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Editorial on the Research Topic
 Advancing cancer therapy: innovative strategies targeting immune evasion and metabolic modulation




Cancer remains one of the leading causes of death worldwide, with both incidence and mortality continuing to rise despite advances in diagnosis and treatment (1). While early-stage cancers often respond to conventional therapies, advanced and recurrent tumors frequently develop resistance, limiting long-term therapeutic efficacy (2).

Two fundamental hallmarks of cancer, immune evasion and metabolic reprogramming, enable tumors to thrive in hostile microenvironments (3, 4). Although immunotherapies have revolutionized cancer care, a significant proportion of patients either fail to respond or acquire resistance over time (5). In parallel, altered tumor metabolism is increasingly recognized as a promising therapeutic target, particularly for enhancing responses to immunotherapy (7).

This Research Topic highlights recent advances that move beyond traditional treatment. Collectively, the nine featured articles provide valuable insights into the interplay between immunity and metabolism in cancer, exploring strategies to overcome therapeutic resistance and improve clinical outcomes across diverse cancer types.

Several contributions in this Research Topic showcase innovative strategies in immuno-oncology, with a particular focus on integrating biomarkers, imaging techniques, and immune modulation to propel the development of personalized cancer therapies.

Wei et al. addressed a key clinical question in immuno-oncology: does the timing of immune checkpoint inhibitor (ICI) therapy influence outcomes in advanced esophageal squamous cell carcinoma? Their study revealed that, while early immunotherapy does not significantly improve overall survival, it does prolong progression-free survival, particularly in defined patient subgroups. These findings underscore the need to personalize not only the type of treatment but also its timing, especially in settings where biomarkers like PD-L1 are not routinely available (Wei et al.).

In the pursuit of biomarkers to predict immunotherapy response, a cornerstone of precision oncology, Wang Y. et al. explored the prognostic significance of CD74 expression in non-small cell lung cancer (NSCLC) and developed a radiomics-based machine learning model to predict CD74 levels from contrast-enhanced CT images. Their results demonstrate that high CD74 expression correlates with improved overall survival and enhanced antitumor immune activity. The radiomics models achieved strong predictive performance, offering a non-invasive method to stratify patients. This work positions CD74, a membrane glycoprotein involved in immune signaling, as both a prognostic biomarker and a potential therapeutic target in NSCLC, while showcasing the promise of AI-driven imaging biomarkers in precision oncology (Wang Y. et al.). Extending this theme, Xie et al. introduced another radiomics-based machine learning approach to predict response to neoadjuvant immunochemotherapy in advanced NSCLC. By analyzing pre-treatment CT scans, they developed a radiomic signature capable of distinguishing responders from non-responders. Together, these studies highlight radiomics as a non-invasive, scalable tool to guide patient selection and optimize immunotherapy outcomes (Xie et al.).

Focusing on immune evasion in breast cancer, Ding et al. examined how the natural compound resveratrol sensitizes breast cancer cells to natural killer (NK) cell-mediated cytotoxicity. Their work revealed that resveratrol downregulates miR-17-5p, leading to MINK1/JNK/c-Jun pathway activation and upregulation of the NKG2D ligand ULBP2. This enhanced NK cell recognition and killing of tumor cells both in vitro and in vivo, suggesting that dietary or pharmacologic interventions could potentiate innate immune clearance mechanisms (Ding et al.).

Finally, Wang B. et al. provide an insightful review of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in the anti-tumor innate immune response and the use of STING agonists to overcome resistance to conventional therapies. The authors report mechanisms by which STING agonists have the potential to convert “cold” tumors, which lack immune cell infiltration, into “hot” tumors that are more responsive to immunotherapy, present a broad range of STING agonists categories, and discuss several challenges that must be addressed to fully realize the clinical potential of this approach (Wang B. et al.).

Among the selected contributions, other articles delve into cancer metabolism and emerging technologies that are shaping the future of personalized oncology.

The glycocalyx is a glycan-rich layer on the cell surface, with a distinct composition in tumor cells compared to healthy ones. On T cells, glycans regulate key functions and interact with glycan-binding proteins involved in tumor progression. Many immune receptors, such as PD-1, are glycosylated, affecting their stability, ligand binding, and recognition by therapeutic antibodies (6). These topics are discussed in Schuurmans et al., who reviewed the interplay between tumor glucose metabolism and T cell glycocalyx, which is essential for adequate T cell activation and may represent a relevant target to improve anti-tumor T cell biology.

The role of metabolic reprogramming in cancer progression and resistance to therapy in NSCLC was explored in a comprehensive review by Cai et al. After identifying NSCLC key metabolic vulnerabilities, the authors discuss how these can be exploited with drugs and/or compounds that target the glucose, mitochondrial, lipid, and amino acid metabolism pathways, which may be combined with immunotherapies (Cai et al.). The authors also highlight the use of single-cell and spatial metabolomics to identify metabolic subtypes, which could lead to more personalized treatments.

These emerging technologies were applied in an integrative original article, which analyzed single-cell sequencing and spatial transcriptomics data from hepatocellular carcinoma (HCC) sourced from databases (Xi et al.). Xi et al. used computational tools to map the expression of glucose metabolism-related genes and explored the spatial dynamics of glucose metabolism in HCC. From in vitro assays, G6PD, the rate-limiting enzyme of the pentose phosphate pathway, was identified to be involved in HCC progression, associated with glutathione metabolism and ROS production (Xi et al.).

Finally, a review by Fan et al. explores in depth the molecular subtyping of pancreatic cancer, integrating multiple layers of data encompassing gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics. They concluded that the integration of multi-omics approaches is critical for developing personalized treatment approaches and improving the clinical outcomes (Fan et al.).

This Research Topic showcases innovative research that collectively advances our understanding of how cancers escape immune detection and rewire metabolism to sustain growth. The nine featured studies offer mechanistic insights and propose translational strategies ranging from STING pathway activation to targeting metabolic vulnerabilities. We thank all the authors and reviewers for their valuable contributions and hope this Research Topic inspires continued efforts to bridge immunology, metabolism, and oncology for more effective and durable cancer therapies.
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The T cell is an immune cell subset highly effective in eliminating cancer cells. Cancer immunotherapy empowers T cells and occupies a solid position in cancer treatment. The response rate, however, remains relatively low (<30%). The efficacy of immunotherapy is highly dependent on T cell infiltration into the tumor microenvironment (TME) and the ability of these infiltrated T cells to sustain their function within the TME. A better understanding of the inhibitory impact of the TME on T cells is crucial to improve cancer immunotherapy. Tumor cells are well described for their switch into aerobic glycolysis (Warburg effect), resulting in high glucose consumption and a metabolically distinct TME. Conversely, glycosylation, a predominant posttranslational modification of proteins, also relies on glucose molecules. Proper glycosylation of T cell receptors influences the immunological synapse between T cells and tumor cells, thereby affecting T cell effector functions including their cytolytic and cytostatic activities. This review delves into the complex interplay between tumor glucose metabolism and the glycocalyx of T cells, shedding light on how the TME can induce alterations in the T cell glycocalyx, which can subsequently influence the T cell’s ability to target and eliminate tumor cells.
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1 Immunotherapy to reinvigorate T cell effector functions

The T cell is an immune cell subset highly effective in eliminating cancer cells. Upon priming by professional antigen presenting cells that present tumor (neo-)antigens, T cells become activated and can recognize cancer cells. T cell activation induces rapid T cell proliferation leading to the expansion of a population of T cells specifically targeting the cancer cell (1). The resulting effector T cells can directly kill cancer cells by releasing cytotoxic molecules such as perforin and granzymes, which induce programmed cell death through a multi-hit mechanism (2). Additionally, T cells can induce apoptosis in cancer cells through interactions involving death receptors and ligands, such as Fas ligands (FasL) binding to Fas receptor on the surface of cancer cells (3). Furthermore, T cells can release cytokines such as interferon-gamma (IFNy) and tumor necrosis factor-alpha (TNFα), which have anti-tumor effects by inducing permanent growth arrest, leading to their elimination and promotion of inflammation (4).

Cancer cells evolve, however, mechanisms to evade T cell-mediated killing. Immune checkpoints, both stimulatory and inhibitory receptors, control and co-determine the functional outcome of T cell effector responses (5, 6). Immune checkpoint receptor/ligand pairs are present on a diverse set of cells where they regulate the initiation and course of the immune response, which otherwise can cause tissue damage or the development of autoimmunity. Immune checkpoint therapy aims to release the break and harness the body’s immune system to enhance its ability to recognize and destroy cancer cells. The most targeted immune checkpoints in the onco-immunology field are PD-1, PD-L1 and CTLA-4. Monoclonal antibodies blocking these checkpoints interfere with T cell feedback loops and empowers T cells to eliminate cancer cells. Immune checkpoint therapy has shown significant clinical benefit for subgroups of patients with different malignancies (7–11), however, the overall response rate remains below 30% (12).

Next to immune checkpoint therapy, CAR T cell therapy constitutes another form of immunotherapy within the field of oncology. CAR T cell therapy involves genetically modifying a patient’s T cell to express chimeric antigen receptors (CARs) that target specific antigens on cancer cells including glycosylated antigens (13–15). Such ex-vivo engineered CAR T cells are then infused back into the patient, where they can target and kill cancer cells expressing the corresponding antigen. CAR T cells therapy has shown remarkable success especially in hematologic malignancies (16). Despite is advancements, there are still many challenges and questions to address regarding CAR T cell therapies. Factors such as CAR T cell exhaustions and antigen escape contribute to treatment resistance and the occurrence of adverse events highlight the importance of monitoring and managing treatment-related complications (17). As an example, hyperglycosylation of the CAR T cell antigen CD19 directly inhibits CAR T cell effector functions, leading to less T cell cytotoxicity (18). In solid tumors, CAR T cell therapy has shown limited clinical efficacy due to factors such as inadequate tumor infiltration and an immunosuppressive tumor microenvironment (19).

T cell cytotoxicity requires multi-hit delivery to induce cell death and in the absence of suppressive signaling, T cells are capable to engage and eliminate multiple cancer cells successively (serial killing). Hence the efficacy of cancer immunotherapy is not solely dictated by T cell infiltration but also by the ability of the (CAR) T cells to sustain their functions within the TME. Obtaining more insights into the inhibitory impact of the TME on T cells is indispensable to improve immunotherapy. A century ago, Otto Heinrich Warburg noted a distinct contrast between the TME and non-malignant tissues in terms of metabolism. Tumor cells exhibit altered glucose metabolism, leading to high glucose consumption, which results in lactate production and acidification of the TME, commonly known as the Warburg effect (20, 21).




2 Tumor metabolism

Tumor cells exhibit a heightened need for energy to sustain their uncontrolled proliferation and to ensure survival. The Warburg effect involves preferential use of glucose for aerobic glycolysis even in the presence of oxygen. In non-cancerous context, the Warburg effect is exploited by rapidly proliferating cells. In tumor cells, the Warburg effect is a well-known metabolic alteration to support their high proliferation rate (Figure 1). This metabolic adaptation provides the tumor cells with energy, albeit less efficiently in terms of ATP production than oxidative phosphorylation (20). Tumor cells do favor aerobic glycolysis as it allows for quick energy production, and it provides intermediates that can be used for the biosynthesis of nucleotides, amino acids and lipids, the building blocks for the synthesis of cellular components. Moreover, the increased demand for Nicotinamide adenine dinucleotide (NAD+) relative to ATP has been found to drive aerobic glycolysis (22). NAD+ and its reduced forms (NADH, NADP+ and NADPH) are essential redox metabolites in numerous metabolic processes, acting as hybrid-accepting and donating co-enzymes. The heightened glucose consumption by tumor cells results in a competition for glucose between immune cells and tumor cells and metabolically restricts infiltrating T cells. Together facilitating tumor growth and progression (23). Moreover, aerobic glycolysis culminates in the production of lactate, leading to heightened lactate concentration in the TME when glycolysis is increased. Lactate has been identified as an alternative energy source for tumor cells, as exogenous lactate can serve as a substrate for the tricarboxylic acid (TCA) cycle to fuel cancer cells growth (24, 25). At the same time, lactate causes extracellular acidification, which can facilitate tumor progression by suppressing immune response and promoting tumor invasion (26).
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Figure 1 | The preferential use of aerobic glycolysis by tumor cells and its relationship with glycosylation. The reliance of tumor cells on aerobic glycolysis, rather than oxidative phosphorylation, leads to heightened lactate production from glucose metabolism. This preference for aerobic glycolysis is associated with the hexosamine biosynthesis pathway (HBP), which shares the initial steps of glucose metabolism. The HBP is pivotal in protein and lipid glycosylation, thereby establish a significant interconnection between glycosylation and glucose metabolism.

In addition to glucose, tumor cells can utilize glutamine as an alternative energy source. Similarly, the altered glutamine metabolism leads to a reduction in the availability of this essential nutrient for immune cells. The competition for glutamine can impair the function of immune cells, impacting their ability to mount an effective anti-tumor immune response (27). Moreover, tumor cells can switch to lipid metabolism as an alternative source of energy and building materials. Lipid metabolic reprogramming not only supports tumor development, it also modifies the TME by affecting the recruitment, function and survival of infiltrating immune cells (28). Fatty acids are involved in membrane proliferation (29) and can be secreted by the tumor cell to influence the functioning of immune cells (30).

Collectively, the TME displays metabolic abnormalities in comparison to healthy tissue. Research has demonstrated that competition for energy and nutrients hampers immunity. In addition, tumor metabolites affect the efficacy of immune cells, exerting a direct immunosuppressive effect on immune cells (31). The scope of this review is on tumor glucose metabolism and its impact on local T cell glycosylation and function.




3 The glucose metabolism pathway and glycosylation biosynthesis are intertwined

Tumor cells utilize high amounts of glucose and glutamine via aerobic glycolysis. These glucose and glutamine molecules, however, are also consumed by the metabolic hexosamine biosynthesis pathway (HBP) in the cytoplasm of the cell. The HBP converts glucose or glutamine to UPD-N-acetylglucosamine (UPD-GlcNAc) via a six-step pathway that shares the first two steps with glycolysis (Figure 1). UDP-GlcNAc is one of the essential intermediates for glycosylation, hence HBP plays a significant role in regulating glycosylation. For instance, low levels of glucose have been observed to reduce the availability of glycosylation precursors in expression systems such as CHO cells. Consequently leading to more non-glycosylated proteins produced by these CHO cells (32). In contrast, supplementation of glucose to primary murine T cell cultures changed the glycosylation profile of the T cells with functional consequences. Specifically, the attachment of β1,6-GlcNAc-branched N-glycans to cell surface glycoproteins negatively regulated T cell receptor clustering and signaling at the immune synapse (33), an essential interface between cells needed for proper activation of naïve T cell as well as the ability of effector T cells to kill tumor cells.

Glycosylation is the process of covalently attaching monosaccharides to other monosaccharides, proteins, and lipids, creating a wide repertoire of cellular glycans, collectively referred to as the glycome. There are ten monosaccharide building blocks, which can be modified via phosphorylation, sulfation or acetylation. Unlike DNA/RNA transcription, glycosylation is a non-template driven process and regulated via a wide variety of enzymes (34). The product of HBP, UDP-GlcNAc, serves as a substrate of O-GlcNAc transferases (OGT). OGT catalyzes the attachment of a GlcNAc through an O-glycosidic linkage to a serine (Ser) or threonine (Thr) residues on intracellular proteins. A delicate on/off competition mechanism between O-GlcNAcylation and phosphorylation takes place on either the same or adjacent Ser/Thr residues. This on/off mechanism regulates the interactions, stability, subcellular localization, and enzymatic activity of shared target proteins involved in essential biological processes (35). Unlike extracellular glycosylation, O-GlcNAc is not elongated with monosaccharides to generate more complex glycan structures. In addition to O-GlcNAcylation, UDP-GlcNAc serves as a crucial precursor for the biosynthesis of monosaccharides such as UDP-GalNAc and CMP-Neu5Ac that are often utilized in N-linked and O-linked glycosylation processes (36). Once located at the cell membrane, extracellular glycosylation can be further modified by soluble glycan modifying enzymes including glycosidases and sulfatases (37). It has been described that extrinsic sialyltransferases and glycan substrates, supplied among others by platelets, can modify glycan structures present on cell membranes (38–40). Moreover, monocyte differentiation results in up-regulation of neuraminidase 1 (Neu1) that activates phagocytoses in macrophages and dendritic cells via desialylation of surface receptors (41, 42).

As glycans coat the surface of cells, this posttranslational modification is important in the development of all living organisms (43). The tree-like layer composed of glycans on the outer cell membrane is known as the glycocalyx. The specific biochemical composition of the glycocalyx is unique for each cell type (44). Glycans highly impact protein functions and are consequently involved in numerous biological processes including cell adhesion, signal transduction, receptor retention and endocytosis of molecules. In the context of cancer, glycans are implicated in cell invasion, regulation of vascular permeability, immune modulation, and cancer metastasis (45). Given the immunosuppressive impact of tumor metabolites, it is plausible that the interconnected metabolic and glycosylation biosynthesis pathways may contribute to these cancer phenomena. This remains, however, still a largely unexplored research area.




4 The tumor glycocalyx

Tumor cells are well described to have a different glycocalyx composition when compared to their healthy counterparts (46, 47). This aberrant tumor glycosylation profile has been related to the acquisition of hallmarks of cancer (48) and consequently, associated with patient outcomes. For instance, Jiang et al. (49) demonstrate that the expression of aberrant O-glycans, including the Tn antigen, in colorectal cancer is linked to tumor metastatic potential and poor prognosis. More recently, Sun et al. (50) identified a glycosylation signature for predicting the progression and immunotherapeutic response of prostate cancer, emphasizing the role of glycosylation in disease advancement and treatment outcomes.

The aberrant glycosylation profile of tumor cells is affected by various factors, including alterations in glycosyltransferase expression levels and changes in the availability of glycan substrates within the TME (51). Changes in cellular metabolic status can contribute to changes in the availability of glycan substrates, particularly through modulation of the HBP (52). Hyperglycemia, for instance, has been associated with exacerbating colon cancer malignancy through the HBP, indicating a direct relationship between glucose metabolism, HBP, and tumor progression (53, 54). Moreover, hypoxia, a common feature of the TME, has been associated with alterations in glycosylation patterns in cancer cells. Hypoxia-driven changes in glycosylation can impact cell migration and invasion, contribution to tumor aggressiveness (55).

The aberrant glycosylation profile of tumors cells impacts the interaction of tumor cells with the immune system within the TME (56–59). As an example, the aberrant O-linked glycosylation of MUC1 in carcinomas can alter the interaction of MUC1 with glycan binding receptors, consequently affecting the tumor-immune interplay (60). How alterations in tumor glycosylation affects tumor immunity, has comprehensively reviewed by others and is not the scope of this review (61–64).

Besides tumor-immune interactions, the tumor glycocalyx has also been described to be involved in the regulation of tumor cell proliferation. A cytostatic effect on tumor cells refers to the inhibition of cell proliferation without inducing cell death. This effect is crucial in cancer treatment as it aims to halt the growth and spread of tumors. Several reports propose that tumor glycoproteins may play a role in the outcome of cytostatic effects on tumor cells. The P-glycoprotein (P-gp) is a glycosylated transmembrane protein that acts as a multidrug transporter and reported to play a crucial role in multidrug resistance in cancer cells by actively removing cytostatic drugs, including chemotherapy, from tumor cells (65, 66). Whether glycosylation does impact the functionality of P-gp, has not been explored. CD44, a cell surface adhesive glycoprotein, plays a crucial role in tumorigenes. An increasing amount of literature indicates CD44, and especially the CD44v isoforms, as a marker for cancer stem cells. CD44 regulates cancer stemness, including self-renewal and metastasis (67). Hou et al. demonstrated that N-glycosylation of CD44 enhances its stability, consequently promoting tumor cell proliferation (68). Beyond transmembrane glycoproteins, intracellular O-GlcNAcylation has been linked to tumor proliferation by modulating cellular pathways (47). Inhibition of O-GlcNAcylation leads to accumulation of bladder cancer cells in G0/G1 phase (69). Consequently, targeting O-GlcNAcylation has been proposed to overcome cancer resistance to therapies including cytostatic drugs (70).

Certain subsets of T cells, particularly the regulatory T cells, as well as cancer cells are known to be able to produce transforming growth factor beta (TGFβ). TGFβ is a cytokine that plays a complex role in cancer progression. In certain contexts, TGFβ generates a population of cancer cells that reside in the G0/G1 phase with high motility and metastatic potential (71, 72). Additionally, TGFβ can induce dormancy in cancer cells, underscoring its role in maintaining quiescence in cancer cells (73). In the context of tumor dormancy, changes in TGFβ glycosylation could potentially affect its ability to induce cell cycle arrest or promote a quiescent state in cancer cells. Glycosylation alterations may influence the interaction of TGFβ with its receptors and downstream effectors, leading to differential effect on cell proliferation and dormancy (74). For instance, Sun et al. (75) demonstrates that glycosylation of TGFβ receptor II is indispensable for proper TGFβ signaling, which further promotes cell cycle arrest-like traits in breast cancer. These studies illustrate the cytostatic mechanism by which the immune system can affect cancer cells and highlight the crucial role of glycosylation alterations this process.




5 The T cell glycocalyx

Like the tumor cell, the T cell membrane is also covered with glycan structures. The T cell glycocalyx co-regulates key pathophysiological steps within T cell biology including T cell development, activation and proliferation (76–79). Different kinds of protein glycosylation including O-GlcNAcylation, fucosylation and sialylation have been described to be involved in the different stages of T cell development, from homing of T cell precursors to the thymus, to selection and maturation of single positive CD4+ and CD8+ T cells (34). The conserved Notch signaling pathway plays a major role in the initial commitment to the T cell lineage within the thymus. Early thymocyte progenitors develop in the thymus from their double negative (CD4- and CD8-) state into T cells via the Notch pathway (80). The glycosylation profile of Notch receptors has been shown to control Notch-dependent intracellular signal transduction, stressing the relevance of glycosylation for T cell development (81). For instance, N-acetylglucosaminyltransferases modify Notch receptors and loss of these glycosyltransferases leads to reduced binding of Notch to Delta-like ligands, altering the frequencies of T cell subsets in the thymus (82). Mannose-restricted thymocyte glycans were found to impair key developmental checkpoints such as normal lineage choice, Treg cell generation and T cell receptor (TCR) β-selection (83). Moreover, during thymic development the reactivity of the TCR reactivity is tightly regulated and influenced by its glycosylation pattern. De-sialylation was found to enhance the sensitivity of mature T cells to low-affinity TCR ligands or self-ligands (84). Similarly, the binding ability of CD8 to MHC class I is decreased by enhanced T cell sialylation upon T cell maturation during T cell development (85). This underscores the significance of the T cell glycosylation machinery during thymic development.

The process of T cell activation typically involves three main signals. First, the TCR recognizes a specific antigen presented by antigen-presenting cells (APC) in the context of MHC molecules. Secondly, co-stimulatory molecules, such as CD28 on T cells and CD80/86 on APCs reinforces T cell activation. The third signal is obtained from cytokines released by the APC and surrounding cells that influences the differentiation, proliferation, and effector functions of the activated T cell. T cell activation leads to exceptionally high rate of growth and proliferation. Activated T cells rapidly upregulate their glucose uptake and glycolysis to fuel the energetic and biosynthetic demands for rapid clonal expansion (86). This includes generation of glycan-donor substrates required for glycan biosynthesis that is needed for proper T cell function (87). Moreover, TCR signaling induced by anti-CD3/CD28 monoclonal antibodies on T cells co-regulates mRNA expression of multiple N-glycan processing enzymes including MGAT5 and Golgi α-mannosidase enzymes, to promote N-glycan branching and formation of mature glycans (88). Involvement of glycosylation in T cell activation and sustaining their effector functions is mainly by N-glycosylation of the TCR, CD25 and co-stimulatory and -inhibitory receptors (34, 81, 89). Glycans can play a stabilizing role in complexes formed at the immunological synapse (34). For instance, a deficiency in β1,6 N-acetylglucosaminyltransferase V (MGAT5) enhances TCR clustering, resulting in a lower T cell activation (76). MGAT5 initiates GlcNAc β1,6 N-glycan branching (90). A deficiency in N-glycan branching results in lower presence of N-acetylglucosamine, the ligand for galectins. Galectins are known to modulate T cell proliferation and apoptosis (91) by regulating TCR clustering and recruitment to the site of antigen presentation. By removing galectin ligands, the threshold for T cell activation is lowered. The absence of MgatV has then also been associated with increased susceptibility for autoimmune disease (76). Opposingly, when inhibiting N-glycosylation by point mutations in N-glycosylation sites of CD28, CD28 showed an increased binding to CD80, leading to enhanced CD28 signaling activity (92). Collectively, N-glycosylation is profoundly involved in T cell activation and its impact is significantly determined by inhibiting the whole N-glycosylation machinery versus inhibition of N-glycosylation on specified T cell glycoproteins.

Besides T cell biology, the glycans on the T cell surface serve as signals for glycan binding proteins (GBPs). GBPs are widely express among a diverse set of immune cells, thereby regulating the immune response. The three main types of GBPs are galectins, Sialic acid-binding immunoglobulin-type lectins (Siglecs) and C-type lectins (93). The GBPs and their immune regulatory roles are highly diverse and complex (43, 93, 94). For example, Galectin-1 is pro-tumorigenic and proangiogenic in tumor progression. Tumor secreted Galectin-1 has immunosuppressive effects and serves as an important marker in diagnosis, prognosis, and treatment of cancer (34, 95, 96). Moreover, Galectin-1 was found to negatively influence the proliferation of CD8+ T cells and therefore affect antitumor immunity (97). One of the targets of Galectin-1 is the CD45 receptor on T cells. CD43 and CD45 are highly abundant glycoproteins on the T cell surface and are decorated with O- and N-glycans, regulating their function and binding. For instance, sialylation of CD45 was shown to inhibit Galectin-1-induced clustering, an initial step in Galectin-1 mediated cell death (98). This indicates that CD45 glycosylation can control T cell susceptibility to cell death (99).

Collectively, glycans serve as regulators of T cell biology, exerting significant influence on the immunological synapse, including interactions between T cells and tumor cells. Therefore, the T cell glycocalyx represents as a target to improve anti-tumor T cell immunity.




6 The influence of the TME on T cell functions via the T cell glycocalyx

The efficacy of T cells in inducing cancer cell arrest and elimination relies heavily on their ability to sustain functional within the TME. The TME can, however, induce T cell exhaustion and senescence, leading to altered differentiation and hypofunctional status of T cells (100, 101). Persistent antigen presentation in the TME can be associated with the induction of T cell dysfunctions, resulting in an exhausted state (101). Exhausted T cells typically exhibit heightened expression of inhibitory receptors, reduced effector cytokine production, and impaired cytolytic activity. Besides prolonged exposure to antigen, metabolites present in the TME can also influence T cell function. Elevated lactate levels, for instance, have been shown to suppress the anti-tumor activity of T cells by increasing the accumulation of H+ ions and maintaining a low pH environment (102, 103). In general, the functional outcome of T cells is co-determined by the activation of stimulatory and inhibitory receptors on T cells. The majority of these immune receptors are glycosylated (89, 104). The glycosylation pattern can influence the receptor’s stability, ligand binding affinity (105, 106), and recognition by therapeutic monoclonal antibodies, thus affecting their anti-tumor efficacy (107, 108). Moreover, the glycosylation machinery of a cell is dynamic and reflects the functional state of a cell. As an example, T cells present in PBMCs isolated at time of SARS-Cov-2 diagnoses (within 72h of positive PCR SARS-Cov-2 test) displayed an altered glycosylation profile when compared to healthy controls (109). A metabolic altered TME could similarly cause alterations in the T cell glycocalyx with possibly functional consequences.

Recent studies report on how N-glycosylation can directly interfere with T cell function within the TME. Malignant ascites fluid obtained from ovarian cancer patients, inhibited glucose uptake by CD4+ T cells and resulted in N-linked glycosylation defects. The loss of fully N-glycosylated proteins suppressed mitochondrial activity and IFNγ production by the CD4+ T cells. Restoration of N-linked glycosylation enhanced mitochondrial respiration again in CD4+ T cells exposed to malignant ovarian ascites (110). In addition to CD4+ T cells, Kim et al. (111) demonstrated that deficient N-glycosylation impairs IFNγ mediated effector function also in tumor-infiltrating CD8+ T cells, impacting the anti-tumor immune response. Mechanistically, tumor infiltrating and exhausted CD8+ T cells downregulate the oligosaccharyltransferase (OST) complex. The OST complex catalyzes the attachment of precursor N-glycans to nascent target proteins in the endoplasmic reticulum (ER). OST complex is therefore indispensable for the N-glycosylation pathway. Interestingly, restoration of the OST complex complemented N-glycosylation that restored the IFNγ production and alleviated CD8+ T cell exhaustion, consequently resulting in reduced tumor growth in preclinical models (111).

T cell proliferation and activation is dependent on the competitive binding of CTLA-4 or CD28 on the T cell to the CD80/86 ligand on an APC. When CTLA-4 binds CD80/86 instead of CD28, T cell proliferation is inhibited (112). Increased CTLA-4 glycan branching retains CTLA-4 on the cell surface, suppressing T cell activation (88). Upon activation, T cell upregulate PD-1. Upon binding of PD-1 to its ligand, PD-L1, the glycolysis metabolism is attenuated, limiting the energy supply, and impeding the differentiation into effector T cells (113). This binding also induces protumor genic rapamycin (mTOR) signaling, reactive oxygen species (ROS) production and mitochondrial respiration (114). These processes all exert negative effects on T cell activity and cytotoxicity. Immune checkpoint proteins including CTLA-4 and PD-1 are glycosylated, which can be crucial for their function (89). PD-1 contains four N-glycosylation sites that are critical for maintaining PD-1 membrane expression (105). Inhibition of core fucosylation enhanced the ubiquitination of PD-1, leading to PD-1 degradation by the proteasome (115). Also, glycosylation of PD-1 impacts the binding to its ligand PD-L1 (105). Similarly, recognition of PD-1 by the anti-PD-1 blocking antibody Camrelizumab used for the treatment of relapsed or refractory classical Hodgkin lymphoma (116) is affected by PD-1 glycosylation (108). Whether changes in glycosylation of immune checkpoints occur within the tumor microenvironment has, however, not extensively been researched. First studies show that elevated glycosylation on tumor cells results in overexpression of PD-L1, therefore increasing its immunosuppressive activity (106, 117). However, whether the TME can affect PD-1 glycosylation remains largely unstudied.

Glyco-metabolism changes could possibly also indirectly impact T cell function by affecting glycans on extracellular matrix (ECM) components in the TME and hence binding of secreted factors such as immunomodulatory cytokines and chemokines. IL-2, TGFβ and IFNγ are for instance known to bind the ECM glycosaminoglycans such as heparin sulfate and this binding modulates the biological activity of these cytokines (118–120).

In summary, the T cell glycocalyx is indispensable for proper T cell activation and effector functions (Figure 2). Glycan biosynthesis requires glucose molecules, yet the levels of glucose in the TME are significantly lower compared to those in non-malignant tissue. To gain a deeper understanding of how the TME impacts T cell biology, future research should encompass the influence of the TME on the T cell glycocalyx, potentially leading to T cell dysfunction (see ‘?’, Figure 2).

[image: Diagram comparing T cell environments. On the left, a healthy environment with glucose, TCR, and complex branched glycan structures; normal glycolysis, glycosylation, and IFNγ. On the right, a tumor microenvironment with low glucose, lactate, and hypoxia; reduced glycolysis, N-glycosylation deficiency, altered glycan profile, and T cell dysfunction. Questions if tumor microenvironment T cell dysfunction is linked to altered T cell glycocalyx.]
Figure 2 | The complex interplay between the tumor microenvironment and the T cell glycocalyx. Activated T cells rapidly increase their glucose uptake to fuel their energetic demands. The tumor microenvironment (TME), however, is deprived from nutrients including glucose. The TME can induce T cell exhaustion and senescence. Although glycolysis and glycan biosynthesis pathways are highly interconnected, it remains unknown how TME factors affect T cell effector functions through changes in glycan biosynthesis of T cells. glucose transporter (GLUT), β1,6 N-acetylglucosaminyltransferase V (MGAT5), oligosaccharyltransferase (OST), interferon gamma (IFNγ), T cell receptor (TCR).




7 Conclusion & Future perspectives

The onco-immunology field has witnessed significant advancements, in part driven by immunotherapies such as immune checkpoint and CAR T cell therapy. Although immunotherapies have demonstrated clinical success, T cell infiltration alone does not determine efficacy. Tumor cells exhibit altered metabolism, notably the Warburg effect, impacting glucose consumption and lactate production, thereby fostering a metabolically restricted TME. This influences the competition for glucose and other nutrients between tumor and immune cells. Most of the proteins expressed on T cells require glycosylation to function properly. The competition for glucose might have a direct effect on the glycosylation profile of T cell proteins and consequently affecting T cell effector functions. The key question that now arises is: How exactly does the TME influence the T cell glycocalyx and can this be linked with T cell functioning? There is evidence that T cells are exhausted inside the TME because of glucose-restriction, hypoxia, and elevated lactate levels, but can this be linked with an altered glycosylation machinery within the T cell?

Collectively, understanding the intricate connection between tumor glucose metabolism, the T cell glycocalyx and T cell biology will provide new insights for advancing immune checkpoint and adoptive (CAR) T cell immunotherapy. Targeting these interconnected pathways may provide new avenues for enhancing therapeutic efficacy and overcoming challenges in the rapidly evolving landscape of onco-immunology.





Author contributions

FS: Writing – original draft, Writing – review & editing. KW: Writing – original draft. GA: Conceptualization, Funding acquisition, Supervision, Writing – review & editing. LC: Conceptualization, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by grants from the Dutch Cancer Society awarded to LC and GA (KWF 15326), and GA, Kim C.M. Santegoets, and Pieter Wesseling (KWF 11266).




Acknowledgments

The authors would like to express their appreciation to everyone involved in drafting and preparing the manuscript as well as the Dutch Cancer Society for their support.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References
	1. Farber, DL. Form and function for T cells in health and disease. Nat Rev Immunol. (2020) 20:83–4. doi: 10.1038/s41577-019-0267-8
	2. Weigelin, B, den Boer, AT, Wagena, E, Broen, K, Dolstra, H, de Boer, RJ, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun. (2021) 12(1):5217. doi: 10.1038/s41467–021-25282–3
	3. Lowin, B, Hahne, M, Mattmann, C, and Tschopp, J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nat. (1994) 370:650–2. doi: 10.1038/370650a0
	4. Braumüller, H, Wieder, T, Brenner, E, Aßmann, S, Hahn, M, Alkhaled, M, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. (2013) 494:361–5. doi: 10.1038/nature11824
	5. Qin, S, Xu, L, Yi, M, Yu, S, Wu, K, and Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol Cancer. (2019) 18:1–14. doi: 10.1186/s12943-019-1091-2
	6. Guo, Z, Zhang, R, Yang, AG, and Zheng, G. Diversity of immune checkpoints in cancer immunotherapy. Front Immunol. (2023) 14:1–15. doi: 10.3389/fimmu.2023.1121285
	7. Chamoto, K, Hatae, R, and Honjo, T. Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol. (1234) 25:790–800. doi: 10.1007/s10147-019-01588-7
	8. Topalian, SL, Hodi, FS, Brahmer, JR, Gettinger, SN, Smith, DC, McDermott, DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. (2012) 366:2443–54. doi: 10.1056/NEJMoa1200690
	9. Brahmer, JR, Drake, CG, Wollner, I, Powderly, JD, Picus, J, Sharfman, WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. (2010) 28:3167–75. doi: 10.1200/JCO.2009.26.7609
	10. Formenti, SC, Rudqvist, NP, Golden, E, Cooper, B, Wennerberg, E, Lhuillier, C, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. (2018) 24(12):1845–51. doi: 10.1038/s41591-018-0232-2
	11. Ott, PA, Hodi, FS, and Robert, C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. (2013) 19:5300–9. doi: 10.1158/1078-0432.CCR-13-0143
	12. Srinivasa, BJ, Prakash Lalkota, B, Sapkota, S, Sarathy, V, Bayas, N, and Naik, R. Clinical profile and results in cancers treated with nivolumab: A single centre study. Open J Immunol. (2018) 08:107–11. doi: 10.4236/oji.2018.84007
	13. Steentoft, C, Migliorini, D, King, TR, Mandel, U, June, CH, and Posey, AD. Glycan-directed CAR-T cells. Glycobiology. (2018) 28:656–69. doi: 10.1093/glycob/cwy008
	14. Miliotou, AN, and Papadopoulou, LC. CAR T-cell therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol. (2018) 19:5–18. doi: 10.2174/1389201019666180418095526
	15. Sterner, RC, and Sterner, RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. (2021) 11. doi: 10.1038/s41408–021-00459–7
	16. Savoldo, B, Grover, N, and Dotti, G. CAR T cells for hematological Malignancies. J Clin Invest. (2024) 134. doi: 10.1172/JCI177160
	17. Zhang, Y, Xu, Y, Dang, X, Zhu, Z, Qian, W, Liang, A, et al. Challenges and optimal strategies of CAR T therapy for hematological Malignancies. Chin Med J (Engl). (2023) 136:269–79. doi: 10.1097/CM9.0000000000002476
	18. Heard, A, Landmann, JH, Hansen, AR, Papadopolou, A, Hsu, YS, Selli, ME, et al. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat Commun. (2022) 13. doi: 10.1038/s41467-022-31035-7
	19. Wu, S, Ji, F, Xu, B, and Wu, F. Delivering CAR-T cells into solid tumors via hydrogels. MedComm – Oncol. (2023) 2(2). doi: 10.1002/mog2.40
	20. Courtnay, R, Ngo, DC, Malik, N, Ververis, K, Tortorella, SM, and Karagiannis, TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. (2015) 42:841–51. doi: 10.1007/s11033-015-3858-x
	21. Lin, X, Xiao, Z, Chen, T, Liang, SH, and Guo, H. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Front Oncol. (2020) 10:1–10. doi: 10.3389/fonc.2020.00317
	22. Luengo, A, Li, Z, Gui, DY, Spranger, S, Matheson, NJ, Vander, MG, et al. Increased demand for NAD + relative to ATP drives aerobic glycolysis ll Increased demand for NAD + relative to ATP drives aerobic glycolysis. Mol Cell. (2021) 81:691–707. doi: 10.1016/j.molcel.2020.12.012
	23. Chang, CH, Qiu, J, O’Sullivan, D, Buck, MD, Noguchi, T, Curtis, JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016
	24. Doherty, JR, and Cleveland, JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. (2013) 123:3685–92. doi: 10.1172/JCI69741
	25. Montal, ED, Bhalla, K, Dewi, RE, Ruiz, CF, Haley, JA, Ropell, AE, et al. Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer. Cancer Metab. (2019) 7:1–14. doi: 10.1186/s40170–019-0199–6
	26. de la Cruz-López, KG, Castro-Muñoz, LJ, Reyes-Hernández, DO, García-Carrancá, A, and Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. (2019) 9. doi: 10.3389/fonc.2019.01143
	27. Ma, G, Zhang, Z, Li, P, Zhang, Z, Zeng, M, Liang, Z, et al. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment. Cell Commun Signal. (2022) 20:1–15. doi: 10.1186/s12964–022-00909–0
	28. Yang, K, Wang, X, Song, C, He, Z, Wang, R, Xu, Y, et al. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. (2023) 13:1774–808. doi: 10.7150/thno.82920
	29. Cao, T, Dong, J, Huang, J, Tang, Z, and Shen, H. Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer. Front Oncol. (2022) 12:979565. doi: 10.3389/fonc.2022.979565
	30. Fu, Y, Zou, T, Shen, X, Nelson, PJ, Li, J, Wu, C, et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. (2021) 2:27–59. doi: 10.1002/mco2.27
	31. Buck, MD, Sowell, RT, Kaech, SM, and Pearce, EL. Leading edge review metabolic instruction of immunity. Cell. (2017) 169(4):570–86. doi: 10.1016/j.cell.2017.04.004
	32. Villacrés, C, Tayi, VS, Lattová, E, Perreault, H, and Butler, M. Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture. Biotechnol J. (2015) 10:1051–66. doi: 10.1002/biot.201400662
	33. Grigorian, A, Lee, SU, Tian, W, Chen, IJ, Gao, G, Mendelsohn, R, et al. Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem. (2007) 282:20027–35. doi: 10.1074/jbc.M701890200
	34. De Bousser, E, Meuris, L, Callewaert, N, and Festjens, N. Human T cell glycosylation and implications on immune therapy for cancer. Hum Vaccines Immunother. (2020) 16(10):2374–88. doi: 10.1080/21645515.2020.1730658
	35. van der Laarse, SAM, Leney, AC, and Heck, AJR. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. FEBS J. (2018) 285:3152–67. doi: 10.1111/febs.14491
	36. Varki, A, Cummings, RD, Esko, JD, Stanley, P, Hart, GW, Aebi, M, et al. editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. (2022). doi: 10.1101/978162182421
	37. Parker, RB, and Kohler, JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol. (2010) 5:35. doi: 10.1021/cb9002514
	38. Lee-Sundlov, MM, Ashline, DJ, Hanneman, AJ, Grozovsky, R, Reinhold, VN, Hoffmeister, KM, et al. Circulating blood and platelets supply glycosyltransferases that enableextrinsic extracellular glycosylation. Glycobiology. (2017) 27:188. doi: 10.1093/glycob/cww108
	39. Manhardt, CT, Punch, PR, Dougher, CWL, and Lau, JTY. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem. (2017) 292:13514. doi: 10.1074/jbc.C117.795138
	40. Lee, MM, Nasirikenari, M, Manhardt, CT, Ashline, DJ, Hanneman, AJ, Reinhold, VN, et al. Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem. (2014) 289:8742–8. doi: 10.1074/jbc.C113.546713
	41. Seyrantepe, V, Iannello, A, Liang, F, Kanshin, E, Jayanth, P, Samarani, S, et al. Regulation of phagocytosis in macrophages by neuraminidase 1. J Biol Chem. (2010) 285(1):206–15. doi: 10.1016/j.ymgme.2008.11.128
	42. Liang, F, Seyrantepe, V, Landry, K, Ahmad, R, Ahmad, A, Stamatos, NM, et al. Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J Biol Chem. (2006) 281:27526–38. doi: 10.1074/jbc.M605633200
	43. Ohtsubo, K, and Marth, JD. Glycosylation in cellular mechanisms of health and disease. Cell. (2006) 126:855–67. doi: 10.1016/j.cell.2006.08.019
	44. Reitsma, S, Slaaf, DW, Vink, H, van Zandvoort, MAMJ, and oude Egbrink, MGA. The endothelial glycocalyx: composition, functions, and visualization
	45. Cheng, WK, and Oon, CE. How glycosylation aids tumor angiogenesis: An updated review. BioMed Pharmacother. (2018) 103:1246–52. doi: 10.1016/j.biopha.2018.04.119
	46. Brown Chandler K, E, Costello, C, and Rahimi, N. Glycosylation in the tumor microenvironment: implications for tumor angiogenesis and metastasis. Cells. (2019) 8:544. doi: 10.3390/cells8060544
	47. Stowell, SR, Ju, T, and Cummings, RD. Protein glycosylation in cancer. Annu Rev Pathol Mech Dis. (2015) 10:473–510. doi: 10.1146/annurev-pathol-012414-040438
	48. Munkley, J, Elliott, DJ, Munkley, J, and Elliott, DJ. Hallmarks of glycosylation in cancer. Oncotarget. (2016) 7:35478–89. doi: 10.18632/oncotarget.v7i23
	49. Jiang, Y, Liu, Z, Xu, F, Dong, X, Cheng, Y, Hu, Y, et al. Aberrant O-glycosylation contributes to tumorigenesis in human colorectal cancer. J Cell Mol Med. (2018) 22(10):4875–85. doi: 10.1111/jcmm.13752
	50. Sun, K, Feng, Z, Fan, C, Min, X, Zhang, P, and Xia, L. A glycosylation signature for predicting the progression and immunotherapeutic response of prostate cancer. J Gene Med. (2023) 25(6):e3489. doi: 10.1002/jgm.3489
	51. Hoessli, DC, Micheau, O, Todeschini, AR, Vasconcelos-Dos-Santos, A, Oliveira, IA, Lucena, MC, et al. Biosynthetic machinery involved in aberrant glycosylation: promising targets for developing of drugs against cancer. Front Oncol. (2015) 5:138. doi: 10.3389/fonc.2015.00138
	52. Lucena, MC, Carvalho-Cruz, P, Donadio, JL, Oliveira, IA, De Queiroz, RM, Marinho-Carvalho, MM, et al. Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J Biol Chem. (2016) 291:12917–29. doi: 10.1074/jbc.M116.729236
	53. Vasconcelos-dos-Santos, A, Loponte, H, Mantuano, N, Oliveira, I, de Paula, I, Teixeira, L, et al. Hyperglycemia exacerbates colon cancer Malignancy through hexosamine biosynthetic pathway. Oncogenesis. (2017) 6:306. doi: 10.1038/oncsis.2017.2
	54. Tibullo, D, Giallongo, C, Romano, A, Vicario, N, Barbato, A, Puglisi, F, et al. Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells. Biomolecules. (2020) 10:696. doi: 10.3390/biom10050696
	55. Arriagada, C, Silva, P, and Torres, VA. Role of glycosylation in hypoxia-driven cell migration and invasion. Cell Adh Migr. (2019) 13(1):13–22. doi: 10.1080/19336918.2018.1491234
	56. Cornelissen, LAM, Blanas, A, Zaal, A, van der Horst, JC, Kruijssen, LJW, O’Toole, T, et al. Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer. Front Oncol. (2020) 10:1–15. doi: 10.3389/fonc.2020.01622
	57. Büll, C, Boltje, TJ, Balneger, N, Weischer, SM, Wassink, M, Van Gemst, JJ, et al. Sialic acid blockade suppresses tumor growth by enhancing t-cell-mediated tumor immunity. Cancer Res. (2018) 78:3574–88. doi: 10.1158/0008-5472.CAN-17-3376
	58. R, E, B, K, B, K, EL, RJ, K, L, B, SCM, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. (2021) 12(1):1270. doi: 10.1038/s41467-021-21550-4
	59. Dusoswa, SA, Verhoeff, J, Abels, E, Méndez-Huergo, SP, Croci, DO, Kuijper, LH, et al. Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proc Natl Acad Sci U.S.A. (2020) 117:3693–703. doi: 10.1073/pnas.1907921117
	60. Beatson, R, Tajadura-Ortega, V, Achkova, D, Picco, G, Tsourouktsoglou, TD, Klausing, S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. (2016) 17:1273–81. doi: 10.1038/ni.3552
	61. van Houtum, EJH, Büll, C, Cornelissen, LAM, and Adema, GJ. Siglec signaling in the tumor microenvironment. Front Immunol. (2021) 12. doi: 10.3389/fimmu.2021.790317
	62. van de Wall, S, Santegoets, KCM, van Houtum, EJH, Büll, C, and Adema, GJ. Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol. (2020) 41(4):274–85. doi: 10.1016/j.it.2020.02.001
	63. RodrÍguez, E, Schetters, STT, and van Kooyk, Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. (2018) 18(3):204–11. doi: 10.1038/nri.2018.3
	64. Mantuano, NR, Natoli, M, Zippelius, A, and Läubli, H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer. (2020) 8:e001222. doi: 10.1136/jitc-2020-001222
	65. Ahmed Juvale, II, Abdul Hamid, AA, Abd Halim, KB, and Che Has, AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon. (2022) 8:e09777. doi: 10.1016/j.heliyon.2022.e09777
	66. Lin, JH, and Yamazaki, M. Clinical relevance of P-glycoprotein in drug therapy. Drug Metab Rev. (2003) 35:417–54. doi: 10.1081/DMR-120026871
	67. Wang, L, Zuo, X, Xie, K, and Wei, D. The role of CD44 and cancer stem cells. Methods Mol Biol. (2018) 1692:31–42. doi: 10.1007/978–1-4939–7401-6_3
	68. Hou, H, Ge, C, Sun, H, Li, H, Li, J, and Tian, H. Tunicamycin inhibits cell proliferation and migration in hepatocellular carcinoma through suppression of CD44s and the ERK1/2 pathway. Cancer Sci. (2018) 109:1088–100. doi: 10.1111/cas.13518
	69. Wang, L, Chen, S, Zhang, Z, Zhang, J, Mao, S, Zheng, J, et al. Suppressed OGT expression inhibits cell proliferation while inducing cell apoptosis in bladder cancer. BMC Cancer. (2018) 18:1–12. doi: 10.1186/s12885-018-5033-y
	70. Very, N, and El Yazidi-Belkoura, I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol. (2022) 12:960312. doi: 10.3389/fonc.2022.960312
	71. Takahashi, K, Podyma-Inoue, KA, Saito, M, Sakakitani, S, Sugauchi, A, Iida, K, et al. TGF-β generates a population of cancer cells residing in G1 phase with high motility and metastatic potential via KRTAP2–3. Cell Rep. (2022) 40:111411. doi: 10.1016/j.celrep.2022.111411
	72. Majumdar, A, Curley, SA, Wu, X, Brown, P, Hwang, JP, Shetty, K, et al. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. (2012) 9(9):530–8. doi: 10.1038/nrgastro.2012.114
	73. Ikushima, H, and Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. (2010) 10:415–24. doi: 10.1038/nrc2853
	74. Zhang, J, ten Dijke, P, Wuhrer, M, and Zhang, T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell. (2021) 12:89–106. doi: 10.1007/s13238–020-00741–7
	75. Sun, X, He, Z, Guo, L, Wang, C, Lin, C, Ye, L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. (2021) 40:1–26. doi: 10.1186/s13046-021-01932-8
	76. Demetriou, M, Granovsky, M, Quaggin, S, and Dennis, JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nat. (2001) 409:733–9. doi: 10.1038/35055582
	77. Swamy, M, Pathak, S, Grzes, KM, Damerow, S, Sinclair, LV, Van Aalten, DMF, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and Malignancy. Nat Immunol. (2016) 17:712–20. doi: 10.1038/ni.3439
	78. Rossi, FMV, Corbel, SY, Merzaban, JS, Carlow, DA, Gossens, K, Duenas, J, et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol. (2005) 6:626–34. doi: 10.1038/ni1203
	79. Merzaban, JS, Richer, MJ, Van Kooyk, Y, Pereira, MS, Alves, I, Vicente, M, et al. Glycans as key checkpoints of T cell activity and function. Front Immunol. (2018) 9:2754. doi: 10.3389/fimmu.2018.02754
	80. Sun, L, Su, Y, Jiao, A, Wang, X, and Zhang, B. T cells in health and disease. Signal Transduct Target Ther. (2023) 8(1):235. doi: 10.1038/s41392-023-01471-y
	81. Pereira, MS, Alves, I, Vicente, M, Campar, A, Silva, MC, Padrão, NA, et al. Glycans as key checkpoints of T cell activity and function. Front Immunol Front Media S.A. (2018) 9. doi: 10.3389/fimmu.2018.02754
	82. Song, Y, Kumar, V, Wei, H-X, Qiu, J, and Stanley, P. Lunatic, manic, and radical fringe each promote T and B cell development. J Immunol. (2016) 196:232–43. doi: 10.4049/jimmunol.1402421
	83. Vicente, MM, Alves, I, Fernandes, Â, Dias, AM, Santos-Pereira, B, Pérez-Anton, E, et al. Mannosylated glycans impair normal T-cell development by reprogramming commitment and repertoire diversity. Cell Mol Immunol. (2023) 20:955–68. doi: 10.1038/s41423-023-01052-7
	84. Starr, TK, Daniels, MA, Lucido, MM, Jameson, SC, and Hogquist, KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: A partial role for sialylation. J Immunol. (2003) 171:4512–20. doi: 10.4049/jimmunol.171.9.4512
	85. Daniels, MA, Devine, L, Miller, JD, Moser, JM, Lukacher, AE, Altman, JD, et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity. (2001) 15:1051–61. doi: 10.1016/S1074-7613(01)00252-7
	86. Gerriets, VA, and Rathmell, JC. Metabolic pathways in T cell fate and function. Trends Immunol. (2012) 33:168–73. doi: 10.1016/j.it.2012.01.010
	87. Wellen, KE, and Thompson, CB. A two-way street: Reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. (2012) 13:270–6. doi: 10.1038/nrm3305
	88. Chen, HL, Li, CF, Grigorian, A, Tian, W, and Demetriou, M. T cell receptor signaling co-regulates multiple golgi genes to enhance N-glycan branching *♦. J Biol Chem. (2009) 284:32454–61. doi: 10.1074/jbc.M109.023630
	89. Sun, R, Kim, AMJ, and Lim, SO. Glycosylation of immune receptors in cancer. Cells. (2021) 10(5):1100. doi: 10.3390/cells10051100
	90. Cummingst, RD, Trowbridge&, IS, and Kornfeldt, S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J Biol Chem. (1982) 257:13421–7. doi: 10.1016/S0021-9258(18)33465-3
	91. Perillo, NL, Pace, KE, Seilhamer, JJ, and Baum, LG. Apoptosis of T cells mediated by galectin-1. Nat. (1995) 378:736–9. doi: 10.1038/378736a0
	92. Ma, SL, Zhu, WX, Guo, QL, Liu, YC, and Xu, MQ. CD28 T cell costimulatory receptor function is negatively regulated by N-linked carbohydrates. Biochem Biophys Res Commun. (2004) 317:60–7. doi: 10.1016/j.bbrc.2004.03.012
	93. Pinho, SS, Alves, I, Gaifem, J, and Rabinovich, GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol. (2023) 20(10):1101–13. doi: 10.1038/s41423–023-01074–1
	94. Crocker, PR, Paulson, JC, and Varki, A. Siglecs and their roles in the immune system. Nat Rev Immunol. (2007) 7:255–66. doi: 10.1038/nri2056
	95. Cagnoni, AJ, Giribaldi, ML, Blidner, AG, Cutine, AM, Gatto, SG, Morales, RM, et al. Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8+ regulatory T cells. Proc Natl Acad Sci U.S.A. (2021) 118:e2102950118. doi: 10.1073/pnas.2102950118
	96. Rabinovich, GA. Galectin-1 as a potential cancer target. Br J Cancer. (2005) 92:1188–92. doi: 10.1038/sj.bjc.6602493
	97. Clemente, T, Vieira, NJ, Cerliani, JP, Adrain, C, Luthi, A, Dominguez, MR, et al. Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death Dis. (2017) 8:1–10. doi: 10.1038/cddis.2017.506
	98. Amano, M, Galvan, M, He, J, and Baum, LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem. (2003) 278:7469–75. doi: 10.1074/jbc.M209595200
	99. Earl, LA, and Baum, LG. CD45 glycosylation controls T-cell life and death. Immunol Cell Biol. (2008) 86:608–15. doi: 10.1038/icb.2008.46
	100. Jiang, Y, Li, Y, and Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. (2015) 6(6):e1792. doi: 10.1038/cddis.2015.162
	101. Zhao, Y, Shao, Q, and Peng, G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. (2020) 17:27–35. doi: 10.1038/s41423–019-0344–8
	102. Elia, I, Rowe, JH, Johnson, S, Joshi, S, Notarangelo, G, Kurmi, K, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab. (2022) 34:1137–50.e6. doi: 10.1016/j.cmet.2022.06.008
	103. Wang, ZH, Peng, WB, Zhang, P, Yang, XP, and Zhou, Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. (2021) 73:103627. doi: 10.1016/j.ebiom.2021.103627
	104. Xiao, L, Guan, X, Xiang, M, Wang, Q, Long, Q, Yue, C, et al. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol. (2022) 13. doi: 10.3389/fimmu.2022.1088560
	105. Sun, L, Li, C-W, Chung, EM, Yang, R, Kim, Y-S, Park, AH, et al. Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Res. (2020) 80:2298–310. doi: 10.1158/0008-5472.CAN-19-3133
	106. Li, CW, Lim, SO, Xia, W, Lee, HH, Chan, LC, Kuo, CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. (2016) 7:12632. doi: 10.1038/ncomms12632
	107. Lee, H-H, Wang, Y-N, Xia, W, Chen, C-H, Rau, K-M, Ye, L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. (2019) 36(2):168–78.e4. doi: 10.1016/j.ccell.2019.06.008
	108. Liu, K, Tan, S, Jin, W, Guan, J, Wang, Q, Sun, H, et al. N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep. (2020) 21(12):e51444. doi: 10.15252/embr.202051444
	109. Alves, I, Vicente, MM, Gaifem, J, Fernandes, Â, Dias, AM, Rodrigues, CS, et al. SARS-CoV-2 infection drives a glycan switch of peripheral T cells at diagnosis. J Immunol. (2021) 207:1591–8. doi: 10.4049/jimmunol.2100131
	110. Song, M, Sandoval, TA, Chae, CS, Chopra, S, Tan, C, Rutkowski, MR, et al. IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nat. (2018) 562:423–8. doi: 10.1038/s41586-018-0597-x
	111. Kim, S, Min, H, Nah, J, Jeong, J, Park, K, Kim, W, et al. Defective N-glycosylation in tumor-infiltrating CD8+ T cells impairs IFN-γ-mediated effector function. Immunol Cell Biol. (2023) 101:610–24. doi: 10.1111/imcb.12647
	112. Alegre, ML, and Frauwirth, KA. Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. (2001) 1:220–8. doi: 10.1038/35105024
	113. Patsoukis, N, Bardhan, K, Chatterjee, P, Sari, D, Liu, B, Bell, LN, et al. ARTICLE PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. (2015) 6:6692. doi: 10.1038/ncomms7692
	114. Martins, C, Rasbach, E, Heppt, MV, Singh, P, Kulcsar, Z, Holzgruber, J, et al. Tumor cell–intrinsic PD-1 promotes Merkel cell carcinoma growth by activating downstream mTOR-mitochondrial ROS signaling. Sci Adv. (2024) 10:1–16. doi: 10.1126/sciadv.adi2012
	115. Zhang, N, Li, M, Xu, X, Zhang, Y, Liu, Y, Zhao, M, et al. Loss of core fucosylation enhances the anticancer activity of cytotoxic T lymphocytes by increasing PD-1 degradation. Eur J Immunol. (2020) 50:1820–33. doi: 10.1002/eji.202048543
	116. Markham, A, and Keam, SJ. Camrelizumab: first global approval. Drugs. (2019) 79:1355–61. doi: 10.1007/s40265–019-01167–0
	117. Kim, B, Sun, R, Oh, W, Kim, AMJ, Schwarz, JR, and Lim, SO. Saccharide analog, 2-deoxy-d-glucose enhances 4–1BB-mediated antitumor immunity via PD-L1 deglycosylation. Mol Carcinog. (2020) 59:691–700. doi: 10.1002/mc.23170
	118. Miller, JD, Clabaugh, SE, Smith, DR, Stevens, RB, and Wrenshall, LE. Interleukin-2 is present in human blood vessels and released in biologically active form by heparanase. Immunol Cell Biol. (2012) 90:159. doi: 10.1038/icb.2011.45
	119. McCaffrey, TA, Falcone, DJ, and Du, B. Transforming growth factor-β1 is a heparin-binding protein: Identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1. J Cell Physiol. (1992) 152:430–40. doi: 10.1002/jcp.1041520226
	120. Kemna, J, Gout, E, Daniau, L, Lao, J, Weißert, K, Ammann, S, et al. IFNγ binding to extracellular matrix prevents fatal systemic toxicity. Nat Immunol. (2023) 24:414–22. doi: 10.1038/s41590-023-01420-5




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Schuurmans, Wagemans, Adema and Cornelissen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




MINI REVIEW

published: 02 October 2024

doi: 10.3389/fimmu.2024.1485546

[image: image2]


Clinical applications of STING agonists in cancer immunotherapy: current progress and future prospects


Bin Wang 1†, Wanpeng Yu 1†, Hongfei Jiang 1,2, Xiangwei Meng 3*, Dongmei Tang 1,4* and Dan Liu 2*


1 The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China, 2 Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China, 3 Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, China, 4 Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China




Edited by: 

Ana Luísa De Sousa-Coelho, Algarve Biomedical Center Research Institute (ABC-RI), Portugal

Reviewed by: 

Joshi Ramanjulu, GlaxoSmithKline, United States

Xiang Zhou, Wuhan University of Science and Technology, China

*Correspondence: 

Xiangwei Meng
 mxwzbszxyy@163.com 

Dongmei Tang
 dongmeiiou@163.com 

Dan Liu
 940980418@qq.com


†These authors have contributed equally to this work



Received: 24 August 2024

Accepted: 16 September 2024

Published: 02 October 2024

Citation:
Wang B, Yu W, Jiang H, Meng X, Tang D and Liu D (2024) Clinical applications of STING agonists in cancer immunotherapy: current progress and future prospects. Front. Immunol. 15:1485546. doi: 10.3389/fimmu.2024.1485546



The STING (Stimulator of Interferon Genes) pathway is pivotal in activating innate immunity, making it a promising target for cancer immunotherapy. STING agonists have shown potential in enhancing immune responses, particularly in tumors resistant to traditional therapies. This scholarly review examines the diverse categories of STING agonists, encompassing CDN analogues, non-CDN chemotypes, CDN-infused exosomes, engineered bacterial vectors, and hybrid structures of small molecules-nucleic acids. We highlight their mechanisms, clinical trial progress, and therapeutic outcomes. While these agents offer significant promise, challenges such as toxicity, tumor heterogeneity, and delivery methods remain obstacles to their broader clinical use. Ongoing research and innovation are essential to overcoming these hurdles. STING agonists could play a transformative role in cancer treatment, particularly for patients with hard-to-treat malignancies, by harnessing the body’s immune system to target and eliminate cancer cells.
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1 Introduction

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a critical component of the innate immune system, playing a pivotal role in the detection of cytosolic DNA and the subsequent activation of an immune response (1–5). This pathway is evolutionarily conserved and acts as a crucial defense mechanism against pathogens, as well as a mediator of autoimmune responses (6–8). Upon detection of cytosolic DNA, typically from viral or bacterial pathogens, the cGAS enzyme synthesizes cyclic GMP-AMP (cGAMP), a second messenger that directly activates the STING receptor located on the endoplasmic reticulum membrane (9–11). Once activated, STING initiates a cascade of signaling events leading to the production of type I interferons (IFNs) and NF-kB driven pro-inflammatory cytokines, such as TNF-α and IL-6, which are essential for mounting an effective immune response (12).

In the context of cancer, the STING pathway has garnered significant attention due to its ability to induce a potent anti-tumor immune response (13). Tumor cells often harbor aberrant DNA that can activate the cGAS-STING pathway, thereby promoting the production of cytokines and chemokines that recruit and activate immune cells within the tumor microenvironment (14–16). This immunostimulatory effect of STING has positioned it as a promising target for cancer immunotherapy. STING agonists, which are molecules designed to activate the STING pathway, have shown potential in enhancing the immune system’s ability to recognize and destroy tumor cells (17–20). These agonists work by mimicking the natural ligands of STING, thereby amplifying the immune response against tumors.

Given the critical role of STING in immune surveillance and its emerging relevance in cancer therapy, STING agonists have been the subject of intense research (21). Several STING agonists have entered clinical trials, with many showing promising results in enhancing the efficacy of existing immunotherapies, such as immune checkpoint inhibitors (22). These developments highlight the potential of STING agonists to overcome resistance to conventional therapies and to improve outcomes in patients with various types of cancer.

The objective of this review is to provide a comprehensive overview of the current progress in the clinical application of STING agonists in cancer immunotherapy. This review will explore the mechanisms by which STING agonists enhance anti-tumor immunity, summarize the various types of STING agonists currently in clinical development, and discuss the clinical outcomes observed in trials to date. Through this review, we aim to highlight the therapeutic potential of STING agonists in cancer immunotherapy and to discuss their future prospects as a cornerstone of cancer treatment. As research continues to evolve, it is anticipated that STING agonists will play an increasingly important role in the development of novel cancer therapies, offering new hope for patients with difficult-to-treat malignancies.




2 Mechanism of STING activation

The STING (Stimulator of Interferon Genes) pathway is a central player in the innate immune system, responsible for detecting cytosolic DNA from various sources, such as viruses, bacteria, and even damaged host cells (23). This pathway initiates a potent immune response that is critical for antiviral defense and has emerging importance in cancer therapy.



2.1 Detection and activation

The STING pathway begins with the recognition of cytosolic DNA by the cGAS (cyclic GMP-AMP synthase) enzyme. Upon detecting double-stranded DNA in the cytosol, cGAS catalyzes the synthesis of cyclic GMP-AMP (cGAMP), a cyclic dinucleotide that serves as a secondary messenger (Figure 1). cGAMP then binds directly to the STING protein located on the membrane of the endoplasmic reticulum (ER). This binding triggers a conformational change in STING, leading to its activation (24, 25).

[image: Molecular structure of STING bound to cGAMP is shown on the left. On the right, an illustration depicts a cellular pathway involving cGAS converting DNA to cGAMP, activating STING. This activates IRF3 and TBK1, leading to the production of interferons and activation of CD8+ T cells against tumors, shown with arrows and labeled molecules.]
Figure 1 | Schematic representation of the STING pathway and its role in cancer immunotherapy, highlighting key steps of activation, downstream signaling, and therapeutic targets.




2.2 Downstream signaling

Activated STING translocates from the ER to the Golgi apparatus, where it recruits and activates TBK1 (TANK-binding kinase 1) (26). TBK1, in turn, phosphorylates the transcription factor IRF3 (Interferon Regulatory Factor 3) (27). Phosphorylated IRF3 dimerizes and translocates to the nucleus, where it induces the expression of type I interferons and other pro-inflammatory cytokines. These cytokines play a crucial role in recruiting and activating various immune cells, such as dendritic cells, natural killer cells, and T cells, within the tumor microenvironment.




2.3 Immune response and tumor suppression

The production of type I interferons and cytokines triggers a robust immune response, enhancing the body’s ability to recognize and eliminate tumor cells (28). Additionally, the activation of STING can lead to the upregulation of immune checkpoint molecules, making tumors more susceptible to immunotherapies like checkpoint inhibitors.

Figure 1 schematically represents these key steps in the STING pathway, highlighting the crucial role of cGAMP in STING activation, the subsequent signaling cascade, and the production of immune mediators. By understanding these mechanisms, researchers have developed STING agonists that mimic natural ligands like cGAMP, aiming to harness this pathway for cancer immunotherapy.





3 Categories of STING agonists

In this section, we explore the diverse categories of STING agonists currently in development for cancer immunotherapy. These agonists can be broadly classified into several types based on their molecular structure and mechanism of action: cyclic dinucleotide (CDN) analogs, which mimic natural cyclic dinucleotides to directly activate STING; non-CDN STING agonists, which trigger STING activation through alternative mechanisms; CDN-loaded exosomes, which use vesicles to deliver STING agonists more efficiently; engineered bacteria vectors that produce STING-activating molecules in situ; small molecule–nucleic acid hybrids that combine stability with specificity; and some undisclosed types whose structures or mechanisms are not fully revealed. Each category represents a unique approach to harnessing the STING pathway, offering different advantages and challenges in clinical application.



3.1 CDN analogs

CDN analogs are synthetic molecules that mimic the natural cyclic dinucleotides (such as cGAMP) involved in activating the STING pathway (29, 30). These analogs directly bind to the STING receptor, initiating a cascade of immune responses crucial for anti-tumor activity (31). CDN analogs have shown significant promise in early clinical trials, particularly in combination with immune checkpoint inhibitors.



3.1.1 MK-1454

MK-1454 is a CDN analog developed by Merck, currently in Phase I/II clinical trials (ClinicalTrials.gov-NCT03010176). It is being evaluated for its efficacy in treating solid tumors and lymphomas. In early studies, MK-1454 has been administered intratumorally, and when combined with the anti-PD-1 antibody pembrolizumab, it has demonstrated a favorable safety profile and potential efficacy. Preliminary results indicate that MK-1454 can induce strong immune responses, enhancing the effectiveness of pembrolizumab in shrinking tumors. This drug specifically targets the STING pathway by binding to the STING receptor, leading to the activation of type I interferons and other pro-inflammatory cytokines, which play a crucial role in anti-tumor immunity. Moreover, the localized administration helps to minimize systemic side effects while maximizing immune activation within the tumor microenvironment. The clinical outcomes from these trials suggest that MK-1454 may overcome resistance to PD-1 blockade in some patients (32, 33).




3.1.2 ADU-S100 (MIW815)

ADU-S100, also known as MIW815, is another CDN analog that has been the focus of several clinical studies (ClinicalTrials.gov-NCT02675439, NCT03172936, NCT03937141). Developed by Aduro Biotech and Novartis, ADU-S100 has been evaluated in combination with spartalizumab, an anti-PD-1 therapy. In Phase I/II trials, ADU-S100 is administered intratumorally in patients with solid tumors and lymphomas. The results have shown that ADU-S100, when used in conjunction with spartalizumab, can significantly enhance immune responses, leading to tumor regression in some cases. The combination therapy has been particularly effective in generating a localized immune response, which may help control tumor growth and spread (34, 35).




3.1.3 BMS-986301

BMS-986301 is a CDN analog developed by Bristol-Myers Squibb, currently in Phase I clinical trials for advanced cancers (ClinicalTrials.gov-NCT03956680, NCT03843359). Although detailed clinical data is still emerging, early findings suggest that BMS-986301 has the potential to activate the STING pathway effectively, leading to enhanced anti-tumor immunity. The ongoing trials aim to determine the safety and optimal dosing of BMS-986301, as well as its efficacy in combination with other immunotherapies, such as nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) (36).




3.1.4 BI-1387446

BI-1387446 is a CDN analog in development by Boehringer Ingelheim, also in Phase I trials (ClinicalTrials.gov-NCT04147234). This STING agonist is being studied for its use in advanced cancers, and early data indicates that it might be administered in combination with Ezabenlimab, an anti-PD-L1 therapy. While specific clinical outcomes have not yet been fully disclosed, the trials focus on evaluating the safety, tolerability, and preliminary efficacy of BI-1387446 in inducing an immune response against tumors (37).




3.1.5 TAK-676

TAK-676 is a CDN analog being developed by Takeda Oncology, currently in Phase I/II clinical trials (ClinicalTrials.gov-NCT04420884, NCT04879849). This STING agonist is administered intravenously, either alone or in combination with pembrolizumab, in patients with advanced solid tumors and lymphomas. Preliminary results from these trials indicate that TAK-676 is well-tolerated and may potentiate the effects of pembrolizumab, particularly in tumors that are otherwise resistant to immune checkpoint blockade. Ongoing studies are focused on determining the optimal dosing and combination strategies to maximize the therapeutic benefits of TAK-676 (38–40).





3.2 Non-CDN chemotypes

Non-CDN STING agonists represent a diverse group of molecules that activate the STING pathway through mechanisms distinct from those of cyclic dinucleotides (CDNs). These agonists often have unique chemical structures that allow them to bind and activate STING in different ways, offering alternative therapeutic strategies for cancer treatment. Below are some of the key non-CDN STING agonists currently in clinical development.



3.2.1 SNX281

SNX281 is a non-CDN STING agonist developed by Silicon Therapeutics, now part of Roivant Sciences. It is currently in Phase I clinical trials for advanced solid tumors (ClinicalTrials.gov-NCT04609579). Unlike CDNs, SNX281 is a small molecule that activates STING without mimicking the natural dinucleotides. The clinical trials are evaluating the safety, tolerability, and preliminary efficacy of SNX281 both as a monotherapy and in combination with pembrolizumab, an anti-PD-1 antibody. Early data suggest that SNX281 can enhance anti-tumor immunity, potentially overcoming resistance to checkpoint inhibitors in some cancers. SNX281’s mechanism involves activating STING, which leads to the production of type I interferons and pro-inflammatory cytokines, ultimately stimulating the infiltration of immune cells into the tumor microenvironment. This process could help convert ‘cold’ tumors into ‘hot’ tumors, making them more responsive to immunotherapy (41).




3.2.2 HG-381

HG-381 is a non-CDN STING agonist developed by HitGen, currently in Phase I clinical trials (ClinicalTrials.gov-NCT04998422). This small molecule is being tested for its ability to treat advanced solid tumors. While specific clinical data is still emerging, HG-381 has shown potential in preclinical models to induce a strong immune response by activating STING, leading to the production of type I interferons and other cytokines that can suppress tumor growth. The ongoing clinical trials aim to determine the safety, optimal dosing, and preliminary efficacy of HG-381 in cancer patients (42).




3.2.3 GSK3745417

GSK3745417 is a non-CDN STING agonist developed by GlaxoSmithKline, currently in Phase I clinical trials (ClinicalTrials.gov-NCT03843359). This agonist is being evaluated for its efficacy in treating advanced solid tumors. GSK3745417 works by directly binding to and activating the STING receptor, leading to the production of interferons and other immune-modulatory cytokines. The ongoing trials are focused on assessing the safety, tolerability, and early signs of efficacy, both as a monotherapy and potentially in combination with other immunotherapies. Early data suggest that GSK3745417 has a manageable safety profile, with potential for inducing anti-tumor immune responses (43).




3.2.4 E-7766

E-7766 is a non-CDN STING agonist developed by Eisai, currently in Phase I clinical trials (ClinicalTrials.gov-NCT04144140). This drug is being tested in patients with advanced solid tumors and lymphomas. E-7766 is designed to activate the STING pathway, thereby stimulating the immune system to attack cancer cells. Early clinical studies are assessing the safety, tolerability, and preliminary efficacy of E-7766. The initial data indicate that E-7766 can induce immune activation with a tolerable safety profile, although further studies are needed to determine its therapeutic potential in combination with other cancer treatments (44, 45).





3.3 CDN-infused exosomes

CDN-loaded exosome STING agonists represent an innovative approach to cancer immunotherapy, combining the potency of cyclic dinucleotide (CDN) STING agonists with the targeted delivery capabilities of exosomes. Exosomes are small, naturally occurring vesicles that can be engineered to carry therapeutic molecules, such as CDNs, directly to specific cells, including immune cells within the tumor microenvironment. This method enhances the effectiveness of STING activation while potentially reducing systemic toxicity.

exoSTING is a prime example of a CDN-loaded exosome STING agonist, developed by Codiak BioSciences. This therapy is designed to enhance the delivery and activation of the STING pathway within tumors, leveraging the natural properties of exosomes to improve the targeting and uptake of CDNs by immune cells. exoSTING is currently being evaluated in Phase I/II clinical trials for advanced solid tumors (ClinicalTrials.gov-NCT04592484). The drug is administered intratumorally, with the aim of directly stimulating the STING pathway within the tumor microenvironment. The exosome-based delivery system allows for a localized and potent activation of STING, leading to robust immune responses characterized by increased infiltration of T cells and other immune effectors into the tumor. The ongoing clinical trials are focused on further characterizing the safety and efficacy of exoSTING, as well as exploring its potential in combination with other immunotherapies, such as checkpoint inhibitors. The preliminary results are promising, suggesting that exoSTING could become a valuable addition to the arsenal of STING-based cancer therapies, particularly for tumors that are resistant to conventional treatments. In addition, the ability of exoSTING to focus its activity within the tumor microenvironment while minimizing systemic exposure may reduce the risk of side effects, making it an attractive option for enhancing the therapeutic index of STING agonists (46).




3.4 Engineered bacteria vectors

Engineered bacteria vectors represent a novel and innovative approach to cancer immunotherapy, where genetically modified bacteria are used to deliver therapeutic agents directly to the tumor microenvironment. These bacteria are designed to produce and release STING agonists within the tumor, thereby activating the STING pathway in situ. This method leverages the natural ability of bacteria to colonize tumors, providing a targeted and sustained activation of the immune system against cancer cells.

SYNB1891 is a leading example of an engineered bacteria vector designed to activate the STING pathway. Developed by Synlogic, SYNB1891 is a live, engineered strain of the probiotic bacterium of Escherichia coli Nissle 1917, which has been modified to produce cyclic di-GMP, a potent STING agonist. This STING agonist is released directly within the tumor microenvironment, where it can trigger an immune response by activating the STING pathway in local immune cells.

SYNB1891 is currently in Phase I clinical trials for patients with advanced solid tumors (ClinicalTrials.gov-NCT04167137). The drug is administered intratumorally, allowing the bacteria to colonize the tumor and produce the STING agonist directly where it is needed. The Phase I trials are primarily focused on evaluating the safety and tolerability of SYNB1891, as well as its ability to induce an immune response. The intratumoral administration of SYNB1891 has led to localized immune activation, characterized by increased production of type I interferons and other pro-inflammatory cytokines within the tumor. These immune responses are associated with enhanced infiltration of T cells into the tumor, suggesting that SYNB1891 may help convert “cold” tumors, which are typically resistant to immunotherapy, into “hot” tumors that are more responsive to immune-based treatments. Furthermore, the use of engineered bacteria allows for sustained release of STING agonists within the tumor microenvironment, offering prolonged immune activation without the need for repeated systemic dosing (47).

In addition to its use as a monotherapy, SYNB1891 is also being evaluated in combination with immune checkpoint inhibitors, such as atezolizumab (anti-PD-L1). The rationale for this combination is that the STING-mediated immune activation induced by SYNB1891 could enhance the effectiveness of checkpoint inhibitors, particularly in tumors that have previously shown resistance to such therapies. The ongoing clinical trials aim to further characterize the immune responses induced by SYNB1891 and to assess its potential as a component of combination therapies for cancer. The preliminary results are promising, indicating that engineered bacteria vectors like SYNB1891 could offer a new and effective approach to cancer immunotherapy (48).




3.5 Hybrid structures of small molecules-nucleic acids

Small molecule–nucleic acid hybrids represent an emerging class of STING agonists designed to combine the stability and pharmacokinetic properties of small molecules with the specificity and functionality of nucleic acids. These hybrids aim to enhance the activation of the STING pathway while improving drug delivery and minimizing off-target effects. This innovative approach seeks to harness the advantages of both molecular types to create more effective and targeted cancer therapies.

SB 11285 is a leading example of a small molecule–nucleic acid hybrid STING agonist, developed by Spring Bank Pharmaceuticals. SB 11285 is designed to activate the STING pathway more effectively than traditional small molecules by leveraging its hybrid structure, which combines a potent small molecule with a nucleic acid component. By combining the stability of a small molecule with the specificity of a nucleic acid, SB 11285 aims to overcome the limitations of conventional STING agonists, ensuring better pharmacokinetic properties and more targeted immune activation. SB 11285 is currently in Phase I/II clinical trials for patients with solid tumors and hematologic malignancies (ClinicalTrials.gov-NCT04096638). The ongoing trials are also exploring SB 11285 in combination with immune checkpoint inhibitors, such as atezolizumab (anti-PD-L1). The rationale behind this combination is that SB 11285’s activation of the STING pathway could enhance the effectiveness of checkpoint inhibitors by increasing the immune system’s ability to recognize and attack tumor cells. Early results suggest that the combination therapy may improve outcomes in patients with tumors that are otherwise resistant to checkpoint inhibitors alone. The trials aim to further assess the efficacy of SB 11285, particularly its ability to induce durable responses and improve survival outcomes in cancer patients. As a small molecule–nucleic acid hybrid, SB 11285 represents a promising new approach in the development of STING-based therapies, potentially offering enhanced efficacy and safety over traditional STING agonists (49, 50).




3.6 Undisclosed type

The “Undisclosed Type” category includes STING agonists whose precise molecular mechanisms or structures have not been fully disclosed to the public. These agonists are often in early stages of development, with companies keeping details confidential for strategic reasons. Despite the lack of detailed structural information, these agents are advancing through clinical trials and show potential in activating the STING pathway for cancer immunotherapy.



3.6.1 MK-2118

MK-2118 is a STING agonist developed by Merck, currently in Phase I clinical trials (ClinicalTrials.gov-NCT03249792). While the exact molecular structure of MK-2118 has not been publicly revealed, it is known that the drug is being tested in patients with solid tumors, particularly in combination with pembrolizumab, an anti-PD-1 antibody. Early clinical data suggest that MK-2118 has a favorable safety profile and can enhance the anti-tumor effects of pembrolizumab. MK-2118 is administered intratumorally, ensuring that the STING agonist is delivered directly to the tumor microenvironment, which helps maximize immune activation locally while reducing potential systemic side effects. Furthermore, its ability to activate the STING pathway may help improve the immune system’s recognition of tumors that are resistant to conventional immunotherapies. The combination therapy aims to stimulate a stronger immune response against tumors that are resistant to checkpoint inhibitors alone (51).




3.6.2 XMT-2056

XMT-2056 is another STING agonist with an undisclosed mechanism, developed by Mersana Therapeutics. XMT-2056 is currently in Phase I clinical trials, focusing on patients with advanced solid tumors (ClinicalTrials.gov-NCT05514717). This drug is administered intravenously and is designed to target tumors with a high degree of precision. Although detailed clinical data are still pending, XMT-2056 is being investigated both as a monotherapy and in combination with other cancer treatments, including immune checkpoint inhibitors. The goal of these studies is to assess the drug’s safety, tolerability, and preliminary efficacy in inducing an anti-tumor immune response.

The secrecy surrounding these agents adds an element of intrigue, as the exact mechanisms by which they activate the STING pathway remain speculative. However, the ongoing clinical trials are crucial in determining their potential efficacy and safety profiles. The early-stage results for both MK-2118 and XMT-2056 are promising, suggesting that these undisclosed-type STING agonists could become significant players in the field of cancer immunotherapy (52, 53).

While the STING agonists discussed in this review encompass a diverse range of structures—spanning CDN analogs, small molecule agonists, nucleic acid hybrids, and engineered bacterial vectors—these compounds share several key functional characteristics. Most notably, they all target the STING pathway by engaging the STING protein to initiate immune signaling. CDN analogs, such as MK-1454 and exoSTING, closely mimic natural cyclic dinucleotides, binding to the same pocket on the STING protein that recognizes endogenous STING activators. Non-CDN agonists, including SNX281 and SB 11285, achieve similar activation through alternative molecular scaffolds, ensuring they can engage STING without mimicking the natural ligands. Despite these structural differences, the shared objective of these agonists is to stimulate type I interferon production and activate pro-inflammatory cytokines, leading to enhanced immune infiltration into the tumor microenvironment. By modulating the immune response in this way, STING agonists can convert ‘cold’ tumors into ‘hot’ tumors, making them more susceptible to immunotherapies.

To comprehensively showcase the current research progress of STING agonists in cancer immunotherapy, we have summarized the STING agonists at various stages of clinical development (Table 1). These agonists encompass a variety of chemical types, including cyclic dinucleotide (CDN) analogs, non-CDN chemotypes, CDN-loaded exosomes, and engineered bacterial vectors. Detailed information on each agonist's developing company, clinical trial phase, administration methods, and whether they are used in combination with other immunotherapies is provided. Through this table, readers can gain a clear understanding of the current research hotspots and clinical advancements of STING agonists.

Table 1 | Summary of STING agonists currently in clinical trials, including their chemical structures, target phases, indications, combination therapies, and clinical outcomes.


[image: Table displaying data on various drugs, including their chemical structures, target phases, indications, combination therapies, and clinical outcomes. Some drugs have detailed chemical structures shown, while others are described as classes without specific structures. The target phases range from Phase I to Phase I/II, and indications include solid tumors and lymphomas. Combination therapies involve use of specific antibodies like Pembrolizumab. Clinical outcomes vary, with several drugs showing early promising results or ongoing trials.]





4 Challenges and limitations

While STING agonists represent a promising avenue for cancer immunotherapy, several challenges and limitations must be addressed to fully realize their potential. These challenges span from biological complexities to clinical application hurdles, each requiring careful consideration in the development and deployment of STING-based therapies.

Managing the toxicity of STING agonists is a significant challenge. Activation of the STING pathway can lead to the excessive production of pro-inflammatory cytokines, including type I interferons (e.g., IFN-α, IFN-β) and non-type I interferons such as IFN-γ, causing severe side effects like fever, chills, and cytokine release syndrome (CRS). The risk is higher with systemic administration, making it crucial to optimize dosing strategies and develop more selective STING activators to minimize off-target effects (54). Tumor heterogeneity and response variability present major challenges for STING agonists. Tumors differ in genetic makeup and immune environment, leading to inconsistent responses. “Cold” tumors with low immune cell infiltration may not respond well due to insufficient STING ligands or necessary immune cells. Identifying predictive biomarkers is essential to select patients who will benefit most from STING-based therapies (55). Effective delivery and targeting of STING agonists remain challenging. Intratumoral injections, while effective, are not feasible for all tumors, and systemic delivery risks widespread immune activation and toxicity (56, 57). Experimental methods like nanoparticles, exosomes, and engineered bacteria are being explored to improve targeting and minimize systemic exposure, but further research is needed to confirm their efficacy and safety (58, 59).

Resistance to STING agonists is a significant concern in cancer therapy. Tumors may downregulate STING expression, mutate pathway components, or alter the microenvironment to evade immune responses. Understanding these mechanisms is crucial for developing combination therapies, such as pairing STING agonists with checkpoint inhibitors or chemotherapies, to enhance efficacy and prevent resistance (60). Finally, Regulatory and manufacturing challenges are significant for STING agonists, especially those with novel mechanisms or delivery systems. Rigorous testing is needed to meet regulatory standards, and the complexity of therapies involving engineered bacteria or exosomes complicates manufacturing, scalability, and quality control. Ensuring consistent production and stability is crucial for successful clinical translation (3, 61, 62).

In some types of cancers, the STING pathway may be deficient due to genetic mutations, epigenetic silencing, or functional suppression within the tumor microenvironment (63). Repairing the STING pathway in these cases is a significant challenge, but several strategies are under investigation. Gene therapy approaches, such as using CRISPR or viral vectors, could be employed to repair mutations in the STING gene or other components of the pathway, restoring STING functionality. Alternatively, combination therapies that pair STING agonists with immune checkpoint inhibitors or DNA damage response inhibitors may enhance immune activation even in tumors with partial STING deficiency. Epigenetic therapies, which reverse silencing of STING-related genes, are also being explored to restore STING pathway signaling. While these approaches hold promise, further clinical studies are needed to determine their viability and effectiveness in repairing STING pathway deficiencies (64).




5 Conclusion

STING agonists have emerged as a promising class of agents in cancer immunotherapy, capable of initiating a robust immune response through the activation of the STING pathway. These agents have demonstrated potential in early-phase clinical trials, particularly when combined with immune checkpoint inhibitors, offering hope for treating tumors that are resistant to conventional therapies. The ability of STING agonists have the potential to convert ‘cold’ tumors, which lack immune cell infiltration, into ‘hot’ tumors that are more responsive to immunotherapy by promoting the production of chemokines such as CCL5, CXCL9, and CXCL10, which recruit immune cells like T cells and NK cells to the tumor microenvironment, highlights their transformative potential in cancer treatment.

However, several challenges must be addressed to fully realize the clinical potential of STING agonists. Managing the toxicity associated with systemic immune activation, ensuring effective delivery to tumor sites, and overcoming tumor heterogeneity and resistance mechanisms are critical hurdles. Additionally, the development and manufacturing of STING agonists, especially those involving novel delivery systems like nanoparticles and engineered bacteria, pose significant regulatory and quality control challenges.

Despite these obstacles, the future of STING agonists in cancer therapy remains bright. Continued research into optimizing delivery methods, identifying predictive biomarkers, and developing combination therapies will be key to overcoming current limitations. As our understanding of the STING pathway deepens, these agents could become integral components of cancer treatment, offering new hope to patients with difficult-to-treat malignancies. The next few years will be crucial in determining whether STING agonists can transition from experimental therapies to widely accepted clinical options, potentially revolutionizing the landscape of cancer immunotherapy.
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Backgrounds

Natural killer (NK) cell mediated cytotoxicity is a crucial form of anti-cancer immune response. Natural killer group 2 member D (NKG2D) is a prominent activating receptor of NK cell. UL16-binding protein 2 (ULBP2), always expressed or elevated on cancer cells, functions as a key NKG2D ligand. ULBP2-NKG2D ligation initiates NK cell activation and subsequent targeted elimination of cancer cells. Enhanced expression of ULBP2 on cancer cells leads to more efficient elimination of these cells by NK cells. Resveratrol (RES) is known for its multiple health benefits, while current understanding of its role in regulating cancer immunogenicity remains limited. This study aims to investigate how RES affects the expression of ULBP2 and the sensitivity of breast cancer (BC) cells to NK cell cytotoxicity, along with the underlying mechanisms.





Methods

The effects of RES on ULBP2 expression were detected with qRT-PCR, western blot, flow cytometry analysis and immunohistochemistry. The effects of RES on sensitivity of BC cells to NK cell cytotoxicity were evaluated in vitro and in vivo. The target gene of miR-17-5p were predicted with different algorithms from five databases and further confirmed with dual-luciferase reporter assay. Overexpression and knockdown experiments of miR-17-5p and MINK1 were conducted to investigate their roles in regulating ULBP2 expression and subsequent JNK/c-Jun activation. The JNK inhibitor sp600125 was utilized to elucidate the specific role of JNK in modulating ULBP2 expression.





Results

RES increased ULBP2 expression on BC cells, thereby augmenting their vulnerability to NK cell-mediated cytotoxicity both in vitro and in vivo. RES administration led to a reduction in cellular miR-17-5p level. MiR-17-5p negatively regulated ULBP2 expression. Specifically, miR-17-5p directly targeted MINK1, leading to its suppression. MINK1 played a role in facilitating the activation of JNK and its downstream effector, c-Jun. Furthermore, treatment with sp600125, a JNK inhibitor, resulted in the suppression of ULBP2 expression.





Conclusions：

RES potentiates ULBP2-mediated immune eradication of BC cells by NK cells through the downregulation of miR-17-5p and concurrent activation of the MINK1/JNK/c-Jun cascade. This finding identifies RES as a potentially effective therapeutic agent for inhibiting BC progression and optimizing NK cell-based cancer immunotherapy.
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1 Introduction

Resveratrol (RES), a naturally occurring polyphenol compound, is present in over 70 widely distributed dietary and medical plants species such as peanuts, grapes, berries and white hellebore (1). In recent decades, RES has garnered significant attention for its wide array of well-documented health benefits, including antioxidant, anti-aging, anti-inflammatory, and anticancer properties (2). The potential of RES as an anticancer agent is well-established through an extensive array of preclinical studies (3–5). Breast cancer, one of the most prevalent cancers among women globally, can potentially be prevented through RES by mechanisms that include inhibiting cell proliferation, inducing cell cycle arrest and apoptosis, reducing inflammatory responses, suppressing angiogenesis, and facilitating epigenetic modifications (6–8). Of particular interest, RES has demonstrated its ability to strengthen the immune system, thereby enhancing antitumor immunity. This is achieved through several mechanisms such as attenuating resistance in cancer stem cells, inhibiting the production of immunosuppressive cytokines, and alleviating immunosuppression within the tumor microenvironment (9, 10). However, the mechanism underlying cancer immunomodulation by RES remains fragmentary and deserves more studies.

Natural killer group 2 member D ligands (NKG2DLs) are important targets in cancer immunomodulation. They consist of eight surface glycoproteins, namely MICA and MICB (major histocompatibility complex class I chain-related proteins A and B), and ULBP1-6 (UL16-binding proteins 1-6) (11). NKG2DLs are the specific ligands of natural killer group 2 member D (NKG2D) receptor, a key activating receptor prominently featured on natural killer (NK) cells (12). NKG2DLs, typically either undetectable or low expressed on healthy cells, can be induced in the progression of cellular malignant transformation (11). The ligation of NKG2DL and NKG2D leads to NK cell activation, subsequently enabling the killing of cancer cells. This process is a pivotal mechanism of immunosurveillance and immune clearance. In breast cancer, the upregulation of NKG2DLs was shown to be associate with cancer suppression (13–15).

NKG2D initiates cytotoxicity against cancer cells that display NKG2DLs on their surface. However, malignantly transformed cells often reduce or downregulate the expression of surface NKG2DLs to evade the immune clearance. Cancer cells manipulate the expression of these ligands at both transcriptional and post-transcriptional levels. Several transcription factors, including krüppel-like factor 4 (KLF4), nuclear factor kappa-B (NF-κB) and c-Myc, are documented to function in NKG2DL transcription (16–18). The growth and metastasis of breast cancer in mice were enhanced by the downregulation of NKG2DL expression, with glycogen synthase kinase-3β (GSK-3β) contributing to these processes (14). Our earlier investigation has demonstrated that the downregulation of MICA/B and ULBP2 by some NKG2D ligand-targeting microRNAs (miRNAs) resulted in a diminished NK cell-mediated cytotoxic response against breast cancer cells (15). And shedding or internalization is also involved in the reduction of the surface ligands (19). Given the significant role that NKG2DLs play in tumoricidal activity, they have attracted considerable interest as promising candidates for designing innovative cancer preventive and immunotherapeutic strategies. Pharmacological interventions, such as metformin, decitabine, and valproic acid, have been shown to effectively increase NKG2DL levels, thereby enhancing the immune clearance of cancer cells (15, 20, 21).

Herein, RES was found to effectively upregulate the expression of ULBP2, a pivotal component of NKG2DLs, thereby augmenting the cytolytic activity of NK cells against breast cancer cells both in vitro and in vivo. Mechanistically, RES suppressed the oncogenic miR-17-5p, which directly targets misshapen like kinase 1 (MINK1). MINK1 activates ULBP2 through its downstream JNK/c-Jun signaling cascade. A high surface expression level of ULBP2 significantly facilitates the recognition and subsequent elimination of breast cancer cells by NK cells.




2 Materials and methods



2.1 Cell culture and reagents

The cell lines (MDA-MB-231, BCap37, MCF7, MDA-MB-468 and HeLa) were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). MDA-MB-231 and MDA-MB-468 are triple-negative breast cancer cell lines, whereas BCap37 and MCF7 are estrogen receptor-positive breast cancer cell lines. MDA-MB-231, MDA-MB-468 and HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Life technologies, Carlsbad, CA, USA). BCap37and MCF-7 cells were cultured in Roswell Park Memorial Institute 1640 medium (Gibco, USA). The media were supplemented with 10% fetal bovine serum (Gibco, USA) and 1% streptomycin/penicillin antibiotics, and the cultures were incubated at 37°C under a 5% CO2 atmosphere. RES (Selleck Chemicals, Houston, TX, USA) was solubilized in dimethyl sulfoxide (DMSO) to yield a 109.5 mmol/L stock solution, which was then stored at -20°C. The cells were exposed to various concentrations of RES (6.25, 12.5, or 25 μmol/L) for a duration of 48 hours.




2.2 Plasmids and cell transfection

The overexpression plasmid of MINK1(pcDNA3.1-MINK1), pcDNA3.1 control and siRNAs of MINK1 (si-MINK1-1, si-MINK1-2), SQSTM1 (si-SQSTM1-1, si-SQSTM1-2), CDKN1A (si-CDKN1A-1, si-CDKN1A-2) were obtained from Repbio (Hangzhou, China). The mimic, inhibitor and negative controls (NC) of miR-17-5p were bought from Ribobio (Guangzhou, China). The siRNA sequences were listed in Table 1. The aforementioned siRNA, plasmids and miRNA mimics/inhibitors were introduced into their respective target cells using Lipofectamine 3000, following the previously described transfection protocol (22).

Table 1 | Sequence of siRNA.


[image: Table displaying siRNA identifiers and their corresponding sequences. The table includes pairs: si-MINK1-1 with GGAACAAGAUUCGUCACAA, si-MINK1-2 with GAAAGAGGAGACAGAAUAU, si-SQSTM1-1 with CUUCCGAAUCUACAUAAAA, si-SQSTM1-2 with GAUCUACAUAUAAGAGAA, si-CDKN1A-1 with AGUUUGUGUGUCUCAAUUA, and si-CDKN1A-2 with GCUUAGUGUACUCGGAGUA.]



2.3 RNA extraction and quantitative reverse transcription-polymerase chain reaction

Total RNA was isolated from cells using RNAiso Plus (TaKaRa, Kusatsu, Japan) and then subjected to reverse transcription into complementary DNA (cDNA) utilizing the PrimeScriptTM RT Reagent Kit (#RR037A, TaKaRa). For conventional RNA RT-PCR, random hexamer primers were employed, whereas specific primers (Ribobio) were utilized for miRNA RT-PCR. The expressions of ULBP2, MINK1, CDKN1A and SQSTM1 were quantified using qRT-PCR with GAPDH as internal control. The sequences of specific primers were provided in Table 2. Expression level of miR-17-5p was quantified using a BulgeLoop miRNA qRT-PCR primer set (Ribobio), with U6 serving as an endogenous reference for normalization. The qRT-PCR assays were carried out on a LightCycler 480II system (Roche Diagnostics, Basel, Switzerland), employing the SYBR Premix EX Tag Kit (#RR420A, TaKaRa). Relative expression levels of both miRNA and RNA were determined using the 2-ΔCt method, following normalization to a reference control.

Table 2 | Primers for quantitative RT-PCR.


[image: A table listing primers and their sequences. The columns are labeled "Primer" and "Sequence." Primers listed are MINK1, CDKN1A, SQSTM1, ULBP2, ULBP5, ULBP6, GAPDH, and U6. Each has forward (FP) and reverse (RP) primer sequences.]



2.4 Western blot

The cells subjected to pretreatment were lysed in radioimmunoprecipitation assay buffer for total protein extraction. The protein concentrations were subsequently measured with a bicinchoninic acid (BCA) protein assay kit (Beyotime Biotec, China). Equivalent quantities of denatured protein samples (40 μg) were subjected to separation via 4%–20% SDS-polyacrylamide gel electrophoresis and then transferred onto polyvinylidene fluoride membranes. Following a 1-hour blocking step at room temperature with 5% skim milk (Yili, Hohhot, China) in tris-buffered saline containing 0.1% Tween-20, the membranes were incubated with the specific primary antibodies detailed in Table 3 at 4°C overnight. GAPDH served as an internal control for normalization purposes. The membranes were subsequently incubated with an optimally diluted solution of the corresponding secondary antibodies conjugated to horseradish peroxidase for a duration of 2 hours at room temperature. Finally, the immunoreactive bands were visualized utilizing an enhanced chemiluminescence detection system (Thermo Scientific, Darmstadt, Germany).

Table 3 | Antibodies for western blot and flow cytometry analysis.


[image: Table listing antibodies, applications, sources, and identifiers. Entries include GAPDH, ULBP-2, MINK1, JNK, Phospho-JNK, c-Jun, Phospho-c-Jun, Anti-human ULBP2/5/6 PE, and Mouse IgG2A PE-conjugated Antibody. Applications include WB and Flow Cyt with sources like abcam, Proteintech, CST, and R&D systems. Identifiers are provided for each entry.]



2.5 Flow cytometry analysis

After pretreatment, the cells were rinsed with phosphate-buffered saline (PBS) and then incubated with the antibodies specified in Table 3 for 25 minutes at 4°C in the dark. The flow cytometry assays were conducted using a BD FACSCalibur flow cytometer (BD Biosciences, San Jose, California, USA), with data acquisition and interpretation carried out utilizing the CellQuest software. The cells were gated based on their higher forward scatter and lower side scatter; characteristics typically indicative of live cells. No additional specific protocols were implemented to explicitly exclude dead cells. The mean fluorescence intensity (MFI) change (denoted as ΔMFI) was determined using the following formula: ΔMFI= (MFIwith specific mAb​−MFIwith isotype control​) ÷MFIwith isotype control​. To further facilitate comparison between the ΔMFI observed for a specific experimental treatment and that of a control treatment, the relative MFI (rMFI) was computed as follows: rMFI=ΔMFIspecific treatment/​ΔMFIcontrol treatment​​×100% (23).




2.6 Dual-luciferase reporter assay

The wild-type (WT) and mutant (MUT) 3′-UTR sequences of ULBP2 were individually cloned into the pmirGLO vector (Repbio). HEK-293 T cells were cultured into 96-well plates. After 24 hours, the cells were co-transfected with 100 ng of either wild-type or mutant reporter plasmids, along with 100 nmol of miR-17-5p mimics or NC, for a duration of 6 hours. Forty-eight hours later, the Firefly/Renilla luciferase activities were quantified using the Dual Luciferase Reporter Assay Kit as described in the manufacturer’s instructions (Promega, Madison, WI, USA).




2.7 NK cell cytotoxicity assay in vitro

MDA-MB-231 cells were subjected to treatment with either 12.5 μM or 25 μM RES for a duration of 48 hours and subsequently seeded into a round-bottom 96-well plate. Before the cytotoxicity assay, the NK-92MI cell line was exposed to either PBS or anti-NKG2D antibody (50 mg/mL, Novus Biologicals, Littleton, CO, USA) for a period of 1 hour. Next, the effector NK-92MI cells were added to the respective wells at varying effector-to-target cell ratios of 10:1, 5:1, and 2.5:1. Following co-incubation at 37°C under an atmosphere containing 5% CO2 for a period of 4 hours, the supernatant was collected and subjected to analysis utilizing the CytoTox 96 NonRadioactive Cytotoxicity Kit (Promega). According to the protocols provided in the instruction manual for the Kit, damaged cells release intracellular lactate dehydrogenase (LDH), so the level of LDH is proportional to the number of the damaged cells. The LDH release is quantified by measuring the absorbance at 490 nm. The cytotoxic potential of the effector cells towards the target cells was quantified using the following formula: Cytotoxicity (%) = (LDH Release Experimental - LDH Release Effector spontaneous - LDH Release Target spontaneous)/(LDH Release Target maximum - LDH Release Target spontaneous) ×100. The spontaneous LDH release from effector cells and target cells was assessed to mitigate any potential influence of LDH spontaneously released by NK cells and breast cancer cells on the experimental outcomes. The difference “LDH Release Target maximum - LDH Release Target spontaneous” corresponds to the LDH release resulting from 100% lysis of all breast cancer cells, indicating the amount of LDH released when all breast cancer cells are completely damaged or killed.




2.8 Acute lung clearance assay

C57BL/6 male mice, aged 8 to 9 weeks, were allocated into three distinct groups and intraperitoneally administered one of the following treatments: anti-NK1.1 antibodies (dose: 300 μg per mouse, Clone PK136, 108759, Biolegend, San Diego, CA, USA), anti-mouse NKG2D monoclonal antibodies (dose: 300 μg per mouse, Clone 191004, MAB1547, Novus Biologicals), or IgG isotype control (dose: 300 μg per mouse, Clone 20116, MAB004, Novus Biologicals). Twenty-four hours later, the pretreated MDA-MB-231 cells were labeled with CFSE (Invitrogen). HeLa cells, which served as an internal control due to their relative insensitivity to killing by mouse NK cells, were labeled with PKH26 (Invitrogen). A suspension of the labeled cells (5×106 cells of each population) was prepared by mixing them in 1 mL of PBS. Subsequently, 0.4 mL of this cell mixture was intravenously injected into the tail vein of each mouse. Five hours later, the lungs were excised and processed to generate single-cell suspensions suitable for flow cytometric analysis. The ratio of the tested target MDA-MB-231 cells to the control HeLa cells within these lung suspensions was then calculated. All animal experiments were conducted in strict compliance with the ethical guidelines set forth by the Ethics Committee for the Use of Experimental Animals in Hangzhou Medical College and adhered to the principles outlined in the Guide for the Care and Use of Laboratory Animals published by the US NIH (the 8th Edition, NRC 2011).




2.9 Immunohistochemistry in a xenograft model

MDA-MB-231 cells were subcutaneously inoculated into the right hind flanks of female BALB/c (nu/nu) immunodeficient mice. Once the tumors attained an approximate volume of 40 mm³, the mice were randomly allocated into three distinct groups. RES was dissolved in a vehicle solution composed of DMSO, polyethylene glycol 400, and distilled deionized water at a ratio of 1:1:3. The RES solution was administered intraperitoneally at daily dosages of either 25 mg/kg or 100 mg/kg for a continuous four-week period. The control group received an equivalent volume of the vehicle alone. At last, the mice were euthanized. The tumors were promptly fixed in 4% paraformaldehyde obtained from Sinopharm Chemical Reagent Co. (Shanghai, China), followed by tissue processing and sectioning. Paraffin-embedded sections of the xenograft tumor tissues, with a thickness of 4 μm, were prepared and utilized for immunohistochemical (IHC) staining. The slides were subjected to IHC using an anti-ULBP2 antibody (MA5-29636, Invitrogen, Carlsbad, CA, USA). Staining was visualized under an Olympus optical microscope.




2.10 Bioinformatic analysis

The target genes of miR-17-5p were computationally predicted using distinct algorithms from five databases: miRanda(http://www.microrna.org/microrna/home.do), TargetScan(http://www.targetscan.org), miRmap(https://mirmap.ezlab.org), PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html) and picTar(https://pictar.mdc-berlin.de). The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the shared predicted target genes were visualized utilizing the R package clusterProfiler from the Bioconductor project. Statistical significance was set at an adjusted p-value threshold of <0.05. mRNA and miRNA expression data for breast cancer samples (N=1104; Subtype: Luminal A 43.03%, Luminal B 19.11%, Triple negative 16.49%, Her2(+) 8.24%, NA 13.13%; Sex: Female 98.82%, Male 1.18%) were obtained from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/). Patient characteristics of breast cancer samples were shown in Supplementary Figure 1. According to the information provided by TCGA, mRNA and miRNA expressions were measured using IIIumina HiSeq 2000 Sequencing. Differential expression and correlation analyses were performed using the R package edgeR.




2.11 Statistical analysis

Statistical tests were performed and analyzed using Microsoft Excel and GraphPad Prism 9.0 software (San Diego, CA, USA). All data from a minimum of three independent experiments were expressed as mean ± standard deviation (SD). In the statistical analysis comparing two groups, the Shapiro-Wilk test was first used to assess the normality of the data. For non-normally distributed data, the non-parametric Mann-Whitney U test was employed to compare the two groups. For normally distributed data, an F test was conducted to compare variances between the groups. When both normality and equal variances were confirmed, an unpaired two-tailed Student’s t-test was used to determine statistical significance. If the variances were found to be unequal, the Welch’s t-test (t-test with Welch’s correction) was applied instead. A p-value threshold of <0.05 was adopted to denote statistical significance, represented graphically as* for p<0.05, ** for p<0.01, and *** for p<0.001.





3 Results



3.1 Resveratrol upregulates the expression of ULBP2 in breast cancer

To investigate the effect of RES on NKG2DL expression in breast cancer, four distinct cell lines—MDA-MB-231, Bcap37, MCF7, and MDA-MB-468—were exposed to RES at concentrations of 6.25 μM, 12.5 μM, or 25 μM, as well as to a vehicle control, for a period of 48 hours. Our flow cytometric analysis demonstrated a dose-dependent increase in the MFI due to an antibody specific for ULBP2, ULBP5, and ULBP6 in cells treated with RES. This suggests that the expression of one or more of these ligands was upregulated in response to RES treatment (Figures 1A–E). To precisely determine which ligands are modulated by RES, we quantified mRNA expression levels in RES-treated and control cells using qRT-PCR with primers specific to each ULBP. Among all the ULBP genes analyzed, it was revealed that ULBP2 exhibited a consistent, pronounced, and dose-dependent increase in mRNA expression following RES treatment (Figures 1F–I). Moreover, the results from western blot assays demonstrated that exposure to RES led to a significant elevation in ULBP2 protein levels in both the MDA-MB-231 and MCF7 cell lines (Figures 1J, K). This finding corroborates the observed increase in ULBP2 mRNA expression, indicating that RES increases ULBP2 expression at both the transcriptional and translational levels in these cell lines.

[image: Flow cytometry analysis and bar graphs demonstrating the effects of varying concentrations (6.25 μM, 12.5 μM, 25 μM) of a treatment on BCap37, MDA-MB-231, MCF7, and MDA-MB-468 cell lines. Panels show histograms of fluorescence intensity, with bar charts illustrating mean fluorescence intensity and relative mRNA and protein expressions of ULBP2. A comparison graph highlights ULBP2 expression between cancer and normal samples, indicating significant differences.]
Figure 1 | Resveratrol (RES) upregulates the expression of ULBP2 in breast cancer cells. Breast cancer cell lines (BCap37, MDA-MB-231, MCF-7 and MDA-MB-468) were treated with various concentrations of RES or control for 48 hours. (A-E) The surface protein levels of ULBP2/5/6 on BCap37, MDA-MB-231, MCF-7 and MDA-MB-468 cells were detected by flow cytometry. (A) are the depicted representative results from (B-E). (F-I) The mRNA expression levels of ULBP2, ULBP5 and ULBP6 were detected in RES pretreated BCap37, MDA-MB-231, MCF-7 and MDA-MB-468 cells by qRT-PCR, with GAPDH as a reference. (J, K) The expression of ULBP2 protein was determined in RES pretreated MDA-MB-231and MCF-7 cells by Western blot (left) and the blots were further quantified with ImageJ (right). GAPDH was used as a loading control. (L) The differential expression of ULBP2 between breast cancer samples (n=1104) and adjacent normal breast tissue samples (n=113) from The Cancer Genome Atlas dataset was analyzed using Welch’s t-test. The unpaired two-tailed Student’s t-test was used to determine statistical significance in (B-K), *p<0.05, **p<0.01, ***p<0.001 versus Control.

ULBP2 is always undetectable or low-expressed on healthy cells, while it can be induced at the onset of malignant transformation. To assess the differential expression of ULBP2 between normal and neoplastic breast tissues, we conducted an analysis of data obtained from TCGA. Our findings revealed that the mean value of ULBP2 expression was significantly elevated in breast cancer specimens (n=1104) compared to a cohort of adjacent normal breast tissue samples (n=113) (Figure 1L).




3.2 MiR-17-5p which is suppressed in RES treated breast cancer cells inhibits ULBP2 expression

To elucidate the molecular mechanism underlying ULBP2 regulation by RES, level of miR-17-5p was determined in RES treated breast cancer cells. When MDA-MB-231 and MCF7 cells were exposed to RES at concentrations of either 12.5 μM or 25 μM for 48 hours, a dose-dependent decrease in miR-17-5p levels was observed (Figures 2A, B), which substantiated the suppressive influence of RES on miR-17-5p expression.
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Figure 2 | MiR-17-5p which is suppressed in RES treated breast cancer cells inhibits ULBP2 expression. (A, B) The breast cancer cells were treated with RES or control medium for 48 hours. The level of miR-17-5p was assessed with qRT-PCR, with U6 as a reference. (C-G) The breast cancer cells were transfected with miR-17-5p mimic, inhibitor or negative control (NC), respectively. (C-E) The expression of ULBP2/5/6 was determined by flow cytometry. (C) are depicted representative results from (D, E). (F, G) The level of ULBP2 protein was detected by Western blot (left) and the blots were further quantified with ImageJ (right). GAPDH was used as a loading control. The unpaired two-tailed Student’s t-test was used to determine statistical significance. *p<0.05, **p<0.01, ***p<0.001 versus Control or NC.

To determine the regulatory role of miR-17-5p on ULBP2 expression, we transiently transfected MDA-MB-231 and MCF7 cells with either a miR-17-5p mimic, a miR-17-5p inhibitor, or a negative control (NC) oligonucleotide. With flow cytometry assays, the surface ULBP2/5/6 proteins were shown to be increased on miR-17-5p inhibitor-transfected MDA-MB-231 cells, while decreased on mimic-transfected cells. A similar pattern of observation was noted in MCF7 cells as well (Figure 2C–E). Western blot analysis revealed that the protein level of ULBP2 was consistently downregulated upon transfection with miR-17-5p mimics, while correspondingly upregulated following miR-17-5p inhibitor transfection in both MDA-MB-231 and MCF7 cell lines (Figures 2F, G). Thus, these observations indicate that RES suppresses the expression of miR-17-5p, and miR-17-5p negatively regulates the expression of ULBP2 in breast cancer.




3.3 MINK1 is predicted as the target gene of miR-17-5p in ULBP2 regulation

Despite evidence suggesting that miR-17-5p can suppress ULBP2 expression, bioinformatics analysis indicates that ULBP2 is not a direct target of miR-17-5p. This implies the existence of a more intricate and indirect regulatory mechanism governing ULBP2 expression by miR-17-5p. To elucidate the connection between miR-17-5p and ULBP2, we initially identified 428 commonly predicted target genes of miR-17-5p across five online databases: PITA, miRmap, miRanda, picTar, and TargetScan (Figure 3A). For better understanding the biological features of these genes, we performed KEGG pathway enrichment analysis. The results, presented in Figure 3B, revealed that these genes are predominantly associated with several key pathways. Among these pathways, three are particularly relevant to breast cancer and ULBP2 regulation: mammary gland, invasive breast cancer, and cellular responses to stress. As shown in the Venn diagram, three genes (CDKN1A, MINK1 and SQSTM1) were overlapped in the three pathways (Figure 3C). Then, differential expression analysis of the three predicted genes were performed between breast cancer (BC) tissues and adjacent normal breast tissues using data from TCGA. The analysis revealed differential expression patterns of the three predicted genes between BC tissues and adjacent normal breast tissues. CDKN1A and MINK1 were both downregulated in BC, with median TPM (Transcripts Per Million) values decreasing from 5925.963 in normal tissue to 4547.018 in BC tissue for CDKN1A, and from 5896.905 in normal tissue to 4666.032 in BC tissue for MINK1. Conversely, SQSTM1 exhibited an opposite expression pattern, with its median TPM value increasing from 11834.51 in normal tissue to 14738.95 in BC tissue (Figures 3D–F). This indicates that CDKN1A and MINK1 are downregulated in breast cancer relative to normal tissue, while SQSTM1 shows upregulation in the same comparison. MDA-MB-231 cells were transfected with miR-17-5p mimics or inhibitors, after which the expression levels of the three genes were assessed using qRT-PCR. As shown in Figures 3G–H, the expression levels of these genes were found to be inversely correlated with miR-17-5p levels.
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Figure 3 | The target gene screening of miR-17-5p in ULBP2 regulation. (A) 428 genes were predicted as direct targets for miR-17-5p using PITA, miRmap, miRanda, picTar and TargetScan database. (B) The enrichment analysis of KEGG pathways was performed in the 428 genes. (C) Three genes (CDKN1A, MINK1 and SQSTM1) were overlapped among the three relevant pathways (Mammary gland, Invasive breast cancer and Cellular responses to stress). (D-F) The levels of CDKN1A, MINK1 and SQSTM1 were analyzed in breast cancer (n=1096) and adjacent normal breast tissue (n=111) cohorts from The Cancer Genome Atlas. Statistical significance was determined by the non-parametric Mann-Whitney U test. (G, H) The mRNA expressions of CDKN1A, MINK1 and SQSTM1 were detected using qRT-PCR in MDA-MB-231 cells transfected with miR-17-5p mimic, inhibitor or negative control (NC), with GAPDH as a reference. (I, J) The mRNA expression of ULBP2 was determined by qRT-PCR in CDKN1A, MINK1 or SQSTM1 knocked-down breast cancer cells, with GAPDH as a reference. The unpaired two-tailed Student’s t-test was used to determine statistical significance in (G-J). *p<0.05, **p<0.01, ***p<0.001 versus NC or si-NC.

To explore the roles the three predicted genes played in ULBP2 regulation, their corresponding siRNAs were constructed and respectively transfected into breast cancer cells. Knockdown of CDKN1A, MINK1 or SQSTM1 in MDA-MB-231 cells led to reduced expression of ULBP2 (Figure 3I). For MCF7 cells, ULBP2 expression was downregulated in the MINK1 siRNA-transfected group but upregulated in the CDKN1A and SQSTM1 siRNA-transfected groups. This pattern of ULBP2 expression modulation was not consistent with that observed in MDA-MB-231 cells (Figure 3J). The findings demonstrate that the regulation of ULBP2 expression by CDKN1A and SQSTM1 may be cell-specific. In both MDA-MB-231 and MCF7 cells, MINK1 knockdown resulted in the inhibition of ULBP2 expression, leading to its selection for further study. Si-MINK1-2, exhibiting superior efficacy in ULBP2 inhibition compared to si-MINK1-1, was hence chosen for further investigations.




3.4 MiR-17-5p downregulates ULBP2 expression by directly binding to 3’-UTR of MINK1

Further analyses and studies were conducted to more comprehensively elucidate the regulation of MINK1 by miR-17-5p. An inverse correlation between endogenous miR-17-5p and MINK1 was demonstrated in breast cancer specimens using StarBase analysis (https://starbase.sysu.edu.cn/), suggesting a potential role for miR-17-5p in modulating MINK1 expression in breast cancer patients (Figure 4A). To validate the direct binding of miR-17-5p to 3′-UTRs of MINK1, a dual-luciferase reporter assay was conducted. The assay showed that miR-17-5p significantly suppressed the luciferase activity of constructs harboring the wild-type MINK1 3′-UTR, whereas transfection with miR-17-5p mimic did not produce any appreciable alteration in the luciferase activity of reporters containing mutated MINK1 3′-UTR sequences (Figures 4B, C). These findings confirm that miR-17-5p suppresses MINK1 expression by directly binding to its 3′-UTR. Overexpression of miR-17-5p caused a marked downregulation of MINK1 protein levels in MDA-MB-231 cells, whereas suppression of miR-17-5p led to a significant upregulation of MINK1 protein levels (Figure 4D).
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Figure 4 | MINK1 is the target gene of miR-17-5p and promotes ULBP2 expression. (A) The correlation between miR-17-5p and MINK1 in 1085 breast tissue samples from TCGA. Linear regression analysis was used to assess the relationship between miR-17-5p and MINK1 expression. (B) Schematic representation of predicted miR-17-5p binding sites in the 3’-UTR of MINK1 and 3’-UTR mutated alignment. (C) The dual luciferase assays were performed in HEK-293 T cells. (D) MDA-MB-231 cells were transfected with 50 nM of miR-17-5p inhibitor, mimic or negative control (NC) for 24 hours. The MINK1 protein levels were detected by western blot. (E) The efficiency of MINK1 knockdown and overexpression was confirmed by western blot. (F) The effects of MINKI on ULBP2 expression were assessed using western blot in miR-17-5p exogenously expressed or suppressed MDA-MB-231 cells. (D-F) GAPDH was used as a reference in western blot assays and the blots were further quantified with ImageJ (right). The unpaired two-tailed Student’s t-test was used to determine statistical significance. *p<0.05, **p<0.01, ***p<0.001.

To investigate the effect of MINK1 on ULBP2, we first constructed siRNA (si-MINK1) for MINK1 knockdown and an overexpression vector (pcDNA3.1-MINK1) for MINK1 upregulation. The efficiencies of these constructs were confirmed by Western blot analysis (Figure 4E). Then, MDA-MB-231 cells were co-transfected with si-MINK1, pcDNA3.1-MINK1, miR-17-5p mimics, inhibitors or respective controls. As shown in Figure 4F, si-MINK1 abrogated the increase in ULBP2 expression induced by miR-17-5p inhibitors, whereas pcDNA3.1-MINK1 plasmids effectively counteracted the suppressive impact of miR-17-5p mimics on ULBP2. Taken together, the results indicate the key role MINK1 plays within the pathway through which miR-17-5p downregulates ULBP2.




3.5 JNK/c-Jun is involved in ULBP2 regulation mediated by the miR-17-5p/MINK1 axis

MINK1, also known as MAP4K6 (Mitogen-activated protein kinase kinase kinase kinase 6), is a serine/threonine kinase that functions as a mitogen-activated protein kinase (MAPK) kinase within the MAPK signaling cascade. Notably, c-Jun N-terminal kinase (JNK) is a prototypical member of the MAPK family. Herein, we explored the involvement of JNK and its downstream target, c-Jun, within the regulation of ULBP2. Western blot analysis demonstrated a significant reduction in the expression levels of phosphorylated JNK (p-JNK, at Thr183/Tyr185) and phosphorylated c-Jun (p-c-Jun, at Ser63) in breast cancer cells that overexpressed miR-17-5p. Conversely, cells transfected with miR-17-5p inhibitors exhibited a notable increase in the levels of these phosphorylated proteins (Figure 5A). Knockdown of MINK1 resulted in decreased expression of p-JNK and p-c-Jun, whereas overexpression of MINK1 led to increased levels of these phosphorylated proteins (Figure 5B). Furthermore, treatment with sp600125, a specific JNK inhibitor, potentiated the suppressive influence of miR-17-5p on ULBP2 expression (Figure 5C). Altogether, the data demonstrate that the JNK/c-Jun pathway contributes to the promotion of ULBP2 expression in breast cancer cells and, to a certain extent, is involved in the mechanism by which miR-17-5p modulates ULBP2.
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Figure 5 | JNK/c-Jun is involved in ULBP2 regulation mediated by the miR-17-5p/MINK1 axis. (A) MDA-MB-231 cells were transfected with miR-17-5p inhibitors, mimics or the corresponding controls (NC) for 24 hours. The levels of JNK, p-JNK, c-Jun and p-c-Jun were detected by western blot. (B)  The expressions of JNK, p-JNK, c-Jun and p-c-Jun were determined in MINK1 knocked-down or overexpressed MDA-MB-231 cells by western blot. (C) MDA-MB-231 cells exogenously expressing miR-17-5p were treated with 10 μM of sp600125, a JNK inhibitor, or dimethyl sulfoxide (DMSO, as a vehicle control) for 24 hours. Subsequently, ULBP2 expression was evaluated by Western blot. GAPDH was used as a reference. All the blots were quantified with ImageJ. The unpaired two-tailed Student’s t-test was used to determine statistical significance. *p<0.05, **p<0.01, ***p<0.001.




3.6 Resveratrol treatment increases the sensitivity of breast cancer cells to NK cell-mediated lysis both in vitro and in vivo

To assess the effects of RES on the susceptibility of breast cancer cells to clearance by NK cells, MDA-MB-231 cells were exposed to different concentrations of RES for 48 hours. Results from in vitro NK cytotoxicity assays at different effector-to-target ratios demonstrated that the lysis of MDA-MB-231 cells by NK cells increased with the concentration of RES pre-treated on the target cells (Figure 6A). However, when the NK cells were preconditioned by incubation with an anti-NKG2D blocking antibody, RES exposure induced increase in cancer cell lysis by NK cell would be effectively abolished (Figure 6B). This observation points to the critical role of NKG2D receptor recognition and activation in the process.
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Figure 6 | RES contributes to NK mediated cytolysis against breast cancer cells in vitro and in vivo. (A, B) MDA-MB-231 cells were exposed to different concentrations of RES for 48 hours. The NK cell line NK-92MI cells were pretreated with phosphate buffered saline (PBS) (A) or anti-NKG2D antibodies (B) for 1 hour before the cytotoxicity assay. Cytotoxicity assays were performed with NK-92MI cells as effector cells at different effector-to-target ratios. (C) Schematic representation of the in vivo experimental procedures. Male C57BL/6 mice were intraperitoneally (IP) injected with 300 μg per mouse of IgG, anti-NKG2D antibody, or anti-NK1.1 antibody. 24 hours later, the mice received an intravenous (IV) injection of a mixture containing [2×106] MDA-MB-231 cells and [2×106] HeLa cells. After 5 hours, the mice were sacrificed, and their lungs were excised and processed to generate single-cell suspensions. (D-G) MDA-MB-231 cells were pretreated with different concentrations of RES for 48 hours. Flow cytometry assays were used to analyze the ratios of MDA-MB-231 cells to HeLa cells in lung single-cell suspensions. (D) depicts representative results from IgG pretreated groups. (H-J) MDA-MB-231 cells were transfected with 50 nM of miR-17-5p mimic, inhibitor or negative control (NC), respectively. Flow cytometry assays were used to analyze the ratios of MDA-MB-231 cells to HeLa cells in lung single-cell suspensions. (H) depicts representative results from IgG pretreated groups. Statistical significance was determined by the unpaired two-tailed Student’s t-test. *p<0.05, **p<0.01, ***p<0.001 versus Control.

As illustrated in Figure 6C, the in vivo cytotoxicity experiments were performed in C57BL/6 mice with HeLa cells as internal control. The survival rate of MDA-MB-231 cells, as determined by the ratio of CFSE-positive cells to PKH26-positive cells, inversely correlated with the concentration of RES used in treatment (Figures 6D, E). The anti-NKG2D or anti-NK1.1 antibodies were intraperitoneally injected into mice in the respective groups to block NKG2D receptors or deplete NK cells. In mice pretreated with anti-NKG2D antibodies, the stimulatory effect of RES on the clearance of breast cancer cells by NK cells was abolished (Figure 6F). This finding implies that the process is mediated by NKG2D. And similar observations were made in the anti-NK1.1 group, suggesting that NK cells are the primary effectors responsible for the clearance (Figure 6G).

Moreover, we investigated the influence of miR-17-5p on tumor cell eradication within an in vivo context. MDA-MB-231 cells transfected with miR-17-5p mimics exhibited reduced susceptibility to lysis by immune effector cells. As a result, a lower proportion of cancer cells were eliminated, leading to a higher number of CFSE-labeled cells in the single cell suspension compared to the control group. In contrast, the group transfected with miR-17-5p inhibitors exhibited a lower number of CFSE-labeled cells, indicative of increased elimination of cancer cells. Importantly, all these differences between the groups were completely abolished in mice pretreated with anti-NKG2D and antiNK1.1 antibodies (Figures 6H–J).

These results confirm that RES enhances the vulnerability of breast cancer cells to NK cell-mediated cytotoxicity, whereas miR-17-5p functions as a negative regulator of this sensitivity.




3.7 Resveratrol increases the level of ULBP2 in xenograft tumors and meanwhile suppresses tumor growth

To further investigate the in vivo effects of RES on breast cancer growth and ULBP2 expression, female BALB/c (nu/nu) mice were subjected to subcutaneous implantation of MDA-MB-231 cells to establish xenograft tumors. Thereafter, RES was administered intraperitoneally at doses of 0, 25, or 100 mg/kg per day. At the conclusion of a 28-day treatment period, the mice were euthanized, and their tumors were excised and weighed. A marked, dose-dependent reduction in both tumor volume and weight was observed in the RES-treated groups compared to the control group (Figures 7A–C). Moreover, IHC and western blot analyses confirmed RES promoted ULBP2 expression in xenograft tumors, consistent with the findings obtained from breast cancer cell lines in vitro (Figures 7D, E). The data indicate that RES upregulates ULBP2 expression in breast cancer cells and concurrently suppresses tumor growth in an in vivo setting.
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Figure 7 | RES suppresses tumor growth and increases ULBP2 expression in xenograft tumors. MDA-MB-231 cells were subcutaneously implanted into female BALB/c (nu/nu) mice. RES or vehicle control was administrated intraperitoneally every day for 28 days. (A) The mice were sacrificed for xenograft tumor tissues. (B) Tumor volumes were measured every 7 days. (C) Tumor weights were measured at the endpoint of the experiment. (D) Representative images from immunohistochemistry assay for ULBP2 expression (magnification ×400). (E) Levels of ULBP2 protein were examined by western blot with GAPDH as a reference and the blots were quantified with ImageJ. Statistical significance was determined by the unpaired two-tailed Student’s t-test. *p<0.05, **p<0.01 versus Vehicle.





4 Discussion

The study of natural compounds as disease preventive agents or alternatives to synthetic molecules for therapeutic use has become an important subject of interest in recent decades. RES, one of the most representative compounds, has gained the focus of a variety of researches in chemistry and medicine (24). RES exhibits excellent tolerability in both experimental animals and humans. No obvious adverse effects were observed in dogs administered RES orally at a dose of 600 mg/kg/day for 90 days (25). In a subset of healthy volunteers administered oral RES at a high dose of 2000 mg twice daily, only mild-to-moderate gastrointestinal disturbances were reported (26). RES performs multiple health-promoting activities, including anticancer. Breast cancer, the most prevalent malignancy among females globally, threatens human health seriously and imposes a heavy burden on patients, their families and society (27, 28). A growing body of research increasingly substantiates RES’s potential in breast cancer prophylaxis and therapy. This includes mechanisms such as the inhibition of angiogenesis, suppression of cell migration and metastasis, induction of cell cycle arrest and apoptosis, as well as modulation of epigenetic processes (7, 29–31). Consistently, the present study revealed that administering RES to mice at doses of either 25 mg/kg/day or 100 mg/kg/day for a 28-day period was well-tolerated and effectively inhibited cancer growth.

Considering the critical role that ULBP2 plays in facilitating cancer cell elimination by NK cells and the immune-modulatory effects exerted by RES, the current research aimed to elucidate the impact of RES on ULBP2 expression and the underlying molecular mechanisms involved. RES was demonstrated to augment ULBP2 expression in four breast cancer cell lines. It heightened the susceptibility of MDA-MB-231 cells to NK cell-mediated cytotoxicity in vitro. However, the increased susceptibility was diminished when cytolysis was performed with NK cells whose NKG2D receptors were blocked, suggesting that NKG2D plays a crucial role in this process. Furthermore, in vivo experiments demonstrated that RES dose-dependently enhanced the killing of intravenously injected MDA-MB-231 cells in C57BL/6 mice. This effect was eliminated in mice pre-treated with anti-NKG2D and anti-NK1.1 antibodies, suggesting that the in vivo cytotoxicity against MDA-MB-231 cells was primarily executed by NKG2D-activated NK cells. These results point to the potential that RES may serve as an enhancer of ULBP2-mediated cancer cell clearance by NK cells. Subsequently, the mechanism by which RES upregulates the expression of ULBP2 was intensively investigated.

MiR-17-5p is upregulated in various types of cancer and is known for its oncogenic properties (32, 33). It drives cancer initiation, progression, and metastasis by promoting cancer cell motility, proliferation, invasiveness, angiogenesis and chemoresistance (34–37). Accordantly, findings from our previous research indicated that miR-17-5p plays a pivotal role in promoting the epithelial-mesenchymal transition, thereby enhancing the migratory and invasive capabilities of breast cancer cells (22). In the current study, the exposure to RES led to a dose-dependent reduction in miR-17-5p levels in breast cancer cells. MiR-17-5p has been documented to suppress the expression of MICA and MICB, two other important NKG2DLs, in hepatocellular and colorectal cancers (38, 39). However, the potential regulatory role of miR-17-5p in modulating ULBP2 expression has not yet been reported. Herein, miR-17-5p was demonstrated to suppress ULBP2 expression in breast cancer line MDA-MB-231 and MCF7 cells. And its effect on the susceptibility of MDA-MB-231 cells to NK cell-mediated cytolysis was evaluated in mouse model. MDA-MB-231 cells transfected with miR-17-5p mimics exhibited reduced susceptibility to lysis by murine NK cells, while the cells transfected with miR-17-5p inhibitors showed higher sensitivity to NK cell killing in vivo. However, these changes in susceptibility induced by miR-17-5p upregulation or downregulation were abolished in mice pretreated with anti-NKG2D and anti-NK1.1 antibodies. Anti-NKG2D antibodies block NKG2D receptors, while anti-NK1.1 antibodies deplete NK cells. These findings suggest that both NK cells and their activating receptor NKG2D play a critical role in mediating cytotoxicity against breast cancer cells in mice. Additionally, the regulatory role of miR-17-5p in modulating ULBP2 expression, a ligand for NKG2D, was confirmed. This further indicates that miR-17-5p influences the recognition and killing of breast cancer cells by NK cells through its effect on ULBP2 expression.

But bioinformatic analysis did not identify any predicted miR-17-5p binding sites within the 3′-UTR of ULBP2, indicating that ULBP2 was not a direct target gene of miR-17-5p. Consequently, we focused on screening potential target genes of miR-17-5p in the context of ULBP2 regulation. Our efforts led to the prediction that MINK1 is the most probable target gene. An inverse correlation between MINK1 expression and miR-17-5p levels was observed across 1085 breast cancer specimens in the TCGA dataset. Cellular MINK1 levels were diminished upon transfection with miR-17-5p mimics and augmented following treatment with miR-17-5p inhibitors, respectively. using a dual-luciferase reporter assay, we demonstrated that miR-17-5p inhibited MINK1 expression by directly interacting with its 3′-UTR, thereby validating their direct targeting relationship. The exogenous expression of MINK1 effectively counteracted the decrease in ULBP2 protein levels induced by miR-17-5p overexpression, thus demonstrating the positive regulatory role of MINK1 on ULBP2 expression.

MINK1, an integral member of the mammalian Ste20-like serine/threonine kinase family, functions as a MAPK kinase in regulating diverse cellular processes such as senescence, motility, and chemoresistance (40–42). The MAPK pathway is a well characterized signaling pathway which controls a multitude of fundamental cellular processes, including inflammation, differentiation, apoptosis, proliferation, and others (43). But its role in NKG2DL regulation has not yet been well defined. Extracellular signal regulated kinase (ERK), a component of MAPK signaling cascade, was verified to promote ULBP2 expression in breast cancer in our previous research, which indicated the involvement of MAPK signaling in NKG2DL regulation (15). The JNK/c-Jun pathway is one of the classical MAPK pathways (44). In this work, the activation of JNK and its downstream effector molecule c-Jun was attenuated in breast cancer cells overexpressing miR-17-5p or subjected to MINK1 knockdown, whereas miR-17-5p downregulation or MINK1 upregulation led to opposing outcomes. Moreover, the JNK inhibitor sp600125 potentiated the suppressive effect of miR-17-5p on ULBP2 expression. These findings confirmed the involvement of JNK/c-Jun MAPK signaling cascade in ULBP2 regulation. It is reasonable to ask how the JNK/c-Jun pathway contributes to ULBP2 expression. C-Jun, a well-characterized transcription factor primarily activated by the JNK pathway, plays a crucial role in multiple biological processes by binding to specific DNA sequences to initiate transcriptional activity (45, 46). Due to this, ULBP2 expression might be regulated by c-Jun directly or indirectly. However, this possibility requires further exploration. Moreover, RES exhibited suppression of xenograft tumor growth in mice. Although the underlying mechanisms warrant further exploration, it is speculated that the downregulation of miR-17-5p, given its oncogenic properties, may contribute, at least in part, to the inhibitory effect of RES on breast cancer growth in murine models.

Considering the established capacity of RES to enhance NK cell-mediated cytotoxicity against breast cancer cells, further preclinical investigations are warranted to evaluate the administration route, optimal dosage, and treatment duration to maximize therapeutic efficacy while minimizing potential toxicity. Whether RES impacts ULBP2 expression in normal cells warrants further investigation. Additionally, methods to improve the bioavailability of RES should be developed. Moreover, integrating RES with conventional breast cancer treatment regimens deserves further exploration to leverage potential synergistic benefits.




5 Conclusion

RES induces ULBP2 expression and consequently enhances breast cancer cell elimination by NK cells through the suppression of miR-17-5p and activation of the MINK1/JNK/c-Jun cascade. This represents a novel biological mechanism in ULBP2 regulation (Figure 8). Our work suggests that RES has the potential to be an effective therapeutic agent for inhibiting breast cancer progression and enhancing NK cell-based cancer immunotherapy.
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Figure 8 | A proposed model for RES induced immune elimination of breast cancer cells by NK cells via miR-17-5p/MINK1/JNK/c-Jun/ULBP2 cascade.
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Background

Glucose metabolism reprogramming provides significant insights into the development and progression of malignant tumors. This study aims to explore the temporal-spatial evolution of the glucose metabolism in HCC using single-cell sequencing and spatial transcriptomics (ST), and validates G6PD as a potential therapeutic target for HCC.





Methods

We collected single-cell sequencing data from 7 HCC and adjacent non-cancerous tissues from the GSE149614 database, and ST data from 4 HCC tissues from the HRA000437 database. Pseudotime analysis was performed on the single-cell data, while ST data was used to analyze spatial metabolic activity. High-throughput sequencing and experiments, including wound healing, CCK-8, and transwell assays, were conducted to validate the role and regulatory mechanisms of G6PD in HCC.





Results

Our study identified a progressive upregulation of PPP-related genes during tumorigenesis. ST analysis revealed elevated PPP metabolic scores in the central and intermediate tumor regions compared to the peripheral zones. High-throughput sequencing and experimental validation further suggested that G6PD-mediated regulation of HCC cell proliferation, migration, and invasion is likely associated with glutathione metabolism and ROS production. Finally, Cox regression analysis cofirmed G6PD as an independent prognostic factor for overall survival in HCC patients.





Conclusion

Our study provides novel insights into the changes in glucose metabolism in HCC from both temporal and spatial perspectives. We experimentally demonstrated that G6PD regulates proliferation, migration, and invasion in HCC and propose G6PD as a prognostic marker and therapeutic metabolic target for the HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the most prevalent malignant liver tumor, ranking as the sixth most common cancer and the third leading cause of cancer-related mortality worldwide (1, 2). Over the past few decades, the incidence of HCC has risen, particularly in the Asia-Pacific region and parts of Africa, where there is a high prevalence of hepatitis B and C viruses (3). With improved living standards, liver cancers arising from metabolic liver diseases are also on the rise (4). HCC is highly aggressive, and most patients are diagnosed at an advanced stage with a poor prognosis (5). Although targeted therapies have extended survival times to some extent, their high cost and severe side effects limit their widespread clinical use (6).

Cancer cells adapt their energy metabolism to optimize the rapid consumption and utilization of glucose to support their rapid proliferation and growth needs (7–9). This metabolic mode, known as the Warburg effect, entails a preference for glycolysis over oxidative phosphorylation even in the presence of adequate oxygen, thereby efficiently generating energy to promote tumor growth and survival (10, 11). Through metabolic reprogramming, cancer cells can rapidly synthesize intermediates such as nucleic acids, lipids, and proteins to continually support their proliferation and spread (12). Hence, targeting glucose metabolism—including glycolysis, the pentose phosphate pathway (PPP), and the TCA cycle—is considered an attractive approach to cancer therapy (13).

Reprogramming of glucose metabolism provides a better understanding of the onset and progression of malignancies, further clarifying the complexities of cancer (14, 15). This study aims to explore the evolution of glucose metabolism in HCC through detailed analysis using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) and to ascertain the role of G6PD in the malignant transformation of HCC, thereby providing suitable metabolic targets for drug development.





Materials and methods




Single-cell sequencing data acquisition and processing

We retrieved data from the GEO database, specifically dataset GSE149614, which included cancer and adjacent non-tumor tissues from 10 HCC patients. Patients 1 and 2, who only had cancer tissue samples without corresponding adjacent non-tumor tissues, were excluded from the analysis. We utilized the R packages “Seurat” and “SingleR” to analyze the scRNA-seq data (16, 17). Mitochondrial gene expression levels are typically associated with cellular health. When the proportion of mitochondrial genes exceeds 10%, it often indicates that the cell is under stress or undergoing apoptosis (18–20). To ensure the inclusion of high-quality cellular data, cells with gene counts outside the 2% to 98% percentile range and those with mitochondrial gene content exceeding 10% were excluded. Anomalies in patient 7’s cancer tissue, which only contained 489 cells, suggested clinical sample issues, leading to their exclusion. Ultimately, data from 7 cancer tissues and their corresponding adjacent non-tumor tissues were included. We normalized the scRNA-seq data using the “NormalizeData” function in the Seurat R package. The normalized data were then converted into Seurat objects, and the top 5000 variable genes were identified using the “FindVariableFeatures” function. Dimensionality reduction of the scRNA-seq data was performed using the “RunPCA” function for principal component analysis (PCA). To mitigate batch effects between samples, we applied the “harmony” R package. Cell clustering was accomplished using the “FindNeighbors” and “FindClusters” functions with a resolution parameter of 0.5, followed by visualization of the results using the t-SNE method. Cell type annotation was refined using the “SingleR” R package, which predicts cell types based on their correlation with a reference database, continuously eliminating the least correlated types (21).





Pseudotime analysis

We employed the “Monocle2” R package to infer the developmental trajectory of our target cells through gene conversion into reverse graph embedding and dimensionality reduction techniques, arranging cells in a pseudotime sequence (22). To explore the evolutionary differentiation of glucose metabolism in HCC, we extracted a hepatocyte subgroup from all cells and conducted trajectory analysis using “Monocle2.” The “DDTree” method was used for dimensionality reduction of these cells. Cell ordering was performed using the “orderCells” function. The results were visually analyzed using the “plot_cell_trajectory” function to understand the dynamic changes in cellular states across the developmental continuum (23, 24).





Acquisition and processing of spatial transcriptomics data

The ST data were sourced from the HRA000437 database (25). During the quality control phase, we eliminated genes expressed in fewer than 5 spots, spots with fewer than 300 detected features, and spots where mitochondrial gene content exceeded 10%. Normalization was performed using the SCTransform method with default parameters in the Seurat R package. Dimensionality reduction and clustering of the data were achieved using the RunPCA, FindNeighbors, FindClusters, and RunUMAP functions in Seurat.

Spatial data visualization was conducted using the “SpatialDimPlot” function, with the center of the tumor serving as the center for spatial plotting of transcriptomics cells. First, we calculated the distance of each cell from the tumor center using the formula (Distance = [image: Square root of open parenthesis x minus x subscript center close parenthesis squared plus open parenthesis y minus y subscript center close parenthesis squared.] ), Subsequently, we divided the spatial domain into three regions using tertiles to ensure that each region contained approximately one-third of the cells:

	First region (Central Core): Includes cells from the minimum distance up to the first tertile.

	Second region (Intermediate zones): Spans from the first to the second tertile.

	Third region (Out Periphery): Ranges from the second tertile to the maximum distance.



For quantifying metabolic activity at a single-cell resolution, we employed the “scMetabolism” R package, applying it to measure the metabolic activities across all hepatocytes (26).





Cell transfection

HepG2 and Hep3B cells were cultured in Dulbecco’s Modified Eagle’s Medium (Gibco, USA) supplemented with 10% fetal bovine serum (Gibco, USA) and 1x penicillin/streptomycin (Biyuntian, China). All cultures were maintained at 37°C in a 5% CO2 incubator (Thermo Fisher Scientific, USA). Gene knockdown of G6PD was achieved using small interfering RNA (siRNA), specifically si-G6PD#1 and si-G6PD#2. The mRNA levels of G6PD were quantified relative to β-Actin mRNA levels using RT-qPCR and Western Blot (WB) to assess transfection efficiency. For the WB analysis, the membrane strips were initially trimmed and subsequently individually hybridized with antibodies, with four markers retained on each membrane. The full WB image is a composite created after antibody hybridization. Relative gene expression levels were calculated using the 2^-ΔΔCt method. All primers were supplied by Sangon Biotech (Sangon Biotech, China), with sequences listed in Supplementary Table 1. This study was reviewed and approved by the Ethics Committee of the Affiliated Hospital of Xuzhou Medical University (No: XYFY2024-KL283-01).





CCK-8 Assay, wound healing assay, and transwell assay

CCK-8 Assay: 1×10^3 cells were cultured in each well of a 96-well plate. A 1% CCK-8 solution (Meilunbio, China) was added to each well, and the cells were incubated at 37°C in a 5% CO2 incubator for 1 hour to assess cell proliferation. Absorbance at OD450 was measured daily from day 1 to day 7 using a microplate reader (Synergy H1, USA).

Wound healing assay: Cells were cultured in 6-well plates until 95% confluence. A sterile 200 μl plastic pipette tip was used to scratch a straight line in each well. The wells were gently washed twice with PBS to remove unattached cells and debris. Cell migration was observed at 0h and 48h. Images of the scratch wounds were taken at 0 hours and 48 hours using Image J software, and the cell migration rate was calculated (Migration rate= (Width at 48h−Width at 0h)/Width at 48h).

Transwell assay: Treated cells (2×10^5) were seeded into the upper chamber of a 24-well plate and incubated for 48 hours. To assess cell migration and invasion capabilities, the upper surface of the insert was either left uncoated or pre-coated with matrix gel solution (LYNJUNE, China). After removing cells from the surface, the remaining cells on the bottom were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet (VICMED, China).





G6PD knockdown HepG2 Cell Line construction and RNA sequencing

Cells were seeded in 24-well plates for gene knockdown experiments. Using Lipofectamine 2000, recombinant lentivirus particles were transfected into 293T cells to produce lentivirus. The plasmids contained G6PD-specific shRNA (5’-GCCGTGTACACCAAGATGA-3’). HepG2 cells were transfected with lentiviral particles and selected with puromycin to generate stable cell lines. Total RNA was isolated and purified using TRIzol, and RNA libraries were sequenced on the Illumina NovaseqTM 6000 platform (LC Bio Technology CO., Ltd., Hangzhou, China) according to standard procedures. Differential analysis was performed using DESeq2, and GSEA enrichment analysis was conducted using the “clusterProfiler” R package (27).





NADP/NADPH measurement and ROS detection

NADP/NADPH measurement: NADP/NADPH levels were measured using the BIOSS (AK302) kit. Cells were collected into centrifuge tubes and treated with alkaline/acidic extraction solution. After centrifugation, the supernatant was collected, and absorbance was measured at OD570 nm using a microplate reader (Synergy H1, USA).

ROS Detection: DCFH-DA (Beyotime, China) was diluted in serum-free medium at a 1:1000 ratio to achieve a final concentration of 10 µM. After removing the culture medium from the cells, they were washed with PBS, and then 1.5 mL of the diluted DCFH-DA was added to each well. The cells were incubated at 37°C in a 5% CO2 incubator for 20 minutes. After the incubation, cells were washed three times with serum-free medium, fixed with paraformaldehyde, and the fluorescence intensity was measured using a flow cytometer (FACScanto II*, USA) with an excitation at 488 nm and emission at 525 nm. Analysis was performed using FlowJo software.





Pan-cancer analyses of differential G6PD expression and survival analysis

We collected G6PD mRNA levels and clinical information from tumor and normal tissues across 33 cancer types available in the TCGA database. Differential expression of the gene was analyzed using the ‘ggplot2’ R package. Bar charts were utilized to display the expression level differences across various cancers.

For survival analysis, univariate Cox regression was conducted using the “survival” and “forestplot” R packages to evaluate the prognostic relevance of G6PD expression with respect to overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), and disease-free interval (DFI) across different cancer types. Additionally, clinical and transcriptomic data were collected for 319 HCC patients from the TCGA database, 229 HCC patients from the ICGC database, and 177 HCC patients from the GSE14520 database. Both univariate and multivariate Cox regression analyses were performed to identify independent risk factors affecting overall survival in HCC patients.





Statistical analysis

All statistical analyses were conducted using R version 4.3.1. For continuous data, comparisons between two groups were made using either the independent samples t-test or the Mann-Whitney U test. Univariate and multivariate Cox regression analyses were performed using the “survival” R package to identify independent risk factors. The threshold for defining statistical significance was set at P<0.05 (*P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant).






Results




Single-cell atlas and intercellular communication analysis

To comprehensively identify the cellular composition and structure of HCC and adjacent non-tumor tissues, we conducted single-cell sequencing analysis on samples from 7 HCC patients. After stringent quality control measures to exclude low-quality cells, a total of 49,324 cells from these tissues for in-depth analysis. Using t-distributed stochastic neighbor embedding (t-SNE) clustering, we organized these cells into 22 distinct clusters (Figure 1A). Cell types within the single-cell atlas were annotated using “SingleR” R package, categorizing the cells into 9 types (Figure 1B) including smooth muscle cells (ACTA2, TAGLN, RGS5), B cells (CD79A, MS4A1, IGHD), dendritic cells (HLA-DPB1, CLEC9A, CD83), NK cells (NKG7, GNLY, GZMB), T cells (CD3D, CD2, CD3E), monocytes (S100A8, AREG, FCN1), hepatocytes (ALB, TTR, TF), endothelial cells (CLEC4G, ENG, PECAM1), and macrophages (CD68, CD163, CD14) (Supplementary Figure 1A). The expression of marker genes in the single-cell map was also displayed (Supplementary Figure 1B). Supplementary Figures 2A, B shows the cellular composition of both HCC and adjacent non-tumor cells from the 7 cases. We noted a higher proportion of macrophages and a reduced proportion of T cells and NK cells in the tumor tissue compared to the adjacent non-tumor tissue.
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Figure 1 | Cell atlas and pseudotime analysis of cancerous and adjacent non-tumor tissues in HCC. t-SNE plots depicting 22 cell populations (A) and 9 annotated cell types (B) from 7 HCC tissues and paired adjacent non-tumor tissues. (C) t-SNE plot of 11 re-clustered hepatocyte populations. Pseudotime analysis (D) reveals dynamic expression patterns of glycolysis-related genes (E), PPP-related genes (F), and TCA cycle-related genes (G).





Pseudotime analysis reveals the evolution of glucose metabolism in HCC

To better explore the evolution of glucose metabolism in hepatocytes, we constructed a pseudotime cell trajectory for 11 clusters of hepatocytes (Figure 1C) and mapped a bifurcated trajectory representing the development from non-malignant to malignant cells (Figure 1D). Cluster 6 (C6), almost exclusively derived from adjacent non-tumor tissue, was identified at the lower right of the trajectory, serving as the initial state’s starting point. This trajectory then bifurcated into two distinct cell fates. Through our pseudotime analysis, we identified three different transformation patterns, colored red (gene expression progressively increasing), blue (gene expression progressively decreasing), and pink (gene expression initially increasing then decreasing) (Supplementary Figure 2C).

Enrichment analysis of the biological processes associated with these transformation patterns revealed that the red module was primarily associated with major metabolic processes, including carbohydrate metabolism, fatty acid metabolism, and amino acid metabolism. The blue module was mainly related to immune responses and cell differentiation, while the pink module was associated with protein folding, refolding, and modification.

Mapping glucose metabolism-related genes onto the cell trajectory, we observed trends in the developmental process of the malignancy. Glycolysis-related genes (GPI, ALDOA, PFKL) (Figure 1E) and TCA cycle-related genes (PDHA1, IDH2, FH) (Figure 1F) both showed trends of initially increasing and then decreasing. In contrast, genes related to thePPP (G6PD, 6PGD, TKT) (Figure 1G) exhibited a consistently increasing trend throughout the development of the tumor (28).





Spatial evolution of glucose metabolism in the HCC Microenvironment

Spatial transcriptomics preserves transcriptional data within a spatial context, facilitating the analysis of metabolic pathway activities in localized regions (29). Prior to this study, the spatial dynamics of glucose metabolism within HCC had not been explored. We collected a complete series of tumor sections from HCC patients (HCC5) listed in HRA000437, dividing them into four parts (Figure 2A). After removing stromal cells, the sections were further divided into three regions using the tertile method: the central core, intermediate zones, and outer periphery.

[image: Diagram showing liver sections labeled HCC5A to HCC5D. Each section includes a histological image, a pseudocolor map, and graphs for glycolysis, pentose phosphate pathway, and citrate cycle (TCA cycle) versus distance. Graphs display varying enzyme activity levels across different distance groups: Central Core, Intermediate Zone, and Outer Periphery. Sections are distinguished by variations in these outputs, illustrating metabolic differences.]
Figure 2 | HCC section division diagram (A). Spatial partitioning and glucose metabolism evolution in four cases of HCC (B–E).

Using the scMetabolism tool, we assigned metabolic scores to each cell. For HCC5A (Figure 2B), we observed an initial increase followed by a subsequent decrease in the metabolic activity of glycolysis, the PPP, and the TCA cycle from the central core to the outer periphery. In HCC5B (Figure 2C), glycolysis and TCA cycle metabolic scores showed a trend of initially decreasing and then increasing towards the out periphery, while the PPP activity consistently decreased. For HCC5C and For HCC5C and HCC5D (Figures 2D, E), both glycolysis and TCA cycle activities exhibited an increasing trend, whereas PPP activity consistently decreased from the central core to the outer periphery.





Knockdown of G6PD inhibits proliferation, migration, and invasion in HCC cells

Glucose-6-phosphate dehydrogenase (G6PD) acts as the rate-limiting enzyme in the PPP and plays a crucial role in the development and progression of cancer (30–32). Our study revealed that liver cancer cells (HepG2 and Hep3B) exhibit high endogenous expression of G6PD. Therefore, we constructed G6PD-knockdown HepG2 cells (Figure 3A) and Hep3B cells (Figure 3E, Supplementary Figure 3a).

[image: Panel A shows a bar graph and Western blot indicating decreased G6PD expression with si-G6PD treatments. Panel B displays cell migration images at 0 and 48 hours, with a significant reduction in migration for si-G6PD#1 and #2. Panel C features a line graph illustrating reduced absorbance over time with si-G6PD treatments. Panel D presents invasion and migration assays with corresponding bar graphs, showing reduced cell invasion and migration for si-G6PD treatments. Panel E, similar to A, shows results for Hep3B cells. Panel F shows migration results, and Panel G provides absorbance data for Hep3B. Panel H displays invasion and migration assays for Hep3B, similar to D.]
Figure 3 | Downregulation of G6PD inhibits proliferation, migration, and invasion in HCC cells (HepG2 and Hep3B). (A, E) Western blot (Please refer to Supplementary Figure 3b for the detailed WB images) verify the efficiency of G6PD knockdown. (B, F) Wound healing assays demonstrate reduced migration rates in HCC cells with lowered G6PD expression. (C, G) CCK8 assays indicate that downregulating G6PD inhibits cell proliferation. (D, H). Transwell assays show reduced migration and invasion of HCC cells following G6PD knockdown. (*P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant).

Wound healing assays (Figures 3B, F) revealed that, following G6PD downregulation, both HepG2 and Hep3B cells exhibited slower migration rates. Consistent with these findings, CCK8 assays (Figures 3C, G) demonstrated that G6PD knockdown significantly inhibited the proliferation of HepG2 and Hep3B HCC cells. Similarly, in Transwell assays (Figures 3D, H), cells with reduced G6PD expression also displayed weaker migration and invasion capabilities.





Potential mechanisms by which G6PD promotes malignant progression in HCC

To preliminarily explore the possible mechanisms by which G6PD promotes hepatocellular carcinoma (HCC) cell proliferation and differentiation, transcriptomic sequencing was performed on the constructed shG6PD HepG2 cells. Notably, GSEA enrichment analysis revealed differential metabolism of the pentose phosphate pathway between the two groups (Figure 4A). Additionally, significant differences were observed in glutathione metabolism (Figure 4B). We measured NADP+/NADPH levels between the two groups and found that the NADP+/NADPH ratio was higher in the shG6PD group compared to the NC group (Figure 4C). As NADPH serves as a reducing equivalent and regulates cellular reactive oxygen species (ROS) stability, we next measured ROS levels and found that downregulation of G6PD led to an increase in ROS in HCC cells (Figure 4D). This increase was normalized after treatment with N-acetylcysteine (NAC,1mM). To further investigate whether ROS affects HepG2 cell proliferation, migration, and invasion, we performed wound healing assays (Figure 4E), which showed slower migration in the shG6PD cells, and migration was restored following NAC treatment. CCK-8 assays (Figure 4F) indicated that shG6PD inhibited HepG2 cell proliferation, which could be partially reversed by NAC treatment. Consistent with the wound healing results, Transwell assays (Figure 4G) showed that shG6PD cells had impaired migration and invasion abilities, and these abilities were partially restored after NAC treatment.

[image: Graphs and microscopy images illustrate cellular and biochemical analyses. Graphs A and B show enrichment scores for pentose phosphate and glutathione metabolism pathways. C and D display bar charts for NADP+/NADPH ratios and reactive oxygen species levels, respectively. E and G contain microscopy images comparing NC, sh-G6PD, and sh-G6PD + NAC treatments, highlighting cell migration and invasion. F presents a growth curve showing absorbance changes over time. Statistical significance is marked with asterisks.]
Figure 4 | Potential mechanisms by which G6PD promotes proliferation and differentiation in HCC cells. (A, B) GSEA enrichment analysis revealed the possible mechanism of G6PD regulation of HCC. (C) Downregulation of G6PD leads to increased NADP+/NADPH levels within the HCC cells. (D) Downregulation of G6PD leads to increased ROS levels in HCC cells, which could be reversed after NAC treatment. Wound healing assays (E), CCK8 assay (F) and transwell assay (G) confirmed that ROS can partially regulate the proliferation, migration and invasion of hepatocellular carcinoma. (*P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant).





High expression of G6PD correlated with poor prognosis in HCC patients

To explore the specific expression of G6PD in cancer and its clinical implications, we analyzed the differences in G6PD expression levels between tumor tissues and adjacent normal tissues using data from the TCGA database. Our results (Figure 5A) demonstrated that G6PD expression is significantly elevated in multiple cancers, including BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRP, LIHC, LUAD, LUSC, READ, STAD, and UCEC. The abbreviations and full names of tumors can be found in Supplementary Table 2.

[image: Chart A displays box plots comparing G6PD expression in normal and tumor tissues across various TCGA groups, with statistical significance indicated. Chart B presents forest plots of hazard ratios for overall survival, disease-specific survival, disease-free interval, and progression-free interval, distinguishing between risky and protective factors. Chart C features tables displaying univariate and multivariate COX regression analyses for TCGA, ICGC, and GSE14520 datasets, highlighting characteristics like gender, age, stage, and G6PD, with adjusted hazard ratios and confidence intervals.]
Figure 5 | Pan-cancer analysis demonstrating that G6PD is a prognostic biomarker across various cancers. (A) Differences in G6PD expression between different tumors and adjacent non-tumor tissues. (B) Prognostic analysis of G6PD across various cancers. (C) Univariate and multivariate Cox regression analyses reveal that G6PD is an independent risk factor for overall survival in HCC.

Subsequently, we utilized univariate Cox regression analysis to clarify the relationship between G6PD levels and patient prognosis in the TCGA cohort (Figure 5B). We found that G6PD expression is correlated with prognosis across several cancers, identifying G6PD as a risk factor for overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), and disease-free interval (DFI) in HCC patients. To further validate the correlation between G6PD expression and prognosis in HCC patients, we collected transcriptomic and clinical data from liver cancer patients across three major databases: TCGA, ICGC, and GEO. Through both univariate and multivariate Cox regression analysis, we established that G6PD is an independent risk factor affecting the overall survival (OS) of HCC patients (Figure 5C).

In summary, our study suggests that the rate-limiting enzyme of the PPP, G6PD, regulates NADPH production, which in turn modulates glutathione metabolism and ROS generation. This ultimately promotes tumor cell proliferation, migration, and invasion (Figure 6).

[image: Biochemical pathway illustration showing glucose conversion to G-6-P, then to 6-P gluconate via G6PD, generating NADPH and H+. GSSG is reduced to 2GSH using NADPH. ROS production is depicted, with NAC inhibiting it. The process impacts cell proliferation, migration, and invasion.]
Figure 6 | Schematic representation of G6PD regulating glutathione metabolism in hepatocellular carcinoma cells.






Discussion

In this study, through scRNA-seq and ST, we unveiled the dynamic evolution of glucose metabolism in HCC. We described changes in glycolysis, the PPP, and the TCA cycle from both temporal and spatial perspectives. Temporally, we observed an initial increase followed by a decrease in glycolysis and TCA cycle-related genes, whereas PPP-related genes consistently increased. Spatially, from the core to the periphery, the metabolic activity of glycolysis shows a gradual increase, while the activity of the PPP gradually decreases. The metabolic changes observed in HCC5A are inconsistent with those in the other samples; we suspect this is because HCC5A is composed almost entirely of HCC cells from the core region, with little to no representation of HCC cells from the tumor periphery. Additionally, we confirmed through cellular experiments that G6PD, a key enzyme in the PPP, can regulate the proliferation, migration, and invasion of HCC cells and preliminarily analyzed potential mechanisms by which G6PD facilitates malignant progression in HCC.

Metabolic reprogramming in cancer cells allows for the adjustment of intracellular metabolic pathways and the distribution of metabolic products, thereby modulating cell function and physiological states (33, 34). The growth and proliferation of cancer cells demand substantial energy and resources (35). Reprogramming glucose metabolism helps adjust glucose turnover within cells, enabling more efficient energy production and synthesis of necessary macromolecules, thereby supporting malignant proliferation and differentiation (36–39). Our findings suggest that enhanced glycolysis in tumor cells presents an initial rise followed by a decline, possibly due to several factors: 1. Fast ATP production by glycolysis, which compensates for the inhibited mitochondrial oxidative phosphorylation due to local hypoxia or other factors (40). 2. Intermediate metabolic product accumulation from glycolysis, such as pyruvate, which can be used for lipid synthesis (41). 3. Acidification of the microenvironment by lactate produced through glycolysis, facilitating tumor invasion and immune evasion (42, 43). In the late stages of tumor development, the decline in glycolysis-related gene expression could be linked to extreme environmental stresses (like severe hypoxia or ischemia) or a reduced metabolic state akin to dormancy due to internal or external pressures. We observed a similar phenomenon at the spatial level, where the glycolytic metabolic activity in the tumor core region was less vigorous than in the tumor periphery. This may also be related to the extreme stress environment and the internal and external pressures that lead to tumor cell dormancy.

In clinical research, inhibition of G6PD has emerged as a promising strategy for cancer therapy (44). G6PD is a pivotal enzyme in the glycolytic pathway, primarily producing NADPH via the pentose phosphate pathway (PPP), which is crucial for maintaining cellular redox balance and influencing cellular processes such as growth, differentiation, and apoptosis (45). The upregulation of G6PD is not only associated with the enhanced proliferation, migration, and invasion of tumor cells but also promotes epithelial-mesenchymal transition (EMT) and metastasis through the modulation of cellular redox status (46). Furthermore, G6PD is closely linked to chemotherapy resistance in various cancers, as it aids tumor cells in counteracting oxidative stress and DNA damage induced by chemotherapeutic agents (47). Several small-molecule G6PD inhibitors, such as 6-aminohexose (6-AN) and dehydroepiandrosterone (DHEA), have demonstrated potential to suppress tumor growth (48–50). In experimental settings, DHEA has been shown to enhance the sensitivity of certain tumor cells to conventional chemotherapeutic agents like paclitaxel and doxorubicin, and even to counteract chemotherapy resistance in tumors (50, 51). However, inhibition of G6PD not only impacts tumor cell metabolism but may also have detrimental effects on normal cells. G6PD inhibition results in decreased NADPH levels, thereby weakening the cellular antioxidant capacity and increasing oxidative stress and DNA damage. This effect could lead to damage in normal cells, with particularly pronounced effects on organs such as the liver and bone marrow (52). Currently, there is no consensus regarding the optimal timing and administration methods for G6PD inhibitors in clinical settings. Given the multifaceted role of G6PD in tumor cells, we propose that simple G6PD inhibition may be insufficient to fully suppress tumor growth. However, combining G6PD inhibitors with chemotherapeutic agents could offer a novel treatment strategy for cancer patients. Presently, the administration of G6PD inhibitors has certain drawbacks. For instance, 6-AN and DHEA are typically administered orally; however, their significant side effects and limited targeting capabilities significantly hinder their broad clinical application (53). With the advancement of nanomaterials, strategies involving local delivery or encapsulation of G6PD inhibitors in nanoparticles may allow for targeted delivery to tumor cells, minimizing systemic side effects while enhancing therapeutic efficacy (54). In conclusion, G6PD, as a critical metabolic regulator, is emerging as a novel target for cancer therapy. While clinical research is still in its early stages, the therapeutic opportunities and challenges it presents warrant further exploration.

In our study, the metabolic activity of the PPP consistently increased over time and was more pronounced in the core and intermediate areas of tumors. The PPP, alongside glycolysis, generates ribose-5-phosphate and NADPH, which can reduce excessive ROS in cells, maintaining internal cellular balance and normal growth conditions (55). However, when this balance is disrupted, ROS can promote tumor development by increasing genetic instability, but post-tumor establishment, it can limit cancer cell survival and growth (56, 57). G6PD is the rate-limiting enzyme in the PPP. Studies have shown that PBX3 binds to the G6PD promoter, stimulating the PPP in colorectal cancer and increasing the production of nucleotides and NADPH, thereby promoting the biosynthesis of nucleic acids and lipids while reducing oxidative stress (58). Consistent with our findings, knocking down G6PD significantly inhibited proliferation, migration, and invasion of HepG2 and Hep3B cells, likely linked to the production of ribose-5-phosphate and NADPH (59). NADPH provides the reducing equivalents necessary to convert oxidized glutathione (GSSG) back to its reduced form (GSH), thereby maintaining cellular antioxidant capacity. In turn, GSH plays a crucial role in mitigating the excessive accumulation of ROS (60). Additionally, Min Li et al., through transcriptomic analysis, demonstrated that Aldob directly binds to G6PD and inhibits its activity, thereby suppressing the PPP and exerting a novel tumor-suppressive role in HCC (61). Therefore, G6PD inhibition represents a viable strategy for cancer treatment.

In conclusion, our integrated scRNA-seq and ST analysis revealed the metabolic evolution of glycolysis, PPP, and TCA cycle in HCC cells, confirming G6PD’s regulatory role on tumor aggressiveness and its potential as a prognostic marker and therapeutic target in HCC. Nonetheless, our study has inherent limitations: single-cell and spatial transcriptomic data were not from the same patient samples; and while bioinformatics analysis and experimental validations were employed, more extensive experimental validations are needed to corroborate these findings. Although our study utilized two liver cancer cell lines for validation, it still cannot replicate the heterogeneity of liver cancer. Further experimental validation using primary cell cultures is needed. Finally, our study also lacks further in vivo exploration, particularly animal studies. Future work will focus on recruiting a larger cohort of HCC patients and conducting animal studies to overcome these limitations and employ diverse methods to rigorously analyze glucose metabolism alterations in HCC.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. The TCGA dataset was downloaded from the GDC portal (https://portal.gdc.cancer.gov/); The GSE14520 and GSE149614 datasets were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149614); HRA000437 reported in this article can be acquired from the Genome Sequence Archive (GSA-Human: HRA000437) and is publicly accessible at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA000437. Further inquiries can be directed to the corresponding author(s).





Ethics statement

Ethical approval was not required for the studies on humans in accordance with the local legislation and institutional requirements because only commercially available established cell lines were used.





Author contributions

DX: Conceptualization, Formal Analysis, Methodology, Project administration, Validation, Visualization, Writing – original draft, Writing – review & editing. YY: Data curation, Investigation, Software, Validation, Writing – review & editing. JG: Conceptualization, Methodology, Validation, Writing – original draft. MW: Data curation, Formal Analysis, Validation, Writing – original draft. XY: Funding acquisition, Project administration, Supervision, Writing – review & editing. CL: Investigation, Project administration, Supervision, Visualization, Writing – original draft, Writing – review & editing.





Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by Prevention and Treatment of Major Infectious Diseases Such as AIDS and Viral Hepatitis (2018ZX10302206-003-010) and Postgraduate Research Innovation Program of Jiangsu Province (KYCX24_3067).





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1553722/full#supplementary-material


References
	1. Vogel, A, Meyer, T, Sapisochin, G, Salem, R, and Saborowski, A. Hepatocellular carcinoma. Lancet. (2022) 400:1345–62. doi: 10.1016/S0140-6736(22)01200-4
	2. Kotsari, M, Dimopoulou, V, Koskinas, J, and Armakolas, A. Immune system and hepatocellular carcinoma (HCC): new insights into HCC progression. Int J Mol Sci. (2023) 24:11471. doi: 10.3390/ijms241411471
	3. Kulik, L, and El-Serag, HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology. (2019) 156:477–491.e1. doi: 10.1053/j.gastro.2018.08.065
	4. Powell, E, Wong, VW, and Rinella, M. Non-alcoholic fatty liver disease. Lancet. (2021) 397:2212–24. doi: 10.1016/S0140-6736(20)32511-3
	5. Torimura, T, and Iwamoto, H. Treatment and the prognosis of hepatocellular carcinoma in Asia. Liver Int. (2022) 42:2042–54. doi: 10.1111/liv.15130
	6. Anwanwan, D, Singh, SK, Singh, S, Saikam, V, and Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. (2020) 1873:188314. doi: 10.1016/j.bbcan.2019.188314
	7. Li, Z, and Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. (2016) 73:377–92. doi: 10.1007/s00018-015-2070-4
	8. Abdel-Wahab, AF, Mahmoud, W, and Al-Harizy, RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. (2019) 150:104511. doi: 10.1016/j.phrs.2019.104511
	9. Pavlova, NN, Zhu, J, and Thompson, CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. (2022) 34:355–77. doi: 10.1016/j.cmet.2022.01.007
	10. Dang, CV, Hamaker, M, Sun, P, Le, A, and Gao, P. Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). (2011) 89:205–12. doi: 10.1007/s00109-011-0730-x
	11. Wang, Y, and Patti, GJ. The Warburg effect: a signature of mitochondrial overload. Trends Cell Biol. (2023) 33:1014–20. doi: 10.1016/j.tcb.2023.03.013
	12. Faubert, B, Solmonson, A, and DeBerardinis, RJ. Metabolic reprogramming and cancer progression. Science. (2020) 368:eaaw5473. doi: 10.1126/science.aaw5473
	13. Luengo, A, Gui, DY, and Vander Heiden, MG. Targeting metabolism for cancer therapy. Cell Chem Biol. (2017) 24:1161–80. doi: 10.1016/j.chembiol.2017.08.028
	14. Halma, MTJ, Tuszynski, JA, and Marik, PE. Cancer metabolism as a therapeutic target and review of interventions. Nutrients. (2023) 15:4245. doi: 10.3390/nu15194245
	15. Qiu, L, Yang, Q, Zhao, W, Xing, Y, Li, P, Zhou, X, et al. Dysfunction of the energy sensor NFE2L1 triggers uncontrollable AMPK signaling and glucose metabolism reprogramming. Cell Death Dis. (2022) 13:501. doi: 10.1038/s41419-022-04917-3
	16. Stuart, T, Butler, A, Hoffman, P, Hafemeister, C, Papalexi, E, Mauck, WM 3rd, et al. Comprehensive integration of single-cell data. Cell. (2019) 177:1888–1902.e21. doi: 10.1016/j.cell.2019.05.031
	17. Aran, D, Looney, AP, Liu, L, Wu, E, Fong, V, Hsu, A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. (2019) 20:163–72. doi: 10.1038/s41590-018-0276-y
	18. Zhu, H, Chen, J, Liu, K, Gao, L, Wu, H, Ma, L, et al. Human PBMC scRNA-seq-based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. Sci Adv. (2023) 9:q7599. doi: 10.1126/sciadv.abq7599
	19. Ren, X, Wen, W, Fan, X, Hou, W, Su, B, Cai, P, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell. (2021) 184:1895–913. doi: 10.1016/j.cell.2021.01.053
	20. Zhou, Y, Yang, D, Yang, Q, Lv, X, Huang, W, Zhou, Z, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. (2020) 11:6322. doi: 10.1038/s41467-020-20059-6
	21. Jin, S, Guerrero-Juarez, CF, Zhang, L, Chang, I, Ramos, R, Kuan, CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088. doi: 10.1038/s41467-021-21246-9
	22. Trapnell, C, Cacchiarelli, D, Grimsby, J, Pokharel, P, Li, S, Morse, M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. (2014) 32:381–6. doi: 10.1038/nbt.2859
	23. Pös, O, Radvanszky, J, Buglyó, G, Pös, Z, Rusnakova, D, Nagy, B, et al. DNA copy number variation: Main characteristics, evolutionary significance, and pathological aspects. BioMed J. (2021) 44:548–59. doi: 10.1016/j.bj.2021.02.003
	24. Patel, AP, Tirosh, I, Trombetta, JJ, Shalek, AK, Gillespie, SM, Wakimoto, H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. (2014) 344:1396–401. doi: 10.1126/science.1254257
	25. Wu, R, Guo, W, Qiu, X, Wang, S, Sui, C, Lian, Q, et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci Adv. (2021) 7:eabg3750. doi: 10.1126/sciadv.abg3750
	26. Wu, Y, Yang, S, Ma, J, Chen, Z, Song, G, Rao, D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discovery. (2022) 12:134–53. doi: 10.1158/2159-8290.CD-21-0316
	27. Yu, G, Wang, LG, Han, Y, and He, QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/omi.2011.0118
	28. Du, D, Liu, C, Qin, M, Zhang, X, Xi, T, Yuan, S, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. (2022) 12:558–80. doi: 10.1016/j.apsb.2021.09.019
	29. Yu, Q, Jiang, M, and Wu, L. Spatial transcriptomics technology in cancer research. Front Oncol. (2022) 12:1019111. doi: 10.3389/fonc.2022.1019111
	30. Liu, B, Fu, X, Du, Y, Feng, Z, Chen, R, Liu, X, et al. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis. (2023) 44:525–34. doi: 10.1093/carcin/bgad043
	31. Zeng, T, Li, B, Shu, X, Pang, J, Wang, H, Cai, X, et al. Pan-cancer analysis reveals that G6PD is a prognostic biomarker and therapeutic target for a variety of cancers. Front Oncol. (2023) 13:1183474. doi: 10.3389/fonc.2023.1183474
	32. Li, M, He, X, Guo, W, Yu, H, Zhang, S, Wang, N, et al. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Cancer. (2020) 1:735–47. doi: 10.1038/s43018-020-0086-7
	33. Xia, L, Oyang, L, Lin, J, Tan, S, Han, Y, Wu, N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. (2021) 20:28. doi: 10.1186/s12943-021-01316-8
	34. Biswas, SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. (2015) 43:435–49. doi: 10.1016/j.immuni.2015.09.001
	35. Counihan, JL, Grossman, EA, and Nomura, DK. Cancer metabolism: current understanding and therapies. Chem Rev. (2018) 118:6893–923. doi: 10.1021/acs.chemrev.7b00775
	36. Paul, S, Ghosh, S, and Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. (2022) 86:1216–30. doi: 10.1016/j.semcancer.2022.09.007
	37. Zhou, R, Ni, W, Qin, C, Zhou, Y, Li, Y, Huo, J, et al. A functional loop between YTH domain family protein YTHDF3 mediated m6A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. J Exp Clin Cancer Res. (2022) 41:334. doi: 10.1186/s13046-022-02538-4
	38. Yang, W, Xia, Y, Hawke, D, Li, X, Liang, J, Xing, D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. (2014) 158:1210. doi: 10.1016/j.cell.2014.08.003
	39. Pan, L, Feng, F, Wu, J, Fan, S, Han, J, Wang, S, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. (2022) 181:106270. doi: 10.1016/j.phrs.2022.106270
	40. Chelakkot, C, Chelakkot, VS, Shin, Y, and Song, K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. (2023) 24:2606. doi: 10.3390/ijms24032606
	41. Ganapathy-Kanniappan, S, and Geschwind, JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. (2013) 12:152. doi: 10.1186/1476-4598-12-152
	42. Rabinowitz, JD, and Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat Metab. (2020) 2:566–71. doi: 10.1038/s42255-020-0243-4
	43. Zhao, Y, Li, M, Yao, X, Fei, Y, Lin, Z, Li, Z, et al. HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. (2020) 33:108487. doi: 10.1016/j.celrep.2020.108487
	44. Li, R, Wang, W, Yang, Y, and Gu, C. Exploring the role of glucose−6−phosphate dehydrogenase in cancer (Review). Oncol Rep. (2020) 44:2325–36. doi: 10.3892/or.2020.7803
	45. Ahamed, A, Hosea, R, Wu, S, and Kasim, V. The emerging roles of the metabolic regulator G6PD in human cancers. Int J Mol Sci. (2023) 24:17238. doi: 10.3390/ijms242417238
	46. Lu, F, Fang, D, Li, S, Zhong, Z, Jiang, X, Qi, Q, et al. Thioredoxin 1 supports colorectal cancer cell survival and promotes migration and invasion under glucose deprivation through interaction with G6PD. Int J Biol Sci. (2022) 18:5539–53. doi: 10.7150/ijbs.71809
	47. Li, Y, Tang, S, Shi, X, Lv, J, Wu, X, Zhang, Y, et al. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer. Cell Rep Med. (2023) 4:101162. doi: 10.1016/j.xcrm.2023.101162
	48. Li, Y, Zheng, F, Zhang, Y, Lin, Z, Yang, J, Han, X, et al. Targeting glucose-6-phosphate dehydrogenase by 6-AN induces ROS-mediated autophagic cell death in breast cancer. FEBS J. (2023) 290:763–79. doi: 10.1111/febs.16614
	49. Luo, M, Fu, A, Wu, R, Wei, N, Song, K, Lim, S, et al. High expression of G6PD increases doxorubicin resistance in triple negative breast cancer cells by maintaining GSH level. Int J Biol Sci. (2022) 18:1120–33. doi: 10.7150/ijbs.65555
	50. Chen, X, Xu, Z, Zhu, Z, Chen, A, Fu, G, Wang, Y, et al. Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro. Int J Oncol. (2018) 53:1703–12. doi: 10.3892/ijo.2018.4501
	51. Lou, SJ, Li, XH, Zhou, XL, Fang, DM, and Gao, F. Palladium-catalyzed synthesis and anticancer activity of paclitaxel-dehydroepiandrosterone hybrids. ACS Omega. (2020) 5:5589–600. doi: 10.1021/acsomega.0c00558
	52. Song, J, Sun, H, Zhang, S, and Shan, C. The multiple roles of glucose-6-phosphate dehydrogenase in tumorigenesis and cancer chemoresistance. Life (Basel). (2022) 12:271. doi: 10.3390/life12020271
	53. Li, M, Dong, Y, Wang, Z, Zhao, Y, Dai, Y, and Zhang, B. Engineering hypoxia-responsive 6-aminonicotinamide prodrugs for on-demand NADPH depletion and redox manipulation. J Mater Chem B. (2024) 12:8067–75. doi: 10.1039/d4tb01338g
	54. El, MS, Garbayo, E, Amundarain, A, Pascual-Gil, S, Carrasco-León, A, Prosper, F, et al. Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release. (2023) 361:130–46. doi: 10.1016/j.jconrel.2023.07.054
	55. TeSlaa, T, Ralser, M, Fan, J, and Rabinowitz, JD. The pentose phosphate pathway in health and disease. Nat Metab. (2023) 5:1275–89. doi: 10.1038/s42255-023-00863-2
	56. Wang, Y, Qi, H, Liu, Y, Duan, C, Liu, X, Xia, T, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. (2021) 11:4839–57. doi: 10.7150/thno.56747
	57. Wang, W, Dong, X, Liu, Y, Ni, B, Sai, N, You, L, et al. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways. BioMed Pharmacother. (2020) 131:110661. doi: 10.1016/j.biopha.2020.110661
	58. Luo, X, Wei, M, Li, W, Zhao, H, Kasim, V, and Wu, S. PBX3 promotes pentose phosphate pathway and colorectal cancer progression by enhancing G6PD expression. Int J Biol Sci. (2023) 19:4525–38. doi: 10.7150/ijbs.86279
	59. Roy, K, Wu, Y, Meitzler, JL, Juhasz, A, Liu, H, Jiang, G, et al. NADPH oxidases and cancer. Clin Sci (Lond). (2015) 128:863–75. doi: 10.1042/CS20140542
	60. Lu, M, Lu, L, Dong, Q, Yu, G, Chen, J, Qin, L, et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). (2018) 50:370–80. doi: 10.1093/abbs/gmy009
	61. Li, M, He, X, Guo, W, Yu, H, Zhang, S, Wang, N, et al. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Cancer. (2020) 1:735–47. doi: 10.1038/s43018-020-0086-7




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2025 Xi, Yang, Guo, Wang, Yan and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.








 


	
	
ORIGINAL RESEARCH
published: 03 April 2025
doi: 10.3389/fmed.2025.1541376








[image: image2]

Predicting the immune therapy response of advanced non-small cell lung cancer based on primary tumor and lymph node radiomics features

Dong Xie1*, Jinna Yu1, Cong He1, Han Jiang2, Yonggang Qiu1, Linfeng Fu1, Lingting Kong1 and Hongwei Xu1


1Department of Radiology, Shaoxing Second Hospital Medical Community General Hospital, Shaoxing, China

2Department of Medical Oncology, Shaoxing Second Hospital Medical Community General Hospital, Shaoxing, China

Edited by
 Alberto Traverso, San Raffaele Hospital (IRCCS), Italy

Reviewed by
 Fariba Tohidinezhad, Maastricht University Medical Centre, Netherlands
 Donato Tiano, Vita-Salute San Raffaele University, Italy

*Correspondence
 Dong Xie, dongalex915@163.com 

Received 07 December 2024
 Accepted 20 March 2025
 Published 03 April 2025

Citation
 Xie D, Yu J, He C, Jiang H, Qiu Y, Fu L, Kong L and Xu H (2025) Predicting the immune therapy response of advanced non-small cell lung cancer based on primary tumor and lymph node radiomics features. Front. Med. 12:1541376. doi: 10.3389/fmed.2025.1541376
 




Objective: To identify imaging biomarkers of primary tumors and lymph nodes in patients with stage III–IV non-small cell lung cancer (NSCLC) and assess their predictive ability for treatment response (response vs. non-response) to immune checkpoint inhibitors (ICIs) after 6 months.
Methods: Retrospective analysis of 83 NSCLC patients treated with ICIs. Quantitative imaging features of the maximum primary lung tumors and lymph nodes on contrast-enhanced CT imaging were extracted at baseline (time point 0, TP0) and after 2–3 cycles of immunotherapy (time point 1, TP1). Delta-radiomics features (delta-RFs) were defined as the net changes in radiomics features (RFs) between TP0 and TP1. Interobserver interclass coefficient (ICC) and Pearson correlation analyses were applied for feature selection, and logistic regression (LR) was used to build a model for predicting treatment response.
Results: Four and five important delta-RFs were selected to construct the nodal and tumor models, respectively. Δ Tumor diameter was used for constructing the clinical prediction model. The predictive efficacy of the nodal model for the treatment response status was higher than that of the tumor and clinical models. In the training set, the AUC values for the three models were 0.96 (95% CI = 0.90–1.00), 0.86 (95% CI = 0.76–0.95), and 0.82 (95% CI = 0.71–0.93), respectively. In the validation set, the AUC values were 0.94 (95% CI = 0.85–1.00), 0.77 (95% CI = 0.56–0.98), and 0.74 (95% CI = 0.48–1.00), respectively.
Conclusion: The nodal model based on delta-RFs performed well in distinguishing responders from non-responders and could identify patients more likely to benefit from immunotherapy. Finally, the nodal model exhibited a higher classification performance than the tumor model.

Keywords
 non-small cell lung cancer; lymph nodes; radiomics; delta; immunity; prediction model


1 Introduction

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and is the leading cause of cancer-related deaths worldwide (1). Despite recent advancements in lung cancer treatment, the 5-year survival rate of patients with lung cancer remains disappointing at only 15% (2). In recent years, immune checkpoint inhibitors (ICIs) have improved the treatment outcomes of patients with advanced NSCLC without targetable mutations. However, according to published evidence (3), the increase in progression-free survival (PFS) and/or overall survival (OS) is still limited to a small percentage of patients (15–30%). Although the expression of the tumor cell PD-L1 has been widely used as a biomarker for selecting patients for immune therapy (2, 4), the relationship between PD-L1 expression and the efficacy of ICIs treatment remains uncertain.

Radiomics is an emerging field in medical imaging, which can quantify medical imaging data and translate qualitative clinical problems into quantitative ones, thus providing a more objective approach to solving clinical problems (5). Recent studies (6) have shown that non-invasive diagnostic images can describe the phenotype of lung tumors, and their use could be feasible to predict the survival stratification of patients with advanced NSCLC under different treatment methods. In these noninvasive imaging-based prediction or classification models, a radiomics method based on CT images has been developed and applied to establish prognosis prediction models, evaluate the effectiveness and necessity of different treatment methods, and predict early clinical outcomes. More specifically, traditional radiomics methods use baseline medical images for evaluation or prediction and ignore changes in tumors during treatment or follow-up. Alternatively, delta radiomics utilize changes in radiomic features (RFs) during or after treatment to guide clinical decision-making and may be more suitable for evaluating tumor responses to treatment (7, 8).

In locally advanced NSCLC, tumors tend to spread from the primary site to lymph nodes. Pretreatment lymph node staging is closely associated with disease progression and poor prognosis (9). As such, involved lymph nodes may have unique phenotypic characteristics related to the biological processes that affect disease spread, and thus, treatment response. In this study, we hypothesized that the presence of more invasive cancer cells in the metastatic mediastinal/paratracheal lymph nodes may determine prognosis and provide additional valuable information regarding the primary tumors of patients with NSCLC. To prove this, we analyzed the delta-radiomic features (delta-RFs) of the primary tumor and metastatic lymph nodes based on contrast-enhanced CT (CE-CT) scans and further validated these results in an independent cohort.



2 Materials and methods


2.1 Patients

This was a retrospective analysis of patients with NSCLC treated with ICIs at Shaoxing Second Hospital between January 2016 and November 2022. Tumor staging was performed according to the 8th edition of the American Cancer Joint Committee TNM staging criteria (10). All patients were pathologically diagnosed with III–IV NSCLC. This study adhered to the principles of the Declaration of Helsinki and was approved by the hospital’s Ethics Committee [Approval No. Ethics Approval (2022018)].

The inclusion criteria were as follows: (1) NSCLC confirmed by histology, (2) first- or later-line treatment with ICIs, and (3) complete baseline demographic data before treatment. The exclusion criteria were as follows: (1) baseline imaging (time point 0, TP0) or follow-up after 2–3 cycles of immunotherapy (time point 1, TP1) without CE-CT, (2) inability to accurately evaluate lesion boundaries on CE-CT images, (3) time interval between baseline imaging and immunotherapy exceeds 4 weeks; and (4) short axis of lymph nodes less than 15 mm.



2.2 CT image acquisition

A 64-slice CT scanner (Siemens SOMATOM Definition AS, Germany) was used to examine the patients who underwent routine respiration training. The scanning parameters were as follows: tube voltage = 120 kV, tube current = 200–300 mA, rotation time = 0.75 s, collimation = 32×1.25 mm, FOV = 360.0–500.0 mm, matrix = 512 × 512, slice thickness and interval = 5.0 mm, contrast agent injection rate = 2.5–3.0 mL/s, and injection volume = 1.1–1.7 mL/kg. After the routine scan, a thin-layer post-processing reconstruction of 0.6–1.5 mm was performed.



2.3 Image analysis

Two radiologists (A and B) with 15 years of experience in chest radiography independently evaluated the images, and the final results were obtained through consultation in cases of disagreement. The observed indicators included the selection of target lesions, target lesion boundaries, and TNM staging. This study evaluated whether the target lesions progressed after 6 months of treatment, based on the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1) (11).



2.4 Target lesion segmentation

ITK-SNAP software (version 3.6.0, http://www.itksnap.org/) was used for tumor segmentation. Radiologist A manually delineated the region of interest (ROI) for lesions on TP0 and TP1 CE-CT images, as shown in Figure 1I. To ensure reproducibility and accuracy, the radiologists separately segmented the lesion ROIs and extracted the features at TP0 and TP1 from 10 randomly selected patients. Interobserver interclass coefficient (ICC) was used to determine the consistency of these features, with an ICC value greater than 0.75 indicating higher repeatability of the results.

[image: Diagram showing a medical imaging workflow for tumor analysis. It includes six sections: I) Segmentation, with TP0 and TP1 CT scans highlighting tumors; II) Feature Extraction, detailing first order, texture, and filtered features; III) Feature Selection with ICC and Coefficient graphs; IV) Modeling, incorporating tumor, clinical, and lymph node features; V) Analysis, with performance charts; VI) Validation using a new data set.]

FIGURE 1
 The workflow of this study, which mainly composed of six steps: data set, feature extraction, feature selection, model building, analysis, and validation.




2.5 Image preprocessing and RFs extraction

The PyRadiomics package was used to analyze the segmentation data and isolate phenotypic features from the tumor regions after manual segmentation. To standardize all voxel sizes among the patients, the CT images were resampled to a 2-mm resolution in all three directions (Figure 1II). To avoid redundancy with traditional radiological features and highlight texture differences within the target lesions, shape features were excluded from the RFs extraction. A total of 1,050 RFs were extracted for each 3D ROI, including the first-order features, grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRLM), grey-level size zone matrix (GLSZM), grey-level dependence matrix (GLDM), and neighborhood grey-tone difference matrix (NGTDM). Delta-RFs were defined as the net change in RFs extracted at TP0 and TP1: Delta-RFs = Feature (TP1) − Feature (TP0). All features were normalized using the Z-score in Excel.



2.6 Delta-RFs and clinical features selection


2.6.1 Delta-RFs selection

A five-fold cross-validation method was used to assign training and validation cohorts using the same random seed in all splits to ensure consistency in grouping. Feature selection was performed using ICC and correlation analyses (Figure 1III). First, features with inter-observer instability (ICC <0.75) were excluded. Features with a high correlation (Pearson’s correlation coefficient >0.9) were eliminated. The most significant predictive features and their corresponding weight coefficients were selected and the radiomics score (Rad score) for each patient was calculated to build the radiomics model.



2.6.2 Clinical features selection

Clinical feature selection involved statistical tests, multivariate analyses, and stepwise regression to select features associated with the six-month treatment response. These features were used to develop the clinical model.




2.7 Construction of radiomics prediction model

Significant radiomics and clinical features were selected as independent variables, while the six-month treatment response was the dependent variable. Logistic regression (LR) was used to establish a multivariate regression model to predict the treatment response (Figure 1IV). Nodal, tumor, and clinical models were constructed, and the receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate the predictive performance of the rad-score for immunotherapy efficacy in advanced lung cancer.



2.8 Model comparison and evaluation

The performance of the three classifiers was comprehensively evaluated using ROC curves, AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), negative predictive value (NPV), and positive predictive value (PPV) (Figure 1V). The DeLong’s test was used to compare the ROC curves of the three models. Calibration curves were used to describe the predictive accuracy of the three models. All the models were validated using a validation cohort (Figure 1VI).



2.9 Statistical methods

Data analysis was performed using SPSS (version 26.0) and R (version 4.1.2; https://www.r-project.org/). Continuous data are presented as mean ± standard deviation ([image: Mean value symbolized by an overlined "x" plus or minus standard deviation, denoted by "s".]) and were analyzed using independent sample t-tests. Categorical data are presented as percentages [n (%)] and were analyzed using chi-square or Fisher’s exact tests. Univariate and multivariate LR analyses were conducted, and the backward stepwise variable elimination method was used to select clinically significant features to build the clinical prediction model. Statistical significance was set at p < 0.05.




3 Results


3.1 Population demographics

A total of 83 NSCLC patients were included in this study, including 69 (83.1%) males and 14 (16.9%) females, with an age range of 36 to 85 years, and a median age of 67 years. The demographic and clinicopathological characteristics of the 83 patients are presented in Table 1. Among them, 48 (57.8%) were in the responder group and 35 (42.2%) were in the non-responder group. Fifty-three (54.6%) of all patients received PD-1 ICIs (camrelizumab, sintilimab, tislelizumab or nivolumab) or PD-L1 ICIs (atezolizumab) monotherapy. The remaining 44 (45.4%) patients were treated with the combination of immunotherapies, ICIs in combination with chemotherapeutic agents (gemcitabine + cisplatin, paclitaxel + carboplatin) and/or antiangiogenic agents (mainly bevacizumab, endo, anlotinib, and afatinib). However, there were statistically significant differences in tumor diameter and lymph node diameter between the responder and non-responder groups (p < 0.05).



TABLE 1 Baseline data of the responders and non-responders.
[image: Table comparing demographic and clinicopathologic characteristics between responders (N=48) and non-responders (N=35) with p-values. Categories include gender, age, tobacco use, pathological type, pathologic N stage, TNM stage, line of treatment, and treatment strategy. Notable p-values are for changes in tumor diameter (p<0.001) and lymph nodal diameter (p<0.001). Responders and non-responders show similar distributions across most characteristics, except for statistically significant differences in tumor and lymph nodal diameter changes.]



3.2 Delta-RFs selection and model construction

A total of 1,050 delta-RFs were extracted, and four key RFs (nodal model) and five key RFs (tumor model) were selected after ICC and correlation analysis, as shown in Table 2. Based on these features, the LR algorithm was applied to train the delta-RF sets of each lymph node and primary tumor, construct the nodal and tumor models, and convert the output probability scores into delta rad-scores. There were significant differences in the delta rad-scores between the responder and non-responder groups (Figure 2).



TABLE 2 Results of logistic regression analysis of screened radiomics features.
[image: Table listing radiomics features for node and tumor models with odds ratios and confidence intervals. The node model features include wavelet-LLL_glszm_ZoneEntropy with an odds ratio of 11.113, while the tumor model includes log-sigma-2-0-mm-3D_glszm_ZoneEntropy with an odds ratio of 6.507. P-values indicate statistical significance, highlighting key predictive features.]

[image: Four box plots labeled A, B, C, and D compare values between two subgroups: Responders (red) and Non-responders (blue). Each plot shows Non-responders with significantly higher median values than Responders, with p-values 5.3e-14, 1.6e-05, 4.8e-07, and 0.0089 respectively.]

FIGURE 2
 Comparison of delta radiomics scores between the non-responders group and the responders group in the training set (A) and validation set (B) of the nodal model, as well as in the training set (C) and validation set (D) of the tumor model. In both groups, the delta radiomics scores of the non-responders group were significantly higher than those of the responders group (p < 0.05).




3.3 Clinical prediction model establishment

The results of the multivariate LR analysis showed that Δ Tumor diameter was an independent prognostic factor affecting the efficacy of ICIs treatment in patients with NSCLC (p < 0.05), as shown in Table 3. A clinical prediction model (clinical model) was established based on the selected independent variables.



TABLE 3 Results of logistic regression analysis of clinical variables in the training set.
[image: Table showing demographic or clinicopathologic characteristics, odds ratios, 95% confidence intervals, and p-values. Key findings include gender odds ratio 8.900, tumor diameter change odds ratio 0.878 with significant p-value of 0.011, and pathologic N stage N1 vs. N2 odds ratio 0.483.]



3.4 The performance of the nodal model, tumor model, and clinical model

In the training set, the nodal model had the highest AUC of 0.96 (95% CI = 0.90–1.00), significantly higher than the tumor (0.86, 95% CI = 0.76–0.95) (DeLong test, p < 0.05) and clinical models (0.82, 95% CI = 0.71–0.93) (DeLong test, p < 0.05). The AUC of the tumor model was higher than that of the clinical model (DeLong’s test, p > 0.05). In the validation set, the AUC of the nodal model (0.94, 95% CI = 0.85–1.00) was higher than the tumor model (0.77, 95% CI = 0.56–0.98) and the clinical model (0.74, 95% CI = 0.48–1.00), but the differences were not statistically significant (DeLong test, p > 0.05). Finally, the AUC of the tumor model was higher than that of the clinical model (DeLong’s test, p > 0.05) (Figure 3). The calibration curve along with the Hosmer–Lemeshow test (p > 0.05) demonstrated good consistency between the predictions and observations in the three models (Supplementary Figure 1).

[image: Graph A and B depict ROC curves for nodal, tumor, and clinical models, showing sensitivity versus 1-specificity with respective AUC values. Graph C and D are bar charts comparing AUC values of the models, with significance indicated by p-values.]

FIGURE 3
 The AUC values of the nodal, tumor, and clinical models, as well as their comparisons in the training set (A,C) and validation set (B,D).


Using the Youden index to determine the cutoff value of the ROC curve, the ACC, SEN, SPE, NPV, and PPV of the nodal, tumor, and clinical models were calculated. The results are summarized in Table 4. Except for SPE and PPV, which were the highest in the clinical model, all other indicators were the highest in the nodal model.



TABLE 4 Performance metrics of the models.
[image: Performance metrics table comparing three models (Nodal, Tumor, Clinical) for training and validation sets. Metrics include AUC, ACC, SEN, SPE, NPV, and PPV. The Nodal model shows the highest scores, with AUC 0.96 in training and 0.94 in validation. Other models have progressively lower metrics.]




4 Discussion

The data of the SEER (surveillance, epidemiology, and end results) database in the United States in 2018 showed that the overall 5-year survival rate of lung cancer patients was 18.6%, while the 5-year survival rate of advanced lung cancer patients with distant metastases was only 4.7%. With the advent of ICIs, the 5-year survival rate of patients with advanced lung cancer increased to 16% for the first time (12), which became a breakthrough in the treatment of advanced NSCLC. The ICI response of NSCLC patients varies widely among individuals, and the prognosis is influenced by a variety of factors, so it is necessary to find reliable biomarkers to screen the population that may benefit from ICIs (13).

Despite the availability of new treatment methods, patient survival rates remain relatively low (14). Although many clinical and histopathological features, laboratory markers, molecular biomarkers, and genetic markers have been tested for potential prognostic value, few effective and accurate prognostic factors are currently used in clinical practice to manage or predict individual patient prognosis. Clinical trials (15) have shown that lymph node clearance is closely related to patients’ overall survival. Lymph nodes are common sites of regional metastases and are crucial for cancer staging. Lymph node phenotypic characteristics contain valuable information that is particularly relevant to patients with advanced NSCLC and can effectively predict clinical endpoints. There is also evidence that lymph node imaging features have a higher prognostic value than primary tumors in patients with lung, head, and neck cancers (16, 17). However, despite extensive research investigating the relationship between primary tumor phenotypes and clinical outcomes, there has been little quantitative analysis of the correlation between NSCLC lymph node characteristics and clinical outcomes. Coroller et al. (17) conducted the first study using quantitative lymph node imaging features to predict tumor response to radiochemotherapy. Carvalho et al. (18) found that common standard uptake value (SUV) descriptors from metastatic lymph nodes were associated with overall patient survival in NSCLC. Furthermore, compared to positron emission tomography (PET) information extracted solely from primary tumors, PET information extracted from metastatic lymph nodes had a higher prognostic value (C-index: 0.62 vs. 0.53, 0.56 vs. 0.54, respectively). Our study is based on the fundamental principle that disease progression and metastatic ability are closely related to the presence of metastatic lymph nodes. We extracted quantitative features related to immunotherapy response from CE-CT images of both primary tumors and affected lymph nodes. We found that the predictive efficacy of the nodal model was superior to that of the tumor model (AUC: 0.96 vs. 0.86, 0.94 vs. 0.77, respectively). Although there was no statistically significant difference in the validation group, the tumor model had a lower 95% CI limit of only 0.56 with a wide interval, indicating that the predictive efficacy of the tumor model was relatively low. The clinical model also exhibited a similarly poor performance, confirming that lymph node radiomic information based on CE-CT scans provides additional prognostic information to that obtained from primary tumors (19). Coroller et al. (17) demonstrated that the optimal radiomics features extracted from metastatic lymph nodes can predict the pathological response after radiochemotherapy in patients with NSCLC, and this performance is higher than that of the optimal radiomics features extracted from primary tumors (AUC: 0.75 vs. 0.61, p = 0.03), further confirming the point above.

Moreover, previous radiomics studies have mainly focused on analyzing pretreatment imaging features. In our study, we provided a more comprehensive description of the rich temporal dependence between primary tumors and lymph nodes in pre-treatment and mid-treatment scans. This information can provide insights into treatment-induced changes, dynamically evaluate tumor burden, and better align with the evaluation of immunotherapy efficacy in clinical practice, which is consistent with recent reports (20, 21). In a similar study, Liu et al. (20) extracted delta-RFs from primary lesions and mediastinal metastatic lymph nodes in patients with late-stage NSCLC to predict the response status to ICIs treatment after 6 months. They found that the predictive performance of delta-RFs (AUC: 0.80–0.82) was significantly higher than that of baseline radiomics features (AUC: 0.51–0.59). In the present study, the predictive performance of the delta radiomics model reached a maximum of 0.96. Delta radiomics has been proposed to evaluate the changes that occurred during treatment after time by accessing changes in RFs of different timeline CT scans. Delta-radiomics has greater reproducibility and stability than conventional imaging histology (22). In addition to the fact that delta-RFs have been shown to be effective in differentiating responders from non-responders in advanced non-small cell lung cancer undergoing immunotherapy, delta-RFs have also shown good efficacy in treatment response assessment in patients with metastatic melanoma (23). In a recent study, Fan et al. (24) for the first time assessed tumor response in patients with esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy based on delta-RFs of CT images. The model based on delta-RFs had higher predictive power than previous studies, especially when combined with clinical factors, further improving the predictive performance with an AUC of 0.963. In the clinical model, Δ Tumor diameter was an independent risk factor for prognosis. This represents the change in the diameter of the primary tumor caused by treatment, indicating that mid-treatment scans can provide important information related to clinical outcomes, supplementing the information provided by pretreatment imaging features.

Owing to the large number of features included in radiomics, we used the ICC and Pearson correlation analysis to select the most critical delta-RFs. Four and five optimal features were selected to construct the nodal and tumor models, respectively. Interestingly, we found that the zone entropy (ZE) of the GLSZM was the highest-weighted delta-RF regardless of the nodal or tumor model. The ZE measures the uncertainty/randomness in the distribution of zone sizes and grey levels, with a higher value indicating greater heterogeneity in the texture patterns. In our cohort, the ZE values were significantly higher in the non-responder group than in the responder group, both in the nodal model and the tumor model. The level of the ZE value may reflect the heterogeneity of the target lesions, with higher ZE values indicating higher heterogeneity of the target lesions, which is more likely to cause drug resistance.

Our study had certain limitations. First, this was a retrospective study based on a single medical center, and our model lacked external validation. Studies have shown that variations in scanning devices, acquisition methods, reconstruction parameters, and scanning protocols may affect the subsequent feature analysis (25, 26). Therefore, we believe that designing prospective trials and standardizing imaging scans for all patients from different research institutions is necessary. Secondly, the sample size of our cohort was relatively small, and the robustness and effectiveness of the model must be validated using larger datasets. Nevertheless, our study included a larger dataset (83 patients) than previous studies on lymph nodes (27, 28) (which included 25 and 43 patients). Third, limited follow-up was conducted in some patients; therefore, PFS and OS analyses were not performed on this dataset. However, due to the advanced stage of the tumors, our follow-up period was sufficient to provide clinically relevant information. Fourth, the included lymph nodes in this study were not confirmed by pathology but were included based on the diagnostic criteria of RECIST 1.1 for pathological lymph nodes (short axis greater than 15 mm). The diagnosis of mediastinal/hilar lymph node metastasis is usually performed through 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT), endobronchial ultrasound/endoscopic ultrasound (EBUS/EUS), or mediastinoscopy (29). However, 18F-FDG PET/CT has significant limitations, particularly regarding the uptake of glucose-like FDG in benign inflammatory lymph nodes, which may lead to false-positive results (30). In addition, the low spatial resolution of PET/CT hinders the detection of small metastatic lymph nodes. Invasive examinations are often constrained by the anatomy and are only limited to nodes accessible through this approach. CE-CT can help reduce the number of invasive surgeries required to confirm lymph node metastasis, thereby reducing the complications associated with invasive procedures. Therefore, CE-CT has a wider potential for clinical applications, does not require additional ionizing radiation, and does not incur significant additional costs. Fifth, in the clinical model of this study, wide confidence intervals were observed. Due to the small sample size, when using 5-fold cross-validation to evaluate model performance, the limited sample size in each fold may not fully represent the overall data, which could affect the stability of the model’s performance. In future research, we aim to explore other methods, such as bootstrapping, to increase the diversity of the sample size through repeated sampling, thus mitigating the fluctuations caused by the small sample size.

In conclusion, this study demonstrated that lymph node-based phenotypic features are superior in reflecting the potential sensitivity of patients to immunotherapy than primary tumor sites. This allows for the early detection of patients with a high likelihood of rapid progression to ICIs treatment. Predicting the tumor response early during immunotherapy has potentially significant clinical implications for precision medicine. If the model predicts a poor response to immunotherapy, clinicians can consider pausing or switching the treatment plan, thereby avoiding continued use of potentially ineffective therapy, saving treatment resources, and minimizing side effects. Additionally, the model can help identify patients who require treatment adjustments, such as through combination therapy or changing the immunotherapy approach. Based on the early response predicted by the model, clinicians can develop a personalized management plan for the patient. This may include enhanced monitoring, regular evaluations, and treatment adjustments to ensure the optimal therapeutic outcome.
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In recent years, the incidence and mortality rates of pancreatic cancer have been rising, posing a severe threat to human health. Tumor heterogeneity remains a critical barrier to advancing diagnosis and treatment efforts. The lack of specific early symptoms, limited early diagnostic methods, high biological complexity, and restricted therapeutic options contribute to the poor outcomes and prognosis of pancreatic cancer. Therefore, there is an urgent need to explore the different subtypes in-depth and develop personalized therapeutic strategies tailored to each subtype. Increasing evidence highlights the pivotal role of molecular subtyping in treating pancreatic cancer. This review focuses on recent advancements in classifying molecular subtypes and therapeutic approaches, discussed from the perspectives of gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics.
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1 Introduction

Recent epidemiological data indicate that pancreatic cancer is a highly lethal disease, with a 5-year survival rate of approximately 13% at diagnosis, and it is gradually becoming one of the most common causes of cancer-related death (1). Pancreatic cancer causes over 400,000 deaths annually and has already become the third leading cause of cancer-related deaths worldwide (1). By 2030, it is projected to become the second leading cause of cancer-related mortality (2). Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of cases (3).

The clinical management of pancreatic cancer currently relies on a four-tier staging system (resectable, borderline resectable, locally advanced, and metastatic) (4, 5). Apart from surgical resection combined with chemotherapy, no other approaches have been shown to significantly prolong patient survival (6). In fact, only 10%-15% of patients present with resectable disease at the time of diagnosis (5). Even among patients who undergo surgical treatment, the 5-year survival rate is only 20% (4), and 69%-75% of these patients eventually experience recurrence within two years, while 80%-90% relapse within five years (7). Despite advances in multidisciplinary treatment strategies, pancreatic cancer remains a systemic disease with no substantial improvement in prognosis (8).

Currently, two main factors contribute to the poor prognosis of PDAC. The first is the structural characteristics of PDAC itself: its complex tumor composition and architecture create a hypoxic microenvironment while isolating the tumor mass from external interactions, leading to drug resistance. The second factor is the intrinsic heterogeneity of pancreatic cancer, which includes intertumoral and intratumoral structural heterogeneity, molecular heterogeneity, subtype interconversion, and subtype transitions during disease progression (9). Therefore, addressing tumor heterogeneity to develop personalized treatments for individual patients has become a major focus of current research. This approach has already been validated in other solid tumors, such as targeting human epidermal growth factor receptor-2 (HER2) to treat HER2-overexpressing breast cancer. However, molecular subtyping of pancreatic cancer remains in its infancy, and clinically actionable subtypes for guiding therapeutic decisions have yet to be defined (5, 10).

Translating the latest advances in the molecular characteristics of pancreatic cancer into targeted therapies is an active area of ongoing research (4). In the coming years, the development of drugs designed to target specific molecular subtypes and associated pathways of pancreatic cancer is expected to make significant contributions to personalized and subtype-specific treatments. These novel drugs may be used in combination with certain first-line therapies to reduce mortality, extend overall survival (OS), and potentially address resistance to some first-line treatments. Subtyping pancreatic cancer based on different criteria holds potential clinical applications, as precision therapy focuses on distinguishing specific groups of patients with unique characteristics and treating them by targeting their specific molecular targets (10).

Currently, the classification criteria for pancreatic cancer subtypes are highly diverse. This review aims to summarize and discuss the most recent and influential subtyping strategies from multiple perspectives, including gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics (Figure 1, Table 1). Additionally, it provides a more comprehensive discussion of metabolomics and immunomics, which have been relatively underexplored in previous reviews.
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Figure 1 | This review looks at several aspects of gene mutation, genomics, transcriptomics, proteomics, metabolomics and immunomics.

Table 1 | Major subtype classification.
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2 Subtype classification



2.1 Gene mutation and applications

KRAS is the most commonly mutated oncogene in pancreatic cancer and represents one of the earliest alterations observed in pancreatic intraepithelial neoplasia (Pan IN) (Figure 2), where KRAS mutations lead to the activation of downstream effectors, driving various pro-tumorigenic processes (11). Approximately 90% of pancreatic cancer patients harbor KRAS mutations (12). While KRAS was previously considered undruggable, the past decade has witnessed the emergence of several promising molecular therapies targeting KRAS. These include MRTX1133 (a KRASG12D inhibitor) (13), RMC-6236 (14), ASP3082 (15), and BI1701963 (a pan-KRAS SOS1 inhibitor) (16). Notably, targeted therapies for the rare KRASG12C mutant, such as Sotorasib, have shown therapeutic potential (17). Some researchers have shifted their focus to downstream molecules of KRAS, such as EGFR, MEK, and PI3K. However, results indicate that most EGFR and MEK inhibitors have not significantly improved patient outcomes (18). Interestingly, a recent study demonstrated that EGFR inhibition may provide tangible benefits in a selected subgroup of KRAS wild-type PDAC patients (19). Therefore, multiple drug combinations and further exploration of KRAS and its downstream signaling therapies may remain a hotspot for future research.
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Figure 2 | A mechanism map of the major pancreatic cancer causing genes.

In pancreatic cancer, the inactivation of tumor suppressor genes TP53, SMAD4, and CDKN2A is another major oncogenic driver (4)(Figure 2). Inactivating mutations of TP53 are identified in 50%-74% of pancreatic cancers (5, 18). Similar to KRAS, TP53 mutations arise in Pan IN lesions and accumulate over time, ultimately driving the progression to pancreatic ductal adenocarcinoma (PDAC) (20). The primary oncogenic mechanism of TP53 inactivation involves defective DNA damage recognition and the prevention of cell cycle arrest (4, 5).TP53 reactivators include Cys-targeting compounds such as APR-246 (21), the compound ATO (22), and the antiparasitic drug sodium stibogluconate (SSG) (23). However, the applicability of these reactivators in pancreatic cancer treatment remains uncertain. Ongoing clinical trials may shed light on their potential to improve the prognosis of patients with TP53 mutations.

The loss of SMAD4 expression occurs in the late stages of PDAC tumor progression (24). Approximately 31%–38% of individuals with pancreatic cancer harbor SMAD4 mutations, which are frequently lost through homozygous deletions or mutations. This results in the weakening of SMAD4-dependent inhibitory effects of transforming growth factor-β (TGF-β), thereby enhancing non-canonical TGF-β signaling and promoting pro-tumorigenic responses (25, 26). The loss of SMAD4 is associated with disease metastasis (27). Disruption of the TGF-β-SMAD4 signaling pathway in PDAC may induce epithelial-mesenchymal transition (EMT) (28). Cancer-associated fibroblasts (CAFs) secreting TGF-β may promote the proliferative phenotype of transformed PDAC cells, contributing to the heterogeneity of PDAC (29). In some studies, drugs targeting TGF-β, such as NIS793 (30) and Vactosertib (31), have shown promising efficacy.

In 46%–60% of pancreatic cancers, inactivating mutations of CDKN2A have been detected (4). The inactivation of CDKN2A is primarily caused by homozygous deletions, hypermethylation, or mutations combined with the loss of the wild-type allele, leading to dysregulation of the cell cycle in cancer cells (25, 32). The combined use of CDK4/6 inhibitors and ERK-MAPK inhibitors may be effective for patients with CDKN2A and KRAS co-mutations (33).

Recent studies have identified several novel mutation/variant genes with frequencies below 20%, including KDM6A, RAC1, RNF43, ARID1A, BRAF, TGFBR2, MAP3K21, SWI/SNF-related, matrix-associated, SMARCA4, ACVR2A, ACVR1B, NRAS, FAM133A, ZMAT2, and STAT3 (32, 34–37).PDAC is also associated with germline and somatic mutations in the homologous recombination repair pathway, including BRCA2, ATM, BRCA1, and PALB2 (38). Individuals carrying BRCA germline mutations have a significantly increased risk of developing pancreatic cancer (39). Tumors with homologous recombination deficiencies due to BRCA1/2 mutations exhibit heightened sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (40). A pivotal phase 3 randomized trial demonstrated that PARP inhibitors can prolong progression-free survival in patients with BRCA1/2 mutations (40).

Recent studies on MTAP deletion mutations may provide new ideas for pancreatic cancer treatment. MTAP deletion plays a crucial role in pancreatic cancer research, with approximately 20–30% of pancreatic cancers exhibiting this genetic loss. This deletion is closely associated with poor patient prognosis. Regarding sensitivity to PRMT5 inhibitors, MTAP deletion renders cancer cells more susceptible to these inhibitors. This increased sensitivity is attributed to metabolic reprogramming induced by MTAP loss, which enhances glycolysis and de novo purine biosynthesis, thereby increasing cellular dependence on PRMT5. PRMT5 inhibitors may suppress cancer cell growth by targeting these processes. Combination treatment strategies have shown promise for MTAP-deficient pancreatic cancer. For instance, the combined use of 2-deoxy-D-glucose (2-DG) and L-alanosine has demonstrated synergistic lethality against MTAP-deficient pancreatic cancer cells. Furthermore, clinical trials combining PRMT5 inhibitors with agents such as 5-azacitidine and pembrolizumab may enhance therapeutic efficacy, paving the way for new treatment strategies for pancreatic cancer (41, 42).

Overall, the current drugs directly targeting KRAS, TP53, SMAD4, and CDKN2A have shown limited efficacy. However, further studies are needed to evaluate the effectiveness of drugs targeting the upstream and downstream factors of these genes, which is expected to become a major research focus in the coming years. Additionally, designing drugs based on low-frequency mutated genes, such as BRCA and STAT3, may offer promising and feasible approaches for pancreatic cancer treatment. In summary, specific therapeutic strategies targeting different mutated gene subtypes in pancreatic cancer require further in-depth investigation.




2.2 Genomics subtyping and applications

It is well known that the accumulation of genomic aberrations in tumors leads to the classification of different genomic subtypes and contributes to disease heterogeneity. This heterogeneity arises from the persistent genomic instability during tumor progression (43). Structural variations (SV) are a specific category of chromosomal alterations that can induce various gene changes, including deletions, rearrangements, amplifications, and fusions. These changes have significant biological implications and potential pathogenic associations at the molecular genetic level, playing a crucial role in understanding the mechanisms of tumorigenesis. Early studies have demonstrated the presence of multiple gene alterations caused by chromosomal structural variations in PDAC (44). Most structural variations are intra-chromosomal and can be classified into seven types: intra-chromosomal rearrangements, deletions, duplications, tandem duplications, inversions, fold-back inversions, and amplified inversions. Inter-chromosomal translocations are less common (26).

In 2015, Waddell et al. conducted whole-genome sequencing of 100 PDAC samples (26). Their study defined four pancreatic cancer subtypes: Stable, Locally Rearranged, Scattered, and Unstable. The Stable subtype accounted for 20% of the samples and typically exhibited widespread aneuploidy. These tumor genomes contained fewer than 50 SV events and were often associated with mitotic defects (26). The Locally Rearranged subtype comprised approximately 30% of the samples. About one-third of these genomes displayed copy number amplifications in known oncogenes, such as KRAS, SOX9, and GATA6, along with therapeutic targets like ERBB2, CDK6, MET, PIK3CA, and PIK3R3 (45–49). The remaining locally rearranged genomes involved complex genomic events such as breakage–fusion–bridge cycles, chromothripsis, and ring chromosomes (26). The other two subtypes were the Scattered subtype (<200 SV events) and the Unstable subtype (>200 SV events), accounting for 36% and 14% of the samples, respectively. The Unstable subtype indicated defective DNA maintenance, which might render these tumors sensitive to DNA-damaging agents (50). Additionally, the Unstable subtype was associated with deleterious mutations in BRCA1, BRCA2, and PALB2, as the unstable genomes tend to recruit patients with BRCA1 or BRCA2 mutations (5). Current PARP inhibitor trials recruit patients based on BRCA1 and BRCA2 germline deficiencies, and these patients may exhibit susceptibility to platinum-based drugs and PARP inhibitors (26). Other chromosomal stability maintenance genes, such as XRCC4 and XRCC6, have also been detected in the Unstable subtype or tumors with BRCA-mutated features (51). These findings suggest that the Unstable subtype may be a suitable candidate for precision therapies involving platinum-based drugs and PARP inhibitors.

In 2017, Connor et al. (52) performed whole-genome sequencing on 154 patients and combined their data with samples from 95 pancreatic cancer patients in the ICGC cohort. They proposed classifying PDAC into four subtypes: Age-related, Double-Strand Break Repair (DSBR), Mismatch Repair (MMR), and Unknown Etiology (Signature 8). The Age-related subtype arises from the gradual accumulation of damage during cell division. DSBR is primarily caused by defects in homologous recombination repair (HRR) of double-strand breaks. This subtype is associated with enhanced local anti-tumor immunity, where infiltrating CD8+ T cells show increased cytolytic activity, accompanied by increased expression of co-regulatory molecules (CTLA-4, PD-L1, PD-L2, and IDO-1). This scenario is similar to the response of melanoma to checkpoint inhibitors, suggesting that this subtype may respond to immunotherapy (53).MMR arises from defects in DNA mismatch repair, and its characteristics are similar to those of DSBR. As for the Unknown Etiology subtype, its origin remains poorly understood. Although some studies have suggested that smoking may be its cause, the data from Connor et al.’s research could not substantiate this epidemiological link.

With the continuous advancement of genomic analysis technologies in both depth and breadth, more refined and comprehensive genomic-based classifications will likely emerge in the future. These classifications will provide strong evidence and guidance for developing disease treatment plans, facilitating the transition from traditional empirical treatment models to precision medicine based on genomic profiling.




2.3 Transcriptomics subtyping and applications

Although we have summarized the genes and genomic phenotypes of pancreatic cancer, it is clear that these findings do not fully capture the entire spectrum of pancreatic ductal adenocarcinoma (PDAC), and their therapeutic efficacy remains limited. Given that various cellular processes can influence gene expression, screening for differentially expressed transcripts can aid in better identifying potential therapeutic targets for PDAC. Over years of research, several classification schemes for transcriptional subtypes have been published, and we will discuss some of the key classifications and their associated therapeutic applications.

In 2011, Collisson et al. proposed classifying pancreatic cancer into three subtypes: classical, quasi-mesenchymal (QM-PDA), and exocrine-like, each with its distinct characteristics (54). The classical subtype exhibits high expression of adhesion-related genes and epithelial genes, along with high GATA6 expression, and is sensitive to erlotinib. The QM-PDA subtype shows high expression of stromal-related genes and is sensitive to gemcitabine. In the exocrine-like subtype, tumor cell-derived digestive enzyme genes are expressed at relatively high levels.

In 2014, Kim et al. identified three subtypes of pancreatic cancer. For subtype 1, the enriched pathways are closely related to the immune system, including hematopoietic cell lineage, cytokine-cytokine receptor interactions, and calcium signaling pathways. This subtype is associated with a high R0 resection rate and better prognosis. Subtype 2’s enriched pathways are linked to fatal diseases like pancreatic cancer, renal cell carcinoma, and chronic myelogenous leukemia, and are often associated with poor prognosis. Subtype 3, which had a smaller sample size, showed gene overlap with Collisson et al.’s exocrine-like subtype through gene enrichment analysis (55).

In 2015, Moffitt divided pancreatic cancer into “classical” and “basal-like” subtypes (56). The classical subtype exhibited characteristics similar to the classical subtype defined by Collisson et al., with high expression of GATA6, which serves as a key marker to distinguish advanced pancreatic cancer classical subtypes from basal-like subtypes (57). The basal-like subtype was characterized by high expression of genes related to cadherins and keratins, along with high KRASG12D expression. This subtype is typically associated with poorer prognosis but shows a better response to adjuvant therapy compared to the classical subtype. Moffitt also identified two stromal subtypes: “normal” and “activated.” The “normal” stromal subtype was marked by elevated expression of markers such as pancreatic stellate cells, smooth muscle actin, vimentin, and desmin (ACTA2, VIM, DES). Patients with this type of stroma typically had a better prognosis. The “activated” stromal subtype was characterized by the expression of macrophage-related genes, such as integrin ITGAM and chemokine ligands CCL13 and CCL18, as well as other genes like the secreted protein SPARC and WNT family members WNT2 and WNT5A, indicating its significant role in promoting tumor growth. Interestingly, Moffitt et al. found a high overlap between the genes expressed by basal-like tumors and stromal subtypes and the QM-PDA genes proposed by Collisson et al.

In 2016, Noll et al. used an immunohistochemical classification based on markers KRT81 and HNF1A to classify pancreatic cancer (58). The classification included the following subtypes: KRT81+HNF1A− for the QM-PDA subtype, KRT81−HNF1A+ for the exocrine-like subtype, and KRT81−HNF1A− for the classical subtype. In this study, the exocrine-like subtype was found to be resistant to paclitaxel tyrosine kinase inhibitors due to the expression of CYP3A5.

In 2016, Bailey et al. analyzed 96 tumors with over 40% epithelial content and identified four subtypes: pancreatic progenitor, squamous, aberrantly differentiated endocrine exocrine (ADEX), and immunogenic (59). The squamous subtype was associated with mutations in TP53 and KDM6A, and it exhibited a series of biological phenomena, including inflammation, hypoxic response, metabolic reprogramming, activation of the TGF-β signaling pathway, MYC pathway activation, autophagy, and upregulation of TP63ΔN and its target genes. This subtype was also closely related to hypermethylation and consistent downregulation of genes controlling pancreatic endodermal cell fate. The pancreatic progenitor subtype was linked to the expression of early pancreatic differentiation genes and showed upregulation of genes associated with fatty acid oxidation, steroid hormone biosynthesis, drug metabolism, and mucin O-linked glycosylation. ADEX played a significant role in the terminal differentiation phase of the pancreas, characterized by the upregulation of endocrine-exocrine differentiation genes. The immunogenic subtype was closely related to immune infiltration, particularly with infiltrating B and T cells, suggesting potential sensitivity to immune modulators. Notably, except for the immunogenic subtype, the other three subtypes defined in this study overlapped with those proposed by Collisson et al. Specifically, the “quasi-mesenchymal” subtype in Collisson’s study was renamed “squamous” in this research, the “classical” subtype became “pancreatic progenitor,” and the “exocrine-like” subtype was renamed ADEX. The existence of ADEX/exocrine-like subtype is still debated, with some theories suggesting it may be due to contamination by surrounding pancreatic tissue (56, 60–62), but some studies support its existence (63–65). Collisson et al. did not find evidence of the exocrine-like subtype in human and mouse cell lines, but it was observed in microanatomical samples (54).

In 2017, Sivakumar et al. combined the three biological processes regulated by KRAS with the classification system proposed by Bailey et al. Their research revealed several important findings. In squamous subtype samples, there was an overexpression of the Hedgehog/Wnt pathways, along with an accumulation of M2 macrophages. Despite the squamous subtype having the poorest prognosis, emerging evidence suggests that targeted therapies could apply to this subtype, offering the potential for improved treatment outcomes. In the immunogenic subtype, cell cycle processes were overexpressed in the samples. However, an interesting paradox arose: patients in this subtype exhibited almost no noticeable immune activity. This contradiction challenges the conventional understanding of immune-related subtypes and emphasizes the need for further research to explore the underlying mechanisms, which could provide deeper insights into the biological features of this subtype. For the ADEX samples, there was an overexpression of the Notch pathway. Furthermore, the study discovered a positive correlation between immune therapy targets, such as programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4), and Notch pathway activity, along with an enrichment of CD8+ T cells. These findings suggest that patients in the Notch group may be more suitable for immune therapy (66).

In 2018, Puleo et al. conducted an RNA chip analysis on 309 paraffin-embedded samples, integrating the tumor microenvironment and epithelial components of tumors to distinguish five subtypes (61). The pure classical subtype they defined is composed of classic tumors with both normal and activated stroma, as defined by Moffitt et al. The activated stroma refers to the presence of fibroblasts in an activated state, which undergoes phenotypic changes to become myofibroblasts. This transformation process imparts unique histological and cellular characteristics to the pure classical subtype. The immune classical subtype is composed of classic tumors and normal stroma, as identified by Moffitt et al., which gives this subtype its distinct features. The pure basal-like subtype, defined by Moffitt et al., consists of basal tumors and activated stroma. It is characterized by the absence of cellular stroma and the occurrence of tumor metastatic spread, reflecting the subtype’s unique biological behavior and providing a key entry point for subsequent studies on tumor metastasis mechanisms and the development of targeted therapeutic strategies. The stroma-activated subtype is composed of basal or classical tumors and activated stroma, which is described by Moffitt et al., reflecting the complex and diverse interactions between different tumor cell types and stroma components during tumorigenesis and progression. The desmoplastic subtype mainly consists of basal or classical tumors and normal stroma which is mentioned by Moffitt et al., and is notably characterized by low tumor content and high expression of vascularized stromal components (such as elastin), along with the highest degree of immune cell infiltration. Moreover, they observed a significant correlation between the expression of MET and nuclear GLI1 with the stroma-activated and pure basal-like subtypes, suggesting that the MET and Hedgehog signaling pathways are activated in these subtypes. Additionally, human equilibrative nucleoside transporter 1 (hENT1) is expressed at relatively high levels in the classical subtype (including pure classical and immune classical), and since hENT1 is a marker for gemcitabine sensitivity, this suggests that the classical subtype may be more sensitive to gemcitabine. The expression of CTLA4 is higher in the immune classical and desmoplastic subtypes, which makes these two subtypes potentially more suitable for anti-CTLA4 therapy. Furthermore, all other subtypes, except for the classical subtype, exhibit high expression of relevant immune checkpoints, indicating that these subtypes may be suitable for immune checkpoint inhibition therapy. These findings provide an important theoretical basis for the application of different therapies in various tumor subtypes and for optimizing treatment plans, significantly contributing to the advancement of personalized immunotherapy for pancreatic cancer.

In 2018, a study by Mueller et al. classified pancreatic cancer into two subgroups, C1 and C2 (67). C1 exhibits distinct epithelial-mesenchymal transition (EMT) characteristics, which are closely associated with the high expression of KRASG12D and Ras-related transcriptional programs. In contrast, C2 is characterized by the high expression of epithelial differentiation genes. At the cellular morphology level, all C1 cell lines display mesenchymal cell characteristics, while C2 cell lines present typical epithelial cell morphology, creating a clear contrast between the two.

In a 2020 study, Dijk et al. classified PDAC into four subtypes: secretory, epithelial, compound pancreatic, and mesenchymal (64). The secretory subtype exhibits enrichment in both the endocrine and exocrine functions of the pancreas. The epithelial subtype is characterized by high expression of mitochondrial components and ribosomal-related features. The mesenchymal subtype displays characteristics associated with epithelial-mesenchymal transition, stromal interactions, and TGF-β signaling. The compound pancreatic subtype shares some similarities with the previously published classical subtype and ADEX/exocrine-like subtype, but enrichment analysis revealed that it more closely resembles the mesenchymal subtype. These findings are likely related to tumor heterogeneity and lay the foundation for further investigation into the complex and diverse mechanisms of intratumoral heterogeneity, as well as the development of more targeted diagnostic and therapeutic strategies.

In 2020, Chan et al. performed sequencing analysis on 248 purified primary and metastatic pancreatic cancer epithelial cell samples, identifying five subtypes: “Basal-like-A,” “Basal-like-B,” “Hybrid,” “Classical-A,” and “Classical-B” (43). The development of Classical-A/B tumors was associated with GATA6 amplification and complete SMAD4 loss, whereas Basal-like-A/B tumors were strongly correlated with complete CDKN2A loss and an increased frequency of TP53 mutations. Metastatic basal-like tumors were often enriched with mutated KRAS and exhibited greater resistance to chemotherapy. Among these, Basal-like-A tumors demonstrated poor response to gemcitabine-based and mFOLFIRINOX chemotherapy regimens. Therefore, distinguishing the basal-like-A subtype from the basal-like subtype identified by Collisson et al. allows for a more precise prediction of chemotherapy sensitivity across subtypes. These features are of significant importance both for deepening the understanding of tumor biology and for identifying potential targeted therapies specific to each subtype (5). Furthermore, single-cell RNA sequencing of tumors from 15 patients revealed the coexistence of basal-like and classical expression features within individual tumors, providing direct evidence of intratumoral heterogeneity.

In 2021, Birnbaum et al. employed LCM and RNA-seq analysis to identify four cancer cell subtypes (C1–C4) and three peritumoral stromal subtypes (S1–S3), among which S1 was associated with better prognosis when paired with C1 and C2 subtypes (65). The C1 subtype was linked to genes involved in protein folding and leukocyte chemotaxis, whereas the C2 subtype showed a strong association with gene programs essential for pancreatic endocrine cell development and neuronal membrane signaling. The C3 subtype was related to nucleotide biosynthesis and protein translation regulation, while the C4 subtype was associated with oncogenic signaling pathways, highlighting its critical role in tumorigenic signaling mechanisms. The S1 subtype was related to developmental and cell differentiation pathways, S2 was linked to antigen processing and presentation, and S3 was associated with phospholipid synthesis and macromolecule modification. Further analysis revealed that the C1 and C3 subtypes correlated with the classical/pancreatic progenitor subtype, the C2 subtype aligned with the ADEX/exocrine-like subtype, and the C4 subtype was associated with the squamous/basal-like/quasi-mesenchymal subtype. Additionally, the S1 and S2 subtypes exhibited enrichment of normal and activated stromal subtypes, respectively. These intricate associations provide valuable insights into the biological heterogeneity of tumors, the interplay between subtypes, and the foundation for developing precise therapeutic strategies.

Espinet et al. classified pancreatic cancer into MC1 and MC2 subtypes, which were found to be associated with IFN expression, suggesting that effective inhibition of intrinsic interferon signaling could serve as a potential therapeutic approach for targeting these tumors (MC1) with minimal side effects on normal cells (68).

Ju et al. categorized pancreatic cancer into aggressive and moderate subtypes. The aggressive subtype was associated with pathways overlapping with DNA damage repair (DDR) mechanisms, including DNA replication, homologous recombination, mismatch repair, and upregulation of the P53 signaling pathway. This finding suggests that targeting repair proteins involved in DDR mechanisms may be a viable therapeutic strategy. In contrast, the moderate subtype exhibited upregulation of immune response-related pathways, including chemokine signaling, cell adhesion molecule (CAMs) pathways, and cytokine-cytokine receptor interaction pathways. For this subtype, immunotherapy could be considered as a potential treatment option (69).

Shi et al. identified four subtypes of pancreatic cancer: Classical-like, Basal-like, Classical-Progenitor, and Glycomet (70). The Classical-Progenitor subtype was significantly enriched for transcription factors such as MYC, MYB, and ATOH1, indicating specific progenitor cell characteristics. This subtype was associated with a significantly better prognosis compared to the other subtypes. The Glycomet subtype was characterized by enrichment of pathways related to glucose metabolism.

In 2023, Zheng et al. identified two subtypes, S1 and S2, based on N6-methyladenosine (m6A) transcriptomic modifications (71). The S2 subtype exhibited a distinct m6A modification pattern compared to S1. Notably, genes associated with the Squamous subtype described by Bailey et al. and the Classical subtype defined by Collisson et al. were more enriched in S2 than in S1. Additionally, the median progression-free survival (PFS) and overall survival (OS) times of S2 were significantly shorter than those of S1. Moreover, S2 exhibited relatively lower levels of T-cell and B-cell markers compared to the S1 subtype.

In 2024, Kim et al. performed single-cell sequencing on 17 pancreatic cancer samples and identified five distinct functional subpopulations of pancreatic cancer cells (72). These included Ep_TRIM54, associated with the Classical subtype, and Ep_KRT6A, associated with the Basal-like subtype (or quasi-mesenchymal subtype). They also identified Ep_PIFO, a Basal-like cluster with unique ciliary features previously mentioned in earlier studies (43, 73), as well as Ep_MSMB, a cancer cell cluster highly associated with intraductal papillary mucinous neoplasm (IPMN). Additionally, a previously unreported cluster, Ep_VGLL1, was identified. This subpopulation exhibited basic characteristics of the Classical subtype, such as high expression of tight junction genes (TJP1 and OCLN) and low expression of mesenchymal markers (VIM and S100A4), along with Basal-like subtype features, such as low expression of SMAD4 and GATA6. Furthermore, their study revealed that Ep_VGLL1 spatially correlates with both Classical (Ep_TRIM54) and Basal-like (Ep_KRT6A) clusters. Based on these findings, targeting Ep_VGLL1 to block the transition from the Classical to the Basal-like subtype could become a promising new therapeutic strategy, offering novel insights and directions for the treatment of related diseases.

Several molecular markers have also been used to classify previously identified subtypes of pancreatic cancer, including HMGA1/2 and FGF19 (74, 75), HAPLN1 (76), SPDEF (77), SEMA3A (78), KRT17high/CXCL8+ (79), TEAD2 (80), HOXA10 (81), IRF1 (82), and RBFOX2 (83), among others.

In recent years, with the help of advanced molecular biology techniques, a series of distinct subtypes associated with methylation modifications have been successfully identified (84, 85). These newly discovered subtypes exhibit distinct differences in the distribution of methylation sites, modification levels, and the regulatory patterns of gene expression, providing new insights into the complex pathogenic mechanisms of the disease. With the continuous innovation and development of DNA and RNA sequencing technologies, significant progress has been made in the transcriptomic classification of pancreatic cancer, which has driven the implementation of precision medicine for different transcriptomic subtypes. These transcriptomic subtypes show both commonalities and unique characteristics, yet a unified classification is still lacking. Future research needs to be extensive and systematic, aiming to accurately define transcriptomic subtypes, thereby providing molecular-level guidance for the precise treatment of pancreatic cancer.




2.4 Proteomic subtyping and its applications

As we have previously discussed the genetic and transcriptomic classifications of pancreatic cancer, the next topic to address is the proteomic classification, which is downstream in the central dogma. PDAC is caused by DNA alterations, which subsequently promote tumor malignancy through RNA transcription and protein translation. Therefore, a comprehensive analysis of the functional proteomic changes in each tumor can deepen our understanding of disease progression and identify potential therapeutic targets (Figure 3). In recent years, advancements in various technologies have enabled the transition from identifying a limited number of proteins to conducting proteomic analyses. For PDAC, proteomic technologies have also been used to explore pathological mechanisms, diagnostic biomarkers, and therapeutic targets (86).
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Figure 3 | Proteomics and metabolomics-associated subtypes enriched or down-regulated pathways. Zhao (87):L1/L2/L6. Law (88): Metabolic/Progenitor-like/Proliferative/Inflammatory. Daemen (94): reduced proliferative capacity/glycolytic/lipogenic. Karasinska (96): quiescent/glycolytic/cholesterogenic. Mahajan (97): Subtype 1./Subtype 2/Subtype 3. Li (99): quiescent/pyruvate/GG. Li (101): glucomet-PDAC/lipomet-PDAC. Hyeon (92): IS2. Created in https://BioRender.com.

In 2018, Zhao et al. classified PDAC into tumor-specific subtypes (L1, L2, and L6) and stroma-specific subtypes (L3, L4, and L5) (87). L1 is enriched with carbohydrate metabolism-related gene sets and resembles the classical subtype identified by Collisson, while L6 is abundant in lipid and protein metabolism-related gene sets and aligns with Collisson’s exocrine-like subtype. These metabolism-related subtypes could potentially be targeted using metabolic drugs for therapeutic intervention. L2, characterized by epithelial and cell proliferation gene profiles associated with poor prognosis, shows similarities to Bailey’s squamous subtype. Given the high proportion of malignant epithelial cells in L2, patients with this subtype may benefit from intensified therapeutic strategies. L3 is enriched with collagen-related gene sets and is associated with poor prognosis, bearing resemblance to Bailey’s pancreatic progenitor subtype. For patients with this subtype, treatments targeting collagen may be effective. L4, which contains a variety of immune-related gene sets and is linked to relatively favorable survival outcomes, shows good responsiveness to immunotherapy. L5, enriched with neurotransmitter and insulin secretion-related gene sets and characterized by high expression of FGFR1 pathway-associated genes, may be sensitive to neuroendocrine therapies.

In 2020, Law et al. conducted a quantitative analysis of 916 proteins from a total of 68 tissue samples to characterize four distinct PDAC liver metastasis subtypes (88): Metabolic, Progenitor-like, Proliferative, and Inflammatory. The Metabolic and Progenitor-like subtypes are characterized by an enrichment of metabolism-related proteins, including those involved in the ethanol oxidation pathway, mitochondrial fatty acid β-oxidation pathway, and retinoic acid signaling pathway. The Proliferative subtype is rich in ribonucleoproteins and Cajal body proteins, which are closely associated with translation processes, cellular proliferation, and telomere maintenance, playing a crucial role in cancer cell growth and progression. The Inflammatory subtype is enriched in proteins related to the pentose phosphate pathway, adaptive immune response, complement activation, IL-8 production, and extracellular matrix organization. Moreover, the study revealed that the Proliferative and Inflammatory subtypes together correspond to the squamous subtype proposed by Bailey et al. In terms of chemotherapy, it is noteworthy that patients with the Metabolic and Progenitor-like subtypes demonstrated a survival advantage when treated with a combination of FOLFIRINOX and gemcitabine compared to gemcitabine alone. This finding provides valuable insights for optimizing clinical treatment strategies.

In 2021, Son et al. classified PDAC into four subtypes based on 24 protein features: stable, exocrine-like, activated, and extracellular matrix (ECM) remodeling. The stable subtype is so named because of its relatively stable disease progression and better prognosis. This subtype predominantly overlaps with the classical subtype proposed by Puleo et al., characterized by GATA6 expression and an abundance of stromal components and pancreatic enzymes. Patients with this subtype show significantly improved survival outcomes when treated with first-line chemotherapy regimens. The exocrine-like subtype is characterized by high expression of pancreatic enzymes and is associated with the exocrine-like subtype identified by Moffitt et al. Enzyme replacement therapy may be effective for this subtype. The activated subtype is enriched in the PI3K-AKT and MAPK/ERK signaling pathways. This feature suggests that targeted therapies against receptor tyrosine kinases (RTKs) could benefit patients with this subtype. The ECM remodeling subtype is characterized by the enrichment of WNT/β-catenin and Notch signaling pathways. Targeting these two pathways may provide therapeutic benefits for patients with this subtype. Notably, the activated and ECM remodeling subtypes are highly correlated with the basal-like subtype, both of which are associated with poorer prognoses (89).

In 2022, Tong et al. conducted a comprehensive multi-omics analysis of 217 PDAC tumors and their paired non-tumor adjacent tissues, classifying PDAC into three subtypes based on proteomics: S-I, S-II, and S-III (90). The S-I subtype was associated with various metabolic processes, including the tricarboxylic acid (TCA) cycle, fatty acid metabolism, and glycolysis. The S-II subtype was closely linked to coagulation-related processes, while the S-III subtype was characterized by features such as the ERBB2 signaling pathway and DNA damage response. Notably, these subtypes demonstrated significant overlap with those identified by Collisson et al. Specifically, the S-I subgroup overlapped with the “classical” subtype, with a concordance rate of 80.7%; the S-II subgroup overlapped with the “exocrine-like” subtype, with a concordance rate of 62.3%; and the S-III subgroup largely overlapped with the “QM-PDA” subtype, with a concordance rate of 98.1%. Furthermore, glycolysis-related proteins such as PFKL and MDH2 were enriched in the S-I subtype, coagulation-related proteins such as FGG and GP1BA were enriched in the S-II subtype, and proteins like MCM2 and NCF1 were highly expressed in the S-III subtype. Based on these characteristics, therapeutic strategies targeting the relevant proteins and kinases within the pathways specific to each subgroup could potentially serve as viable treatment options.

In 2023, Swietlik analyzed more than 10,000 PDAC cell-derived proteins and uncovered distinct protein differences that segregate classical and mesenchymal subtypes. The classical and mesenchymal subtypes exhibited differences in secreted proteins, which were associated with immune cell recruitment and the composition of the tumor microenvironment. When interacting with macrophages, the two subtypes demonstrated distinct immunomodulatory and stromal remodeling characteristics (91).

In 2023, Hyeon performed a proteomic analysis of 171,272 peptides and 49,651 phosphopeptides derived from 196 PDAC patients from Asia, classifying PDAC into four subtypes: classical progenitor (TS1), squamous (TS2–4), immunogenic progenitor (IS1), and exocrine-like (IS2). The squamous subtype was further divided into activated stroma-enriched (TS2), invasive (TS3), and invasive-proliferative (TS4) subtypes. TS1 corresponded to the pancreatic progenitor subtype, while IS1 and IS2 corresponded to the immunogenic and exocrine-like subtypes, respectively. Tumors of the TS1 subtype were characterized by a high proportion of tumor cells, low proportions of fibroblasts and T cells, and activation of the mucin (MUC1/4/5AC) pathway, suggesting that targeting the mucin pathway in combination with chemotherapy could be effective. TS2–4 subtypes belong to the squamous subtype and demonstrated high proportions of tumor cells, low T cell infiltration, and enhanced activity of EMT-related pathways, such as the RhoA signaling and metalloproteinase pathways. Among these, TS4 showed the worst prognosis, potentially due to an increased proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) that inhibit cytotoxic CD8+ T cells. These subtypes may benefit from a combination of RHOA signaling inhibitors and conventional cytotoxic chemotherapy. The squamous subtype subgroups identified through proteomics provide unique insights into therapeutic strategies for treating aggressive squamous tumors. A network model revealed increased mRNA expression of genes involved in phagocytosis, antigen presentation, and T cell receptor signaling in IS1 and IS2 subtypes. Correspondingly, proteins and phosphorylation levels within these pathways were also elevated. Additionally, IS2 exhibited increased abundance and phosphorylation levels of proteins involved in pancreatic secretion pathways, affirming its exocrine-like characteristics. Tailoring therapeutic approaches to the specific proteomic profiles of these subtypes may offer significant benefits to these patients (92).

In recent years, mass spectrometry technology has made rapid advancements, and bioinformatics engineering has seen extensive applications, providing strong impetus for the development of proteomics in the precision treatment of pancreatic ductal adenocarcinoma (PDAC). Proteomics allows for a comprehensive study of PDAC at the protein level, enabling the precise identification of protein changes closely associated with the onset and progression of the disease. This offers rich and accurate information resources for early diagnosis, the identification of therapeutic targets, and the monitoring of treatment efficacy. It is foreseeable that in future medical practice, proteomics will play an even more critical role in the precision treatment of PDAC, contributing significantly to improving patient prognosis, enhancing the effectiveness and specificity of treatment, and becoming a powerful tool in the fight against PDAC.




2.5 Metabolomics subtyping and applications

Metabolic reprogramming is a hallmark that regulates invasiveness and treatment response during cancer development and progression (93). In pancreatic cancer, a highly heterogeneous tumor, there are significant differences between tumor cells, which means that treatment strategies developed for a specific metabolic feature are often only effective in a subset of cancer patients. Therefore, conducting a systematic classification study of the metabolic reprogramming process in pancreatic cancer, and developing precision treatment strategies based on its unique metabolic characteristics, is of great significance and urgency (Figure 3). This not only helps deepen the understanding of the complex metabolic mechanisms in pancreatic cancer but also opens new avenues for achieving precision medicine in the treatment of pancreatic cancer.

In 2015, Daemen et al. conducted a quantitative analysis of 256 metabolites in 38 pancreatic cancer cell lines and identified three subtypes using non-negative matrix factorization (NMF) clustering: reduced proliferative capacity, glycolytic, and lipogenic (94). The reduced proliferative capacity subtype accounted for 34% of all lines, characterized by low levels of amino acids and carbohydrates, and a significantly longer doubling time compared to other subtypes. The glycolytic subtype exhibited elevated levels of components related to glycolysis and the serine pathway, including phosphoenolpyruvate (PEP), glyceraldehyde-3-phosphate, lactate, and serine. Additionally, this subtype demonstrated a notable feature: metabolites crucial for maintaining redox potential, such as NADH, NADP, and NADPH, were relatively low. Furthermore, genes associated with glycolysis and the pentose phosphate pathway were also expressed at higher levels in this subtype. The lipogenic subtype was enriched with various lipid metabolites, including palmitic acid, oleic acid, and palmitoleic acid, along with oxidative phosphorylation (OXPHOS) metabolites like coenzyme Q10 and coenzyme Q9. At the same time, cholesterol and lipid synthesis-related genes were upregulated in this subtype. Notably, the lipogenic subtype was associated with the epithelial (classical) subtype, while the glycolytic subtype was closely linked to the mesenchymal (QM-PDA) subtype, which aligns with the poorer prognosis associated with the glycolytic subtype. In terms of therapeutic applications, the glycolytic and lipogenic subtypes exhibited varying sensitivities to inhibitors targeting glycolysis, glutamine metabolism, lipid synthesis, and redox balance. Based on this, selecting appropriate drugs tailored to each subtype could enhance treatment efficacy for different patients, thus offering a potential strategy for personalized treatment.

In 2017, Nicolle et al. identified two metabolism-related subtypes, defined as Basal and Classical (95). Similar to the characteristics identified in previous studies, the Basal subtype exhibited stronger invasiveness and poorer prognosis, while the Classical subtype showed the opposite characteristics. Notably, this study found that the Basal subtype was associated with upregulation of genes related to the glycolytic pathway, whereas the Classical subtype exhibited a general increase in redox-related metabolites and widespread dysregulation of lipid metabolism, including a decrease in triglycerides, increased levels of fatty acids, and an increase in glycerophospholipids. Additionally, cholesterol transport proteins were significantly upregulated, and cholesterol ester levels were markedly higher, all of which indicated enhanced cholesterol uptake activity in the Classical subtype. This study suggests that targeting the metabolic characteristics of transcriptomic subtypes could be a promising and viable therapeutic approach.

In 2019, Karasinska et al. conducted a bioinformatics analysis of genomic, transcriptomic, and clinical data from a cohort of 325 PDAC cases, identifying four subtypes: Quiescent, Glycolytic, Cholesterogenic, and Mixed (96). The Quiescent subtype, as the name suggests, is characterized by low metabolic activity. Specifically, the expression of genes involved in amino acid catabolism, nucleotide metabolism, and the pentose phosphate pathway was significantly reduced, reflecting a relatively inactive metabolic state at the gene expression level. Notably, the Quiescent subtype was closely associated with the Classical subtype identified by Collisson et al. The Glycolytic subtype has distinct features, most notably a high enrichment of glycolysis-related pathways, along with amplification of the KRAS and MYC genes. Additionally, the expression levels of the mitochondrial pyruvate carriers MPC1 and MPC2 were significantly reduced. This subtype has been largely associated with the Basal/mesenchymal/squamous subtype in previous classifications and is clinically linked to poorer prognosis. The Cholesterogenic subtype is characterized by increased expression of MPC1 and MPC2 and enrichment of lipid metabolism-related pathways. It aligns with the pancreatic progenitor subtype and is associated with a better prognosis. The Mixed subtype combines characteristics of the aforementioned subtypes, resembling a complex “hybrid” with more diverse and complex biological features. Furthermore, an important finding of this study was that in Glycolytic PDAC cases, increasing the expression of MPC1 and MPC2 could potentially improve patient prognosis by promoting a transition of the tumor to a Cholesterogenic subtype.

In 2021, Mahajan studied the metabolic plasma profiles of 361 PDAC patients and identified three subtypes based on distinct lipid metabolism patterns (97). Subtype 1 exhibited elevated triglyceride levels and reduced ceramide levels. Subtype 2 showed the opposite pattern, with increased ceramide levels. Subtype 3 was characterized by significant decreases in both ceramide and triglyceride levels, along with complex fluctuations in the levels of various sphingolipid species, some of which increased and others decreased. The differences observed among these subtypes in lipid metabolism-related markers suggest that lipid metabolism plays a crucial role in the growth of pancreatic cancer. Therefore, future research may focus on investigating how lipids regulate cancer progression and exploring whether they can serve as potential targets for novel therapeutic strategies.

In 2022, Rodriguez et al. identified three distinct glycometabolic subtypes based on specific glycometabolism-related genes (98). The Fucosylated subtype was characterized by increased expression of genes involved in fucosylation (GMDS) and O-glycosylation (GALNT4). This subtype was associated with the classical/progenitor subtype identified in previous studies and correlated with better prognosis. The Basal subtype displayed elevated expression of genes encoding galectin-1 (LGALS1), mucin MUC4, and MUC16. It was highly correlated with mesenchymal/basal-like/squamous subtypes, which are associated with poor prognosis. The Mixed/low tumor content subtype exhibited a lower tumor cell content and was linked to the previously identified ADEX/exocrine-like subtype. The study also demonstrated that the ADEX/exocrine-like subtype frequently occurs in samples with low tumor purity.

In 2023, our team conducted proteomic and metabolomic analyses on 20 PAAD tissues and 10 normal pancreatic tissues, classifying pancreatic cancer into four TAM2-associated metabolic subtypes based on the expression profiles of pyruvate and glycolysis/gluconeogenesis (CG)-related genes: Quiescent, Pyruvate, GG (glycolysis/gluconeogenesis), and Mixed subtypes (99). The Quiescent subtype was primarily enriched in KEGG pathways related to glucose, amino acid, and lipid metabolism and characterized by serine-type endopeptidase activity, hormone secretion, zymogen activation, and immune response. The Pyruvate subtype was closely associated with the MAPK and cAMP signaling pathways and featured cation channel complexes, vesicle-mediated transport, and insulin secretion. The GG subtype showed enrichment in KEGG pathways related to glucose metabolism and was characterized by exogenous metabolic processes, detoxification, and tissue homeostasis. The Mixed subtype participated in KEGG pathways associated with immune-related biological processes and signal molecules, featuring extracellular matrix organization, antigen presentation, and serine/threonine kinase signaling pathways. Our team also investigated the efficacy of various chemotherapeutic agents across these subtypes, providing practical insights for future pancreatic cancer treatment strategies. These findings offer new directions for addressing the challenges posed by pancreatic cancer.

In 2023, a study divided 930 pancreatic cancer samples into three clusters based on the expression profiles of oxidative stress and phospholipid metabolism (OSPM)-related genes: C1 (OSPM-active), C2 (OSPM-inactive), and C3 (OSPM-normal) (100). Among these, C1 displayed the highest OSPM functional score. Importantly, the OSPM functional score was negatively correlated with tumor-infiltrating lymphocytes (TILs), T-cell co-stimulation, plasmacytoid dendritic cells, and mast cells. Moreover, C1 was characterized by the elevated expression of numerous immune checkpoint molecules, such as HAVCR2 and TNFSF4. These observations suggest that C1 might be more responsive to immunotherapy due to its unique immunosuppressive microenvironment and high levels of immune checkpoint expression.

In 2023, Li et al. described the metabolomic characteristics of PDAC organoids and classified them into two distinct subtypes: glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDAC was significantly enriched in glucose metabolism, energy metabolism, and nucleotide metabolism, with pentose phosphate pathway (PPP) metabolites highly accumulated in the corresponding organoids. This subtype exhibited resistance to chemotherapy, suggesting that conventional chemotherapeutic approaches might be less effective for treating this subtype. In contrast, lipomet-PDAC was characterized by increased expression of genes associated with lipid metabolism and glycan biosynthesis. Importantly, their study identified the GLUT1/ALDOB/G6PD axis as a key regulator that remodels glucose metabolism in glucomet-PDAC, ultimately driving chemoresistance in this subtype. This finding offers a novel strategy to address chemoresistance in glucomet-PDAC, positioning GLUT1 as a promising therapeutic target to overcome this challenge (101).

In recent years, significant progress has been made in the study of metabolic characteristics in pancreatic cancer, particularly in theories based on metabolomics, which have garnered widespread attention. However, due to limitations in technology and other factors, translating these research findings into effective clinical treatment strategies remains a considerable challenge. Future studies focused on metabolomics are urgently needed to foster consensus among researchers on key issues and facilitate the application of these findings in clinical practice. Only through such efforts can patients truly benefit, offering new hope in the fight against pancreatic cancer.




2.6 Immunomics subtyping and applications

In recent years, significant progress has been made in the application of immunotherapy in the field of cancer. In 2018, the Nobel Prize in Physiology or Medicine was awarded to James P. Allison and Tasuku Honjo for their discovery of immune checkpoint blockade (ICB) therapy. Although this therapy has benefited some patients with solid tumors (102), a substantial proportion of “cold” tumors show limited response to ICB therapy (103), possibly due to the diversity of immune evasion mechanisms. Currently, there are several treatment methods for pancreatic cancer, such as oncolytic viruses, modified T cells (T-cell receptor (TCR) engineering and chimeric antigen receptor (CAR) T cell therapy), CAR natural killer cell therapy, cytokine-induced killing cells, immune checkpoint inhibitors, immune modulators, cancer vaccines, and strategies targeting bone marrow cells in the contemporary context (104). However, these have shown limited effectiveness in pancreatic cancer. Many immunotherapies that are effective in other solid tumors have proven to be less effective in pancreatic cancer treatment. The current focus of immune research is to develop various immune modulation strategies to enhance T cell function, initiate or strengthen tumor-specific T cell immunity, and convert the tumor microenvironment from immune “cold” to “hot,” thereby improving the clinical treatment outlook for pancreatic cancer (103). Clearly, precision therapy is crucial at this point. Increasing evidence points to the same fact: in-depth exploration of tumor immune classification can provide valuable insights and strategies for designing more effective anti-cancer treatments, which is of great significance in improving cancer treatment outcomes and patient prognosis (Figure 4).
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Figure 4 | Enrichment and deficiency of immune cells in relevant immune subtypes. Knudsen (105): hot/cold/mutationally cold/mutationally active. Wartenberg (106): immune escape/immune rich/immune exhausted. de Santiago (108): innate immune/T cell dominant/tumor dominant. Hwang: treatment-enriched/squamoid-basaloid/classical. Tong (90): Im-S-IV(Metabolic-Neuron-Inflamed). Du (113): HMI/LMI. van Eijck (57): High GATA6. Created in https://BioRender.com.

In 2017, Knudsen et al. conducted a multi-omics analysis of a cohort of 109 PDAC patients and defined four immune subtypes of PDAC: hot, cold, mutationally cold, and mutationally active (105). Both the hot and mutationally active subtypes exhibit high mutational burdens, more tumor-infiltrating lymphocytes (TILs), and peritumoral lymphocytes, along with upregulated immune checkpoints (CTLA-4 and PDL-1) and regulatory T cells. However, they differ in terms of tumor-associated macrophage levels. The cold subtype is characterized by low mutational burden, low levels of immune effector and suppressive cells, mature stromal types, high stromal volume, and low numbers of neoantigens. Notably, the cold subtype is associated with increased overall survival. Given these characteristics, treatment strategies that activate the immune system, such as cancer vaccines (MUC1, GVAX) or chimeric antigen receptor T cell therapy combined with immune modulators to counteract immune suppression mechanisms, may be more suitable. The mutationally cold subtype has fewer mutations, low stromal volume, and an immature stromal type, along with high levels of MCT4. Its microenvironment is glycolytic and acidic, and the immune infiltration is primarily composed of macrophages.

In 2018, Wartenberg et al. identified three immune subtypes of PDAC by performing immunohistochemical staining on immune cells within the tumor microenvironment: immune escape, immune rich, and immune exhausted (106). The immune escape phenotype is characterized by low levels of T cells and B cells, with a high infiltration of FOXP3+ regulatory T cells (Tregs), a higher tumor budding rate, and mutations in CDKN2A, SMAD4, and PIK3CA. Notably, this subtype displays significantly higher levels of CA19-9, which is typically associated with poor prognosis. This subtype is strongly correlated with the previously identified squamous/mesenchymal subtype. Moreover, their study suggests that targeting the MET pathway may be effective for the immune escape subtype. The immune rich phenotype is characterized by abundant T cell and B cell infiltration, with fewer FOXP3+ Tregs, lower tumor budding frequency, and low mutations in CDKN2A and PIK3CA. The CA19-9 levels are the lowest among the three groups, which correlates with the best prognosis. This subtype is associated with the pancreatic progenitor subtype. The immune exhausted subtype is characterized by an immunogenic microenvironment and includes two distinct subgroups. One subgroup shows PD-L1 expression and higher PIK3CA mutations, while the other is a microsatellite unstable subgroup with higher JAK3 mutations. Interestingly, despite being classified as immune exhausted, this subtype has a relatively better overall prognosis. Furthermore, this immune exhausted subtype is highly correlated with the immunogenic subtype proposed by Bailey et al.

In 2019, Danilova et al. defined four immune subtypes of pancreatic cancer based on the expression of CD8 and PD-L1: PD-L1+/CD8high, PD-L1+/CD8low, PD-L1-/CD8high, and PD-L1-/CD8low (107). PD-L1 expression is associated with poor prognosis, while CD8+ T cell infiltration correlates with better prognosis.

In 2019, a meta-analysis based on 353 pancreatic cancer patients classified the disease into three subtypes: innate immune, T cell dominant, and tumor dominant (108). The innate immune subtype shows enrichment of natural killer (NK) cells and neutrophils, accompanied by reactive stromal proliferation. The neutrophil enrichment suggests its potential as a biomarker and clinical therapeutic target. This subtype is most strongly associated with the squamous subtype identified by Bailey et al. and is correlated with better prognosis. The T cell dominant subtype is characterized by the accumulation of many tumor-infiltrating immune subpopulations related to adaptive immunity, including activated CD8+ and CD4+ T cells as well as B cells. Moreover, genes involved in immune checkpoint inhibition, such as CTLA4 and BTLA, are significantly upregulated, suggesting potential responsiveness to ICB therapy. This subtype is closely associated with previously identified “exocrine-like,” “ADEX,” and “Notch” subtypes and shows a better prognosis than the innate immune subtype. The tumor dominant subtype is characterized by a unique microenvironment with a lack of tumor-infiltrating lymphocytes, high expression of adhesion-related and epithelial genes, and high expression of GATA6. This subtype overlaps with the classical subtype identified by Collisson et al.

In 2020, a study integrating genomic, epigenomic, transcriptomic, and clinical data from 161 pancreatic cancer patients established four molecular subgroups (iC1/iC2/iC3/iC4) (109). The study found that the iC1 subgroup exhibited significantly higher immune scores in B cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells compared to the other three subgroups. The immune characteristic scores for macrophage regulation, lymphocyte infiltration, IFN-γ response, and TGF-β response were also higher in the iC1 subgroup, suggesting its potential applicability for immune therapy.

In 2022, a clustering analysis of 176 PAAD samples from the TCGA cohort identified two CD8+ T cell-related subtypes, IC1 and IC2 (110). Among the 10 oncogenic pathways, four pathways showed significant differences between the two subtypes: cell cycle, Hippo, Nrf1, and Wnt pathways. In the IC1 subtype, the enrichment scores for these pathways were markedly higher than those in the IC2 subtype. However, the IC2 subtype displayed its own characteristics, with higher immune infiltration scores compared to IC1. Additionally, the expression levels of most immune checkpoint-related genes were significantly higher in IC2, indicating its potential suitability for immune therapy. Regarding chemotherapy, IC1 demonstrated greater sensitivity to traditional chemotherapeutic drugs.

In 2022, a study by Hwang et al. performed RNA sequencing on 43 tumor samples and successfully identified three distinct clusters: “treatment-enriched,” “squamoid-basaloid,” and “classical” (111). The “treatment-enriched” cluster was closely associated with neuroendocrine-like malignant programs, neurotrophic CAF programs, and CD8+ T cells. The “squamoid-basaloid” cluster was linked to squamous, basaloid malignant programs, and various lymphoid and myeloid cells. The “classical” cluster was associated with classical malignant programs, myofibroblast progenitor cells, adhesion CAF programs, macrophages, neutrophils, and type 2 dendritic cells.

In 2022, Tong et al. identified five tumor subgroups with distinct immune and stromal features through multi-omics analysis: Im-S-I (Stromal), Im-S-II (Monocyte-Inflamed), Im-S-III (Macrophage-Inflamed), Im-S-IV (Metabolic-Neuron-Inflamed), and Im-S-V (Metabolic-cDC-Inflamed) (90). The stromal subgroup was characterized by elevated expression of endothelial cells and stromal-associated proteins (COL17A1, COL7A1, ITGA3, etc.), along with upregulated EGFR and ERBB2 signaling pathways. The monocyte-inflamed subgroup was characterized by high monocyte infiltration levels. The macrophage-inflamed subgroup displayed tumor-associated macrophage (TAM) infiltration, with increased expression of immune evasion markers like HAVCR2 (TIM-3), and had a relatively poorer prognosis. The metabolic-neuron-inflamed subgroup was characterized by neuronal features, with upregulated neuronal receptors and channels. The metabolic-cDC-inflamed subgroup was marked by increases in cDCs, CD4+ T cells, and B cells, and pathway analysis indicated upregulation of triglyceride and lipid breakdown processes. Furthermore, antigen-presentation MHC molecules, including HLA-E, HLA-DQA1, HLA-DQB1, and HLA-DRA, were also enhanced in this subgroup. Additionally, the study explored the relationship between these subtypes and age, revealing that older patients had more immune cell infiltration than younger patients, suggesting that immune therapy may be more beneficial for older patients.

In 2022, Wang et al. used the ICGC database to classify the PDAC cohort into four subtypes: Immune-enrich-Stroma, Non-immune-Stroma, Immune-enrich-non-Stroma, and Nonimmune-non-Stroma (112). The Immune- enrich -Stroma subtype was primarily enriched in tumor immune-related molecular features. The Non- immune -Stroma subtype was characterized by features such as PD-1 resistance, activated stroma, CAF stimulation, and normal stroma, with very low immune-related characteristics. The Immune-enrich-non-Stroma subtype was mainly enriched in tumor immune-related features, with very low expression of stromal characteristics. The Nonimmune-non-Stroma subtype exhibited few immune and stromal features.

In 2023, our team performed clustering analysis on 178 samples from the TCGA database and identified two subtypes: High TAM2 Infiltration (HMI) and Low TAM2 Infiltration (LMI) (113). The HMI cluster was characterized by genes involved in various classical tumor signaling pathways and immune processes, including PI3K-AKT, NF-κB, and IL-17 signaling pathways, and showed a low response rate to immunotherapy, possibly related to TAM2 enrichment. However, the KEGG pathways involved in the LMI cluster were not related to tumor progression or immune response, but this subtype was sensitive to traditional chemotherapy drugs such as oxaliplatin and exhibited a better response to immunotherapy than the HMI subtype.

In 2023, Zheng et al. classified patients into two molecular subtypes of PDAC based on T cell marker genes (TMGs): Proliferative PDAC (C1) and Immune PDAC (C2) (114). The C1 group (high TMGs) was significantly enriched in cell cycle and cell proliferation-related pathways, while the C2 group (low TMGs) was enriched in immune-related pathways. The high TMGs group was significantly associated with poor overall survival (OS), suggesting that TMGs may serve as a reliable prognostic biomarker for PDAC.

In 2024, van Eijck et al. demonstrated that tumors with high GATA6 expression exhibited reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages while showing increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. This study suggested that GATA6 defines an immune-enriched phenotype, which is associated with favorable outcomes for pancreatic cancer patients undergoing preoperative treatment (57).

In 2024, George B et al. conducted a transcriptomic analysis of the tumor microenvironment (TME) in 1,657 pancreatic cancer samples from public databases and validated their findings using an independent cohort of 79 patients. Based on their analysis, the TME was classified into four subtypes: immune enriched (IE), immune enriched with fibrosis (IE/F), fibrotic (F), and immune depleted (D). The IE subtype exhibited the highest levels of anti-tumor immune components, including T cells, B cells, and natural killer cells, while also showing elevated tumor-promoting immune components, such as regulatory T cells and immune checkpoint molecules. However, the anti-tumor immune signals remained predominant. The IE/F subtype was characterized by a balanced activation of both anti-tumor and tumor-promoting immune components, with the highest activation of the WNT signaling pathway. The F subtype displayed the strongest enrichment of cancer-associated fibroblast (CAF) pathways and angiogenesis-related signals. In contrast, the D subtype exhibited the highest levels of proliferative gene signatures. Additionally, the study revealed that most lung metastases were classified as the IE subtype, whereas liver metastases were predominantly of the D subtype. The IE/F subtype showed a strong resemblance to Bailey’s ADEX subtype, while Bailey’s immunogenic subtype largely overlapped with the IE and IE/F subtypes identified in this study. The F and D TME subtypes were associated with Moffitt’s and Bailey’s classifications (basal-like and squamous subtypes, respectively) and were linked to the poorest prognosis. Furthermore, differences in surface biomarkers were observed among the TME subtypes, providing potential therapeutic implications for PDAC patients. Specifically, immune-regulatory surface biomarkers were most highly expressed in the IE and IE/F subtypes, stromal proteins were predominantly expressed in the F subtype, and signaling molecules associated with tumor invasion and survival were highly expressed in the D subtype (115).

In these studies, each subtype exhibits distinct immune characteristics, including but not limited to tumor mutational burden (TMB), PD-1/PD-L1 levels, mismatch repair (MMR), immune checkpoint inhibitors, stromal components, and TGF-β responses. For tumor subtypes with high TMB, vaccine-based therapies may be a more suitable option, as a higher TMB indicates the presence of more genetic mutations within tumor cells, providing additional targets for vaccine-induced immune responses. In cases where a tumor subtype exhibits a higher expression of immune checkpoints, this subtype may be more sensitive to immune checkpoint blockade (ICB) therapy. Immunotherapy may be effective for subtypes with elevated expression of immune cell death regulators (5). With the growing research on immune-related mechanisms, immune subtype-based therapies are expected to bring new hope to pancreatic cancer patients in the future.





3 Discussion

In pancreatic cancer research, molecular subtyping plays a central role in advancing precision medicine. However, current efforts to classify pancreatic cancer face significant challenges alongside emerging opportunities. Subtypes are primarily defined based on multiple dimensions, including gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics. Despite these classifications, no unified consensus has been established in the medical field, and progress in translating these classifications into clinical practice remains slow, significantly hindering the development of precision medicine for pancreatic cancer.

From the perspective of multi-omics clinical trials, genomics-related trials such as NCT02869802, NCT05380414, and NCT04484636 provide crucial avenues for exploring the molecular mechanisms of pancreatic cancer. An in-depth analysis of multi-omics data from pancreatic cancer patients in the TCGA database—including gene expression profiles, methylation microarray data, and histone modification data—has led to the identification of multiple epigenetically dysregulated lncRNAs (epi - lncRNAs). These epi - lncRNAs exhibit significant genomic differences from non - epi - lncRNAs, such as increased length, a higher number of transcripts, and more exons. Further screening identified five pancreatic cancer-specific epi-lncRNA genes (AL161431.1, LINC00663, LINC00941, SNHG10, and TM4SF1-AS1), which were used to construct a prognostic model. This model demonstrated strong prognostic predictive performance across different datasets, highlighting the critical role of genomics in pancreatic cancer subtyping research (116). Additionally, immunotherapy-related trials such as NCT01072981 and NCT06370754 have injected new momentum into research on immune-related pancreatic cancer subtypes.

The integration of multi-omics approaches offers promising prospects for pancreatic cancer subtyping. However, its clinical application presents both advantages and challenges. One of its key benefits is the ability to provide a comprehensive understanding of the molecular characteristics of pancreatic cancer, enabling more precise subtyping. By integrating genomics, transcriptomics, proteomics, metabolomics, and immunomics, researchers can conduct a holistic analysis of the complex biological processes underlying pancreatic cancer. For example, the combined use of the UK Biobank and multi-omics analyses has yielded significant findings. In one study (117), researchers integrated multi-omics data from biobanks such as the UK Biobank, incorporating 4,611 genome-wide association studies (GWAS) and meta-analyses. By applying Mendelian randomization and colocalization analyses, they identified numerous disease-associated genetic loci, providing valuable insights for pancreatic cancer gene-disease association studies. Another multi-omics study (118) utilized UK Biobank data to train genetic scores for predicting multi-omics traits, conducting a phenome-wide association study that uncovered strong associations between multiple diseases and multi-omics characteristics. These findings contribute to a more comprehensive foundation for pancreatic cancer subtyping, facilitating the development of personalized treatment strategies and improving therapeutic outcomes.

Nevertheless, several challenges hinder the clinical application of multi-omics approaches. First, the acquisition and analysis of multi-omics data are costly. Genomic testing requires advanced sequencing platforms and substantial reagent investments, while proteomic and metabolomic analyses demand specialized equipment and intricate experimental procedures, limiting their widespread clinical adoption, particularly in resource-limited settings. Second, the interpretation of multi-omics data is highly complex. The vast amount of multi-dimensional data necessitates sophisticated analytical methods to extract clinically relevant insights. However, the intricate interconnections between different omics layers remain challenging to decipher, and the lack of standardized analytical approaches may lead to misinterpretation. Lastly, the standardization of multi-omics testing techniques remains insufficient. Variations in laboratory methodologies, workflows, and quality control standards contribute to inconsistencies in results, undermining the accuracy and reliability of multi-omics applications in clinical practice.

A detailed investigation has revealed that the difficulties associated with multi-omics-based subtyping are influenced by multiple complex factors. One of the most significant factors is sample purity. Pancreatic tumor samples often consist of a mixture of different cell types, and when purity is low, interference from non-tumor cells may obscure the molecular characteristics of tumor cells, leading to misclassification and a reduction in subtyping accuracy. Another important factor is the variability in analytical methodologies. Differences in experimental techniques and analytical algorithms across laboratories may lead to inconsistencies in the classification of the same tumor sample.

In addition, differences in sample composition may also interfere with subtyping. Cellular heterogeneity exists across different regions of a tumor, and variations in molecular characteristics between regions may introduce bias in classification if not adequately accounted for. Furthermore, tumor samples obtained through surgical procedures are often divided into separate sections for different types of analysis. This fragmented approach means that subtyping is frequently conducted on only part of a tumor rather than the entire tumor, which may lead to discrepancies in classification results. For example, transcriptomic analysis of one tumor section may identify a particular subtype, while proteomic analysis of another section may suggest a different classification. These findings highlight the necessity of conducting comprehensive and systematic analyses of whole tumor samples. Since tumors are complex mixtures of multiple cellular components, accurate classification requires considering them as integrated biological systems rather than isolated parts. Moreover, increasing sample size is essential to minimize the impact of individual heterogeneity. Conducting large-scale analyses across a substantial number of samples is crucial for accurately characterizing the molecular subtypes and biological patterns of pancreatic cancer.

Currently, combination therapy centered around chemotherapy remains the primary treatment for patients with advanced pancreatic cancer. As a result, many existing classification systems have been designed to predict chemotherapy response, providing a basis for clinical decision-making. By analyzing tumor gene expression profiles and proteomic features, these models can help predict a patient’s sensitivity to different chemotherapy agents, thereby guiding the selection of the most appropriate treatment regimen.

At the same time, targeted therapy and immunotherapy have emerged as key areas of research. Targeted therapies selectively inhibit specific molecular targets unique to tumor cells, while immunotherapies activate the patient’s immune system to combat cancer. These approaches are expected to expand treatment options and improve outcomes for pancreatic cancer patients. However, in clinical practice, tumor subtypes may change over the course of disease progression, which presents a significant challenge for precision medicine. A treatment strategy based on a patient’s initial tumor subtype may lose effectiveness if the tumor undergoes subtype transformation. For instance, a tumor that initially responds well to a targeted therapy may develop resistance due to changes in its molecular subtype, ultimately reducing treatment efficacy.

Given these challenges, the development of low-cost, minimally invasive subtyping techniques is essential. Liquid biopsy (119) and circulating DNA (120) analysis have shown great potential. Liquid biopsy enables real-time, dynamic monitoring of tumor molecular characteristics by detecting tumor cells, tumor-derived DNA, RNA, and proteins in a patient’s blood, providing a convenient and efficient approach for pancreatic cancer subtyping. Circulating DNA, which consists of DNA fragments released by tumor cells into the bloodstream, can be analyzed to identify tumor-specific mutations and methylation patterns, facilitating accurate subtype classification. For example, the detection of specific gene mutations in circulating DNA may enable rapid determination of a patient’s tumor subtype, thereby offering timely guidance for precision treatment.

In the future, we hope to achieve a broad consensus on subtype-based treatments for pancreatic cancer, establish unified classification standards through multi-omics integration, and provide robust guidance for clinical management. Such advancements would bring renewed hope to pancreatic cancer patients and contribute to improving their quality of life.
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Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Recent advancements have illuminated the intricate metabolic reprogramming that underpins NSCLC progression and resistance to therapy. Beyond the classical Warburg effect, emerging evidence highlights the pivotal roles of altered lipid metabolism, amino acid utilization, and the metabolic crosstalk within the tumor microenvironment (TME). This review delves into the latest discoveries in NSCLC metabolism, emphasizing novel pathways and mechanisms that contribute to tumor growth and survival. We critically assess the interplay between cancer cell metabolism and the TME, explore the impact of metabolic heterogeneity, and discuss how metabolic adaptations confer therapeutic resistance. By integrating insights from cutting-edge technologies such as single-cell metabolomics and spatial metabolomics, we identify potential metabolic vulnerabilities in NSCLC. Finally, we propose innovative therapeutic strategies that target these metabolic dependencies, including combination approaches that enhance the efficacy of existing treatments and pave the way for personalized metabolic therapies.
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1 Introduction

Lung cancer remains a global health challenge, being the leading cause of cancer-related mortality worldwide, with an estimated 2.2 million new cases and 1.8 million deaths in 2020 (1). NSCLC accounts for approximately 85% of all lung cancer cases and includes various histological subtypes such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma (2). Despite significant advances in surgical techniques, chemotherapy, targeted therapies, and immunotherapy, the overall five-year survival rate for NSCLC patients remains low, particularly in advanced stages where it drops below 10% (3). Late diagnosis, tumor heterogeneity, and the development of resistance to conventional treatments contribute to this poor prognosis (4). Therefore, a deeper understanding of the underlying mechanisms driving NSCLC progression and therapeutic resistance is crucial for developing more effective treatments.

One area of intense research is the metabolic reprogramming of cancer cells-a hallmark of cancer that supports rapid proliferation and survival under hostile conditions (5). Metabolic alterations enable cancer cells to meet the increased demands for energy and biosynthetic precursors required for continuous growth and division (6). Warburg effect, characterized by increased glycolysis even in the presence of oxygen, has been a focal point of cancer metabolism research (7), recent studies have uncovered a more complex metabolic landscape in NSCLC. Alterations in lipid metabolism, amino acid utilization, and metabolic interactions with the TME play significant roles in tumor progression, metastasis, and therapeutic resistance (8). Furthermore, metabolic heterogeneity within tumors and the metabolic plasticity of cancer cells allow them to adapt to changing environmental conditions and therapeutic pressures (9).

The TME, comprising stromal cells, immune cells, extracellular matrix (ECM) components, and vasculature, interacts dynamically with cancer cells, influencing their metabolic behavior and contributing to disease progression (10). Cancer-associated fibroblasts (CAFs) can alter the availability of nutrients and secrete metabolic intermediates that fuel tumor growth (11). Immune cells within the TME can have their function modulated by the metabolic activities of cancer cells, leading to immune evasion (12). Hypoxia, a common feature of solid tumors due to abnormal vasculature, further drives metabolic reprogramming by stabilizing hypoxia-inducible factors (HIFs) that regulate genes involved in glycolysis and angiogenesis (13).

This review aims to provide a comprehensive and up-to-date analysis of energy metabolism in NSCLC, highlighting novel insights and potential therapeutic opportunities. We focus on recent discoveries that shed light on the metabolic heterogeneity of NSCLC, the influence of the TME on metabolic adaptations, and the implications for therapy resistance. By integrating emerging technologies such as single-cell metabolomics, CRISPR-based metabolic screens, and systems biology approaches, and by adopting multidisciplinary perspectives, we propose innovative strategies to target metabolic vulnerabilities in NSCLC. Ultimately, we aim to bridge the gap between basic metabolic research and clinical applications, paving the way for more effective and personalized therapies for NSCLC patients.




2 Metabolic reprogramming in NSCLC: beyond the Warburg effect



2.1 The Warburg effect revisited

The Warburg effect, first described by Otto Warburg in the 1920s, refers to the observation that cancer cells preferentially utilize glycolysis for energy production even in the presence of adequate oxygen-a phenomenon known as aerobic glycolysis. This metabolic reprogramming allows cancer cells to rapidly generate ATP and accumulate intermediates for biosynthetic processes essential for proliferation (14). In NSCLC, there is significant upregulation of glycolytic enzymes such as hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2), which facilitate increased glycolytic flux (15). However, this glycolytic shift is only part of the complex metabolic adaptations in NSCLC. Recent studies have revealed that mitochondrial oxidative phosphorylation (OXPHOS) remains active in many cancer cells, including NSCLC (16). This suggests that cancer cells exhibit metabolic flexibility, capable of utilizing both glycolysis and OXPHOS depending on environmental conditions and cellular demands (17). For instance, under hypoxic conditions commonly found within tumors, glycolysis is upregulated, while in oxygen-rich areas, OXPHOS can contribute significantly to adenosine triphosphate (ATP) production (18).

Moreover, the reliance on glycolysis is influenced by oncogenic signaling pathways. Mutations in genes such as kirsten rats arcomaviral oncogene homolog (KRAS) and epidermal growth factor receptor (EGFR), which are prevalent in NSCLC, activate downstream effectors like phosphatidylinositol 3-Kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways (19). These pathways upregulate glucose transporters (e.g., GLUT1) and glycolytic enzymes, enhancing glucose uptake and glycolysis (20). Additionally, HIFs, stabilized under low oxygen conditions, promote the expression of genes involved in glycolysis and suppress OXPHOS (21).

Understanding the nuances of the Warburg effect in NSCLC is crucial for therapeutic development. Targeting glycolytic enzymes has shown promise in preclinical models; however, due to the metabolic plasticity of cancer cells, inhibition of glycolysis alone may lead to compensatory upregulation of OXPHOS or other pathways. Therefore, combination therapies that target multiple metabolic pathways may be more effective in overcoming resistance and achieving sustained antitumor effects.




2.2 Mitochondrial metabolism and OXPHOS

Contrary to the traditional view that cancer cells have impaired mitochondrial function, recent studies have demonstrated that mitochondrial OXPHOS remains active and is essential for the survival and proliferation of NSCLC cells (22). Mitochondria play a pivotal role not only in energy production but also in biosynthesis, redox balance, and regulation of apoptosis (23). NSCLC cells exhibit remarkable metabolic flexibility, enabling them to switch between glycolysis and OXPHOS in response to environmental cues such as nutrient availability, oxygen levels, and therapeutic interventions (24). Figure 1 illustrates the dynamic interplay between these two energy-producing pathways and highlights the compensatory mechanisms that allow NSCLC cells to adapt their metabolism under stress conditions.
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Figure 1 | Integrated schematic of glycolysis, mitochondrial metabolism, and lipid pathways in NSCLC cells. This figure summarizes key metabolic processes in NSCLC cells, illustrating the interplay and compensatory mechanisms between glycolysis and OXPHOS, as well as the integration of lipid metabolism. Glucose is metabolized through glycolysis to produce pyruvate, which enters mitochondria to fuel the TCA cycle and OXPHOS for ATP production. Under certain conditions, pyruvate is diverted to lactate via LDHA. Glutamine contributes to TCA cycle intermediates through glutaminolysis, supporting biosynthesis and redox balance. Fatty acid metabolism is also reprogrammed in NSCLC: fatty acid synthesis, driven by enzymes such as ACC and FASN, converts citrate and acetyl-CoA into lipids, while FAO via CPT1a provides additional acetyl-CoA for mitochondrial respiration. Together, these interconnected pathways reflect the metabolic flexibility and adaptability of NSCLC cells in response to environmental and therapeutic pressures.

The metabolic adaptability contributes significantly to therapeutic resistance. For instance, when glycolysis is inhibited-either pharmacologically or due to nutrient scarcity-NSCLC cells can upregulate OXPHOS to meet their energy and biosynthetic demands (25). This compensatory increase in OXPHOS allows cancer cells to evade glycolysis-targeted therapies, highlighting the challenge of metabolic plasticity in effective cancer treatment (26). Additionally, some subpopulations of cancer stem cells within NSCLC have been found to rely heavily on OXPHOS, contributing to tumor heterogeneity and resistance to chemotherapy and radiotherapy (27).

Recent research has uncovered that oncogenic drivers common in NSCLC, such as mutations in the KRAS gene, can influence mitochondrial function. KRAS-mutant NSCLC cells demonstrate enhanced mitochondrial biogenesis and elevated OXPHOS activity, which supports their aggressive phenotype (28). Moreover, alterations in mitochondrial dynamics-processes that control mitochondrial fission and fusion-have been implicated in NSCLC progression. Dysregulated expression of proteins like dynamin-related protein 1 (DRP1) and mitofusins (MFN1 and MFN2) affects mitochondrial morphology and function, promoting cancer cell survival and metastasis (29). Targeting mitochondrial metabolism presents a promising therapeutic strategy. Inhibitors of OXPHOS components, such as complex I inhibitor IACS-010759, have shown antitumor activity in preclinical models of NSCLC by inducing energy stress and apoptosis (30). Furthermore, combining OXPHOS inhibitors with agents targeting glycolysis may overcome metabolic compensation mechanisms and enhance therapeutic efficacy (31). Agents that disrupt mitochondrial dynamics or promote mitochondrial dysfunction are also being explored as potential treatments (32).

The interplay between mitochondrial metabolism and the TME further complicates the metabolic landscape. Hypoxic regions within tumors can influence mitochondrial function and promote metabolic reprogramming (33). Additionally, interactions with stromal cells and immune cells can modulate mitochondrial activity in NSCLC cells, affecting tumor growth and response to therapy (34).

In summary, mitochondrial metabolism and OXPHOS play critical roles in NSCLC biology. Understanding the mechanisms underlying metabolic flexibility and mitochondrial function in cancer cells is essential for developing effective therapeutic strategies that can circumvent resistance and target the metabolic vulnerabilities of NSCLC.




2.3 Lipid metabolism: a new frontier

Lipid metabolism has emerged as a critical aspect of NSCLC biology, influencing tumor growth, survival, and metastasis (35). Cancer cells require a continuous supply of lipids for the synthesis of cellular membranes and signaling molecules that support rapid proliferation. Enhanced de novo lipogenesis—the endogenous production of fatty acids from non-lipid precursors like glucose and glutamine—is a hallmark of metabolic reprogramming in cancer (36), and is particularly prominent in NSCLC.

This process is depicted in Figure 1, which illustrates key pathways involved in lipid synthesis and oxidation in NSCLC cells. This process provides not only structural components for membrane biogenesis but also lipid signaling molecules that can activate oncogenic pathways. Enzymes such as fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) play pivotal roles in lipid synthesis and are overexpressed in NSCLC (37). FASN is responsible for the synthesis of palmitate, a saturated fatty acid that serves as a building block for more complex lipids. Overexpression of FASN has been associated with increased tumor aggressiveness, resistance to chemotherapy, and poorer prognosis in NSCLC patients (38). Targeting FASN with small-molecule inhibitors has shown promise in preclinical models, leading to reduced tumor growth and enhanced sensitivity to other therapies (39). SCD1 introduces a double bond into saturated fatty acyl-CoAs to produce MUFAs, which are essential for maintaining membrane fluidity and function. Elevated SCD1 expression has been linked to enhanced tumor growth, metastasis, and reduced survival rates in NSCLC. Inhibition of SCD1 can disrupt membrane composition, induce endoplasmic reticulum (ER) stress, and trigger apoptosis in cancer cells (40). Acetyl-CoA carboxylase (ACC) is a key rate-limiting enzyme in fatty acid synthesis, playing a critical role in cellular metabolism and tumor growth by converting acetyl-CoA to malonyl-CoA. ACC regulates de novo fatty acid synthesis to meet the biosynthetic demands of tumor growth, and its inhibitor ND-646 significantly suppresses the growth and viability of NSCLC cells while enhancing the efficacy of chemotherapy, making it a potential target for cancer metabolism therapy (41).

Beyond lipid synthesis, NSCLC cells can utilize lipid oxidation through fatty acid oxidation (FAO) pathways to meet their energy demands and maintain redox balance (42). FAO involves the breakdown of fatty acids in mitochondria to generate acetyl-CoA, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide hydrogen (FADH2), which feed into the tricarboxylic acid (TCA) cycle and electron transport chain to produce ATP (43). By relying on FAO, cancer cells can adapt to nutrient-deprived or hypoxic conditions where glycolysis may be less efficient (44). FAO also contributes to the maintenance of redox homeostasis by generating NADPH, a critical reducing agent that helps neutralize reactive oxygen species (ROS) and protect cells from oxidative stress (45). Enzymes like carnitine palmitoyltransferase 1 (CPT1), which regulates the transport of long-chain fatty acids into mitochondria, are often upregulated in NSCLC. Inhibition of CPT1 can impair FAO, leading to energy stress and increased sensitivity to oxidative damage (46).

NSCLC cells can enhance lipid uptake from the microenvironment by overexpressing lipid transporters such as cluster of differentiation 36 (CD36) and fatty acid-binding proteins (FABPs) (47). This uptake allows cancer cells to utilize exogenous fatty acids for energy production and membrane synthesis. Additionally, cancer cells can store excess lipids in lipid droplets, which serve as reservoirs that can be mobilized during times of metabolic stress (48). Alterations in lipid metabolism are often driven by oncogenic signaling pathways common in NSCLC. For example, activation of the PI3K/AKT/mTOR pathway can upregulate lipid synthesis by increasing the expression and activity of lipogenic enzymes (49). Mutations in KRAS, frequently observed in NSCLC, have been shown to enhance lipid metabolism, promoting tumor growth and survival (50). These signaling pathways not only stimulate lipid production but also integrate metabolic cues with cell proliferation and survival mechanisms.




2.4 Amino acid metabolism: beyond glutamine addiction

While glutamine metabolism is well-established in cancer biology due to its role in supporting rapid cell proliferation and survival (51), NSCLC cells also exploit other amino acids to meet their metabolic demands. Recent studies have highlighted alterations in the metabolism of amino acids such as serine, glycine, proline, and branched-chain amino acids (BCAAs), which contribute to nucleotide synthesis, redox balance, and energy production (52).



2.4.1 Serine and glycine metabolism

Serine and glycine are non-essential amino acids that play crucial roles in one-carbon metabolism, which is essential for nucleotide synthesis, methylation reactions, and antioxidant defense (53). NSCLC cells can upregulate enzymes involved in the serine-glycine synthesis pathway, such as phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT1), and serine hydroxymethyltransferase (SHMT) (54). Overexpression of PHGDH has been observed in NSCLC and is associated with enhanced tumor growth and poor prognosis (55). Targeting this pathway can disrupt nucleotide biosynthesis and reduce the proliferation of cancer cells. Moreover, serine and glycine contribute to the synthesis of glutathione, a major intracellular antioxidant that helps maintain redox homeostasis (56). By elevating serine and glycine metabolism, NSCLC cells enhance their capacity to detoxify ROS, thereby promoting survival under oxidative stress conditions induced by therapies (57).




2.4.2 Proline metabolism

Proline metabolism is another pathway exploited by NSCLC cells to support tumor growth and metastasis (58). Proline biosynthesis from glutamate involves the enzyme pyrroline-5-carboxylate synthase (P5CS), while its degradation is mediated by proline dehydrogenase (PRODH). Proline can serve as a source of energy and contribute to redox balance by generating NADP+/NADPH (59). Altered proline metabolism aids in the adaptation of cancer cells to hypoxic conditions and nutrient deprivation, facilitating tumor progression (60). Inhibiting key enzymes in proline metabolism may impair cancer cell survival and sensitize tumors to treatment (61).




2.4.3 BCAAs

BCAAs-leucine, isoleucine, and valine-are essential amino acids involved in protein synthesis and signaling pathways that regulate cell growth and metabolism (62). NSCLC cells can exhibit increased uptake and catabolism of BCAAs to fuel the TCA cycle and provide nitrogen for nucleotide and amino acid synthesis (52). Enzymes such as branched-chain amino acid transaminase 1 (BCAT1) are upregulated in NSCLC and have been associated with tumor aggressiveness and poor clinical outcomes (63). Targeting BCAA metabolism may disrupt energy production and biosynthesis, leading to reduced tumor growth.




2.4.4 Amino acid transporters

To support increased amino acid demands, NSCLC cells often upregulate amino acid transporters. Transporters like solute carrier family 1 member 5 (SLC1A5/ASCT2) and SLC7A5 (LAT1) facilitate the uptake of glutamine, serine, leucine, and other amino acids (64, 65). Overexpression of these transporters has been linked to enhanced tumor growth, metastasis, and resistance to chemotherapy (66). Inhibiting amino acid transporters can reduce the intracellular availability of critical nutrients, inducing metabolic stress and apoptosis in cancer cells (67).





2.5 Metabolic heterogeneity and plasticity

NSCLC exhibit significant metabolic heterogeneity, both between different tumors (intertumoral heterogeneity) and within individual tumors (intratumoral heterogeneity)1. This heterogeneity arises from a complex interplay of genetic mutations, epigenetic modifications, tumor microenvironmental factors, and cellular interactions, leading to diverse metabolic phenotypes among cancer cells (68).



2.5.1 Genetic mutations and metabolic diversity

Genetic mutations commonly found in NSCLC, such as alterations in KRAS, EGFR, anaplastic lymphoma kinase (ALK), and liver kinase B1 (LKB1), drive distinct metabolic reprogramming in tumor cells (69). For instance, KRAS-mutant NSCLC cells often exhibit enhanced glucose uptake and glycolysis, whereas EGFR-mutant cells may rely more on glutamine metabolism (70). Loss of LKB1 function is associated with defects in mitochondrial OXPHOS and increased dependency on alternative energy sources (71). These genetic differences contribute to metabolic heterogeneity, influencing how tumor cells utilize nutrients and respond to metabolic stress.




2.5.2 Microenvironmental influences

The TME significantly impacts metabolic heterogeneity. Factors such as hypoxia, nutrient availability, pH changes, and interactions with stromal cells create spatial metabolic gradients within tumors (72). Hypoxic regions often lead to increased glycolysis and lactate production, while well-oxygenated areas may favor OXPHOS (73). Additionally, the availability of nutrients like glucose, amino acids, and lipids can vary within the tumor, forcing cancer cells to adapt their metabolism accordingly (74).




2.5.3 Interactions with stromal cells

CAFs, immune cells, and endothelial cells within the TME modulate cancer cell metabolism through paracrine signaling and direct cell-cell interactions (75). For example, CAFs can secrete metabolites such as lactate, amino acids, and fatty acids, which cancer cells uptake and utilize for energy and biosynthesis (10). Immune cells like tumor-associated macrophages (TAMs) produce cytokines that alter metabolic pathways in cancer cells, promoting survival and proliferation (76). These interactions further enhance metabolic diversity within the tumor.




2.5.4 Metabolic plasticity and therapeutic resistance

Metabolic heterogeneity contributes to therapeutic resistance by enabling subpopulations of cancer cells to survive under treatment-induced stress (77). Cancer cells with different metabolic profiles may respond variably to therapies targeting specific metabolic pathways (78). Metabolic plasticity-the ability of cancer cells to switch between metabolic states-allows them to adapt to environmental changes or therapeutic pressures (79). For instance, inhibiting glycolysis may lead some cancer cells to increase OXPHOS or utilize alternative substrates like fatty acids and amino acids (80).




2.5.5 Implications for personalized medicine

The presence of metabolic heterogeneity underscores the need for personalized metabolic interventions in NSCLC (81). Therapeutic strategies that consider the specific metabolic dependencies of a patient’s tumor may improve treatment efficacy (82). Techniques such as single-cell metabolomics and metabolic imaging can identify metabolic subtypes within tumors, guiding the selection of targeted therapies (83). Additionally, combining metabolic inhibitors with other treatments may overcome resistance by targeting multiple metabolic pathways simultaneously (84).

Understanding the mechanisms driving metabolic heterogeneity and plasticity is crucial for developing effective therapies. Integrating genomic, transcriptomic, and metabolomic data can provide a comprehensive view of tumor metabolism (85). Personalized approaches that tailor treatments based on individual metabolic profiles hold promise for improving outcomes in NSCLC patients.






3 The TME: metabolic crosstalk and therapeutic resistance



3.1 CAFs and metabolic support

CAFs are among the most abundant stromal cells within the TME of NSCLC and play a crucial role in supporting tumor metabolism and progression (86). CAFs undergo significant metabolic reprogramming that enables them to supply essential nutrients and metabolites to cancer cells, thereby promoting tumor growth and survival (51). One of the key phenomena illustrating this supportive role is the “reverse Warburg effect”. Unlike the traditional Warburg effect, where cancer cells preferentially utilize glycolysis for energy production even in the presence of oxygen, the reverse Warburg effect describes how CAFs enhance their glycolytic activity to produce high-energy metabolites such as lactate and pyruvate (87). These metabolites are then secreted into the TME and taken up by cancer cells, which utilize them through OXPHOS to generate ATP and support anabolic processes. This metabolic coupling allows cancer cells to conserve glucose for biosynthetic pathways, thus facilitating rapid proliferation and growth (88).

Beyond lactate production, CAFs secrete a variety of nutrients, including amino acids (e.g., glutamine, alanine) and fatty acids, which cancer cells can exploit. CAF-derived glutamine serves as an anaplerotic substrate replenishing TCA cycle intermediates in cancer cells, supporting energy production and biosynthesis of nucleotides and amino acids (89). Alanine secreted by CAFs can be converted into pyruvate, further fueling the TCA cycle. CAFs can release free fatty acids that cancer cells uptake and utilize for β-oxidation, contributing to ATP generation and membrane synthesis (90).

CAFs also modulate the ECM and secrete cytokines and growth factors that influence cancer cell metabolism and behavior (91). Factors such as transforming growth factor-beta (TGF-β), hepatocyte growth factor (HGF), and interleukins secreted by CAFs can activate signaling pathways (e.g., PI3K/AKT, MAPK) in cancer cells, leading to enhanced glycolysis and survival (92).




3.2 Immune cell metabolism and immune evasion

The metabolic state of immune cells within the TME profoundly affects their function and the overall immune response against NSCLC (93). Effective antitumor immunity relies on the activity of various immune cells, particularly effector T cells and natural killer (NK) cells, which require substantial energy and biosynthetic materials to proliferate and exert their cytotoxic functions (94). However, the TME is often characterized by metabolic competition and deprivation, as rapidly proliferating tumor cells consume large amounts of glucose, amino acids, and other nutrients (95). As illustrated in Figure 2, this metabolic imbalance not only limits nutrient availability for immune cells but also drives the reprogramming of both effector and regulatory immune cell populations, ultimately shaping the immune landscape toward either tumor suppression or immune evasion.
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Figure 2 | Immunometabolic interactions in the NSCLC TME.This schematic illustrates the dual roles of immune cell metabolism in either promoting or suppressing tumor growth in NSCLC. On the left, antitumor immunometabolism is driven by activated CD4+ and CD8+ T cells, NK cells, and other cytotoxic immune cells exhibiting increased glycolysis, fatty acid (FA) synthesis, OXPHOS, and glutaminolysis, supporting IFN-γ production, angiogenesis, and tumoricidal activity. On the right, tumor-promoting immunometabolism is characterized by immunosuppressive cells such as regulatory T cells (Treg cell), myeloid-derived suppressor cells (MDSCs), TAMs, and neutrophils, which exploit elevated glycolysis, lactic acid production, and altered metabolic intermediates (e.g., methylglyoxal) to inhibit cytotoxic function and promote Treg cell proliferation, PD-L1 expression, and M2 polarization. Tumor cells actively shape the metabolic landscape of the TME by rewiring their own metabolic programs (e.g., enhanced glycolysis, glutaminolysis, and β-oxidation) to suppress immune responses and sustain growth.



3.2.1 Metabolic competition and nutrient deprivation

Tumor cells alter the availability of key nutrients in the TME by upregulating glucose transporters and amino acid transporters, leading to increased uptake and consumption of glucose and amino acids (96). This metabolic competition results in a nutrient-deprived environment for immune cells. Effector T cells rely on glycolysis for energy production and effector functions such as cytokine production and proliferation. Glucose deprivation impairs T cell receptor (TCR) signaling, reduces cytokine production (e.g., interferon-gamma), and diminishes cytotoxic activity (97). Amino acids like glutamine, arginine, and tryptophan are critical for T cell function and proliferation (98). Tumor cells can deplete these amino acids or produce immunosuppressive metabolites (e.g., kynurenine from tryptophan catabolism via indoleamine 2,3-dioxygenase [IDO]) that inhibit T cell activity (99).




3.2.2 Metabolic checkpoints and immune suppression

Metabolic reprogramming in lung cancer plays a pivotal role in immune regulation by inducing metabolic stress and activating metabolic checkpoints in immune cells, leading to immunosuppression. Tumor-induced energy stress activates key metabolic sensors such as AMP-Activated Protein Kinase (AMPK), which modulates T cell metabolism and reduces their effector functions. Similarly, nutrient deprivation within the TME inhibits mTOR signaling, impairing T cell growth and responses. Additionally, hypoxia stabilizes HIFs, which alter immune cell metabolism and promote an immunosuppressive phenotype (100).

Tumor cells exploit these metabolic pathways to evade immune responses through several mechanisms. First, the upregulation of immune checkpoint molecules such as programmed cell death ligand 1 (PD-L1) on tumor cells interacts with programmed cell death protein 1 (PD-1) on T cells, suppressing glucose uptake and glycolysis in T cells, thereby diminishing their effector functions (101). Second, tumor cells secrete immunosuppressive factors like TGF-β and adenosine, which further modulate immune cell metabolism and suppress antitumor immunity. These metabolic interactions underscore the critical role of metabolic reprogramming in shaping the immune landscape of lung cancer, presenting potential targets for therapeutic intervention (102).





3.3 Hypoxia and metabolic adaptations

Hypoxia, or low oxygen conditions, is a hallmark of the TME in solid cancers, including NSCLC (103). Rapid tumor growth often outpaces the development of new blood vessels, leading to regions of insufficient oxygen supply. Hypoxic conditions trigger the stabilization of HIFs, particularly HIF-1α and HIF-2α, which are key transcription factors orchestrating cellular responses to low oxygen levels (104). Under normoxic conditions, HIF-α subunits are hydroxylated by prolyl hydroxylase domain proteins (PHDs), marking them for degradation via the von Hippel-Lindau (VHL) ubiquitin-proteasome pathway (105). Hypoxia inhibits PHD activity, preventing HIF-α degradation. Stabilized HIF-α translocates to the nucleus, dimerizes with HIF-1β, and activates the transcription of target genes involved in crucial processes such as metabolism, angiogenesis, erythropoiesis, and cell survival (106).

HIFs play a pivotal role in reprogramming cancer cell metabolism to adapt to hypoxic conditions (107). HIF-1α upregulates glycolytic enzymes, including HK2, phosphofructokinase 1 (PFK1), and lactate dehydrogenase A (LDHA), shifting the metabolic flux towards glycolysis despite the presence of oxygen (aerobic glycolysis) (108). This shift allows cancer cells to generate ATP efficiently under low oxygen conditions. Upregulation of glucose transporters such as GLUT1 enhances glucose uptake from the extracellular environment, providing substrates for glycolysis (109). HIF-1α induces pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH), decreasing the conversion of pyruvate to acetyl-CoA and thus reducing entry into the TCA cycle (110). This adaptation minimizes oxygen consumption and reduces ROS production from mitochondria. Increased LDHA activity converts pyruvate to lactate, which is exported out of the cell via monocarboxylate transporters (MCTs), contributing to the acidic TME (111).





4 Emerging technologies unveiling metabolic vulnerabilities

The rapid advancement of innovative technologies has significantly enhanced our ability to uncover metabolic vulnerabilities in cancer, providing new insights into tumor biology and therapeutic opportunities. Single-cell metabolomics has emerged as a powerful tool, enabling the analysis of metabolic heterogeneity at an unprecedented resolution (112). By profiling individual cells, researchers can identify distinct subpopulations with unique metabolic dependencies, which can inform the development of more precise and effective targeted therapies. Spatial metabolomics further expands this capability by detecting and imaging metabolites with spatial resolution at the tissue or cellular level (113). By combining mass spectrometry imaging with traditional metabolomics approaches, this technique allows for the visualization of metabolite distribution within biological tissues, offering a deeper understanding of the TME and its metabolic interactions.

The advent of high-resolution mass spectrometry (HRMS) has significantly enhanced the sensitivity and accuracy of metabolite detection. HRMS provides precise molecular weight measurements and detailed structural information, making it a cornerstone technology in metabolomics research (114). Finally, systems biology and computational modeling integrate multi-omics data to construct metabolic networks and predict therapeutic outcomes (115). Computational tools enable the simulation of metabolic interventions and identification of synergistic drug combinations, paving the way for more strategic and effective treatment regimens. Together, these emerging technologies are revolutionizing our understanding of cancer metabolism and driving the discovery of novel therapeutic strategies.




5 Therapeutic implications and strategies

Recent advances in elucidating the metabolic landscape of NSCLC have highlighted several key pathways that are amenable to therapeutic intervention. Targeting metabolic dependencies represents a promising strategy to disrupt tumor growth and overcome resistance mechanisms (Figure 3). In this section, we discuss emerging therapeutic approaches aimed at modulating core metabolic processes in NSCLC. A summary of representative metabolic inhibitors and their targeted pathways is provided in Table 1, which offers a comprehensive overview of current therapeutic agents explored in NSCLC metabolic intervention.
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Figure 3 | Targetable metabolic pathways and inhibitors in NSCLC.This schematic highlights key metabolic pathways reprogrammed in NSCLC cells and outlines current therapeutic targets under investigation. Central carbon metabolism—including glycolysis, the pentose phosphate pathway (PPP), TCA cycle, and OXPHOS—is regulated by oncogenic signaling pathways such as PI3K/mTOR and MAPK/ERK, often activated by mutations in receptor tyrosine kinases (EGFR, ALK, MET). Metabolic enzymes (e.g., HK2, PFKFB3, LDHA, PHGDH, PKM2, ACLY, FASN, SCD, GLS1) and transporters (e.g., SLC1A5/SLC7A5) are shown with corresponding small-molecule inhibitors (e.g., 2-DG, BAY-876, PFK158, Oxamate, PX-478, CB-839, TVB2640, MF-438, JPH203), many of which are being evaluated in preclinical or clinical settings. The diagram also illustrates amino acid metabolism (e.g., glutaminolysis, serine biosynthesis, arginine and proline metabolism), emphasizing the metabolic plasticity of NSCLC and the opportunities for combinatorial metabolic interventions. This comprehensive map provides a framework for rational design of therapies targeting metabolic vulnerabilities in NSCLC.

Table 1 | Drugs/compounds targeting different proteins/enzymes of the metabolic pathway.
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5.1 Targeting glycolysis and OXPHOS

The metabolic reprogramming of NSCLC cells presents a strategic opportunity for therapeutic intervention by targeting key energy-producing pathways. Glycolysis and OXPHOS are central to cancer cell metabolism, providing ATP and metabolic intermediates necessary for rapid proliferation and survival. Inhibitors targeting these pathways have shown promise in preclinical models, but due to metabolic plasticity, cancer cells can switch between glycolysis and OXPHOS to compensate when one pathway is inhibited (129). Therefore, combination therapies targeting both pathways may be more effective in preventing metabolic compensation and inducing cancer cell death.

Key glycolytic enzymes such as HK2 and PKM2 are overexpressed in NSCLC and are critical for maintaining the high glycolytic flux observed in cancer cells. HK2 catalyzes the first step of glycolysis, phosphorylating glucose to glucose-6-phosphate. Inhibitors like 2-deoxy-D-glucose (2-DG) mimic glucose but cannot undergo further metabolism, effectively inhibiting HK2 activity (130). Preclinical studies have shown that 2-DG induces apoptosis and enhances the sensitivity of cancer cells to chemotherapy and radiotherapy (116). However, its clinical application is limited by toxicity and lack of specificity. PKM2 controls the final step of glycolysis, converting phosphoenolpyruvate to pyruvate. PKM2 exists in both active tetrameric and less active dimeric forms, with cancer cells favoring the dimeric form to promote anabolic processes. Small-molecule activators like TEPP-46 and DASA-58 stabilize the tetrameric form, enhancing pyruvate production and reducing lactate formation (117, 118). This shift can suppress tumor growth and induce apoptosis.

Cancer cells can compensate for inhibited glycolysis by increasing reliance on mitochondrial OXPHOS. Targeting OXPHOS can disrupt this adaptive mechanism: 1. Complex I Inhibitors: Metformin and phenformin inhibit mitochondrial complex I, reducing ATP production and increasing ROS generation (120, 121). Phenformin has shown greater antitumor activity than metformin in preclinical models of NSCLC but with a higher risk of lactic acidosis (131). 2. ATP Synthase Inhibitors: Oligomycin and its derivatives inhibit ATP synthase, leading to decreased ATP production (122). While effective in vitro, their clinical use is limited due to toxicity in normal cells. 3. B-cell lymphoma-2/-xL (Bcl-2/Bcl-xL) Inhibitors: Agents like venetoclax target anti-apoptotic proteins located on the mitochondrial membrane, promoting apoptosis in cancer cells (123). Combining these with OXPHOS inhibitors can enhance cancer cell death.

Combining glycolysis inhibitors with OXPHOS inhibitors may prevent cancer cells from switching energy sources and enhance therapeutic efficacy. Simultaneous targeting of HK2 and complex I can induce energetic crisis in cancer cells. For example, combining 2-DG with metformin has shown synergistic effects in reducing NSCLC cell viability (132). Inhibiting key enzymes in both pathways limits the ability of cancer cells to adapt metabolically. This approach can lead to increased ROS production, DNA damage, and activation of cell death pathways.




5.2 Targeting lipid metabolism

Lipid metabolism plays a crucial role in the growth and survival of NSCLC cells, as previously discussed. Targeting key enzymes involved in lipid synthesis and desaturation presents a promising therapeutic strategy. FASN and SCD1 are two pivotal enzymes in lipid metabolism that have gained significant attention as potential targets for cancer therapy.

FASN is an essential enzyme responsible for the de novo synthesis of long-chain fatty acids from acetyl-CoA and malonyl-CoA precursors. Overexpression of FASN has been observed in various cancers, including NSCLC, and is associated with poor prognosis and aggressive tumor behavior (133). By promoting lipid synthesis, FASN supports membrane biogenesis, energy storage, and the production of lipid signaling molecules that facilitate tumor growth and metastasis (134). TVB-2640 is a first-in-class, orally bioavailable, small-molecule inhibitor of FASN that has entered clinical trials. It selectively inhibits the enzymatic activity of FASN, leading to reduced fatty acid synthesis and accumulation of malonyl-CoA, which can induce apoptosis and inhibit tumor growth (124). In preclinical studies, TVB-2640 demonstrated significant antitumor activity in NSCLC models, both as a monotherapy and in combination with other agents (125). Clinical trials are currently evaluating the safety and efficacy of TVB-2640 in patients with advanced solid tumors, including NSCLC (124). Preliminary results have shown that TVB-2640 is well-tolerated and exhibits antitumor activity, especially when combined with other treatments such as chemotherapy or targeted therapies. These findings suggest that inhibiting FASN can disrupt lipid homeostasis in cancer cells, leading to growth inhibition and enhanced sensitivity to other anticancer agents.

SCD1 is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). MUFAs are critical components of cellular membranes and play a role in lipid signaling and energy storage (126). Overexpression of SCD1 has been linked to increased proliferation, survival, and chemoresistance in NSCLC cells (135). Targeting SCD1 disrupts the balance of saturated and unsaturated fatty acids, affecting membrane fluidity and function. Inhibition of SCD1 leads to the accumulation of SFAs, which can cause ER stress and activate the unfolded protein response (UPR) (136). Prolonged ER stress can trigger apoptosis in cancer cells. Additionally, decreased levels of MUFAs impair membrane synthesis and the formation of lipid rafts, which are essential for signal transduction and the activation of oncogenic pathways. Several small-molecule inhibitors of SCD1 have been developed and shown to exhibit antitumor activity in preclinical models of NSCLC. For example, A939572 and MF-438 are potent SCD1 inhibitors that have demonstrated the ability to reduce tumor cell proliferation and induce apoptosis (126, 127). In combination with other treatments, such as chemotherapy or targeted therapies, SCD1 inhibitors may enhance therapeutic efficacy by sensitizing cancer cells to these agents. While targeting lipid metabolism shows promise, clinical outcomes have been variable. Some studies suggest that inhibiting FAO may impair T cell function and exacerbate inflammation, raising concerns about off-target effects. Moreover, conflicting evidence exists regarding the dependency of certain NSCLC subtypes on FAO versus lipogenesis, underscoring the need for subtype-specific therapeutic strategies.




5.3 Targeting amino acid metabolism

Amino acid metabolism plays a pivotal role in the growth and survival of NSCLC cells. Targeting key enzymes and pathways involved in amino acid utilization presents a promising therapeutic strategy. Glutaminase (GLS) inhibitors, such as CB-839 (telaglenastat), and inhibitors of serine and glycine synthesis pathways have shown potential in impairing tumor growth by disrupting critical metabolic processes (128). Glutamine is an essential nutrient for rapidly proliferating cancer cells, serving as a carbon and nitrogen source for nucleotide and amino acid synthesis, as well as maintaining redox balance through glutathione production. GLS catalyzes the conversion of glutamine to glutamate, a key step in glutamine metabolism. Overexpression of GLS has been observed in NSCLC and is associated with increased tumor aggressiveness (137). CB-839 is an orally bioavailable, selective GLS inhibitor that has demonstrated antitumor activity in preclinical models of NSCLC by blocking glutamine utilization (138). By inhibiting GLS, CB-839 reduces the production of glutamate and downstream metabolites, leading to impaired nucleotide synthesis, decreased glutathione levels, and increased oxidative stress (139). This can result in cancer cell death and reduced tumor growth.

Serine and glycine are non-essential amino acids integral to one-carbon metabolism, which is crucial for nucleotide synthesis, methylation reactions, and maintaining redox balance (54). NSCLC cells often upregulate enzymes involved in the serine-glycine synthesis pathway to meet the increased demands of rapid proliferation. PHGDH catalyzes the first step in the de novo serine synthesis pathway. Overexpression of PHGDH has been observed in NSCLC and is associated with enhanced tumor growth (140). Inhibitors targeting PHGDH can disrupt serine production, impair nucleotide biosynthesis, and induce cell cycle arrest. Novel PHGDH inhibitors have shown efficacy in preclinical models, reducing tumor growth and enhancing sensitivity to chemotherapy (141). SHMT converts serine to glycine, contributing to one-carbon units necessary for thymidine and purine synthesis (142). Inhibiting SHMT disrupts DNA synthesis and can induce apoptosis in cancer cells. Agents targeting SHMT have demonstrated antitumor activity by inducing DNA damage and impairing cell proliferation (143).

Proline metabolism is another pathway exploited by NSCLC cells to support tumor growth and metastasis (144). Proline biosynthesis and degradation are linked to energy production and redox balance. Inhibiting key enzymes such as pyrroline-5-carboxylate reductase (PYCR) can disrupt proline metabolism, leading to increased oxidative stress and reduced tumor growth (145). Targeting proline metabolism may also impair the survival of cancer stem cells, which are often resistant to conventional therapies (146).

BCAAs-leucine, isoleucine, and valine-are essential amino acids involved in protein synthesis and signaling pathways that regulate cell growth (147). NSCLC cells may exhibit increased uptake and catabolism of BCAAs to fuel the TCA cycle and provide nitrogen for nucleotide and amino acid synthesis (148). BCAT1 catalyzes the first step in BCAA catabolism. Overexpression of BCAT1 has been associated with tumor aggressiveness and poor prognosis in NSCLC (149). Inhibiting BCAT1 can impair BCAA metabolism, suppress tumor growth, and reduce cancer cell proliferation. To support increased amino acid demands, NSCLC cells often upregulate amino acid transporters (150). Targeting these transporters can reduce the uptake of critical nutrients: ASCT2 is a glutamine transporter overexpressed in many cancers (151). Inhibiting ASCT2 can decrease glutamine uptake, leading to metabolic stress and sensitizing cancer cells to chemotherapy (152). LAT1 transports large neutral amino acids, including leucine (153). Targeting LAT1 can disrupt mTOR signaling pathways, reduce protein synthesis, and inhibit tumor growth (65). Similarly, targeting amino acid metabolism is not without limitations. For instance, while LAT1 inhibitors show antitumor potential, they may also impact immune cell metabolism or lead to resistance via transporter redundancy. Furthermore, some clinical trials targeting amino acid pathways have failed to show significant benefits, highlighting the complexity and redundancy of metabolic networks in cancer.




5.4 Combination therapies and immunometabolism

Combining metabolic inhibitors with immunotherapies has emerged as a promising strategy to enhance antitumor immune responses in NSCLC (154). Modulating tumor metabolism can improve the function of immune cells within the TME, representing a synergistic approach to NSCLC treatment. Tumor cells often create a metabolically hostile environment for immune cells by consuming large amounts of glucose and amino acids, leading to nutrient deprivation for tumor-infiltrating lymphocytes (TILs) (155). Additionally, tumor cells produce immunosuppressive metabolites like lactate and adenosine, which inhibit immune cell function (156). By targeting tumor metabolism, it is possible to alleviate these immunosuppressive conditions and enhance the efficacy of immunotherapies. Inhibiting glycolysis in tumor cells can reduce glucose competition, making it more available for effector T cells that rely on glycolysis for their function (157). Glycolytic inhibitors, such as 2-DG, may improve T-cell activity when combined with immune checkpoint inhibitors (116). IDO is an enzyme overexpressed in some tumors that depletes tryptophan and produces immunosuppressive metabolites (158). IDO inhibitors can restore tryptophan levels and enhance T-cell proliferation. Combining IDO inhibitors with PD-1/PD-L1 blockade has shown synergistic antitumor effects in preclinical models (159). As discussed previously, GLS inhibitors like CB-839 can reduce glutamine availability for tumor cells (128). Since glutamine is less critical for T-cell function than for tumor cells, GLS inhibition may preferentially affect cancer cells and improve immune responses.

Modulating the metabolism of immune cells themselves can also enhance antitumor immunity. The mTOR pathway regulates T-cell metabolism and function (160). Activating mTOR can promote T-cell glycolysis and effector functions. Agents that enhance mTOR signaling in T cells may boost their antitumor activity. AMPK activation can improve the metabolic fitness of T cells, enhancing their survival and function in the nutrient-deprived TME (161).

Combining metabolic inhibitors with immunotherapies aims to create a more favorable metabolic environment for immune cells while directly targeting tumor metabolism. Targeting metabolic checkpoints in tumor cells can sensitize them to immune-mediated killing. For example, inhibiting LDHA reduces lactate production, alleviating acid-mediated immunosuppression (119). Combining immune checkpoint inhibitors (e.g., anti-PD-1/PD-L1 antibodies) with metabolic modulators can enhance T-cell infiltration and activity. Clinical trials are exploring such combinations in NSCLC patients. Epacadostat, an IDO inhibitor, has been evaluated in combination with pembrolizumab (anti-PD-1) in clinical trials, showing promising results in some cancer types (162). However, results have been mixed, and further studies are needed to determine efficacy in NSCLC. Metformin, a complex I inhibitor, has immunomodulatory effects and may enhance responses to immunotherapy (132). Retrospective studies suggest that NSCLC patients taking metformin may have improved outcomes with immune checkpoint inhibitors.




5.5 Personalized metabolic therapies

The heterogeneity of metabolic profiles among NSCLC tumors underscores the need for personalized metabolic therapies (163). Metabolic profiling of tumors can identify patient-specific metabolic dependencies, enabling tailored treatment strategies that target the unique metabolic vulnerabilities of each tumor (164). Advanced technologies such as metabolomics, genomics, transcriptomics, and proteomics allow for comprehensive metabolic profiling of tumors. High-throughput techniques can analyze metabolic enzyme expression levels, metabolite concentrations, and metabolic fluxes within cancer cells (165). These high-throughput techniques include: 1. Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy: These techniques enable the identification and quantification of a wide range of metabolites in tumor samples. 2. Positron Emission Tomography (PET) Imaging: Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) can assess glucose uptake in tumors, providing insights into glycolytic activity. 3. Gene Expression Profiling: Analyzing the expression of genes involved in metabolic pathways can reveal overactive or dysregulated metabolic enzymes.





6 Challenges and future directions

Cancer cells’ ability to adapt metabolically poses a significant challenge for metabolic therapies. Their metabolic plasticity enables them to switch between different energy sources and metabolic pathways, which can render single-agent treatments less effective. Future research should focus on understanding these resistance mechanisms and developing strategies to prevent or overcome them. Ensuring the safety and selectivity of metabolic inhibitors is also critical; these agents must selectively target cancer cells without harming normal tissues. Strategies to achieve this include exploiting cancer-specific metabolic pathways or employing delivery systems that preferentially target tumor cells.

Integrating metabolic biomarkers into clinical practice is essential for personalizing treatment and improving outcomes. Standardizing these biomarkers and incorporating them into clinical workflows require close collaboration between researchers and clinicians. Validation in large, diverse patient cohorts is necessary to ensure their reliability and effectiveness in clinical settings. Advancing the field further necessitates interdisciplinary collaboration among oncologists, biochemists, pharmacologists, and computational biologists. Integrating diverse expertise will accelerate the translation of metabolic discoveries into effective therapies, ultimately enhancing treatment strategies for NSCLC.




7 Conclusion

The metabolic reprogramming of NSCLC cells extends far beyond the Warburg effect, encompassing alterations in lipid and amino acid metabolism and dynamic interactions with the TME. These metabolic adaptations are not merely bystanders but are integral to tumor growth, survival, and therapeutic resistance. By leveraging emerging technologies and a deeper understanding of metabolic heterogeneity, we can identify novel vulnerabilities in NSCLC. Therapeutic strategies that target these metabolic dependencies offer promising avenues for improving patient outcomes. Combining metabolic inhibitors with existing treatments, such as immunotherapies and targeted therapies, may enhance efficacy and overcome resistance. Personalized metabolic therapies, guided by metabolic profiling, represent the next frontier in precision oncology. As we continue to unravel the complexities of NSCLC metabolism, we move closer to realizing the full potential of metabolic targeting in cancer therapy. The integration of cutting-edge research with clinical practice holds the promise of transforming NSCLC management and improving the lives of patients worldwide.
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Background: The classical prognostic indicators of lung cancer are no longer sufficient for prognostic stratification and individualized treatment of highly heterogeneous non-small cell lung cancer (NSCLC). This study aimed to establish a radiomics model to predict CD74 expression level in NSCLC patients and to explore its role in the tumor immune response and its prognostic value.
Methods: The prediction model was developed based on 122 NSCLC transcriptome samples, including 68 paired enhanced CT and transcriptome samples. Survival analysis, gene set variation analysis, and immune cell infiltration analysis were used to investigate the relationship between CD74 expression and tumor immune response. Logistic regression (LG) and support vector machine (SVM) analysis were used to construct the prediction model. The performance of the model was assessed with respect to its calibration, discrimination, and clinical usefulness.
Results: High CD74 expression is an independent prognostic factor for NSCLC and is positively correlated with antigen presentation and processing gene expression and antitumor immune cell infiltration. The radiomics prediction models for CD74 expression demonstrated good predictive performance. The areas under the receiver operating characteristic curves for the LG and SVM radiomics models were 0.778 and 0.729, respectively, in the training set and 0.772 and 0.701, respectively, in the validation set. The calibration and decision curve analysis curves demonstrated good fit and clinical benefit.
Conclusion: CD74 expression significantly impacts the prognosis of NSCLC patients. The radiomics model based on contrast-enhanced CT exhibits good performance and clinical practicability in predicting CD74 expression.
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Introduction

Lung cancer ranks first among cancers in terms of mortality and second in terms of overall morbidity (1). Among the various types of lung cancer, non-small cell lung cancer (NSCLC) is the most common (2, 3). Surgical resection is considered the gold standard treatment for early-stage lung cancer; however, the surgical outcome and prognosis for advanced patients are poor (4). Therefore, for advanced lung cancer patients who are not eligible for surgery, it is essential to predict their prognosis and provide precision treatment for long-term high-quality survival with tumors (5). NSCLC exhibits significant genetic and cellular heterogeneity (6). There is an urgent need for individualized therapy in NSCLC. Traditional diagnostic and prognostic indicators for lung cancer include clinicopathological features, laboratory diagnostic indicators such as carcinoembryonic antigen and carbohydrate antigen 125, and CT imaging methods (7, 8). However, these indicators are no longer sufficient to meet the clinical requirements of precision medicine (2, 9). Therefore, it is necessary to further explore new prognostic indicators to meet the precision treatment needs of NSCLC.

Analysis of gene expression can identify novel markers and targets for patient management and treatment. Several studies have suggested that CD74 may serve as a prognostic factor (10, 11) and therapeutic target (12, 13) for patients with malignant tumors. CD74 encodes class II major histocompatibility complex-associated proteins (13, 14), which are primarily involved in antigen presentation during the immune response (15). Additionally, CD74 can act as a cell surface receptor for macrophage cytokines, mediating the survival and proliferation of macrophages (14). For example, one study demonstrated that CD74 is essential for the distant metastasis of breast cancer, and targeting CD74 therapy may be an effective strategy for breast cancer treatment (16). Furthermore, CD74-ROS1 is the most common form of ROS1 fusion in NSCLC, and CD74-NRG1 gene fusion activates genomic alterations in aggressive mucinous adenocarcinomas, offering potential therapeutic opportunities for lung tumor subtypes that have not yet been effectively treated (17). Currently, the expression level of CD74 can only be detected through peripheral blood cytokine analysis, mRNA or protein level analysis using fresh tissue samples, or paraffin tissue sample analysis, but these methods are expensive and complex, have limited reflection of tumor parenchyma, and are prone to bias.

RNA-seq offers high resolution and low technical variability (18), and demonstrates a high degree of concordance with other gold-standard techniques in transcriptomics, both for absolute and relative gene expression measurements (19). However, its high cost and the invasive nature of sample collection limit its clinical applicability. Immunohistochemistry (IHC), by contrast, is more affordable but suffers from operator variability and antibody bias, leading to inter-laboratory heterogeneity and the lack of quantitative, objective assessments (20). Given these limitations, imaging techniques provide distinct advantages. Previous studies have shown that radiomics can be used to noninvasively predict the pathological type or molecular features of NSCLC by extracting high-throughput features from images for quantitative analysis (21–23). Additionally, it also can effectively identify patients at high risk of disease recurrence and positively improve NSCLC stratification and patient survival through noninvasive prediction of gene expression (18–20). Based on these studies, radiomics may be a powerful tool for facilitating decision making in the individualized management of NSCLC.

In view of the advantages of radiomics, this study used radiomics techniques to predict CD74 mRNA expression in NSCLC tumor tissues and combined them with bioinformatics analysis to explore the molecular mechanism of the tumor immune response related to CD74 expression. This approach provides a convenient and noninvasive new indicator for the stratification and optimal individualized treatment of NSCLC patients.



Patients and methods


Patients

The flow chart of this study is shown in Figure 1. This workflow is shown in the Graphical Abstract. The NSCLC cohort of this study included medical imaging data from the NSCLC Radiogenomics dataset in The Cancer Imaging Archive (TCIA) Public Access-Cancer Imaging Archive Wiki. The RNA-seq data and clinical follow-up data for the main cohort are from the Gene Expression Omnibus (GEO) database, and the dataset is named GSE103584 (24).1 The inclusion and exclusion criteria are detailed in Supplementary Table S1. Finally, 122 transcriptome samples with complete clinical information and 68 imaging samples with complete clinical information and transcriptome information were obtained. Lung adenocarcinoma (LUAD) cohort transcriptome data were obtained from the TCGA database.2 The inclusion and exclusion criteria are detailed in Supplementary Table S2. Finally, 320 transcriptome samples were obtained. All transcriptome data were converted to TPM format, and then log2 conversion was performed.

[image: A series of diagrams and charts in three sections:   1. Functional validation and survival analysis of CD74: Includes a violin plot, heatmap, survival curve, and KEGG pathway analysis.  2. Tumor segmentation and feature extraction: Displays CT scans with segmented tumors, a 3D tumor model, histograms, and feature importance charts.  3. Model building and validation: Contains ROC curves, probability plots, and a comparison plot of CD74 expression against radiomics scores.]

FIGURE 1
 Flow chart of this study.


To determine the optimal cut-off value for CD74 expression, we used the surv_cutpoint function from the R package “survminer,” applying the maximally selected rank statistics (also known as the minimum p-value method) to automatically identify the expression threshold that most significantly distinguishes survival differences. This method has been used in several high-quality studies because of its sensitivity to survival differences and well-balanced grouping (25–27). This cut-off value was then used to classify patients into high and low CD74 expression groups. Consequently, the cut-off value for CD74 expression in the NSCLC cohort was determined to be 8.7430, and patients were divided into a high expression group and a low expression group accordingly. The clinical baseline characteristics of the NSCLC cohorts are detailed in Table 1. The cut-off value for the CD74 expression level in the LUAD cohort was 9.5861, and the patients were divided into a high expression group and a low expression group. The clinical baseline characteristics are shown in Supplementary Table S3. The cut-off value of the CD74 expression level in the radiomic cohort was 8.7430, and the samples were divided into a high expression group and a low expression group.



TABLE 1 Demographic and clinicopathological characteristics of patients (NSCLC).
[image: A table displaying clinical and demographic characteristics of patients categorized into Total, Low, and High groups, with p-values for each variable. Variables include gender, age, smoking status, histology, T_stage, N_stage, M_stage, KRAS and EGFR mutation status, radiotherapy, and chemotherapy. Significant p-values are indicated for histology and M_stage, with values of less than 0.001 and 0.022, respectively. Each category lists the count and percentage of patients for varying conditions or traits.]



Survival analysis

Univariate Cox regression and multivariate Cox regression survival analyses were performed for each variable. A Kaplan–Meier survival curve was used to show the difference in the survival rates in different groups, and the log-rank test was used to test the significance of differences in the survival rates among groups. Univariate Cox regression was used to analyze the effect of CD74 expression on prognosis in different subgroups of covariates. The interaction between CD74 expression and other covariates was analyzed using the likelihood ratio (OR value) test. Cox regression analysis and survival analysis were performed using the R packages “survival” and “forestplot,” and the R package “survminer” was used to summarize and visualize the results.



Gene set variation analysis (GSVA) and correlation analysis between CD74 high and low subgroups

GSVA is mainly used to evaluate the results of gene set enrichment in the transcriptome (28). It is mainly used to transform the expression matrix of genes between different samples into the expression matrix of gene sets between samples to evaluate whether different pathways are enriched in different samples. The enrichment scores of KEGG pathway gene sets and hallmark gene sets3 in the NSCLC cohort and LUAD cohort samples were calculated by the GSVA algorithm. The R package “limma” was used to analyze the difference in the pathway enrichment score between the high and low CD74 groups, and the different paths were visualized, with |t| = 1 as the critical value.



Immune-related analysis associated with CD74 expression

The Wilcoxon rank sum test was used to detect the differential expression of antigen processing and presenting genes between the high and low CD74 groups. Genes with p < 0.001 were visualized, and the results are displayed in a heatmap. The gene expression matrix of NSCLC samples and LUAD samples was uploaded to the CIBERSORTx database4 to calculate the immune cell infiltration of each sample (29). The R package “corrplot” was used to analyze the correlation between CD74 expression and the degree of immune cell infiltration.



CT imaging parameters and image processing

CT imaging parameters included a slice thickness ranging from 0.625 to 3 mm (median: 1.5 mm), an X-ray tube current between 124 and 699 mA (mean 220 mA), and a tube voltage ranging from 80 to 140 kVp (mean 120 kVp) (24).

To minimize the variability caused by differences in scanning equipment, imaging protocols, and lesion sizes, a series of standardized preprocessing steps were applied in this study. All CT images were resampled using the ‘sitkBSpline’ interpolator to achieve an isotropic voxel size of 1 × 1 × 1 mm3, thereby reducing variability related to scanning parameters and lesion dimensions. Voxel intensity values were discretized using a fixed bin width of 25 HU to reduce image noise and standardize signal intensity, enhancing the stability of radiomic features across different images. Image normalization was performed by scaling signal intensities to a range of 1–500 HU, aiming to minimize intensity variations across images acquired from different machines and further improve data consistency. Additionally, gray-level values were standardized using Z-score normalization to adjust the gray-level distributions across images, reduce inter-patient variability, and enhance the stability of feature computation.



Region of interest (ROI) of image construction and consistency evaluation

3D Slicer software (version 4.10.2) was utilized by an experienced radiologist with over 10 years of expertise in diagnosing chest disease imaging, as well as another radiologist with more than 5 years of experience, to manually outline the entire area of interest to obtain the complete tumor area. In cases where there was disagreement, a consensus was reached through discussion with a more senior imaging physician. The consistency of the image features extracted from the volume of interest (VOI) delineated by the two physicians was assessed using the intraclass correlation coefficient (ICC). To further validate the results, a random sample of 20 cases was chosen using the “random number table method” and assessed by an imaging doctor with more experience.

In this study, radiomics features were extracted using Pyradiomics,5 including 14 shape features, 18 first-order features, and 75 s-order features, resulting in a total of 107 original radiomics features. The second-order features include GLCM, GLRLM, GLSZM, NGTDM, and GLDM, which are among the most commonly used features in radiomics research. Features with an ICC value of ≥0.75 were selected for the subsequent feature screening process (30–32).



Radiomic feature screening

Prior to model construction, we initially applied the Recursive feature elimination (RFE) method to perform a preliminary screening of the predictors by ranking radiomic features with an ICC ≥ 0.75. RFE iteratively trains the model and eliminates features of lower importance after each iteration until the optimal subset of features is identified (33). Based on the preliminary screening, stepwise regression combined with the Akaike information criterion (AIC) was subsequently employed for secondary feature selection (34). Using AIC to balance model complexity and goodness of fit, a bidirectional stepwise regression approach was applied to further eliminate features that contributed little to the model or showed high multicollinearity. Ultimately, three representative and stable radiomic features were selected for model construction, demonstrating good predictive performance and generalizability in both the training and validation cohorts.



Construction and evaluation of the logistic regression (LR) model and support vector machine (SVM) model

The final radiomic features were fitted using the logistic regression algorithm to establish a binary prediction model for predicting CD74 expression. The logistic regression fitting was performed using the “glm” function from the R package “stats.” The radiomics model formula was calculated as the product of the feature and its corresponding coefficient plus the intercept value. Furthermore, the final screening radiomic features were fitted using the SVM algorithm to establish a binary prediction model for predicting CD74 expression. SVM algorithm fitting was performed using the R package “caret.”

To evaluate the predictive performance of the LR model and SVM model, we used the receiver operating characteristic (ROC) curve. Additionally, we performed 5-fold internal cross-validation. The fit degree of the prediction model was evaluated using the calibration curve. Moreover, we drew a decision curve analysis (DCA) to assess the clinical benefit of the prediction model.

The LR radiomic model and SVM radiomic model provided the radiomics score for each sample. We employed the Wilcoxon test to assess whether there were differences between the high and low CD74 groups in terms of radiomics score.



Statistical analysis

The statistical analysis for this study was conducted using R 4.1.0. The t test was used for quantitative data that followed a normal distribution, while the Wilcoxon test was utilized for nonnormally distributed data. For the analysis of more than two groups, the Kruskal-Wallis test was employed as a nonparametric test, and ANOVA was used for parametric tests. The “survival” R package was used to analyze the prognostic differences between the two groups, and the significance of the prognostic differences among different groups of samples was assessed using the log-rank test. The pROC package was utilized to generate ROC curves, calculate the area under the curve (AUC), and determine confidence intervals. The DeLong test was used to compare AUC values under the ROC curve. Pearson correlation analysis was used to calculate the correlation between genes, as well as between genes and clinical traits. A p value less than 0.05 was considered statistically significant. For multiple hypothesis testing, the false discovery rate (FDR) was calculated using the Benjamini–Hochberg method (35).



Radiomics workflow quality assessment

To enhance the transparency and methodological rigor of this study, we systematically evaluated the quality of the radiomics workflow based on the Minimum Information for Reporting a Radiomics Study (METRICS) standard proposed by Kocak et al. (36). The total METRICS score was 87.1%. The completed METRICS checklist is provided in Supplementary material 1 to ensure the reproducibility and robustness of the study results and to facilitate the future clinical application of the model.




Results


Differences in expression and clinical characteristics between CD74 expression groups

The expression levels of CD74 in tumor tissues and normal tissues were compared based on the RNA-seq data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients from the TCGA database. As shown in Figure 2A, the expression level of CD74 was found to be lower in tumor tissues than in normal tissues (p < 0.001).

[image: Violin plot and heatmap visualizing data on CD74 expression. The violin plot (A) shows CD74 expression in tumor vs. normal samples, with tumors having higher expression. The heatmap (B) displays correlations of CD74 expression with various clinical factors, showing varying degrees of correlation indicated by color gradients from blue to red.]

FIGURE 2
 Differential expression and clinical correlation analysis of CD74. (A) Violin plot of differential analysis of CD74 expression in tumor and normal tissues, as shown in the figure, normal tissues showed significantly higher expression; (B) Heatmap of correlation between CD74 and clinical features, red represents positive correlation, blue represents negative correlation, and the higher the degree of color, the more significant the correlation. (Significant symbol: –, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).


The NSCLC cohort consisted of 122 patients, with 58 patients in the CD74 high expression group and 64 patients in the CD74 low expression group. The clinical information of the patients is presented in Table 1. Analysis revealed that only histological subtype showed a statistically significant difference between the high and low expression groups. There were no significant differences observed in age, sex, smoking status, T stage, N stage, M stage, EGFR mutation, KRAS mutation, chemotherapy, or radiotherapy between the two groups. Correlation analysis demonstrated a positive correlation between CD74 expression and histological subtype (r = 0.4, p < 0.0001) as well as distant metastasis (M stage) (r = 0.25, p < 0.01), as shown in Figure 2B. Further details on clinical information and clinical correlation analysis in the LUAD cohort can be found in Supplementary Table S3 and Supplementary Figures S1.



Survival analysis between CD74 groups

A total of 122 patients in the NSCLC cohort were included in the survival analysis. The Kaplan–Meier curve showed that high CD74 expression was associated with improved overall survival (OS) (p = 0.02) (Figure 3A). Similarly, in the LUAD cohort, the CD74 high expression group had a higher survival rate (p = 0.006) (Figure 3B). In the NSCLC cohort, patients with later N stage and M stage had worse OS (p < 0.005 and 0.012), and in the LUAD cohort, patients with later T stage and N stage had worse OS (p < 0.001) (Supplementary Figures S2a–d). Multivariate Cox regression analysis of variables showed that high CD74 expression was also a protective factor for OS (HR = 0.311, 95% CI 0.129–0.747, p = 0.009), which was statistically significant (Figure 3C). Similarly, in the LUAD cohort, both univariate and multivariate COX regression analyses showed that high CD74 expression was a protective factor for OS (HR = 0.595 and 0.638, 95% CI 0.416–0.85 and 0.438–0.931, respectively; p = 0.004 and 0.02) (Figure 3D). Therefore, high CD74 expression can be regarded as an independent prognostic factor for NSCLC and LUAD.

[image: Survival analysis graphs and Cox regression tables evaluating CD74 expression in lung cancer cohorts. Panel A shows the GEO-NSCLC cohort Kaplan-Meier survival curve with low and high CD74 expression. Panel B shows the TCGA-LUAD cohort Kaplan-Meier survival curve. Panels C and D present univariate and multivariate Cox regression analyses with hazard ratios, confidence intervals, and p-values for variables like gender, age, smoking status, mutation status, radiotherapy, chemotherapy, and tumor stage. Red diamonds indicate hazard ratios, with lines representing confidence intervals.]

FIGURE 3
 Survival analysis. (A) KM curve of the relationship between CD74 expression and OS in the NSCLC cohort. (B) KM curve of the relationship between CD74 expression and OS in the LUAD cohort. (C) Forest plot of univariate and multivariate COX regression analysis of CD74 and clinical characteristics in the NSCLC cohort. (D) Forest plot of univariate and multivariate COX regression analysis of CD74 and clinical characteristics in the LUAD cohort.


The interaction analysis between CD74 and other variables in the NSCLC cohort and LUAD cohort showed that the high expression of CD74 was a protective factor for OS, and there was no statistically significant difference in the interaction test of each variable (p > 0.05). It can be assumed that the effect of high CD74 expression on OS is the same across patients with differences in subvariables. For more details, refer to Supplementary Figure S2e.



GSVA of CD74-related genes

The enrichment scores of KEGG pathway gene sets and hallmark gene sets were calculated using GSVA for the expression matrix of the NSCLC cohort and LUAD cohort. Differential analysis of the enrichment score revealed that the CD74 high expression group was significantly enriched in various cancers, such as small lung cancer, non-small cell lung cancer, pancreatic cancer, and others, within the KEGG gene set. Additionally, it was significantly enriched in signaling pathways such as apoptosis, the JAK/STAT pathway, and the ERBB signaling pathway. Please refer to Figure 4A and Supplementary Figure S3a for more details.

[image: Five-panel image featuring gene expression and immune cell correlation data related to CD74 levels. Panel A and B show bar charts with t-values for KEGG and Hallmark pathways, respectively, comparing CD74 high and low groups. Panel C is a heatmap of gene expression levels for different CD74 states. Panels D and E present dot plots of correlation coefficients for various immune cells, with color coding for p-values and circle size indicating correlation strength.]

FIGURE 4
 Correlation analysis of tumor pathways and immune responses for CD74 expression. (A) GSVA showed differential enrichment in KEGG pathway between CD74 high and low expression groups. (B) GSVA showed differential enrichment of Hallmarks pathways between CD74 high and low expression groups. (C) Heat map of differential expression of antigen processing and presentation genes between CD74 high expression group and CD74 low expression group, (significant symbol: *, p < 0.05; **, p < 0.01, ***, p < 0.001). (D) Lollipop plot of correlation between CD74 expression and immune cell infiltration in the NSCLC cohort. (E) Lollipop plot of correlation between CD74 expression and immune cell infiltration in the LUAD cohort.


In the hallmark gene set, the CD74 high expression group showed significant enrichment in the DNA repair, MYC targets V1, and oxidative phosphorylation signaling pathways. Conversely, the low CD74 group exhibited significant enrichment in the Hedgehog signaling, angiogenesis, and KRAS signaling pathways. Please see Figure 4B and Supplementary Figure S3b for visual representation.

Overall, our analysis indicates that tumor cell behaviors are inhibited in the tumor microenvironment of patients with high CD74 expression, while multiple cancer pathways are activated in tumor cells with low CD74 expression.



Analysis of antigen presentation and processing gene differences and immune cell infiltration between CD74 groups

The analysis of antigen processing and presentation gene differences between the CD74 high and low groups revealed that the gene expression levels of CD8A, CD1D, CD1C, and CD4, among others, were significantly increased in the CD74 high expression group. Please refer to Figure 4C and Supplementary Figure S3c for more details.

The expression matrices of the NSCLC cohort and LUAD cohort were uploaded to the CIBERSORTx database to calculate the level of immune cell infiltration for each sample. The correlation analysis between the level of immune cell infiltration and CD74 expression showed that CD74 was significantly positively correlated with the degree of infiltration of immune cells such as M2 macrophages, M1macrophages, resting dendritic cells, CD8 T cells, and memory B cells. Furthermore, there was a significant negative correlation between CD74 expression and resting NK cell, activated mast cell, and eosinophil infiltration (see Figures 4D,E).



Construction of a radiomics model for predicting CD74 expression

Imaging features were extracted from 68 patients with imaging data in the NSCLC cohort. Finally, 107 radiomics features were obtained, and then the radiomics feature values were standardized. The results of the consistency evaluation showed that the median value of the ICC of radiomics features was 0.928, and there were 102 radiomics features with ICC values ≥0.75 (95.3% of all features). The features with ICC values ≥0.75 were selected by the REF method, and the top 8 features were obtained. The false positive results were removed by a stepwise regression algorithm, and finally, 3 radiomics features were obtained to construct the prediction model. The three imaging features used to construct the prediction model were glcm maximum probability, glszm large area high gray level emphasis and glszm zone variance (Table 2).



TABLE 2 Importance score of radiomics features in the model.
[image: Table showing feature importance for LR and SVM models. Features: Glcm Maximum Probability, Glszm Large Area High Gray Level Emphasis, Glszm Zone Variance. LR importances: 1.847, 1.885, 2.163. SVM importances: 0.594, 0.611, 0.598.]

The selected radiomics features were used to construct the LR model and SVM model to predict CD74 gene expression. The importance of radiomics features in the LR model and SVM model is shown in Figures 5A,B, and the specific values are shown in Table 2. The formula of the prediction model is

[image: Equation representing a logistic function: \( P = \frac{1}{1 + \exp(\text{{33.244}} \times \text{{glszm Zone Variance}} - \text{{1.414}} \times \text{{glcm Maximum Probability}} - \text{{44.301}} \times \text{{glszm Large Area High Gray Level Emphasis}})} \).]

[image: Panels A and B show feature importance plots with different radiomic features on the y-axis and their importance scores on the x-axis. Panels C and D display sets of Receiver Operating Characteristic (ROC) curves with Area Under the Curve (AUC) values and calibration curves. Panel E shows a violin plot comparing CD74 expression with radiomics scores, highlighting high and low expression groups, including a significance value of nine times ten to the negative fifth power. Panel F presents another violin plot of CD74 expression against radiomics scores, indicating a significance value of 0.00013.]

FIGURE 5
 Establishment and validation of a radiomics prediction model for CD74 expression. (A) Importance of image features in the LR model. (B) The importance of image features in the SVM model. (C) LR model performance test, top left shows the ROC curve of model evaluation, top right shows the ROC curve of model evaluation after 5-fold cross validation, bottom left shows the Hosmer-Lemeshow goodness of fit test and calibration curve, and bottom right shows the DCA curve of model. (D) SVM model performance test, top left shows the ROC curve of model evaluation, top right shows the ROC curve of model evaluation after 5-fold cross validation, bottom left shows the Hosmer-Lemeshow goodness of fit test and calibration curve, and bottom right shows the DCA curve of model. (E) Violin plot of radiomics score differences between CD74 high and low groups in the LR model. (F) Violin plot of radiomics score differences between CD74 high and low groups in SVM model.




Validation of the radiomics model

The performance of the LR and SVM models was evaluated using ROC curves. As shown in Figure 5C, for the LR model, the training set achieved an AUC of 0.778, with a sensitivity of 0.935 and a specificity of 0.514 at the optimal cut-off point (Table 3). In the validation set, the AUC was 0.772, with a sensitivity of 0.968 and a specificity of 0.459 (Table 3). The calibration curve and the Hosmer-Lemeshow goodness-of-fit test indicated good agreement between the predicted probabilities of high CD74 expression and the actual observations (p > 0.05) (Figure 5C). The decision curve analysis (DCA) demonstrated that the model had a high potential for clinical application (Figure 5C). For the SVM model, as shown in Figure 5D, the training set yielded an AUC of 0.729, with a sensitivity of 0.968 and a specificity of 0.486 at the optimal cut-off point (Table 3). In the validation set, the AUC was 0.701, with a sensitivity of 0.903 and a specificity of 0.459 (Table 3). Similarly, the calibration curve and the Hosmer-Lemeshow test showed good consistency between the predicted and actual outcomes (p > 0.05) (Figure 5D). The DCA also confirmed the high clinical utility of the SVM model (Figure 5D).



TABLE 3 Performance indicators of the model.
[image: Comparison table of two machine learning models, Logistic Regression (LR) and Support Vector Machine (SVM), across training and validation sets showing AUC, 95% CI, Sensitivity, Specificity, ACC, PPV, NPV, and Brier Score. LR results: AUC 0.778 training, 0.772 validation; SVM results: AUC 0.729 training, 0.701 validation. Brier scores range from 0.19 to 0.219. Definitions for ACC, PPV, and NPV are provided.]

The difference analysis of radiomics scores output by the LR model and SVM model significantly differed in terms of the distribution of radiomics scores between the CD74 high and low groups (p < 0.05). As depicted in Figures 5E,F, the CD74 high expression group exhibited higher radiomics scores.

The DeLong test was used to compare the AUC values of the LR model and SVM model before and after cross-validation. The results indicated that the p value was 0.79 before cross-validation and 0.39 after cross-validation. The AUC values of the LR model and SVM model before and after cross-validation were not significantly different, suggesting that each model has good prediction efficiency.




Discussion

The classical prognostic indicators of lung cancer are no longer adequate for prognostic stratification and individualized treatment of highly heterogeneous NSCLC (6). Fortunately, radiomics is currently utilized not only for lung cancer diagnosis, assessing the tumor microenvironment, and predicting survival prognosis but also for identification of gene alterations and even prediction of gene expression (37, 38). Based on this premise, we developed a machine learning-based radiomics model that successfully predicted the expression of CD74 in the tumor microenvironment of NSCLC and established the relationship between enhanced CT radiomics features and tumor prognosis. The radiomics features of the machine learning model included large area high gray level emphasis, maximum probability, and zone variance. The feature scores output by the model can effectively distinguish the level of CD74 expression, providing a new indicator for prognosis stratification and individualized precision treatment of lung cancer patients.

Many studies have confirmed the close relationship between the expression of CD74 and the occurrence and development of tumors. For instance, several studies have found a positive correlation between CD74 and MHC class II molecule expression, leading to a higher overall survival rate in certain tumor patients (39–41). Moreover, other studies have indicated that CD74 promotes tumor proliferation and that its expression is negatively correlated with patient survival (10, 42). However, due to significant biological differences among different malignancies, there may not be a uniform answer regarding the role of CD74 in various tumors. Our analysis of both the NSCLC dataset and LUAD dataset revealed that high expression of CD74 is an independent prognostic factor for improved survival. Additionally, GSVA analysis demonstrated the activation of multiple tumor pathways in the CD74 low expression group. These findings suggest that CD74 can serve as a prognostic biomarker in NSCLC.

CD74 plays an important role in several key processes of the immune response, including antigen processing, endocytic maturation, cell migration and signal transduction (43). One study found that high expression of CD74 enhances the immune function of macrophages and CD8+ T cells in the tumor microenvironment of hepatocellular carcinoma. Additionally, high expression of CD74 is an independent predictor of good prognosis in patients with hepatocellular carcinoma (44). In our study, we observed high expression of antitumor-associated antigen processing and presentation genes in the tumor microenvironment of NSCLC patients with high CD74 expression. We also found that CD74 promotes the infiltration of macrophages, memory B cells, and CD8+ T cells in the tumor microenvironment. Macrophages 1 and CD8 + T cells are the main antitumor immune cells in the tumor microenvironment (45, 46). Furthermore, studies have shown that CD74 can be rapidly internalized on tumor cells, making it a determining factor for conjugated chemotherapy or radioisotope carriers. This presents CD74 as a promising target for antibody–drug conjugates (47). A preclinical study demonstrated that the combination of radioisotopes, doxorubicin, amphibian cytosolic ribonuclease ranpirnase, and milatuzumab significantly improved the survival of human malignant tumor xenograft mice and was well tolerated (13). Several studies have also suggested that CD74 is a therapeutic target for milatuzumab (12) and a therapeutic tool for vaccine therapy of malignancies (48). Based on the findings of these studies, it can be inferred that overexpression of CD74 may serve as a potential therapeutic modality.

CT imaging is an essential examination for the clinical diagnosis of lung cancer; however, it lacks objectivity and quantification. Radiomics is a high-throughput “imaging sequencing” data technology that can obtain many imaging parameters and dynamically detect and quantitatively reflect tumor characteristics in a noninvasive way (49). For instance, one study utilized paired radiomics data and RNA sequencing data to unveil the biological significance of radiomics phenotypes for glioblastoma prognosis (50). Another study used head and neck enhanced CT radiomics features to predict the expression levels of prognosis-related molecules in head and neck squamous cell carcinoma (38). Some scholars have also compared machine learning models, including logistic regression, random forest, naive Bayes, SVM, AdaBoost, and neural network models, based on MRI texture features to predict occult lymph node metastasis in early tongue squamous cell carcinoma and confirmed that machine learning models can be an effective predictive tool (51).

Due to the exploratory stage of this study, there are still some limitations. First, due to the complexity of valid data collection, this study did not perform external validation on an independent image dataset to provide further confirmation of the reliability of the model. Second, our data were obtained from an open public database, and the CT image quality was not consistent. Third, the data revealed a mismatch, particularly in the proportion of squamous carcinoma and adenocarcinoma. Fourth, the number of samples is relatively small, and there is a lack of multicentre prospective radiomics studies to guide clinical practice. Increasing the number of CT images from multiple institutions in the future will improve the stability and generalizability of the model. Additionally, adopting standardized methods that meet the Image Biomarker Standardisation Initiative (IBSI) criteria may allow the radiomics model to become a clinically meaningful tool.



Conclusion

CD74 expression is identified as an independent prognostic factor that significantly affects the overall survival of patients with NSCLC. The enhanced CT radiomics model demonstrates a favorable level of stability and diagnostic efficiency in predicting CD74 expression. This finding suggests that the radiomics model may have the potential to be utilized as a novel method for individualized precision treatment of NSCLC.
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Background and objective: Several large-scale phase III clinical trials have confirmed the survival benefit of immunotherapy in patients with locally advanced or metastatic esophageal cancer (EC). The study aimed to investigate whether early use of immunotherapy can improve long-term survival.
Methods: Patients with locally advanced or metastatic esophageal squamous cell cancer (ESCC) diagnosed from January 2018 to December 2021 were retrospectively analyzed. According to the time of immunotherapy, patients were divided into the early immunotherapy group (EIT group, first-line immunotherapy) and the late immunotherapy group (LIT group, second-line immunotherapy). A 1:1 propensity score matching (PSM) was applied to balance the observable potential confounding factors between the two groups. The primary outcome was overall survival (OS).
Results: A total of 359 patients were enrolled; after propensity score matching, the clinical features were well balanced between the two groups, including 107 patients. The median OS was 15.7 months (95%CI: 12.81–18.59) in the EIT group and 17.7 months (95%CI: 14.89–20.57) in the LIT group, respectively (p = 0.185, HR = 1.25). The PFS1 of patients was 8.7 months (95%CI: 7.53–9.87) and 7.6 months (95%CI: 5.90–9.30), respectively, and the difference was statistically significant (p = 0.032, HR = 0.72). The PFS2 of patients was 12.97 months (95%CI: 11.37–14.58) and 12.93 months (95%CI: 11.65–14.21), respectively, and the difference was statistically significant (p = 0.045, HR = 0.73). Subgroup analysis showed that male patients with middle thoracic EC, younger than 65 years old, with only one site of metastasis, only lymph node progression, no combined radiotherapy after progression, and TP (paclitaxel + platinum) regimen chemotherapy may have greater benefits. The COX multivariate analysis showed that the EIT group and the differentiation degree of the tumor had an impact on OS (P: 0.03, 0.04; HR: 0.73, 0.70).
Conclusion: Early immunotherapy can improve PFS without affecting OS for patients with locally advanced or metastatic ESCC.

Keywords
 immunotherapy; esophageal squamous cell cancer; overall survival; EIT; LiT


1 Background

Esophageal cancer (EC) is one of the most common malignant tumors in the world, and China is a high-incidence area for EC. The morbidity and mortality ranked sixth and fourth among all malignant tumors, respectively. Multiple phase III clinical studies, such as Keynote-181 (1), Attraction-3 (2), Escort (3), and Rationale302 (4), have suggested that, compared with chemotherapy alone, immunotherapy improved overall survival (OS) (from 6.2 months to 10.9 months) and progression-free survival (PFS) (from 1.6 months to 3.4 months) in the second-line treatment of EC. Following, multiple phase III clinical studies, including Keynote-590 (5), Checkmate-648 (6), Escort-1 (7), Orient-15 (8) and Jupoiter-06 (9) have suggested that, compared with chemotherapy alone, the combination of chemotherapy and immunotherapy improved OS (from 9.8 months to 17.2 months) and PFS (from 5.3 months to 7.3 months) in the first-line treatment of EC. Previous studies have shown that the efficacy of immune checkpoint inhibitors is increased in earlier lines of therapy across multiple tumor types compared with in later lines of therapy (10–14). However, it is rarely reported in the real world whether the first-line application of immunotherapy in locally advanced or metastatic EC can bring longer survival benefits. In this study, we retrospectively analyzed the survival of patients with locally advanced or metastatic esophageal squamous cell cancer (ESCC) treated with immunotherapy as the first-or second-line treatment, exploring the value of early application of immunotherapy. This real-world study focused on EC, which has rarely been reported previously, and conducted a subgroup analysis, indicating the population that can benefit from early immunotherapy, which has more guiding significance for clinical medication.



2 Materials and methods


2.1 Data collection

We retrospectively analyzed patients with locally advanced or metastatic ESCC at Shandong Cancer Hospital from January 2018 to December 2021. The inclusion criteria were as follows: (1) Patients with pathologically confirmed ESCC; (2) Patients initially with unresectable locally advanced or metastatic disease; (3) Patients receiving immunotherapy as first-line or second-line treatment with more than two cycles; (4). Complete imaging data were available for evaluation during treatment or follow-up; (5). Eastern Cooperative Oncology Group (ECOG) score 0–1.

Exclusion criteria: (1) other pathological types of EC, such as adenocarcinoma and small cell carcinoma; (2) Combined with other tumors; (3) Central nervous system metastasis.

According to the time of immunotherapy, patients were divided into the early immunotherapy group (EIT group, first-line immunotherapy) and the late immunotherapy group (LIT group, second-line immunotherapy). The EIT group comprises patients who initially received first-line immunotherapy or progressed to first-line immunotherapy after previous radical treatment. The LIT group was defined as patients who initially received second-line immunotherapy or locally advanced or progressed to second-line immunotherapy after previous treatment. The chemotherapy regimen is paclitaxel or fluorouracil + platinum. The PD-1 inhibitors used among patients included pembrolizumab, toripalimab, sintilimab, envafolimab, and camrelizumab.



2.2 Evaluation and follow-up

The primary end point was OS, defined as the time from diagnosis to death from any cause. The secondary endpoints were PFS1, PFS2, disease control rate, and treatment-related adverse events (TRAEs). PFS1 is the time from diagnosis to disease progression or death from any cause. PFS2 is the time from diagnosis to second disease progression or death from any cause. Disease control rate included complete response, partial response, and stable disease. TRAEs were assessed within 90 days after the last dose of medication and were assessed using the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. The efficacy was evaluated every two courses during the treatment according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. After the end of treatment, the patients were followed up every three months for 2 years, and once every six months for 3–5 years. Disease progression was assessed by CT scan according to RECIST 1.1 criteria.



2.3 Statistical analysis

SPSS 26.0 was used for statistical analysis. Clinical characteristics were compared using the Kruskal-Wallis test for continuous data and the chi-square test or Fisher’s exact test for categorical data. OS and PFS were estimated using the Kaplan–Meier method and compared by the log-rank test. The propensity score-matched analysis (including age, sex, ECOG score, tumor location, differentiation, metastatic sites, number of organs with metastases, chemotherapy regimens, and immune drugs) was performed using the one-to-one nearest neighbor method (ps 0.1). The COX proportional hazards model was used for multivariate analysis to evaluate the possible factors affecting the OS of patients. Statistical results of p < 0.05 were considered statistically significant.




3 Results


3.1 Patients and treatment

A total of 359 patients with ESCC who met the inclusion criteria from January 2018 to December 2021 were included in the analysis. Among them, 122 patients were at the initial stage IV. Twenty-three patients with initially inoperable locally advanced disease were enrolled in the clinical trial and received first-line immunotherapy and chemotherapy. One hundred nineteen patients were in the early stage (stage I + II) and received radical surgery + adjuvant/neoadjuvant therapy. Ninety-five patients with locally advanced disease who were initially inoperable were treated with radical chemoradiotherapy. According to the number of immunotherapy lines, the patients were divided into two groups: EIT group (252 cases) and LIT group (107 cases). The initial stage and treatment of the patients are shown in Figure 1, the basic characteristics of the patients are shown in Table 1, and the disease control rate is shown in Table 2.

[image: Flowchart detailing a study from January 2018 to December 2021 with 359 participants. It is divided into three stages: I+II (119 participants), III (118 participants), and IV (122 participants). Each stage notes participants received initial surgery with or without adjuvant/neoadjuvant therapy. Stage I+II and IV split into EIT (89 and 76) and LIT (30 and 46), respectively, while stage III divides into EIT (23 and 64) and LIT (31). Total EIT is 252 and LIT is 107.]

FIGURE 1
 The initial stage and treatment of the patients.



TABLE 1 Basic characteristics of the patients.


	Characteristic
	EIT group (n = 252) (n, %)
	LIT group (n = 107) (n, %)
	p value
	EIT group matched (n = 107) (n, %)
	P value (psm)

 

 	Age, years Median, range 	62 (41–82) 	61 (42–84) 	0.20 	62 (42–84) 	0.35


 	Sex 	 	 	0.95 	 	00.24


 	Male 	222 (88.1) 	94 (87.9) 	 	88 (82.2) 	


 	Female 	30 (11.9) 	13 (12.1) 	 	19 (17.8) 	


 	ECOG performance status 	 	 	0.90 	 	0.95


 	0 	124 (49.2) 	53 (49.5) 	 	53 (49.5) 	


 	1 	128 (50.8) 	54 (50.5) 	 	54 (50.5) 	


 	Tumor location 	 	 	0.23 	 	0.17


 	Cervical segment 	10 (4.0) 	2 (1.9) 	 	1 (0.9) 	


 	Upper thoracic segment 	34 (13.5) 	13 (12.1) 	 	11 (10.3) 	


 	Middle thoracic segment 	132 (52.4) 	48 (44.9) 	 	64 (59.8) 	


 	Lower thoracic segment 	76 (30.2) 	44 (41.1) 	 	31 (29) 	


 	Differentiated degree 	 	 	0.92 	 	0.96


 	High differentiation 	14 (5.6) 	8 (7.5) 	 	10 (9.3) 	


 	Middle differentiation 	73 (29) 	30 (28) 	 	29 (27.1) 	


 	Low differentiation 	65 (25.8) 	27 (25) 	 	28 (26.2) 	


 	Uncertain 	100 (39.7) 	42 (39.3) 	 	40 (37.4) 	


 	Site of metastasis 	 	 	0.19 	 	0.54


 	Liver 	39 (15.5) 	10 (9.3) 	 	13 (12.1) 	


 	Lung 	44 (17.5) 	16 (15) 	 	21 (19.6) 	


 	Bone 	16 (6.3) 	4 (3.7) 	 	6 (5.6) 	


 	Lymph node 	153 (60.7) 	77 (72) 	 	67 (62.6) 	


 	Number of organs with metastases 	 	 	0.22 	 	0.26


 	1 	150 (59.5) 	71 (66.4) 	 	63 (58.9) 	


 	≥2 	102 (40.5) 	36 (33.6) 	 	44 (41.1) 	


 	Chemotherapy 	 	 	0.005 	 	0.66


 	PF 	76 (30.2) 	35 (32.7) 	 	33 (30.8) 	


 	TP 	151 (59.9) 	60 (56.1) 	 	63 (58.9) 	


 	Uncertain 	25 (9.9) 	12 (11.2) 	 	11 (10.3) 	


 	Immunotherapy 	 	 	0.001 	 	0.16


 	Camrelizumab 	121 (48) 	71 (66.4) 	 	65 (60.7) 	


 	Pembrolizumab 	29 (11.5) 	2 (1.9) 	 	5 (4.7) 	


 	Sintilimab 	63 (25) 	24 (22.4) 	 	23 (21.5) 	


 	Envafolimab 	7 (2.8) 	1 (0.9) 	 	3 (2.8) 	


 	Toripalimab 	13 (5.2) 	3 (2.8) 	 	5 (4.7) 	





Comparison between the LIT group and the EIT group matched for P value.
 


TABLE 2 Short-term efficacy evaluation.


	First-line
	EIT group (n = 252) (immune + chemotherapy)
	EIT group (psm, n = 107) (immune + chemotherapy)
	LIT group (n = 107) (chemotherapy)

 

 	Complete response 	1 (0.4%) 	1 (0.9%) 	0


 	Partial response 	80 (31.7%) 	30 (28.0%) 	24 (22.5%)


 	Stable disease 	108 (42.9%) 	46 (43%) 	53 (50.1%)


 	Progressive disease 	63 (25%) 	25 (23.4%) 	30 (28%)


 	Objective response 	81 (32.1%) 	31 (28.9%) 	24 (22.5%)


 	Disease control 	189 (75%) 	77 (71.9%) 	77 (72.6%)




 

The baseline clinical characteristics of all patients were comparable after propensity-score matching. The patient’s gender, age, ECOG score, tumor location, degree of differentiation, metastatic site after progression, number of metastatic organs, chemotherapy regimens, different immune drugs used, and whether immunization combined with radiotherapy were analyzed (Table 3). The COX proportional hazard model was used for multivariate analysis to explore the possible factors influencing OS.


TABLE 3 Multivariate analysis.


	Variables
	p-value
	HR (95%CI)

 

 	Sex 	0.69 	0.91 (0.56–1.46)


 	Age 	0.11 	0.78 (0.58–1.05)


 	ECOG 	0.72 	0.95 (0.73–1.24)


 	Location 	0.87 	0.98 (0.81–1.19)


 	Differentiation 	0.04 	0.70 (0.50–0.99)


 	Site of metastases 	0.82 	1.01 (0.92–1.11)


 	Number of organs with metastases 	0.07 	1.25 (0.98–1.60)


 	Chemotherapy regimens 	0.22 	1.11 (0.94–1.31)


 	Immunotherapy regimens 	0.44 	1.04 (0.94–1.15)


 	Immune with or without radiotherapy 	0.19 	1.20 (0.91–1.58)


 	EIT group or LIT group 	0.03 	0.73 (0.55–0.98)




 



3.2 Survival

All patients were followed regularly until November 30, 2022, or death from any cause. The median duration of follow-up was 26.8 months in EIT group and 29.9 months in LIT group. In EIT group, 90 (35.7%) patients did not progress after first-line immunotherapy + chemotherapy; seven patients (4.8%) did not progress after second-line chemotherapy. After the progression of first-line immunotherapy + chemotherapy, 16 patients (6.3%) did not receive second-line chemotherapy. Among them, five patients (2.0%) did not receive second-line treatment due to death, and 11 patients (4.4%) were unable to accept or refused second-line treatment due to poor health. In LIT group, all patients received second-line immunotherapy after progression on first-line therapy, and 16 patients (15%) were still receiving second-line immunotherapy without tumor progression as of the follow-up date. Of the patients who subsequently entered third-line therapy, 15.5% were in the EIT group and 30% were in the LIT group.

After propensity score matching, 107 patients in EIT group were matched to those LIT group; the median OS was 15.7 months (95%CI: 12.81–18.59) in EIT group and 17.7 months (95%CI: 14.89–20.57) in EIT group, respectively, with no statistically significant difference (p = 0.185, HR = 1.25) (Figure 2). The median PFS1 of the two groups was 8.7 months (95%CI: 7.53–9.87) in the EIT group and 7.6 months (95%CI: 5.90–9.30) in the LIT group, with a statistically significant difference (p = 0.032, HR = 0.72) (Figure 3). The median PFS2 of the two groups was 12.97 months (95%CI: 11.37–14.58) in the EIT group and 12.93 months (95%CI: 11.65–14.21) in the LIT group, with a statistically significant difference (p = 0.045, HR = 0.73) (Figure 4).

[image: Kaplan-Meier survival curve showing survival probability over 60 months for two groups, EIT and LIT. The EIT group is marked in red and the LIT group in blue. Survival probability decreases over time, with marked censoring points indicated by crosses. The survival probability starts near 1.0 and declines to approach 0.0 as time progresses. A table below shows the number at risk for each group at different time points.]

FIGURE 2
 Overall survival (months).


[image: Kaplan-Meier survival curve comparing two lines, EIT (blue) and LIT (red), over 60 months. The y-axis shows survival probability, and the x-axis represents time in months. Censored data is marked with crosses. EIT and LIT lines begin near 1.0 and gradually decrease, with LIT showing slightly lower survival rates. A table below indicates the number at risk over time for each line.]

FIGURE 3
 Progression-free survival 1(months).


[image: Kaplan-Meier survival plot comparing EIT and LIT over 50 months. The blue line represents EIT, the red line represents LIT, with survival probability on the vertical axis and time in months on the horizontal axis. Censored data points are marked. A table below shows the number of cases at risk at different time points.]

FIGURE 4
 Progression-free survival 2(months).


Subgroup analysis using PFS2 as the end point (Figure 5) showed that in male patients, younger than 65 years of age, with esophageal tumors located in the middle thoracic segment, lymph node metastasis after progression, and one organ metastasis. First-line treatment without combination radiotherapy, and a TP regimen (paclitaxel and platinum) combined with chemotherapy, and the combination of immunotherapy in the first-line treatment may have greater benefits than the second-line combination of immunotherapy. This also provides a reference for our clinical treatment options.

[image: Forest plot illustrating the hazard ratios with 95% confidence intervals for various clinical characteristics, such as gender, age, ECOG status, tumor location, differentiation, metastasis sites, organ involvement, radiotherapy, and chemotherapy. The plot includes diamonds representing the hazard ratios along a vertical line, with confidence intervals extending horizontally. Numeric data is shown alongside for detailed analysis.]

FIGURE 5
 Subgroup analysis.


The COX proportional hazard model was established, and multivariate analysis showed (Table 3) that the EIT group (p = 0.03, HR = 0.73) and differentiation degree of the tumor affected OS (p = 0.04, HR = 0.70). However, gender, age, ECOG score, tumor location, metastatic site, number of metastatic organs, chemotherapy regimen, immune drugs, and whether immunotherapy combined with radiotherapy had no significant effect on OS. Treatment-related adverse effects are shown in Table 4. In this retrospective data, 122 patients with stage IV were selected and divided into two groups, in addition to radiotherapy as part of the initial treatment: 67 patients with radiotherapy and 55 patients without radiotherapy. The median OS was 17.8 months and 15.8 months, respectively (p = 0.179).


TABLE 4 Adverse events related to treatment.


	Adverse events
	No. (%) of patients



	EIT group (n = 252)
	EIT group (psm, n = 107)
	LIT group (n = 107)



	Any grade
	≥ Grade 3
	Any grade
	≥ Grade 3
	Any grade
	≥ Grade 3

 

 	Treatment-related adverse events 	249 (98.9) 	152 (60.4) 	104 (97.2) 	64 (59.8) 	104 (97.0) 	67 (62.5)


 	Anemia 	193 (75) 	42 (16.5) 	78 (72.9) 	16 (15) 	79 (74.2) 	13 (12.5)


 	White blood cell counts decreased 	157 (77.8) 	63 (25) 	82 (76.6) 	25 (23.4) 	75 (70.3) 	27 (25.6)


 	Neutrophil count decreased 	167 (66.5) 	79 (31.2) 	73 (68.2) 	35 (32.7) 	80 (63.5) 	48 (45.4)


 	Nausea 	132 (52.4) 	4 (1.5) 	54 (50.4) 	2 (1.9) 	55 (51.3) 	2 (1.7)


 	Asthenia 	122 (48.5) 	6 (2.2) 	48 (44.9) 	2 (1.9) 	46 (43.4) 	3 (2.5)


 	Decreased appetite 	107 (42.5) 	1 (0.5) 	46 (43) 	1 (0.9) 	47 (44.1) 	2 (1.5)


 	Vomiting 	89 (35.5) 	6 (2.4) 	33 (30.8) 	2 (1.9) 	34 (31.7) 	2 (2.0)


 	Platelet count decreased 	64 (25.5) 	5 (2.0) 	25 (23.4) 	2 (1.9) 	25 (23.6) 	2 (2.0)


 	Weight decreased 	60 (23.8) 	2 (0.7) 	24 (22.4) 	3 (2.8) 	23 (21.6) 	2 (2.0)


 	Aspartate aminotransferase increased 	30 (12.1) 	3 (1.0) 	10 (9.3) 	1 (0.9) 	11 (10) 	1 (1.0)


 	Immune-related adverse events 	252 (84.6) 	 	34 (31.8) 	 	98 (33.0) 	


 	Reactive capillary endothelial proliferation 	121 (48) 	 	48 (44.9) 	 	71 (66.4) 	


 	Hypothyroidism 	31 (12.3) 	 	9 (8.4) 	 	7 (6.5) 	


 	Hyperthyroidism 	6 (2.4) 	 	2 (1.9) 	 	1 (1.0) 	


 	Rash 	16 (6.4) 	 	6 (5.6) 	 	2 (2.0) 	


 	Pneumonitis 	16 (6.5) 	 	5 (4.7) 	 	2 (2.0) 	




 




4 Discussion

Treatment outcomes are poor for patients with advanced disease. The median OS rates are ~10 months and ~6 months for first-line and second-line chemotherapy, respectively, with objective response rates of ~30% and ~10%, respectively (15). With the advent of the immune era, immunotherapy has gradually become the standard treatment for advanced EC. Keynote-181 (1) confirmed the efficacy of pembrolizumab in PD-L1 cps ≥ 10 in patients with locally advanced EC; there was a two-fold improvement in survival at 12 months (43% vs. 20%) compared with chemotherapy alone (fluorouracil combined with platinum). Therefore, in 2019, it became the first immune drug approved for second-line treatment of advanced EC in the United States. Attraction-3 (2) confirmed that at a minimum follow-up time (i.e., time from random assignment of the last patient to data cutoff) of 17.6 months, OS was significantly improved in the nivolumab group compared with the chemotherapy group (10.9 months vs. 8.4 months, HR = 0.77, p = 0.019).

With the overall success of immune drugs in second-line therapy, their use is gradually advancing to first-line therapy. Keynote590 (5) reported that first-line palivizumab + chemotherapy (fluorouracil + platinum-based) vs. first-line chemotherapy in locally advanced or metastatic EC, regardless of the expression status of PD-L1 CPS, showed that the first-line immunized group improved OS (12.4 months vs. 9.8 months; 0.73 [0.62–0.86]; p < 0.0001) and progression-free survival (6.3 months vs. 5.8 months; 0.65 [0.55–0.76]; p < 0.0001), demonstrating a significant benefit. The escort-1 (7) trial confirmed that first-line immunization + chemotherapy (paclitaxel + cisplatin) was better than chemotherapy alone (paclitaxel + cisplatin) in terms of both OS and progression-free survival in the Chinese population, which were 15.3 vs. 12.0 months, respectively (HR = 0.7) and 6.9 vs. 5.6 months (HR = 0.56). The Orient-15 (8) trial also demonstrated a survival benefit for Sintilimab in first-line chemotherapy (paclitaxel + cisplatin/fluorouracil + cisplatin). Overall survival (median 16.7 vs. 12.5 months, HR = 0.63, 95%CI 0.51–0.78, p < 0.001) and progression-free survival (7.2 vs. 5.7 months, HR = 0.56, 95%CI 0.46–0.68, p < 0.001).

Our retrospective data show that after PSM, the OS of 15.7 months with first-line immunotherapy + chemotherapy in locally advanced or metastatic ESCC is consistent with the OS reported with camrelizumab (15.3 months) and sintilizumab (16.7 months), which is higher than the OS reported with pembrolizumab. One possible explanation for this discrepancy may be that a smaller proportion of patients in the control arm of the Keynote-590 study had been exposed to second-line immunotherapy. In terms of PFS, our data showed that the median PFS1 of the two groups was 8.7 months and 7.6 months, respectively (p = 0.032, HR = 0.72), which was similar to the HR values of the above three reports (0.65, 0.56, 0.56). The median PFS2 of the two groups was 12.97 months in the EIT group and 12.93 months in the LIT group, with a statistically significant difference (p = 0.045, HR = 0.73).

Previous reports showed that in non-small cell lung cancer, patients previously treated with fewer lines of therapy (i.e., in the first-line setting) might have less refractory and immunosuppressive tumor microenvironments than patients who have progressed on therapy (16). Pembrolizumab + chemotherapy in the Keynote-189 study reduced the risk of death by 44% in metastatic non-squamous NSCLC (17). Nivolumab as a second-line treatment reduced the risk of death by 27% in metastatic non-squamous NSCLC (18). The keynote-059 (14) trial showed that pembrolizumab monotherapy was effective, safe, and well tolerated in locally advanced gastric or gastroesophageal junction cancer with at least two previous lines of therapy, regardless of PD-L1 expression.

So, whether the early application of immunotherapy is more effective is still controversial. It is also rarely reported whether first-line immunotherapy has a greater survival benefit than second-line immunotherapy in treating locally advanced or metastatic EC. Our retrospective real-world study showed no significant difference in OS between the use of first-line immunotherapy + chemotherapy and chemotherapy alone in patients with locally advanced or metastatic EC, but a benefit in progression-free survival was observed with the addition of immunotherapy to the first-line regimen.

Our study showed that there was no significant difference in OS between the two groups, which we believe is mainly because twice as many patients in the LIT group compared to the EIT group received third-line therapy by the date of follow-up (15.5% vs. 30%), which resulted in significantly longer OS in the LIT group. However, there were statistically significant differences in PFS1 and PFS2 between the two groups, further indicating the benefit of immune drugs in treatment; the benefit was more significant in the early application.

In EIT groups, our subgroup analysis showed that male patients with middle thoracic EC, younger than 65 years old, with only one site of metastasis, only lymph node progression, no combined radiotherapy after progression, and TP (paclitaxel + platinum) regimen chemotherapy had better progression-free survival. In clinical practice, for young patients with lymph node metastasis or single organ metastasis, or when local radiotherapy cannot be added in time, immunotherapy should be given to patients in a timely manner.

Fluorouracil combined with cisplatin is commonly used in combination chemotherapy in Western countries, while paclitaxel combined with platinum is preferred in China (19, 20). Our retrospective data also showed that more patients chose the paclitaxel + platinum regimen. Previous retrospective reports (21) showed no significant difference in the efficacy of the two regimens in EC. However, our subgroup analysis suggests that the TP (paclitaxel + platinum) regimen is preferred as the chemotherapy regimen when combined with immunotherapy.

Li et al. (22) reported for the first time the difference in survival between first-line immunotherapy + chemotherapy and chemotherapy alone in locally recurrent or advanced metastatic esophageal squamous cell carcinoma. In their retrospective study, there was no significant difference in OS (13.5 vs. 13.1 months, p = 0.7) between immunotherapy + chemotherapy and chemotherapy alone, while PFS1 was significantly different (7.1 vs. 4.1 months, p = 0.001, HR = 0.53). Our retrospective data showed that the OS of first-line immunotherapy combined with chemotherapy and chemotherapy alone was 15.7 months and 17.7 months, respectively (p = 0.185, HR = 1.25). PFS1 was 8.7 months and 7.6 months, respectively (p = 0.032, HR = 0.72), consistent with the above conclusions. However, compared with this retrospective study, the number of patients in our article is larger, the follow-up time is longer, and the previous treatment history of the enrolled patients is more detailed, complex, and closer to the actual clinical treatment. Furthermore, we conducted subgroup analyses to inform our practice of which patients would be more inclined to be treated with immunotherapy in the first-line treatment.


4.1 Advantages and defects


4.1.1 Advantages

In this retrospective study, we found that the combination of immune therapy and chemotherapy is more advantageous than chemotherapy alone in the first-line treatment of patients with locally advanced or metastatic EC. Furthermore, our real-world study included a larger number of cases and was closer to the actual clinical treatment situation than the study by Li et al. (22). The results of subgroup analysis also hold certain guiding value for our clinical practice.



4.1.2 Defects

This article is a single-center, retrospective study, and the data may have a certain loss bias. The short follow-up time and some patients still in treatment may have a certain impact on the calculation of survival time. In this retrospective study, PD-L1 expression status was unknown in most patients, and the effect of PD-L1 expression level on survival could not be assessed. Our study included only esophageal squamous-cell carcinoma and not adenocarcinoma, which has a very low incidence, and therefore has no significant value in guiding the clinical management of esophageal adenocarcinoma.





5 Conclusion

For patients with locally advanced and metastatic EC, early application of immunotherapy has a progression-free survival benefit. In clinical practice, patients with middle thoracic EC, younger than 65 years old, with only one site of metastasis, only lymph node progression, no combined radiotherapy after progression, and TP (paclitaxel + platinum) regimen chemotherapy are inclined to be treated with immunotherapy in the first-line treatment.
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Mechanism of action

Clinical
trial status

Glucose metabolism pathway
GLUTS

PFK2/PFKFB3

HK2

PKM2

LDH-A
Mitochondrial metabolism

OXPHOS

ATP Synthase

Bcl-2/Bcl-xL

Lipid metabolism pathway
ACC

FASN

SCD1
CPT1
Amino acid metabolism pathway
SLCIAS
SLC7AS

GLS1

BAY-876

PFK158

2-DG

TEPP-46 and
DASA-58

Oxamate

Metformin
Phenformin

Oligomycin

venetoclax
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TVB2640
TVB3166
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Etomoxir

V9302
JPH203

CB-839

Signaling proteins and transcription factors

mTORCI
and mTORC2

HIF-la.

PI3K and mTOR

TAK-228

PX-478

XL765

selective GLUT1 inhibitor, inhibition of proliferation in NSCLC cells (20)

Inhibits growth of NSCLC (in vitro) (26)

Specific HK2 inhibitor, induction apoptosis of lung cancer stem cells (116)

Inhibits proliferation and induces apoptosis of NSCLC cells (117, 118)

Enhances the efficacy of anti-PD-1 treatment in an NSCLC (119)

Inhibit mitochondrial complex I, reducing ATP production and increasing
ROS generation (120, 121)

Inhibit ATP synthase (122)

Promote apoptosis (123)

Prevents ACC subunit dimerization (41)

Selective FASN inhibitor (124)
Selective FASN inhibitor (125)

Specific SCD1 inhibitor, induction apoptosis lung cancer stem cells (126, 127)

Irreversible inhibitor of CPT1B (46)

Inhibits proliferation and induces apoptosis of NSCLC cells (64)
Selective SLC7A5 inhibitor (65)

Induction apoptosis lung cancer stem cells (128)

ATP-dependent mTOR1/2 inhibitor, inhibition of proliferation in NSCLC
cells (49)

Induction apoptosis of NSCLC cells (104)

A pan PI3K/mTOR inhibitor (19)

Phase 1
NCT02044861

Phase I/11
NCT00096707

Phase I/11
NCT03086733

Phase
1 NCT04274907

Preclinical

Phase 11
(NCT03808558)
Preclinical

Preclinical

Phase I/ 11
(NCT02071862)
(NCT02771626)

Phase 11
(NCT02503722)

Preclinical

Phase 1
(NCT00777699)
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mples

100PDAC

discovery cohort comprised 160
PDAC cases from 154 patients
replication cohort comprised 95
primary PDAC.

PDAC from UCSF and several
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Human and mouse cell lines

145 primary and 61
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8 PACO cell systems and their PT
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456 PDAC

242 pancreatic cancers from
ICGC 178 pancreatic cancers from
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5 pancreatic cancer related datasets
from GEO

309 paraffin embedded
PDAC samples

38 PK mice
19 PanIN patients

317 PDAC
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SR Sequence

si-MINKI-1 GGAACAAGAUUCUGCACAA
si-MINK1-2 GAAAGAGGAGACAGAAUAU
si-SQSTM1-1 CUUCCGAAUCUACAUUAAA
si-SQSTM1-2 GAAUCUACAUUAAAGAGAA
si-CDKN1A-1 AGUUUGUGUGUCUUAAUUA

si-CDKN1A-2 GCUUAGUGUACUUGGAGUA
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Primer Sequence

MINKI FP: GGAGGACTGTATCGCCTATATCT
RP: GTCTCGATGGATCACCTTGTG
FP: TGTCCGTCAGAACCCATGC
CDRNLX RP: AAAGTCGAAGTTCCATCGCTC
SOSTMI FP: GCACCCCAATGTGATCTGC
Q RP: CGCTACACAAGTCGTAGTCTGG
UEBE2 FP: CAGAGCAACTGCGTGACATT
RP: GGCCACAACCTTGTCATTCT
ULRPS FP: ACAGGATGGCTTGAGGACTTCTITG
RP: TGATGAGGAGGCAGCAAAGGATG
ULBF6 FP: GCTTCATCCTCCCTGGCATCTG
RP: GGCTGCTGGACATACACCGTAG
GAPDH FP: CTGGGCTACACTGAGCACC
RP: AAGTGGTCGTTGAGGGCAATG
U6 FP: CTCGCTTCGGCAGCACATA
RP: AACGCTTCACGAATTTGCG
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Antibodies Application Identifier
GAPDH WB abcam ab181602
ULBP-2 WB abcam ab275023
MINK1 WB Proteintech 13137-1-AP
JNK WB abcam ab179461
Phospho-JNK WB CST 4668

c-Jun WB V abcam ab40766
Phospho-c-Jun WB abcam ab32385
Anti-human ULBP2/5/6 PE | Flow Cyt R&D systems | FAB1298P
Mouse IgG2A PE- Flow Cyt R&D systems | ICO03P

conjugated Antibody
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Chemical Structure Indication Combination Clinical Outcome

AGEETIES
MK-1454 Phase I/II | Solid Pembrolizumab (anti- Early results show safety and
Tumors, PD-1) potential efficacy
Lymphomas
ADU- Phase I/ Solid Spartalizumab (anti-PD-1) Encouraging immune response in
$100 Tumors, combination with PD-1 blockade
(MIW815) Lymphomas
TAK-676 Phase I/Il | Advanced Solid + Pembrolizumab (anti- Ongoing, early data pending
Tumors, PD-1)
Lymphomas
BI-1387446 The structure has not been made public, it Phase I Advanced Cancers + Ezabenlimab (anti- Ongoing, early data pending
belongs to the CDN small molecule PD-L1)
agonist class
BMS-986301 = The structure has not been made public, it Phase I Advanced Cancers None currently reported Ongoing, early data pending
belongs to the CDN small molecule
agonist class
E7766 Phase I Advanced Solid None currently reported Ongoing, early data pending
Tumors,
Lymphomas
SNX281 Phase I Advanced None currently reported Ongoing, early data pending
Solid Tumors
HG-381 The structure has not been made public, it Phase I Advanced Monotherapy Early-stage, shows potential
belongs to the non-CDN small molecule Solid Tumors
agonist class
GSK3745417  The structure has not been made public, it Phase T Advanced None currently reported Ongoing, early data pending
belongs to the non-CDN small molecule Solid Tumors
agonist class
exoSTING The structure has not been made public, it Phase I/Il | Advanced Monotherapy Completed, shows
belongs to the CDN-loaded exosome class Solid Tumors promising results
SYNB1891 The structure has not been made public, it Phase I Advanced + Atezolizumab Completed, data pending
belongs to the engineered bacteria vector class Solid Tumors
SB 11285 Phase I/Il | Solid Tumors, Potential future Early-stage results showing
Hematologic combination with promise in safety
0H Malignancies checkpoint inhibitors and immunogenicity
H
N
H
MK-2118 Phase I Solid Tumors + Pembrolizumab Completed, shows potential
XMT-2056 Phase [ Advanced Monotherapy Ongoing, early data pending

Solid Tumors
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Demographic or clinicopathologic Odds ratio OR 95% CI

characteristic

Gender (male vs. female) 8900 0.634-124.867 0.105
Age 1026 0937-1.125 0577
Tobacco use never smoker vs. current smoker 0.464 0.051-4.205 0.495
Former smoker 1636 023911189 0616
Pathological type (squamous cell vs. adenoca 1716 0.286-10313 0555
Pathologic N stage N1 vs. N2 0.483 0.014-16939 0,688
N3 2925 0.114-75.353 0517
TNM stage (Il vs. V) 0.466 0.059-3.670 0.469
Line of treatment (first line vs. later line) 0726 0.095-5.581 0759
Tumor diameter at pre-treatment 1042 0.999-1087 0055
Lymph node diameter at pre-treatment 1033 09231156 0571
A Tumor diameter 0.878 0794-0970 0011

0070

A Lymph node diameter 0879

CI, confidence interval.
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Training set Validation set
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“Tumor 0.86 078 075 079 0.82 072 077 0.80 082 079 085 075
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Demograpl esponders (N = 35) p-value

characteristic

Gender, No. (%) 0213
Female 6(12.5%) 8(22.9%)
Male 42(87.5%) 27(77.1%)
Age, M (Q1,Q3)] 67(59,73) 67(62,71) 0.969
Tobacco use, No. (%) 0.564
Never smoker 24(50.0%) 16 (45.7%)
Current smoker 15 (31.3%) 9(25.7%)
Former smoker 9 (18.8%) 10 (28.6%)
Pathological type, No. (%) 0329
Squamous cell 35 (72.9%) 22(62.1%)
Adenocarcinoma 13 (27.1%) 13 (37.1%)
Pathologic N stage, No. (%) 0238
N1 2(4.2%) 129%)
N2 22(45.8%) 10 (28.6%)
N3 24 (50.0%) 24 (68.6%)
TNM stage, No. (%) 0.622
m 19 (39.6%) 12(34.3%)
v 29(60.4%) 23(65.7%)
Line of treatment, No. (%) 0.098
Firstline 32(66.7%) 17 (48.6%)
Later line 16 (33.3%) 18 (51.4%)
Treatment strategy, No. (%) 0309
Monotherapy 22 (45.8%) 20(57.1%)
Combination therapy 26 (54.2%) 15 (429%)
Tumor diameter at pre-treatment (mm) 553197 5874221 0540
Lymph nodal diameter at pre-treatment (mm) 195462 204£70 0534
~134295 032141 0,000+
& Lymph nodal diameter (mm) ~58£56 16474 0,000+

“p <0001,
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