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Editorial on the Research Topic

Imaging-based methods for fracture risk assessment
Fragility fractures represent a significant global health burden and can arise from

osteoporosis (1). While areal bone mineral density (aBMD) derived from dual-energy X-

ray absorptiometry (DXA) has long been the diagnostic standard, approximately 50% of

fractures occur in individuals with aBMD above the osteoporotic threshold, underscoring

limitations of DXA-derived aBMD in capturing the multifaceted nature of bone fragility

(2–5). This necessitates a shift towards comprehensive imaging techniques and/or

parameters that offer deeper insights into bone quality such as microarchitecture and

biomechanical factors. This Research Topic explored recent advancements, persistent

challenges, and future directions in this evolving field.

Conventional DXA provides a two-dimensional (2D) projection, simplifying bone

geometry and material properties, but with measurements confounded by bone size (2).

However, extracting sophisticated structural information from existing DXA scans could

enhance its utility. The “Minimal Model” (MM) of hip structure, derived from DXA Hip

Structural Analysis (HSA) variables like Femoral Neck Width (FNW), Sigma, and Delta,

offers crucial biomechanical insights beyond simple aBMD. Zhao et al. demonstrated that

the MM significantly improved hip fracture discrimination (area under the curve [AUC] =

0.838) compared to BMD alone (AUC = 0.781) in Chinese adults, with increases in FNW,

Sigma, and Delta independently associated with higher hip fracture risk. This study

indicated that detailed structural geometry, even from 2D imaging, might provide

superior predictive power.

Quantitative computed tomography (QCT) offers three-dimensional (3D) volumetric

imaging, enabling separate analysis of cortical and trabecular bone and measuring

volumetric BMD (vBMD) without projection errors (2, 4). Furthermore, QCT enables

assessments of bone shape and cortical bone thickness, and estimates of bone strength
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through finite element analysis (FEA) (6). However, the spatial

resolution of QCT scans at the proximal femur and spine is not

enough to visualize trabecular bone microarchitecture and its

higher radiation dose and required FEA expertise limit its routine

clinical use. Leveraging routine CT scans, Hounsfield Units (HU)

are emerging as a valuable metric for osteoporosis assessments.

Chen et al. showed that anterior column HU values were

significantly lower in osteoporotic vertebral compression fractures

(OVCFs) and correlated strongly with DXA T-scores (r = 0.643)

and aBMD (r = 0.656). Crucially, anterior column HU

demonstrated the highest correlation with vertebral compression

degrees (r=0.727) and superior predictive ability for severe OVCFs

(grade 3), with an optimal cutoff of 59.07 HU (AUC = 0.913). This

opportunistic approach provided a localized bone quality

assessment that could directly inform clinical decisions like short-

term absolute bed rest post-fracture.

Chemical shift encoding-based water-fat separation MRI (CSE-

MRI) is a non-invasive, radiation-free tool for assessing bone and

muscle composition (5, 7, 8). Stohldreier et al. investigated 6-month

changes in proton density fat fraction (PDFF) and T2* of paraspinal

muscles (PSM) and vertebral bone marrow (VBM; T11-L4) as

predictive biomarkers for incidental VCFs. They found that PDFF

significantly increased in both PSM and VBM in patients who

subsequently developed VCFs, even when opportunistic CT-based

BMD remained unchanged. This suggests fatty degeneration is a

crucial, early biomarker for bone fragility, challenging sole reliance

on BMD Decreasing PSM T2* was also identified as a risk factor.

This innovative MRI application shifts assessment from purely

structural to detecting metabolic and compositional changes,

potentially enabling earlier risk stratification.

Image-based biomechanical approaches, particularly FEA, aim to

directly assess bone strength by simulating fracture-inducing forces.

FE models, constructed from DXA or QCT data, estimate stress and

strain distributions via computational modeling to predict bone

strength and fracture loads (9, 10). In this regard, DXA-based FEA

is accessible and comes at low radiation exposure, but relies on

simplified 2D geometry. QCT-based FEA offers detailed 3D insights

but incurs higher costs and radiation as well as expertise. Despite

theoretical superiority, biomechanical models still face significant

barriers to clinical integration. Key challenges include: (1) accurate

material property characterization: current imaging struggles to

quantify non-mineral components (collagen, water) crucial for

bone toughness and viscoelasticity, leading to incomplete material

data for FE models (Luo et al.); (2) modeling bone anisotropy: most

FE models use simplified isotropic assumptions, overlooking bone’s

directional strength variations, which limits accuracy in simulating

multi-directional fall forces (Luo et al.); and (3) realistic fall

simulations: real-world falls are unpredictable, influenced by

random triggers and complex individual-specific muscle reflexes

that are difficult to accurately replicate in simulations. These

fundamental scientific and engineering hurdles necessitate

continued research in advanced imaging, material science, and

computational modeling for FEA to reach its full clinical potential.

Fracture risk extends beyond bone integrity, involving soft

tissues and systemic health. Ahmed Mohamed et al. conducted a
Frontiers in Endocrinology 026
meta-analysis that revealed that preoperative thoracolumbar fascia

injury (TLFI), diagnosed by MRI, may be a frequently overlooked

complication in OVCFs (28% incidence) that significantly increases

residual back pain post-percutaneous vertebral augmentation (odds

ratio = 4.79). This highlights the need for a holistic assessment,

including soft tissue integrity, for comprehensive pain management.

Furthermore, bone fragility is intertwined with systemic

diseases. Jin et al. demonstrated that in patients with Parkinson’s

disease (PD), hip fractures mediate the association between

osteoporosis and mortality, emphasizing aggressive osteoporosis

and fall management in this vulnerable population. The work by

Abate et al. in liver transplant patients also identified transplant-

specific factors like rejection episodes and low aBMD as critical for

predicting long-term bone fragility progression. Such studies

advocate for a multidisciplinary approach to fracture prevention,

integrating imaging with broader clinical contexts.

The field of fracture risk assessment is transforming, moving

beyond BMD to embrace sophisticated imaging techniques and

parameters that capture bone quality and tissue composition.

Advanced techniques like DXA-based structural analysis,

localized CT-based HU measurements with opportunistic vBMD

assessments, and MRI-derived biomarkers have potential to

enhance predictive accuracy. The development of personalized

nomograms for specific patient cohorts further exemplifies a shift

towards tailored interventions. However, considerable challenges

persist, including the need for robust validation in larger and

diverse populations, standardization of imaging protocols, and

improved computational efficiency for complex biomechanical

models. Future research must prioritize hybrid and multi-modal

approaches, leveraging artificial intelligence and machine learning

for automated analysis and seamless clinical integration. The

ultimate goal is to develop accurate, generalizable, reproducible,

and user-friendly tools that can be seamlessly integrated into

routine clinical workflows, fostering a holistic vision for

musculoskeletal health and leading to more effective and

personalized fracture prevention strategies worldwide.
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Polyostotic fibrous dysplasia with
epiphyseal involvement of the
proximal femur in a child: a case
report and review of the literature
Elio Paris1, Giacomo De Marco2, Oscar Vazquez2,
Sana Boudabbous3, Christina Steiger2, Romain Dayer2 and
Dimitri Ceroni2*
1Faculty of Medicine, University of Geneva, Geneva, Switzerland, 2Pediatric Orthopedic Unit, Pediatric
Surgery Service, Geneva University Hospital, Geneva, Switzerland, 3Radiology Department, Geneva
University Hospital, Geneva, Switzerland
Fibrous dysplasia (FD) is a benign medullary fibro-osseous anomaly that
compromises the mechanical strength of bones, especially the long bones
that bear strong mechanical stresses. It can lead to an inability to remodel
immature bone into mature lamellar bone, resulting in inappropriate bone
alignment in response to mechanical stresses. This case study describes a rare
case of polyostotic FD presenting with an epiphyseal lesion of the proximal
femoral head in its weight-bearing zone, accompanied by an unconventional
femoral malrotation. The present case leads us to recommend that clinicians
should not underestimate the occurrence of other deformities, such as the
retrotorsion or flexion deformities that can compromise bone structure and
the hip’s biomechanics. Finally, the involvement of the epiphysis is probably
more common than usually thought, introducing an additional complexity
since juxta-articular lesions in weight-bearing joints may collapse,
compromising articular congruence and function. To minimise this risk, bone
scintigraphy and MRI should play a critical role in the patient’s workup,
evaluation, prognosis and follow-up.

KEYWORDS

fibrous dysplasia, proximal femur, pediatric, case report, epiphysis

1 Introduction

Fibrous dysplasia (FD) is a benign, non-hereditary, genetic bone disorder presenting as

either an isolated skeletal lesion (its monostotic form) or affecting multiple bones (its

polyostotic form) (1). The disease’s incidence is estimated to be from 1 in 5,000 to 1 in

10,000 (2). FD is sometimes associated with single or multiple endocrinopathies,

precocious puberty and cutaneous hyperpigmentation in McCune–Albright syndrome

(3). Radiographically, it usually appears as a well-defined radiolucent medullary lesion

that is irregular, mildly expansive and characterised by a hazy opacity typically

described as “ground-glass” (4); it is usually designated as type IA according to the

Lodwick classification (5). On long bones, FD can cause expansion of the bone edges,

with cortical thinning and endosteal scalloping. The diaphysis is usually involved, but

the metaphysis can also be affected (4). In very rare instances of the disease’s

polyostotic form, the epiphysis may be involved, especially in children (3, 6–10). These

changes are usually visible on plain radiographs, but computed tomography and
01 frontiersin.org8
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magnetic resonance imaging (MRI) are regularly performed to better

investigate the tumour matrix and tumour expansion. This case study

describes a rare case of polyostotic FD presenting with an epiphyseal

lesion of the proximal femoral head in its weight-bearing zone,

accompanied by an unconventional femoral malrotation.
2 Case report

A 10.5-year-old child underwent fixation surgery in a regional

hospital for a pathological diaphyseal fracture of the left femur.

A closed reduction of the fracture was performed and

subsequently stabilised using two flexible retrograde

intramedullary nails. After hardware removal, he was referred to

our hospital centre at the age of 12 for a follow-up on his

suspected fibrous dysplasia. On clinical examination, there was

no leg length discrepancy, and no “café au lait” spots were noted

on his skin. The patient tested positively during an anterior

impingement (the FADIR test), with a severe restriction in

internal rotation at his left hip related to his femoral retroversion.

X-ray images of the left femur revealed various radiolucent

lesions in the diaphysis, with sclerotic edges, scalloping and a

ground-glass appearance (Figure 1a). The patient’s plain

radiographs showed no coxa vara or shepherd’s crook

deformities but revealed an increased sagittal radius of curvature

and retrotorsion of the proximal femur (Figure 1b). The patient’s

growth plates were still open at the level of the proximal and

distal femur.
FIGURE 1

X-ray images of the left femur after removal of osteosynthetic
materials: the frontal coronal plane image revealed a variety of
radiolucent lesions in the diaphysis, with sclerotic edges, scalloping
and a “ground-glass” appearance (a) sagittal plain radiographs
showed an increased sagittal radius of curvature and retrotorsion
of the proximal femur (b).

Frontiers in Pediatrics 029
Whole body MRI confirmed the diagnosis of polyostotic FD,

displaying FD foci in the left femur, right tibia, left fibula, left

calcaneus, both iliac wings, maxillary bone, and the sphenoid

wing (Figure 2). The lesions on the left femur were in the

proximal epiphysis, the proximal metaphysis and along the

diaphysis. MRI demonstrated a low signal intensity in

T1-weighted images (Figure 3a) and a high signal intensity in

fat-suppressed T2-weighted images, also showing strong

gadolinium enhancement (Figure 3b) without diffusion

restriction (Figure 2b). There was no significant bone marrow or

soft tissue enhancement. At the femoral head, the lesion was

juxta-articular, with no subchondral bone collapse. Scintigraphy,

added to assess skull involvement, confirmed the polyostotic

hyperfixation and demonstrated an unknown parasymphyseal

involvement of the mandible with an extension into its right

branch (Figure 4). Finally, blood tests enabled us to exclude

endocrine dysfunctions.

Timeline:

• Occurrence of a pathological fracture of the left femur in August

2023

• Closed reduction of the femoral fracture and stabilization by

elastic intramedullary nailing in August 2023.

• Removal of osteosynthesis material in March 2024.

• Patient referred to our institution for further treatment in April

2024.

• Additional radiographic assessment between April and June

2024 (scintigraphy, bone scan, MRI, and echography of the

genital tract).

• Blood analysis: April 2024.

3 Discussion

FD is a pathological condition that leads to an inability to

remodel immature bone into mature lamellar bone, resulting in

inappropriate bone alignment in response to mechanical stresses

(6). Histologically, fibroblast proliferation will result in excessive

fibrous tissue replacing normal calcium hydroxyapatite in the

osteoid matrix (11). As previously noted, FD is classified into

two types: the monostotic form affects a single bone, while

polyostotic FD is characterised by the involvement of multiple

bones. Polyostotic FD is frequently accompanied by

manifestations of syndromes such as McCune–Albright

syndrome (3) or Mazabraub syndrome (12), where it is

associated with endocrine abnormalities and overproduction of

melatonin in the skin (3) or with intramuscular myxomas (12),

respectively. Most endocrinopathies present during FD revolve

around hyperthyroidism, hyperparathyroidism, acromegaly,

diabetes mellitus, and Cushing syndrome.

FD is the result of a mutation in the guanine-nucleotide alpha

stimulating-GNAS gene. It seems to be recognised that the

chronological timing of the mutation’s appearance is responsible

for a somatic mosaicism that determines the extent of the disease

and its clinical manifestations (13). Mutations that occur at early

stages of embryogenesis typically result in the widespread

distribution of bone lesions (1). Conversely, mutations occurring
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FIGURE 2

Selected total-body MRI at the level of the pelvis and both femurs using low signal intensity on T1-weighted images and demonstrating the foci of FD
affecting the epiphysis, the femoral neck, the diaphyseal regions of the left femur and the same hip’s acetabulum. A lesion is visible in the
subtrochanteric region of the right femur (a). There was a high signal intensity without diffusion restriction on the fat-suppressed T2-weighted
images enhanced with gadolinium (b).

FIGURE 3

MRI focusing on left proximal femur lesions: the focus of the FD of the proximal epiphysis and the significant involvement of the femoral neck can be
seen precisely. The examination did not demonstrate transphyseal diffusion of the FD, and the lesions seemed not to originate from the epiphyseal
growth plate. All the lesions were characterised by a low signal intensity on T1-weighted images (a), but these were significantly better in the
T1-weighted images enhanced with gadolinium (b).
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FIGURE 4

Scintigraphy confirmed polyostotic hyperfixation and demonstrated an unknown parasymphyseal involvement of the mandible with extension into its
right branch.
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at later stages of embryogenesis result in a more localised

distribution (1). The involvement of a gene mutation is why FD

cannot occur spontaneously and why the monostotic form of FD

never progresses to the polyostotic form (1).

As a rule, when either monostotic or polyostotic FD occurs

in long bones, such as the tibia, femur or humerus, it typically

affects the diaphysis or metaphysis. Several authors have

postulated that FD bone lesions usually spare the epiphysis (3,

14–16), and, when present, epiphyseal involvement depends,

above all, on the patient’s age. In fact, the literature suggests

that diaphyseal and metaphyseal lesions can expand with

growth and could even result in the involvement of the

epiphysis after physeal closure in adults (7, 14–17). On the

contrary, however, cases of FD with epiphyseal involvement

before puberty are quite rare since only seven cases were found

in previous reports involving paediatric populations (3, 6–10).

Nixon and Condon postulated that FD in children might

originate from a fibro-osseous aberration occurring in the

epiphyseal growth plate, with a subsequent bidirectional

extension into the epiphysis and the metaphysis (10).

According to them, the lesion’s extension across the epiphyseal

growth plate supports this hypothesis (10).

Involvement of the proximal femoral epiphysis, as in our

patient, has been described only in 2 cases in the paediatric

population, even in polyostotic forms of FD (8). The present

case is rich in information and leads to several realisations.

Firstly, it confirms that the risk of a pathological fracture in FD

patients varies according to the patient’s age, with a major

predisposition to fractures of the femur. Fractures are most

prevalent between the ages of 6 and 10, and peak incidence is
Frontiers in Pediatrics 0411
estimated to be 0.4 fractures per FD patient per year (1).

Secondly, our case demonstrated that multiplanar proximal

femoral deformity can occur in patients with FD. Typically, it is

now recognised that femurs affected with FD in their proximal

third will develop coxa vara deformities, leading to the

characteristic “shepherd’s crook” deformity (18–22). In our

patient, the deformity occurred in the sagittal plane (a proximal

femoral flexion deformity) and in the horizontal plane

(a proximal femoral retrotorsion). Moreover, it is interesting to

note that the above-cited deformities are recognised as

generating femoroacetabular impingement. Thus, even though

almost one-third of femurs affected by FD develop a typical

coxa vara deformity, it also appears important to look out for

deformities in all three planes and, thus, for clinical signs of

femoroacetabular impingement. Thirdly, our case did not

validate the pathophysiological hypothesis which suggests that

FD may originate from a fibro-osseous aberration in the

epiphyseal growth plate, with a subsequent extension into both

the epiphysis and metaphysis. Instead, we have the impression

that the distribution of lesions is random, with a predominance

of diaphyseal and metaphyseal locations. This highlights the

importance of doing a full radiological work-up using MRI to

rule-out the presence and characteristics of multiple foci of

bone lesions. Due to their insignificant appearance, one could

imagine that epiphyseal lesions might be overlooked and

underdiagnosed. Hence, patients with polyostotic FD should be

systematically investigated for epiphyseal lesions (10), since

epiphyseal lesions due to FD are structurally weak and

introduce additional complexity since they can induce serious

deformities into the articular surface. Indeed, juxta-articular
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lesions in weight-bearing joints can collapse leading to a loss of

proper joint congruence.

Further radiological monitoring also remains essential

because cystic changes are occasionally seen in FD lesions,

with secondary transformations into aneurysmal bone cysts

(9, 10, 23, 24). Even worse, FD lesions can degenerate into

high-grade sarcoma, with an incidence of 0.5% in

monostotic FD and 4% in McCune–Albright syndrome (24,

25). The most common forms of malignant degeneration, in

decreasing order of frequency, are osteosarcoma,

fibrosarcoma and chondrosarcoma. MRI is also crucial for

assessing bone and soft tissue invasion and for guiding a

percutaneous biopsy for a final diagnosis.

It is very common for general physician to be the first

specialist consulted for FD, whatever its form, even though

some children with McCune–Albright because of their non-

orthopedic symptoms, such as skin pigmentation or

precocious puberty. Patients’ monostotic lesions are very

frequently diagnosed incidentally on radiographs taken for

unrelated symptoms and they must be referred to an

orthopedic specialist, even if they are asymptomatic. Thus,

radiological investigations, particularly bone scintigraphy and

MRI, play a critical role in the identification, prognostic

evaluation, and follow-up of osseous complications in

paediatric patients with polyostotic FD.
4 Conclusion

Polyostotic fibrous dysplasia (FD) is a benign medullary

fibro-osseous anomaly that compromises the mechanical

strength of bones, especially the long bones that bear strong

mechanical stresses. As a result, these may inappropriately

align, particularly at the proximal femur. Deformities

typically occur in the femur’s frontal plane, ranging from

the coxa vara deformity to the well-known “shepherd’s

crook” deformity. The present case leads us to recommend

that clinicians should not underestimate the occurrence of

other deformities, such as the retrotorsion or flexion

deformities that can compromise bone structure and the

hip’s biomechanics. Finally, the involvement of the epiphysis

is probably more common than usually thought, introducing

an additional complexity since juxta-articular lesions in

weight-bearing joints may collapse, compromising articular

congruence and function. In order to minimise this risk,

bone scintigraphy and MRI should play a critical role in the

patient’s workup, evaluation, prognosis and follow-up.
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UTE MRI technical
developments and applications
in osteoporosis: a review
Soo Hyun Shin1†, Hee Dong Chae1,2†, Arya Suprana1,3†,
Saeed Jerban1, Eric Y. Chang1,4, Lingyan Shi3, Robert L. Sah3,
Jeremy H. Pettus5, Gina N. Woods5 and Jiang Du1,3,4*

1Department of Radiology, University of California, San Diego, San Diego, CA, United States,
2Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea, 3Department
of Bioengineering, University of California, San Diego, San Diego, CA, United States, 4Radiology
Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States, 5Department of
Medicine, University of California, San Diego, San Diego, CA, United States
Osteoporosis (OP) is a metabolic bone disease that affects more than 10 million

people in the USA and leads to over two million fractures every year. The disease

results in serious long-term disability and death in a large number of patients.

Bone mineral density (BMD) measurement is the current standard in assessing

fracture risk; however, the majority of fractures cannot be explained by BMD

alone. Bone is a composite material of mineral, organic matrix, and water. While

bone mineral provides stiffness and strength, collagen provides ductility and the

ability to absorb energy before fracturing, and water provides viscoelasticity and

poroelasticity. These bone components are arranged in a complex hierarchical

structure. Both material composition and physical structure contribute to the

unique strength of bone. The contribution of mineral to bone’s mechanical

properties has dominated scientific thinking for decades, partly because collagen

and water are inaccessible using X-ray based techniques. Accurate evaluation of

bone requires information about its components (mineral, collagen, water) and

structure (cortical porosity, trabecular microstructure), which are all important in

maintaining the mechanical integrity of bone. Magnetic resonance imaging (MRI)

is routinely used to diagnose soft tissue diseases, but bone is “invisible” with

clinical MRI due to its short transverse relaxation time. This review article

discusses using ultrashort echo time (UTE) sequences to evaluate bone

composition and structure. Both morphological and quantitative UTE MRI

techniques are introduced. Their applications in osteoporosis are also briefly

discussed. These UTE-MRI advancements hold great potential for improving the

diagnosis and management of osteoporosis and other metabolic bone diseases

by providing a more comprehensive assessment of bone quantity and quality.
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Introduction

Osteoporosis (OP) is a progressive bone disease that is characterized

by low bone mass and structural deterioration (1). Fractures are among

the most dramatic sequelae. OP affects more than 10 million people in

the USA and causes more than two million fractures, with an annual

cost estimated at about $19 billion (2). The need for focused preventive

strategies has become a major public health priority.

The current standard technique for assessing bone fracture is

dual-energy X-ray absorptiometry (DXA), which can only provide

information on bone mineral density (BMD) (3). However, the

majority of fractures cannot be explained by BMD alone. Bone is a

composite material consisting of, by volume, mineral (~43%),

organic matrix (~35%), and water (~22%) (4, 5). While bone

mineral provides stiffness and strength (6), collagen provides

ductility and the ability to absorb energy before fracturing (7),

and water contributes to viscoelasticity and poroelasticity (8). These

bone components are arranged in a complex hierarchical structure

(9). Both material composition and physical structure contribute to

the unique strength of bone. The contribution of mineral to bone’s

mechanical properties has dominated scientific thinking; however,

accurate evaluation of bone requires information about its

components (mineral, collagen, water) and structure (cortical

porosity, trabecular microstructure), which are all important in

maintaining the mechanical integrity of bone (10).

Unfortunately, no single modality can evaluate all bone

components and structures. DXA can only measure areal BMD

without information about bone collagen, water, and bone

microstructure. Computed tomography (CT) can measure

volumetric BMD and capture bone structure without information

about bone collagen and water (11). Conventional CT has a spatial

resolution that is too low to evaluate cortical porosity. High-

resolution peripheral quantitative CT (HR-pQCT) can assess

bone porosity but cannot resolve smaller pores (e.g., pores with

diameters less than 83 µm) (12, 13). Micro CT (µCT) is the

reference standard for evaluating cortical porosity but cannot be

used for in vivo applications (14). Magnetic resonance imaging

(MRI) is routinely used to diagnose soft tissue diseases, but bone is

“invisible” with clinical MRI due to its short transverse relaxation

time (15, 16). This review paper aims to summarize the recent

developments in ultrashort echo time (UTE) MRI techniques for

direct imaging of bone.
Materials and methods

This narrative review was conducted to synthesize the most

relevant advancements and applications of UTE MRI, particularly

focusing on the authors’ contributions and other key studies in the

field. The UTE-type sequences include two-dimensional (2D) and 3D

UTE (15–28) zero echo time (ZTE) (25–36), pointwise encoding time

reduction with radial acquisition (PETRA) (37–39), Cartesian

variable TE (vTE) (40), water- and fat-suppressed proton

projection MRI (WASPI) (41), sweep imaging with Fourier

transformation (SWIFT) (42), hybrid acquisition-weighted stack of

spirals (AWSOS) (43), ramped hybrid encoding (RHE) (44), and
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Looping Star (45). A simple search on Pubmed shows more than 600

papers on direct imaging of bone using the various UTE-type

sequences. It is difficult to summarize all the published articles in

this review. The selection of articles was primarily guided by the

authors’ expertise and their understanding of the pivotal

developments in UTE MRI research.

In conventional MRI, bone produces near zero signal, leading

most clinicians to rely on plain radiography or CT as the primary

modality for bone evaluation. The lack of detectable signals can be

mainly attributed to the bone’s short mean apparent transverse

relaxation time (T2) or apparent transverse relaxation time (T2*)

components. T2 or T2* relaxation time refers to the time constant

that describes the rate at which excited protons lose phase

coherence due to interactions with surrounding tissues in MRI,

with short T2* values indicating a rapid decay of transverse

magnetization. Long T2* tissues retain a detectable signal level at

the time of the measurement of the MR signal, allowing them to

remain visible in conventional pulse sequences. In contrast, short

T2* tissues such as bone, tendons, ligaments, and menisci lose most

of their signal before spatial encoding, resulting in undetectable

signals during signal acquisition, making these tissues appear dark

or “invisible” on conventional MRI scans.

For simplicity, T2* values can be categorized into five groups:

<0.01 ms (supershort), 0.01–1 ms (ultrashort), 1–10 ms (short), 10–

100 ms (intermediate), and 100–4000 ms (long) (16). Echo time (TE)

is the interval between the delivery of the RF pulse and the

measurement of the MR signal. It determines the time the system

waits before measuring the signal. A general rule is that the effective

TE should match the T2* of the tissue for optimal detectability. Recent

advances in hardware have enabled gradient-recalled echo (GRE)

sequences with much reduced TEs to capture signals from short T2

tissues. However, conventional sequences, such as fast spin echo (FSE)

and GRE, cannot produce echo times shorter than 1 ms on clinical

MRI systems. Therefore, tissues with ultrashort T2 values, such as

bone, require specialized techniques for effective signal detection.

Recently, a group of UTE-type sequences, including 2D and 3D

UTE, ZTE, PETRA, vTE, WASPI, SWIFT, AWSOS, RHE, and

Looping Star sequences, with nominal TEs of 0.1 ms or less have

been developed to directly image short-T2 tissues (15–45). While a

short TE is essential for imaging bone, it alone is insufficient due to

the low proton density in bone (i.e., ~22% water by volume in

normal bone). Effective suppression of long-T2 signals is crucial for

achieving high-contrast images of bone. Quantitative UTE imaging

can provide valuable insights into bone structure and components.

In the next section, we will review technical developments in

morphological and quantitative UTE imaging of bone. Their

applications in osteoporosis will also be briefly discussed.
Results

Part I: technical developments in
morphological UTE MRI

With the UTE technique, bone signal with an ultrashort

transverse relaxation time can be captured. However, UTE MRI is
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primarily T1-weighted with negative contrast between bone and

neighboring musculoskeletal tissues, such as muscle and marrow

fat, which have far higher proton densities than that of bone. A key

issue for high contrast morphological imaging of bone is the

efficient suppression of long T2 signals from surrounding muscle

and marrow fat (46). Different contrast mechanisms have been

developed for this purpose.
UTE with echo subtraction
One basic approach to enhancing contrast in UTE imaging is

subtracting two images acquired at distinct echo times (TEs). In the

dual-echo UTE imaging technique with echo subtraction, bone

contrast is acquired by subtracting a second echo image from a first

echo image which is equivalent to T2 bandpass filtering (19). Signals

from long T2 tissues experience minimal decay by the time of the

second echo, while the signal from bone undergoes significant decay

by the time of the second echo. As a result, long T2 tissues show a

high signal in the second echo, while bone shows a signal void.

Subtraction of the second echo image from the first echo image

leads to suppression of long T2 signals, leaving bone signal

minimally unaffected, creating high contrast for cortical bone.

Rescaled subtraction (46), where the first UTE free induction

decay (FID) image is scaled down prior to subtraction to lower

signal from long-T2 tissues in the first compared to the second echo,

works more efficiently in creating high positive contrast for short-

T2 species, especially cortical bone, which has a much lower mobile

proton density than surrounding muscle or fat. Figure 1 shows an

example of 3D dual-echo UTE imaging with rescaled subtraction

applied to the tibia of a healthy volunteer. Conventional 3D UTE

imaging provides a relatively high signal but negative contrast for

the tibia (Figure 1A). Regular echo subtraction presents a positive

contrast between bone and muscle, but a negative contrast between

cortical bone and fat, as fat also has a short T2* (Figure 1C). The

contrast between bone and fat/muscle increases using the rescaled

subtraction technique (Figures 1D–F). However, subtraction

techniques are sensitive to patient motion, which can cause

misalignment between the source images and result in artifacts.
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UTE with long T2 saturation
Preparation pulses can be employed to selectively suppress

signals from long T2 components, improving contrast by allowing

better visualization of short T2 tissues (47–49). In UTE imaging

with long T2 saturation, saturation pulses are used to suppress the

signals from long T2 tissues, such as muscle and bone marrow fat,

which typically produce higher signals than bone. For example, a

90° pulse with a relatively long duration and a low amplitude can

flip the longitudinal magnetization of long T2 tissues into the

transverse plane, where a large spoiling gradient can subsequently

dephase the transverse magnetization (48). In comparison, bone

magnetization is barely excited by this long saturation pulse as the

decay rate of bone exceeds the excitation rate. Therefore, a long 90°

pulse can be used with a large spoiling gradient to suppress long T2

tissues, leaving bone to be subsequently detected by UTE data

acquisition. T2 selective RF excitation (TELEX) can be used to

increase bone contrast (47). Dual-band long-T2 suppression pulses

further improve the suppression of signals frommuscle and fat (49).

However, residual signals from muscle and marrow fat due to B1

and B0 inhomogeneities may still compromise bone contrast.

UTE with off-resonance saturation
Off-resonance saturation with subtraction can generate contrast

for short T2 components by utilizing the broader absorption line

shape of short T2 tissues, such as bone, compared to long T2 tissues

like muscle or fat, making them more sensitive to off-resonance RF

radiation (50). UTE imaging with off-resonance saturation contrast

(UTE-OSC) employs a high-power saturation pulse placed a few

kHz off the water peak to preferentially saturate signals from bone,

leaving long T2 muscle and fat signals largely unaffected (50).

Subtraction of UTE images with off-resonance saturation from

basic UTE images can effectively suppress signals from muscle

and fat, creating high bone contrast.

UTE with adiabatic inversion
One limitation of saturation techniques that utilize hard RF

pulses is their sensitivity to B0 and B1 inhomogeneities, making
FIGURE 1

3D UTE imaging of the tibia of a volunteer with dual TEs of 8 µs (A) and 2.2 ms (B). Subtraction of the second echo (TE = 2.2 ms) from the first one
(TE = 8 µs) shows limited contrast for cortical bone due to a high signal from marrow fat (C). Higher bone contrast is achieved by scaling down the
first echo UTE image by a factor of 0.8 and using absolute pixel intensity in the subtraction image (D). Bone contrast can be further enhanced by
allowing negative signal intensity in long-T2 tissues (E, F). From Ref. (46), with permission.
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them less robust compared to adiabatic inversion (18). The

adiabatic inversion recovery UTE (IR-UTE) contrast mechanism

employs a long adiabatic inversion pulse to invert the longitudinal

magnetizations of long-T2 water (e.g., muscle) and long-T2 fat

(18, 21, 24, 51). The duration of the adiabatic inversion pulse is

much longer than bone T2* (18). As a result, the longitudinal

magnetizations of muscle and marrow fat are fully inverted,

while the bone magnetization is not inverted but largely saturated

by the long adiabatic inversion pulse (51). The UTE data acquisition

starts at an inversion time (TI) adjusted so that the inverted

long T2 magnetizations approach the null points, leaving the

uninverted bone magnetization being selectively detected by

UTE data acquisition. The adiabatic inversion pulse has a

relatively broad spectral bandwidth, thereby insensitive to B1 and

B0 inhomogeneities. The IR-UTE technique allows uniform

inversion of long T2 magnetizations, providing robust high

contrast imaging of bone (18, 21). Figure 2 shows representative

IR-UTE images of cortical bone in the forearm, which is depicted

with excellent image contrast but invisible with conventional

clinical FSE sequences.

UTE with double adiabatic inversion
A single inversion pulse can reduce the signal from fat and long

T2* components (such as muscle) by up to 80% (21). However,

using dual inversion pulses allows for the complete nulling of both,

providing more effective signal suppression (52–54). The double
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adiabatic inversion recovery UTE sequence (double-IR-UTE)

employs two identical adiabatic inversion pulses (duration of ~6

ms) with the same center frequency to sequentially invert the

longitudinal magnetizations of long T2 species, followed by

multispoke UTE data acquisition (55). The two adiabatic

inversion pulses are applied with pre-defined inversion times TI1,

which is the time between the centers of the two adiabatic inversion

pulses, and TI2, which is the time from the center of the second

adiabatic inversion pulse to the center spoke of the multispoke

acquisition. Robust long T2 suppression can be achieved by timing

the center spoke at the null point. Long T2 transverse

magnetizations acquired before the null point are of opposite

polarity to those acquired after the nulling point, leading to

cancel lat ion in the regridding process during image

reconstruction and, therefore, efficient suppression of long T2

signals from muscle and marrow fat. Bone magnetization is not

inverted but saturated by the two long adiabatic inversion pulses,

recovers after the second TI2, and is subsequently detected by UTE

data acquisition. The advantage of double-IR-UTE is the robust

suppression of long T2 tissues with a broad range of T1s, such as fat

and muscle, which can be nulled simultaneously using specific

combinations of TI1 and TI2. The double-IR-UTE sequence is

insensitive to inhomogeneities in the B1 and B0 fields due to the use

of adiabatic inversion pulses with relatively broad spectral

bandwidths. Figure 3 shows double-IR-UTE imaging of the knee

joint in a healthy volunteer, which shows high signal from short-
FIGURE 2

The IR-UTE sequence inverts the longitudinal magnetizations of long T2 muscle and fat with a long adiabatic inversion pulse (duration = 8.64 ms) (A).
The longitudinal magnetization of bone is largely saturated, recovers during TI, and is subsequently detected by the UTE data acquisition (B). Clinical FSE
imaging of the forearm shows pure signal void for cortical bone (thick arrows), tendons, and aponeuroses (thin arrows) (C). The IR-UTE sequence shows
high signal and contrast for cortical bone (thick arrows) and other short T2 tissues (thin arrows) (D). From Ref. (21), with permission.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1510010
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shin et al. 10.3389/fendo.2025.1510010
and ultrashort-T2 species, such as the patellar tendon and

cortical bone.

UTE with relaxation-parameter contrast
UTE data acquisition can be combined with relaxation-

parameter contrast (56). UTE with relaxation parameter contrast

and subtraction exploits the sensitivity of bone proton

magnetization to both T2 and RF pulse duration. Excitation pulse

parameters are selected to determine the extent of concurrent

relaxation and excitation. The RF pulse duration and amplitude

can be changed to adjust the relaxation dependence of bone

contrast. To selectively detect signals from magnetization within a

specific range of T2 values, two RF pulse durations are chosen so

that the sensitivity transition between them brackets the range of

interest. Two UTE datasets with similar imaging parameters but

different RF excitation pulses are acquired. Bone contrast is created

by subtraction of the two UTE images, as shown in Figure 4.

UTE with dual-RF and dual-echo (DURANDE)
The 3D DURANDE UTE sequence and bone-selective image

reconstruction have been proposed for rapid bone imaging (57).

This technique acquires two dual-echo UTE datasets following

short and long RF pulses, with encoding gradients varying

continuously along the entire pulse train to halve the total

imaging time. The DURANDE UTE sequence employs two
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rectangular RF pulses (RF1 and RF2), differing in duration and

amplitude but having the same pulse area applied alternately in

successive TR periods along the entire pulse train. Two echoes at a

short TE and a long TE are collected from the beginning of the

gradient ramp-up within each TR. As a result, four echoes are

produced and combined via a view-sharing approach to generate

two independent k-space datasets during image reconstruction.

Accelerated UTE bone imaging can be achieved by using the

sparsity of bone voxels in the corresponding subtraction images.
Short TR adiabatic inversion recovery UTE MRI of
trabecular bone

In STAIR-UTE, 3D IR-UTE data are acquired with a short TR

and a high flip angle within specific absorption rate (SAR) limits for

clinical imaging (58–60). The short TR and TI combination is

selected to achieve robust suppression of long-T2 muscle and

marrow fat regardless of their different T1 values. Multiple spokes

are acquired for efficient volumetric imaging of cortical and

trabecular bone (60). The STAIR-UTE sequence is more efficient

than other UTE or ZTE techniques, such as the spectral

presaturation with IR UTE (SPIR-UTE), in selective imaging of

trabecular bone (61). Figure 5 shows STAIR-UTE images of the

spine and SPIR-UTE images of the fingers. The SPIR-UTE images

showed T2* values of 2.42 ± 0.56 for the capitate, which is much

longer than the T2* of 0.31 ± 0.01 ms for the trabecular bone of the
FIGURE 3

The double-IR-UTE sequence employs two identical adiabatic inversion pulses for simultaneous suppression of long T2 muscle and fat with different
T1s, followed by 3D UTE data acquisition to produce high contrast imaging of bone (A). The knee joint of a 31-year-old volunteer was subject to
clinical GRE (B), fat-saturated UTE (C), and double-IR-UTE (D) imaging. The double-IR-UTE sequence shows excellent suppression of muscle and
fat, providing high contrast for the patellar tendon and cortical bone (D). From Ref. (55), with permission.
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spine measured on STAIR-UTE images (60, 61), or the T2* value of

~0.3 ms for the cortical bone (62). The much longer T2* values

suggest that SPIR-UTE imaging of the trabecular bone is subject to

significant long-T2 signal contamination. In comparison, STAIR-
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UTE-measured T2* values for the trabecular bone are close to those

measured for cortical bone, suggesting that bone marrow fat is

completely suppressed and only signal from trabeculae is selectively

detected in STAIR-UTE imaging (60).
FIGURE 4

Bone imaging with the relaxation-parameter contrast mechanism, which is based on two hard RF pulses with different durations but equal pulse
areas to generate T2-selective excitation (A). The contrast mechanism can be combined with single or dual-echo UTE data acquisition using two RF
amplitudes (a1 and a2) and pulse durations (p1 and p2) with equal pulse areas. An example is shown on a volunteer’s skull, including UTE with a short
RF pulse of 24.47 mT and a TE of 34 µs (B), UTE with a long RF pulse of 1.53 mT and a TE of 2.0 ms (C), UTE with a short RF pulse and a longer TE of
2.0 ms (D), and UTE with a long RF pulse and a TE of 34 µs (E). The difference image (|b|-|c|) (F) depicts cortical bone more specifically than the
conventional UTE subtraction difference image (|b|-|d|) (G), and captures more bone signal than the pulse-only difference image (|b|–|e|) (H). From
Ref. (56), with permission.
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UTE on the fat peak for trabecular bone imaging
Past research has focused on high resolution imaging of marrow

to indirectly detect trabecular microstructure (5, 63, 64). Two major

challenges exist: the high susceptibility at the marrow/bone

interface and the multiple fat peaks, both of which significantly

reduce T2*, leading to lowmarrow signal (misclassified as bone) and

overestimation of trabecular volume. UTE is insensitive to T2*

shortening. However, UTE employs non-Cartesian radial sampling,

which is sensitive to chemical shift artifacts (65). UTE imaging on
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the fat peak resolves this issue (66). Bone is off-resonance in fat-

centered imaging, but it has a much lower signal than marrow, and

the off-resonance artifact is negligible. Figure 6 shows UTE and

clinical GRE imaging of a trabecular bone sample from a 65-year-

old male donor. UTE on the water peak shows strong chemical shift

artifacts, which are significantly reduced in UTE imaging on the fat

peak. Trabecular bone thickness is overestimated at longer TEs (e.g.,

TE = 1.1, 2.2, 3.3, or 4.4 ms) or with the clinical GRE sequence. UTE

imaging on the fat peak is expected to perform even better in older
FIGURE 6

A trabecular bone specimen imaged with 3D UTE on the water peak at TE of 0.03 ms (A) and on the fat peak at TEs of 0.03 ms (B), 1.1 ms (C), 2.2
ms (D), 3.3 ms (E), and 4.4 ms (F), and clinical 3D GRE at TE of 4.4 ms (G), with the zoomed regions indicated with the red dashed-line boxes shown
in the second row (H-N). UTE images on the water peak show significant chemical shift artifacts, manifesting as blurred trabecular bone structure
and ringing artifacts [arrows in (A)]. The more significant fat signal loss was observed at longer TEs (C-F, J-M) due to the strong susceptibility
between bone/marrow interface and at TEs of 1.1 ms (C, J) and 3.3 ms (E, L) due to fat/water signal cancellation, with both leading to overestimation
of trabecular thickness. From Ref. (66) with permission.
FIGURE 5

STAIR-UTE imaging of trabecular bone in the spine of a 36-year-old male volunteer with TEs of 0.032 ms (A), 0.2 ms (B), 0.4 ms (C), and 0.8 ms (D)
at 3T, and the single-component T2* fitting (E). µCT (F) and SPIR-UTE imaging of trabecular bone in the fingers at 1.5 T (G), 3.0 T (H), 7.0 T (I), and
the corresponding single component T2* fitting (J). STAIR-UTE imaging of trabecular bone in the spine shows a short-T2* of 0.31 ± 0.01 ms at 3.0 T,
while SPIR-UTE imaging of trabecular bone in the fingers shows short-T2* values of 1.16 ± 0.27 ms at 7.0 T, 2.23 ± 0.56 ms at 3.0 T, and 3.96 ± 1.26
ms at 1.5 T, respectively. From Refs. (60, 61), with permission.
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osteoporotic or diabetic patients who typically have a higher fat

fraction in the marrow.

ZTE MRI of cortical bone
ZTE employs a short rectangular pulse excitation followed by

readout gradient flat-top sampling to minimize the effective TE

(29). A small flip angle (1-2°) is typically used to minimize the dead-

time gap, which causes a spherical void in the center of k-space. A

variety of approaches have been developed to address this k-space

gap and associated low frequency artifacts in the reconstructed

images (33). The repetition time (TR) is minimized to speed up data

acquisition. Higher receiver bandwidths (62.5-83.3 kHz) are

recommended to mitigate chemical shift artifacts. Bias field

correction, contrast inversion, and background segmentation are

employed for CT-like bone contrast (34–36). The principal

difference between ZTE and UTE sequences is the temporal order

of setting the spatial encoding gradient and RF excitation (33). UTE

offers the freedom to adjust TE, a feature not possible in ZTE

imaging. UTE also allows high flip angles, a significant advantage in

direct bone imaging using the STAIR contrast mechanism (60). On

the other hand, the ZTE sequence acquires k-space data after the

readout gradients are fully ramped up, avoiding fidelity issues

introduced by gradient ramping (33). ZTE has a shorter effective

TE and can detect signal from shorter T2 species. ZTE can be

applied in many of the same applications and with many of the

same magnetization preparation methods as UTE.

Other UTE-type sequences for bone imaging
Many other UTE-type sequences have been developed for bone

imaging. These sequences can be combined with each of the above

contrast mechanisms for high-contrast imaging of bone. For

example, adiabatic inversion recovery-based preparations can be

combined with ZTE (29–36), vTE (40), AWSOS (43), RHE (44),

and PETRA (37–39) sequences for high contrast imaging of cortical

bone and other short-T2 tissues, respectively. On-resonance long-T2

suppression or off-resonance short-T2 saturation can be applied to

SWIFT, PETRA, WASPI, RHE, and ZTE sequences to create short-

T2 contrast. For example, SWIFT with off-resonance saturation has

been used to image the interface between cartilage and subchondral

bone (67). A systematic study of the above contrast mechanisms

combined with ZTE, vTE, WASPI, SWIFT, AWSOS, PETRA, RHE,

and Looping Star sequences remains to be investigated, and their

SNR and CNR efficiency remains to be compared.
Part II: technical development in
quantitative UTE imaging

Quantitative UTEMRI techniques have been developed to evaluate

bone MR relaxation properties such as T1 and T2* relaxation times,

and tissue properties such as total water proton density (TWPD),

bound water proton density (BWPD), pore water proton density

(PWPD), macromolecular proton density (MMPD), magnetization

transfer ratio (MTR), susceptibility, and perfusion (24–26).
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Bone T1 relaxation time
T1 relaxation is a fundamental MR tissue property and

describes how fast the longitudinal magnetization recovers to the

steady state. Many T1 measurement techniques have been

combined with UTE acquisitions to provide accurate T1

measurements of bone, such as saturation recovery UTE (18),

inversion recovery UTE (68), UTE with variable repetition time

(UTE-VTR) (69), and UTE with variable flip angle (UTE-VFA)

methods (70). The UTE-VTR method is sensitive to B1

inhomogeneity. The actual flip angle imaging (AFI) method has

been widely used for 3D B1 mapping (71). By combining UTE and

AFI techniques, it is possible to use a pair of interleaved UTE

acquisitions with a short TR (e.g., 20 ms) and a longer TR (e.g., 100

ms) to produce accurate B1 mapping for bone (69). Furthermore,

combining UTE-VTR and UTE-AFI (UTE-AFI-VTR) provides

accurate T1 mapping for bone with B1 correction. A short T1 of

~250 ms was reported for cortical bone (69).

Bone T2* relaxation time
Bone water exists as pore water residing in the macroscopic

pores and as loosely bound water attached to the organic matrix

(72). UTE sequences can detect pore water with a longer T2* of ~3

ms and loosely bound water with an ultrashort T2* of ~0.3 ms

(62, 73–76). IR-UTE or STAIR-UTE allows partial inversion and

nulling of pore water with longer T2*, leaving bound water with

ultrashort T2* to be selectively imaged (21, 60, 77). Figure 7 shows

single- and bi-component fitting of UTE and IR-UTE images of a

bovine cortical bone sample (77). Excellent bi-component fitting

was achieved to show the existence of two distinct water

components: bound water with a short T2* of 0.26 ms (72.4% by

volume) and pore water with a longer T2* of 1.56 ms (27.6%). The

IR-UTE images show a single component with T2* ~0.31 ms,

suggesting that pore water is efficiently suppressed and bound

water selectively imaged (77).

UTE-MT modeling of MMF and exchange rates
There is another group of protons, collagen backbone protons,

which have extremely short T2* relaxation times and are invisible with

UTE sequences. UTE magnetization transfer (UTE-MT) modeling can

measure collagen backbone proton fraction and exchange rates

between water and collagen protons (73–75, 78–83). Figure 8 shows

UTE-MT imaging of a bovine bone sample. Excellent two-pool MT

modeling and MT parameters mapping were achieved using a

Gaussian lineshape (79). The lower half of this bone sample shows

increased variations in UTE image signal intensity andMT parameters,

suggesting an abnormality that needs further investigation.

UTE mapping of water and collagen protons
UTE sequences can be used to map TWPD, BWPD, PWPD,

and MMPD (20–23, 25, 76, 84–91). TWPD can be estimated by

comparing the UTE MRI signal of bone with an external reference

with known proton density (20, 21, 76, 84–88). BWPD can be

measured with IR-UTE or STAIR-UTE, which efficiently suppresses

pore water (21, 23, 60). PWPD can be quantified by subtracting
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bound water from total water. MMPD can be quantified by

combining total water proton density with macromolecular

fraction (MMF) (91). Figure 9 shows 3D mapping of TWPD,

BWPD, PWPD, and MMPD for tibial midshaft of a 35-year-old

healthy female, a 76-year-old female with osteopenia, and a 57-year-

old female with OP, respectively (91). The OP patient has higher

PWPD but lower MMF and MMPD, consistent with increased

porosity and loss of mineral/collagen.

UTE quantitative susceptibility mapping
Susceptibility is an important material property. QSM

techniques can estimate calcium and iron accumulation in the

brain (92). Bone susceptibility is more challenging to measure due

to the lack of signal. UTE can detect phase evolution in cortical and

trabecular bone. The phase changes with increasing TEs can be used
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to evaluate bone susceptibility using various algorithms such as

Morphology Enabled Dipole Inversion (MEDI) (93). UTE with

QSM (UTE-QSM) provides information about bone susceptibility,

which is indirectly related to bone mineral (93–98). Figure 10 shows

UTE-QSM and µCT-measured volumetric BMD (vBMD) of a

human bone sample, with an excellent linear correlation between

QSM and vBMD (n=9). UTE-QSM can reliably evaluate vBMD in

cortical bone. Similar results are also observed for trabecular bone.

UTE perfusion
There is a close association between bone perfusion and bone

remodeling and fracture repair (99–102). Increased cortical bone

turnover and inflammation are also associated with increased blood

flow (99). There is a strong correlation between bone perfusion and

BMD (101, 102). However, the nature of bone makes it difficult to
FIGURE 8

UTE-MT imaging of cortical bone with an MT power of 300° and frequency offsets of 2 kHz (A), 5 kHz (B), 10 kHz (C), 20 kHz (D), 50 kHz (E), and
1100° and 2 kHz (F), 5 kHz (G), 10 kHz (H), 20 kHz (I), 50 kHz (J), and two-pool fitting (K) with maps of macromolecular fraction [MMF or f; (L)] and
exchange rate [RM0m; (M)]. From Ref. (79) with permission.
FIGURE 7

UTE imaging of a sectioned bovine cortical bone with TEs of 8 ms to 2 ms (A-F), IR-UTE with TEs of 8 ms to 2 ms (G-L). Single- (M) and bi-
component (N) fitting suggest two components: bound water with a short T2*~0.26 ms and pore water with a T2* ~1.56 ms. IR-UTE images show
one component with a T2* of ~0.31 ms (O), consistent with bound water imaging. From Ref. (77) with permission.
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investigate perfusion. The techniques applicable to many soft tissues

are difficult or impossible to apply to bone. For example, dynamic

contrast-enhanced MRI (DCE-MRI) can be used to study perfusion

in various tissues and organs. The technique employs fast T1-

weighted images to capture signal changes induced by exogenous

intravascular nondiffusible gadolinium-based contrast agents as a

function of time. Conventional DCE-MRI can study perfusion in

the marrow of trabecular bone (103), but cannot study perfusion in

cortical bone due to the lack of detectable signal. Dynamic UTE

imaging has been developed to evaluate perfusion in cortical bone

(104, 105). A recent study reported dynamic 2D UTE imaging of the

tibial midshaft of a 38-year-old healthy volunteer and found ~20%

signal enhancement after intravenous gadolinium contrast injection

(105). Kinetic analysis demonstrated a Ktran of 0.23 ± 0.09 min-1 and
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Kep of 0.58 ± 0.11 min-1 for the tibial midshaft of this volunteer.

DCE-UTE can potentially be used to evaluate bone remodeling and

fracture recovery.

Other UTE-type sequences for
bone quantification

Bone components (water , co l lagen , minera l ) and

microstructure (cortical porosity, trabecular structure) can be

qualified by many other UTE-type sequences such as ZTE (25–

36), PETRA (37–39), vTE (40), WASPI (41), and SWIFT (42). For

example, WASPI has been used to image bone water and the solid

matrix of bone (106). SWIFT has been shown to be able to identify

the presence and extent of dental caries and fine structures of the

teeth, including cracks and accessory canals (107). Furthermore,
FIGURE 10

UTE-QSM (A) and µCT volumetric BMD (vBMD) (B) maps of a human cortical bone sample. A negative correlation (R2 = 0.6724) was observed
between QSM and vBMD (n=9) (C). From Ref. (98) with permission.
FIGURE 9

UTE maps of TWPD (A, F, K), BWPD (B, G, L), PWPD (C, H, M), MMF (D, I, N), and MMPD (E, J, O) of a 35-year-old healthy (1st row), a 76-year-old
osteopenia (2nd row), and a 57-year-old OP (3rd row) females. The OP patient has the highest PWPD but the lowest MMF and MMPD. From Ref. (91)
with permission.
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solid-state 31P MRI can be achieved with UTE-type sequences by

focusing on the 31P peak (108). 31P UTEMRI can map phosphorus

content, assess bone mineral density, and differentiate between

mature and newly remodeled bone (108, 109).
Part III: applications in OP

UTE-measured pore water to assess
cortical porosity

UTE MRI can be used to measure pore water concentration in

cortical bone (23, 76, 84–88). A recent study showed a high
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correlation (R2 = 0.72; P < 0.0001) between mCT porosity and pore

water concentration in 32 cadaveric human cortical bone samples

(Figure 11) (77). Water residing in the microscopic pores of cortical

bone is expected to behave more like “free” water with much longer

T2* relaxation time than water bound to the organic matrix.

Therefore, separating pore water from bound water is easy,

allowing accurate pore water mapping without requiring ultrahigh

spatial resolution to resolve the small pores. This is confirmed by the

high correlation with an R2 of 0.72 between mCT porosity and pore

water concentration in cortical bone. mCT porosity is consistently

lower than pore water content assessed by UTE MRI. Pore water

content in cortical bone is also significantly correlated with its

mechanical properties (110–112). In another study, UTE MRI,

mCT, and histomorphometry were performed on tibial samples

from 11 donors. UTE-measured pore water content showed

significant correlations (R2>0.25) with histomorphometry-based

lacunae and small Haversian canals, which are below the detectable

range of mCT at 9 mm. The mCT-based porosity showed strong

correlations with histomorphometric porosity and pore size when

considering all pores or only large pores (R>0.70, P<0.01).

Correlations were poor when considering only small pores in

histomorphometric analyses (R<0.3) (88). Therefore, pore water in

smaller pores can be detected by UTE MRI but not by mCT imaging.

UTE measured bound water to assess bone
organic matrix density

UTE MRI can map bound water in cortical and trabecular bone

(21, 23, 60). Bound water is a surrogate of bone organic matrix

density and negatively correlates with bone mineral density, as

shown in Figure 12 (113). It is also reported that bound water in

human cortical bone decreases with age, although osteonal

remodeling throughout life with only modest changes in tissue

mineral density or ash fraction with age after skeletal maturation

(114). Bound water and bone density are directly correlated with

human cortical bone’s material strength (72, 84, 111, 112).
FIGURE 11

Correlation between UTE-measured pore water concentration and
mCT-measured porosity in cadaveric human cortical bone samples
(n = 32). A high correlation (R2 = 0.72; P < 0.0001) was observed
between UTE pore water concentration and mCT porosity,
suggesting that UTE sequences can reliably access pore water in
cortical bone using a clinical MR scanner. From Ref. (77)
with permission.
(A) (B)

FIGURE 12

Bound water decreases as mineralization increases in rodents throughout life, as evidenced in mice (A) and rats (B), where bound water was
calculated as the volume fraction of the bone tissue volume (%) or as the concentration of protons (mol/L) in the bone tissue volume in which mCT
determined the latter. Spearman’s rank correlation was performed to calculate the correlation coefficient (r). From Ref. (113) with permission.
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UTE-MT measures to assess bone
mechanical properties

UTE-MT can indirectly assess collagen backbone protons,

providing information about cortical porosity and mechanical

properties (73, 81–83). A recent study reported a moderate to

strong negative correlation between UTE magnetization transfer

ratio (MTR) and mCT porosity (R2 = 0.46–0.51), while a moderate

positive correlation was observed between MTR and yield stress (R2

= 0.25–0.30) and failure stress (R2 = 0.31–0.35).A weak positive

correlation (R2 = 0.09–0.12) between MTR and Young’s modulus at

all off-resonance saturation frequencies was also observed (115).

UTE-MT measured MTR provides quantitative information on

cortical bone and is sensitive to mCT porosity and biomechanical

function. MMF derived from UTE-MT imaging can assess

mechanical failures after bone stress injury, which is difficult to

evaluate using other techniques (83). In another study (73), fibular

samples (n=14) were subject to cyclic loading using a 4-point

bending setup (Figure 13). Loading was applied to reduce bone

stiffness by 20%. Then, bone samples were imaged with UTE MRI

and mCT before and after loading. MMF from two-pool UTE-MT

modeling decreased by 12% on average, while mCT porosity

measured at 6 mm voxel size showed no significant change. A

representative sample is shown in Figure 13, with averaged MMF

decreasing from 63% to 55% (p=0.0001), but no detectable changes

in mCT porosity (73).

UTE biomarkers for comprehensive assessment
of bone and fracture risk

In recent years, many studies have shown that UTE MRI can

provide markers of cortical bone porosity, morphologic structure,
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mineralization, and osteoid density, which are useful measures of

bone health (20–23, 76, 84–91, 116–120). In a recent study, Jones

et al. reported UTE MRI of 15 participants with OP and 19 without

OP (117). The OP group showed elevated pore water (11.6 mol/L vs.

9.5 mol/L; P = 0.007) and total water densities (21.2 mol/L vs. 19.7

mol/L; P = 0.03), and lower cortical bone thickness (4.8 mm vs.

5.6 mm; P < 0.001) and 31P density (6.4 mol/L vs. 7.5 mol/L; P =

0.01) than the non-OP group, respectively. Meanwhile, there was no

evidence of a difference in bone water (BW) or 31P-to-BW

concentration ratio. Furthermore, pore and total water densities

were inversely associated with DXA and HR-pQCTmeasured BMD

(P < 0.001) (117). In another study, Jerban et al. investigated the

differences in water and collagen contents in tibial cortical bone

between female osteopenia (OPe) patients, osteoporosis (OPo)

patients, and young participants (Young) using a clinical 3T

scanner (91). They found MMF, BWPD, and MMPD were

significantly lower in OPo patients than in the young group,

whereas T1, TWPD, and PWPD were significantly higher in OPo

patients. The largest OPo/Young average percentage differences

were found in MMF (41.9%), PWPD (103.5%), and MMPD

(64.0%), with PWPD significantly higher (50.7%), while BWPD

significantly lower (16.4%) in OPe than the Young group on

average. Meanwhile, MMF was significantly lower (27%) in OPo

patients compared with OPe group (91). As a result, UTE-MRI

measured TWPD, PWPD, and MMF were recommended to

evaluate individuals with OPe and OPo. Manhard et al. also

demonstrated the feasibility of quantitatively mapping bound and

pore water in vivo in human cortical bone with practical human MR

imaging constraints (84). Jacobson et al. reported a comprehensive

set of UTE MRI biomarkers to assess cortical bone. They found the
(A) (B) (C)

(D) (E) (F)
FIGURE 13

A representative 4-point bending setup and force-time diagram (A-C), as well as MMF maps before (D) and after (E) loading with marked changes
but little change in µCT image and porosity map (F). From Ref. (73) with permission.
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UTE MRI-derived porosity index and signal-intensity-based

estimated BMD correlated with the HR-pQCT variables (porosity:

r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002) (120).

UTE MRI has also been used to assess fracture risk. In a recent

study, Nyman et al. quantified bound water concentration (Cbw)

and pore water concentration (Cpw) in the radius and tibia as

predictors of bone fragility (121). Maps of Cbw and Cpw were

acquired from the uninjured distal third radius of 20 patients

who experienced a fragility fracture of the distal radius (Fx) and

20 healthy controls (Non-Fx), and from the tibia mid-diaphysis of

30 women with clinical OP (low T-scores) and 15 women without

OP (normal T-scores). They found Cbw was significantly lower

(p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx group than

in the Non-Fx group. The area-under-the-receiver operator

characteristics curve (AUC with 95% confidence intervals) was

0.73 (0.56, 0.86) for hip BMD (best predictors without MRI) and

0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best

predictors overall), as shown in Figure 14. Meanwhile, Cbw was

significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H

mol/L) than in women without OP (29.9 ± 6.4 1H mol/L). They also

found that it was Cbw, not Cpw, which was sensitive to bone-forming

osteoporosis medications over 12 months. Their results are largely

consistent with the study by Gallant et al. (122), who found the

hydroxyl groups on raloxifene provided a possible explanation for

the therapeutic effect of raloxifene, a Food and Drug Administration

(FDA)-approved agent that is designed to treat bone loss, decrease

fracture risk, and improve bone mechanical properties. The benefits

of raloxifene treatment are essentially independent of bone mass

changes and are mediated by an increase in matrix-bound water as

measured by UTE MRI. The study suggests a cell-independent
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mechanism that can be utilized for novel pharmacological

approaches to enhancing bone strength (122).

Contrast-enhanced UTE to monitor
fracture repair

Bone is highly vascularized. Perfusion plays an important role

in the growth and development of bone as well as in disease and

healing (99–102). Reduced perfusion is observed in the trabecular

bone of patients with OP (98). It is believed that decreased osseous

vascularity contributes to increased fracture risk (123). Reduced

perfusion occurs in synchrony with reduced BMD in vertebral

trabecular bone (124). UTE can be used to evaluate bone perfusion

(104, 105). There is an extensive enhancement in blood vessels due

to fracture of the tibial plateau two days after injury, with specific

enhancement of the periosteum distinguished from that of blood

vessels, as shown in Figure 15 (104). Even without contrast

enhancement, UTE can detect callus formation from a 22-year-

old male with a fractured tibia examined 3 weeks after injury (125).
Discussion

UTE-MRI techniques offer significant advancements in assessing

cortical and trabecular bone properties, providing valuable insights

beyond traditional imaging methods, such as DXA, CT, HR-pQCT,

ultrasound, andconventionalMRI(24–26).Highsignal andcontrast can

be created for cortical and trabecular bone through a series of contrast

mechanisms outlined in this review article. Techniques like ZTE MRI

offer a radiation-free alternative for generating CT-like bone contrast.

A series of quantitative UTE MRI techniques are also introduced. The

ability toquantify total, bound, andporewater contenthas shown strong

correlations with bone microstructure, mechanical properties, and age-

related changes, making them promising biomarkers for evaluating

fracture risk andosteoporosis.More advanced techniques, such asUTE-

QSM and UTE-MT (72, 73, 77–83, 92–98, 126–128), enable us to

evaluate bone mineral content and organic matrix density. Dynamic

UTE imaging provides information about bone perfusion andmodeling

and can be used to monitor fracture healing (104, 105).

The UTE MRI techniques may provide new opportunities in

assessing bone properties and fracture risk in not only osteoporosis

but also other metabolic diseases such as osteopenia, osteomalacia,

Paget’s disease, hypophosphatasia, chronic kidney disease–mineral

and bone disorder, diabetes, etc. For example, type 2 diabetes (T2D)

is characterized by normal or high BMD but impaired bone

strength (129–131). Animal and specimen studies indicate that

brittle behavior in T2D bone is primarily due to a substantial

reduction in collagen capacity for deformation (132–138). High

glucose levels lead to the creation of advanced glycation end-

products (AGEs), which cause non-enzymatic crosslinking,

thereby increasing brittleness of the otherwise elastic collagen

fibers and reducing bone toughness (132–138). Quantitative

magnetization transfer MRI has been extensively studied to probe

extracellular matrix (ECM) and measure the crosslinking of

collagen and other polymers (139–141). UTE-MT modeling can
FIGURE 14

Receiver operating characteristic (ROC) curves for discriminating
between non-fracture and distal radius fracture cases using two
logistic regression models. The model in orange uses only hip
BMD as a predictor which was the best model found without the
inclusion of UTE MRI data. The model in blue uses both Cpw and Cbw

as predictors, which was the best overall model. Although the 95% CIs
of the AUCs overlap, the data are trending toward the conclusion that
the UTE MRI better discriminates Fx from Non-Fx patients than does
DXA in the present study. From Ref. (121) with permission.
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measure collagen backbone proton fraction and exchange rates

between water and collagen protons (73, 78–83). The exchange rates

can be used to assess collagen crosslinking and potentially explain

the impaired bone strength in T2D (137, 142).

This review has several limitations. First, the review summarized

solid-state 1H UTE techniques. 31P UTE MRI techniques and their

applications were only briefly mentioned without systematic

discussion. Second, the review only discussed applications in OP.

The UTE MRI techniques can also be applied to other metabolic

bone diseases.
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Conclusion

With a decade of technical development, the advanced UTE-type

MRI sequences allow direct imaging of bone with high signal and

contrast. Quantitative UTE MRI techniques can assess all the major

components of bone, including water, collagen, and mineral.

Advanced UTE techniques can map different bone water

components (total water, bound water, and pore water) and

evaluate bone perfusion. UTE sequences can also assess bone

microstructure, including cortical porosity and trabecular structure.
FIGURE 15

Fracture of tibial plateau 2 days after injury is seen with coronal fat-suppressed UTE (TR/TE=500/0.08 ms) (A) and echo subtraction (TE=0.08 minus
TE=17.7 ms) (B) images before enhancement and the corresponding images (C, D) after enhancement, with extensive enhancement in blood vessels
in (C) and specific enhancement of the periosteum in (D). From Ref. (104) with permission.
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UTEMRI can map phosphorus content, assess bone mineral density,

and differentiate between mature and newly remodeled bone. In

summary, UTE MRI provides a comprehensive package to assess all

bone components (mineral, collagen, water) and microstructure

(cortical porosity, trabecular microstructure) using a single

modality for improved detection of bone deficits, with potential

advantages over conventional X-ray based techniques which can

only assess bone mineral. Further research is needed to establish

the clinical significance of these UTE-type MRI techniques.
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Five-year evaluation of bone
health in liver transplant patients:
developing a risk score for
predicting bone fragility
progression beyond the first year
Ejigayehu G. Abate1*, Amanda McKenna1, Liu Yang2,
Colleen T. Ball3 and Ann E. Kearns4

1Division of Endocrinology, Mayo Clinic, Jacksonville, FL, United States, 2Department of
Transplantation, Mayo Clinic, Jacksonville, FL, United States, 3Division of Clinical Trials and
Biostatistics, Mayo Clinic, Jacksonville, FL, United States, 4Division of Endocrinology, Diabetes,
Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN, United States
Introduction: Liver transplant (LT) recipients have a substantial risk of bone loss

and fracture. An individual’s risk is highest before and within the first year after

transplantation and returns to baseline in some patients but not all. We aim to

identify risk factors for bone loss and fracture beyond the first year LT and to

create a risk-scoring tool to aid clinicians in identifying those at high risk for bone

loss and fracture.

Methods:We conducted a retrospective review of 264 liver transplant recipients

between 2011 and 2014, who were followed in our transplant clinic for an

additional five years. Clinical records were evaluated at the one-year post-LT

visit and subsequently on an annual basis for up to five years.

Results: Over a median follow-up of 3.6 years post-liver transplantation, 40 out

of 264 patients experienced disease progression, defined as worsening bone

mineral density (BMD), initiation of osteoporosis treatment, or a new fracture.

Factors associated with BMD progression included female sex, Caucasian race,

new fractures, number of acute rejection events requiring treatment, and lower

dual energy X-ray absorptiometry (DXA) scores after the first year post-LT. A risk

model was developed using multivariable analysis, with a risk score based on

BMD categories. The concordance index was 0.771, indicating good

discrimination between those who progressed and those who did not. Risk

categories were defined as low (0-4 points), medium (5 points), and high (6-9

points) based on model coefficients. The probability of progression-free survival

at two years post-LT was 96.7% for low-risk, 83.1% for medium-risk, and 59.1%

for high-risk groups.
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Conclusion: We developed a simple, clinically applicable risk score that predicts

bone disease progression beyond the first year after LT. This tool may help guide

appropriate bone health follow-up, although prospective validation is necessary.
KEYWORDS

liver transplant, transplant related bone disease, osteoporosis, bone risk factors,
fractures, post liver transplant related bone loss, glucocorticoid induced osteoporosis
Introduction

Liver transplantation has been an accepted treatment for end-

stage liver disease for over 40 years. Advancements in pre-

transplant liver disease management, operative techniques, and

reduction in dose and duration of glucocorticoid therapy in most

patients after LT have improved longevity. With this improvement

in survival, there is a need to understand and manage the longer

term consequences of LT to enhance quality of life. Over the past

two decades, 40-60% of liver transplant recipients have experienced

transplant-related bone disorders, a prevalence that has remained

unchanged despite advances in transplant care (1–4).

Significant bone loss and fracture, occurring in 13-56% f cases, are

predominantly observed in the period before liver transplantation (pre-

LT) and within the first-year post-transplant post-LT, with prevalence

rates of 13-56% and 14-60% respectively (3–5). The cause is

multifactorial, including excess alcohol use, malnutrition, sarcopenia,

cholestatic liver disease, hyperbilirubinemia, hyponatremia, vitamin D

deficiency, and hypogonadism which tend to improve after

transplantation. Additional variables affecting post-LT bone loss

include exposure to high-dose glucocorticoid (GC) within the first

few months of transplant for immunosuppression, and reduced

mobility due to the impact of GC on muscle and bone, to mention a

few (6–8). For this reason, Liver Society practice guidelines, American

association for study of Liver diseases and American Society for

transplantation, and the European clinical practice guidelines include

bone densitometry in all patients undergoing LT evaluation (9, 10).

The long-term impact of liver transplantation on bone health

remains inadequately understood. While some studies suggest that

bone density may stabilize or improve after the first-year post-

transplant in most individuals, this recovery is inconsistent (8–10).

A subset of patients continues to experience persistent bone loss

and an increased risk of fractures. Bone loss progression is

commonly assessed through dual-energy X-ray absorptiometry

(DXA), while fracture risk is evaluated using radiographic

imaging and clinical diagnosis. However, the mechanisms driving

these varied outcomes are unclear and require further investigation
al density; DXA, dual-
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to enhance our understanding and management of bone health in

LT patients beyond the first year post-LT.

Bone histomorphometry, a technique for assessing bone micro-

architecture, demonstrates uncoupling of bone remodeling both

before and shortly after liver transplantation, marked by decreased

bone formation and increased bone resorption (11, 12). Additional

studies suggest that bisphosphonates, which reduce bone

resorption, can mitigate early post-transplant bone loss. However,

while short-term benefits are evident, long-term data remain

limited (13, 14). Although bone remodeling often normalizes

within four months, some patients continue to face elevated

fracture risk, and no clear guidelines exist for monitoring beyond

the first year. Furthermore, current fracture assessment tools,

including DXA, have limitations in this population (2–4). Our

study aims to identify clinical characteristics and BMD values at

one-year post-LT that predict progression of bone disease in five

years. Based on our findings, we developed a scoring system to

identify patients requiring closer monitoring through clinical

screening and bone density assessments.
Materials and methods

Study design and participants

The study was approved by the institution review board. The

cohort included all adult LT recipients from January 2011 through

June 2014 who had bone mineral density performed at 1 year post

transplant visit. Exclusion criteria were a prior transplant,

multiorgan transplant, lack of BMD test results within 1-year

post-LT, death within 1 year post transplant, or receiving

medication for osteoporosis (Figure 1).

Data on biochemistry, the model of end stage liver disease

(MELD), bone mineral density (BMD) as measured by DXA result,

demography, and clinical endpoints were extracted from

participants’ medical records. BMD measured by dual energy x-

ray absorptiometry (DXA-GE) are routinely performed at lumbar

spine, total hip and femoral neck. Our primary outcome was

progression of skeletal fragility after the first-year post LT,

defined as transitioning to the subsequent worse BMD diagnosis

(osteopenia or osteoporosis), receiving treatment for osteoporosis,

or having a new fracture.
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Data collection and BMD data

All patients had DXA scans performed at our facility, and serial

comparisons were available. All patients had BMD of the lumbar

spine, total hip, and femoral neck measured by DXA using a GE

Lunar iDXA (General ElectricCross-calibration of the multiple

scanners is routinely performed with a phantom; to provide

accurate longitudinal assessment of BMD. BMD results were

classified using the World Health Organization diagnostic criteria,

defined as osteoporosis if T score is -2.5 or lower, osteopenia if T

score is between -1 to -2.4, and normal if T score -1 or higher.

Review of electronic medical record documentation including

clinical notes and imaging was performed for subjects at one year

post LT. Fractures were considered fragility related if occurred from

a fall of standing height or from low energy injury reported

confirmed in the clinical history. If the cause of the fracture was

uncertain, the patient was reported not to have a fracture. We

obtained the number of any rejections occurring within the first

year of post-LT by review of transplant follow-up notes. Most

patients did not have rejection. Bone loss progression was defined as

having one or more of the following: Transitioned from normal

BMD at 1-year post-LT to osteopenia or osteoporosis, transitioned

from osteopenia at 1-year post-LT to osteoporosis, received

treatment for osteoporosis after 1-year post-LT, or had a new

fracture after 1-year post-LT. BMD classification was based on

the lowest BMD T score available for the corresponding clinical

visit (Table 1).
Frontiers in Endocrinology 0334
Immunosuppression

The immunosuppressive regimen protocol following LT is

mycophenolate mofetil (CellCept) (for 2 months), prednisone

(taper completed by 4 months), and tacrolimus indefinitely. If the

patient has high-risk hepatocellular carcinoma, mycophenolate

mofetil will be stopped as early as day 21 post LT, and the patient

will remain only on tacrolimus. If the patient has renal insufficiency,

mycophenolate is continued as maintenance therapy along with

tacrolimus to reduce tacrolimus levels to avoid further decline in

kidney function. Patients with moderate to severe acute cellular

rejection receives intravenous (IV) methylprednisolone 1 gram

every other day for a total of 3 doses. Patients then undergo repeat

liver biopsy, and if the biopsy indicates persistent moderate rejection,

treatment with another cycle of IV methylprednisolone is given.

Patients receive thymoglobulin if organ rejection persists. Patients

receive a higher dose of tacrolimus maintenance therapy for mild

acute cellular rejection. The protocol of immunosuppression did not

change during the study period.
Statistical analysis

Associations of patient characteristics with bone loss

progression after the 1-year post LT visit were evaluated using

Cox proportional hazards regression models, where hazard ratios

(HRs) and 95% confidence intervals (CIs) were estimated. Patients
FIGURE 1

Patient flow diagram.
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without bone loss progression were censored at the last available

BMD assessment prior to any graft failure. To create a scoring

algorithm that classifies patients based on their risk of bone loss

progression after their first annual post-LT BMD assessment, a

multivariable Cox proportional hazards regression model was

developed using a backward selection approach, with a focus on

reduction in the Akaike Information Criterion (AIC). The

multivariable Cox proportional hazards regression model was

developed by including variables with p ≤ 0.20 from the

univariable analysis. Variables were removed one at a time, based

on the largest p-value, until no further reduction in the Akaike

Information Criterion (AIC) was observed (Table 2). The BMD

measurement at 1 year post-LT was selected over pre-LT BMD to

identify predictors associated with the 1-year post-LT DXA

assessment, independent of pre-transplant values, and the closer

proximity of the BMD at 1 year Post-LT visit.

The risk score model was constructed using factors known at

one-year post-LT, with points assigned based on variables with p ≤

0.20. The scoring system included the following: sex (+1 point if

female), race (+2 points if not African American), fracture history

(+2 points for new fractures post-transplant or +1 point for pre-

transplant fractures), number of rejections (+2 points for ≥2

rejections or +1 point for 1 rejection), and lowest BMD T-score

(+2 points if T ≤ -2.5 or +1 point if T > -2.4 and < -1.0) (Table 3).

The point values for the risk score were determined by rounding

each model coefficient to the nearest integer (e.g., female sex had a

coefficient of 0.828, rounded to 1; non-African American race had a

coefficient of 1.870, rounded to 2). This simplification was done to

create an easy-to-use risk scoring system (Supplementary Table 1).

The risk score was calculated by summing the points for the

included variables, resulting in a plausible score range of 0-9. To

evaluate the discriminatory ability of the risk score in predicting bone

loss progression, we estimated the concordance index and

corresponding 95% confidence intervals (CIs) using bootstrap

methods (Table 2). Concordance index is a measure of the model’s

ability to discriminate between those who progressed and those who

didn’t with consideration of the time-to-event and censoring. The

concordance index was 0.76 in our cohort. The risk score was

categorized into three groups: low (0-4 points), medium (5 points),

and high (6-9 points) risk of skeletal fragility progression.

We assessed the performance of the risk score by plotting

Kaplan-Meier estimates of progression-free survival according to
TABLE 1 Patient characteristics.

N n (%) or
median (IQR)

Pre-transplant information

Female sex 264 88 (33.3%)

Race

Caucasian 264 222 (84.1%)

African American 264 23 (8.7%)

Other 264 14 (5.3%)

Not reported 264 5 (1.9%)

Body mass index (kg/m2) 264 27.8 (24.9, 32.1)

Primary liver disease 264

Cirrhosis, Type C 88 (33.3%)

Alcoholic cirrhosis 42 (15.9%)

Cirrhosis, fatty liver (Nash) 33 (12.5%)

Cirrhosis, cryptogenic idiopathic 30 (11.4%)

Alcoholic cirrhosis with hepatitis C 17 (6.4%)

Cirrhosis, autoimmune 11 (4.2%)

Primary biliary cirrhosis 10 (3.8%)

Cirrhosis, other 4 (1.5%)

Primary sclerosing cholangitis 12 (4.5%)

Metabolic disease 8 (3.0%)

All other diagnoses 9 (3.4%)

MELD score 264 18 (11, 25)

History of prednisone use 261 15 (5.7%)

Information collected at 1st annual follow-up visit

Age (years) 264 60 (54, 66)

Fractures 264

No fractures 204 (77.3%)

Pre-transplant fracture, no new fracture in
1st year post-LT

21 (8.0%)

New fracture in 1st year post-LT with or
without history of

39 (14.8%)

pre-transplant fracture

Total prednisone dose in 1st year post-LT 264 1.10 (1.10, 1.10)

Number of rejections in 1st year post-LT 264

0 217 (82.2%)

1 35 (13.3%)

2 10 (3.8%)

3 2 (0.8%)

Tacrolimus use in 1st year post-LT 254 232 (91.3%)

Mycophenolate in 1st year post-LT 253 33 (13.0%)

(Continued)
TABLE 1 Continued

N n (%) or
median (IQR)

pre-transplant fracture

Sirolimus use in 1st year post-LT 264 8 (3.0%)

Lowest BMD T score at 1st annual follow-up 264 -1.60 (-2.20, -0.90)

Spine T score 256 -0.40 (-1.30, 0.40)

Femoral neck T score 263 -1.50 (-2.00, -0.75)

Total hip T score 263 -1.10 (-1.70, -0.30)
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TABLE 2 Associations with BMD progression after 1 year post-liver transplant visit.

N No. of events

Single variable analysis Multivariable model

HR (95% CI) P HR (95% CI) P

Pre-transplant information

Sex

Male 176 16 1.00 (reference) 1.00 (reference)

Female 88 24 2.89 (1.54-5.45) .001 2.29 (1.20-4.38) 0.012

Race

African American 23 5 1.00 (reference) 1.00 (reference)

White/Other/Unknown 241 35 6.37 (0.86-47.11) .070 6.47 (0.85-49.11) 0.071

Body mass index (-5 kg/m2) 1.23 (0.90-1.70) .20

30 kg/m2 or higher 87 11 1.00 (reference)

< 30 kg/m2 177 29 1.16 (0.58-2.34)

Primary liver disease

Cirrhosis, Type C (yes vs. no) 88 11 0.84 (0.42-1.69) .62

Alcoholic cirrhosis (yes vs. no) 42 8 1.47 (0.67-3.19) .34

Cirrhosis, fatty liver (Nash) (yes vs. no) 33 6 1.06 (0.44-2.53) .90

Cirrhosis, cryptogenic idiopathic (yes vs. no) 30 7 1.41 (0.62-3.21) .41

MELD score (+15) 1.50 (0.87-2.26) .17

18 or less 138 18 1.00 (reference)

More than 18 126 22 1.22 (0.65-2.27)

Information collected at 1 year post LT visit

Age (+10 years) 1.26 (0.86-1.83) .24

60 years or younger 132 19 1.00 (reference)

Older than 60 years 132 21 1.04 (0.56-1.94)

Fractures

No fractures 204 20 1.00 (reference) 1.00 (reference)

Pre-transplant fracture, no new fracture in 1st year post-LT 21 5 2.04 (0.76-5.45 .16 2.03 (0.74-5.56) .17

New fracture in 1st year post-LT with or without history of pre-
transplant fracture

39 15 4.94 (2.52-9.68 <.001 4.48 (2.22-9.05) <.001

Total prednisone dose in 1st year post-LT (+0.5) 1.06 (0.97-1.15) .18

1.1 or less 201 24 1.00 (reference)

More than 1.1 63 16 2.45 (1.30-4.63)

No. of rejections in 1st year post-LT (+1) 1.76 (1.12-2.76) .014 1.74 (1.07-2.84) 0.026

0 217 28 1.00 (reference)

1 35 8 2.25 (1.02-5.00)

2 or more 12 4 2.71 (0.95-7.74)

Tacrolimus use in 1st year post-LT (yes vs. no/unk)

No/Unknown 32 7 1.00 (reference)

Yes 232 33 0.55 (0.24-1.24) .15

(Continued)
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risk score categories. Median follow-up time was calculated using

the reverse Kaplan-Meier method, with patients who experienced

progression censored at the time of progression (Figure 2, Table 4).

All analyses were conducted using R version 4.0.3 (R Foundation

for Statistical Computing, Vienna, Austria).
Results

Our cohort included 264 patients who underwent LT at our

institution, with bone mineral density testing available at their 1-

year post LT visit met the criteria for analysis. Table 1 describes the

characteristics of the cohort including bone mineral density results

extracted from their medical records. At one year post LT, the

median age was 60 years (IQR 54 to 66 years), 88 (33.3%) were

female, 47 (17.8%) had one or more rejections within the first year

after LT. The cohort consisted of diverse liver disease as the cause

for transplant. 39 (14.8%) had a fracture in the first year after LT,

and median lowest BMD T score from the spine, femoral neck, or

total hip was -1.60 (IQR -2.20 to -0.90). Fractures were

predominantly in the spine (thoracic and vertebral spine).

After 1 year LT visit, 40/264 patients experienced bone loss

progression over a median follow-up period of 3.6 years post-LT

bone density (IQR 1.0 to 3.6 years), with 21 patients progressing by

year 2 post LT visit (Figure 1). There were 42 patients who
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completed 5-year post LT follow-up visits without progression.

The remaining 182 patients either had graft failure requiring a

second liver transplant (N=24) or were lost to follow-up prior to the

5-year post LT visit. Among those who progressed, the majority

were within 2 years of LT (n=21) and 10/21 had new fractures

which was not evident in the pre or immediate post-transplant

period (Figure 1). Eight out of the 10 patients had multiple fractures

predominantly in the spine. Clinical characteristics of those who

progress include female sex which were 2.89 times more likely to

progress than male counterparts, Caucasians or those who

identified as others were 6 times more likely to progress than

African Americans, those with new fracture at 1 year post LT

regardless of history of pre transplant fracture were 5 times more

likely to progress than those who did not have reported fracture,

patients with one or more episodes of organ rejection were over 2

times likely to progress than those who did not have rejection and

low hip DXA scan were also likely to progress. Based on this

significant data, we identified female sex, Caucasian race, history of

fracture before transplant and within 12 months post LT, organ

rejection of 2 or more episodes, and low BMD in osteoporosis

range as a significant variable to play a role in progression of

bone loss.

Due to the limited number of patients who developed bone loss

progression and the strong correlations between some of the factors,

the use of multivariable analysis to predict bone loss progression was
TABLE 2 Continued

N No. of events

Single variable analysis Multivariable model

HR (95% CI) P HR (95% CI) P

Mycophenolate in 1st year post-LT

No/Unknown 231 36 1.00 (reference)

Yes 33 4 1.05 (0.37-2.97) .92

Sirolimus use in 1st year post-LT

No/Unknown 256 37 1.00 (reference)

Yes 8 3 2.52 (0.78-8.21) .12

Lowest BMD T score at 1-year post-LT follow-up (-1) 75 11 1.81 (1.24-2.64) .002 1.69 (1.12-2.55) 0.012

-1.0 or higher 11 1.00 (reference)

Between -2.5 to and -1.0 153 19 0.95 (0.45-1.99)

-2.5 or lower 36 10 3.03 (1.28-7.17)

Spine T score at 1-year post-LT follow-up (-1) 1.30 (1.00-1.69) .046

Femoral neck T score at 1-year post-LT follow-up (-1) 1.65 (1.13-2.41) .010

Total hip T score at 1-year post-LT follow-up (-1) 1.62 (1.16-2.27) .004
frontie
BMD, bone mineral density; HR, hazard ratio; CI, confidence interval; LT, liver transplant.
BMD progression was defined as having one or more of the following: transitioned to a worse diagnosis (osteopenia or osteoporosis ) based on the lowest BMD T score, received treatment for
osteoporosis, or had a new fracture. Patients were censored at the last available BMD assessment prior to graft failure. The multivariable Cox proportional hazards regression model included
variables with P≤0.20 from single variable analysis removing one variable at a time based on the largest P value until there was no longer a reduction in the Akaike Information Criterion. Prior to
starting the backward selection procedure, some variables were removed from the model due to high correlation. Prednisone dose was not included due to the correlation with the number of
rejections (Spearman correlation = 0.74). The only BMD T-score included in the multivariable model prior to backward selection was the lowest T score at 1-year post-LT follow-up. The
concordance index for the multivariable model was 0.771 (95% bootstrap CI 0.696-0.867) (15). For body mass index, MELD score, age at 1 year follow-up, total prednisone dose, number of
rejections, and lowest bone mineral density T score, unadjusted HRs and 95% CIs were presented for categorized versions of the variables to ease interpretation, but the continuous versions of the
variables were used for calculating P values and for consideration in the multivariable model.
The number in parathesis Indicate the unit increase (+) or decrease (-) in the predictor variable associated with the reported Hazard Ratio. For example, Age (+10 years) signifies that the HR
corresponds to a 10-year increase in age.
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challenging. We considered any variable with a P ≤ 0.20 from single

variable analysis in our model, excluding prednisone dose due to its

correlation with the number of rejections. The lowest BMD T score at

1-year post-LT was the only BMD measurement considered in the

model. The remaining factors under consideration were included in a

multivariable Cox proportional hazards regressions model. Using a

backward elimination approach, one variable at a time was removed

from the model based on the highest P value until there was no longer

a reduction in the AIC. The final multivariable model included 5

factors, sex, race, fracture history, number of rejections within one-

year post-LT, and the lowest BMD T score at 1-year post-LT

(concordance index = 0.771, 95% CI 0.696-0.867).

To create the risk score, each model coefficient was rounded up to

the nearest integer and these individual scores were summed to create a

score that ranges from 0 to 9 (Table 3). After reviewing the observed

proportion of patients who developed bone loss progression by the
Frontiers in Endocrinology 0738
2-year post LT visit according to the risk score (Supplementary

Table 1), we combined the risk scores into 3 risk categories: low risk

0-4, medium risk 5, and high risk 6-9. The probability of progression-

free survival by the 2-year post LT visit was 96.7% (93.8% to 99.6%),

83.1% (71.6% to 96.5%), and 59.1% (41.7% to 83.7%) for the low,

medium, and high-risk categories, respectively (Table 4, Figure 2).
Discussion

Our findings shows that certain characteristics identified as risk

factors for osteoporosis and fractures in the non-transplant

population are also significant for bone health changes in post LT

patients. Specifically, female gender, Caucasian race/ethnicity, and a

history of previous fractures were identified as important risk
TABLE 3 Risk score development for predicting BMD progression after 1
year post liver transplant visit.

Variable in model Model
Coefficient

Points

Sex

Male Reference 0

Female 0.828 1

Race

African American Reference 0

White race, other race, or unknown race 1.870 2

Fractures

No fractures Reference 0

Pre-transplant fracture, no new fracture in 1st
year post-LT

0.707 1

New fracture in 1st year post-LT with or
without history of pre-transplant fracture

1.430 2

No. of rejections in 1st year post-LT, continuous 0.555

No. of rejections, categories

0 0

1 1

2 or more 2

Lowest BMD T score at 1-year post-LT follow-
up, continuous

-0.524

Lowest BMD T score at 1-year post-LT follow-
up categories

-1.0 or higher 0

Between -2.5 to and -1.0 1

-2.5 or lower 2
The number of points for the simplified score were determined by rounding the model
coefficient up to the nearest integer. For the number of rejections, only 1 patient had more
than 2 rejections so those with 2 or more rejections were combined into the same category.
The lowest T-score was categorized based on common clinical diagnostic criteria. The risk
score is calculated by summing the number of points with a plausible range of 0 to 9. The
concordance index for the score created using the model coefficients and the simplified risk
score was 0.771 and 0.761, respectively.
TABLE 4 Kaplan-meier estimates of the probability (%) of progression-
free survival after the 1 year post liver transplant visit.

Years after 1
year post
LT visit

Simplified Risk Score

0-4 5 6-8

1.5 (~2.5 years
after transplant)

96.7 (93.8-99.6) 83.1 (71.6-96.5) 59.1 (41.7-83.7)

2.5 (~3.5 years
after transplant)

95.1 (91.7-98.7) 73.1 (57.9-92.3) 53.2 (35.5-79.7)

3.5 (~4.5 years
after transplant)

87.1 (80.3-94.6) 67.0 (50.2-89.5) 33.2 (15.2-72.7)
Progression was defined as having one or more of the following: transitioned to a worse
diagnosis (osteopenia or osteoporosis) based on the lowest BMD T score, received treatment
for osteoporosis, or had a new fracture.
FIGURE 2

Kaplan-Meier estimates of progression-free survival after 1 year
post-transplant bone mineral density (BMD) assessment according
to simplified risk score. The dashed vertical line represents the date
of the first annual BMD assessment (baseline timepoint). The
horizontal axis represents the number of years after the first annual
BMD assessment plus 1 year; for ease of interpretation the
horizontal axis is labelled as the approximate number of years after
transplant. Over a median follow-up of ~ 3.6 years post-transplant
(interquartile range ~3 to ~ 5 years post-transplant), 40 patients
experienced bone loss progression, 20 of which occurred within 18
months after 1 year post-LT BMD assessment. The overall
probability of progression-free survival at ~2.5, ~3.5, and ~4.5 years
post-transplant was 90.3% (95% CI 86.3% to 94.4%), 87.1% (95% CI
82.4% to 92.0%), and 78.1% (95% CI 60.0% to 79.6%), respectively.
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factors (14, 16). Refinement in risk assessment for this population

comes from our identification of liver transplant (LT)-related

factors associated with skeletal health deterioration. Specifically, a

higher number of rejection episodes and low bone density in the hip

were significant factors.

Our study agrees with previous work that most fractures occur

early, before transplant or within the first 1-2 years of transplant (13,

14). In contrast to prior studies, we did not observe any association

between the type of liver disease (alcohol, Non-alcoholic liver

disease, hepatitis c) and progression of bone disease (14, 17).

However, we did not look at those with cholestatic liver disease

separately due to our small number of patients in the cohort.

In contrast to prior studies, our study highlights the importance

of recognizing the risk factors for bone loss and fracture after the

first year of transplant unique to liver transplant recipients. More

specifically, similar to the non-transplant population, females at any

time were more likely to progress than their male counterparts.

Women have lower bone mass at any point compared to men, so it

was not surprising to discover that the most significant effect of liver

disease on the bone was higher in women than men. Prior studies

have questioned the validity of BMD in predicting bone disease in

those receiving liver transplants (2). In this study, we found that

BMD is essential in the risk stratification of patients at high risk for

progression in conjunction with other clinical factors identified in

this study. BMD at 1-year post LT was also helpful in predicting

those who are likely to progress. We noted that patients with BMD

at any site (spine, femoral neck, or total hip) in the osteoporosis

range at 1-year post LT were three times more likely to progress

compared to those with normal BMD (T score >-1) at any site. In

addition, a one standard deviation (SD) decrease in the total hip

BMD at 1-year post LT was strongly associated with BMD progress

after the first annual post-LT follow-up. A change in BMD by one

standard deviation change in the femoral neck and spine was also

trending towards a positive prediction of progression, although not

significant (Table 2).

Furthermore, ethnic variation in peak bone mass is likely to

explain the race differences noted in our study rather than the mere

impact of transplant alone. African Americans generally have been

shown to have a higher bone mineral density at baseline than white

Americans, and fracture rate also appears to be lower in AA at any

skeletal sites compared to whites in nontransplant patients (16). We

are not aware of any known differences in the mechanism of bone

loss between AA and Caucasians other than the fact that AA may

have higher bone mass at baseline than Caucasians but whether the

rate of loss is different between the two groups is unknown. Unique

to our transplant cohort, we noticed that although Caucasians had a

higher risk for progression than African Americans, a higher

proportion in the AA group 5/23 (22%) progressed versus 35/241

(14%) Caucasians. The number of African American LT population

was low but carried a concerning trend of disease progression

raising the possibility that perhaps the rate of bone loss can be

higher in AA population and may need close follow-up. Future

studies may help understand potential race differences in how organ

failure and transplantation affect different ethnic groups.

Glucocorticoid use, mycophenolate, and Tacrolimus use were not

associated with progression risk, in keeping with the concept that
Frontiers in Endocrinology 0839
bone disease in transplant patients is a unique entity caused by

multifactorial pathways rather than explained by immunosuppression

alone. High glucocorticoid (GC) use is typically limited to the first 4-6

months post-LT and discontinued in most individuals. GC is known

to affect the bone by uncoupling bone resorption and bone formation,

resulting in increased bone resorption by inhibiting gonadal steroids,

increased urinary calcium excretion by inhibiting intestinal and renal

calcium reabsorption, and secondary hyperparathyroidism and

reduced bone formation by inhibiting type I collagen, osteocalcin,

insulin-like growth factors, and bone matrix proteins, receptor

activator for nuclear factor kappa B ligand (RANK-L (18, 19). The

effect of GC on the bone goes well beyond the withdrawal of GC, and

the GC effect on the bone is apparent even in lower doses (19, 20).

Our study shows that frequent organ rejection (>2) episodes

rather than GC use may be an important clinical tool that can

differentiate those with long-term effects on the bone from those

with low rejection episodes. Our study noted that a higher number of

rejections (>2 episodes) was associated with a significantly high risk of

bone progression. Those with a higher rejection frequency in the first

year of transplant may have received a higher dose of steroid than

those with less frequent rejection events and are overall sicker. In

addition, the finding may be in part explained by the GC effect on

various organs, and GC-sparing therapies such as calcineurin

inhibitor (Tacrolimus) may have a favorable effect on bone health

GC asserts a direct effect on reducing osteoblast replication,

differentiation, and lifespan resulting in a decline in bone

formation. 33/232 (14%) of patients using Tacrolimus in first-year

post-LT progressed, whereas only 4/33 (12%) patients using

mycophenolate progressed. Though the findings were insignificant,

the trend was that those on Tacrolimus had half the probability of

progressing HR 0.55 (0.24-1.24) compared to those not on

Tacrolimus. Prior studies have shown that early glucocorticoid

withdrawal improves bone mass recovery (21–24). Calcineurin

inhibitors (cyclosporine A (CsA) and Tacrolimus) are GC-sparing

immunosuppressants that have been instrumental in reducing GC

use. The effects of cyclosporine A (CsA) on bone health are unclear,

though it generally appears to increase bone resorption and lead to

bone loss. In contrast, tacrolimus is associated with less bone loss,

likely due to reduced glucocorticoid (GC) use rather than direct effects

on bone cells (13, 22). Glucocorticoids, mycophenolate, tacrolimus,

and liver disease type were not significantly linked to increased bone

disease progression, suggesting that bone disease in transplant

patients has unique, multifactorial causes. Pre-transplant fracture

notably was associated with BMD progression, with 38% (15 of 39)

of patients with pre-transplant fractures experiencing progression—

five times higher than those without fractures. Even without new

post-transplant fractures, these patients had twice the risk of BMD

progression, observed in 5 of 21 patients, emphasizing pre-transplant

fractures as a key factor in post-transplant bone disease.

Long-term follow-up of LT patients beyond the first year should

include fracture risk assessment through a comprehensive clinical

history of known fracture risk factors. Particular attention should be

given to patients who have received high doses of glucocorticoids for

frequent rejections in the early post-transplant years. Clinicians should

make every effort to obtain adequate clinical history and, when in

doubt, obtain spine imaging to evaluate for asymptomatic fracture.
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Prior studies have shown that the risk of asymptomatic

vertebral fracture in pre-LT recipients was as high as 56% (2, 25).

The study underscores the importance of pre- or within one year of

LT fracture assessment by spine imaging to evaluate for

radiographic evidence of fracture or clinical history suggestive of

fractures such as height loss and kyphosis.

Currently, there are no standardized guidelines for the optimal

interval between bone mineral density (BMD) testing or for the

management of patients with liver transplant (LT)-related bone

disease. Based on our findings, we propose that patients with a

clinical risk score greater than five should be considered for

additional spine imaging, such as plain radiographs of thoracic

and lumbar spine, to evaluate for asymptomatic fractures, or should

be considered for early treatment intervention. Prospective studies

are needed to further validate the efficacy of this risk tool in guiding

patient selection for treatment.

This study has several limitations, largely due to its retrospective

design. First, we did not account for comorbidities or medications

that may impact bone density, such as thiazide diuretics for

hypertension or conditions such as type 2 diabetes. Additionally,

because the study relied on retrospective chart reviews, not all

relevant medical information was consistently recorded, particularly

for patients managed by external institution (21, 22, 26).

Not unexpectedly, the presence of fracture at any time (pre-LT

and within 1-year post-LT) is one of the strongest predictors of 5-

year disease progression compared to those that did not fracture.

The presence of a new fracture in the first-year post-LT visit,

regardless of prior fracture, was highly correlated with disease

progression (p <0.001).

Moreover, patients who received treatment for osteoporosis after

the first year post-LT were classified as having “bone loss progression,”

based on the assumption that treatment initiation reflects a clinical

decision prompted by observed bone loss or increased risk. While it is

possible that some patients may have started treatment as a preventive

measure, we lacked sufficient data to differentiate between those

treated for active bone loss and those treated prophylactically.

Further studies should aim to clarify this distinction.
Conclusion

We developed a risk-scoring tool to enable clinicians to identify

individuals with the highest risk of deterioration in bone health,

defined as time to decline to the subsequent worse diagnosis

(osteopenia and osteoporosis) based on the lowest BMD T score,

received treatment for osteoporosis or had a new fracture. The

BMD progression risk score is an easy-to-calculate scoring system

based on information collected at the one-year follow-up

assessment after a liver transplant. This tool though an

encouraging start, will require prospective validation.
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Longitudinal assessment of
changes in muscle composition
using proton density fat fraction
and T2* in patients with and
without incidental vertebral
compression fractures
Yannick Stohldreier1*, Yannik Leonhardt2, Jannik Ketschau2,
Florian T. Gassert2, Marcus R. Makowski2, Jan S. Kirschke3,
Georg C. Feuerriegel2, Philipp Braun2, Benedikt J. Schwaiger3,
Dimitrios C. Karampinos2, Nina Hesse4†

and Alexandra S. Gersing1,2†

1Department of Neuroradiology, Ludwig Maximilians University Hospital, Ludwig Maximilians
University (LMU) Munich, Munich, Germany, 2Department of Diagnostic and Interventional Radiology,
Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany,
3Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of
Munich, Munich, Germany, 4Department of Radiology, Ludwig Maximilians University Hospital, Ludwig
Maximilians University (LMU) Munich, Munich, Germany
Objective: Chemical shift encoded-based water-fat separation magnetic

resonance imaging (CSE-MRI) is an emerging noninvasive tool for the

assessment of bone and muscle composition. This study aims to examine both

the predictive value and the longitudinal change of proton density fat fraction

(PDFF) and T2* in the paraspinal muscles (PSM) in patients with and without the

development of an incidental vertebral compression fracture (VCFs) after 6

months of follow-up.

Methods: Patients (N=56) with CT and 3T CSE-MRI of the lumbar spine at

baseline and CSE-MRI at 6 months follow-up were included in this

retrospective study. Patients who, on average, developed an incidental VCF

one year after baseline MRI (VCF: N=14, 9 males, 66.8 ± 7.9 years) were

frequency matched by age and sex to patients without VCFs (non-VCF) at

baseline and follow-up (non-VCF: N=42, 27 males, 64.6 ± 13.3 years). Mean

PDFF, T2*, and cross-sectional area (CSA) values from the autochthonous PSM of

the thoracolumbar spine (T11-L4) and opportunistic CT-based bone mineral

density (BMD) measurements were obtained for each individual. The associations

between baseline measurements, longitudinal changes in PDFF, T2*, CSA of the

PSM and the occurrence of VCFs at follow-up were evaluated using linear and

logistic multivariable regressionmodels. ROC analyses were used to assess cutoff

values for predicting the development of VCFs.

Results:No significant difference in PDFF of the PSMwas found between the VCF

and non-VCF group at baseline (VCF/non-VCF 8.5 ± 13.8% vs. 5.0 ± 4.6%;

p=0.53). In multivariable linear regression models adjusted for sex, age and
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baseline BMD, PDFF values of the PSM increased significantly over 6 months in

the VCF group (2.4 ± 2.8% vs. -1.0 ± 2.3%, p<0.001), while T2* values of the PSM

showed a significant decrease (p ≤ 0.01). ROC analyses identified a PDFF

increase of 0.2% in the PSM as the optimal cutoff value to distinguish between

patients with and without VCF (AUC 0.86, 95% CI [0.74-0.98], p<0.001).

Conclusion: Longitudinal PDFF-based assessment of the PSM composition may

be a useful indicator for the prediction of the development of vertebral

compression fractures.
KEYWORDS

incidental vertebral compression fractures, magnetic resonance imaging, muscle,
spine, proton density fat fraction, chemical shift encoded MRI, bone mineral density
1 Introduction

In our aging society, osteoporosis is a significant health issue

with insufficiency fractures of vertebrae being linked to increased

mortality rates and a substantial economic burden (1–4). Early

detection and reliable assessment of osteoporosis are crucial for

preventing vertebral fractures. Dual-energy x-ray absorptiometry

(DXA) and quantitative CT (qCT) are currently the diagnostic

reference standard for the assessment of osteoporosis. However,

qCT offers more precise bone mineral density (BMD)

measurements compared to DXA, while at the same time

resulting in higher radiation exposure of the patient (5). Reduced

BMD is the major risk factor for incidental vertebral compression

fractures (VCF) (6). Osteoporosis and bone loss are closely linked to

sarcopenia and poor muscle strength through endocrine pathways

(7). Both are independently established risk factors for vertebral

fractures (8–11). Bone marrow is composed of various cell types

within a trabecular bone matrix and its composition is influenced by

several metabolic and external factors (12). Increased fat content is

part of the pathophysiology of osteoporosis in the spine and is

driven by enhanced proliferation of mesenchymal stem cells into

adipocytes (13–15). A radiation free approach for fat quantification

is proton density fat fraction (PDFF) mapping via chemical-shift

encoding-based water-fat MRI (CSE-MRI) (16). The PDFF

technique has shown to be a reliable measurement tool for fat

quantification in different tissues and several previous studies have

demonstrated a negative correlation between the BMD and PDFF of

the vertebral bone marrow (17–24). The advantage of CSE-MRI
mineral density; CSA,

ded-based Water-Fat

units; ICC, Intraclass

Multi-Slice Detector

Magnetic Resonance

, Paraspinal muscle;

C, Receiver operating

pression fracture.
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over spatially limited measurement methods, such as single voxel

proton magnetic resonance spectroscopy (MRS), is that the

heterogeneous composition of the bone marrow and PSM as well

as the cross-sectional area (CSA) of the PSM can be assessed

simultaneously. In clinical practice, CSE-MRI can easily be

integrated into routine MR imaging protocols. A recent study

reported an increase of PDFF over one year within the vertebral

bodies before an incidental fracture occurred while the BMD

remained unchanged, indicating that PDFF could be used as a

predictive biomarker for bone health (25). Fat infiltration may be

influenced by external stress factors, such as myelotoxic

chemotherapy, or by metabolic disorders like diabetes (26–28).

Additionally, a correlation of fat infiltration of the vertebral bone

marrow and the paraspinal muscles (PSM) was previously reported

(29). CT- and MRI-based fat quantifications in previous studies

have also demonstrated an inverse correlation between fat

infiltration of the PSM and reduced muscle strength as well as

spinal instability (30, 31). CSE-MRI also allows for the assessment

of T2*. In vertebral bodies, T2* is linked to the osseous

microarchitecture, showing an inverse correlation with BMD

(29, 32).

The aim of this study is to investigate the relationship between

the occurrence of vertebral compression fractures (VCF) and PDFF

and T2* measurements of the PSM and the vertebral bone marrow

in the lumbar region.
2 Materials and methods

2.1 Study design and patient selection

The study was approved by the local institutional review

committee (Ethics Commission of the Medical Faculty, Technical

University of Munich, Germany; Ethics proposal number 2022-

433-S-SR). All patients gave written and informed consent prior to

their participation in the study according to the Declaration of

Helsinki. Between January 2018 and June 2021, a total of 200
frontiersin.org
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patients underwent MRI protocol of the abdomen including a

multi-echo gradient-echo sequence of the thoracolumbar spine

and a CT including the lumbar spine from which opportunistic

BMD measurements were derived as part of their clinical routine

(33, 34). Exclusion criteria for MR imaging included pregnancy,

presence of metal implants, and general contraindications for MR

imaging (e.g., pacemakers). The 6 months follow-up CSE-MR

images of all these patients were screened for newly detected

vertebral compression fractures, which had not been present in

the previous MR and CT scans. Patients with an incidental vertebral

compression fracture (VCF) were retrospectively included,

provided the fracture showed no signs of malignancy (e.g.,

osseous metastasis) or was caused by high-energy trauma. In

total, 14 patients met all criteria and were enrolled in our study.

These patients were frequency matched for age and sex in a 1:3 ratio

to patients without VCF.

The medical treatment history of all enrolled patients was

reviewed. None of them had undergone chemotherapy or

osteoporosis treatment before or during the study. The follow-up

MRI was performed 4.5 ± 2.4 months after the baseline MRI. The

occurrence of a VCF was determined in an additional MRI 13.0 ±

8.5 months after baseline. The CT examinations were performed

within 1 month of the baseline MR imaging.
2.2 Magnetic resonance imaging
and measurements

MR images, including the lumbar spine, were acquired by two

3T-MRI systems (both Elition, Phillips Healthcare and Ingenia,

Phillips Healthcare). Patients were placed in a supine position with

a 16-channel anterior torso coil array and an inbuilt posterior 12-

channel coil array. The imaging sessions included CSE-MRI for

PDFF and T2* measurement, axial and coronal T2-TSE sequences,

as well as axially acquired T1-weighted sequences with spectral fat

saturation with and without contrast administration. For PDFF and

T2* measurements, an axial six-echo 3D multi-echo gradient-echo
Frontiers in Endocrinology 0344
sequence was employed, capturing all echoes in a single TR using

bipolar gradients. The imaging parameters were as follows:

repetition time (TR)/first echo time (TE1)/echo time step (DTE)
= 7.8/1.35/1.1ms, field of view (FOV) = 300 x 400 x 150 mm³,

acquisition voxel size = 2 x 3 x 6 mm³, reconstruction voxel size =

1.13 x 1.13 x 6 mm³, receiver bandwidth = 1678 Hz/pixel, frequency

direction = anterior/posterior (A/P), 1 average, scan time = 9.3 s. To

minimize T1 bias effects, a flip angle of 3° was utilized (35).

Complex multi-echo gradient-echo images were processed using

the fat quantification routine provided by the vendor (mDixon

Quant, Philips Healthcare). After phase correction, a complex-

based water-fat decomposition was performed, incorporating a

single T2* correction and a pre-calibrated fat spectrum

considering the multiple peaks in the fat spectrum. A seven-peak

fat spectrum model was employed. PDFF maps were computed as

the ratio of fat signal over the sum of fat and water signals, and

PDFF and T2* maps were extracted (36, 37). Besides PDFF maps,

T2* maps were utilized to assess the muscle and bone composition

of the participants.

Segmentation of the thoracolumbar vertebral bone marrow and

PSM were performed manually by F.T.G. and Y.L. (3 and 4 years of

experience in musculoskeletal imaging) on the PDFF and T2* maps

using the IDS7 PACS (Sectra AB, Linkoeping, Sweden). The

fractures were classified by two board-certified radiologists (B.J.S.

and A.S.G., both with 12 years of experience in musculoskeletal

imaging) by evaluating the involvement of the posterior column,

superior and/or inferior endplate and deformity (crush, biconcave,

wedge) of the vertebra. Fractures were classified with the Genant

classification (38). B.J.S. and A.S.G. also ensured, in conjunction

with the clinical history, that no morphological indications of

malignant fractures were present in any of the sequences.

Cylindrical ROIs were placed in axial PDFF and T2* maps in the

center of the thoracic vertebrae (T) 11 to the lumbar vertebrae (L) 4,

and the mean PDFF and T2* values were obtained for each vertebra

(Figure 1). No ROIs were placed into fractured vertebrae at the six

months follow-up. Beginning at T11, five consecutive slices on both

sides were segmented in the PSM as illustrated in Figure 1 and
FIGURE 1

Exemplary axial Proton Density Fat Fraction (PDFF)-map at height of lumbar vertebra 1 (L1). For measurements of vertebral PDFF and T2*, regions of
interest (ROIs) were placed in the center of each vertebra (green circle). Muscle PDFF, T2*, and cross-sectional area (CSA) were measured by
segmentation of the paraspinal muscle (PSM) on both sides (blue circles). The color scale indicates PDFF values in [%].
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values were averaged. Furthermore, the CSA values of each slice

were noted for both sides and averaged. The longitudinal change of

PDFF, T2* and CSA in the PSM and the change of PDFF and T2* in

the vertebral bone marrow was calculated as the difference between

the follow-up and the baseline values.

To evaluate the intrareader reproducibility of PDFF, T2*, and

BMD values, a random sample of 10 subjects was selected and

reanalyzed after 8 weeks by the same radiologists Y.L. and G.C.F.

F.T.G. independently analyzed a random sample of 10 subjects after

a 6 months interval from the initial review to evaluate inter-

reader reproducibility.
2.3 Computed tomography and
BMD measurement

All included patients received CT images using a dual-layer

dual-energy CT (IQon Spectral CT, Phillips Healthcare,

Amsterdam) or a multi-slice detector CT (MDCT) (Phillips iCT

256, Phillips Healthcare). The patients were positioned in supine

position and scans obtained in craniocaudal direction. The

scanning parameters followed routine clinical protocols:

collimation of 0.9 mm, pixel spacing of 0.4/0.3 mm, pitch factor

of 0.8/0.9, tube voltage of 120 kV, and a modulated tube current

ranging from 125 to 250 mAs.

The trabecular bone of the entire vertebral bodies from L1 to L4

was manually segmented using the IDS7 PACS (Sectra AB,

Linkoeping, Sweden) by a radiologists G.C.F. in the axial plane,

excluding cortical bone. The mean Hounsfield Unit (HU) value for

each non-fractured vertebra was calculated, and the average HU

value for each patient was determined by averaging the mean HU

values of the vertebrae. Fractured or degenerative altered vertebrae

(i.e., vertebrae exhibiting osteoarthritic changes such as osteophytes,

endplate sclerosis, reduced vertebral height, or vertebrae with

vertebra-/kyphoplasty) were excluded from HU measurement. The

HU units were used in a previously described and tested conversion

equation to calculate the BMD of the lumbar vertebrae: 0.928 g/cm³

× HU + 4.5 g/cm 3 for the IQon Spectral CT and 0.855 g/cm³ × HU

+ 1.172 g/cm³ for the Philips iCT 256 (39). Osteoporosis was defined

as a BMD less than 80 mg/cm³, while osteopenia was defined as a

BMD ranging from 80 to 120 mg/cm³ (40).
2.4 Statistical analysis

Statistical analysis was performed by Y.S. with RStudio Build

764 and R version 4.4.0 (R Foundation for Statistical Computing,

Vienna, Austria). All tests were performed with a two-sided

significance level of a = 0.05. Metric variables are presented as

mean ± standard deviation. Shapiro-Wilk test was used to assess the

distribution of data. Group comparisons for normally distributed

metric variables were assessed for equal variances using the Bartlett

Test. If variances were equal, the two-sample t-test was utilized;

otherwise, the Welch test was employed. For non-normally

distributed metric data, equal variances were examined with the

Fligner-Killeen Test. With equal variances, the Wilcoxon rank sum
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exact test/Mann-Whitney U test was applied; otherwise, Mood’s

median test was used for group comparisons. Categorial data was

compared using Fisher’s Exact test if the sample size in a group was

less than 5, otherwise the Chi-squared test was performed. In order

to distinguish patients with and without VCFs, ROC curves were

generated to evaluate the longitudinal PDFF cutoff values of the

vertebral bone marrow and PSM based on sensitivity and specificity.

For each ROC curve the optimal cutoff value with the highest

Youden Index was selected. In addition to calculating the AUC, we

determined the 95% confidence interval with p-value. Multivariable

logistic and linear regression models were calculated to explore the

association between VCFs and PDFF by adjusting for sex, age

and BMD.

Intra- and inter-reader reproducibility of T2*, PDFF, CSA and

BMD values were evaluated by computing the intraclass correlation

coefficient (ICC) and the root mean square coefficient of variation

(RMSCV) of the difference between the measurements performed

by the readers.
3 Results

Fourteen patients (66.8 ± 7.9 years, 9 males) with incidental

VCFs (Figure 2) were frequency matched with patients without

VCFs in a 1:3 ratio (n = 42, 64.6 ± 13.3 years, 27 males). Among

VCF patients, six were osteopenic and two were osteoporotic,

whereas in the non-VCF group, 17 were osteopenic and two were

osteoporotic at baseline. No significant association was detected

between osteopenic/osteoporotic patients and the development of

VCFs (p = 0.40).

Descriptive statistics of MRI data of PDFF, T2*, and CSA

analyses for patients with and without VCFs at baseline and

follow-up are listed in Table 1. When assessing PSM parameters,

there were no significant differences between the VCF and non-

VCF groups in terms of baseline PDFF (VCF/non-VCF 8.5 ± 13.8%

vs. 5.0 ± 4.6%, p = 0.53). Additionally, CSA (VCF/non-VCF 13.0 ±

4.5 cm² vs. 13.4 ± 3.4 cm², p = 0.44) showed no significant difference

between both groups. While the PDFF of the PSM increased

significantly in patients with VCF over time, the PDFF in the

non-VCF decreased significantly over 6 month (VCF/non-VCF 2.4

± 2.8% vs.-1.0 ± 2.3%; p < 0.001, Figure 3; Table 2). The analysis of

T2* relaxation time of the PSM at baseline showed no significant

difference between the VCF and non-VCF group (Table 1).

However, at follow-up, the T2* relaxation time of the PSM was

significantly higher in the non-VCF group compared to the VCF

group (follow-up T2* VCF/non-VCF 26.5 ± 4.1 ms vs. 29.5 ± 2.4

ms, p = 0.02). The VCF group experienced a significantly higher

longitudinal decrease in T2* in the PSM over time (VCF/non-VCF

-3.3 ± 2.7 ms vs. -0.4 ± 2.2 ms, p = 0.01, Figure 3; Table 2).

VCF group showed a significant increase in vertebral bone

marrow PDFF over time (7.9 ± 7.0% vs. -2.6 ± 5.4%, p < 0.001,

Figure 3; Table 2). However, no significant differences in PDFF of

the vertebral bone marrow were observed between the VCF and

non-VCF group, neither at baseline nor at follow-up (Table 1). The

mean T2* value of the vertebral bone marrow was significantly

higher in patients with VCFs (baseline T2* VCF/non-VCF 10.9 ±
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3.2 ms vs. 8.1 ± 2.4 ms, p = 0.01), suggesting an initially slightly

lower BMD. Indeed, BMD was lower among VCF patient, but the

difference was not statistically significant (VCF/non-VCF 115.7 ±

37.9 mg/cm³ vs. 136.6 ± 45.6 mg/cm³, p = 0.12).

Multivariable linear regression analysis, adjusted for gender,

age, and BMD, revealed an average increase in PDFF of the PSM of

3.5% from baseline to follow-up (95% CI [1.8 – 5.3]; p < 0.001) in

patients who developed VCF compared to patients without VCF.

The change in CSA of the PSM (82.6 cm², 95% CI [-177.8 - 343.0]; p

= 0.52) did not significantly differ between the groups. Multivariable

logistic regression model, adjusted for gender, age, and BMD,

suggested that increasing PDFF of the PSM (OR = 2.21, 95% CI

[1.38 - 4.73]; p < 0.01) and vertebral bone marrow over 6 months

(OR = 1.49, 95% CI [1.19 - 2.14]; p < 0.01) are significant risk factors
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for the development of VCF. In the same model, decreasing T2* of

the PSM was also identified as a risk factor for the development of a

VCF (OR = 1.89, 95% CI [1.28 - 3.33]; p < 0.01). In contrast,

changes in T2* of the vertebral bone marrow (OR = 0.97, 95% CI

[0.69 - 1.32]; p = 0.87) and changes in CSA of the PSM over 6

months (OR = 1.00, 95% CI [0.99 – 1.00]; p = 0.50) do not pose a

risk factor for the development of VCF.

Moreover, ROC analysis (Figure 4) showed that a PDFF change

of 0.2% in the PSM (AUC 0.86, 95% CI [0.74 - 0.98], specificity 0.73,

sensitivity 0.90, Youden Index = 0.63, p < 0.001) can significantly

differentiate VCF from non-VCF patients.

The intrareader as well as the interreader agreement for T2*

(ICC for both 0.98, 95% CI [0.96 - 0.99]), PDFF (ICC for both 0.98

[95% CI, 0.96 - 0.99]), CSA (ICC for both 0.98, 95% CI [0.96 - 0.99])
TABLE 1 Descriptive analyses between patients with (VCF) and without (non-VCF) vertebral compression fractures for baseline and follow-up. The
values are listed as mean ± standard deviation.

Baseline Follow-Up

VCF
group

Non-
VCF group

P-
value

VCF
group

Non-
VCF group

P-
value

Vertebral bone marrow PDFF of T11 - L4 (%) 41.0 ± 12.2 46.8 ± 9.6 0.07 b 44.8 ± 14.4 43.8 ± 11.5 0.83 b

PDFF of the paraspinal muscle (%) 8.5 ± 13.8 5.0 ± 4.6 0.53 c 11.4 ± 16.6 4.6 ± 4.1 0.04 c

Vertebral bone marrow T2* of T11 - L4 (ms) 10.9 ± 3.2 8.1 ± 2.4 0.01 b 11.7 ± 5.7 9.0 ± 2.6 0.16 c

T2* of the paraspinal muscle (ms) 29.9 ± 4.5 30.0 ± 2.9 0.93 d 26.5 ± 4.1 29.5 ± 2.4 0.02 c

CSA of the average right and left paraspinal
muscle (cm²)

13.0 ± 4.5 13.4 ± 3.4 0.44 c 14.9 ± 4.5 13.3 ± 3.6 0.26 b
fro
a Mood’s median test.
b Two-sample t-test.
c Wilcoxon rank sum test/Mann-Whitney U test.
d Welch t-test.
PDFF, Proton Density Fat Fraction; VCF, vertebral compression fracture; CSA, cross-sectional area.
Statistically significant p-values (p ≤ 0.05) are highlighted in bold.
FIGURE 2

Proton Density Fat Fraction (PDFF) maps of a patient without vertebral compression fracture (VCF) at baseline (A) and follow-up (B) and of a patient
with VCF at baseline (C) and follow-up (D). The green region of interest (ROI) illustrates an exemplary measurement of the vertebral bone marrow in
a VCF patient, visually highlighting an increase in fat infiltration from baseline (C) to follow-up (D). The blue ROIs mark the paraspinal muscles. Due
to an average PDFF change of 2.4% in PSM from baseline (C) to follow-up (D) among VCF patients, changes in color remain subtle. The color scale
indicates PDFF values in [%].
ntiersin.org

https://doi.org/10.3389/fendo.2025.1549068
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Stohldreier et al. 10.3389/fendo.2025.1549068
FIGURE 3

Median of Proton Density Fat Fraction (PDFF), T2* and CSA in the vertebral bone marrow and paraspinal muscle (PSM) grouped by vertebral
compression fracture (VCF) status at baseline and at 6-month follow-up. The p-values refer to the change of the respective value from baseline to
follow-up between patients with and without VCF.
FIGURE 4

Receiver operating characteristic (ROC) curves of the change in Proton Density Fat Fraction (PDFF) in the paraspinal muscle (PSM, (A)) and vertebral
bone marrow PDFF (B) were used to differentiate between patients with vertebral compression fracture (VCF) and without (non-VCF). The blue area
illustrates the 95% confidence interval (CI) of the area under the curve (AUC). Additionally, boxplot (C) represents the median longitudinal change of
PDFF in the PSM, and boxplot (D) shows the change of vertebral bone marrow PDFF between individuals who experienced VCF and those who did
not. Respectively, the difference in in the change of PDFF PSM and vertebral bone marrow PDFF was significant (for both p < 0.001).
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and BMD (ICC intrareader 0.99, 95% CI [0.98 – 0.99] and

interreader 0.99, 95% CI [0.97–0.99]) measurements were

excellent. Intra- and interrater reproducibility, assessed by

calculating the RMSCV, also demonstrated excellent agreement

for T2* (RMSCV intrarater 0.8% and interrater 0.9%), PDFF

(RMSCV intrarater 0.9% and interrater 0.8%), CSA (RMSCV

intrarater 0.7% and interrater 0.8%) and BMD (RMSCV

intrarater 0.4% and interrater 0.5%) measurements.
4 Discussion

This study assessed the associations between the occurrence of

incidental VCFs and the longitudinal changes in PDFF, T2* and

CSA of the PSM and vertebral bone marrow in the thoracolumbar

region. Although no significant baseline difference in BMD was

observed, the increase in PDFF in the PSM and vertebral bone

marrow was significantly higher in patients who developed a VCF

compared to those without VCF.

The marked increase in PSM PDFF within six months indicates

a rapid fatty degeneration, potentially linked to the occurrence of

VCFs. The CSA of the PSM showed a marginal increase in these

patients, however this change did not reach statistical significance.

Several studies have investigated the impact of elevated muscle

PDFF on both muscle function and bone health. Fatty infiltration of

the PSM has been associated with severe back pain and structural

abnormalities in the lumbar spine, such as reduced disc height and

decreased muscle strength (31, 41). In relation to bone health, the

PDFF of the erector spinae, multifidus, and psoas muscles has been

shown to be significantly higher in osteopenic patients (42).
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Our findings, consistent with previously published studies,

demonstrated an increase in PDFF within the vertebral bone

marrow among individuals with VCFs, whereas BMD showed no

significant differences. Although an inverse correlation between

vertebral bone marrow PDFF and BMD has been well established

(17–21), a recent study reported an increase in PDFF in vertebral

bone marrow prior to incidental fractures, while BMD remained

unchanged. This finding underscores the potential predictive value

of PDFF over BMD in forecasting the occurrence of VCFs (25).

Additionally, elevated fat content in the vertebral bone marrow has

been linked to reduced bone quality and the presence of

osteoporosis (29, 43). Postmenopausal women, a population at

higher risk for osteoporotic vertebral fractures, exhibited

significantly higher PDFF in the vertebral bone marrow compared

to premenopausal women (44). Furthermore, insulin resistance is

associated with increased vertebral bone marrow PDFF and a

heightened risk of fractures. This suggests fatty vertebral

infiltration may serve as an additional risk factor for fractures in

patients with pathological glucose metabolism (45–47).

Age, physical inactivity, muscle atrophy, and reduced BMD are

known risk factors for VCFs (6, 8–11). These factors are also linked

to fatty infiltration in bone and muscle (18–21, 31, 48, 49). Muscle

atrophy weakens spinal stability, leading to more mechanical stress

and eventually, results in inactivity (50). We hypothesize that these

factors interact in a vicious cycle: muscle atrophy reduces physical

activity, promoting fatty muscle infiltration, thereby further

reinforcing inactivity. In addition, muscle communicates with

bone through various endocrinologic pathways influencing bone

turnover and, consequently, BMD (7, 51). In our study, regression

models demonstrated that PDFF of the PSM and vertebral bone

marrow were significantly elevated in VCF patients, independent of

age, gender, and baseline BMD. Unfortunately, no data on physical

activity is available, which limits our ability to fully explore its role

in the observed findings. Including physical activity metrics in

future studies could provide valuable insights into the interplay

between muscle function and fracture risk.

To the best of our knowledge, a decrease in T2* in skeletal

muscle has not yet been described in patients with VCF or

osteoporosis. T2* values are influenced by factors such as

metabolic state, blood volume, ischemia, and physical activity

(52–55). A T2* decrease reflects magnetic field inhomogeneity. In

older adults muscle tissue accumulates dense bodies containing iron

and lipids, causing disturbance in the magnetic field (56). In the

VCF group, increased fatty infiltration in the PSM may have

contributed to greater magnetic field inhomogeneities, measurable

as T2* decay.

No significant differences were found in BMD and vertebral

bone marrow T2* values between the VCF and non-VCF groups,

which reflects the fact that both parameters are primarily surrogates

for the calcified trabecular bone components. These measures may

not necessarily detect subtle changes indicative of bone health

deterioration, ultimately leading to VCFs. As PDFF of both

vertebral bone marrow and muscle successfully differentiated

between the two groups in our study, these parameters may
TABLE 2 Descriptive analyses for the change of Proton Density Fat
Fraction (PDFF), T2* and muscle cross-sectional area (CSA) in the
vertebral bone marrow and paraspinal muscle (PSM) between patients
with (VCF) and without (non-VCF) vertebral compression fractures.

VCF
group

non-
VCF
group

P-
value

Change in PDFF over 6 months of
the paraspinal muscle (%)

2.4 ± 2.8 -1.0 ± 2.3 <0.001 c

Change in T2* over 6 months of
the paraspinal muscle (ms)

-3.3 ± 2.7 -0.4 ± 2.2 0.01 b

Change in vertebral bone marrow
PDFF of T11 - L4 over 6
months (%)

7.9 ± 7.0 -2.6 ± 5.4 < 0.001 b

Change in vertebral bone marrow
T2* of T11 - L4 over 6 months (ms)

0.4 ± 3.1 0.5 ± 2.1 0.93 b

Change in CSA over 6 months of
the paraspinal muscle (cm²)

0.6 ± 6.7 -0.1 ± 1.6 0.26 a
a Mood’s median test.
b Two-sample t-test.
c Wilcoxon rank sum test/Mann-Whitney U test.
d Welch t-test.
PDFF, Proton Density Fat Fraction; VCF, vertebral compression fracture; CSA, cross-
sectional area. The values are listed as mean ± standard deviation.
Statistically significant p-values (p ≤ 0.05) are highlighted in bold.
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represent more reliable predictors of bone pathologies. On a

microscopic level, bone consists of bone trabeculae and bone

marrow. These two tissue types create inhomogeneities in the

magnetic field, which also result in the shortening of the effective

transverse relaxation time, detectable through T2* measurements

(57, 58). T2* of vertebral bone marrow has been shown to negatively

correlate with BMD. This suggests that a reduction in bone

trabeculae increases magnetic field homogeneity within the

vertebral bodies, resulting in longer T2* times (59). This

correlation has been confirmed at the microstructural level using

T2* mapping, where higher T2* values were associated with

reduced trabecular density and increased trabecular spacing,

indicating greater bone fragility (32).

An important limitation of this study is the small sample size of

patients with VCFs. Hence, certain statistically significant differences

may not have been detected. Another limitation of this study is the

low resolution of the PDFF and T2* maps, which was necessary in

order to cover a large field of view in both groups. Notably, T2*

mapping within skeletal muscle might be more accurately estimated

with higher spatial resolution. The low resolution employed in this

study may account for the observed T2* decay in PSM among VCF

patients as PDFF increases, potentially due to increased averaging of

field inhomogeneity effects. The segmentations of the maps were time

consuming, however the assessment of PSM through automated

segmentations could be facilitated in the future by using automatic

deep learning techniques (60, 61). Additionally, a longer follow-up

period may reveal more pronounced changes in e.g. CSA or age,

providing further insight into their role in VCF development and

potentially revealing their predictive value. Lastly, PDFF changes may

have emerged as a consequence of factors such as pain-related muscle

inactivity and fat atrophy following a fracture, limiting their

predictive validity.

In conclusion, the PDFF of the PSM increased over a 6 month

period in patients with VCFs. This change was also detected within

the vertebral bone marrow, which is consistent with previous

studies. ROC modeling revealed an excellent discrimination

between VCF development when choosing a cutoff value of 0.23%

for the change in PDFF PSM. Our findings suggest that the

longitudinal assessment of PDFF of the PSM and vertebral bone

marrow may serve as useful indicator for musculoskeletal health

and may enable the prediction of incidental vertebral

compression fractures.
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Hip fractures pose a significant health challenge, particularly in aging

populations, leading to substantial morbidity and economic burden. Most hip

fractures result from a combination of osteoporosis and falls. Accurate

assessment of hip fracture risk is essential for identifying high-risk individuals

and implementing effective preventive strategies. Current clinical tools, such as

the Fracture Risk Assessment Tool (FRAX), primarily rely on statistical models of

clinical risk factors derived from large population studies. However, these tools

often lack specificity in capturing the individual biomechanical factors that

directly influence fracture susceptibility. Consequently, image-based

biomechanical approaches, primarily leveraging dual-energy X-ray

absorptiometry (DXA) and quantitative computed tomography (QCT), have

garnered attention for their potential to provide a more precise evaluation of

bone strength and the impact forces involved in falls, thereby enhancing risk

prediction accuracy. Biomechanical approaches rely on two fundamental

components: assessing bone strength and predicting fall-induced impact

forces. While significant advancements have been made in image-based finite

element (FE) modeling for bone strength analysis and dynamic simulations of fall-

induced impact forces, substantial challenges remain. In this review, we examine

recent progress in these areas and highlight the key challenges that must be

addressed to advance the field and improve fracture risk prediction.
KEYWORDS

hip fracture, risk assessment, DXA, QCT, bone strength, fall-induced impact force
1 Introduction

Hip fractures are a significant health concern, particularly among older adults, who

often have a high prevalence of osteoporosis, contributing to substantial morbidity,

mortality, and healthcare costs worldwide (1–3). In 2019, there were 178 million new

fractures globally, marking a 33.4% increase since 1990, partly driven by population aging

(2, 3). Hip fractures constituted a significant proportion of these cases. Projections indicate

that the number of hip fractures will nearly double by 2050, underscoring the urgency for
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effective fracture risk assessment to identify high-risk individuals

and implement preventive measures (4, 5). Accurate assessment of

hip fracture risk is crucial, as it enables targeted interventions and

support, thereby reducing the burden of these fractures (6).

The current clinical approach for diagnosing hip fracture risk

and treating pre-fracture conditions relies primarily on risk factors

such as bone mineral density (BMD) and population-based

statistical models (7). Although low BMD is widely regarded as a

key biomarker for bone fractures, this approach has significant

limitations. Studies indicate that approximately 50% of fractures

occur in individuals with BMD values above the established

threshold (8, 9). BMD also serves as the primary target for many

treatment options, particularly those aimed at osteoporosis (10, 11).

FRAX is one of the most widely used tools globally to estimate the

10-year probability of hip fractures and other major osteoporotic

fractures (12–15). It incorporates several key risk factors, including

age, gender, BMD at the femoral neck, prior fractures, parental

history of hip fractures, smoking status, alcohol consumption,

glucocorticoid use, and rheumatoid arthritis. The predictive

accuracy of FRAX has been reported as moderate (16, 17), with

area under the receiver operating characteristic (ROC) curve (AUC)

values ranging from 0.70 to 0.75 for hip fracture prediction. The

tool tends to underestimate fracture risk in certain populations,

such as those with frequent falls or advanced age, where fall risk is

not fully incorporated (14, 18, 19). The primary limitation of the

current tools lies in their reliance on statistical modeling of risk

factors. These tools predict fracture risk by identifying broad

population-level trends and applying them to individual cases (20).

To improve the accuracy of hip fracture risk assessments, there is

a pressing need to develop biomechanical models (21). Image-based

biomechanical approaches are theoretically more reliable and accurate

than statistical models derived from clinical risk factors because they

directly assess the mechanical properties of bone and the forces

contributing to fractures (22, 23). Unlike statistical models, which

rely on population-level data and indirect associations, biomechanical

approaches evaluate individual-specific factors such as bone strength,

geometry, and microstructure. These methods utilize advanced

imaging techniques, such as high-resolution CT and finite element

(FE) modeling, to simulate the mechanical response of bones to

applied forces, providing a direct measurement of fracture risk.

Furthermore, image-based dynamic simulations can model fall-

induced impact forces by analyzing body kinematics, fall

trajectories, and surface interactions (24, 25). These simulations

allow for a detailed assessment of the magnitude, direction, and

distribution of impact forces during a fall (25), which are critical in

determining fracture risk. By integrating subject-specific bone

properties with dynamic fall scenarios (26), biomechanical

approaches can provide a comprehensive and personalized

evaluation of fracture risk, addressing limitations in clinical tools

that overlook the interplay between bone strength and fall mechanics.

This capability highlights their potential to significantly enhance

fracture risk assessment and prevention strategies.

Substantial progress has been made in developing image-based

biomechanical models for predicting hip fracture risk. However,

significant challenges remain, which must be addressed before these

biomechanical models can be integrated into clinical practice. This
Frontiers in Endocrinology 0253
review extensively examines recent advancements and discusses the

key challenges that need resolution. The layout of the remainder of

this paper is as follows: Section 2 outlines the framework of image-

based biomechanical approaches; Section 3 reviews the progress

and challenges in image-based finite element modeling of bone

strength; Section 4 explores the advancements and remaining

obstacles in image-based dynamic simulation of falls; and Section

5 concludes the review with proposals for future research directions.
2 Image-based biomechanical
approach to assess hip fracture risk

Based on engineering material mechanics, hip fracture is

determined by two key variables (Figure 1): femoral strength and

the force applied to the hip, both of which are subject-specific.

Femoral strength refers to the maximum force the femur can

withstand before fracturing and is primarily determined by the

bone’s material composition—such as inorganic minerals, organic

proteins, and water—along with its macroscopic geometry and

microstructural integrity. Since the majority of hip fractures result

from falls (27–30), the impact force generated during a fall from

standing height is considered in assessing hip fracture risk. This

force is influenced by variables such as body height, body mass, and

fall orientation and can vary significantly depending on the

dynamics of the fall and the compliance properties of the

impacted surface. When the fall-induced force exceeds femoral

strength, a hip fracture occurs. Accurately determining femoral

strength, fall-induced impact force, and their interplay is essential
FIGURE 1

Image-based biomechanical approach to assess hip fracture risk.
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for developing precise and predictive models of fracture risk,

enabling more effective prevention and individualized

treatment strategies.

Given the necessity for non-invasive approaches in assessing

hip fracture risk, determining both femoral strength and fall-

induced impact force must be conducted safely and without

invasive procedures. Medical imaging offers an essential solution

to this challenge, as illustrated in Figure 1. Advanced imaging

technologies, such as dual-energy X-ray absorptiometry (DXA)

and quantitative computed tomography (QCT), enable subject-

specific assessment of bone structure, geometry, and tissue

composition within the body. These imaging modalities provide

critical data on bone mineral density, and material composition,

which are essential for estimating femoral strength. Information

about trabecular architecture can be partially inferred from QCT

data, as it provides 3D volumetric imaging capable of analyzing

parameters such as trabecular thickness, separation, and number.

However, DXA, being a 2D imaging modality, lacks the resolution

to capture detailed trabecular architecture. For more precise

insights into individual trabecular microstructure, higher-

resolution imaging modalities such as micro-CT or HR-pQCT are

required, although these are typically limited to in vitro studies or

extremities in vivo. Furthermore, imaging can capture patient-

specific anatomical and kinetic properties, which can then be

used in dynamic simulations to predict fall-induced impact

forces. The integration of imaging data into biomechanical

models ensures a personalized and accurate evaluation of

fracture risk.

Significant advances have been made in the development of

image-based finite element (FE) modeling for predicting femoral

strength and dynamics simulations for analyzing fall-induced

impact forces. While these advancements offer promising

opportunities to assess subject-specific fracture risk more

accurately, challenges and obstacles remain. The following

sections provide a detailed review of these advancements,

highlighting the progress achieved and the critical barriers

that must be addressed to facilitate their integration into

clinical practice.
3 Image-based finite element
modeling of bone strength

To construct a finite element (FE) model of the femur for

determining its strength, several key pieces of information are

required. First, accurate geometry of the femur is essential,

typically derived from high-resolution medical imaging modalities

such as computed tomography (CT). These images provide detailed

spatial data that allow for the reconstruction of the femur’s shape

and structural features, including cortical thickness, trabecular

architecture, and overall bone dimensions. Second, the material

properties of the bone must be specified, including the elastic

modulus, yield strength, and density of both cortical and

trabecular bone. These properties are often determined from CT-

derived Hounsfield units, which can be mapped to bone density and

subsequently used to estimate the material properties. Additionally,
Frontiers in Endocrinology 0354
boundary conditions and loading scenarios must be defined to

replicate physiological or fall-related forces acting on the femur,

such as compressive loads during standing or oblique forces during

a fall. Together, these inputs enable the FE model to simulate stress

and strain distributions within the femur and predict its failure

point under applied loads.

While DXA and QCT are the primary imaging modalities

discussed in this paper due to their clinical relevance for

biomechanical modeling, other advanced imaging technologies

also hold promise. High-resolution peripheral QCT (HR-pQCT)

offers detailed insights into bone microarchitecture but is limited to

extremities due to its field of view. Dual-energy CT (DECT) enables

improved material characterization by distinguishing between bone

mineral density and other components, such as collagen and water.

Magnetic resonance imaging (MRI) can provide complementary

information on bone marrow composition and trabecular structure

but lacks the spatial resolution necessary for finite element

modeling of bone strength. Although these techniques have

significant potential, their high cost, limited availability, and

practical constraints currently limit their widespread application

in hip fracture risk assessment.

Numerous finite element (FE) models have been developed for

the femur, with most falling into two primary categories: those

based on dual-energy X-ray absorptiometry (DXA) and those based

on quantitative computed tomography (QCT).
3.1 DXA-based finite element models

DXA-based FE models are particularly attractive due to the

merits of DXA over QCT, including lower cost, wider availability,

and reduced radiation exposure. These models leverage two-

dimensional (2D) DXA images to estimate femoral strength and

fracture risk by incorporating simplified assumptions about bone

geometry and material properties, as illustrated in Figure 2. First, a

plane stress model (31) or engineering beam model (32) is adopted,

representing the femur by projecting all the bone material along the

DXA scanning direction, thereby reducing the complex 3D

geometry of the femur to a simplified 2D model with uniform

thickness. Second, the areal bone mineral density (aBMD) derived

from DXA is correlated with key material properties (33), such as

bone elasticity and yield stress, enabling the estimation of bone

strength in the medial-lateral plane.

In DXA-based finite element analyses, material models

primarily assume linear elastic behavior due to the simplicity and

computational efficiency required for clinical applicability (36, 37).

For instance, the Young’s modulus is often estimated based on

empirical relationships with areal bone mineral density (aBMD)

(36, 37). Some studies incorporate piecewise linear models to

account for yield points and post-yield behavior, though these are

less common due to the limitations of 2D projections in capturing

detailed material heterogeneity. Non-linear models, which consider

failure criteria or plasticity, have been less frequently applied in

DXA-based FE analyses due to the challenges in accurately

representing complex bone material using 2D data (38). DXA-

based finite element studies commonly employ simplified yet
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clinically relevant loading and boundary conditions to simulate

scenarios associated with hip fractures. The most frequently used

loading scenario involves a sideways fall, which reflects the most

common fall mechanism leading to hip fractures in older adults. In

these simulations, the femoral head is typically subjected to oblique

forces, representing the impact of the greater trochanter against the

ground during a fall. These assumptions and correlations strike a

practical balance between prediction accuracy and simplicity,

positioning DXA-based FE models as a promising patient-specific

tool for assessing hip fracture risk in clinical settings.

The development and improvement of DXA-based finite

element models for hip fracture risk assessment have significantly

advanced, driven by the need for more accurate and individualized

predictions of bone strength and fracture risk. Early studies

demonstrated the feasibility of integrating finite element analysis

(FEA) with DXA imaging to estimate femoral strength (31, 34, 39).

Luo et al. (35) investigated the precision of DXA-based finite

element models, identifying body positioning during DXA

scanning as a critical factor influencing model accuracy. Further

advancements focused on automation and clinical applicability, as

illustrated by Luo et al. (40) and Yang et al. (41), who developed

fully automated DXA-based FEA tools that not only stratified

fracture risk more effectively than femoral neck bone mineral

density (BMD) but also streamlined workflows for routine clinical

use. Validation efforts, such as those by Dall’Ara et al. (42),

confirmed the accuracy of DXA-based FEA models against

experimental data, reinforcing their reliability. Simplified 2D FEA

models derived from DXA images were also validated against more

complex 3D models by Terzini et al. (38), highlighting their

practicality with reasonable predictive accuracy. These continuous

improvements have established DXA-based FEA as a robust and
Frontiers in Endocrinology 0455
clinically viable approach to addressing the limitations of traditional

BMD-focused fracture risk assessments. DXA-based finite element

models are increasingly being utilized for hip fracture risk

assessment. Yang et al. (43) demonstrated the effectiveness of

this approach in the Osteoporotic Fractures in Men (MrOS)

study, where femoral strength estimates derived from FEA

showed a strong association with incident fractures. Sarvi and

Luo (44) investigated sex differences in hip fracture risk

using biomechanical modeling and identified significant

distinctions that traditional BMD measurements failed to capture.

Additionally, Ferdous et al. (31) underscored the value of patient-

specific FEA models in evaluating individualized fracture risk,

further highlighting the adaptability and clinical potential of this

technique. In addition to risk assessment, DXA-based FE models

have been used to monitor the effectiveness of osteoporosis

treatments. Mochizuki et al. (45) employed DXA-based hip

structural analysis to evaluate changes in bone strength during

teriparatide treatment, demonstrating significant improvements in

femoral strength over 24 months.

Despite their advantages, DXA-based FE models have several

limitations. DXA only provides 2D projections of the femur, which

limits the model’s ability to capture the 3D geometry and

microstructural details essential for accurate stress and strain

predictions. DXA-based FE models often rely on oversimplified

assumptions about the relationship between aBMD and bone

material properties. These assumptions may overlook variations

in the spatial distribution of bone mass, including differences in

cortical and cancellous component densities, which are critical for

capturing the anisotropic nature of femoral strength. Additionally,

the 2D nature of DXA imaging restricts its capacity to evaluate

trabecular architecture and cortical porosity, both of which are
FIGURE 2

DXA-based finite element modeling of femoral strength [modified from (34, 35)].
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essential determinants of bone strength and fracture risk.

Anatomical geometry reconstruction from DXA images models

the entire femur as a single entity (46, 47), assigning subject-specific

material properties based on areal bone mineral density (aBMD)

values derived from DXA images. This method simplifies the

geometry and computational requirements but inherently lacks

the ability to distinguish between cortical and trabecular

compartments, which are critical for accurately capturing the

heterogeneity of bone properties. DXA-based FE models often use

simplified loading scenarios to estimate femoral strength, which

may not accurately represent the complex, multidirectional forces

experienced during real-world falls. DXA-based FE models

primarily reflect changes in BMD, making them less sensitive to

other critical factors, such as improvements in bone collagen quality

and the integrity of collagen crosslinks (48, 49), which play

a significant role in bone strength and may result from

osteoporosis treatments. Variations in DXA scanner calibration

and software algorithms (50) can introduce inconsistencies in

BMD measurements, affecting the reproducibility of FE

model predictions.
3.2 QCT-based finite element models

QCT-based finite element models are constructed from three-

dimensional data acquired through quantitative computed

tomography (QCT). While the process of creating QCT-based

finite element models shares similarities with that of DXA-based

models, as illustrated in Figure 3, the key differences lie in the three-

dimensional representation of femur geometry and the use of

volumetric bone mineral density (vBMD) instead of areal BMD
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(51). The process begins with acquiring high-resolution QCT

images of the femur. These datasets are segmented to differentiate

bone tissue from surrounding structures, enabling the extraction of

cortical and trabecular bone regions (52). The image data are then

converted into 3D finite element meshes, typically composed of

tetrahedral or hexahedral elements, to accurately approximate the

femoral geometry (53). Tetrahedral elements are more versatile in

conforming to complex geometries, making them suitable for

irregular structures like the femur. In contrast, hexahedral

elements offer higher accuracy and computational efficiency for

simpler, structured geometries but are less adaptable to irregular

shapes. The choice between the two depends on the trade-off

between geometric fidelity and computational efficiency in the

modeling process. Bone densities are obtained from QCT image

intensities through calibration with phantoms, which provide

reference values for converting Hounsfield units into equivalent

bone density measures. Material properties are assigned based on

the density values using empirical relationships that link density to

Young’s modulus and other mechanical parameters (51, 54).

Boundary and loading conditions are applied to simulate

physiological or traumatic scenarios, such as normal gait or

sideways falls (52). Finally, these models are solved using

numerical methods to estimate stress, strain, and overall femoral

strength (53). Overall femoral strength is typically defined as the

maximum load the femur can withstand before failure, as

determined by the finite element simulation. This definition

depends on the material model used; for linear elastic models, it

is based on yield stress, while for non-linear models, it may

incorporate ultimate stress or fracture criteria. The choice of

strength definition varies depending on the specific study

objectives and modeling assumptions.
FIGURE 3

QCT-based finite element modeling of femoral strength [modified from (55)].
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QCT-based finite element models have emerged as a robust tool

for studying femoral strength and hip fracture risk. By integrating

3D imaging with advanced computational modeling, these models

provide detailed insights into the mechanical behavior of the femur

under different loading conditions. Below, we review key research

applications of QCT-based FE models in this domain. QCT-based

FE models have been widely used to evaluate the structural integrity

of the femur under simulated loading conditions. Dragomir-Daescu

et al. (56) developed robust models to predict femoral stiffness and

fracture load during a sideways fall, demonstrating strong

correlations with in vitro experimental data. Mirzaei et al. (57)

applied QCT-based FE analysis to analyze strength and failure

patterns in the human proximal femur, revealing critical

mechanical insights that aid in fracture prediction. Dall’Ara et al.

(58) validated nonlinear QCT-based FE models using in vitro

human femur, showing their reliability across multiple

experimental configurations. These studies highlight the utility of

QCT-based FE models in quantifying femoral strength and

identifying high-risk individuals.

QCT-based FE modeling has also been employed to study

variations in femoral strength across different populations. Shen

et al. (59) investigated the relationship between body mass index

(BMI) and QCT-derived hip strength in older men, providing

biomechanical explanations for the effects of BMI on fracture

risk. Black et al. (60) conducted a large prospective study to

assess the relationship between proximal femoral structure, as

derived from QCT, and hip fracture risk in men, establishing the

clinical relevance of QCT-based measurements. Faisal and Luo (55)

examined differences in fracture risk between left and right femora

using QCT-based FE models, identifying asymmetries that may

inform individualized treatment strategies. Several studies have

focused on evaluating hip fracture risk under specific mechanical

or pathological conditions using QCT-based FE models. For

example, Kheirollahi and Luo (61) used cross-sectional strain

energy derived from QCT-based FE models to assess hip fracture

risk, demonstrating the sensitivity of this method to variations in

bone density and geometry. Carpenter et al. (62) emphasized the

importance of fall orientation on femoral neck strength, showing

that certain fall directions substantially increase fracture risk. Such

studies underline the versatility of QCT-based FE models in

replicating realistic fracture scenarios.

Traditional metrics for monitoring treatment effects typically

include changes in areal bone mineral density (aBMD) as measured

by DXA. Treatments such as bisphosphonates or anabolic agents

like teriparatide are commonly assessed using these metrics. These

methods focus on improving bone density and strength over time,

offering a baseline for evaluating therapeutic outcomes. QCT-based

FE models are employed to examine the contributions of cortical

and trabecular compartments to overall femoral strength.

Christiansen et al. (63) used these models to explore age-related

changes in bone strength, showing how the cortical and trabecular

components contribute differently to mechanical stability in men

and women. These findings have enhanced the understanding of

how age and sex influence fracture risk. QCT-based FE models have

been applied to evaluate the impact of osteoporosis treatments and

other clinical conditions on femoral strength. Engelke et al. (64)
Frontiers in Endocrinology 0657
used these models to monitor regional changes in bone mineral

density after ibandronate treatment, demonstrating how such

treatments improve hip strength. Similarly, Black et al. (60)

showed how QCT-based parameters could predict treatment

outcomes more effectively than traditional metrics, emphasizing

the potential of these models in clinical decision-making.

QCT-based finite element models provide a more detailed and

robust approach than DXA-based models for assessing femoral

strength and hip fracture risk. QCT offers greater detail compared

to DXA by providing 3D volumetric imaging, allowing separate

analysis of cortical and trabecular compartments. Additionally,

QCT measures volumetric bone mineral density (vBMD), which

is not influenced by bone size or projection errors, and enables

assessment of bone geometry, microarchitecture, and material

properties with higher spatial resolution. However, QCT-based

models are not without limitations. A major challenge lies in the

high radiation dose associated with QCT imaging, which restricts its

routine clinical use, especially for longitudinal studies (65).

Additionally, constructing and solving QCT-based finite

element models require advanced computational resources

and expertise, which can be a barrier to widespread adoption

in clinical practice (56). Variability in imaging protocols and

finite element modeling assumptions, such as mesh density and

material property assignment, can introduce inconsistencies and

limit reproducibility across studies (58, 63). Furthermore, the

use of density-based material property assignment often

oversimplifies bone’s heterogeneous and anisotropic mechanical

behavior, potentially reducing the accuracy of predictions (57).

Finally, these models generally do not account for dynamic

biological processes, such as bone remodeling or microdamage

accumulation, which are critical for understanding changes in

bone strength over time (61). Addressing these limitations

through advancements in imaging, modeling, and computational

techniques is essential to enhance the clinical utility of QCT-based

finite element models.
3.3 Challenges in image-based finite
element modeling of femoral strength

Finite element modeling of femoral strength based on medical

imaging, such as QCT or DXA, has advanced significantly in recent

years, offering valuable insights into bone mechanics and fracture

risk. However, despite these advancements, and alongside the

limitations discussed in the previous subsections, several critical

challenges persist, hindering the accuracy, reliability, and clinical

utility of these models. One major issue lies in the challenge of

accurately characterizing bone material properties, such as Young’s

modulus, yield stress, and toughness, frommedical images. Another

significant challenge is capturing the anisotropic behavior of

femoral strength, which varies with loading orientation and is

influenced by the direction of impact forces during a fall. Bone

anisotropy has been studied in vertebral bones (66), where

transverse isotropy is modeled by scaling Young’s modulus

according to directional properties. Application of a similar

approach to the femur requires experimentally derived scaling
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factors. Addressing these complexities requires advancements in

imaging technologies, image-based material characterization

algorithms, and modeling techniques, as these elements are

pivotal for enhancing the predictive accuracy and reliability of

image-based finite element models.

3.3.1 Image-based characterization of bone
material properties

Accurately characterizing bone material properties, such as

Young’s modulus, yield stress, and toughness, from DXA or QCT

images remains a significant challenge due to the composite nature of

bone. Bone is a hierarchical material composed of inorganic minerals

(primarily hydroxyapatite), organic proteins (mostly collagen), and

water. Each of these components contributes distinct mechanical

properties to bone, and their interplay determines the overall strength

and toughness of the tissue. However, medical imaging modalities

like DXA andQCT are limited in their ability to quantify or assess the

quality of these individual components, which hinders precise

material characterization.

DXA and QCT provide information about bone density, which

is a proxy for the amount of mineral content in bone. However, this

metric alone does not capture variations in the organic matrix or

water content, both of which critically influence mechanical

properties. Studies have shown that the organic matrix,

particularly collagen cross-linking, plays a pivotal role in bone

toughness and resistance to fracture (67–69). Similarly, bound

and free water in bone contribute to its viscoelastic and fatigue-

resistant properties (70). Limited by their working principles, both

DXA and QCT can measure only mineral density, while the

characterization of organic proteins and water remains

challenging with these imaging modalities. As a result, the

contributions of organic proteins and water to bone strength,

particularly toughness, are not accounted for in DXA- and QCT-

based models (71, 72). Further complicating the issue is

the heterogeneity of bone mineralization. The degree of

mineralization varies across individuals and regions within the

bone, affecting stiffness and brittleness. QCT-based finite element

models often rely on empirical density-elasticity relationships

derived from bone properties, which may not account for inter-

individual variability in the inorganic-organic composition or

regional differences within the same bone (54, 73). This limitation

undermines the ability to predict mechanical properties accurately

under diverse physiological or pathological conditions.

Another critical challenge lies in accurately determining the

stress-strain curves for the individual components of bone,

particularly minerals and proteins, which are dependent on the

sub-compositions and sub-microstructure in the components.

These curves are fundamental for understanding bone behavior

under impact forces but are highly subject-dependent, adding

complexity to their precise characterization. For instance, the

mechanical behavior of hydroxyapatite, the primary mineral in

bone, depends on its crystal size, orientation, and substitutional

chemistry, all of which can vary significantly among individuals

(74). Similarly, the organic matrix, predominantly composed of

type I collagen, shows variability in structure and cross-linking

patterns among individuals, directly influencing its mechanical
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response under load (75). Factors such as age, sex, ethnicity, and

health status further modulate the quality and quantity of these

bone components, resulting in significant differences in their

mechanical properties (67). For example, aging reduces collagen

quality while increasing mineral crystallinity, leading to stiffer but

more brittle bones (76). Imaging modalities like QCT and DXA

currently lack the capability to capture these subtle yet critical

changes in bone composition and quality. Furthermore, the absence

of standardized methods for characterizing these properties either

in vivo or ex vivo complicates their integration into finite element

models, underscoring a significant limitation in current

biomechanical assessments.

Furthermore, the interaction between the inorganic and organic

components introduces non-linearities that are not easily captured

by existing imaging techniques. For example, the role of collagen in

resisting crack propagation and maintaining post-yield behavior is

critical for bone toughness, but current imaging modalities cannot

quantify the functional quality of collagen or its integration with the

mineral phase (49, 77). Advances in techniques like Raman

spectroscopy and nanoindentation have provided insights into

these interactions in vitro, but these are not yet translatable to

clinical imaging settings. Raman spectroscopy, including methods

like surface-enhanced Raman scattering (SERS) and tip-enhanced

Raman scattering (TERS), offers detailed molecular information

and high spatial resolution (78). Nanoindentation, on the other

hand, allows for precise measurement of mechanical properties at

the nanoscale (79). Despite their potential, these techniques face

challenges in clinical translation due to issues like signal

interference and the complexity of in vivo environments.

Addressing the challenges of characterizing bone material

properties from medical images requires significant advancements

in imaging technologies and computational modeling. Techniques

that integrate imaging with compositional analysis, such as dual-

energy CT (DECT) or high-resolution peripheral QCT (HR-

pQCT), hold promise but remain in early stages of application

(80). HR-pQCT is currently limited to extremities due to hardware

and radiation constraints, making their use for larger regions like

the proximal femur impractical. Empirical data from cadaveric

studies could enhance finite element models, and future research

could explore hybrid approaches combining high-resolution data

with clinical imaging. Balancing radiation exposure with the need

for detailed imaging is critical. Leveraging already-acquired clinical

images for biomechanical modeling can reduce the need for

additional scans. Standardizing imaging protocols in advance can

further minimize radiation dose and costs while maintaining the

necessary level of detail for accurate finite element analyses.

Expanding our understanding of the material behavior of bone’s

components and improving the resolution and functionality of

medical imaging will be critical for advancing finite element

models and their clinical utility (81).

3.3.2 Anisotropy in bone mechanical properties
and femoral strength

Anisotropy in bone mechanical properties refers to the

variation in mechanical characteristics, such as Young’s modulus

and ultimate stress, depending on the orientation of the bone test
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sample, even when taken from the same site. Similarly, anisotropy

in femoral strength indicates that the maximum force the femur can

sustain before fracturing varies with the direction of the applied

force. This anisotropy arises from bone’s hierarchical structure and

composition, including the alignment of collagen fibers, the

distribution of hydroxyapatite crystals, and the trabecular

architecture within the femoral head and neck (75, 82, 83).

Cortical bone in the femoral shaft, for instance, is stiffer and

stronger along the longitudinal axis, making it particularly

effective at resisting axial loads during activities like walking and

running (84). In contrast, the trabecular bone in the femoral head

and neck features a highly complex, orientation-specific

architecture designed to distribute stresses arising from multi-

directional loading scenarios (85).

The majority of QCT-based finite element models employ

simplified isotropic material assumptions for bone mechanical

properties; however, they can still demonstrate the anisotropic

nature of femoral strength due to the influence of bone geometry

and heterogeneous material distribution. These models reveal that

bone is more resistant to compression and tension in certain

orientations while being more susceptible to shear forces in others

(52, 86). Studies have shown that the femur’s ability to withstand

impact forces is highly dependent on the direction and magnitude

of the force applied during a fall (24, 87, 88). For example, sideways

falls, which are the most common fall scenario in elderly

individuals, generate impact forces that are poorly aligned with

the femur’s primary axis of strength, significantly increasing the risk

of fracture (24). Conversely, frontal or posterior falls may exert

forces along directions that the femur is better adapted to withstand,

reducing fracture risk (87, 88).

However, the isotropic models of bone mechanical properties

inherently overlook the directional dependence of these properties,

limiting their accuracy in simulating real-world loading conditions.

To address this limitation, finite element models must incorporate

anisotropic mechanical properties that reflect the true directional

behavior of bone material. Achieving this level of precision requires

advanced imaging and material characterization techniques, such as

those capable of capturing collagen fiber orientation and mineral

distribution, which are not yet widely accessible. This presents a

significant barrier to advancing modeling accuracy and

clinical applicability.

Current imaging modalities, such as QCT and DXA, are limited

in their ability to comprehensively characterize bone composition,

including inorganic minerals, organic proteins, and water, let alone

provide detailed orientation-specific data on bone strength (89, 90).

Incorporating composition- and microstructure-dependent

mechanical properties and anisotropy into finite element models

requires a deeper understanding of the hierarchical structure of

bone, particularly the trabecular and cortical microstructures.

Advanced imaging techniques, such as dual-energy computed

tomography (DECT), offer promising avenues for distinguishing

and quantifying bone components with greater specificity (91, 92).

However, these techniques are still under development and face

challenges such as resolution limitations and the accurate extraction

of anisotropic mechanical properties. Overcoming these barriers is
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essential to achieving more precise and clinically relevant models

for fracture risk assessment.
4 Image-based dynamics modeling of
falls to predict impact forces

Falls are the leading cause of hip fractures, with over 95% of hip

fractures attributed to falls from standing height (93). The forces

generated during a fall frequently exceed the strength of the femur,

resulting in fractures even in young, healthy individuals—let alone

older adults, who often have compromised bone strength due to

age-related changes or conditions like osteoporosis (94). However,

only 2% of falls result in fractures (95, 96), highlighting the complex

interplay between individual biomechanics, fall dynamics, and

environmental factors. This low percentage underscores the

importance of understanding how variables such as bone

strength, fall-induced forces, body orientation during impact, and

surface compliance collectively influence fracture outcomes. Fall

experiments, even controlled fall testing, are neither ethical nor safe

for elderly individuals. Image-based dynamics modeling offers a

promising alternative for simulating falls and predicting impact

forces by integrating subject-specific anatomical and biomechanical

data derived from advanced medical imaging techniques.

This section explores the necessity and potential of subject-

specific dynamics modeling for fall simulations to predict impact

forces. It discusses the importance of incorporating whole-body

imaging data, such as DXA or QCT, to create accurate models,

reviews the progress made in simulating falls from standing height,

and examines the challenges that must be addressed to replicate

real-world fall scenarios. By leveraging these advancements, the goal

is to improve fracture risk prediction and develop more effective

prevention strategies.
4.1 Subject-specific dynamics modeling
of falls

Subject-specific factors, such as body height, weight, mass

distribution, and flexibility, play a crucial role in determining the

dynamics of a fall and the resulting impact forces (97). Generic

models often fail to account for this variability, leading to

inaccuracies in predicting impact forces and assessing fracture

risks. For instance, a taller individual falling sideways may

experience distinct dynamics and higher impact forces compared

to a shorter individual under similar conditions. This variability

underscores the need for personalized modeling. Subject-specific

dynamics modeling of falls provides a more accurate approach by

integrating individual characteristics, such as body dimensions,

weight distribution, and flexibility, which significantly influence

the trajectory and forces of a fall. Such precision is essential for

reliably predicting impact forces and evaluating fracture risk.

Whole-body medical imaging techniques, such as DXA or QCT

scans, offer valuable data on bone geometry, body composition, and

soft tissue distribution, which are key parameters for developing
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subject-specific dynamics models of falls. For example, DXA scans

provide detailed estimates of regional fat and muscle distribution, as

illustrated in Figure 4, which directly influence body mass properties

and thus the dynamics of a fall. These parameters play a critical role in

determining how the body interacts with the ground during impact

and how forces are absorbed and transmitted through various tissues.

By integrating this personalized information, subject-specific models

can more accurately simulate fall mechanics, enhancing the prediction

of impact forces and the evaluation of fracture risks. Substantial

progress has been made in the development of subject-specific

dynamics models for simulating falls. For instance, Luo et al. (25)

developed and validated a method for constructing subject-specific

dynamics models using whole-body DXA images. These models

demonstrated improved accuracy in predicting impact forces during

sideways falls, showing better agreement with experimental data

compared to traditional empirical functions (98). Similarly, Fleps

et al. (99) introduced a dynamic inertia-driven sideways fall protocol

that tested full cadaveric femur-pelvis constructs under realistic fall

conditions. This approach aimed to enhance the prediction of impact

loads and fracture risk by replicating the dynamics of real-world falls,

thereby bridging the gap between laboratory testing and clinical

relevance. Studies using finite element models combined with

dynamics simulations have demonstrated the potential to predict

impact forces and their distribution during falls. For instance,

researchers have utilized whole-body musculoskeletal models derived

from DXA and QCT data to simulate falls and calculate site-specific

impact forces (26, 44, 100). Some of these models have been validated

using experimental data, such as motion capture systems and force

plates, providing evidence of their predictive accuracy (25, 101).

Furthermore, machine learning approaches have been integrated into

fall dynamics modeling to enhance the efficiency and accuracy of
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simulations. Algorithms trained on large datasets can optimize model

parameters, such as fall orientation and joint motion, based on subject-

specific input (102). These approaches have improved the ability to

predict real-world fall scenarios and their associated forces (103).

Dynamic fall models estimate forces that are subsequently used as

boundary and loading conditions in finite element simulations.While

these forces provide critical inputs, simplifications—such as assuming

uniform force distribution or neglecting soft tissue effects—may

introduce translational losses. These approximations can affect the

accuracy of fracture risk predictions. Future research should focus on

improving the fidelity of force translation and accounting for

individual-specific factors to enhance prediction reliability.
4.2 Challenges in simulating real-
world falls

Simulating real-world falls presents significant challenges due to

the inherent complexity and variability of fall dynamics and subject-

specific physiological factors (105, 106). Unlike controlled fall

simulations, real-world falls are triggered by unpredictable and

random events, such as tripping, slipping, or sudden loss of

balance. These triggers introduce substantial variability in the

initial conditions of the fall, including body posture, velocity, and

the direction of movement at the onset of imbalance. Accurately

replicating this randomness is crucial for realistic modeling but

remains a significant hurdle.

Another critical factor is the reflexive response of muscles,

which plays a pivotal role in influencing fall dynamics. When an

individual loses balance, muscle reflexes are activated to counteract

the fall, aiming to restore stability or reduce the severity of impact.
FIGURE 4

Construction of subject-specific dynamics model for simulating falls and predicting impact forces [modified from (26, 104)].
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Muscle activation affects joint stiffness (107, 108), a key parameter

in modulating the ability of the body to respond to destabilizing

forces (109). Increased joint stiffness, resulting from heightened

muscle activation, can stabilize the joints, preventing excessive

movement that might exacerbate the fall. Conversely, insufficient

muscle activation or weak muscle may lead to joint instability,

increasing the likelihood of an uncontrolled descent. In addition to

joint stiffness, muscle activation directly influences the actuator

force generated by muscle fibers (110), which determines the

strength and speed of corrective movements. For example, in a

sideways fall, the hip abductor muscles play a crucial role in

resisting lateral displacement of the torso (111), while the

quadriceps and hamstrings stabilize the knees to reduce the

impact force upon ground contact (112). These coordinated

muscle activations help control body posture and orientation

during the descent, potentially shifting the impact away from

vulnerable areas like the hip.

The timing and intensity of muscle reflexes also vary between

individuals, influenced by factors such as age, neuromuscular

coordination, and physical fitness. Older adults, for instance,

often exhibit delayed reflex responses and weaker muscle

activation (113–115), which compromise their ability to mitigate

the effects of a fall. In contrast, younger and physically active

individuals tend to have faster and stronger reflexes, enhancing

their capacity to absorb and dissipate impact energy. Additionally,

muscle activation patterns influence the redistribution of body mass

during a fall (97). For instance, active engagement of the arms and

legs can alter the center of mass trajectory, reducing the likelihood

of a high-impact collision at critical sites such as the hip. However,

excessive or uncoordinated muscle activation can lead to

counterproductive effects, such as increased rotational forces or

misaligned body segments, potentially exacerbating the impact at

the end of the fall (116).

Incorporating the randomness of fall triggers and the variability

in muscle reflex responses into fall simulations requires sophisticated

modeling approaches, along with subject-specific physiological and

biomechanical parameters, which are extremely challenging to

characterize. Current methodologies often rely on simplified

assumptions regarding initial conditions and reflexive actions,

limiting their ability to represent the full complexity of real-world

falls. Advanced techniques, such as stochastic modeling to simulate

random fall triggers and neuromuscular modeling to replicate

reflexive muscle responses, are necessary to address these

limitations. Overcoming these challenges is critical for improving

the accuracy and applicability of fall dynamics models in assessing

fracture risk and developing personalized prevention strategies.
5 Conclusion and future outlook

Recent advancements in image-based approaches for hip

fracture risk assessment have significantly improved our

understanding of the interplay between bone strength and fall-

induced impact forces. Finite element (FE) models derived from

imaging modalities such as DXA and QCT enable individualized

assessments of femoral strength by capturing bone material
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properties, microstructure, and geometry. These models mark a

notable improvement over traditional statistical tools by

incorporating patient-specific risk factors. Similarly, subject-

specific dynamics modeling of falls has advanced the prediction of

forces applied to the hip during real-world falls, offering the

potential for more reliable fracture risk assessments. However,

challenges remain in refining these approaches for improved

accuracy and reliability.

Advancing biomechanical models for hip fracture risk

assessment requires addressing several challenges:
• DXA-based FE models are limited by the projection of

three-dimensional bone structures into two dimensions,

which may introduce inaccuracies in estimating femoral

strength. A significant limitation of DXA-based FE models

is their sensitivity to body positioning during scanning,

which can introduce variability in the estimated femoral

strength and fracture risk. Ensuring consistent and accurate

positioning is critical to improving the reliability of these

models. QCT-based models offer greater anatomical detail

but face barriers such as higher costs, increased radiation

exposure, and limited accessibility. Both approaches require

further improvements in accurately integrating material

properties, such as bone density distribution and

anisotropic strength, to enhance predictive accuracy.

• Characterizing bone mechanical properties based on

medical images presents a significant challenge due to the

difficulty of accurately mapping image-derived parameters,

such as bone density, to mechanical properties like strength,

stiffness, and toughness. Current methods often rely on

empirical relationships that may not fully account for bone

heterogeneity, anisotropy, and microstructural variations.

To address these challenges, there is a need for more robust

methodologies that couple advanced imaging techniques

with experimental validation and multiscale modeling

approaches, enabling more accurate prediction of

mechanical behavior.

• In fall dynamics simulation, the complexity of real-world

falls presents additional obstacles. Randomness in fall

triggers, variability in fall trajectories, and reflexive muscle

responses are difficult to replicate accurately. Current

models often rely on simplified assumptions, limiting

their ability to capture the variability observed in real-life

scenarios. Advanced techniques, such as stochastic

modeling for fall triggers and neuromuscular modeling

for reflex responses, are needed to address these

challenges and improve the reliability of impact

force predictions.

• The integration of these image-based biomechanical models

into clinical workflows remains limited due to technical and

logistical constraints. Despite their detailed insights into hip

fracture mechanisms, these models require further

optimization for practical use in routine healthcare

settings. Collaboration between engineers, clinicians, and

imaging specialists is essential to bridge the gap between

research and clinical practice.
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In summary, image-based hip fracture risk assessment has

made significant progress in offering patient-specific insights into

fracture susceptibility. However, addressing technical challenges,

refining modeling techniques, and facilitating clinical integration

are critical for unlocking their full potential in improving fracture

prevention and patient outcomes.
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Association between the minimal
model of hip structure and risk
of hip fracture in Chinese adults
Dan Zhao 1†, Yawen Bo1†, Huiling Bai1, Cuiping Zhao2*‡

and Xinhua Ye1*‡

1Department of Endocrinology, The Second People’s Hospital of Changzhou, The Third Affiliated
Hospital of Nanjing Medical University, Changzhou, Jiangsu, China, 2Department of Geriatrics, The
Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,
Changzhou, Jiangsu, China
Background: Multiple studies have indicated that the minimal model of hip

structure can enhance hip fracture risk assessment. This study aimed to

investigate the independent association between minimal model variables and

hip fracture risk in Han Chinese individuals.

Methods: This cross-sectional study included 937 Han Chinese patients (248

with hip fractures). Minimal model variables were calculated from the hip

structural analysis, including bone mineral density (BMD), femoral neck width

(FNW), and Delta and Sigma values.

Results: This study included 937 patients (293 men; mean age = 68.3 years). In

logistic regression analyses, BMD increase (per 0.1 g/cm2) correlated with a 45%

reduction in the hip fracture risk (odds ratio [OR] = 0.55; 95% confidence interval

[CI]: 0.45–0.68) after adjusting for all covariates. However, FNW (per 0.1 cm) and

Sigma (per 0.01 cm) and Delta values (per 0.01 cm) were associated with

increased risks (OR = 1.28; 95% CI: 1.18–1.37; OR = 1.06; 95% CI: 1.03–1.09;

OR = 1.06; 95% CI: 1.03–1.09, respectively). When the Delta was >0.17 cm, the

risk of hip fracture rose considerably by 13% (OR = 1.13; 95% CI: 1.08–1.18) for

every 0.01 cm that the Delta value increased. The area under the curve (AUC) for

hip fracture prediction from BMD alone was significantl lower than those of

minimal model (0.781 vs 0.838, p <0.05).

Conclusion: Large increases in FNW, Sigma and Delta values and notable

declines in BMD were individually and significantly linked to a high hip fracture

risk in Han Chinese adults. Our findings suggest that the minimal model of hip

structure may improve hip fracture risk assessments.
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hip structure, minimal model, delta, sigma, hip fracture
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1 Introduction

Hip fracture is a significant public health concern worldwide. The

projected total annual incidence of hip fractures in many countries

will nearly double between 2018 and 2050 (1). In 2019, the incidence

and prevalence of hip fractures in China were approximately 2.0

million and 2.6 million, respectively, each representing approximately

1/9 of the global total cases (2). As China’s population continues to

age in the forthcoming years, the country will encounter an

increasing number of hip fracture-related issues.

Approximately 40 years after its inception, two-dimensional

dual-energy X-ray absorptiometry (DXA), which measures the areal

bone mineral density (aBMD) in the proximal femora, remains the

most clinically used predictor of fracture risk (3, 4). However,

academics are beginning to pay attention to the biomechanical

implications of bone structural geometry on bone fragility (5–7). To

capture the bone structure in cross sections at the femoral neck,

Beck et al. created an eight-variable structural model known as hip

structural analysis (HSA) using typical DXA imaging data (8).

Rathbun et al. have reported that the proximal femur experiences

a decline in bone structure and strength during hip fracture

recovery that is significantly greater than that observed in older

Caucasian men during normal aging (9). In native Chinese women,

cortical thickness reduction or an increase in the buckling ratio may

independently predict the risk of femoral neck fragility fractures,

regardless of BMD (10).

However, the eight metrics typically documented using Beck’s

HSA approach at each anatomical location were not autonomous

(11). Utilizing HSA variables, Khoo et al. investigated the beam

theory to develop a novel formulation, termed the minimum model

(MM), which encompasses information equivalent to the eight

structural geometric measures typically supplied at the femoral

neck using the HSA technique. The MM consists of four

parameters as follows: BMD and femoral neck width (FNW),

along with two novel summary measures of internal bone

distribution: Sigma and Delta (11). Prince et al. concluded that

the clinical prediction of hip fractures was significantly enhanced by

adding Delta measurements to hip BMD and age in elderly women

(12). However, studies regarding the independent correlation

between MM variables and the risk of hip fractures in Chinese

adults are scarce.

This study aimed to investigate whether MM variables are

significantly related to hip fracture risk in Han Chinese

individuals, while controlling for all confounders. Furthermore,

we implemented a receiver operating characteristic (ROC)

analysis to compare the discriminative ability of MM against the

use of femoral neck BMD alone.
2 Materials and methods

2.1 Study population

This retrospective cross-sectional study was performed at the

Department of Orthopedics of the Second People’s Hospital of
Frontiers in Endocrinology 0266
Changzhou, Changzhou, Jiangsu, China. The inclusion and

exclusion criteria for the participants were previously delineated

(13). Participants with malignant tumors, poliomyelitis, renal

failure, hormone use, elevated serum liver enzyme activity, or

increased serum creatinine levels (n = 54) were excluded. Hip

fractures were confirmed through a physician’s examination of

the radiology reports, and the analysis included 937 participants,

comprising 248 with hip fractures (Figure 1).
2.2 Measurements of clinical and
laboratory parameters

Previous reports have documented the measurements of clinical

and laboratory parameters (13). Weight (kg) and height (m) were

assessed using a weighing scale, with the participants wearing light

clothing and no shoes (RGZ-120-RT; Hengqi Inc., China). Body

mass index (BMI; kg/m2)was calculated by dividing weight (kg) by

height squared (m2). A glycosylated hemoglobin type-A1c (HbA1c)

level > 6.5%, fasting glucose level > 7.0 mmol/L, and a self-reported

history of a medical diagnosis of diabetes were considered

indicators of diabetes.

Blood samples were collected from all participants within 24 h

of admission following an overnight fast of at least 8 h. White blood

cells (WBC), red blood cells (RBC), and platelets (PLT) were

counted using a self-service hematology analyzer (XN-2800,

Sysmex Inc.). Further biomarkers measured using a Siemens

ADVIA-2400 included ALT, AST, alkaline phosphatase (ALP),

albumin (ALB), blood urea nitrogen (BUN), creatinine (CCR),
FIGURE 1

Flow diagram of the screening and enrollment processes of study
participants. AST, aspartate aminotransferase; ALT,
alanine aminotransferase.
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triglycerides (TG), high-density lipoprotein cholesterol (HDL-C),

low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose

(FPG), and C-reactive protein (CRP). HbA1c levels were evaluated

using the TOSOH G8-90SL. An ALIFAX TEST1-2730 device was

used to assess the erythrocyte sedimentation rate (ESR).
2.3 BMD measurements

DXA scans of the hips were acquired using the Hologic

Discovery Wi (Hologic Inc., Bedford, MA, USA). All scanners

were operated by certified personnel. The bone density analyzed

was defined as the projected aBMD of the left femoral neck in

participants without fractures. The contralateral femoral neck was

measured in patients with hip fractures.

The HSA program used in this study was created at Johns

Hopkins University and incorporated into Hologic’s APEX

product. As previously described (8), the HSA algorithm

calculates structural parameters directly from the mass profiles:

the total mineralized bone surface in the cross-section (CSA, cm2),

cross-sectional moment of inertia (CSMI, cm4), section modulus

(SM, cm3), and FNW (cm), the femoral neck area divided by the

width of the neck box (the width of the femoral neck region was

standardized at 1.5 cm).
2.4 Minimal model of hip structure

After revisiting the beam theory, the MM was conceived by KB

and developed by Khoo et al. (11). The standard deviation of this

mineral mass projection profile was Sigma (s, cm), which is a

measure of the variability of the mineral mass distribution along the

mineral mass projection profile. Delta (d, cm) represents the

distance between the center of mass and the center of geometry

for the mineral mass projection profile, indicating the section’s

asymmetry. These two variables, in addition to BMD and FNW,

constitute MM. Calculated from HSAmeasures, s (Equation 1) and

d (Equation 2) can be defined as follows:

s =

ffiffiffiffiffiffiffiffiffiffiffiffi
CSMI
CSA

r
(1)

d =
CSMI
SM

−
FNW
2

� �
(2)
2.5 Statistical analysis

Patients were categorized into two groups according to the

incidence of hip fractures: normally distributed continuous

variables are expressed as means ± standard deviations (SDs),

whereas skewed continuous variables are reported as medians
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with interquartile ranges. Categorical variables are presented as

percentages (%). The chi-squared test, independent samples t-test,

and Kruskal–Wallis test were used for categorical, normally

distributed variables, and skewed distributions, respectively. For

continuous variables with missing values of <2%, missing values

were substituted with means or median values.

The independent association between MM variables and risk of

hip fracture was assessed using multivariate logistic regression

analysis. Both non-adjusted and multivariate-adjusted models

were used, with the results presented as odds ratios (ORs) and

95% confidence intervals (CIs). These confounders were selected

based on expert judgment, previous scientific literature, and all

significant covariates identified in univariate analysis. Two models

were developed; model I was adjusted for age, BMI, and gender, and

model II was adjusted for model I + diabetes, WBC, RBC, PLT,

ALT, ALP, ALB, CCR, TG, LDL-C, FPG, CRP, and ESR.

Interaction and stratified analyses were performed based on

gender, the presence of diabetes mellitus, age, and BMI. To

measure the subgroup heterogeneity, we multiplied the two

predictor variables and added a new term to the model. We

assessed the potential effect of the modification of diabetes and

Sigma on hip fracture risk by calculating the interactions on both

multiplicative and additive scales. Sigma was categorized into two

groups (dichotomized). A cross-product interaction term was

incorporated into the logistic regression model to evaluate the

multiplicative interactions. The additive interaction was evaluated

using two indices: the relative excess risk due to the interaction (RERI)

and the attributable proportion due to the interaction (AP) (14). Both

the RERI and AP were 0 if there was no additive interaction.

Generalized additive models (GAM) were used to discern

nonlinear relationships, considering that the MM variables were

continuous, and potential confounders were adjusted for. Utilizing

smoothed curves, a two-segment linear regression model was

developed to ascertain the threshold effects. The threshold levels

of Delta were established through a recursive methodology that

included identifying turning points in conjunction with predefined

intervals as well as selecting turning points that produced a

maximum likelihood model. A log-likelihood ratio test was used

to evaluate the two-segment linear regression model against a

nonlinear linear model.

The evaluation of each model’s predictive capability was

conducted through receiver operating characteristic (ROC) curve

analysis. The area under the ROC curve (AUC) served as a metric to

assess the risk of hip fractures. The AUC of minimal model of hip

structure was compared to the AUC of femoral neck BMD alone.

The R statistical software (version 4.2.2, http://www.R-project.org,

The R Foundation) and Free Statistics Analysis Platform (version

1.9, Beijing, China, http://www.clinicalscientists.cn/freestatistics)

were used to conduct all analyses (15). Free Statistics is a software

program that provides user-friendly interfaces for common analysis

and data visualization. The software uses R as the core statistical

engine with a graphical user interface created in Python. Statistical

significance was defined as a two-sided p < 0.05.
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3 Results

3.1 Baseline characteristics of the
study participants

This study included 937 Han Chinese individuals (293 men and

644 women). The baseline clinical and biochemical features of the

patients stratified according to the incidence of hip fractures are

presented in Table 1. The age of the participants ranged from 31 to

99 years, with a mean age of 68.3 years (SD = 10.5). Participants

with fractures exhibited older age and greater height, FNW, and

Sigma and Delta values than those without fractures. Additionally,

they demonstrated significantly lower CSA, SM, BMI, and

BMD values.
3.2 Logistic regression analyses

The risk of hip fracture increased with higher FNW (OR = 1.26;

95% CI: 1.20–1.32), Sigma values (OR = 1.06; 95% CI: 1.04–1.07),

and Delta values (OR = 1.09; 95% CI:1.07–1.11) in the univariate

logistic regression analyses. Additionally, a negative correlation was
Frontiers in Endocrinology 0468
identified between the risk of hip fracture and BMD (OR = 0.47;

95% CI: 0.42–0.54). Age, BMI, WBC, RBC, PLT, ALT, ALP, ALB,

CCR, TG, LDL-C, FPG, and CRP levels, and ESR were correlated

with the risk of hip fracture, as adjusted in model II. Other factors

such as AST, BUN, HDL-C, and HbA1c levels did not show

significant associations (Supplementary Table 1).

The results of the multivariate logistic regression analysis are

presented in Table 2. The association remained significant after

controlling for age, BMI, and gender. In model II, BMD increase

(per 0.1 g/cm2) was associated with a 45% decrease in the risk of hip

fracture (OR = 0.55; 95% CI: 0.45–0.68); however, FNW (per 0.1

cm), Sigma (per 0.01 cm), and Delta (per 0.01 cm) measurements

were associated with an increased risk of hip fracture (OR = 1.28;

95% CI: 1.18–1.37; OR = 1.06; 95% CI: 1.03–1.09; OR = 1.06; 95%

CI: 1.03–1.09).
3.3 Subgroup analyses

Subgroup analyses were conducted to further investigate the

impact of age, gender, BMI, and diabetes on study outcomes. The

results of these analyses are shown in Figure 2. The effect sizes of
TABLE 1 Baseline characteristics of participants.

Variables Total (n = 937) Without fracture (n = 689) With fracture (n = 248) P-value

gender, % 0.804

Male 293 (31.3) 217 (31.5) 76 (30.6)

Female 644 (68.7) 472 (68.5) 172 (69.4)

Age, years 68.3 ± 10.5 66.6 ± 9.5 73.0 ± 11.8 < 0.001

Diabetes, % 0.755

No 732 (78.1) 540 (78.4) 192 (77.4)

Yes 205 (21.9) 149 (21.6) 56 (22.6)

Weight, kg 62.9 ± 11.1 64.5 ± 11.0 58.5 ± 10.4 < 0.001

Height, m 1.58 ± 0.08 1.57 ± 0.08 1.60 ± 0.08 < 0.001

BMI, kg/m2 25.1 ± 3.9 26.0 ± 3.7 22.7 ± 3.5 < 0.001

WBC, 109/L 6.2 (5.1, 7.8) 5.8 (4.9, 6.9) 8.0 (6.6, 9.8) < 0.001

RBC, 109/L 4.3 ± 0.5 4.4 ± 0.5 4.1 ± 0.5 < 0.001

PLT, 109/L 211.9 ± 64.8 216.8 ± 59.1 198.3 ± 77.1 < 0.001

ALT, U/L 16.0 (12.0, 22.9) 17.0 (12.8, 23.7) 14.0 (11.0, 19.1) < 0.001

AST, U/L 21.0 ± 8.6 20.9 ± 8.6 21.1 ± 8.7 0.684

ALP, U/L 80.6 ± 26.7 79.7 ± 26.3 83.3 ± 27.9 0.066

ALB, g/L 42.5 ± 4.2 43.5 ± 4.0 39.8 ± 3.8 < 0.001

BUN, mmol/L 5.8 (4.8, 6.9) 5.8 (4.8, 6.9) 5.7 (4.7, 7.0) 0.581

CCR, mmol/L 62.6 ± 16.8 62.0 ± 16.2 64.4 ± 18.4 0.05

TG, mmol/L 1.3 (0.9, 1.9) 1.4 (1.0, 2.0) 1.0 (0.8, 1.4) < 0.001

HDL-C, mmol/L 1.4 ± 0.3 1.4 ± 0.3 1.4 ± 0.3 0.994

(Continued)
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BMD, FNW, and Delta on the risk of hip fractures remained robust

and reliable. Nevertheless, the association between Sigma and the

risk of hip fracture was not statistically significant in the patients

aged <65 years (OR = 1.04; 95% CI: 0.98–1.11) and diabetes (OR =

1.0; 95% CI: 0.94–1.07) groups. No interactions were detected,

except for the impact of diabetes and Sigma on the risk of hip

fracture (p for multiplicative interaction < 0.05). Subsequently, we

analyzed additive interaction and observed no interactions between

diabetes and Sigma regarding the risk of hip fractures (all p > 0.05;

Supplementary Table 2).
3.4 GAM

A multivariate logistic regression model based on restricted

cubic splines was used to fit the data with confounders adjusted in

accordance with model II. The estimated dose–response curve

revealed a substantial linear association between BMD, FNW,

Sigma, and the risk of hip fracture (Supplementary Figure 1; p for
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nonlinearity > 0.05). A curved rather than a linear relationship was

observed between the Delta measurement and risk of hip fracture

after adjusting for all covariates. Using a two-segment linear

regression model, the Delta value was 0.17 cm (Figure 3).
3.5 Threshold effect analysis

Above the threshold, the risk of hip fracture was significantly

increased by 13% (OR = 1.13; 95% CI: 1.08–1.18) for every 0.01 cm

Delta increase. When Delta was <0.17 cm, a decrease in Delta was

linked to a higher risk of hip fracture; however, this association was

not statistically significant (p > 0.05) (Table 3).
3.6 ROC analysis

Figure 4 presents the C-statistic for sensitivity and specificity

regarding hip fracture risks. The area under the curve for predicting
TABLE 2 Association between simplified hip structure analysis method and the risk of hip fracture.

Variable Nonadjusted P-value Adjust I P-value Adjust II P-value

BMD, per 0.1 g/cm2 0.47 (0.42~0.54) <0.001 0.52 (0.44~0.60) <0.001 0.55 (0.45~0.68) <0.001

FNW, per 0.1 cm 1.26 (1.20~1.32) <0.001 1.32 (1.24~1.40) <0.001 1.28 (1.18~1.37) <0.001

Sigma, per 0.01 cm 1.06 (1.04~1.07) <0.001 1.07 (1.05~1.09) <0.001 1.06 (1.03~1.09) <0.001

Delta, per 0.01 cm 1.09 (1.07~1.11) <0.001 1.08 (1.05~1.10) <0.001 1.06 (1.03~1.09) <0.001
Data are presented as ORs and 95% CIs.
Adjusted model I was adjusted for age, body mass index, and gender; adjusted model II was adjusted for model I + diabetes, white blood cells, red blood cells, platelets, alanine aminotransferase,
alkaline phosphatase, albumin, creatinine, triglycerides, low-density lipoprotein cholesterol, fasting plasma glucose, C-reactive protein, and erythrocyte sedimentation rate.
BMD, bone mineral density; FNW, femoral neck width.
TABLE 1 Continued

Variables Total (n = 937) Without fracture (n = 689) With fracture (n = 248) P-value

LDL-C, mmol/L 2.6 ± 0.8 2.7 ± 0.7 2.4 ± 0.8 < 0.001

FPG, mmol/L 6.0 ± 1.8 5.9 ± 1.5 6.5 ± 2.5 < 0.001

CRP, mg/L 5.0 (3.5, 13.6) 5.0 (2.6, 6.1) 31.0 (9.7, 65.3) < 0.001

HbA1c, % 6.2 ± 1.1 6.2 ± 1.0 6.2 ± 1.3 0.545

ESR, mm/h 21.0 (11.0, 34.0) 19.0 (9.0, 29.0) 28.0 (16.2, 46.0) < 0.001

CSA, cm2 2.572 ± 0.580 2.659 ± 0.548 2.331 ± 0.598 < 0.001

CSMI, cm4 2.372 ± 0.895 2.380 ± 0.835 2.347 ± 1.047 0.616

SM, cm3 1.201 ± 0.380 1.236 ± 0.356 1.105 ± 0.426 < 0.001

BMD, g/cm2 0.785 ± 0.167 0.827 ± 0.153 0.668 ± 0.149 < 0.001

FNW, cm 3.458 ± 0.358 3.384 ± 0.317 3.664 ± 0.385 < 0.001

Sigma, cm 0.947 ± 0.096 0.934 ± 0.089 0.984 ± 0.103 < 0.001

Delta, cm 0.225 ± 0.081 0.211 ± 0.069 0.264 ± 0.098 < 0.001
Data presented are mean ± SD, median (Q1–Q3), or N (%).
BMI, body mass index; WBC, white blood cell; RBC, red blood cell; PLT, platelet; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; ALB, albumin;
BUN, blood urea nitrogen; CCR, creatinine; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FPG, fasting plasma glucose; HbA1c,
glycosylated hemoglobin type-A1c; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; BMD, bone mineral density; FNW, femoral neck width.
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hip fractures based on BMDwas 0.781 (0.747, 0.816). The AUC2 for

minimal model of hip structure was significantly greater than that

of BMD (0.838 vs 0.781, p < 0.05).
4 Discussion

This retrospective cross-sectional study included 937 Han

Chinese adults, of whom 248 had hip fractures. Large increases in

FNW and Sigma and Delta values and notable declines in BMD

were separately and significantly linked to a higher risk of hip

fracture after adjusting for age, BMI, gender, and clinical risk
Frontiers in Endocrinology 0670
factors. The subgroup and additive interaction analyses confirmed

the robustness of these associations. Apart from Delta

measurement, we observed a linear association between BMD,

FNW, Sigma, and the risk of hip fracture in the GAM analysis.

An increased Delta value indicates a downward shift in the

center of mass, suggesting a decrease in bone mass in the upper

region of the femoral neck cross-section (16). This deficiency in the

superior segment is commonly acknowledged to contribute to hip

fractures by facilitating buckling, a type of compressive failure (17).

Prince has reported that each SD increment of Delta corresponded

to a hazard ratio (HR) of 1.51 for the risk of femoral neck fracture

(95% CI: 1.17–1.94) (12), aligning with findings reported by Khoo
FIGURE 2

Association between BMD, FNW, Sigma, Delta, and the risk of hip fracture in Subgroup analyses based on gender, diabetes, age, and BMI. Each
stratification adjusted for all factors (age, BMI, gender, diabetes, white blood cells, red blood cells, platelets, alanine aminotransferase, alkaline
phosphatase, albumin, creatinine, triglycerides, low-density lipoprotein cholesterol, fasting plasma glucose, C-reactive protein, erythrocyte
sedimentation rate) except the stratification factor itself. BMI, body mass index; BMD, bone mineral density; FNW, femoral neck width.
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et al. (18, 19). In our study, an increase in Delta (per 0.01 cm) was

linked to a 6% higher risk of hip fracture (OR = 1.06; 95% CI:

1.03–1.09).

Interestingly, the Delta value and risk of hip fracture showed a

curved link. A decrease in Delta value was associated with a lower

hip fracture risk (OR = 0.89; 95% CI: 0.76–1.04) when the Delta

value decreased to <0.17 cm. Above the threshold, the risk of hip

fracture increased considerably by 13% (OR = 1.13; 95% CI: 1.08–

1.18) for every 0.01 cm increase in the Delta value. To the best of

our knowledge, this study is the first to comprehensively elucidate

the dose–response relationship, providing new insights into the

prediction and treatment of femoral neck fractures.

However, the relationship between Sigma and fracture risk

remains unclear. In a study involving elderly women from

Beijing, Khoo et al. indicated a low Sigma (per SD) as a risk

factor (OR = 0.70; 95% CI: 0.54–0.92) (19). However, Prince did

not identify a significant association in the Perth Longitudinal Study
Frontiers in Endocrinology 0771
of Aging inWomen Sigma [(per SD); HR = 0.72; 95% CI: 0.46–1.10]

(12). In Khoo’s study, each SD increment of Sigma corresponded to

a 116% increase in the risk of hip fracture among Chinese men

(OR = 2.16; 95% CI: 1.24–3.78) (18). Our data indicate a significant

association between Sigma and the risk of hip fractures [Sigma (per

0.01 cm); OR = 1.06; 95% CI: 1.03–1.09], applicable to both genders.
TABLE 3 Threshold effect analysis of the association between Delta
values and the risk of hip fracture.

Outcome: OR (95% CI) P-value

One-line linear regression model 1.06 (1.03~1.09) <0.001

Two-piecewise linear regression model

< 0.17cm 0.89 (0.76~1.04) 0.151

≥ 0.17cm 1.13 (1.08~1.18) <0.001

Log-likelihood ratio test <0.001
Delta per change 0.01 cm. ORs were adjusted for age, body mass index, gender, diabetes, white
blood cells, red blood cells, platelets, alanine aminotransferase, alkaline phosphatase, albumin,
creatinine, triglycerides, low-density lipoprotein cholesterol, fasting plasma glucose, C-
reactive protein, and erythrocyte sedimentation rate.
FIGURE 3

(a) A curved relationship between Delta and the risk of hip fracture. Adjustment factors included age, body mass index, gender, diabetes, white blood
cells, red blood cells, platelets, alanine aminotransferase, alkaline phosphatase, albumin, creatinine, triglycerides, low-density lipoprotein cholesterol,
fasting plasma glucose, C-reactive protein, and erythrocyte sedimentation rate. (b) Threshold levels of Delta were determined using a recursive
approach that involved selecting turning points along with predefined intervals and selecting turning points that yielded a maximum
likelihood model.
FIGURE 4

ROC analysis and AUC for hip fracture prediction. AUC1: BMD;
AUC2: Minimal Model. BMD, FNW, Delta, and Sigma values
comprised the minimal model variables. C statistics for the
difference between AUC1 (0.781) and AUC2 (0.838), P < 0.001. BMD,
bone mineral density; FNW, femoral neck width.
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Greater Sigma values reflect a reduction in trabecular bone mass

near the center of mass of the femoral neck cross-section because

they indicate a larger mineral mass distribution (17).

In this study, we observed a lower BMD, greater FNW, wider

mineral mass distribution around the center of mass, and an

inferomedial shift in the center of mass, which were significantly

associated with a higher risk of hip fractures, which is consistent

with previous research findings (20–22). Structural inadequacy of

the femoral neck may be correlated with the prevalent remodeling

imbalance associated with aging (7, 23, 24). The limited mechanical

requirements of middle and old age may be accommodated by the

retention of the inferomedial femoral neck cortex and preferential

loss of the superolateral cortex (25). This alteration may confer a

protective effect during physiological stance loading as

demonstrated by Fox et al. Conversely, it should reduce strength

during bending during falls (26).

Multiple studies indicate that low BMD is the most sensitive

predictor of hip fractures among clinical risk factors (27, 28).

However, the present study demonstrated that minimal model of

hip structure had a much greater prediction ability for hip fractures

compared to BMD alone (AUC: 0.838 vs 0.781, p < 0.05). Our

findings indicate that minimal model of hip structure may improve

hip fracture risk assessments.

Our study has several limitations. First, this study was

conducted on Han Chinese individuals; therefore, the findings

may not apply to other ethnic groups. Second, the cross-sectional

retrospective design prevented us from confirming a causal

relationship between hip MM variables and risk of hip fractures.

Third, we cannot rule out the possibility that unmeasured confusing

elements could be responsible for the observed correlations, even

after adjusting for confounding factors to the fullest extent possible.

Finally, the two groups revealed some differences in baseline

characteristics, and the participants with hip fractures were older

than those without hip fractures. Nevertheless, we managed the

most pertinent variables in the logistic regression models.

Consequently, multicenter randomized controlled trials with

robust designs are essential to validate our findings.
5 Conclusions

Large increases in FNW, Sigma and Delta values, and notable

declines in BMD were separately and significantly linked to a high

risk of hip fractures in Han Chinese adults. The Delta value and risk

of hip fracture showed a curved link. Thus, our findings suggest that

the minimal model of hip structure may improve hip fracture

risk assessments.
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Evaluating bone mineral density
in osteoporotic vertebral
compression fractures: the
clinical utility of anterior
column Hounsfield units
Jiabao Chen1†, Han Zheng1†, Haotian Li1†, Qingsong Yu1,
Yanhong Li2, Huangda An1* and Lei Ma1*

1Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China,
2Department of cardiology, Hebei General Hospital, Shijiazhuang, China
Study Design: Retrospective radiological analysis.

Objective: This study aimed to evaluate the clinical utility of anterior column

Hounsfield units (HU) in assessing bone mineral density (BMD) in patients with

osteoporotic vertebral compression fractures (OVCFs) and to investigate its

potential advantages over traditional measurement methods.

Method: In this retrospective study, we analyzed data from 106 patients with

acute OVCFs treated between January 2020 and June 2024. Inclusion criteria

encompassed single-segment fractures from T10 to L2, with clear imaging

results. HU values were measured from computed tomography (CT) scans,

specifically targeting the anterior column of the vertebral body. Interobserver

reliability was assessed via intraclass correlation coefficients (ICCs). Correlations

between HU values, dual-energy X-ray absorptiometry (DEXA) results, and

vertebral compression degrees were analyzed using Pearson correlation and

receiver operating characteristic (ROC) curve analysis.

Results: The average HU values were significantly lower in the anterior column

(50.39 ± 21.62 HU) compared to the middle column (63.12 ± 25.14 HU). The

anterior column HU values showed a strong positive correlation with DEXA T-

scores (r = 0.643) and BMD (r = 0.656). The degree of vertebral compression also

correlated positively with both HU values and DEXA results, with the anterior

column HU demonstrating the highest correlation (r = 0.727). ROC analysis

indicated that the anterior column HU value had the largest area under the curve

(AUC = 0.913) for predicting severe OVCFs, with an optimal cutoff of 59.07 HU.

Conclusion: The anterior column HU value serves as a superior predictor of BMD

in patients with OVCFs compared to traditional methods. This study highlights

the potential of using anterior column HU measurements to guide clinical

decision-making regarding treatment options for OVCF patients, suggesting a
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shift towards more nuanced assessment strategies in osteoporosis management.

Further research with larger sample sizes is warranted to validate these

findings and explore the comprehensive application of HU values in

osteoporosis evaluation.
KEYWORDS

Hounsfield unit, osteoporosis, bone mineral density, osteoporotic vertebral
compression fractures (OVCFs), spinal surgery
Introduction

Osteoporosis is characterized by a decrease in bone density for

various reasons, along with the destruction of bone microstructure,

which leads to increased bone fragility. Dual - energy X - ray

absorptiometry (DXA) is currently the gold standard for

quantifying bone mineral density and diagnosing osteoporosis.

However, it still has certain limitations in evaluating spinal bone

(1). In recent years, the measurement of Hounsfield unit (HU) by

computed tomography (CT) has become an accepted technique for

assessing bone quality. Previous studies have demonstrated that the

HU value is closely associated with bone mineral density and the

compressive strength of bone (2–7) HU values have been widely

utilized in osteoporosis assessment, with the advantage of providing

bone mineral density (BMD) data within the vertebrae. The CT HU

value of the middle - axial image of the vertebral body is widely

applied in clinical practice. It has high clinical value in predicting

cage settlement and evaluating the pedicle screw holding force and

may even be superior to the DEXA T - score (8–10).

For patients with vertebral compression fractures, it is very

necessary to evaluate bone quality in order to guide the next step of

treatment. Zou et al. (8) discovered that the L1 - HU value can serve as

an excellent predictor of vertebral compression fractures. In their study,

the average L1 - HU value in patients with acute vertebral fragility

fractures was 66.0 HU. Nevertheless, this measurement fails to consider

the uneven distribution of BMD within the vertebral body. Given the

complexity of the spinal structure and the uniqueness of the load, the

distribution of BMD in the vertebral bone is non – uniform (11).

In the majority of patients with osteoporotic vertebral

compression fractures (OVCFs), the fracture typically occurs in

the anterior column of the vertebral body (12, 13). Consequently,

this study enhanced the measurement method for the CT HU value

of the vertebral body. The HU value of the anterior column of the

vertebral body was collected to explore its potential greater value for

BMD assessment in OVCF patients.

The objectives of this study were twofold: first, to demonstrate

the feasibility of the anterior - column CT HU value in evaluating

the BMD of the thoracolumbar spines; second, to investigate the

clinical application and advantages of the anterior - column CT

HU value.
0275
Methods

Patient cohort

This study received approval from the Institutional Review

Board of our hospital. All patient data were retrospectively

retrieved from the hospital’s medical record system. We examined

the files of patients who had been treated for OVCFs in our

department between January 2020 and June 2024.

Inclusion criteria
1.Acute vertebral compression fracture resulting from low -

energy trauma, involving a single segment within T10 - L2. 2.Clear

MRI, X - ray, CT, and DEXA examinations were obtainable. 3.The

morphology of the vertebral body adjacent to the fractured vertebra

was normal.

Exclusion criteria
1.Multilevel vertebral compression fracture. 2.Vertebral

compression fractures induced by high - energy trauma.

3.Pathological fracture. 4.History of spinal surgery. 5.Kummel

disease or diffuse idiopathic skeletal hyperostosis (DISH)

morphology. 6.Long - term use of glucocorticoids.
Date collection and assessment

The demographic data of the patients, such as gender, age, body

mass index (BMI), and DEXA results, were recorded. Vertebral

compression fractures were classified according to the method

proposed by Genant (14). The imaging data were measured by

two spine surgeons who had over three years of experience in

imaging measurements. The HU measurement was obtained using

a protocol similar to that described by Schreiber in CT examination.

All subjects were scanned with a 64 slice multi-detector CT

scanner (Siemens Sensation 64, Erlangen, Germany) according to

the following parameters: slice thickness 1.5 mm, distance 1.5 mm,

tube voltage 120 kV. HU measurements were obtained from PACS

(Picture Archiving and Communication Systems) Imaging System

for lumbar vertebra.
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For the vertebrae with compression fractures, two adjacent

vertebrae were selected for the measurement of HU values. Three

different axial sections in each vertebral body were chosen, namely

immediately below the superior end plate, at the mid - vertebral

body, and above the inferior end plate. At the mid - axial image, HU

values were obtained following the methods described in previous

studies (15). For the two axial slices close to the upper and lower

end plates, two different locations in each axial slice were selected as

regions of interest (ROI) for HU measurements: the anterior two -

thirds of the vertebrae and the posterior one - third of the vertebrae.

The ROI was designed to encompass as much trabecular bone as

possible while avoiding cortical bone and heterogeneous areas such

as the posterior venous plexus and bone islands. The average of the

HU values in the anterior two - thirds of the vertebral body

represents the HU value of the anterior column of the vertebral

body, and the average HU value in the posterior one - third of the

vertebral body represents the HU value of the middle column of the

vertebral body (Figure 1).

For osteoporotic vertebral compression fractures, the

compression ratio is defined as the ratio of the height of the most
Frontiers in Endocrinology 0376
compressed part of the vertebral body to that of the posterior edge

of the vertebral body. In cases where whole - body compression has

occurred, the compression ratio for osteoporotic vertebral

compression fractures is the ratio of the height of the most

compressed part of the vertebral body to the average height of the

posterior edges of the upper and lower vertebral bodies.
Statistical analysis

Data were analyzed using Statistical Product and Service

Solutions software (version 26; SPSS, Chicago, IL). Continuous

variables were documented as mean ± standard deviation. The

interclass correlation coefficients (ICCs) were computed to appraise

interobserver reliability. The Pearson correlation test was employed

to analyze the correlation between the outcomes of different HU

measurements and DEXA results. Receiver operating characteristic

curve (ROC) analysis and the area under the curve (AUC) were

utilized to assess the performance of using HU value and T - score

in differentiating severe compression fractures.
FIGURE 1

Computed tomography (CT) scan demonstrating the method for determining the HU value using an elliptical ROI. In the left - hand image, the axial
slices of interest are shown on a sagittal slice of a CT scan of the lumbar vertebra. Slice A was obtained inferior to the superior end plate, while slice
C was taken superior to the inferior end plate. Slice B represented the middle - axial image of the vertebral body. For slices A and C, two distinct
locations on each axial slice were selected as ROIs for HU measurements: the anterior two - thirds of the vertebrae and the posterior one - third of
the vertebrae. For slice B, a large elliptical area was used as an ROI to measure HU values. Elliptical ROIs were drawn as large as possible, excluding
cortical edges to prevent volume averaging. The compression ratio of osteoporotic vertebral compression fractures was determined by E/F1. If no
compression occurred at the posterior edge of the fractured vertebra, E/F2 was used to determine the compression ratio.
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Results

Patient characteristics

A total of 106 patients were enrolled in the study, including 22

males and 84 females. The mean age of the patients was 70.92 ±

7.878 years. There were 7 cases of T10 fracture, 22 cases of T11

fracture, 33 cases of T12 fracture, 30 cases of L1 fracture and 14

cases of L2 fracture. The degree of fracture compression was graded

according to Genant classification, including 4 patients with grade

0, 7 patients with grade 1, 37 patients with grade 2 and 58 patients

with grade 3. The mean BMD and T value of DEXA were 0.53 ±

0.10g/cm2 and -2.88 ± 0.81, respectively. The average HU value of

the axial position was 67.35 ± 28.31HU, the average HU value of the

anterior column was 50.39 ± 21.62HU, and the average HU value of

the middle column was 63.12 ± 25.14HU. The average vertebral

compression ratio was 0.48 ± 0.14 (Tables 1, 2).
Consistency test

The inter-rater reliability of measurements obtained by two

spinal surgeons was assessed using the Interclass Correlation

Coefficient (ICC), which exceeded 0.96 at each location (Five ROI

in each vertebral body), indicating high agreement between the data

measured. For the vertebral compression ratio, the ICC across the

106 cases for both observers was 0.975, which indicated high

agreement between the data measured.
Correlation between T - value/BMD value
of DEXA and HU value of anterior and
middle vertebral column

Both anterior and middle column CT HU values were positively

correlated with the femoral neck T - score/BMD in DEXA results.

(Table 3, Figure 2) The correlation coefficient between the HU value

of anterior column and T-score (r = 0.643)/BMD (r = 0.656) was the

highest, which was greater than that between the middle-axial

image HU value and T - score (r = 0.555)/BMD (r = 0.564).
Correlation between vertebral
compression degree and DEXA results as
well as HU values

In patients with osteoporotic vertebral compression fractures,

the degree of vertebral compression exhibited a positive

correlation with both HU values and DEXA results. Notably, the

HU value of the anterior column and the degree of vertebral

compression demonstrated a relatively high Pearson correlation

coefficient (r = 0.727) (Table 4).
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Identifying optimal predictors for severe
osteoporotic fractures using ROC curves

ROC curves were generated and the area under the curve

(AUC) was measured to identify the optimal predictors for severe

osteoporotic compression fractures (Grade 3). The results

demonstrated that the ROC curve of the anterior column HU

value had the largest AUC of 0.913. The Youden index was

utilized to determine the optimal cutoff value of 59.07 HU, with a

sensitivity of 0.75 and a specificity of 0.914. The AUC of the ROC

curve of the HU value in the middle - axial image was 0.836, and the

Youden index determined the optimum critical value to be 64.55

HU, with a sensitivity of 0.833 and a specificity of 0.724. The AUC

of the ROC curve of the T - score was 0.820, and the Youden index

determined the optimum critical value to be - 2.85, with a sensitivity

of 0.813 and a specificity of 0.759 (Figure 3).
TABLE 1 Analysis of general data of 106 patients with OVCFs.

Variable ALL (n=106)

Age 70.92 ± 7.878

Sex

Male 22

Female 84

BMI 24.50 ± 2.76

Fractured vertebral body

T10 7

T11 22

T12 33

L1 30

L2 14

Genant classification

Grade 0 4

Grade 1 7

Grade 2 37

Grade 3 58

Femoral neck BMD 0.53 ± 0.10

Femoral neck T-score -2.88 ± 0.81

HU value

Anterior column 50.39 ± 21.62

Middle column 63.12 ± 25.14

Middle-axial image 67.35 ± 28.31

Vertebral compression ratio 0.48 ± 0.14
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Discussion

Osteoporosis frequently occurs in the elderly and

postmenopausal women, thereby augmenting their fracture risk

and imposing a burden on society. In accordance with national and

international guidelines, bone quality should be evaluated by DEXA

or quantitative computed tomography (qCT). DEXA, a non -

invasive spectral imaging method, is regarded as the gold

standard for diagnosing osteoporosis. Nevertheless, spinal

degeneration might result in inaccurate BMD measurements

when using this technique (16). Quantitative computed

tomography can surmount these limitations. In qCT, HU are

converted to BMD values via software using a standard CT

scanner and additional reference standards. However, this

technique is not the preferred recommendation of the World

Health Organization (WHO) for BMD measurement and is not

as extensively utilized as DEXA.

At present, the average HU value of the lumbar spine has been

widely utilized in clinical practice. The common approach for HU

measurement is to select the region of interest in the mid - axial

image of the vertebral body. However, as per previous studies, the

uneven distribution of bone mineral density within the vertebral

body has been rarely taken into account. According to the Delpech -

Wolff law, bone formation is influenced by mechanical stimuli. The

distribution of pressure and tension molds the microstructure of the

bone and promotes bone formation, thereby increasing bone

density, and vice versa. The structure of the human spine is

complex. The spine endures multi - dimensional stress and shear

forces, and the load within the spine is highly complex; thus, the

distribution of bone mineral density is also uneven.

In clinical practice, the uneven distribution of BMD in vertebrae

is frequently overlooked. Consequently, the application and
Frontiers in Endocrinology 0578
measurement of HU values require improvement. In 1984,

Ferguson refined Denis’s three - column theory of the spine.

Ferguson defined the anterior column as the anterior longitudinal

ligament and the anterior two - thirds of the vertebral body and

disc, and the middle column as the posterior longitudinal ligament

and the posterior one - third of the vertebral body and disc. In this

study, we enhanced the measurement method of HU values and

selected the ROI at the anterior column of the vertebral body.
Feasibility of anterior column HU value in
evaluating vertebral BMD

In this study, the ROI for HU value measurement was selected

differently from previous studies. Slices adjacent to the upper and

lower endplates were chosen as the ROI to measure the HU value of

the anterior column. Meanwhile, according to previous studies, the

middle - axial image of the vertebral body was selected as the ROI

for reference. The results demonstrated that both the HU values of

the anterior column and those of the middle - axial image were

significantly correlated with the DEXA results. This suggests that

the anterior column HU value can serve as a reliable indicator for

bone mineral density evaluation in OVCF patients.

Moreover, the HU values of the anterior column were more

strongly correlated with the DEXA results than those of the middle -

axial images. In light of this result, we supposed that there could be

more blood vessels in the middle - axial image of the vertebral body,

although the ROI did not include the vertebral basal vein foramen.
TABLE 3 Pearson correlation coefficients between CT HU values of
different ROI of the vertebral body and femoral neck T-score or BMD
in DEXA.

Correlation coefficients

T-score BMD

HU Value

Anterior column 0.643** 0.656**

Middle column 0.609** 0.627**

Middle-axial image 0.555** 0.564**
**P value<0.001.
FIGURE 2

Scatter plots showed the correlation between CT HU values in
different ROI of the vertebral body and bone mineral density scores
obtained from DEXA of the femoral neck.
TABLE 2 Evaluation of BMD for different degrees of vertebral compression fractures.

Grade0-2 (n=48) Grade 3 (n=58) ALL (n=106)

Femoral neck BMD 0.59 ± 0.09 0.49 ± 0.08 0.53 ± 0.10

Femoral neck T-score -2.42 ± 0.71 -3.26 ± 0.68 -2.88 ± 0.81

HU Value

Anterior column 66.76 ± 14.20 36.85 ± 16.80 50.39 ± 21.62

Middle column 81.01 ± 17.90 48.31 ± 20.18 63.12 ± 25.14

Middle-axial image 85.22 ± 23.97 52.56 ± 22.61 67.35 ± 28.31
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In elderly patients with osteoporosis, uncalcified or calcified blood

vessels in the vertebra may interfere with the measurement of HU

values. Thus, HU values measured away from the middle - axial

images are more strongly correlated with DEXA results.
The utility of anterior column hu value in
assessing vertebral bone mineral density

In the spinal structure, the intervertebral disc and facet joints

exhibit a certain degree of motion during spinal flexion and

extension. This causes the middle column of the spine to function

analogously to the fulcrum of a seesaw. Consequently, relative to the

anterior column of the vertebral body, the middle column bears

more stress, leading to a higher bone mineral density. However,

when a vertebral compression fracture occurs, it is typically a result

of a relatively stronger load on the anterior column of the spine.

In this study, according to the three - column theory of the

spine, not only were the HU values of the middle - axial image

measured, but also the CT HU values of the anterior and middle

columns of the vertebral body were measured. The results

demonstrated that there was a significant difference between the

average HU value of the anterior column and that of the middle -

axial image, with the HU value of the anterior column being lower.

In the T10 - L2 vertebral body, compared with other osteoporosis

evaluation indicators, the HU value of the anterior column and the

degree of vertebral compression exhibited a more obvious

correlation. Moreover, the HU value of the anterior column has a
Frontiers in Endocrinology 0679
higher predictive value for severe OVCF (grade 3), which may offer

important information for the selection of treatment options for

OVCF patients.

In previous clinical experiences, the majority of patients with

OVCF are recommended to stay in absolute bed rest (ABR) for one

to two months prior to getting out of bed. Nevertheless, long - term

bed rest can result in a series of complications, including

pneumonia, bedsore, urinary tract infection, deep vein

thrombosis, and cerebral infarction. Even just one week of ABR

can cause severe muscle atrophy and insulin resistance throughout

the body (17). Moreover, bone formation ceases during ABR,

leading to further bone loss. Previous studies have proposed that

patients with OVCF might benefit from a short - term 3 - day ABR

followed by bracing (18). However, this treatment has not been

accepted by most clinicians yet.

In this study, we observed that the HU value in the middle

column of the vertebra was substantially higher than that in the

anterior column, signifying a greater BMD in the middle column.

This surely offers a foundation for the short - term ARB treatment

concept in OVCF patients. With the brace’s protection, the anterior

column of the OVCF vertebral body can evade excessive stress,

while the middle column can endure relatively more stress.

Nevertheless, we also noted that patients with severe OVCF

(Grade 3) had an average anterior - column HU of merely 36.85,

implying that patients with short - term ARB might be at a higher

risk of further vertebral compression.

ROC curves were employed to analyze the predictive value of

these osteoporosis measures for severe OVCFs. The results
TABLE 4 Pearson correlation coefficients between vertebral compression ratio and CT HU value/DEXA results.

HU Value
T-score BMD

Anterior column Middle column Middle-axial image

Vertebral
compression ratio

Correlation
coefficients

0.727 0.657 0.600 0.502 0.517

p 0.000 0.000 0.000 0.000 0.000
FIGURE 3

Receiver-operating characteristic curve (ROC) analysis was used to evaluate the performance of HU value and T-score in distinguishing severe
compression fractures.
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demonstrate that the anterior columnHU value has the highest AUC,

indicating a higher predictive value for severe OVCFs. The AUC of

the ROC curve for the anterior - columnHU value was 0.913, and the

optimal cut - off value, determined by the Youden index, was 59.07

HU, with a specificity of 0.9140. The results suggest that when the HU

value of the anterior column of the vertebral body is greater than

59.07, severe vertebral compression fracture is less likely to occur

upon the vertebral body being subjected to low - energy trauma.

To the best of our knowledge, no studies have yet identified a

suitable BMD evaluation index for assessing whether OVCF patients

are suitable for short - term ABR. This study offers insights for

subsequent clinical diagnosis and treatment, and the anterior -

column HU value can serve as a favorable BMD evaluation index

to guide patients towards further treatment. We look forward to

future studies further validating these results and exploring the

broader application of HU values in osteoporosis assessment.
Limitations

Although the results of this study provide new insights for

clinical practice, there are still some limitations: 1.In this study,

strict inclusion criteria were adopted for restriction, so the sample

size of patients was small, and studies with a larger sample size are

still required for verification. 2.Previous studies have shown that

vertebral compression fractures are related to other factors such as

lumbar muscle strength, but similar parameters were not included

in this study. 3.This study only conducted research on patients with

OVCFs, lacking the comparison of the anterior column HU values

in non - OVCFs patients. 4.This study did not explore the

comprehensive application of HU values and other osteoporosis -

related indicators, and multi - index combined evaluation can be

considered in the future.
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fracture: a QCT analysis
from the AGES cohort
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Eren Yilmas3, Stefan Bartenschlager1, Sigurdur Sigurdsson4,
Vilmundur Gudnason4, Claus-C. Glüer3 and Oliver Chaudry1,5
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Neuroradiology, Kiel University, Kiel, Germany, 4Icelandic Heart Association Research Institute,
Kopavogur, Iceland, 5Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg and
Universitätsklinikum Erlangen, Erlangen, Germany
Introduction: Vertebral fractures (VFs) significantly increase risk of subsequent

fractures. Areal bone mineral density (BMD) assessed by DXA and volumetric

BMD by QCT, are strong predictors of VF. Nevertheless, risk prediction should be

further improved. This study used data from the Age, Gene/Environment

Susceptibility Reykjavik (AGES-Reykjavik) cohort to evaluate whether trabecular

texture and paraspinal muscle assessments improve the prediction of the first

incident VF.

Methods: CT scans of the L1 and L2 vertebrae of 843 elderly subjects; including

167 subjects with incident, VFs occurring within a 5-year period and 676 controls

without fractures. Image analysis included measurement of BMD, cortical

thickness and of parameters characterizing trabecular architecture and the

autochthonous muscles. Fifty variables were used as predictors, including a

BMD, a trabecular texture and a muscle subset. Each included age, BMI and

corresponding parameters of the QCT analysis. The number of variables in each

subset was reduced using stepwise logistic regression to create multivariable

fracture prediction models. Model accuracy was assessed using the likelihood

ratio test (LRT) and the area under the curve (AUC) criteria. Bootstrap analyses

were performed to assess the stability of the model selection process.

Results: 96 women and 78 men with prior VF were excluded. Of 50 initial

predictors, 17 were significant for women and 11 for men. Bone and texture

models showed significantly better fracture prediction in women (p<0.001) and

men (p<0.01) than the combination of age and BMI. The muscle model showed

better fracture prediction in men only (p<0.03). Compared to the BMD model

alone, LRT showed a significantly improved VF prediction of the combinations of

BMD with texture (women and men) (p<0.05) or with muscle models (men only)

(p=0.03) but no significant increases in AUC values (AUCwomen: Age&BMI: 0.57,

BMD: 0.69, combined model: 0.69; AUC men: Age&BMI: 0.63, BMD: 0.71,

combined models 0.73-0.77)
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Discussion: Trabecular texture and muscle parameters significantly improved

prediction of first VF over age and BMI, but improvements were small compared

to BMD, which remained the primary predictor for both sexes. Although muscle

measures showed some predictive power, particularly in men, their clinical

significance was marginal. Integral BMD should remain the focus for fracture

risk assessment in clinical practice.
KEYWORDS

fracture prediction, vertebral fracture, computed tomography, BMD, muscle,
trabecular texture
1 Introduction

Vertebral fractures (VF) are the most common type of

osteoporotic fracture (1–3) and significantly increase the risk of

subsequent vertebral and other osteoporotic fractures (4, 5).

Therefore, risk prediction and prevention of VF is an important

goal in osteoporosis (3, 6). Areal bone mineral density (BMD)

assessed by Dual X-ray Energy Absorptiometry (DXA) and

volumetric BMD assessed by Quantitative Computed Tomography

(QCT) are strong predictors of VF. Standardized risk ratios of

approximately 2-3 have been determined (7–9), but risk prediction

still should be improved and several QCT-based strategies have been

developed toward this aim. One successful approach is the

determination of vertebral strength by finite element analysis (FEA)

(10, 11). Another is the measurement of additional parameters from

the QCT scans, such as cortical thickness, trabecular texture and

paraspinal muscle characteristics (12).

This study addresses two key questions: (1) Can fracture risk

prediction be improved beyond standard BMD measurement? (2)

Are additional parameters that would improve fracture risk

prediction are easy to measure and applicable across different CT

scanners and can they be measured with precision errors of 1-2%

(13). From a clinical perspective the first question is most important

but from a pathophysiological perspective it may be more

interesting to determine whether muscle density, muscle volume

and parameters characterizing the muscle fat infiltration predict

fractures independently of BMD. Of further interest are the separate

contributions of trabecular and cortical bone and of the trabecular

architecture to the prediction of the first incident VF.

As shown by a recent meta-analysis there is an increasing

number of studies evaluating the ability of QCT to discriminate

prevalent VF (14). However, prospective studies using QCT to

predict incident VF are rare. A number of different analyses using

FEA and lumbar and thoracic BMD parameters have been reported

for the AGES-Reykjavik study (7, 15). Thoracic trabecular BMD

also predicted incident VF in a large multiethnic MESA study of

6800 subjects with atherosclerosis (16). However, a multivariable

approach has not been reported so far.
0283
The relevance of paraspinal, thigh and pelvic muscles and also

of soft tissue characteristics for hip (17–21), vertebral (22–24) or

multiple (25) fractures has been addressed in several recent CT

studies. However, most of these studies focused on the hip and most

of them were cross-sectional in design with limited sample size,

making the interpretation of multivariable results difficult. As

summarized in a recent review (26), other studies have used

magnetic resonance imaging to investigate the associations

between paraspinal muscle characteristics and osteoporotic

fracture, but these studies did not obtain BMD data and MR

studies are too time consuming and expensive for wide spread use.

In this study we used a subset of the prospective Age, Gene/

Environment Susceptibility Reykjavik (AGES-Reykjavik) study, a

large epidemiologic study from Iceland (27) to compare the

prognostic power of various CT assessments, including BMD,

trabecular texture and paraspinal muscle characteristics in

univariate and multivariable models, hypothesizing that

prediction of the first incident VF occurrence based on vertebral

BMD by QCT may be improved by these additional assessments.

The same subset of the AGES-Reykjavik study has been analyzed

previously (8), allowing to put our results in perspective with

vertebral strength measurement by FEA.
2 Materials and methods

2.1 Subjects

This study utilizes a retrospective analysis of CT scans of the

lumbar vertebrae L1 and L2 from a subset of subjects of the study

AGES‐Reykjavik (27) of over 5,000 elderly subjects from Iceland. In

summary, in a previous study (8) a case-control design was

employed to select a subset of 843 subjects (497 women and 346

men). 167 subjects had sustained an incident spine fracture within a

5-year period. Spine fractures were confirmed on CT scout scans

covering T6-L4, which were obtained at 5 years after baseline, using

the Genant SQ scoring system (28). CT scout scans from the

baseline CT scans were used to identify prior vertebral fractures,
frontiersin.org
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i.e., those that were already present at the time of the baseline scan.

By excluding those, incident vertebral fractures were identified. The

676 subjects of the control group were randomly selected from the

AGES cohort without fractures.
2.2 CT scanning and analysis

All CT scans were performed using the same CT scanner

(Sensation 4, Siemens, Erlangen, Germany) with the same CT

acquisition and reconstruction protocol (120 kV, tube current

modulation with 150 effective mAs, 50 cm FOV, 1 mm slice

thickness, 1 mm reconstruction increment, B30s reconstruction

kernel). An Image Analysis type 4 phantom (Image Analysis, Inc.,

Columbia, KY) was utilized for the purpose of simultaneous

calibration of CT to BMD values. In the majority of subjects, the

CT scan encompassed L1 and L2 vertebrae. However, in cases of

fracture or other conditions that resulted in the exclusion of one of

these vertebrae from the analysis, T12 and L1 or L2 and L3

vertebrae were scanned instead. The QCT analysis was performed

using MIAF-Spine version 6.0.7 (Figure 1, Supplementary Figure

S1). All QCT parameters that were analyzed were averaged over the

two vertebrae that were covered by the CT scan. It should be noted

that DXA scans were not obtained.

A comprehensive investigation was conducted, encompassing

the measurement of three distinct QCT subsets (S1–S3). The first

subset, designated as S1 - BMD set, involved a conventional analysis

of integral, cortical, and trabecular BMD, BMC, and volume,

complemented by an assessment of cortical thickness (13). The

second set (S2 - texture set) involved parameters that characterized

the trabecular architecture of the vertebral body. The third set (S3 -

muscle set) involved parameters that characterized the

autochthonous muscles at the vertebral levels present in the CT

scan (Figure 1). A detailed description of the parameters used in this

study is given in the Supplement. These muscles were not further
Frontiers in Endocrinology 0384
subdivided. The psoas was not assessed because in comparison to

the autochthonous muscles the percentage of intermuscular adipose

tissue of the psoas is much lower and the distribution of the muscle

tissue is more homogeneous. To enhance the reproducibility of the

autochthonous muscle parameters, the outer edges of the muscles

were excluded from the segmentation process (29). The distribution

of muscle fat infiltration was subsequently measured once more via

texture parameters. Further details can be found in the Supplement

(Figure S2).
2.3 Statistics

The initial data set comprised age, BMI, and 50 variables that

were analyzed by MIAF-Spine. These variables served as predictors

for the assessment of the first incident VF. Specifically, S1

comprised 18 predictors, S2 contained 7 predictors and S3

comprised 25 predictors. Detailed descriptions can be found in

the Supplement. The z-transformation was employed to standardize

all predictors. Subsequent analyses were conducted in two distinct

groups: men and women. Sex-specific standard deviations of the

control group were utilized for standardization purposes.

Standardized age- and BMI-adjusted univariate odds ratios (OR)

were calculated for each parameter.

For each subset S1-S3, stepwise logistic regression was used to

obtain multivariable fracture prediction models. The initial number

of predictors was reduced by minimizing the Akaike information

criterion (30). The bidirectional stepwise selection was initiated

with a model comprising only age and BMI, and it iteratively

evaluated the inclusion or exclusion of predictors. Irrespective of

their statistical significance, age and BMI were retained in all

models. Other non-significant predictors (p > 0.05) were

excluded. The variance inflation factor (VIF) was employed to

assess multicollinearity. Predictors with VIF values greater than 5

were systematically eliminated, beginning with the predictor that
FIGURE 1

CT of the lumbar spine covering L1 and L2. The images show cropped axial and sagittal views. The green cylinders show the volumes of interest
(VOIs) used to analyze the 4 different density compartments of the Image Analysis type 4 phantom. The red and blue contours delineate the integral
and trabecular VOIs resulting from the 3D segmentation of L1 and L2. The yellow contours delineate the autochthonous muscle VOIs for L1 and L2.
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exhibited the highest VIF. Subsequent to each elimination, a re-

evaluation of the model ensued, resulting in the exclusion of further

nonsignificant predictors. This iterative process was repeated until

all VIF values were below 5, thereby ensuring minimal collinearity

among the final predictors of each subset’s model.

The BMD model S1 was selected as the reference model.

Significant predictors from another subset model, e.g. the muscle

model, were added to S1 to create combined models. The fracture

prediction of the combined models was compared with that of S1

using nested logistic regression following the approach suggested by

Harrell (30). To ascertain whether the combined model significantly

improved fracture prediction compared to S1, the likelihood ratio test

(LRT) was used. The LRT adheres to a chi-squared (c2) distribution
and provides p-values for the comparison of nested models. Receiver

operator characteristic (ROC) curves and their area under the curve

(AUC) values, also used as performance metric, were compared using

bootstrap confidence intervals (CI) and tests (31).

The same procedure was applied to compare fracture prediction

of individual subsets S1-S3 with that of age and BMI. To assess the

stability of the stepwise model selection process, a bootstrap analysis

was performed with 1,000 resampled data sets. For each bootstrap

sample, the stepwise procedure was repeated, and the frequency of

predictor inclusion in the resulting models was recorded.

Furthermore, the AUC values were calculated for each bootstrap

iteration to assess the variability of model performance.

Finally, the combined models were also calculated in women

with fracture SQ grades of 2 and 3, thereby excluding the mild SQ 1

fractures. All statistics were performed using R (R Core Team,

version 4.3.2, functions ‘stepAIC’ [package: MASS] and ‘roc.test’

[package: pROC]).
3 Results

A total of 826 CT data sets (486 women and 340 men) of the

original subsample of 843 subjects were analyzed. The analysis of

CT scans from 17 subjects was not possible, for the majority of cases
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due to the presence of excessive osteophyte formation and

substantial bone sclerosis in the vicinity of the endplates. At

baseline, 96 of the 486 women and 78 of the 340 men had prior

VF (Figure 2). These subjects were excluded from the analysis of the

current study with the objective of determining the risk prediction

of the first incident VF.

Patient characteristics and significant univariate predictors for

fracture occurrence in women are shown in Table 1 and in men in

Table 2. All univariate ORs were adjusted for age and BMI, which

are also included in the aforementioned tables. In women, 17 of the

initial 50 predictors were found to be significant predictors of future

fractures, while in men, 11 of the initial 50 predictors were found to

be significant. The non-significant predictors (p < 0.05) are not

displayed in the tables.

In both sexes, a trabecular texture predictor demonstrated the

numerically highest OR for the first incident VF. However, the

confidence intervals of ORs for all significant predictors largely

overlapped. It is noteworthy that among women, no muscle

parameters exhibited statistically significant ORs for the first

incident VF, while among men, only one muscle parameter

demonstrated a statistically significant OR for the first incident

VF. However, the means of this predictor did not differ significantly

between male control and fracture cases (p = 0.42).

Table 3; Supplementary Tables S2, S3 present the results of the

subset-specific stepwise logistic regressions. The AUC results are

presented in Table 3. The predictors that remained in the S1, S2 and

S3 models are listed in Supplementary Tables S2, S3. In addition to

age and BMI, in the final models only one or two predictors

remained of each subset, indicating a high correlation among the

parameters analyzed of a given subset. For the sake of comparison,

Table 3 also shows results of the model of age and BMI. From LRT

results, the models based on S1 and S2 exhibited significantly (p ≤

0.01) higher fracture prediction than the combination of age and

BMI alone (Table 4). This was also the case for S3 in men (p = 0.03)

but not in women. Combinations of S2 and S3 models with S1

showed a significant improvement in VF prediction compared to S1

alone (p < 0.05), except for S3 in women.
FIGURE 2

Sankey plots illustrating the populations of female and male subjects with prevalent, incident, and no vertebral fractures (VF). QCT images
corresponding to the central blue and orange bars were available, while fracture status information for the right blue and pink bars was also
included. Black numbers indicate the number of patients in each bar, while white numbers denote the contributions from other bars. It is important
to note that subjects with prevalent fractures (orange) were excluded from the analysis in this study; thus, only patients represented in the central
blue bar (controls and those with first incident VF) were included for analysis.
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ROC curve plots are summarized in Figure 3. For women, AUC

values of S1 (0.69) and of the S1-S2 combination (0.69) were

significantly (p < 0.05) higher than for the combination of age

and BMI (0.57) but AUC values of the S1-S2 combination were not

significantly higher than for the S1 model. For men, only the S1-S3

combination (0.77) was significantly (p < 0.05) higher than the

combination of age and BMI (0.63), no other significant differences

were detected.

Integral BMD of the vertebral body remained a significant

predictor for both men and women in S1, the reference model

utilized in this study. In women, the cortical thickness of the lower

endplate also persisted as a significant predictor in S1. The

bootstrap procedure demonstrated that, including age and BMI,

on average 5.4 (CI 3-9) predictors remained significant in women,

with a mean AUC of 0.72 (CI 0.65 – 0.79). In men, an average of 5.7

(CI 3-11) predictors remained significant, with a mean AUC of 0.8

(CI 0.71 – 0.92). The frequency of predictors that remained

significant in each of the 1,000 resampled datasets is documented

in Supplementary Table S4.
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For the sake of comparison, the AUC values were also

calculated for a manually selected model based on clinical

expertise. This model, in addition to age and BMI, consisted of

integral BMD of the total vertebral body (BMD_Int_tVB) and

cortical thickness measured at the midsection of the vertebral

body (Thick_Cort_mVB). However, the latter variable did not

emerge as a significant predictor in the previous analysis for both

men and women. The AUC results were found to be 0.67 (CI 0.60 –

0.74) for women and 0.72 (CI 0.61 – 0.83) for men.

In women, 34 first incident VFs were diagnosed with SQ 1,

while an additional 30 were diagnosed with SQ 2 or SQ 3. Excluding

SQ 1 fractures, the AUC values increased to 0.72 for S1, 0.7 for S2,

and 0.73 for S3 compared to the values in Table 3. The LRT of S3

exhibited a borderline significant increase (p = 0.05) in comparison

to that of age and BMI. The performance of the combined models is

shown in Supplementary Table S5. In contrast to the subset

encompassing SQ1 to SQ3 fractures, the combination of S2 and

S1 no longer was statistically superior in comparison to S1.

However, the incorporation of a muscle predictor enhanced the
TABLE 1 Significant univariate predictors of the first incident vertebral fracture in women.

Controls Incident VF

n 326 64

Mean ± SD AUC CI OR/SD CI p

Age [y] 73.9 ± 5.1 75.2 ± 5.6 0.57 (0.49; 0.64) 0.79 (0.6; 1.0) 0.07

BMI [kg/m2] 27.6 ± 4.5 27.5 ± 5.2 0.51 (0.43; 0.60) 1.03 (0.8; 1.3) 0.83

Subset Predictor Mean ± SD AUC CI OR/SD CI p

S2-Texture Trab_gInhomo 73.9 ± 5.1 75.2 ± 5.6 0.66 (0.59; 0.73) 2.07 (1.4; 3.1) < 0.001

S1-BMD BMD_Int_tVB [mg/cm3] 175.7 ± 37.5 156 ± 33.9 0.67 (0.60; 0.74) 1.86 (1.3; 2.6) < 0.001

S1-BMD BMD_Trab_mCy [mg/cm3] 83.7 ± 33.3 67.6 ± 27.6 0.66 (0.59; 0.73) 1.84 (1.2; 2.7) < 0.01

S1-BMD BMC_Int_tVB [g] 5.6 ± 1.25 4.95 ± 1.08 0.67 (0.59; 0.74) 1.84 (1.3; 2.6) < 0.001

S2-Texture Trab_Vario_slope 6.1 ± 1 5.8 ± 0.8 0.62 (0.55; 0.70) 1.83 (1.2; 2.8) < 0.01

S1-BMD BMD_Trab_tVB [mg/cm3] 90.8 ± 30.5 75.8 ± 28.6 0.66 (0.59; 0.73) 1.79 (1.2; 2.5) < 0.01

S1-BMD BMD_Trab_cCy [mg/cm3] 77.9 ± 29.5 64.2 ± 25.5 0.65 (0.58; 0.72) 1.78 (1.2; 2.6) < 0.01

S1-BMD BMC_Trab_tVB [g] 1.72 ± 0.56 1.45 ± 0.5 0.65 (0.58; 0.72) 1.74 (1.2; 2.4) < 0.01

S1-BMD Thick_Cort_LE [mm] 1.06 ± 0.13 1.02 ± 0.07 0.62 (0.55; 0.69) 1.70 (1.1; 2.5) < 0.01

S1-BMD BMC_Cort_tVB [g] 2.79 ± 0.7 2.48 ± 0.61 0.65 (0.58; 0.72) 1.70 (1.2; 2.4) < 0.01

S1-BMD BMD_Cort_tVB [mg/cm3] 367.1 ± 52.9 342.4 ± 51.2 0.65 (0.57; 0.73) 1.64 (1.2; 2.2) < 0.01

S1-BMD BMC_Cort_mVB [g] 0.62 ± 0.2 0.54 ± 0.17 0.64 (0.56; 0.71) 1.62 (1.1; 2.3) < 0.01

S1-BMD Thick_Cort_tVB [mm] 1.31 ± 0.18 1.25 ± 0.14 0.62 (0.55; 0.70) 1.58 (1.1; 2.2) < 0.01

S1-BMD BMD_Cort_mVB [mg/cm3] 403.1 ± 63 377 ± 60.6 0.64 (0.56; 0.72) 1.53 (1.1; 2.1) 0.010

S1-BMD Thick_Cort_mVB [mm] 1 ± 0.28 0.89 ± 0.24 0.63 (0.55; 0.71) 1.50 (1.1; 2.1) 0.013

S1-BMD Vol_Cort_mVB [cm3] 1.5 ± 0.29 1.39 ± 0.26 0.62 (0.55; 0.70) 1.48 (1.1; 2.1) 0.012

S1-BMD Vol_Cort_tVB [cm3] 7.53 ± 1.2 7.16 ± 1.02 0.61 (0.53; 0.68) 1.43 (1.1; 1.9) 0.025
fr
Mean ± SD of univariate predictors with area under curve (AUC) values and their confidence intervals (CI), all values are sorted by Odds ratios (OR). OR are calculated per one standard
deviation decrease. AUC and OR values are adjusted for age and BMI, n.s. predictors are not listed here. CI gives the confidence interval of OR and p the significance level. A detailed description
of the parameters is given in the Supplement.
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prediction of VF, surpassing the performance of S1. The AUC

values remained significantly different for the comparison against

age and BMI. For men there were too few cases to perform such

an analysis.
4 Discussion

In this study, the performance of 50 parameters obtained from

QCT scans of the spine was assessed to predict the first incident VF

univariately or in combination. Volumetric BMD based models

significantly predicted the first incident VF with AUCs at about the

same level as those reported for FEA in previously published studies

on a sample very similar to ours (8). The analysis revealed that

independent of BMD, parameters of trabecular texture and with
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limitations also of autochthonous muscle significantly improved the

prediction of vertebral fractures (VF), compared to age and BMI

alone. However, when compared to BMD, the enhancement was

minimal and likely to be of negligible clinical significance. Thus age

and BMI adjusted volumetric BMD, that can easily be measured

with QCT and with excellent precision is the parameter of choice

for prediction of incident fractures in clinical routine.

QCT of the spine is typically used to measure average trabecular

and integral BMD of L1 and L2 (32). Therefore, the reference model

(S1) extracted from 18 different BMD and cortical thickness

measures was used as ‘QCT gold standard’ for prediction of the

first incident VF. After the reduction of variables in the stepwise

logistic regression, only integral BMD of the vertebral body

remained for both sexes and in addition, cortical thickness of the

lower endplate for women. As age and BMI alone are important

predictors of incident VF and in order to be consistent with most

publications on fracture prediction that typically report age and

BMI adjusted risk ratios or AUC values, age and BMI were retained

in all models, even if these two parameters were not significant in

the regression step.

The term ‘gold standard’ implies that there is an optimum set of

variables that should be used for fracture prediction. However, the

bootstrap analysis demonstrated that S1 models with different

predictor combinations exhibited average AUCs that were

analogous to the reference S1 model utilized in this study. It is

noteworthy that parameters of cortical thickness were more

frequently incorporated into the models resulting from the

bootstrap process than BMD. However, with the exception of
TABLE 2 Significant univariate predictors of the first incident vertebral fracture in men.

Controls Incident VF

n 239 23

Mean ± SD AUC CI OR/SD CI p

Age [y] 74.4 ± 5.1 76.3 ± 4.8 0.62 (0.51; 0.73) 0.71 (0.5; 1.1) 0.10

BMI [kg/m2] 26.8 ± 3.6 26.0 ± 3.4 0.58 (0.45; 0.71) 1.27 (0.8; 2.0) 0.31

Subset Predictor Mean ± SD AUC CI OR/SD CI p

S1-BMD BMD_Int_tVB [mg/cm3] 195.5 ± 38.9 169.1 ± 34.7 0.71 (0.61; 0.82) 2.05 (1.2; 3.5) < 0.01

S1-BMD BMD_Trab_tVB [mg/cm3] 104.8 ± 29.7 84.6 ± 27.2 0.70 (0.59; 0.82) 2.02 (1.2; 3.4) < 0.01

S1-BMD BMC_Trab_tVB [g] 2.79 ± 0.83 2.24 ± 0.74 0.71 (0.59; 0.82) 2.01 (1.1; 3.5) 0.012

S1-BMD BMD_Cort_tVB [mg/cm3] 411.7 ± 59.4 372.7 ± 48.6 0.71 (0.61; 0.82) 1.98 (1.2; 3.3) < 0.01

S1-BMD BMC_Int_tVB [g] 8.45 ± 2 7.27 ± 1.56 0.69 (0.58; 0.80) 1.96 (1.1; 3.5) 0.017

S1-BMD BMD_Cort_mVB [mg/cm3] 457.5 ± 69.9 413.9 ± 57.4 0.70 (0.60; 0.80) 1.92 (1.1; 3.2) 0.011

S1-BMD BMD_Trab_cCy [mg/cm3] 87.5 ± 28.8 69.2 ± 26.6 0.70 (0.58; 0.81) 1.83 (1.1; 3.1) 0.020

S1-BMD BMD_Trab_mCy [mg/cm3] 93 ± 34.1 73.8 ± 30.6 0.69 (0.58; 0.80) 1.72 (1.0; 2.9) 0.042

S3-Muscle M_gAniso_Bin6 57.3 ± 0.2 57.4 ± 0.2 0.69 (0.60; 0.78) 0.61 (0.4; 1.0) 0.031

S2-Texture Diff_Box_C 2.65 ± 0.04 2.66 ± 0.04 0.68 (0.58; 0.79) 0.48 (0.3; 0.9) 0.022

S2-Texture Trab_lAniso 69.3 ± 1.9 69.7 ± 1.8 0.69 (0.59; 0.80) 0.46 (0.2; 0.8) 0.013
fr
Mean ± SD of univariate predictors with area under curve (AUC) values and their confidence intervals (CI), all values are sorted by Odds ratios (OR). OR are calculated per one standard
deviation decrease. AUC and OR values are adjusted for age and BMI, n.s. predictors are not listed here. CI gives the confidence interval of OR and p the significance level. A detailed description
of the parameters is given in the Supplement.
TABLE 3 AUC values for a combination of age and BMI and for the
subset specific models (that are also adjusted for age and BMI).

Women Men

AUC CI AUC CI

Age & BMI 0.57 (0.49; 0.65) 0.63 (0.51; 0.74)

S1 BMD 0.69 (0.62; 0.76) 0.71 (0.60; 0.82)

S2 Texture 0.67 (0.59; 0.75) 0.72 (0.62; 0.83)

S3 Muscle * 0.69 (0.60; 0.79)
*No predictors of S3-Muscle remained in the final model.
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cortical thickness of the lower endplate, none of the 18 input

predictors occurred in more than 30% of the 1,000 models. While

it is unlikely that the S1 reference model of this study overestimated

fracture risks due to overfitting, a common problem in

multivariable analyses, there is no unique best set of S1 QCT

variables to be used for fracture prediction. Conducting a separate

analysis of a distinct subset of the AGES population, or even a

different study, is likely to yield a different S1 reference model. This

phenomenon is also evident in the univariate results, where the

adjusted ORs for many variables were found to be highly

comparable, despite adjustments for age and BMI.

From a clinical perspective, this is favorable news because a

combination of rather esoteric predictor combinations will most

likely not predict the first incident VF risk better than a standard set

of predictors. Integral BMD, a variable that can easily be measured

with high precision (13), is an adequate predictor of incident VF.

Cortical thickness of the lower endplate may more reflect

sclerotization of the trabecular bone due to vertebral disk

impairments than actual cortical thickness of the endplate.
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Segmentation in this case is challenging and disk impairments

were frequent in the AGES population. Nevertheless, the

observation that degenerative features of the vertebrae may also

be predictive of the first incident VF should be further pursued.

Therefore for the handpicked S1 model cortical thickness of the

mid vertebral body was selected, which is less affected by

degenerative changes (33–35). AUC values of the handpicked

model were well in the range of the bootstrapping results. The

addition of mid cortical thickness did only marginally improve VF

prediction compared to integral BMD alone.

A notable finding is the observation that the S2 texture model

predicted VF independently of the S1 BMD model. In scenarios

where a BMD assessment is not feasible, for example in MRI scans,

VF prediction is still possible using parameters of trabecular texture,

at least in principle. Recent studies have shown that an MRI based

texture analysis can be used to discriminate subjects with and

without prevalent vertebral fractures (36, 37). However, it is

important to remember that texture assessments depend on noise

and spatial resolution (38). Thus, MRI texture results will vary
FIGURE 3

Receiver operator curves for women - for age/BMI, S1 and combinations of S1 with S2. Receiver operator curves for men - for age/BMI, S1 and
combinations of S1 with S2 and S1 with S3. Asterisk marks significant difference (p < 0.05) in the AUC values against the model only including age
and BMI.
TABLE 4 Performance of combinations of nested models tested by LRT: Model 1, which is the base model, and Model 2, which represents the
combined model.

Comparison of Nested Models Women Men

Model 1 Model 2 DoF c2 p DoF c2 p

Age & BMI S1 BMD 385 18.5 <0.001 259 6.4 0.01

Age & BMI S2 Texture 386 15.0 <0.001 258 6.9 0.01

Age & BMI S3 Muscle * 258 4.8 0.03

S1 BMD S2 Texture 385 5.9 0.02 258 4.5 0.05

S1 BMD S3 Muscle * 258 4.8 0.03
*No predictors of S3-Muscle remained in the final model.
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significantly among MRI sequences. It should also be noted that all

scans analyzed in this study were obtained from the same CT

scanner using the same CT protocol. Texture measurements from

different scanners may not be directly comparable.

Several other studies have demonstrated the ability of

histomorphometry or texture parameters to improve the

discrimination of vertebral fractures when compared with BMD

(39–43), but none have investigated the ability to predict incident

osteoporotic vertebral fractures. Therefore, it is an important

finding of this study that texture parameters can be used to

predict incident vertebral fractures. Of course, there are many

different texture parameters and a radiomics approach may more

systematically exploit the potential of texture parameters than the

heuristic approach chosen in this study.

A substantial body of research has demonstrated a correlation

between muscle metrics and spinal fractures (26, 44, 45). However,

the majority of these studies were cross-sectional in design,

investigating the associations of muscle metrics with prevalent

conditions rather than the prediction of incident VF. In this study

the predictive value of paraspinal muscle characteristics was weak,

questioning their utility in clinical practice. Muscle parameters

significantly predicted VF in women only after excluding the SQ 1

mild fractures and even then, the improvement of fracture prediction

compared to age and BMI was only borderline significant. This

finding is particularly noteworthy given the comprehensive array of

parameters that were examined, encompassing muscle density, fat

fraction, and a multitude of texture parameters that characterized the

distribution of muscle tissue and intermuscular adipose tissue. In

men, a modest effect was observed for muscle tissue anisotropy.

However, the clinical interpretation of this finding is challenging, as

the anisotropy did not differ significantly between men with and

those without incident VF.

In the event of confirmation, the implications are substantial.

The role of paraspinal muscle exercise in preventing vertebral

fractures remains uncertain. Actually, a recent 12-month study in

men demonstrated that exercise had no effect on paraspinal

muscles, despite significant training effects on spinal BMD and

thigh muscle parameters (46). Further research is needed to

determine whether muscle deterioration is a cause or a

consequence of fractures.

The multivariable analysis is a big advantage of this study.

Instead of just presenting univariate odds or hazard ratios after

adjustment for age and BMI (7, 8) the advanced statistical approach

of comparing nested combinations of predictors provided the

possibility to compare the performance of fracture prediction of

different models. The use of the log-likelihood ratio as performance

criterion guarantees statistical rigor in identifying the set of

predictors that best fit the pattern of incident fractures (30, 47)

but beyond the result whether fracture prediction differs, the clinical

interpretation of the magnitude of improvement of fracture

prediction is difficult. Therefore, we also calculated AUC values as

established performance characteristic, which, however, offers less

statistical power to test which model is better than others.
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As shown in Table 4 and Supplementary Table S5 compared to

S1 the inclusion of S2 predictors, which characterize trabecular

architecture significantly improved prediction of VF in men and

women. However, in women this was no longer the case once mild

fractures were excluded. Compared to S1 the inclusion of S3

predictors, which characterize muscle significantly improved

prediction of VF in men and after exclusion of SQ 1 fractures

also in women. However, the ROC graphs show that AUC values of

the combined models did not significantly increase AUC values.

Thus, the clinical benefit is rather limited and may not be worth the

effort of an advanced QCT analysis. It is a limitation of the study

that the number of incident vertebral fractures with grade 2 or 3 was

too small in men to perform a separate analysis.

It is another limitation of this study that FEA was not

performed and therefore it was not possible to test whether a

strength determination would have increased fracture prediction

beyond that of BMD. Such an analysis was also not performed in the

earlier study that analyzed the same cohort (8). While in that study

strength showed the highest OR for fracture prediction, integral

BMD was not measured and CI of the OR largely overlapped. OR

calculation may be strongly affected by the distribution of the data

but no test of normal distribution has been reported in the earlier

study. Judging the performance based on ROC analysis showed our

QCT results at the same level as the FEA data reported earlier

Whether from clinical perspective the advanced method of FEA is

worth the additional effort compared to a standard QCT analysis

still has to be determined.

While our results do not provide a definitive solution for

predicting the first incident VF, they offer valuable insights that

may guide future advancements in addressing this inherently

complex and unresolved challenge. Surprisingly even with our

comprehensive analysis of texture, muscle and bone parameters,

none of the parameters or a combination of parameters gave an

outstanding improvement over established predictors, namely age

and BMI adjusted volumetric BMD. Even muscle parameters that

are known to perform well in cross-sectional studies did not

perform extraordinary for the prediction of incident VF. The

analyzed dataset is exceptionally rare and one of the few that

enable such an in-depth analysis. Unfortunately, less than a

handful of datasets exist for the prospective analysis of VF using

QCT. Nevertheless, it would be highly valuable to validate these

findings in future studies.
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Association between
thoracolumbar fascia injury and
residual back pain following
percutaneous vertebral
augmentation: a systematic
review and meta-analysis
Abdiaziz Ahmed Mohamed1,2, Xu Xuyang1,2, Zhang Zhiqiang1*

and Jianghu Chen1,3

1Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated Hospital to Yangzhou
University, Yangzhou, Jiangsu, China, 2Medical College of Yangzhou University, Yangzhou,
Jiangsu, China, 3Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou,
Jiangsu, China
Objective: To evaluate the association between a thoracolumbar fascia injury

(TLFI) and the development of residual back pain (RBP) following percutaneous

vertebral augmentation (PVA).

Background: Osteoporotic vertebral compression fractures (OVCF) commonly

affect elderly individuals and those with osteoporosis, leading to pain and limited

mobility. Percutaneous vertebral augmentation provides immediate pain relief

and stabilization of the fractures. However, some patients experience residual

pain after the treatment. Although recent studies have suggested a potential

association, the role of TLFI in RBP remains inconclusive. The aim of this meta-

analysis was to evaluate this association.

Methods: A thorough search was performed across the PubMed, Medline,

Embase, Web of Science, and Cochrane Library databases from inception to 31

December 2024 to identify studies examining the link between TLFI and RBP

following PVA. A random-effects model was used to combine the outcome data

to account for the potential heterogeneity among the included studies.

Results: This meta-analysis included 13 studies with a total of 4,542 participants

and a TLFI incidence rate of 28%. Univariate analysis indicated that patients with a

TLFI were significantly more likely to develop RBP compared to those without a

TLFI, with an odds ratio (OR) of 4.19 (95% CI: 2.49 to 7.05, I² = 76.9%). The

sensitivity analysis identified two studies as significant influential outliers that

contributed to the majority of the observed heterogeneity. Excluding these

studies resulted in an OR of 4.62 (95% CI: 3.61 to 5.92, I² = 0%). The

multivariate analysis confirmed a strong association between TLFI and RBP

after adjusting for confounders and other risk factors, with an OR of 4.57 (95%

CI: 3.28 to 6.37, I² = 81.5%). The sensitivity analysis identified three studies as

significant influential outliers, and excluding them resulted in an OR of 4.79 (95%

CI: 3.76 to 6.11, I² = 0%) with no heterogeneity. This finding further confirms the

association with a more homogenous overall effect estimate.
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Conclusion: The pooled effect size of both univariate and multivariate analyses

consistently demonstrated that a TLFI significantly increased the risk of

developing RBP after PVA regardless of other related risk factors. Recognizing

fascia injury as a potential source of postoperative pain in clinical practice could

enhance the care of these patients and mitigate postoperative pain.
KEYWORDS

fascia injury, osteoporosis, compression fracture, meta-analysis, fragility fracture,
residual back pain
1 Introduction

Osteoporotic vertebral compression fractures (OVCF) are

extremely common, particularly in elderly individuals and in those

with osteoporosis (1, 2). Compression of the vertebrae causes these

fractures, resulting in severe pain, limited mobility, and decreased

quality of life (3, 4). OVCF is typically caused by low-energy trauma,

although many patients do not report any traumatic incidents (5).

However, the prevalence of osteoporosis and the occurrence of OVFs

vary significantly across racial groups and geographic regions. These

variations can be attributed to epigenetic and genetic factors. These

factors not only influence bone mineral density but also uniquely

influence and predispose different populations to fragility fractures

(6). Percutaneous vertebral augmentation (PVA) is a minimally

invasive treatment procedure for OVCFs that includes

percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty

(PKP). These procedures have emerged as effective interventions that

can alleviate back pain and stabilize vertebral fractures (7, 8).

Percutaneous vertebroplasty involves the injection of bone cement

into the fractured vertebra, stabilizing it and providing immediate

pain relief (9). Percutaneous Kyphoplasty, on the other hand, involves

the use of an inflated balloon to create a cavity within the vertebral

body, with the objective of correcting deformity and restoring

vertebral height prior to cement injection (10, 11). Despite the fact

that PVA procedures provide immediate pain alleviation and

improve the functionality of patients, moderate to severe

postoperative pain may persist in certain individual patients (12,

13). According to the literature, a subset of OVCF patients, ranging

from 5% to 32%, experienced residual back pain (RBP) following

PVA procedures (14). Our findings also revealed similar results, the

incidence of RBP was between 4.6% to 24.2% with an average of

13.9% across included studies in the analysis. It is essential to fully

understand the root causes of residual back pain in these patients

following vertebral augmentation procedures to maximize and revise

treatment procedures, reduce the frequency of postoperative pain,

and enhance long-term results for OVCF patients. Insufficient height
idual back pain; OVCFs,

ercutaneous vertebral

utaneous kyphoplasty.
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restoration, cement leakage, inadequate cement distribution,

advanced osteoporosis, sarcopenia, and intervertebral vacuum cleft

are among the various risk factors identified in the literature as causes

of residual back pain experienced by these patients following

percutaneous vertebral augmentation procedures (15). The role of

preoperative thoracolumbar fascia injury (TLFI) on residual back

pain is still unknown and remains controversial and uncertain (16).

Some studies have reported that a preoperative TLFI serves as a risk

factor for back pain in the short term and is not a rare condition in

OVCF patients but rather an overlooked condition, which becomes

apparent after the pain associated with the fracture is alleviated (17,

18). The thoracolumbar fascia is a complex, multilayered connective

tissue located in the lower back. It extends from the thoracic spine to

the sacrum and plays an important role in the biomechanical stability

and movements of the spine, such as forward flexion (19).

Additionally, it provides attachment points to various paraspinal

muscles, thereby facilitating the transmission of forces across the

trunk and contributing to core stability (20). In patients with OVCFs,

the presence of a TLFI is diagnosed by analyzing the signal produced

by magnetic resonance imaging (MRI), which may manifest as

posterior fascia edema or swelling. This meta-analysis aimed to

evaluate the association between TLFI and residual back pain

following PVA.
2 Methods

The present systematic review and meta-analysis were carried out

following the principles outlined by the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) (21) and the

Cochrane Handbook for Systematic Reviews and Meta-analyses

(22); however, this review was not registered in PROSPERO.
2.1 Literature search

We searched the PubMed, Medline, Embase, Web of Science,

and Cochrane Library databases and conducted two separate
frontiersin.org
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searches: the first up to 31 January 2024 and a follow-up update

search up to 31 December 2024 almost a year after the first search

with the same search query used without change to ensure

consistency. The following free search terms were used:

osteoporotic vertebral compression fractures OR OVCF OR

osteoporotic thoracolumbar compression fractures OR

osteoporotic spinal compression fracture OR percutaneous

vertebroplasty OR percutaneous kyphoplasty OR percutaneous

cementoplasty OR percutaneous vertebral augmentation OR

vertebral body augmentation OR percutaneous spinal

augmentation OR vertebral augmentation OR Risk factor OR

Predictor OR residual back pain OR residual low back pain OR

persistent back pain OR chronic back pain OR recurrent pain

OR thoracolumbar fascia injury. We used the Boolean operator

AND to combine the title, abstract, and keyword phrases with

medical subject headings (MeSH terms) to generate a broad search

and identify the most relevant articles. The included studies were

only published in English. Search terms were adjusted based on the

database of interest. In addition, we performed a manual review of

the references for eligible studies (see Supplementary Data Sheet 1).
2.2 Selection criteria

The study inclusion criteria followed the PICO guidelines and

focused on patients diagnosed with osteoporotic vertebral

compression fractures. The intervention or treatment option for

this condition is percutaneous vertebral augmentation, involving

either PVP or PKP. The control group was comprised of

individuals who did not experience postoperative back pain. The

outcome was the identification of TLFI as an independent risk factor

for RBP along with its odds ratio in a multivariate analysis, which

included observational studies or randomized controlled trials

(RCTs) published in English as complete articles in peer-reviewed

journals. Articles were excluded if they met the following criteria: (1)

studies not including patients with OVCFs; (2) not reported TLFI as

an independent risk factor in a multivariate analysis; (3) had missing

or inadequate outcome data, such as multivariate analysis; (4) case

reports, expert opinions, reviews, or commentaries/editorial letters;

(5) abstracts only; (6) animal-related studies; and (7) non-English.
2.3 Search and selection

In total, 4,316 items were identified following a broad database

search. After removing duplicates using EndNote v21 (28), 2,828

articles remained for screening. Two independent authors reviewed

the titles. If the titles lacked sufficient information, we further

examined the abstracts for inclusion, and 2,790 articles were

excluded based on the inclusion and exclusion criteria. 38 articles

were retrieved and assessed for analysis; subsequently, 25 were

excluded due to explanations listed in Figure 1. The remaining 13

publications satisfied the study criteria for quantitative analysis in

the meta-analysis. The primary outcome of our search was to assess
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whether TLFI was associated with RBP as an independent risk

factor for OVCF following percutaneous vertebral augmentation.
2.4 Data extraction

Two authors completed the literature search and performed

data extraction in accordance with the defined inclusion and

exclusion criteria. They extracted and cross-verified the data using

standardized data extraction forms. The author discussed and

resolved instances of disagreement, seeking guidance from a third

author as needed. General information of the studies collected was:

(1) authors, year of publication, and study design; (2) patient

characteristics, diagnosis, sample size, age, sex, and BMI; (3)

intervention and control information; (4) incidence of TLFI (5);

adjusted or matched variables (Table 1).
2.5 Quality assessment

Since all the studies included in the analysis were observational

studies, quality assessment was carried out using the Newcastle–

Ottawa scale (36) (Table 2). Each study received a total of nine

points based on quality, which was assessed across three broad

classifications. There were four points for selection, two points for

compatibility, and three points for outcome. A study quality score

of six points or more was deemed to be good, whereas a score of five

points or lower was regarded as low quality.
2.6 Statistical analysis

All data analyses were conducted using R software version 4.3.2

https://www.R-project.org/ (37). The analyses used the “meta”,

“dmetar”, and “esc” packages (38–41) to determine the overall

effect size for the outcome. The pooled effect sizes of the odds ratios

(ORs) and 95% confidence intervals (CIs) were calculated. The

extent of heterogeneity was assessed using Cochran’s Q test along

with the I² statistic for the included publications. I² values ≥50%

indicate heterogeneity and correspond to p < 0.05, as determined by

Cochran’s Q test. If the observed I² value was ≥50, we investigated

the possible reasons for heterogeneity and the studies contributing

to it. Considering the prospect of variation across studies, a

random-effects model was applied to combine the effect sizes. We

used the DerSimonian–Laird estimator (42) to calculate the

variance in study heterogeneity. We also applied Knapp–Hartung

adjustments (43) to calculate the 95% CI of the overall pooled effect.

To investigate the possible reasons and the studies contributing to

heterogeneity, we adopted the leave-one-out analysis method (44).

Statistical significance was set at P < 0.05.

2.6.1 Sensitivity analysis
Influential and outlier study analyses were conducted to ensure the

robustness of the overall pooled effect estimates and to investigate each

study’s contribution to both observed heterogeneity and overall effect
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size. Outliers were identified using the “find.outliers” function in the

“dmetar” package in the univariate analysis with two studies (31), and

(34), identified as outliers. Similarly, in the multivariate analysis, one

study (30) was also recognized as an outlier. Furthermore, we carried

out an influence diagnostic analysis to identify influential studies that

may distort the pooled effect estimate in one direction or another using

the “influenceAanalysis” function in the same package. The influence

diagnostic analysis included multiple diagnostic tests, namely, the

Baujat plot (45), influence diagnostic analysis according to

Viechtbauer and Cheung (44), leave-one-out analysis, and graphical

display of heterogeneity (GOSH) plot (46) diagnostics.

2.6.2 Baujat diagnostic plot
The Baujat plot detects how each study contributes to

heterogeneity based on Cochran’s Q and how they influence the
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overall effect using the leave-one-out method (45). Studies

concentrated on the right side of the plot heavily contributed to

the heterogeneity of the meta-analysis. Studies on the upper right

side are considered particularly influential and contribute to both

heterogeneity and overall effect size. In both the univariate and

multivariate analyses, two studies were found to be influential

outliers, namely (31) and (34) and (27) and (30), respectively, and

these excessively contributed to both heterogeneity and the overall

effect estimate (Figure 2).

2.6.3 Influence diagnostics
Influence diagnostics display and detect each study’s influence

on the overall effect size of the meta-analysis (44). This influence

diagnostic displays different plots that measure different influence

diagnostic metrics. Studies with extreme values that may distort
FIGURE 1

PRISMA flowchart for the literature search and selection process.
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TABLE 1 Basic characteristics of the included studies.

Sample size Mean
age

(years)

Sex
(Female

%)

RBP (inci-
dence
rate%)

TLFI (inci-
dence
rate %)

Fellow-
up

period

Matched or
adjusted
variables

69.3 66.7 4.6% 50% 12 months Age, sex, BMI

75.4 66.5 24.19% 7.4% 1 month Age, sex, BMI

75 80 13.80% 6.7% 1 month
Age, sex, BMI,
surgical level.

70 77.4 11.08% 6.7% 1 month Age, sex, surgical level

76.6 64.7 9.82% 44.7% 12 months
Age, sex, BMI,
surgical level

74.5 82.6 16.95% 16.4% 6 months
Age, sex, BMI,
surgical level

77 58.2 6.81% 28% 12 months
Age, sex, BMI,
surgical levels

79 50% 15.30% 53% 12 months Age, sex, surgical levels

71.5 82% 17.22% 19.1% 3 months
Age, sex, BMI,
surgical level

75.3 81% 10.62% 23.75% 6 months Age, sex, BMI

75 77% 22.97% 66.89% N/R
Sex,

surgical level,

74.8 58% 12.85% 22.62% 2 days
Age, sex, BMI,
surgical level

74.7 80% 8.0% 14.19% 1 month
Age, sex, BMI,
surgical level

asty; PKP, percutaneous kyphoplasty; RBP, Residual back pain; TLFI, Thoracolumbar fascia injury; BMI, Body mass index.
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References Year Country
Study
design

Diagnosis
PVA

procedure
(cases/
Control)

Yang et al. (23) 2019 China Retrospective OVCF PVP 60/60

Li et al. (24) 2020 China Retrospective OVCF PKP 52/163

Li et al. (25) 2021 China Retrospective OVCF PVP 37/231

Ge et al. (26) 2022 China Prospective OVCF PKP 81/731

Gao et al. (27) 2023 China Retrospective OVCF PVA 86/790

Lin et al. (28) 2023 China Retrospective OVCF PKP 47/234

Wang et al. (29) 2023 China Retrospective OVCF PVP 46/629

Wang et al. (30) 2023 China Retrospective OVCF PKP 28/155

Tu et al. (31) 2024 China Retrospective OVCF PKP 46/221

Chen et al. (32) 2024 China Retrospective OVCF PVP 17/143

Zhang
et al. (33)

2024 China Retrospective OVCF PVP 34/114

Shen et al. (34) 2024 China Retrospective OVCF PKP 50/339

Chen et al. (35) 2024 China Retrospective OVCF PVP 48/100

OVCF, Osteoporotic vertebral compression fractures; PVA, percutaneous vertebral augmentation; PVP, percutaneous vertebropl
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FIGURE 3

Influence diagnostic plot showing different influence diagnostic metrics. (A) Univariate analysis; (B) Multivariate analysis.
FIGURE 2

Baujat plot showing the influence of studies on heterogeneity and pooled effect. (A) Univariate analysis; (B) multivariate analysis.
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the overall effect estimate are shown in red in the different plots.

This diagnostic test flagged the same studies as the previous

sensitivity analysis in both the univariate and multivariate

analyses, namely (31) and (34) and (27) and (30), respectively,

as shown in Figure 3.

2.6.4 Leave-one-out-analysis method
The leave-one-out method sensitivity analysis omits one study

at a time and recalculates the overall pooled effect size each time.

Determining how both heterogeneity and the overall effect estimate

change as different studies are excluded each time. In our analysis,

the lowest heterogeneity and most robust overall effect estimate

were reached after excluding the studies previously flagged by the

other sensitivity analyses in both the univariate and multivariate

analyses (Figure 4).
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2.6.5 GOSH plot diagnostics
GOSH plots (46) are another method that explores the pattern

of heterogeneity in a meta-analysis by fitting all possible subsets of

the studies into clusters to detect which study combinations

contribute to heterogeneity. This can be achieved using the

“Gosh.Diagnostics” function in the “dmetar’ package that uses

three clustering or unsupervised algorithm K-means clustering

(47), density reachability and connectivity clustering (DBSCAN)

(48), and Gaussian mixture models (49) to display the heterogeneity

pattern and study combinations that most likely contribute to it. In

our meta-analysis, in both the univariate and multivariate analyses,

the GOSH plot demonstrated an apparently high heterogeneity-

effect estimate combination pattern (Supplementary Figure 2). This

indicates that more than one study contributed to the observed

heterogeneity of the effect size. The results of both the univariate
FIGURE 4

Forest plot depicting the leave-one-out sensitivity analysis. (A) Univariate analysis; (B) multivariate analysis.
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FIGURE 5

Unsupervised machine learning algorithms detecting influential studies. (A–C) Univariate analysis; (D–F) multivariate analysis.
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FIGURE 6

GOSH plot showing influential studies with shaded points depicting when the influential study is included in the analysis. (A, B) Univariate analysis;
(C–E) multivariate analysis.
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and multivariate analyses of the different clustering algorithms are

shown in Figure 5.

The univariate GOSH plot clustering algorithm results in

identifying potential outliers contributing to heterogeneity are as

follows (Figure 6):
Fron
• K-means: Study 9 (31) and Study 12 (34).

• DBSCAN: Study 9 (31) and Study 12 (34).

• Gaussian mixture model: Study 9 (31) and Study 12 (34)
In the univariate analysis, all cluster combinations incorporating

the study by Tu et al. (31), exhibited high heterogeneity with low effect

size, indicating the influential nature of this study (Figure 6A).

Similarly, all the results in which the study by Shen et al. (34) was

included demonstrated reduced heterogeneity contribution but high

effect size, rendering this study influential due to its substantial effect on

underestimating the overall effect size (Figure 6B).

The multivariate GOSH plot clustering algorithm results in

identifying potential outliers contributing to heterogeneity are as

follows (Figure 6):
• K-means: Study 8 (30) and Study 4 (26).

• DBSCAN: Study 8 (30).

• Gaussian mixture model: Study 4, Study 8, and Study 3 (26,

27, 30)
In the multivariate analysis, the results from the combinations of

studies in which (26) and (27) were included exhibited a small degree of

heterogeneity contribution. However, the study by Gao et al. (27), due

to its narrow confidence interval, received a high weight and was

recognized as an influential study despite its average effect size

(Figure 6C). Conversely, the results incorporating the study by Ge
tiers in Endocrinology 10101
et al. (26) demonstrated comparable heterogeneity contribution to that

of (27). However, due to its substantial effect contribution relative to the

overall effect size, it was considered influential. (Figure 6D). Similarly,

the clusters that included the study by Wang et al. (30) demonstrated

that this study contributed the highest level of heterogeneity. Despite

having the smallest effect size among the studies included in the

analysis, this study was previously identified as an influential

outlier. (Figure 6E).
3 Results

3.1 Basic characteristics of the
included studies

The evaluation included 13 observational studies, consisting of

12 retrospective cohort studies and one prospective research study.

These studies collectively involved a study population of 4,542

individuals. Other important parameters from the included

studies are listed in the baseline characteristics in Table 1. All

studies assessed the association between TLFI as a risk factor and

RBP, among other risk factors, following percutaneous

vertebral augmentation.
3.2 Findings of the included studies

Yang et al. (23) conducted retrospective case-control research to

identify the risk factors for persistent back pain after PVP. From

1,316 patients who underwent PVP for OVCF, 120 were selected. In

total, 60 patients reported residual back pain (VAS score >4) 1

month postoperatively and were compared with 60 patients who
TABLE 2 Newcastle–Ottawa score for quality assessment.

Author Selection Comparability Outcome Overall score

1 2 3 4 5 6 7 8 9

Yang, 2019 (23) * * * * * / * * * 8

Li, 2020 (24) * * * * * * * * / 8

Li, 2021 (25) * * * * * * * * / 8

Ge, 2022 (26) * * * * * / * * / 7

Gao, 2023 (27) * * * * * * * * * 9

Lin, 2023 (28) * * * * * / * * / 7

Wang, 2023 (29) * * * * * / * / * 7

Wang, 2023 (30) * * * * * * * * * 9

Tu, 2024 (31) * * * * * * * / / 7

Chen, 2024 (32) * * * * * / * * * 8

Zhang, 2024 (33) * * * * * / * / / 6

Shen, 2024 (34) * * * * * * * / / 7

Chen, 2024 (35) * * * * * * * / / 7
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did not report residual back pain. Univariate regression analysis

revealed that the prevalence of TLFI was 71.7% in the case group

and 28.3% in the control group, suggesting that TLFI is a potential

risk factor for RBP. Multiple logistic regression analysis adjusted for

confounders confirmed TLFI as an independent risk factor

associated with RBP post-PVP (OR = 3.805; P = 0.002). Li et al.

(24) performed a retrospective study to identify risk factors for

residual back pain after PKP in 809 patients with osteoporotic

vertebral compression fractures. The final analysis included 215

patients: 52 with moderate-to-severe residual pain (VAS ≥4) 1

month postoperatively and 163 with no or mild pain as controls.

Univariate analysis showed that TLFI incidence was 17.3% in the

case group and 4.3% in the control group. Multivariate logistic

regression adjusted for other risk factors indicated that TLFI was

independently associated with residual back pain post-PKP (OR =

4.11; P = 0.014). Li et al. (25) conducted a retrospective analysis to

identify risk factors for persistent back pain after PVP. The study

included 268 patients with OVCFs divided into residual pain (VAS

score ≥4 after 1 month, n=37) and non-residual pain groups

(n=231). They observed a TLFI incidence of 16.2% in the residual

pain group and 5.2% in the non-residual pain group. Multiple

logistic regression analysis showed that TLFI was an independent

risk factor for residual pain post-PVP (OR, 3.965; P = 0.022).

Similarly, Ge et al. (26) reported that in a population of 731 patients

who underwent percutaneous kyphoplasty, 81 developed residual

back pain after analyzing the risk factors in a prediction model. In a

univariate analysis, they found that TLFI was associated with

residual back after PKP surgery (OR, 6.933; P=<0.001) and the

multivariate analysis indicated it was an independent risk factor for

postoperative pain (OR, 11.377; p <0.001). Gao et al. (27)

retrospectively reviewed the data of individuals treated with PVA,

both percutaneous vertebroplasty and percutaneous kyphoplasty, to

assess the causes of residual pain following the operation. In total,

86 patients were classified in the residual back pain group based on

a VAS score ≥4, and 790 patients were in the control group. In a

univariate analysis, they found that posterior fascia injury was

associated with postoperative back pain with an incidence of 73%

in the RBP group compared to 41.6% in the control group. In a

multivariate analysis, they found that fascia injury was an

independent risk factor associated with residual back pain

(OR,5.23; P=<0.001). Lin et al. (28) analyzed retrospective data to

identify the risk factors for residual back pain and developed a

predictive nomogram after percutaneous kyphoplasty. They

categorized subjects into a residual back pain group with a VAS

score ≥4 1 month postoperatively and a non-residual back pain

group, with 47 patients in the RBP group and 234 in the control

group. Univariate analysis revealed that TLFI was associated with

persistent pain in 31.9% of cases versus 13.2% of controls.

Multivariate logistic regression, after accounting for confounders,

indicated that TLFI was independently associated with residual

back pain (OR, 5.36; P < 0.001). Wang et al. (29) investigated the
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risk factors associated with RBP following percutaneous

vertebroplasty. In a study of 675 patients with OVCFs, 46

developed RBP (VAS score ≥4) 1 month postoperatively. The

univariate logistic regression analysis showed that TLFI was

present in 71.7% of the RBP cases compared to 24.8% of the

control group. The multivariate analysis adjusted for other risk

factors confirmed TLFI as a significant independent risk factor for

RBP (OR, 4.083; P= 0.032). Wang et al. (30) conducted a risk factor

analysis in a retrospective study on the causes of postoperative pain

following PKP in patients with OVCFs. They divided 183 patients

who received PKP into RBP and control groups based on a VAS

score ≥4 postoperatively, although a pain measurement cutoff was

not reported. A TLFI was diagnosed using preoperative MRI fat-

suppression sequences. In univariate analysis, TLFI was present in

71.4% of the cases and 49.7% of the control group. After adjusting

for confounders in the multivariate logistic regression, TLFI was

identified as an independent risk factor for back pain (OR, 1.528;

P<0.001). Tu et al. (31) evaluated risk factors for residual pain

following PKP and developed a risk prediction model using data

from 267 patients with OVCFs. RBP was defined as a VAS score ≥4

1 day postoperatively, dividing patients into RBP and non-RBP

groups. A TLFI was identified based on preoperative MRI signal

changes, low signal on T1-weighted images (T1WI), and high signal

on both T2-weighted images (T2WI) and Short-TI Inversion

Recovery (STIR). Multivariate logistic regression analysis,

controll ing for other factors, revealed that TLFI was

independently associated with RBP (OR, 9.1; P < 0.01). Chen

et al. (32) investigated the impact of enhanced central

sensitization on RPB and its connection to RBP after a PVP

procedure and related risk factors. RBP was defined as a VAS

score of ≥4 at 1 d, 2 weeks, and 1 month after PVA. In the

multivariate logistic regression analysis, TLFI was recognized as

an independent risk factor for RBP and was defined according to

preoperative MRI signal changes, low signal on T1W1, and high

signal intensity on T2W1 and STIR sequences. Zhang et al. (33)

concluded in a multivariate logistic regression analysis that

preoperative TLFI is an independent risk factor for RPB post-

PVA interventions. However, this study did not report a specific

VAS score cut-off point or TLFI diagnostic method but referenced

TLFI findings from previous studies (29). Shen et al. (34) examined

the short-term risk factors associated with RBP after PKP. A VAS

score of ≥4 at 2 days postoperatively was defined as RBP. A TLFI

was defined as the presence of preoperative fascia injury and was

diagnosed using MRI signal intensity changes, low signal on T1W1,

and high signal on both T2W1 and fat-suppressed sequences. The

multivariate risk analysis showed that preoperative TLFI was an

independent risk factor for RBP after PKP surgery. Chen et al. (35)

likewise examined the risk factors associated with RBP in patients

who underwent PVP. The presence or absence of RBP was defined

as a VAS score ≥4 immediately and 1 month postoperatively. The

TLFI diagnostic method was not explicitly reported but referenced
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(28, 31). After adjusting for related risk factors in the multivariate

logistic regression analysis, the presence of a preoperative TLFI was

a risk factor that could lead to postoperative pain.
3.3 Results of current meta-analysis

The univariate analysis revealed that patients with a TLFI were

significantly more likely to develop RBP than those without a TLFI.

The pooled results of 13 studies indicate that the odds ratio (OR) for
Frontiers in Endocrinology 12103
developing RBP in TLFI patients is 4.19 (95% CI: 2.49 to 7.05, I² =

76.9%), with the presence high level of heterogeneity. This suggests

a more than three-fold increase in risk following PVA, as shown in

Figure 7. The multivariate analysis of the pooled effect also

demonstrated a substantial correlation between TLFI and the risk

of RBP development post-PVA after accounting for confounders

and other risk factors related to RBP, with an OR of 4.57 (95% CI:

3.28 to 6.37, I² = 81.5%) (Figure 8). However, high heterogeneity

was observed in the multivariate analysis, indicating a considerable

difference between the studies.
FIGURE 8

Forest plot depicting an association between TLFI and RBP following PVA with influential studies and outliers included (multivariate analysis).
FIGURE 7

Forest plot depicting an association between TLFI and RBP following PVA with influential studies and outliers included (univariate analysis).
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3.3.1 Univariate sensitivity analysis
To evaluate the heterogeneity of these results and assess the

influential studies contributing to it, a sensitivity analysis was

performed and all different sensitivity analysis metrics identified two

studies, i.e., (31) and (34) as influential outliers contributing to the

majority of the observed heterogeneity and underestimating the overall

effect size. After excluding these two studies, the overall effect size

increased to an OR of 4.62 (95% CI: 3.61 to 5.92, I² = 0%) with no

heterogeneity, indicating a more homogenous and stable estimate and

reinforcing the significant association between TLFI and RBP (Figure 9).

3.3.2 Multivariate sensitivity analysis
To assess the heterogeneity of these results and investigate the

influential studies contributing to it, a sensitivity analysis using the

leave-one-out method was performed. The sensitivity analysis

identified three studies, i.e., (26, 27, 30), to be influential and

outliers contributed significantly to the high heterogeneity

observed and overall effect size. After excluding these studies, the

overall effect size was recalculated, showing a somewhat stronger

and more homogenous estimate than the initial one with an OR of

4.79 (95% CI: 3.76 to 6.11, I² = 0%), with no heterogeneity. This

indicates that the initial results were affected by the presence of

influential and outlier studies that underestimated the overall effect

size. However, the recalculated effect size confirmed a significant

association between TLFI and increased risk of RBP following

PVA (Figure 10)
3.4 Publication bias

We used a funnel plot to evaluate the presence of small study

bias by visually inspecting the symmetry of the plot, imputing any

missing effect estimate using the Duval and Tweedie trim-and-fill
Frontiers in Endocrinology 13104
method and generating a contour-enhanced funnel plot (50, 51).

After omitting influential studies, due to the limitations of the trim-

and-fill method with the existence of high heterogeneity among

studies (52), neither the visual inspection nor the trim-and-fill

method showed any funnel plot asymmetry or missing effects,

indicating no small study bias (Figure 11).

Additionally, Egger’s regression test did not suggest the

presence of asymmetry in the funnel plot (53) (Table 3).
4 Discussion

The thoracolumbar fascia, also known as the lumbodorsal

fascia, is an intricate multilayered connective tissue structure

located in the posterior region of the trunk. Extending from the

thoracic vertebrae to the sacrum, this fascia plays a vital role in

maintaining the biomechanical stability of the spine and facilitating

movements such as forward spinal flexion. Furthermore, it serves as

an anchor point for various muscles along the vertebral column,

enabling the distribution of forces across the trunk and enhancing

core stability (20).

The precise mechanisms by which thoracolumbar fascia injury

causes back pain remain unclear. However, based on the existing

research, three mechanisms have been suggested for how TLFI

contributes to back pain, and these proposed mechanisms may exist

in isolation or in combination (16). First, by disrupting the

structural integrity of the fascia, TLFI can cause micro-injuries or

inflammation that may directly stimulate nociceptive nerve

endings, which are specialized sensory nerve endings found in

abundance within the fascial tissue. This direct stimulation can

elicit back pain. A study conducted by Barry et al. (54)

demonstrated that the thoracolumbar fascia contained

approximately three times the concentration and distribution of
FIGURE 9

Forest plot depicting an association between TLFI and RBP following PVA with influential studies and outliers excluded (univariate analysis).
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sensory nerve fibers with calcitonin gene-related peptide (CGRP)-

positive fibers compared with the back muscles. Similarly, Tesarz

et al. (55) found that the fascia possesses a dense network of

nociceptive nerves and the majority of CGRP-and substance P

(SP)-containing sensory fibers are located in the outer layer of the

fascia and subcutaneous tissue. Second, following TLF micro-injury

and inflammation, restructuring, remodeling, or tissue stiffness is

possible, leading to compromised functional integrity and

proprioceptive signaling that alters the sensory input of fascial

nociceptors (56). Finally, injury to the fascia can activate

nociceptive nerve terminals, resulting in enhanced sensitivity and

pain radiating from adjacent tissues with spinal connections similar

to those of the thoracolumbar fascia (TLF) (16). Other studies have

also indicated that these nerve endings proliferate following

inflammatory or chemical stimulation in both experimental rats

and humans, suggesting that fascial damage may contribute to back

pain (57, 58). A study conducted by Schilder et al. (59) revealed the

crucial role of the human thoracolumbar fascia in lower back pain.

Their findings demonstrated that this tissue exhibits greater

sensitivity to chemical stimuli than the muscle or subcutaneous

tissues. This study involved artificially inducing inflammation by

administering hypertonic saline into the thoracolumbar fascia,

which elicited severe pain, extended pain duration, and a more

extensive pain distribution pattern reminiscent of acute lower back

pain symptoms. Moreover, the findings suggest that disruption or

disorganization of fascial structures could be a contributing factor to

chronic low back pain. These findings elucidate the role of the TLF

as a significant etiological factor for back pain.

This systematic review and meta-analysis was conducted to

assess the relationship between TLFI as an independent risk factor

for the development of residual back pain following PVA treatment

in patients with OVCFs. Our meta-analysis revealed that TLFI

significantly increased the risk of RBP after PVA. The univariate
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analysis showed that patients with a TLFI were more than four

times (OR: 4.62) more likely to develop postoperative pain than

those without a TLFI, without adjusting for other related risk factors

that may contribute to RBP. This result is consistent with previous

findings (30). The sensitivity analysis indicated reduced

heterogeneity to no heterogeneity after excluding two studies that

contributed the majority of the observed heterogeneity, as shown in

Figures 7, 9. Similarly, after accounting for confounders and other

related risk factors, the multivariate analysis confirmed an

independent relationship between TLFI and the development of

postoperative pain (OR: 4.79). This indicates that patients with a

TLFI are more than four times more likely to develop residual back

pain than those without a TLFI, demonstrating a strong association.

Our findings are consistent with those of previous studies (33, 36).

A sensitivity analysis was performed to ensure the robustness of the

pooled effect estimate of the outcome and investigate the studies

contributing to the heterogeneity observed in the analysis. After

excluding three influential studies identified to be contributing to

heterogeneity and affecting the overall effect estimate, there was no

heterogeneity in the overall effect size, demonstrating the robustness

of the overall effect estimate (Figures 8, 10). Both the univariate and

multivariate analyses robustly indicated that TLFI significantly

increased the risk of RBP development after PVA. The sensitivity

analysis confirmed that the observed associations were consistent

and not unduly influenced by any individual study. The observed

heterogeneity likely occurred due to statistical heterogeneity rather

than methodological differences between the studies.

Recent studies have reported that osteoporotic vertebral

compression fractures often involve thoracolumbar fascia injury,

which is associated with residual back pain following percutaneous

vertebral augmentation. A prospective cohort study by Yan et al. (60)

investigated the causes of persistent back pain following vertebroplasty

and found that fascia injury was present in 42.1% of the cases. Yang
FIGURE 10

Forest plot depicting an association between TLFI and RBP following PVA with influential studies and outliers excluded (multivariate analysis).
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et al. (61) retrospectively analyzed the data of 132 patients with OVCFs

and determined that TLFI has a substantial impact on the absence of

immediate pain alleviation with a 39.4% incidence rate compared to

those without a TLFI and it prolongs the ambulation time following

PVP. Similarly, they reported that TLFI and associated pain could

persist for over 3 months in certain patients, with follow-up MRI

revealing worsened fascia injury compared to the preoperative

condition, potentially contributing to prolonged postoperative pain.

In this meta-analysis, the TLFI incidence rate was 28%, which indicates

that fascia injury is a frequently overlooked complication that often

coexists with osteoporotic vertebral fractures, underscoring the need for

greater clinical attention. Osteoporotic vertebral compression fractures

predominantly result from low-energy trauma and routine daily

activities, such as lifting and twisting, or even occur without any

noticeable trauma, rather than from high-impact trauma. This is due

to the loss of bone quality and integrity (62, 63). However, this may not

be the case for patients with OVCFs with a thoracolumbar fascia injury

who are likely to have sustained high-impact trauma. A recent study by
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Deng et al. (17) evaluated the occurrence of TLFIs with an incidence of

27.8% in patients with OVCFs treated with PKP and found that the

severity of fascia injury increased with the severity of trauma sustained

by the patient. Moreover, they observed that a TLFI showed multilevel

involvement, which was positively associated with the degree of trauma

and impacted the efficacy of PKP, leading to acute residual pain.

However, other medical situations in patients with OVCFs may

contribute to fascia injury, which leads to postoperative pain

following the augmentation procedure. In a retrospective study

conducted by Luo et al. (18), TLFI contributed to RBP in patients

with OVCFs after PVP. Simultaneously, they evaluated the risk factors

that may lead to a TLFI and determined that a low body mass index

(BMI), elevated blood pressure, and sarcopenia were significant risk

factors for a TLFI. Sarcopenia was significantly more prevalent in the

TLFI group than in the non-TLFI group, affecting 51.1% of individuals,

compared to 14.7% in the non-TLFI cohort. Identifying these risk

factors preoperatively can facilitate better risk stratification and

counseling for patients undergoing PVA.
TABLE 3 Quantification of funnel plot asymmetry.

Study analysis Test Bias estimate Confidence interval t P

Univariate Egger’s regression test 0.022 -2.3-2.34 0.018 0.9858

Multivariate Egger’s regression test 0.653 -1.91-3.21 0.500 0.6305
FIGURE 11

Publication bias. (A, B) Funnel plot and contour-enhanced funnel plot (univariate analysis). (C, D) Funnel plot and contour-enhanced funnel plot
(multivariate analysis) with influential and outlier studies excluded.
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A TLFI is currently diagnosed by careful examination of the

posterior fascia for any anomalous signals that may suggest the

presence of edema on a preoperative MRI image. These signals may

appear as low-intensity signals on T1WIs and as high-intensity signals

on T2WIs and T2W1 fat-suppression sequences. Early detection and

diagnosis of TLFI using advanced imagingmodalities, such asMRI, can

facilitate tailored interventions to alleviate residual pack pain.

Thoracolumbar fascia injuries on MRI often present as elongated or

flake-like patterns across multiple segments. These injuries are difficult

to detect with only T1WIs and T2WIs but are clearly visible on T2WI

fat-suppression imaging (17, 61). The development of standardized

imaging protocols can ensure consistent detection and optimize

preoperative planning. Although PVA procedures are effective

treatment options for alleviating pain originating from OVCFs, they

have no effect on improving the pain associated with fascia injury,

which becomes obvious early in the postoperative period or the

subsequent inflammation, and treating the fracture alone can result

in suboptimal pain alleviation, patient dissatisfaction, and postoperative

pain (61). Furthermore, reversing fascia injury may require a long

recovery time. Langevin et al. (64) found that 4 weeks of passive

stretching exercise did not restore fascia mobility following injury and

removal of a movement restriction device, suggesting that a fascia

injury could become a long-term issue and may not resolve

automatically. Similarly, recent studies also suggest that TLFI and

associated pain could persist longer in some individual patients and

could even become exacerbated, leading to prolonged residual pain

(61). These findings underscore the importance of identifying the

origin of TLFI in patients with OVCFs to ensure successful PVA

interventions. Additionally, considering patients with OVCFs are often

elderly and have multiple comorbidities. The incidence of TLFI could

be multifactorial and linked to natural age-related deterioration of the

fascia due to overuse and poor posture. Furthermore, it could indicate

severe traumatic injury or possibly suggest an undiagnosed

comorbidity, such as sarcopenia, which is relatively common among

elderly individuals with OVCFs (15, 17, 18, 31).

By recognizing TLFI as a risk factor for residual pain, it may be

possible to devise more effective preoperative and postoperative

patient care strategies and reduce the development of RBP.

Preoperative treatment options may include focused pain

management protocols such as localized anti-inflammatory

injections to relieve TLFI-associated pain. Liu et al. (65)

administered a cocktail of ropivacaine and betamethasone to a

group of OVCF patients with TLFI prior to the PVP augmentation

procedure. They compared the results to those of the control group

and concluded that combined treatment can help alleviate pain,

reduce the chance of RBP, and shorten the need for postoperative

pain medication. However, this may prolong the duration of the

surgery. Moreover, adding specific individually tailored physical

therapy and functional exercises postoperatively aimed at helping

recover thoracolumbar fascia integrity could help reduce fascia

inflammation, mitigate chronic postoperative pain, and support

fascia recovery (66, 67). Combining these preoperative medical

interventions and postoperative physiotherapies based on

individual patient needs may reduce postoperative pain associated

with TLFI and its complications (61). Furthermore, although some
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degree of fascia damage is inevitable during vertebral augmentation

procedures, reducing it as much as possible by more effectively

utilizing navigation equipment such as C-arm fluoroscopy to better

locate pedicles, reduce operation time, and reduce unnecessary needle

punctures, particularly for OVCF patients with existing TLFI, could

be an important step in mitigating persistent postoperative pain.
4.1 Implications of TLFI

The findings of this meta-analysis indicate that failing to address

TLFI or its potential causes before and after surgery may prevent PVA

treatment from fully achieving the intended outcomes of immediate

pain alleviation and fracture stabilization. A thorough medical history

and general health assessments of patients with OVCFs can aid

physicians in differential diagnoses, and understanding the cause of

the fracture traumatic or non-traumatic could be a vital step in

ascertaining the origin of TLFI, as it eliminates trauma-related fascia

injury. Currently, the presence of TLFI is reported in radiology reports

as incidental soft tissue edema without any emphasis and many

orthopedic doctors regard it as a minor issue, often attributing it to

trauma, which is not applicable to all patients with OVCFs.

Consequently, it is frequently overlooked compared to more pressing

osteoporotic vertebral fractures. However, as demonstrated in this

study, there is growing evidence indicating that a preoperative TLFI

may have a negative clinical impact on the treatment outcome and pain

relief in patients with OVCFs. A preoperative TLFI should be

considered an indicator of early postoperative back pain (17).

Additionally, considering that TLFI as a postoperative pain indicator

goes beyond PVA, it could inform other musculoskeletal or spine-

related conditions such as chronic back pain.
4.2 Strengths

This systematic review and meta-analysis has several strengths

and limitations. To ensure the inclusion of all eligible studies, we

conducted an exhaustive database search using a rigorous search

strategy and criteria. We established a robust relationship between

TLFI and postoperative residual pain through univariate and

multivariate analyses, modifying the other risk factors in the

multivariate analysis following PVA. In addition, we conducted a

sensitivity analysis to investigate heterogeneity among the studies.

After removing the two outliers that contributed to heterogeneity,

we further confirmed the link between TLFI and RBP. Furthermore,

this is the first meta-analysis to demonstrate an independent

relationship between TLFI and RBP development after post-

PVA treatment.
4.3 Limitations

In total, 12 of the 13 studies included in the analysis were

retrospective cohort studies with a limited number of patients.

These studies inherently contain bias and may introduce bias into
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the results of the review. Furthermore, some degree of variability

may exist in the definition of fascia injury due to a lack of specific

guidelines and definitions to follow, which may limit our

conclusion. In addition, the data analyzed in this meta-analysis

pertained to the short-term relationship between TLFI and RBP.

There is a lack of information on the medium and long-

term outcomes.
4.4 Future research

In order to validate the connection between TLFI and RBP after

PVA, prospective studies are necessary. Researchers should also

investigate the precise manner in which TLFI contributes to RBP,

which could potentially mitigate this risk. Future studies should also

evaluate the risk factors that may cause fascia injury in addition to

the trauma associated with an OVCF, which may not always exist in

patients, such as sarcopenia, which has been implicated in fascia

injury. Current diagnostic procedures for what constitutes a TLFI

and what degree of fascia injury should be considered a TLFI are

lacking. To minimize this difference and the heterogeneity that

inevitably arises from the lack of guidelines to follow, quantitative

diagnostic methods are needed in future research.
5 Conclusion

This study demonstrated that preoperative TLFI is associated

with postoperative residual pain after PVA, and the pooled effect

consistently showed that, with or without the presence of other risk

factors, patients with TLFIs have an increased risk of developing

RBP. Recognizing fascia injury as a potential source of postoperative

pain in clinical practice could enhance the care of these patients and

mitigate postoperative pain. Additional research is needed to fully

understand TLFIs and to develop effective treatments to reduce the

risk of postoperative residual pain.
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Development and validation of a 
nomogram for predicting low 
bone mineral density in male 
patients with ankylosing 
spondylitis
Xiaotong Yang 1, Qin Cheng 2, Yifan Li 1, Hao Tang 1,3, Xin Chen 1, 
Lijun Ma 1, Jing Gao 1 and Wei Ji 4*
1 Nanjing University of Chinese Medicine, Nanjing, China, 2 Nanjing Jiangning Hospital of Chinese 
Medicine, Nanjing, China, 3 Department of Rheumatology, Liyang Hospital of Chinese Medicine, 
Liyang, China, 4 Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, 
Nanjing, China

Objective: This retrospective cohort study aimed to develop and validate clinical 
nomogram models for predicting site-specific low bone mineral density (BMD) 
risk in male patients with ankylosing spondylitis (AS).

Methods: This study enrolled male AS patients treated at the Rheumatology 
Department of Jiangsu Provincial Hospital of Traditional Chinese Medicine 
between January 2017 and September 2024. A total of 322 eligible patients were 
randomly allocated to training and validation cohorts at a 7:3 ratio. Potential 
predictors of low BMD at the lumbar spine (LS) and left hip (LH) were initially 
screened through univariate logistic regression (p < 0.05), followed by stepwise 
bidirectional multivariate logistic regression (entry criteria p < 0.05) to identify 
independent predictors for each anatomical site. Based on the regression 
coefficients, we developed visualized nomogram prediction models for LS and 
LH low BMD, accompanied by an interactive online prediction tool. The models 
were comprehensively evaluated for discrimination, calibration, and clinical 
utility. After identifying the primary predictive factors, exploratory subgroup 
analyses were conducted to assess effect heterogeneity of key variables (BMI 
and serum uric acid).

Results: This study included 322 male AS patients randomly allocated to training 
(n = 225) and validation (n = 97) cohorts with balanced baseline characteristics 
(all p > 0.05). Multivariate logistic regression identified age at onset (LS OR = 0.96, 
95%CI:0.93–0.99; LH OR = 0.97, 95%CI: 0.95–0.99), BMI (LS OR = 0.90, 95%CI: 
0.81–0.99; LH OR = 0.81, 95%CI: 0.72–0.91), serum uric acid (LS/LH OR = 0.99, 
95%CI: 0.99–0.99), and hip involvement (LS OR = 3.22, 95%CI: 1.71–6.05; LH 
OR = 8.03, 95%CI: 4.01–16.09) as common independent predictors for low 
BMD at both sites, while serum calcium (OR = 12.19, 95%CI: 1.44–103.25) was 
specific to LS. The developed nomograms, including web-based versions, 
demonstrated good discrimination (LS AUC: 0.77 training/0.73 validation; LH 
AUC: 0.82/0.85) and calibration. Decision curve analysis revealed significant net 
clinical benefit across probability thresholds (LS: 0.17–0.86 training/0.20–0.82 
validation; LH: 0.15–0.92/0.27–0.91). The protective effect of BMI exhibited 
site-specific patterns: LS (low-TC: OR = 0.86; high-TC: OR = 0.77), LH (low-TC: 
OR = 0.77; mid-TC: OR = 0.74), with the most pronounced effect observed in 
the LS low-TG subgroup (OR = 0.79). SUA demonstrated consistent protective 
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effects (LS/LH: OR = 0.95–0.99, all p < 0.05), potentially independent of disease 
stage. Interaction analyses revealed that neither lipid levels nor disease stage 
significantly modified the effects of BMI and SUA (all interaction p > 0.4).

Conclusion: This study developed clinical prediction models with excellent 
discriminative ability and substantial clinical utility for male patients with AS. 
These models offer rheumatologists an efficient tool to rapidly assess individual 
risks of low BMD, facilitating early diagnostic decision-making and enabling 
personalized interventions tailored to anatomical site-specific osteoporosis 
risks.

KEYWORDS

ankylosing spondylitis, dynamic nomogram, early prevention, low bone mineral 
density, prediction model

1 Introduction

Ankylosing spondylitis (AS) represents a chronic autoimmune 
inflammatory disease that primarily impacts the axial skeleton and 
sacroiliac joints, resulting in symptoms such as inflammatory back 
pain, stiffness, and limited mobility (1). The pathological features of 
AS exhibit notable gender disparities, with a higher prevalence in 
males, where the male-to-female proportions fluctuate from 2:1 to 9:1 
(2). Furthermore, studies have revealed that male individuals with AS 
exhibit higher rates of low bone mineral density (BMD) at early 
disease onset relative to their female counterparts (3). Low BMD is a 
common complication associated with AS (4), and its prevalence in 
male patients has been reported to range from 41.9 to 68% (5, 6). The 
existence of low BMD increases the likelihood of fractures, vertebral 
deformities, and spinal cord injuries in these patients, which can 
severely affect their posture and overall physical function, thus leading 
to a marked decline in both physical health and quality of life (7). 
However, the early detection of bone loss proves challenging due to its 
subtle progression and individual variability. Additionally, the high 
cost and invasiveness of dual-energy X-ray absorptiometry (DXA) 
have hindered its widespread use, particularly in developing regions 
(8). Therefore, developing a simple, effective tool for early screening 
of low BMD in male AS patients remains a pressing priority.

The nomogram prediction model is a statistical tool that visually 
represents mathematical models, which are designed to analyze 
multiple predictive variables for forecasting specific clinical 
outcomes. Displaying prediction probabilities in a graphical format 
offers an intuitive means of quantifying and illustrating disease 
risks, thereby supporting clinicians’ early diagnosis and treatment 
(9). Currently, nomogram models are employed to predict the 
diagnosis and prognosis of a variety of conditions, including 
colorectal cancer, heart failure, and immunoglobulin A (IgA) 
nephropathy. Nonetheless, there remains a gap in nomogram 
prediction models tailored specifically for male AS patients with 
low BMD.

This study specifically focuses on male AS patients to develop 
and validate a nomogram for predicting concomitant low BMD in 
this population. Furthermore, an online dynamic nomogram tool 
has been created to allow rheumatologists to perform efficient and 
convenient screening of male AS patients, thereby offering 
scientific and reliable evidence for early diagnosis, disease 
evaluation, and subsequent treatment planning for 
these individuals.

2 Materials and methods

2.1 Subject selection

Male individuals with AS who received treatment at Jiangsu 
Province Hospital of Chinese Medicine between January 2017 and 
September 2024 were chosen as the study participants. The inclusion 
criteria were as follows: 1. Meeting the modified New York criteria for 
AS (10); 2. Age ≥ 18 years; 3. Clear consciousness and reading ability, 
with the capacity to communicate independently with researchers or 
through relatives without barriers; 4. Voluntary participation after 
being informed of the study’s purpose. The exclusion criteria were: (1) 
Cases with >20% missing clinical data; (2) Concurrent diagnosis of 
other rheumatic autoimmune diseases or metabolic bone disorders 
(e.g., primary hyperparathyroidism); (3) Presence of severe systemic 
comorbidities (including but not limited to hepatic insufficiency or 
chronic kidney disease stage ≥3); (4) Recent exposure (within 
3 months preceding enrollment) to medications with known skeletal 
effects (including systemic glucocorticoids at any dose, chronic 
heparin therapy, or enzyme-inducing antiepileptic drugs); (5) 
Documented history of excessive alcohol consumption (daily alcohol 
intake >40 g); (6) Prior total hip arthroplasty.

2.2 Clinical indicator information

The clinical indicators considered in this investigation were as 
follows: (1) basic clinicodemographic information: chronological age, 
body mass index (BMI), age at onset, course of disease, smoking 
history (cumulative cigarette consumption >100 cigarettes), alcohol 
history (daily ethanol intake >20 g), and history of long-term 
glucocorticoid use (prednisone-equivalent dose ≥5 mg/day for ≥3 
consecutive months); (2) blood indicators: hemoglobin (Hb), serum 
uric acid (SUA), serum calcium (Ca), serum phosphorus (P), total 
cholesterol (TC), triglycerides (TG), comprehensive immunology 
panel (including immunoglobulin and complement levels), C-reactive 
protein (CRP), erythrocyte sedimentation rate (ESR), 
25-hydroxyvitamin D [25 (OH) D], and HLA-B27 status; (3) 
radiological indicators: sacroiliitis grading, hip involvement, and 
BMD of the lumbar spine (LS) and left hip (LH).

Chronological age groups were primarily based on WHO 
standards but modified by data availability: young adults (18–44 years), 
middle-aged adults (45–64 years), and older adults (≥65 years).
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Lipid parameters were categorized based on tertile distributions, 
with TC classified as low (<3.70 mmol/L), intermediate (3.70–
4.52 mmol/L), or high (>4.52 mmol/L), and TG classified as low 
(<0.89 mmol/L), intermediate (0.89–1.40 mmol/L), or high 
(>1.40 mmol/L).

In accordance with the ASAS-2023 consensus criteria for early 
axial spondyloarthritis (11), early-stage AS cases in this study were 
strictly defined by meeting all of the following criteria: (1) 
fulfillment of the modified New York diagnostic criteria for AS; (2) 
duration of axial symptoms (including inflammatory back pain, 
buttock pain, or morning stiffness) ≤ 2 years; and confirmation by 
a board-certified rheumatologist that the symptoms were 
attributable to AS.

The grading of sacroiliitis was determined by radiologists using 
sacroiliac joint CT scans in accordance with the modified New York 
criteria (1984). This grading system comprises five levels, ranging 
from grade 0 (normal) to grade 4 (most severe) (10).

The definition of “hip involvement” was derived from previously 
published studies: (1) “Clinical hip involvement” was assessed by 
rheumatologists based on clinical symptoms, including hip pain, 
limited mobility, or medical records indicating either “current or 
previous hip arthritis”; (2) “Radiological hip involvement” was 
evaluated by rheumatologists using the BASRI-hip scoring system, 
with reference to recent (1 year) hip magnetic resonance imaging (12).

This study underwent review and was sanctioned by the Research 
Ethics Committee of Jiangsu Province Hospital of Chinese Medicine 
(Ethics number: 2023NL-135-02) and was executed per the 
Declaration of Helsinki.

2.3 Grouping method

The BMD (g/cm2) of the LS (L1-L4) and LH (encompassing the 
femoral neck, trochanter, and internal region) were assessed using 
DXA (Discovery W, Hologic). Utilizing the BMD measurements, 
patients were split into two cohorts: normal BMD and low 
BMD. According to the World Health Organization diagnostic 
criteria, patients exhibiting a T-score of less than −1 at any site were 
categorized as having low BMD (13).

2.4 Statistical analysis

Statistical analyses for this investigation were performed using 
Zstats software1 and R version 4.4.0. The normality of the data was 
evaluated through the Kolmogorov–Smirnov test. Normally 
distributed continuous variables were denoted as mean ± standard 
deviation, while non-normally distributed continuous variables were 
reported as median (interquartile range, 25th-75th percentiles). 
Categorical variables were summarized using frequencies and 
percentages. Between-group differences were evaluated utilizing 
t-tests, Mann–Whitney tests, or chi-square tests, as appropriate. 
Missing data were addressed using the multiple imputation method 
in SPSS (version 25.0).

1  www.zstats.net

Independent predictors of low BMD in male AS patients were 
identified through univariate and multivariate logistic regression 
analyses. Variables demonstrating statistical significance (p < 0.05) in 
the univariate logistic regression analysis were included in the 
multivariate model, with further adjustments made for clinically 
relevant confounders such as chronological age, smoking status, and 
alcohol history. Effect sizes were reported as odds ratios (OR) with 
95% confidence intervals (CI), and variable selection was guided by 
both clinical relevance and statistical criteria. To assess the robustness 
of core predictors, we compared effect estimates between the primary 
and confounder-adjusted models. Stability was quantified using 
relative OR change rates:

	
( ) −

= ×Relative Change % 100ORadjusted ORprimary
ORprimary

Predictors with change rates <20% were considered stable, while 
directional consistency was required for those exceeding this 
threshold. Multicollinearity was assessed using generalized variance 
inflation factors (GVIF), with GVIF^[1/(2 × Df)] values <2 considered 
acceptable. Furthermore, subgroup analyses were performed to 
investigate potential effect modification by disease stage and metabolic 
factors on key predictor variables. Based on the final set of independent 
predictors, a multi-site (LS and LH) nomogram prediction model was 
developed using R software. A dynamic visualization tool was 
subsequently created with the “shinyPredict” package and deployed 
on the shinyapps online platform for enhanced accessibility. Model 
validation encompassed discrimination assessment through receiver 
operating characteristic (ROC) curve analysis with area under the 
curve (AUC) calculation, calibration assessment via the Hosmer-
Lemeshow test and calibration curves, and clinical utility evaluation 
using decision curve analysis (DCA) and clinical impact curves (CIC) 
to determine net benefit. This investigation implemented a statistical 
significance level of p < 0.05.

3 Results

3.1 Patient characteristics

We enrolled 322 male AS patients, randomly allocated into a 
training cohort (n = 225) and a validation cohort (n = 97) at a 7:3 
ratio. Tables 1, 2 present the comparative analysis of baseline 
characteristics and disease-related parameters between the two 
cohorts, demonstrating well-balanced distributions in demographic 
features, basic clinical characteristics, and disease profiles (all 
p > 0.05). No significant differences were observed in chronological 
age distribution (p = 0.308), with comparable median ages at onset (30 
vs. 29 years, p = 0.471) and median course of disease (both 9 years). 
BMI (25.03 ± 3.53 kg/m2 vs. 24.65 ± 3.11 kg/m2, p = 0.332), smoking 
history (44.44% vs. 43.30%, p = 0.849), and alcohol history (28.00% 
vs. 27.84%, p  = 0.976) also showed no statistically significant 
differences. Regarding low BMD prevalence, the overall rates in the 
LS and LH were 55.9 and 56.83%, respectively. Intergroup comparisons 
revealed similar proportions between the training and validation 
cohorts for both LS (55.56% vs. 56.70%, p = 0.849) and LH (54.22% 
vs. 62.89%, p = 0.15). Furthermore, no significant disparities were 
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detected in laboratory parameters—including ESR, CRP, SUA, and 25 
(OH) D levels—or radiographic features such as sacroiliitis grading 
and hip involvement (all p  > 0.05). This comprehensive baseline 
equilibrium provides robust data support for the subsequent 
development and validation of the predictive model.

3.2 Results of univariate and multivariate 
analysis

The univariate logistic regression analysis demonstrated that 
chronological age, age at onset, BMI, serum calcium, SUA, and hip 
involvement were significantly associated with low BMD at the LS 
(p < 0.05). These associations persisted in the multivariate logistic 
regression analysis, with age at onset (OR = 0.96, 95%CI:0.93–0.99), 
BMI (OR = 0.97, 95%CI:0.95–0.99), serum calcium (OR = 12.19, 
95%CI: 1.44–103.25), SUA (OR = 0.99, 95%CI:0.99–0.99), and hip 
involvement (OR = 3.22, 95%CI: 1.71–6.05) remaining independently 
predictive of LS low BMD (Table 3).

For low BMD at the LH, univariate analysis identified course of 
disease, age at onset, BMI, SUA, hip involvement, and sacroiliitis grade 
(specifically grade 3 versus 4) as significant predictors (p < 0.05). 
Subsequent multivariate analysis confirmed age at onset (OR = 0.97, 
95%CI: 0.95–0.99), BMI (OR = 0.81, 95%CI: 0.72–0.91), SUA (OR = 0.99, 
95%CI: 0.99–0.99), and hip involvement (OR = 8.03, 95%CI: 4.01–16.09) 
as independent predictors for LH low BMD (Table 4).

Prior to conducting the multivariate logistic regression, 
we performed collinearity diagnostics on all variables that showed 

significance in the univariate analysis. The results indicated no 
substantial multicollinearity concerns, with all variables demonstrating 
GVIF^[1/(2 × Df)] values below 1.5 in both the LS and LH models 
(Supplementary Tables S1, S2).

3.3 Confounder adjustment and model 
robustness

To enhance the clinical applicability of our findings, 
we adjusted for known confounding factors including smoking 
history, alcohol history, glucocorticoid use, and lipid profiles in 
our multivariate analysis. For the LS, hip involvement (OR = 4.01, 
95%CI: 2.01–8.03), BMI (OR = 0.87, 95%CI: 0.78–0.97), SUA 
(OR = 0.99, 95%CI: 0.99–0.99), and serum calcium (OR = 10.84, 
95%CI: 1.05–112.32) emerged as significant predictors. Similar 
patterns were observed for the LH, where hip involvement 
(OR = 7.72, 95%CI: 3.51–16.98), BMI (OR = 0.80, 95%CI: 0.71–
0.90), and SUA (OR = 0.99, 95%CI: 0.99–0.99) maintained their 
predictive value. Of particular clinical interest was our finding 
that elevated triglyceride levels (1.40 mmol/L) were associated 
with a significantly increased risk of LS BMD (OR = 3.34, 95%CI: 
1.26–8.84). While age at onset exhibited site-specific effects 
(lumbar OR = 0.96 vs. hip OR = 0.97), traditional risk factors 
including smoking history, alcohol history, and glucocorticoid 
use showed no significant associations in either model (all 
p  > 0.05). Complete details of these analyses are provided in 
Supplementary Tables S3, S4.

TABLE 1  Comparison of demographic and clinical characteristics between training and validation cohorts.

Variables Total (n = 322) Train (n = 225) Test (n = 97) p-value

Chronological age groups, 

years, n (%)
0.308

 � 18–44 197 (61.18) 142 (63.11) 55 (56.70)

 � 45–64 99 (30.75) 68 (30.22) 31 (31.96)

 � ≥65 26 (8.07) 15 (6.67) 11 (11.34)

Age at onset, years (median, IQR) 30.00 (23.00, 38.00) 30.00 (23.00, 37.00) 29.00 (23.00, 39.00) 0.471

Course of disease, years (median, 

IQR)
9.00 (3.62, 14.00) 9.00 (3.50, 13.00) 9.00 (4.00, 18.00) 0.473

BMI, kg/m2 (mean ± SD) 24.77 ± 3.24 25.03 ± 3.53 24.65 ± 3.11 0.332

Smoking history, n (%) 0.849

 � Never 180 (55.90) 125 (55.56) 55 (56.70)

 � Ever 142 (44.10) 100 (44.44) 42 (43.30)

Alcohol history, n (%) 0.976

 � Never 232 (72.05) 162 (72.00) 70 (72.16)

 � Ever 90 (27.95) 63 (28.00) 27 (27.84)

Lumbar spine, n (%) 0.849

 � Normal BMD 142 (44.10) 100 (44.44) 42 (43.30)

 � Low BMD 180 (55.90) 125 (55.56) 55 (56.70)

Left hip, n (%) 0.15

 � Normal BMD 139 (43.17) 103 (45.78) 36 (37.11)

 � Low BMD 183 (56.83) 122 (54.22) 61 (62.89)

Data are presented as the mean ± standard deviation (SD), median (interquartile range), or number (percentage). BMI, Body mass index.
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To validate the robustness of core predictors, we compared effect 
sizes between the primary model and the confounder-adjusted model 
(Supplementary Table S5). Age at onset (0% OR change), BMI (lumbar 
spine −3.3%, left hip −1.2%), and serum uric acid (0% change) 
demonstrated high stability across both models. The OR for hip 
involvement in the lumbar spine increased by 24.5% (3.22 → 4.01) 
after confounder adjustment, suggesting potential underestimation in 
the unadjusted model. Although serum calcium showed an 11.1% OR 
reduction, its wide confidence interval (1.05–112.32) indicates the 

need for validation in larger samples. The consistent effect directions 
across all variables support the clinical credibility of our models.

3.4 Subgroup and interaction analyses

BMI showed site-specific and metabolic state-dependent protective 
effects against low BMD in subgroup analyses. In total cholesterol (TC) 
stratification, BMI showed significant protective effects against LS low 

TABLE 2  Comparison of disease-related variables between training and validation cohorts.

Variables Total (n = 322) Train (n = 225) Test (n = 97) p-value

Hb, g/L (median, IQR) 140.00 (128.00, 150.00) 141.00 (129.00, 151.00) 138.00 (125.00, 150.00) 0.307

Ca, mmol/L (median, IQR) 2.37 (2.26, 2.46) 2.38 (2.27, 2.47) 2.36 (2.24, 2.44) 0.211

P, mmol/L (median, IQR) 1.06 (0.93, 1.19) 1.06 (0.92, 1.20) 1.05 (0.94, 1.18) 0.561

SUA, μmol/L (median, IQR) 357.50 (314.00, 413.70) 357.00 (316.00, 403.00) 365.00 (297.00, 424.00) 0.507

IgG, g/L (median, IQR) 12.20 (10.50, 14.70) 12.00 (10.50, 14.80) 12.50 (10.60, 14.20) 0.874

IgA, g/L (median, IQR) 2.90 (2.13, 3.98) 2.83 (2.14, 3.98) 2.91 (2.07, 3.97) 0.721

IgM, g/L (median, IQR) 0.91 (0.69, 1.27) 0.90 (0.69, 1.25) 0.91 (0.68, 1.31) 0.986

C3, g/L (median, IQR) 1.01 (0.88, 1.18) 1.01 (0.88, 1.19) 1.00 (0.89, 1.16) 0.607

C4, g/L (median, IQR) 0.24 (0.21, 0.29) 0.24 (0.20, 0.28) 0.25 (0.21, 0.29) 0.91

CRP, mg/L (median, IQR) 9.97 (4.14, 24.62) 9.55 (4.23, 22.20) 11.00 (3.31, 30.50) 0.469

ESR, mm/h 23.00 (9.00, 44.00) 22.00 (9.00, 43.00) 25.00 (10.00, 45.00) 0.557

25 (OH) D, ng/mL (median, IQR) 20.96 (16.00, 26.00) 21.00 (16.00, 26.00) 20.00 (17.00, 25.00) 0.742

TC groups, mmol/L, n (%) 0.408

 � <3.70 107 (33.23) 78 (34.67) 29 (29.90)

 � 3.70–4.52 109 (33.85) 71 (31.56) 38 (39.18)

 � >4.52 106 (32.92) 76 (33.78) 30 (30.93)

TC groups, mmol/L, n (%) 0.217

 � <0.89 107 (33.23) 69 (30.67) 38 (39.18)

 � 0.89–1.40 109 (33.85) 76 (33.78) 33 (34.02)

 � >1.40 106 (32.92) 80 (35.56) 26 (26.80)

HLA-B27, n (%) 0.137

 � Negative 34 (10.56) 20 (8.89) 14 (14.43)

 � Positive 288 (89.44) 205 (91.11) 83 (85.57)

Sacroiliitis average, n (%) 0.747

 � 2 143 (44.41) 102 (45.33) 41 (42.27)

 � 2.5 6 (1.86) 4 (1.78) 2 (2.06)

 � 3 76 (23.60) 49 (21.78) 27 (27.84)

 � 3.5 15 (4.66) 12 (5.33) 3 (3.09)

 � 4 82 (25.47) 58 (25.78) 24 (24.74)

Hip involvement, n (%) 0.245

 � No 185 (57.45) 134 (59.56) 51 (52.58)

 � Yes 137 (42.55) 91 (40.44) 46 (47.42)

Patients on GC, n (%) 1

 � No 311 (96.58) 217 (96.44) 94 (96.91)

 � Yes 11 (3.42) 8 (3.56) 3 (3.09)

Data are presented as the mean ± standard deviation (SD), median (interquartile range), or number (percentage). Hb, Hemoglobin; SUA, Serum uric acid; Ca, Serum calcium; P, Serum 
phosphorus; TC, Total cholesterol; TG, Triglycerides; IgG, Immunoglobulin G; IgA, Immunoglobulin A; IgM, Immunoglobulin M; C3, Complement component 3; C4, Complement 
component 4; CRP, C-reactive protein; ESR, Erythrocyte sedimentation rate; 25 (OH) D, 25-hydroxyvitamin D.
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TABLE 3  Univariate and multivariate logistic regression analysis of LS training cohort.

Variables Univariate regression Multivariate regression

OR (95%CI) p-value OR (95%CI) p-value

Chronological age groups

 � 18–44 1.00 (Reference)

 � 45–64 0.47 (0.26, 0.85) 0.012

 � ≥65 0.40 (0.13, 1.18) 0.096

Age at onset 0.95 (0.93, 0.98) <0.001 0.96 (0.93, 0.99) 0.003

Course of disease 1.03 (0.99, 1.06) 0.152

BMI 0.86 (0.79, 0.95) 0.002 0.90 (0.81, 0.99) 0.035

Hb 1.01 (0.99, 1.02) 0.248

Ca 9.05 (1.56, 52.60) 0.014 12.19 (1.44, 103.25) 0.022

P 0.83 (0.24, 2.93) 0.774

SUA 0.99 (0.99, 0.99) 0.006 0.99 (0.99, 0.99) 0.011

IgG 0.97 (0.90, 1.04) 0.422

IgA 0.96 (0.80, 1.16) 0.699

IgM 1.23 (0.80, 1.91) 0.349

C3 2.62 (0.76, 9.07) 0.129

C4 2.06 (0.13, 31.57) 0.605

CRP 1.00 (0.99, 1.01) 0.414

ESR 1.00 (0.99, 1.01) 0.727

25 (OH) D 1.01 (0.98, 1.04) 0.687

TC groups

 � <3.70 1.00 (Reference)

 � 3.70–4.52 1.12 (0.58, 2.16) 0.732

 � >4.52 0.95 (0.50, 1.81) 0.872

TG groups

 � <0.89 1.00 (Reference)

 � 0.89–1.40 1.05 (0.55, 2.01) 0.882

 � >1.40 1.01 (0.53, 1.90) 0.987

HLA-B27

 � Negative 1.00 (Reference)

 � Positive 1.59 (0.63, 4.01) 0.323

Sacroiliitis average

 � 2 1.00 (Reference)

 � 2.5 2.88 (0.29, 28.66) 0.366

 � 3 1.98 (0.97, 4.04) 0.06

 � 3.5 1.92 (0.54, 6.79) 0.31

 � 4 0.96 (0.50, 1.83) 0.905

Hip involvement

 � No 1.00 (Reference) 1.00 (Reference)

 � Yes 3.66 (2.05, 6.52) <0.001 3.22 (1.71, 6.05) <0.001

Smoking history

 � Never 1.00 (Reference)

 � Ever 0.77 (0.45, 1.31) 0.337

(Continued)
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BMD in both low-TC (OR = 0.86, 95%CI: 0.74–1.00, p = 0.047) and 
high-TC subgroups (OR = 0.77, 95%CI: 0.62–0.96, p = 0.019), but not 
in the moderate-TC subgroup (p = 0.108). In contrast, its protective 
effect on LH low BMD was primarily observed in low- and 
moderate-TC subgroups (OR = 0.77 and 0.74, both p  < 0.01). 
Triglyceride (TG) stratification further demonstrated that BMI’s 
protective effect was most pronounced for the LS in the low-TG 
subgroup (OR = 0.79, 95%CI: 0.66–0.95, p = 0.014), while maintaining 
significant protection for the LH across all TG subgroups (OR = 0.70–
0.83, all p < 0.05) (Figure 1).

SUA subgroup analysis indicated its protective effect against low 
BMD was independent of disease stage. In early-stage AS patients, 
SUA showed significant associations with both LS (OR = 0.99, 
p = 0.022) and LH low BMD (OR = 0.95, p = 0.023). A similar trend 
was observed in advanced AS patients (LS: OR = 0.99, p = 0.007; LH: 
OR = 0.99, p = 0.004), albeit with smaller effect sizes, suggesting its 
clinical significance requires comprehensive evaluation with other 
indicators (Figure 2).

Interaction analyses demonstrated that neither lipid levels (TC 
interaction p  = 0.714/0.581, TG interaction p  = 0.428/0.439) nor 
disease stage (interaction p > 0.4) significantly modified the effects of 
BMI and SUA, indicating their protective roles may be independent 
of metabolic status and disease progression. However, it should 
be noted that these negative findings might be limited by sample size 
and statistical power, warranting future studies with larger cohorts to 
validate potential heterogeneity trends.

3.5 Development of nomogram model

Based on the outcomes of the multifactorial logistic regression 
analysis, clinical nomogram prediction models for the LS and LH 
were developed, as presented in Figure 3. Subsequently, an online 
dynamic nomogram prediction tool (Figure  4) was created, 
accessible via any device with Internet connectivity through the 
following links: LS: https://asresearch.shinyapps.io/shiny1/; LH: 
https://asresearch.shinyapps.io/shiny/.

3.6 Evaluation of the nomogram model

The discriminative ability of the model was evaluated through 
ROC curve analysis (Figure 5). The LS low BMD prediction model 

demonstrated good discriminative performance in the training 
cohort [AUC = 0.77 (95%CI: 0.70–0.83)], with comparable results 
in the validation cohort [AUC = 0.73 (95%CI: 0.63–0.83)], 
indicating stable predictive performance of the model. The LH low 
BMD model exhibited even better discriminative ability, with AUC 
values of 0.82 (95%CI: 0.77–0.88) and 0.85 (95%CI: 0.76–0.93) in 
the training and validation cohorts respectively, suggesting 
superior predictive capability of this model.

The calibration analysis demonstrated that our prediction 
models exhibited good overall predictive accuracy. As shown in the 
calibration plots (Figure  6), the predicted probabilities in the 
training cohort showed excellent agreement with observed 
probabilities, with the calibration curve closely following the ideal 
reference line (dashed diagonal). Although the validation cohort 
displayed a similar trend, its alignment with the ideal line was 
slightly less precise than that of the training cohort. Hosmer-
Lemeshow test results confirmed satisfactory calibration 
performance for both models: the LS model showed no significant 
deviation between predicted and observed probabilities in either the 
training (p = 0.894) or validation cohorts (p = 0.729); similarly, the 
LH model demonstrated good calibration in both the training 
(p = 0.710) and validation cohorts (p = 1.000). Notably, while the 
bias-corrected line (black solid line) and the apparent line (LS 
model: blue solid line; LH model: red solid line) showed high 
concordance in the training cohort, minor deviations were observed 
in the validation cohort. These findings suggest a slight decrease in 
predictive performance during external validation, though the 
overall calibration remained within acceptable limits for 
clinical application.

The decision curve analysis demonstrated the clinical utility 
of our prediction models. For the LS model, both the training 
cohort (threshold probability range: 0–0.85) and validation 
cohort (range: 0–0.82) showed positive net clinical benefit. 
Similarly, the LH model exhibited excellent clinical applicability, 
providing net benefit across threshold probability ranges of 0.15–
0.92 (training cohort) and 0.27–0.91 (validation cohort) 
(Figure  7). These findings indicate that both models offer 
valuable clinical decision-making guidance across wide threshold 
probability ranges.

The clinical impact curve analysis provided a visual assessment of 
the model’s practical clinical utility, demonstrating high concordance 
between the number of high-risk individuals identified by the model 
and the actual occurrence of low BMD at risk thresholds >60% 

TABLE 3  (Continued)

Variables Univariate regression Multivariate regression

OR (95%CI) p-value OR (95%CI) p-value

Alcohol history

 � Never 1.00 (Reference)

 � Ever 0.84 (0.47, 1.50) 0.55

Patients on GC

 � No 1.00 (Reference)

 � Yes 0.47 (0.11, 2.00) 0.306

OR, Odds ratio; CI, Confidence interval. Hb, Hemoglobin; SUA, Serum uric acid; Ca, Serum calcium; P, Serum phosphorus; TC, Total cholesterol; TG, Triglycerides; IgG, Immunoglobulin G; 
IgA, Immunoglobulin A; IgM, Immunoglobulin M; C3, Complement component 3; C4, Complement component 4; CRP, C-reactive protein; ESR, Erythrocyte sedimentation rate; 25 (OH) D, 
25-hydroxyvitamin D. Bold values indicate statistical significance (p < 0.05) in the univariate logistic regression results.
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TABLE 4  Univariate and multivariate logistic regression analysis of LH training cohort.

Variables Univariate regression Multivariate regression

OR (95%CI) p-value OR (95%CI) p-value

Chronological age groups

 � 18–44 1.00 (Reference)

 � 45–64 0.63 (0.35, 1.13) 0.121

 � ≥65 1.51 (0.49, 4.63) 0.475

Age at onset 0.97 (0.95, 0.99) 0.014 0.97 (0.95, 0.99) 0.035

Course of disease 1.07 (1.03, 1.11) <0.001

BMI 0.80 (0.72, 0.88) <0.001 0.81 (0.72, 0.91) <0.001

Hb 1.00 (0.98, 1.01) 0.55

Ca 5.49 (0.98, 30.87) 0.053

P 0.43 (0.12, 1.53) 0.191

SUA 0.99 (0.99, 0.99) <0.001 0.99 (0.99, 0.99) 0.023

IgG 1.00 (0.93, 1.07) 0.922

IgA 1.12 (0.93, 1.35) 0.245

IgM 1.12 (0.78, 1.61) 0.534

C3 1.08 (0.32, 3.65) 0.897

C4 0.30 (0.02, 4.73) 0.39

CRP 1.00 (0.99, 1.01) 0.929

ESR 1.00 (0.99, 1.01) 0.867

25 (OH) D 0.98 (0.95, 1.01) 0.277

TC groups

 � <3.70 1.00 (Reference)

 � 3.70–4.52 0.84 (0.44, 1.63) 0.613

 � >4.52 0.65 (0.34, 1.24) 0.194

TC groups

 � <0.89 1.00 (Reference)

 � 0.89–1.40 1.23 (0.64, 2.34) 0.537

 � >1.40 1.17 (0.62, 2.21) 0.621

HLA-B27

 � Negative 1.00 (Reference)

 � Positive 1.50 (0.60, 3.78) 0.388

Sacroiliitis average

 � 2 1.00 (Reference)

 � 2.5 1.43 (0.19, 10.55) 0.727

 � 3 2.26 (1.12, 4.53) 0.022

 � 3.5 2.86 (0.81, 10.11) 0.103

 � 4 3.17 (1.61, 6.28) <0.001

Hip involvement

 � No 1.00 (Reference) 1.00 (Reference)

 � Yes 8.68 (4.55, 16.55) <0.001 8.03 (4.01, 16.09) <0.001

Smoking history

 � Never 1.00 (Reference)

 � Ever 1.06 (0.62, 1.79) 0.834

(Continued)
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(Figure 8). Curve morphology analysis revealed that the predicted 
curve (LS model: blue; LH model: red) and the actual observed curve 
(black) maintained essentially parallel trajectories in the >60% 
threshold range, indicating stable predictive accuracy of the model, 

while the minimal vertical separation between the two curves reflected 
the model’s relatively small margin of error. This consistent performance 
across higher risk thresholds suggests robust clinical applicability for 
identifying patients who would most benefit from targeted interventions.

FIGURE 1

Subgroup analysis of BMI’s protective effects against low BMD in male AS patients: Integrated forest plot displays LS and LH data stratified by lipid 
profiles (TC/TG tertiles). Protective trends were observed in most subgroups (LS: significant in low/high-TC [OR = 0.86/0.77] and low-TG [OR = 0.79]; 
LH: significant in low/mid-TC [OR = 0.77/0.74] and all TG subgroups [OR = 0.70–0.83]), though nonsignificant in mid-TC for LS (p = 0.108). 
Nonsignificant interaction terms (all p > 0.4) suggest lipid-level-independent protective mechanisms of BMI.

FIGURE 2

Subgroup analysis of SUA effects on low BMD: Unified forest plot presents LS and LH data across AS disease stages (early-stage: LS OR = 0.99/LH 
OR = 0.95; advanced-stage: LS/LH OR = 0.99). Interaction p-values (0.8) suggest stage-independent protection.

TABLE 4  (Continued)

Variables Univariate regression Multivariate regression

OR (95%CI) p-value OR (95%CI) p-value

Alcohol history

 � Never 1.00 (Reference)

 � Ever 1.08 (0.60, 1.93) 0.802

Patients on GC

 � No 1.00 (Reference)

 � Yes 0.84 (0.20, 3.44) 0.807

OR, Odds ratio; CI, Confidence interval. Hb, Hemoglobin; SUA, Serum uric acid; Ca, Serum calcium; P, Serum phosphorus; TC, Total cholesterol; TG, Triglycerides; IgG, Immunoglobulin G; 
IgA, Immunoglobulin A; IgM, Immunoglobulin M; C3, Complement component 3; C4, Complement component 4; CRP, C-reactive protein; ESR, Erythrocyte sedimentation rate; 25 (OH) D, 
25-hydroxyvitamin D. Bold values indicate statistical significance (p < 0.05) in the univariate logistic regression results.
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4 Discussion

By utilizing readily available clinical data, the present study 
developed a nomogram prediction model to accurately assess the 
likelihood of low BMD at various sites (LS and LH) in male individuals 
with AS. Following a thorough and methodical evaluation, both 
prediction models were found to exhibit strong discriminative ability, 
high accuracy, and substantial clinical benefit. These models have the 
potential to support clinicians in more effectively and efficiently 
screening for low BMD in male AS patients.

The research findings identified age at onset, BMI, SUA levels, and 
hip involvement as common predictors for low BMD in both the LS 
and the LH. These factors have been consistently reported in previous 
literature as being strongly linked to low BMD in AS patients. The 
results indicated that a younger age at onset was linked to an elevated 
risk of low BMD in individuals with AS. In juvenile-onset AS (JoAS), 
chronic inflammation disrupts normal bone metabolism before the 
completion of skeletal development. This persistent inflammatory 

state stimulates osteoclast activity while suppressing osteoblast 
function, ultimately impairing bone mass accumulation and 
heightening the risk of low BMD (14). Furthermore, an earlier disease 
onset signifies a prolonged duration of skeletal involvement. As the 
disease advances, issues related to low BMD may become more 
pronounced, potentially elevating the risk of osteoporosis (OP) and 
fractures in the later stages. Several studies have affirmed that low 
BMD can manifest even in the early stages of AS (3, 15), underscoring 
the importance of timely BMD monitoring and consideration of 
appropriate interventions for JoAS patients to mitigate progressive 
bone loss.

The study identified BMI as an independent protective factor 
against low BMD in male AS patients, which aligns with previous 
reports of a positive BMI-BMD association (16–18). The 
osteoprotective mechanisms of BMI may involve mechanical stress 
stimulation, hormonal regulation, and nutritional status. In 
accordance with Wolff ’s law, increased body weight enhances 
mechanical loading on bones, thereby promoting osteogenesis 

FIGURE 3

Low BMD nomograms for (A) LS and (B) LH in male AS patients, with interactive red dots for variable input (e.g., age at onset, BMI) and real-time display 
of total points/predicted probability (%). Example: 20-year-old male with BMI 26.35 kg/m2, serum calcium 2.89 mmol/L, SUA 457 μmol/L, and hip 
involvement (LS: 355 points → 88.9% risk; LH: 241 points → 74.5% risk).
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FIGURE 4

Web-based nomogram for LS low BMD prediction in male AS patients, demonstrating real-time risk probability calculation through interactive input of 
clinical parameters (left panel) with automated graphical output display. Operational example: Users adjust sliders for variables including age at onset, 
BMI, and serum biomarkers to generate instant probability estimates visualized along the scoring continuum.

FIGURE 5

ROC analysis of low BMD prediction models for (A) LS and (B) LH, with training (blue) and validation (red) cohort performance relative to reference 
(dashed line, AUC = 0.5), displaying sensitivity-specificity relationships and AUC (95% CI) values.
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(19). Additionally, adipose tissue-derived factors such as estrogen 
and adiponectin participate in bone metabolism regulation (20). 
Moreover, higher BMI reflects better nutritional status, with 
adequate intake of protein, calcium, and vitamin D playing crucial 
roles in maintaining bone density. To further investigate potential 
heterogeneity in BMI’s effects, our lipid-stratified analyses revealed 
significant protective associations in both low-TC (OR = 0.86, 
p = 0.047) and high-TC subgroups (OR = 0.77, p = 0.019), with 
consistent LH protection observed in low/moderate-TC subgroups 
(OR = 0.77/0.74, both p < 0.01). These findings suggest that BMI’s 
protective effects may operate independently of lipid metabolism 
status (interaction p > 0.4). However, it must be emphasized that 
BMI, as a composite measure of weight and height, has inherent 
limitations – it cannot differentiate the heterogeneous contributions 
of lean mass versus fat mass (21), nor does it account for variations 
in fat distribution (e.g., visceral fat accumulation) (22) or 
regulatory effects of related hormones (e.g., testosterone, PTH) 
(23). Therefore, while our study supports the overall protective role 
of BMI, future research should incorporate DXA-based body 
composition analysis, waist-to-height ratio measurements, and 
metabolic marker assessments to more precisely evaluate the 
BMI-BMD relationship and inform individualized clinical 
decision-making.

Our study identified SUA as a protective factor against low 
BMD in AS patients, which is consistent with previous research. A 
cross-sectional study demonstrated a positive correlation between 
SUA levels and LS BMD in young male AS patients (24), while a 
Chinese multicenter study further confirmed SUA’s protective 
effects against osteopenia and osteoporosis (25). The bone-
protective mechanisms of SUA may involve its anti-inflammatory 
and antioxidant properties. Current evidence suggests oxidative 
stress as a potential mechanism underlying osteoporosis (26). As a 
potent endogenous antioxidant, SUA may inhibit osteoclast 
differentiation and promote osteoblast activity by scavenging 
oxygen free radicals (27). This was validated in an in vitro study 
showing that SUA dose-dependently reduced osteoclast formation 
and decreased ROS production in osteoclast precursors (28). 
Additionally, Lai et al. found that physiological concentrations of 
SUA exerted anti-inflammatory effects by suppressing 
pro-inflammatory cytokine expression and cartilage-degrading 
enzyme production, thereby preventing cartilage damage and bone 
erosion (29). However, some studies have reported that intracellular 
urate in hyperuricemia may stimulate superoxide and free radical 
formation, leading to oxidative damage and inflammatory stress 
that disrupts bone remodeling (30, 31). This “double-edged sword” 
effect suggests a potential U-shaped relationship between SUA and 

FIGURE 6

Calibration curves for (A) LS training cohort, (B) LS validation cohort, (C) LH training cohort, and (D) LH validation cohort. The dashed diagonal line 
(ideal) represents perfect prediction, the solid black line (bias-corrected) shows the adjusted calibration, and the apparent predictions are depicted by 
the blue solid line (LS model) and red solid line (LH model). The convergence of these curves demonstrates calibration performance: proximity 
between apparent (blue/red) and ideal lines reflects prediction accuracy, whereas agreement between apparent and bias-corrected (black) lines 
indicates model stability.
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BMD. As our study population had SUA levels primarily within the 
physiological range, we were unable to fully explore this U-shaped 
association. This limitation highlights the need for future large-
scale prospective studies focusing specifically on different SUA level 
intervals (particularly the >420 μmol/L subgroup) to 
comprehensively elucidate the dose–response relationship between 
SUA and bone metabolism.

To clarify whether the protective effect of SUA is influenced by 
disease progression, we conducted further subgroup analyses. The 
results demonstrated that SUA’s protective effects remained stable 
in both early-stage AS (LS: OR = 0.99, p = 0.022; LH: OR = 0.95, 
p = 0.023) and advanced-stage AS (LS: OR = 0.99, p = 0.007; LH: 
OR = 0.99, p  = 0.004). Although the effect sizes were modest, 
interaction analysis revealed no significant modification by disease 
stage (p > 0.8). These findings suggest that SUA’s effect may not 
be stage-dependent, showing relatively consistent impacts on BMD 
across different phases of the disease.

The results suggested that hip involvement served as an IRF for 
low BMD in AS patients, which aligns with prior findings (32). A 
number of studies have demonstrated that hip involvement 
correlates with more extensive spinal radiographic damage, elevated 
disease activity, prolonged course of disease, and diminished 
physical function (33–35). Spinal radiographic damage is closely 
linked to disease progression, particularly in later stages when the 

formation of bone bridges and spinal fusion occurs. These processes 
reduce mechanical stress stimulation on the bones, thereby 
exacerbating bone loss (36). Disease activity in AS patients is 
strongly associated with systemic inflammation. In states of 
heightened inflammation, immune cells secrete a range of cytokines, 
encompassing TNF, IL-6, IL-1, and IL-17, which activate the OPG/
RANKL/RANK signaling pathway, influencing osteoclasts. This 
activation leads to increased bone resorption and a concomitant 
decrease in bone formation (37, 38). AS, as a chronic inflammatory 
condition, implies that prolonged course of disease not only reflects 
long-term inflammatory disruption of bone metabolism but also 
entails additional factors, such as aging and declining physical 
function, which negatively affect BMD.

In addition to the four common predictors previously discussed, 
serum calcium was identified as an IRF for low BMD in the LS in 
this study. Serum calcium exists in the blood in both free and 
bound forms, serving a function in bone mineral deposition and 
serving as a marker of bone metabolism. During bone metabolism, 
alterations in blood calcium levels regulate the secretion of 
parathyroid hormone (PTH) and calcitonin through feedback 
mechanisms, indirectly influencing osteoblast and osteoclast 
activity. This process facilitates a dynamic equilibrium exchange 
between bone calcium and blood calcium, thus contributing to 
bone mineral deposition. An animal experiment demonstrated that 

FIGURE 7

Decision curve analysis for (A) LS training, (B) LS validation, (C) LH training, and (D) LH validation cohorts, showing the nomogram models’ net benefit 
(blue/red solid lines) versus reference strategies: “Treat All” (diagonal solid line, indicating treat-all approach with inherent over-treatment) and “Treat 
None” (horizontal solid line, representing no-intervention strategy). The models’ curves exceed both reference lines across most threshold probability 
ranges, demonstrating significant net benefit advantages in clinically relevant probability intervals.

123

https://doi.org/10.3389/fmed.2025.1549653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al.� 10.3389/fmed.2025.1549653

Frontiers in Medicine 14 frontiersin.org

compared to the negative control cohort, the AS, OP, and AS + OP 
cohorts exhibited markedly higher levels of serum calcium and 
tartrate-resistant acid phosphatase (p < 0.05) (39). It is hypothesized 
that the observed elevation in serum calcium levels results from 
bone metabolic imbalance in AS, where osteoclast-mediated bone 
resorption surpasses bone formation. However, the precise 
mechanism underlying this process warrants further investigation 
and validation.

In conclusion, nomograms were developed to predict low BMD 
at different sites (LS and LH) in male AS patients. When compared 
to prior nomogram models (32), the current models are more 
specific and practical. These models are designed with a focus on 
the male AS population, effectively eliminating the confounding 
influences of gender and menopause during model construction. 
Furthermore, following their development and evaluation, the 
models have been made publicly accessible online. In clinical 
settings, healthcare professionals can easily utilize these models via 
the internet to assess the risk of low BMD, thereby enabling early 
prevention and personalized treatment for male AS patients with 
low BMD.

However, this study has several limitations. First, the single-
center retrospective design and modest sample size (n = 322) may 
restrict the statistical power of interaction analyses and potentially 
introduce selection bias—for example, underestimating the 
prevalence of hyperuricemia. Although chronological age 

stratification was included, potential recall bias in self-reported 
symptom onset and substantial missing data (40%) for the exact 
diagnostic age could compromise the precision of course of disease-
related analyses. Second, crucial clinical variables such as 
malnutrition, fracture history, testosterone, parathyroid hormone 
(PTH), and the Ankylosing Spondylitis Disease Activity Score 
(ASDAS) were not incorporated, which may undermine the model’s 
comprehensiveness—especially for patients with metabolic 
abnormalities or advanced disease stages. Additionally, while an 
internal validation cohort was used to assess model performance, 
the absence of external cohort validation warrants prudence when 
generalizing these results to broader populations. Finally, 
interpreting the protective role of BMI is hindered by the lack of 
DXA-based body composition data (e.g., lean vs. fat mass 
distribution) and obesity-related metabolic markers (e.g., insulin 
resistance), which might exert differential effects on bone 
metabolism. Future multicenter prospective studies integrating 
advanced imaging techniques, metabolic profiling, and standardized 
diagnostic datasets are essential to address these research gaps.

5 Conclusion

Drawing from the BMD results and clinical data of male AS 
patients, this study identified several factors as predictive of low BMD 

FIGURE 8

Clinical impact curves for (A) lumbar spine training cohort, (B) lumbar spine validation cohort, (C) left hip training cohort, and (D) left hip validation 
cohort. Axes: x = High Risk Threshold; y = Number high risk (out of 1,000) (estimated individuals classified as high-risk per 1,000 patients). Curves: 
predicted events by lumbar spine (blue) and left hip (red) nomograms; observed events (black).
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at the LS, including age at onset, BMI, serum calcium, SUA, and hip 
involvement (p < 0.05). Similarly, predictive factors for low BMD in 
the LH were found to include age at onset, BMI, SUA, and hip 
involvement (p < 0.05). Based on these observations, nomogram 
prediction models were developed for both the LS2 and LH.3 These 
models aim to aid rheumatologists in conducting rapid screening 
screening of male patients with AS by utilizing simple and commonly 
available clinical indicators, thereby facilitating early prevention and 
personalized treatment strategies for low BMD and contributing to 
clinical translation.
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Introduction: This study investigated the association between osteoporosis and

mortality in patients with Parkinson’s disease (PD) and the mediating role of

hip fractures.

Methods: A retrospective cohort study. Data were obtained from the 2009–2019

Korean National Health Insurance Service–National Sample Cohort databases.

We extracted both the International Classification of Diseases, 10th Edition

code (G20) and PD registration code (V124) to identify patients with PD. A

Cox proportional hazards model was used to analyze the association between

osteoporosis and mortality. Mediation analyses were performed to estimate the

mediating e�ect of hip fracture between osteoporosis and mortality in patients

with PD.

Results: Of the 2,084 patients with PD, 474 (18.5%) were diagnosed with

osteoporosis, and 112 (4.4%) experienced hip fractures after PD diagnosis. In

unadjusted mediation analysis, the direct e�ect of osteoporosis on mortality

was not significant (β = 0.0309, 95%: confidence interval [CI] −0.0180–0.0798,

p = 0.2149), whereas the indirect e�ect of hip fracture was (β = 0.0130, 95%

CI 0.0048–0.0212, p = 0.0019). Similarly, in the adjusted model controlling for

sex, age at diagnosis, and Charlson Comorbidity Index, the direct e�ect was not

significant (β = 0.0011, 95%CI−0.0508–0.0529, p= 0.9675), whereas the indirect

e�ect was (β = 0.0061, 95% CI 0.0009–0.0114, p = 0.0223).

Discussion: This study elucidated the association between osteoporosis and

mortality in patients with PD by highlighting the mediating role of hip fractures.

These findings thus underscore the importance of managing osteoporosis in

patients with PD.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease

typically characterized by abnormal motor symptoms, including

tremors, rigidity, and bradykinesia. PD also affects gait, balance,

and postural stability, consequently elevating the susceptibility to

fractures (Samii et al., 2004). The prevalence of PD is associated

with an increased risk of fractures, with disease severity being

linearly associated with fracture risk (Nam et al., 2021; Koo et al.,

2023). Fracture risk has been observed across all body parts in

patients with PD, with hip fractures presenting the greatest risk

(Mühlenfeld et al., 2021). Furthermore, the risk of mortality in PD

with hip fractures is twice as high as those without fractures (Schini

et al., 2020).

Osteoporosis, a condition characterized by decreased bone

mineral density (BMD), bone mass, and alterations in bone

structure and strength, presents a potential risk for fractures.

PD progression can lead to malnutrition and sarcopenia, which

increase the risk of osteoporosis (Torsney et al., 2014). Decreased

BMD further exacerbates the susceptibility to hip fractures in

patients with PD. The risk of osteoporotic fractures in patients with

PD and osteoporosis is nearly double, while the risk of hip fractures

is triple those of patients with PD without osteoporosis (Pouwels

et al., 2013).

However, a study previously reported that osteoporosis did not

significantly affect the risk of hip fractures in patients with PD

(Kim et al., 2022). Instead, patients with PD had a higher risk of

fractures than those without PD, regardless of their osteoporosis

status. Although PD and osteoporosis independently influence

facture risk, their relationship at the time of fracture occurrence

remains unclear. Furthermore, although clinicians recognize that

hip fractures and osteoporosis contribute to mortality among

patients with PD, the specific mediating effect of hip fractures on

the association between osteoporosis and mortality in patients with

PD remains insufficiently explored.

Therefore, this study investigated the association between

osteoporosis and mortality in patients with PD and explored the

mediating role of hip fractures in the progression from osteoporosis

to mortality.

2 Materials and methods

2.1 Study population

In this retrospective cohort study, we analyzed data obtained

from the South Korea National Health Insurance Service–

National Sample Cohort (NHIS-NSC) databases. The NHIS

operates as a mandatory single-payer healthcare system (http://

nhiss.nhis.or.kr). The NHIS-NSC database is a large cohort

representing 2% of the entire national population and sampled

based on sex, age, income level, and region. The database

collects demographic characteristics, diagnoses according to the

International Classification of Diseases, 10th Edition (ICD-10), and

Abbreviations:BMD, bonemineral density; CCI, CharlsonComorbidity Index;

CI, confidence intervals; ICD-10, International Classification of Diseases,

10th Edition; IRB, Institutional Review Board; NHIS-NSC, National Health

Insurance Service–National Sample Cohort; PD, Parkinson’s disease.

FIGURE 1

A flow diagram of the participant selection process. The diagram

shows inclusion and exclusion criteria, along with the final number

of participants categorized according to study requirements. PD,

Parkinson’s disease.

mortality (Lee et al., 2018; Kim et al., 2020). Furthermore, for rare

and intractable diseases, the claims database includes a special code

(V-code) designated by the national registration program (Park

et al., 2015).

Using the ICD-10 (G20) and registration V-codes (V124), we

identified study subjects registered in the claims database who were

diagnosed with PD between January 1, 2009, and December 31,

2019. Patients diagnosed with PD prior to 2009 were excluded

from the analysis. Figure 1 shows a flow diagram of the subject

selection process.

The NHIS databases are de-identified and publicly available

with approval from the National Health Insurance Big Data

Department in South Korea, thus waiving the requirement

for informed consent. The use of the data was approved

by the NHIS Inquiry Commission and the Institutional

Review Board (IRB) of Wonju Severance Christian Hospital

(IRB number: CR321308). This study was also approved by

the IRB of the Yonsei University Mirae Campus number:

(IRB number: 1041849-202309-SB-171-01).

2.2 Operational definitions

We adopted the operational definitions of osteoporosis, hip

fracture, and PD used in previous studies (Koo et al., 2023; Kim

et al., 2022; Lee et al., 2018). The diagnosis of osteoporosis was

determined by the presence of specific ICD-10 codes (M80, M81,

and M82). Considering the nature of osteoporosis, which requires

long-term follow up, and the characteristics of claims data, we

defined patients with osteoporosis as those who had complete

medical records for both pre- and postdiagnosis of osteoporosis
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within 1 year of PD diagnosis. We defined hip fractures using ICD-

10 codes (S72.0, S72.1, S72.2, S72.3, S72.4, S72.7, S72.8, and S72.9).

Patients with a history of hip fracture prior to their osteoporosis

or PD diagnosis were excluded. The NHIS databases provide

information on the year and month of death (National Health

Insurance Service, 2024). The date of death was determined based

on events that occurred following the diagnosis of PD, and patients

who died before the diagnosis of PD were excluded from the study

cohort. Mortality status was categorized as “1,” while survival was

categorized as “0”.

Demographic characteristics were used as covariates, including

age at PD diagnosis, sex, the modified Charlson Comorbidity Index

(CCI), and levodopa equivalent daily dose (LEDD). The modified

CCI was determined using ICD-10 codes for diagnoses within 1

year before the diagnosis of PD and categorizing the number of

comorbidities into three categories (0, 1, 2, or higher) (Quan et al.,

2005). The LEDD was calculated at the time of enrollment and

subsequently log-transformed to ensure a normal distribution and

improve the precision of the mediation analysis.

2.3 Statistical analysis

The chi-square test and t-test were used to compare the

characteristics of patients with PD with and without hip fractures.

The Cox proportional hazards model was used to analyze time-

to-event data and thus estimate the hazard ratios (HR) for the

risk of osteoporosis related mortality in patients with PD. The

model was adjusted for relevant covariates, including age, sex, and

comorbidities. The estimates were expressed with HR and 95%

confidence intervals (CI). Statistical significance was determined

using a p-value threshold of 0.05.

Mediation analysis was performed to estimate the mediating

effect of hip fractures on the association between osteoporosis

and mortality by analyzing the covariates (Agler and De Boeck,

2017). In the mediation analysis, the independent variable was

osteoporosis (X), the mediation variable was hip fractures (M),

and the dependent variable was mortality (Y). A p < 0.05

was considered statistically significant. Data management and all

statistical analyses were performed using SAS version 9.4 (SAS

Institute Inc, 2013).

3 Results

3.1 Descriptive statistics

In total, 2,558 patients diagnosed with PD between January 1,

2009, and December 31, 2019, were enrolled in this study. Table 1

presents the descriptive statistics comparing patients with (n= 474;

18.5%) and without (n = 2,084; 81.5%) osteoporosis. Patients with

osteoporosis had a higher percentage of hip fractures (n= 46, 9.7%

vs. n = 66, 3.2%; p < 0.0001) and a higher proportion of women

(n = 431, 90.9% vs. n = 941, 45.2%, p < 0.0001). Patients with

osteoporosis showed a higher mean± SD age at PD diagnosis than

those without osteoporosis (74.6 years ± 6.9 vs. 70.2 years ± 9.9,

p < 0.0001). However, PD severity assessed by LEDD, as well as

mortality, did not differ significantly between the two groups.

3.2 Cox regression analysis

Table 2 presents the data on the Cox proportional hazards

model examining the associations between risk factors and

mortality in patients with PD. In Model 1, patients with

osteoporosis showed a higher risk of mortality than those without

(HR 1.295, 95% CI 1.109–1.512, p = 0.0011). In contrast, Model 2,

which was adjusted for age, sex, and comorbidities, did not show

a significant relationship between osteoporosis and mortality (HR

0.988, 95% CI 0.829–1.177, p= 0.8913).

3.3 Mediation analysis

Mediation analysis examined the unadjusted mediation effect

of hip fractures on the association between osteoporosis and

mortality (Supplementary Table 1). The direct (Path c) and

total effects of osteoporosis and mortality were not statistically

significant. However, osteoporosis was significantly associated with

hip fractures (Path a: β = 1.1897, 95% CI 0.7991–1.5804, p

< 0.0001), and hip fractures were significantly associated with

increased mortality (Path b: β = 0.1985, 95% CI 0.1057–0.2913,

p < 0.0001). Furthermore, the natural indirect effect, representing

the mediation effect of hip fractures, was significant (β =

0.0130, 95% CI 0.0048–0.0212, p = 0.0019), indicating that hip

fractures partially mediate the association between osteoporosis

and mortality.

Figure 2 illustrates the mediation effect determined by the

mediation analysis of hip fractures on the association between

osteoporosis and mortality, in the model adjusted for sex, age

group, and CCI. Furthermore, the direct and the total effects

of osteoporosis and mortality were not significantly associated

in the adjusted model (Figures 2A, B, respectively). Osteoporosis

remained significantly associated with hip fractures (Path a: β =

0.9527, 95% CI 0.4947–1.4107, p < 0.0001), and hip fractures

were significantly associated with increased mortality (Path b: β =

0.1516, 95% CI 0.0627–0.2404, p = 0.0008; Table 3). The natural

indirect effect of hip fractures was significant (β = 0.0061, 95% CI

0.0009–0.0114, p = 0.0223), indicating that hip fractures partially

mediate the relationship between osteoporosis and mortality, even

after adjusting for covariates. These findings remained consistent

after further adjustment for PD severity, as assessed by log-

transformed LEDD values (Supplementary Table 2).

4 Discussion

This nationwide cohort study demonstrated the

interrelationships among osteoporosis, hip fractures, and

mortality in patients with PD. Specifically, our results indicate that

hip fractures act as a full mediator in the relationship between

osteoporosis and mortality in patients with PD. Thus, osteoporosis

in PD is not directly associated with increased mortality but is

linked to it only through hip fractures. Our study results can

be used as reference in developing strategies aimed at reducing

the risk factors for mortality in patients with PD, particularly by

addressing the role of hip fractures in the relationship between

osteoporosis and mortality.
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TABLE 1 Descriptive statistics comparing patients with and without osteoporosis, n (%).

Variables Full sample with PD; N = 2,558
(100%)

Osteoporosis p

Yes; N = 474
(18.5%)

No; N = 2,084
(81.5%)

Hip fracture <0.0001∗

Yes 112 (4.4) 46 (9.7) 66 (3.2)

No 2,446 (95.6) 428 (90.3) 2,018 (96.8)

Age at PD diagnosis, mean (SD) 71.0 (9.6) 74.6 (6.9) 70.2 (9.9) <0.0001∗

Log-transformed LEDD, mean

(SD)

3.3 (4.2) 3.5 (4.2) 3.3 (4.2) 0.3032

Age group <0.0001∗

40–59 319 (12.5) 12 (2.5) 307 (14.7)

60–69 652 (25.5) 81 (17.1) 571 (27.4)

70–79 1,107 (43.3) 268 (56.5) 839 (40.3)

80+ 480 (18.8) 113 (23.8) 367 (17.6)

Observation period, monthly,

mean (SD)

56.6 (35.5) 53.2 (31.7) 57.4 (36.2) 0.0201∗

Sex <0.0001∗

Female 1,372 (53.6) 431 (90.9) 941 (45.2)

Male 1,186 (46.4) 43 (9.1) 1,143 (54.9)

CCI <0.0001∗

0 801 (31.3) 37 (7.8) 764 (36.7)

1 479 (18.7) 82 (17.3) 397 (19.1)

≥2 1,278 (50.0) 355 (74.9) 923 (44.3)

Mortality 0.0772

Yes 1,004 (39.3) 203 (42.8) 801 (38.4)

No 1,554 (60.8) 271 (57.2) 1,283 (61.6)

CCI, Charlson comorbidity index; LEDD, levodopa equivalent daily dose; PD, Parkinson’s disease; SD, standard deviation. ∗Statistically significant at an alpha level of 0.05.

The unadjusted Cox proportional hazards model revealed that

osteoporosis was significantly associated with increased mortality

rate in patients with PD (HR = 1.295, p = 0.0011). However, the

association was no longer significant after adjusting for covariates,

such as sex, age, and CCI, (HR = 0.988, p = 0.8913). Previous

longitudinal studies have shown that male sex, older age at

onset, and presence of comorbidities are associated with increased

mortality risk (Pinter et al., 2015; Hoogland et al., 2019; Forsaa

et al., 2010). Consistent with previous studies conducted in the

general population, this study also demonstrated that although

the prevalence of osteoporosis was markedly higher in women

than in men, the risk of mortality associated with osteoporosis

was notably higher in men (Zhang et al., 2024; Lee et al., 2013).

They also reported that osteoporosis is not an independent major

risk factor for mortality in patients with PD, indicating that

interactions with other underlying factors may contribute more

significantly to increased mortality (Pinter et al., 2015; Forsaa et al.,

2010). Further studies should be conducted to clarify the causal

relationship between osteoporosis and mortality in PD and the

various associated factors.

Contrary to a previous study using a nationwide database,

which reported that osteoporosis does not significantly increase

the risk of hip fractures in patients with PD (Kim et al., 2022),

our study found that hip fractures fully mediate the relationship

between osteoporosis and mortality in PD. Thus, osteoporosis is

not directly associated with mortality but is significantly linked

to it only through hip fractures. Patients with PD are at high

risk for both osteoporosis and hip fractures (Malochet-Guinamand

et al., 2015). As PD progresses, various symptoms (e.g., mobility

impairment, decreased hand–mouth coordination, dysphagia, and

reduced gastrointestinal motility) can lead to malnutrition and

sarcopenia. These secondary symptoms are also associated with

an increased risk of osteoporosis and reduced BMD, leading to a

higher risk of osteoporotic and hip fractures (Torsney et al., 2014;

Pouwels et al., 2013). In particular, medication with levodopa in

PD is associated with hyperhomocysteinemia, an independent risk

factor for osteoporosis, as well as common deficiencies in vitamin

B12 and folate (Figueroa and Rosen, 2020). Gao et al. (2015) found

a negative correlation between daily levodopa dosage and BMD at

the spine and hip in patients with PD. Some studies have shown

that bisphosphonates, vitamin D, and calcium therapy can increase

BMD and reduce fractures in patients with PD (van den Bos et al.,

2012; Cummings et al., 2019).

Furthermore, mediation analysis revealed that hip fractures

are significantly associated with increased mortality in PD. A

retrospective cohort study among older Medicare beneficiaries in

Frontiers in AgingNeuroscience 04 frontiersin.org130

https://doi.org/10.3389/fnagi.2025.1552381
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jin et al. 10.3389/fnagi.2025.1552381

TABLE 2 Cox proportional hazards model for mortality associated with osteoporosis in patients with PD.

Variables Model 1 Model 2

HR (95% CI) p HR (95% CI) p

Osteoporosis

No 1 1

Yes 1.295 (1.109–1.512) 0.0011∗ 0.988 (0.829–1.177) 0.8913

Sex

Female 1

Male 1.837 (1.601–2.107) <0.0001∗

Age group

40–59 1

60–69 1.559 (1.153–1.108) 0.0039∗

70–79 2.600 (1.963–3.443) <0.0001∗

80+ 5.011 (3.737–6.719) <0.0001∗

CCI

0 1

1 2.194 (1.801–2.673) <0.0001∗

≥2 2.669 (2.262–3.149) <0.0001∗

CCI, Charlson comorbidity index; CI, confidence interval; ∗Statistically significant at an alpha level of 0.05.

TABLE 3 Association between osteoporosis and mortality mediated by hip fracture in a covariate-adjusted model.

Path β 95% CI p

a∗ 0.9527 0.4947 1.4107 <0.0001

b† 0.1516 0.0627 0.2404 0.0008

c‡ 0.0011 −0.0508 0.0529 0.9675

Total effect 0.0072 −0.0446 0.0590 0.7847

Natural direct effect (NDE) 0.0011 −0.0508 0.0529 0.9675

Natural indirect effect (NIE) 0.0061 0.0009 0.0114 0.0223

Adjusted for sex, age group, Charlson comorbidity index (CCI), confidence interval (CI).
∗Path a: Association between osteoporosis (yes vs. no) and hip fracture (yes vs. no).
†Path b: Association between hip fracture (yes vs. no) and mortality (yes vs. no).
‡Path c: Association between osteoporosis (yes vs. no) and mortality (yes vs. no).

the United States found that patients with PD had a significantly

higher adjusted mortality rate (HR = 2.41) after hip/pelvic

fractures compared with patients without PD (Harris-Hayes et al.,

2014). Nam et al. (2021) reported that patients with PD and

hip fractures had twice the mortality rate compared with those

without fractures. Another nationwide population-based study

in Korea matched patients with and without PD and examined

comorbidities associated with mortality in patients with PD (Yoon

et al., 2021). In their study, no significant difference in mortality

related to hip fractures was observed in patients aged <59 and

<80 years. However, a significant association was found in the

60–79 age group. Our study reported results similar to those

of previous studies on the increased risk of mortality associated

with hip fractures after the onset of PD. Notably, subgroup

analysis indicated that the relationship between hip fractures

and mortality varied significantly with age (Yoon et al., 2021).

These findings emphasize the need for age-specific interventions

to reduce hip fracture-related mortality in patients with PD

and indicate the necessity for further research to explore other

factors influencing this relationship. To this end, interventions

such as increasing calcium and vitamin D intake through dietary

sources or supplementation in older adults, along with the

implementation of fall prevention strategies, may be considered as

potential approaches.

This study has several limitations. First, the diagnoses of PD,

osteoporosis, hip fracture, and comorbidities were based on ICD

codes of the NHIS-NSC database. Therefore, inaccuracies in the

claims data may have resulted in disease misclassification. Second,

because of the characteristics of claims data, clinical information,

including the severity of PD symptoms and cognitive functions, was

not included in the data analysis. In addition, clinical parameters

such as disease stage, motor subtypes, fall history, nutritional status,

and physical function were also unavailable, all of which may

influence both fracture risk and post-fracture mortality. Future
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FIGURE 2

Analysis of the association between osteoporosis and mortality. (A)

Shows the total e�ect of osteoporosis on mortality. (B) Illustrates

the mediating e�ect of hip fracture between osteoporosis and

mortality, highlighting the Natural Direct E�ect (NDE) and the

Natural Indirect E�ect (NIE). Bold lines represent statistically

significant paths, while dashed lines represent non-significant paths.

NDE, Natural Direct E�ect; NIE, Natural Indirect E�ect.

prospective studies incorporating more granular clinical data are

warranted to elucidate the relationship between hip fracture and

mortality in patients with PD. The study population should include

PD patients with osteoporosis, and regular follow-up assessments

should systematically document potential confounding factors,

including the severity of parkinsonism. To ensure more precise

temporal assessment and stronger causal inference, future studies

may need to incorporate regular bone mineral density evaluations,

such as dual energy X-ray absorptiometry. Third, we only

considered the initial hip fracture that occurred after the onset of

PD and osteoporosis for analysis. We did not include subsequent

fractures and thus did not analyze details regarding multiple

fractures. Additionally, although we focused on hip fracture as

the principal diagnosis to assess its mediating effect on mortality,

we did not explicitly exclude individuals with co-existing vertebral

fractures. Consequently, it is possible that some participants had

both hip and vertebral fractures, which may have influenced

the observed outcomes. This limits our ability to attribute the

mediating effect solely to hip fractures. Future research should aim

to analyze different types of osteoporotic fractures—such as hip

and vertebral fractures—both independently and in combination,

to better understand their respective and interactive contributions

to mortality risk in patients with Parkinson’s disease. Given that

ICD-10 codes M80, M81, and M82 represent different subtypes

of osteoporosis, which may reflect varying disease severity or

underlying causes, future studies should consider analyzing these

subgroups separately.

This study emphasizes that osteoporosis is associated with

increased risk of hip fractures, highlighting the indirect role

of hip fractures in the mortality of patients with PD and

concurrent osteoporosis. For these patients, thus, interventions

should include not only the prescription of medications to treat and

prevent osteoporosis but also to the implementation of measures

minimizing the risk of hip fractures. Our findings underscore the

importance of managing the risk factors of osteoporosis related to

disease progression and medication use in PD, emphasizing the

need for proactive strategies for hip fracture prevention.
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