of the DECRs, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses with the aid of the ‘clusterProfiler’ package in R (38).





Development of signatures using an artificial intelligence network

We endeavored to establish a precise and robust CRRS for the prognostication of LUAD patient outcomes. To accomplish this, we orchestrated an extensive artificial intelligence framework comprising 429 combined algorithms, incorporating 27 varied algorithms from domains of traditional regression, machine learning, and deep learning. These algorithms included stepwise Cox, random survival forest (RSF), gradient boosting machine (GBM), supervised principal components (SuperPC), oblique random survival forests (obliqueRSF), conditional random forests (CForest), gradient boosting with component-wise linear models (GLMBoost), gradient boosting with regression trees (BlackBoost), recursive partitioning and regression trees (Rpart), parametric survival model (Survreg), Ranger, conditional inference trees (Ctree), least absolute shrinkage and selection operator (LASSO), partial least squares regression for Cox (plsRcox), survival support vector machine (survival-SVM), Ridge, elastic network (Enet), deephit survival neural network (DeepHit), deepsurv survival neural network (DeepSurv), cox-time survival neural network (CoxTime), extreme gradient boosting (XGBoost), Boruta, logistic-hazard survival neural network (Logistic-Hazard), PC-hazard survival neural network (PC-hazard), akritas conditional non-parametric survival estimator (Akritas), Coxboost, and variable selection oriented LASSO bagging algorithm (VSOLassoBag). Within the TCGA dataset, we harnessed these 429 distinctive algorithmic combinations to create predictive models, evaluating the predictive performance of each combination through the concordance index (C-index) across all cohorts. The selection of the supremely algorithmic combination was determined by yielding the highest average C-index. The source code and specific parameters for the artificial intelligence network are available at the following GitHub repository: https://github.com/Xulab2024/ML.





Functional annotation of the CRRS

Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were conducted leveraging the Molecular Signatures Database (MSigDB) (39). These analyses were facilitated by employing the ‘GSVA’ and ‘clusterProfiler’ packages in R (40). Additionally, Metascape was utilized for further enrichment analysis (41).





Immune infiltration analysis

Based on the CRRS scores, divide the samples into high-risk and low-risk groups. Collect and organize RNA-seq expression data from TCGA-LUAD and other relevant datasets. Estimate immune cell infiltration using tools such as CIBERSORT, xCell, and EPIC. Combine the estimation results into a comprehensive immune cell infiltration matrix and visualize it using the “ComplexHeatmap” package. We also acquired 29 classical immune signatures from the work of He et al. (42). The cytolytic activity scores (CYTs) were estimated using the geometric mean of GZMA and PRF1 (43). Aneuploidy scores were defined as the sum total of the amplified or deleted (collectively, “altered”) arms (44). TCR diversity scores (Shannon entropy and richness) and BCR diversity scores (Shannon entropy and richness) were inferred from cancer RNA-seq data (44).





Cell culture

LEWIS and TE1 cell lines were obtained from the American Tissue Culture Collection (ATCC). Both LEWIS and TE1 cell lines were maintained in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, USA) and 1% penicillin/streptomycin solution. All cells were cultured at 37°C with 5% CO2.





Cell Counting Kit-8

Seed the test cells at a density of 3000 cells per well in a 96-well plate and incubate at 37°C with 5% CO2 for 24 hours to allow cell adhesion. At 0h, 24h, 48h, and 72h, add 10 µL of CCK-8 solution to each well. After incubating for 2 hours, measure the absorbance at 450 nm using a microplate reader to assess cell proliferation. Compare the absorbance values with the control group for data analysis. Ensure the entire process is conducted under sterile conditions to guarantee the accuracy of the results.





SiRNA transfection

Seed cells in a 6-well plate, aiming for 70% confluence at the time of transfection. Dilute the siRNA and transfection reagent separately in serum-free medium, mix them, and incubate for 10-20 minutes to form the complex. Add the complex to the cell culture medium, gently swirl to ensure even distribution, and incubate overnight at 37°C with 5% CO2. After transfection, replace with serum-containing medium and continue to incubate for 24-72 hours. Perform qPCR to evaluate gene knockdown efficiency. The target sequences are listed in Appendix 2.





Colony formation assay

Seed the test cells at a density of 500 cells per well or dish in a 6-well plate or 10 cm culture dish, gently swirl to ensure even distribution, and incubate at 37°C with 5% CO2 for 14 days until visible colonies form. After incubation, discard the medium, gently wash the cells with PBS 2-3 times, fix the cells with 4% paraformaldehyde for 20 minutes, and then stain with crystal violet for 30 minutes. Rinse with running water to remove excess stain, and once the background is clear, count the number of colonies.





Qrt-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. RNA concentration and purity were measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific). Genomic DNA contamination was removed by DNase I treatment (Invitrogen). One microgram of total RNA was reverse-transcribed into cDNA using the PrimeScript RT Reagent Kit (Takara). qRT-PCR was performed using SYBR Premix Ex Taq (Takara) on an ABI 7500 Fast Real-Time PCR System (Applied Biosystems) with the following cycling conditions: 95°C for 30 seconds for initial denaturation, followed by 40 cycles of 95°C for 5 seconds, 60°C for 34 seconds for annealing and extension. Gene expression for each sample was normalized to the internal control gene (e.g., GAPDH), and data were analyzed using the 2^(-ΔΔCt) method. The primer sequences used are listed in Supplementary Table S1.





Flow cytometry for apoptosis detection

After digesting and collecting the cells for analysis, wash them once with sterile, pre-cooled PBS. Then stain the cells with Annexin V and 7-AAD, incubating in the dark for 20 minutes. Subsequently, perform detection using a flow cytometer, and finally, analyze the data using FlowJo software.





Subcutaneous tumor model in mice

Animal experiments were approved by the Ethics Committee of the Affiliated Huai’an Hospital of Xuzhou Medical University. Lewis cells were cultured and resuspended in serum-free medium, adjusting the cell concentration to 5×105 cells/100 µL. Using a sterile syringe, 100 µL of the cell suspension was injected subcutaneously into the right dorsal flank of 6-8 weeks-old female C57BL/6 mice. After injection, the mice were monitored for health status, and tumor volume was measured regularly until the experimental endpoint, at which point the mice were euthanized by cervical dislocation.





Immunohistochemical staining for Ki67

Tissue sections were first deparaffinized and rehydrated through a graded series of alcohols. Antigen retrieval was then performed using a suitable buffer, followed by blocking with a serum to reduce non-specific binding. The sections were incubated with a primary antibody against Ki67 overnight at 4°C. After washing, a secondary antibody conjugated to an enzyme was applied, followed by a chromogenic substrate to visualize the staining. The sections were then counterstained with hematoxylin, dehydrated, and mounted for microscopic examination. The presence of Ki67-positive cells was evaluated as an indicator of cell proliferation.





Fluorescent TUNEL staining on paraffin sections

First, paraffin sections are deparaffinized and rehydrated. Next, antigen retrieval is performed using proteinase K treatment. According to the TUNEL assay kit instructions, the TUNEL reaction mixture is then applied to the sections, followed by incubation to label DNA breaks. After staining, the results are observed under a fluorescence microscope, with positive signals indicating apoptosis.





Statistical analysis

All data are expressed as mean ± standard error of the mean (SEM). Statistical analysis was performed using GraphPad Prism 8.0 and R 4.2.0 software. Comparisons between groups were made using one-way analysis of variance (ANOVA) or t-test, depending on the specific experimental design. When data followed a normal distribution, a t-test was used; for multiple group comparisons, ANOVA was employed. Statistical significance was determined by the P-value, with P < 0.05 considered significant. Significance levels are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.






Results




Variant landscape of chromatin regulator genes in LUAD patients

Within the TCGA-LUAD cohort, our study identified 134 differentially expressed genes (DEGs), all meeting the criteria of adjusted P < 0.05, and absolute log2 fold change (log2FC) exceeding 1. Of these, 116 genes were found to be upregulated, while 18 were downregulated in the LUAD group compared to non-tumor tissues. The standardized RNA expression levels of these DEGs are depicted as heatmaps in Figure 1A. Additionally, Figure 1B delineates the chromosomal locations of each DEG. Moreover, enrichment analyses conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) revealed the implication of these DEGs in a spectrum of biological pathways, notably cell cycle, polycomb repressive complex, histone modification, chromatin remodeling (Figures 1C, D). We also scrutinized chromatin regulator gene alterations in LUAD patients within the TCGA cohort, uncovering that approximately 80.43% (485 out of 603) of the individuals harbored mutations in these genes. The top 15 mutations within chromatin regulator genes are outlined, with TP53 registering the highest mutation frequency at 51%, and the remaining fourteen variations ranging between 7% and 17% in prevalence (Figure 1E).
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Figure 1 | Expression profiles of CRs in LUAD. (A) Heatmap of differentially expressed CRs between cancerous and adjacent tissues in LUAD patients. (B) Circular plot of genomic variations. The circular plot illustrates gene variations across different chromosomes. (C, D) Gene function enrichment analysis. The upper part shows KEGG pathway analysis results, highlighting the main pathways enriched for CRs. (E) Gene mutation profile. It shows the mutation types and frequencies of CRs in 603 LUAD samples.





CRRS construction and validation

We collated and analyzed survival data of LUAD patients, applying univariate Cox regression analysis to initially screen for genes associated with survival. Within the TCGA-LUAD cohort, we identified 29 genes that satisfied the significance threshold of P < 0.05. Following this, we explored 429 algorithmic combinations within the TCGA-LUAD cohort and computed the concordance index (C-index) for each model across the respective cohorts. The integration of RSF and GBM produced the most exemplary average C-index of 0.673. This led us to adopt this integrated approach as our finalized CRRS (Figure 2A). Employing the optimal cut-off for the CRRS enabled the stratification of LUAD patients into distinct high- and low-risk groups. Observations pointed to a notable disparity in survival, with high-risk patients demonstrating significantly poorer overall survival (OS) in comparison to their low-risk counterparts across all cohorts (P < 0.05), as evidenced by Figures 2B–G. Furthermore, the application of time-dependent Receiver Operating Characteristic (ROC) analyses validated the prognostic accuracy of our scoring method consistently across all patient cohorts (illustrated in Figure 2B).
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Figure 2 | CRRS was developed and validated using multiple machine learning algorithms. (A) Using a 10-fold cross-validation framework, a total of 429 combinations of machine learning algorithms were employed, and the c-index for each model was calculated. (B–G) Kaplan-Meier survival analysis and time-dependent ROC curves for 1-year, 3-year, and 5-year OS in the high- and low-risk groups based on the optimal cut-off value of CRRS in the GSE42127, GSE31210, GSE30219, GSE29016, GSE26939, and GSE13213 datasets.





Comparison of CRRS with other clinical features

Initially, CRRS was compared with other clinical features (age, gender, EGFR status, KRAS status, p53 status, stage, T staging, smoking status). The results revealed that the C-index values of CRRS were higher than those of other clinical features, consistently across in the validation cohorts (Figure 3A). Subsequently, SRS was compared with 101 predictive signatures from published studies, and the results demonstrated that the SRS exhibited the best predictive performance across all seven datasets (Figure 3B).

[image: A bar chart and series of forest plots. The bar chart (A) ranks various genes by importance, with PBK having the highest importance. The forest plots (B) display odds ratios and confidence intervals across multiple studies such as TCGA-LUAD and gse42127, among others, with CA index values ranging from 0.4 to 0.9. Each plot includes multiple PMIDs for reference.]
Figure 3 | The significance of CRRS across various datasets and analyses. (A) The importance scores of the 29 CRRS-related genes used in the model. The horizontal axis represents gene names, and the vertical axis represents importance scores. PBK has the highest importance score, followed by TFF1, AR3BP1, and others. These genes have high predictive ability and discriminatory power in the prediction model. (B) C-index of CRRS in TCGA-LUAD and multiple GEO datasets (including GSE42127, GSE31210, GSE30219, GSE29016, GSE26639, GSE13213). In each dataset’s scatter plot, the horizontal axis represents the C-index value, and the vertical axis represents the PMID number of the cited literature.

The C-index (Concordance Index) is a metric used to evaluate the predictive accuracy of a survival model, where values closer to 1 indicate better model performance. Next, we analyzed the expression patterns of CRRS across different clinical features. The C-index (Concordance Index) is a metric used to evaluate the predictive accuracy of a survival model, where values closer to 1 indicate better model performance. As shown in Figure 4A, we used the C-index to assess the predictive accuracy of the CRRS model. Several clinical features, including CRRS, age, gender, stage, T stage, and N stage, exhibited high C-index values exceeding 0.6, indicating that these features have good predictive performance. Next, we used a heatmap to illustrate the expression profiles of CRRS utilized for modeling in high-risk and low-risk groups (Figure 4B). The gene expression profiles of high-risk patients are distinct from those of low-risk patients, indicating the potential of these genes as biomarkers for risk stratification in cancer prognosis.
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Figure 4 | Expression patterns of CRRS under different clinical characteristics and their impact on the model’s predictive ability. (A) A bar chart of the C-index for clinical characteristics. The horizontal axis represents different clinical characteristics, and the vertical axis represents C-index values, which are used to assess the accuracy of the model’s predictive ability. (B) Heatmap of CRRS expression in high- and low-risk groups with clinical characteristics annotations. The heatmap shows the expression levels of CRRS genes across different samples. The annotation bar at the top indicates the clinical characteristics of the samples, including risk level, age, gender, stage, T stage, and M stage. (C) Principal Component Analysis (PCA) scatter plot. It shows the distribution of high-risk and low-risk group samples on the first two principal components (PC1 and PC2). *p < 0.05, ***p < 0.001.

Subsequently, PCA plots were employed to display the distribution of high-risk and low-risk groups in the principal component space (Figure 4C). The high-risk and low-risk groups formed distinct clusters, demonstrating that the principal components effectively captured the differences between these groups. The consistent clustering patterns across different principal component analyses further validate the robustness of the CRRS model in risk stratification.





The expression profile of CRRS across different cancer types

To assess and enhance the predictive capability of CRRS, we evaluated its survival prediction power across various cancer types. We analyzed the expression patterns of CRRS in different cancers, the enrichment of related signaling pathways, and its impact on patient survival. The ring chart in Figure 5A shows the expression levels of CRRS across various cancer types. Significant differences in CRRS expression levels were observed among different cancer types, suggesting that CRRS may play diverse roles in the occurrence and development of these cancers. The GSEA enrichment analysis of pan-cancer results (Figure 5B) indicate that CRRS may be involved in several key signaling pathways, including the MYC-TARGETS, G2M_CHEC KPOINT, E2F TARGETS etc, potentially influencing cancer progression. Furthermore, Kaplan-Meier survival curves (Figure 5C) demonstrate that in multiple cancer types, patients in the high-risk group have significantly lower survival rates compared to those in the low-risk group (such as UVM, THCA, SKCM, PRAD, etc.). This finding further validates the importance of CRRS in prognosis evaluation. These comprehensive analyses highlight the potential of CRRS as a prognostic biomarker across various cancers, providing crucial insights for clinical diagnosis and treatment.
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Figure 5 | CRRS predicts pan-cancer patient survival and impacts potential biological pathways. (A) Pan-cancer CRRS Score Circle Plot: The circular plot illustrates the CRRS scores across different cancer types. (B) Pan-cancer Gene Set Enrichment Analysis (GSEA) Bubble Plot. (C) Survival Analysis Curves for Different Cancer Types: Kaplan-Meier curves display the overall survival rates of patients in high-risk and low-risk groups.





CRRS involvement in remodeling the LUAD immune microenvironment

To explore the impact of CRRS on the LUAD immune microenvironment, we utilized seven algorithms—TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC—to calculate the effect of CRRS on the tumor microenvironment (TME) of LUAD patients in high-risk and low-risk groups. As shown in Figure 6A, the heatmap displays the expression levels of various immune cell types, immune-related genes, and scores across high-risk and low-risk groups of LUAD patients. Significant differences in the expression of immune cell types, including T cells, B cells, macrophages, dendritic cells, and other immune cell subsets, were observed between the two groups. Additionally, the expression levels of immune-related genes also varied significantly between high-risk and low-risk patients. These genes are categorized into core surface molecules, ligands, receptors, cell antigens, and other categories, indicating distinct immune landscape characteristics between the two groups. Additionally, Figure 6B represents the expression levels of immune-related genes, specifically immune checkpoints. These genes are categorized into core surface molecules, ligands, receptors, cell antigens, and other categories. The variations in their expression levels between high-risk and low-risk patients indicate distinct immune landscape characteristics, with significant differences in immune checkpoint expression.
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Figure 6 | CRRS involvement in impacting the immune microenvironment of LUAD. (A) Heatmap of Differential Immune Cell Infiltration. This heatmap shows the expression levels of different immune cell types in high-risk and low-risk group samples. Immune cell types listed include T cells, B cells, macrophages, dendritic cells, and others. (B) Heatmap of Immune-Related Gene Expression. This heatmap displays the expression levels of immune-related genes in high-risk and low-risk group samples, including core cell surface molecules (Core-fab), ligands, receptors, cell antigens, and others. (C) Box Plot of Immune Scores. This box plot shows the distribution of various immune scores in high-risk and low-risk groups, including the immune score, stroma score, and microenvironment score. (D) Box Plot of Immune Diversity Scores. This box plot shows the distribution of various immune diversity scores in high-risk and low-risk group samples, including CYT score, TCR richness, TCR diversity (TCR Shannon), BCR richness, BCR diversity (BCR Shannon), and aneuploidy score. *p < 0.05, **p < 0.01, ***p < 0.001.

Moreover, the Figure 6C show the distribution of various immune scores, including immune score, stromal score, and microenvironment score, demonstrating distinct differences between high-risk and low-risk patients. Figure 6D illustrate the distribution of immune diversity scores such as CYT score, TCR richness, TCR Shannon, BCR richness, BCR Shannon, and Aneuploidy score, further supporting the differential immune profiles between the two groups. These results collectively demonstrate that CRRS significantly contributes to the remodeling of the immune microenvironment in LUAD, particularly affecting the expression of immune checkpoints, and potentially influencing the immune response and disease progression.





Comprehensive analysis of CRRS and molecular pathways in LUAD

Next, we conducted a more comprehensive analysis of the impact of CRRS on the biological behavior of LUAD. This analysis focused on the Cancer Risk-Related Score (CRRS) and its association with various molecular characteristics and biological pathways. The goal was to elucidate the pathways and processes significantly altered in high/low-risk LUAD patients, thereby providing insights into potential therapeutic targets and prognostic markers. The GSVA enrichment analysis displayed a heatmap of the differential expression of various molecular modules between high-risk and low-risk tumor samples. The categories on the right denote distinct functional modules. This heatmap reveals significant differences in the expression profiles of these modules, highlighting the molecular heterogeneity associated with tumor risk (Figure 7A).
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Figure 7 | Analysis of the role of CRRS in regulating LUAD-related biological pathways. (A) GSVA Enrichment Analysis Heatmap. This heatmap shows the enrichment of different gene sets in high-risk and low-risk groups. (B) This tSNE plot shows the distribution of high-risk and low-risk group samples across different signaling pathways, including KEGG glioma, cell cycle, colorectal cancer, p53 signaling pathway, WNT signaling pathway, prostate cancer, TGF-β signaling pathway, and others. (C) Co-expression network related to the cell cycle and chromatin remodeling processes regulated by CRRS. (D) Bar chart of gene enrichment in biological processes and signaling pathways regulated by CRRS in LUAD. (E) Gene Set Enrichment Analysis (GSEA) Mountain Plot. This plot shows the enrichment of highly expressed genes in high- and low-risk groups across gene sets such as DNA replication, cell cycle, cytokine-cytokine receptor interaction, Th17 cell differentiation, and B cell receptor signaling pathway. ***p < 0.001.

Subsequently, we utilized KEGG and Reactome enrichment analyses to visualize the correlation between CRRS and risk stratification in LUAD patients, presenting these findings in t-SNE plots (Figure 7B). Figure 7C shows a network representation of biological processes and functional modules, with node colors representing different functional categories. This network illustrates the complex interactions and regulatory mechanisms involved in LUAD, emphasizing the interconnected nature of biological pathways.

To quantify the importance of these biological processes, Figure 7D features a bar graph depicting the results of gene function enrichment analysis. This analysis highlights significant biological processes such as the mitotic cell cycle process and c,GSEosome segregation regulation, which are crucial for tumor development and progression. The Gene Set Enrichment Analysis (GSEA) results for high-risk samples identified significant enrichment in pathways related to DNA Replication, Cell Cycle, Cytokine-Cytokine Receptor Interaction, Th17 Cell Differentiation, and B Cell Receptor Signaling Pathway (Figure 7E). These findings suggest that pathways associated with the cell cycle and DNA replication are markedly active in high-risk samples and imply potential roles for cytokine and immune-related pathways.

Overall, these analyses reveal that CRRS is involved in regulating molecular and pathway changes associated with LUAD, providing a foundation for further research into targeted therapies and prognostic indicators.





In vitro and in vivo experiments validated that TFF1 knockdown inhibits the malignant phenotype of lung cancer cells

Based on a comprehensive literature review and model C-index scoring, the TFF1 gene emerged as one of the top candidates, with an “Importance” score second only to PBK, underscoring its critical role in the model’s predictive outcomes. TFF1 has been documented to play a pivotal role in the progression of certain cancer types, including pancreatic cancer and gastric neoplasia, with its expression levels closely associated with tumor progression (45–48). Consequently, we selected TFF1 for experimental validation. Using SiRNA interference technology, we successfully knocked down TFF1 in murine-derived lung cancer cells (LEWIS) and human lung cancer cells (TE1) (Figures 8A, B). The results demonstrated that TFF1 knockdown significantly inhibited cell viability (Figures 8C, D) and colony formation (Figures 8E–G) in both cell lines. Moreover, flow cytometry analysis revealed a marked increase in apoptosis rates in TFF1 knockdown cells compared to controls (Figures 8H–J), further confirming the essential role of TFF1 in maintaining the malignant phenotype of lung cancer cells.
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Figure 8 | Effects of TFF1 knockdown on proliferation and apoptosis in TE1 and Lewis cell lines. (A, B) Relative TFF1 mRNA expression levels in TE1 (A) and Lewis (B) cell lines were measured by qRT-PCR after knockdown with two different siRNAs (si1 and si2), with siNC as the negative control. (C, D) Cell proliferation in TE1 (C) and Lewis (D) cells was assessed using the CCK-8 assay. (E) Colony formation assay showed a significant reduction in colony-forming ability in TE1 and Lewis cells after TFF1 knockdown. (F, G) Quantification of colony numbers in TE1 (F) and Lewis (G) cells. (H) Flow cytometry analysis of apoptosis in TE1 and Lewis cells stained with Annexin V-FITC and 7-AAD. (I, J) Quantification of the percentage of apoptotic cells in TE1 (I) and Lewis (J) cells. Data are presented as mean ± standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate statistically significant differences compared to the siNC group.

In the established subcutaneous tumor model in C57BL/6 mice, we further evaluated the impact of TFF1 knockdown on tumor growth. As shown in the figures, subcutaneous tumors formed in mice injected with TFF1-knockdown LEWIS cells were significantly smaller than those in the control group (Figures 9A, D), and the tumor weight was also markedly reduced (Figure 9C). Additionally, the survival rate of mice in the TFF1 knockdown group was notably higher (Figure 9B), indicating that TFF1 knockdown significantly prolongs survival. Immunohistochemical analysis showed a substantial reduction in the proportion of Ki67-positive cells in tumors from the TFF1 knockdown group (Figures 9E, G), suggesting that the proliferative capacity of the tumor cells was suppressed. TUNEL staining results indicated a significant increase in the proportion of apoptotic cells in the TFF1 knockdown group (Figures 9F, H), further corroborating the critical role of TFF1 in tumor cell survival. These findings indicate that TFF1 knockdown not only suppresses the malignant phenotype of lung cancer cells in vitro but also significantly inhibits tumor growth and progression in vivo, highlighting its potential therapeutic value.
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Figure 9 | Effects of TFF1 knockdown on tumor growth, survival, and apoptosis in a subcutaneous tumor model in mice. (A) Subcutaneous tumors after injection of siTFF1-1 and siNC. (B) Kaplan-Meier survival curves show that the survival rate of mice in the siTFF1-1 group was significantly higher than that in the control group (siNC). (C) Tumor weight was significantly reduced after TFF1 knockdown. (D) TFF1 knockdown significantly inhibited the increase in tumor volume. (E) Ki67 immunohistochemical staining shows that cell proliferation was significantly reduced in the siTFF1-1 group compared to the control group. (F) TUNEL fluorescent staining shows a significantly higher proportion of apoptotic cells in the siTFF1-1 group compared to the control group. (G, H) Quantified percentages of Ki67-positive (G) and TUNEL-positive (H) cells per field. Data are presented as mean ± standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate statistically significant differences compared to the siNC group.






Discussion

Malignant tumors are characterized by extensive global reprogramming of epigenetic patterns, including the gain or loss of DNA methylation and alterations in histone marks (49). Elucidating the network of epigenetic factors aids in understanding the mechanisms of interaction between genetic and epigenetic changes, thereby offering new therapeutic strategies for malignant tumors (50, 51).

Identifying tumor-driving cancer genes is crucial for understanding the pathways and gene functions in both normal and cancerous tissues (52–55). This identification is also a necessary prerequisite for developing cancer biomarkers and targeted therapies (49, 56). Epigenetic changes are considered one of the key hallmarks of tumors, driven by chromatin regulators (CRs) (21, 57). Chromatin remodeling refers to the dynamic changes in chromatin structure involved in genetic and epigenetic regulation, which impact gene expression (58). This remodeling can be achieved through modifications such as histone acetylation and methylation (4, 59, 60). Chromatin remodeling proteins alter the interactions between DNA and histone octamers on nucleosomes, facilitating the movement, rearrangement, and reorganization of chromatin fibers. Consequently, this changes the chromatin’s compaction and three-dimensional structure, thereby influencing gene expression (61–63).

Growing evidence underscores the critical role of epigenetic modifications in the initiation and progression of various cancers, including lung adenocarcinoma (LUAD) (64, 65). However, the significance of chromatin remodeling-related genes and their impact on lung cancer remains unclear. Our study employed a novel artificial intelligence framework comprising 429 machine learning algorithms and used a 10-fold cross-validation framework. We integrated multiple algorithms, including random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalized boosted regression modeling (GBM), and survival support vector machine (survival-SVM). By combining these algorithms with differentially expressed chromatin remodeling genes in cancerous and adjacent non-cancerous tissues of LUAD patients, we constructed a prognostic signature called CRRS. Using the optimal cut-off value for CRRS, we divided LUAD patients into high- and low-risk groups and employed Kaplan-Meier survival analysis to evaluate the predictive ability of CRRS on patient survival. The results demonstrated that the constructed CRRS effectively predicted the survival of LUAD patients. This finding was reliably validated across external datasets, including GSE42127, GSE31210, GSE30219, GSE29016, GSE26939, and GSE13213.

Subsequently, we used the C-index to evaluate the model’s performance. We validated the significance and expression levels of the 29 CR-related modeling genes in the CRRS across TCGA-LUAD and multiple GEO datasets (GSE42127, GSE31210, GSE30219, GSE29016, GSE26939, and GSE13213), with references verified using PMID numbers. The C-index results indicated that our model has good predictive performance. Principal component analysis further showed clear stratification between high- and low-risk LUAD patients (Figure 4C).

To explore the generalizability of CRRS’s predictive performance, we conducted clinical prognosis analyses using the TCGA database on various tumor samples, including UVM, THCA, SKCM, SARC, PRAD, PCPG, and PAAD. The results demonstrated that CRRS not only predicts the clinical prognosis of LUAD patients but also performs well in other cancers. Enrichment analysis of differential expression between high and low-risk groups revealed that CRRS might be involved in biological processes such as G2M checkpoint, E2F targets, MYC targets V2/V1, and DNA repair.

Additionally, using immune infiltration analysis algorithms such as TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC, we found that there are differences in immune cell infiltration between high and low-risk CRRS groups. These differences include T cells, B cells, myeloid dendritic cells, macrophage M1, and macrophage M2. Further analysis of costimulatory and coinhibitory molecules (Co-stm and Co-inb), ligands and receptors involved in intercellular communication (e.g., TNFSF9, TNFRSF18), cell adhesion molecules, and antigen presentation molecules (e.g., ITGB2, HLA-DRB5) revealed differential expression between high and low-risk groups. These findings suggest potential differences in immune checkpoint inhibitors between CRRS high and low-risk patients, providing a foundation for further research into the mechanisms of immune checkpoint inhibitors and the identification of new therapeutic targets.

Furthermore, enrichment analysis results revealed that certain gene sets are significantly enriched in high-risk patients, such as MMD4_TARGETS_NEUROEPITHELIUM_DN, mitotic cell cycle process, and cell cycle. In contrast, other gene sets, like HP_ABNORMALITY_OF_THE_AXILLARY_HAIR, are enriched in low-risk patients. Specific functional categories, such as mitotic cell cycle process and cell cycle, were notably enriched in the network, underscoring their importance in prognosis. These findings suggest that these gene sets may play a crucial role in prognosis. This knowledge contributes to a better understanding of the molecular mechanisms of LUAD and provides a reference for clinical prognosis evaluation and treatment strategies.

Finally, our experimental results suggest that TFF1, one of the modeling genes, may serve as a potential therapeutic target for LUAD. Knockdown of TFF1 inhibited the proliferation of lung cancer cells, reduced colony formation efficiency, and increased apoptosis rates. In vivo studies further demonstrated that TFF1 knockdown slowed subcutaneous tumor growth in mice, decreased the proportion of Ki67-positive cells, and increased the number of TUNEL-positive cells. These findings suggest that TFF1 could be a promising target for lung cancer treatment and provide a foundation for further research.

However, there are some limitations to the current study that need to be addressed. First, the algorithms used in constructing the CRRS were based entirely on publicly available datasets, such as TCGA-LUAD, which may introduce biases related to data collection and curation. While these datasets are robust and widely used, the lack of direct validation using experimental or clinical data from our institution limits the broader applicability of our findings. Future studies should focus on validating the CRRS in larger, more diverse cohorts, including patient-derived datasets, to ensure its generalizability across populations with varying clinical and genetic backgrounds.

Overall, this study explores the global reprogramming of epigenetic patterns in malignant tumors, with a particular focus on the role of chromatin remodeling in lung adenocarcinoma (LUAD). By utilizing a novel artificial intelligence framework and multiple machine learning algorithms, the research constructed a prognostic signature, CRRS, comprising 429 algorithms, which was validated using multi-omics data. The results showed that CRRS could effectively predict the survival of LUAD patients and was validated across several independent datasets. Further analysis indicated that high-risk patients are significantly enriched in biological processes such as the cell cycle and DNA repair, and there are differences in immune cell infiltration and responses to immune checkpoint inhibitors. This study highlights the importance of chromatin remodeling-related genes in the prognosis of LUAD, providing a foundation for understanding its molecular mechanisms and developing new therapeutic strategies. However, there are limitations, as the current algorithms are based on public data and require further validation with self-tested data.





Conclusion

This study explores the global reprogramming of epigenetic patterns in malignant tumors, with a particular focus on the role of chromatin remodeling in lung adenocarcinoma (LUAD). By utilizing a novel artificial intelligence framework and multiple machine learning algorithms, the research constructed a prognostic signature, CRRS, comprising 429 algorithms, which was validated using multi-omics data. While the CRRS model holds promise for improving patient stratification and guiding treatment decisions, it is important to acknowledge its limitations. The reliance on publicly available datasets for algorithm training introduces potential biases, and further validation with self-generated clinical data is needed to confirm its broader applicability. Future research should focus on expanding the validation of CRRS in diverse patient cohorts and exploring the therapeutic potential of TFF1 in clinical settings. In conclusion, this study highlights the importance of chromatin remodeling in LUAD prognosis and identifies TFF1 as a promising therapeutic target. These findings provide a foundation for the development of more personalized treatment strategies and open new directions for research into chromatin regulator-related therapies.
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Introduction

Necroptosis has emerged as a promising biomarker for predicting immunotherapy responses across various cancer types. Its role in modulating immune activation and therapeutic outcomes offers potential for precision oncology. 





Methods

A comprehensive pan-cancer analysis was performed using bulk RNA sequencing data to develop a necroptosis-related gene signature, termed Necroptosis.Sig. Multi-omics approaches were employed to identify critical pathways and key regulators of necroptosis, including HMGB1. Functional validation experiments were conducted in A549 lung cancer cells to evaluate the effects of HMGB1 knockdown on tumor proliferation and malignancy. 





Results

The Necroptosis.Sig gene signature effectively predicted responses to immune checkpoint inhibitors (ICIs). Multi-omics analyses highlighted HMGB1 as a key modulator of necroptosis, with potential to enhance immune activation and therapeutic efficacy. Functional experiments demonstrated that HMGB1 knockdown significantly suppressed tumor proliferation and malignancy, reinforcing the therapeutic potential of targeting necroptosis. 





Discussion

These findings underscore the utility of necroptosis as a biomarker to guide personalized immunotherapy strategies. By advancing precision oncology, necroptosis provides a novel avenue for improving cancer treatment outcomes.
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Introduction

Immunotherapy has now become a cornerstone of modern oncology, fundamentally transforming the treatment of various malignancies (1, 2). Unlike traditional cancer treatments such as chemotherapy and radiation, immunotherapy harnesses the patient’s own immune system to fight tumors, making it not only more precise but also significantly less toxic (3, 4). In recent years, the rapid advancement of immunotherapy has not only provided substantial extensions in survival for many cancer patients but has also greatly improved their quality of life by reducing the side effects associated with conventional therapies (5, 6). Innovative forms of immunotherapy, including immune checkpoint inhibitors, CAR T-cell therapy, and cancer vaccines, have demonstrated groundbreaking results in clinical settings, particularly in some treatment-resistant cancers (7–9).

However, despite the impressive benefits of immunotherapy, the reality is that not all patients derive the same level of benefit (10, 11). In fact, only a subset of patients showing significant responses to these treatments, while many others exhibit limited or no response. The wide variability in patient responses to immunotherapy highlights the complexity and challenges of cancer treatment. This heterogeneity is influenced by various factors, such as genetic differences and variations in the immune microenvironment between individuals (12). Therefore, the identification and exploration of relevant biomarkers to accurately predict which patients are most likely to benefit from immunotherapy has emerged as a crucial area of ongoing research (13–16). By gaining deeper insights into these biomarkers, physicians can better tailor treatment plans to individual patients, ultimately improving the efficacy of immunotherapy and addressing issues such as immune resistance (17). Through this approach, the future of immunotherapy promises to be more precise, more effective, and capable of benefiting an even greater number of cancer patients (18).

Necroptosis is a form of programmed cell death similar to necrosis. When a cell fails to undergo apoptosis properly due to inflammation, oxidative stress, or ischemic stress, necroptosis is activated as an “alternative” to apoptosis (19). Unlike apoptosis, necroptosis does not rely on caspase activity but requires MLKL phosphorylation, regulated by RIPK3 (20, 21). This phosphorylation event causes MLKL to form pore complexes on the plasma membrane, leading to the release of DAMPs (damage-associated molecular patterns), cell swelling, and membrane rupture (22, 23). Most studies on the molecular mechanisms of necroptosis involve the tumor necrosis factor (TNF) signaling pathway. Typically, TNF induces an inflammatory response by activating pro-inflammatory genes through NF-κB signaling (24). Necroptosis is also triggered by death receptors on the cell membrane (such as TNFR1, DR4/5, and FAS receptors) and can be initiated by pattern-recognition receptors (PRRs). Downstream, necroptosis is regulated by three key molecules: MLKL (mixed lineage kinase domain-like pseudokinase), RIPK1 (receptor-interacting serine/threonine kinase 1), and RIPK3. These molecules can serve as potential biomarkers (21).

Necroptosis, unlike apoptosis, generates secondary messengers that interact with immune cells in the tumor microenvironment, signaling potential danger (25). This lytic form of cell death enhances the delivery of antigens and adjuvants to immune cells, potentially improving cancer therapies by integrating mechanisms of programmed cell death and immune activation. The findings indicate that necroptosis and its associated features may serve as valuable predictive biomarkers, with possible implications for other cancer types. Building on this discovery, we initiated a comprehensive project that integrates pan-cancer sample cohorts and bulk RNA sequencing datasets to explore, for the first time, the role of necroptosis in personalized cancer therapies, driven by its distinct molecular markers. By leveraging these two robust data sources, we aim to evaluate the clinical relevance of necroptosis across diverse cancers and gain deeper insights into its molecular pathways through multi-omics analyses. This integrated strategy seeks to establish a solid foundation for more precise, personalized cancer treatments, ultimately contributing to a refined framework for individualized cancer care. Finally, we validated through both in vitro and in vivo experiments that knocking down the HMGB1 gene, one of the modeling genes of Necroptosis.Sig, in the A549 lung cancer cell line can suppress the malignant biological behavior of tumor cells. This further supports the critical role of HMGB1 as a key Necroptosis.Sig modeling gene in the development of malignant tumors.





Result




Pan-cancer analysis of the association between necroptosis-related gene abundance and immune resistance

In this study, we investigated the association between necroptosis-related gene abundance and immune resistance, aiming to uncover novel insights into their role in cancer immunotherapy. Using GSVA, we computed necroptosis scores across the TCGA pan-cancer cohort, revealing a significant positive correlation between necroptosis scores and immune-related gene expression across 30 distinct cancer types (Figure 1A). These findings suggest a broad impact of necroptosis on immune modulation within the tumor microenvironment (TME).To further understand this impact, we examined immune cell infiltration in tumors with high necroptosis scores, observing a notable increase in immune cell presence, underscoring a link between necroptosis and immune activation. Importantly, our analysis also revealed positive correlations between necroptosis scores and both intratumor heterogeneity (ITH) and tumor mutational burden (TMB) (Figures 1D, E), suggesting that necroptosis influences anti-tumor immune responses by modulating immune cell activity and regulating tumor heterogeneity. These results provide new evidence that tumors with elevated necroptosis scores display enhanced anti-tumor immune responses, positioning necroptosis as a potential predictive biomarker for cancer immunotherapy efficacy. Our findings thus contribute to the understanding of necroptosis as a mechanism influencing immune resistance, with implications for identifying patients who may benefit most from immunotherapeutic interventions.
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Figure 1 | Comprehensive analysis of necroptosis associations with immune infiltration and tumor traits across cancers in the TCGA cohort. (A) The Circos plot illustrates the relationship between necroptosis pathway activity (measured by GSVA scores) and immune gene expression across multiple cancer types. The color gradient reflects Spearman correlation values, ranging from -1 to 1. Gene functions are categorized as antigen presentation, HLA, stimulatory, inhibitory, and other immune-related functions. (B) This heatmap shows how necroptosis pathway activity correlates with immune cell infiltration (e.g., T cells, B cells, macrophages) in different cancers. Dot size indicates statistical significance (-log10(q value)), while color represents the Spearman correlation coefficient. (C) A bubble heatmap demonstrates the association between necroptosis pathway activity and key immune-related pathways, such as interferon gamma response, IL6 JAK STAT3 signaling, and inflammatory response, across cancer types. Dot size reflects statistical significance (-log10(q value)), and color represents the correlation strength (Spearman R). (D) Scatter plot depicting the correlation between median necroptosis pathway activity scores and median tumor mutational burden (TMB) across cancer types. Each point corresponds to a different cancer type, with the shaded area representing the confidence interval of the regression line. (E) Scatter plot showing the association between median necroptosis pathway activity scores and median intratumor heterogeneity (ITH) for various cancers. Similar to panel D, the Spearman correlation coefficient (R) and p-values are indicated in both plots.





Predicting immunotherapy outcomes using necroptosis gene signature

Acknowledging the critical role of necroptosis in orchestrating anti-tumor immune responses, we developed a predictive model based on necroptosis marker genes to optimize immunotherapy strategies. RNA-Seq data and clinical records from ten immune checkpoint inhibitor (ICI) cohorts were collected. Using the ABESS algorithm, five key necroptosis marker genes (ANKRD28, CREB3L2, ISG20, SLAMF7, MEI1) were identified. The workflow for model development is depicted in Figure 2A, where six different machine learning algorithms were employed, utilizing 10-fold cross-validation and grid search for parameter optimization to generate prediction models. Among these models, the Random Forest (RF) model exhibited the best performance, with an AUC of 0.713 (Figure 2B). Subsequently, the model was validated on the validation and independent testing sets, yielding AUCs of 0.71 and 0.74, respectively (Figure 2C). To further assess the model’s predictive capacity for overall survival (OS), ICI-treated patients were stratified into high-risk and low-risk groups. Kaplan-Meier survival analysis demonstrated that the low-risk group exhibited significantly prolonged OS in both the validation and testing sets (P < 0.01) (Figure 2C, right).
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Figure 2 | Development and evaluation of a machine learning model for predicting the necroptosis signature. (A)Diagram outlining the machine learning process used to create and validate the necroptosis signature model. The data was divided into 80% for training and 20% for validation. Parameter tuning was done using 10-fold cross-validation and grid search across various models (e.g., “nb”, “svm”, “rf”, “knn”, “adaboost”, “XGBoost”). The final model selected was Random Forest (rf), with optimized parameters, and was tested on independent datasets from studies like Braun 2020 RCC and Kim 2018 GC. (B) ROC curves displaying the performance of different machine learning models on the training set, with AUC values for models such as XGBoost, SVM, RF, KNN, and AdaBoost. Random Forest achieved the highest AUC of 0.736. (C) ROC curves showing the final Random Forest model’s performance in the validation set (AUC = 0.762, 95% CI: 0.665–0.858) and test set (AUC = 0.745, 95% CI: 0.664–0.826). Kaplan-Meier survival curves indicate differences in overall survival (OS) between high-risk and low-risk groups in both validation and test sets, with significant p-values from log-rank tests (p = 0.0015 and p = 0.0014, respectively).





Comparison of necroptosis gene signature with other predictive gene signatures

We evaluated the predictive power of the necroptosis gene signature (Necroptosis.Sig) against other immune checkpoint inhibitor (ICI)-related gene signatures. In a direct comparison with a spectrum of pan-cancer signatures, including INFG.Sig (26), T.cell.inflamed.Sig (26), PDL1.Sig (27), LRRC15.CAF.Sig (28), NLRP3.Sig (29), and Cytotoxic.Sig (30), Necroptosis.Sig emerged as the most effective predictor in the testing set, achieving an AUC of 0.74, with INFG.Sig trailing closely behind at an AUC of 0.66 (Figure 3A). Necroptosis.Sig demonstrated superior performance across all evaluated cohorts, spanning three distinct cancer types: melanoma (SKCM), glioblastoma (GBM), and gastric cancer (GC), underscoring its versatility as a predictive model for ICI responsiveness across various malignancies (Figure 3B). When compared with signatures specifically tailored for melanoma (CRMA.Sig, IMPRES.Sig, IPRES.Sig, TcellExc.Sig, ImmunCells.Sig, IMS.Sig, and TRS.Sig), Necroptosis.Sig remained a leading predictor, achieving an AUC of 0.72 in predicting ICI response in melanoma patients. However, IMPRES.Sig and CRMA.Sig outperformed Necroptosis.Sig in this subset, registering slightly higher AUCs of 0.81 and 0.77, respectively (Figure 3C).
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Figure 3 | Performance of necroptosis signature across cancer cohorts. (A) Circos plot displaying the Area Under the Curve (AUC) values for multiple immune-related signatures, including Necroptosis.Sig and Cytotoxic.Sig, across various testing cohorts such as Snyder 2017 UC, Van 2015 SKCM, Kim 2018 GC, and Zhao 2019 GBM. The radial arrangement highlights the predictive performance of each signature in different cohorts. (B) Heatmap showing the AUC values of combined and individual necroptosis-related signatures across different datasets. The color scale ranges from 0.5 to 0.8, with warmer tones indicating higher predictive accuracy. (C) Bar plot comparing AUC values for various immune and necroptosis-related signatures, such as IMPRES.Sig, CRMA.Sig, and Necroptosis.Sig, highlighting their predictive strength. Higher bars reflect better performance.





Functional analysis of necroptosis gene signature in tumor immune microenvironment

Necroptosis, a unique form of programmed cell death distinct from classical apoptosis, is driven by the activation of key molecular pathways involving RIPK1, RIPK3, and MLKL. Unlike apoptosis, necroptosis causes cell membrane rupture, releasing various immune-stimulating factors that trigger an inflammatory response. This distinct role of necroptosis in the TME has drawn considerable attention in recent cancer research. To further elucidate the impact of the Necroptosis Gene Signature on tumor immune evasion and anti-tumor immune responses, we conducted an in-depth analysis. Our findings, visualized in a heatmap (Figure 4A), highlight the association between necroptosis-related gene sets and necroptosis risk across diverse cancer types. These insights underscore the potential of necroptosis as a regulatory mechanism within the TME, advancing our understanding of how necroptosis may influence immune resistance and support novel strategies for enhancing cancer immunotherapy.
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Figure 4 | Functional and Pathway Analysis of Necroptosis Gene Signature in Cancer. (A) Heatmap illustrating associations between gene sets and necroptosis risk across various cancer cohorts. Gene modules are classified into functional groups (C1 to C8), with risk categories annotated as high or low based on necroptosis risk scores. The gene sets highlighted include those related to cell cycle, metabolic processes, and immune regulation. (B) t-SNE plots showing the distribution of necroptosis risk scores in different cancer types, including acute myeloid leukemia, renal cell carcinoma, and antigen processing pathways. The risk scores are color-coded from low (green) to high (red), indicating the association between necroptosis and key biological pathways such as protein modification and stress response. (C) Network diagram depicting interactions between gene modules involved in cell cycle regulation and chromosome segregation. These gene modules highlight the complex interactions between pathways associated with tumor progression and necroptosis. (D) Bar graph showing the top enriched Gene Ontology (GO) terms related to immune response, cell activation, and inflammatory processes. The length of the bars corresponds to the significance level of enrichment (-log10(P)) for each GO term. (E) Gene Set Enrichment Analysis (GSEA) plots for key enriched pathways, including cytokine-cytokine receptor interaction, neutrophil extracellular trap formation, and Th1/Th2/Th17 cell differentiation. The plots show enrichment scores and p-values, emphasizing the involvement of necroptosis in immune cell activation and differentiation pathways.

The gene modules are classified into different functional groups (C1 to C8), and patients are divided into high-risk and low-risk groups based on necroptosis risk scores. Notably, these gene sets are primarily involved in key biological pathways such as cell cycle regulation, chromosome segregation, and metabolic processes, indicating a close relationship between necroptosis and cellular proliferation and metabolism. Next, t-SNE analysis (Figure 4B) further demonstrates the distribution of necroptosis risk scores across various cancer types, including acute myeloid leukemia, renal cell carcinoma, and antigen processing pathways. Necroptosis enhances the immune system’s ability to recognize tumor cells by promoting antigen presentation, thereby influencing anti-tumor immune responses. Through color coding (ranging from low to high risk), the relationship between necroptosis and key biological functions, such as protein modification, immune response, and cellular stress adaptation, is clearly displayed. Additionally, the network diagram (Figure 4C) highlights the complex interactions between gene modules involved in cell cycle control and chromosome segregation, suggesting that necroptosis not only affects cell death but may also regulate cancer progression by altering cellular proliferation and differentiation. At the same time, GO enrichment analysis (Figure 4D) reveals a strong association between necroptosis genes and immune responses, particularly in terms of leukocyte activation, cytokine signaling, and inflammation regulation. This further demonstrates the critical role of necroptosis in triggering anti-tumor immune activity. Finally, the GSEA bar graph (Figure 4E) shows the enrichment of necroptosis-related pathways, including cytokine-cytokine receptor interaction, neutrophil extracellular trap formation, and Th1/Th2/Th17 cell differentiation, all of which are immune-related processes. These results collectively emphasize the central role of necroptosis in immune cell activation, differentiation, and tumor immunity, further validating its potential as a therapeutic target in cancer immunotherapy.





The relationship between necroptosis-related gene signatures and immune infiltration across various cancer types

The relationship between necroptosis-related gene signatures and immune infiltration across various cancer types is analyzed to highlight novel findings and their implications in cancer immunotherapy. We explored how Necroptosis.Sig correlates with immune infiltration across diverse cancer types, aiming to understand its impact on the immune microenvironment. Figure 5A presents a bar graph illustrating the distribution of high-risk and low-risk groups based on Necroptosis.Sig across multiple cancer types. This analysis reveals that certain cancers, such as uveal melanoma and uterine carcinosarcoma, exhibit a higher proportion of high-risk patients, whereas others, like low-grade glioma, predominantly feature low-risk patients, suggesting necroptosis plays distinct roles across different cancers. In Figure 5B, violin plots compare immune-related metrics between high-risk and low-risk groups, showing significantly elevated scores in the low-risk group for leukocyte fraction, lymphocyte fraction, tumor-infiltrating lymphocyte (TIL) fractions, and CD8+ T cell infiltration. These findings indicate a more active immune system in the low-risk group. Figure 5C expands on this with boxplots showing that high-risk groups display markedly lower immune signature scores across multiple immune cell types, particularly antigen-presenting cells (APCs), B cells, and CD8+ T cells, implying a weaker immune response in the high-risk group. Further validation through Danaher et al.’s scoring analysis in Figure 5D reinforces these results, as the low-risk group shows significantly higher immune activity in cell populations such as B cells, dendritic cells, macrophages, and CD8+ T cells, emphasizing a robust immune presence. Additionally, the heatmap in Figure 5E clusters immune cells by risk group, revealing strong associations between the low-risk group and immune cell activity, particularly in Th1 cells, dendritic cells, and NK cells, thus supporting the view that the low-risk group has a more active immune microenvironment. Finally, Figure 5F summarizes immune infiltration differences between the two groups, illustrating that 59.66% of high-risk patients have low immune infiltration, while 65.2% of low-risk patients demonstrate high immune infiltration. This comprehensive analysis highlights that Necroptosis.Sig is inversely related to immune infiltration, with higher necroptosis risk correlating with reduced immune presence and potentially influencing tumor immune evasion and patient prognosis. This reorganization underscores our key finding that Necroptosis.Sig’s relationship with immune infiltration varies by cancer type and risk group, contributing novel insights to the field of cancer immunotherapy.
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Figure 5 | The association between necroptosis signature and immune infiltration across different cancer types. (A) Percentage distribution of risk levels (High vs Low) based on necroptosis signature across different cancer types from the TCGA cohort. (B) Violin plots showing the relationship between necroptosis signature (high and low risk) and different immune-related metrics, including leukocyte fraction (DNA methylation estimate), lymphocyte fraction (CIBERSORT estimate), tumor-infiltrating lymphocyte (TIL) regional fraction (H&E images estimate), TIL fraction (molecular estimate), and CD8 T cells (CIBERSORT estimate). (C) Boxplot of immune signature scores across various immune cell populations, comparing high-risk and low-risk groups based on the necroptosis signature. (D) Scores from Danaher et al. indicating the association between necroptosis signature and specific immune cell populations in high-risk and low-risk groups. (E) Heatmap showing the clustering of different immune cell types based on their association with necroptosis signature risk groups. (F) Bar plot representing the proportion of high and low immune infiltration in high-risk and low-risk necroptosis signature groups.





Necroptosis.Sig influence various genomic and immunological features of pan-cancer patient

Next, this study delves into the relationship between high-risk and low-risk groups, as defined by Necroptosis.Sig, in terms of genomic and immunological characteristics. Figure 6A compares the mutation rate, neoantigen burden, T-cell receptor (TCR) and B-cell receptor (BCR) diversity, aneuploidy score, and intratumor heterogeneity between the two groups. The results show that the low-risk group has higher TCR and BCR diversity, indicating a more diverse immune repertoire, while the high-risk group exhibits greater genomic instability, with higher aneuploidy scores and intratumor heterogeneity. Figure 6B presents a heatmap of the differential expression of MHC-I and MHC-II molecules, as well as immune checkpoint inhibitors, with the low-risk group showing higher MHC expression, and the high-risk group displaying increased immune checkpoint expression, suggesting potential immune evasion mechanisms in the high-risk cohort. Figure 6C illustrates mutation signatures related to DNA repair defects, which are more pronounced in the high-risk group. Figure 6D confirms these findings by showing that mutation signatures associated with polymerase epsilon mutations, UV exposure, DNA mismatch repair defects, and homologous recombination defects are significantly higher in the high-risk group. Figures 6E, F compare the activity of several oncogenic pathways, such as Cell Cycle, MYC, HIPPO, TGF-beta, and WNT, with the high-risk group showing higher activity in these pathways, suggesting more aggressive tumor behavior and potential therapeutic vulnerabilities. Overall, this figure indicates that high-risk patients with elevated Necroptosis.Sig exhibit greater genomic instability, more active oncogenic pathways, and increased expression of immune checkpoint molecules, contributing to a more aggressive and immunosuppressive tumor microenvironment.
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Figure 6 | Analysis of mutation rates, immune signatures, and pathway activities in high- and low-risk groups. (A) Box plots comparing mutation rates, immune receptor richness (BCR, TCR), and tumor-related features (e.g., aneuploidy score, intratumor heterogeneity) between high- and low-risk groups. Significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant. (B) Heatmap showing expression differences in MHC class I/II genes, other MHC molecules, and immune checkpoint inhibitors between high- and low-risk groups, with p-values denoting significance. (C) Mutation signature plots showing cosine similarity for various mutation signatures (SBS10b, SBS6, SBS7a, SBS3) between risk groups, linked to different etiologies such as UV exposure and DNA repair defects. (D) Box plots comparing the contribution of mutation signatures (SBS10b, SBS7a, SBS6, SBS3) between high- and low-risk groups. (E) Violin plots showing pathway activity scores (e.g., cell cycle, HIPPO, MYC, NOTCH, NRF2) between high- and low-risk groups. (F) Violin plots comparing additional pathway activities (e.g., PI3K, RTK-RAS, TGF-beta, TP53, WNT) between high- and low-risk groups. Significance is indicated as in (A).





HMGB1 knockdown suppresses A549 lung cancer cell proliferation and tumor growth

To further investigate the role of HMGB1, one of the modeling genes of Necroptosis.Sig, in A549 lung cancer cells and animal experiments, we conducted a series of analyses. The results showed that knocking down HMGB1 significantly reduced its relative expression levels (Figure 7A) and inhibited cell proliferation. In the CCK-8 assay, cells with HMGB1 knockdown exhibited a significantly slower proliferation rate at different time points (Figures 7B, C). The EdU staining assay further demonstrated that the percentage of EdU-positive cells was significantly reduced in the HMGB1 knockdown group (Figures 7D, E), confirming the suppression of cell proliferation. Meanwhile, flow cytometry analysis indicated that the apoptosis rate was significantly increased in HMGB1 knockdown cells (Figures 7F, G). In the mouse xenograft model, tumors in the HMGB1 knockdown group were noticeably smaller, and tumor growth was significantly slower (Figures 7H, I). Furthermore, Kaplan-Meier survival curves showed that mice in the HMGB1 knockdown group had significantly improved survival rates (Figure 7J). Overall, these results suggest that HMGB1 plays a critical role in tumor cell proliferation, apoptosis, and tumor growth, further supporting its importance as a Necroptosis.Sig modeling gene in tumor development and immune evasion.
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Figure 7 | The knockdown of HMGB1 inhibits A549 lung cancer cell proliferation and promotes apoptosis in vitro and in vivo. (A) Relative expression levels of HMGB1 in shNC, sh#1, and sh#2 A549 lung cancer cells, as measured by qRT-PCR. (B, C) Cell viability analysis using CCK-8 assay in shNC and sh#1 or sh#2 A549 lung cancer cells at different time points. (D) EdU incorporation assay to measure cell proliferation in shNC, sh#1, and sh#2 A549 lung cancer cells. (E) Quantification of EdU-positive A549 lung cancer cells in shNC, sh#1, and sh#2 groups. (F) Flow cytometry analysis of apoptosis in shNC, sh#1, and sh#2 A549 lung cancer cells. (G) Quantification of apoptosis rates in shNC, sh#1, and sh#2 A549 lung cancer groups. (H) Tumor images from xenograft models showing the tumor sizes from shNC and sh#1 groups. (I) Tumor volume measurements over time in shNC and sh#1 groups. (J) Kaplan-Meier survival curves comparing the survival of mice in the shNC and sh#1 groups. Statistical significance: p < 0.05, p < 0.01, p < 0.001, ****p < 0.0001.






Materials and methods




Pan-cancer transcriptomic and ICI RNA-Seq data

We retrieved multi-omics datasets from the TCGA Pan-cancer collection via UCSC Xena (https://xenabrowser.net/datapages/) to explore the relationship between Necroptosis.Sig and immunosuppression across cancers. DLBC, LAML, and THYM were excluded due to their high immune cell content, which could introduce bias. The necroptosis gene sets were obtained from the GSEA database (https://www.gsea-msigdb.org/gsea/index.jsp). To address the potential batch effects arising from different tumor cohorts within the TCGA dataset, we applied the ComBat algorithm from the sva package (31), which effectively adjusts for batch effects while preserving biological variation across cancer types.

To validate the predictive capability of Necroptosis.Sig, we systematically collected transcriptomic data and clinical information from 10 pretreated ICI RNA-Seq cohorts. These cohorts include 5 melanoma (SKCM) cohorts (32–36), 2 urothelial carcinoma (UC) cohorts (37, 38), 1 glioblastoma multiforme (GBM) cohort (39), 1 gastric cancer (GC) cohort (40), and 1 renal cell carcinoma (RCC) cohort (41). Anti-PD-1, anti-PD-L1, anti-CTLA-4, and anti-PD-(L)1 + anti-CTLA-4 combination therapies were applied to 6, 2, 1, and 1 cohort, respectively. The Hugo 2016 cohort contains 27 pretreated tumor samples from 26 patients (32), while the Zhao 2019 cohort includes 34 pretreated tumor samples from 17 patients (39).





Pan-cancer analysis of the association between different immune functions and tumor characteristics

Spearman correlation analysis was used to evaluate the relationship between immune checkpoint gene expression and different immune functions. GSVA (Gene Set Variation Analysis) (42) was employed to assess the activity of immune-related signaling pathways (e.g., interferon gamma response, IL6-JAK-STAT3 signaling) across various cancer types. Additionally, the relationship between the median necroptosis GSVA score and tumor mutation burden (TMB), as well as intratumor heterogeneity (ITH), was analyzed, and linear regression trend lines were plotted on scatter plots.





ICI RNA-Seq cohorts

We compiled RNA-Seq and clinical data from 10 Immune Checkpoint Inhibitor (ICI) RNA-Seq datasets, covering five cutaneous melanoma datasets, two urothelial carcinoma datasets, one glioblastoma dataset, one gastric cancer dataset, and one renal cell carcinoma dataset. Different immunotherapies targeting PD-1, CTLA-4, and PD-L1 were administered across cohorts. To address batch effects, we used the ComBat-seq method.





Clinical outcomes

The primary outcomes were Objective Response Rate (ORR) and Overall Survival (OS), with ORR evaluated using RECIST v1.1 for most cohorts, except one, which used irRECIST guidelines. Patients were categorized as responders (Complete/Partial Response) or non-responders (Stable/Progressive Disease).





Development and validation of a predictive signature for the ICI dataset

We developed a predictive signature for the ICI dataset by creating a combined cohort of 772 samples from five ICI RNA-Seq datasets. This cohort was split into a training set (80%, n=618) and a validation set (20%, n=154), with the remaining datasets (n=149) used as an independent test set. After training various models, the top-performing one was selected from the training set and subsequently tested on both the validation and independent datasets to evaluate its predictive performance. The Necroptosis.Sig signature was then compared to six pan-cancer and seven melanoma-specific signatures for its accuracy in predicting ICI response within the test set. Additionally, melanoma-specific signatures were further assessed using two separate melanoma cohorts.





Training and hyperparameter adjustment

Using the abess algorithm, we identified key necroptosis marker genes. Six machine learning models (SVM, Naive Bayes, Random Forest, KNN, AdaBoost, XGBoost) were built with 10-fold cross-validation and grid search for tuning (43).





Functional and immune analysis

We performed gene set enrichment analysis (GSEA) and ssGSEA using MSigDB, GSVA, and clusterprofiler R packages to analyze functional and immune characteristics (44, 45). To assess immune infiltration, CIBERSORT was used to estimate the abundance of 22 immune cell subsets in the tumor microenvironment from normalized transcriptomic data (46). Tumor-infiltrating lymphocytes (TILs) were evaluated using both genomic and histopathological data, while lymphocyte fractions were estimated based on CIBERSORT results and DNA methylation profiles. Immune infiltration scores for 14 immune cell types were calculated using a 60-marker gene signature and validated through immunohistochemistry and flow cytometry. We also assessed 29 immune signatures, quantifying enrichment levels across individual samples with the ssGSEA method. Additionally, immunogenomic indicators such as intratumor heterogeneity (ITH), TCR, and BCR diversity were derived from previous studies, utilizing the ABSOLUTE algorithm for copy number aberrations and Shannon entropy for receptor diversity.





Cell culture

Protocol for A549 lung cancer mouse cell culture: Begin by preparing necessary materials and sterilizing the clean bench. For cell revival, quickly thaw the cryogenic tube, mix it with preheated medium, centrifuge, and replace with fresh medium. Cultivate the cells in a CO2 incubator. When cell density reaches 80%-90%, digest with trypsin, centrifuge, resuspend the cells, and passage them at a 1:2 ratio, continuing cultivation in the CO2 incubator. For cryopreservation, wash and digest the cells, centrifuge, add cryopreservation solution, and gradually freeze before storage.





ShRNA stable cell line construction

Using a transfection reagent, the constructed plasmid is introduced into the target cell line. The cells are then cultivated in medium containing puromycin to select for and eliminate non-transfected cells. The resulting cells, which stably express the specific shRNA, constitute the stable cell line. Lastly, these cells are expanded and characterized to confirm the gene silencing effect. The target sequences for HMGB1 were as follows: sh#1, CCGTTATGAAAGAGAAATGAA; and sh#2, CCCAGATGCTTCAGTCAACTT.





Real-time quantitative PCR

Total RNA was successfully extracted using TRIzol reagent from Sigma-Aldrich. Following this, cDNA was synthesized utilizing the TOYOBO reverse transcription kit. In the qRT-PCR procedure, we employed SYBR Green reagent from Applied Biosystems and selected GAPDH as the internal reference gene. The relative expression of genes was calculated using the 2-ΔΔCt method. All specific primers are listed in detail in the supplementary table, ensuring the reproducibility of the experiment. The primer sequences used are as follows: GAPDH: Forward Sequence 5’-GTCTCCTCTGACTTCAACAGCG-3’, Reverse Sequence 5’-ACCACCCTGTTGCTGTAGCCAA-3’. HMGB1: Forward Sequence 5’-GCGAAGAAACTGGGAGAGATGTG-3’, Reverse Sequence 5’-GCATCAGGCTTTCCTTTAGCTCG-3’.





Flow cytometry for detection of cell apoptosis

Collect cell samples, perform appropriate treatment, stain with fluorescently labeled apoptosis detection reagents (Annexin V combined with PI), incubate in the dark for 25 minutes, and then analyze the fluorescent signals of the cell population using flow cytometry to distinguish between live cells, early apoptotic cells, late apoptotic/necrotic cells, thereby quantitatively assessing the level of apoptosis.





Construction of a mouse subcutaneous tumor model

The 6-8 weeks-old female Balb/c-nu mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. After digestion, the cells are resuspended in sterile saline and adjusted to an appropriate concentration. Subsequently, subcutaneous injections are administered at the lateral side of the mouse’s back at a dose of 5x105 cells per mouse, ensuring the cells are accurately injected into the subcutaneous tissue. Following injection, the mice are observed regularly for their growth status and tumor development, with attention also paid to their daily care. Upon reaching the observation endpoint, the mice are euthanized by cervical dislocation.





Statistical analysis

Data analysis was conducted in R 4.3.1, using the Wilcoxon rank-sum test for continuous variables and Spearman correlation for relationships. ROC curves and Kaplan-Meier survival analyses were performed using the pROC and survival packages, with p < 0.05 considered statistically significant.






Conclusion

In this study, we constructed a necroptosis-related Sig that offers tremendous potential for personalized treatment in patients with pan-cancer. This necroptosis-related Sig represents a significant advancement in the field of oncology, as it offers a novel perspective on cancer biology and paves the way for innovative strategies in clinical decision-making and patient management. Furthermore, our research has deepened the understanding of the molecular mechanisms related to the tumor microenvironment (TME) influenced by the necroptosis-related Sig through a multi-omics approach.




Ethical statement

All mice were kept in a specific pathogen-free environment and supplied with sterilized drinking water. All animal procedures were conducted in accordance with the ARRIVE guidelines and were approved by the Animal Ethics Committee of the Affiliated Huai’an Hospital of Xuzhou Medical University.






Discussion

Necrotic apoptosis, a form of programmed cell death, contrasts with cytotoxic T cells that must directly interact with tumor cells (47, 48). Necrotic apoptosis represents a cellular death pathway distinct from apoptosis, often occurring when cells are subjected to extreme stress, leading to cell rupture and the release of cellular contents, which can promote inflammation and immune response (49, 50). Existing research suggests necrotic apoptosis can help eliminate tumor cells by attracting immune cells, such as macrophages and neutrophils, to the tumor microenvironment (51, 52). Moreover, interactions between necrotic cells and other immune components are pivotal in tumor immunity. Research indicates that the balance between necrotic cell death and apoptosis influences cancer progression and immune system activation (53–55). Studies have shown that the immune system’s response to necrotic cell death can either enhance or suppress tumor growth depending on the tumor’s microenvironment and the types of immune cells involved (56–58). Our study extends current understanding by exploring necrotic apoptosis’s potential role in enhancing immune checkpoint inhibitor (ICI) therapy efficacy across multiple cancer types. This investigation represents the first comprehensive analysis of necroptosis-related signatures in the context of pan-cancer ICI response (59). Additionally, our research sought to deepen understanding of the molecular mechanisms underpinning necrotic apoptosis through a multi-omics approach (60). This approach integrates transcriptomic, proteomic, and metabolomic data to reveal novel insights into the pathways that regulate necrotic cell death and its interplay with tumor immunity.

To the best of our knowledge, this is the first study to explore the relationship between necrotic apoptosis and the outcomes of ICIs therapy in pan-cancer (61). We developed a novel necrotic apoptosis signature, NecroticApop.Sig, through an integrative RNA-Seq analysis across multiple cancer types. This signature serves as a predictive biomarker for ICI response, addressing a critical need for robust predictors in immunotherapy. Our pan-cancer approach, utilizing TCGA and multiple ICI transcriptional cohorts, provides broad validation and demonstrates NecroticApop.Sig’s superior predictive performance, with an AUC exceeding 0.7 in multiple testing sets. This finding suggests that NecroticApop.Sig could enhance ICI treatment strategies by stratifying patients with higher accuracy than previously established biomarkers.

A key innovation in this study is the investigation of the immune landscapes within the tumor microenvironment. Our multi-omics analysis in the TCGA highlights significant immune cell infiltration differences between high- and low-risk groups, suggesting that NecroticApop.Sig not only predicts ICI response but also provides insight into tumor-immune dynamics. Specifically, low-risk groups exhibited greater immune cell activity, including higher CD8+ T cell and immunostimulatory cell levels, supporting NecroticApop.Sig’s predictive robustness across multiple cancers and emphasizing its value in tailoring immunotherapy strategies.

This research utilized six machine learning models to establish a stable and reliable signature, known as NecroticApop.Sig. NecroticApop.Sig was an innovative biomarker proficient in predicting responses to ICIs and effectively stratifying patients likely to experience survival benefits. Additionally, comparisons of NecroticApop.Sig with leading-edge signatures, including six pan-cancer and seven melanoma-specific markers, were conducted. NecroticApop.Sig demonstrated superior generalization capabilities over pan-cancer signatures and maintained robust performance across diverse cohorts.

While NecroticApop.Sig demonstrated promising results across 30 cancer types, comprehensive validation in a pan-cancer setting will require prospective clinical trials involving ICIs. Additionally, limited clinical annotations in certain RNA-Seq datasets, such as sex, age, tumor stage, tumor mutational burden (TMB), and intratumoral heterogeneity (ITH), restricts our ability to perform in-depth multivariate regression analyses. Addressing these limitations in future studies could enhance the biomarker’s predictive robustness.

Finally, while NecroticApop.Sig offers a powerful predictive tool, the exact roles of specific genes within the signature in regulating necroptosis remain unclear. Additional in vitro and in vivo studies are necessary to define these genes’ functions in necrotic cell death modulation and their potential implications for tumor immunity, further advancing the field of cancer immunotherapy.




Outlook and limitations

This study highlights the potential role of necroptosis in predicting immune checkpoint inhibitor (ICI) responses, opening new avenues for further research. Future directions will involve comprehensive in vitro and in vivo experiments to validate the regulatory roles of NecroticApop.Sig genes in necroptosis and tumor immunity, particularly within diverse tumor microenvironments. However, several limitations warrant consideration. Firstly, our findings are primarily based on bioinformatics analyses, lacking in-depth experimental validation, which may limit the biological insights derived from the study. Extensive experimental research is necessary to confirm the accuracy and applicability of NecroticApop.Sig in different tumor contexts. Secondly, although NecroticApop.Sig shows promising predictive accuracy, it has not yet been validated with independent cohorts, and current findings may be constrained by sample representativeness and dataset diversity. To ensure the model’s robustness and broader applicability, larger and more diverse independent datasets are needed for further validation. Additionally, due to the complexity of tumor immunity and necroptosis, the clinical operability and predictive power of NecroticApop.Sig may be limited by individual patient variations and tumor heterogeneity. To enhance its clinical applicability and generalizability, we plan to collect broader independent datasets, conduct prospective studies, and perform refined analyses across various tumor types and patient subgroups. These efforts will contribute to strengthening the practical utility of NecroticApop.Sig in clinical settings.
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Introduction

Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts younger individuals. Despite existing treatment approaches, patients with metastatic or recurrent disease generally face poor prognoses. A greater understanding of the tumor microenvironment (TME) is critical for enhancing outcomes in OS patients.





Methods

The clinical and RNA expression data of OS patients were extracted from the TARGET database. The single-cell RNA sequencing (scRNA-seq) data of 11 OS samples was retrieved from the GEO database, and analyzed using the Seurat package of R software. Copy number variation (CNV) was analyzed using the InferCNV software. The potential interactions between the different cells in the TME was analyzed with the CellChat package. A multi-algorithm-based computing framework was used to calculate the tumor-infiltrating immune cell (TIIC) scores. A prognostic model was constructed using 20 machine learning algorithms. Maftools R package was used to characterize the genomic variation landscapes in the patient groups stratified by TIIC score. The human OS cell lines MG63 and U2OS were used for the functional assays. Cell proliferation and migration were analyzed by the EdU assay and Transwell assay respectively. CLK1 protein expression was measured by immunoblotting.





Results

We observed higher CNV in the OS cells compared to endothelial cells. In addition, there was distinct transcriptional heterogeneity across the OS cells, and cluster 1 was identified as the terminal differentiation state. S100A1, TMSB4X, and SLPI were the three most significantly altered genes along with the pseudo-time trajectory. Cell communication analysis revealed an intricate network between S100A1+ tumor cells and other TME cells. Cluster 1 exhibited significantly higher aggressiveness features, which correlated with worse clinical outcomes. A prognostic model was developed based on TIIC-related genes that were screened using machine learning algorithms, and validated in multiple datasets. Higher TIIC signature score was associated with lower cytotoxic immune cell infiltration and generally inferior immune response and survival rate. Moreover, TIIC signature score was further validated in the datasets of other cancers. CLK1 was identified as a potential oncogene that promotes the proliferation and migration OS cells.





Conclusion

A TIIC-based gene signature was developed that effectively predicted the prognosis of OS patients, and was significantly associated with immune infiltration and immune response. Moreover, CLK1 was identified as an oncogene and potential therapeutic target for OS.
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1 Introduction

Osteosarcoma (OS) is the most common bone malignancy, and accounts for over 50% of bone sarcoma cases (1). It predominantly affects the long bones and is characterized by the de novo formation of osteoid tissues (2). Most patients are affected at a relatively younger age (3). OS is currently managed through adjuvant chemotherapy and surgery. Nevertheless, the 5-year survival rate for OS patients with metastases is lower than 20% (4). Given the challenges and limitations in the current treatment strategies for OS, there is a crucial need to identify new therapeutic targets that can enhance clinical efficacy and improve patient survival.

There has been an increasing focus on the tumor microenvironment (TME) for developing novel treatment strategies against cancer (5). The TME includes malignant cells, stromal cells, and the extracellular matrix (6), and plays a key role in tumor growth, metastasis, immune escape, and therapy resistance (7–10). In fact, the microenvironment of OS has been identified as a key determinant of patient prognosis (11). The stromal cells in the tumor tissues, particularly cancer-associated fibroblasts, directly contribute to immunosuppression (12). Numerous studies have developed TME-based models using machine learning approaches to predict prognosis and the response to immunotherapy (13–15). In this study, we utilized machine learning algorithms to establish a gene signature based on tumor-infiltrating immune cells (TIIC) for the prognostic stratification of OS patients.

The efficacy of the model was validated in multiple datasets. We also found that higher TIIC score was associated with significantly lower infiltration of cytotoxic immune cells. In other cancer types, a lower tumor immune infiltration signature score correlated with a better immune response and survival rate. Moreover, we identified CLK1 as an important factor in OS development and a potential therapeutic target.




2 Methods



2.1 Acquisition of transcriptomic data

The clinical and transcriptomic data of 85 OS patients were retrieved from the TARGET database. In addition, the microarray chip data of OS samples were obtained from the GEO database, including the GSE16091 (n=34), GSE21257 (n=53), and GSE39055 (n=37) datasets. The normalizeBetweenArrays function of the limma package was used to correct the chip data.




2.2 Acquisition of scRNA-seq data

The single-cell RNA sequencing (scRNA-seq) data of 11 OS samples was downloaded from the GEO database (GSE152048 dataset). Batch effects were addressed using the harmony method. Dimensionality reduction was performed using UMAP and t-SNE, as well as the Louvain clustering algorithm through the Seurat package.




2.3 Cell annotation

The immune cell clusters were separated using Sc-Type software for automatic annotation.




2.4 CNV and pseudo-time analysis of OS cells

The CNVs of tumor/OS cell subsets were analyzed using the InferCNV software with endothelial cells as a reference, and the CNVscore of each subgroup was calculated. Pseudo-time analysis of OS cell subsets was conducted using monocle2 software. Dimensionality reduction was performed using the DDRTree algorithm with default parameters to capture the cell differentiation process.




2.5 Intercellular communication analysis

The CellChat package was used to assess potential intercellular communication. The normalized gene expression matrix was imported using the CellChat function to create the CellChat object. The data was preprocessed using multiple functions.




2.6 Functional annotation of TIIC signature score

The acquisition of TIIC-related genes and cell annotation have been described in the additional file 1. The immune infiltrating cells were quantified using the tumor immune estimation resource (TIMER) algorithm (6 immune cells), ssGSEA algorithm (28 immune cells), MCPcounter algorithm (10 immune cells), and expression data ESTIMATE algorithm. Gene-set variation analysis (GSVA) and gene-set enrichment analysis (GSEA) were conducted to identify the GO terms and KEGG pathways. Enrichment analysis was performed using Metascape. GSVA was also performed to quantify 114 metabolic pathways from previous literature.




2.7 Identification and functional annotation of differentially expressed genes

The differentially expressed genes (DEGs) between the TIIC groups were screened using the limma package, with a screening threshold of P<0.05. The upregulated genes were subjected to GSEA using the clusterProfiler package. The gene sets related to KEGG and GOBP were enriched from the MSigDB database. The enrichment plot package was utilized for visualization when the BH corrected p-value was < 0.05.




2.8 Mutation analysis

The ‘maftools’ package was used to evaluate the difference in mutation load between the two groups and generate waterfall plots. The genes with differential mutation frequencies between the two groups were analyzed by the chi-square test. The CNV results were visualized using the ‘ggplot2’ package.




2.9 Development of TIIC-related risk signature

The candidate prognostic TIIC-related genes were screened through univariate Cox proportional hazard regression analysis. The significance of these genes was evaluated using three machine learning classification algorithms - random survival forest (RSF), least absolute shrinkage and selection operator regularized Cox regression (LassoCox), and Cox model based on possibility enhancement (CoxBoost). Furthermore, 20 machine learning algorithms were used for scoring, including RSF, conditional random forest (CForest), LassoCox, elastic net regression (Enet), Ridge regression, gradient boosting using regression tree (BlackBoost), parametric survival model regression (SurvReg), conditional inference tree (CTree), Cox proportional hazards model (CoxPH), ObliqueRSF, StepwiseCox, SurvivalSVM, generalized boosting regression model (GBM), Ranger, Cox model, and partial least squares regression of related technologies (PlsRcox). The most reliable model was selected on the basis of the comprehensive C index. The TIIC signature score based on the prognostic genes was developed using the RSF algorithm.




2.10 Cell culture

The human OS cell lines MG63 and U2OS were obtained from Procell Life Science and Technology Co., Ltd (Wuhan, China). The cells were cultured in MEM medium supplemented with 10% fetal bovine serum (FBS; Procell, Wuhan, China) and maintained at 37°C in an incubator with 5% CO2. The cell lines were transfected with CLK1-specific siRNAs or CLK1 overexpression vectors using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) as per the instructions. The medium was discarded 24 h later, and the cells were harvested and cultured overnight till confluency for the subsequent experiments.




2.11 EDU incorporation assay

Cell proliferation was assessed using the EdU (5-ethynyl-2’-deoxyuridine) assay kit (Beyotime Biotechnology) according to the manufacturer’s instructions. Briefly, the OS cells were seeded in 24-well plates at the density of 1 × 10^5 cells/well in complete medium. After incubating for 24 h, the cells were fixed with 4% paraformaldehyde for 15 minutes at room temperature, and then permeabilized with 0.3% Triton X-100 in phosphate-buffered saline (PBS) for 10 minutes. The cells were incubated with the EdU labeling solution as per the kit instructions, washed with PBS to remove excess EdU, and counterstained with DAPI (4’,6-diamidino-2-phenylindole) to stain the DNA. The stained cells were observed under a fluorescence microscope (Olympus or similar) using the FITC channel for EdU.




2.12 Colony formation assay

The suitably treated OS cells were seeded in 6-well plates and incubated at 36.7°C for 9 days. The cells were fixed and stained, and the colonies were counted.




2.13 Transwell assay

The suitably treated OS cells were seeded in the upper chambers of a Transwell insert (Corning, USA) in serum-free medium, and the lower chambers were filled with complete medium (with 10% FBS). Following overnight incubation, the cells adhering to the inner surface of the Transwell membrane were carefully removed, and those that migrated to the lower surface were fixed, stained with 0.5% crystal violet solution, and counted under a light microscope.




2.14 Immunoblotting

The cell lysates were heated at 96°C in 5× SDS loading buffer for 12 minutes. The denatured proteins were separated through SDS-PAGE and then transferred onto PVDF membranes (Millipore, USA). After blocking with 4% non-fat milk for 48 minutes, the membranes were incubated with primary antibodies specific for CLK1 (20439-1-AP, Proteintech, 1:1000) and ACTIN (81115-1-RR, Proteintech, 1:10000).





3 Results



3.1 Single-cell expression profiling of OS

The scRNA-seq data of the OS samples exhibited a stable and similar cell distribution with low batch effects (Figure 1A). Using the t-SNE algorithm, we classified all cells into 36 clusters (Figure 1B). The expression pattern of the marker genes of each cell type are shown in Figures 1C and D, and the distribution of 11 cell types across the OS samples is shown in Figure 1E. We detected OS cells, tumor-infiltrating lymphocytes (TILs) and fibroblasts in all samples, along with an overall high abundance of myeloid cells (Figure 1F). The heat map shows the CNV scores of OS cells with endothelial cells as reference (Figure 1G). Furthermore, the OS cells had higher CNV scores compared to the endothelial cells. In particular, the clusters 0, 1, 2, 3, 6, 8, 10, 14, 16, and 19 had increased CNV, and clusters 4, 12, 18, and 20 showed decreased CNV (Figures 1G, H). The OS cells in these clusters were further divided into three subclusters (0–2) using t-SNE dimensionality reduction (Figure 1I).

[image: Panel of visualizations related to cell analysis, including UMAP plots, dot plots, and bar plots. A and B show UMAPs with cell clusters colored differently. C displays a dot plot indicating gene expression across clusters. D illustrates individual gene expressions. E contains stacked bar charts showing proportions of clusters. F depicts another UMAP with highlighted cell types. G presents heat maps of chromosomal regions. H displays a violin plot of CNV scores per cluster. I shows a UMAP plot for chromosomal region distributions. Each visualization highlights specific cellular and genetic data.]
Figure 1 | Detailed classification of OS cells. (A) t-SNE plot displaying the origin of the sorted OS cells. The different samples are color-coded. (B) t-SNE plot displaying the OS populations. The different clusters are color-coded. (C) Correlation matrix of marker gene expression in each cell cluster. (D) t-SNE plot showing unique expression of different marker genes in each annotated cluster. (E) Bar plot indicating the composition of different cell types from individual patients. (F) t-SNE plot illustrating the annotation results of cell types. (G) CNV heatmap of OS cells (endothelial cells as the internal reference). (H) CNV scores of different OS cell clusters. (I) t-SNE plot displaying the classification of identified OS cells based on CNV scores.




3.2 Distinct trajectories of OS cells

The transcriptional heterogeneity of the OS cells was determined through trajectory analysis (Figure 2A). The pseudo-time progression showed that the clusters 0 and 2 spread throughout the entire trajectory, while cluster 1 was at the end of 2 branches. As shown in Figure 2B, S100A1, TMSB4X, and SLPI were the three most significantly altered genes along the pseudo-time trajectory. S100A1 and SLP1 were upregulated with the increase in pseudo-time value. The number of interactions between S100A1+ cells (cluster 0), TMSB4X+ cells (cluster 1), SLPI+ cells (cluster 2), and other cell types, and the intensity of communication are depicted in Figure 2C. The S100A1+ tumor cells in particular showed strong interaction with other TME cells. We also analyzed the ligand-receptor interactions between the different cells, and found that the S100A1+ tumor cells interacted with other cell types through the MDK-NCL receptor-ligand pair (Figures 2D, E). The clusters 0 and 2 were enriched in multiple biological processes across various pathways, while cluster 1 showed enrichment in the KRAS_SIGNALING_DN and ALLOGRAFT_REJECTION pathways (Figure 2F), which may be associated with immune response.

[image: Image featuring multiple scientific data visualizations, including scatter plots, network diagrams, heatmaps, and dot plots. Image A shows three scatter plots labeled Component 1 and Component 2, depicting data clusters with color differentiation. Image B presents three line plots showing expression levels over pseudotime for three genes: SODIUM, SLPI, and TNFAIP. Image C features two network diagrams illustrating interactions, with edges colored differently to indicate interaction types or strengths. Image D is a dot plot displaying various interactions among entities, with dot sizes representing statistical significance. Image E shows a heatmap with a colored gradient indicating correlation strength. Image F is a heatmap sorted by gene sets with colors representing expression levels.]
Figure 2 | Trajectory and intercellular communication analysis of OS cells. (A) Differentiation trajectories, pseudo-time distribution, cell cluster distribution along pseudo-time, and the proportion of each cluster for all OS cells. (B) Relative alteration in the expression of S100A1, SLP1, and TMSB4X along pseudo-time. (C) Quantity and strength of intercellular communication between S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells, and other cell types. (D) Bubble plot illustrating the interaction between S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells, and the different cell ligands and receptors. (E) Bubble plot illustrating the interaction between different cell types and S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells. (F) Enrichment analysis of S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells.




3.3 Transcription factor analysis of OS cells

The differentially expressed transcription factors in each cluster are shown in Figure 3A. Cluster 1 was characterized by the upregulation of YY1, E2F and FOXP1, while cluster 1 showed high SOX8 expression. The expression of gene regulatory elements in each cluster is shown in Figure 3B. The heatmaps of the differentially expressed gene regulatory elements in each cell of the three cell clusters are shown in Figures 3C and D.

[image: Four-panel scientific figure with various visualizations. Panel A shows a scatter plot of average nucleotide change against average single substitution change, with clusters marked by colored dots. Panel B includes multiple violin plots and scatter plots, highlighting data distribution and clustering. Panel C presents a heatmap with hierarchical clustering of gene expression across samples. Panel D depicts a bar plot with cluster and sample correlations. Each panel is labeled for clarity.]
Figure 3 | TF analysis of OS cells. (A) Volcano plot showing the top 5 highly expressed genes in each cluster. (B) Violin plots and UMAP plots of the top 5 upregulated genes. (C, D) Heatmaps displaying the distribution of TFs in the different clusters.




3.4 Functional analysis of epithelial-mesenchymal transition

The transcriptional factors with highest specificity for clusters 0-2 were integrated into the pseudo-time analysis (Figure 4A). FOXC1 and SOX8 were upregulated in cluster 0, RAD21, SMARCA4 and YY1 were upregulated in TMSB4X+ cells (cluster 1), and TWIST1 and YY1 were upregulated in SLPI+ cells (cluster 2). The TMSB4X+ cells displayed significantly higher scores for epithelial-mesenchymal transition (EMT), indicating enhanced invasion ability (Figures 4B, C). Additionally, as shown in Figures 4D and E, significant differences in EMT scores were observed between S100A1+ cells and TMSB4X+ and SLPI+ cells. Specifically, the EMT score of S100A1+ cells were significantly higher than that of TMSB4X+ and SLPI+ cells, suggesting that osteosarcoma cells in the TMSB4X+ cells exhibit a greater migration ability, possibly associated with an increased propensity for metastasis.

[image: Panel A shows scatter plots analyzing gene expression across two components for various genes, with heat maps indicating expression levels. Panel B and D display UMAP plots differentiating cell groups, colored by Aggressive-AUC and EMT-AUC scores respectively. Panels C and E present violin plots comparing Aggressive-AUC and EMT-AUC scores across clusters, showing statistical distribution and median values with Kruskal-Wallis test results.]
Figure 4 | Functional analysis of Aggressive and EMT phenotypes. (A) Cell trajectory analysis showing the expression pattern of different identified TFs in various differentiation states. (B, C) Invasion levels of the three clusters shown in t-SNE plot (B) and violin plot (C). (D, E) EMT levels of the three clusters displayed in t-SNE plot (D) and violin plot (E).




3.5 Correlation between OS cell clustering and prognosis

The prognostic relevance of OS cell clustering was determined by analyzing the survival rates of patients in the TARGET database. The patients with high abundance of clusters 0 and 2 displayed higher survival rates. In contrast, cluster 1 was associated with lower survival rates (Figures 5A–C). Additionally, we plotted the receiver operating characteristic (ROC) curves for 2-, 3-, and 4-year survival, and found that the area under the curve (AUC) for clusters 0 and 2 were above 0.65, indicating good predictive performance. Conversely, the AUC value for cluster 1 was relatively low (Figures 5D–F). To further assess the prognostic significance of the OS cell clusters, we performed a multivariate Cox analysis incorporating patient gender, age, cluster scores, and survival, and observed a significant correlation between the cluster 2 score and patient survival (Figure 5G).

[image: Panel A, B, and C show Kaplan-Meier survival curves for Clusters 0, 1, and 2, respectively. Panels D, E, and F present ROC curves for the same clusters with AUC values over two, three, and four years. Panel G is a forest plot displaying overall survival hazard ratios for clusters, gender, and age, with significant p-values for Clusters 0 and 2.]
Figure 5 | Correlation of cell cluster with prognosis in OS. (A–C) Impact of abundance of clusters 0, 1, and 2 on survival. (D–F) Time-dependent ROC curves of clusters 0, 1, and 2. (G) Forest plot showing the results of multifactor Cox analysis.




3.6 Immune infiltration analysis

Using the OS scRNA-seq dataset, we identified 12 microenvironment cells along with OS cells (Figure 6A). Further analysis focused on OS cells and 5 immune cells (Figure 6B). We identified the potential immune-related RNA (IURNA) for that cell type. By applying a TSI score threshold of less than 0.45, we further refined this list to identify IURNA specific to immune cells. To validate the accuracy of cell classification, we examined the DEGs in immune cells (Figure 6C). The t-SNE plot displayed the distribution of immune cells and OS cells (Figure 6D), and DEGs between immune cells and OS cells were calculated and presented in Figure 6E. The comparison identified 618 significantly up-regulated DEGs in immune cells, which were defined as TIIC-RNA. We employed six machine learning algorithms and identified 177 additional TIIC-RNAs based on previous TIIC-RNAs (Figure 6F).

[image: A set of visualizations related to cell analysis. Panel A shows a t-SNE plot with various cell types, each represented by distinct colors, labeled in the legend. Panel B is another t-SNE plot with fewer cell types. Panel C presents a violin plot depicting expression levels of different genes across specific cell types. Panel D is a simplified t-SNE plot categorizing cells into chondroblastic, immune, and osteoblastic. Panel E displays a volcano plot assessing gene expression changes, highlighting significant genes. Panel F includes a Venn diagram illustrating overlaps between different analytical methods—RandomForest, SVM, LassoR, Xgboost, Pamr, and Boruta.]
Figure 6 | Identification of TIIC-RNA at single-cell level. (A) t-SNE plot of identified TME cells and OS cells. (B) t-SNE plot of identified OS cells and 5 types of immune cells. (C) Violin plot showing differentially expressed genes in the identified immune cells. (D) t-SNE plot of identified immune cells and OS cells. (E) Volcano plot displaying differentially expressed genes between immune cells and OS cells. (F) Venn diagram classifying intersecting genes identified by six ML algorithms.




3.7 Construction of the TIIC prognostic model

We identified 22 TIIC-RNAs in the TARGET dataset (Figure 7A), and screened the prognostic genes using CoxBoost (Figure 7B), LassoCox (Figures 7C, D), and Random Forest (Figures 7E, F) algorithms for intersection of mutual significant genes to determine the prognostic value of the TIIC-RNAs (Figure 7G). We used Venn diagrams to show the prognostic genes identified by all three ML algorithms (Figure 7G). The most reliable model was identified by calculating the C index using 20 ML algorithms, of which the Elastic Net (Enet) algorithm exhibited the highest scoring performance. The TIIC signature score was calculated from a panel of 20 prognostic TIIC-related RNAs. OS patients with higher TIIC scores showed poor outcomes in the TARGET-OS dataset as well as the validation datasets (Figure 7H). ROC curves of TIIC scores predicting 1-5 year overall survival in TARGET-OS and other validation datasets show that our model has good efficacy in the first five years (Figure 7I)

[image: Multiple panels display various data visualizations related to gene and survival analyses. Panel A shows a circular bar plot ranking different elements. Panel B presents a dot plot highlighting specific gene coefficients. Panel C illustrates a line plot with multiple gene trajectories over a lambda sequence. Panel D displays a plot of cross-validated errors. Panel E is a line graph depicting time-series data. Panel F shows a bar chart comparing variable importance. Panel G presents a Venn diagram with overlap among three models. Panel H includes Kaplan-Meier survival curves for different datasets. Panel I contains receiver operating characteristic (ROC) curves for several analyses.]
Figure 7 | Construction of TIIC prognosis model. (A) Univariate Cox regression analysis of TIIC-related genes. (B–F) Dimension reduction of 22 prognostic genes using (B) CoxBoost algorithm, (C, D) LassoCox algorithm, and (E, F) random survival forest algorithm. (G) Venn diagram showing prognostic genes identified by all three ML algorithms. (H) Kaplan-Meier survival curves of OS patients of different TIIC feature scores in TARGET-OS and other validation datasets. (I) ROC curves of TIIC scores for predicting 1- to 5-year overall survival in the TARGET-OS and other validation datasets.




3.8 Comparison of the TIIC signature with other prognostic models

The TIIC score correlated significantly with survival in the TARGET dataset (Figure 8A), and demonstrated higher C-index compared to age and gender (Figure 8B). We compared the C-index of the TIIC score with that of 42 prognostic models reported in literature, and found that the TIIC model outperformed most published models in the TARGET-OS and validation datasets (Figures 8C–F).

[image: A: Diagram showing two circular charts comparing survival status (alive or dead) for high and low TIIC presence, with a p-value of 6.9e-07. B: Bar graph depicting C-index values across four data sets, color-coded by GSE16091, GSE21257, GSE39055, and TARGET_OS. C-F: Four forest plots (C: TARGET-OS, D: GSE16091, E: GSE21257, F: GSE39055) illustrating various studies' results with horizontal lines indicating confidence intervals.]
Figure 8 | Comparison of the prognostic value of TIIC score and other prognostic models. (A) Circos plot showing different clinical factors in the TIIC-low and TICC-high groups. (B) C-index bar plot of TIIC score and various clinical factors in TARGET-OS and other validation datasets. (C–F) C-index plots of TIIC score and 42 prognostic models in TARGET-OS and other validation datasets.




3.9 Putative biological mechanism of the TIIC model

The TIIC feature score showed a strong positive correlation with numerous pathways (Figure 9A), especially immune-related pathways including INF-gamma and alpha activation. We selected eight pathways from the GOBP and KEGG databases that exhibited significant differences between the two groups (Figure 9B). We also examined the enrichment results of up-regulated genes in the TIIC-high group using Metascape, which revealed their association with immune response and cell adhesion (Figure 9C). Moreover, GSEA of the dominant genes showed enrichment of cell growth and morphogenesis functions in the TIIC-high group (Figure 9D).

[image: A series of scientific graphics divided into four panels labeled A, B, C, and D.   Panel A displays a heatmap with colored cells representing gene expression data across various biological processes with annotations on the right.  Panel B consists of six scatter plots depicting gene enrichment analyses, each highlighting different processes like T cell differentiation and innate immunity. Each plot includes a legend indicating significance.  Panel C features a network diagram illustrating relationships between biological pathways, with a color-coded legend for pathway identification, accompanied by a bar chart showing pathway significance.  Panel D contains several enrichment plots demonstrating gene set enrichment for processes such as cell growth and immune response, with each plot containing an enrichment score curve.]
Figure 9 | Biological characteristics of the TIIC signature in TARGET dataset. (A) Results of GSVA based on MsigDB showing the biological properties associated with TIIC score. (B) t-SNE plots illustrating the differences in GO terms and KEGG pathways between TIIC-low and TIIC-high groups. (C) Enrichment analysis of differentially expressed genes between the TIIC-low and TIIC-high groups based on Metascape. (D) GSEA results depicting the enrichment of GO and KEGG terms between the TIIC-high and TIIC-low groups.




3.10 TIIC signature is significantly correlated with immune-related features

The immune infiltrating cells and their activity were analyzed based on the TIIC score using the TIMER, ssGSEA, MCPcounter, and ESTIMATE algorithms. As shown in Figure 10A, the activity of most immune cells declined with the increase in TIIC score, especially that of CD8+ T cells and M1 macrophages, whereas the Tregs and MDSCs showed increased activity. We also compared the TIIC score with the enriched pathways in KEGG and reactome genes (Figure 10B) and determined the abundance of tumor-related pathways in the TIIC-high and TIIC-low groups (Figure 10C). Macrophage activation and differentiation were both lower in the TIIC-high group, which was consistent with former observation.

[image: Heatmaps depicting various biological data analyses across three panels. Panel A shows immune cell infiltration with gender, age, and method annotations. Panel B displays metabolic pathways with TIC score gradations. Panel C illustrates TIC-related pathways, highlighting changes in metabolic and signaling pathways. Color scales range from pink to yellow-green, indicating varying data intensities.]
Figure 10 | Immunological features of the TIIC signature in TARGET dataset. (A, B) Relationship between the TIIC score, immune infiltrating cells and immune regulatory genes. (C) Abundance of associated pathways in high TIIC group and low TIIC group.




3.11 TIIC signature score can predict treatment response

The predictive value of the TIIC score for immunotherapy response was examined in various cancer datasets. As shown in Figure 11A, low TIIC scores correlated with better survival outcomes in patients with urothelial carcinoma (UC). Furthermore, UC patients with high TIIC scores demonstrated a better response to PD-L1 immunotherapy (Figure 11B). In the Braun dataset, renal cell carcinoma (RCC) patients with high TIIC feature scores exhibited improved survival outcomes (Figure 11E), while those with high TIIC scores responded better to PD-1 immunotherapy (Figure 11F). In the Nathanson dataset, low TIIC scores correlated with favorable prognosis (Figure 11I) as well as better response to immunotherapy (Figure 11J). Similar observations were made in the GSE78220 dataset (Figures 11K, L). Patients with high TIIC scores in the GSE165252 dataset demonstrated a better response to immunotherapy (Figure 11N). On the other hand, low TIIC scores were associated with better response to immunotherapy in the GSE179351 (COAD and PAAD) (Figure 11C), GSE35640 (Figure 11D), GSE126044 (Figure 11M), GSE91061 (Figure 11G), and GSE103668 (Figure 11H) datasets. Using the TIDE algorithm, we observed that the proportion of responders was relatively low in the TIIC-low group in the TARGET dataset (p=0.07, Figure 11O).

[image: A composite image of several charts and box plots representing survival analysis and TIDE scores across different datasets. Panels A, E, I, and K show Kaplan-Meier survival curves comparing high and low TIDE groups with p-values indicated. Panels B, C, D, F, G, H, J, L, M, and N display violin plots comparing TIDE scores between responders and non-responders across various datasets. Panel O is a bar chart illustrating response distribution to a treatment with percentages labeled. Each plot examines TIDE scores, patient response, or survival probability, indicating the significance of TIDE in predicting outcomes in multiple studies.]
Figure 11 | Prediction of the immunotherapeutic response based on TIIC signature scores. (A) Survival analysis of the IMvigor cohort based on TIIC scores. (B–D) Correlation between TIIC score and the immunotherapeutic response in the (B) IMvigor, (C) GSE179351, and (D) GSE35640 datasets. (E) Survival analysis of the Braun dataset based on TIIC scores. (F–H) Correlation between TIIC score and the immunotherapeutic response in the (F) Braun, (G) GSE91061, and (H) GSE103668 datasets. (I) Survival analysis of the Nathanson dataset based on TIIC scores. (J) Correlation between TIIC score and immune therapeutic response in the Nathanson dataset. (K) Survival analysis of the GSE78220 dataset based on TIIC scores. (L–O). Correlation between TIIC score and immune therapeutic response in the (L) GSE78220, (M) GSE126044, (N) GSE165252, and (O) TARGET datasets.




3.12 Prediction of metabolic characteristics associated with TIIC scores

The metabolic characteristics associated with the TIIC signature were elucidated by GSVA on metabolic pathways from the KEGG database. The TIIC score was significantly correlated with several metabolic pathways (Figure 12A). Notably, riboflavin metabolism exhibited significantly higher activation rates in the TIIC-low group (Figure 12B). In addition, the TIIC score was negatively correlated with amino sugar and nucleotide sugar metabolism, and other glycan degradation (Figure 12C).

[image: Panel A displays a clustered heatmap with pathways and accompanying categories, color-coded by TIC scores ranging from low to high. Panel B features four violin plots comparing two groups across different metabolic pathways, with statistical significance indicated. Panel C shows four scatter plots with linear regression lines, illustrating the correlation between TIC scores and various metabolic functions, with R squared and p-values provided.]
Figure 12 | Metabolic characteristics associated with TIIC scores in the TARGET dataset. (A) Results of GSVA based on KEGG pathways for 11 metabolic categories in the TIIC score groups. (B) Differences in metabolic pathways between the TIIC-high and TIIC-low groups. (C) Correlation between TIIC feature scores and KEGG pathways in GSVA.




3.13 Analysis of SNV mutations and CNV differences

The top 50 mutated genes in the two risk groups are shown in the waterfall diagram in Figure 13A. We observed higher mutation rates in TP53 (21.6%), ATRX (10.8%), and MUC16 (10.8%) (Figure 13A). The TIIC-high group showed a higher frequency of mutations in ATRX, CXXC1, and TTN, while TP53, MUC16, and ATRX were the predominantly mutated genes in the TIIC-low group (Figures 13B, C). The TIIC-high group also exhibited higher chromosomal instability, characterized by FGA, although statistical significance was not observed (Figure 13D).

[image: Panel A displays a mutation heatmap with various types of mutations, like missense and nonsense mutations, across genes and their frequencies. Panel B shows oncoplots highlighting gene alterations and the number of samples affected. Panel C features co-occurrence and mutual exclusivity patterns among gene mutations. Panel D includes violin plots comparing genomic fractions such as altered, gained, and lost, between high and low-risk groups, with statistical annotations.]
Figure 13 | Mutation landscape in the TARGET dataset. (A) Waterfall plot of the top 50 mutated genes in the TARGET dataset. (B) Mutation landscapes of OS patients grouped by TIIC score. (C) Exclusive and co-occurring mutations in the OS patients with different TIIC scores. (D) Distribution of CNVs in the OS patients stratified by TIIC score, with FGA, FGG, and FGL as features.




3.14 CLK1 promotes the proliferation and migration of OS cells

The functional role of CLK1 was further investigated through a series of in vitro experiments. The CLK1 protein was significantly upregulated in the OS tissues, highlighting its potential as an oncogene (Figure 14A). Knocking down CLK1 led to a significant loss in the clonogenic potential of the OS cells, as indicated by the decrease in the number of colonies (Figure 14B). Conversely, the overexpression of CLK1 increased their colony-forming capacity, suggesting that CLK1 is necessary for the growth of OS cells. Consistent with this, the MG63 and U2OS cell lines exhibited higher EDU incorporation upon CLK1 overexpression, while CLK1 knockdown decreased the proportion of EDU+ proliferating cells (Figure 14C). Furthermore, loss of CLK1 decreased the proportion of OS cells in the G2/M state of the cell cycle (Figure 14D). CLK1 overexpression also promoted the migration of MG63 and U2OS cells in the transwell assay, while CLK1 knockout resulted in a decrease in migration capacity (Figure 14E). Overall, these findings provide mechanistic insights into the role of CLK1 in promoting OS proliferation and migration, emphasizing its potential as a therapeutic target.

[image: A series of scientific graphics showing experiments related to CLK1 expression in MG-63 and U2OS cell lines. Panel A displays Western blot results for CLK1 and Actin in various samples labeled G1-G16, with normal (N) and tumor (T) conditions. Panel B shows colony formation assays with corresponding bar graphs comparing si-NC, si-CLK1, and OE-CLK1 treatments. Panel C includes images and graphs from an EDU assay assessing cell proliferation under similar treatment conditions. Panel D presents flow cytometry data with cell cycle analysis illustrated in histograms and bar graphs. Panel E shows images from a cell migration assay with associated quantitative analysis.]
Figure 14 | CLK1 promotes OS proliferation and migration. (A) Immunoblot showing CLK1 protein expression in the OS tissues. (B) Colonies formed by the CLK1-overexpressing and CLK1-knockdown MG63 and U2OS cell lines. (C) The up-regulation and down-regulation of EDU staining of the MG63 and U2OS cell lines under the condition of CLK1 overexpression and knockout, reflecting the proliferating capability of the OS cells. (D) Flow cytometry assessing the MG63 and U2OS cell lines in the phase of G2/M state and corresponding quantification results. (E) Transwell analysis assessing the migration of the MG63 and U2OS cell lines under the condition of CLK1 overexpression and knockout and the corresponding quantification results. (*, denotes a significance level of p < 0.05; **, p < 0.01; ***, p < 0.001).





4 Discussion

In this study, we examined the genomic and transcriptional heterogeneity of OS cells and their interactions with other cells in the TME. The OS cells had higher CNVs compared to endothelial cells, indicating genetic instability. We also identified distinct transcriptional subtypes within the OS cells, of which cluster 1 showed characteristics of terminal differentiation. Furthermore, the expression levels of S100A1, TMSB4X, and SLPI were significantly altered with the pseudo-time trajectory of the cells. Functional analysis showed that cluster 1 cells exhibited greater aggressiveness and correlated with worse clinical outcomes. We developed a prognostic model based on TIIC-related genes using machine learning, and found that higher TIIC signature scores were associated with lower infiltration of cytotoxic immune cells and inferior immune response in multiple OS datasets. We also validated the TIIC model in cancer datasets, and found that lower scores were associated with superior immune response and survival rates. This suggests that the immune landscape in the TME could predict prognosis and response to immunotherapy in OS patients.

S100A1, a calcium-binding protein, was upregulated along the pseudo-time progression. Moreover, the S100A1+ tumor cells exhibited active communication with other cells. S100A1 is overexpressed in ovarian cancer tissues, and is associated with lymph node metastasis, FIGO stages, and tumor grades. Furthermore, in vitro experiments have shown that S100A1 promotes the proliferation and migration of ovarian cancer cells (16). Likewise, S100A1 is significantly upregulated in papillary thyroid carcinoma (PTC) tissues, and correlates with tumor size and lymph node metastasis. Silencing S100A1 in PTC cells inhibited their proliferation and migration via the Hippo/YAP pathway (17). Collectively, these findings suggest that S100A1 is a pan-cancer oncogene and a promising diagnostic and prognostic biomarker for various tumors. However, the role of S100A1 in the genesis and progression of OS remains to be elucidated.

CLK1 is a Cdc2-like kinase that was identified as a crucial risk factor in our TIIC-based model. Knocking down CLK1 in the OS cell lines inhibited their proliferation, invasion, and migration by decreasing phosphorylation of SRSF2. Experiments using patient-derived tumor samples have shown that CLK1 is a potential target for gastric cancer treatment (18). Furthermore, knockdown of CLK1 In glioma cells (GL261) increased aerobic glycolysis and expression of HIF-1α via the AMPK/mTOR signaling pathway (19). Thus, CLK1 warrants further investigation as a promising target for treating OS, although no studies have characterized the underlying molecular mechanisms so far.

Despite the introduction of neoadjuvant chemotherapy, the rates recurrence and metastasis remain high in OS patients (20). B7-H1/PD-1 is a crucial immune checkpoint in OS and other pediatric solid tumors. Previous studies have indicated that B7-H1/PD-1 blockade monotherapy is less effective and can lead to numerous adverse reactions in OS patients (21–23). On the other hand, combination of PD-1 blockade with other therapies has demonstrated more favorable outcomes for OS in cellular and animal models (24). The TIIC signature score established in our study displayed satisfactory efficacy in predicting the immune response across multiple cohorts, and could be integrated into clinical practice.




5 Conclusion

We developed a TIIC signature to predict the prognosis and immunotherapy response in OS patients. The TIIC score effectively stratified OS patients based on prognostic outcomes, and was significantly associated with immune infiltration and immune response. Moreover, CLK1 is a potential oncogenic factor in OS development and a potential therapeutic target.
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Background

Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.





Methods

We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes. Additionally, we utilized Weighted Gene Co-expression Network Analysis (WGCNA) to identify key genes. A predictive model was developed utilizing the optimal consistency index derived from a combination of 101 machine learning techniques, and its effectiveness was confirmed through multiple datasets employing different methodologies. In-depth analyses were conducted on immune cell infiltration and tumor microenvironmental aspects. Single-cell sequencing data were employed for clustering and differential expression analysis of genes associated with glioma. Finally, the immune relevance of the model gene ALPK1 in the context of pan-cancer was explored, including its relationship with immune checkpoints.





Results

The application of NMF, coupled with differential analysis of metabolic-related genes, led to the identification of two clusters exhibiting significant differences in survival, age, and metabolic gene expression among patients. Core genes were identified through WGCNA, and a total of 101 machine learning models were constructed, with LASSO+GBM selected as the optimal model, demonstrating robust validation performance. Comprehensive analyses revealed that high-risk groups exhibited greater expression of specific genes, with ALPK1 showing significant correlations with immune regulation.





Conclusion

This research employed a multi-dataset strategy and various methods to clarify the differences in metabolic traits and immune conditions in glioma patients, while creating an innovative prognostic risk evaluation framework. These results offer fresh perspectives on the intricate biological processes that define gliomas.
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1 Introduction

Gliomas, malignant tumors originating from neural glial cells, represent one of the most common primary intracranial tumors (1–3). Characterized by high incidence, recurrence rates, mortality, and low curability, they predominantly affect individuals aged 60 to 80 years, with a higher prevalence in males (4). The clinical manifestations of gliomas are diverse and may include headache, nausea, vomiting, and seizures, often leading to cognitive impairment, motor dysfunction, and emotional disturbances, which significantly impact patients’ quality of life and survival (5). Treatment primarily involves surgical resection, complemented by a multimodal approach including radiation therapy and chemotherapy. Despite significant advancements in the diagnosis and treatment of gliomas in recent years, patient prognoses remain poor, particularly for those with high-grade gliomas, where the median survival time is still relatively short (6, 7). Therefore, exploring the molecular subtyping of gliomas, identifying new prognostic biomarkers, and understanding the characteristics of their immune microenvironment are crucial for improving treatment strategies and patient outcomes.

Nucleotide metabolism plays a vital role in cellular survival and proliferation, significantly impacting tumor development and progression (8). Abnormalities in nucleotide metabolism can promote rapid tumor cell proliferation and may affect the sensitivity of these cells to treatment (9). Previous research has indicated that alterations in nucleotide metabolism are strongly associated with the progression of glioma, especially in the realms of cell cycle control, DNA repair mechanisms, and energy metabolism (10). However, the specific impact of nucleotide metabolism on the prognosis of glioma patients and its potential as a novel therapeutic target remain to be fully explored.

This study aims to integrate multi-source RNA sequencing data and utilize various bioinformatics approaches to reveal differences in metabolic characteristics and immune status among glioma patients, thereby constructing a reliable prognostic risk scoring system. We employed Non-negative Matrix Factorization (NMF) technology to cluster the merged glioma Bulk RNA-seq dataset based on nucleotide metabolism gene expression patterns, identifying two optimal clusters (11). These two clusters exhibited significant differences in survival rates and age distributions. Following Weighted Gene Co-expression Network Analysis (WGCNA) analysis, six modules associated with clinical pathological features were identified (12). By constructing and evaluating 101 machine learning prognostic models, we ultimately selected the LASSO+GBM combination model, which demonstrated good performance in both training and validation sets, as well as validation in an independent dataset.

By employing this model, we computed risk scores for patients and identified connections with genes related to apoptosis and the cell cycle, indicating potential dysregulation in the mechanisms that regulate tumor proliferation. Further investigations revealed significant differences in immune cell infiltration levels across different clusters and risk categories, providing valuable insights into the mechanisms of glioma immune evasion and the exploration of immunotherapeutic strategies. In light of the absence of single-cell data specifically on glioma immune checkpoint inhibitors, we analyzed single-cell data from lung cancer to infer the distribution and functional characteristics of immune cells, thereby recognizing various cell subpopulations and their functional distinctions. A comprehensive analysis across multiple cancers revealed a notable relationship between the ALPK1 gene and different immune checkpoints, alongside its link to the prognosis of patients with glioma. Elevated levels of ALPK1 expression were associated with heightened infiltration of immune cells in several cancer types, indicating its potential significance in modulating the immune microenvironment of gliomas and positioning it as a promising target for forthcoming immunotherapeutic strategies.

In summary, this research examined gene expression data related to gliomas using various approaches, identified variations in metabolic features and immune conditions, and developed a dependable prognostic risk scoring system. This work offers a fresh viewpoint for comprehending the biological mechanisms of glioma and devising targeted medical strategies, thus aiding in the enhancement of patient survival rates.




2 Material and methods



2.1 Data acquisition and preprocessing

We employed the “TCGAbiolinks” R package to acquire bulk RNA-sequencing (RNA-seq) data from 704 glioma specimens along with 5 adjacent normal specimens from The Cancer Genome Atlas (TCGA) (13). Furthermore, we accessed additional bulk RNA-seq data comprising 693 glioma samples (CGGA_693) and 325 glioma specimens (CGGA_325) from the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/). The single-cell sequencing datasets were obtained from the Tumor Immune System Interaction and Cancer Heterogeneity Database 2 (TISCH2, http://tisch.comp-genomics.org/home/), focusing on three glioma datasets (GSE103224, GSE131928, GSE138794). Additionally, we downloaded a single-cell dataset related to lung cancer (post-immunotherapy), GSE207422, from the Genomics Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) (14). We merged the glioma bulk RNA-seq data utilizing the Combat function from the “sva” R package. All datasets were meticulously reviewed to eliminate any incomplete or NA values that might interfere with the analysis outcomes. In instances where the data distribution range was excessively wide, log2 transformation was applied. The analysis of all bulk RNA-seq data was conducted in the format of Transcripts Per Kilobase of exon model per Million mapped reads (TPM). The datasets used in this study are publicly available and do not require ethical review. The nucleotide metabolism-related genes, glycolysis-related genes, amino acid metabolism-related genes, and lipid metabolism-related genes analyzed in this paper were downloaded from the “msigdbr” R package.




2.2 Non-negative matrix factorization

Using nucleotide metabolism genes, we first performed NMF clustering on the merged glioma bulk RNA-seq dataset. The NMF technique, employing the ‘brunet’ method, was applied to classify the samples. The number of clusters (k) was varied from 2 to 10 to identify the optimal fit. The advantage of NMF is its ability to reduce the dimensionality of high-dimensional data through non-negative constraints while preserving the natural clustering structure of the data, which is suitable for extracting meaningful features from complex biological data. We evaluated the most suitable cluster number (k) through a collaborative assessment of cophenetic correlation, residuals, dispersion, residual sum of squares (RSS), explained variance (evar), silhouette score, and sparsity. The specific criteria for selection included maximizing the cophenetic correlation to enhance the consistency between clustering results and the original data; optimizing dispersion and silhouette scores to improve clustering distinguishability and quality; selecting the last k value with a significant reduction in residuals and RSS to ensure model fit; and focusing on a notable increase in explained variance while seeking a balance point for sparsity to ensure the interpretability of the clustering results. Subsequently, we analyzed the differences in overall survival (OS) and age among the identified clusters.




2.3 Comparison of metabolic genes and functional pathways among clusters

We examined the differences in expression of genes associated with glycolysis, amino acid metabolism, and lipid metabolism across various clusters, visualizing our findings through heatmaps. Next, we utilized the “limma” package to carry out a differential expression analysis of genes between the clusters and performed Gene Set Enrichment Analysis (GSEA) based on the differentially expressed genes (DEGs), illustrating both the upregulated and downregulated pathways (15, 16). The analysis of data was supported by the “clusterProfiler” package, while the visual representations were created using the “enrichplot” package (17, 18). Information regarding pathway-related terms was obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (19).




2.4 Weighted gene co-expression network analysis

We executed WGCNA using the “WGCNA” R package (20). The advantage of WGCNA is the ability to construct gene co-expression networks, identify functionally relevant gene sets through modular analysis, and correlate them with clinical features, thereby discovering genes or gene modules that are closely related to disease prognosis. Initially, we removed genes with low expression levels or minimal variability across all samples. Next, we constructed a correlation matrix and an adjacency matrix, determining the power parameter β based on scale independence and mean connectivity. We then generated a Topological Overlap Matrix and constructed the co-expression network. Module partitioning and merging of similar modules were performed using the Dynamic Tree Cut method. Following this, we analyzed the correlation of each module with variables such as Age, Alive, Dead, OS time, and Cluster, and visualized these relationships. Core genes were further chosen from the module that was most closely associated with the clusters, adhering to the criteria of Module Membership (MM) > 0.6 and Gene Significance (GS) > 0.4. Moreover, we performed enrichment analysis on the genes found within each module, with the exception of the gray module, utilizing the “clusterProfiler” version 4.0 R package to visualize the outcomes.




2.5 Construction of 101 machine learning prognostic models

We utilized an integrated dataset as the training set, with GSE102073 and GSE26712 serving as validation sets. Employing the “Mime” R package, we executed a combinatorial analysis of 10 machine learning algorithms, resulting in a total of 101 distinct prognostic modeling combinations (21). The gene list input for the calculations comprised core genes identified through WGCNA. Using the integrated functionalities of the “Mime” R package, we calculated the consistency index (C-index) for each algorithm across different datasets, along with the Mean C-index across all cohorts and the Mean C-index in the validation cohorts. We selected the algorithm combination corresponding to the maximum Mean C-index in the validation cohorts as the final prognostic model algorithm. Following this, we calculated risk scores for all patients by utilizing the algorithm and categorized each dataset into high-risk and low-risk tiers according to the median score values. The differences in prognostic levels between the two risk categories within each dataset were evaluated through the Kaplan-Meier method. We validated the performance of the algorithms across different datasets by employing receiver operating characteristic (ROC) curves at 1, 3, and 5 years. Furthermore, we conducted a meta-analysis across three datasets.




2.6 Exploration of risk scores, clinical features, and carcinogenic pathways

Initially, we utilized a Sankey diagram to display the distribution patterns of samples across varied clusters and survival statuses within the two risk categories. Subsequently, we conducted an analysis of differential gene expression between the two risk categories and assessed the variations in activity within classical cancer-related pathways. We employed heatmaps to visualize the differences in both pathway activities and gene expression across the two risk categories. We also presented correlation heatmaps to illustrate the relationships between risk scores and apoptosis-related genes, as well as cell cycle-related genes. Additionally, we analyzed the top ten Single Nucleotide Polymorphism (SNP) genes ranked within each risk group. Finally, we demonstrated the correlation between risk scores and various classical tumor pathways.




2.7 Immune-related analyses

We commenced our analysis by examining the differences in infiltration levels of 22 immune cell types across various clusters and between risk groups. We utilized the “IOBR” R package (https://github.com/IOBR/IOBR) to perform immune cell infiltration analyses of bulk RNA-seq datasets through built-in algorithms such as CIBERSORT, EPIC, MCP-Counter, quanTIseq, TIMER, and xCell. Furthermore, we assessed differences in tumor microenvironment scores between the different risk groups using the ESTIMATE algorithm. Ultimately, we acquired Immunophenoscore (IPS) data for every sample from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home) and examined the differences in IPS scores that could predict the effectiveness of PD-L1 or CTLA-4 inhibitor therapies among various risk groups.




2.8 Single-cell sequencing data analysis

The preprocessing of single-cell sequencing data was accomplished utilizing the Seurat pipeline. Given that the TISCH2 database had previously undergone basic quality control checks, it was deemed unnecessary to implement further quality control measures. The “Harmony” R package was employed to mitigate batch effects for the integration of multiple samples. Annotation was conducted using information sourced from the TISCH database. To evaluate the model genes, we utilized the AddModuleScore function within Seurat, allowing us to examine the distribution of these scores across various cell populations. Moreover, we isolated malignant cells for additional dimensionality reduction and clustering, which was subsequently followed by differential and enrichment analyses for each subpopulation. The Uniform Manifold Approximation and Projection (UMAP) algorithm was applied for this dimensionality reduction and clustering process. In our focus on the non-small cell lung cancer dataset, GSE207422, we assessed the distribution of cases that were treatment-naïve (NE), treatment-responsive (MPR), and treatment-resistant (NMPR) in accordance with the provided treatment data. We analyzed the disparities in model gene scores across the distinct treatment groups, allowing us to categorize cells into high and low scoring groups. GSEA was then implemented to evaluate differences in pathways between these two groups. For three additional glioma datasets, we conducted integration and applied similar analytical methods.




2.9 Pan-cancer and immune analysis based on the model gene ALPK1

We first conducted an analysis of the association between ALPK1 and various immune modulators—including receptors, MHC molecules, immune stimulators, and chemokines—across 33 different tumor types. Subsequently, we focused on visualizing the Pearson correlation coefficients between ALPK1 and four immune checkpoints—CD274 (PD-L1), CTLA-4, LAG-3, and PDCD1 (PD-1)—in glioblastoma (GBM) and lower-grade glioma (LGG). We utilized the single-sample Gene Set Enrichment Analysis (ssGSEA) method to investigate the association between ALPK1 expression and the infiltration levels of 28 immune cell types associated with tumors across 33 different types of tumors. The correlation coefficients were derived using Pearson correlation methods, and statistical significance was calculated with p-values.

The glioma dataset was divided into categories reflecting high and low expression levels according to the median expression of ALPK1. First, we investigated the differences in immune modulators between these two categories and illustrated the results using heatmaps. Following that, we collected relevant information about the anti-cancer immunity cycle from the literature and evaluated the differences in the various stages of this cycle between the two categories (22). Following this analysis, we evaluated the expression differences of immune cell-associated effectors across the groups. Ultimately, a correlation analysis was conducted between ALPK1 and molecules that suppress immune responses.




2.10 Statistical analysis

All statistical evaluations were performed utilizing R software (version 4.1.3). The “clusterProfiler” package facilitated the data analysis, while visual representations were produced with the help of the “enrichplot” package. The “limma” package was employed for the analysis of differential gene expression among clusters. Unless stated differently, all figures were generated using “ggplot2.” A p-value threshold of < 0.05 was regarded as statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).




2.11 Cell culture

The following cell lines were utilized in this study for in vitro experiments: Neuroependymal Hypothalamic Astrocytoma (NHA) cells, HS683, LN229, U87MG, and U251MG, sourced from the Cell Bank of the Chinese Academy of Sciences in China. NHA served as the normal control cell line, whereas the other lines were classified as tumor cell lines. Culturing was performed in Dulbecco’s Modified Eagle Medium (DMEM; Hyclone, USA) for NHA, HS683, LN229, and U251MG, while U87MG was maintained in Minimum Essential Medium (MEM; Hyclone, USA). Each culture medium was enriched with 10% fetal bovine serum (FBS; Hyclone, USA) and 1% penicillin-streptomycin solution (Keygen, China) to prevent bacterial proliferation. The cells were kept in a humid atmosphere at 37°C with 5% CO₂ to promote logarithmic growth.




2.12 Transfection

Transfection experiments were conducted on the HS683 and LN229 cell lines using siRNA (Sangon, China) for the transient knockdown of the ALPK1 gene, with a negative control (NC) serving as the control group. The cells were first placed in six-well plates and permitted to achieve about 80% confluence. A suitable amount of Opti-MEM reduced serum medium (Thermo, USA) was used to dissolve Lipofectamine 3000 (Thermo, USA) and siRNA, which was allowed to sit for 5 minutes. Following this, the two components were mixed and incubated for 20 minutes before adding the mixture to the six-well plates. The medium was replaced 5 hours post-transfection.




2.13 Total RNA extraction and RT-qPCR

Cells from each group were digested with trypsin and collected in centrifuge tubes. After centrifugation and washing, the resulting pellets were obtained. To lyse cell structures and inhibit RNase activity, 950 μL of Trizol (Takara, Japan) was added. The mixture was allowed to stand for 5 minutes, followed by the addition of 150 μL of chloroform (Sinopharm, China), which was thoroughly mixed by vortexing. The mixture was then centrifuged at 12,000 g for 5 minutes at 4°C, and the supernatant was carefully collected. An equal volume of isopropanol (Sinopharm, China) was added to promote RNA precipitation. After another 5-minute centrifugation at 12,000 g and 4°C, the precipitate was washed with 1 mL of 75% ethanol or anhydrous ethanol and allowed to dry naturally. All operations were performed under RNase-free conditions, and the concentration of the extracted RNA, as well as DNA and protein contamination, were assessed.

Genomic DNA was removed using the PrimeScript RT Master Mix (TaKaRa, Japan), and appropriate reaction mixtures were prepared according to the manufacturer’s instructions and the measured RNA concentration. Complementary DNA (cDNA) was synthesized through reverse transcription. Real-time quantitative PCR (qPCR) analysis was conducted on a Roche480 PCR system (Roche, Switzerland) using SYBR GreenER Supermix (TaKaRa, Japan), following the manufacturer’s protocol. All samples and reagents were pre-mixed before analysis. Each experimental group included three technical replicates, with β-actin serving as the internal control gene.




2.14 Cell counting kit-8 assay

Twenty-four hours post-transfection, cells were seeded into 96-well plates at a density of 4,000 cells per well and allowed to adhere, with three technical replicates for each group. The CCK8 reagent (KeyGEN, China) was prepared according to the manufacturer’s instructions, mixed with the culture medium, and adjusted to a final volume of 100 μL per well. The plates were then shielded from light and placed in a cell culture incubator. After 2.5 hours, the absorbance at 450 nm was measured using a spectrophotometer, with measurements repeated at various time points.





3 Results



3.1 Differential analysis of NMF and clustering

We determined the optimal number of clusters (k) to be 2 through multiple metrics, categorizing all patient samples into two distinct classes. At this point, all metrics demonstrated ideal outcomes (Figure 1A). Subsequently, we conducted OS analysis for the two clusters, revealing that patients in cluster 2 had a significantly lower survival rate compared to those in cluster 1 (p < 0.0001, Figure 1B). Furthermore, there was a notable difference in age distribution between the two clusters, with an average age of 41.59 years in cluster 1 and 62.40 years in cluster 2 (p < 0.001, Figure 1C). We then analyzed the expression differences of glycolysis-related genes, amino acid metabolism-related genes, and lipid metabolism-related genes between the clusters, visualizing the results with heatmaps. Notably, cluster 2 exhibited a higher expression of glycolysis-related genes, amino acid metabolism-related genes, and lipid metabolism-related genes compared to cluster 1 (Figures 2A–C). GSEA of DEGs between the two clusters indicated that pathways such as the Complement and Coagulation Cascades (NES = 2.43, p < 0.001) and Viral Protein Interaction with Cytokine and Cytokine Receptor (NES = 2.43, p < 0.001) were upregulated in cluster 1 (Figure 2D), while pathways including Insulin Secretion were downregulated in cluster 1 (NES = -2.47, p < 0.001, Figure 2E).
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Figure 1 | Nucleotide metabolism subclusters and prognosis in TCGA- LGG/GBM. (A) Cophenetic distributions, residual sum of squares (RSS), and dispersion indices for ranks 2–10. (B) Overall Kaplan-Meier survival curves for both subclusters. (C) The age distribution between two subclusters.

[image: Five-panel figure showing gene expression heatmaps and enrichment plots. Panels a, b, and c display heatmaps with different clusters of gene expressions visualized in shades of green and pink, representing clusters 1 and 2. The scaled expression ranges from -2 to 2. Panels d and e illustrate ranked enrichment scores for various biological terms, with detailed legend labels and gene set names plotted against their rank in the ordered dataset. Each plot contains line graphs indicating different pathways or processes and tables of p-values.]
Figure 2 | Crosstalk between nucleotide metabolism subclusters and key metabolic pathways. (A) Differences in glycolysis-related genes between subclusters. (B) Differences in amino acid metabolism-related genes between subclusters. (C) Differences in lipid metabolism-related genes between subclusters. (D) Gene set enrichment analysis (GSEA) reveals pathways downregulated in subtype C2 relative to C1. (E) GSEA reveals pathways upregulated in subtype C2 relative to C1.




3.2 Core gene selection

We employed WGCNA for preliminary gene selection in subsequent machine learning applications. To ensure scale-free network characteristics, we set the threshold for scale independence at 0.9, resulting in a soft threshold (β) of 16. The average connectivity assessment indicated that the sparsity of the network was appropriate under this soft threshold (Figure 3A). We generated a clustered dendrogram of co-expression modules to illustrate the clustering hierarchy and effectiveness (Figure 3B). In total, six modules were identified, with almost every module showing a highly significant correlation with clinical pathological features. The modules MElightyellow, MEblack, and MEmagenta displayed similar correlation trends with clinical pathological features, while MEcyan and MEroyalblue showed similar trends in correlation. Notably, MEcyan was significantly positively correlated with Cluster (R = 0.84, p < 0.00001) and also exhibited a significant positive correlation with the Dead parameter (R = 0.56, p < 0.00001, Figure 3C). Further analysis and visualization of the MEcyan genes were performed (Figure 3D). The analysis of enrichment for each module indicated that Module_cyan was mainly associated with pathways related to the immune system, including the activation of myeloid leukocytes, the enhancement of cytokine production, and the movement of leukocytes. Module_black was primarily enriched in pathways that relate to the assembly of cell junctions, while Module_magenta was associated with pathways that play a role in the modulation of chemical synaptic transmission and the organization of synapses. In addition, Module_lightyellow focused on pathways pertinent to the development of oligodendrocytes and the myelination of the central nervous system, whereas Module_royalblue was connected to pathways linked to B cell receptor signaling and immune responses mediated by immunoglobulins (Figure 3E).
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Figure 3 | Models Construction based on nucleotide metabolism subclusters. (A) Analysis of network topology for different soft-threshold power. The left panel shows the impact of soft-threshold power (power = 16) on the scale-free topology fit index; the right panel displays the impact of soft-threshold power on the mean connectivity. (B) Cluster dendrogram of the co-expression modules. Each color indicates a co-expression module. (C) Module-trait heatmap displaying the correlation between module eigengenes and clinical traits. (D) Correlation between module membership and gene significance in the turquoise module. Dots in color were regarded as the hub genes of the corresponding module (MM > 0.6 & GS > 0.4). (E) Top five enriched GO terms of module genes in each module except for the grey. (F) A total of 101 kinds of prediction models fitted in TCGA- LGG/GBM (Dataset1) and verified in the other two validation cohorts (GSE102073 [Dataset2] and GSE26712 [Dataset3]). The model was ordered by the average of the C-index of all datasets. The optimal model developed by “StepCox[forward]+GBM” was utilized in subsequent analyses. (G) Survival differences between two groups in the three datasets. (H) Time-dependent ROC analysis of the model in the three datasets. (I) Meta analysis of univariate Cox regression across the three datasets.




3.3 Construction of 101 machine learning prognostic models

Utilizing the training dataset, we conducted a total of 101 prognostic models by employing machine learning methods and selecting among them, subsequently ranking the models according to the mean C-index calculated across all datasets. The comparison revealed that the combination of LASSO and Gradient Boosting Machine (GBM) algorithms achieved the highest mean C-index in validation cohorts (0.72). Under this algorithm, the training set C-index was 0.89, validation set 1 C-index was 0.73, and validation set 2 C-index was 0.72, indicating that this model combination possesses good accuracy and generalizability, effectively mitigating the risk of overfitting (Figure 3F). The risk score for every patient was determined through this algorithm, and the datasets were categorized into high-risk and low-risk groups according to the median score of each dataset. In all three datasets, the survival rates for the high-risk group were notably lower compared to those of the low-risk group, suggesting that the risk score serves as a negative prognostic indicator (HR > 3, p < 0.001, Figure 3G). Furthermore, the ROC curves at 1, 3, and 5 years for the three datasets indicated that this combination of models exhibits strong diagnostic performance (AUC > 0.7, Figure 3H). Results from the meta-analysis revealed considerable heterogeneity across the three datasets; in these scenarios, the risk associated with the high-risk group was markedly elevated compared to the low-risk group in each dataset (HR > 1, p < 0.001), illustrating the robustness and generalizability of our model (Figure 3I).




3.4 Exploration of risk scores, clinical features, and carcinogenic pathways

Initially, we employed a Sankey diagram to represent the trends in sample distribution among various clusters and survival statuses within the two identified risk groups. Cluster 1 primarily encompassed patients from the low-risk category, while cluster 2 was predominantly populated by patients from the high-risk group, who exhibited a greater mortality rate compared to those in cluster 1. The survival trends observed across different clusters aligned with those seen between the risk groups (Figure 4A). Notably, genes that were expressed at elevated levels in the high-risk group relative to the low-risk group were documented (Figure 4B). In general, pathways including Androgen, TNFa, JAK-STAT, EGFR, Hypoxia, PI3K, and VEGF displayed significant activity across both risk categories; nevertheless, the intensity of activation of these pathways differed. The low-risk group manifested considerably higher activity in the Androgen, TNFa, JAK-STAT, VEGF, and Trail pathways, while the high-risk group showed increased activity in other pathways (Figure 4C). Among the 63 genes selected for modeling, nearly all were markedly overexpressed in the high-risk cohort (Figure 4D). Moreover, we investigated the relationship between risk scores and genes related to apoptosis as well as those associated with the cell cycle. Analysis revealed a significant relationship between risk scores and genes like BIRC3, FAS, BIRC2, IL1A, IRAK2, ENDOD1, and IL1RAP (p < 0.01), in addition to a significant connection with IRAK3, CSF2RB, and XIAP (p < 0.05), which are implicated in apoptosis. Furthermore, risk scores exhibited significant associations with cell cycle-related genes such as DBF4, E2F2, and SMC1B (p < 0.05, Figures 4E, F). Analysis of mutations indicated that the IDH1 mutation was the most common in the low-risk cohort, appearing in 93% of cases, whereas TP53 mutations were the most frequent in the high-risk group at 42%. Both risk groups exhibited mutations in TP53, IDH1, TTN, ATRX, and PIK3CA. Among the various types of mutations, missense mutations emerged as the most frequent, followed by multi-hit mutations, while other mutation forms were relatively rare (Figure 4G). Additionally, we established a connection between risk scores and several established tumor pathways. The most substantial positive association was found between risk scores and EGFR (R = 0.79), while the strongest negative association was noted with NFkB (R = -0.56, see Figure 4H).

[image: A composite set of diagrams related to gene expression and risk analysis. Image (a) shows a clustered Sankey diagram depicting patient risk groups and survival outcomes. Plot (b) is a volcano plot highlighting significant genes with log2 fold change. Heatmaps (c) and (d) display pathway activity scores and gene expression across clusters, respectively. Network diagrams (e) and (f) illustrate risk correlations among genes. Plot (g) presents mutation distribution in low and high-risk groups. Correlation matrix (h) relates various signaling pathways to risk scores using color-coded Pearson’s correlation coefficients.]
Figure 4 | Associations between risk scores, clinical features, and oncogenic pathways in TCGA- LGG/GBM. (A) Distribution of risk groups among nucleotide metabolism subclusters and survival samples. (B) Differential genes between risk groups. (C) Activity differences in classic cancer-related pathways between risk groups. (D) Relationships between risk groups and gene expression levels. (E) Correlation of risk scores with apoptosis-related genes. (F) Correlation of risk scores with cell proliferation-related genes. (G) Distribution of the top 10 genes with the highest mutation frequencies across different risk groups. (H) Correlation of risk scores with enrichment scores of different classic tumor pathways.




3.5 Immune-related analysis

We first analyzed the differences in infiltration levels of 22 immune cell types across various metabolic clusters and risk groups. In general, the patterns observed in infiltration levels showed distinct variations among clusters and risk categories, with the majority of immune cell types demonstrating significant differences across the various clusters and risk categories. Specifically, cluster 2 exhibited a broader range of immune cell types with heightened infiltration when compared to cluster 1, while the high-risk category revealed a greater quantity of immune cell types with increased infiltration in contrast to the low-risk category (Figures 5A, B). We employed six varied algorithms to clarify the relationship between risk scores and different immune cells (Figure 5C). The findings from the ESTIMATE analysis revealed that both the Immune score and the Stromal score were considerably elevated in the high-risk category compared to the low-risk category (p < 0.0001, Figure 5D), indicating a more abundant infiltration of immune and stromal cells within the tumor microenvironment of patients categorized as high-risk. Additionally, individuals in the high-risk category were more likely to gain advantages from immunotherapy based on differing levels of PD-L1 or CTLA-4 expression (p < 0.05, Figure 5E).

[image: Five panels showing different data visualizations related to infiltration levels and scores. Panels a and b are box plots comparing cell infiltration levels between clusters and groups, using green and pink colors for different categories. Panel c is a dot plot illustrating coefficient correlation across various methods with color coding. Panel d contains violin plots labeled “ImmuneScore” and “StromalScore,” comparing high and low categories. Panel e presents four violin plots showing different score comparisons between high and low categories, marked with asterisks indicating significance.]
Figure 5 | Investigation of the correlation between risk score and the immune microenvironment of TCGA- LGG/GBM. (A, B) Differences in infiltration levels of 22 immune cell types between nucleotide metabolism subclusters and between risk groups. (C) Correlation of risk scores with various immune cells as revealed by seven different algorithms. (D) Differences in tumor microenvironment scores between different risk groups as revealed by the ESTIMATE algorithm. (E) Differences in IPS scores predicting effectiveness of PD-L1 or CTLA-4 inhibitor treatments between different risk groups. IPS score of each TCGA- LGG/GBM sample was acquired from the TCIA (https://tcia.at/home). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.




3.6 Single-cell sequencing data analysis

Due to the absence of single-cell datasets for gliomas treated with immune checkpoint inhibitors, we leveraged datasets related to lung cancer for our analysis. Using the built-in dimensionality reduction clustering algorithm in Seurat, we classified all 92,330 cells into 10 clusters at a resolution of 0.6 (Figure 6A). Subsequently, we annotated the cells into eight categories based on biological marker genes: Epithelium, T/NK, T, B, Neutrophil, Stromal, Mast, and Myeloid (Figure 6B). The NMPR cell category represented the majority of the cell population, while NE and MPR cells were distributed sparsely (Figure 6C). Within the NE group, Neutrophils accounted for the largest proportion; conversely, T cells comprised the highest proportion in the MPR and NMPR groups (Figure 6D). We then presented the overall signature scores for the NE, NMPR, and MPR groups (Figure 6E). Notably, high signature scores were predominantly found in the Myeloid cell subpopulation (Figure 6F). Specifically, within the NE group, high signature scores were primarily concentrated in the Myeloid and Neutrophil subpopulations; in the MPR group, they were found mainly in the Myeloid and T cell subpopulations; and in the NMPR group, high signature scores were primarily associated with Myeloid and Stromal cell subpopulations (Figure 6G). The proportion of signature-positive cells varied across different subpopulations, with the Stromal cell subpopulation exhibiting the highest proportion (89.3%), while the B cell subpopulation had the lowest (18.8%, Figure 6H). The heatmap illustrated the differences in the abundance of characteristic genes among the various groups (Figure 6I). To conclude, we classified the cells into groups with high and low scores and utilized GSEA to assess the differences in pathways between these two categories. The high-scoring group exhibited upregulation in pathways such as Lysosome, Complement and Coagulation Cascades, Proteoglycans in Cancer, and Cytokine-Cytokine Receptor Interaction, while downregulation was observed in pathways including Metabolic Pathways and Cell Adhesion Molecules (Figure 6J).

[image: The image contains multiple panels depicting various data visualizations. Panels a, b, and c show UMAP plots with clusters of cell types and responses. Panel d is a stacked bar chart showing cell type percentages. Panel e is a box plot comparing scores among different responses. Panel f is a UMAP plot indicating positive signature values. Panels g display UMAP plots of signature scores for specific responses. Panel h is a bar chart showing signature positive ratios of cell types. Panel i is a heatmap of scaled expression. Panel j is a dot plot showing suppressed and activated pathways with p-values and counts.]
Figure 6 | Single-cell analysis of risk score in immunochemotherapy treated scRNA-seq cohort. (A–C) UMAP visualization of 92,330 cells from the public NSCLC scRNA-seq cohort treated with immunochemotherapy. A total of ten subpopulations were identified under the resolution of 0.6 and manually annotated to eight meta-clusters based on the cranial markers provided in the original publication. (D) Differences in the abundance of cell types across different groups. (E) Distribution of the signature scores between groups. The signature score was calculated by the (AddModuleScore) function implemented in the “Seurat” package based on the genes derived from the model from the machine-learning pipeline. (F, G) UMAP visualization of the signature scores across cell types (F) and different groups (G). (H) The positive ratio of the signature across each cell type. (I) The differences in the abundance of signature genes across different groups in all patients. (J) GSEA reveals significantly altered pathways in cells with high signature scores compared to those with low scores.

We integrated three glioma datasets and identified a total of 27 subpopulations at a resolution of 0.6. We categorized these into 13 distinct subpopulations based on their biological characteristics: AC-like Malignant, Endothelial, Mono/Macro, NB-like Malignant, Neuron, OC-like Malignant, OPC-like Malignant, CD8Tex, Malignant, MES-like Malignant, NPC-like Malignant, Oligodendrocyte, and Astrocyte, as illustrated in Figures 7A, B. Upon scoring each cell for its signature, we found that high scores were predominantly concentrated in the MES-like Malignant subpopulation (Figure 7C). The proportion of signature-positive cells also varied across subpopulations, with the MES-like Malignant subpopulation having the highest (95%) and the NB-like Malignant subpopulation the lowest (4.5%, Figure 7D). GSEA results indicated that, compared to cells with low signature scores, those with high signature scores were primarily enriched in pathways such as Phagosome and Antigen Processing and Presentation, while showing downregulation in pathways such as Nucleocytoplasmic Transport, MicroRNAs in Cancer, and Glioma (Figure 7E). Further dimensionality reduction clustering of 12,213 cells identified seven subpopulations at a resolution of 0.6 (Figure 7F). Signature scoring revealed a concentration of high scores primarily in the Malignant_C0 subpopulation (Figure 7G). GO analysis demonstrated the heterogeneity of pathways enriched in each cell subpopulation (Figure 7H).

[image: Multiple visualizations displaying UMAP clustering and functional analysis of cell types. Panels (a) and (b) illustrate UMAP plots of cell clusters and cell types, respectively. Panel (c) shows a UMAP plot with a signature heatmap. Panel (d) is a bar graph of significant positive ratio by cell type. Panel (e) is a dot plot of suppressed and activated pathways with NES values. Panel (f) provides a UMAP plot of malignant cell clusters. Panel (g) features a signature map for malignant cells. Panels (h) present functional analyses for malignant subclusters with associated pathways and gene ratios.]
Figure 7 | Single-cell analysis of risk score in the integrated LGG/GBM scRNA-seq datasets. (A–C) UMAP visualization of single cells from the public LGG/GBM scRNA-seq cohorts. A total of 16 subpopulations were identified under the resolution of 0.6 and manually annotated to nine meta-clusters based on the cranial markers. (C) UMAP visualization of the signature scores across cell types. (D) The positive ratio of the signature across each cell type. (E) GSEA reveals significantly altered pathways in cells with high signature scores compared to those with low scores. (F) UMAP showing the subpopulations of malignant cells. (G) UMAP visualization of the signature scores across cell types. (D) The positive ratio of the signature across each cell type. (H) Top six enriched GO terms of each malignant subpopulation.




3.7 Pan-cancer and immune analysis

We began our analysis by examining the association between ALPK1 and various immune regulators (including receptors, MHC molecules, immune stimulators, and chemokines) across 33 different tumors (Figure 8A). In both glioblastoma multiforme (GBM) and lower-grade glioma (LGG), ALPK1 showed a significant positive association with four immune checkpoints: PD-L1 (CD274), CTLA-4, LAG-3, and PD-1 (PDCD1) (Figures 8B, C). Furthermore, ALPK1 showed significant associations with multiple immune cell types across various tumors (Figure 8D).

[image: Heatmaps and scatter plots illustrate correlations in gene expression and immune cell types related to glioblastoma (GBM) and lower-grade glioma (LGG). Panel a shows correlation values for various genes, ranging from negative (blue) to positive (orange). Panels b and c display scatter plots of Pearson correlation versus significance (-log10(p-value)) for CD274, PDCD1, LAG3, and CTLA4 in GBM and LGG. Panel d presents relationships between immune cell types and gene expression, with color-coded significance and correlation strength, indicating complex interactions.]
Figure 8 | Influence of ALPK1 on immune landscapes in pan-cancer. (A) Association of ALPK1 with various immunoregulators (including receptors, MHC molecules, immunostimulators, and chemokines). (B) The associations between different tumor types and four immune checkpoints: CD274 (PD-L1), CTLA-4, LAG-3, and PDCD1 (PD-1), with dots representing various cancer types. GBM is marked with a red dot. (C) The associations between different tumor types and four immune checkpoints: CD274 (PD-L1), CTLA-4, LAG-3, and PDCD1 (PD-1), with dots representing various cancer types. LGG is marked with a red dot. (D) Relationship between ALPK1 and infiltration levels of 28 immune cells in different tumor types, as analyzed by the ssGSEA method. The correlation strength is depicted by color intensity. Statistically significant correlations, determined through Pearson correlation analysis, are marked with asterisks. *p < 0.05; **p < 0.01; ***p < 0.001.

By stratifying the combined glioma dataset according to the median expression level of ALPK1, we categorized it into groups of high and low expression. We then conducted an initial analysis to examine the differences in immune regulatory factors, presenting the findings in a heatmap (Figure 9A). The two expression categories demonstrated variability in enrichment levels throughout various stages of the anti-cancer immunity cycle (Figure 9B). The group with high expression consistently showed elevated levels of immune cell-associated effectors in comparison to the group with low expression (Figure 9C). Furthermore, a significant positive correlation was observed between ALPK1 and several immune suppressive molecules (Figure 9D).

[image: Panel (a) displays a heatmap of gene expression, highlighting chemokines, immunoinhibitors, immunostimulators, MHC, and receptors. Panel (b) shows a box plot of enrichment across steps of the anti-cancer immunity cycle, comparing high and low groups. Panel (c) features a heatmap of expression profiles in various immune cells, such as CD8 T cells and macrophages. Panel (d) presents a correlation matrix of gene co-expressions, using a triangular grid with dots representing correlation strength.]
Figure 9 | Impact of ALPK1 on the TME in TCGA- LGG/GBM. (A) Expression differences of immunoregulators (as identified in Figure 8A) between the high- and low- ALPK1 expression groups in TCGA- LGG/GBM. (B) Variations in the stages of the cancer immunity cycle for high versus low ALPK1 expression groups. (C) Association of ALPK1 with infiltration levels of five types of tumor-infiltrating immune cells: CD8+ T cells, DCs, macrophages, NK cells, and Th1 cells, determined by the six TME decoding algorithms. (D) Expression differences in effector genes of these immune cells between the high- and low- ALPK1 groups. Asterisks denote the significance levels as determined by the Mann-Whitney U test. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.




3.8 ALPK1 promotes glioma cell proliferation

There is currently a lack of studies investigating the role of ALPK1 in glioma cells; thus, we selected this gene from our model for experimental validation. Comparative analysis of expression levels among different cell lines revealed that ALPK1 is significantly overexpressed in glioma cell lines (p < 0.05, Figure 10A). Subsequently, we achieved effective knockdown of ALPK1 in two cell lines, demonstrating a substantial reduction in expression (p < 0.01, Figure 10B). The findings from the CCK8 assay demonstrated that the reduction of ALPK1 notably decreased the growth of tumor cells (p < 0.01, Figures 10C, D). Therefore, our findings suggest that ALPK1 plays a critical role in promoting glioma cell proliferation.

[image: Graphs depicting ALPK1 mRNA expression and cell growth. (A) Bar graph showing ALPK1 expression in various cell lines, with significantly higher levels in U87MG, LN229, and U251MG. (B) Bar graph comparing ALPK1 expression in HS683 and LN229 after siRNA treatment, showing reduced expression. (C) and (D) Line graphs illustrating cell growth over five days for LN229 and HS683, respectively, with si-ALPK1 treatments leading to decreased growth compared to the control. Statistical significance is marked with asterisks.]
Figure 10 | The effect of ALPK1 on Glioma was verified by wet experiment. (A) Comparison of mRNA expression levels of ALPK1 among cell lines. (B) ALPK1 knock inefficiency assessment. (C) Changes in proliferation levels after ALPK1 knockdown in LN229 cell lines. (D) Changes in proliferation levels after ALPK1 knockdown in HS683 cell lines. *p < 0.05; **p < 0.01; ***p < 0.001.





4 Discussion

Glioma, which is a type of aggressive tumor that arises from glial cells, ranks among the most frequently occurring primary intracranial tumors. It is distinguished by elevated rates of incidence, recurrence, and mortality, along with low rates of successful treatment (23, 24). Its clinical presentation is diverse, and treatment primarily involves surgical resection, supplemented by radiotherapy and chemotherapy (25, 26). Although there have been substantial improvements in the diagnosis and management of gliomas, the outlook for patients continues to be unfavorable, especially for high-grade gliomas, which are characterized by notably brief median survival durations (27, 28). Consequently, exploring molecular subtyping, identifying novel prognostic biomarkers, and understanding the tumor’s immune microenvironment is vital for improving treatment strategies and outcomes.

Nucleotide metabolism is a critical process for cell survival and proliferation, playing an essential role in tumorigenesis. Abnormalities in nucleotide metabolism can facilitate rapid tumor cell proliferation and potentially influence the sensitivity of these cells to treatment (8). Research has indicated a close correlation between alterations in nucleotide metabolism and the development of gliomas, particularly in aspects such as cell cycle regulation, DNA repair, and energy metabolism (29). The precise influence of nucleotide metabolism on the prognosis of glioma, along with its potential as a target for therapy, requires additional research.

In this study, we utilized NMF analysis on gene expression data from glioma patients, categorizing them into two distinct clusters. Notably, patients in cluster 2 exhibited significantly lower survival rates and were, on average, older than those in cluster 1. This suggests that age may be a crucial factor influencing glioma patient survival, with differing biological behaviors and treatment responses among age groups. Moreover, cluster 2 demonstrated a significantly higher expression of glycolytic, amino acid metabolism, and lipid metabolism-related genes compared to cluster 1, indicating that metabolic characteristics may play a key role in distinguishing patients with different prognoses.

To further explore potential biomarkers, we employed WGCNA for initial gene screening (30). By setting a suitable soft threshold, we effectively built a scale-free network and recognized six modules that have substantial associations with clinical pathological characteristics. Notably, the MEcyan module exhibited strong positive correlations with both cluster and mortality, suggesting its close association with disease progression. Functional enrichment analysis of the MEcyan module revealed associations with various biological processes, including immune cell activation, cell junction assembly, synaptic transmission regulation, oligodendrocyte development, and B cell-mediated immune responses.

We created 101 prognostic models utilizing machine learning techniques and, using the average C-index ranking derived from validation cohorts, identified the combination of LASSO and GBM algorithms as the most effective model (31). The model demonstrated significant predictive accuracy and effectiveness across both training and validation datasets. Furthermore, in three distinct datasets, the survival rates observed in the high-risk cohort were substantially lower than those seen in the low-risk cohort, highlighting the reliability of our risk scoring system as a prognostic tool. Additionally, a meta-analysis revealed notable heterogeneity among the three datasets; however, within the high-risk cohorts, risk levels were significantly elevated compared to those in the low-risk groups, thus reinforcing the model’s robustness and applicability. The risk scoring system uncovered distinct gene expression differences between patients classified as high-risk and those deemed low-risk. Specifically, the low-risk individuals showed significantly heightened activity in pathways associated with Androgen, TNFα, JAK-STAT, and VEGF when compared to the high-risk group, highlighting the substantial variability in pathway activity between the two risk categories. These observations imply that the activation of certain signaling pathways might impact patient prognosis and could serve as potential novel targets for therapeutic interventions. Additionally, the risk score correlated significantly with a range of apoptosis-related genes, indicating a potential dysregulation in tumor cell proliferation control mechanisms.

This research also explored the variations in levels of immune cell infiltration among different clusters and risk categories. Our findings revealed that immune cell infiltration levels were significantly higher in cluster 2 and the high-risk category compared to cluster 1 and the low-risk category. Additionally, both the immune and stromal scores were markedly elevated in the high-risk group, indicating a richer presence of immune and stromal components within their tumor microenvironment. Notably, despite the elevated immune cell infiltration and stromal elements observed in cluster 2 and the high-risk group, the prognostic outcomes were contrary. This intensified immune response did not lead to improved results; on the contrary, it correlated with worse clinical outcomes, highlighting the necessity for further investigation into the specific roles and interactions of these immune cells and stromal elements. There could be mechanisms of immune suppression or adverse effects from certain immune cell subpopulations, leading to an active immune response that is ineffective in curbing tumor advancement. This observation offers essential insights for the formulation of future immunotherapeutic approaches.

Patients exhibiting different levels of PD-L1 or CTLA-4 showed that individuals in the high-risk category had a greater likelihood of responding positively to immunotherapy. This indicates that our risk assessment system might also help in pinpointing patients who could gain benefits from immunotherapy. Although direct single-cell datasets on glioma immunotherapy with checkpoint inhibitors are lacking, we inferred the distribution and functional status of immune cells by analyzing lung cancer-related single-cell datasets. By employing the Seurat algorithm for dimensionality reduction clustering, we identified several cell subpopulations, revealing significant differences in signature scores across these groups. Notably, high signature scores were concentrated in myeloid cell subpopulations, with the highest positivity rate in stromal cell subpopulations (89.3%). Additionally, cells with high signature scores showed upregulation in pathways such as lysosome and complement and coagulation cascades, while downregulation occurred in metabolic pathways and cell adhesion molecules. This indicates functional disparities among different cellular states and their roles in disease progression. The activation of lysosomal and complement systems, along with changes in proteoglycans and cytokine networks, may be related to immune evasion mechanisms. Conversely, the downregulation of metabolic pathways and cell adhesion molecules suggests that these cells may have adopted alternative metabolic strategies and potentially lost functions dependent on cell adhesion. This implies a transformation enabling better survival and proliferation within the tumor microenvironment.

Lastly, we conducted a pan-cancer analysis, revealing significant correlations between ALPK1 and various immune checkpoints, including PD-L1, CTLA-4, LAG-3, and PDCD1. This result indicates that ALPK1 could significantly influence the modulation of the immune microenvironment. Studies have shown that ALPK1 can affect the expression of immune-related genes, thereby changing the tumor microenvironment and affecting the development of glioma (32). Additionally, the levels of ALPK1 expression were associated with the infiltration of immune cells in various cancer types, where groups with high expression typically displayed increased concentrations of effector molecules related to immune cells in comparison to those with low expression. Furthermore, research experiments suggest that ALPK1 is vital for enhancing the proliferation of glioma cells. ALPK1 also displayed significant positive correlations with various immune suppressive molecules, potentially indicating its pivotal role in regulating specific stages of the anti-tumor immune cycle.

While this research highlighted variances in the metabolic traits and immune profiles of glioma patients using various data sets and techniques, and established a dependable prognostic risk scoring system, it also presents several limitations. These include inadequate representation of the data sets, restricted generalizability of the machine learning models, and the need for validation of the clinical potential of the ALPK1 gene as a biomarker. Upcoming investigations should concentrate on multi-center clinical trials, analyses of immune cell functions at the single-cell level, and the specific functional mechanisms of the ALPK1 gene to enhance both the applicability of the findings and their clinical significance.

In conclusion, this study utilizes an integrative bioinformatics approach to unveil distinct metabolic features and immune states in glioma patients, establishing a reliable prognostic risk scoring system. Our findings provide new perspectives for further understanding the complex biological mechanisms of gliomas and lay the groundwork for future precision medicine strategies.




5 Conclusion

This study integrates various advanced bioinformatics approaches to reveal the heterogeneity of metabolic and immune states among glioma patients. Furthermore, we successfully developed an effective prognostic risk assessment model. These findings not only provide new insights into the complex biological underpinnings of glioma but also lay a crucial foundation for advancing the future of precision medicine.
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Background


Immune checkpoint inhibitors have proven efficacy against hepatitis B-virus positive hepatocellular. However, Immunotherapy-related adverse reactions are still a major challenge faced by tumor immunotherapy, so it is urgent to establish new methods to effectively predict immunotherapy-related adverse reactions.







Objective


Multi-machine learning model were constructed to screen the risk factors for irAEs in ICIs for the treatment of HBV-related hepatocellular and build a prediction model for the occurrence of clinical IRAEs.







Methods


Data from 274 hepatitis B virus positive tumor patients who received PD-1 or/and CTLA4 inhibitor treatment and had immune cell detection results were collected from Henan Cancer Hospital for retrospective analysis. Models were established using Lasso, RSF (RandomForest), and xgBoost, with ten-fold cross-validation and resampling methods used to ensure model reliability. The impact of influencing factors on irAEs (immune-related adverse events) was validated using Decision Curve Analysis (DCA). Both uni/multivariable analysis were accomplished by Chi-square/Fisher’s exact tests. The accuracy of the model is verified in the DCA curve.







Results


A total of 274 HBV-related liver cancer patients were enrolled in the study. Predictive models were constructed using three machine learning algorithms to analyze and statistically evaluate clinical characteristics, including immune cell data. The accuracy of the Lasso regression model was 0.864, XGBoost achieved 0.903, and RandomForest reached 0.961. Resampling internal validation revealed that RandomForest had the highest recall rate (AUC = 0.892). Based on machine learning-selected indicators, antiviral therapy and The HBV DNA copy number showed a significant correlation with both the occurrence and severity of irAEs. Antiviral therapy notably reduced the incidence of IRAEs and may modulate these events through regulation of B cells. The DCA model also demonstrated strong predictive performance. Effective control of viral load through antiviral therapy significantly mitigates the occurrence of irAEs.







Conclusion


ICIs show therapeutic potential in the treatment of HBV-HCC. Following antiviral therapy, the incidence of severe irAEs decreases. Even in cases where viral load control is incomplete, continuous antiviral treatment can still mitigate the occurrence of irAEs.
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Introduction


Hepatocellular carcinoma, distinguished by its high incidence and fatality rates, is the sixth most common of cancer-related deaths worldwide (1). Primary liver cancer is mainly hepatocellular carcinoma, accounting for more than 70% (2). Research shows that high risk factors related to liver cancer are related to multiple viral infections, the main ones being hepatitis B virus and hepatitis C virus (3). For patients with liver cancer in early clinical stages, clinical treatment methods mainly include surgical resection, local therapeutic intervention, liver allotransplantation, etc (4, 5). However, for patients with high clinical stages of liver cancer, current clinical intervention methods still cannot effectively control recurrence or metastasis within 5 years (4). Currently, the preferred clinical treatment for advanced liver cancer is targeted therapy based on anti-tumor angiogenesis-related drugs, but the clinical benefits are still poor (6).


T cells’ intrinsic negative immune regulators, such as CTLA-4, PD-1, and their ligands, can be blocked by immune checkpoint inhibitors (ICIs), which enhance T cell cytotoxicity and augment the antitumor activity of T lymphocytes (7). Studies have shown that ICIs have provided significant benefits in treating various cancers, including lung cancer, melanoma, renal cell carcinoma, and head and neck tumors (8–11). In individuals with early-stage hepatocellular carcinoma, PD-1 inhibitors like nivolumab and pembrolizumab have shown substantial clinical efficacy, markedly improving both overall survival and disease-free survival rates (12–14). The combination of anti-PD-1 antibodies and anti-angiogenic therapy, such as bevacizumab, has shown even greater clinical benefits in patients with advanced liver cancer (15, 16). Moreover, the therapeutic potential of cabozantinib in accompanied with pembrolizumab for the remedy of advanced hepatocellular carcinoma is actively being assessed (17). Despite the remarkable success of ICIs in advanced liver cancer, predictive factors for their clinical efficacy remain limited, with microsatellite instability, gut microbiota and TMB (tumor mutation burden) being among the few identified (18–20).


irAEs are a manifestation of the inherent limitations of immune tolerance, primarily induced by immune checkpoint inhibitors (ICIs) that trigger the production of auto-antibodies and pathogenic antibodies (21–24). These irAEs have the potential to impact any organ system and are categorized into five distinct grades according to their severity (9, 25). Clinically, patients receiving ICI therapy require frequent monitoring to mitigate the risk of irAEs (26, 27). Research indicates that irAEs are intricately linked to the function of immune checkpoint inhibitors (ICIs) in preserving immune homeostasis. Multiple potential mechanisms have been suggested, including T cell activation against self-antigens, the production of auto-antibodies and pro-inflammatory cytokines, as well as increased complement activation targeting self-antigens (7, 28). The mechanism of occurrence of immune-related adverse events determines the specificity of their systemic pathogenesis, including inflammatory arthritis, Sjögren’s disease, vasculitis, joint pain, or tendinopathy (29–31). In severe cases, bone marrow suppression may even occur (32). Because of this, the occurrence of immune-related adverse events seriously affects the clinical treatment of cancer patients and has become an important issue that must be addressed (33).


Recent studies have revealed that severe irAEs can interrupt cancer patients’ immunotherapy, potentially hindering the clinical benefits of these treatments (28). Although there has been some research on the management of irAEs, identifying clinical indicators and methods to predict or mitigate irAEs remains an urgent need. In this study, we analyzed clinical data from liver cancer patients undergoing immunotherapy to assess the risk factors and associated indicators of irAEs.







Methods






Enrollment of patients


This retrospective study encompassed patients diagnosed with liver cancer at the Affiliated Cancer Hospital of Zhengzhou University from January 2019 to February 2024, the process of including cases in the study is shown in the 
Figure 7
. Diagnosis was based on clinical pathology and imaging in accordance with the criteria set by the American Association for the Study of Liver Diseases (AASLD), including laboratory-confirmed positive HBV DNA serology, with all patients having undergone at least one PD-1 inhibitor treatment. Clinical data were meticulously gathered through manual examination of patient records and pertinent test outcomes. Brought into criteria were: 1. Patients older than 18. 2. Positive laboratory results for HBV DNA. 3. Eastern Cooperative Oncology Group performance status (ECOG PS) scores ranging 0 - 2, with at least one measurable lesion per the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. The efficacy of immunotherapy was evaluated based on RECIST 1.1 standards, categorizing outcomes as complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD). 4. The severity of immune-related adverse events (irAEs) was classified by the Common Terminology Criteria for Adverse Events (CTCAE 5.0) established by the U.S. National Cancer Institute. 5. Patients on antiviral therapy were included if they had received such treatment prior to or concurrently with PD-1 inhibitors. Among the included cases, 20 patients unreceived anti-viral treatment during ICIs, 44 exhibited poor compliance and ceased antiviral therapy before hospitalization, 18 discontinued due to financial difficulties, and 7 self-discontinued antiviral therapy prior to immunotherapy. 6. Laboratory evaluations encompassed peripheral blood immune cell assays, treatment protocols, clinical outcomes, and related biochemical results. HBV reactivation was defined per the 2018 AASLD hepatitis B guidelines, meeting at least one of the following criteria: (i) virus DNA increase of ≥ 2 log (100-fold) versus baseline; (ii) DNA increase ≥ 3 log (1,000) IU/mL (for patients non-detectable previously serum virus DNA, recognizing the potential for fluctuations in HBV DNA levels); or (iii) if baseline levels were unavailable, virus DNA increase ≥ 4 log (10,000) IU/mL (34). The albumin/bilirubin (ALBI) grade was calculated using the formula: (0.66 × log10 bilirubin) + (−0.085 × albumin), with bilirubin measured in μmol/L and albumin in g/L. The grading criteria are defined as follows: Grade 1, ALBI ≤ −2.60; Grade 2, −2.60 < ALBI ≤ −1.39; and Grade 3, ALBI > −1.39 (35).







Statistical analysis


The results of this study, along with the relevant statistical analyses, were completed by R language (version 4.4.0). Numerical variables that adhering normal distribution are expressed as mean ± standard, chi-square or Fisher’s exact test were utilized for analysis of categorical variables. Lasso (glmnet-4.1-8), RSF (randomForest-4.7), and XGBoost (xgBoost-2.1.3) were used to assess the importance of both categorical and numerical variables in predicting outcomes over the observation period. Rank-sum tests were used to evaluate differences in stratified data, and univariate analyses were performed using two-tailed t-tests. p <0.05 means statistically significant.








Results






The clinical baseline characteristics of enrolled patients


A total of 274 HBV-positive liver cancer patients who received ICIs treatment were enrolled in the research. clinical characteristics are summarized in 
Supplementary Table 1
. All the enrolled samples, 191 were male (69.7%) and 83 were female (30.3%). Among male patients, 72% experienced grade 1-2 irAEs, while 28% of female patients experienced grade 1-2 irAEs. The cohort included 119 patients (43.4%) aged 60 and older, and 155 patients (56.6%) under 60. A total of 214 patients (78.1%) developed grade 1-2 irAEs, while 60 patients (21.9%) experienced grade 3-4 irAEs.


As shown in 
Table 1
, 42.1% of patients aged 60 and older developed grade 1-2 irAEs, compared to 57.9% of patients under 60. Of the 184 patients who received antiviral treatment during PD-1 inhibitor therapy, 168 (78.5%) experienced grade 1-2 irAEs, and 16 (26.7%) experienced grade 3-4 irAEs. According to the RECIST evaluation, 7 patients achieved complete response (CR), 81 had partial response (PR), 128 had stable disease (SD), and 51 experienced progressive disease (PD). Among patients with PR and CR, 72 (77.4%) received antiviral treatment, compared to 21 (22.6%) who did not, with a significant difference (p = 0.014, 
Supplementary Table 1
).


Table 1 | 
Baseline information on clinical subgroups of patients with different grades of immune adverse events.




[image: A table displaying patient characteristics with columns for name, levels, and two groups (G1 indicating ≤24 and G2 indicating >24), along with corresponding p-values. Categories include gender, age, tumor details, and various biochemical markers, each with subdivided levels. For each characteristic, the table provides counts and percentages for both G1 and G2 groups, showing statistical significance with p-values.]

Patients with grade 1-2 irAEs had a lower proportion of HBV DNA levels above 500 IU/mL compared to those with grade 3-4 irAEs (p < 0.001). Additionally, patients who received antiviral therapy had a significantly higher proportion of irAEs (p < 0.001), with notably elevated absolute B cell counts (p = 0.005) and significantly lower ALBI scores (p = 0.006). However, no significant differences were observed in other immune cell proportions and absolute counts, tumor size, ECOG scores, alpha-fetoprotein levels, treatment regimens, vascular invasion, or liver function across the different grades of irAEs. 
Supplementary Table 2
 demonstrates that liver cancer patients who received antiviral therapy had a significantly higher proportion of clinical benefit from immunotherapy (p = 0.014), 
Supplementary Tables 3
 and 
4
 present the statistics of the occurrence of immune-related adverse reactions in different organs and the effects of different antiviral drugs on the efficacy of immunotherapy, respectively.







Biomarkers selection for prediction of irAEs


To identify clinical indicators associated with irAEs, we conducted a lasso regression analysis on the selected clinical parameters, utilizing ten-fold cross-validation. The results from the lasso regression are displayed in 
Figure 1A
, showing the distribution of clinical characteristics after applying the lasso regression model. Cross-validation parameters were optimized using the minimum lambda value (lambda min), and both the optimal lambda min and lambda standard error (lambda se) were used to generate the ten-fold cross-validation curve (
Figure 1B
). The minimum standard value was identified through cross-validation, and the corresponding ten-fold cross-validation curve was plotted (
Figure 1B
). As a result, we identified seven clinical parameters with non-zero coefficients (
Figure 2E
). Univariate and multivariate logistic regression analyses further confirmed that antiviral therapy and HBV DNA levels were independent risk factors for the occurrence of irAEs (
Table 2
).
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Figure 1 | 
LASSO coefficient was used to analyze the risk factors of immune-related adverse events. (A) Lasso regression ten-fold cross validation curve. (B) In the LASSO model, the non-zero coefficient characteristic curve is extracted from the log (A) series. The vertical dashed lines are drawn at the minimum mean square error (λ = 0.0013) and the minimum distance standard error (λ = 0.073).




[image: A set of five charts analyzing variable importance in different models. Chart A shows the relationship between tree number and out-of-bag (OOB) error rate. Charts B, C, and D display the top ten variables in random forest and xgBoost, highlighting "Antivirus_therapy" as most important. Chart E presents the top variable in lasso, emphasizing "Botels." Each chart uses different metrics for evaluation.]
Figure 2 | 
Machine learning feature screening. (A) Random forest graph model error curve. (B, C) Random forest ranking of clinical features by importance. (D) Xgboost clinical feature importance ranking. (E) Clinical characteristics of non-zero coefficients in lasso regression.  




Table 2 | 
Univariate and multivariate logistic regression with non-zero coefficients in lasso regression.
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Multi-machine learning model construction


Randomforest and XGBoost regression are commonly used tree-based machine learning methods for predicting variable importance. In this study, to identify effective predictors of IRAEs (irAEs), we employed both random forest (package_version 4.7) and XGBoost (package_version 2.1.3) models to evaluate the importance of relevant variables. Using random forest analysis, we selected the top 10 variables based on importance rankings and illustrated the model’s error rate (
Figures 2A–C
). After constructing the XGBoost model, we similarly extracted and ranked the top 10 variables based on importance (
Figure 2D
). Next, we took the intersection of the variables identified by lasso regression, random forest, and XGBoost, and visualized the results. Notably, only two variables were consistently predicted by all three models: HBV DNA and antiviral therapy (
Figure 3A
). To further validate the reliability of these models, we applied a ten-fold cross-validation method. All three models demonstrated high accuracy (lasso AUC = 0.864, random forest AUC = 0.961, XGBoost AUC = 0.903) (
Figure 4A
). The precision-recall (PR) curves also showed satisfactory precision and recall rates for all models (lasso PR AUC = 0.607, random forest PR AUC = 0.892, XGBoost PR AUC = 0.768) (
Figure 4B
).


[image: Panel A shows ROC curves comparing XGBoost, Random Forest (RF), and LASSO models. XGBoost achieves the highest AUC at 0.963. Panel B presents PR curves, with RF attaining the highest average precision (AP) at 0.892. The graphs illustrate model performance in classification tasks, comparing true positive rates against false positive rates and precision against recall.]
Figure 3 | 
Machine learning model performance analysis. (A) Boostrap resampling verifies the accuracy AUC curve of the machine learning model. (B) ROC curve of bootstrap resampling to verify the accuracy of machine learning model.




[image: Three SHAP value plots assessing feature impacts on model output. Plot A shows a feature importance summary with colored dots for feature values from low to high. Plot B presents a horizontal bar chart for individual feature contributions. Plot C displays a waterfall chart visualizing combined effects of multiple features on a specific output prediction.]
Figure 4 | 
SHAP interpretation of xgboost clinical parameters. (A) Xgboost screening clinical parameter shape value importance ranking. (B, C) The shap value represents the predictive characteristics of each clinical parameter and the contribution of each parameter to the occurrence of immune-related adverse events. f(x) represents the probability prediction value, red indicates low risk, and yellow indicates high risk.









SHAP to xgboost model importance explained


To further provide a clear and intuitive explanation of the selected variables, SHAP (Shapley Additive explanations) values were utilized to elucidate the contribution of the variables in predicting IRAEs (irAEs) within the models. 
Figure 5A
 illustrates the SHAP values of the top 10 most important variables in the model. In the plot, blue represents high-risk factors, while yellow indicates low-risk factors. Antiviral therapy was identified as a low-risk factor for irAE occurrence, whereas high levels of HBV DNA were found to be a high-risk factor for irAEs. Other variables, such as the percentage and absolute counts of immune cells, including CD4+ T cells, NK cells, and B cells, were not significantly predictive of irAEs. 
Figure 5B
 ranks the SHAP absolute values of the top 10 variables identified by the XGBoost model, with the x-axis indicating the importance of the variables in predicting irAEs. Additionally, we enhanced the interpretability of the XGBoost prediction model using a typical SHAP model (
Figure 5C
). In this model, antiviral therapy had the lowest score, indicating its role as a protective factor against irAEs, while HBV DNA had the highest score, reinforcing the notion that uncontrolled HBV DNA levels or significant HBV reactivation is a strong driver of irAE development. This finding further supports that antiviral therapy can effectively mitigate the risk of irAEs.


[image: A: Venn diagram showing overlaps among LASSO, xgBoost, and RSF models with various shared numbers. B: Bar chart depicting percentages of G1-G2 and G3-G4 levels with anti-virus (91.3% and 8.7%) and no-antivirus (51.7% and 48.3%). C: Bar chart showing percentages of G1-G2 and G3-G4 levels for values <500 (81.5% and 18.5%) and ≥500 (71.6% and 28.4%). D: Line graph illustrating net benefits across different risk thresholds for models merge, DNA(HBV), Anti-virus, All, and None.]
Figure 5 | 
Relationship between screening indicators and clinical events based on machine learning. (A) Intersection of multiple machine learning screening indicators. (B) Comparison of the proportion of immune-related adverse events at all levels between the antiviral treatment and non-antiviral treatment groups. (C) Comparison of the proportion of immune-related adverse events at each level in patients with different HBV DNA copies. (D) DCA curves for predicting immune-related adverse events by antiviral therapy, HBV DNA alone or in combination.









Antiviral therapy predicts irAEs


By constructing multiple machine learning models, this study identified antiviral therapy and low HBV DNA copy numbers as effective predictors of IRAEs (irAEs). Subsequently, we compared the incidence of irAEs between two groups: patients receiving antiviral therapy and those who were not, as well as among patients with different levels of HBV DNA copies. The results revealed that irAEs in patients receiving antiviral therapy were primarily concentrated in Grades 1–2, while patients not receiving antiviral therapy predominantly experienced Grade 3–4 irAEs (
Figure 3B
). This indicates that antiviral therapy effectively reduces the occurrence of severe irAEs. Among patients with low HBV DNA copy numbers, the proportion of Grade 3–4 irAEs was significantly lower, following a similar trend to that observed in patients receiving antiviral therapy (
Figure 3C
). We hypothesize that antiviral therapy either effectively controls HBV DNA replication or inhibits the reactivation of HBV DNA triggered by immune checkpoint inhibitors, thereby reducing the occurrence of irAEs. DCA (Decision Curve Analysis) further demonstrated that the predictive performance of antiviral therapy for irAE occurrence outperformed that of HBV DNA copy number alone. This suggests that antiviral therapy not only suppresses HBV DNA replication but also modulates immune factors or immune cells involved in irAE development. However, the combined prediction of both factors yielded the best predictive performance (
Figure 3D
).







Relationship between antiviral therapy and immune cells


The preceding results indicated that antiviral therapy effectively reduces the occurrence of irAEs and, when combined with low HBV DNA copy numbers, serves as a reliable predictor of irAE development. To further explore the relationship between antiviral therapy and immune cells, we analyzed the differences in peripheral blood immune cell levels between patients receiving and not receiving antiviral therapy. The findings revealed a significant increase in the absolute number of B cells in patients undergoing antiviral treatment, whereas no notable changes were observed in the levels of other immune cells (
Figures 6A–P
).


[image: Violin plots illustrating the comparison of immune cell percentages and counts between anti-virus and non-anti-virus groups across 16 panels (A-P). Each plot displays the distribution of specific immune cell types, such as T cells, CD8, CD4, NK cells, B cells, Tregs, PD1, and others. Blue violins represent anti-virus, and red violins represent non-anti-virus groups. Statistical significance is indicated at the top of each plot. Data points are overlaid with box plots to show median and quartiles.]
Figure 6 | 
Analysis of the relationship between antiviral treatment and circulating immune cell levels. The changes in the levels of circulating immune cells in the peripheral blood of patients receiving antiviral treatment and not receiving antiviral treatment included the percentage of T cells (A), the percentage of CD8+T cells (B), the percentage of CD4+T cells (C), the percentage of NK cells (D), the percentage of B cells (E), the percentage of Tregs cells (F), the percentage of PD-1+ cells (G), the percentage of PD-1+CD3+ lymphocytes (H), the percentage of PD-1+CD4+T cells (I), the percentage of PD-1+CD8+T cells (J), the total number of lymphocytes (K), the total number of T cells (L), the absolute value of CD4 (M), the absolute value of CD8 (N), the absolute value of NK (O), and the absolute value of B cells (P).




[image: Flowchart depicting patient selection for a study on liver cancer treatment at Henan Cancer Hospital from 2019 to early 2024. Initially, 5,964 patients were diagnosed. After excluding 4,748 patients not receiving ICI treatment, 1,216 HCC patients remained. Further exclusions included patients without eligible imaging (356), without HBV results (453), and with negative HBV results (133). Ultimately, 274 patients were available for evaluation, divided into antiviral therapy (184) and non-antiviral groups (90).]
Figure 7 | 
Sample collection flow chart.










Discussion


This study evaluated the safety and efficacy of PD-1 immune checkpoint inhibitors in the treatment of HBV-associated hepatocellular carcinoma. Using multiple machine learning models, we identified biomarkers that can predict IRAEs (irAEs).


Among HBV positive hepatocellular carcinoma patients received treatment with anti-PD-1, 60 patients experienced grade 3-4 IRAEs (irAEs). Of these, 16 patients were undergoing anti-viral. When comparing patients receiving anti-viral to those who were not, irAEs in patients treated with antiviral therapy were predominantly grade 1-2, whereas those without antiviral treatment mainly exhibited grade 3-4 irAEs. Additionally, the analysis revealed that patients with low HBV DNA copy numbers or lower viral activity primarily experienced grade 1-2 irAEs, while those with high HBV DNA copy numbers or reactivated HBV exhibited more frequent grade 3-4 irAEs.


Machine learning is a mathematical discipline that primarily focuses on enabling computers to learn from data (36, 37). In medical research, machine learning models can process data using supervised or unsupervised methods to develop models that identify effective clinical predictors. These models have been applied in areas such as drug response prediction, surgical readmission risk, and patient prognosis (38–41). Common techniques for building clinical machine learning models include LASSO regression, random forest, and XGBoost, which have already been widely used for the selection and prediction of various clinical indicators. For example, machine learning has been used to predict lung cancer recurrence and assess the risk of postoperative thrombosis (42, 43). The combined use of multiple machine-learning models can further enhance the precision of these predictions. Previous studies have utilized various machine learning methods in tandem to predict clinically relevant indicators, demonstrating the reliability and improved performance of these integrated approaches (44, 45).


Here, we first employed lasso-regression to analyze the included clinical indicators with the aim of identifying biomarkers capable of predicting the coming up and severity of irAEs. The results indicated that factors such as age, gender, HBV DNA copy number, antiviral treatment, absolute B cell count, and CD4 T cell percentage were associated with irAE occurrence. Subsequent uni/multivariate logistic regression analyses revealed that HBV DNA copy number, antiviral treatment, and PD1CD3 lymphocytes may serve as independent risk factors for predicting the occurrence of irAEs. According to existing reports, irAEs arise due to ICIs not only blocking immune targets but also activating the immune system, which can trigger autoimmune responses. This activation leads to the release of related effector molecules, which in turn conduce to the development of irAEs (46, 47). HBV-virus infection can recruit a large number of inflammatory factors within the liver, which in turn attract regulatory immune cells (48). These regulatory immune cells are involved in the occurrence of irAEs (46), aligning with our predicted results. Antiviral therapy is currently the mainstay treatment for HBV infection. It has the potential to reverse T cell exhaustion and maintain immune tolerance (49), which may be the underlying reason why antiviral treatment can mitigate the occurrence of irAEs.


CD8+T cells make a crucial role in viral clearance and are also key components of anti-tumor immunity (50, 51). However, in patients with chronic HBV infection, CD8+T cells exhibit signs of exhaustion, with elevated expression of inhibitory checkpoints like PD-1, along with reduced cytotoxic and killing functions. PD-1 inhibitors, by blocking-up the PD-1/PD-L1 singling pathway, can recover CD8+T cell functionality and assist in clearing HBV. However, studies have shown that PD-1 inhibitors may lead to the reactivation of HBV DNA in patients with HBV-related liver cancer (52), suggesting that high HBV DNA levels are a significant risk factor for irAEs. This finding aligns with our prediction that antiviral therapy can effectively reduce the incidence of irAEs.


Additionally, this retrospective study revealed that antiviral therapy can modulate immune cell activity. In HBV positive hepatocellular carcinoma patients receiving anti-viral treatment, there was an evidently increase in the absolute count of circulating B cells, whereas changes in other circulating immune cells were not as pronounced. Previous reports have also identified a reduction in circulating cells as being closely related with the occurrence of severe irAEs (53). However, the underlying mechanisms warrant further investigation. Finally, we conducted Decision Curve Analysis (DCA) to compare the accuracy of predicting irAEs between antiviral treatment and HBV DNA copy.


B cells, as an important component of humoral immunity, participate in the process of clearing viruses in the body. Studies have found that when B cells are cleared by rituximab, HBV replication will be reactivated, leading to aggravated HBV infection (54, 55). In addition, HBVAg-specific B cells can highly express genes for cross-presenting dendritic cell recruitment (XCL1 and CD40LG) and innate immunity (MYD88, IFNA1/13, IFNa2 and IFNB1) to assist humoral immunity in resisting HBV infection (56). In the study, we found that after receiving antiviral treatment, the absolute number of B cells circulating in the patient’s peripheral blood increased, which may be due to the increased release of B cells induced by antiviral treatment, or it may be related to the accelerated promotion of B cells.


The novelty of this study lies in the development of an AI model specifically designed for predicting irAEs in HBV-positive liver cancer patients. This study utilized three machine learning algorithms, incorporating ten-fold cross-validation and bootstrapping for internal validation. Moreover, the comprehensive analysis of clinical indicators based on various machine learning models enhances the precision of the predictions. Nonetheless, this study has inherent limitations due to the restricted sample size. Firstly, it is a retrospective analysis based on clinical treatment data. Secondly, the study’s dataset is limited to patients from a specific geographic region, which may affect the generalizability to multi-regional populations. Finally, although the internal validation of the data confirms the reliability of the predictive model, extensive prospective data are required to further evaluate its applicability.







Conclusion


In summary, our study developed a novel predictive model using three machine learning algorithms to forecast irAEs in HBV-positive liver cancer patients receiving immune checkpoint inhibitors. Among these, the RSF model demonstrated the best predictive performance. This provides theoretical and data support for clinicians to implement early intervention measures to prevent IRAEs.
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Objective

Investigating the effect of M2 macrophage infiltration on overall survival and to use histopathological imaging features (HIF) to predict M2 macrophage infiltration in patients with serous ovarian cancer (SOC) is important for improving prognostic accuracy, identifying new therapeutic targets, and advancing personalized treatment approaches.





Methods

We downloaded data from 86 patients with SOC from The Cancer Genome Atlas (TCGA) and divided these patients into a training set and a validation set with a ratio of 8:2. In addition, tissue microarrays from 106 patients with SOC patients were included as an external validation set. HIF were recognized by deep multiple instance learning (MIL) to predict M2 macrophage infiltration via theResNet18 network in the training set. The final model was evaluated using the internal and external validation set.





Results

Using data acquired from the TCGA database, we applied univariate Cox analysis and determined that higher levels of M2 macrophage infiltration were associated with a poor prognosis (hazard ratio [HR]=6.8; 95% CI [confidence interval]: 1.6–28, P=0.0083). External validation revealed that M2 macrophage infiltration was an independent risk factor for the prognosis of patients with SOC (HR=3.986; 95% CI: 2.436–6.522; P<0.001). Next, we constructed four MIL strategies (Mean probability, Top-10 Mean, Top-100 Mean, and Maximum probability) to identify histopathological images that could predict M2 macrophage infiltration. The Mean Probability Method was the most suitable and was used to generate a HIF model with an AUC, recall rate, precision and F1 score of 0.7500, 0.6932, 0.600, 0.600, and 0.600, respectively.





Conclusions

Collectively, our findings indicated that M2 macrophage infiltration may increase prognostic prediction for SOC patients. Machine deep learning of pathological immunohistochemical images exhibited good potential for the direct prediction of M2 macrophage infiltration.





Keywords: serous ovarian cancer, histopathological image features, ResNet18, M2 macrophage infiltration, deep learning artificial intelligence




1 Introduction

Ovarian cancer (OC) is one of the most common gynecological cancers globally and the eighth leading cause of cancer-related death in women. OC accounted for approximately 3.7% of all cancer diagnoses and 4.7% of global deaths in 2020 (1). It is estimated that more than 150,000 OC-related deaths occur globally each year, and that approximately 12,740 of the US population will die from this malignancy by 2024 (2). Most cases (90%) of OC involve epithelial OC, a condition that can be divided into serous OC, mucinous OC, clear cell carcinoma, and endometrioid carcinoma; of these, the most common form is high-grade serous OC (SOC) (3). Due to the strong anatomical concealment of serous OC, most patients are diagnosed at an advanced stage of disease. The 5-year survival rate of patients with advanced OC remains low (4). Therefore, it is critical that we identify new prognostic characteristics for patients with SOC, improve individualized treatments, and promote the development of novel research.

A tumor is a highly complex system, composed predominantly of heterogeneous cancer cells, a variety of infiltrating immune cells, stromal cells, and a vascular structure, collectively referred to as a tumor microenvironment (TME), which can exert significantly effects on the occurrence, progression and metastasis of tumors and treatment responses (5). Macrophage polarization refers to the different functional states of macrophages in different immune microenvironments according to stimulation by different signals and cytokines. The most common polarization states are classical M1 and M2, which correspond to different immune responses and tissue repair processes, respectively. Typically, M1 macrophages are usually stimulated by pro-inflammatory cytokines (such as IFN-γ and TNF-α) and microbial products (such as LPS), which exert strong antibacterial and antiviral effects, and can promote the inflammatory response, mainly by producing a large amount of nitric oxide (NO), reactive oxygen species and cytokines (such as IL-1β and IL-6).

M2 macrophages are formed under the action of specific cytokines, such as IL-4 and IL-13, which are usually associated with tissue repair, and anti-inflammatory/immune regulation (6, 7). Some studies have shown that M2 macrophages support tumor growth and metastasis by secreting a variety of tumor-promoting factors, such as IL-10, TGF-β, and VEGF (8, 9). These cells not only promote angiogenesis and inhibit the immune response, but also enhance the invasiveness of tumor cells by remodeling the TME (10). In addition, M2 macrophages can destroy the basement membrane by secreting matrix metalloproteinases, thus helping tumor cells to invade the surrounding tissues (11). Recent studies have also shown that the polarization state of macrophages is not fixed, but has a high degree of plasticity and diversity. Even in different pathological environments, macrophages may exhibit a mixed phenotype of M1 and M2 types (10).

Based on the development of digital pathology and the advancement of computer algorithms, such as convolutional neural networks (CNN), fully convolutional networks, recurrent neural networks and generative adversarial networks, deep learning artificial intelligence is increasingly being applied in diagnostic disciplines based on image analysis, including pathology, ultrasound, radiology, ophthalmology and skin disease diagnosis (12). Following the introduction of full slide scanners in 1999, the application of artificial intelligence and computational methods in digital pathology has developed rapidly to digitally analyze full slide images. The creation of large-scale digital slide libraries, such as The Cancer Genome Atlas (TCGA), has promoted the substantive investigation of digital pathology and oncology by artificial intelligence (13). The ResNet18 network was first proposed by He et al. (14), which significantly improved the training effect and performance of deep networks by introducing a residual learning mechanism. The application of deep learning artificial intelligence in pathology helps us to overcome the limitations of subjective visual assessments by pathologists and integrate multiple measurements, including cells related to the tumor microenvironment (TME) for the precise treatment of tumors (15). Some studies have used machine learning to extract and identify pathological images for the diagnosis and classification of breast cancer (16). In another study, Javier et al. obtained automatic classification results for health, adenocarcinoma and squamous cell carcinoma based on the machine deep learning of lung histopathological images (17). These successful machine learning models provided a reference for us to introduce machine learning to investigate SOC. However, the integration of pathology into research involving the TME, which represents a nurturing ground for cancer, remains a largely uncharted domain. In this context, the focus on M2 macrophages, a specific subset of immune cells that represent a minor but significant fraction of the TME, is particularly lacking. These cells, despite their numerical minority, play an indispensable role in the immunosuppressive landscape of the TME and hold significant promise as therapeutic targets. To address this gap, we propose an approach that combines histopathological imaging for the analysis of M2 macrophages to enhance the predictive accuracy of prognosis for patients with SOC. This strategy promises to shed light on intricate dynamics within the TME and paves the way for more targeted and effective cancer therapies.

The purpose of this study was to investigate the effect of M2 macrophage polarization on the prognosis of patients with SOC, the prognostic value of histopathological image features (HIF), and the specific relationship between histopathology and M2 macrophage polarization. We analyzed data from the TCGA database and an external validation database, and demonstrated that M2 macrophage polarization represented an independent risk factor for SOC patients. In addition, the ResNet18 network was used to perform deep learning on the HIF to predict the level of M2 polarization in SOC patients. Finally, the prognostic performance was verified by internal and external validation sets to determine robustness and reliability.




2 Materials and methods



2.1 Sources and processing of data

Figure 1 depicts the processing of pathological images, the evaluation of infiltrating immune cells, and the establishment of models based upon the features of M2 macrophages. Data relating to cases from the TCGA data were divided into a modeling group and an internal verification group according to a ratio of 8:2. Step 2 used “CIBERSORT” (https://cibersort.stanford.edu/) to calculate the high and low infiltration of M2 macrophages. Step 1 used ResNet18 machine language to cut the Hematoxylin-Eosinstaining (HE) map from each case, identify characteristics of segmented images related to the high and low infiltration of M2, and perform repeated machine learning modeling. Step 3 involved internal and external data verification by identifying HE-segmented images to group cases with high and low infiltration of M2.

[image: Flowchart depicting a machine learning pipeline for pathology image analysis. Panel 1: Image segmentation and patch extraction for feature acquisition. Panel 2: Immune microenvironment calculation using extracted features. Panel 3: Multiple instance learning methods, including mean probability, top-10, top-100, and maximum probability, with test and training data. External validation through a receiver operating characteristic curve with external data.]
Figure 1 | The Schematic of features extraction and construction of M2 macrophage infiltration prediction model. 1. The histopathological images of SOC patients were segmented into sub-images of 224x224 pixels and processed with ResNet18 to extract histopathological image features. 2. The M2 macrophage infiltration was calculated by CIBERSORT. The prognosis of patients with M2 macrophage infiltration was analyzed by univariate analysis, and M2 macrophage infiltration was predicted by image features. 3. By integrating the image features in the TCGA training set, a prediction model was established, and the independent risk factors and survival analysis of patients with M2 macrophage infiltration were analyzed by univariate and multivariate analysis. The TCGA test set and external data were used to evaluate its predictive value.

Formalin-fixed paraffin embedded (FFPE) sections are the gold standard for the diagnosis of diseases. Compared with frozen sections, FFPE sections are clearer and more suitable for computer analysis. FFPE slice images from 86 SOC patients in The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) were obtained from The Cancer Imaging Archive (TCIA, http://cancerimagingarchive.net/). We also downloaded corresponding clinical feature data, gene expression and tumor immune microenvironment data from TCGA. Finally, 106 SOC patients with histopathological images and immune infiltration were used to predict the features of M2 macrophages. In addition, we used an SOC tissue microarray and obtained associated clinical features from Shanghai Zhuoli Biotech Company (Shanghai, China). This tissue microarray included 106 SOC patients who underwent surgical and pathological diagnosis between April 2008 and September 2014. Follow-up ended upon the death of a patient or on the 30th of July 2020. The study was approved by the ethics committee and received ethical approval (number: LLS M-15-01), and all patients provided informed consent.




2.2 Acquisition of histopathological imaging characteristics

Histopathological images in the TCGA database were in SVS format with extremely high resolution; consequently, these whole images could be used directly for feature acquisition. The ResNet18 model (Residual Network), a deep convolutional neural network widely used for image recognition tasks, was used to extract histopathological features from images. ResNet18 features 18 layers of depth, starting from a neural layer and four Res blocks. Each Res block contained two basic blocks and each basic block contained two convolutional layers and a final fully connected layer (1 + 4 × 4 + 1 = 18) (18) This was able to effectively extract important features from tissue images, including area, shape, intensity, granularity, texture and some complex measurement features, help pathologists make more accurate diagnoses and improve the efficiency of the diagnostic process. Key feature types of ResNet18 include: (1) Low-Level Features (Early Convolutional Layers) maninly contains (a) Layer 1 edge/texture primitive detection is to detect basic gradients, edges, and local textural patterns (e.g. nuclear membrane boundaries, cytoplasmic granularity). (b) Layer 2-3 intermediate textural complexity: captures co-occurrence of nuclei and stromal textures via larger receptive fields. Haralick-like features (contrast, entropy) emerge implicitly to quantify tumor-stroma interface irregularity. (2) High-level features (deep layers):Layer 4 or higher layer is to Identify morphological constellations: (a) Macrophage-specific patterns:”Clockface” chromatin patterns in macrophage nuclei and spatial clustering of small, round nuclei within fibrotic stroma. (b) Immune-stromal interaction features: lymphocyte exclusion zones around macrophage aggregates and collagen alignment adjacent to M2-rich regions.




2.3 Assessment of the immune microenvironment

Next, we used the CIBERSORT algorithm in R software 4.3.1 and the transcriptome profile of 86 patients with SOC in the TCGA database to calculate the proportion of different immune cells, especially the polarization and infiltration of M2 macrophages. The CIBERSORT algorithm (19) uses the principle of linear support vector regression to deconvolute the expression matrix of immune cell subtypes to estimate the abundance of immune cells. Using the calculated mean proportion of M2 macrophage infiltration as the boundary, we divided the 86 patients with SOC into a high M2 macrophage infiltration group and a low M2 macrophage infiltration group.

CD163 is a specific marker of M2 macrophages; therefore, using the external validation data, we performed immunohistochemistry on tissue microarrays prepared from 106 patients with SOC. Immunohistochemistry was performed by dewaxing in xylene at room temperature and hydration in a graded series of ethanol concentrations. Antigen retrieval was applied by microwave heating at 96°C to 98°C with antigen retrieval solution (sodium citrate buffer). Endogenous peroxidase in the tissue was inactivated by incubation with 3% hydrogen peroxide for 10 min. Tissue sections were incubated with blocking solution to block non-specific sites, and then incubated overnight at 4°C with anti-CD163 primary antibody (Abcam, ab182422). After washing with PBS, we added anti-rabbit IgG conjugated with horseradish peroxidase (HRP) and incubated at room temperature for 30 minutes. Finally, after washing with PBS, the sections were stained with 3’-diaminobenzidine (DAB) reagent. All sections were re-stained with hematoxylin, and sealed for microscopic examination after dehydration. The positive quantitative analysis of CD163 staining was performed by Image J software (Color Deconvolution), and mean values were calculated to divide the 106 patients with SOC into high and low infiltration groups.




2.4 Statistical analysis



2.4.1 Data preprocessing

First, we attempted to use immunohistochemical image features to predict M2 macrophage infiltration. After matching the calculated M2 macrophage infiltration group with immunohistochemical images, we excluded 21 SOC patients without M2 macrophage infiltration and included the remaining 65 SOC patients in our final analysis. First, we set the environment, checked the need to use CUDA (Compute Unified Device Architecture), and gave priority to the use of GPU (Central Processing Unit) to accelerate training. This is a common practice in deep learning, because GPU is more efficient than CPU in processing parallel operations. Next, we used the Python “HE_Patches_Dataset” to create the dataset, and the “torch.utils.data.Dataset” to process the image file, from which the path and label of the image were read from the CSV file. All patch images were uniformly scaled to 224 × 224 pixels, converted to Tensor format, and normalized to match the input requirements of the pre-trained ResNet18 model. Next, we used “train_test_split” in Python to divide the dataset into a training set and a validation set, with a ratio of 80% training set and 20% validation set. Then, “DataLoader” in Python was used for data batch processing, and “shuffle=True” was applied to the training set to disrupt the data, which was helpful for model learning.




2.4.2 Model construction

Next, the model was initialized, and the pre-trained ResNet18 model was applied. The pre-trained model accelerated the training process and improved model performance. The output feature number of the last fully connected layer was modified to two to adapt to the binary classification task. Further training settings included the “cross entropy loss function” for classification problems. Using the Stochastic Gradient Descent (SGD) optimizer with momentum, the learning rate was set to 0.001 and the momentum was 0.9. Momentum helped to accelerate the convergence of SGD in the relevant direction and suppress oscillations. The model was trained for 25 epochs. At each epoch, we calculated the cumulative loss and accuracy, and the model was evaluated with the validation set. After each epoch, the best model was saved by comparing accuracy with the validation set, which prevented model overfitting. The final model was saved only when the highest accuracy was achieved with the validation set.




2.4.3 Evaluation and optimization of the model

The accuracy, recall rate, precision, F1 score and Area Under the Receiver Operating Characteristic Curve (AUC-ROC) values were used to evaluate the performance of the model, and accuracy was used as the main index. In the training process, the accuracy of the validation set was continuously compared to ensure the generalization ability of the model on the unseen data. Grad-CAM (20) was used to generate a heat map to visualize the area of interest in the model. In multiple instance learning (MIL), the diagnosis of patients was usually based on information extracted from multiple tissue samples or a “patch.” Here, each patient could be considered as a “bag,” and each patch was an “instance” in the bag. Based on the prediction of these examples, we used four methods (Mean Probability, Top-10 Mean, Top-100 Mean and Maximum Probability) for preliminary evaluation, and then selected the best strategy to determine the overall prediction results for each patient.






3 Results



3.1 Determination of immune infiltration

First, we used the CIBERSORT algorithm to calculate immune cell infiltration in SOC patients
extracted from the TCGA database (Supplementary Table 1). The immune cell types included native B cells, memory B cells, plasma cells, CD8 T cells, naïve CD4 T cells, memory resting CD4 cells, CD4 memory activated T cells, follicular helper T cells, regulatory Tregs T cells, gamma delta T cells, resting NK cells, activated NK cells, monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, activated dendritic cells, resting mast cells, activated mast cells, eosinophils and neutrophils. The overall composition of immune cell infiltration is shown in Figure 2. Compared to other cells, the proportion of CD4 memory resting T cells was the highest, followed by M2 macrophages. Univariate Cox regression analysis was used to evaluate the effect of macrophages M1 and M2 on the overall prognosis of patients with SOC. Analysis revealed that a high proportion of M1 macrophages was associated with improved prognosis (HR=0.018, 95% CI: 0.0014–0.25, P=0.0028) and high level of M2 macrophages was related to poor prognosis (hazard ratio [HR]=6.8; 95% CI [confidence interval]: 1.6-28; P=0.0083).

[image: Box plot depicting the composition of various cell types within the tumor microenvironment (TME). The x-axis lists different cell types, including B cells, T cells, NK cells, macrophages, dendritic cells, mast cells, and others. The y-axis represents cell composition, ranging from 0.0 to 0.6. Each box plot shows the distribution, with black dots indicating outliers.]
Figure 2 | The composition and corresponding proportion of immune microenvironment in SOC patients in TCGA database.




3.2 Deep learning modeling of immunohistochemical images

Next, we attempted to directly detect the histopathological features of SOC by using CNN to predict M2 macrophage infiltration, and downloaded scanned images of tumor pathology from TCGA for further data preprocessing. These tissue pathological sections were cut into small images of 224 × 224 pixels, and each image was standardized using specific means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225) to match the input format of ResNet18. In order to ensure that each patch had a complete organizational structure and reduce the proportion of background, we calculated the color value of each patch. Since the background was white, the lower the color value of the patch map, the greater the background. Therefore, we set the color threshold to reduce the background map of 95% patches, and extract the next feature of the remaining patch (Figure 3). Therefore, the acquired images were used for in-depth learning and to train CNN. Then, we divided the SOC patients into an 80% training set and a 20% validation set, and used the last three blocks (18 layers) of ResNet18 to train the images.

[image: Histological slide image is divided into a grid, isolating tumor and background areas. These samples are processed using the ResNet18 model, illustrated with a flowchart detailing convolutional and pooling layers.]
Figure 3 | Background reduction and features extraction from patches.




3.3 Accuracy and robustness of the model

Grad-CAM was able to accurately identify and highlight which regions of input images were important for the prediction of high and low M2 macrophage infiltration for the network. This method utilized the activation of the last convolutional layer to generate class activation mapping, retained the architecture of the deep model, and provided visual interpretation without affecting accuracy. The left side of Figure 4A shows the HE staining images after segmentation, while the right side shows the Grad-CAM images, in which the red and yellow areas of the HE image were important for the prediction of the network’s classification of M2 polarization infiltration. Grad-CAM decoded the importance of each feature map for the classification of M2 polarization infiltration by analyzing the gradient in the last convolution layer.

[image: Panel A: Two pairs of images featuring original histological images alongside their corresponding Grad-CAM visualizations. Panels B to E: Four Receiver Operating Characteristic (ROC) curves. Panel B has a green line with an area of 0.7500, Panel C a blue line with 0.7250, Panel D another blue line with 0.7250, and Panel E a red line with 0.5500. The ROC curves display true positive rate against false positive rate, with dashed diagonal lines indicating random chance.]
Figure 4 | Validation of the model using four multiple instance learning strategies for M2 macrophage infiltration prediction. (A) Segmented HE Staining and Grad-CAM Images for extracting and predicting M2 macrophage infiltration. (B-E) The AUC area with Mean probability, Top-10 mean, Top-100 mean, and Maximum probability strategy in the TCGA test set.

For pathological application, four MIL methods (Mean Probability, Top-10 Mean, Top-100 Mean, and Maximum Probability) were used to predict a patient’s disease status based on the features extracted from multiple pathological sections. For example, we were able to classify each image based on specific features (such as cell morphology and tissue structure) extracted from each image, and used one of the MIL strategies to synthesize this information, and finally obtain an overall diagnosis of the patient. The Mean Probability Method assumes that each instance in the bag is equally important, and the final prediction of the bag is determined by calculating the mean of the prediction probabilities for all instances in the bag. When we used the Mean Probability strategy, the histopathological image features (HIF) model exhibited a good AUC of 0.7500; accuracy, recall rate, precision and F1 score were 0.6932, 0.600, 0.600, and 0.600, respectively (Figure 4B). The Top-10 Mean Method only considered the predictions of the 10 most likely instances in the bag and averaged these probabilities. This method is more diagnostically valuable for some scenarios (such as abnormal tissue samples) than for other scenarios. In this study, the Top-10 Mean was also used for the HIF model with an AUC, accuracy, recall rate, precision and F1 score of 0.7250, 0.3846, 1.000, 0.3846, and 0.5556, respectively (Figure 4C). Similar to the Top-10 Mean model, the Top-100 Mean method considered more instances (100) when selecting instances for averaging, which may be more appropriate with a large number of instances. Using the Top-100 Mean Method for the HIF model, the AUC, accuracy, recall rate, precision, and F1 score of the HIF model were 0.7250, 0.4615, 0.8000, 0.4000, and 0.5333, respectively (Figure 4D). The Max Probability Method takes the prediction of the instance with the highest probability in the bag as the prediction for the whole bag. When employing the Max Probability Method for the HIF model, the AUC, accuracy, recall rate, precision and F1 score were 0.5500, 0.3846, 1.0000, 0.3846, and 0.5556, respectively (Figure 4E). Therefore, after comprehensive evaluation, we chose the Mean Probability Method to apply the MIL as this was more suitable for our specific samples.




3.4 External validation of the model

The left side of Figure 5A shows the HE staining image after cutting in the verification set, while the right side shows the corresponding Grad-CAM image. By performing clinical survival analysis, we found that the survival of patients with a high infiltration level of M2 macrophages was poor (Figure 5B). Univariate and multivariate Cox analysis also demonstrated that M2 macrophage infiltration was an independent risk factor affecting the prognosis of patients with OC (HR=3.986; 95% CI: 2.436–6.522; P<0.001) (see Figure 6 for further details). When applying the Mean Probability Method, the corresponding AUC was 0.5534 (Figure 5C).

[image: A set of images is displayed in three panels. Panel A shows two original histological images of tissues alongside corresponding Grad-CAM visualizations highlighting important areas in yellow to red tones. Panel B is a Kaplan-Meier survival curve comparing low and high M2 macrophage infiltration, showing decreased survival with high infiltration. Panel C presents a Receiver Operating Characteristic (ROC) curve with an area under the curve of 0.5534, indicating the model's performance.]
Figure 5 | The verification of deep machine learning model in external data. (A) Segmented HE Staining and Grad-CAM Images for predicting M2 macrophage infiltration. (B) Kaplan-Meier method was used to analyze the survival analysis of high and low infiltration groups of M2 macrophage in the external data. (C) The AUC area with Mean probability method in the external data.

[image: Statistical table comparing univariate and multivariate analyses of various clinical variables. Variables include age, tumor size, FIGO stage, grade, pathological types, lymphatic metastasis, CEA, CA125, CA199, ER, PR, and CD163. Each variable lists hazard ratio (HR) with confidence intervals, and p-values. Significant findings in univariate analysis include age, CA125, and CD163. In multivariate analysis, CD163 remains significant. Significance is noted by asterisks for p-values less than 0.05.]
Figure 6 | Univariate and multivariate COX analysis of the relationship between clinical characteristics and overall survival was performed in external validation data.





4 Discussion

In the present study, we found that the level of M2 macrophage polarization was an independent risk factor for patients in SOC patients, as determined by univariate and multivariate Cox analysis. Next, we used the ResNet18 network to learn pathological images from SOC patients, and extracted a series of important image features. These image features were then used by machine learning to identify the level of M2 macrophage polarization in tumors. Finally, we constructed a model to determine the level of M2 polarization with image feature prediction by machine training, and used internal and external validation groups to verify the predictive effect of the model, further demonstrating that the constructed model had good accuracy and robustness.

The existence of M2 macrophages is closely related to the malignant characteristics of SOC (21). M2 macrophages have been shown to enhance tumor angiogenesis and immune escape mechanisms by secreting pro-tumor factors, which are considered to be key factors for increased cancer invasiveness and a poor prognosis (10, 22, 23). Emerging pan-cancer studies highlight mechanisms that reinforce the prognostic significance of M2 macrophages in SOC. EPHB2, identified as a predictive biomarker for immunotherapy response and survival across cancers (24), may modulate M2 macrophage polarization, linking their immunosuppressive functions to therapeutic resistance. Similarly, strategies targeting T cell exhaustion (25) underscore the role of M2 macrophages in fostering immune evasion. LMNB2, a diagnostic and prognostic biomarker in lung cancer (26), correlates with genomic instability and proliferation potentially amplified by M2-derived cytokines. Furthermore, multi-omics analyses of malignant cell-associated ligand–receptor networks (27) reveal crosstalk between tumor cells and stromal components, suggesting M2 macrophages may drive SOC progression through similar paracrine signaling. By transcending traditional markers, this integrative approach highlights novel therapeutic targets and reinforces M2 macrophages as pivotal prognostic determinants. In this study, both the internal data set and the external data set proved that the polarization level of M2 macrophages was associated with the prognosis of SOC patients; the higher the level, the worse the prognosis. Although the findings of previous studies were consistent with the results generated by our study, few studies have verified this method as an independent prognostic indicator by analyzing large-scale databases and applying efficient image analysis techniques. Our study not only verified the role of M2 macrophages in SOC, but also provided a quantitative basis for the prognostic evaluation of M2 macrophages for the first time by applying pathological image analysis facilitated by artificial intelligence.

The gold standard for the diagnosis and treatment of cancer patients is based on the pathological diagnosis of tissues. Histopathological images contain information relating to the morphological characteristics of tumor cells and their microenvironment, and may represent important biomarkers for the survival outcomes of cancer patients (28). However, at present, pathological examination reports are diagnosed by multiple pathologists based on their experience, and this type of subjective evaluation often ignores the large quantity of information provided by pathological sections. With the continual improvement of computer algorithms, deep learning machines have been developed to assist feature extraction from images of pathological sections, and these features have been shown to be related to the prognosis of tumors (29–31). Additionally, the automatic extraction of image features by a machine not only improves efficiency and reduces costs, but also reduces the occurrence of misdiagnosis and missed diagnosis. Notably, cutting-edge advances underscore the transformative potential of converging machine learning with multi-omics analytics. Ye et al. engineered the iMLGAM framework that synergistically integrates genetic algorithms and machine learning to decode tumor microenvironment dynamics from multi-omics data, yielding critical insights for predicting immunotherapy responses across malignancies (32). Machine deep learning has also been used to investigate the pathology of SOC. In a previous study, Boehm et al. collected multimodal data sets from 444 patients with primary advanced high-grade SOC, and performed risk stratification for patients by integrating histopathological, radiological and clinical genomics machine learning models (33). In another study, Zeng et al. established models for BRCA1 mutation, BRCA2 mutation, high microsatellite instability, microsatellite stability, and different molecular subtypes (proliferative, differentiated, immunoreactive, and interstitial) by performing machine learning on pathological tissue images held by the TCGA database (34). These previous studies mainly focused on the pathological features of SOC, including tissue structure, tumor grade, and molecular subtype. However, few deep learning studies have focused on immune cells in combination with pathology.

Second, previous studies (35, 36) have focused on the role of M2 macrophages in SOC and their relationship with the TME and patient prognosis. The existing literature generally utilized immunohistochemistry, flow cytometry, and other methods to quantitatively analyze macrophage infiltration. Zheng et al. (37) used single cell analysis to analyze the significance of the density, spatial distribution and gene expression of tumor-associated macrophage phenotypes as a prognostic factor for the overall survival of patients with lung cancer. However, most of these studies relied on traditional immunological analysis methods, and there was a clear lack of research on the integration of HIF and immunological data. In terms of model selection, the present study utilized four different MIL strategies to process histopathological images. Compared with the traditional method used to analyze single image features, the MIL method can effectively process image data containing complex information, and then select and fuse features through different strategies, thus improving the generalization ability and predictive performance of the model. Although previous studies have mostly utilized deep learning networks, such as CNN (12, 38) for image classification, the MIL strategy applied in this study was able to better capture the distribution pattern of M2 macrophages in the TME by integrating multiple local instance information, thus providing a new method for the precision clinical management of OC.

Although this study has achieved important results, there are also some limitations that need to be considered. First, the limited sample size may have influenced the universality of our findings. The two cohorts in this study provided a relatively small cohort, and may have influenced the performance of the model. Notably, in the verification queue, the accuracy and stability of the machine learning model were limited. The small sample size may have led to a higher degree data fitting to the model, thus affecting its generalization ability in new and untested data. This phenomenon was particularly significant in the validation cohort, which may manifest manifested as the overfitting of the model to specific data features, resulting in a decline in predictive performance. On the contrary, the validation data for M2 polarization quantification was derived from immunohistochemistry, which may have differed from the sequencing data in modeling. Second, this study mainly focused on the number and distribution of M2 macrophages, but did not investigate the specific functional mechanism involved. For example, we still need to investigate how M2 macrophages might affect the biological behavior of tumors through specific signaling pathways. This type of research will help to reveal the specific role of M2 macrophages in the TME, thus providing a theoretical basis for the development of targeted therapy. Moreover, while we utilized HIF to elucidate the role of M2 macrophages within the TME, it is crucial to acknowledge the complexity of the TME, a system that is influenced by a multitude of factors that extend well beyond the scope of M2 macrophages alone. The TME comprises a dynamic interplay of various cell types, signaling molecules, and metabolic pathways, all of which contribute to the heterogeneity and complexity of the tumor niche. Therefore, it is imperative for future research to place a strong emphasis on the comprehensive diversity of the TME. Such an approach is essential if we are to gain a more comprehensive understanding of how the TME influences tumor progression and may lead to the identification of novel therapeutic targets. Finally, The external dataset (TCGA) differs from our internal cohort in demographic and clinical characteristics, such as age distribution, cancer stage, and treatment protocols. These discrepancies may introduce unmeasured confounding effects, altering risk associations. To improve clinical applicability, we propose that future iterations of the model incorporate treatment-related covariates and validate it in prospectively annotated, multi-institutional cohorts with standardized therapeutic protocols. However, despite this limitation, our current findings still have important clinical and scientific value. The integration of histopathological images and immunological analysis provided a new concept to comprehensively investigate the immune characteristics of the TME, especially the role of M2 macrophages. This method not only provides strong support for the prognostic prediction of SOC, but also provides a reference for the analysis of immunological characteristics of other tumor types. Although the small sample size may have limited the generalization of the model, the collection and analysis of high-quality data ensured the reliability and rigor of our results. Our findings provide a solid foundation for future research; once the sample size has been expanded, the accuracy and stability of the model may be further improved.





Conclusion

In this study, we demonstrated that the level of M2 macrophages was an independent risk factor for the prognosis of patients with SOC. In addition, we confirmed the potential ability of features extracted from histopathological images to predict the polarization level of M2 macrophages in patients with SOC. Our findings are expected to help pathologists and clinicians to evaluate the prognosis of SOC patients and provide valuable reference for individualized treatment.
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Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
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1 Introduction

Although there are many significant cancer treatments, many issues reduce the sensitivity and responsiveness toward chemotherapeutic drugs. There are many mechanisms for controlling cancer cell resistance and emergence of multidrug resistance, including overexpression of ABC transporters and p-glycoproteins (1). High expression levels of ABC transporters require ATP to efflux chemotherapeutic drugs from cells (2). P-glycoprotein (P-gp) is an efflux protein that is the main cause of Multidrug resistance (MDR) (3, 4). Juliano et coworkers observed P-gp expression on the surface of ovarian cells (5). ABCB1 encodes P‐gp, which consists of four domains: two nucleotide-binding domains and two transmembrane domains (6). P-gp is expressed at high levels on the surfaces of several cancers, including lung cancer, breast cancer, colon cancer, osteosarcoma, and hepatocellular carcinoma (7–9;MA et al., 2019;10, 11). P-gp transporters efflux chemotherapeutic agents from the cell, resulting in cancer cell resistance (12, 13). The chemotherapeutic substrates for P-gp transporters include paclitaxel, 5−fluorouracil, doxorubicin, and 5−fluorouracil (14, 15). Several studies have shown that lncRNAs are strongly associated with the emergence of multidrug resistance in several cancer cell types (16). Although lncRNA transcripts are > 200 nucleotides long, no protein-coding potential has been identified (17). Disturbances in lncRNA levels lead to chemoresistance in cancer cells (18, 19). lncRNAs regulate drug transporters in cancer cells, such as MALAT1 and ANRIL which control the expression of Multidrug resistance protein 1 (MRP1) and Multidrug resistance gene 1 (MDR1) (20). Both in vivo and in vitro studies have shown that MALAT1 is associated with the development of cisplatin-resistant A549 lung cancer cells. High expression levels of ANRIL induce cisplatin-resistant and 5-fluorouracil-resistant gastric cancer cells. In this context, inhibition of P-gp transporter expression decreases multidrug resistance and increases the responsiveness of resistant cancer cells toward chemotherapeutic drugs. Natural products can modulate cancer cell resistance by inhibiting P-gp transporter expression. P-glycoprotein is one of the chemoresistance mechanisms in cancer cells that causes long-term chemotherapeutic failure. lncRNAs, such as MALAT1, ANRIL, and ODRUL, are considered inducers of p-glycoprotein expression. Targeting P-gp expression is a significant strategy to overcome chemotherapeutic resistance and increase cancer cell sensitivity towards drugs. Because natural products are extracted from natural sources, they are considered favorable P-glycoprotein inhibitors without side effects. In this review, we describe several types of natural products that can increase the sensitivity of resistant cancer cells, which was confirmed by in silico molecular docking. In addition, this review describes the mechanisms of cancer drug resistance, different types of lncRNAs, and their relationship to chemotherapeutic resistance. This review presents an important step in the strategy to increase the responsiveness of resistant cancer cells; however, future in vitro and in vivo experiments are needed to confirm our preliminary docking results.




2 Mechanisms of cancer drug resistance

Drug resistance can be classified into two classes: primary and secondary. Primary resistance appears before the exposure of cancer cells to chemotherapy. Secondary resistance arises from adaptation of cancer cells to chemotherapy. Drug resistance commonly results from genomic alteration. There are different resistance mechanisms, including p-efflux transporters, inhibition of drug entry, and EMT, as shown in Figure 1 (21–24).
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Figure 1 | Mechanisms of cancer cell resistance.



2.1 Tumor heterogeneity

Tumor heterogeneity is a significant factor underlying resistance to cancer drugs and is considered a fundamental feature of tumor progression and adaptation to different conditions. The evolutionary power of tumors is mainly linked to heterogeneity; colonies with more robust heterogeneity are favored during cancer progression and become dominant (25). Tumor heterogeneity can be attributed to both intrinsic and extrinsic factors. Generally, intrinsic factors are cellular in origin and can accumulate due to alterations in the levels of DNA, RNA, protein, epigenetics, and signal transduction. Genetic alterations include mutations, gene amplification, chromosomal aberrations, and miRNA gene changes. Alterations in transcriptomics, proteomics, and epigenetics could also originate from DNA alterations, which could modulate the cell cycle and its overall regulation (26). Additionally, modification of cancer stem cells (CSCs) supports heterogeneity, tumor plasticity, and resistance (27). Downregulation of pro-apoptotic molecules and upregulation of anti-apoptotic players participate in heterogeneity-associated resistance (28). Moreover, differences in signaling contribute to heterogeneity in cancer drug resistance heterogeneity (29). Tumors could possess a high level of stochasticity due to de novo differences in enzymatic signal transduction cascades that promote biological noise and subsequently develop feedback inhibition motifs to decrease biological noise (30).

Conversely, extrinsic or microenvironmental factors can promote heterogeneity and resistance through spatial differences in cells, blood supply, pH, hypoxia, and paracrine signaling (31, 32). Additionally, the vascular network and contact with cancer cells are arbitrary, resulting in fluctuations in the nutrient and metabolic status of different cancer cells (33).




2.2 Tumor burden and physical barriers

There is a significant association between tumor size and tumor resistance, and tumor size could be a determinant of tumor capacity to develop drug resistance mutations. Tumor growth and response to therapy have an inverse relationship with the growth rate (34). However, cancers can reveal spatial gradients that limit the blood supply and oxygen enrichment, creating an isolated hypoxic pro-tumorigenic environment with low contact with chemotherapy (34).




2.3 Tumor microenvironment

Tumor microenvironment (TME) interactions with tumor cells can aid in resistance. Tumors are not fully homogeneous but include different classes of cells and extracellular matrix (ECM), such as immune and inflammatory cells, fibroblast blood vessels, multiple nutrients, and signaling molecules (35). TME could be attributed to the pharmacological outcomes that force the cells to adapt to chemotherapy. One TME factor is pH; tumor cells typically exhibit a reversed pH gradient, with intracellular pH higher than extracellular pH, which promotes resistance to chemotherapy (36). Furthermore, alkaline pH modulates ion trapping, reduces drug efficacy, and helps cancer cells avoid apoptosis, promoting cell proliferation, tumor aggressiveness, invasion, and resistance to the immune response (37). Cycles of hypoxia, reoxygenation, and lack of O2 produce reactive oxygen species (ROS) that are associated with heterogeneity and resistance (38). In addition, EMT and CSCs have carcinogenic effects by helping cancer cells avoid apoptosis (39). Additionally, resistance could be attributed to TME attenuation of the immune clearance of cancer cells, and the TME could enhance resistance by inducing paracrine growth factors to mediate cancer cell growth (40). Chemotherapy pressure forces cells to possess a robust phenotype against stress (41). In addition, external pressure can modulate the expression of anti-apoptotic markers and epithelial-to-mesenchymal transition (EMT).




2.4 Cancer stem cells

The presence of stem cells in cancer tissues is linked to the resistance of many cancers, such as a long lifetime, high expression of drug exporters, elevated DNA repair mechanisms, and attenuated apoptosis (42). Stem-cell-dependent resistance is generally dependent on EMT machinery (43).




2.5 EMT

The EMT process is distinguished by the loss of both cell-cell contacts and apico–basal polarity associated with epithelial cells, ultimately acquiring mesenchymal features (44). The EMT program is mainly initiated by TME paracrine signaling by fibroblasts, macrophages, or immunocytes (44). EMT permits cancer cells to possess the ability to resist anticancer drugs and avoid apoptosis. EMT is characterized by elevation of transforming growth factor-beta (TGF-β), which significantly aids in resistance (45). EMT-linked transcription factors, including Twist1, Snail, Slug, ZEB, and FOXC2, are associated with drug resistance in cancer (46). These transcription factors support resistance by promoting drug efflux, such as ABC transporters, in addition to avoiding apoptosis via an immune response that shares similarities with the resistance profile of stem cancer cells (47–49). The EMT also has the capacity to self-renew and escape apoptosis. EMT is the initial step in escape from neighboring tissues and subsequent metastasis (50).




2.6 Drug manipulation

Drug efflux machinery, such as ABC transporter and efflux pump P-glycoprotein (P-gp), are enhanced through EMT, stem cells, miRNAs, and as a response to pharmaceutical pressure (51). Generally, drug uptake into cells occurs through diffusion through the plasma membrane (PM), transporter activity, and endocytosis. During cancer development, alterations are accompanied by changes in the lipid composition of the PM, such as phosphatidylserine (PS). In cancer cells, PS is exposed to an extracellular environment opposite to normal PM, which gives the cell more negative charge-altering drug entry (52, 53). Additionally, the attenuated pH of the extracellular media of cancer cells affects the ionization status of drugs and their entry (54). Drug entry is also dependent on several transporters called carriers (SLC), such as OATP1B3 and OCT6, which were found to be attenuated during treatment with doxorubicin and cisplatin (55). Moreover, elevated rigidity of endosomes affects the endocytosis process, thereby affecting drug entry (56, 57). In addition, alterations in drug targets, such as protein mutations or expression aberrations, suppress the robustness of targeted therapy. For instance, a missense variant in the epidermal growth factor receptor (EGFR) subsequently impairs the binding of gefitinib/erlotinib to the kinase (58).




2.7 Epigenetic alterations

Epigenetic modifications include methylation, histone modifications, and non-coding RNAs disturbances (59). Oncogene promoters can be demethylated and subsequently gene expression is elevated, as observed in several genes, including ID4, ERp29/MGMT, ETS-1,

and miR-663, which are involved in breast cancer resistance against several chemotherapeutics (60, 61). Similarly, the MDR1 and PD-L1/DNMT1 axes are hypomethylated in HCC cells treated with Doxorubicin and sorafenib, respectively (62). However, some gene promoters are hypermethylated, causing attenuation of gene expression and subsequent resistance, such as TGBI and ER-α, in breast cancer when Trastuzumab and Antiestrogen are administered, respectively (63, 64). Moreover, target genes and export pump functions can be enhanced by histone demethylation and acetylation (65). Furthermore, miRNA alterations that affect gene expression are involved in drug cancer resistance. For instance, miR-15b promotes resistance to cisplatin by targeting PEBP4- and RKIP-mediated EMT, similar to miR-27a (66). In addition, lncRNAs are overexpressed and promote proteins related to cancer drug resistance (67).




2.8 DNA damage repair

The DNA damage repair (DDR) machinery is controlled by several genes that are enhanced during cancer therapy, leading to resistance. Thus, impairment of the DDR can increase pharmaceutical sensitivity (68). O-6-Methylguanine-DNA Methyltransferase (MGMT) is responsible for the clearance of alkyl adducts from the O6 position of guanine; inactivation of this machinery was found to be a therapeutic target for sensitizing cells to O6-alkylating agents (69). DNA-dependent protein kinase (DNA-PK) is part of the double-strand break repair machinery (DSBs), and inhibition of this mechanism could promote radio/chemosensitivity of cancer cells (70).




2.9 Cell cycle

Irreversible cell arrest “senescence” could be provoked by several factors, including oncogenic genetic alterations, telomere erosion, and DNA damage linked to pharmaceutical therapy. However, the surviving cell populations may be more vigorous and highly proliferative (71). However, some cancer cells evade irreversible cell arrest and “senescence” by modifying apoptotic pathways to promote chemoresistance (72).




2.10 Energy alterations

Cancer cells develop characteristic metabolic phenotypes, especially glycolysis, known as the Warburg effect, which allows cancer cells to possess significantly higher intracellular ATP levels than normal cells of the same origin (73). Interestingly, cancer cell chemoresistance is correlated with ATP levels, and attenuation can sensitize cells (74). Increased cytosolic ATP levels are accompanied by elevated mitochondrial ATP levels in cancer- resistant cells. This phenomenon promotes drug efflux through ABC transporters, which in turn increases drug resistance (75). In contrast, the presence of extracellular ATP (eATP) in tumor cells is remarkably higher than that in normal cells, which is attributed to the elevated ATP produced from apoptosis and autophagy during therapy (76). Firstly, eATP can be transported to cells to promote resistance, as discussed earlier. Additionally, eATP signaling can promote EMT, cell growth, survival, and proliferation (77).





3 Drug efflux variations

49 of ATP-binding cassette transporters efflux chemical drugs from cancer cells, resulting in multidrug resistance (MDR). P-glycoprotein (P-gp), multi-drug-resistant associate protein (MRP), and adenosine triphosphate-binding cassette superfamily G member 2 (ABCG2) are the most common efflux transporters in ovarian and breast cancers (78). It has been observed that high expression levels of P-gp transporters in colorectal cancer and neuroblastoma lead to poor prognosis (79). P-gp transporters are encoded by the gene (MDR1) during the transformation of normal tissues into neoplastic tissues (80). Downstream receptors and proteins GTPase H-Ras, Mitogen-activated protein kinase 1/2 (MEK1/2), and Raf- 1 are involved in the mitogen-activated protein kinase (MAPK) pathway associated with high P-gp expression levels. On the other hand, Katayama, Imai, and their co-workers observed that inhibition of the extracellular signal-regulated kinase (ERK) pathway downregulates the expression level of P-gp (81, 82).




4 Effect of P-glycoprotein in tumor immunity

The high expression level of P-gp in immune cells induces their activation, modulation of their activity, and the release of cytokines. In the peripheral circulating system, the number of monocytes is very low, on the other hand, it increases in tissue tumor-infiltrating macrophages (83). The expression of P-gp in dendritic cells depends on its activation with a professional antigen (84, 85). Lloberas and his co-workers observed that using Valspodar to block P-gp prevented the maturation of dendritic cells and their activation markers CD80 and CD40 (85). Natural killer (NK (cells have a high P-gp expression level. There is a strong relationship between P-gp expression and the cytotoxic effects of NK. The high expression level of P-gp downregulates the cytotoxicity of NK cells by increasing the binding of Fas-mediated (Fas/FasL) P-gp+ NK cells to target cells. This triggers apoptosis of target cells by inducing the release of secretory granules with an inflammatory cytotoxic effect (86). In adaptive immunity, individual cell types determine the role of p-g expression. For example, in lymph nodes, the migration and transitional phenotype of B cells depends on the expression level of P-gp (87, 88). In CD4+T cells, Th1 and Th17 are effectors of T cells, and their inflammatory effect is associated with the expression level of P-gp. In contrast, the anti-inflammatory effect of T regulatory cells (Treg) limits the expression level of P-gp (89, 90). Kooij and his co-workers declared that memory (IL18Rα+CD161+CD62Llo) phenotype in CD8+T cells determines the expression level of P-gp (91). Bidirectional responses of P-gp expression were observed in CD8+ memory T cells in mucosal cells. In mucosal cells, P-gp normally effluxes xenobiotic toxins out of the cell; however, if a normal microbiome is distributed, this leads to enhanced effector responses and causes the emergence of autoimmune diseases such as Crohn’s disease. In acute myeloid leukemia, immune cells, including follicular lymphoma and B-cell lymphoma, boost P-gp expression levels, leading to chemotherapeutic resistance (92, 93). High MAP kinase/ERK signaling is associated with the induction of P-gp expression, which has a significant role in resistant myeloid leukemia (94). Ling et co-workers observed high P-gp expression levels in CD8+T cells derived from human colorectal cancer (95). In addition, chemoresistance in AML patients results from long-term chemotherapy and is correlated with the expression of CD4+CD161+P-gp+ T cells (96). On the other hand, Th17 and Th1 CD4+T-helper cells have been observed to trigger cytokine secretion, such as TNFα, and IL-17 which have anti-cancer activity (97). In this context, breast cancer cells have CD4+T-cells (CD4+CD73+T cells) that express P-gp and enhance the secretion of inflammatory and anticancer cytokines (98, 99). There is a conflicting role for P-gp in cancer cells, which is expressed in the pro-tumor effect of MΦ2-macrophage and the anti-cancer effect of NK-cell and Th17/CD4+T cells. Therefore, it is important to study the role of P-gp in immune cells.




5 lncRNAs related to p-glycoprotein

Several studies have shown that lncRNAs play a significant role in increasing the expression levels of P-gp transporters and inducing multidrug, as shown in Figure 2. ODRUL was observed to be highly expressed in osteosarcoma cell lines. The high expression level of ODRUL is related to the induction of ABCB1 gene and results in the emergence of doxorubicin resistance in osteosarcoma (100). Knockdown of the expression level of ODRUL leads to a decrease in the expression level of ABCB1 gene and improves the responsiveness of osteosarcoma toward doxorubicin (100). In addition, high expression levels of lncRNA HOTTIP have been observed in resistant pancreatic ductal adenocarcinoma (PDAC) (101). HOTTIP was associated with gemcitabine-resistant PDAC cells. In vitro and in vivo studies showed that HOTTIP induces proliferation, invasion, and gemcitabine resistance in cancer cells by modulating HOXA13 gene (101). HOTTIP knockdown improves the sensitivity of cancer cells toward gemcitabine (101). It was also observed that H19 mRNA in resistant HepG2 cells induces the expression of p-glycoprotein transporters. High levels of H19 mRNA induce doxorubicin resistance in HepG2 cells (102). Knockdown of H19 mRNA induces the responsiveness and sensitivity of resistant cancer cells toward doxorubicin by increasing its accumulation and toxicity in both resistant and normal hepatoma cancer cells (102). Furthermore, knockdown of H19 mRNA induces methylation of MDR1 and then decreases P-glycoprotein expression (102). Linc-ROR lncRNA is upregulated in sorafenib-resistant HCC cells towards sorafenib. Knockdown of linc-ROR induces sorafenib toxicity and cancer cell death (103). High expression levels of CCAL lncRNAs induce multidrug resistance in colorectal cancer cells (104). CCAL lncRNA triggers a decrease in the signaling AP-2α protein-activated Wnt/β-catenin pathway, leading to upregulation of p-glycoprotein expression (104). On the other hand, low expression levels of snaR induce chemotherapeutic resistance in colon cancer toward 5-fluorouracil (105). High snaR expression induces apoptosis in colon cancer cells (105). High expression levels of HOTAIR induce platinum resistance in ovarian cancer cells. A high level of HOTAIR repairs the DNA damaged by platinum therapy, which activates NF-κB signaling, resulting in chemoresistance (106). Fang et co-workers observed that a high expression level of MALAT1 is observed in cisplatin-resistant lung cancer. MALAT1 induces cisplatin efflux from cells through efflux transporters (MDR1 and MRP1) after STAT3 activation (20). Furthermore, ANRIL was observed to induce the expression of efflux transporter proteins in resistant gastric cancer cells. Efflux transporter proteins pump cisplatin and 5-fluorouracil (5-FU) from cells, resulting in chemoresistance in gastric cancer cells (107). ANRIL knockdown increased the responsiveness of resistant cancer cells toward chemotherapeutic drugs by decreasing the levels of transporter proteins (107). MRUL increases the expression of ABCB1, which induces multidrug resistance. ABCB1 gene is associated with efflux transporter proteins that pump doxorubicin out of cancer cells (108). ABCB1 knockdown reduces drug efflux, leading to drug accumulation, toxicity, and apoptosis (108). The high expression levels of linc-VLDLR is implicated in the expression of the ABCG2. Chemotherapeutic drugs, including doxorubicin, sorafenib, and camptothecin, induce the expression of linc-VLDLR in both inside cells and in extracellular vesicles (EVs). Knockdown of linc-VLDLR reduces the level of ABCG2 drug efflux transporters and decreases cancer cell proliferation (109). lncRNA XIST controls the expression of Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1), which sponges miR-124, resulting in doxorubicin resistance in colorectal cancer cells (110). Knockdown of XIST decreases the expression of p-glycoproteins and improved the responsiveness of resistant cancer cells toward DOX (110). Hu et co-workers observed that high expression levels of KCNQ1OT1 are associated with oxaliplatin resistance in hepatoma cancer cells via the upregulation of efflux transporter genes, including MRP5, MDR1, and LRP1 (111). KCNQ1OT1 knockdown decreases gene-related resistance and cancer cell growth, invasion, and migration. A KCNQ1OT1 sponge with the 3′-UTR of miR-7-5p regulates the expression level of ABCC1 mRNA in hepatoma cancer cells (111). LINC00518 induces chemotherapeutic resistance in breast cancer cells by sponging miR- 199a (112). High levels of miR- 199a induce the expression of chemoresistant MRP1, resulting in paclitaxel, vincristine, and doxorubicin resistance in breast cancer. Knockdown of LINC00518 expression level induces breast cancer cell sensitivity toward chemotherapy (112). Bladder cancer-associated transcript-1 (BLACAT1) is observed in resistant gastric cancer cells (113). A high expression level of BLACAT1 is associated with oxaliplatin resistance in gastric cancer cells. In vitro and in vivo studies observed that knockdown of BLACAT1 downregulates the expression of ABCB1 protein and inhibits the proliferation of gastric cancer cells. miR-361 interacts with the 3′-UTR of BLACAT1 and ABCB1mRNA resulting in chemoresistance (113). In conclusion, targeting p-glycoprotein and chemoresistance associated with lncRNAs is a new strategy for improving the responsiveness of resistant cancer cells toward chemotherapy.
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Figure 2 | Mechanisms of lncRNAs related to drug efflux proteins which lead to chemoresistance.




6 Phytochemicals target both lncRNAs and p-glycoprotein to overcome chemoresistance

Several studies have reported that different types of natural products act as P-gp inhibitors (114). Natural products decrease chemoresistance by targeting p-glycoprotein expression (Table 1) (114). Natural products are characterized by having groups of methoxy, allyloxy, or acetylamino substituents, chiral configuration at C-3, and chromanol scaffolds, which can modulate the activity of p-glycoproteins (159). Baicalin and baicalein are natural products derived from the root of Scutellaria baicalensis Georgi that can downregulate P-gp expression in Caco-2 cells. Baicalin and baicalein showed significant anti-cancer activity, with IC50 = 479-332 μg/mL against Caco-2 cells. Miao et coworkers reported that in vitro studies of baicalein showed that baicalein has a greater inhibitory effect against P-gp than baicalin due to the presence of a glucosyl group (116). Chalcone is a natural phenolic compound that is extracted from apples, tomatoes, and licorice. In vitro studies have shown that chalcone inhibits p-glycoprotein activity, resulting in improved sensitivity of cancer cells toward chemotherapy (160). Cyanidin is a flavonoid extracted from leaves, vegetables, and fruits such as grapes, cherries, apples, beans, and cabbage. Cyanidin is cytotoxic to cancer cells by inducing apoptosis (161). Kitagawa observed that cyanidin decreased the expression levels of P-gp proteins and decreased chemoresistance (162). Quercetin is a flavonoid extracted from onion skin that has antioxidant activity. Quercetin inhibits chemotherapy transport by suppressing ATPase activity of ABCB1 (163). Rutin is a flavonoid extracted from the papaya plant. In vitro studies have shown that rutin inhibits P-gp activity and improves the responsiveness of cancer cells toward paclitaxel (123). Curcumin is a natural polyphenolic compound extracted from Curcuma longa. Curcumin inhibits the activity of P-glycoprotein regardless of the substrate formulation in LS180 Cells (164). Cinnamyl acetate is a natural phenylpropanoid compound extracted from the cinnamon bark. Cinnamyl acetate inhibits the expression of P-gp transporters and decreases chemoresistance in cancer cells (165). Hesperidin is a natural flavonoid extracted from citrus fruit. Kong et co-workers observed that hesperidin suppressed P-gp expression and induced the accumulation of chemotherapy in A549 cancer cells (166). Ursolic acid (UA) is a natural triterpene extracted from Annurca apples. Ursolic acid inhibits cancer cell proliferation by inducing apoptosis and upregulating caspase levels in resistant hepatoma cancer cells (167). Kaempferol is a flavonoid extracted from tea, curly kale, and blueberries. Kaempferol inhibits P-gp activity and decreases multi-drug resistance in KB-V1 cells (130). Luteolin is a natural product produced by Helicteres hirsute. Luteolin triggers cell death in cancer cells expressing efflux transporter proteins (ABCG2 and P-gp) by inducing ROS generation and DNA damage via inhibition of the NF-kB signaling pathway and downregulation of anti-apoptotic markers (134a). Sarsasapogenin is a steroid compound extracted from Anemarrhena asphodeloides Bunge. Sarsasapogenin suppresses the inflammatory activity that results from lipopolysaccharide (168). Fisetin is a flavone that is extracted from strawberries and apples. Kaempferol significantly inhibits P-gp expression more than fisetin, resulting in the efficient accumulation of daunorubicin (169). Glycyrrhizin is a natural product that is extracted from liquid plants. Glycyrrhizin inhibits P-gp activity and interacts with its substrate to inhibit P-gp transport (170). Noscapine is an alkaloid extracted from Papaver somniferum. Noscapine has been observed to have an inhibitory effect on P-gp, resulting in the suppression of multi-drug resistance in cancer cells (143). Allicin is a natural product that is extracted from garlic. Allicin can overcome p-glycoprotein and BCRP activity and induce the accumulation of sulfadiazine and florfenicol (171). Gingerol has also been extracted from Zingiber officinale. Gingerol inhibits P-gp activity and induces the accumulation of 3-H digoxin in Caco-2 cells (172). Gallocatechin gallate was extracted from green tea leaves. Gallocatechin gallate interacts with P-gp and decreases multidrug resistance in cancer cells (173). In conclusion, natural products can act as significant inhibitors to overcome multi-drug resistance and improve the sensitivity of cancer cells toward chemotherapy. Mondal et et al. observed that mahanimbine induced P-gp ATPase activity and decreased cancer cell resistance (174). Diindolylmethane is a dietary bioactive compound that modulates the efflux of ABC transporters and improves the efficacy of Centchroman in breast cancer cells (126). In addition, in vitro and in vivo studies have shown that betulinic acid downregulates the expression level of MALAT1 which is associated with hepatoma-resistant cells. In addition, bharangin is a natural product with a quinone- methide structure derived from Pygmacopremna herbacea (175). Studies have shown that bharangin downregulates the expression of H19 lncRNA in resistant breast cancer cells. Curcumin also reduces H19 lncRNA expression, which is associated with resistance in MCF-7 breast cancer cells (175). Curcumin affects EMT biomarkers, including N-cadherin and E-cadherin levels. It reduced the levels of N-cadherin and increased the levels of E-cadherin. In vitro studies have shown that curcumin decreases renal cancer cell migration and invasion by downregulating the expression of HOTAIR (124). Resveratrol is extracted from pistachios, plums, grapes, and berries (176). The expression level of MALAT1 is increased in resistant colon cancer cells. Resveratrol decreases colon cancer resistance by downregulating MALAT1 and mediating the Wnt/β-catenin signaling pathway. Silibinin decreases the expression of HOTAIR by modulating the PI3K pathway (177). Therefore, the inhibitory effect of the natural products was validated by in silico molecular docking analysis; however, future in vitro and in vivo experiments are needed to confirm our preliminary docking results.

Table 1 | Phytochemicals list that target P-glycoprotein and or LncRNAs to overcome chemoresistance in different cancer cells.


[image: A table listing various phytochemicals, their plant sources, bioavailability, concentration IC50, effects on P-glycoprotein/LncRNAs, in vitro/in vivo experiments, and references. It includes details for compounds like Baicalein, Baicalin, Quercetin, Rutin, Curcumin, and others, with specific effects on different cancer cell lines and their bioavailability. Each entry provides detailed insights into the biological impact and experimental context for each phytochemical.]



7 How specific lncRNAs regulate drug transporters like P-gp

The regulation of P-gp by lncRNAs typically occurs through various signaling pathways and mechanisms. Here’s a more specific look at how lncRNAs may regulate P-gp expression and function:



7.1 Transcriptional regulation

Some lncRNAs can regulate the transcription of the ABCB1 gene, which encodes P-gp, through various transcription factors. LncRNAs may act as scaffolds or guides for transcription factors or chromatin remodeling complexes to either promote or repress the expression of ABCB1 [1]. The lncRNA MALAT1 has been reported to influence the transcriptional regulation of drug resistance genes, including P-gp, in cancer cells. MALAT1 can interact with specific transcription factors and chromatin modifiers to enhance the expression of ABCB1, increasing the efflux of chemotherapeutic agents and promoting drug resistance [2].




7.2 Epigenetic regulation

lncRNAs can interact with chromatin-modifying complexes and enzymes to modify the chromatin structure and regulate the expression of P-gp through epigenetic mechanisms [3, 4]. This regulation often involves histone modifications or DNA methylation patterns at the ABCB1 gene locus. The lncRNA HOTAIR is known to regulate the expression of P-gp through epigenetic modifications. HOTAIR interacts with polycomb repressive complexes to silence genes that may inhibit the expression of P-gp, potentially increasing its activity in the context of drug resistance [4].




7.3 miRNA sponging

Many lncRNAs can act as miRNA sponges, sequestering specific microRNAs (miRNAs) that normally target the ABCB1 gene or its associated regulatory pathways. By binding to these miRNAs, lncRNAs prevent them from inhibiting the expression of P-gp [1]. The lncRNA H19 has been shown to sponge miR-675, which could normally suppress ABCB1 expression. By binding to miR-675, H19 indirectly promotes P-gp expression and drug resistance in certain cancers [5].




7.4 Interaction with signaling pathways

LncRNAs can modulate multiple signaling pathways, such as the PI3K/Akt, NF-kB, and MAPK pathways, which are known to regulate the expression of drug transporters like P-gp [6].

	PI3K/Akt Pathway: LncRNAs such as LncRNA-ATB have been shown to regulate the PI3K/Akt signaling pathway, which can enhance the expression of P-gp. This pathway is involved in cellular responses to stress and can influence drug transporter activity in cancer cells [7].

	NF-kB Pathway: Some lncRNAs, including LncRNA-MALAT1, may regulate the NF-kB signaling pathway, which is involved in inflammation and immune responses. NF-kB activation can also upregulate P-gp expression, particularly in the context of inflammation or drug resistance [8].






7.5 Post-transcriptional regulation

In addition to transcriptional regulation, lncRNAs can also affect P-gp at the post-transcriptional level. For instance, lncRNAs may modulate the stability of ABCB1 mRNA or influence its translation [1]. LncRNAs like TUG1 can regulate the stability of specific mRNAs through interactions with RNA-binding proteins, influencing the translation of P-gp and its levels in cells [1, 9].




7.6 Involvement in drug resistance mechanisms

lncRNAs are implicated in the development of drug resistance through their ability to modulate drug transporters like P-gp. For example, overexpression of certain lncRNAs can lead to increased P-gp activity, reducing the intracellular concentration of chemotherapeutic agents and thus contributing to resistance[10]. LncRNA-CCAT2 has been reported to be involved in chemoresistance by regulating the expression of P-gp. This lncRNA modulates the cellular response to chemotherapy drugs and enhances P-gp-mediated drug efflux [11].





8 Computational and preclinical studies of p-glycoprotein -1 in chemoresistance cancer cells

In this review, we validate the potential effects of natural products against p-glycoprotein-1 to understand their association with cancer cell resistance. To perform molecular docking and illustrate inhibitor reactions, we used both the Molecular Operating Environment software (MOE, 2015.10) and BIOVIA Discovery Studio Visualizer (178). We followed the steps of a previously reported procedure to illustrate the reactions of inhibitors with significant amino acids or protein hotspots (178–180). The 3D structures of the targeted proteins were obtained from the Protein Data Bank (PDB). As shown in Figure 3, docking of the human P-glycoprotein in the ATP-bound, outward-facing conformation was performed using PDB 6C0V for p-glycoprotein -1 inhibitors. The exact binding site of bioactive compounds is the active site at which the co-crystallized ligand binds. All structure minimizations were conducted until an RMSD gradient of 0.05 kcal··mol−1Å−1 with MMFF94x force field, and partial charges were automatically calculated. Furthermore, all water molecules were removed from the compounds and p-glycoprotein-1 was prepared for docking using the Protonate 3D protocol in MOE with default parameters. To calculate both docking and scoring, we employed the triangle Matcher placement method and London dG scoring function. First, self-docking of the cocrystallized ligand near the protein- binding site was performed to ensure the docking protocol steps. Subsequently, ligand-receptor interactions at the target protein-binding site for the reported natural products in the active site were studied using a validated docking protocol (RMSD < 2) to predict their binding approach and binding affinity. The inhibitory activity of the tested substances was compared with that of the most potent p-glycoprotein inhibitor (mifepristone) through computational analysis. The plausible modes of binding between these substances and their target binding sites were determined. Delphinidin 3,5-di(6-acetylglucoside) (docking score: S = -10.0549 kcal/mol) was found to have the most significant inhibitory activity in the p-glycoprotein-1 inhibitor group (Table 2), with a higher potency than that of the control (mifepristone) (S = -5.1600 kcal/mol). Delphinidin 3,5-di (6-acetyl glucoside) interacts with the p-glycoprotein-1 active site via hydrogen bonds with the LEU 531 H-donor, GLN535 H-donor, ASP 805 H-donor, ASP 805 H-donor, SER 1077 H-acceptor, and TYR 1044 pi-pi. In addition, asparagoside-f (docking score: S = -9.0916 kcal/mol) was found to have the 2nd highest inhibitory activity within the group, as shown in Table 2. Furthermore, Quercetin, caflanone, rutin, curcumin, kaempferol, and kazinol-f had more potent inhibitory effects than the control (mifepristone) (S = -5.1600 kcal/mol). Based on docking simulations, it can be concluded that these inhibitors can effectively inhibit p-glycoprotein-1 and are therefore considered potent drugs to treat chemoresistance or increase the responsiveness of cancer toward chemotherapy. Our molecular docking results represent the first step toward overcoming chemoresistance. In this context, future in vitro and in vivo, future experiments are required to confirm our results.

[image: Molecular interaction diagram showing nucleotides and amino acids with labeled atoms. Includes labeled circles for various amino acids such as Lys, Arg, and Ser, connected by lines indicating bonds and interactions.]
Figure 3 | Co-crystallized ligand interacted inside active site.

Table 2 | Docking energy scores and amino acids involved in binding for Mifepristone, and the reported natural product inhibitors docked with the Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation (PDB: 6C0V).


[image: Table comparing various ligands with details on amino acids involved in binding, CDOCKER energy values, and 2D and 3D structural illustrations. The ligands listed include co-crystallized ligand, midostaurin, baicalin, calliance, cyanidin, quercetin, rutin, digoxin, and curcumin. The amino acids, energy values, and structural diagrams illustrate interactions and binding characteristics for each compound.]



9 Conclusion

Improving cancer cell responsiveness is a significant step toward enhancing the efficiency of chemotherapeutic drugs. Resistance to chemotherapy is one of the main causes of chemotherapeutic failure. P-gp is a membrane transporter that causes efflux of drugs from cancer cells and results in drug resistance. Several types of lncRNAs have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. This review discusses the use of natural products as natural inhibitors of P-gp expression. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1 to overcome resistance. Our findings could open new hope in minimizing the immorality of chemoresistance and improving the outcome of several types of cancers.
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Glossary

EMT: Epithelial-to-mesenchymal transition

lncRNA: Long non-coding RNA

P-gp: P-glycoproteins

ABC: ATP-binding cassette

MRP1: Multidrug resistance protein 1

MDR1: Multidrug resistance gene 1

CSCs: Cancer stem cells

ECM: Extracellular matrix

ROS: Reactive Oxygen Species

TGF-β: Transforming growth factor-beta

PM: Plasma membrane

PS: Phosphatidylserine

SLC: Several transporters named carriers

EGFR: Epidermal growth factor receptor

OATP1B3: Solute carrier organic anion transporter family member 1B3

OCT6: Organic cation transporter-6

ERP29: Endoplasmic reticulum protein 29

ID4: Inhibitor Of DNA Binding 4

MGMT: Methylated-DNA-protein-cysteine methyltransferase

ETS: ETS proto-oncogene 1

PD-L1: Programmed Cell Death Ligand 1

DNMT1: DNA methyltransferase 1

HCC: Hepatocellular carcinoma

TGBI: Transforming Growth Factor Beta Induced

ER-α: Estrogen Receptors Alpha

PEBP4: Phosphatidylethanolamine binding protein 4

RKIP: RAF-kinase inhibitor protein

DDR: DNA damage repair

MGMT: O-6-Methylguanine-DNA Methyltransferase

DNA-PK: DNA-dependent protein kinase

DSBs: Double-strand break repair machinery

eATP: Extracellular ATP

ABCG2: Adenosine triphosphate-binding cassette superfamily G member 2

MEK1/2: Mitogen-activated protein kinase 1/2

Raf- 1: RAF proto-oncogene

ERK: Extracellular signal-regulated kinase '

PDAC: ancreatic ductal adenocarcinoma

ODRUL: OS doxorubicin resistance-related upregulated lncRNA

HOTTIP: HOXA transcript at the distal tip

HOT AIR: HOX antisense intergenic RNA

LINC-ROR: Long Intergenic Non-Protein Coding RNA, Regulator of Reprogramming

CCAL: Colorectal cancer-associated lncRNA

MALAT1: metastasis-associated lung adenocarcinoma transcript 1

ANRIL: Antisense Noncoding RNA in the INK4 Locus

MRUL: MDR-related and upregulated lncRNA

EVs: Extracellular vesicles

Linc-VLDLR: Long intergenic non-coding RNA VLDLR

SGK1: Serum- and Glucocorticoid-Regulated Kinase 1

miRNA: microRNAs

XIST: X-inactive specific transcript

LINC00518: Long intergenic nonprotein coding RNA 518

BLACAT1: Bladder cancer-associated transcript-1

STAT1: Signal transducers and activators of transcription
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) exhibits higher hypoxia level than most solid tumors, and the presence of intratumoral hypoxia is associated with a poor prognosis. However, the identification of hypoxia levels based on pathological images, and the mechanisms regulating ferroptosis resistance, remain to be elucidated. The objective of this study was to construct a deep learning model to evaluate the hypoxia characteristics of PDAC and to explore the role of Sulfide quinone oxidoreductase (SQOR) in hypoxia-mediated ferroptosis resistance.





Methods

Multi-omics data were integrated to analyze the correlation between hypoxia score of PDAC, SQOR expression and prognosis, and ferroptosis resistance level. A deep learning model of Whole Slide Images (WSIs) were constructed to predict the hypoxia level of patients. In vitro hypoxia cell models, SQOR knockdown experiments and nude mouse xenograft models were used to verify the regulatory function of SQOR on ferroptosis.





Results

PDAC exhibited significantly higher hypoxia levels than normal tissues, correlating with reduced overall survival in patients. In slide level, our deep learning model can effectively identify PDAC hypoxia levels with good performance. SQOR was upregulated in tumor tissues and positively associated with both hypoxia score and ferroptosis resistance. SQOR promotes the malignant progression of PDAC in hypoxic environment by enhancing the resistance of tumor cells to ferroptosis. SQOR knockdown resulted in decreased cell viability, decreased migration ability and increased MDA level under hypoxic Ersatin induced conditions. Furthermore, SQOR inhibitor in combination with ferroptosis inducer has the potential to inhibit tumor growth in vivo in a synergistic manner.





Discussion

This study has established a hypoxia detection model of PDAC based on WSIs, providing a new tool for clinical evaluation. The study revealed a new mechanism of SQOR mediating ferroptosis resistance under hypoxia and provided a basis for targeted therapy.





Keywords: pancreatic ductal adenocarcinoma, hypoxia, SQOR, ferroptosis, pathomics, deep learning




1 Introduction

Pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy originating from exocrine ductal cells, accounts for over 90% of pancreatic cancers and ranks as the third leading cause of cancer-related deaths in the United States, with a dismal 5-year survival rate of 11% (1–3). However, only 15-20% of patients with PDAC can undergo surgical resection due to its lack of specific clinical presentation in the early stages, early local invasion, and high metastatic potential (1, 4). Over 80% of patients present with unresectable disease at diagnosis, primarily due to vascular invasion or distant metastases, and are thus limited to palliative care (5). Patients with locally advanced or metastatic PDAC are typically deemed incurable and are limited to receiving palliative care. Despite the emergence of various therapies in recent years, including immune checkpoint inhibitors, the results in PDAC have been disappointing. There are still very few long-term survivors of PDAC. Therefore, new therapeutic strategies are urgently needed to improve patient prognosis.

Hypoxia occurs when intracellular oxygen levels decrease (6). Studies have shown that hypoxia promotes malignant behavior in cancer cells, including proliferation, migration, invasion, and increased resistance to immunotherapy, radiotherapy, and chemotherapy (7). Furthermore, a hypoxic environment alters the expression levels of genes that regulate metabolism and other processes. Hypoxia is the hallmark feature of PDAC, resulting from the disturbed tumor vasculature and dense fibrous stroma. The degree of hypoxia in PDAC is significantly higher than that in most solid tumors and is associated with poor prognosis of patients with PDAC. With the deepening understanding of the hypoxic microenvironment of PDAC, hypoxia has gradually become a key driver of PDAC and is regarded as a potential therapeutic target.

In recent years, with the development of artificial intelligence (AI) technologies, advances in deep learning in computational pathology have enabled Whole Slide Images (WSIs) to be used for automated cancer diagnosis and quantification of morphological phenotypes in the tumor microenvironment (TME) (8). While the use of WSIs for specific biologically meaningful studies is still rare and difficult to interpret due to the fact that deep models are referred to as black-box models, attempts to interpret the meaning can be of great help in biological studies. Among them, weakly supervised deep learning based on multi-instance learning (MIL) provides greater help in reducing pathologist annotations and improving image training at high resolution. Currently, the identification of hypoxia in PDAC tissues is mainly determined through laboratory tests or some hypoxic signs (e.g., lack of vascular manifestations) on imaging (9, 10). And there has not been any study on directly detecting through pathological H&E staining using deep learning methods.

While AI-driven pathomics provides tools to decode hypoxia-related features, the molecular mechanisms linking hypoxia to PDAC progression remain underexplored. Sulfide quinone oxidoreductase (SQOR), also known as SQRDL or SQR, located in mitochondria, is a membrane-bound flavoprotein of the glutathione reductase family and a key enzyme in the oxidative detoxification of sulfides (11). It can use ubiquinone as an electron acceptor to catalyze the two-electron oxidation of H2S to produce sulfur and transfer electrons from H2S to ubiquinone (12, 13). It has been shown that persulfide produced by SQOR-mediated sulfide oxidation may be an electron acceptor for the electron transfer chain, promoting mitochondrial ATP production (14). Increased expression of SQOR in mitochondria increased tolerance to hypoxia not only in the brain but also in the heart and liver (11). Recent studies have revealed that SQOR catalyzes the reduction of ubiquinone to ubiquinol via hydrogen selenide, a metabolic intermediate of selenium, thereby suppressing lipid peroxidation and ferroptosis (15).

Ferroptosis is a form of iron-dependent cell death driven by excessive lipid peroxidation and is associated with the development of various types of tumors and response to treatment (16, 17). Studies have shown that RAS-mutated cancer cells are sensitive to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers have synergistic effects in tumor therapy (18–20). KRAS, a member of the RAS GTPase family, is mutationally activated in over 90% of PDAC cases (21). In addition, a study in PDAC found that the combination of ferroptosis inducers and apoptosis inducers significantly increased the cytotoxicity of gemcitabine (22). There is now growing evidence of a strong correlation between hypoxia and ferroptosis. One study observed that the hypoxic TME promotes resistance to ferroptosis in solid tumors in a hypoxia-inducible factor 1α -dependent manner (23). In addition to HIF, increased activity of Nrf2, a major regulator of the antioxidant system, during hypoxia promotes HO-1 expression, thereby preventing ferroptosis (24). Therefore, the link and drivers between hypoxia and ferroptosis resistance deserve further exploration.

Through bioinformatics analysis, deep learning-based pathomics analysis, and in vitro experiments, this study aims to characterize hypoxic PDAC in the ecosystem and elucidate the correlation between SQOR and ferroptosis resistance under hypoxia, providing new therapeutic directions to improve the prognosis of PDAC patients with high hypoxia levels.




2 Methods



2.1 Data access

RNA sequencing (RNA-seq) data for tumors and normal tissues were obtained from the University of Cingifornia Sisha Cruz (UCSC) Xena database (https://xenabrowser.net/datapages/). We used The Cancer Genome Atlas (TCGA) data and Genotype-Tissue Expression (GTEx) data. Survival data for TCGA patients were downloaded from “PanCanAtlas Publications” (https://gdc.cancer.gov/about-data/publications/pancanatlas). The microarray dataset GSE183795, single-cell RNA-seq (scRNA-seq) dataset GSE155698 and spatial transcriptome (ST) dataset GSE235315 for pancreatic cancer were obtained from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/, Figure 1A, Supplementary Table S1). Proteomics data were obtained from Savage et al., and the data consists of epithelial-enriched cores, stroma-enriched cores and bulk tissue from tumor and normal tissues (25).

[image: Diagram illustrating a multi-step computational framework for analyzing hypoxia in cancer research. Panel A displays data collection from databases like TCGA and GTEx for hypoxia score calculation and different analyses. Panel B outlines the three-level process: slide, tile, and cell, involving image processing and machine learning models for hypoxia analysis and cell type identification. Panel C connects hypoxia to transcriptomics, pathomics, proteomics, drug sensitivity, and clinical data, highlighting its role in ferroptosis. The diagram integrates experimental setups, including SQOR testing and in vitro and in vivo experiments.]
Figure 1 | The workflow of our study. (A) TCGA, GTEx and GEO datasets were downloaded for bioinformatics analysis. Hypoxia scores were calculated using the “progeny” package. (B) Construct a MIL-based hypoxia discrimination model and interpret it at slide level, tile level and cell level. (C) The relationship between hypoxia, SQOR and ferroptosis was investigated by transcriptomics, pathomics, proteomics, drug sensitivity, clinical data analysis and in vitro experiments. TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; scRNA-seq, single-cell RNA-seq; MIL, multi-instance learning; TILs, tumor-infiltrating lymphocytes; ROI, region-of-interest.

The clinical data and case specimens of this study were collected from 24 patients with PDAC confirmed by pathology in Wenzhou Central Hospital from January 2017 to December 2022, all of the above were diagnosed through pathology. This study was approved by the Ethics Committee of Wenzhou Central Hospital (approval number: 202402052106000086527), and the general clinical data of the patients were recorded (Supplementary Table S2). TNM staging was based on the TNM staging criteria for pancreatic cancer jointly developed by the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC), both for patients with stage I-III.




2.2 Bulk RNA-seq data processing

Raw HTSeq-counts data obtained from the UCSC Xena database were utilized for normalization in this study. Initially, the effective gene lengths were calculated using the GENCODE v36 genome annotation file. Subsequently, the raw counts were transformed into Transcripts Per Million (TPM) values through a standardized method. To enhance the data distribution, the results were further converted to log2(TPM + 0.001). The conversion of Ensembl IDs to gene symbols was performed using the GENCODE v36 gene probe annotation file. The expression profile of the SQOR gene was extracted for subsequent analyses.

RNA-seq data from the GTEx and TCGA databases were integrated to assess hypoxia pathway activity and conduct differential expression analysis of SQOR across pan-cancer samples. The data processing workflow included the following steps: TPM data for GTEx normal tissues and HTSeq-counts raw data for TCGA tumor samples were retrieved from the UCSC Xena platform. Non-disease-related tissues were excluded, and tumor samples in TCGA were screened based on predefined criteria. The raw counts of TCGA samples were normalized into TPM values following the aforementioned procedure. Finally, the GTEx and TCGA expression matrices were merged to form an integrated dataset, which was stratified by sample source and tissue type.

Using TPM data from TCGA and microarray data from GSE183795, the samples were categorized into high hypoxia scoring groups and low hypoxia scoring groups based on the optimal cut-off value for hypoxia scoring obtained from survival analysis. Normalized data were analyzed for differences using the Wilcoxon rank sum test.




2.3 scRNA-seq data processing

Use the Seurat (version 5.0.0) package to merge all samples into the original Seurat object (26). The object is filtered according to the following parameters, removing unqualified cells: 1) doublets; 2) cells with less than 100 and more than 9,000 expressed genes; 3) cells with more than 125,000 unique molecular identifiers captured; 4) cells with more than 25% of mitochondrial genes; 5) cells with more than 50% of ribosomal genes; 6) cells with more than 5% of hemoglobin genes. Then data was log normalized. Principal component analysis was then performed. Data sets from different samples were integrated using the “Harmony” package (27). Cellular profiles were visualized by uniform manifold approximation and projection (UMAP).

Clusters were determined using the “FindClusters” function (resolution = 0.2), and identified 21 clusters of cells, which were annotated by recognized marker genes into 9 categories (epithelial cells, fibroblasts, mast cells, myeloid cells, dendritic cells, acinar cells, T&NK cells, B cells, others). After distinguishing myeloid cell subpopulations based on the marker gene (Supplementary Table S3) for macrophages and monocytes, macrophages were clustered at 0.1 resolution, identifying 5 clusters of cells that were annotated into tumor-associated macrophages (TAM) 1-like and TAM2-like cells by the marker gene (Supplementary Table S3) provided by He et al. (28) Fibroblasts were clustered at a resolution of 0.8, identifying 14 cell clusters, which were annotated into three categories of cells, the antigen-presenting fibroblasts (apCAFs), inflammatory fibroblasts (iCAFs), and myofibroblasts (myCAFs), using marker genes (Supplementary Table S3) provided by Elyada et al. and Affo et al. (29, 30) Epithelial cells were clustered at a resolution of 1, identifying 22 clusters, which were annotated as tumor cells and normal cells using recognized marker genes (Supplementary Table S3). Based on MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb), 8 pancreatic cancer characteristic pathways were screened (Stem Proliferation, TGFß Signaling, Inflammatory Response, EMT, KRAS Signaling, Apoptosis, Immune Evasion) and extracted the gene set. The GSVA package was used to score the pathways. Finally, the difference in pathway activity between tumor and normal epithelial cells was compared to verify the annotation results of epithelial cells.




2.4 Pathway/gene set studies

The pathway/gene set scoring calculation is based on the “PROGENy” and “irGSEA” packages. The 14 pathway scores for JAK-STAT, NFκB, TNFα, Hypoxia, MAPK, EGFR, WNT, p53, TGFβ, Trail, VEGF, Androgen, Estrogen and PI3K were calculated using the package “PROGENy” (Figure 1A) (31). The scoring of the ferroptosis resistance gene set was calculated using the “irGSEA” package. Ferroptosis suppression genes were obtained from FerrDb V2 (http://www.zhounan.org/ferrdb/current/) after literature screening (Supplementary Table S4). Enrichment analysis of differential genes was performed using the WikiPathways enrichment analyses in the “clusterProfiler” package (32).




2.5 Construction of a WSIs-based model for predicting hypoxia levels

The tumor hypoxia score was calculated based on the RNA-seq data from TCGA-PAAD. Samples were stratified into high-hypoxia and low-hypoxia groups according to the threshold associated with the most significant prognostic value. For each group of samples, the corresponding H&E-stained pathological WSIs were extracted. Each slide was then labeled based on the hypoxia status of the sample, categorizing sections into either the high-hypoxia group or the low-hypoxia group.

Due to the huge amount of data in WSIs, there is the problem of difficult labelling and training. So, we used a method which extends attention-based multiple-instance aggregation to general multi-class weakly supervised WSIs classification, named clustering-constrained-attention multiple-instance learning (CLAM) (33). This method does not need manual region-of-interest (ROI) extraction, pixel/patch-level labelling, or naive sampling.

The CLAM workflow includes tissue segmentation and patch extraction: generating patch coordinate files through threshold segmentation: [image: Mathematical expression showing a piecewise function: \( S(x,y) \) is equal to \( T \) if \( I(x,y) \) is greater than a threshold \(\tau\), or 0 otherwise.]  and morphological closing operation: [image: Mathematical equation reads \( S_{\text{closed}} = S \circ B \).]  followed by feature extraction: encoding image patches using pretrained models (ResNet50/UNI) to generate 1024-dimensional feature vectors [image: Mathematical equation depicting \(f_{ij} = \text{Encoder}(P_{ij})\), where \(f_{ij}\) is derived from encoding \(P_{ij}\).]  during weakly supervised learning (CLAM Core), generating pseudo-labels via attention mechanisms: [image: Equation showing \(a_{ij} = \text{softmax}(W_a h_{ij} + b_a)\), where \(a_{ij}\) represents an output, computed using the softmax function of a weighted input \(W_a h_{ij}\) plus a bias \(b_a\).]  and clustering constraints based on the top 8 high-attention features, while optimizing the model with a combined cross-entropy loss and SmoothTop1 SVM loss: [image: Mathematical formula: L equals lambda times L subscript CE plus one minus lambda times L subscript SmoothTop1SVM.]  finally producing slide-level predictions and heatmaps.

According to the flow of the framework, we split the slide into patches of pixel size 256×256 in an equivalent pyramid of 40x magnification. Since the hue, saturation and lightness of HSV are more suitable for human color perception characteristics, we transform the patch from RGB color space to HSV color space (Figure 1B). According to the principle of multi-instance learning, all patches after segmentation of a patient are considered as a bag. In order to reduce the training time as well as to perform the dimensionality reduction of the data, we use the Transfer Learning and Convolutional Neural Networks approaches to transform each patch into vectors of size 1024 respectively using 2 pre-training models, ResNet50 and UNI (34, 35). The dataset was separated into training set, validation set and test set in the ratio of 8:1:1 according to the category hierarchy. According to the default settings of CLAM, model performance was tested in the 10% validation set after training the model in the training set, and 10-fold Monte Carlo cross-validation was used. The final model evaluation was performed on 10% of the test set. The loss function used smooth top-1 SVM loss (36). The parameters of the models were updated using the Adam optimizer, with the learning rate set to 2×10-4, and the weight decay set to 1×10-5. All models were trained for at least 50 epochs, or up to 200 epochs if the early stopping criterion was not met. The criterion for Early stopping was to stop this training when there was no loss reduction in the current 20 epochs. The model was saved when it has the lowest loss on the test set. In order to explain the relative importance of different regions in the slides to the final predictions of the model, we also calculated and saved the un-normalized attention scores. These attention scores were converted to percentile scores, scaled to 0 and 1.0 and visualized.




2.6 Immune infiltration studies

To achieve comprehensive characterization of the tumor immune microenvironment, we integrated transcriptomic signatures with pathological imaging data, constructing a multi-scale immune infiltration analysis framework across molecular, tissue, and cellular levels. This approach fully leverages the molecular quantification strengths of RNA-seq data and the spatial resolution capabilities of Whole Slide Images (WSIs).

Immune cell subtyping based on transcriptomic features was systematically analyzed using the CIBERSORT algorithm (37). Raw RNA-seq data underwent standardized processing, including CPM transformation and log2 normalization. Deconvolution analysis was then performed using the LM22 immune signature matrix, which contains gene expression profiles specific to 22 immune cell subtypes. Batch effects and technical variations were effectively eliminated through constrained least-squares regression and quantile normalization strategies. To evaluate the reliability of deconvolution results, we conducted 1,000 permutation tests to calculate confidence intervals, ultimately obtaining proportion scores of immune cell subpopulations in tumor samples.

To establish spatial correlations for molecular features, we implemented a tumor-infiltrating lymphocyte (TIL) region identification pipeline based on WSInfer (8). WSIs were first segmented into 256×256-pixel tiles at 20× magnification, with blank background regions filtered via thresholding to retain valid tissue areas. A pre-trained ResNet-50 deep learning model was then employed to extract pathological features and classify each tile, identifying TIL-enriched regions while computing confidence scores. This process generated high-resolution spatial density heatmaps of TILs. The workflow not only validated CD8+ T cell abundance trends observed in CIBERSORT-based molecular quantification but also provided spatial anchors for subsequent cellular-level HoVer-UNet analysis, enabling cross-scale associations from macroscopic tissue localization to microscopic cellular phenotypes.

For WSI-identified TIL hotspot regions, we performed cellular-resolution multi-modal analysis using a knowledge distillation-optimized HoVer-UNet model. By distilling knowledge from the high-performance yet computationally intensive HoVerNet model, HoVer-UNet achieved comparable or superior nuclear segmentation and classification accuracy while significantly improving inference speed (38, 39). The core architecture of HoVer-UNet integrates U-Net with a Mix Vision Transformer backbone network, enabling simultaneous capture of local detail features and global contextual information. To achieve precise multi-class nuclear identification, HoVer-UNet incorporates multiple decoder output branches for predicting nuclear semantic segmentation, horizontal/vertical distance maps, and nuclear subtypes. Selected regions of interest (ROIs) were analyzed using a HoVer-UNet model pre-trained on the PanNuke dataset, which distinguishes diverse cell types (40). This pre-training strategy effectively utilizes prior knowledge from large-scale datasets to enhance model generalization and classification accuracy for specific ROIs.

The tiered “molecular-tissue-cellular” analytical framework progresses from CIBERSORT-derived global immune signatures to WSInfer-based identification of immune-active hotspots, and finally to HoVer-UNet-enabled resolution of tumor-immune spatial heterogeneity at single-cell precision. CIBERSORT provides comprehensive immune profiling, WSInfer spatially maps immune activity patterns, and HoVer-UNet deciphers cellular interactions, collectively overcoming the limitations of single-omics methods in spatial resolution or molecular depth. This integrative strategy enables multi-scale exploration of immune microenvironment dynamics through complementary data modalities.




2.7 Drug sensitivity predicting

The CTRP2 dataset from the “oncoPredict” package was used as a training set to predict the IC50 of the drugs in the TCGA-PAAD dataset and the GSE183795 dataset samples (41). The drugs associated with oxygen species (ROS) (darinaparsin, BRD−K94991378, BRD−K71935468) and ferroptosis (erastin, 1S,3R−RSL−3, ML162, ML210) were selected for analysis to compare the correlation between SQOR and drug IC50.




2.8 H&E staining

Tissue samples were first fixed in formalin, paraffin-embedded and sectioned continuously. Then the tissue sections were obtained after dewaxing, rinsing, staining with hematoxylin and 2% eosin, dehydrating, clearing, and cover-slipping. Sections were then examined under optical microscope and scanned by Digital Pathology Slide Scanner (KF-PRO-005, KFBIO, China).




2.9 Immunohistochemistry staining

Tissue samples were formalin-fixed, paraffin-embedded and sectioned continuously. Target sections were dehydrated, dewaxing, antigen repaired and sealed. Sections were incubated with SQOR primary antibody (Abcam Cat# ab272574, RRID: AB_3095529) overnight at 4°C, and then followed by secondary antibody incubation at 37 °C. Diaminobenzidine was used to develop the color and counterstained with hematoxylin. Sections were then examined under optical microscope and scanned by Digital Pathology Slide Scanner (KF-PRO-005, KFBIO, China).

Immunohistochemical scores were assessed independently by 2 pathologists unrelated to the study using a double-blind method. Negative and weak positive were considered low expression, while positive and strong positive were considered high expression. We also used Qupath software for visualization of cell staining (42). It can somewhat differentiate the cellular regions in IHC-WSIs and label cells that stain positively for IHC.




2.10 Cell culture

Human PC cell lines (BxPC3 and PANC1) were purchased from Wuhan Pricella Biotechnology Company Limited (Pricella, China). The cells were cultured in high glucose Dulbecco’s modified Eagle medium (DMEM; 11995065, Gibco, USA) containing 10% fetal bovine serum (FBS; 10099141, Gibco, USA) and 1% double antibiotics (penicillin-streptomycin mixture; 15140122, Gibco, USA), and incubated at 37°C with 5% CO2 in a culture box. Hypoxia incubation was performed at 94% N2, 5% CO2 and 1% O2.




2.11 Transfection

Lentiviral packaged shRNA targeting SQOR for SQOR knockdown, as well as the control lentiviral empty vector, are both purchased from Shanghai Genechem Company Limited (GeneChem, China). Cells were plated and cultured in complete medium for 24h. The cells were infected with infection enhancer P by diluting the infection enhancer P at a ratio of complete medium: infection enhancer P of 24:1 before infection. Then the original medium of the cells was discarded, and the cells were washed with PBS. The virus was diluted to a titer of 1x108 TU/mL with complete culture medium, and the volume of virus to be added was calculated based on the MOI value. 5 μL of viral fluid was added, followed by infection for 16 h, then replaced with complete culture medium, and incubated for another 48 h. Infection efficiency was observed approximately 72 h after infection.




2.12 Cell proliferation assay

Cell viability was measured using the Cell Counting Kit-8 (CCK-8; Beyotime, China). Cells were inoculated into 96-well plates and 100 µl of 5000 cells were added to each well. According to the experimental needs, BxPC3 and PANC1 cells were treated under hypoxic conditions and stimulated with 5 μM erastin (HY-15763, MCE, China) and 2 mM sulfasalazine (SAS; HY-14655, MCE, China), respectively, for 24 h before sample collection and analysis. PANC1 and SQOR knockdown PANC1 cells were treated under hypoxic conditions and stimulated with 5 μM erastin and 1 μM ferrostatin- (Fer-1) (HY-100579, MCE, China), respectively, for 24 h before sample collection and analysis. 10 μL of CCK8 reagent was added to each well, incubated in a cell culture incubator at 37°C for 1 h in the dark, and then measured the absorbance at 450 nm with microplate reader (WD-2102B, LIUYI, China).




2.13 Transwell migration assay

The migration ability of the cells was assessed using the Transwell migration assay. The transfected cells were resuspended with medium containing 1% FBS, and the cell suspension was diluted to 3×105 cells/mL and plated into Transwell chambers (3422, Costar, USA). The lower layer was filled with complete culture medium containing 20% FBS. After 24 h of incubation under hypoxic conditions, the cells were fixed with 4% formaldehyde solution for 10 min and then stained with 0.5% crystal violet solution for 30 min. Observed under a 200× microscope to count the number of cells in each field of view.




2.14 Malondialdehyde content assay

Malondialdehyde (MDA) Content Assay Kit (BC0025, Solarbio, China) was used to detect MDA content according to the manufacturer’s instructions. The cells were broken down using ultrasonic waves with 1 mL of extraction solution per 5 million cells, and then centrifuged for 10 min at 4°C. Then 300 μL of MDA test solution, 100 μL of samples, and 100 μL of reagent III were added. After mixing and incubating for 60 min in a water bath at 100°C, the mixture was cooled in the ice bath and centrifuged for 10 min at room temperature. The supernatants were collected, and the absorbance of each sample was measured at 532 nm and 600nm. The MDA content was calculated based on the protein concentration.




2.15 Western blot analysis

Cell lysate was prepared, and cells were lysed on ice for 30 min, followed by centrifugation at 4°C for 10 min. The supernatant was taken to obtain protein samples. Protein quantification was performed using the BCA protein concentration kit (P0010, Beyotime, China), and protein concentration was calculated. The protein samples were mixed and centrifuged, then heat denatured for 10 min, and separated on SDS-PAGE gels according to the molecular weight of the target proteins. The separated proteins were transferred to a PVDF membrane. The membrane was closed with skimmed milk and incubated with primary antibody and then with secondary antibody. SQOR antibody was purchased from Proteintech Group (17256-1-AP, Proteintech, USA). GAPDH was used as a reference gene.




2.16 Real-time quantitative reverse transcription polymerase chain reaction assay

RNA was extracted using TRIzol (15596-018, Invitrogen, USA) and reverse transcription was performed with RT SuperMix for qPCR (K1074, APExBIO, USA). SQOR and GAPDH were then quantified using 2X SYBR Green qPCR Master Mix (K1070, APExBIO, USA). The PCR cycling conditions were as follows: pre-denaturation (hold; 1 cycle): 95°C for 2 min; 40 cycles of denaturation (95°C for 15 s), annealing (60°C for 30 s) and extension (60°C for 30 s), followed by 1 cycle of 95°C for 15 s, 60°C for 1 min and 95°C for 15 s.

SQOR:F 5′-AAGGTTTTTGCTGCGCCAAC-3′;R 5′-ATAATGGTTCCTGGCCGCAT-3′.

GAPDH:F 5′-CTCGCTTCGGCAGCACA-3′;R 5′-AACGCTTCACGAATTTGCGT-3′.




2.17 Animal studies

The design and implementation of this experiment was reviewed and approved by the Laboratory Animal Ethics Committee of Wenzhou Medical University (Approval number: wydw2024-0136). 4–5-week-old male Balb/c.nude mice were provided by SPF (Beijing) biotechnology Co., Ltd. The mice were 5 mice per group and were randomly and equally divided into 4 groups. Mice were subcutaneously inoculated with PANC1 cells suspended in saline. The cell density was 2x106 cells/100μL. One week later when the tumor volume reached approximately 50 mm3, the drugs were administered with DMSO control, Erastin, HTS07545 (HY-144439, MCE, China), and Erastin plus HTS07545. The long (a) and short (b) axes of the tumor were measured every 3 days (tumor volume = 1/2*a*b2). Tumor growth curves were plotted based on tumor volume. Animals were executed on reaching the humane endpoint or experimental terminative indicator, and then tumors were stripped and weighed on an analytical balance. The weighed tumors were immersed in 10% formaldehyde for the preparation of tissue sections and pathological analysis.




2.18 Statistical analysis

Statistical analyses were performed using R (version 4.2.2) (https://www.r-project.org/). The Wilcoxon rank sum test was used to compare differences between the two groups. The Kruskal-Wallis test was used to compare differences between the three groups. For experimental assessments, such as RT-qPCR assay and cell proliferative capacity assay, Student’s t-test was used to calculate statistical significance. The McNemar test was used for the paired four-table test. The Kaplan-Meier (KM) method was used to construct survival curves to assess prognosis. The survival distribution of the sample was tested by Log-rank test. Cox regression analysis was used to assess the effect of specific factors on patient prognosis. Spearman correlation analysis was used for correlation analysis. P < 0.05 was considered statistically significant.





3 Results



3.1 Hypoxia as an oncogenic driver in malignant tumors

Hypoxia has now been shown to be present in most solid tumors and is considered a hallmark of cancer (43). The highly malignant nature of pancreatic cancer is largely attributed to the hypoxic TME (10). We first downloaded the GTEX dataset and selected the corresponding 28 TCGA primary tumor datasets by organ origin for hypoxia scoring calculation. The results showed that in most tumor tissues (e.g. pancreatic, liver, kidney, colon, and stomach cancers) hypoxia scoring was significantly higher than that in normal tissues (p<0.05, Figure 2A). However, in bladder cancer and melanoma, hypoxia scoring was higher in normal tissue than in tumor tissue. The results of the pan-cancer analysis tentatively confirmed the high hypoxia levels in various types of tumors. Moreover, it is worth noting that in PDAC, the hypoxia score of tumor tissues was much higher than that of normal tissues (0.271 ± 0.438 vs. -1.85 ± 1.63, P<0.0001, Figure 2A). Meanwhile, PDAC patients with high hypoxia levels had a worse prognosis (p < 0.05, Figures 2B, C). However, this is not limited to PDAC alone. We further used univariate Cox analysis to evaluate the prognostic impact of hypoxia in tumor patients. We found that hypoxia was a prognostic risk factor in a variety of tumors including pancreatic cancer (kidney chromophobe, lung adenocarcinoma, lower grade glioma, etc.) (p < 0.05, Figure 2D). This suggests that hypoxia is a common characteristic of malignant tumors and a potential factor driving carcinogenesis.
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Figure 2 | Hypoxia level in TME and prognosis. (A) Differences in the distribution of hypoxia in normal and tumor tissues in the bulk dataset at the pan-cancer level (Wilcoxon rank sum test). (B) KM survival analysis of hypoxia for the TCGA-PAAD dataset (Log-rank test). (C) KM survival analysis of hypoxia for the GSE183795 dataset (Log-rank test). (D) Univariate Cox analysis of hypoxia in pan-cancer. (E) Hypoxia scoring of eight cell types at the single-cell level (Wilcoxon rank sum test). (F) Hypoxia scoring of TAM1-like and TAM2-like subpopulations (Wilcoxon rank sum test). (G) Hypoxia scoring of apCAFs, iCAFs and myCAFs subpopulations (Wilcoxon rank sum test). (H) Differences in the distribution of hypoxia in normal and tumor cells in pancreatic epithelial cells at single-cell level (Wilcoxon rank sum test). (I) UMAP plot of hypoxia scoring in pancreatic normal and tumor epithelial cells. ns, P≥ 0.05; *, P<0.05; ***, P<0.001; ****, P<0.0001. TCGA, The Cancer Genome Atlas; KM, Kaplan-Meier; UMAP, uniform manifold approximation and projection; KICH, Kidney Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular carcinoma; MESO, Mesothelioma; KIRP, Kidney renal papillary cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast invasive carcinoma; LUAD, Lung adenocarcinoma; COAD, Colon adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA, Bladder Urothelial Carcinoma; STAD, Stomach adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS, Uterine Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma; CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma and Paraganglioma; ESCA, Esophageal carcinoma; KIRC, Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell carcinoma; READ, Rectum adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; TAM, tumor-associated macrophages; apCAFs, antigen-presenting fibroblasts; iCAFs, inflammatory fibroblasts; myCAFs, myofibroblasts.

We used single-cell data from pancreatic cancer for analysis, identifying eight known cell types including epithelial cells, myeloid cells, fibroblasts, acinar cells, dendritic cells, mast cells, B cells, T and NK cells (Supplementary Figure S1). To assess the level of hypoxia in the TME of PDAC, we scored hypoxia in all cell types (Figure 2E). The results showed higher levels of hypoxia scoring in three cell types: myeloid cells, fibroblasts, and epithelial cells. This implies that these cell types may play an important role in helping PDAC construct a suitable survival hypoxic TME. Therefore, three cell types, myeloid cells, fibroblasts, and epithelial cells, were selected for further analysis. We identified and extracted macrophages from myeloid cells and broadly categorized them into two macrophage subpopulations, TAM1-like and TAM2-like, based on the classical TAM-related marker gene (Supplementary Figure S2A). TAMs are the main component of immune cells in the TME, and different subtypes of TAMs have different functions (44). M1 macrophages exert anti-tumor capabilities. M2 macrophages are the main manifestation phenotype of TAMs and promote the occurrence and development of tumors. We found that the TAM2-like subpopulation had significantly higher hypoxia scoring than the TAM1-like subpopulation (P<0.05, Figure 2F). This is similar to previous findings that hypoxia promotes macrophage polarization in the TME in a direction that favors tumor progression, exhibiting high hypoxia levels (45). We then further analyzed the scoring of hypoxia in fibroblasts. The apCAFs, iCAFs, and myCAFs subpopulations were first identified (Supplementary Figure S2B) and scored for hypoxia. The results showed that there was a difference in hypoxia scoring among the three subpopulations (P<0.05, Figure 2G), with the iCAFs subpopulation exhibiting the highest hypoxia scoring among the three subpopulations. This suggests that hypoxia-related pathways are overactivated in iCAFs. Previous studies have also identified that iCAFs are mainly enriched in the hypoxic regions of PDAC tumors and participate in the malignant progression of PDAC (46). Finally, we extracted the epithelial cells and classified them simply by classical marker gene into tumor cells and normal cells (Supplementary Figure S2C), and verified them by tumor-specific pathway score (Supplementary Figure S2D). It can be seen that in tumor cells, the hypoxia score showed a difference compared with normal cells (P<0.05, Figures 2H, I). It indicates that hypoxia in various cells may be involved in the construction of the immunosuppressive tumor ecosystem and promote the malignant progression of PDAC cells.




3.2 MIL-based hypoxia discrimination model construction and model interpretation

The importance of WSIs has been largely ignored in previous studies of PDAC patient characteristics, in part because the huge resolution of WSIs presents unique computational and methodological challenges (33). In recent years, with the development of AI technology, advances in deep learning for computational pathology have enabled WSIs to be used for automated cancer diagnosis and quantification of morphological phenotypes in the TME. Therefore, in order to determine whether WSIs can provide assistance in differentiating patients’ hypoxia levels and further help clinicians to judge the prognosis of PDAC patients according to WSIs, we performed patients’ hypoxia level detection based on the CLAM framework proposed by Lu et al. (33) The results showed that the hypoxia detection model we constructed could effectively identify the hypoxia level of patients, with an AUROC of 0.829, an AUPRC of 0.876, and an accuracy of 0.7647 (Figures 3A–C). We also compared recently published UNI models that showed excellent performance in pre-training of pathology images but did not show better performance in our task due to our small sample size and the large risk of overfitting (Supplementary Figure S3). We further applied this model to our clinical PDAC samples, and the results showed that patients who were considered by the model to have high hypoxia levels had a significantly poorer prognosis (Figure 3O), which indicated that the model could effectively identify the hypoxia levels of tissues and had a better prospect for clinical application and promotion.
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Figure 3 | MIL-based WSIs hypoxia differentiation model construction. (A) The AUROC for the hypoxia detection model is 0.829. (B) The AUPRC is 0.876. (C) Confusion matrix in the test set. (D) Comparison of the ratio of tiles testing positive for TILs to full tiles in the two groups of high and low hypoxia (Wilcoxon rank sum test). (E) Original pathological images of TCGA-2L-AAQM sample and magnified views of high-weight regions. (F) Model interpretation heatmap for the TCGA-2L-AAQM sample. (G) Spatial distribution of TILs in the TCGA-2L-AAQM sample (yellow: TIL-positive regions). (H) Original pathological images of TCGA-US-A77J sample and magnified views of high-weight regions. (I) Model interpretation heatmap for the TCGA-US-A77J sample. (J) Spatial distribution of TILs in the TCGA-US-A77J sample (yellow: TIL-positive regions). (K) Original pathological image of a clinical sample classified as hypoxia-high by the model. (L) Model identification as low hypoxia by heatmap interpretation of clinical samples. (M) Original pathological image of a clinical sample classified as hypoxia-low by the model. (N) Model identification as low hypoxia by heatmap interpretation of clinical samples. (O) Analysis of KM survival in high and low hypoxia groups in a clinical sample. MIL, multi-instance learning; WSIs, Whole Slide Images; TCGA, The Cancer Genome Atlas; TILs, tumor-infiltrating lymphocytes; AUROC, the area under the curve of the receiver operating characteristic; AUPRC, the area under the curve of the precision-recall; ROI, region-of-interest; KM, Kaplan-Meier.

To better interpret the constructed hypoxia discrimination model, we used heatmap to visualize the attentional weight scores in the last layer of the model. Both in the TCGA dataset and in our clinical samples, the high weight regions of the model in samples predicted to have high hypoxia levels were broadly focused on the tumor stroma. In contrast, in samples predicted to have low hypoxia levels, the model’s areas of attention were predominantly lymphoid tissue and tumor stroma (Figures 3E–N). This suggests that hypoxia levels in tumor tissue can be observed in clinical WSIs, which provides some basis for subsequent patient prognosis identification based on interpretable pathology. Due to the different regions in the identification of high and low hypoxia levels in the models, and the TME analysis based on TCGA transcriptome data, it was also suggested that the hypoxia level in tumor tissue was negatively correlated with the level of CD8+ T cell infiltration in the TME in various tumors, including PDAC (Supplementary Figure S4). Therefore, we further explored the correlation between hypoxia levels and lymphocytes in WSIs. We used the “WSInfer” framework to identify the TILs region in WSIs (8). The results also showed that the proportion of TILs was lower in samples with high hypoxia scores than in samples with low hypoxia (Figures 3E–J). However, when comparing the overall ratios of the two groups, no statistically significant difference was shown, despite the high hypoxia group having a higher overall ratio than the low hypoxia group (Figure 3D). In part, this may be due to the fact that quantity-based TILs comparisons do not reflect cell status and cell type in TILs (47, 48). We also used the HoVer-UNet framework to identify cell types at high weight regions in patients with low hypoxia, which further suggests that the model did observe some differences in the level of immune infiltration in tissues with high and low levels of hypoxia. This indicates that the hypoxia-related features in WSIs are effectively identified by the model. However, in general, hypoxia plays an important role in the construction of the tumor immunosuppressive microenvironment, which can be directly reflected in WSIs, and the combined with a deep learning method has the potential to characterize or quantify hypoxia levels at the clinical level.




3.3 SQOR may be involved in the progression of PDAC in a hypoxic microenvironment

In view of our findings suggesting that hypoxia is associated with the malignant progression of PDAC, we further analyzed the potential factors that may be involved in hypoxia-promoted carcinogenesis in PDAC (Figure 1C). The hypoxia score threshold with the best prognostic ability divided TCGA-PAAD patients into high hypoxia score group and low hypoxia score group for differential analysis. The results showed that a large number of genes changed between the two groups. Among them, SQOR showed significant differences between groups (Figure 4A). To further characterize the significance of SQOR, we used RT-qPCR in vitro experiments to detect the level of SQOR expression in PDAC cells under hypoxic conditions, and as we guessed, SQOR expression was up-regulated in BxPC3 and PANC1 cells cultured under hypoxic environment compared with normal culture conditions (P<0.01, Figure 4H). This implies that SQOR may promote the survival of pancreatic cancer cells in the harsh hypoxic microenvironment.
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Figure 4 | SQOR may be involved in PDAC progression in a hypoxic microenvironment. (A) Differences in the distribution of SQOR between low and high hypoxic tissues in the TCGA-PAAD dataset (Wilcoxon rank sum test). (B) Differences in the distribution of SQOR in normal and tumor tissues in the bulk dataset at the pan-cancer level (Wilcoxon rank sum test). (C) Differences in the distribution of SQOR in pancreatic normal epithelial and tumor cells at the single-cell level (Wilcoxon rank sum test). (D) UMAP plot of SQOR in normal and tumor epithelial cells of the pancreas. (E) KM survival analysis of SQOR for the TCGA-PAAD dataset (Log-rank test). (F) KM survival analysis of SQOR for the GSE183795 dataset (Log-rank test). (G) Univariate Cox analysis of SQOR in pan-cancer. (H) RT-qPCR results of SQOR of BxPC3 and PANC1 cells under normal and hypoxia conditions (Student’s t-test). (I) Counting results of SQOR IHC staining of tumor samples and normal samples from clinical samples (McNemar test). (J) SQOR IHC staining results of normal pancreatic ductal tissue. (K) SQOR IHC staining results of PDAC (red: SQOR IHC-positive cells, blue: SQOR IHC-negative cells). ns, P≥ 0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. PDAC, Pancreatic ductal adenocarcinomas; TCGA, The Cancer Genome Atlas; KM, Kaplan-Meier; IHC, immunohistochemistry; RT-qPCR, Real-time quantitative reverse transcription polymerase chain reaction assay; KICH, Kidney Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular carcinoma; MESO, Mesothelioma; KIRP, Kidney renal papillary cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast invasive carcinoma; LUAD, Lung adenocarcinoma; COAD, Colon adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA, Bladder Urothelial Carcinoma; STAD, Stomach adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS, Uterine Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma; CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma and Paraganglioma; ESCA, Esophageal carcinoma; KIRC, Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell carcinoma; READ, Rectum adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma.

Analysis of SQOR expression levels in normal and tumor tissues of the pancreas revealed that SQOR was upregulated in tumor tissues and was significantly different from normal tissues (p<0.05, Figure 4B). The same results were obtained at the single cell level in pancreatic normal and tumor cells (Figures 4C, D). Meanwhile, KM survival curves suggested that patients with high SQOR expression had a worse prognosis (p < 0.05, Figures 4E, F). And further subgroup analyses of patients suggested that the prognosis of high hypoxia scoring and high SQOR expression subgroup was significantly lower than that of low hypoxia scoring and low SQOR expression subgroup (p<0.01, Supplementary Figures S5A, B, Supplementary Table S5). Multivariate cox analysis showed that SQOR was an independent risk factor for prognosis in PDAC (p<0.05, Supplementary Table S6). The effect of SQOR in pan-cancer on the prognosis of tumor patients was further explored, and the results showed that SQOR was a prognostic risk factor in PDAC, liver hepatocellular carcinoma, brain lower grade glioma, lung adenocarcinoma, and uveal melanoma (UVM) (Figure 4G). Proteomic analysis revealed that SQOR was up-regulated in tumor epithelial-enriched cores and bulk tissues, but did not differ in tumor stroma-enriched cores (Supplementary Figure S5C). IHC results in clinical patients similarly showed significantly higher staining intensity of SQOR in tumor tissues compared to normal tissues (P<0.05, Figures 4I–K). Combined with bulk and single-cell transcriptomics, proteomics, and clinical IHC data, SQOR is up-regulated in tumors, and its high expression strongly predicts poor prognosis of patients. This suggests that SQOR under hypoxic conditions plays a crucial role in driving the malignant progression of PDAC.




3.4 Spatial transcriptomics and pathomics suggest co-localization of hypoxia and SQOR expression

Based on our multi-omics study, a strong correlation between hypoxia and SQOR was suggested and confirmed by our in vitro experiment. We further investigated whether hypoxia and SQOR expression are linked in tissue space. We used the dataset from GSE235315 for further studies. By visualizing the spatial distribution of hypoxia score and SQOR at the single-cell level, we found that regions with high hypoxia score were accompanied by high expression of SQOR (Figures 5A, B, Supplementary Figure S6). This suggests that there is a spatial level co-localization of the hypoxia pathway with SQOR expression. It also suggests that there is heterogeneity in hypoxia at the spatial level and that this heterogeneity is accompanied by altered SQOR expression. We also observed our clinical WSIs. Given that the high-attention regions in our hypoxia-expressing explanatory clinicopathological heatmap were mainly focused on the stromal region of the tumor, but the weight of stromal attention varied among different regions. This suggests that the hypoxia model also paid attention to the structural differences in the stroma (Figure 5C). Previous studies have shown that the high hypoxia in PDAC tissues is partly due to the lack of vascularity of the tumor tissue and the high stromal levels (49). Meanwhile, clinical SQOR IHC results of WSIs corresponding to HE pathology showed that SQOR was strongly positive in stromal wrapped ductal malignant epithelial cells with high attention weight (Figure 5D). Interestingly, we observed weaker SQOR staining in ductal malignant cells encapsulated by stroma at relatively low weight regions than in the former (Figures 5E, F). This further suggests a spatial co-localization of hypoxia and SQOR expression.
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Figure 5 | Spatial co-localization of hypoxia and SQOR expression. (A) Spatial localization of SQOR and hypoxia in GSM749817 samples. (B) Spatial localization of SQOR and hypoxia in GSM749811 samples. (C) Heatmap of clinical samples. (D) Original pathological images of clinical samples. (E) SQOR IHC staining results of high attention weighted regions (red: SQOR IHC-positive cells, blue: SQOR IHC-negative cells). (F) SQOR IHC staining results of low attention weighted regions (red: SQOR IHC-positive cells, blue: SQOR IHC-negative cells). IHC, immunohistochemistry.




3.5 Hypoxia induces ferroptosis resistance in PDAC

Various previous studies have shown that solid tumors can be resistant to ferroptosis in the hypoxic microenvironment, but the regulatory mechanism is still unclear (23). Based on the above results of high hypoxia level in PDAC, we further used single-cell data to evaluate the ferroptosis resistance level in PDAC epithelial cells, and the data analysis showed that the ferroptosis resistance score of tumor cells was much higher than that of normal cells (P<0.05, Figure 6A). At the same time, WP pathway enrichment analysis of tumor cells and normal epithelial cells showed that tumor cells had changes in VEGF signaling pathway, focal adhesion, proteasome degradation, TGFβ signaling pathway, and ferroptosis pathway (Figure 6C). Meanwhile, the single-cell level analysis of PDAC showed a positive correlation between hypoxia and ferroptosis resistance (R=0.2, P<0.001, Figure 6B). As previously reported, the link between hypoxia and ferroptosis resistance is also likely to exist in a variety of tumors (23).

[image: Panel A shows a scatter plot of ferrotopsis resistance colored by group, distinguishing between tumor and normal samples. Panel B is a density plot showing the correlation between hypoxia and ferrotopsis resistance with a correlation coefficient of 0.2. Panel C is a bar chart depicting various pathways with the corresponding count and p-value, where VEGFA VEGFR2 signaling has the highest count. Panel D displays a scatter plot illustrating p-values against the correlation, identifying various cancer types. Panel E includes bar charts comparing cell viability under normal and hypoxic conditions for BxPC3 and PANC1 with significant results.]
Figure 6 | Ferroptosis resistance in PDAC cells under hypoxic conditions. (A) UMAP plot of ferroptosis resistance scoring in pancreatic normal and tumor epithelial cells. (B) Correlation analysis of hypoxia and ferroptosis resistance at the single-cell level (Spearman correlation). (C) Differential gene wikipathway enrichment analysis of tumor and normal epithelial cells at the single-cell level. (D) Correlation analysis of hypoxia and ferroptosis resistance in the bulk dataset at the pan-cancer level (Spearman correlation). (E) Cell viability assay of BxPC3 and PANC1 cells under hypoxic and normal conditions plus erastin or SAS (Student’s t-test). ***, P<0.001. PDAC, Pancreatic ductal adenocarcinomas; UMAP, uniform manifold approximation and projection; KICH, Kidney Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular carcinoma; MESO, Mesothelioma; KIRP, Kidney renal papillary cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast invasive carcinoma; LUAD, Lung adenocarcinoma; COAD, Colon adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA, Bladder Urothelial Carcinoma; STAD, Stomach adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS, Uterine Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma; CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma and Paraganglioma; ESCA, Esophageal carcinoma; KIRC, Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell carcinoma; READ, Rectum adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma.

Pan-cancer analysis at the bulk level found a positive correlation between hypoxia and ferroptosis resistance in a variety of tumors, such as PDAC, breast cancer, prostate cancer, and lung squamous cell carcinoma (P<0.05, Figure 6D). Therefore, it is speculated that PDAC can promote tumor survival by inhibiting ferroptosis under harsh hypoxic environment. To confirm our hypothesis, in vitro experiments were performed to simulate the tumor microenvironment of PDAC cells with high hypoxia and high ferroptosis pathway activation. CCK8 assay was used to detect the anti-ferroptosis ability of PDAC cells under hypoxic environment with Erastin and SAS inducers. BxPC3 and PANC1 cells cultured under hypoxia were more resistant to ferroptosis inducers than those cultured under normal culture conditions (P<0.05, Figure 6E). This result confirms the strong resistance of tumor cells to ferroptosis under hypoxic conditions.




3.6 High SQOR expression promotes ferroptosis resistance of PDAC cells in hypoxic microenvironment

In the bulk level pan-cancer analysis, the correlation analysis results between SQOR and 15 pathways/gene sets showed that 10 tumors (such as PDAC, kidney renal papillary cell carcinoma, prostate adenocarcinoma, uterine corpus endometrial carcinoma, UVM, etc.) were positively correlated with both hypoxia and ferroptosis resistance (Figure 7A). In the PDAC single-cell data, the correlation analysis results between SQOR and 15 pathway/gene set scores also showed that SQOR expression in malignant pancreatic ductal cells was positively correlated with hypoxia and ferroptosis resistance (Supplementary Figure S7A). Proteomic analyses also revealed a high positive correlation between SQOR and the negative regulator of ferroptosis, STAT3 (R=0.64, p=0.013) and LCN2 (R=0.73, p=0.0029), in epithelial tissue (Supplementary Figure S7B). Moreover, the IC50 values of tumor drugs in several datasets were calculated using the CTRP database, which showed that tumors with high SQOR expression were more resistant to ferroptosis inducers (erastin, 1S,3R-RSL-3, ML162, ML210) and ROS inducers (darinaparsin, BRD-K94991378, BRD K71935468) (Figure 7B). Combined with the previous bioinformatics analyses of transcriptomics and proteomics and the experimental results, it was suggested that SQOR could help PDAC tolerate the hypoxic microenvironment while making the tumor cells more resistant to ferroptosis (Figure 8F).

[image: A multi-panel scientific figure analyzing tumor pathways and cellular responses. Panel A shows a color-coded correlation matrix between pathways and tumor types. Panel B presents a heatmap of the correlation between inducers of reactive oxygen species and ferroptosis across different datasets. Panels C, E include Western blots and bar graphs for SQOR protein expression in PANC1 and BxPC3 cells. Panels D, F illustrate relative SQOR gene expression in the same cell lines. Panels G, H show cell viability bar graphs. Panels I, J present migration assays with crystal violet staining. Panels K, L display mitochondrial DNA content measurements.]
Figure 7 | High SQOR expression promotes ferroptosis resistance of PDAC cells in hypoxic microenvironments. (A) Correlation analysis of SQOR with multiple pathways/genes set scores including hypoxia and ferroptosis resistance in the bulk dataset at the pan-cancer level (Spearman correlation). (B) IC50 correlation analysis of SQOR with ROS inducers (darinaparsin, BRD-K94991378, BRD-K71935468) and ferroptosis inducers (erastin, 1S,3R-RSL-3, ML162, ML210) (Spearman correlation). (C) The SQOR knockdown PANC1 cell line was validated by western blot (Student’s t-test). (D) SQOR knockdown PANC1 cell line validated by RT-qPCR (Student’s t-test). (E) The SQOR knockdown BxPC3 cell line was validated by western blot (Student’s t-test). (F) SQOR knockdown BxPC3 cell line validated by RT-qPCR (Student’s t-test). (G) Cell viability assay of SQOR knockdown and non-knockdown PANC1 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (H) Cell viability assay of SQOR knockdown and non-knockdown BxPC3 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (I) Cell migration capacity assay of SQOR knockdown and non-knockdown PANC1 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (J) Cell migration capacity assay of SQOR knockdown and non-knockdown BxPC3 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (K) MDA levels were assayed in SQOR knockdown and non-knockdown PANC1 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (L) MDA levels were assayed in SQOR knockdown and non-knockdown BxPC3 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). ns, P≥ 0.05; *, P<0.05; **, P<0.01; ***, P<0.001. PDAC, Pancreatic ductal adenocarcinomas; ROS, oxygen species; RT-qPCR, Real-time quantitative reverse transcription polymerase chain reaction assay; MDA, Malondialdehyde.

[image: Panel A shows images of tumors treated with DMSO, Erastin, HTS07545, and Erastin+HTS07545. Panel B presents a line graph of tumor volume over time, indicating different treatment effects. Panel C is a bar graph of tumor weight, showing statistical significance. Panel D is a line graph of body weight over time, with minimal variation among treatments. Panel E displays histology images under different treatments, showing varying tissue structure. Panel F is a diagram illustrating how hypoxia affects PDAC cells, impacting SQOR and ferroptosis.]
Figure 8 | SQOR inhibitor and ferroptosis inducer have synergistic ferroptosis induction in vivo. (A) Tumor images in mice. (B) Tumor growth curves in mice. (C) Analysis of tumor weights in mice. (D) Body weight change curves in mice. (E) H&E staining of pathological sections of mice tumors. (F) Mechanistic diagram of the promotion of ferroptosis resistance by SQOR in PDAC cells under hypoxia. ns, P≥ 0.05; **, P<0.01; ***, P<0.001. PDAC, Pancreatic ductal adenocarcinomas.

To verify this conjecture, we established stable SQOR knockdown PDAC cell lines (PANC1 and BxPC3) and verified by WB and RT-qPCR (Figures 7C–F). We used erastin to induce ferroptosis in pancreatic cancer cells under hypoxic conditions. After hypoxia treatment, SQOR knockdown cells showed reduced cell viability, decreased cell migration ability, and increased MDA content compared with control cells, and all the above could be reversed in the presence of Fer-1 (Figures 7G–L). The experimental results showed that under hypoxic conditions, SQOR could promote the resistance of PDAC cells to ferroptosis, and reduce the decreased cell viability, invasion, and oxidative damage caused by ferroptosis.

Next, we further investigated whether the SQOR inhibitor HTS07545 and the ferroptosis inducer erastin have synergistic ferroptosis-inducing effects in vivo. In terms of bulk specimens, the tumor volume of PDAC transplant in DMSO group was larger than that in erastin group, HTS07545 group, and erastin plus HTS07545 combined treatment group in mice (Figure 8A). The most significant decrease in tumor volume was observed in the combination treatment group (Figure 8B). Observation of tumor weights revealed that both HTS07545 and erastin groups showed a decrease in tumor weights in mice after treatment, with the most pronounced decrease in tumor weights in the erastin plus HTS07545 combination group, which had an inhibitory effect on tumor growth (Figure 8C). The body weight of the mice in each group was also monitored during the treatment period, and there was no significant weight loss in each group, suggesting fewer side effects (Figure 8D). H&E staining showed that the morphology of tumor cells in the DMSO group was normal, while the HTS07545 group and erastin group showed varying degrees of nuclear necrosis and tumor histocytological changes. Among them, the necrotic area of the erastin plus HTS07545 combined treatment group was the largest (Figure 8E). The results demonstrated that SQOR inhibitor HTS07545 and ferroptosis inducer erastin synergistically inhibit tumor growth in vivo with minimal side effects, which holds promise for clinical translation.





4 Discussion

PDAC is a highly malignant and lethal tumor (50). For the majority of patients with advanced PDAC, existing therapies, such as immunotherapy, chemotherapy, and radiotherapy, provide only limited clinical benefits (51). Therefore, new therapeutic options are urgently needed to improve the prognosis of patients with PDAC. Hypoxia is common in most solid tumors and its presence has been shown to increase the likelihood of cancer progression and spread (6). However, unlike other tumors, PDAC contains large numbers of stromal cells and abundant extracellular matrix (ECM), but lacks blood vessels, resulting in persistent and severe hypoxia within the tumor (49). The biology of hypoxic cancer cells is shaped by the interplay between pervasive oxygen tension, hypoxia-induced signaling pathways, interacting genetic mutations, and cellular damage caused by reactive oxygen species (ROS) (6). Furthermore, our bioinformatics analyses have identified a high hypoxia signature in a variety of solid tumors, and it is particularly evident that high hypoxia levels in PDAC are accompanied by a poor prognosis in patients. Thus, it is important to further investigate the characteristics and potential mechanisms of hypoxia in PDAC.

Our analysis of hypoxia levels in eight cell types at the single-cell level showed that myeloid cells, fibroblasts, and epithelial cells had the highest hypoxia scores. Similar to previous studies, the hypoxia score of the M1-like TAMs subpopulation was significantly higher than that of the M2-like TAMs subpopulation in macrophages. TAMs exhibit distinct functions depending on their subtypes. Specifically, M1-like TAMs primarily exert anti-tumor activity, whereas M2-like TAMs represent the predominant macrophage phenotype in PDAC, characterized by immunosuppressive and pro-tumorigenic properties (44, 52). Furthermore, studies have shown that TAM enrichment levels are higher in hypoxic regions of solid tumors and that hypoxia may be a key driver of macrophage recruitment and polarization in the TME, inducing macrophage phenotype that favor to tumor growth (53). CAFs are broadly defined as fibroblasts located in or near the tumor mass. The large number of CAFs in PDAC tissues constructs a favorable environment for tumor development (54). There is a large heterogeneity of CAFs, and the CAFs that are associated with the promotion of tumor progression are iCAFs. It was found that hypoxia in the TME of PDAC enhances the iCAFs phenotype and promotes tumor growth (46, 55). Our hypoxia scoring of CAFs also showed similar results: the iCAFs subpopulation had a higher hypoxia score than the myCAFs subpopulation. In the epithelial cell subpopulation, the hypoxia score of tumor cells was also much higher than normal. Under hypoxic conditions, PDAC achieves metabolic reprogramming through the induction of transcription factors and other methods. This process is accompanied by increased proliferation and invasive capacity of cancer cells (56). Results based on single-cell analysis showed a high hypoxic state in a variety of cells associated with tumor progression. Collectively, these findings position hypoxia as a master regulator of cellular crosstalk in the PDAC microenvironment, driving both stromal remodeling and epithelial malignancy (57).

In recent years, with the advancement of AI research and the enhancement of computer hardware capabilities, it has become possible to utilize WSIs, which contain abundant tissue information and pathological characteristics, for research purposes. The inherent tissue heterogeneity captured in WSIs provides a rich resource for tumor biology investigation, however, the manual annotation of morphologically critical regions remains labor-intensive and subjective. To address this, as a high-throughput deep learning framework, a CLAM-based method has demonstrated capabilities comparable to those of pathologists in tasks such as tumor diagnosis, tumor subtype differentiation, and patient prognosis determination, thus demonstrating their utility as scalable tools for WSIs interpretation (33, 58). However, there are fewer studies on certain characteristics of tumors at the slide level. Therefore, we used this framework to distinguish between high and low levels of hypoxia at the slide level, achieving good performance. This suggests that the level of tumor hypoxia can be directly reflected in the clinical WSIs, despite the difficult-to-explain nature of the deep learning model as a black-box model. However, to delineate biologically interpretable patterns from the model for subsequent studies, we performed model attention weight visualization. The model primarily focuses mostly on the stromal region of the tumor, as well as on the region of lymphocyte infiltration in the WSIs, but it does not pay enough attention to the epithelial region of the tumor. Previous studies have shown that the stroma of pancreatic cancer is the key stroma for disease progression (59). In addition, the histology of PDAC is characterized by massive connective tissue hyperplasia, with the resulting fibrotic reaction caused by excess fibroblasts and tumor-induced ECM deposition (60, 61). The dense ECM induces angiogenesis, hypoxia, and impairs anti-tumor immunity (62). This suggests that the model we constructed observes this feature in PDAC and evaluates hypoxia levels at the slide level based on these features in WSIs. This is further reflected in the prognostic observations of our clinical cohort. Intriguingly, while our slide-level analysis did not reveal statistically significant differences in total TILs abundance between hypoxia subgroups, we observed an inverse correlation between hypoxia levels and TIL density across multiple specimen sections. This apparent discrepancy may arise from the inability of WSI-based TIL quantification to differentiate lymphocyte subtypes or functional states. For instance, exhausted T cells tend to be enriched in tumors with impaired anti-tumor immunity (47). However, the model’s attention heat map similarly suggested a connection between hypoxia levels and lymphatic infiltration. This association was also demonstrated in the putative RNA-seq-based levels of immune cell infiltration.

Based on the widespread presence of hypoxia in PDAC cells and bioinformatics analysis, SQOR was further identified as one of the key factors in the malignant progression of tumor cells in a hypoxic TME. Comparative analysis of TCGA-PAAD cohorts revealed differential SQOR expression between high- and low-hypoxia score subgroups. Bulk RNA sequencing and single-cell transcriptomics analyses consistently demonstrated significant SQOR upregulation in tumor and normal pancreatic tissues/cells. This transcriptional pattern was corroborated at the protein level through IHC staining and proteomic profiling, confirming SQOR overexpression in PDAC specimens. Meanwhile, we also found that SQOR was an independent risk factor for the prognosis of PDAC patients. This reveals the potential of SQOR as a biomarker for PDAC. To fully utilize the WSIs information from H&E and IHC staining of our clinical cohort, we noted that the intensity of SQOR staining was significantly higher in tumor cells surrounding the region of high interest in the model compared to tumor cells in the region of relatively low interest. This feature was also evident in the spatial transcriptome data of pancreatic cancer. This suggests a spatial co-localization as well as a strong correlation between SQOR and hypoxia. To verify the guess, further in vitro experiments confirmed the upregulation of SQOR expression in PDAC cells cultured under hypoxic environment compared to normal conditions. SQOR is located in mitochondria and can reduce ubiquinone via the electron transport chain (63, 64). Meanwhile, ROS are generated by various enzymatic and non-enzymatic processes in the cell and are important mediators of cellular signaling (64). The production of ROS in mitochondria has been shown to be involved in hypoxia signaling. Mitochondria are a major source of cellular ROS. Increased mitochondrial proton conductance leads to the conversion of ubiquinone to ubiquinol, reducing ROS production due to oxidative stress and other factors (65). Kleiner et al. demonstrated that silencing of SQOR in wild-type HeLa cells leads to an increase in ROS (66). Thus, PDAC cells survival and proliferation under hypoxic conditions may result from increased SQOR expression through accelerated ubiquinone/ubiquinol cycling in the mitochondria. Lee et al. have indicated that intracellular SQOR under physiological conditions reduces ROS in the cell by regulating ubiquinone/ubiquinol cycling (67). Although further experimental confirmation of this mechanism in PDAC is still needed, we found that total ubiquinone/ubiquinol content in the PANC1 cell line was increased compared to normal pancreatic epithelial cell levels using metabolomics data from Yang et al., suggesting that there is an elevated ubiquinone/ubiquinol cycle level in PDAC (Supplementary Figure S8) (68).

As our above studies have shown that high levels of hypoxia and SQOR are present in tumor cells and differential analysis indicates alterations in the ferroptosis pathway in tumor cells. This suggests that SQOR under hypoxic conditions may affect cancer progression by modulating the ferroptosis pathway. Ferroptosis, an iron-dependent regulated cell death mechanism driven by lipid peroxidation, demonstrating significant potential in cancer therapy (18). In addition, cellular iron is critical for maintaining multiple metabolic pathways. Iron accumulation is one of the key signals initiating membrane oxidative damage during ferroptosis (69). Excess iron promotes subsequent lipid peroxidation through two mechanisms: the production of ROS and the activation of iron-containing enzymes. Tumor cell growth is significantly dependent on the trace element iron compared to non-malignant cells. Inhibition of ferroptosis promotes tumor invasion and metastasis. Bioinformatics analysis indicated a positive correlation between SQOR and both hypoxia and ferroptosis resistance in PDAC. Meanwhile, by simulating the hypoxic environment of PDAC cells and the ecological microenvironment with a high activation level of ferroptosis pathway, our in vitro experiments demonstrated the existence of ferroptosis resistance under hypoxic microenvironment in PDAC and this phenotype reversible by the ferroptosis inhibitor fer-1. However, the underlying mechanisms of hypoxia and ferroptosis resistance in the TME need to be further explored. It has been found that hypoxia can prevent ferroptosis by increasing the transcription of SLC7A11 and HO-1 and reducing ROS (70, 71). Our study extends the theory that hypoxia protects PDAC cells from ferroptosis by upregulating SQOR expression. This study provides a new insight into the mechanism of ferroptosis resistance of PDAC under hypoxia.




5 Conclusions

In conclusion, in this study, we first determined that hypoxia plays an important role in the progression of malignant tumors. As PDAC exhibits a higher level of hypoxia and a worse prognosis than most tumors, we further analyzed the potential factors involved in hypoxia-promoting carcinogenesis in PDAC. We found that SQOR was highly expressed in PDAC and was associated with poor prognosis. We then explored the relationship between hypoxia and ferroptosis and found a positive correlation between hypoxia and ferroptosis resistance in several tumors, including PDAC. In vitro experiments demonstrated that SQOR promotes ferroptosis resistance in PDAC cells under hypoxic conditions. In vivo experiments demonstrated that both the SQOR inhibitor HTS07545 and the ferroptosis inducer erastin could inhibit tumors and both have synergistic inhibitory effects on tumor growth with fewer side effects. Therefore, we suggest that the hypoxic microenvironment in PDAC is a major factor contributing to ferroptosis resistance, and SQOR is an important gene for this process. There are also limitations to our study. Firstly, there was a deficiency in the number of cells studied at our single-cell level, and the hypoxia, SQOR and ferroptosis resistance properties of PDAC were not observed in a wider dataset. Second, the hypoxic properties of PDAC were not observed in more types of TME cells. Third, due to limited public resources for matching pathological sections of pancreatic cancer samples to transcriptome data, the dataset size is small, especially for validation and test samples. Fourth, we did not perform external validation of the model in our clinical cohort, although our clinical cohort has demonstrated the prognostic significance of the constructed model. Overall, we analyzed the important role of hypoxia in PDAC from multiple dimensions (bioinformatics, computer vision, in vitro experiments and in vivo experiments). We discovered that hypoxia can be identified as a phenomenon in clinicopathological slides, while simultaneously revealing a novel mechanism of hypoxia-mediated ferroptosis resistance. Furthermore, this study underscores the potential of SQOR as both a biomarker and a therapeutic target in PDAC, thus warranting further in-depth investigation.
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Variable EG: Median (Inter:

Point_Deviation_L_Mean (mm) 0.296 (0.238-0.387) 1.7111 (1.529-1.949) wilcox.test 0.000
Length_Deviation (mm) 5.570 (4.180-6.818) 9.735 (4.700-13.133) wilcox.test 0.151
Height_Deviation (mm) 5.580 (3.778-7.613) 11.955 (7.710-16.098) wilcox.test 0.004

Volume_Deviation (mm3) 2287.980 (427.222-4810.673) 5519.685 (4554.100-6823.630) wilcox.test 0.015

Surface_Deviation (mm2) 3746.200 (407.415-7279.635) 5970.845(5416.525-7136.983) wilcox.test 0.481
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Variable G_mean CG_me; CG_sd Method P
Length (mm) 62.76 7.02 59.37 11.27 wilcox.test 0449
Width (mm) 72.94 5.66 7349 6.39 wilcox.test 0739
Height (mm) 52.68 24.11 4276 13.63 wilcox.test 0.307
Volume (mm3) 48093.78 19361.43 45095.00 15555.09 wilcox test 0481
Surface (mm2) 11261.89 4610.39 8880.02 1955.67 wilcox.test 0481
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Name

GLN ''* (A) H-donor
ASP '** (A) H-donor
LYS ** (A) H-acceptor
SER 2 (A) H-acceptor
SER "'77 (A) H-acceptor
GLY "™ (A) H-acceptor
GLN *7* (A) H-acceptor
GLY * (A) H-acceptor
LYS ™ (A) H-acceptor
SER ** (A) H-acceptor
GLY ** (A) H-acceptor

Co-crystallized ligand SER *** (A) H-acceptor 67843
THR ** (A) H-acceptor
THR *** (A) H-acceptor
GLN '™ (A) H-acceptor
ARG " (A) H-acceptor
ARG " (A) H-acceptor

SER ** (A) H-acceptor
GLN 7% (A) H-acceptor
GLN *7* (A) H-acceptor
SER *** (A) H-acceptor
LYS *** (A) ionic
TYR ' (A) pi-pi

(Standard)
Mifepristone
‘The most significant p-glycoprotein-
1 inhibitor

TYR ' pi-pi -5.1600

ALA *® H-donor
GLN '**' H-acceptor
Baicalin ARG *? H-acceptor -4.5814
ARG ** ionic
ARG ** fonic

ASP ' H-donor
ASP '** H-donor
ARG ™ H-acceptor
ARG ™ ionic
ARG ** fonic
TYR *' pi-pi

Baicalein -6.2383

SER ** pi-H

TYR ' pi-pi 702

Caflanone

ASP '*! H-donor
ARG " H-acceptor
ARG ** H-acceptor

ARG " ionic
ARG " jonic
TYR * pi-pi

Cyanidin 64466

GLY *** H-acceptor

TYR 0% pipi 7.4963

Quercetin

ASP ™ H-donor
LEU **' H-donor
SER ™ H-acceptor
ARG *? H-acceptor
GLN ** pi-H
TYR "% pi-pi

Rutin 82013

Digitoxigenin TYR ' (A) pi-pi -5.5567

GLY ** H-donor
Curcumin GLN ** H-acceptor 7.1348
TYR *' pi-pi
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Phytochemicals

Plant Source

Concentration

Bioavailability iCzy
5

P-glycoprotein/
LncRNAs

In vitro/
in vivo
experiments

Reference

Baicalein

Baicalin

Quercetin

Rutin

Curcumin

Diindolylmethane

Fisetin

Kaempferol

Luteolin

Glycyrrhizin

Gingerol

Noscapine

Anethole

Procyanidin

Allicin

Astaxanthin

Dihydromyricetin

Cinnamaldehyde

Root of Scutellaria
baicalensis
Georgi (Labiatae)

Root of Scutellaria
baicalensis
Georgi (Labiatae)

Amaryllidaceae,
Brassicaceae,
Capparaceae,

Ericaceae, Liliaceae,
and Rosaceae.

Buckwheat, apricots,
cherries, grapes,
grapefruit, plums,
and oranges

Curcuma longa

cruciferous
vegetables

Strawberries, apples,
grapes, onions,
tomatoes,
and cucumbers.

Leaves of
Ginkgo biloba

Vitex negundo leaves

licorice root

Rhizome of the
ginger plant

Papaveraceae,
Berberidaceae,
and Ranunculaceae

Anise (Pimpinella
anisum), fennel
(Foeniculum
vulgare), star anise
(Ilicium verum),
basil
(Ocimumbasilicum),
tarragon
(Artemisia
dracunculus)

Apples, maritime
pine bark,
cinnamon, cocoa
beans, grape seed,
grape skin, and red
wines of
Vitis vinifera

Garlic cloves

Algae, yeast, salmon,
trout, krill, shrimp
and crayfish

Leaves
of grossedentata

Bark, leaves, and
twigs of various
Cinnamomum
species

The absolute
bioavailability of
baicalein in
different doses
ranged from 13.1%
to 23.0%.

332 pg/mL

low bioavailability

of about 22 + 0.2% 472lug/mL

The bioavailability
of querf:eun is 0,044 TN
relatively

low (<10%)

Poor bioavailability 8 uM

Very

pooi bioavallability | 0o d20M

DIM is poorly
absorbed from the 5623 M

gastrointestinal
tract

Low
bioavailability 50 uM
(44.1%)

Low poor at ~ 2% 43 pmol/L

The low
bioavailability 3-50 uM
4.10%

Approximately 1% 267.3 uM

Poor bioavailability 96.32 UM

Bioavailability

was 30% 347uM

Limited

bioavailability oM

The bioavailability
depends on their
degree of

polymenz?uon. ——
The absorption rate
of
proanthocyanidin

dimers is 5-10%.

The bioavailability
of allicin is poor

10-25 M
|

Less than 10% for
raw
uncooked
vegetables

<200 uM

Poor bioavailability 20.69 pg/mL

The oral
bioavailability of
cinnamaldehyde is
around 20%

9.48 and 9.12 pg/m

Baicalein inhibits the
expression and activity of P-
glycoprotein resulting in the
accumulation of intracellular
rhodamine 123.

Baicalein down-regulates
BDLNR in poor cervical cancer
in vivo which is bound to Y-
box binding protein 1 (YB-1),
recruited YBX1 to PIK3CA
promoter, activated PIK3CA
expression and PI3K/

Akt pathway.

Baicalin doesn’t affect P-
glycoprotein activity. This is
because of the structure-activity
relationship of the inhibitors of
P-gp. Baicalin has glucosyl that
influences the activity of P-gp
and downregulates its
inhibitory effect.

Quercetin targets MALAT1
and decreases invasion in
prostate cancer by upregulating
N-cadherin and
phosphorylated Akt;
downregulating E-cadherin.

Rutin is observed to inhibit P-
gp transport function and
significantly reduce resistance
in cytotoxicity assay to
paclitaxel in P-gp
overexpressing MDR cell lines.

Curcumin downregulates both
H19 and HOTAIR in renal
carcinoma and breast cancer
cells. Curcumin affects EMT
biomarkers including N-
cadherin and E-cadherin levels.
It reduces levels of N-cadherin
and increases levels of E-
cadherin. In vitro studies
observed that curcumin
decreases renal cancer cell
migration and invasion by
downregulating the expression
level of HOTAIR (124)

Diindolylmethane induces
intracellular accumulation of
Hoechst and Calcein, the
substrates of P-gp and MRP1,
respectively, in breast cancer
cells. In addition,
Diindolylmethane induces P-gp
ATPase activity and inhibits its
efflux activity.

Fisetin inhibits prostate cancer
cell proliferation, migration,
and invasion by modulating a
P-glycoprotein overexpressing
multidrug-resistant cancer cell
line NCI/ADR-RES.

Kaempferol increases the
intracellular accumulation and
reduces the efflux of Rh123 and
3[H]vinblastine in KB-V1 cells

Luteolin induces apoptosis in
P-glycoprotein- and ABCG2-
expressing MDR cancer cells
without affecting the transport
functions of these

drug transporters.

Glycyrrhizin has anti-cancer
and antioxidant activity. It
reduces multidrug resistance
(MDR) in cancer cells.
Glycyrrhizin is a nitric oxide
regulator in cancer cells and its
subsequent anti-MDR effect.

It is observed that the exposure
at 8 uM doxo concentrations in
the presence of ginger
improves drug accumulation
and cytotoxicity on resistant
MES-SA/Dx5 cells. Ginger
induces the production of GSH
content in resistant cells and
decreases the multidrug
resistance in resistant cells.

Noscapine minimizes
endothelial cell migration in
the brain by targeting
endothelial cell activator
interleukin 8 (IL-8). It
modulates P-gp activity efflux
on resistant cancer cells.

Anethole has multiple anti-
cancer mechanisms, such as
inducing apoptosis, causing cell
cycle arrest, exhibiting anti-
proliferative and anti-
angiogenic effects, and
modulating critical signaling
pathways including NF-kB,
PI3K/Akt/mTOR, and caspases.

Procyanidin reverses MDR in
A2780/T cells by inhibiting the
function and expression of P-
gp in A2780/T cells.
Procyanidin reversed MDR by
inhibiting the function and
expression of p-gp via
inhibition of NF-kB mediated
by dephosphorylation of AKT
and ERK1/2, respectively.

Allicin activates osteosarcoma
immunoreactivity and induces
apoptosis through the CBR3-
AS1/miR-145-5p/GRP78
molecular axis. Allicin triggers
silencing CBR3-AS1 led to
reduced Saos-2 activity,
enhanced apoptosis, and
activated mitophagy and
endoplasmic reticulum stress.

RUSCI1-ASI is a novel
oncogenic IncRNA in
osteosarcoma through the miR-
101-3p-Notchl-Ras-ERK
pathway, which might be a
potential therapeutic target for
osteosarcoma. Astaxanthin
down-regulates RUSC1-AS1
significantly attenuated the
proliferative, epithelial-
mesenchymal transition
(EMT), growth, lung
metastasis, migrative and
invasive abilities of MG-63 and
Saos-2 cells

Dihydromyricetin effectively
reversed multi-drug resistance
occurring in SGC7901/5-FU
cells cultured in vitro by
downregulating MDR genes.
Tt also decreased IncRNA
MALAT]1 expression which
induces CSCC cell death via
inducing excessive autophagy,
which is mediated through the
MALATI1-TFEB pathway.

cinnamaldehyde increased the
curative effect of oxaliplatin by
promoting apoptosis both in
vitro and in vivo.
Cinnamaldehyde and
oxaliplatin synergistically
reversed hypoxia-induced EMT
and stemness of CRC cells and
suppressed hypoxia-activated
Wnt/B-catenin pathway
synergistically. It inhibits P-
glycoprotein expression
through inhibition of STAT3
and AKT signaling to
overcome drug resistance

Caco-2 cells,
cervical cancer,
and rat gut sacs

Caco-2 cells and
rat gut sacs

Prostate cancer

KB 3-1 and KB
CH" 8-5 cell lines

MCE-7/TAMR *
cell line.
769-P-HOTAIR
and 786-0
cell lines

MDA-MB-231
cells Breast
cancer cells

NCI/ADR-RES
prostate
cancer cell

Multidrug-
resistant human
cervical
carcinoma KB-
V1 cells

BCRP-expressing
MCF-7/
Mito® cells

Breast cancer
cells
HCT116

Human uterine
sarcoma cell line
MES-SA MES-
SA/DxS5 cells

breast
adenocarcinoma
cell line MCF7

Breast, prostate,
lung, and
colorectal cancers

Ovarian cancer
cell line
A2780/T

OAW42 and

OVCAR3 cells

osteosarcoma

Osteosarcoma
MG-63 and Saos-
2 cells

SGC7901/5-FU
cells
Cutaneous
squamous cell

carcinoma
(CsCC)

Lovo and HT-29
cells
colorectal
cancer (CRC)

(115-117)

(116, 118)

(119-122)

(123b)

(125)

(126)

(127-129)

(130b;131,
132)

(133,
134Db;135)

(136-138)

(139-141)

(142-144)

(145, 146)

(147-149)

(150, 151)

(152-154)

(155, 156)

(157, 158)
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Univariate analysis

Multivariate analysis

Variable
HR(95%CI) P HR(95%CI) P
Age 1.026(1.007-1.045) 0.007* 1.017(0.996-1.039) 0.109
Tumor size (cm?) 1.000(1.000-1.000) 0.141 —
FIGO stage
/11 1 —
/v 1.228(0.748-2.017) 0.416 -
Grade
12 1 —
3 0.894(0.411-1.947) 0.779 —
Unknown 0.926(0.449-1.914) 0.836 -
Pathological types
Border 1 —
Serous 6.107(0.843-44.244) 0.073 —
Mucous 3.383(0.445-25.731) 0.239 -
Lymphatic metastasis
No 1 —
Yes 1.191(0.696-2.040) 0.524 -
Unknown 0.497(0.155-1.599) 0.241 —
CEA
Negative 1 —
Positive 0.668(0.324-1.377) 0.275 -
Unknown 0.660(0.322-1.354) 0.257 -
CA125
Negative 1 1
Positive 3.229(1.012-10.303) 0.048* 1.863(0.573-6.055) 0.301
Unknown 2.742(0.701-10.724) 0.147 1.273(0.313-5.176) 0.736
CA199
Negative 1 —
Positive 0.972(0.555-1.700) 0.920 -
Unknown 0.756(0.358-1.596) 0.464 -
ER
Negative 1 —
Positive 1.644(0.559-4.837) 0.367 -
Unknown 1.541(0.553-4.295) 0.408 -
PR
Negative 1 —
Positive 0.930(0.385-2.244) 0.871 -
Unknown 0.957(0.468-1.955) 0.903 -
CD163
Low infiltration 1 1
L . <0.001 <0.001
High infiltration 4.505(2.786-7.283) 3.986(2.436-6.522)

HR, hazard ratio: CI, confidence interval: *P:<0.05.
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Internal External

Overall fraiping validation validation
Variables (n=6850) (:9270;;) cohort cohort (T leE\é)
n (%) e 2052) (n=77) B
n (%) n (%)
Age 0.470 <0.001
<50 845 (124) 601 (12.6) 244 (11.9) 43 (55.8)
250 5995 (87.6) 4187 (87.4) 1808 (88.1) 34 (442)
Race » ‘ 0284 <0.001
White 5185 (75.8) 3606 (75.3) 1579 (76.9) 0 (0.0)
Black 836 (12.2) 591 (12.3) 245 (11.9) 0 (0.0)
Other 819 (12.0) 591 (12.3) 228 (11.1) 77 (100.0)
Marital 0712 <0.001
Married 3445 (50.4) 2404 (50.2) 1041 (50.7) 76 (98.7)
Single 3395 (49.6) 2384 (49.8) » 1011 (49.3) 1(1.3)
Laterality 0870 0.206
Left 3478 (50.8) 2431 (50.8) 1047 (51.0) 33 (42.9)
Right 3362 (49.2) 2357 (49.2) 1005 (49.0) 44 (57.1)
Grade 0441 <0.001
1 4048 (59.2) 2813 (58.8) 1235 (60.2) 29 (37.7)
hid 2544 (37.2) 1804 (37.7) 740 (36.1) 40 (51.9)
m 248 (3.6) 171 (3.6) 77 (3.8) 8(10.4)
T 0939 <0.001
1 4571 (66.8) 3196 (66.8) 1375 (67.0) 18 (23.4)
2 1861 (27.2) 1309 (27.3) 552 (26.9) 42 (545)
3 314 (4.6) 216 (4.5) 98 (4.8) 13 (16.9)
4 94 (1.4) 67 (1.4) 27 (1.3) 4(5.2)
N 0.163 <0.001
0 6267 (91.6) 4407 (92.0) 1860 (90.6) 58 (75.3)
1 470 (6.9) 317 (6.6) 153 (7.5) 8(10.4)
2 68 (1.0) 41 (0.9) 27 (1.3) 5(6.5)
3 35 (0.5) 23 (0.5) 12 (0.6) 6(7.8)
M 1.000 0.004
0 6768 (98.9) 4738 (99.0) 2030 (98.9) 73 (94.8)
1 72 (1.1) 50 (1.0) 22 (L.1) 4(52)
HER2 ‘ 0.687 0.821
Negative 6316 (923) 4428 (92.5) 1888 (92.0) 71 (92.2)
Positive 322 (47) 224 (4.7) 98 (4.8) 339
Unknown 202 (3.0) 136 (2.8) 66 (3.2) 339
Surgery 0.757 0.116
No 249 (3.6) 177 (3.7) 72 (3.5) I 6(7.8) [
Yes 6591 (96.4) 4611 (96.3) 1980 (96.5) 71 (92.2)
Radiation 0.353 <0.001
No 3553 (51.9) 2469 (51.6) 1084 (52.8) 57 (74.0)
Yes 3287 (48.1) 2319 (48.4) 968 (47.2) ‘ 20 (26.0)
Chemotherapy v 0705 <0.001
No 6047 (88.4) 4238 (88.5) 1809 (88.2) 13 (16.9)
Yes 793 (11.6) 550 (11.5) 243 (11.8) 64 (83.1)

HER2, human epidermal growth factor receptor 2.
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Other 0.45 (0.33 - 0.62) 0 0_5%(707;11 0.0004
Marital
Married Reference Reference
1.73 (1.47
Single 2.10 (1.79 - 2.46) 0 ) 2.5)4) 0
‘ Laterality
Left Reference - -
Right 1.01 (0.86 - 1.17) 0.948 - -
Grade
I Reference - -
I 0.99 (0.84 - 1.16) 0.869 = =
111 144 (1 - 2.07) 0.051 - -
T
1 Reference Reference
1.59 (1.35
2 1.64 (1.39 - 1.94) 0 ) 1.(89) 0
3 1.93 (1.42 - 2.63) 0 165 (118 -2.3) | 0.0031
4 4.75 (3.19 - 7.07) 0 246 (151 0.0003
- 401)
N
0 Reference Reference
1 1.18 (0.89 - 1.56) 0.263 1_2(1(603)88 0.242
2 1.21 (0.58 - 2.56) 0.611 142 (028 0.1793
-381)
3 2.40 (1.19 - 4.82) 0.014 067 (03 -1.52) 03399
M
0 Reference Reference
C e
Surgery
No Reference Reference
Yes 0.15 (0.12 - 0.19) 0 0_3%(309)23 0
‘ Radiation
No Reference Reference
0.55 (0.46
Yes 0.43 (0.37 - 0.51) 0 ” 0_(65) 0
‘ Chemotherapy
No Reference Reference
Yes 0.42 (0.30 - 0.57) 0 Uas (32 0
- 0.66)
HER2
Negative Reference Reference
Positive 0.65 (0.43 - 1.00) 0.048 092 (0.6 -143) = 07213
Unknown 1.22 (0.84 - 1.78) 0.290 1_121 (6(4)1)77 0.5445

HR, hazard ratio; CI, confidence interval; HER2, human epidermal growth factor receptor 2.
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Before PSM After PSM
Variables Adjuvant Neoadjuvant Adjuvant Neoadjuvant
chemotherapy chemotherapy D chemotherapy chemotherapy
(n=565) (n=142) (n=104) (n=104)
Age 0.0221 0.573
<50 190 (33.6%) 63 (44.4%) 40 (38.5%) 45 (43.3%)
250 375 (66.4%) 79 (55.6%) 64 (61.5%) 59 (56.7%)
Race 0.966 0701
White 383 (67.8%) 96 (67.6%) 73 (70.2%) 71 (68.3%)
Black 95 (16.8%) 25 (17.6%) 19 (18.3%) 17 (16.3%)
Other 87 (15.4%) 21 (14.8%) 12 (11.5%) 16 (15.4%)
Marital 0.019 0.675
Married 350 (61.9%) 72 (50.7%) 61 (58.7%) 57 (54.8%)
Single 215 (38.1%) 70 (49.3%) 43 (41.3%) 47 (45.2%)
Laterality 0311 0674
Left 284 (50.3%) 64 (45.1%) 42 (40.4%) 46 (44.2%)
Right 281 (49.7%) 78 (54.9%) 62 (59.6%) 58 (55.8%)
Grade 0.713 0.75
1 204 (36.1%) 52 (36.6%) 34 (32.7%) 39 (37.5%)
II 287 (50.8%) 75 (52.8%) 56 (53.8%) 51 (49.0%)
m 74 (13.1%) 15 (10.6%) 14 (13.5%) 14 (13.5%)
T <0.001 0914
1 286 (50.6%) 23 (16.2%) 24 (23.1%) 22 (21.2%)
2 223 (39.5%) 48 (33.8%) 42 (40.4%) 47 (45.2%)
3 48 (8.5%) 53 (37.3%) 32 (30.8%) 30 (28.8%)
4 8 (1.4%) 18 (12.7%) 6 (5.8%) 5 (4.8%)
N <0.001 095
0 394 (69.7%) 55 (38.7%) 51 (49.0%) 50 (48.1%)
1 139 (24.6%) 61 (43.0%) 37 (35.6%) 39 (37.5%)
2 21 (3.7%) 18 (12.7%) 11 (10.6%) 9 (8.7%)
3 11 (1.9%) 8 (5.6%) 5 (4.8%) 6 (5.8%)
Stage <0.001 0.96
1 272 (48.1%) 16 (11.3%) 17 (16.3%) 16 (15.4%)
it 241 (42.7%) 62 (43.7%) 57 (54.8%) 59 (56.7%)
m 52 (9.2%) 64 (45.1%) 30 (28.8%) 29 (27.9%)
Radiation 00215 0316
No 262 (46.4%) 50 (35.2%) 35 (33.7%) 43 (41.3%)
Yes 303 (53.6%) 92 (64.8%) 69 (66.3%) 61 (58.7%)
Subtype 0362 0.74
N Luminel 433 (76.6%) 103 (72.5%) 82 (78.8%) 79 (76.0%)
Luminal B 132 (23.4%) 39 (27.5%) 22 (212%) 25 (24.0%)

PSM, propensity score matching.
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