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Editorial on the Research Topic 


Head and neck squamous cell carcinoma: navigating the dawn of personalized medicine


Head and neck cancers (HNC), including squamous cell carcinoma (HNSCC) and rare subtypes, constitute a highly heterogeneous group of malignancies characterized by complex molecular profiles and wide variability in clinical outcomes (1–3). Recent advances in precision medicine, biomarker discovery, computational modelling, and pharmacovigilance have enabled significant progress in early diagnosis, therapeutic stratification, and the development of individualized treatment approaches. This Research Topic compiles nine articles that span a diverse array of contributions, from molecular biology and machine learning to clinical pharmacogenetics and adverse drug reaction monitoring, all aimed at improving outcomes for patients with head and neck malignancies.

In the context of tumor immunity, Lin et al. identified the Integrin Subunit Alpha L (ITGAL) as a pan-cancer biomarker associated with magnesium-mediated CD8+ T cell activation and immune infiltration in HNSCC, suggesting its potential as both a prognostic indicator and immunotherapy target. In parallel, Wang et al. reported that high cGAS-STING pathway activation enhances the efficacy of neoadjuvant chemo-immunotherapy in HNSCC, correlating with increased T cell infiltration and cytotoxic activity. Moreover, Zhou et al. characterized a four-gene signature linked to propionate metabolism in HNSCC, offering insights into immune evasion mechanisms and potential prognosis, and possible therapeutic targets.

Regarding therapy resistance, Chaudhary et al. identified ACTL6A and ERCC1 as key chemoresistance genes in cisplatin-treated HNC, combining qPCR, bioinformatic modelling, and meta-analysis to propose drug repurposing strategies. Complementarily, He et al. demonstrated that aloe-emodin downregulates lncRNA D63785, thereby inhibiting the PI3K/Akt/mTOR axis in nasopharyngeal carcinoma, suggesting a novel pharmacological approach.

In the realm of prognostic modelling and treatment stratification, Liu et al. developed a ubiquitin-related gene signature for laryngeal cancer, linking it signatures to immune microenvironment modulation and treatment sensitivity. Similarly, Zhang et al. applied deep learning algorithms to personalize treatment in locally advanced HNSCC, enhancing survival prediction with performance comparable or superior to current clinical guidelines.

Addressing treatment safety, Gao et al. conducted an interesting pharmacovigilance study using WHO-VigiAccess (4), characterizing adverse drug reactions associated with five anti-HNSCC agents emphasizing the need for personalized safety monitoring.

Finally, Fan et al. reported a rare case of laryngeal sarcomatous carcinoma, reviewing molecular markers with potential therapeutic implications for aggressive HNC subtypes (5).

Together, these contributions highlight the multifaceted progress being made in head and neck oncology, with implications for biomarker-driven precision medicine, AI-supported clinical decision-making, and safety profiling. These advances are essential to improving both survival and quality of life for patients facing these challenging cancers.
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Background: Integrin subunit alpha L (ITGAL) is crucial for activating CD8+ T cells through magnesium-mediated immune synapse formation and specific cytotoxicity. ITGAL might exert an important function in the growth and transformation of cancer.Methods: Our study comprehensively analyzed ITGAL expression across various cancers, validated by Immunochemistry (IHC) in the laboratory. ITGAL showed prognostic significance in pan-cancer patients, correlated with clinical features, and associated with specific signaling pathways. We also observed a relationship between ITGAL and immune cell infiltration. In HNSCC, ITGAL demonstrated prognostic value and potential implications for immunotherapy response and novel drug targets.Results: ITGAL expression linked to tumor prognosis across 27 cancers. Elevated ITGAL correlated with good prognosis in CESC, LUAD, SARC, HNSCC, and SKCM. ITGAL involved in immune regulation pathways and showed positive correlation with immune cell infiltration. ITGAL associated with CD8+ T cell infiltration. And high ITGAL expression in CD8+ T cells and NK cells. In HNSCC, ITGAL linked to favorable prognosis and sensitivity to immunotherapy. Predicted potential drugs for HNSCC.Conclusion: ITGAL is remarkably associated with CD8+T cells and crucial in the tumor immune microenvironment of pan-cancer. Furthermore, our findings may provide a targeted anti-tumor strategy for ITGAL by influencing the tumor immune microenvironment.Keywords: ITGAL, pan-cacner, immunothearpy, magnesium-related, HNSCC
INTRODUCTION
Integrin alpha L chain encoded by integrin subunit alpha L (ITGAL) is critically involved in intercellular adhesion between leukocytes by binding to intercellular adhesion molecules 1–3 (ICAMs 1–3) (Corbi et al., 1988; Hickman et al., 2022). Moreover, previous studies have demonstrated that the LFA-1 (Lymphocyte Function-associated Antigen 1) encoded by ITGAL is crucial in the inflammatory response (Whitcup et al., 1999), which includes cytotoxic T cell dependent killing, antibody mediated killing by granulocytes, monocytes and leukocyte-endothelial cell interaction. It also promotes the cytotoxicity of natural killer (NK) cells (Barber et al., 2004).
LFA-1 encoded by ITGAL has recently been found to be involved in CD8+ T cell activation. To acquire active conformation, magnesium is required by LFA-1 on CD8+T cells. As a result calcium flux, metabolic reprogramming, signal transduction, immune synapse formation, and specific cytotoxicity are enhanced (Lotscher et al., 2022).
ITGAL belongs to the integrin family, and the integrin family plays a critical role in the control of angiogenesis and lymphangiogenesis, fundamental processes crucial for the advancement and spread of tumors. The exploration of integrins as therapeutic targets shows significant potential in the realm of cancer treatment (Avraamides et al., 2008). In T cell-mediated immunity, integrins are pivotal in governing lymphocyte recirculation, activating T cells, and delineating distinct subsets of T cells and antigen-presenting cells (Pribila et al., 2004). Integrins are also pivotal in the processes of tumour stemness, metastasis, and drug tolerance. A comprehensive understanding of their regulatory mechanisms holds the promise of unveiling innovative therapeutic strategies aimed at enhancing tumor responsiveness to treatments while mitigating metastatic characteristics (Seguin et al., 2015). Existing studies have shown that ITGAL can affect the prognosis and survival of tumors such as melanoma and gastric cancer through tumor immunity (Zhang et al., 2022; Deng et al., 2023). Furthermore, ITGAL is associated with poor prognosis in ovarian cancer (Wu A. et al., 2020), while it also suggests better prognosis and inhibits tumor proliferation in NSCLC (Wang et al., 2023). The above studies reflect the heterogeneity of the impact of ITGAL on different cancers, and there are no studies on pan-cancer analysis of ITGAL, which triggered our interest in doing pan-cancer analysis of ITGAL.
The objective of this research is to evaluate the correlation between ITGAL expression and prognosis in various cancer types, as well as the impact on the immune microenvironment. At the same time, we hope to propose a targeted anti-tumor strategy for ITGAL by regulating the tumor immune microenvironment (TME) and find corresponding anti-cancer drugs.
METHODOLOGY
Immunochemistry (IHC)
A semiquantitative integration method was utilized to evaluate the intensity of IHC staining in eight different types of cancer tissues and adjacent normal tissues. Images of the stained tissues were captured using a microscope (3DHISTECH, Hungary) at ×20 magnification. Protein expression levels were quantified using the histochemistry score (H-score), calculated with the following formula: H-score = (proportion of cells exhibiting low intensity × 1) + (proportion of cells exhibiting middle intensity × 2) + (proportion of cells exhibiting high intensity × 3).
Database
The TCGA database was utilized to retrieve the RNA-seq data of tumor and paired-healthy tissues (https://portal.gdc.cancer.gov/). Data from UCSC’s XENA database were acquired from the TCGA and GTEx for unpaired analyses (https://xenabrowser.net/datapages/). TCGA-HNSC collection (https://portal.gdc.cancer.gov/projects/TCGA-HNSC) was accessed for gathering clinical information on head and neck squamous cell carcinoma (HNSCC).
Exploring the relationship between ITGAL and clinical features
To analyze the data, a univariate COX regression model was built using the “survival” package in R. The predictive significance of ITAGL was assessed using four clinical endpoints: OS (overall survival), DSS (disease-specific survival), DFS (disease-free interval), and PFS (progression-free interval). In the evaluation of prognostic markers, we conducted an analysis that involved calculating hazard ratios (HR), 95% confidence intervals, and p-values. To determine the statistical significance in this study, we utilized a significance level of p < 0.05. This threshold helped us identify associations that were unlikely to occur by chance and confirmed the statistical significance of our findings. To examine the association between the clinical stage and the expression of ITGAL, we performed correlation analysis utilizing the R packages “limma” and “ggpubr.”
Immune infiltration analysis
We used the “limma” package in R to assess the expression levels of these genes as well as examining their correlation coefficients using the Pearson statistical method. Afterwards, we employed the “ESTIMATE” package to compute the StromalScore, ImmuneScore, and ESTIMATE scores for a dataset consisting of 10,180 tumor samples across 44 different tumor types. To analyze the statistical correlation between gene expression and immune infiltration scores in each tumor, we utilized the “psych” package in R. This analysis revealed significant associations between gene expression and immune infiltration scores. To further validate these findings, immune cell infiltration data for 33 different types of cancer were retrieved from the TIMER 2.0 database (http://timer.cistrome.org) for comparison (Li et al., 2020). The visualization of the results was accomplished using the R packages “reshape2” and “RColorBrewer.”
Biomarker Exploration of Solid Tumors
The survival prognosis of associated genes could be assessed through Biomarker Exploration of Solid Tumors (BEST) (http://www.rookieutopia.com) by mapping the survival curve utilizing pan-cancer samples, including GBM (CGGA325, CGGA693), LGG (CGGA301, CGGA325, CGGA693, and TCGA), CESC (TCGA), LUAD [GSE72094 (Schabath et al., 2016), GSE41271 (Sato et al., 2013; Riquelme et al., 2014; Girard et al., 2016; Parra et al., 2016), and GSE26939 (Wilkerson et al., 2012)], HNSCC [GSE65858 (Wichmann et al., 2015)], SKCM (GSE53118 (Mann et al., 2013; Barter et al., 2014), GSE54467 (Jayawardana et al., 2015), GSE1900113 (Farshidfar et al., 2022), and TCGA), SARC [GSE21257 (Buddingh et al., 2011) and TCGA]. The ITGAL’s prognostic value in pan-cancer in terms of overall survival (OS) and post-progression survival (PPS) was assessed utilizing this database. The log-rank p-value and the hazard ratio (HR) with 95% confidence intervals were also estimated. p < 0.05 was taken as statistically significant.
Enrichment analysis and analysis of genomic heterogeneity as well as stemness
The biological roles of ITGAL in tumors were determined through Gene set enrichment analysis (GSEA). We downloaded the gene ontology (GO) from the official GSEA website (https://www.gsea-msigdb.org/gsea/downloads.jsp). R-packages “clusterProfiler”were employed for functional analysis.
Single-cell sequencing analysis
A single-cell RNA-sequencing (scRNA-seq) data of BLCA [GSE145281_aPDL1 (Yuen et al., 2020)], CRC [GSE136394 (Lu et al., 2019), GSE139555 (Wu T. D. et al., 2020; Banta et al., 2022), and GSE146771 10X (Zhang et al., 2020)], HNSCC [GSE103322 (Puram et al., 2017), and GSE139324 (Cillo et al., 2020; Ruffin et al., 2021)], and SKCM [GSE72056 (Tirosh et al., 2016), GSE115978_aPD1 (Jerby-Arnon et al., 2018), and GSE120575_aPD1aCTLA4 (Sade-Feldman et al., 2018)] were studied based on the Tumor Immune Single Cell Hub (TISCH) database (Sun et al., 2021). The immune cells were annotated into five clusters: NK cells, B cells, CD8+T cells, monocyte or macrophage (Mono/Macro), and conventional CD4 T cells (CD4Tconv).
Drug targeted therapy and Candidate drug prediction and analysis of genomic heterogeneity as well as stemness
A gene-specific targeted therapy analysis was conducted through the BEST website, focusing on the impact of the key gene (ITGAL) on immune modulation therapy in the Cho (2020) and Hwang (2020) cohorts. Additionally, a drug prediction analysis was carried out to explore potential targeted therapy options for Head and Neck Squamous Cell Carcinoma (HNSCC), utilizing datasets such as GSE117973, E_MTAB_8588, TCGAHNSC, GSE75538, and GSE65858. We obtained and analyzed the MSI scores, TMB scores, and RNA-seq data for a specific tumor from the sangerbox3.0 platform. (Shen et al., 2022).
RESULT
Expression of ITGAL in pan-cancer
Through the integration and exploration of the TCGA and GTEx databases, we acquired the expression levels of ITGAL across multiple cancer types, providing evidence that ITGAL is overexpressed in 18 different tumors such as GBM, GBMLGG, LGG, BRCA, CESC, ESCA, STES, KIRP, KIPAN, STAD, HNSCC, KIRC, LIHC, SKCM, OV, PAAD, TGCT, LAML (Figure 1; Table 1). We also observed significant downregulation of ITGAL expression in 11 tumors, such as LUAD, PRAD, LUSC, WT, BLCA, THCA, READ, UCS, ALL, ACC, KICH (Figure 1; Table 1).
[image: Violin plot comparing two groups labeled as "Current" in red and "Anonymized" in blue across multiple categories such as "CRITICAL.RESET.MIN" and "DATA.SETTLED.DUR". The vertical axis represents a measure labeled "E-duration", ranging from -2 to 3.5. Each category displays a symmetrical distribution for both groups, indicating the density of data points.]FIGURE 1 | The expression of ITGAL in pan-cancer and healthy tissues (TCGA + GTEx). (-, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
TABLE 1 | Differential expression of ITGAL in cancer and adjacent normal tissues.
[image: Table comparing tumor and normal tissue data across various cancer types, presenting mean and standard deviation, p-values, and regulation status. Overexpression and downregulation patterns vary across the types.]Immunochemistry (IHC)
In order to verification the different expression of ITGAL in tumor and peritumoral tissues. We observed variations in the levels of ITGAL expression between seven types of cancer and their corresponding paracancerous tissues (Thyroid carcinoma, Prostate adenocarcinoma, Lung squamous cell carcinoma, Lung adenocarcinoma, Cervical squamous cell carcinoma and endocervical adenocarcinoma, Ovarian serous cystadenocarcinoma, Bladder Urothelial Carcinoma) (Figures 2A–H). The conclusions reached were the same as the previous analysis and showed that the expression of ITGAL in prostate cancer, thyroid cancer, bladder cancer, lung squamous cell carcinoma, and lung adenocarcinoma are highly expressed in adjacent cancer tissues, on the other hand, ovarian cancer, renal clear cell carcinoma, and cervical cancer are highly expressed in cancer tissues Table 2.
[image: Pathology images showing tissue samples with varying staining across eight panels labeled A to H. Each panel includes two levels of magnification for prostate, pancreatic, and colon tissues. Staining intensity differs, suggesting varied expression levels or pathological states.]FIGURE 2 | IHC of PRAD (A), THCA (B), LUAD (C), OV (D), BLCA (E), LUSC (F), CESC (G), KIRC (H). The upper row is the paracancerous tissue, and the lower row is the cancer tissue in each unit.
TABLE 2 | Numerical values related to ICH experimental results.
[image: Table comparing tissue types (paracancerous and cancerous) across various cancers (PRAD, THCA, LUAD, OV, BLCA, LUSC, CESC, KIRC). It displays positive cell percentage, cell density, mean density, H-score, and IRS for each type.]Survival analysis
By conducting survival analysis in four domains—Overall Survival (OS), Disease-Specific Survival (DSS), Progression-Free Survival (PFS), and Disease-Free Survival (DFS)—we discovered the prognostic significance of ITGAL across various cancer types. Applying Cox regression model analysis, we found a correlation between elevated ITGAL expression and a higher likelihood of decreased overall survival (OS) in patients diagnosed with five specific types of tumors: GBMLGG, LGG, KIPAN, UVM, and LAML (as demonstrated in Figure 3A). Conversely, ITGAL acted as a protective factor in six cancer types, namely CESC, LUAD, LARC, HNSCC, SKCM-P, SKCM, and SKCM-M. Additional investigation revealed a notable correlation between the expression of ITGAL and Disease-Specific Survival (DSS) across various carcinoma categories, such as GBMLGG, LGG, KIPAN, UVM, BRCA, CESC, LUAD, HNSCC, SKCM-P, SKCM, and SKCM-M as depicted in Figure 3B. Furthermore, a Univariate Cox regression model was employed to investigate the correlation between ITGAL expression and Progression-Free Survival (PFS) in various cancer types. In nine types of tumors, namely UVM, UCEC, BRCA, CESC, HNSCC, SKCM, SKCM-M, ACC, and CHOL, the study found a significant correlation between the expression of ITGAL and a positive prognosis (as shown in Figure 3C). Additionally, high expression of ITGAL was indicative of lower Disease-Free Survival (DFS) specifically in the case of BRCA (as depicted in Figure 3D).
[image: Four forest plots labeled A, B, C, and D demonstrate hazard ratios with confidence intervals for various genetic markers. Each plot has a horizontal axis representing hazard ratios, with markers plotted along it. The vertical lists show specific genetic markers or conditions, with corresponding data points for hazard ratios marked by red dots. Confidence intervals are depicted as horizontal lines extending from the red dots. The plots compare different genetic profiles and their impacts on the specified outcomes.]FIGURE 3 | Univariate COX regression analysis was performed to assess the association between ITGAL and O), PFS, DFS, DSS. (A) Correlation between ITGAL expression and OS; (B), DSS; (C), PFS; (D), DFS. OS, overall survival; DSS, disease-specific survival; DFS, disease-free survival; PFS, progression-free survival.
The association between ITGAL and pathological grades
After conducting a more comprehensive analysis of ITGAL expression levels across different pathological grades in the context of pan-cancer, we observed a notable discrepancy in seven tumor types in Figure 4. In this study, we employed R software to compute the expression variations of genes within each tumor across samples with different clinical stages. To assess the significance of the differences between the two groups, we conducted a statistical analysis using the unpaired Student's t-test and analysis of variance (ANOVA). Difference test for multiple groups of samples in clinical stage analysis, we observed significant differences in seven types of tumors such as STES (Stage I = 76, II = 201, III = 230, IV = 57) (p = 2.4e-3), KIPAN (Stage I = 464, II = 107, III = 189, IV = 103) (p = 9.5e-4), STAD (Stage I = 58, II = 121, III = 169, IV = 41) (p = 3.3e-3), THYM (Stage I = 36, II = 61, III = 14, IV = 6) (p = 2.3e-4), THCA (Stage I = 283, II = 52, III = 112, IV = 55) (p = 6.5e-3), SKCM (Stage II = 66, III = 26, IV = 3) (p = 0.02), CHOL (Stage I = 19, II = 9, IV = 7) (p = 0.02). And we also found differences in eight types of tumors such as GBMLGG (G2 = 247, G3 = 260) (p = 6.2e-7), LGG (G2 = 247,G3 = 260) (p = 6.2e-7), STES (G1 = 30,G2 = 222,G3 = 294) (p = 4.0e-11), KIPAN (G1 = 14, G2 = 228, G3 = 206, G4 = 74) (p = 0.02), STAD (G1 = 12,G2 = 148,G3 = 245) (p = 1.2e-9), HNSCC(G1 = 61,G2 = 304,G3 = 124,G4 = 7) (p = 6.1e-4), KIRC (G1 = 14,G2 = 228,G3 = 206,G4 = 74) (p = 0.02), AAD (G1 = 31,G2 = 95,G3 = 48) (p = 0.04) in Difference test for multiple groups of samples in stage pathological analysis.
[image: Box plot comparing performance metrics across multiple groups labeled G0, G1, G2, and G3, over different periods. Each group is represented by a different color on the plot legend. The x-axis lists time points and the y-axis indicates performance values ranging from 0 to 20. Each box displays quartiles with lines extending to show variability outside the upper and lower quartiles.]FIGURE 4 | Expression levels of ITGAL at distinct pathological grade in pan-cancer.
ITGAL exhibits a strong association with immune infiltration and immune checkpoint
The study focused on investigating the role of ITGAL in the TME, its relationship with immune infiltration in different cancer types. Specifically, the researchers analyzed the correlation between ITGAL and three distinct immune scores. The results of this analysis are showcased in Figures 5A–R, which highlight the six most notable correlations between ITGAL and the diverse immune scores in specific cancer types. According to the ImmuneScore revealed that the expression of ITGAL in SKCM, SKCM-M, PAAD, TGCT, SKCM-P and UVM was positively correlated with immune infiltration (Figures 5A–F). According to the EstimateScore, the analysis suggests that the expression of ITGAL is correlated with increased levels of immune infiltration in several tumor types, including KIPAN, SKCM-M, SKCM, PAAD, SKCM-P, and UVM (Figures 5G–L). This trend was also suggested by the StromalScore, ITGAL expression in GBMLGG, LGG, KIPAN, PAAD, UVM and ACC was significantly positive correlated with immune infiltration (Figures 5M–R). Despite numerical variations in the three scores, there was a consistent overall trend indicating that ITGAL plays a significant regulatory role in the tumor microenvironment to some extent in malignant conditions. In our study, we undertook a thorough analysis to investigate the potential correlation between ITGAL expression and 60 genes related the immune checkpoint pathway in diverse cancer types. The findings, depicted in Figure 5S, revealed significant correlations between ITGAL and a wide range of immunosuppressive/immunostimulatory genes present in pan-cancer. Specifically, ITGAL exhibited strong positive correlations with most immune checkpoint pathway genes. These results indicate that ITGAL is closely associated with immune checkpoint genes and predominantly facilitates the infiltration of immune cells.
[image: Heatmap and scatter plot matrix analyzing gene co-expression. The heatmap displays correlation strength with colors from blue to red. Scatter plots with trend lines show the relationship between different gene pairs, featuring shaded density plots marginally. Each plot is labeled A to R with corresponding gene names.]FIGURE 5 | The relationship between ITGAL expression and immune infiltration as well as immune checkpoints. (A–F) Correlation of ITGAL expression with ImmuneScore; (S) Correlation of ITGAL expression with immune checkpoint-related genes; (G–L) Correlation of ITGAL expression with EstimateScore; (M–R) Correlation of ITGAL expression with StromalScore.
ITGAL-related GSEA
The GSEA algorithm analysis was carried out in pan-cancer to elucidate the underlying physiological processes that might be mediated by ITGAL and subsequently, six tumors with similar results were selected (Supplementary Figure S1). It was found that ITGAL participated in pan-cancer immune regulation-related pathways, particularly in leukocyte-mediated cytotoxicity, lymphocyte-mediated immunity, adaptive immune response, cytokine signaling in the immune system, and antigen processing and presentation. It was highlighted by these findings that ITGAL is crucially involved in tumor immunity.
Immune infiltration analysis
According to the data, five cancer types with high ITGAL expression predicted good prognosis (TCGA-CESC [N=273, p<0.05], TCGA-LUAD [N=490, p<0.05], TCGA-SARC [N=254, p<0.05], TCGA-HNSC [N=509, p<0.05], and TCGA-SKCM [N=444, p<0.05]), while two cancer types with high ITGAL expression predicted poor prognosis (TCGA-LGG [N=504, p<0.05] and TCGA-GBM [N=152, p<0.05]) (Figure 6). The immune cells such as CD8+T cells and activated CD4 memory cells had high infiltration in cancers where higher expression levels of ITGAL indicated good prognosis, while low CD8+ T cells’ infiltration was observed in two cancer types where high ITGAL expression was linked to poor prognosis. In all cancer types, NK cells exhibited low levels of infiltration. CD4 memory T cells showed high infiltration in LGG and LAML. M1 showed high invasion in all seven cancer types. Contralaterally, M2 showed high invasion in two cancer types with low ITGAL expression, indicating a good prognosis. Regulatory T cells (T-regs) invaded five cancer types with a p-value of 0.05 or higher. In seven cancer types among the species, the activated dendritic cells showed low invasion in most cancers but high invasion in LGG.
[image: Heatmap showing correlation coefficients between various lifestyle factors and health measures. The colors range from dark blue indicating strong negative correlation to dark red for strong positive correlation. Factors are labeled on the axes.]FIGURE 6 | Association of ITGAL with the tumor microenvironment. Red highlights a positive correlation, and blue highlights a negative correlation; the darker the color, the stronger the association. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
ITGAL can be utilized as a biomarker for the detection of head and neck squamous cell carcinoma
The studies revealed a substantial upregulation of ITGAL in HNSCC. Survival analysis further demonstrated a significant correlation between the expression level of ITGAL and the overall survival (OS) of HNSCC patients. Additionally, this correlation remained significant when examining the association between ITGAL and RNAss (RNA based Stemness Scores). Consequently, our subsequent investigation delved into the potential biological functions of ITGAL specifically within the context of HNSCC. In order to improve prognostic assessment for patients in clinical settings, we developed a nomogram that integrates the expression of ITGAL and the pathological stage. This nomogram provides a more accurate tool for predicting patient outcomes in HNSCC and can aid in clinical decision-making. The nomogram depicted in Figure 7A functions as a valuable instrument in clinical practice for foreseeing patient outcomes. Additionally, calibration curves were employed to evaluate the accuracy of the current model in forecasting the prognosis of patients with HNSCC at 1-year, 3-year, and 5-year intervals. The results, depicted in Figure 7B, demonstrate a favorable performance in the assessment of patient prognosis.
[image: Panel A depicts a nomogram for predicting survival probabilities, incorporating variables like ITGAL, age, pathologic stages, and radiation therapy. Panel B shows a calibration plot comparing observed survival fractions to nomogram-predicted probabilities over one, three, and five years. Various lines and error bars indicate the model's accuracy, with a dashed line illustrating the ideal prediction alignment.]FIGURE 7 | Investigation of the clinical significance of ITGAL in HNSCC. (A) Development of a nomogram utilizing ITGAL expression and pathological staging. (B) Prognostic standard curve of nomogram.
To gain deeper insights into the potential ways in which ITGAL affects patient prognosis, we conducted an analysis to determine the relationship between gene expression and pathway scores. Our findings indicate a significant correlation between ITGAL expression and various factors including cell motility, B cell activation, T cell activation, lymphocyte-mediated immunity, leukocyte-mediated immunity, leukocyte proliferation, cellular community, transport and catabolism, as well as carbohydrate metabolism in HNSCC (Figures 8A, B). Drawing from the GSEA results, we put forth the hypothesis that the influence on the malignant growth of HNSCC could potentially be accomplished by modulating signaling communication via the TGF-b pathway (Figure 8A).
[image: Bar graph and ridge plot depicting gene ontology analysis. In part A, a horizontal bar chart lists terms with corresponding detected and enriched gene counts. Each term has a category, such as cellular community, signaling, immunity, or nervous system. Part B shows a ridge plot (GSEA-GO Analysis), displaying enrichment scores for various biological processes, like immune response and ribosome biogenesis, with color-coded significance levels.]FIGURE 8 | Enrichment analysis of ITGAL in HNSCC. (A) GSEA-KEGG analysis, (B) GSEA-GO analysis.
Link of the HNSCC signature with the TME
It has been suggested by several reports that TME is associated with the efficacy of immunotherapy (Ock et al., 2016; Varn et al., 2017; Bagaev et al., 2021). Bagaev et al. (2021), classified HNSCC immune microenvironment into four types: immune-depleted (D), fibrotic (F), immune-enriched (IE), and non-fibrotic and immune-enriched/fibrotic (IE/F) (Figure 9). His findings revealed that ITGAL expression was closely related to the, IE subtype, which is linked to a good prognosis.
[image: Dot plot showing the distribution of HALL values across four MSP categories: D, F, E, and IELF. Each category displays a box plot overlay. The plot indicates significant differences between categories with p-values all below 0.0001, except between E and IELF, which has a p-value of 0.0002.]FIGURE 9 | The association of ITGAL expression with tumor microenvironment subtype.
Single-cell analysis
Considering the contribution of TME to tumor onset and progression and its prognostic effect, HNSCC (GSE103322 and GSE139324) were analyzed in TISCH to assess the expression of ITGAL in TME-linked cells. The GSE103322 and GSE139324 datasets of HNSCC were analyzed and classified into 11 types of cells. CD8 T exhausted cells were the most abundant in the GSE103322 dataset. As indicated by Figure 10, the infiltration degree of ITGAL in TME-linked cells was higher in CD8+T, CD8 T exhausted, and CD4 conventional cells, which is in line with the findings presented in Figure 8B. In the GSE139324 dataset, the most abundant immune cells were CD4 conventional cells. The infiltration degree of ITGAL in TME-linked cells was higher in CD8+T, CD8 T exhausted, monocytes/macrophages, and B cells (Figure 11), which is in line with the findings in Figure 8B. It is suggested by these findings that ITGAL is closely linked to the TME in HNSCC.
[image: Heatmap showing ITGAL gene expression across various cell types or conditions. Higher expression levels are indicated by darker red hues, while lighter shades represent lower expression. Each row represents a specific condition, and each column corresponds to a different cell type.]FIGURE 10 | Correlation analysis between the expressions of ITGAL in HNSCC tissues and the TME, employing TISCH. Red indicates a positive correlation; the darker the color, the stronger the correlation.
[image: Two UMAP plots labeled A and B display cell clusters for datasets HNSC_GSE103322 and HNSC_GSE139324, respectively, with different colors representing cell types like T cells, B cells, and plasma cells. The ITGAL expression is indicated by a blue gradient scale on the right of each plot.]FIGURE 11 | Correlation analysis between the expression of ITGAL in cancer tissues [GSE103322 (A) and GSE139324 (B)] and the TME utilizing TISCH.
Pan-cancer analysis of ITGAL expression in correlation with the tumour purity, TMB, MSI, as well as stemness
In order to determine the suitability of immune checkpoint therapy, the correlation between ITGAL expression and TMB (Tumor Mutational Burden) as well as MSI (Microsatellite Instability) was investigated and compared across various cancer types. It was observed that TMB and MSI play a crucial role in this determination. Across various cancer types, the expression of ITGAL showed predominantly positive correlations with both TMB and MSI. Specifically, in COAD, COADREAD, UCEC, READ, OV, there was a significant positive association observed between the manifestation of ITGAL and TMB scores (Figure 12D). On the other hand, in patients with GBMLGG, BRCA, KIRP, KIPAN, HNSCC, OV, TGCT, DLBC, the expression of ITGAL displayed a closer and negative correlation with MSI. (Figure 12C). The effectiveness of immune checkpoint inhibitor (ICI) treatment can be influenced by tumor purity. During our analysis of 35 tumors, we identified a noteworthy negative correlation between the ITGAL expression and tumor purity. The observation made in our analysis indicates that there is a consistent association between higher levels of ITGAL expression and decreased tumor purity across all the tumor types that were examined (Figure 12A). Furthermore, the stemness score, which is associated with drug resistance and continuous tumor cell proliferation, was also evaluated in relation to ITGAL expression. In our study, we conducted a Pearson correlation analysis to investigate the relationship between ITGAL expression and RNAss across various tumors. The findings, depicted in Figure 12D, demonstrated significant correlations between ITGAL and tumor stemness scores in 32 tumor samples. Among these, 31 tumors exhibited a significant negative correlation. Notably, LGG (R = −0.55), KIPAN (R = −0.53), GBMLGG (R = −0.52), COAD (R = −0.47), READ (R = −0.46), PAAD (R = −0.45), and ACC (R = −0.40) were among the cancer types with the most significant correlations (Figure 12B). However, it is worth mentioning that THYM displayed a significant positive correlation in this relationship (R = 0.40).
[image: Four scatter plots (A, B, C, D) display correlations between gene expressions and immune cells. Plot A and C show positive correlations with red dots, while B shows negative correlations with blue dots. Dot size indicates significance level and color intensity represents correlation strength. Plot D is similar to C with a different set of genes.]FIGURE 12 | Correlation analysis of the association between ITGAL expression and tumour purity (A), RNAss (B), MSI (C) and TMB (D).
Immunotherapy response analysis
We studied the drug treatment of HNSCC. In the Cho cohort 2020, it was discovered that the efficacy of Anti-PD-1/PD-L1 on HNSCC was closely related to the ITGAL expression. Those with high ITGAL expression were more efficient than the Anti-PD-1/PD-L1 (Figure 13A), and the probability was as high as 96.4% (Figure 13B). As depicted in Figure 13C, it could be seen that the PFS of those with high ITGAL expression was remarkably higher in comparison to the low expression group, confirming the role of ITGAL in the efficacy of Anti-PD-1/PD-L1. As per the cohort of Hwang 2020, we also found that the efficacy of Anti-PD-1 monotherapy on HNSCC was closely related to the ITGAL expression, and those with high ITGAL expression were more likely to respond to Anti-PD-1 (Figure 13D), and the probability was as high as 76.9% (Figure 13E). As shown in Figure 13F, the PFS of the ITGAL high-expression group was considerably higher in contrast with the low-expression group, confirming the role of ITGAL in the efficacy of Anti-PD-1. These findings revealed that the expression of ITGAL may be associated with the efficacy of Anti-PD-1/PD-L1 and Anti-PD-1 on HNSCC.
[image: Six-panel image showing data from studies on anti-PD-1/PD-L1 therapies in cancer treatment. Panels A and D present box plots comparing TIDE scores between responders (R) and non-responders (NR). Panels B and E depict ROC curves with AUC values indicating the accuracy of classification. Panels C and F display Kaplan-Meier survival curves, comparing response times between groups. Statistical tests, including T-test, Wilcoxon, and log-rank, are noted on each plot, showing significant differences in response outcomes. Panel descriptions highlight cohort specifics from 2020 studies, emphasizing response to the therapies.]FIGURE 13 | The relationship between ITGAL expression and immunotherapy sensitivity and prognosis of Cho cohort 2020 (Anti-PD-1/PD-L1) (A–C) and Hwang cohort 2020 (Anti-PD-1) (D–F). The red line indicates a high expression of ITGAL, and the blue line indicates a lower expression of ITGAL.
In order to conduct a more thorough examination of potential drugs that could effectively target the overexpression of ITGAL, we conducted a comparison of the estimated IC50 levels for lots chemotherapy drugs or inhibitors in “GDSC1” database. Figure 14 displays a selection of representative drugs. We found that several drugs are potential for treating patients with ITGAL high. Expression, such as MK-2206_1053, PF-4708671_1129, NG-25 260, VX-702_1028, AKT inhibitor VIll_228, Linifanib_277, Ara-G 427, PIK-93303 and so on.In order to conduct a more thorough examination of potential drugs that could effectively target the overexpression of ITGAL, we conducted a comparison of the estimated IC50 levels for lots chemotherapy drugs or inhibitors in “GDSC1” database. Figure 13 displays a selection of representative drugs. We found that several drugs are potential for treating patients with ITGAL high Expression, such as MK-2206_1053, PF-4708671_1129, NG-25 260, VX-702_1028, AKT inhibitor VIll_228, Linifanib_277, Ara-G 427, PIK-93303 and so on.
[image: Scatter plots labeled A to L display the correlation between ITGA expression and immune cell infiltration in TCGA HNSC. Each plot shows a negative correlation, depicted by clusters of data points trending downward. Panel M includes a heatmap illustrating the correlation coefficients of various genes, with a color gradient from blue (negative correlation) to red (positive correlation). Gene names and correlation values are listed next to the heatmap.]FIGURE 14 | Potential drugs prediction of HNSCC. (A) IC50 of AKT inhibitor VIII_228, Ara-G_427 (B), BIX02189279 (C), CP466722_152 (D), FMK_231 (E), IC-87114_236 (F), Idelalisib_238 (G), JQ1_1218 (H), KIN001-236_286 (I), KIN001-244_287 (J), KIN001-260_290 (K), Linifanib_277 (L),heatmap of the relationship between drugs sensitivity and ITGAL expression (M).
DISCUSSION
Integrin alpha L chain encoded by ITGAL plays a crucial role in intercellular adhesion between leukocytes by binding to intercellular adhesion molecules 1–3 (ICAMs 1–3) (Corbi et al., 1988; Hickman et al., 2022). Furthermore, prior research suggests that LFA-1 encoded by ITGAL is closely associated with inflammatory responses, which are reduced significantly via the mechanism of blocking LFA-1 (Whitcup et al., 1999). These activities involve the interaction between leukocytes and endothelial cells, the killing of target cells by cytotoxic T-cells, and the killing of target cells through the assistance of antibodies by granulocytes and monocytes. It also promotes the cytotoxicity of natural killer cells (Barber et al., 2004).
We discovered that the expression of ITGAL in cancer tissues and paracancerous tissues is different in most cancer types, except UCEC, COAD, COADREAD, PCPG, CHOL. We conducted COX regression analysis and KM survival curves, which provided some confirmation that ITGAL has the potential to be a dependable biomarker. Upon comparing these results with those of the survival analysis, we discovered a significant association between ITGAL and four prognostic factors, namely OS, DSS, DFS, and PFS, across eight types of tumors, including GBMLGG, LGG, KIPAN, UVM, CESC, LUAD, HNSCC, SKCM. The potential of ITGAL as a biomarker is substantiated by its differential expression levels across distinct pathological stages within the same tumor. Increased expression of ITGAL is notably observed in the higher stages, further highlighting its significance as a potential biomarker. Immune cells and fibroblasts can exhibit both tumor-promoting and tumor-inhibiting effects within the microenvironment of a tumor. (Dudas, 2015), Improved understanding of the biological mechanisms that govern the tumor microenvironment (TME) could lead to more effective and targeted immunotherapies for various types of difficult-to-treat cancers, making it a valuable and potent tool in the fight against these diseases. At present, there are single-cancer immunoassay for ITGAL, but there is still a lack of an immunoassay for pan-cancer. Initially, we evaluated three immune scores, namely StromalScore, ImmuneScore, and EstimateScore, to determine their correlation with ITGAL in pan-cancer. Our findings indicated a strong positive correlation between ITGAL and these immune scores, indicating that ITGAL expression significantly contributes to the enhancement of immunity, which may be the reason why some cancers have a better prognosis, such as HNSCC, LUAD and SKCM. However, there are still many cancers with poor prognosis, including LGG, BGMLGG, KIPAN and UVM. Amanda’s study showed that ITGAL promotes Cx3cr1 expression, cx3cl1-mediated migration and Ccl5 expression in microglia, thereby promoting microglial infiltration and tumor formation (De Andrade Costa et al., 2021). Based on this study, we speculate that in KIPAN and UVM, ITGAL also increases the migration and invasion ability of cancer cells by affecting certain regulatory genes. The regulatory mechanism needs to be further studied and verified through experiments. In addition to that, we conducted a comprehensive analysis to determine the relationship between ITGAL and the infiltration of various immune cells. The results strongly suggest a notable association between the expression of ITGAL and multiple types of immune cells. Specifically, ITGAL expression positively influenced the infiltration of CD8+ T cells, Macrophages_M1 cells, and B cells, while inhibiting the infiltration of Macrophages_M2 cells. Prior research has demonstrated that the infiltration of CD8+ T cells can have a positive impact on the prognosis of patients (Liu et al., 2017), and high tumor stromal density of M2-like macrophages was associated with worse cancer-specific survival, which partly explains the improvement of prognosis of CESC, LUAD, HNSCC, SKCM with high expression of ITGAL. Moreover, the correlation linking ITGAL to immunomodulatory genes, including MHC, chemokines, and genes related to chemokine receptors, provides additional evidence of its association with tumor immunity. This association is bolstered by the observation that increasing ITGAL expression leads to a noticeable increase in MHC-1 expression. This is also one of the reasons why CESC, LUAD, HNSCC, SKCM have good prognosis when ITGAL is highly expressed.
The absence of immune cells within the tumor microenvironment has been linked to unfavorable outcomes in most cancer cases. This exclusion of immune cells is commonly observed alongside the presence of a stem cell-like characteristic, referred to as “stemness,” in tumors. The activation of a stemness program seems to hinder the body’s immune responses against the tumor through various mechanisms, such as the tumor cells themselves silencing endogenous retrovirus expression, suppressing type I interferon signaling, and increasing the expression of immunosuppressive checkpoints (Miranda et al., 2019). The study investigated the relationship between DNAss and ITGAL in different types of cancer, specifically LGG, UVM, LUAD, SKCM, and HNSCC. The findings revealed a positive correlation between ITGAL and DNAss in LGG and UVM, whereas a negative correlation was observed in LUAD, SKCM, and HNSCC. These results align with the prognostic outcomes, indicating that ITGAL potentially affects DNAss.
Head and neck squamous cell carcinoma ranks as the sixth most common cancer globally and holds the highest incidence in South Asia. This type of cancer accounts for approximately 890,000 newly reported cases and around 450,000 reported deaths worldwide (Kamal et al., 2023). We performed a focused analysis of the performance of ITGAL in HNSCC. And our analysis indeed revealed that ITGAL could serve as an independent prognostic factor for patients with HNSCC. And through online analysis, we looked for the possible action pathway of ITGAL, TGF-βsignaling pathway. The classification of HNSCC according to the effect of ITGAL on the immune microenvironment also shows that ITGAL can affect the prognosis of head and neck cancer through the immune microenvironment.
We used “IOBR” to analyze the infiltration degree of Immune cells in ITGAL. The results showed that high expression of ITGAL was positively correlated with the infiltration of CD8+T and Macrophages_M1 and the signature scores of CD8 T cells, T cell inflamed GEP, exhausted CD8, co-stimulation T, and inflamed T cells were remarkably higher. This increase indicated that ITGAL is closely related to T-cell immunity. Our findings suggested that ITGAL is critically involved in tumor immunity. To obtain a deeper understanding of the TME in HNSCC, we conducted a comprehensive analysis of cell types, annotating them at the single-cell level. We discovered that ITGAL was positively correlated with CD8+T, CD4+T, NK, and monocyte/macrophage infiltration in HNSCC, which can enhance immune killing against tumors.
Importantly, our research findings suggested that the efficacy of Anti-PD-1/PD-L1 and Anti-PD-1 on HNSCC was closely linked to the ITGAL expression; and those with high ITGAL expression were more likely efficient in Anti-PD-1/PD-L1. This finding may provide a targeted anti-tumor strategy for ITGAL to treat HNSCC. We further analyzed the effect of ITGAL on drug IC50, and found that with the increase of ITGAL expression, the IC50 of various drugs decreased, reflecting that ITGAL plays a positive role in the treatment of HNSCC.
Our findings may provide a targeted anti-tumor strategy for ITGAL by influencing the tumor immune microenvironment to treat HNSCC. Our study, however, has certain limitations. In this research, most of the data were retrieved from online databases, which are constantly updated and expanded; this may have influenced our research outcomes. Furthermore, we have not added information about complications. Third, whether immune cell infiltration correlates with the OS of patients was not determined in this research. This may provide an interesting research direction for further studies. While the present study has shed some light on the role of ITGAL in the realm of immunotherapy from a broad standpoint, it emphasizes the need for additional experimental investigations. The current findings provide strong indications for the importance of conducting further research in this area.
CONCLUSION
In briefly, ITGAL acts as a pan-oncogene and displays distinct expression patterns in different types of cancer. These patterns provide valuable insights into patient prognosis and survival across various malignancies. It serves as a valuable therapeutic and prognostic indicator for diverse malignancies, particularly in HNSCC. Additionally, ITGAL displays noteworthy associations with infiltration of immune cell and immune checkpoint related genes, indicating its potential as a promising target in tumor immunotherapy. The findings from our research present a potential strategy to target ITGAL for anti-tumor purposes, with a specific focus on modulating the immune microenvironment of the tumor.
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GLOSSARY
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
LUAD Lung adenocarcinoma
SARC Sarcoma
HNSCC Head and Neck cell carcinoma
SKCM Skin Cutaneous Melanoma
GBM Glioblastoma multiforme
LGG Brain Lower Grade Glioma
BLCA Bladder Urothelial Carcinoma
CRC Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma
GBMLGG Glioma
BRCA Breast invasive carcinoma
ESCA Esophageal carcinoma
STES Stomach and Esophageal carcinoma
KIRP Kidney renal papillary cell carcinoma
KIPAN Pan-kidney cohort
STAD Stomach adenocarcinoma
KIRC Kidney renal clear cell carcinoma
LIHC Liver hepatocellular carcinoma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
TGCT Testicular Germ Cell Tumors
LAML Acute Myeloid Leukemia
PRAD Prostate adenocarcinoma
LUSC Lung squamous cell carcinoma
WT High-Risk Wilms Tumor
THCA Thyroid carcinoma
READ Rectum adenocarcinoma
UCS Uterine Carcinosarcoma
ALL Acute Lymphoblastic Leukemia
ACC Adrenocortical carcinoma
KICH Kidney Chromophobe
NSCLC Non-small-cell lung cancer
CHOL Cholangiocarcinoma
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Background: The conventional treatment for locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is surgery; however, the efficacy of definitive chemoradiotherapy (CRT) remains controversial.
Objective: This study aimed to evaluate the ability of deep learning (DL) models to identify patients with LA-HNSCC who can achieve organ preservation through definitive CRT and provide individualized adjuvant treatment recommendations for patients who are better suited for surgery.
Methods: Five models were developed for treatment recommendations. Their performance was assessed by comparing the difference in overall survival rates between patients whose actual treatments aligned with the model recommendations and those whose treatments did not. Inverse probability treatment weighting (IPTW) was employed to reduce bias. The effect of the characteristics on treatment plan selection was quantified through causal inference.
Results: A total of 7,376 patients with LA-HNSCC were enrolled. Balanced Individual Treatment Effect for Survival data (BITES) demonstrated superior performance in both the CRT recommendation (IPTW-adjusted hazard ratio (HR): 0.84, 95% confidence interval (CI), 0.72–0.98) and the adjuvant therapy recommendation (IPTW-adjusted HR: 0.77, 95% CI, 0.61–0.85), outperforming other models and the National Comprehensive Cancer Network guidelines (IPTW-adjusted HR: 0.87, 95% CI, 0.73–0.96).
Conclusion: BITES can identify the most suitable treatment option for an individual patient from the three most common treatment options. DL models facilitate the establishment of a valid and reliable treatment recommendation system supported by quantitative evidence.
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head and neck squamous cell carcinoma, chemoradiotherapy, deep learning, causal inference, precise medicine


Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers worldwide (1), often diagnosed at an advanced stage due to the lack of effective early screening strategies (2).

Conventional treatment typically involves surgery followed by radiotherapy (RT) (3). While adjuvant chemoradiotherapy (CRT) has been shown to enhance progression-free survival by sensitizing tumors to RT under certain conditions (4), its use is controversial due to potential toxicity and complications (5).

Furthermore, the trauma and dysfunction associated with surgery have prompted interest in definitive CRT for organ preservation (6). Studies have indicated that CRT may improve outcomes in patients with non-T4 disease and high nodal burden compared to surgery, which, conversely, may benefit T4 patients (7). The response of patients to the same treatment is influenced by many underlying clinical features (8), suggesting significant treatment heterogeneity.

Given the challenges and costs associated with conducting randomized clinical trials, there is a growing demand for innovative survival analysis methods to address this heterogeneity (8). Deep learning (DL) has proven to be more accurate than traditional statistical analysis (9) and has demonstrated the potential to provide individualized recommendations based on calculated risk (10).

This study aimed to assess DL's capability to provide individualized treatment recommendations, identifying patients who might benefit from organ preservation through CRT and tailoring adjuvant treatment for those better suited for surgical interventions.



Methods


Study design and data source

This was a population-based retrospective cohort study designed to provide personalized treatment recommendations for locally advanced HNSCC (LA-HNSCC) patients using DL models. The evaluation of the treatment options was categorized into two phases, with phase one individualizing treatment recommendations between CRT and surgery plus CRT/RT and phase two individualizing treatment recommendations between surgery plus CRT and surgery plus RT.

The population for this study was sourced from the Surveillance, Epidemiology, and End Results (SEER) 18 database, which represents approximately 27.8% of the U.S. population (11). This study followed the Strengthening the Reporting of Observational Studies in Epidemiology guidelines (12).



Study population and eligibility criteria

Patients with HNSCC originating from four anatomical sites (such as the oral cavity, sinonasal cavity, pharynx, and larynx), diagnosed as stage III to IVa from 1 January 2004 to 31 December 2015, and treated with definitive CRT or radical resection plus postoperative RT/CRT were included in this study. Nasopharyngeal and salivary gland carcinomas were not included due to differences in pathology and treatment.

Ethnicity (13), sex (13), marital status (14), age (15), histological grade (16), laterality (17), primary tumor site (18), TNM stage (3), tumor size (3), number of lymph nodes (19), number of positive lymph nodes (20), and lymph node surgery (21) were included as variables affecting efficacy because they are known to play critical roles in predicting prognosis and guiding treatment decisions in HNSCC. OS was used to measure the efficacy of each treatment regimen.

Clinical cases were excluded if they met the following criteria: (1) unknown or ambiguous demographic information; (2) unknown histologic grades or tumor type; (3) unknown tumor location or size; (4) unknown TNM stage; (5) unknown treatment modality; (6) stage I, II, or IVb; (7) unknown laterality; (8) incomplete follow-up; (9) multiple malignancies; and (10) metastatic tumors. The cohort selection is illustrated in Figure 1A.


[image: Flowchart and diagram illustrating a study process and network model. Part A details the patient selection criteria from two databases with inclusion and exclusion steps ending in 1,298 subjects studied. Part B shows a network model with features entering a shared network and then branching into a risk network, predicting outcomes. The diagram emphasizes PM regularization in the risk network.]
FIGURE 1
 Inclusion process and model architecture. (A) Inclusion process; (B) architecture of the balanced individual treatment effect for survival data. RT, radiation; CRT, chemoradiation; IPM, integral probability metrics; ITE, individual treatment effect.


TNM stage was determined in accordance with the 7th American Joint Committee on Cancer staging manual. Patients who were alive as of 31st December 2020 were censored. Therefore, the follow-up period ranged from 5 to 16 years.



Algorithms

The individual treatment effect (ITE) reflects the difference in survival outcomes between two potential intervention scenarios. The T-learner is a common type of model used for inferring the ITE, which adopts two models to estimate the ITE as ITE = μ1(x)− μ0(x), where μ0 and μ1 denote the models trained on the corresponding treatment groups (22). The T-learner excludes some confounding artifacts; however, it can still be affected by inconsistent predictive performance of models (23) and biased treatment allocation (24).

With the development of DL, more methods have been proposed to estimate the unbiased ITE. Balanced Individual Treatment Effect for Survival data (BITES) (24) addresses this issue through representation-based causal inference. BITES has a shared network and two risk networks. In the shared network, integral probability metrics are used to maximize the p-Wasserstein distance of different treatment arms. The risk networks calculate the ITE in the form of a T-learner. The architecture of BITES is illustrated in Figure 1B.

Cox Mixtures with Heterogeneous Effects (CMHE) (25) uses a latent variable approach to model heterogeneous treatment effects by assuming that an individual can belong to one of the latent clusters with distinct response characteristics.



Calculation of the individual treatment effect

For censored data, the models output log hazard ratios; however, these cannot be used directly because the baseline hazards of different treatment groups also reflect crucial prognostic information.

Here, we defined the potential outcome with a good clinical interpretation as the area under the individual survival curve for an individual within a specific period (5 years), called the restricted survival time (RST). The formula was described as [image: The image displays a mathematical equation for the Integrated Tail Expectation (ITE) with respect to a time variable \( t \). It is expressed as \( ITE_{2ST}(X, t) = \sum_{x \in X_t} \left[ \int_{t}^{0} \phi_1(t \mid x) dt - \int_{t}^{0} \phi_0(t \mid x) dt \right] \). The equation includes integrals and summation over a set \( X_t \) with functions \(\phi_1\) and \(\phi_0\).], where t indicated the preset time horizon and Ŝ0(t∣x) and Ŝ1(t∣x) were the predicted survival distributions for an individual under different treatments. It can be simply interpreted as the additional amount of time a patient survived within 5 years when receiving treatment 1 compared with receiving treatment 0.



Model development, validation, and treatment recommendation

We trained and compared five models, including BITES, CMHE, DeepSurv (26), the Cox proportional hazards (CPH) model, and random survival forest (RSF). These models, divided into deep learning models (BITES, CMHE, and DeepSurv) and traditional machine learning models (CPH and RSF), all employed the same ITE calculation method. The deep learning models were chosen for their ability to capture complex non-linear relationships, while the traditional models were used as benchmarks for performance comparison.

All patients were randomly allocated to a training set comprising 70% of the samples used for training the models and a testing set comprising 30% of the samples to evaluate the model performance and recommendation effect. During the training period, we used five-fold cross-validation to tune the model hyperparameters. Each time, the model was trained on four-fifths of the training set and validated on the remaining one-fifth. The training process was automatically terminated if the validation loss did not decrease after 1,000 iterations. Hyperparameter tuning was conducted using grid search to explore the predefined ranges of key parameters. These parameters included learning rate, mini-batch size, the percentage of dropout, number of layers, number of nodes in the multilayer perceptron, strength of the regularization method, number of trees, and tree depth, depending on the model. The optimal hyperparameters were selected based on the validation loss.

To evaluate the models' treatment recommendation effect, the patients were divided into the recommended (Consis.) and anti-recommended (Inconsis.) groups, based on whether the actual treatment they received was consistent with the model recommendations. We calculated several indicators between the Consis. and Inconsis. groups to quantify the survival advantages of the following models' recommendations: multivariate hazard ratio (HR), 5-year absolute risk reduction (ARR), and the difference in restricted mean survival time (DRMST) over five years. Considering the potential imbalance of the baseline features between the Consis. and Inconsis. groups, inverse probability treatment weighting (IPTW) was used to reduce selection bias.



Model interpretation

The model interpretation was twofold: (1) the importance of the features for the overall output and (2) the impact of the features on the treatment recommendations.

SHapley Additive exPlanations (SHAP) is a widely used local interpretation method from game theory that explains the extent to which each variable affects the model output with respect to the baseline average. In this study, we employed SurvSHAP(t) (27), a time-dependent SHAP analysis, to explain the output of the best model.

We calculated the probability that a patient with a certain characteristic is recommended for a specific treatment minus the probability that a patient without that characteristic is recommended for the same treatment. This difference is called the probability difference (PD), which is similar to the calculation of risk difference. Based on the PD, the impact of features on treatment recommendations can be quantified. We also used IPTW to exclude the influence of other characteristics, thereby obtaining the independent impact.



Statistical analysis

The models were built using Python 3.8 with the packages Pytorch 2.0 and Scikit-survival 0.19.0. Statistical analyses were performed using R 4.1.38. Continuous variables were expressed as medians and interquartile ranges (IQRs), and categorical variables were expressed as numbers and percentages (%). The log-rank test was used to compare the Kaplan–Meier (KM) curves.




Results


Patients

A total of 7,376 patients with locally advanced HNSCC were enrolled, with a median follow-up of 58 (IQR: 16–102) months, including 3,613 (49.0%) patients with oral cavity cancer, 2,041 (27.7%) patients with pharyngeal cancer, 59 (0.8%) patients with sinonasal cavity cancer, and 1,663 (22.5%) patients with laryngeal cancer. Of these, 5,326 patients were treated with CRT and 2,050 patients were treated with surgery. Adjuvant RT was administered to 1,079 of the patients who underwent surgery, and adjuvant CRT was administered to an additional 971 patients. The overall mortality rate was 61.6% [95% confidence interval (CI): 60.5%−62.8%]. The detailed baseline demographic and clinical characteristics of the included patients are presented in Table 1.


TABLE 1 Patients.

[image: A clinical data table comparing three treatment groups: concurrent chemoradiation (n=5,326), surgery and postoperative radiation (n=1,079), and surgery and postoperative chemoradiation (n=971). The table details median age, tumor size, marital status, ethnicity, gender, tumor grade and stage, laterality, oral cavity and pharynx cancer locations, as well as T stage and N stage. It concludes with median follow-up times. Each category includes frequencies and percentages for each treatment group.]



Performance

All evaluations of the model were performed on the testing set, which included 2,213 patients for the phase one and 651 patients for phase two recommendations. The detailed model performance is presented in Table 2.


TABLE 2 Performance.

[image: Table comparing different models for chemoradiation versus surgery plus radiation/chemoradiation and surgery plus radiation versus surgery plus chemoradiation. Key metrics include hazard ratio (HR), inverse probability weighting (IPTW)-adjusted HR, five-year difference in restricted mean survival time (DRMST), five-year absolute risk reduction (ARR), and integrated Brier score (IBS). BOLD indicates the best performance model. Models include BITES, CMHE, DeepSurv, RSF, CPH, and NCCN. Various numerical results and confidence intervals are presented, highlighting statistical performance differences across treatment approaches. Footnotes explain terminology and guidelines used.]

The integrated Brier score (IBS) was used to measure the discrimination of the models. The CPH model was observed to have the best discrimination in both phase one (IBS in the CRT group (IBSa): 0.17, 95% CI, 0.16–0.18; IBS in the surgery plus RT/CRT group (IBSb): 0.17, 95% CI, 0.16–0.18) and phase two recommendations (IBS in the surgery plus RT group (IBSc): 0.17, 95% CI, 0.15–0.18; IBS in the surgery plus CRT group (IBSd): 0.18, 95% CI, 0.16–0.21), followed by the RSF model (IBSa: 0.17, 95% CI, 0.17–0.18; IBSb: 0.18, 95% CI, 0.16–0.19; IBSc: 0.17, 95% CI, 0.16–0.19; IBSd: 0.18, 95% CI, 0.17–0.20).

The metric of interest lies in how much survival advantage can be gained by following model recommendations. IPTW was used to adjust for tumor size, tumor locations, laterality, TNM stages, demographic features, and actual treatments. We set the metrics that determined the performance of the model to those corrected with IPTW, as they were largely unaffected by other factors as well as the actual treatment proportions.

In the phase one recommendation, BITES performed the best (HR: 0.92, 95% CI, 0.81–1.04; IPTW-adjusted HR (HRe): 0.84, 95% CI, 0.72–0.98; DRMST: 6.71, 95% CI, 4.75–8.67; IPTW-adjusted DRMST (DRMSTe): 10.40, 95% CI, 8.33–12.75; ARR: 16.90, 95% CI, 12.50–21.20; IPTW-adjusted ARR (ARRe): 14.80, 95% CI, 10.60–19.10). The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) were also compared with the models. The patients whose actual treatment was consistent with the NCCN guidelines were compared with those whose treatment was inconsistent. As the NCCN has no prioritized treatment guidelines for pharyngeal cancers, these patients were excluded from this calculation. No significant differences were observed in the results of the NCCN guideline recommendations (HRe: 0.87, 95% CI, 0.73–0.96; DRMSTe: −4.37, 95% CI, −6.40-−2.12; ARRe: −8.34, 95% CI, −13.00-−3.65).

For the phase two recommendation, the BITES model was noteworthy (HR: 0.87, 95% CI, 0.72–1.06; HRe: 0.77, 95% CI, 0.61–0.85; DRMST: 4.59, 95% CI, 1.18–8.01; DRMSTe: 4.65, 95% CI, 1.32–7.73; ARR: 11.10, 95% CI, 3.58–18.60; ARRe: 10.50, 95% CI, 3.16–17.90), outperforming all other models.

We present the KM curves of the Consis. vs. Inconsis. groups for the phase one and phase two recommendations in Figures 2A, B, respectively. Better OS in the Consis. group was observed for both phase one (P of the log-rank test < 0.001; P of the IPTW-adjusted log-rank test < 0.001) and phase two (P of the log-rank test < 0.001; P of the IPTW-adjusted log-rank test < 0.001) recommendations.


[image: Two Kaplan-Meier survival curves, labeled A and B, compare two groups: "Inconsis." in blue and "Consis." in red. Both graphs show the survival probability decreasing over time, with consistently higher survival rates in the "Consis." group. Statistical significance is noted with P < 0.001. The number of subjects at risk is listed below the time axis at 0, 60, 120, and 180 days.]
FIGURE 2
 The Kaplan–Meier curves of the Consis. Group vs. the Inconsis. (A) The Kaplan–Meier curves of the phase one recommendation; (B) The Kaplan–Meier curves of the phase two recommendation. P, the p-value of the log-rank test; IPTW, inverse probability treatment weighting.


Whether the protective effect of BITES was due to an imbalance in the treatment proportions in the two groups was also of interest. Thus, we treated surgery plus RT/CRT as a mediator and adjusted for all baseline features to calculate the natural direct effect (NDE) and natural indirect effect, which are presented in Figure 3A. Similarly, surgery plus CRT was treated as a mediator in the evaluation of the phase two recommendation (Figure 3B). The NDE measured the direct effect of BITES recommendation on mortality reduction, excluding the effect of the actual treatment. These values are presented as the slope of a linear regression. Both phase one (NDE: −0.03, 95% CI, −0.04–−0.02) and phase two (NDE: −0.07, 95% CI, −0.08–−0.06) recommendations had a direct effect on overall mortality reduction.


[image: Diagram showing mediation models of BITES impact on outcomes.   Panel A: BITES impacts OS through CRT or Surgery plus RT/CRT with NDE of -0.03, NIE of -0.13.   Panel B: BITES impacts OS through Surgery plus RT or Surgery plus CRT with NDE of -0.07, NIE of 0.01.   Arrows represent pathways, values indicate indirect effects with confidence intervals.]
FIGURE 3
 Causal path of the protection effect of the model recommendation. (A) Causal path of the protection effect in the phase one recommendation; (B) Causal path of the protection effect in the phase two recommendation. NDE, natural direct effect; NIE, natural indirect effect; BITES, Balanced Individual Treatment Effect for Survival data; OS, overall survival; RT, radiation; CRT, chemoradiation.


We also assessed the protective effect of BITES on various causes of death, as presented in Supplementary Table S1. As competing risks were considered, when a particular cause of death was tested, other deaths were treated as competing risks. The HRe with the competing risks was calculated using a marginal structural cause-specific Cox proportional hazards model (MSM) (28). For the phase one recommendation, the patients who followed the model recommendation had a lower death rate from HNSCC (HRe: 0.84, 95% CI, 0.69–0.94), cardiovascular diseases (HRe: 0.66, 95% CI, 0.45–0.96), and adverse effects (HRe: 0.68, 95% CI, 0.38–0.92). The phase two recommendation reduced deaths caused by HNSCC (HRe: 0.86, 95% CI, 0.66–0.93).



Treatment heterogeneity

Treatment heterogeneity can be captured by the presence of varied average treatment effects (ATEs) across different subgroups, indicating that patients with different characteristics respond heterogeneously to the same treatment. The patients were divided into the surgery recommended (SR) and surgery not recommended (SNR) groups based on the ITE that BITES predicted in the phase one recommendation. Similarly, the surgery plus CRT recommended (SCR) and surgery plus RT recommended (SRR) groups were established. The HR and HRe were calculated to visualize the ATE in the overall patients and those subgroups. IPTW was used to adjust for tumor size, tumor locations, laterality, TNM stages, and demographic features. These results are presented in Figures 4A, B for the phase one and phase two recommendations, respectively.


[image: Forest plot showing hazard ratios (HR) and inverse probability of treatment weighting (IPTW)-adjusted HRs for two scenarios labeled A and B. In A, categories include overall, surgery recommended, and surgery not recommended. In B, categories are overall, surgery plus CRT recommended, and surgery plus RT recommended. Blue squares indicate HR, and red circles indicate IPTW-adjusted HR. Horizontal lines represent confidence intervals.]
FIGURE 4
 Treatment heterogeneity. (A) Treatment heterogeneity in the phase one recommendation; (B) Treatment heterogeneity in the phase two recommendation. HR, hazard ratio; IPTW, inverse probability treatment weighting.


In CRT vs. surgery plus RT/CRT, the ATE reflected the protective effect of surgery compared with CRT. Surgery demonstrated a very weak and statistically insignificant protective effect in all patients (HRe: 0.87, 95% CI, 0.70–1.08). However, it showed a protective effect in the SR group (HRe: 0.60, 95% CI, 0.45–0.97) and a risky effect in the SNR group (HRe: 1.57, 95% CI, 1.38–1.77).

The ATE of surgery plus CRT compared with surgery plus RT was not statistically significant in all patients (HRe: 0.87, 95% CI, 0.71–1.07). It became favorable in the SCR group (HRe: 0.71, 95% CI, 0.51–0.98) and not favorable in the SRR group (HRe: 1.13, 95% CI, 1.08–1.14).



Therapeutic insights and model interpretation

Here, the PD and IPTW-adjusted PD (PDe) were used to quantify the impact of tumor location, age, and TNM stage on treatment selection. Figures 5A, B represent the probability differences for the phase one recommendation, while Figures 5C, D show similar results for the phase two recommendation. The PD represented the probability that a patient with the characteristic was recommended for surgery and surgery plus CRT minus the probability in the absence of the characteristic in phase one and phase two, respectively, whereas the IPTW correction provided a more unbiased result.


[image: Four forest plots (A, B, C, D) display hazard ratios with confidence intervals for various risk factors and subgroups. Subgroups include anatomical sites, cancer stage, and age groups. Plot A and C detail anatomical sites like lip and tongue. Plot B and D show stage and age impacts. Two series are presented: PD and PTVs adjusted/PD, shown in blue and red. Horizontal lines denote confidence intervals.]
FIGURE 5
 Therapeutic insights. (A) Probability difference regarding tumor location in the phase one recommendation; (B) Probability difference regarding age and TNM stage in the phase one recommendation; (C) Probability difference regarding tumor location in the phase two recommendation; (D) Probability difference regarding age and TNM stage in the phase two recommendation. PD, probability difference; IPTW, inverse probability treatment weighting.


For the phase one recommendation, a higher likelihood of being recommended to receive surgery was found in the patients with tumors in the tonsil (PDe: 40.60%, 95% CI: 38.30%−42.90%), lip (PDe: 5.78%, 95% CI: 1.65%−9.90%), gum (PDe: 25.60%, 95% CI: 15.10%−36.10%), oropharynx (PDe: 9.57%, 95% CI: 1.13%−18.00%), and larynx (PDe: 6.57%, 95% CI: 2.78%−10.40%) subsites, those with stage IVa (PDe: 20.26%, 95% CI: 17.67%−22.85%), and those older than 60 years of age (PDe: 29.00%, 95% CI: 26.40%−31.50%), with specific likelihood listed accordingly in the PDe values. In contrast, the patients with tumors located at the base of the tongue (PDe: −4.37%, 95% CI: −7.52%−1.21%), other parts of the tongue (PDe: −7.86%, 95% CI: −12.43%−3.29%), and those aged 30 to 60 years (PDe: −28.74%, 95% CI: −31.27%−26.21%) were less likely to be recommended for surgery.

For the phase two recommendation, factors such as floor of mouth carcinoma (PDe: 9.68%, 95% CI: 0.40%−19.00%), hypopharyngeal carcinoma (PDe: 34.6%, 95% CI: 17.20%−51.90%), stage IVa (PDe: 11.34%, 95% CI: 2.17%−20.50%), age between 30 and 60 years (PDe: 10.80%, 95% CI: 4.78%−16.90%), and age under 30 years (PDe: 57.20%, 95% CI: 53.40%−61.10%) were associated with a greater likelihood of being recommended for surgery plus CRT. On the other hand, surgery plus RT was more likely to be recommended for the patients with sinonasal cancer (PDe: −22.60%, 95% CI: −37.32%–−7.91%), laryngeal cancer (PDe: −8.46%, 95% CI: −15.20%–−1.74%), and those older than 60 years (PDe: −11.70%, 95% CI: −17.70%–−5.74%).

Figures 6A, B visualize the eight most important variables, sorted by the aggregated Shapley values, for the overall model outputs for the phase one and phase two recommendations using SurvSHAP(t). These results were calculated over 500 random observations in the testing set. The horizontal bars represent the number of observations for which the importance of the variable, represented by a given color, was ranked as first, second, and so on.


[image: Two stacked bar charts labeled A and B depict variable importance rankings, with each bar segmented by color to represent different variables. Chart A includes variables like age, tumor stage, and therapy type, while chart B presents similar variables, but with slightly different attributes such as N1 and histological grade. Both charts feature a legend identifying the colors corresponding to each variable and numbers indicating the frequency or importance levels.]
FIGURE 6
 Model interpretation based on SurvSHAP(t). (A) Interpretation of the model of the phase one recommendation. (B) Interpretation of the model of the phase two recommendation. RT, radiation; CRT, chemoradiation.


According to the phase one model, advanced T stage was the most important feature, followed by N stage, age, and treatment. N stage, age, and histological grade significantly affected the outputs of the phase two model.




Discussion

Surgery plus adjuvant RT is the classic therapy for patients with locally advanced HNSCC (3), while the use of adjuvant CRT has become increasingly popular (4). In terms of organ preservation, patients with advanced T stage or multiple lymph node involvement have been found to benefit from CRT (2). However, the treatment guidelines are still primarily population-based, and considering treatment heterogeneity, the optimal treatment plan for a patient needs to be considered at the individual level (8).

In this study, we developed and compared several models to provide individualized treatment recommendations for patients with locally advanced HNSCC. After thorough validation and bias control, BITES, a deep learning-based approach, demonstrated the best performance, prolonging patient survival by 4 to 10 months over 5 years. It outperformed real-world physician choices, widely used models, and NCCN guidelines, showcasing its potential to improve clinical treatment decisions by addressing complex treatment heterogeneity and non-linear interactions more effectively than traditional models such as CPH and RSF (29, 30).

We believe the advantage of BITES lies in its superior feature extraction capability and its representation-based causal inference method#. Its deep learning framework captures complex non-linear relationships, surpassing the limitations of traditional models such as CPH, which relies on constant hazard ratio assumptions, and RSF, which struggles with high-dimensional data (30). Through representation learning, it effectively balances covariates between treatment groups, reducing bias and improving ITE estimation (29), while traditional models are largely affected by selection bias in observational data#. In addition, BITES directly optimizes for the ITE, providing more precise treatment recommendations compared to DeepSurv, which focuses primarily on survival risk prediction (31). The shared and risk network architecture of BITES further enhances interpretability, making it particularly well-suited for clinical applications (29). These strengths position BITES as the most effective model for personalized treatment recommendations in this study and make it more suitable for individualized causal inference tasks.

Our quantitative results are consistent with the majority of the literature. In the phase one recommendation, we found that the patients older than 60 years were 29% more likely to be recommended for surgery than the remaining patients, which is supported by studies (32) indicating that the efficacy of chemotherapy decreases with the increasing age of the patient. Similar results were found in the patients with onset sites in the lip (33), gum (34), oropharynx (35), larynx (36), and tonsil (37), as well as in those with stage Iva (38). In addition, Foster et al. (39) found lower rates of osteonecrosis in tongue cancer patients treated with CRT, supporting the greater likelihood of them being recommended for CRT.

In the phase two recommendation, surgery plus RT was more frequently recommended for the older patients due to the reduced efficacy of chemotherapy (40). In addition, the better efficacy of this approach has been proven in patients with sinonasal cancer (41) and laryngeal cancer(36). Conversely, patients with stage Iva (42), onset sites in the hypopharynx (43), and floor of the mouth (44, 45) are found to benefit more from adjuvant CRT.

Maximizing patient survival and providing a satisfactory quality of life are priorities for physicians. Compared to conventional guidelines, DL models can not only personalize treatment but also quantify the benefits of each treatment and provide a visual platform for doctors and patients to communicate with each other. With the continuous improvement of DL models, the application can be extended to other areas, such as risk identification and imaging prediction, simplifying clinical diagnosis and treatment.


Limitations

The complete inclusion of variables and diverse outcomes is still an area of improvement. The SEER database lacks some important clinical variables, such as human papillomavirus status and vascular invasion, hindering more accurate modeling. In addition, other survival outcomes are also important considerations for patients when choosing a treatment plan, whereas our model solely focused on whether to perform organ preservation.




Conclusion

In this study, we developed a personalized treatment recommendation system for patients with locally advanced HNSCC using DL models. BITES demonstrated the ability to identify patients who can achieve organ preservation with CRT and to guide maximum survival. Comprehensive clinical data and further refinement of DL models can enable more accurate predictions in the future, ultimately achieving the potential of precision medicine.
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A novel ubiquitin-related genes-based signature demonstrated values in prognostic prediction, immune landscape sculpture and therapeutic options in laryngeal cancer
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Background: Laryngeal cancer (LC) is characterized by high mortality and remains challenging in prognostic evaluation and treatment benefits. Ubiquitin-related genes (UbRGs) are widely involved in cancer initiation and progression, but their potential value in LC is unknown.Methods: RNA-seq and clinical data of LC were obtained from TCGA and GEO. UbRGs that independently influenced the overall survival (OS) of LC patients were screened with differential expression, COX and LASSO regression analyses. A prognostic signature was then established and assessed for its predictive value, stability and applicability using Kaplan-Meier analysis and receiver operating characteristic curves. The nomogram was further generated in combination with the signature and clinical characteristics. Characterization of immune properties and prediction of drug sensitivity were investigated on the signature-based subgroups using a panel of in silico platforms. Verification of gene expression was conducted with Western blot, qRT-PCR and ELISA, ultimately.Results: PPARG, LCK and LHX1 were identified and employed to construct the UbRGs-based prognostic signature, showing a strong ability to discriminate LC patients with distinct OS in TCGA-LC and GSE65858, and excellent applicability in most clinical conditions. The nomogram showed higher predictive value and net clinical benefit than traditional indicators. As evaluated, the low-risk group had a more activated immune function, higher infiltration of anti-cancer immune cells and stronger expression of immune-promoting cytokines than the high-risk group. Immune properties were also correlated with individual signature genes. PPARG and LHX1 were negatively correlated, whereas LCK positively correlated, with the immuno-promoting microenvironment. Additionally, chemotherapy would be more effective in high-risk patients, while immune checkpoint inhibitors would be more effective in low-risk patients. Finally, dysregulation of the signature genes was confirmed in LC cell lines by Western blot, and PPARG knockdown significantly reduced the expression of the immunosuppressive cytokines IL6, TGFB1, TGFB2 and VEGFC by qRT-PCR and ELISA.Conclusion: We have developed a UbRGs-based signature for LC prognostic evaluation that is valuable in clinical application, indicative of the immune microenvironment and beneficial for individualized treatment guidance.Keywords: laryngeal cancer, ubiquitin-related genes-based signature, prognosis prediction, immune landscape sculpture, therapeutic options
1 INTRODUCTION
As the most common malignant tumor of the head and neck, there are approximately 188,960 new cases of laryngeal cancer (LC) and 103,216 related deaths annually worldwide, according to the latest GLOBOCAN report (Bray et al., 2024). With the application of comprehensive treatment strategies combining surgery, radiotherapy, chemotherapy and immunotherapy, the 5-year survival rate for certain LC patients has improved. However, the proportion of patients dying from recurrence, metastasis and resistance is still as high as 30%–40% (Steuer et al., 2017; Egelmeer et al., 2011). To reduce patient mortality, accurate prognostic prediction is essential for better survival estimation and optimization of therapeutic strategies. Current assessments depend primarily on the pathological characteristics of the tumor, especially the TNM stage. Unfortunately, the predictive power of the TNM stage is only 57% for overall survival (OS) and 60% for progression-free survival in LC patients (Cui et al., 2020a; Cui et al., 2020b). Obviously, current prognostic strategies have already hampered the accurate prediction of tumor progression and therapeutic response, and consequently will rarely support improvements in treatment. Therefore, to achieve better prognosis and efficacy in LC therapies, there’s an urgent need to establish new prognostic strategies and discover biomarkers of advantage.
It's well known that protein dysregulation and dysfunction are widespread in cancer cells (Díaz et al., 2021). As the pivotal regulatory machinery of protein homeostasis in eukaryotic cells, the ubiquitin-proteasome system is deeply involved in tumor initiation and progression (Sun et al., 2020). As reported by Wang et al., cell proliferation and radiotherapy resistance in LC were mediated by overexpression of UBR5, an E3 ubiquitin-protein ligase, through activation of the p38/MAPK signaling pathway (Wang et al., 2020). Another report on USP34, one of the deubiquitinating enzymes, indicated its role in enhancing LC cell growth and resistance to cisplatin by stabilizing SOX2 (Dai et al., 2020). In addition to direct effects on cancer cells, ubiquitin-related genes (UbRGs) also play an important role in facilitating cancer immune evasion (Çetin et al., 2021). For example, the E3 enzyme TRIM28 has been reported to induce the infiltration of myeloid-derived suppressor cells into small cell lung cancer, thereby promoting cancer progression through increased RIPK1 ubiquitination and activation of the downstream NF-κB pathway (Liang et al., 2023). During the anti-PD-1 treatments in colorectal cancer, its reactivity was impaired by a deubiquitinating enzyme USP14, which inhibited PD-1 expression and CD8+ T cell infiltration by targeting the IDO1/TRP/KYN signaling axis (Shi et al., 2022). In short, multiple properties of cancer will be altered by the disrupted expression of UbRGs through a panel of distinct mechanisms. As a consequence, patient survival and therapeutic response may be affected, suggesting that UbRGs could be employed as candidate biomarkers to develop novel strategies for predicting LC prognosis. However, the studies of UbRGs in LC are still insufficient, which hinders the understanding of their functional role and application in prognosis.
In this study, we aimed to develop a UbRGs-based prognostic signature and nomogram, attempting to achieve risk stratification and individualized survival prediction in LC patients. Multi-dimensional evaluations were then carried out to recognize the correlation between the UbRGs-based signature and the immune properties of the LC microenvironment. Subsequently, the potential regulatory role of the signature genes in LC immunity was thoroughly investigated by panels of in silico prediction and experiment validation. Finally, drug sensitivity prediction was performed to provide clues for the individualized therapy of LC patients based on this gene signature. Overall, our study was the first design of UbRGs-based prognostic signature of LC and provided new insights to improve prognosis prediction, understand cancer immunity, and guide individualized medication, which will ultimately shed new light on prolonging patient survival.
2 MATERIALS AND METHODS
The entire procedure of this study was summarized in the flowchart shown in Figure 1. All websites and calculation tools employed are listed in Supplementary Table S1.
[image: Flowchart illustrating the analysis of URBGs for lung cancer. Steps include KEGG/GO and PPI analysis, identification of differentially expressed URBGs, univariate and multivariate COX analyses, and creation of a prognostic signature. Outputs include survival analysis, nomogram construction, immune landscape assessment, and drug sensitivity prediction. Data sources include GSE65858 and TCGA datasets, with validation using the GSE65858 dataset. The ultimate goal is to evaluate the prognostic and therapeutic value of the URBGs-based signature.]FIGURE 1 | Flowchart of the current study.
2.1 Data collection and preprocessing
RNA-Seq data and clinical information of 116 LC and 12 normal laryngeal tissues were downloaded from The Cancer Genomic Atlas (TCGA). Expression profiling data were normalized using the transcripts per kilobase of exon model per million mapped reads format, and relevant clinical analyses were performed on 105 cases after excluding samples with missing pathological and survival information. The TCGA-LC dataset was defined as the training set. For signature validation, the GSE65858 dataset was downloaded from the Gene Expression Omnibus (GEO), from which the expression matrix and clinical data of 46 LC patients were extracted. Those two datasets were uploaded in Supplementary Data 1.
2.2 Identification and annotation of differentially expressed ubiquitin-related genes
Ubiquitin-related genes were collected from two databases, iUUCD 2.0 and UbiBrowser 2.0. Differentially expressed UbRGs (DUbRGs) were then screened from the harvested genes using the “limma” R package with criteria of FDR <0.05 and |log2 fold change (FC) | > 1. Both genes and samples were clustered using the “Complete” clustering method and the “correlation” distance calculation approach. Subsequently, a heatmap was generated to visually present the top 20 DUBRGs.
Functional analyses of DUbRGs were carried out with the Sangerbox 3.0 online platform for either the Kyoto Encyclopedia of Genes and Genomes (KEGG) or Gene Ontology (GO), including cellular components (CC), molecular functions (MF) and biological processes (BP). FDR <0.05 was considered as the significance threshold for the enrichment of candidate pathways. The analysis of potential protein-protein interaction (PPI) among DUbRGs was performed in STRING, with a minimum interaction score of 0.4. Visualization of the PPI network proceeded using Cytoscape software.
2.3 Construction and validation of a prognostic signature based on UbRGs
Univariate Cox regression analysis was used to preliminarily screen for DUbRGs that significantly correlated with overall survival (OS) based on the gene expression profile data of individuals in the training set. These DUbRGs were shrunk based on the minimum lambda determined by 10-fold cross-validation in the least absolute shrinkage and selection operator (LASSO) regression analysis. Genes with independent prognostic value were further identified with multivariate COX regression analysis among the ones resulting from univariate Cox regression. The expression value will then be termed as Exp and incorporated into the prognostic signature. Meanwhile, the coefficient of gene expression value was also generated in the same analysis and termed as β. This value was employed to quantify the contribution of each gene to the risk rate and thus more accurately reflect its weight in the overall assessment. Subsequently, the patient risk score was formulated as below:
[image: Mathematical formula for risk score calculation: Risk score is equal to the sum from i equals one to n of beta sub i multiplied by Exp sub i.]
Based on the median risk score, the individuals in the training set were divided into high- and low-risk groups. To assess the ability of the signature to discriminate OS in LC patients, Kaplan-Meier curves were plotted accordingly using the SRplot online platform. With this platform, receiver operating characteristic (ROC) curves were also plotted and the area under the curves (AUC) was calculated to evaluate the predictive efficacy of the signature in 1-, 2-, and 3-year OS of LC patients. In addition, the distribution characteristics were analyzed for the risk score, survival status and gene expression profiles. To assess the stability of the signature, the validation set was employed. The median risk score of the training set was also used as the basis to group high- and low-risk. The numbers of high- and low-risk patients in the training and validation sets are shown in Supplementary Table S2.
To evaluate the clinical applicability of the signature under different clinical characteristics, Kaplan-Meier analysis was conducted on the subgroups retrieved from the training set, including age (</> 60 years old), gender (male/female), differentiation grade (1-2/3-4), T stage (1-2/3-4), N stage (0-1/2-3), M stage (0/1) and clinical stage (I-II/III-IV). The number of high- and low-risk patients in each subgroup was shown in Supplementary Table S2.
2.4 Establishment and evaluation of nomogram
Univariate and multivariate COX regression analyses were performed on the combination of risk score and clinical characteristics in the training set. To convert the results of complex regression equations into simple graphs, a nomogram was constructed using the “regplot” R package, which can efficiently predict the probability of an individual’s outcome event according to the patient’s specific situation, thus achieving individualized assessment in clinics (Balachandran et al., 2015). ROC curves were generated to evaluate the predictive efficacy of the nomogram, risk score and traditional prognostic indicators (T stage, N stage, M stage and clinical stage) for 3-year OS in LC patients. Calibration curves were synthesized to assess the consistency between the predicted and actual survival rates using the “rms” R package. To evaluate the net clinical benefit of the nomogram and traditional stage, decision curve analysis (DCA) was performed using the “ggDCA” R package.
2.5 Gene set enrichment analysis (GSEA)
KEGG- and GO-related gene sets were downloaded from the GSEA. To explore potentially enriched biological functions in the high- and low-risk groups, GSEA enrichment analysis was carried out on the training set using the R packages termed “limma” and “clusterProfiler”. The enriched items were recognized with p-values lower than 0.05 and then ranked based on NES resulting from the normalization of enrichment scores. The top 5 enriched items were visualized as curves in GSEA plots, while pie charts were used to show the categories and percentages within all enriched items.
2.6 Analysis of immune landscape
To understand the potential correlation between the UbRGs-based prognostic signature and cancer immunity in LC, a panel of immune properties was calculated for individuals in the training set and then compared between the high- and low-risk groups as follows.
	1) The activation degree of 13 immune-related pathways was assessed with the ssGSEA algorithm.
	2) The TME scores (including stromal score, immune score and ESTIMATE score) were calculated using the ESTIMATE algorithm to determine the proportion of TME cells in LC.
	3) The infiltration levels of immune cells were estimated using the CIBERSORT and ssGSEA algorithms, and the correlation between risk score and infiltration level of each cell type was further analyzed with the Chiplot online platform.
	4) The expression levels of immune-related cytokines were analyzed using the Sangerbox 3.0 online platform.

2.7 Cell culture and CRISPR-based gene knockout
Human LC cell lines (TU686, TU212 and LCC) and a normal lung epithelial cell line (Bease-2B) were purchased from Meilun, Yihe, QuiCell and Aorisai Biotechnology Co., LTD respectively. They were cultured in RPMI 1640 or DMEM-H medium containing 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were passaged at a ratio of 1:3 ratio upon reaching 80% confluence.
Plasmids containing control or PPARG-targeting sgRNAs were constructed based on the LentiCRISPR v2 vector (Addgene #52961) for stable gene knockout in cell lines. The lentivirus was then packaged into 293T cells and applied to infect TU212 and TU686 cells. After infection, continuous puromycin selection was performed at a concentration of 2 μg/mL to obtain stable cell lines for further experiments. The sgRNA sequences are listed in Supplementary Table S3.
2.8 Western blot (WB)
Western blot assays were performed using routine methods. Briefly, the cells were lysed with RIPA buffer on ice once reaching 80% confluence. After centrifugation at 4°C, 12,000 rpm for 30 min, protein samples were collected from the supernatant, mixed with 1×loading buffer, and then heated at 95°C for 30 min. The heated samples were further subjected to SDS-PAGE electrophoresis and antibody staining.
The expression levels of PPARG, LCK and LHX1 proteins were determined in TU686, TU212, LCC and Bease-2B cells. The knockout efficiency of PPARG was tested in TU212- and TU686-derived control and PPARG knockout cells. Hence, the primary antibodies used in this study included PPARG (Proteintect, 66936-1-Ig), LCK (Abcam, ab227975), LHX1 (Santa, sc-515631) and GAPDH (Proteintect, 66936-1-IG). 10494-1-AP). Goat Anti-Rabbit IgG-HRP (Affinity, S0001) and Goat Anti-Mouse IgG-HRP (Affinity, S0002) were adopted as secondary antibodies. The grayscale values of the protein bands were analyzed semi-quantitatively using ImageJ software.
2.9 Quantitative real-time polymerase chain reaction (qRT-PCR)
qRT-PCR was performed to analyze the mRNA expression levels of cytokines, including IL1A, IL6, IL18, CXCL11, CCL2, VEGFC, TGFB1, TGFB2, TGFB3, CSF1, FGF2 and PDGFC, in control and PPARG knockout groups derived from TU212 and TU686 cell lines.
Total RNA extraction, cDNA synthesis and qRT-PCR reaction were performed according to the kit manuals (Vazyme, R701-01; Takara, RR036A and RR820A). GAPDH was hired as the internal reference gene. Relative mRNA levels of cytokines were calculated by the 2−ΔΔCT method. Primer sequences are listed in Supplementary Table S4.
2.10 Enzyme-linked immunosorbent assay (ELISA)
Following the qRT-PCR results, the protein expression levels of IL6, VEGFC, TGFB1 and TGFB2 in the supernatants of control and PPARG knockout cells were examined using ELISA. The ELISA kits (RUIXIN BIOTECH; RX106126H, RX105005H, RX104768H, RX2D118026) were equilibrated at room temperature before the experiment. Operations were then performed following the instructions and the OD values were detected at 450 nm. The standard curves were subsequently plotted and the protein concentrations were calculated from the corresponding OD values.
2.11 Prediction of drug sensitivity in LC patients
The response of LC patients to immunotherapy was forecasted using the TIDE algorithm, and the expression levels of 48 immune checkpoints were further assessed with the Sangerbox 3.0 online platform.
Half inhibitory concentrations (IC50) for chemotherapy and targeted drugs were predicted using the “oncoPredict” R package. Briefly, drug sensitivity data valued as IC50 of tumor cell lines was retrieved from the Genomics of Drug Sensitivity in Cancer (GDSC) database, whereas the corresponding gene expression profiles were also obtained from the same source. They were used to build ridge regression models, which were applied on the training set mentioned in Section 2.1 to yield drug sensitivity predictions. These drug models were built after removing or summarizing gene duplication, homogenization (batch correction), and filtering low-variant genes. Subsequently, calcPhenotype function was applied to the proceeded, standardized and filtered clinical tumor expression data, yielding a drug sensitivity prediction for each patient. Averaged IC50 was ultimately calculated in either high- or low-risk groups respectively for each drug.
2.12 Statistical analysis
All statistical analyses were performed using R software (version 4.3.2), GraphPad Prism (version 9.0) and the online platforms mentioned above. Differences in gene expression, immune infiltration and IC50 predictions across the database were compared using the Wilcoxon signed-rank test. Spearman was employed for the correlation analysis. One-way ANOVA was used to compare differences in protein expression of signature genes among cell lines. The significance of differential cytokine expression was confirmed by t-test. p < 0.05 was considered statistically significant.
3 RESULTS
3.1 A prognostic signature was constructed based on PPARG, LCK and LHX1 highlighted from UbRGs differentially expressed in LC
Initially, 1366 UbRGs were retrieved from iUUCD 2.0, including 27 E1 enzymes, 109 E2 enzymes, 1153 E3 enzymes, 164 deubiquitinating enzymes (DUBs), 396 ubiquitin/ubiquitin-like binding domains and 183 ubiquitin-like domains. Meanwhile, 417 E3 enzymes and 86 DUBs were obtained from UbiBrowser 2.0. After removing duplicates and non-human records, 891 human-derived UbRGs were obtained in combination (Supplementary Date 2). Of these, expression data were extracted for 766 UbRGs from both the training and validation sets (Figure 2A). 111 UbRGs were shown as differentially expressed between LC and normal laryngeal tissues in the training set, containing 100 upregulated and 11 downregulated ones, which were termed DUbRGs. The top 20 DUbRGs were presented in the heatmap (Figure 2B). The potential biological functions and protein interactions of these DUbRGs were revealed by KEGG, GO and PPI analyses (Supplementary Figure S1).
[image: Venn diagram and heatmap comparing gene data. Panel A shows a Venn diagram with overlapping and unique gene counts from TCGA-LC and GSE5858-LC datasets. Panel B displays a clustered heatmap of gene expression, contrasting normal and tumor samples with a color gradient from blue to red, indicating expression levels.]FIGURE 2 | Screening of UbRGs differentially expressed in LC. (A) The Venn diagram showed 769 UbRGs retrieved from human-derived databases and presented in the TCGA-LC and GSE65858-LC datasets. (B) The heatmap of the top 20 differentially expressed UbRGs, with both genes and patients clustered.
Out of 111 DUbRGs, 5 genes were highlighted with significant correlation to the OS of LC patients in univariate COX regression, including TRAF2, PPARG, KLHL17, LCK and LHX1 (Figure 3A). To avoid model overfitting, LASSO regression analysis was performed and these 5 DUbRGs remained when applying the minimum lambda (Figures 3B, C). To further determine the DUbRGs that independently influenced OS, multivariate Cox regression analysis was conducted. PPARG, LCK and LHX1 were subsequently identified as the genes highly correlated with the prognosis of LC patients (Figure 3D), while the other two genes were excluded due to p > 0.05. Of these, PPARG and LHX1 were indicated as risk genes with coefficients valued at 0.434 and 0.762 respectively, whereas LCK was indicated as a protective gene with a coefficient of −0.384. Also, such identity was confirmed by Kaplan-Meier analysis (Figures 3E–G). The shorter survival was correlated with high expression of PPARG and LHX1, while with low expression of LCK. Their differential expression in LC and normal lung epithelial cell lines was verified by Western blot, which was consistent with the RNA-seq results (Supplementary Figure S2).
[image: Forest plots, line plots, and Kaplan-Meier survival curves are depicted in multiple panels. Panel A shows a forest plot with coefficients, p-values, and hazard ratios for several genes. Panel B presents a line plot of coefficients over different log lambda values. Panel C displays deviance against log lambda values. Panel D includes another forest plot with similar metrics. Panels E, F, and G contain Kaplan-Meier survival curves for three genes, showing survival probabilities over time with different risk strata.]FIGURE 3 | Identification of 3 UbRGs to construct the prognostic signature. (A) Univariate COX regression analysis of 5 UbRGs significantly associated with OS in LC patients, including TRAF2, PPARG, KLHL17, LCK and LHX1. (B) Coefficient profiles of these five UbRGs generated with LASSO regression analysis. (C) Determination of minimum lambda for 5 via 10-fold cross-validation in LASSO regression. (D) Multivariate Cox regression analysis of 3 UbRGs in-dependently affected OS in LC patients, including PPARG, LCK and LHX1. (E–F) Kaplan-Meier analysis of identified UbRGs, (E) PPARG, (F) LCK and (G) LHX1.
A UbRGs-based prognostic signature was thus established as described in Section 2.3, where the risk score was formulated based on both gene expression levels and their corresponding coefficients:
[image: Text reads: "Risk Score equals 0.434 times PPARG plus 0.762 times HMX1 minus 0.384 times LCK."]
3.2 The effectiveness of UbRGs-based signature was proved and a related nomogram was established accordingly
To evaluate the effectivity of the UbRGs-based prognostic signature, a panel of calculations was carried out on the training set. At first, the median risk score was determined as 1.43 by the formulation in 3.1, with which the high- and low-risk groups were then divided from the training set. The median survival time was defined as 22.85 months for the high-risk group and 88.87 months for the low-risk group with Kaplan-Meier analysis (p < 0.0001, Figure 4A), which demonstrated a significant difference in OS between the two groups. With the ROC curves of 1-, 2-, and 3-year OS, AUC values were calculated as 0.74, 0.81, and 0.81 respectively, indicating a good predictive efficacy of this signature (Figure 4B). Along with the increasing risk score (Figure 4C), the analysis of individual patients showed higher mortality (Figure 4D). Meanwhile, the expression levels of the risk genes, PPARG and LHX1, tended to be upregulated in high-risk patients; while the trend of protective gene LCK was downregulated (Figure 4E).
[image: Grouped image showing multiple panels of survival and risk analysis for patients. Panel A and F display Kaplan-Meier survival curves with significant differences between low and high-risk groups, evident from the p-values. Panels B and G present ROC curves with AUC values for different years, indicating predictive performance. Panels C and H depict risk scores across patients, with separate high and low-risk distributions. Panels D and I show scatter plots of survival status against increasing risk scores. Panels E and J feature heatmaps of gene expression (PPARG, LCK, LBK1) corresponding to risk scores.]FIGURE 4 | Evaluation of the prognostic performance of the UbRGs-based signature. (A) Kaplan-Meier analysis of OS in the high- and low-risk groups based on the training set. (B) ROC curves showing the predictive efficacy of this signature for 1-, 2-, and 3-year OS of patients in the training set. (C–E) Distribution of characteristics of individual patients in the training set, in-cluding (C) risk score, (D) survival status, and (E) expression profiles of 3 signature genes. (F–J) Evaluation of the UbRGs-based signature with the validation set for (F) Kaplan-Meier analysis of OS, (G) ROC curves of predictive efficacy in 1-, 2-, 3-year OS, and (H) risk score, (I) survival status, and (J) expression profiles of 3 signature genes in individual patients.
To assess the stability of the UbRGs-based signature, the same panel of analyses was subsequently conducted in the validation set. Worse OS was still significantly observed in the high-risk group (p = 0.016, Figure 4F). The AUC values were 0.72, 0.71 and 0.70 for 1-, 2-, and 3-year OS in LC patients respectively (Figure 4G), further confirming the effectiveness of the prediction. The correlation between the risk score and mortality as well as the expression trend of the signature genes were in good agreement with the results from the training set (Figures 4H–J).
To investigate the applicability of the UbRGs-based signature, Kaplan-Meier analysis was carried out across a range of clinical conditions. In the majority of cases (Figures 5A–J), shorter OS was significantly correlated with the high-risk group (p < 0.05), including age<60, age≥60, male, Grade 1-2, Grade 3–4, T3-4 stage, N0-1 stage, N2-3 stage, M0 stage and clinical stage III-IV. However, in the other four conditions (Supplementary Figure S3), namely, female (p = 0.087), T1-2 stage (p = 0.083), M1 stage (p = 0.16) and clinical stage I-II (p = 0.13), there was no significant difference in survival between the two groups.
[image: Series of nine Kaplan-Meier survival curves showing overall survival compared between low and high-risk groups based on various parameters, including age, gender, cancer grade, tumor stage, lymph node involvement, metastasis presence, and stage classification. Each graph includes a p-value indicating the statistical significance of the differences observed. The x-axis represents time in months, while the y-axis shows survival probability.]FIGURE 5 | Assessment of the clinical applicability of the UbRGs-based signature. Significant dif-ferences in OS were exhibited between the high- and low-risk groups in conditions of (A) age<60, (B) age≥60, (C) male, (D) Grade 1-2, (E) Grade 3-4, (F) T3-4 stage, (G) N0-1 stage, (H) N2-3 stage, (I) M0 stage and (J) clinical stage III-IV by stratified Kaplan-Meier analysis.
To achieve individualized prediction, univariate and multivariate COX regression analyses were performed on the risk score and clinical characteristics. As the risk score (p < 0.001) and gender (p = 0.001) showed independent values in prognosis (Figures 6A, B), a nomogram was then constructed accordingly to visualize these results (Figure 6C). The probability of survival at 1, 2 and 3 years can be predicted more intuitively based on an individual’s risk score and gender profile. When comparing the ROC curve of 3-year OS in LC patients, the AUC of the nomogram was 0.856, higher than that of the risk score (AUC = 0.810) and traditional indicators (T stage, AUC = 0.494; N stage, AUC = 0.641; M stage, AUC = 0.517; clinical stage, AUC = 0.542; Figure 6D). With the calibration curve, good consistency was indicated between the predicted and actual survival rates of the nomogram at 1, 2, and 3 years (Figure 6E). Additionally, the DCA curve demonstrated the nomogram as a better predictive tool than the clinical stage (Figure 6F).
[image: Panels display multiple analyses. Panel A and B show hazard ratio plots for various factors, including risk score. Panel C features a nomogram predicting survival rates based on factors like gender and risk score. Panel D provides ROC curves for different time points. Panel E shows calibration plots for predicted probabilities over five years. Panel F presents a decision curve analysis, comparing net benefits across different risk thresholds.]FIGURE 6 | Establishment and evaluation of a nomogram integrating signature with gender. (A) Univariate and (B) multivariate COX regression analysis to highlight independent factors af-fecting OS in LC patients. (C) A nomogram constructed to predict the 1-, 2-, and 3-year OS in LC patients by combining the risk score with gender. (D) ROC curves based on the nomogram, risk score and traditional indicators to show the predictive efficacy of 3-year OS in LC patients. (E) Calibration curves of the consistency between the predicted and actual survival rates at 1, 2 and 3 years. (F) DCA showed the net clinical benefit of the nomogram and traditional stage.
In brief, the signature composed of PPARG, LHX1 and LCK was shown efficacious in the prognosis prediction of OS in LC patients and applicable in most clinical conditions. The nomogram combining risk score and gender provided an even better predictive efficiency than the signature and traditional indicators alone.
3.3 The UbRGs-based signature specified the status of the immune microenvironment in LC
For a better understanding of the UbRGs-based signature in prognosis prediction, biological processes differentially involved in the high- and low-risk groups were searched with GSEA enrichment analysis. By p < 0.05, 934 items were enriched with GO and 31 with KEGG (Supplementary Data 3). A prominent panel of immune-related processes was highlighted in the low-risk group. The top 5 enriched GO items included antigen processing and presentation, T-cell receptor complex, antigen binding, immunoglobulin receptor binding and immunoglobulin complex circulating (Figure 7A). Furthermore, 18 among top 20 enrichment in GO, and also 26 among top 30, were occupied by the immune-related processes (Labeled in Supplementary Data 3 with yellow). A similar trend of enrichment was also highlighted in KEGG items, with top 5 enriched biological processes were: allograft rejection, type I diabetes mellitus, autoimmune thyroid disease, primary immunodeficiency, and antigen processing and presentation (Figure 7B, Supplementary Data 3). When the immune-related items were counted in all GO and KEGG enrichments, as visualized in Supplementary Figures S4A–D, high percentages were quantified as 46.15% in GO-CC, almost 100% in GO-MF, 74.01% in GO-BP and 69.23% in KEGG. However, in the high-risk group, it was failed to summarize a dominant module with clear and unique functional connotation from the GSEA results, either by GO or KEGG (Supplementary Figures S4E–H), especially, no significant enrichment of immune processes observed (Supplementary Figures S5A, B).
[image: A multi-panel scientific figure including several graphs and charts. Panels A and B show enrichment plots for low-risk groups. Panel C displays box plots comparing risk scores across various genes. Panel D consists of violin plots illustrating immune cell fractions. Panel E features bar plots of immune cell fractions with some marked significance. Panel F presents a bar graph of gene correlation coefficients. Panel G contains box plots comparing gene expression levels between low and high-risk groups, with several significant differences noted. Each panel includes a color key and corresponding labels for clarity.]FIGURE 7 | Evaluation of the immune microenvironment in the high- and low-risk groups dis-criminated by the UbRGs-based signature. (A, B) GSEA enrichment analysis in the low-risk group based on (A) GO- and (B) KEGG-related gene sets. (C) Differential activation of immune-related pathways in the high- and low-risk groups analyzed with the ssGSEA algorithm. (D) TME scores calculated by the ESTIMATE algorithm for both groups, in which the immune score was signifi-cantly different. (E) Estimation of immune cell infiltration levels via the CIBERSORT algorithm and 6 cell types highlighted with statistical significance. (F) Correlation between risk score and immune cell infiltration. (G) Immune-related cytokines differentially expressed between the high- and low-risk groups as predicted by the Sangerbox 3.0 online platform. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
To investigate whether the effectiveness of the UbRGs-based signature was due to the distinct immune status in LC, the immune landscape was further explored in multiple dimensions. At first, functional groups of immune-related pathways were analyzed with the ssGSEA algorithm. In the low-risk group, functional modules of checkpoint, cytolytic activity, pro-inflammatory and T-cell co-stimulation were preferentially activated, whereas no functional modules were shown dominant in the high-risk group (Figure 7C). TME scores were then calculated for individuals with the ESTIMATE algorithm. Of the three TME scores, the immune score is the only one significantly higher in the low-risk group, rather than the stromal score and ESTIMATE score (Figure 7D), which confirmed a higher degree of immune cell infiltration in low-risk LC patients. With the CIBERSORT and ssGSEA algorithms, the infiltration level of each immune cell type was specifically speculated. The cell types with anti-tumor effects showed a higher degree of infiltration in the low-risk group (e.g., CD8 T cells, activated memory CD4 T cells, follicular helper T cells, activated B cells and natural killer T cells), while primitive or resting immune cell types (e.g., native CD4 T cells, resting memory CD4 T cells and M0 macrophages) were dominant in the high-risk group (Figure 7E; Supplementary Figure S5C). The correlation between cell types and risk score was consistent with the trend of immune cell infiltration (Figure 7F). As immune regulation was generally mediated by cytokines, the expression preference of cytokines was also analyzed. Higher levels of immune-promoting cytokines IL23A and IFNG were predicted in the low-risk group, whereas immune-suppressing cytokines (e.g., IL6, IL11, VEGFC, TGFB1, TGFB2 and PDGFC) were preferentially expressed in the high-risk group (Figure 7G).
With a series of analyses, significant differences in the immune landscape were exhibited between the high- and low-risk groups, which was potentially one of the major origins of distinct outcomes in clinics and suggested the signature genes as immune regulators in LC.
3.4 Signature genes PPARG, LHX1 and LCK involved in sculpturing the LC immune microenvironment
To confirm the regulatory role of signature genes in the immunity of LC, the degree of immune cell infiltration and expression levels of cytokines relevant to each gene were predicted one by one. It was clearly visualized that the risk genes PPARG and LHX1 were negatively correlated with anti-tumor effectors (e.g., CD8 T cells and activated memory CD4 T cells), positively correlated with primitive or resting immune cells (e.g., naive B cells, memory B cells, naive CD4 T cells, resting memory CD4 T cells and M0 macrophages), while the protective gene LCK was positively correlated with anti-tumor effectors (CD8 T cells, activated memory CD4 T cells, follicular helper T cells and M1 macrophages; Figures 8A–C). Among the cytokines, immune activators (e.g., IL1A, IL18 and IL12A) were at lower levels and immune suppressors (e.g., IL6, CXCL11, CCL2, VEGFC, TGFB1, TGFB2, TGFB3, CSF1, FGF2, PDGFC, IL11, and CCL20) were at higher levels when PPARG and LHX1 were highly expressed (Figures 8D, F). Besides, another group of immune activators (e.g., IL7, IL12, IL15, IL16, IL23A, CXCL9, CXCL10, CXCL16, CCL3, CCL4, CCL5, CCL19, CCL21, TNF, IFNG, IL21) were overexpressed along with higher expression of LCK (Figure 8E).
[image: Grouped image with different panels showing data visualizations. Panels A, B, and C display bar charts comparing GSEA enrichment analyses with colored bars for various viability pathways. Panels D, E, and F contain box plots showing gene expression differences between two groups labeled sg-NC and sg-PPARG, with multiple genes listed on the x-axis. Panels G to N are bar graphs comparing various cell characteristics like mRNA levels and cell behavior between two cell lines, Tu212 and Tu686, and two treatments, sg-NC and sg-PPARG. Each bar graph shows statistical significance with asterisk annotations.]FIGURE 8 | Investigation of the role played by signature genes in sculpting the immune landscape. (A–C) Correlation between immune cell infiltration and expression levels of 3 signature genes, (A) PPARG, (B) LCK and (C) LHX1. (D–F) Relationship between expression levels of immune-related cytokines and 3 signature genes, (D) PPARG, (E) LCK and (F) LHX1. (G–I) Cytokine mRNA levels quantified by qRT-PCR in PPARG knockout cells derived from LC cell lines TU212 and TU686, including (G) IL6, (H) TGFB1, (I) TGFB2 and (J) VEGFC. (K–N) Cytokine secretion levels meas-ured using ELISA in the supernatant of PPARG knockout LC cells, including (K) IL6, (L) TGFB1, (M) TGFB2 and (N) VEGFC. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Since PPARG showed the highest node index among three signature genes in the PPI network of DUbRGs (Supplementary Figure S1C), further validation was then carried out with PPARG knockout cells generated from TU212 and TU686 cell lines (Supplementary Figures S6A–D). 12 immune-related cytokines were assessed with qRT-PCR, including IL1A, IL6, IL18, CXCL11, CCL2, VEGFC, TGFB1, TGFB2, TGFB3, CSF1, FGF2 and PDGFC, which were predicted in relevance with PPARG expression. At the mRNA level, four immunosuppressive cytokines (IL6, TGFB1, TGFB2 and VEGFC) showed significant downregulation in both PPARG knockout cell lines (Figures 8G–J). Simultaneously, their secretion levels in the supernatant were decreased (Figures 8K–N), as confirmed using ELISA. The other four (e.g., CCL2, CSF1, PDGFC and TGFB3) were downregulated in PPARG knockout TU212 cells (Supplementary Figures S6E–H), while the rest (e.g., FGF2, IL1A, IL18 and CXCL11) mostly showed no significant change (Supplementary Figures S6I–L), as quantified by qRT-PCR.
3.5 The UbRGs-based signature provided insights to the personalized therapies in clinics
Since the distinct immune landscape in LC had been defined with the UbRGs-based signature and applied to the prognosis of OS, its instructiveness for immunotherapy was subsequently investigated. With the TIDE algorithm, a slight trend of higher response to immunotherapy was predicted in the low-risk group (41% vs. 31%), but unfortunately, no significance in statistics was shown (Supplementary Figure S7A). However, differential expression of immune checkpoint genes was exhibited with the ssGSEA algorithm (Figure 7C). The vast majority of immune checkpoints (e.g., PDCD1, CD244, CD27, ICOSLG, TNFRSF4, CD40LG, BTLA, TMIGD2, LAG3 and TNFRSF18) presented significant elevation of expression in the low-risk group, while only a few (e.g., ATIC, OLA1 and CD276) in the high-risk group (p < 0.05, Figure 9A). The differential expression data suggested that immune checkpoint inhibitor treatment may be more effective for LC patients with lower risk scores.
[image: Three-panel chart analyzing gene expression and drug sensitivity. Panel A shows box plots comparing gene expression between low and high-risk groups for multiple genes. Panel B is a scatter plot indicating Gemcitabine's inverse correlation with expression values. Panel C displays a box plot contrasting Gemcitabine sensitivity between low and high-risk groups, with the low-risk group showing higher sensitivity.]FIGURE 9 | Prediction of sensitivity to clinical treatments for the high- and low-risk groups of LC patients. (A) Immune checkpoints differentially expressed in the high- and low-risk groups. (B) Predicted sensitivity to chemotherapy and targeted agents in the high- and low-risk groups. Data were plotted as -Log10(p-value) on the x-axis and -Log2(IC50high-risk/IC50low-risk) on the y-axis. (C) Predicted IC50 for gemcitabine in both groups. *p < 0.05; **p < 0.01; ***p < 0.001.
Alternatively, sensitivity to chemotherapy and targeted therapeutic agents was also analyzed. The reference tumor cell lines recorded in GDSC were employed as a reference to correlate gene expression signature and IC50 of drugs in a quantitative model. In high- and low-risk groups, the sensitivity to each drug was then evaluated via comparing the gene expression profiles of patients in either group with the reference tumor cell lines. The resultant IC50 values were presented in a 2D format similar to the volcano plot. For each drug, the Y-coordinate presented the -Log2(IC50high-risk/IC50low-risk) value to show the difference of IC50 values between the two groups, while the -Log10(p-value) was projected as the X-coordinate to indicate the significance of the difference. A total of 48 agents were identified with a significant difference in sensitivity between the high- and low-risk groups (p < 0.05, Figure 9B). To find specific therapeutic agents suitable for either group, the IC50 ratio was set to >1.5 or <0.667 (displayed as |Log2(IC50high-risk/IC50low-risk)| > 0.585 in the plot), nine drugs were more sensitive in the high-risk group (gemcitabine, cytarabine, SCH772984, talazoparib, camptothecin, AZD6738, dasatinib, VX-11e and ERK-6604), and three drugs (TAF1-5496, AZD5991 and ABT737) in the low-risk group (Figure 9C; Supplementary Figures S7B–L). However, once the IC50 ratio was moved to 10 or 0.1 (|Log2(IC50high-risk/IC50low-risk)| >3.322), only gemcitabine, a commonly used chemotherapy agent, remained in the high-risk group preferentially (Figure 9C).
4 DISCUSSION
The incidence rate of LC is increasing yearly and has currently become the second most common head and neck cancer (Bray et al., 2024). Due to its insidious onset, easy recurrence and treatment resistance, the 5-year overall survival rate of LC patients is only 25%–60% (Steuer et al., 2017). To improve survival, it is crucial to develop effective strategies for accurate prediction of the prognosis in LC patients and personalized therapies in clinics. Based on the functional role of UbRGs in the homeostasis of substrate proteins, various cellular processes are affected by their dysregulation. As suggested by accumulating evidence, tumourigenesis will be promoted in turn (Sun et al., 2020). On the other side, UbRGs had been employed as the marker genes for the prognosis of cancers. The predictive efficacy of the related signatures was reported as 69% in ovarian cancer and 65% in melanoma, respectively (Luo et al., 2023; Zhang et al., 2023). Therefore, systematic investigations of UbRGs are valuable to reveal their prognostic potential and oncological characteristics, and will possibly benefit the development of new applications of UbRGs in the prognosis and treatment of LC.
In this study, a total of 111 differentially expressed UbRGs were identified in LC and 3 of them, PPARG, LHX1 and LCK, were highlighted as the independent prognostic markers. The signature generated based on these three genes effectively discriminated LC patients with different OS and showed excellent applicability in most clinical conditions. The performance of this signature for 3-year OS in LC patients reached 81% and 70% in the training and validation sets, respectively, which was more powerful than earlier reported UbRGs-based signatures in other cancers (Luo et al., 2023; Zhang et al., 2023). The nomogram incorporating risk score and gender showed considerable advantages over other factors, such as the TNM stage and clinical stage. The consequent model had stronger predictive power and higher clinical benefit for 3-year OS in LC patients. In one word, this UbRGs-based signature will not only satisfy the risk stratification of LC patients but also enable the individualized assessment of the prognosis.
The functional linkages behind the UbRGs-based signature were then excavated with GSEA enrichment and subsequent panels of prediction, through which a significant association with immune in LC was demonstrated. T- and B-cell-mediated immune processes were enriched in the low-risk group, whereas there was no significant enrichment of immune processes in the high-risk group. As reported, UbRGs can induce the formation of immunosuppressive TME by affecting the stability of proteins important in the anti-tumor immune process, thereby promoting the immune escape of tumors (Çetin et al., 2021). For Instance, the E2 enzyme UBE2T inhibited CD8+ T-cell infiltration and expression of immune-promoting factors (IFN-γ, TNF-α and IL-2) in lung adenocarcinoma by activating the glycolytic pathway upon binding to FOXA1 (Pu et al., 2024). In colon cancer, a deubiquitinating enzyme USP4 suppressed anti-tumor immune responses by deubiquitinating TRAF6 and IRF3, hindering the nuclear localization of the latter protein and thus inhibiting cellular interferon responses and antigen presentation (Zhou et al., 2024). With further exploration of the immune microenvironment, it was observed that the low-risk group had a higher degree of infiltration of anti-tumor immune cells, more activated immune modules, stronger expression of immune-promoting cytokines and lower expression of immune-suppressing cytokines. Therefore, the active immune landscape in low-risk rather than high-risk populations may be one of the major forces shaping the different clinical outcomes.
Besides the correlation between cancer immunity and the entire signature in our study, reviewing the correlation with selected individual UbRGs also provides valuable insights into understanding the effectiveness of this signature. In previous reports, PPARG was mainly a regulator of immune cell differentiation and cytokine secretion (Riaz et al., 2023; Zhao et al., 2024). The essentiality of PPARG was indicated in the differentiation of fetal monocytes into alveolar macrophages (Schneider et al., 2014). In mouse models of colitis, it was observed that PPARG agonists can shift the immune response from a Th1-type to a Th2-type, resulting in a decrease in the expression of Th1-associated transcription factors, cytokines, and chemokines, and simultaneously an increase in the expression of Th2-associated factors (Celinski et al., 2013; Saubermann et al., 2002). Deficiency of this gene in a similar mouse model was associated with a decreased number of CD4+Foxp3+ regulatory T cells (Guri et al., 2010). Additionally, PPARG was also observed to inhibit the secretion of pro-inflammatory cytokines (such as TNF-α and IL-1β) and promote anti-inflammatory cytokines (such as TGF-β and IL-10) (Riaz et al., 2023). In a cancerous context, Liu et al reported the accelerative role played by activated PPARG in KRAS-mutant pancreatic carcinogenesis. The tumor immune microenvironment was remodeled by PPARG via recruiting and promoting the M2 polarization of macrophages through the CCL2/CCR2 signaling axis (Liu et al., 2022). But the actual functional roles of PPARG playing in laryngeal cancer are still lack of investigation. Similar to our work, the other risk gene LHX1 was also adopted in a recent published prognostic signature of breast cancer. With consistence, correlation was observed between LHX1 and lymph node metastasis, infiltration of multiple immune cells (including CD8+ T cells, B cells, dendritic cells, antigen-presenting cells, neutrophils and regulatory T cells) and enrichment of immune functions in patients (including B-cell receptor signaling pathway, PD-L1 expression, and the PD-1 checkpoint pathway) (Pan et al., 2024). However, the potential role of LHX1 was only suggested with the trend of dysregulation in cancer, but not yet by the functional assays in normal and oncogenic circumstance. Additionally, the protective gene LCK, one of the non-receptor tyrosine kinases in the Src family, was reported as a crucial player in T cell-mediated immune responses in previous reports (Wu et al., 2021; Lanz et al., 2024). It precisely regulated T cell activation and the subsequent cascade of immune reactions by initiating T cell receptor (TCR) signal transduction. Once TCR binding to the antigenic peptide-MHC complex, LCK was activated with the synergistic participation of co-receptors CD4 or CD8. The activated LCK prompted the subsequent phosphorylation of CD3 and ζ-chain immunoreceptor tyrosine-based activation motifs, recruiting and activating ZAP-70, and led to the formation of LAT signaling bodies through further phosphorylation of LAT and SLP-76. A panel of downstream signaling pathways were triggered consequently, including ERK and PI3K/Akt, and thus, the T cell-mediated immune responses were launched ultimately. Meanwhile, LCK can also indirectly connect ZAP-70 and LAT, and promote their phosphorylation, thus TCR signal transduction is enhanced (De Sanctis et al., 2024). Another report about Jurkat E6-1 leukemia cells by Wan et al demonstrated the expression of LCK was under the regulation of SMAD4, and affected the proliferation of chimeric antigen receptor-T cells through perturbation of PI3K/Akt signal (Wan et al., 2025). In multiple tumor cell lines, as reported by Ahn et al, the tumor surveillance was mediated by LCK-ERK signal through the activation of T cells (Ahn et al., 2025). These accumulating clues suggested the rationality of our choice of signature genes, and further, the derived risk signature for prognosis.
In our wet-lab works, the expression was validated for 12 cytokines predicted according to the according to the association with signature genes, either promotors and suppressors of cancer immunity. Among them, four immunosuppressors supported by PPARG were confirmed through CRISPR-based gene knockout, including IL6, TGFB1, TGFB2 and VEGFC, which was consistent with an earlier report (Riaz et al., 2023). Since then, the cytokine expression and functions in LCs are worthy of further investigation to provide more insights into our signature and help the stratification of patients.
Another potential value of this signature is to facilitate the optimization of clinical treatments for LC patients. Based on the properties of the immune microenvironment, the low-risk group tends to be “hot” tumors, while the high-risk group tends to be “cold” (Duan et al., 2020). Due to the presence of higher numbers of effector T cells in “hot” tumors, combined with the preferential expression of 10 checkpoint genes, treatment with immune checkpoint inhibitors will be more effective in the low-risk group (Cejuela et al., 2022). Of all the targets that predominate in the low-risk group, immune checkpoint inhibitors against PDCD1, CD27, CD40LG, BTLA and LAG3 have been approved for clinical use or trials in patients with other tumors (Sharma et al., 2024; Lutfi et al., 2021; Liu et al., 2021; Dalle et al., 2024; Ibrahim et al., 2023), and thus, worthy to be tried in LC patients. Additionally, the prediction of drug sensitivity showed little preference between the high- and low-risk groups scored with the UbRGs-based signature, except for gemcitabine, a traditional chemotherapy agent, which showed hypersensitivity in the high-risk group. This drug works through inhibition of DNA synthesis as pyrimidine antimetabolites and is commonly applied in pancreatic cancer but not LC (Han et al., 2022). However, based on our signature, at least a certain portion of LC patients in the high-risk group may benefit from the administration of gemcitabine, which will be a potential alternative choice for LC patients, like cisplatin and paclitaxel (Fang et al., 2023). Regardless, the UbRGs-based signature provides new insights into the choice of therapeutic agents and strategies for LC.
Despite the encouraging performance and advantages of the UbRGs-based prognostic signature, more investigations shall be carried out in the future. Firstly, due to the limited number of LC patients contained in the TCGA and GEO databases, larger clinical cohorts are necessary for comprehensive validation of this signature. Secondly, the oncological and immunological roles of PPARG, LHX1 and LCK should be explored in depth, particularly in LC, to specify their functions and prognostic values. Thirdly, the prediction of drug sensitivity based on the signature still requires extensive assessments in different models and ultimately in patients, since the prediction was fundamentally based on the collection of gene expression profiles in cancer cell lines.
5 CONCLUSION
In conclusion, we systematically analyzed the molecular characteristics and prognostic potential of UbRGs in LC for the first time, and established a prognostic signature based on UbRGs. This signature demonstrated good clinical value in predicting the patients’ prognosis, speculating the immune microenvironment and suggesting anticancer therapies, thus facilitating the risk stratification of clinical patients and providing new ideas for formulating individualized treatment.
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Laryngeal sarcomatoid carcinoma (LSC) is a rare variant of laryngeal malignancies characterized by an aggressive nature and poor prognosis, predominantly affecting older males. Although early diagnosis may facilitate organ preservation through adjuvant chemotherapy and radiation therapy, advanced stages of the disease, as classified by the TNM system, necessitate a deeper understanding of molecular interactions. This understanding could potentially yield improved molecularly targeted therapeutic opportunities and early diagnosis that likely support the treatment benefits in the LSC. Therefore, this study aims to identify possible molecular targets in LSC to better inform therapeutic options and prognostic markers for obtaining treatment benefits, alongside presenting a case study of a patient with LSC who was admitted to our department.
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Introduction

Laryngeal sarcomatoid carcinoma (LSC) is a rare type of laryngeal malignancy that tends to have a poor prognosis, even when detected at early stages. It is considered a more aggressive variant of squamous cell carcinoma of the head and neck. This condition typically affects older males. The World Health Organization’s 2017 Classification of Head and Neck Tumors states that LSC is a monoclonal neoplasm that originates from a non-committed stem cell, resulting in the development of both epithelial and mesenchymal components (1). Research indicates that the LSC defines the occurrence of epithelial-mesenchymal transition (2) and is recognized as a biphasic tumor consisting of two components: a squamous cell carcinoma and a malignant spindle cell component that exhibits a mesenchymal phenotype (2). This malignancy originates from an epithelial cell clone that has undergone mutations. LSC is a rare form of malignant variant that comprises 2 to 3% of all laryngeal cancers (3). As mentioned, this type onsets more specifically in elderly patients with a significant smoking history. Treatment options such as adjuvant chemotherapy and adjuvant radiation therapy can preserve the organ to treat the selected laryngeal cancers, which opens a new door in the treatment of LSC. In addition, suspension laryngoscopy and CO2 laser resection have produced a significant impact on this field, especially in treating the early stages of larynx cancers (4). Radiation therapy has also been remarkably improved over the decades. However, the incidence of LSC has been decreasing in recent decades, with an increase in mortality. This may be due to the poor prognosis, suggesting that identifying possible molecular biomarkers as prognostic markers or therapeutical targets can significantly improve the treatment outcomes in the LSC. Therefore, this review aims to find molecular markers as potential prognostic markers and therapeutic targets for the LSC, along with presenting a case report. For that, we reported a 68-year-old male patient with laryngeal sarcomatoid carcinoma admitted to our department in addition to presenting relevant literature for the aim of understanding possible molecular therapeutical strategies for LSC.





Clinical case report

This case report presents a 68-year-old male patient diagnosed with LSC who was admitted to our department. The patient reported experiencing recurrent hoarseness over the past one year. He had a history of type 2 diabetes mellitus (T2DM), smoking habits for more than 30 years, and a history of alcohol consumption for the same duration. The onset of hoarseness occurred without an identifiable cause approximately one year prior and had progressively deteriorated since then. The patient encountered difficulties with vocalization, leading to a complete loss of voice; however, he had no difficulty in breathing or swallowing. Following treatment with anti-infective and anti-inflammatory therapies, there was an improvement in his hoarseness, but it was prone to recurrence. The patient’s hoarseness persisted for one year, and it gradually intensified over the year.




Laryngoscopy

Local hyperplasia of the left vocal cord, cumulative anterior commissure, and rough surface were observed (Figure 1). Larynx tomography (CT) scan shows that the morphology of the right vocal cord was fixed with thickening, about 6mm, extending forward to the anterior commissure of the vocal cord and the anterior edge of the left vocal cord (Figure 2). After enhancement, there was significant enhancement in the arterial phase, and the enhancement in the venous phase was higher than in the surrounding tissue. The bone window shows local bone destruction of the thyroid cartilage. No signs of mass were observed in the posterior space of the ring. The soft tissue structure of the remaining neck was symmetrical, and there was no apparent mass or enlarged lymph node shadow. The trachea was centered, the thyroid gland was not enlarged, and the density was symmetrical and uniform on both sides. The laryngeal cavity shown was unobstructed, with epiglottic valleys and symmetrical on both sides. The standard laryngeal carcinoma classification is based on tumor size, lymph node affection, and metastasis (TNM). It is the classification scheme of the American Joint Committee on Cancer Staging (AJCC), and it is used in the same way for stage spindle cell carcinoma (SPCC).

[image: Six endoscopic images showing the internal view of a human airway passage. The images reveal different parts of the airway, with variations in tissue texture and color, ranging from pale pink to vivid red. Each image provides a unique perspective, highlighting different airway structures.]
Figure 1 | Laryngoscopy biopsy shows a malignant tumor with poor differentiation and necrosis (left vocal cord lesion, biopsy).

[image: Four CT scan images show cross-sectional views of the cervical spine. Top left image includes measurements of a highlighted area at 15.1 mm and 9.8 mm. The other images display similar anatomical regions without measurements or highlights.]
Figure 2 | Larynx tomography (CT) scan showing that the morphology of the right vocal cord is fixed with thickening, about 6mm, extending forward to the anterior commissure of the vocal cord and the anterior edge of the left vocal cord.





Tumor classification of the patient

According to the tumor classification, the initial classification was given as T3N0MO. After excluding surgical contraindications, a supportive laryngoscopy biopsy was performed. The postoperative examination results revealed the presence of a malignant tumor characterized by poor differentiation and necrosis (identified in the left vocal cord lesion, biopsy). Further analysis through immunohistochemistry did not exclude the possibility of sarcomatoid carcinoma or a mesenchymal soft tissue spindle cell tumor. The immunohistochemical results indicated the following profiles: tumor cells CD34 (-) (Figure 3A), CK (pan) with a small amount of cells (+) (Figure 3B), CAM5.2 with a small amount of cells (+) (Figure 3C), (Figure 3D H&E staining of LSC), Calponin (+) (Figure 4A), SMA (+) (Figure 4B), Desmin (+) (Figure 4C), Ki-67 (+) 30% (Figure 4D) and S-100 (-) (Figure 4E). On March 16, 2019, a supracricoid laryngectomy combined with cricohyoidoepiglottopexy (CHEP) and left lymph node dissection (areas II, III, and IV) was performed under general anesthesia. The postoperative pathology report indicated the following findings: A malignant tumor was identified in the left ventricular zone, consistent with the prior biopsy suggesting a sarcomatoid carcinoma. The maximum tumor diameter was 1 cm, confined to the mucosal layer with adjacent striated muscle involvement; no evidence of vascular invasion or nerve infiltration was observed. During the operation, a frozen section was submitted for examination. (cut margin), left crease, right ROP, ring cartilage, epiglottis, and right arypedium were negative, and no tumor cells were found. Additionally, a malignant tumor was noted in the left sigmoid cartilage plate. The previous biopsy led to sarcomatoid carcinoma, with a maximum diameter of 0.5cm, confined to the mucosal layer, and no vasoma thrombus and nerve invasion. The left arypetis wrinkle, left ladle, right arypetis wrinkle, ring cartilage, epiglottis, and right arypep margin were negative. None of the submitted lymph nodes showed cancer metastasis: left cervical lymph node 2A: 0/1; left cervical lymph node 2B: 0/10; left cervical lymph node area 3:0/16; left cervical lymph node area 40/2. Opening closure was performed 1 year after surgery. After postoperative follow-up until January 2023, the tumor did not recur, and the patient died due to COVID-19 infection.

[image: Histological images show four stained tissue samples. Panel A displays CD34 staining, highlighting several brown-stained areas. Panel B shows CK (pan), with faint coloring. Panel C reveals CAM5.2 staining with sparse darker areas. Panel D is an H&E stain with purple and pink cellular structures, displaying varied cell morphology. Each panel includes a scale for reference.]
Figure 3 | Immunohistochemical results indicated the following profiles of LSC case report: tumor cells CD34 (-) (A), CK (pan) with a small amount of cells (+) (B), CAM5.2 (C) and (D) H&E staining of LSC.

[image: Five microscopic images labeled A to E show immunohistochemical staining of a tissue sample. Image A shows Calponin staining, image B shows SMA staining, image C shows Desmin staining, image D shows Ki-67 staining, and image E shows S100 staining. Each panel displays varying levels of brown staining indicating different protein expressions within the tissue. Scale bars are included for size reference.]
Figure 4 | Immunohistochemical results of Calponin (A), SMA (B), Desmin (C), Ki-67 (D) and S-100 (E) of LSC case report.





Methodology

To identify potential molecular targets within LSC for exploring therapeutic opportunities, a comprehensive literature search was conducted between January 2023 and November 2024. This search utilized various scientific databases, including PubMed, Google Scholar, and Web of Science. The primary objective was to delineate the molecular pathways and specific proteins involved in the molecular signaling associated with tumor progression. To achieve this, specific keywords (Medical Subject Headings [MeSH] terms) related to “laryngeal sarcomatoid carcinoma and molecular signaling,” “laryngeal sarcomatoid carcinoma and molecular targets” and “laryngeal sarcomatoid carcinoma and therapeutic opportunities” were employed. These keywords were systematically combined using Boolean operators (AND/OR) to curate articles directly addressing laryngeal sarcomatoid carcinoma and the relevant molecular signaling proteins. The selection process commenced with a review of article titles, followed by abstracts and full texts. Duplicate articles were identified and excluded after a meticulous evaluation of the titles by each author. In total, 350 articles were considered during the selection process. Of these, 300 articles were eliminated after preliminary assessment of the titles and abstracts. Subsequently, an additional 38 articles were excluded after a thorough full-text screening. Ultimately, 12 articles met the established criteria and were deemed relevant to the topic at hand. We included only the patient tissues that were directly utilized for identifying therapeutic possibilities, excluding cell line studies.






Results

We included a total of 12 studies related to molecular targets and their signaling pathways related to LSC aimed at exploring therapeutic possibilities and predicting them as prognostic markers for better clinical outcomes in LSC. Our observations indicate that the following molecular proteins may serve as significant targets in controlling tumor progression at various TNM stages of LSC development: TP53, CD1, Bcl2L12, P21, p27, EGFR, E-cadherin, β-catenin, FAK, NOTCH, FGFR1, PTEN, DJ-1, and TrkB. Most of the studies had male patients at higher proportions than females with smoking and alcohol consumption.





Discussion

Sarcomatoid carcinomas have ambiguous biological implications and pathogenesis because the tumor exploration is limited to immunohistochemical, ultrastructural, and phenotype biomarkers. Nevertheless, considering the current study`s patient’s history of smoking and alcohol consumption for three decades, accompanied by symptoms of hoarseness and throat pain, the application of a traditional approach may facilitate the identification of a mass on the vocal cord. This approach would assist in tumor resection while preserving vocal function, and a biopsy could substantiate the diagnosis of Laryngeal Sarcomatoid Carcinoma (T2N0M0, Stage II). Additionally, several diagnostic challenges arise due to its rarity and histological complexity, which can lead to misdiagnosis. For instance, LSC closely resembles other spindle cell tumors, creating a diagnostic dilemma. Moreover, biopsy sampling may not capture the full spectrum of the tumor, particularly the epithelial component, which is crucial for diagnosis. This often results in misdiagnosis because these components are very small and difficult to locate. Therefore, thorough biopsies are necessary. Furthermore, histopathological examination can reveal both squamous cell carcinoma and sarcomatous components, adding to the complexity of the diagnosis. Altogether, a definitive diagnosis of LSC requires a combination of meticulous histopathological examination, judicious use of immunohistochemical markers, and careful clinical assessment correlation.

Molecular markers discussed in this study would benefit patients because they are cost-effective, rapid, and easy to implement. Pathologists may prefer these markers as surrogate indicators. For example, markers such as p53 are straightforward to assess and can identify the early stages of cancer, as well as predict therapy responses and patient outcomes. Additionally, p53 immunohistochemical (IHC) staining could aid in diagnosing predisposed tumors. Moreover, markers like E-cadherin and β-catenin levels are found to be reduced in IHC analyses of cancer samples, and this reduction correlates with the development of invasive and metastatic phenotypes. Decreased levels of E-cadherin and β-catenin in IHC are associated with tumor stages. Markers like Notch1/2/3/4 expression may serve as prognostic indicators in high-risk subgroups of cancer patients. Therefore, assessing these molecular markers would be more sensitive and specific than older methods, and, as mentioned, they are easier to use and have clinical value. However, the accuracy of these markers is open to discussion; screening for these molecular markers would offer convenience, as it only requires blood, urine, or stool samples instead of tests that involve radiation or unpleasant procedures like colonoscopy. Therefore, using these molecular markers provides an opportunity for repeated testing among the general population. Consequently, this can enhance the tests’ sensitivity and improve the chances of detecting early cancers.




Molecular targets for improving clinical significance

Although several genes are reported to induce LSC, how these genes orchestrate the molecular signaling to change the tumor microenvironment is ambiguous. Thus, pinpointing the molecular alterations could clarify the mechanism of LSC progression and aid in identifying these molecular proteins as key therapeutic targets in this field. We included the major molecular pathways from the literature that implicates with tumorigenesis, such as epidermal growth factor receptor (EGFR), tropomyosin-related kinase B receptor (TrkB), cyclin D1, D2, D3, and NOTCH1 (Table 1). These molecular proteins affect the cell cycle and induce significant changes in the tumor and around the microenvironment. For instance, TP53 plays a vital role in managing genomic functions by repairing DNA damage and preventing the accumulation of harmful mutations (Supplementary Figure 1). A mutation in this gene bypasses this protective mechanism, resulting in tumorigenesis. In terms of LSC, a mutation in TP53 influences the apoptotic protein BCl-xl, which then affects Cyclin D1 and promotes the phosphorylation of the Retinoblastoma tumor suppressor protein (RB), facilitating cell progression in LSC (5). Research indicates that approximately 37.9% of advanced larynx cancer cases feature TP53 mutations, making it a potential prognostic and diagnostic biomarker for predicting the survival of larynx cancer patients (5). Notably, 75% of mutations occur within the DNA-binding domain, while 30% are found in the “hotspot” codons, which contributes to cancer progression (5). Studies have reported that TP53 mutations decreased the survival rate in LSC patients (5), and this may be due to the poor response to radiotherapy and increased cellular differentiation and neck LNM. Nonetheless, TP53 mutations can also render cancer cells vulnerable because they struggle to manage extensive DNA damage, leading to cell death. Further investigation is needed to determine if drugs targeting TP53 could effectively address this issue.

Table 1 | Study characteristics of LSC patients and possible molecular targets as prognostic and diagnostic markers.


[image: A table detailing various studies on molecular mechanisms in different cancers. Columns include references, number of cases, molecular target, possible mechanism, specific habits, gender, and TNM stages. Each row summarizes a study, highlighting specific mutations, proteins, or pathways involved in cancer progression and characteristics like smoking habits, gender distribution, and cancer stages.]
Furthermore, mutation of cyclin D1, D2, D3, and Cyclin and cyclin-dependent kinase 4 and 6 (CDK4 and 6) genes are altered in the LSC, which further changes the functions of RB, altering cellular activities such as DNA damage response checkpoint and cell cycle exit (17). The upregulation of p63 is linked to the initial stages of laryngeal tumorigenesis. Bcl-2 and p53 are correlated with poor cellular differentiation, tumor progression, and lymph node metastasis (LNM), contributing to the advancement of the cancer phenotype. Pro-apoptotic isoforms like Bcl2L12 are associated with a reduced risk of patient death, whereas BCL2 and BAX do not correlate with the prognosis of LSCC patients (7). This suggests that Bcl2L12 could serve as a prognostic marker in the advanced stages of primary LSCC. CDK complexes are critical in regulating cell cycle progression, with Cdk activity primarily inhibited by the proteins p21 and p27. Notably, decreased levels of these inhibitors can impede cell cycle arrest and apoptosis, thereby facilitating cancer progression (16, 17). For example, diminished expression of p27 in LSC has been associated with increased tumor aggression, advanced clinical stage, and metastasis. Moreover, p21 expression correlates with elevated levels of Ki67, cyclin D, and cyclin E, while p27 is associated with the accumulation of p53 for promoting cell cycle progression (8). These findings suggest that p21 and p27 may be potential prognostic biomarkers for LSC. Proteins such as the EGFR have been implicated in developing LSC by modulating the epidermal growth factor/transforming growth factor α (EGF/TGFα) signaling pathway (8). Thus affecting cell transformation. Therapeutically, the level of EGFR has been correlated with the anaplastic lymphoma kinase (ALK) ratio, where EGFR overexpression is commonly observed in LSC patients presenting with poorly differentiated histological features and a low ALK ratio (8). Moreover, it has been established that EGFR, KRAS, and cyclin D1 interact synergistically to initiate neoplastic processes. Studies have reported that a decline in survival rates among LSC patients is associated with decreased levels of EGFR and cyclin D1, coupled with an increase in KRAS expression, which adversely influences prognosis (7, 8).





Molecular targets for cancer cell invasion and metastasis in the LSCC

Metastasis is a significant contributing factor to mortality in cancer patients, defined as the spreading of cancer cells to tissues and organs distant from the original tumor site. This metastatic process primarily involves several critical steps, including invasion, intravasation, and extravasation (18). A crucial aspect of metastasis is the loss of adhesion properties in cancer cells, which facilitates their invasion into the surrounding cellular or tissue environment. Various molecules and molecular pathways play vital roles in this process, with E-cadherin and catenins being notable examples (18). E-cadherin functions as a tumor suppressor; however, its diminished expression during the epithelial-to-mesenchymal transition (EMT) can enable cancer cells to acquire metastatic capabilities. The reduction of E-cadherin expression is associated with a loss of cellular polarity and cell adhesion, fostering migratory and invasive characteristics that contribute to tumor progression (8, 18). The ratio of E-cadherin to N-cadherin significantly influences the characteristics of epithelial-mesenchymal transitions (EMTs) across various cancer types, including head and neck squamous cell carcinomas. Notably, lower expressions of E-cadherin have been observed in the LSC and are primarily associated with poor tumor differentiation and advanced T-stage (18). Research indicates that both E-cadherin and β-catenin levels are reduced in immunohistochemical (IHC) analyses of LSC samples, and this reduction correlates with the occurrence of cervical metastases (18). This phenomenon may be attributed to the expression of Zinc finger E-box-binding homeobox (ZEB2), a transcriptional repressor that initiates EMTs by downregulating E-cadherin expression, thereby enhancing tumor invasiveness (Supplementary Figure 2). Consequently, ZEB2 expression may serve as a prognostic biomarker in LSC, alongside E-cadherin, which acts as an EMT biomarker reflecting oncogenesis, tumor development, and metastasis of LSC. Furthermore, targeting the TGF-β/Smads pathway may also represent a valuable prognostic biomarker as it plays a critical role in activating EMT (18).

Integrins are cell surface receptors that play a significant role in the migration and invasion of cancer cells, contributing to the phenomenon of drug resistance. Notably, integrin β1 has been implicated in promoting both invasion and radioresistance in LSC (19). Evidence suggests that the overexpression of integrin β1 in LSC correlates with a poor survival rate, suggesting that integrin β1 may serve as a potential therapeutic target for this malignancy. One proposed mechanism involves the mediating effects of integrin β1 and focal adhesion kinase (FAK) signaling pathways, which facilitate invasion and metastasis in LSC (19). Additionally, the interaction of integrin β1 with CD147 has been shown to rewire metabolic reprogramming that is crucial for tumor development (19). Furthermore, selectin-dependent invasion and metastasis have been associated with cancer progression (20). The knockdown of selectins has been observed to reduce metastatic formation in LSC (20). FAK expression is also linked to laryngeal dysplasia and subsequent invasion in LSC. It appears that ECM integrins activate FAK, thereby enhancing cell survival and proliferation. The FAK-Src complex interacts with Ras-GTPase activator protein SH3 domain-binding protein 1, which inhibits the apoptosis process through the activation of various signaling pathways, including Ras/MAPK, TGF-β/Smad, and Src/FAK, as well as p53 (20). FAK affects the expression of CDK inhibitors p21 and p27, ultimately facilitating tumor progression in LSC. In the context of tumor invasion and migration, FAK knockdown has been shown to inhibit these processes by reducing the activities of matrix metalloproteinases MMP-2 and MMP-9 (21). Studies have demonstrated that FAK phosphorylation activates the paxillin and SATA1 pathways, resulting in increased expression of MMP-2 and MMP-26. Thus, it enhances cell invasiveness and migration in LSCC (22, 23).

Next, the changes in the NOTCH signaling pathway affect tumor regulation (24). For example, NOTCH1 is linked to LNM and tumor progression in LSC patients. For example, the silence of NOTCH1 in the laryngeal carcinoma Hep-2 cell line affects the migration and invasion and promotes metastasis (25). In addition, other NOTCH components like NOTCH2 or 3 receptors can also be involved in cell growth and survival, and metastasis in the LSC patients (25). Next, 5-hydroxytryptamine (serotonin) receptor 7 (HTR7) is involved in the progression of LSC via activating AKT pathway (26). For example, overexpression of HTR7 has decreased the survival rate of patients with laryngeal squamous cell cancer, suggesting that HTR7 can be an independent prognostic factor for LSC (26). Possibly, the phosphorylation of AKT by HTR7 is linked with the tumor progression. Noncoding RNAs such as miR-132 can promote laryngeal cancer proliferation and growth via targeting FOXO1, resulting in the activation of PI3K/AKT pathway (27). TRA2β is attributed to lymph node metastasis, proliferation, growth, and invasion and inhibits apoptosis in the LSC by activating PI3K/AKT (28). Fibroblast growth factor receptor 1 (FGFR1) plays a crucial role in the invasion, metastasis, and causing drug resistance to LSC, and FGFR1 can be an independent prognostic factor for LSC, mainly overexpression of FGFR1 is linked to lymph node metastasis and poor survival outcomes. Studies have shown that over-expression of FGFR1 is an important factor for malignant evolution and progression of laryngeal SCC (29). Another tumor suppressor gene PTEN that regulates several cellular functions such as proliferation, protein synthesis, and cell survival (29). A study has shown that PTEN is decreased in LSCC, evidenced by the increase in tumor degree, indicating that PTEN could be an important prognostic marker of LSCC tumor aggressiveness (30). PARK7 protein (DJ-1) is linked to various cancer types mainly; it influences the cancer cells transforming activity being with H-Ras/Myc, which primarily affects the S phase of the cell cycle by translocating from the cytoplasm to the nucleus (31). Studies have shown that increased levels of PARK7 in 85% of LSC patients are linked to poor survival and tumor recurrence in the LSC patients (15). A study has shown that silencing RNA targeting PARK7 significantly increased the PTEN expression, which resulted in an increase in cell death and decreased cell proliferation and invasion in the laryngeal cancer cells (32), and increase of PARK7 triggers the surviving expression, resulting in the inhibition of apoptosis and cell proliferation of laryngeal carcinoma cells (15). Tropomyosin-related kinase B receptor (TrkB) plays various roles in inducing tumor progression, such as increasing invasion, metastasis, and angiogenesis and inducing resistance against cancer treatments (32). TrkB overexpression is linked to metastatic laryngeal cancer cell lines, and it drives EMT by regulating c-Src-mediated activation of PI3K/AKT signal pathway, suggesting the therapeutical opportunity of TrkB to counteract metastasis in the LSC (33).





Genetic/molecular alterations involved in sarcomatoid transformation

Sarcomatoid carcinoma is a rare morphological variant with distinctive histological features. It can exist as either a sarcomatoid form or a typical squamous phenotype. Despite its aggressive behavior, poor survival rates, and higher levels of tumor programmed death-ligand 1 (PD-L1), the mechanisms behind its evolution and progression remain unknown. However, EMT is a widely accepted theory, with contrasting hypotheses regarding the development of these tumors as follows: a monoclonal origin from an undifferentiated stem cell that generates both mesenchymal and squamous components, and sarcomatoid carcinoma is a multiclonal origin where these components arise independently from different cell types. However, studies reported that these types of carcinomas from different cell types showed similar molecular and genetic features, supporting the monoclonal hypothesis, and the differentiation and morphogenesis of these carcinomas are organized by coordinated genetics and molecular events of both epithelial and mesenchymal elements, which can provide crucial information of sarcomatoid transformation. Although the underlying molecular events are unknown, the loss of heterozygosity in chromosome 17p, and subsequent molecular progression is responsible for sarcomatoid transformation (34). Tumor growth factor-β (TGF-β), epithelial growth factor (EGF), and insulin-like growth factor (IGF) have been linked to sarcomatoid transformation (35). For example, TGF-β promotes the EMT via MAPK through Hic-5, a focal adhesion protein that is crucial for maintaining the mesenchymal phenotype, accompanied by RhoA activation (36). Additionally, higher expression of Src is associated with sarcomatoid transformation. The activation of these molecular events alters mesenchymal morphology, increasing the motility and invasiveness of tumors. Mutations in the pathways of VENTX, HIF-1α, and SUMOylation induce DNA damage and drive proliferation toward EMT (37). For instance, sentrin/SUMO2/3-specific protease (SENP3) modifies the removal of SUMO2/3, which leads to increased cell proliferation, tumorigenesis, and EMT through STAT3 activation (38). Y-box binding protein 1 (YB-1) is a conserved protein that induces epithelial-to-mesenchymal transition and further metastasis by binding to HIF-1α and triggering the translation of HIF1A messages, enhancing metastatic capacity in sarcomatoid carcinoma (39). Moreover, other new mutations in sarcomatoid carcinoma, such as integrin cell surface interactions, WNT, MAPK, and BRAF signaling pathways, induce EMT phenotypes (37). For example, mutations in WNT drive the proliferation of mesenchymal stem cells through the TCF/β-catenin target gene CDC25A, which is crucial for cell cycle progression (40). Targeting these molecular proteins may offer viable clinical strategies.






Conclusion

Laryngeal sarcomatoid carcinoma is a rare type of cancer, and its clinical manifestations and imaging manifestations are not significantly specific, and it is confirmed only based on pathological examination. Treatment options are still controversial. The particular treatment regimen still depends on the specific condition of the patient. In this case, CHEP + left lymph node dissection was performed without chemoradiation, with no postoperative recurrence or metastasis. Regarding molecular proteins as prognostic and diagnostic markers in the LSC, we found TP53, CD1, Bcl2L12, P21, p27, EGFR, E-cadherin, β-catenin, FAK, NOTCH, FGFR1, PTEN, DJ-1, and TrkB are the possible markers to inhibit the tumor stages as they are involved in the cell cycle progression and cell cycle arrest in the LSC. However, further research is warranted on these molecular markers to elucidate their dual nature, particularly their potential role in inducing DNA damage in cancer cells.
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Supplementary Figure 1 | Molecular signaling pathways for improving clinical significance in LSC. P53 and p63 mutations induce LSC metastasis by affecting Bcl-xl, Ki67, Cyclin D1, D2, and cyclin E and Retinoblastoma (RB) phosphorylation.

Supplementary Figure 2 | Potential Prognostic Biomarkers for Laryngeal sarcomatoid carcinoma (LSC). The blue arrows indicate the molecular signaling pathways involved in the induction of tumorigenesis, impacting apoptosis, cell proliferation, differentiation, and metastasis.
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Background: DNA is generally considered the ultimate target of cisplatin, so DNA repair has become the hallmark for cisplatin chemoresistance that is attributed to the poor overall survival (50%) among patients with head and neck cancer (HNC). As the efficacy of cisplatin is dose-dependent, we conducted the first study in an Asian population to characterize the DNA repair genes ACTL6A and ERCC1 based on the dosing of cisplatin-based chemoradiotherapy (CRT).Methods: Locally advanced HNC (LAHNC) patients who were planning to undergo cisplatin-based CRT were enrolled in a prospective study to quantify the dose-dependent expressions of ACTL6A and ERCC1 from peripheral blood mononuclear cells via quantitative polymerase chain reaction; these results were integrated with computational analysis and systematic review/meta-analysis to formulate evidence-based translation decisions. The Friedman test and Wilcoxon’s test were used to compare the expressions of the two genes before and after CRT, and Spearman’s rank correlation was used to find the correlation between ACTL6A and ERCC1 expressions. All statistical analyses were performed using SPSS version 29.Results: A total of 77 LAHNC patients were enrolled in this study, of which 96.1% were men and 3.9% were women with a mean age of 52.88 ± 9.68 years. The median expressions of ERCC1 were significantly increased (p < 0.001) after 50% (0.19) and 100% CRT (0.23) compared to the baseline value (0.14), whereas ACTL6A expression decreased from 4.77 to 3.87 after 50% CRT (p < 0.05) and increased to 5.43 after 100% CRT. From the computational analysis, ACTL6A and ERCC1 were found to be overexpressed among HNC patients and observed to regulate 10 repair pathways. Overexpressions of ERCC1 and ACTL6A were predicted to infiltrate the tumors with CD4+ cells, macrophages, dendritic cells, and B cells. The hazard ratios for overall survival were found to be 1.67 among the ACTL6A overexpressed and 1.82 among the ERCC1 overexpressed HNC patients via computational analysis and meta-analysis, respectively. Furthermore, FDA-approved drugs like gemcitabine and panobinostat were found to be the best candidates for downregulating ERCC1 and ACTL6A expressions based on binding affinities of −3.707 and −4.198 kcal/mol, respectively.Conclusion: The increased expressions of ACTL6A and ERCC1 during/after cisplatin-based CRT are expected to mediate DNA repair leading to chemoresistance, which could result in poor overall survival in HNC patients. Thus, FDA-approved drugs like panobinostat and gemcitabine can be repurposed to target the chemoresistance genes ACTL6A and ERCC1, respectively.[image: Diagram presenting an integrated analysis on DNA repair in head and neck cancer (HNC). Sections A-C illustrate computational analysis, gene expression from HNC patients, and systematic review, respectively. Arrows indicate processes from collecting blood samples, performing qRT-PCR, and reviewing data from PubMed, Scopus, and Web of Science. Key findings include increased ERCC1 and ACTL6A expression during therapy, survival curves for these genes in HNC, and potential drug repurposing. The central focus is on DNA repair mechanisms involving these genes.]Keywords: chemoradiotherapy, chemoresistance, cisplatin, DNA repair, drug repurposing, evidence
HIGHLIGHTS

	• Of the 77 LAHNC patients in the study cohort, men outnumbered women and had a mean age of 52.88 ± 9.68 years.
	• ACTL6A expression increased after CRT (5.43) compared to the baseline value (4.77).
	• ERCC1 expression significantly increased with CRT, indicating high nucleotide excision repair capacity.
	• ERCC1/ACTL6A overexpressions were linked to poor overall survival (hazard ratio: 1.82/1.67).
	• Gemcitabine and panobinostat can downregulate ERCC1 and ACTL6A, respectively.

1 INTRODUCTION
Head and neck cancer (HNC) refers to a group of heterogenous malignancies generally originating from the mucosal epithelial regions of the head and neck, such as the oral cavity, pharynx, larynx, oro/hypo/naso-pharynx, and salivary glands (Chaudhary et al., 2023). According to GLOBOCAN 2022, HNC has collectively secured the top spot among Indian patients in terms of incidence (17.53% or 247,924 new cases), 5-year prevalence (18.94% per 100,000 out of 613,841), and mortality (15.05% or 137,925) (Global Cancer Observatory, 2024: India Fact Sheet). Alcohol consumption, tobacco use (smoke/smokeless), poor oral hygiene, viral infections (human papilloma virus/Epstein–Barr virus), altered expressions of tumor suppressors, and oncogenes are the predominant etiopathophysiological factors associated with the development of HNC (Chaudhary et al., 2023). Localized/early-stage (stages I/II) HNCs are generally managed through surgery or radiation therapy, whereas locally advanced HNC (LAHNC) is generally managed using concurrent chemoradiotherapy (CCRT) with/without surgery (Chaudhary et al., 2023). Approximately 66.6% of the Indian population of HNC patients are diagnosed at the locally advanced stage, which makes CCRT with/without surgery as the popular choice of treatment among clinicians (Chaudhary et al., 2023; Mathur et al., 2020). Thus, chemotherapy serves as the cornerstone of the treatment strategy for managing HNC.
Cisplatin is the most widely preferred and broad-spectrum frontline dose-dependent antineoplastic drug in HNC that exerts its anticancer effects via the formation of interstrand and intrastrand cross-linking with nuclear/mitochondrial DNA at the N7 positions of adenine and guanine, thereby arresting the cell cycle at the G2 phase and causing apoptosis to interfere with DNA repair (Chaudhary et al., 2023; Ranasinghe et al., 2022). In addition, aqueous cisplatin is known to enhance the mitochondrial outer membrane permeabilization, which further induces the caspases and causes apoptosis of tumor cells through the release of protein cytochrome c into the cytoplasm (Kanno et al., 2021). Generally, once-weekly intravenous administration of cisplatin at 30–40 mg/m2 for 6–7 weeks has been proven to be the best alternative to 3-weekly intravenous administration of cisplatin at 100 mg/m2 as the former is associated with minimal toxicity (Chaudhary et al., 2023; NCCN Guidelines, 2024). Furthermore, cisplatin is often combined with other anticancer agents, such as paclitaxel, docetaxel, 5-fluorouracil (TPF regimen), hydroxyurea, etoposide, pembrolizumab, nivolumab, and cetuximab, to manage locally LAHNC and recurrent/metastatic HNC (R/MHNC) (Chaudhary et al., 2023; NCCN Guidelines, 2024). However, it is disheartening that almost 65% of LAHNC patients do not reap any benefits from such therapy, which is attributable to the recurrence, metastasis, and poor survival among LAHNC patients (Chaudhary et al., 2023; Mathur et al., 2020). Furthermore, approximately 70%–90% of R/MHNC patients do not respond to immunotherapy (Chaudhary et al., 2023). Collectively, these hurdles in the management of HNC have resulted in poor 5-year overall survival rates (50%) (Gormley et al., 2022). According to the Surveillance, Epidemiology, and End Results (SEER) registry, there has been a modest increase in the 5-year relative survival rate among HNC patients to approximately 65.25% between 2014 and 2020 (i.e., 5-year relative survival rates of oral cavity and pharynx cancer is 69% and larynx cancer is 61.5%) (SEER Cancer Stat Facts, 2024). The mortality rate of Indian patients accounts for approximately 71% of all HNC-related deaths in southeast Asia and 28% globally (Chauhan et al., 2018). The disease burden of HNC and its ineffective response to cisplatin have necessitated investigations into the causes behind the limited benefits of cisplatin therapy, which are achieved by exploring the possible biological markers involved in the molecular mechanisms of chemoresistance (Kanno et al., 2021).
Chemoresistance is a multifaceted condition that is often associated with increased DNA repair, deregulated influx/efflux pump, enzymatic inactivation of drugs, aberrant autophagy and apoptosis, regulation of EGFR/FAK/NF-kB pathways, cancer stem cells, and metabolic reprogramming (Ranasinghe et al., 2022; Kanno et al., 2021; Hu et al., 2023). As DNA is the ultimate target of cisplatin therapy, the pathways associated with repair of damaged DNA are crucially linked to cisplatin resistance. Nucleotide excision repair (NER) is a crucial DNA repair pathway that is responsible for clearing cisplatin-DNA adducts compared to other repair pathways, such as double-strand break repair, mismatch repair, and base excision repair (Kanno et al., 2021). NER is further subdivided into two important pathways, namely, the transcription-coupled repair (TCR-NER) and global genome repair (GGR-NER) pathways (KEGG Pathway, 2024: map03420). The current study explores the roles of the excision repair cross-complementation group1 (ERCC1) and actin-like protein 6A (ACTL6A) genes as attractive biological markers associated with DNA repair in HNC.
ERCC1 and ACTL6A are the core proteins of the NER pathway and switch/sucrose non-fermentable (SWI/SNF) complex, respectively (Kanno et al., 2021; Xiao et al., 2021). ERCC1 is a catalytically inactive protein that is capable of initiating DNA/protein–protein interaction (PPI) binds that can cause XPF activation and form the ERCC1-XPF1 heterodimer. Collectively, the ERCC1-XPF1 endonuclease protein complex is responsible for detection and repair of DNA damage. ERCC1 is a high-capacity gene of the NER pathway that mediates cisplatin resistance in HNC patients (Prochnow et al., 2019). However, there exist controversies regarding its expression and clinical significance. Recently, the novel oncogene ACTL6A (a subunit of the SWI/SNF complex) has garnered attention for its DNA repair capacity (Xiao et al., 2021). Biologically, ACTL6A has been reported to be involved in chromatin remodeling and transcription regulation. ACTL6A encodes for the actin-related proteins comprising actin folds that are responsible for the binding and hydrolysis of adenosine triphosphate to remodel chromatin and promote gene expression by enhancing DNA accessibility (Xiao et al., 2021; Dang et al., 2020). Thus, ACTL6A mediates DNA repair via utilization of the SWI/SNF complex that might also promote such repair via NER (Dang et al., 2020). However, this mechanism remains unresolved.
The formation of DNA–cisplatin adducts as well as the anticancer efficacy of cisplatin are attributed to the therapeutic dose administered (Ranasinghe et al., 2022). Thus, it is crucial to determine the biomarkers for cisplatin resistance in relation to the therapeutic dose. Furthermore, investigating the expressions of the chemoresistance genes from blood samples before and after therapy is less invasive, inexpensive, easy, less time-consuming, and ethically safe compared to using tissue samples that are difficult to obtain after therapy as this procedure may disturb the healing process or trigger recurrence, causing harm to the patient. Till date, there are no reported studies on detecting ACTL6A expression and very few studies on detecting ERCC1 expression from blood samples. Furthermore, there are no available studies on characterizing the dose-dependent expressions of ACTL6A and ERCC1 in HNC patients. Thus, to the best of our knowledge, this is the first study on Asian subjects to demonstrate the dose-dependent expressions of ERCC1/ACTL6A (zero cisplatin dose (zero cycle: 0 mg/m2), after administration of 50% dose (3-cycle cisplatin: 90 mg/m2), and after last cycle of cisplatin (4- or 5- or 6-cycle cisplatin: 120 or 150 or 180 mg/m2)) and their correlations at these three phases. Additionally, computational analysis and meta-analysis were performed to investigate regulation of the repair pathways through ACTL6A and ERCC1 interactions with the platinum resistance genes to understand their expression patterns and impacts on overall survival to establish ACTL6A and ERCC1 as the chemoresistance genes. The detailed workflow of the present study is depicted in Figure 1.
[image: Flowchart illustrating a research methodology divided into three main sections: Computational Analysis, Human experimentation, and Real-World Evidence. Computational Analysis involves protein-protein interactions and pathway regulation by ERCC1 and ACTL6A, and expression studies in HNC. Human experimentation focuses on HNC patients before and after chemotherapy, with blood sample collection and qRT-PCR analysis of expression. Real-World Evidence includes sourcing literature on HNC and ERCC1 and ACTL6A expression, data extraction, and statistical analysis through RevMan 5.4, SAS 9.39, and SPSS 25.]FIGURE 1 | Detailed workflow showing integration of human experimentation with computational analysis and meta-analysis.
2 MATERIALS AND METHODS
2.1 Computational analysis to investigate ACTL6A and ERCC1 in cisplatin resistance
2.1.1 PPIs and pathway regulations of ERCC1 and ACTL6A
In a previous study, we identified 21 genes that were regulated in the platinum drug resistance pathway (ERCC1, MAPK1, MLH1, MDM2, PIK3CA, TP53, ERBB2, BAX, GSTM1, FAS, CASP8, FASLG, ABCC2, XIAP, BCL2, GSTP1, CDKN1A, TOP2A, CDKN2A, BRCA1, and BIRC2) and five hub genes in cisplatin resistance (CCND1, AXL, CDKN2A, TERT, and EZH2), among which ERCC1 was the only NER gene that was regulated for cisplatin resistance (Chaudhary et al., 2023). Furthermore, it has been reported that ACTL6A may contribute to DNA repair via the NER pathway, but its exact mechanism remains a mystery (Xiao et al., 2021). Thus, we investigated the interactions of ACTL6A with these 21 genes and the NER genes to clearly map the contributions of ERCC1/ACTL6A in DNA repair using STRING version 12.0 (https://string-db.org/). Furthermore, an unsupervised analysis was performed via K-means clustering to obtain similar protein clusters (https://string-db.org/) (Szklarczyk et al., 2023).
2.1.2 mRNA and tissue expressions of ERCC1 and ACTL6A in HNC
Overexpression of the DNA repair genes could contribute to the development of cisplatin resistance. Thus, ERCC1 and ACTL6A were investigated for their mRNA- and tissue-level expressions using the UALCAN database (https://ualcan.path.uab.edu/analysis.html) (Chandrashekar et al., 2022, 2017) and Human Protein Atlas (https://www.proteinatlas.org/; The Human Protein Atlas, 2024), respectively. Furthermore, the ERCC1 and ACTL6A genes were queried as target inputs in the muTarget platform to identify the top-5 genes undergoing somatic mutations with prevalence rates of at least 1% among the HNC patients while significantly overexpressing ERCC1 and ACTL6A (https://www.mutarget.com/; Nagy and Győrffy, 2021). Here, muTarget is a platform that links gene expressions with the mutation statuses of the provided genes in solid cancers.
2.1.3 Effects of ERCC1 and ACTL6A expressions on immune infiltration and survival
The infiltration of cancer cells is often linked to compromised tumor responses to anticancer agents, leading to poor clinical outcomes. Thus, the impacts of ERCC1 and ACTL6A expressions on immune cell infiltration in HNC were predicted using TIMER 2.0 (http://timer.cistrome.org/; Li et al., 2020); further, their effects on the overall survival of LAHNC patients (stages III and IV) were investigated using the Kaplan–Meier plotter (https://kmplot.com/analysis/; Győrffy, 2024). The survival analysis was independent of therapy as the Kaplan–Meier plotter database does not have the option to restrict analysis based on treatment time framework, i.e., pre- and post-therapy.
2.1.4 Screening and binding of suitable drug candidates for ERCC1 and ACTL6A
The DNA repair genes ERCC1 and ACTL6A were screened for possible interactions with suitable FDA-approved or non-approved drug candidates using DGIbd (https://www.dgidb.org/; Cannon et al., 2024). Furthermore, the drug candidates were docked against their corresponding targets (ERCC1 and ACTL6A) using Schrodinger version 2022-1 (https://www.schrodinger.com/) to investigate potential molecules other than platinum drugs that could downregulate ERCC1 and ACTL6A. The protein structures of ERCC1 (PDBID: 2A1I) and ACTL6A (PDBID: 9C4B) were obtained from protein data bank (https://www.rcsb.org/; RCSB PDB, 2024), and the structures of their corresponding drug candidates were obtained from PubChem database (https://pubchem.ncbi.nlm.nih.gov/; PubChem, 2024).
2.2 Human study for ERCC1 and ACTL6A expressions among HNC patients
A prospective observational study was carried out at the Department of Oncology at a tertiary care hospital, where LAHNC patients above 18 years of age who were planning to undergo cisplatin-based CRT were enrolled after obtaining written informed consent. However, HNC patients with localized tumors (stage I/II) or those who were scheduled for other treatment modalities, critically ill patients, and pregnant women were excluded from the study. The study was initiated after obtaining approval from the Central Ethics Committee of the university (Ref. no. NU/CEC/2022/307 dated 21 September 2022 and revised on 31 January 2024 with Ref. no. NU/CEC/2024/526) and was also registered as a clinical trial in India (CTRI/2022/10/046142).
The sample size was calculated using the following formula for HNC prevalence of 30% (Dandekar et al., 2017; Prabhash et al., 2020) (P = 0.3) and marginal error of 9% (d = 0.09) at the 95% confidence interval (CI; Zα/2 = 1.96). Thus, the total number of HNC patients was calculated to be 99.59 (rounded to 100). However, only 66.6% of the people in this population 100 belong to the LAHNC group (Mathur et al., 2020). Hence, the minimum sample size required for the study was 67 (N). The final sample size to be enrolled was estimated to be 77 after adjusting the study population for a 15% dropout rate.
[image: Formula for calculating sample size: N equals the square of the quantity Z sub alpha over two divided by d, multiplied by P times one minus P.]
2.2.1 Blood sampling and clinical data collection
All LAHNC patients who were enrolled in the study had been scheduled to receive CCRT, i.e., six cycles of cisplatin at 30 mg/m2 weekly along with radiation of 60–70 Gy. After obtaining the informed consent and enrolling the participants, approximately 2 mL of peripheral blood sample was collected from each LAHNC patient in EDTA vacutainers and stored at −80°C. The patient blood was sampled at three different phases, i.e., zero cisplatin (before initiation of cisplatin-based CRT), after 50% of the planned cisplatin was administered (after third cycle of cisplatin therapy), and after completion or last cycle of cisplatin therapy. For patients who received only three cycles of cisplatin therapy, the third phase of blood sampling was conducted after completion of radiation therapy. Furthermore, we collected the demographic details and clinical characteristics of the patients.
2.2.2 Primer selection, verification, and confirmation for ERCC1 and ACTL6A genes
The primers for the quantitative real-time polymerase chain reaction (qRT-PCR) were obtained from PrimerBank (https://pga.mgh.harvard.edu/primerbank/; PrimerBank-MGH-PGA, 2023) and verified with the protein-coding regions of the cDNA sequences for selected transcripts of ERCC1 and ACTL6A from the Ensembl database (https://www.ensembl.org/; Ensembl genome browser, 2023). The amplicon size of the primer selected for ERCC1 was 175 base pairs (forward: TTT​GGC​GAC​GTA​ATT​CCC​GAC; reverse: CCT​GCT​GGG​GAT​CTT​TCA​CA) and that for ACTL6A was 83 base pairs (forward: GAC​AGC​ATT​TGC​TAA​TGG​TCG​T; reverse: CAT​CGT​GGA​CTG​GAA​TTG​CAG); further, the predesigned primer for β-actin (ACTB) had 249 base pairs (forward: CAT​GTA​CGT​TGC​TAT​CCA​GGC; reverse: CTC​CTT​AAT​GTC​ACG​CAC​GAT). The primers for ERCC1 and ACTL6A along with the predesigned ACTB were confirmed experimentally via conventional PCR followed by DNA gel electrophoresis.
2.2.3 ERCC1 and ACTL6A expressions via PCR
2.2.3.1 Total RNA extraction
The blood samples were centrifuged at 3,000 rpm to separate the plasma, followed by treatment of the blood cells with 1× RBC lysis solution. The mixture of blood cells and RBC lysis solution was left for 15–20 min to ensure RBC lysis and then centrifuged at 3,000 rpm to obtain Peripheral blood mononuclear cells (PBMC). The PBMC were used to extract the total RNA via the TRIzol reagent method using the RNAiso Plus kit (Takara, cat. no. 9109_v201904Da). The purity and concentration of the extracted RNA were confirmed via the nanodrop method.
2.2.3.2 cDNA synthesis
cDNA was synthesized from the total RNA using the PrimeScript™ RT reagent kit (Takara, cat. no. RR037A_v202008Da) in a thermal cycler (Prima 96, HiMedia, India), i.e., reverse transcription was performed at 55°C for 60 min, followed by inactivation of reverse transcriptase at 87°C for 5 s and 4°C thereafter. The synthesized cDNA was stored at −20°C.
2.2.4 qRT-PCR
The expressions of ERCC1 and ACTL6A were obtained using TB Green Premix EX Taq (Tli RNase H Plus, Takara, cat. no. RR820A_ v201903Da) and quantified with the Applied Biosystems™ QuantStudio™ 6 RT-PCR System. The cDNA templates of the targets (ERCC1 and ACTL6A) and reference (ACTB) were amplified using the QuantStudio™ system and SYBR Green PCR Master Mix fluorochrome dye. The qRT-PCR involved three stages: initial denaturation at 95°C for 3 min; PCR-based quantification at 95°C for 15 s followed by 60°C for 30 s and 72°C for 40 s (40 cycles); melting curve at 95°C for 15 s and 60°C for 1 min followed by 95°C for 15 s. The baseline and follow-up samples from a particular patient were processed together to avoid technical errors with the gene expressions. In addition, all samples were processed in duplicate along with RNAase-free water as the negative control.
3 RELATIVE GENE EXPRESSIONS AND STATISTICAL ANALYSIS
The relative expressions of ERCC1 and ACTL6A at baseline, after the third cycle of cisplatin therapy, and after the last cycle of cisplatin therapy were estimated by comparing the cycle threshold (Ct) value of a given sample for a particular gene of interest (GOI) (ERCC1 and ACTL6A) with the Ct value of a given sample for the reference gene (ACTB). The relative expressions of the GOIs compared to the reference were calculated using the 2−△CT formula [△CT = Ct (GOI) – Ct (ACTB)]. The patient data were analyzed using descriptive statistics (mean, standard deviation, frequency, percentage, and interquartile range) and were checked for normal distribution using the one-sample Kolmogorov–Smirnov test (p < 0.05). The ERCC1 and ACTL6A expressions between the baseline and follow-ups were compared using the Friedman test. Furthermore, paired comparisons were performed via Wilcoxon’s test. Correlations between ERCC1 and ACTL6A expressions were examined using Spearman’s rank test. All statistical analyses were performed using SPSS version 29 and figure was constructed using GraphPad Prism 8.0.2.
4 REAL-WORLD EVIDENCE FOR ERCC1/ACTL6A EXPRESSIONS AND SURVIVAL IN HNC VIA META-ANALYSIS
4.1 Research question and registration
Previous published meta-analyses by Xuelei et al. (2015) and Bišof et al. (2016) revealed that overexpression of ERCC1 is the root cause of unfavorable overall survival outcomes (hazard ratio (HR): 2.14 and 1.95) among HNC patients, with the Asian population being the most affected victims (HR: 2.97 and 3.13, respectively). Thus, we conducted a further meta-analysis to update the predictive value of ERCC1 on overall survival. This meta-analysis was registered prospectively with the International Prospective Register of Systematic Review (PROSPERO, 2024) under the title “Impact of ERCC1 expression on overall survival rate in head and neck cancer” with the registration ID CRD42024542859. However, data on the expression of ACTL6A and its impact on the survival of HNC patients are unavailable; thus, we could not conduct a meta-analysis for ACTL6A.
4.2 Search strategy
An electronic search was conducted for articles in the PubMed, Scopus, and Web of Science databases. The search strategy involved a combination of the following keywords: “Head and Neck,” “ERCC1,” “Cancer.” Further, “Head and Neck,” “ACTL6A,” and “Cancer” were used as the keywords to retrieve articles related to the ACTL6A gene in HNC (see also the Supplementary File). In addition, the reference citations in these articles were manually checked for additional studies. Rayyan Software was used to import and manage the articles.
4.3 Eligibility criteria and selection process
The studies included in this meta-analysis/review were original research articles published in English language that evaluated the relationships between overall survival rate and expression of ERCC1 or ACTL6A in HNC. After removing duplicate articles, the title and abstract were screened for eligibility by two independent authors. Any disagreements between these authors were resolved by a third author after a consensus discussion. Later, the selected studies were assessed for eligibility by two different authors based on the full text, and any disagreements were resolved by a third author. Articles without full text and ineligible articles were excluded from the study.
4.4 Data extraction
Data were extracted from eligible articles using the predesigned proforma containing the following information: author details, country, year of publication, sample size, gender, age, study design, disease details, TNCM/clinical staging, molecular technique used, ERCC1 expression, and outcomes of the study. The data were extracted by two independent authors, and any disagreements were resolved by a third author. If the survival data were represented using the Kaplan–Meier curve, and then the relevant information was interpreted from the graph using Graph Data Digitizer 2.4. If the HR was not reported by the authors, then it was estimated using the method proposed by Tierney et al. (2007).
4.5 Statistical analysis
Review Manager software v5.4.1 (Cochrane Collaboration, Copenhagen, Denmark) was used to generate the forest plots, and the inverse variance method was used for pooled estimates. The outcome variables of all the included studies were represented in terms of the HR and 95% CI. The analyses were performed using RevMan calculator by incorporating the log(HR) with standard error (SE), and the results were presented as HR with 95% CI. All results were presented graphically and numerically in the forest plot along with the weights imparted by the individual studies. The Higgins I2 statistic and visual inspection were used to assess heterogenicity, and the percentage with p-value was used to represent interstudy variability. Both random and fixed effects were used; the fixed-effects model was used when the percentage of heterogenicity was I2 ≤ 40%, whereas the random effects model was used when I2 > 40%. Furthermore, publication bias was assessed using funnel plots and Egger’s regression test.
5 RESULTS
5.1 Computational analysis to investigate cisplatin resistance in HNC via ERCC1/ACTL6A
5.1.1 PPIs associated with ERCC1/ACTL6A and enrichment analysis
A total of 35 genes were investigated for PPIs, including 21 genes for platinum drug resistance, ACTL6A, and eight genes for GGR-NER, with medium confidence (0.400); this revealed interactions between 30 nodes, resulting in a total of 260 edges at an average node degree of 14.9 and average local clustering coefficient of 0.737 (Figure 2A). The PPIs significantly enriched (<1.0e−16) 177 biological process (BP), 17 cellular component (CC), and 15 molecular function (MF) terms of gene ontology along with four KEGG pathways that were modulated by ERCC1 and/or ACTL6A. The ACTL6A gene was found to significantly modulate BPs such as DNA repair, regulation of DNA repair, positive regulation of DNA repair, and regulation of NER, whereas the ERCC1 gene was found to modulate BPs like DNA repair, NER, UV damage excision repair, mismatch repair, pyrimidine dimer repair, pyrimidine dimer repair by NER, and double-strand break repair (Figure 2C). All these repair BPs were modulated via the PPIs of 14 identical genes belonging to the same cluster (red color), namely, ACTL6A, ERCC1, PCNA, MLH1, BRCA1, TP53, XPC, CETN2, CUL4A, DDB1, DDB2, RAD23A, RAD23B, and RBX1 (Figure 2B). Additionally, the DNA repair and NER complexes were the CCs modulated by ERCC1. This shows that both ERCC1 and ACTL6A are involved in DNA repair processes, particularly via the NER pathway.
[image: Protein-protein interaction (PPI) networks for genes with colored nodes representing different proteins. Cluster analysis highlights specific groups, and a related DNA repair process chart displays connections and significance through node sizes and line thickness.]FIGURE 2 | DNA repair pathways modulated by ACTL6A and ERCC1 via computational analysis: (A) protein–protein interactions; (B) cluster analysis; (C) biological process modulations by ERCC1 and ACTL6A.
5.1.2 mRNA and tissue expressions of ERCC1 and ACTL6A in HNC
The median transcripts per million of ERCC1 and ACTL6A were found to be significantly higher in primary tumors (64.801 and 71.98, respectively) than normal samples (46.256 and 30.826, respectively) (Figure 3A). Both ERCC1 and ACTL6A were found to be overexpressed in advanced stages except stage III HNC patients (stage IV > stage II > stage III > stage I) (Figure 3B), particularly among African-American and Caucasian people compared to Asian patients. Furthermore, ERCC1 was found to be overexpressed greatly among persons aged 61–80 years, followed by those in the age groups of 41–60 years, 81–100 years, and 21–40 years; however, ACTL6A was found to be overexpressed greatly among persons aged 41–60 years, followed by those in the age groups of 61–80 years, 21–40 years, and 81–100 years. Additionally, ERCC1 is inconsistently expressed with advancing tumor grade (grade 3 > grade 2 > grade 4 > grade 1), whereas ACTL6A shows significant overexpression with the grade of tumor progression (grade 4 > grade 3 > grade 2 > grade 1) (see Supplementary Table S1 and Supplementary Figure S1). Thus, we can predict that both ERCC1 and ACTL6A are upregulated in HNC patients, particularly in individuals with advanced stages and tumor grades and mostly in persons aged 40–80 years.
[image: Multiple panels display various data visualizations and scientific analyses. Panel A shows several box plots with different colored boxes. Panel B presents four circular images labeled i to iv, showing textures. Panel C includes multiple scatter plots with box plots overlay. Panel D features scatter plots with regression lines labeled i to ii. Panel E has two survival curves labeled "EMCCR" and "ACTL6A". Panel F displays a 3D molecular structure. Panel G shows detailed 3D molecular interactions, split into three sections labeled i to iii. Each panel contains distinct scientific data representations.]FIGURE 3 | Expressions of ERCC1 and ACTL6A in head and neck cancer (HNC) and their impacts on tumor infiltration and overall survival via computational analysis. (A) mRNA expressions of (I) ERCC1 and (II) ACTL6A in tumor vs. normal samples based on stage of HNC. (B) Expressions of (I) ERCC1 and (II) ACTL6A in tumor tissues via immunohistochemistry. (C) Gene mutations upregulating (I–III) ERCC1 and (IV–VI) ACTL6A expressions. (D) Infiltration of (I) CD8+ cells, macrophages, and myeloid dendritic cells by ERCC1 expression and (II) CD4+ cells, B cells, and macrophages by ACTL6A expression. (E) Impacts of ERCC1 and ACTL6A expressions on overall survival. (F) (I) 3D and (II) 2D interactions of gemcitabine with ERCC1. (G) (I) 3D and (II) 2D interactions of panobinostat with ACTL6A.
Furthermore, ERCC1 and ACTL6A were found to show moderate and moderate-to-strong expressions, respectively. The immunohistochemistry (IHC) report of HNC tissue enclosed in HPA shows moderate expression of ERCC1 at nuclear-level staining using antibodies, such as HPA029773, CAB004390, CAB072859, and CAB072860 (Figure 3B.I and Supplementary Figure S2). Furthermore, ACTL6A shows moderate-to-strong expression at the nuclear- and cytoplasmic/membranous-nuclear-level staining using the CAB012188 antibody (Figure 3B.II, Supplementary Figure S2). These findings confirm the expressions of ERCC1 and ACTL6A in various types of HNC tumor tissues. Moreover, there are certain mutations observed in HNC patients that can alter the expressions of ERCC1 and ACTL6A. The top-5 genes undergoing somatic mutations with at least 1% prevalence rates contribute to the overexpressions of ERCC1 (namely, CASK, CENPF, KMT2B, TSHZ3, and DVL1) and ACTL6A (namely, FBN1, STEAP4, SCN8A, OR8H2, and CASZ1) (Figure 3C, Supplementary Tables S2, S3, Supplementary Figures S3, S4).
5.1.3 Impacts of ERCC1 and ACTL6A expressions on tumor cell infiltration and survival in HNC
The overexpressions of ERCC1 and ACTL6A were found to significantly enhance the infiltration of CD8+ T-cells, macrophages, dendritic cells, CD4+ T-cells, and B-cells into HNC tumor cells (Figure 3D, Supplementary Figure S5). Overexpression of ERCC1 was found to be linked with 22% less risk of death compared to reduced expression in HNC patients (HR: 0.78, p = 0.17), whereas overexpression of ACTL6A was found to be linked with 67% more risk of death among HNC patients (HR: 1.67, p = 0.013) (Figure 3E). Thus, computational analysis reveals that ACTL6A is a significant gene responsible for the poor survival of HNC patients.
5.1.4 Potential drug candidates and their binding affinities with ERCC1 and ACTL6A
A total of 12 drug candidates, i.e., eight FDA-approved drugs (cyclosporine, carboplatin, cisplatin, 5-fluorouracil, doxorubicin hydrochloride, gemcitabine, paclitaxel, and thalidomide) and four drugs not approved by the FDA (staurosporine, herbimycin A, platinum, and platinum compound), were found to interact with the ERCC1 protein. Similarly, a total of four drug candidates (two FDA-approved drugs: panobinostat and cisplatin; two unapproved drugs: sphingosine-1-phosphate and sphingosylphosphorylcholine) were found to interact with the ACTL6A protein (Supplementary Table S4). In the case of cisplatin resistance, the predicted FDA-approved drug candidates other than platinum may be repurposed to downregulate both ERCC1 and ACTL6A genes. Thus, gemcitabine (interaction score: 0.047) and paclitaxel (interaction score: 0.040) were found to have high interactions with ERCC1, whereas panobinostat (interaction score: 0.398) was found to interact with ACTL6A. From the molecular docking studies, we found that gemcitabine and panobinostat possessed higher binding affinities toward ERCC1 and ACTL6A with binding energies of −3.707 kcal/mol (Figure 3F) and −4.198 kcal/mol (Figure 3G), respectively.
5.2 Human study for ERCC1 and ACTL6A expressions among HNC patients
5.2.1 Demographic details and clinical characteristics of the HNC patients
A total of 77 LAHNC patients were enrolled in the study, of which 96.1% patients were men and 3.9% were women with a mean age of 52.88 ± 9.68 years. The majority of patients were in the age group of 41–60 years (61.04%), followed by 61–80 years (29.87%) and 21–40 years (9.09%). Nearly half of the enrolled patients (49.35%) were from the upper part of the lower socioeconomic class and had abnormal body mass index (BMI) values, i.e., they were underweight (42.86%) or overweight (6.49%). Most of the LAHNC patients (89.61%) had a history of social habits, such as drinking alcohol (58.44%), smoking tobacco (46.75%), or chewing tobacco (38.96%) or betel leaf (33.77%) or areca nut (33.77%). Approximately 16.88% of the patients reported both alcohol consumption and smoking. Furthermore, we observed that approximately 24.68% of the HNC patients had comorbidities, where hypertension (15.58%) and diabetes (11.69%) were the most prevalent types followed by cerebrovascular accidents (5.19%), respiratory diseases (2.60%), and ischemic heart disease (1.30%). We found that approximately 29.87% of patients had a history of cancer in their family. Surprisingly, HNC was the most commonly reported type of cancer (15.58%) in the family histories, which was attributed to prevailing social habits in their families (Table 1).
TABLE 1 | Demographic details and clinical characteristics of the HNC patients in this study.
[image: A table detailing demographic, clinical, and treatment data of patients. Categories include gender, age groups, BMI, socioeconomic class, social habits, injuries, comorbidities, cancer history, histopathology, cancer types, treatment modalities, chemotherapy cycles, and radiation therapy specifics. Each category lists the frequency and percentage of occurrences. Notably, the majority are males aged 41-60 with normal BMI, engaged in tobacco use. Common comorbidities include hypertension. Most cancers are in stage IV, with oral cavity cancer prevalent. Chemotherapy cycles vary, with most receiving four cycles.]Clinically, the majority of the enrolled LAHNC patients belonged to grade 2 (55.84%) followed by grades 1 and 3 and were diagnosed at stage IV (79.22%) followed by stage III (20.78%). Approximately half of the HNC patients were diagnosed with carcinoma of the oral cavity (51.95%), followed by laryngeal cancer (16.88%), hypopharyngeal cancer (14.29%), oropharyngeal cancer (10.39%), cancer of unknown primary cause (3.90%), and nasopharyngeal cancer (2.60%). CCRT was the most popular choice of treatment (55.84%), followed by surgery with adjuvant CRT (32.47%) and CCRT with adjuvant chemotherapy (11.69%). All patients in the study cohort were scheduled to undergo six cycles of cisplatin therapy. However, approximately half of the patients received five cycles of cisplatin (57.14%), followed by six cycles (24.68%), three cycles (10.39%), and four cycles (7.79%). The dosage for radiation therapy ranged from 60 to 70 Gy and was administered in 30–35 fractions. The demographics and clinical characteristics of the LAHNC patients are depicted in Table 1.
5.2.2 ERCC1 and ACTL6A expressions from peripheral blood samples via qPCR
Considering the expression of the reference gene as 1 (with >1 being high expression and <1 being low expression), ERCC1 was highly expressed among 14.29% patients out of the total of 77 HNC patients while 85.71% of patients showed low expressions compared to the baseline. Furthermore, 9.09% and 20.78% of patients were observed to have higher expressions of ERCC1 after 50% CCRT and 100% CCRT, respectively. Similarly, ACTL6A was highly expressed in 88.31% of the patients while 11.69% of the patients had low expressions compared to the baseline. After administration of 50% and 100% CCRT dosing, ACTL6A expressions were found to be highly expressed among 75.32% and 84.42% of the patients, respectively (Supplementary Table S5). This shows that cisplatin-based CCRT initially decreases the expressions of ERCC1 (14.29%–9.09%) and ACTL6A (88.31%–75.32%) among HNC patients via initial response to therapy, whereas the expressions of ERCC1 (9.09%–20.78%) and ACTL6A (75.32%–84. 42%) increase later to confer possible resistance to cisplatin therapy.
Comparative analyses on the impacts of cisplatin-based CCRT on the gene expressions showed that the overall median expression of ERCC1 significantly increased (p < 0.001) by 1.64-fold compared to the baseline (from 0.14 to 0.19 and 0.23), signifying that ERCC1 could potentially be involved in DNA repair (Table 2 and Figure 4.I). Similarly, the median expression of ACTL6A significantly decreased by 0.81-fold (from 4.77 to 3.87) after the initial three cycles of CCRT but later increased by 1.14-fold (from 3.87 to 5.43), showing the ability of ACTL6A to bounce back and mediate DNA repair (Table 2 and Figure 4.II). Furthermore, the subgroup analysis of variables showed that patients with advanced ages (40–80 years), advanced stages (stage IV), highly differentiated tumors (grades 1 and 2), low BMIs (underweight/normal), social habits (tobacco smoking, alcohol consumption, betel leaf chewing), oral cavity cancers, and hypopharyngeal cancer who received CCRT alone or five cycles of cisplatin are at high risk of developing ERCC1-mediated cisplatin resistance as ERCC1 was found to be significantly increased in these patients. In contrast, patients with no history of tobacco use or betel leaf chewing also showed significant increases in ERCC1 expressions. Interestingly, we observed that ACTL6A expressions were significantly lower in patients with no history of tobacco smoking, alcohol consumption, or tobacco/betel leaf/areca nut/gutka chewing (Table 2). This indicates that patients with a history of social habits may be at a greater risk of developing chemoresistance to CCRT than patients without such history. Additionally, correlation analysis did not indicate any correlation in the baseline expressions of ERCC1 and ACTL6A (ρ = 0.201, p = 0.08). However, the expressions of these genes were significantly (ρ = 0.331, p = 0.003) and marginally (ρ = 0.215, p = 0.060) correlated after receiving 50% and 100% cisplatin-based CCRT, indicating that ACTL6A could indirectly influence DNA repair via the NER pathways.
TABLE 2 | Comparison of ERCC1 and ACTL6A expressions across chemoradiotherapy.
[image: A detailed table illustrating median expressions of genes ERCC1 and ACTL6A across various parameters such as treatment (CRT), sociodemographic and clinical factors (age, BMI, social habits, comorbidity), cancer stages, histopathology features, type of head and neck cancer, therapy type, and chemotherapy cycles. Statistical significance is denoted by p-values across different comparisons of gene expression. Each section provides median values and confidence intervals along with significance levels for comparison categories.][image: Two box plots compare gene expression levels across different doses of chemoradiation therapy (CRT). Plot I shows median ERCC1 expression with increasing doses from 0% to 100% CRT. Plot II shows median ACT-LC3 expression with the same dose increments. Both plots display data points, quartiles, and whiskers, with asterisks indicating significant differences between groups.]FIGURE 4 | Human experimentation results showing box plots of (I) ERCC1 expressions (outliers with median expressions >4 have been removed) and (II) ACTL6A expressions over the duration of chemoradiotherapy.
5.3 Real-world evidence for ERCC1/ACTL6A expressions and survival in HNC via meta-analysis
A total of 266 articles related to ERCC1 and HNC were obtained by searching the three databases, of which only 12 articles met the criteria for meta-analysis (Supplementary Figure S6). Out of these 12 studies, only four were conducted prospectively while the remaining eight were conducted retrospectively. The aggregate sample size from all included studies was 2,041, of which 1,810 samples (high ERCC1 expression: 911 patients, low ERCC1 expression: 899 patients) were in our analysis (Table 3). Based on the random effects analysis of the pooled data of the 1,810 samples, we found that ERCC1 expression was linked to poor overall survival among HNC patients, i.e., overexpression of the ERCC1 gene significantly increased the risk of mortality among HNC patients by 82% (HR: 1.82, 95% CI: 1.26–2.63, p = 0.0001) compared to patients who had low expressions of ERCC1. However, the analysis showed moderate heterogenicity (X2: 26.77, I2: 56%, p = 0.0005) (Figure 5A). Subgroup analysis of the pooled data also showed that high ERCC1 expression was significantly linked to poor survival rate among Asians (HR: 1.73, 95% CI: 1.16–2.59, p = 0.007) (Figure 5B). Additionally, the funnel plot of the pooled data showed symmetricity with an Egger regression coefficient of −0.152 (p = 0.603, 95% CI: −0.783 to 0.479), suggesting no publication bias. A total of 13 articles were identified from the three databases for ACTL6A and its association with HNC, of which only four articles were found to have the necessary information; however, none of these articles contained information on ACTL6A expression and its impact on survival. Thus, we were unable to conduct a meta-analysis for the ACTL6A gene.
TABLE 3 | Characteristics of all the studies included in the meta-analysis.
[image: A table summarizes research studies on ERCC1 expression in various cancer types. Columns include serial number, author with year, country and continent, sample size, study design, cancer site, stages, assay type, high versus low ERCC1 expression percentages, hazard ratio (HR), confidence interval (CI), p-value, and data extraction model. The studies span countries such as China, Italy, Germany, Turkey, and others, with sample sizes ranging from 33 to 453. Methods include immunohistochemistry (IHC) and real-time PCR, with various statistical findings.][image: Two sets of forest and funnel plots are displayed. Plot A shows a forest plot for overall survival, listing study names, hazard ratios, and confidence intervals. Below it, a funnel plot illustrates publication bias. Plot B presents a similar forest plot for survival of Asians versus Europeans, with respective hazard ratios and confidence intervals. A corresponding funnel plot analyzes publication bias between these groups. Each plot includes numeric values and a graph with lines and markers for visual analysis.]FIGURE 5 | Meta-analysis of ERCC1 expression and overall survival showing forest plot and funnel plot for (A) overall survival of HNC patients and (B) comparison of overall survival of Asian vs. European subjects.
6 DISCUSSION
The increases in the median expressions of ERCC1 and ACTL6A before and after CCRT as well as their associations with the poor overall survival outcomes in HNC patients (revealed by integrating computational analysis with meta-analysis) in the present study predict the chemoresistance of genotoxic regimens like cisplatin-based CCRT as these genes are reported to mediate DNA repair via the NER and/or SWI/SNF pathways (Figure 6). Sociodemographically, our findings are consistent with recent epidemiological studies from north India by Badola et al. (2023) and Chauhan et al. (2022), who reported that HNC is more prevalent in men than women, i.e., 87% vs. 13% and 89.4% vs. 10.6%, respectively. Furthermore, Chauhan et al. (2022) and a study on south Indians by SathiyaPriya et al. (2024) observed that nearly half of the study population (48% and 51%, respectively) was aged 40–60 years; in contrast to our study, Badola et al. (2023) and Bagal et al. (2023) found that most of the HNC patients were above 60 years of age followed by those aged 40–60 years. Furthermore, the socioeconomic classes and social habits of the patients in our study resemble those reported by SathiyaPriya et al. (2024), where most of the HNC patients were from the lower middle (62.3%) or lower (37.7%) socioeconomic class and were most commonly associated with tobacco smoking (47.6%) and alcohol consumption (42.4%) followed by tobacco chewing (30.6%) with betel leaf (27.3%) or areca nut (3.3%). Sharp teeth and teeth-mediated injuries to the oral mucosa or tongue have been infrequently linked to cancer of the oral cavity. Lateral tongue carcinoma (odds ratio (OR): 9.1) has been reported as a teeth-mediated injury (Singhvi et al., 2017), while another study reported that lesions due to trauma (OR: 4.5) were observed to be higher among oral cancer patients than lesions in the control group (Piemonte et al., 2018).
[image: Diagram illustrating the process of drug effects and DNA repair mechanisms. It shows the role of proteins like MRP2 and BCRP1 in drug transport, leading to DNA adduct formation. Two pathways, nucleotide excision repair, and transcription-coupled repair, are detailed. Key proteins and secondary effects, including increased ATPase expression and the action of ERCC1, are noted. DNA repair culminates in preventing damage from continuing.]FIGURE 6 | Chemoresistance mechanisms of ERCC1 and ACTL6A. DNA repair is promoted by ERCC1 via the nucleotide excision repair pathway and by ACTL6A through the SWI/SNF complex.
Clinically, a significant proportion of the patients in our study were underweight, so we hypothesize that low BMI may be associated with HNC occurrence; this is also supported by the findings from a Korean study, where the incidence of HNC was observed to be higher among underweight individuals (HR: 1.32) than normal weight and overweight patients (HR: 0.89). Furthermore, it was noted that tobacco smoking (HR: 1.448) and alcohol drinking (HR: 1.448) along with low BMI could impose a significantly higher (p < 0.05) risk of developing HNC (Kim et al., 2022). A study by Eytan et al. (2019) among 10,524 HNC patients in the United States showed that hypertension, hyperlipidemia, chronic obstructive pulmonary disease, and diabetes were the most common comorbidities at the time of diagnosis, which is consistent with the conditions among our population. Although HNC incidence is not believed to depend on a family history of cancer, we observed that approximately 29.87% of our HNC patients presented with such family history; of these, 16.88% reported a family history of HNC, which is a serious concern. A recent study by Pachuau et al. (2022) on north Indians reporting a family history of cancer among first-degree relatives showed that the risk of developing cancer was significantly higher (OR: 1.921, p = 0.037). Furthermore, another study by Li et al. (2021) revealed that the risk of developing HNC among family members increased by 2-fold if the parents/siblings developed HNC. Carcinomas of the oral cavity, larynx, and hypo/oro/nasopharynx were the most predominant types of HNC among our patients, which conform with the sites of HNC development reported from an analysis of 37 Indian cancer registries (Bagal et al., 2023); however, there is a slight disagreement with the findings of Badola et al. (2023) and Chauhan et al. (2022) who reported larynx cancer as the second most-common type after oral cavity cancer. The treatment strategies adopted for our patients (i.e., surgery and CCRT or CCRT alone) comply with the standard treatment guidelines for the management of LAHNC (NCCN Guidelines, 2024; Badola et al., 2023).
Till date, there is only one report of a European study on the dose-dependent expressions of NER genes (Psyrri et al., 2021) among 43 HNC patients, where 35 were responders (81.4%) and 8 were non-responders (18.60%) to cisplatin-based CRT; it was also found that DNA damage, oxidative stress, and NER pathway capacity were significantly higher (p < 0.05) in the cisplatin non-responders than responders owing to diminished apoptosis of the tumor cells among the non-responders. This is in agreement with the findings of our study that ERCC1 expression was significantly increased by 1.64-fold after CCRT compared to the baseline, confirming the increase in NER capacity to clear damaged DNA-cisplatin adducts. Furthermore, approximately 20.78% of the patients in our study showed overexpression of ERCC1 after 100% CCRT, which is nearly equal to that of the non-responder group reported by Psyrri et al. (2021). Although the DNA repair capacity of ERCC1 was found increase with therapy, the overall median expression of ERCC1 was lower than that of the reference gene in our study; this is in agreement with the findings of Psyrri et al. (2021) who observed downregulation of the NER genes, such as ERCC1, ERCC2/XPD, XPA, and XPC, among HNC patients. Even though we predicted no link between overexpression of ERCC1 and overall survival via computational analysis, we found that upregulation of ERCC1 is significantly linked to poor overall survival (HR: 1.82) through the meta-analysis of dose-independent expressions in ERCC1 studies; this is consistent with the previously reported HRs (2.14 and 1.95) among ERCC1 overexpressing HNC patients (Xuelei et al., 2015; Bišof et al., 2016). These findings are attributed to the increased NER capacity via ERCC1, which may be associated with CCRT resistance and poor clinical outcomes among HNC patients. Furthermore, nearly half of the HNC patients (50.33%) among the studies included in the meta-analysis showed high ERCC1 expressions, which is comparatively higher than that observed in our study where 14.29% and 20.78% of the patients had high expressions at baseline and after 100% CCRT, respectively. The details of the studies included in the meta-analysis are outlined in Table 3 (Prochnow et al., 2019; Liang et al., 2015; Ciaparrone et al., 2015; Lu et al., 2017; Xu et al., 2017; An et al., 2017; Gong et al., 2019; Aksoy et al., 2019; Raturi et al., 2020; Chitapanarux et al., 2020; Wang et al., 2021; Hua et al., 2022).
Presently, there are no available studies on evaluating the dose-dependent expression of ACTL6A. However, ACTL6A has been applauded as a novel gene responsible for cisplatin resistance in various cancers, such as ovarian, lung, and esophageal cancers (Xiao et al., 2021). Overexpression of ACTL6A is believed to mediate DNA repair via the SWI/SNF complex by regulating the expression of the Brahma related gene 1 (Brg1) or Brahma (Brm) and promoting its binding to BRAF155/BRAF170 to hinder cisplatin-mediated H2AX or γH2AX activation (Xiao et al., 2021). Out of the four documents that we retrieved through a systematic search, three studies used human tissue samples to explore ACTL6A as a biomarker for cell proliferation, invasion, or metastasis, leading to unfavorable/poor prognosis among HNC patients (Xiao et al., 2021; Liu et al., 2024; Dang et al., 2020; Saladi et al., 2017). A recently published Chinese study by Liu et al. (2024) reported that ACTL6A is significantly overexpressed in oral cancer tissues compared to normal tissues and proposed that tumor factors like E2F7, TP63, and microRNA has-mir-381 regulate ACTL6A expression to promote cell proliferation, migration, and invasion through the WNT and TP53 signaling pathways. It has also been reported that high ACTL6A expression is significantly linked to TP53 mutation rate, which could contribute to chemoresistance to CRT (Xiao et al., 2021). Similarly, studies by Dang et al. (2020) and Saladi et al. (2017) confirmed overexpression of ACTL6A in HNC, anticipating that ACTL6A interacts with P63 and activates the Yes-associated protein (YAP); this could lead to translocation of YAP into the nucleus, which promotes tumorigenesis via the Hippo-YAP signaling pathway (Dang et al., 2020; Saladi et al., 2017). These findings are correlated with those of our study, where we predicted and demonstrated ACTL6A overexpression in HNC via computational analysis and qPCR across the therapy. Furthermore, overexpression of ACTL6A was also predicted to be a significant contributor to poor overall survival. However, none of these studies have demonstrated the involvement of ACTL6A in DNA repair in HNC or its relation to NER. The present study indicates that ACTL6A interacts with the UV-DDB complex, XPC complex of GGR-NER, and PCNA of TCR-NER, thereby contributing to DNA repair. We also found significant and marginally significant correlations between ERCC1 and ACTL6A expressions after 50% (p = 0.003) and 100% (p = 0.06) CCRT, respectively, among the HNC patients, which supports the hypothesis of ACTL6A-mediated NER activation.
Immune cell infiltration of the tumor cells and their interactions with the tumor microenvironment have been proposed to modulate the immune cells, leading to immunosuppression and chemoresistance, thereby resulting in poor clinical outcomes like metastasis and poor survival (Wondergem et al., 2020; Jumaniyazova et al., 2022). However, the inconsistencies in these findings pose conflicts for acceptability in clinical practice. Neutrophil-infiltrating tumor cells undergo polarization to form two phenotypes N1 and N2 that exbibit antitumor and protumor properties, respectively. Here, the N2 phenotype makes the tumor more aggressive by inducing genetic instabilities, angiogenesis, metastasis, and immunosuppression (Wondergem et al., 2020; Jumaniyazova et al., 2022). However, infiltration of the tumor cells by myeloid dendritic cells was reported to exert antitumor and anti-inflammatory effects via increased tumor leucocyte infiltration, whereas plasmacytoid dendritic cell infiltration was reported to be linked with unfavorable outcomes (Wondergem et al., 2020; Jumaniyazova et al., 2022). Similar to neutrophils, macrophages also polarize into M1 and M2 phenotypes, of which the M2 phenotype is linked with protumoral activities, such as tumor migration, invasion, metastasis, and poor survival (Wondergem et al., 2020; Jumaniyazova et al., 2022). To some extent, CD8+ infiltration has been reported to be associated with favorable outcomes, whereas the effects of CD4+ are yet to be clarified (Wondergem et al., 2020; Jumaniyazova et al., 2022). These findings may be important in chemoresistance as both ERCC1 and ACTL6A expressions were found to increase the infiltration of immune cells, such as CD4+ cells, macrophages, myeloid dendritic cells, and B cells.
Nevertheless, knockdown of DNA repair expression could reverse the chemoresistance of or restore sensitivity to the cisplatin or platinum drugs. Among the HNC patients with cisplatin-based CRT resistance or platinum drug resistance, FDA-approved drugs like cyclosporin, 5-fluorouracil, doxorubicin, gemcitabine, paclitaxel, thalidomide, and panobinostat can be repurposed to downregulate ERCC1 and ACTL6A genes. Although paclitaxel and 5-fluorouracil are used for the management of HNC (NCCN Guidelines, 2024), there are no data regarding the use of these anticancer agents against ERCC1 and ACTL6A genes among HNC patients. Thus, we recommend the clinical investigation of these anticancer agents in combination with platinum therapy to mitigate platinum drug resistance or achieve better efficacy of CCRT among HNC patients. Moreover, E-X PPI2, E-X AS7, and panobinostat (a HDAC inhibitor) have been reported to silence ERCC1 and ACTL6A expressions in melanoma and ovarian/lung cancers, respectively, via in vitro and preclinical experiments (Xiao et al., 2021; McNeil et al., 2015). Similarly, siRNA- and shRNA-transfected HNC cell lines have shown promising results for downregulating ACTL6A expressions (Liu et al., 2024; Dang et al., 2020; Saladi et al., 2017); these findings offer hope for tackling chemoresistance in cancer therapy.
7 LIMITATIONS AND FUTURE DIRECTIONS
Although the present study was conducted with a unique methodology to decipher the dose-dependent expressions of chemoresistance genes and has the advantage of a molecularly sensitive technique like qPCR compared to IHC, we were unable to evaluate the tumor burden via the RECIST criteria, which should be addressed in the future to generalize our findings. However, the findings of the current study can also be utilized to conduct a novel clinical trial to investigate the dose-dependent expressions of ERCC1 and ACTL6A among large HNC cohorts along with RECIST mapping of the tumor burden for clinical applicability. Furthermore, ACTL6A (Liu et al., 2024; Dang et al., 2020; Saladi et al., 2017) and ERCC1 (Seetharam et al., 2010; Wang et al., 2017) can be targeted using siRNA and shRNA to silence their expressions to counteract chemoresistance. The present study also offers a hypothesis regarding the associations between chromatin remodeling genes and their DNA repair capacities via the SWI/SNF as well as NER pathways, which could motivate future research in this field.
8 CONCLUSION
We demonstrate that increased expressions of ERCC1 and ACTL6A during and/or after cisplatin-based CRT can mediate DNA repair, leading to chemoresistance in HNC as well as poor overall survival thereof. ERCC1 and ACTL6A are known to regulate several repair pathways that participate in DNA repair processes. ACTL6A is also known to promote DNA repair activity by interacting with the UV-DDB complex, XPC complex of GGR-NER, and PCNA of TCR-NER. Thus, ERCC1 and ACTL6A are critical evolutionarily conserved core proteins with theranostic potential for cisplatin or cisplatin-based CRT resistance that can be detected via liquid biopsy. Furthermore, repurposing some of the available FDA-approved drugs for targeting ERCC1 and ACTL6A is proposed as a novel approach to counteract chemoresistance in clinical practice.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous malignancy with poor overall prognosis. Recent studies have suggested that propionate metabolism-related genes (PMRGs) may play key roles in tumor progression and immune regulation, yet their functions in HNSCC remain unclear.





Methods

Transcriptomic data from 502 HNSCC tumor samples and 44 normal tissue samples were obtained from the UCSC Xena database as the training set. Two independent datasets (GSE41613 and GSE6631) from the GEO database were used for validation. Differentially expressed genes (DEGs), key module genes identified via weighted gene co-expression network analysis (WGCNA), and PMRGs were intersected to identify candidate genes. A prognostic model was constructed using Cox regression and LASSO analysis. Immune infiltration, somatic mutations, and drug sensitivity were compared between high- and low-risk groups. Gene expression was further validated by RT-qPCR using clinical samples.





Results

A total of 42 intersecting genes were identified, and four feature genes (PRKAA2, SLC7A5, GRIP2, CHGB) were selected to build the prognostic model. The model effectively stratified patients into high- and low-risk groups with significant survival differences in both the training and validation cohorts. The high-risk group exhibited marked differences in immune cell infiltration, immune checkpoint expression, and cancer immune cycle activity. Mutation burden and drug sensitivity also varied significantly between risk groups. A nomogram combining risk score and pathological N stage showed strong predictive performance.





Discussion

This study highlights the potential role of PMRGs in immune regulation and tumor progression in HNSCC. The proposed four-gene signature provides a novel tool for prognosis prediction and offers new insights for risk stratification and individualized therapy. Further multicenter validation and mechanistic studies are warranted.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally, with 5-year survival rates consistently ranging from 40% to 60% over the past few decades (1–3). Clinically, HNSCC is divided into HPV-positive and HPV-negative subtypes based on the presence of human papillomavirus (HPV), each with distinct etiologies, molecular profiles, therapeutic responses, and prognoses (4). HPV-positive HNSCC typically arises in the oropharynx, is more prevalent among nonsmokers, demonstrates relatively stable molecular features, and responds well to chemoradiotherapy, resulting in a favorable prognosis. In contrast, HPV-negative HNSCC is strongly associated with tobacco and alcohol use, displays considerable molecular heterogeneity, and is linked to poorer outcomes, including increased resistance to treatment and higher rates of local recurrence (4, 5). Current precision medicine strategies for HNSCC face two major challenges: the lack of reliable molecular biomarkers for prognostic prediction and significant individual variability in response to chemotherapeutic agents such as docetaxel and methotrexate (6). These issues highlight the urgent need for further exploration of molecular mechanisms to improve risk stratification and therapeutic approaches.

Recent research has emphasized the pivotal roles of tumor metabolic reprogramming and immune evasion. Metabolic reprogramming, for example, has been shown to influence the expression of immune checkpoint molecules such as PD-L1 (7). Tumor cells can increase PD-L1 expression through the activation of transcription factors like HIF-1α, thus suppressing T cell activity and enabling immune escape (8). Additionally, alterations in short-chain fatty acid (SCFA) metabolism, particularly propionate, have been implicated in tumorigenesis and progression (9, 10). Propionate, a key SCFA produced primarily through gut microbial fermentation of dietary fiber, not only contributes to energy metabolism but also plays pivotal roles in immunomodulation, epigenetic regulation, and cellular signaling (11). Growing evidence suggests that disturbances in propionate metabolism are closely associated with malignant progression and metastasis in various cancers (12). For instance, propionate promotes the differentiation of regulatory T cells (Tregs) and inhibits proinflammatory Th17 cells by activating G-protein-coupled receptors (GPR43/41) and suppressing HDAC activity, thereby fostering an immunosuppressive tumor microenvironment (TME) (13). Moreover, metabolites such as methylmalonic acid (MMA) can induce CD8+ T-cell exhaustion and enhance PD-L1 expression, further contributing to tumor immune evasion (14). In colorectal cancer and melanoma, disrupted propionate metabolism has been linked to the polarization of M2-type tumor-associated macrophages (TAMs) and the recruitment of myeloid-derived suppressor cells (MDSCs), suggesting a role in immune escape (15). Despite these findings, the biological functions and clinical significance of propionate metabolism-related genes (PMRGs) in HNSCC remain largely unexplored.

This study identified key genes associated with propionate metabolism in HNSCC and developed a prognostic model based on these genes. A comprehensive analysis of clinical features, immune cell infiltration, immune checkpoint expression, immune cycle dynamics, and drug sensitivity differences between high- and low-risk patient groups was performed. In summary, the findings of this study uncover potential therapeutic targets linked to propionate metabolism in HNSCC and offer novel insights that may aid in the development of precision treatment strategies for this challenging malignancy.




2 Materials and methods



2.1 Data source and tissues

Transcriptome sequencing data from 502 HNSCC tumor tissue samples and 44 normal tissue samples were retrieved from the UCSC Xena database (https://xenabrowser.net/datapages/) to serve as the training set. Two additional HNSCC datasets (GSE41613 and GSE6631) were sourced from the GEO database (https://www.ncbi.nlm.nih.gov/gds). The validation set included 97 oral tissue samples from patients with HPV-negative HNSCC from GSE41613 (platform GPL570). For expression verification, 22 tissue samples from patients with HNSCC and 22 normal tissue samples from GSE6631 (platform GPL8300) were utilized. A total of 603 PMRGs were obtained from the GeneCards database (https://www.genecards.org/). Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) validation was conducted on tumors and adjacent normal tissues from 24 patients at the Department of Otolaryngology, Chongqing General Hospital. Histological evaluation was performed on each sample, and all participants provided written informed consent. The study was approved by the Ethics Committee of Chongqing General Hospital (Approval No. KY S2023-102-01).




2.2 Acquisition of intersecting genes

Gene expression data were standardized by converting probe IDs into gene identifiers and eliminating duplicate entries for the same gene in each sample to ensure a single representation per gene. Subsequently, differential expression analysis was performed using the “limma” package (v 3.58.1) (16) in the training set, identifying differentially expressed genes (DEGs) with a threshold of | Fold Change (FC)| ≥ 1 and adj. p< 0.05. Weighted gene coexpression network analysis (WGCNA) was conducted using the “WGCNA” package (v 1.70-3) (17) to identify the most relevant modules for HNSCC in the training set. Hierarchical clustering was initially performed to detect outliers, with any identified outlier samples excluded. The optimal soft threshold was determined based on the scale-free fit index (signed R2) and average connectivity (targeting a value close to 0). Genes were then grouped into modules using the hybrid dynamic tree-cutting algorithm. The correlation between these modules and the HNSCC phenotype was calculated, and the modules with the strongest correlations were defined as key modules. Genes within these key modules were identified as key module genes. Intersecting genes were derived by overlapping DEGs, key module genes, and PMRGs. To explore the biological functions and pathways involved in the intersecting genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the clusterProfiler package (v 4.2.2) (18). Protein–protein interactions (PPI) among the intersecting genes were assessed using the STRING database (https://cn.string-db.org/).




2.3 Prognostic risk model

Univariate Cox regression analysis was performed on the intersecting genes in the training set to calculate the p-values, hazard ratios (HRs), and their 95% confidence intervals (CIs) for each gene (p< 0.05, HRs ≠ 1). Genes identified by univariate Cox regression were further analyzed using the Least Absolute Shrinkage and Selection Operator (LASSO) with the “glmnet” package (v 4.1-2) (19). Tenfold crossvalidation was conducted using the cv.glmnet function, and candidate genes were selected based on the lambda.min value that minimized the prediction error. These candidate genes were then subjected to multivariate Cox regression analysis (p< 0.05) and proportional hazards (PH) testing (p > 0.05) to identify feature genes. The risk score for each patient in the training set was calculated using the following formula: [image: Summation of m equals n to N of one times coefficient multiplied by X subscript i.]  . The median risk score was used to categorize the samples into high- and low-risk groups. Survival analysis was then conducted, and the Kaplan–Meier (K-M) curve was generated using the “survival” package (v 3.3-1) (20) (p< 0.05). Receiver operating characteristic (ROC) analysis was performed using the plotROC package (v 2.3.1) (21), and ROC curves for 1-, 3-, and 5-year survival were plotted, with the area under the curve (AUC) calculated (AUC > 0.7). Additionally, principal component analysis (PCA) was performed to evaluate the discriminative ability of the risk score in the training set. The same methodology was applied to validate the risk model in the validation set. The Wilcoxon test was used to assess differences in the expression of feature genes between HNSCC and control samples in both the training set and the validation set (GSE6631) (p< 0.05), with heatmaps generated to visualize the expression patterns.




2.4 Relationship between risk scores and clinical characteristics

Differential expression of feature genes across various clinical characteristics and risk groups was analyzed. The distribution of samples among each clinical characteristic group in the two risk groups was also examined. Additionally, differences in risk scores across clinical feature subgroups were evaluated, and survival differences between different risk subgroups within each clinical characteristic subgroup were computed.




2.5 Construction and evaluation of the nomogram model

Univariate and multivariate Cox regression analyses, based on risk scores, age, gender, stage, pathological T, pathological N, and grade, were performed using the “survival” package (v 3.3-1) to identify independent prognostic factors. The rms package (v 6.8-1) (21) was then employed to construct a nomogram based on the independent prognostic factors. The nomogram’s predictive performance was assessed using calibration and decision curves.




2.6 Differential expression analysis

To explore the differential gene expression between the high- and low-risk groups, differential expression analysis was performed using the DESeq2 package (v 1.34.0) (16) in the training set with the threshold set at |log2FC| ≥ 1 and adj. p< 0.05. GO and KEGG enrichment analyses were conducted on the DEGs between the two risk groups using the clusterProfiler package (v 4.2.2) (18). Single-sample Gene Set Enrichment Analysis (ssGSEA) for KEGG pathways was performed across all samples in the training set, identifying pathways that differed between the high- and low-risk groups.




2.7 Somatic cell mutation, drug sensitivity, immune microenvironment, and immune cycle analyses

Somatic mutations in patients with HNSCC were analyzed and visualized using the maftool package (v 2.10.5). Mutation categories, types, and the frequency of the top 25 mutated genes were examined in both the high- and low-risk groups. Chemotherapeutic agents for HNSCC were obtained from the GDSC database (https://www.cancerrxgene.org). The IC50 values for common chemotherapeutic and molecularly targeted drugs in each HNSCC sample were calculated using the R package pRRophetic (v 0.5) (22). Differences in IC50 values between the high- and low-risk groups were assessed using the Wilcoxon rank-sum test. Subsequently, ssGSEA of 16 immune cell types, eight immune functions, 19 immune checkpoints, and seven immune cycles was performed for both groups in the training set using the GSVA package (v 1.42.0) (16). The estimate package (v 1.0.13) (18) was used to calculate stromal, immune, and ESTIMATE scores for each HNSCC sample in the training set, and differences in these scores were compared between the high- and low-risk groups.




2.8 RNA isolation, RT-PCR, semi-quantitative PCR, and qPCR

Total RNA was extracted from cell lines and tissues using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s protocol. The RNA was quantified through spectrophotometry and stored at − 80°C. Primer sequences are listed in Table 1.

Table 1 | Primer sequences in the RT-qPCR experiment.


[image: Table displaying gene names with corresponding forward and reverse DNA primers in 5' to 3' orientation. The genes listed are PRKAA2, CHGB, SLC7A5, and GRIP2, each paired with specific DNA sequences for both forward and reverse primers.]
For qPCR, SYBR Green (Thermo Fisher Scientific, Hong Kong, China) was used according to the manufacturer’s instructions, with amplification performed on a 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). GAPDH served as the internal control. Gene expression levels were calculated using the 2−ΔΔCt method, with all samples analyzed in triplicate.




2.9 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0 (GraphPad Software Inc., CA, USA) and SPSS 23.0 (IL, USA). All experiments were conducted in triplicate, and data are presented as the mean ± standard deviation. Normality and equality of variance were assessed using the Shapiro–Wilk and Levene tests, respectively. For normally distributed data, comparisons between groups were made using Student’s t-test, with Welch’s correction for unequal variances. For non-normally distributed data, the Mann–Whitney U test was employed. The Wilcoxon rank-sum test was used to compare ssGSEA scores between groups. The Cox regression model was tested for PH assumptions, and survival analysis was conducted using the log-rank test.





3 Results



3.1 Intersecting genes were related to fatty acid metabolic processes

A total of 10,185 DEGs were identified in the training set, with 6,298 genes upregulated and 3,887 genes downregulated in HNSCC (Figures 1A, B). WGCNA revealed the green module, comprising 993 genes, as the most highly correlated with HNSCC (Cor = 0.43, adj. p = 2 × 10−22) (Figure 1C). Forty-two intersecting genes were derived by overlapping the 10,185 DEGs, 993 key module genes, and 603 PMRGs (Figure 1D). GO analysis of these intersecting genes highlighted pathways such as fatty acid metabolic processes and protein-lipid complex binding (Figure 1E). KEGG pathway analysis further identified involvement in pathways such as alanine, leucine, and isoleucine degradation (Figure 1F), suggesting that these genes may influence HNSCC by modulating fatty acid metabolism. To investigate potential gene interactions, a PPI network was constructed. Genes such as ACADM and ACADS, ACHE and MAPT, as well as ACSS3 and AOX1, showed significant interactions (Figure 1G).

[image: A collection of scientific data visualizations includes: (A) A volcano plot showing gene expression changes with labels for significantly up and down-regulated genes. (B) A heatmap depicting expression patterns in HNSCC versus control groups. (C) A correlation heatmap illustrating relationships between modules and HNSCC. (D) A Venn diagram comparing DEGs and module genes. (E) A dot plot of gene ontology terms related to HNSCC. (F) A dot plot showing metabolic pathways relevant to PMRGs. (G) A network diagram highlighting key genes and their interactions within a cluster.]
Figure 1 | Acquisition of differentially expressed genes (DEGs) and key module genes. (A) Volcano plot of DEGs between HNSCC and normal samples (|log2FC| > 0.5 and p-value< 0.05). (B) Heatmap of the top 20 DEGs between HNSCC and normal samples. (C) Correlation heatmap between gene modules and disease status. (D) Venn diagram showing the overlap of module genes, DEGs, and propionate metabolism-related genes (PMRGs) for screening PMRG-DEGs. (E) GO enrichment bubble plot. (F) KEGG enrichment bubble plot. (G) PPI network.




3.2 Prognostic risk models were constructed based on PRKAA2, SLC7A5, GRIP2, and CHGB

Univariate Cox regression analysis identified five genes (TAC1, PRKAA2, SLC7A5, GRIP2, CHGB) with p< 0.05 and HR ≠ 1 (Figure 2A). Four feature genes (PRKAA2, SLC7A5, GRIP2, CHGB) were selected through LASSO and multivariate Cox regression analysis (Figures 2B, C). Based on these feature genes, risk scores for patients with HNSCC in the training set were calculated. Patients were stratified into high- (n = 250) and low-risk (n = 251) groups based on the median risk score. As the risk score increased, mortality rates also increased (Figure 2D), with patients in the low-risk group exhibiting significantly longer survival (Log-rank test p< 0.0001) (Figure 2E). The AUC values for the 1-, 3-, and 5-year ROC curves of the risk model were all greater than 0.6, indicating strong model performance (Figure 2F). PCA demonstrated that the risk scores effectively distinguished between samples in the training set (Figure 2G). External validation in the GSE41613 dataset yielded consistent results with the training set (Figures 3A–D). The Wilcoxon test confirmed that the expression trends of feature genes in control and disease samples were consistent across both datasets, with SLC7A5 showing significant upregulation in HNSCC samples (p< 0.01) (Figures 3E–H).

[image: A collection of graphs displaying analysis of gene expression and survival data.  (A) Forest plot showing hazard ratios for genes TAC1, PRKAA2, SLC7A5, GRIP2, and CHGB with arrows indicating direction.  (B) Line plot of coefficients against log lambda during LASSO regression.  (C) Hazard ratio plot for candidate genes with confidence intervals.  (D) Risk score distribution of a train dataset, separating high and low-risk patients.  (E) Kaplan-Meier survival curves for high and low-risk scores, including overall survival days and log-rank significance.  (F) Receiver operating characteristic (ROC) curves for predictions at one, three, and five years.  (G) PCA scatter plot illustrating risk groups by dimension.]
Figure 2 | Risk model construction and evaluation in the training set. (A) Forest plot of univariate Cox analysis. (B) Regression coefficient-lambda plot. (C) Forest plot of multivariate Cox analysis. (D) Risk score distribution in the training dataset. (E) Survival curves of high- and low-risk groups in the training set. (F) ROC curves for 1-, 3-, and 5-year survival based on the training set. (G) PCA dendrogram.

[image: A composite image shows various plots and charts for data analysis. Panel A presents a risk score distribution for patients categorized into high and low risk groups. Panel B displays Kaplan-Meier survival curves, showing differences in survival probability between high and low risk groups. Panel C contains ROC curves with AUC values for one, three, and five years. Panel D shows a PCA plot differentiating risk levels. Panels E and F are heatmaps of gene expression data for specific genes across HNSCC and control groups. Panels G and H present box plots comparing gene expression levels between control and HNSCC groups for different genes, with significance levels indicated.]
Figure 3 | Validation of the risk model in the verification set. (A) Risk score distribution in the verification dataset. (B) Survival curves of high- and low-risk groups in the verification set. (C) ROC curves for 1-, 3-, and 5-year survival based on the verification set. (D) PCA dendrogram. (E, F) Heatmaps of model gene expression (training and verification datasets). (G, H) Box plots of feature gene expression in the training set and verification set (GSE6631). ns, p > 0.05; **p< 0.01; ***p< 0.001.




3.3 Nomogram diagram could effectively predict the risk profile of patients with HNSCC

The expression of feature genes across different subgroups is shown in Figure 4A. The distribution of clinical characteristics in the high- and low-risk groups is presented in Figure 4B. Risk scores significantly differed between tumor grading and pathological stage T subgroups, but not between age, gender, tumor grading, tumor stage, and pathological stage N subgroups, indicating that risk scores are more closely associated with tumor grading and pathological stage T (Figure 4C). Significant survival differences between high- and low-risk groups were observed across 12 subgroups: age (≤ 60, > 60), gender (women, men), tumor grade (G2, G3), tumor stage (stage II, stage IV), pathological stage N (N1, N2), and pathological stage T (T2, T4) (Figure 4D).

[image: Heatmap and graphs analyzing clinical data. Panel A shows a heatmap with gene expression data and clinical factors. Panel B displays bar charts comparing percentages of clinical characteristics across risk groups. Panel C provides box plots for risk groups versus grade and pathological T stage. Panel D contains Kaplan-Meier survival plots stratified by age, gender, grade, stage, and pathological N and T factors. The figures illustrate associations between risk factors, clinical characteristics, and survival probabilities in patients.]
Figure 4 | Analysis of risk scores across clinical subgroups. (A) Heatmap of model gene expression across different clinical groups. (B) Distribution of clinical characteristics in high- and low-risk groups. (C) Boxplot of risk scores among different clinical characteristic subgroups. (D) Survival curves of high- and low-risk groups across different clinical characteristic subgroups.

Univariate and multivariate Cox regression analysis identified two independent prognostic factors: pathological stage N and risk score (Figures 5A, B). A nomogram was constructed based on these two factors (Figure 5C). The calibration curves for 1-, 3-, and 5-year survival showed slopes close to 1 (Figure 5D), indicating that the nomogram has high predictive accuracy. Furthermore, the 1-, 3-, and 5-year ROC curves for the nomogram demonstrated AUC values greater than 0.6 (Figure 5E), suggesting excellent prediction performance. In conclusion, the nomogram developed in this study exhibits favorable accuracy in predicting 1-, 3-, and 5-year overall survival (OS) in patients with HNSCC.

[image: (A) Forest plot showing univariate analysis of hazard ratios with confidence intervals for various factors including risk score, age, gender, grade, tumor stage, and pathologic stage. (B) Multivariate analysis forest plot of hazard ratios with confidence intervals for risk score and pathologic stages. (C) Nomogram depicting points for calculating overall survival (OS) probabilities at 1, 3, and 5 years based on risk score and pathologic stage. (D) Plot comparing actual versus nomogram-predicted probability of 1-5 year OS, with curves for each time frame. (E) ROC curves for 1-, 3-, and 5-year survival, showing AUC values for different models.]
Figure 5 | Nomogram construction and evaluation. (A) Forest plot of univariate Cox analysis. (B) Forest plot of multivariate Cox analysis. (C) Nomogram of independent prognostic factors. (D) Predicted probabilities of 1–5-year overall survival (OS) based on the nomogram. (E) ROC curves for 1-, 3-, and 5-year survival.




3.4 DEGs were related to immunity

A total of 1,336 DEGs were identified between the high- and low-risk groups, with 277 genes upregulated and 1,059 genes downregulated in the high-risk group (Figure 6A). GO analysis of these DEGs highlighted pathways such as adaptive immune response and immune system processes (Figure 6B). KEGG pathway analysis identified involvement in pathways such as primary immunodeficiency and the intestinal immune network for IgA production (Figure 6C), suggesting that these DEGs may influence risk scores through modulation of immune responses. The ssGSEA scores for seven of the 186 pathways showed significant differences between the two groups (Figure 6D), with the high-risk group exhibiting generally lower scores in these pathways.

[image: (A) A volcano plot showing gene expression differences between high-risk and low-risk HNSCC. Points indicate significant genes, with upregulated (red), downregulated (blue), and unchanged (gray). (B) Circular plot visualizing gene ontology data, displaying biological processes, molecular functions, and cellular components. (C) Circular plot illustrating KEGG pathway analysis, highlighting upregulated, downregulated, and neutral gene sets. (D) Heatmap of KEGG pathway activity levels, with a color gradient representing activity from high (red) to low (blue), and clustered gene groups labeled on the right.]
Figure 6 | Differential expression and pathway analysis. (A) Volcano plot of differentially expressed genes. (B) Circular plot of GO enrichment. (C) Circular plot of KEGG enrichment. (D) Heatmap of ssGSEA scores for the pathways.




3.5 High-risk high-mutation rate

In this study, 96.79% of samples in the high-risk group and 93.9% of samples in the low-risk group exhibited mutations in the top 25 most frequently mutated genes (Figure 7A). The most common mutation type was missense mutation (SNP), with TP53 showing the highest mutation frequency across samples (Figure 7B). Additionally, 12 drugs displayed significant differences in sensitivity between the high- and low-risk groups, such as dasatinib, lenalidomide, and lapatinib (Figure 7C).

[image: Panel A shows gene mutation profile heatmaps for samples with high and low alteration rates, indicating specific genes and mutation types with percentages for each. Panel B includes bar graphs displaying variant classification, type, and the top ten mutated genes for both high and low mutation groups. Panel C features scatter plots for drug sensitivity (IC50) against various drugs, highlighting significance values (p-values) and separating samples into high and low alteration categories.]
Figure 7 | Gene mutation analysis and drug sensitivity. (A) Waterfall plot of gene mutation analysis (high- and low-risk groups). (B) Gene mutation cartogram (high- and low-risk groups). (C) Boxplot of differential drug sensitivity analysis.




3.6 Significant differences in immune cells, immune checkpoints, and immune cycles

The heatmap of ssGSEA scores for 16 immune cell types is shown in Figure 8A. Except for macrophages, the remaining 15 immune cell types exhibited significant differences in scores between the high- and low-risk groups (Figure 8B). There was a negative correlation between risk scores and the scores of immune cells, with the strongest correlation observed between risk scores and CD8+ T cells (Figure 8C). Significant differences in immune scores and ESTIMATE scores were found between the two groups, while stromal scores showed no significant differences (Figure 8D). The ssGSEA scores for four immune functions were significantly different between the groups (Figure 8E), and 16 immune checkpoints also exhibited significant differences (Figure 8F). All seven cancer immune cycle scores differed significantly between the high- and low-risk groups (Figure 8G). Furthermore, these cancer immune cycle scores were negatively correlated with risk scores, with STEP 3 showing the strongest correlation (Figure 8H).

[image: (Panel A) Heatmap showing the expression levels of immune cells, color-coded from blue to red. (Panel B) Box plots of immune cell scores with p-values comparing high and low groups. (Panel C) Correlation plot depicting relationships between immune cell types and their significance. (Panel D) Box plots for StromalScore, ImmuneScore, and ESTIMATEScore with significance levels. (Panel E) Immune-related activity scores with corresponding p-values for different processes. (Panel F) Gene expression box plots for various genes with significance levels. (Panel G) Process scores related to cancer immunity steps with p-values. (Panel H) Correlation matrix visualization of risk scores for cancer immunity steps.]
Figure 8 | Immune cell and immune function analysis. (A) Heatmap of immune cell ssGSEA scores. (B) Boxplot of immune cell ssGSEA scores. (C) Lollipop diagram of correlation analysis between risk scores and immune cell scores. (D) Boxplot of stromal, immune, and ESTIMATE scores between high- and low-risk groups. (E) ssGSEA scores for immune function between high- and low-risk groups. (F) Boxplot of immune checkpoint inhibitor expression. (G) Boxplot of cancer immune cycle scores. (H) Correlation analysis between cancer immune cycle scores and risk scores.




3.7 Validation of the mRNA expression of four genes (PRKAA2, GRIP2, CHGB, SLC7A5) in HNSCC

To validate the expression changes of the feature genes in HNSCC, 24 pairs of tumor and adjacent noncancerous tissues were collected, and qPCR was performed for verification. The results showed no significant expression changes for PRKAA and GRIP2 in head and neck tumors (Figures 9A, B), whereas CHGB exhibited a noticeable upregulation, and SLC7A5 showed downregulation in head and neck tumors (Figures 9C, D).

[image: Graphs display relative mRNA expression levels of four genes in normal versus tumor tissues.   A: PRKAA shows similar expression in both tissues.   B: grip2 is higher in tumor samples.   C: slc7a5 demonstrates significantly elevated levels in normal tissues.   D: CHGB exhibits greater expression in tumor samples.   Significance is indicated with asterisks.]
Figure 9 | RT-qPCR verification of model genes. (A) Expression of PRKAA. (B) Expression of GRIP2. (C) Expression of CHGB. (D) Expression of SLC7A5. Compared with Normal, **P<0.01, ***P<0.001.





4 Discussion

HNSCC is a highly heterogeneous malignancy whose development is strongly linked to HPV infection and immunometabolic reprogramming within the TME (23). Recent studies have highlighted the involvement of SCFAs, particularly propionate, as microbial metabolites that regulate energy metabolism and influence tumor progression through epigenetic modifications and immunomodulatory pathways (24). However, the exact mechanisms of PMRGs in HNSCC remain poorly understood. In this study, four characteristic genes associated with propionate metabolism in HNSCC—PRKAA2, SLC7A5, GRIP2, and CHGB—were identified through bioinformatics analysis, and their potential roles were explored, providing new theoretical insights for future research on HNSCC.

PRKAA2, also known as AMPKα2, encodes the catalytic α2 subunit of AMP-activated protein kinase (AMPK) (25). It regulates glucose metabolism, which affects tumor cell growth and energy supply (26). Notably, PRKAA2 expression is significantly elevated in hepatoblastoma (HB), where it acts as an oncogenic factor by promoting cell proliferation and inhibiting ferroptosis (27). In non-small cell lung cancer (NSCLC), PRKAA2 enhances tumor growth and suppresses ferroptosis via the SLC7A11/GSH/GPX4 pathway (28). These findings suggest that PRKAA2 may similarly influence tumor cell proliferation and survival in HNSCC.

SLC7A5 (LAT1) facilitates the cellular uptake of neutral amino acids, including leucine and glutamine (29). Its transport of leucine activates the mTORC1 signaling pathway, thereby promoting protein synthesis to support rapid tumor cell proliferation (30). Tumor cells can modulate SLC7A5 expression to alter immune cell function and evade immune surveillance (31, 32). Li et al. identified SLC7A5 as a potential prognostic biomarker in HNSCC associated with immune infiltration (33), suggesting that therapeutic targeting of SLC7A5 may offer a novel strategy for treatment.

GRIP2 encodes a PDZ domain-containing protein that binds GluR2 to anchor AMPA receptors within neuronal signaling complexes, playing pivotal roles in synaptic transmission and plasticity (34). Given the frequent dysregulation of signaling pathways in cancer cells (35), GRIP2 may influence HNSCC progression by modulating key tumorigenic pathways. Interestingly, GRIP2 has been linked to variations in innate CD8+ T cells (36), suggesting its potential immunomodulatory effects in HNSCC progression. Thus, GRIP2 may regulate both tumor signaling pathways and immune cell function, making it a promising therapeutic target.

CHGB is a highly conserved eukaryotic protein involved in secretory regulation (37). While CHGB genetic variants have been associated with cardiovascular disease risk (38) and the protein regulates ion channels to maintain secretory granule homeostasis (37), its role in cancer remains poorly understood and warrants further investigation.

Drug sensitivity analysis identified 12 compounds, including dasatinib, lenalidomide, and lapatinib, with significantly different IC50 values between high- and low-risk groups, suggesting their potential clinical applications. Dasatinib, a multi-target tyrosine kinase inhibitor, may enhance treatment response in high-risk patients by inhibiting SRC family kinases and exerting immunomodulatory effects (39–41). The immunomodulator lenalidomide could improve the TME and increase sensitivity to chemoradiotherapy (42, 43). Lapatinib, an oral tyrosine kinase inhibitor targeting the EGFR/HER2 pathways, may provide precision therapy for specific molecular subtypes (44). These observed differences in drug sensitivities support the rationale for molecular classification and personalized treatment strategies in HNSCC. Validation through in vitro experiments and clinical cohorts is essential, alongside exploration of combination therapies with existing treatments, such as immune checkpoint inhibitors, to refine and optimize precision treatment regimens.

Significant differences in the expression of 16 immune checkpoint genes, including PD-L1, were identified between risk groups. Previous studies have shown that HNSCC cells often overexpress PD-L1, which binds to PD-1 on T cells, thereby suppressing their activation and function, enabling immune evasion (45–47). This immunosuppression is a key mechanism driving HNSCC progression (48). Furthermore, PD-L1 overexpression is associated with poorer prognosis in patients with HNSCC (49), likely due to reduced survival rates from PD-L1-mediated immune suppression. The elevated expression of PD-L1 in high-risk patients observed in this study supports these immune escape mechanisms and offers valuable insights for understanding prognostic differences and developing novel immunotherapies.

In summary, this study identified four characteristic genes associated with propionate metabolism through bioinformatics analysis and established a risk model based on these genes. These findings provide new insights for prognostic assessment and the development of innovative therapeutic strategies for HNSCC. However, several limitations must be acknowledged. The current sample size necessitates further validation through multicenter studies with larger cohorts to confirm the clinical applicability of the model. Additionally, while these metabolic genes have been identified as potential therapeutic targets, their precise mechanisms in modulating the immune microenvironment require further functional studies and clinical trials. Future research should refine this risk stratification system and investigate metabolism-targeted combination therapies to develop more precise treatment strategies for patients with HNSCC.
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Background: Head and neck squamous cell carcinoma (HNSCC) remains a significant global health concern, with treatment outcomes for advanced or metastatic stages being suboptimal despite the availability of various targeted therapies and immunotherapies. This study evaluates five FDA-approved anti-HNSCC drugs—cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab—focusing on the adverse drug reactions (ADRs) associated with their use as reported in the WHO VigiAccess database.Methods: A retrospective analysis was conducted on ADR reports from the WHO-VigiAccess database, focusing on demographic information (age, gender, and geographical distribution) and ADR classification. The disproportionality analysis was used to identify ADRs through Reporting Odds Ratios (ROR) and Proportional Reporting Ratios (PRR). ADRs were categorized into 27 system organ classes (SOCs) for comparison across the five drugs.Results: A total of 145,678 ADR reports were analyzed. Cetuximab exhibited the highest incidence of skin and subcutaneous tissue disorders (20.88%), while durvalumab showed elevated respiratory system disorders (18.53%). Pembrolizumab and nivolumab had notable immune-related adverse events, with malignant neoplasm progression reported at 5.56% and 4.23%, respectively. Atezolizumab was primarily associated with blood and lymphatic system disorders (5.51%). Disproportionality analysis revealed significant safety concerns for each drug, such as skin toxicity for cetuximab, respiratory complications for durvalumab, and reproductive system risks for nivolumab.Conclusion: This comparative pharmacovigilance study highlights the diverse safety profiles of the five anti-HNSCC drugs. Clinicians should consider these ADRs when treating patients, especially elderly individuals or those with comorbidities. Personalized monitoring strategies should be developed to minimize risks and optimize therapeutic outcomes for HNSCC patients.Keywords: HNSCC, WHO-vigiaccess, anti-HNSCC drugs, adverse drug reactions, disproportionality analysis
1 INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor originating from the mucosal epithelium of the oral cavity, pharynx, larynx, and other regions of the upper digestive tract (Jiang et al., 2025). With an annual incidence exceeding 600,000 cases worldwide, HNSCC demonstrates significant geographical variations in disease prevalence (Wang and Anderson, 2022). HNSCC remains a major global health concern, with an estimated 946,456 new cases and 482,001 deaths reported annually worldwide (Bray et al., 2024). Despite advancements in diagnostic imaging and multimodal therapies, the 5-year survival rate for HNSCC remains relatively low, with fewer than 50% of patients surviving beyond this period (Ferlay et al., 2019). The incidence is generally higher in males than in females, likely due to higher rates of tobacco and alcohol consumption among men (Jiang et al., 2024). A similar sex-based disparity is observed in mortality rates. The treatment of HNSCC typically requires multidisciplinary comprehensive therapy, including surgery, radiotherapy, and chemotherapy (Cao et al., 2024). These treatment methods not only cause physical suffering to patients but also impose a heavy economic burden. The direct medical costs associated with HNSCC include hospitalization, surgery, chemoradiotherapy, and various diagnostic procedures. Indirect costs arise from productivity loss due to illness and treatment, as well as caregiving-related expenses borne by family members (Haddad et al., 2019). Moreover, the high recurrence rate of HNSCC further increases treatment complexity and economic burden (Umbreit et al., 2016). A deeper understanding of the therapeutic landscape, associated adverse events is therefore essential to guide clinical decision-making and improve outcomes in HNSCC management.
In the treatment landscape of HNSCC, five major systemic agents—cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab—have received clinical approval based on their demonstrated efficacy and safety profiles. These drugs fall into two main therapeutic categories: targeted therapy and immune checkpoint inhibitors. Cetuximab, a monoclonal antibody against the epidermal growth factor receptor (EGFR), has historically played a key role in the EXTREME regimen (cetuximab + platinum + 5-fluorouracil), which was considered the first-line standard of care for recurrent/metastatic (R/M) HNSCC prior to the introduction of immunotherapy (Vasiliadou et al., 2021). The standard cetuximab dosing protocol consists of an initial loading dose of 400 mg/m2 followed by 250 mg/m2 weekly (Chen et al., 2013). With the advent of immune checkpoint inhibitors, particularly anti-PD-1 antibodies, treatment strategies have evolved significantly. Pembrolizumab, as demonstrated in the KEYNOTE-048 trial, has become a first-line standard for R/M HNSCC either as monotherapy in patients with PD-L1 Combined Positive Score ≥1, or combination with platinum-based chemotherapy in those with more aggressive disease (Fan et al., 2020). The recommended dosage of pembrolizumab is either 200 mg every 3 weeks or 400 mg every 6 weeks (Haas et al., 2023). Nivolumab is approved for patients with R/M HNSCC who experience disease progression on or after platinum-based therapy, typically administered at 240 mg every 2 weeks or 480 mg every 4 weeks (Cohen et al., 2019). Although atezolizumab and durvalumab are not yet standard treatments for HNSCC, they have received regulatory approval in other solid tumors such as non-small cell lung cancer and urothelial carcinoma, and are currently being explored in head and neck cancers through ongoing clinical trials (Sodji et al., 2017). Atezolizumab is typically dosed at 1200 mg every 3 weeks, while durvalumab is administered at 10 mg/kg every 2 weeks (Prelaj et al., 2022). Treatment decisions for HNSCC are influenced by a variety of clinical and demographic factors, including patient age, performance status, comorbidities, and prior treatment history (Klinghammer et al., 2022). Understanding the mechanism of action, approved indications, dosing regimens, and real-world application of these agents is essential for optimizing individualized treatment strategies.
The utilization of real-world data (RWD) and spontaneous reporting systems (SRS) constitutes a validated approach for pharmacovigilance assessment (Jo et al., 2021). Since the 1960s, SRS has served as the cornerstone of pharmacovigilance, enabling early detection of adverse drug reactions and population-level safety evaluation (Srba et al., 2012). The WHO Collaborating Centre for International Drug Monitoring (Uppsala Monitoring Centre) maintains a global adverse drug reactions (ADRs) database critical for comparative drug safety analytics (Shetti et al., 2011). These data repositories play pivotal roles in enhancing HNSCC drug safety profiles and refining therapeutic protocols. Expanded therapeutic applications necessitate intensified safety surveillance.
This study evaluates five FDA-approved anti-HNSCC agents: cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab. These therapeutics demonstrate validated efficacy in advanced/recurrent HNSCC through multicenter clinical trials. However, treatment tolerance diminishes in elderly patients due to tumor progression, physiological decline, and immunosenescence (Song et al., 2024). Age-related pharmacodynamic alterations increase vulnerability to immunotherapy/targeted therapy toxicities, exacerbated by tumor heterogeneity and therapeutic complexity (Su et al., 2023). Geriatric treatment disparities manifest as reduced therapeutic response, amplified adverse effects, and compromised disease management (Schupack et al., 2022). Therapeutic efficacy in advanced disease is constrained by immune evasion mechanisms, tumor microenvironment dynamics, and patient performance status. This necessitates personalized therapeutic regimens tailored to individual patient profiles. We conducted a descriptive analysis of the spontaneously reported adverse events recorded in the VigiAccess database, aiming to compare the differences in adverse reactions associated with the five anti-HNSCC drugs. By analyzing the types and frequencies of adverse events, we sought to identify key safety concerns that may impact drug use, providing valuable insights for future clinical practice.
2 METHODS
2.1 Drug samples
This study analyzes five therapeutic agents for HNSCC: cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab. Selection criteria (Table 1) prioritized clinical utility in HNSCC management and mechanistic targeting of immune evasion pathways. This study selected five anti-HNSCC drugs for analysis based on the following considerations: (1) Widespread Clinical Adoption: These agents are among the most commonly used drugs in clinical practice for HNSCC treatment, particularly for recurrent or metastatic HNSCC (Goel et al., 2022; Taberna et al., 2019). (2) Representative Mechanisms of Action: These drugs exemplify the two primary therapeutic strategies for HNSCC—EGFR inhibition and PD-1/PD-L1 immune checkpoint blockade (Wang et al., 2024). Their inclusion provides a comprehensive overview of ADR profiles associated with current HNSCC treatment paradigms. (3) Guideline Recommendations: These agents are recommended for HNSCC treatment in authoritative guidelines such as the NCCN (Cohen et al., 2019). (4) Clinical Trial Evidence: Robust clinical trial data support the use of these drugs in HNSCC management, establishing a solid foundation for this study (Yao et al., 2025). (5) Data Accessibility: Selection of these drugs ensures sufficient sample size within the VigiBase database, enhancing the reliability of study findings.
TABLE 1 | Overview of five anti-HNSCC drugs.
[image: Table listing cancer drugs with details: Cetuximab targets EGFR, indicated for head and neck cancer, and launched in 2004. Pembrolizumab and Nivolumab target PD-1, both for various cancers, launched in 2014. Atezolizumab and Durvalumab target PD-L1, for different cancers, launched in 2016 and 2017 respectively.]2.2 Search strategy and data source
The WHO-VigiAccess database was queried in March 2025 for adverse event reports associated with HNSCC immunotherapies. Accessible via https://www.vigiaccess.org, the platform provides aggregated global data including demographic parameters (age, gender) and geographical distributions. The Uppsala Monitoring Centre (UMC) maintains this pharmacovigilance data through its WHO Programme for International Drug Monitoring (PIDM) portal (Hussain et al., 2021). VigiAccess interfaces with VigiBase - the world’s largest pharmacovigilance database established in 1968, initially comprising 10 participating nations. By March 2022, VigiBase encompassed 155 full members and 21 associate members under PIDM. Member states submit validated Individual Case Safety Reports (ICSRs) from healthcare professionals, patients, and manufacturers through national regulatory agencies (Ke et al., 2024). Toxicity profiles were characterized using MedDRA classification (System Organ Class [SOC] and Preferred Term [PT]) for adverse event categorization. The analysis focused on 27 symptom-relevant SOCs and PT-level frequency patterns for each agent’s ADRs. Severity stratification utilized outcome codes: fatal outcomes, hospitalization-requiring events, and life-threatening incidents. Agent-specific search filters ensured precise data extraction. WHO-VigiAccess enhances pharmacovigilance research through transparent global ADR data sharing.
2.3 Disproportionality analysis
This study implemented disproportionality analysis using the Reporting Odds Ratio (ROR) and Proportional Reporting Ratio (PRR) to evaluate immunotherapy-associated adverse events (AEs) in HNSCC treatment (Rothman et al., 2004; Evans et al., 2001). These quantitative methods are standard pharmacovigilance tools for AE signal detection. ROR quantifies the probability of disproportionate reporting (PDRAE) for specific drug-AE combinations relative to comparator medications (Rahman et al., 2017). The algorithm incorporates four contingency table elements: a (target drug-AE pairs), b (target drug non-AE reports), c (non-target drug AE reports), and d (non-target drug non-AE reports). Minimum case requirement (a≥5) ensures statistical stability in ROR computation. Significant disproportionality signals were defined as ROR>2. The formula provides the ROR.:
[image: ROR equals the fraction a over c divided by the fraction b over d.]
PRR provides a complementary assessment of reporting imbalance through incidence ratio comparison. PRR analysis applied an equivalent case threshold (≥5 reports) for validity. PRR≥2 with χ2 ≥ 4 (equivalent to p < 0.05) and ≥3 cases defined statistically significant signals. These thresholds minimize false-positive signals from random reporting variation. Dual-methodology analysis enabled robust detection of disproportionate AE patterns across five HNSCC immunotherapeutics. The generated safety signals contribute essential pharmacovigilance intelligence for risk mitigation strategies. The formula provides the PRR.:
[image: Formula showing PRR equals a divided by the sum of a plus b, over c divided by the sum of c plus d.]
2.4 Statistical analysis
This study adopts a retrospective quantitative research method, exploring past situations by analyzing current results. We used Excel to analyze the gender, age, and regional characteristics of victims of ADR from five anti-HNSSC drugs. The data sources include current status, case reports, case series, etc. The ADR reporting rate for each drug is defined by dividing the number of ADR symptoms for that drug by the total number of ADR reports. We calculated the incidence rate of ADR symptoms reported for each drug and performed a descriptive comparative analysis. To obtain meaningful conclusions, we categorized descriptive variables using frequencies and percentages. Statistical significance was set at a p-value of less than 0.05.
3 RESULT
3.1 Case description of the study
According to the WHO-VigiAccess database statistics, as of March 2025, the global ADR reports for five drugs show the following characteristics: Cetuximab (first reported in 2003) has a total of 49,527 reports, with a significant male proportion (62.59%), females accounting for 30.87%, and unknown gender making up 6.54%. The age distribution is dominated by the 45–64 years group (35.75%), followed by 65–74 years (22.79%). Regionally, the Americas account for the highest proportion (49.27%), followed by Europe (24.45%) and Asia (23.75%). Historical data shows that 38.06% of the reports were concentrated before 2015, with reports from 2024 accounting for 10.40% (5,151 cases). Pembrolizumab (first reported in 2009) has a total of 88,762 reports, with a relatively balanced gender distribution (female 44.90%, male 49.64%). The age groups are mainly 45–64 years (24.39%) and 65–74 years (22.75%), with a higher reporting rate in the elderly population (>75 years) at 15.18%. Asia is its primary reporting region (40.06%), followed by Europe (27.07%). The report volume surged in 2024, accounting for 30.44% (27,021 cases), reflecting a significant increase in safety concerns in recent years. Nivolumab (first reported in 2012) has the highest report volume (100,907 cases), with 60.61% male and 30.44% female. The 45–64 years age group accounts for 26.75%, followed by 65–74 years (24.44%). The geographic distribution is concentrated in the Americas (32.69%) and Europe (31.09%). Report volumes from 2021 to 2023 remained relatively high (8.67%–13.27%), with the 2024 report volume accounting for 22.08% (22,283 cases). Atezolizumab (first reported in 2012) has a total of 28,583 reports, with 57.70% male and 31.72% female. The 65–74 years group is the most prevalent age group (27.60%), with Asia accounting for nearly half of the reports (48.78%). The report volume for 2024 accounted for 29.40% (8,403 cases), with 2023 also showing a relatively high proportion (18.64%). Durvalumab (first reported in 2014) has the least number of reports (15,382 cases), with 58.74% male and 28.02% female. The 65–74 years group accounts for 27.29%, with Asia being the primary reporting region (47.34%). The report volume for 2024 saw a sharp increase, accounting for as high as 46.21% (7,108 cases). Table 2 presents the details.
TABLE 2 | Five anti-HNSCC drugs adverse reports’ Demographic data.
[image: A table comparing adverse drug reaction (ADR) reports for five drugs: Cetuximab, Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab, detailing report counts by year, gender, age group, and continent.]3.2 Distribution tables of 27 SOCs for five anti-HNSCC drugs
As delineated in Table 3, the ADR reporting rates varied markedly across SOCs for the five anti-HNSCC drugs: Cetuximab, Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab. Cetuximab exhibited the highest reporting rate for skin and subcutaneous tissue disorders (20.88%), significantly exceeding other agents (Pembrolizumab: 6.05%; Nivolumab: 6.76%; Atezolizumab: 5.21%; Durvalumab: 4.76%). In contrast, Durvalumab demonstrated a disproportionately elevated incidence of respiratory, thoracic, and mediastinal disorders (18.53%), which was 2.2–3.5-fold higher than other drugs (Cetuximab: 6.26%; Pembrolizumab: 7.31%; Nivolumab: 8.28%; Atezolizumab: 7.89%). Pembrolizumab, Nivolumab, and Atezolizumab are associated with higher rates of systemic and administration site diseases (14.22%, 14.86%, and 17.90%, respectively). In the SOC of gastrointestinal disorders, ADRs were relatively high: cetuximab (11.23%), pembrolizumab (9.35%), nivolumab (10.98%), atezolizumab (10.36%), and durvalumab (8.62%). These findings underscore distinct toxicity patterns among the agents.
TABLE 3 | Cetuximab, Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab’s report rates for 27 SOCs.
[image: Table comparing adverse events across different system organ classes for five medications: Cetuximab, Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab. The table lists the number and percentage of occurrences for each medication across categories such as blood and lymphatic disorders, cardiac disorders, gastrointestinal disorders, and others. Each medication shows varying frequencies for different disorders.]3.3 The most common adverse reactions of five anti-HNSCC drugs
The ADR profiles of five anti-HNSCC drugs—cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab—were analyzed using the WHO-VigiAccess database, revealing distinct toxicity patterns across SOCs.Table 4 lists the 20 most frequently reported adverse reactions for the five anti-HNSCC drugs, presented as preferred terms within the SOCs. Cetuximab exhibited a predominant dermal toxicity profile, with rash (5.74%) and off-label use (5.98%) as the most frequently reported ADRs. Cutaneous events, including pruritus (2.21%), acne (1.87%), and erythema (1.20%), collectively accounted for 12.45% of reports. Pembrolizumab demonstrated a higher incidence of immune-related adverse events (irAEs), notably malignant neoplasm progression (5.56%). Nivolumab shared similar irAE patterns, with malignant neoplasm progression (4.23%). It is worth noting that Atezolizumab showed outstanding Off-label use (3.99%) and Death (3.20%). Durvalumab displayed a unique safety signal: pneumonitis (8.28%) and radiation pneumonitis (2.44%) were reported at rates 2.2–8.2-fold higher than other agents (nivolumab: 1.22%; pembrolizumab: 1.01%).
TABLE 4 | Top 20 adverse reactions for five anti-HNSCC drugs.
[image: Table displaying adverse drug reactions (ADRs) and report rates for five drugs: Cetuximab, Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab. Each column lists various ADRs like "Off label use," "Malignant neoplasm progression," "Death," "Pruritus," and "Diarrhoea," alongside their corresponding report rates. The table provides a comparative overview of ADR occurrences for each drug.]3.4 Commonalities in the most common adverse reactions of five anti-HNSCC drugs
As delineated in Table 5, The analysis of common adverse reactions across five anti-HNSCC agents (Cetuximab, Pembrolizumab, Nivolumab, atezolizumab, Durvalumab) demonstrated that systemic and administration site-related events (Signal N = 18) were the most frequently reported, primarily including disease progression, death, multi-organ dysfunction, and nonspecific symptoms (e.g., pyrexia, fatigue, and mucosal inflammation). Gastrointestinal toxicities (Signal N = 13) were prominently observed, with diarrhea, vomiting, and abdominal pain as the predominant manifestations. Laboratory abnormalities (Signal N = 11) focused on cytopenias (e.g., leukopenia and thrombocytopenia) and elevated hepatic enzymes. Cutaneous reactions (Signal N = 10), neurologic events (Signal N = 10), and respiratory disorders (Signal N = 10) manifested as rash, headache, and dyspnea, respectively, while infection-related complications (Signal N = 9) included sepsis, pneumonia, and urinary tract infections. Notably, low-frequency but severe events were identified, encompassing cardiac toxicity (e.g., myocardial infarction, Signal N = 4), acute kidney injury (Signal N = 3), and hepatic failure (Signal N = 1).
TABLE 5 | Common adverse reactions of five anti-HNSCC drugs.
[image: Table listing adverse drug reactions (ADRs) across various system organ classes. Each row includes the organ class, related ADRs, and a numerical signal strength. Some entries: Blood disorders list Leukopenia and Anemia (Signal 6); Cardiac disorders list Myocardial infarction (Signal 4); Gastrointestinal disorders list Diarrhea (Signal 13); General disorders list Fatigue and death (Signal 18). Each row provides specific adverse reactions with corresponding signal numbers.]3.5 Disproportionality analysis
As delineated in Figure 1, The risk stratification analysis based on the SOC reveals the unique safety characteristics of different immunotherapy drugs, specifically as follows: Cetuximab shows significant risk signals in immune system diseases (RoR = 3.94; PRR = 3.85), with its risk level far exceeding the other four drugs. Additionally, its high-risk features in the skin and subcutaneous tissue diseases (RoR = 4.00; PRR = 3.38) suggest that it may cause severe skin toxicity (such as rashes or mucositis). Pembrolizumab’s main risks are concentrated in complications related to surgery and medical procedures (RoR = 4.56; PRR = 4.48), with its risk intensity being 4–5 times that of other systems. Nivolumab’s reproductive system risk features are particularly distinctive, with abnormal increases in risk signals in pregnancy-related diseases (RoR = 3.80; PRR = 3.79). Atezolizumab’s most prominent risks are in the blood and lymphatic systems (RoR = 1.79; PRR = 1.75), possibly increasing the risk of anemia or thrombocytopenia. Durvalumab’s respiratory system toxicity is significantly higher than that of other drugs (RoR = 2.80; PRR = 2.46), necessitating caution regarding the risk of interstitial pneumonia. Furthermore, its higher risk in congenital diseases (RoR = 1.81; PRR = 1.81) suggests that potential genetic toxicity requires further investigation.
[image: Heatmap visualization displays Reporting Odds Ratios (ROR) and Proportional Reporting Ratios (PRR) across System Organ Classes (SOC) for specific drugs: cemiplimab, pembrolizumab, nivolumab, avelumab, and durvalumab. The heatmaps use color gradients to highlight different value ranges, with blue indicating lower ratios and red indicating higher ratios. SOC categories are listed on the left, with ratio values detailed within each cell. This analysis helps identify significant associations between medications and reported adverse events.]FIGURE 1 | The RoR (A) and PRR (B) heatmap illustrates the safety profiles of the five anti-HNSCC drgus across different SOCs, highlighting specific areas of elevated risk for each drug.
3.6 Serious adverse events of five anti-HNSCC drugs
Incidence of severe adverse events (including mortality, hospitalization, and life-threatening incidents) among five anti-HNSCC agents: Cetuximab: Mortality (2.21%), Hospitalization (0.07%), Major Events (0.03%); Pembrolizumab: Mortality (2.44%), Hospitalization (0.44%), Major Events (0.04%); Nivolumab: Mortality (4.03%), Hospitalization (0.17%), Major Events (0.03%); Atezolizumab: Mortality (3.20%), Hospitalization (0.02%), Major Events (0.04%); Durvalumab: Mortality (4.29%), Hospitalization (0.04%), Major Events (0.06%). The bar chart demonstrates comparative incidence rates of primary adverse events across therapeutic agents (Figure 2).
[image: Bar chart displaying outcome rates of adverse drug reactions (ADR) per agent. Cetuximab: 2.21% with 0.07% deaths, 0.03% hospitalizations. Panitumumab: 2.49% with 0.44% hospitalizations. Nivolumab: 4.03% with 0.17% deaths, 0.03% hospitalizations. Atezolizumab: 3.20% with 0.02% deaths, 0.02% hospitalizations. Durvalumab: 4.29% with 0.04% hospitalizations, 0.06% major.]FIGURE 2 | Major adverse event rates for five anti-HNSCC drgus.
4 DISCUSSION
The global health burden of HNSCC continues to rise, particularly among high-risk groups associated with smoking and alcohol consumption. If left untreated, HNSCC can lead to severe health consequences, including death (Chintala et al., 2022).In recent years, novel immunotherapies and targeted treatments have offered more options for patients, but the potential ADRs of these therapies remain a major challenge in clinical application.his study analyzes data from the WHO-VigiAccess database, with a particular focus on ADRs associated with five promising anti-HNSCC drugs—cetuximab, pembrolizumab, nivolumab, atezolizumab, and durvalumab—highlighting their overall ADR profiles, distribution across different SOCs, and disproportionality in immune-related ADRs.The results show that different drugs exhibit significantly heterogeneous safety profiles due to differences in mechanisms of action and indications, underscoring the need for personalized monitoring strategies. These findings not only reveal the challenges in anti-HNSCC drug therapies but also provide important reference points for clinical practice.
Global ADR data analysis reveals a significant number of ADR reports associated with these five anti-HNSCC drugs, totaling 145,678 reports. In terms of gender distribution, ADRs reported by male patients are dominant, which could be linked to male patients’ treatment needs and pharmacokinetic differences. Studies have shown that male patients often experience more significant treatment responses and ADRs than female patients across many types of cancer, possibly due to differences in hormone levels, immune responses, and drug metabolism (Dai et al., 2025). For example, males generally have a higher drug clearance rate, which may lead to fluctuations in drug concentrations in the body, thereby increasing the risk of ADRs (Venturini et al., 2011). For instance, the activity of certain cytochrome P450 enzymes might be higher in males than in females, accelerating drug metabolism and thereby affecting drug efficacy (Tran et al., 1998). Additionally, smoking and alcohol consumption are major risk factors for HNSCC, with males typically having higher rates of these behaviors than females (Johnson et al., 2020). These lifestyle factors may influence drug metabolism and efficacy, increasing the risk of ADRs.The age distribution shows that the 45–64 age group has the highest proportion of ADRs. Patients in this age group are typically middle-aged and elderly, often with comorbid conditions, and long-term exposure to carcinogenic environmental factors (such as smoking and drinking) further increases their risk of HNSCC. Elderly populations, in particular, are more likely to experience immune-related adverse events when undergoing immune checkpoint inhibitor therapy, which is associated with age-related immune system decline and enhanced autoimmune responses (Wang et al., 2021). Additionally, older patients may experience more drug interactions due to comorbidities or polypharmacy, thereby increasing the risk of ADRs (Yadesa et al., 2021). The immune system ages with increasing age, leading to a decline in immune function, which may affect the efficacy and toxicity of immune checkpoint inhibitors (Baik et al., 2017). Furthermore, geographic distribution data show that the highest ADR reports come from the Americas and Europe. This phenomenon may reflect differences in drug availability, healthcare systems, and pharmacovigilance practices. The disparities in drug accessibility across regions may lead to patients being exposed to different treatment regimens, which can influence ADR reporting. For example, in the Americas and Europe, regulatory systems for drugs are relatively well-established, and pharmacovigilance measures are effectively implemented, resulting in a higher number of ADR reports (Valinciute-Jankauskiene and Kubiliene, 2021). In contrast, in some low-income countries and regions, the limited availability of drugs and insufficient resources may lead to fewer ADR reports, potentially underestimating the actual incidence (Onyije et al., 2024). These geographic differences and patient population characteristics provide a more comprehensive understanding of the safety and tolerability of anti-HNSCC drugs, helping further optimize treatment strategies and pharmacovigilance practices.
The five anti-HNSCC drugs evaluated in this study exhibit distinct safety profiles influenced by their pharmacological mechanisms, treatment settings, and patient characteristics. Cetuximab, as an EGFR inhibitor, has been used for a long time in the treatment of HNSCC (Elmusrati et al., 2021). It can be used alone or in combination with chemotherapy drugs to enhance treatment efficacy, especially for tumors with high EGFR expression (Pirker, 2015). However, despite its good effectiveness in treating HNSCC, Cetuximab’s ADRs related to skin and subcutaneous tissue diseases account for as much as 20.88%, mainly manifested as rash (5.74%), pruritus (2.21%), and acneiform dermatitis (1.87%). Skin toxicities such as rash and mucositis are common treatment-related side effects and typically manifest as rashes on the face, neck, and upper chest, closely related to the pharmacological effects of the drug (Puthenpurail et al., 2021). These ADRs are closely related to the abnormal differentiation of keratinocytes caused by EGFR signaling blockade, reflecting the typical skin toxicity of EGFR inhibitors (Nowaczyk et al., 2023). By inhibiting the EGFR signaling pathway, Cetuximab blocks the proliferation and repair of these cells, leading to skin cell damage and adverse reactions (Parikh et al., 2014). Clinically, preventive use of moisturizers and close monitoring of skin reactions is essential. Pembrolizumab, as a PD-1 inhibitor, blocks the interaction between PD-1 and its ligand PD-L1, restoring T-cell function and enhancing the immune system’s ability to recognize and eliminate cancer cells (Gu et al., 2024). ICIs—including Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab—achieve anti-tumor effects by enhancing T-cell activity through PD-1/PD-L1 pathway inhibition (Zhong et al., 2020; Tekiki et al., 2021; Schomberg, 2019). In this study, gastrointestinal disorders (GI) emerged as a common category of ADRs across all five drugs. The relatively high prevalence of GI-related ADRs is consistent with known toxicities such as mucositis, diarrhea, colitis, and nausea. For Cetuximab, mucositis and diarrhea may result from EGFR inhibition in the GI epithelium, which impairs mucosal repair and absorption (Hintelmann et al., 2020). For ICIs, colitis and diarrhea are well-documented irAEs resulting from loss of immune tolerance in the intestinal mucosa, likely mediated by T-cell overactivation and cytokine release (Lau et al., 2021). In addition to GI toxicity, Pembrolizumab was linked to elevated risks of surgical and medical complications (RoR: 4.56; PRR: 4.48), possibly due to its impact on wound healing and infection control in the post-surgical setting (Xu et al., 2023). Nivolumab was associated with a significantly increased risk of pregnancy-related disorders (RoR: 3.80; PRR: 3.79), suggesting potential disruption of maternal-fetal immune tolerance via enhanced T-cell activity. Atezolizumab demonstrated a notable risk in the hematologic system, with 5.51% of ADRs affecting blood and lymphatic tissues (RoR: 1.79; PRR: 1.75). This may reflect immune-mediated bone marrow suppression or autoimmunity targeting hematopoietic cells (Falette Puisieux et al., 2022). Immune checkpoint inhibitors may activate autoimmune responses, leading to attacks on normal blood cells, especially when the patient’s immune function is activated, causing immune cells to mistakenly attack normal hematopoietic tissue or blood cells, leading to hematologic adverse reactions (Zhang et al., 2021). Durvalumab, in contrast, showed the highest respiratory system toxicity (18.53%), primarily pneumonia (8.28%) and radiation pneumonitis (2.44%). These effects are likely enhanced by its use in post-chemoradiation consolidation therapy for NSCLC, where radiotherapy exacerbates lung tissue susceptibility. Routine pulmonary evaluation and radiographic monitoring are critical during treatment. Finally, both Pembrolizumab and Nivolumab—commonly used in advanced or refractory HNSCC—showed the highest rates of malignant neoplasm progression reports (Pembrolizumab: 5.83%, Nivolumab: 4.23%). This may reflect the drugs’ widespread use in late-stage disease, where tumor immune escape mechanisms can evolve in response to prolonged immune activation. Immune reprogramming of the tumor microenvironment might enable cancer cells to resist immune surveillance and promote progression or metastasis.
ICIs have demonstrated significant efficacy in the treatment of various malignancies, particularly HNSCC. The occurrence of specific irAEs may be related to the expression patterns of immune checkpoints and the immunological microenvironment in affected organs. For example, PD-1/PD-L1 expression in pulmonary tissue may lead to excessive T-cell activation, resulting in pneumonitis (Ebinama et al., 2023). Similarly, in the gastrointestinal tract, ICIs may disrupt immune tolerance and induce colitis. Endocrine organs are also susceptible, with irAEs manifesting as thyroiditis, hypophysitis, or type 1 diabetes (Takada et al., 2020). Pre-existing immune status may influence the likelihood of irAEs. Elevated levels of autoantibodies or inflammatory cytokines have been associated with increased risk (Basnet et al., 2024). In addition, the gut microbiome plays a crucial role in regulating immune responses. Studies have indicated that specific microbial compositions may be linked to irAE risk. For instance, the presence of certain bacterial strains may enhance immune activation and thereby increase susceptibility to irAEs (Naqash et al., 2021).
Although the overall incidence of SAEs—including mortality, hospitalization, and life-threatening complications—was relatively low across the five agents, their clinical significance should not be underestimated. Each drug exhibited a distinct adverse event profile. Previous studies have suggested that the risk of SAEs may be influenced by cumulative dosage and duration of treatment (Llopis-Salvia et al., 2010). However, there is currently a lack of robust data analyzing the specific causes leading to SAE outcomes. Therefore, it is essential to implement effective monitoring strategies in clinical practice. These include early recognition of symptoms and timely administration of immunosuppressive agents such as corticosteroids when indicated. Furthermore, stratifying patients based on comorbidities, PD-L1 expression, and prior treatment history may help reduce the likelihood of severe complications and improve treatment safety.
This study is limited by the inherent biases of spontaneous reporting systems. First, underreporting may disproportionately affect lower-grade toxicities, potentially underestimating their true incidence. Secondly, the lack of clinical variables such as treatment duration and dosing plan can hinder risk stratification and confuse ADR attribution. To address these limitations, future research should integrate existing adverse reaction reporting systems with hospital electronic medical record systems for analysis, to capture underreported low-level ADRs and clinical confounding factors. Additionally, the pharmacovigilance database lacked consistent data on whether ADRs occurred with monotherapy or combination regimens, limiting the assessment of each drug’s independent safety profile. Importantly, while HNSCC comprises clinically distinct subtypes (e.g., oropharyngeal, hypopharyngeal, laryngeal carcinomas) with potential variations in tumor biology and treatment response, the WHO-VigiAccess database lacks subtype-specific ADR data. Future research should integrate electronic health records and real-world evidence platforms to dynamically track the impact of dosage, treatment duration, and concomitant medications on ADRs, while also exploring the correlation between biomarkers (e.g., PD-L1 expression levels) and toxicity risks. Despite these limitations, new immunotherapies continue to evolve, demonstrating promising prospects. For instance, ongoing research on anti-PD-1 drugs and combination immunotherapies has shown high efficacy and good tolerability in early clinical trial results. While these immunotherapy drugs show broad potential for clinical application, more Phase III clinical trials and long-term safety evaluations are still needed.
4.1 Clinical practice recommendations
Based on the study findings, individualized management strategies should be developed for different drugs: Considering the impact of gender and age on pharmacokinetics and pharmacodynamics, individualized dosing regimens should be developed based on factors such as the patient’s gender, age, physiological functions, and comorbidities to enhance efficacy and reduce the risk of ADRs. In clinical trial design, gender and age factors should be fully considered, with stratified analysis performed to more accurately assess drug efficacy and safety. For patients receiving Cetuximab, heightened attention to dermatologic toxicity is warranted. Prophylactic skin care education, along with early intervention for rash and potential infections, is essential to manage the high incidence of cutaneous adverse events. In patients treated with ICIs such as Pembrolizumab or Nivolumab, comprehensive baseline assessments—including thyroid function, pulmonary function tests, and gastrointestinal evaluation—should be performed. Regular follow-up monitoring is recommended to promptly identify irAEs, such as thyroiditis, pneumonitis, or colitis. Prior to initiating Durvalumab therapy, pulmonary imaging should be conducted to exclude subclinical interstitial lung disease. For patients with a history of thoracic radiotherapy, extended post-treatment surveillance is advised to detect delayed-onset pulmonary complications, including radiation-induced pneumonitis. During Atezolizumab treatment, complete blood counts should be monitored regularly, with particular attention to hemoglobin levels and leukocyte differentials. Early signs of anemia or infection should be promptly addressed to ensure hematologic safety. These mechanism-driven and agent-specific strategies aim to enhance therapeutic benefit while reducing preventable ADRs. Personalized monitoring protocols guided by pharmacological risk profiles are critical for improving treatment outcomes in patients with HNSCC.
5 CONCLUSION
This study analyzed ADRs associated with five major anti-HNSCC drugs based on data from the WHO-VigiAccess database, revealing the distinct safety profiles of these drugs in treating HNSCC. Ongoing long-term safety monitoring of these drugs, along with adjustments to clinical practice based on real-world data, will be crucial for the success of future HNSCC treatments.
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Purpose

Neoadjuvant chemo-immunotherapy (NACI) has demonstrated significant clinical advantages in head and neck squamous cell carcinomas (HNSCC), while clinical responses vary in different patients. This study investigated the correlation between the cyclic GMP-AMP synthase (cGAS, CGAS) and the stimulator of interferon genes (STING, STING1) expressions and the efficacy of NACI in HNSCC.





Methods

The correlation between CGAS and STING1 expressions and chemotherapy/immunotherapy drug sensitivity was analyzed using the GDSC and TCIA dataset. The study enrolled 38 HNSCC patients receiving NACI, with protein expressions of cGAS and STING evaluated via immunohistochemistry. The T cell abundance and tumor-T cell interactions in different CGAS and STING1 expression groups were analyzed using bulk RNA-seq and scRNA-seq data from open databases.





Results

The mRNA expressions of CGAS and STING1 were negatively correlated with the IC50 of docetaxel and positively correlated with the efficacy of anti-PD-1 treatment (p<0.05). In the real-world cohort, cGAS and STING expressions were both positively related to NACI efficacy (p<0.05). The mRNA expressions of CGAS and STING1 were positively correlated with the abundance of Act-CD4 (CGAS: rho=0.416, p<2.21e-16; STING1: rho=0.26, p=1.82e-09), Act-CD8 (CGAS: rho=0.089, p=0.0425; STING1: rho=0.303, p=1.98e-12), NKT cell (CGAS: rho=0.255, p=0.3.78e-09; STING1: rho=0.375, p=2.2e-6). Tumor cells with increased expression of CGAS or STING1 showed enhanced interactions with T cells.





Conclusion

This study confirms the positive correlation between cGAS and STING expressions and NACI efficacy, suggesting their role in immune activation and potential as biomarkers for predicting NACI efficacy in HNSCC.





Keywords: head and neck squamous cell carcinoma, neoadjuvant chemoimmunotherapy, cGAS-STING, predictive markers, T cells




1 Introduction

Head and neck cancer ranks as the eighth most prevalent malignancy globally, with an estimated 890,000 new cases and 450,000 deaths annually in 2022. Among these, head and neck squamous cell carcinomas (HNSCC) are the most common type (1). The combination of surgery, chemotherapy, and radiation therapy maximizes treatment efficacy, yet the 5-year overall survival (OS) remains only 50%. Once the disease has recurred, the 1-year OS rate is approximately 15%, with a median OS of 10 to 14 months (2). In recent years, the rise of immunotherapy has significantly improved patient outcomes. KEYNOTE 040, CheckMate 141, and KEYNOTE 048 trials have shown that immunotherapy demonstrates encouraging efficacy in metastatic/recurrent (R/M) HNSCC, with response rates ranging from 15% to 23% (3–5). Previous preclinical studies suggest that immunotherapy is more effective in the neoadjuvant setting than the adjuvant setting (6). Multiple trials on NACI can achieve a pathological complete response rate of approximately 33.3% to 55.6% in HNSCC patients (7–9). Therefore, identifying predictive biomarkers for therapeutic efficacy to select patient subgroups amenable to precision treatments has become a critical priority in NACI.

The stimulator of interferon genes (STING, STING1) pathway, activated by the cyclic GMP-AMP synthase (cGAS, CGAS) detection of aberrant double-stranded DNA (dsDNA), leading to a type-I interferon (IFN) response (10). The most effective regimen for neoadjuvant treatment of locally advanced HNSCC is confirmed as chemotherapy combined with immunotherapy (11). Chemotherapeutic agents, such as cisplatin, can activate the STING pathway, enhance cytotoxic T cell infiltration and increasing sensitivity to immunotherapy (12, 13). However, STING knockout has been demonstrated to significantly enhance resistance to cisplatin in HNSCC (14). Moreover, deletion of cGAS and STING reverses the anti-tumor effects of chemo-immunotherapy in small cell lung cancer (15). These findings suggest that the expression levels of cGAS and STING may serve as predictive biomarkers for response to chemo-immunotherapy.

This study evaluates the association between cGAS-STING expression and NACI efficacy in HNSCC. It also explores the immunological function of cGAS-STING and its potential as a predictive biomarker for therapeutic response.




2 Materials and methods



2.1 Open-database sources

CGAS and STING1 expression levels in HNSCC from The Cancer Genome Atlas database (TCGA, http://portal.gdc.cancer.gov/) were analyzed. Regarding the high/low grouping, we dichotomized samples into high-expression and low-expression groups using the median value. The correlation between CGAS and STING expression and IC50 values for common chemotherapeutic drugs (cisplatin, docetaxel, and 5-Fluorouracil) was analyzed using the Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org/) and processed with the R package ‘oncoPredict. Additionally, immunotherapy data from The Cancer Immunome Atlas (TCIA, http://tcia.at/) was analyzed to assess the effectiveness of immunotherapy between the cGAS-STING high and low expression groups within the TCGA-HNSC cohort. The correlation between cGAS and STING expression and the abundance of immune cells was analyzed by TISIDB (http://cis.hku.hk/TISIDB/). Tumor-T cell interactions were explored using scRNA-seq data from the GEO database.




2.2 Clinical patients

This study enrolled HNSCC patients who received NACI at Beijing Tongren Hospital, Capital Medical University. Between June 2019 and April 2024, 38 patients received NACI. Eligibility criteria were as follows: (1) age ≥18 years, (2) pathologically confirmed squamous cell carcinoma, (3) no prior treatments before neoadjuvant therapy, and (4) at least one measurable or evaluable lesion according to Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1) (16).




2.3 Data collection

Clinicopathological characteristics, including age, gender, anatomical subsite, TNM staging (according to the 8th edition of the American Joint Committee on Cancer Staging Manual), histological classification (poorly, moderately, well differentiated), smoking history, and alcohol consumption, were retrieved from the medical records system at Beijing Tongren Hospital, Capital Medical University.




2.4 Treatment regimes

The NACI group received pembrolizumab or tislelizumab in combination with the TP, PF, or TPF regimens. The TP regimen comprised paclitaxel 135 mg/m² and cisplatin 100 mg/m² on day 1, while the TPF regimen incorporated 5-fluorouracil 1000 mg/m² from days 1 to 5. The PF regimen consisted of cisplatin 100 mg/m² on day 1 and 5-fluorouracil 1000 mg/m² from days 1 to 5.




2.5 Efficacy assessment

The efficacy of NACI was evaluated based on the clinical and pathological responses. Clinical responses were evaluated based on radiologic evaluation of tumor size by magnetic resonance imaging (MRI) before and after neoadjuvant therapy according to RECIST, version 1.1 (16). Patients were classified as responders (complete response (CR) plus partial response (PR)) or non-responders (stable disease (SD)), and progressive disease (PD). Pathological responses were evaluated based on the percentage of residual viable tumor (RVT). We classified patients into major pathologic response (MPR) (defined as ≤10% RVT in the resected tumor specimen, including pathological complete response (pCR) (no RVT)), or incomplete pathologic response (IPR; defined as >10% RVT in the resected tumor specimens.




2.6 IHC analysis

Fixed tissue samples were deparaffinized with xylene and graded ethanol, followed by antigen retrieval using EDTA (pH 9.0) or sodium citrate buffer (pH 6.0). Samples were then treated with 30% hydrogen peroxide for 10 minutes at room temperature, blocked with goat serum for 1 hour at 37°C, and incubated overnight at 4°C with primary antibodies: cGAS (Cell Signaling Technology, 79978S, 1:100), STING (ProteinTech, 19851-1-AP, 1:2000). Horseradish peroxidase activity was detected using a PV two-step IHC kit. Negative controls used rabbit or mouse IgG. Staining intensity was analyzed using ImageJ software, and images were captured using a Leica microscope.




2.7 Statistical analysis

Data are presented as mean ± SD or mean ± SEM unless otherwise stated. To assess the predictive performance of cGAS and STING, receiver operating characteristic (ROC) curves were constructed, and the areas under the curves (AUCs) were calculated. ROC curves were plotted using the ‘pROC’ package. Group comparisons were performed using a two-tailed unpaired Student’s t-test. A p-value of less than 0.05 was considered statistically significant. All analyses were conducted using GraphPad Prism 8.3.0 or R 4.2.3 software.





3 Results



3.1 cGAS-STING expressions were positively related to chemotherapy and immunotherapy efficacy in TCGA-HNSC cohort

Sensitivity differences of cisplatin, docetaxel, and 5-fluorouracil in the TCGA-HNSC cohort was conducted. Higher IC50 values indicate worse chemotherapy efficacy. The results showed that the CGAS high-expression group had lower IC50 values of cisplatin and docetaxel, suggesting increased sensitivity to these chemotherapy treatments (Figure 1A). No significant difference in 5-fluorouracil treatment response was observed between high- and low-expression groups (Figure 1A). Additionally, elevated STING1 expression was related to higher docetaxel sensitivity, and was not associated with the efficacy of cisplatin and 5-fluorouracil (Figure 1B).

[image: Bar graphs depicting the effect of CGAS and STING1 expression on drug sensitivity and immune parameters. Panel A shows cisplatin, docetaxel, and 5-fluorouracil sensitivity across low and high CGAS. Panel B displays similar data for STING1. Panel C measures immune parameters with low and high CGAS. Panel D shows immune parameters for STING1. Significance levels are indicated with asterisks or "ns" for not significant.]
Figure 1 | Chemotherapeutic and immunotherapy responses based on cGAS-STING expression in HNSCC. (A, B). Relationships between high and low CGAS or STING1 expression groups and IC50 of cisplatin, docetaxel, and 5-fluorouracil. (C, D). The IPS assessment of anti-PD-1, anti-CTLA-4, and their combination therapies, analyzing the differences between patients with high and low CGAS and STING1 expression groups. PD-1, programmed cell death protein 1; CTLA-4, cytotoxic T lymphocyte antigen 4. *p<0.05, **p<0.01, ***p<0.001.

To assess the predictive value of cGAS-STING pathway expression for immunotherapy, we evaluated the IPS scores for anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) therapies. Higher scores indicate better outcomes. Individuals with elevated CGAS expression showed higher IPS scores for anti-PD-1 monotherapy alone or combined with anti-CTLA-4 treatment, suggesting a stronger response (Figure 1C). High STING1 expression was associated with increased IPS for anti-PD-1 alone or combined with anti-CTLA-4 treatment (Figure 1D).




3.2 cGAS and STING expression levels were positively correlated with NACI response in HNSCC patients

Based on our analysis suggesting that cGAS and STING may influence chemotherapy and immunotherapy efficacy, we established a retrospective cohort of HNSCC patients treated with NACI to further investigate our findings. Baseline characteristics are presented in Table 1. A total of 38 patients were enrolled and received NACI therapy, 31 of whom proceeded to surgical resection, while 7 received non-surgical therapy. Among the 19 responders, 10 achieved pathological complete response (pCR). Over 75% had a history of smoking or alcohol use. The most common primary tumor sites were the hypopharynx (50.00%), followed by oropharynx (23.68%), larynx (21.05%), and nasal cavity and sinus (5.26%). Histological classification included poorly differentiated (44.74%), moderately differentiated (31.58%), and well differentiated (7.89%). A significant majority (86.84%) had advanced disease (stages III and IV).


Table 1 | Baseline characteristics of patients treated with neoadjuvant chemo-immunotherapy.
	Patient characteristics
	N
	%



	Age


	 ≤60
	23
	60.53


	 >60
	15
	39.47


	Gender


	 Male
	37
	97.37


	 Female
	1
	2.63


	Alcohol consumption


	 No
	4
	10.53


	 Yes
	34
	89.47


	Smoking history


	 No
	8
	21.05


	 Yes
	30
	78.95


	Tumor site


	 Nasal Cavity and 
 Sinus
	2
	5.26


	 Oropharynx
	9
	23.68


	 Hypopharynx
	19
	50.00


	 Larynx
	8
	21.05


	Histological classification


	 Poorly differentiated
	17
	44.74


	 Moderately 
 differentiated
	12
	31.58


	 Well differentiated
	3
	7.89


	HPV status


	 negative
	24
	63.16


	 positive
	7
	18.42


	T stage


	 1
	3
	7.89


	 2
	12
	31.58


	 3
	11
	28.95


	 4
	12
	31.58


	N stage


	 0
	9
	23.68


	 1
	10
	26.32


	 2
	19
	50.00


	Clinical stage


	 I
	4
	10.53


	 II
	1
	2.63


	 III
	8
	21.05


	 IV
	25
	65.79


	Radiographic response


	 Responders
	19
	50.00


	 Non-responders
	19
	50.00


	Pathological response


	 pCR
	13
	34.21


	 MPR
	9
	23.68


	 IPR
	9
	23.68


	 NA
	7
	18.42







Tumor samples were collected from the patients before receiving NACI treatment, and expression levels of cGAS and STING in tumor cells were evaluated by performing immunohistochemistry. The protein levels of cGAS and STING were not associated with clinical characteristics including HPV status (Supplementary Table S1). Notably, we found that cGAS and STING expression levels were significantly higher in responders than in non-responders (Figures 2A–C). To better assess the contribution of cGAS and STING to the efficacy of NACI, we evaluated the pathological responses based on the percentage of RVT cells. As anticipated, the expression of cGAS or STING had a higher level in the patients with MPR than in those with IPR (Figures 2A, B). Additionally, clinical characteristics of these patients has no relationship with the response to NACI (Supplementary Table S2). To date, the CPS score has been developed to predict the response to anti-PD-1 therapy in cancer patients (4), while our results demonstrated the expression levels of PD-L1 CPS expression did not significantly correlate (Figure 2D).

[image: Panels illustrate immunohistochemistry and MRI results. Panel A shows cGAS staining in responders and non-responders, with corresponding bar graphs indicating higher mean intensity in responders. Panel B depicts STING staining with similar results. Panel C includes MRI images pre and post-treatment for responders and non-responders, marked with red arrows. Panel D presents graphs of CPS scores, showing non-significant differences between groups.]
Figure 2 | Correlation between cGAS-STING pathway levels and the response to NACI (A, B). Immunohistochemical staining for cGAS and STING in the responders (R; n=19) and non-responders (NR; n=19) patients to NACI. expression of cGAS and STING in tumors was assessed in the MPR group (n = 22) and IPR group (n = 9). Scale bar: left panel, 50um; right panel, 25um. (C). Representative images showing the tumor size in responders and non-responders before and after NACI treatment, respectively. (D). CPS scores were assessed in the responders (R; n = 19) and non-responders (NR; n = 19) with NACI. CPS was assessed in the MPR group (n = 22) and IPR group (n = 9). MPR: major pathologic response; IPR: incomplete pathologic response. *p<0.05, **p<0.01.

To evaluate the correlation between the expression of cGAS and STING and various clinicopathological factors in our cohort, the waterfall plot of radiological responses for individual patients is shown in Figure 3A. cGAS and STING expressions showed no correlation with common clinical characteristics, including age, gender, alcohol consumption, and smoking history (Supplementary Table S1). Our results indicated that 68.42% (13/19) of responders exhibited high cGAS expression, compared to 31.58% (6/19) of non-responders, suggesting that elevated cGAS expression is associated with a positive therapeutic response. Similarly, 68.18% (15/22) of patients in the MPR group had high cGAS expression, whereas only 22.22% (2/9) of patients in the IPR group displayed high expression, further supporting its correlation with favorable treatment outcomes. Likewise, 68.42% (13/19) of responders displayed high STING expression, compared to 31.58% (6/19) of non-responders, indicating that higher STING expression correlates with a better response to treatment. A similar trend was observed in the MPR group, where 68.18% (15/22) exhibited high STING expression, compared to 33.33% (3/9) in the IPR group (Figure 3B). Next, we assessed the predictive value of cGAS and STING in distinguishing responders from non-responders and MPR from IPR groups. Notably, both cGAS and STING expression levels could effectively differentiate potential NACI responders from non-responders (AUC = 0.733 for cGAS and AUC = 0.771 for STING) (Figure 3C), as well as MPR from IPR groups (AUC = 0.725 for cGAS and AUC = 0.765 for STING) (Figure 3D).
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Figure 3 | cGAS and STING expressions were positively related to responses to NACI in HNSCC patients (A). Waterfall plots depicting the maximum percentage change in target lesion size during neoadjuvant chemo-immunotherapy of HNSCC patients (n = 38). (B) Distribution of cGAS and STING expression between responders (R; n=19) and non-responders (NR; n=19), patients with MPR (n = 22) and IPR (n = 9). (C) Predictive value of cGAS and STING in discriminating responders and non-responders via ROC analysis. (D) Predictive value of cGAS and STING in discriminating MPR and IPR groups via ROC analysis. MPR, major pathologic response; IPR, incomplete pathologic response.




3.3 Tumor cells with higher cGAS and STING expression exhibited stronger receptor-ligand interactions with T cells

To further investigate the functional characterization of cGAS and STING in the tumor microenvironment, we utilized the TISIDB database to explore the correlation between CGAS and STING1 expressions and immune cell abundances. Both cGAS and STING1 expressions were positively correlated with Act-CD4 (CGAS: rho=0.416, p<2.21e-16; STING1: rho=0.26, p=1.82e-09), Act-CD8 (CGAS: rho=0.089, p=0.0425; STING1: rho=0.303, p=1.98e-12), NKT cell (CGAS: rho=0.255, p=0.3.78e-09; STING1: rho=0.375, p=2.2e-6) abundance, which are critical for immunotherapy (Figure 4A). Additionally, we performed scRNA-seq data analysis in primary tumor tissues of HNSC-GSE234933. Using uniform manifold approximation and projection (UMAP), we identified 14 cellular clusters, including tumor and T cells (Figures 4B, C). We then a cell-cell interaction analysis was conducted to further investigate the predictive value of cGAS and STING. Based on the expression levels of CGAS or STING1 in tumor cell clusters, the samples were divided into high- and low-expression groups. We found that tumor cell clusters with higher CGAS or STING1 expression exhibited stronger receptor-ligand interactions with T cells (Figure 4D). These findings suggest that cGAS and STING are strongly associated with T cell activity and enhance the response to NACI in HNSCC.
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Figure 4 | The correlation between cGAS/STING expressions and immune cells (A). the relationship between cGAS/STING expressions and Act-CD4, Act-CD8, NKT cell abundance. (B) Uniform manifold approximation and projection (UMAP) visualization of single-cell transcriptomic profiles combined from all 24 samples. (C) Identification of genes that are dominantly expressed in each major cell type. (D) The cell-cell interactions between high- and low- cGAS/STING tumor cells and T cells.





4 Discussion

Immune checkpoint inhibitors have emerged as a promising approach for the treatment of HNSCC. The KEYNOTE-048 trial demonstrated that pembrolizumab, when combined with chemotherapy, improved overall survival (OS) compared to the EXTREME regimen in patients with recurrent or metastatic (R/M) HNSCC, with an OS of 13.0 months versus 10.7 months (HR 0.77 [95% CI 0.63–0.93], p=0.0034) in the overall population (3, 4). Furthermore, several studies have reported that NACI can achieve pCR rates exceeding 50% in HNSCC patients (7, 8). However, patients who exhibit poor responses to NACI may experience treatment-related complications, potentially delaying radical surgery or concurrent chemoradiotherapy, without resulting in any improvement in prognosis (17). Therefore, identifying clinical biomarkers that can accurately predict the therapeutic response to NACI in HNSCC is of significant clinical importance. In this study, HNSCC patients with elevated levels of cGAS and STING demonstrated a higher response rate to NACI, as evidenced by both open-access database and real-world data.

Currently, CPS is the primary biomarker for predicting tumor immunotherapy efficacy, with higher CPS values associated with better responses to PD-1 therapy (4). In the KEYNOTE-012 study, the response rate was 21% in PD-L1+ patients compared to 6% in PD-L1− patients, as assessed by CPS (18). However, clinical trial data on its predictive value are inconsistent, and the long-term analysis of CheckMate-141 indicated that PD-L1− patients may also benefit from immunotherapy treatment (19, 20). Moreover, the CPS score did not correlate with NACI efficacy in the present cohort, with a substantial proportion of non-responders exhibiting CPS ≥20. This undermines the predictive accuracy of PD-L1 expression and highlights the limited predictive value of CPS. Immunotherapy efficacy is largely influenced by tumor antigen levels and inflammation, making these factors essential for optimizing treatment strategies (21, 22). Recent studies demonstrated that activation of the cGAS-STING pathway enhances antigen presentation by dendritic cells and stimulates the secretion of chemokines, such as CXCL9 and CXCL10, which recruit CD8+ T cells and NK cells to the tumor microenvironment, thereby enhancing the efficacy of immunotherapy (23–26). In this study, we assessed the mRNA expression of cGAS and STING1 and found a positive correlation between their expression levels and the efficacy of chemotherapy and immunotherapy. Furthermore, the protein levels of cGAS and STING were significantly higher in responders to NACI treatment compared to non-responders. Additionally, patients with MPR had higher protein levels of cGAS and STING than those with IPR.

The tumor microenvironment plays a pivotal role in malignancy progression and significantly impacts the response to immunotherapy (27). Three primary immune profiles are associated with immunotherapy response: immune‐inflamed phenotype, the immune‐excluded phenotype and the immune‐desert phenotype (28). Notably, the immune-inflamed phenotype, characterized by abundant immune cell infiltration, generally correlates with better responses to immunotherapy in cancer patients (29, 30). In our study, we observed that the mRNA expressions of CGAS and STING1 were positively correlated with the abundance of activated CD4+ T cells, activated CD8+ T cells, and NKT cells. Furthermore, elevated expression levels of CGAS and STING1 in tumor cells promoted their interaction with T cells, which is crucial for enhancing the efficacy of immunotherapy.

In conclusion, we conducted a systematic and comprehensive analysis of the role of cGAS-STING pathway expression in predicting the efficacy of NACI in HNSCC. However, several limitations should be noted. First, our study is a single-center retrospective analysis, and the limited sample size may affect the statistical power of subgroup analyses, requiring validation in larger cohorts. Second, although the correlation analysis indicates that the cGAS-STING pathway may enhance therapeutic efficacy through the modulation of T cell infiltration, further studies involving gene knockout or overexpression models are required to establish a causal relationship.




5 Conclusion

In summary, our study demonstrated that cGAS and STING expression levels are positively correlated with the efficacy of NACI in HNSCC, playing crucial roles in immune activation. These findings highlight potential strategies that could guide the development of personalized precision medicine for NACI in HNSCC.
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Background
Long non-coding RNAs (lncRNAs) are dysregulated in nasopharyngeal carcinoma (NPC), yet their interplay with pharmacological agents like aloe-emodin (AE) remains unclear. This study explores AE’s anti-NPC mechanisms via lncRNA D63785 and the PI3K/Akt/mTOR pathway.
Methods
NPC cells (CNE1, C666-1) were treated with AE, followed by qRT-PCR and Western blotting to assess lncRNA D63785 and PI3K/Akt/mTOR pathway proteins. siRNA-mediated lncRNA D63785 knockdown combined with functional assays (CCK-8, EdU, colony/wound-healing) evaluated AE’s effects on proliferation, migration, and pathway activity. In vivo validation used nude mouse xenografts.
Results
LncRNA D63785 was overexpressed in NPC cells (p < 0.01). AE suppressed lncRNA D63785 expression, concurrently reducing PI3K/Akt/mTOR phosphorylation (p < 0.05). siRNA knockdown partially reversed AE’s inhibition of NPC cell viability, proliferation, and migration. In vivo, AE attenuated tumor growth (p < 0.05), correlating with lncRNA D63785 downregulation and PI3K/Akt/mTOR dephosphorylation.
Conclusion
AE exerts anti-NPC effects by targeting the lncRNA D63785-PI3K/Akt/mTOR axis, offering a novel therapeutic strategy. These findings bridge AE’s pharmacological activity with lncRNA regulatory networks in NPC pathogenesis.

Keywords: AE, NPC, LncRNA D63785, PI3K/Akt/mTOR signaling pathway, proliferation and migration
1 INTRODUCTION
Nasopharyngeal carcinoma (NPC), a malignancy with distinct geographical prevalence in East and Southeast Asia, ranks as the third most common cancer in Southern China (Liu et al., 2021; Su et al., 2022). Its multifactorial etiology involves genetic susceptibility, Epstein-Barr virus (EBV) infection, and lifestyle factors such as nitrosamine-rich diets, smoking, and alcohol consumption (Chang et al., 2021; Jicman Stan et al., 2022). Despite advances in radiotherapy and chemoradiotherapy, clinical outcomes remain suboptimal, with a 5-year survival rate below 80% due to frequent late-stage diagnoses and treatment limitations like therapeutic resistance and adverse effects (Wu et al., 2016; Tang et al., 2021). These challenges underscore the urgent need for novel therapeutic strategies targeting NPC pathogenesis.
Natural compounds have emerged as promising candidates for anticancer drug development. Paclitaxel, evodiamine, and curcumin exemplify plant-derived agents with validated efficacy in oncology (Şeker Karatoprak et al., 2022; Abu Samaan et al., 2019; Luo et al., 2021; Shafei et al., 2021; Termini et al., 2020). Among these, aloe-emodin (AE), an anthraquinone isolated from Aloe vera, exhibits multifaceted pharmacological properties, including anti-inflammatory, immunomodulatory, and antitumor activities (Sanders et al., 2018). Preclinical studies highlight AE’s ability to suppress proliferation, migration, and invasion across diverse malignancies, such as cervical cancer (via suppression of HPV E6/E7 oncoproteins and GLUT1-mediated glucose metabolism (Gao et al., 2019), melanoma (through Wnt/β-catenin inhibition (Du et al., 2021)), colon cancer (via mitochondrial-mediated apoptotic pathways) (Jiang et al., 2021)), and breast cancer (by inhibiting telomerase activity (Wang S. et al., 2020)). Notably, AE’s antitumor effects in NPC remain underexplored, warranting mechanistic investigation.
The PI3K/Akt/mTOR pathway, a central regulator of cell survival, metabolism, and therapy resistance, is frequently dysregulated in NPC, driving tumor progression and chemoradiotherapy failure (Teng et al., 2021; Qin et al., 2020; Li et al., 2022; Chen et al., 2020). Hyperactivation of this pathway enhances NPC cell proliferation, invasion, and metastatic potential while conferring resistance to apoptosis (Xie et al., 2022; Zhang et al., 2020; Feng et al., 2019; Feng et al., 2023). Recent evidence implicates long non-coding RNAs (LncRNAs) as critical modulators of PI3K/Akt/mTOR signaling. For instance, LncRNA PTCSS1 promotes Akt phosphorylation to accelerate tumor growth in hepatocellular carcinoma (Sharma et al., 2022), whereas LncRNA MEG3 suppresses PI3K/Akt signaling in glioma (Jia and Yan, 2022). In NPC, aberrant LncRNA expression profiles correlate with malignant phenotypes, yet the functional roles of specific LncRNAs remain poorly characterized (Yao et al., 2022; Wang Y. et al., 2020; He et al., 2022).
Of particular interest is LncRNA D63785, a highly upregulated transcript in NPC tissues (Zheng et al., 2019). While its oncogenic role in gastric cancer involves miR-422a sequestration to induce chemotherapy resistance (Zhou et al., 2018), the mechanistic interplay between D63785 and PI3K/Akt/mTOR signaling in NPC remains uncharted. Building on AE’s documented PI3K/Akt inhibitory effects in other cancers (Peng et al., 2022; Zhu et al., 2023), we hypothesize that AE suppresses NPC progression by targeting LncRNA D63785 to attenuate PI3K/Akt/mTOR pathway activation.
Summary statement: In this study, we aim to explore the hypothesis that aloe-emodin inhibits NPC progression by targeting lncRNA D63785, thereby modulating the PI3K/Akt/mTOR signaling pathway. The results of this study may provide new insights into the therapeutic potential of aloe-emodin in NPC treatment.
2 MATERIALS AND METHODS
2.1 Materials
Human nasal mucosal epithelial cells (HNEpC, non-cancerous controls) were purchased from Guangzhou Suyan Biotechnology Co., Ltd. Nasopharyngeal carcinoma (NPC) cell lines CNE1, 5-8F, HONE1, and C666-1 were obtained from Xiangya Medical College of Central South University and Shanghai Yuchi Biotechnology Co., Ltd. Aloe emodin was purchased from Shanghai Yuanye Biotechnology. RPMI 1640 medium and EMEM medium were sourced from GIBCO and Guangzhou Suyan Biotechnology, respectively. Fetal bovine serum (FBS), penicillin-streptomycin (Cat# SV30010), TRIzol reagent (Cat# DP424), SYBR Green Master Mix, RIPA lysis buffer, BCA Protein Assay Kit, and Laemmli buffer were purchased from Sigma-Aldrich, Tiangen Biotech, Vazyme Biotech, and Beyotime Biotechnology. qPCR primers for LncRNA D63785 and GAPDH (internal control) were synthesized by Sangon Biotech (Shanghai, China). Opti-MEM, Lipofectamine 3000, and EdU reagent were obtained from Thermo Fisher Scientific. Primary antibodies against AKT, p-AKT, PI3K, p-PI3K, mTOR, p-mTOR, and β-actin were purchased from Affinity Biosciences, ABclonal Biotechnology, and Servicebio Biotechnology. HRP-conjugated goat anti-rabbit IgG secondary antibody and ECL Prime Western blotting Substrate were sourced from Beyotime Biotechnology. D63785-targeting siRNA (sense: 5′-GGC​AGU​UCC​ACA​GAA​UUU​TT-3′, antisense: 5′-AAA​UCU​GUG​GAA​UCT​CTT-3′; Cat# 338888) and negative control siRNA were synthesized by GenePharma. BALB/c nude mice (SPF-grade, Cat# SCXK 2019-0004) were purchased from SLAC Jingda Experimental Animal Co., Ltd. Isoflurane was obtained from Sigma-Aldrich. DMSO was purchased from Beijing Solarbio Science & Technology Co., Ltd. All reagents and antibodies were used in accordance with the manufacturers protocols.
2.2 Cell culture
NPC cells (CNE1, 5-8F, HONE1, C666-1) were cultured in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin-streptomycin. HNEpC cells were maintained in EMEM medium with identical supplements. All cells were incubated at 37°C in 5% CO2.
Our previous studies have shown that AE inhibits the activity of CNE1 and C666-1 cells (Chen et al., 2023). A concentration of 20 μM was selected based on ∼70% cell viability after 48 h of treatment. For dose-response studies, concentrations were adjusted in 10 μM increments or decrements relative to 40 μM, which exhibited significant cytotoxicity.
2.3 Real time quantitative PCR
Total RNA was extracted from samples using TRIZOL reagent according to the manufacturer’s instructions. RNA concentration and purity were determined using the NanoDrop 2000 spectrophotometer. Reverse transcription was performed with 1 μg of RNA in a 20 μL reaction volume following the PrimeScript™ RT Master Mix protocol. Quantitative PCR amplification was carried out in triplicate using SYBR Green Master Mix under optimized cycling conditions: initial denaturation at 95°C for 30 s, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. Melt curve analysis confirmed amplification specificity. Relative gene expression was calculated using the 2−ΔΔCT method with GAPDH normalization. The assay was performed three times independently.
2.4 Cell Western blot
Total protein was extracted from cells or tumor tissues using RIPA lysis buffer and denatured at 100°C for 10 min in Laemmli buffer. Protein concentrations were quantified via BCA assay, with 100 μg of total protein loaded per lane for separation on 10% SDS-PAGE gels. Electrophoresed proteins were transferred to PVDF membranes at 250 mA constant current for 90 min. Membranes were blocked with 5% non-fat milk (for non-phosphorylated targets) or 5% BSA (for phosphorylated proteins) for 2 h at room temperature. Primary antibodies diluted in TBST containing 5% BSA were incubated with membranes overnight at 4°C, followed by three 10-min TBST washes. Membranes were subsequently incubated with HRP-conjugated secondary antibody for 1 h at room temperature. Protein bands were visualized using ECL substrate and quantified through densitometric analysis. All the Western blot experiments were repeated at least three times.
2.5 Transfection
For siRNA transfection, 125 μL of Opti-MEM was mixed with 100 pmol siRNA in a 1.5 mL tube, followed by the addition of 4 μL LipoRNAi™ Transfection Reagent. The mixture was vortexed briefly and incubated at room temperature for 20 min to form siRNA-lipid complexes. NPC cells in logarithmic growth phase were seeded into 6-well plates at a density of 2 × 105 cells/well and cultured until 70%–80% confluency. The siRNA-lipid complexes were then added to cells and incubated for 48 h under standard culture conditions. Transfection efficiency was verified through quantitative PCR analysis prior to functional experiments. All procedures were performed in triplicate to ensure experimental consistency.
2.6 CCK-8
CNE1 and C666-1 cells were seeded into 96-well plates at a density of 1 × 104 cells/mL (100 μL/well) and allowed to adhere for 24 h. Five experimental groups were established: (1) untreated control, (2) negative control (NC) with empty plasmid transfection, (3) D63785-targeting siRNA transfection, (4) 20μMAE treatment, and (5) combination therapy (siRNA+20μMAE). Following 48 h of treatment, 10 μL of CCK-8 reagent was added to each well and incubated in darkness at 37°C for 1.5 h. Optical density values were measured at 450 nm wavelength, with five technical replicates per group and three independent biological replicates. Data normalization and statistical analysis were performed relative to untreated controls.
2.7 Colony formation experiment
The colony formation assay was performed to evaluate proliferative capacity across experimental groups: (1) untreated control, (2) negative control (empty plasmid transfection), (3) D63785-targeting siRNA transfection, (4) 20μMAE treatment, and (5) combination therapy (siRNA+20μMAE). CNE1 and C666-1 cells in logarithmic growth phase were seeded at 200 cells/well in 6-well plates (three wells per group) and allowed to adhere for 24 h. After 48 h of treatment, the medium was replaced with fresh complete medium, and cells were cultured for 10 days under standard conditions (37°C, 5% CO2). Colonies were fixed with 4% paraformaldehyde (4°C, 1 h), stained with 0.1% crystal violet for 15 min, and gently rinsed with distilled water. Colonies containing ≥50 cells were counted using ImageJ software. Three independent biological replicates were performed. Colony formation rate = number of colonies/number of inoculated cells ×100%.
2.8 EdU doping experiment
The EdU incorporation assay was conducted to assess cell proliferation across five experimental groups: (1) untreated control, (2) negative control (empty plasmid transfection), (3) D63785-targeting siRNA transfection, (4) 20 μM AE treatment, and (5) combination therapy (siRNA+20μMAE). CNE1 and C666-1 cells in logarithmic growth phase were seeded into 24-well plates at 1 × 104 cells/well (three technical replicates per group) and allowed to adhere for 24 h. After 48 h of treatment, cells were incubated with 10 μM EdU working solution for 2 h at 37°C. Subsequent fixation with 4% paraformaldehyde (15 min, room temperature) and permeabilization with 0.3% Triton X-100 (15 min) preceded the Click reaction (100 μL/well, 30 min, darkness). Nuclei were counterstained with Hoechst 33,342 (1:1,000 in PBS) for 5 min. Fluorescence images were acquired using standardized exposure parameters across all groups. EdU-positive cells (red fluorescence) and total nuclei (blue fluorescence) were quantified using ImageJ 1.53t across five random fields per well. Three independent biological replicates were analyzed.
2.9 Scratch healing experiment
The wound healing assay was conducted to assess cell migration across five experimental groups: (1) untreated control, (2) negative control (empty plasmid transfection), (3) D63785-targeting siRNA transfection, (4) 20μMAE treatment, and (5) combination therapy (siRNA+20μMAE) NPC cells in logarithmic growth phase were seeded into 6-well plates at 2 × 105 cells/well (three technical replicates per group) and cultured until reaching 80% confluence. A sterile 200 μL pipette tip was used to create a uniform linear scratch in the cell monolayer. After washing three times with PBS to remove cellular debris, the control group received serum-free medium containing 1 × 10−3 μM DMSO (vehicle control),while the experimental group was added with serum-free medium containing different concentrations of AE. Scratch widths were recorded at 0 h (baseline) and 48 h using an Olympus IX83 inverted microscope (×10 objective) under phase-contrast mode. Five random fields per well were imaged with consistent illumination settings. Migration rates were quantified using ImageJ with the MRI Wound Healing Tool plugin by calculating:Scratch closure rate=(scratch width from 0 h to 48 h)/scratch width from 0 h multiplied by 100%.Three independent biological replicates were performed. All procedures were conducted under standard culture conditions (37°C, 5% CO2).
2.10 Cultivate nude mouse NPC subcutaneous transplant tumor model
Sixteen 4-week-old nude mice (18–20 g) were housed under standardized conditions (22°C–24°C, 12-h light/dark cycle) with autoclaved water and irradiated feed. Following a 7-day acclimatization period, NPC cells (1 × 107 cells/200 μL PBS) were subcutaneously injected into the right upper lumbar region. Tumor volumes were calculated daily using the formula (V = ab2/2), where (a) and (b) represent the longest and shortest diameters, respectively. Mice were randomized into two groups (n = 8/group) upon reaching tumor volumes of ∼80 mm3. The treatment group received daily intraperitoneal injections of 20 mg/kg (Dou et al., 2019) aloe emodin in 5% DMSO/saline (200 μL/mouse), while controls received vehicle alone. Humane endpoints included tumor burden >2,000 mm3, >20% body weight loss, or impaired mobility. On day 10, mice were anesthetized with isoflurane, euthanized via cervical dislocation, and tumors were excised, weighed, and snap-frozen for molecular analysis. All animal experiments were conducted in accordance with the animal ethics of the Animal Research Center of Guilin Medical College (approval number: GLMC-IACUC-2022015).
2.11 Statistical analysis
All experiments were independently repeated three times (biological replicates) with three technical replicates each. Data were expressed as mean ± standard deviation (SD). For comparisons between two groups, Student’s t-test was performed. One-way ANOVA with Tukey’s post hoc test was applied for multiple group comparisons. Statistical analyses were conducted using GraphPad Prism 8.0 (GraphPad Software). A probability value of P < 0.05 was considered statistically significant.
3 RESULTS
3.1 AE reduced the expression of LncRNA D63785 and inhibited phosphorylation of PI3K/Akt/mTOR pathway in CNE1 and C666-1 NPC cells in a concentration-dependent manner
Real-time quantitative PCR analysis of LncRNA D63785 expression in normal nasal mucosal epithelial HNEpC cells and NPC cell lines (CNE1, 5-8F, C666-1, HONE1) revealed elevated LncRNA D63785 levels in CNE1, C666-1, and HONE1 cells compared to HNEpC controls (Figure 1A). The 5-8F cell line showed comparable expression to HNEpC cells. CNE1 and C666-1 cells, which exhibited the highest LncRNA D63785 expression, were further analyzed.
[image: Bar charts and western blot images analyze the effect of Artemisinin (AE) on mRNA expression and protein levels in different cell lines. Panels A-C present bar charts showing relative expression of lncRNA-DANCR and DNMT3B mRNA in various conditions, with significant changes marked. Panel D includes western blots for proteins PI3K, AKT, mTOR, and their phosphorylated forms across C666-1 and CNE1 cell lines under different AE concentrations. Panels E and F show bar charts depicting the ratios of phosphorylated to total proteins for C666-1 and CNE1, indicating statistically significant differences.]FIGURE 1 | AE downregulated lncRNA D63785 and inhibited the PI3K/Akt/mTOR pathway in CNE1 and C666-1 NPC cells in a concentration-dependent manner. AE significantly inhibits the expression of lncRNA D63785 in NPC cells, and this effect is enhanced with increasing concentrations. (A) Expression of LncRNA D63785 in normal nasal mucosal epithelial cells and multiple nasopharyngeal carcinoma cells. Comparison of LncRNA D63785 self-expression between normal human nasal mucosal epithelial cells HNEpC and nasopharyngeal carcinoma CNE1, 5-8F, C666-1, HONE1 cells. The data shown is mean ± standard deviation, n = 3. nsP>0.05,*P < 0.05, **P < 0.01, compared to the HNEpC group. (B,C) Changes in LncRNA D63785 under the action of aloe-emodin. The control group and different concentration gradients of aloe-emodin were treated on C666-1 cells for 48 h, and the expression of LncRNA D63785 was detected by real-time quantitative PCR (B). The expression of LncRNA D63785 was detected by real-time quantitative PCR in CNE1 cells treated with control group and different concentration gradients of aloe-emodin for 48 h (C). The data shown is mean ± standard deviation, n = 3. *P < 0.05, **P < 0.01, compared to the control (0) group. (D–F) The effect of aloe-emodin on the PI3K/Akt/mTOR signaling pathway in nasopharyngeal carcinoma cells. (D) The expression of pathway proteins in C666-1 and CNE1 cells was detected by Western blot after 48 h of treatment with control group and different concentration gradients of aloe-emodin. (E,F) Bar chart of phosphorylation protein expression of C666-1 and CNE1 cells under the action of control group and different concentration gradients of aloe-emodin. The data shown is mean ± standard deviation, n = 3. nsP>0.05,*P < 0.05, **P < 0.01, compared to the control (0) group.Treatment of CNE1 and C666-1 cells with AE (10, 20, 30 μM) for 48 h resulted in progressive reductions in LncRNA D63785 expression levels, as quantified by qPCR (Figures 1B,C).
Western blot analysis demonstrated that AE treatment (10, 20, 30 μM) did not alter total PI3K, Akt, or mTOR protein levels in either cell line (Figures 1D–F). However, phosphorylated forms of these proteins (p-PI3K, p-Akt, p-mTOR) showed concentration-dependent decreases in both C666-1 (Figures 1D,E) and CNE1 cells (Figures 1D,F).
3.2 LncRNA D63785 may mediate AE-inhibited NPC cell viability
LncRNA D63785 knockdown models were established in CNE1 and C666-1 cells through siRNA transfection. qRT-PCR confirmed reduced LncRNA D63785 expression in siRNA-transfected cells compared to siNC controls (Figure 2A).
[image: Bar graphs and fluorescence images illustrate the results of various treatments on cell viability, expression, and colony formation in C666-1 and CNE1 cell lines. Panels A, B, and C show quantitative data with significant differences marked. Panels D and F display fluorescence images under different conditions, with accompanying bar graphs E and G quantifying expression. Panel H shows colony formation under different treatments, quantified in I and J. Significant differences are noted with asterisks.]FIGURE 2 | AE inhibited NPC cell vibility may be mediated by LncRNA D63785. (A) Expression of LncRNA D63785 in nasopharyngeal carcinoma cells transfected with siRNA. The control group, transfected empty plasmid group, and transfected siRNA group were treated with nasopharyngeal carcinoma C666-1 and CNE1 cells for 48 h, and the expression of LncRNA D63785 was detected by real-time quantitative PCR. The data shown is mean ± standard deviation, n = 3. *P < 0.05, **P < 0.01, compared to the control group. (B,C) Knockdown of LncRNA D63785 in NPC cells inhibits cell activity. The control group, empty group (NC) siRNA group, AE group, and siRNA + AE group were treated for 48 h, and the viability of C666-1 (B) and CNE1 (C) was detected by CCK-8. The data shown is mean ± standard deviation, n = 3. *P < 0.05, **P < 0.01, compared to the control group; #P < 0.05,##P < 0.01, compared to the siRNA + AE group. (D–G) The control group, empty group (NC), siRNA group, AE group, and siRNA + AE group were treated for 48 h, and the proliferation rate of nasopharyngeal carcinoma cells was detected by EdU incorporation experiment. (H–J) The control group, empty group (NC), siRNA group, AE group, and siRNA + AE group were treated for 48 h, and the proliferation rate of nasopharyngeal carcinoma cells was detected through colony formation assay. Bar = 100 μm. The data shown is mean ± standard deviation, n = 3. *P < 0.05, **P < 0.01, compared to the control group; #P < 0.05, ##P < 0.01, compared to the siRNA + AE group.CCK-8 assays revealed decreased cell viability in AE-treated groups relative to untreated controls. This reduction was attenuated in cells co-treated with siRNA D63785 and AE (Figures 2B,C).
Colony formation assays demonstrated fewer colonies in AE-treated cells compared to controls. Co-treatment with siRNA D63785 and AE resulted in increased colony formation relative to AE treatment alone (Figures 2D–G).
EdU incorporation assays showed reduced proliferation rates in AE-treated groups. Co-treatment with siRNA D63785 and AE led to higher proliferation rates compared to AE-only groups (Figures 2H–J).
3.3 AE reduced the migration ability of NPC cells partly by affecting LncRNA
Wound-healing assays were performed to assess NPC cell migration following treatments. Compared to untreated controls, AE-treated groups exhibited reduced scratch closure rates in both C666-1 (Figures 3A–C) and CNE1 (Figures 3B,D) cell lines. Transfection with empty vector (NC) or siRNA D63785 alone showed no measurable impact on migration compared to controls. In AE-treated cells, concurrent siRNA D63785 transfection attenuated the migration-inhibitory effects observed in AE-only groups.
[image: Panels A and B show wound healing assays for C666-1 and CNE1 cell lines over 0 and 24 hours under control, NC, siR, siR+AE, and AE conditions. Panels C and D display bar charts depicting wound healing rates for C666-1 and CNE1, respectively, under the same conditions. Control and NC groups show high wound healing rates, while siR, siR+AE, and AE groups demonstrate reduced healing, notably with AE. Statistical significance is indicated with asterisks and hash symbols.]FIGURE 3 | AE exerted its inhibitory effect on NPC cell migration ability through LncRNA D63785. (A,B) The control group, empty group (NC) siRNA group, AE group, and siRNA + AE group were treated for 48 h, and the scratch healing experiment was used to detect the migration ability of nasopharyngeal carcinoma cells C666-1 (A) and CNE1 (B). Bar = 100 μm. (C,D) Histogram of migration ability of C666-1 (C) and CNE1 (D) cells. The data shown is mean ± standard deviation, n = 3. *P < 0.05, *P < 0.01, compared to the control group; #P < 0.05, ##P < 0.01, compared to the siRNA + AE group.3.4 The effect of knocking down LncRNA D63785 on PI3K/Akt/mTOR pathway proteins
Western blot analysis evaluated PI3K/Akt/mTOR pathway protein expression in C666-1 and CNE1 cells under five experimental conditions: control, empty vector (NC), siRNA D63785, AE (20 μM), and siRNA + AE co-treatment (Figure 4A). β-actin served as the loading control for protein normalization.
[image: Western blot and bar chart analysis of protein expression levels. Panel A shows Western blot images for C666-1 and CNE1 cell lines, indicating protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR, p-mTOR, and β-actin across various treatment groups (control, NC, siR, siR+AE, AE). Molecular weights are labeled. Panels B and C display bar charts of phosphorylation ratios for p-PI3K, p-AKT, and p-mTOR in C666-1 and CNE1 cells, respectively. Different treatments are color-coded, with statistical significance indicated by asterisks and symbols.]FIGURE 4 | The effects of aloe-emodin and knocking down LncRNA D63785 on the PI3K/Akt/mTOR signaling pathway in nasopharyngeal carcinoma cells. (A) The control group, empty group (NC) siRNA group, AE group, and siRNA + AE group were treated for 48 h, and the expression of pathway proteins was detected by Western blot. Histogram of C666-1 (B) and CNE1 (C) cells phosphorylated proteins p-PI3K, p-Akt, and p-mTOR expression. The data shown is mean ± standard deviation, n = 3. nsP>0.05, *P < 0.05, **P < 0.01, compared to the control group; #P < 0.05, ##P < 0.01, compared to the siRNA + AE group.Compared to control groups, AE treatment reduced phosphorylated PI3K (p-PI3K), Akt (p-Akt), and mTOR (p-mTOR) levels in both cell lines. siRNA D63785 transfection alone did not alter baseline phosphorylation status relative to NC groups. In AE-treated cells, concurrent siRNA D63785 transfection attenuated AE-induced reductions in p-PI3K, p-Akt, and p-mTOR expression (Figures 4A–C).
3.5 AE inhibited the expression of LncRNA D63785 and the phosphorylation of PI3K/Akt/mTOR pathway proteins in an NPC tumor mouse model
Our previous studies have shown that AE can inhibit tumor growth in NPC cells xenograft mouse models (Chen et al., 2023). Real-time quantitative PCR analysis of subcutaneous xenograft tissues revealed reduced LncRNA D63785 expression in the AE-treated group compared to controls (Figure 5A). Western blot analysis of the same tissues demonstrated decreased phosphorylation levels of PI3K/Akt/mTOR pathway proteins (p-PI3K, p-Akt, p-mTOR) in the AE-treated group relative to controls (Figures 5B,C). β-actin served as the loading control for protein normalization.
[image: Three panels show experimental data. Panel A: Bar graph of LncRNA 603785 expression shows significantly lower expression in control compared to AE. Panel B: Western blots for proteins PI3K, p-PI3K, AKT, p-AKT, mTOR, p-mTOR, and β-actin comparing control and AE groups. Panel C: Bar graph of phosphorylation ratios for p-PI3K, p-AKT, and p-mTOR shows a significant decrease in the control group compared to AE.]FIGURE 5 | AE inhibits the expression of LncRNA D63785 and phosphorylation of PI3K/Akt/mTOR pathway proteins in subcutaneous transplanted tumors of NPC in nude mice. (A) Expression of LncRNA D63785 in the control group and aloe-emodin group. The data shown is mean ± standard deviation, n = 3, **P < 0.01, compared to the control group. (B,C) Expression of PI3K/Akt/mTOR signaling pathway proteins in the control group and aloe-emodin group. The data shown is mean ± standard deviation, n = 3, **P < 0.01, compared to the control group.4 DISCUSSION
As a head and neck cancer, distant metastasis and local recurrence are still the two main failure modes for NPC patients (Liu et al., 2021). After recurrence or metastasis, the treatment effect is poor, the prognosis is poor, and the survival rate is significantly reduced. Therefore, it is crucial to study the pathogenesis of NPC, search for new therapeutic targets, and find effective and low-toxicity anti-tumor drugs.
Aloe vera is a perennial herbaceous plant in the lily family, and it has many types, but Curacao aloe vera has been studied the most extensively. It is considered a “healing” plant with medicinal value and has been used for over 3,000 years in different cultures of many countries. AE has anti-tumor and anti-proliferative effects on various types of cancer and cell lines, like HeLa Cells (Gao et al., 2019). However, the molecular mechanism of NPC pathogenesis is still not fully understood, and research on how AE affects NPC is limited. This study, based on our research group’s previous research foundation, aims to elucidate the inhibitory effect of aloe-emodin on NPC.
LncRNA has excellent potential in cancer treatment and deserves more attention (Huang et al., 2025; Hsu et al., 2025). Previous reports lncRNAs play important roles in the occurrence and development of NPC, such as HOXA-AS2, HOTAIR, FOXD1-AS1, LINC00669, and so on (Wang et al., 2022). Moreover, LncRNA D63785 is highly expressed in NPC patient tissues (Zheng et al., 2019). Our result showed that LncRNA D63785 is highly expressed in multiple NPC cells as CNE1, C666-1, and HONE1 cell lines, but, interestingly, aloe emodin lacks inhibition of D63785 in 5–8F cells, indicating that cell environment dependence deserves further investigation. Moreover, we found that AE dose-dependently reduced the expression of D63785 in CNE1 and C666-1 cells, which is related to the decreased phosphorylation of PI3K/Akt/mTOR pathway proteins. Importantly, knocking down LncRNA D63785 alone does not significantly affect NPC cells. However, siRNA-mediated knockout of D63785 partially reversed the anti-tumor effects of aloe-emodin on cell survival, proliferation, migration, and PI3K/Akt/mTOR signaling, strongly indicating that D63785 downregulation mediates at least partial pharmacological activity of aloe-emodin in these models. Suggested LncRNA D63785 mediated AE-inhibited NPC cell viability, etc. The consistency of these findings in vivo that aloe-emodin reduces the expression of D63785 and the activation of PI3K/Akt/mTOR while inhibiting tumor growth-further supports this relationship. Moreover, the PI3K/Akt/mTOR signaling pathway is involved in the occurrence and development of tumors and is closely related to the clinical and pathological characteristics of NPC (Li et al., 2022), and its transmission is also of great significance for treating NPC (Zhang et al., 2019). Therefore, AE inhibits the proliferation of CNE1 and C666-1 cells by downregulating LncRNA D63785, and the PI3K/Akt/mTOR pathway may be involved. Although current evidence suggests that D63785 is a key downstream effector of aloe-emodin activity in NPC models with high D63785 expression, It has not yet been confirmed whether aloe emodin directly binds to D63785 RNA to make it unstable or indirectly acts through epigenetic modification factors/transcription factors that control D63785 transcription.
Previous studies have shown, upregulation of lncRNA HAGLROS enhances nasopharyngeal carcinoma development by modulating PI3K/AKT/mTOR signaling mediated by miR-100/ATG14 axis (Zhang et al., 2019). But our current research results indicate that D63785 knockout reduces the phosphorylation levels of PI3K, Akt, and mTOR without significantly altering their total protein expression, suggesting that its regulatory role lies in pathway activation rather than transcriptional control of core components. We hypothesize two possible mechanisms based on observed signal dynamics: 1) D63785 can stabilize pathway activation by interacting with phosphatases or kinases that regulate phosphorylation status, or 2) it can serve as a scaffold to facilitate signal complex assembly. The partial reversal of the knockout effect of aloe-emodin on LncRNA D63785 further supports its upstream regulatory position. It is necessary to study the interaction group of LncRNA D63785, and in the future, we will evaluate its impact on post-translational modifications.
In clinical practice, we discussed the potential use of D63785 as a biomarker for predicting sensitivity to aloe emodin, particularly in tumors with high baseline expression of D63785. We explored strategies for combining aloe emodin with PI3K inhibitors or conventional therapies to overcome drug resistance. In addition, the lack of patient-sourced data is a limitation, and we are collaborating with clinical institutions to validate our findings in patient tumor samples and correlate them with clinical outcomes in ongoing studies.
In summary, this study found a novel target lncRNA D63785 with therapeutic potential, which regulates target proteins and affects NPC cell viability, elucidating an axis of AE targeting NPC and preliminarily elucidating the molecular mechanism of AE inhibition of NPC (Figure 6). It concludes that AE may mediate the PI3K/Akt/mTOR pathway regulation by LncRNA D63785, inhibiting the cell viability, proliferation, migration, and other malignant biological behaviors of NPC cells CNE1 and C666-1. AE may inhibit the growth of subcutaneous transplanted tumors in nude mice NPC through lncRNA D63785 and PI3K/Akt/mTOR pathway. This study starts with the search for long noncoding RNAs, regulates downstream proteins to affect NPC cell phenotype changes and tumor growth, elucidates a signaling pathway through which natural drugs act on tumors, and organically combines natural drug components, molecular mechanisms, cells, and tumor growth to provide ideas for the progress of NPC treatment. It is expected to explain the effects of natural drug components further and lay a solid foundation for later drug research and clinical applications.
[image: Illustration of a biochemical pathway depicting the effects of AE on cellular processes. At the top, an AE chemical structure is shown. This affects a pathway involving siRNA and LncRNA DG3785, which interact with cell membrane components. The pathway influences the PI3K/Akt/mTOR signaling, subsequently impacting cell viability, proliferation, and migration. A background image shows a mouse and cells.]FIGURE 6 | Graphical abstract.DATA AVAILABILITY STATEMENT
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Cetuximab mbrolizumab Nivolumab Atezolizumab Durvalumab
First Report Year 2003 2009 2012 2012 2014
Number of ADR reports 49,527 88762 100,907 28,583 15,382

Female 15,289 (30.87%) 39,855 (44.90%) 30,720 (30.44%) 9067 (31.72%) 4310 (28.02%)
Male 31,001 (62.59%) 44,059 (49.64%) 61,164 (60.61%) 16492 (57.70%) 9036 (58.74%)
Unknown 3237 (6.54%) 4848 (5.46%) 9023 (8.94%) 3024 (10.58%) 2036 (13.24%)
<18 49 (0.10%) 134 (0.15%) 277 (0.27%) 26 (0.09%) 9 (0.06%)
18-44 3219 (6.50%) 4596 (5.18%) 5528 (5.48%) 1065 (3.73%) 254 (1.65%)
45-64 17,704 (35.75%) 21,649 (24.39%) 26,996 (26.75%) 7468 (26.13%) 3333 (21.67%)
65-74 11,288 (22.79%) 20,191 (22.75%) 24,662 (24.44%) 7890 (27.60%) 4197 (27.29%)
>75 5003 (10.10%) 13473 (15.18%) 14259 (14.13%) 4544 (15.90%) 2238 (14.55%)
Unknown 12264 (24.76%) 28,719 (32.36%) 29,185 (28.92%) 7590 (26.55%) 5351 (34.79%)
Africa 767 (155%) 1048 (1.18%) 286 (0.28%) 142 (0.50%) 151 (0.98%)
Americas 24,403 (49.27%) 26,142 (29.45%) 32,983 (32.69%) 6394 (22.37%) 3343 (21.73%)
Asia 11,763 (23.75%) 35,556 (40.06%) 33,466 (33.17%) 13943 (48.78%) 7282 (47.34%)
Europe 12,109 (24.45%) 24,030 (27.07%) 31,377 (31.09%) 7654 (26.78%) 4201 (27.31%)
Oceania 485 (098%) 1986 (2.24%) 2795 (277%) 450 (1.57%) 405 (2.63%)
200 756 (1.53%) 2896 (3.26%) 1189 (1.18%) 530 (1.85%) 694 (4.51%)
2024 5151 (10.40%) 27,021 (30.44%) 22,283 (22.08%) 8403 (29.40%) 7108 (46.21%)
2023 4521 (9.13%) 14,037 (15.81%) 10,358 (10.26%) 5327 (18.64%) 1713 (11.14%)
2022 4429 (8.94%) 10419 (11.74%) 9829 (9.74%) 4384 (15.34%) 823 (5.35%)
2021 3322 (6.71%) 7326 (8.25%) 8749 (8.67%) 2766 (9.68%) 1207 (7.85%)
2020 2836 (5.73%) 5524 (6.22%) 7572 (7.50%) 2431 (8.51%) 1190 (7.74%)
2019 2567 (5.18%) 8274 (9.32%) 13,390 (13.27%) 2668 (9.33%) 1819 (11.83%)
2018 2208 (4.46%) 6688 (7.53%) 11,928 (11.82%) 1286 (4.50%) 613 (3.99%)
2017 2914 (5.88%) 3930 (4.43%) 9528 (9.44%) 679 (2.38%) 148 (0.96%)
2016 1972 (3.98%) 1555 (1.75%) 4840 (4.80%) 75 (0.26%) 51.(033%)
Before 2015 18,851 (38.06%) 1092 (1.23%) 1241 (1.23%) 34 (0.12%) 16 (0.10%)
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Cetuximab  Pembrolizumab

Blood and lymphatic system disorders 4009 (3.62%) 6678 (3.30%) 5527 (2.57%) 3240 (5.51%) 1279 (4.65%)
Cardiac disorders 2021 (1.82%) 4453 (2.20%) 4790 (2.23%) 1288 (2.19%) 619 (225%)
Congenital, familial, and genetic disorders 30 (0.03%) 79 (0.04%) 58 (0.03%) 22 (0.04%) 16 (0.06%)
Ear and labyrinth disorders 175 (0.16%) 342 (0.17%) 525 (0.24%) 122 (021%) 52 (0.19%)
Endocrine disorders 61 (0.06%) 8544 (4.22%) 12527 (5.83%) 1699 (2.89%) 901 (3.28%)
Eye disorders 1083 (0.98%) 2177 (1.08%) 2518 (1.17%) 421 (0.72%) 221 (0.80%)

Gastrointestinal disorders

12,444 (11.23%)

18,912 (9.35%)

23,603 (10.98%)

6087 (10.36%)

2371 (8.62%)

General disorders and administration site conditions

14,449 (13.04%)

28,775 (14.22%)

31,947 (14.86%)

10,520 (17.90%)

3726 (13.55%)

Hepatobiliary disorders 626 (0.57%) 4624 (2.29%) 6643 (3.09%) 1755 (2.99%) 739 (2.69%)
Immune system disorders 3465 (3.13%) 1644 (0.81%) 1735 (0.81%) 526 (0.90%) 185 (0.67%)
Infections and infestations 5977 (5.39%) 8832 (4.37%) 10,844 (5.04%) 3535 (6.01%) 1497 (5.44%)

Injury, poisoning and procedural complications

10,551 (9.52%)

18,039 (8.92%)

14,102 (6.56%)

3877 (6.60%)

1681 (6.11%)

Investigations

Metabolism and nutrition disorders

5978 (5.39%)

4221 (3.81%)

13,590 (6.72%)

7316 (3.62%)

11,888 (5.53%)

8994 (4.18%)

4551 (7.74%)

2468 (4.20%)

1917 (6.97%)

776 (2.82%)

Musculoskeletal and connective tissue disorders

Neoplasms benign, malignant and unspecified (incl cysts and

1393 (126%)

8362 (4.13%)

10222 (4.75%)

2155 (3.67%)

1051 (3.82%)

3042 (274%) 14,634 (7.23%) 13,269 (6.17%) 1541 (262%) 1732 (630%)
polyps)
Nervous system disorders 4429 (4.00%) 10178 (5.03%) 10940 (5.09%) 2860 (4.87%) 1111 (4.04%)
7 Pregnancy, puerperium and perinatal conditions  coom 31(0.02%) 1 9 00sw) 9 (0.02%) 1(0.00%)
Psychiatric disorders 934 (0.84%) 2824 (1.40%) 2376 (1.11%) 568 (0.97%) 278 (1.01%)
Renal and urinary disorders 1085 (0.98%) 5331 (2.63%) 5144 (2.39%) 1934 (3.29%) 442 (1.61%)
Reproductive system and breast disorders 166 (0.15%) 530 (0.26%) 360 (0.17%) 94 (0.16%) 43 (0.16%)

Respiratory, thoracic and mediastinal disorders

6937 (6.26%)

23,146 (20.88%)

14,799 (7.31%)

17,807 (8.28%)

4635 (7.89%)

5097 (18.53%)

Skin and subcutaneous tissue disorders 12,239 (6.05%) 14,529 (6.76%) 3064 (5.21%) 1308 (4.76%)
Social circumstances 72 (0.07%) 585 (0.29%) 175 (0.08%) 20 (0.03%) 20 (0.07%)
Surgical and medical procedures 943 (0.85%) 4645 (2.30%) 989 (0.46%) 112 (0.19%) 67 (0.24%)
Vascular disorders 3530 (3.19%) 3678 (1.82%) 3219 (1.50%) 1635 (278%) 348 (1.27%)
Product issues 69 (0.06%) 513 (0.25%) 190 (0.09%) 42 (0.07%) 25 (0.09%)






OPS/images/fphar-16-1602276/fphar-16-1602276-t004.jpg
Cetuximab Pembrolizumab Nivolumab Atezolizumab Durvalumab
ADR ADR Report  ADR ADR Report  ADR
rate rate
Off label use 5.98% Malignant 5.56% Malignant 423% Off label use | 3.99% Pneumonitis 8.28%
neoplasm neoplasm
progression progression
Rash 574% Death 244% Death 403% Death 320% Death 429%
Death 221% Inappropriate 233% Diarrhoea 236% Noadverse | 2.78% Malignant 311%
schedule of event neoplasm
product progression
administration
Pruritus 221% Fatigue 1.78% Interstitial lung | 1.90% Pyrexia 1.89% Interstitial lung | 2.98%
disease disease
Diarthoea 214% Diarrhoea 171% Off label use 184% Disease 172% Radiation 244%
progression pneumonitis
Acne 1.87% Interstitial lung 1.67% Fatigue 1.76% Diarrhoea 1.71% Diarrhoea 1.72%
disease
Nausea 183% Hypothyroidism  1.58% Hypothyroidism | 1.61% Fatigue 164% Dyspnoea 1.59%
Dyspnoea 177% Product use in 1.56% Intentional 152% Asthenia 136% Pneumonia 151%
unapproved product use issue
indication
Infusion related | 1.62% Off label use 150% Pyrexia 152% Interstitial 130% Off label use 144%
reaction lung disease
Vomiting 149% Rash 125% Rash 145% Pneumonitis | 1.26% Fatigue 143%
Malignant 136% Product use issue | 1.19% Colitis 137% Pneumonia | 1.22% Asthenia 132%
neoplasm
progression
Dermatitis 132% Nausea 117% Asthenia 124% Dyspnoea 1.22% Pyrexia 125%
acneiform
Pyrexia 124% Pyrexia 1.09% Pneumonitis 122% Anaemia 121% Rash 116%
Erythema 120% Asthenia 1.09% Pruritus 121% Decreased 118% Hypothyroidism | 1.05%
appetite
Dry skin 118% Pneumonia 1.02% Adrenal 118% Nausea 1.15% Pruritus 102%
insufficiency
Hypotension 11% Pneumonitis 101% Dyspnoea 117% Rash 115% Cough 101%
Neutropenia 104% Dyspnoea 0.92% Nausea 116% Febrile 1.08% Colitis 0.99%
neutropenia
Hypersensitivity | 1.02% Decreased appetite | 091% Decreased 1.00% Hypertension | 1.08% Nausea 0.92%
appetite
Asthenia 099% Pruritus 087% Peumonia 0.97% Neutropenia | 1.02% Anaemia 087%
Disease 097% Drug ineffective | 0.85% Arthralgia 082% Pruritus 1.01% Febrile 084%
progression neutropenia
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ADRs

Signal N

Blood and lymphatic system disorders Leukopenia, Febrile neutropenia, Thrombocytopenia, Pancytopenia, 6

Neutropenia, Anaemia

Cardiac disorders Cardiac arrest, Myocardial infarction, Atrial fibrillation, Cardiac failure, 4
Tachycardia

Neoplasms benign, malignant and unspecified (incl cysts and polyps) | Neoplasm progression, Malignant neoplasm progression 2

Eye disorders, Vision blurred 1

Gastrointestinal disorders Abdominal pain upper, Abdominal distension, Dysphagia,Diarrhoea, 13
Vomiting Ascites, Constipation,Colitis, Abdominal pain,
Nausea,Stomatitis,Dry mouth, Dyspepsia

General disorders and administration site conditions Peripheral swelling, Asthenia,Condition aggravated, Pain,Drug ineffective, 18
Multiple organ dysfunction syndrome, Death,Chest pain, Malaise,llness,
Fatigue,Ocdema peripheral, Swelling Pyrexia, Chills,Oedema, Disease
progression, General physical health deterioration, Mucosal inflammation

Hepatobiliary disorders Hepatic failure 1

Immune system disorders Hypersensitivity, Anaphylactic reaction 2

Infections and infestations Sepsis, Infection,Nasopharyngitis, Pneumonia, Influenza, Pneumonia 9
aspiration, Urinary tract infection, Septic shock, Cellulitis

Injury, poisoning and procedural complications Toxicity to various agents,Off label use,Infusion related reaction, 5
Fall,Product use in unapproved indication

Investigations ‘Weight decreased, Aspartate aminotransferase increased, Blood creatinine 11
increased, Platelet count decreased, Oxygen saturation decreased,
Haemoglobin decreased, Neutrophil count decreased, Alanine
aminotransferase increased, Blood alkaline phosphatase increased, Blood
bilirubin increased, White blood cell count decreased

Metabolism and nutrition disorders Dehydration, Hypokalaemia,Hyperglycaemia, Decreased appetite, 6
Hyponatraemia,Hyperkalaemia

Musculoskeletal and connective tissue disorders Neck pain, Muscular weakness, Muscle spasms, Back pain, Arthralgia,Pain 7
in extremity, Myalgia

Skin and subcutaneous tissue disorders Hyperhidrosis, Skin toxicity, Rash,Erythema,Dry skin, 10
Dermatitis,Urticaria, Alopecia,Pruritus, Rash pruritic, Skin disorder

Nervous system disorders Headache, Paraesthesia,Dizziness, Tremor,Somnolence, 10
Hypoaesthesia,Syncope, Cerebrovascular accident, Seizure;Neuropathy
peripheral

Psychiatric disorders Confusional state, Insomnia, Anxiety 3

Renal and urinary disorders Acute kidney injury, Renal impairment, Renal failure 3

Respiratory, thoracic and mediastinal disorders Respiratory failure, Oropharyngeal pain, Interstitial lung disease, 10
Pneumothorax,Dyspnoea, Cough,Pulmonary embolism,
Haemoptysis,Pleural effusion, Dysphonia,Hypoxia, Pneumonitis

Vascular disorders Thrombosis, Hypotension,Deep vein thrombosis, Flushing Haemorrhage, 6

Hypertension
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Structure Indications First Marketed
year

Cetuximab Monoclonal antibody (IgG1, EGFR | HNSCC, Metastatic colorectal cancer, Squamous cell carcinoma of head 2004
chimeric) and neck

Pembrolizamab | Monoclonal antibody (1gG4, PD-1 HNSCC, Melanoma, Non-small cell lung cancer (NSCLC), Hodgkin 2014
humanized) Iymphoma, Gastric cancer

Nivolumab Monoclonal antibody (1gG4, fully | PD-1 | HNSCC, Melanoma, NSCLC, Renal cell carcinoma, Hodgkin lymphoma 2014
‘human)

Atezolizumab, Monoclonal antibody (IgG1, PD-L1 | HNSCC, Urothelial carcinoma, NSCLC, Triple-negative breast cancer 2016
humanized)

Durvalumab Monoclonal antibody (IgG1, PD-LI | HNSCC, Locally advanced or metastatic urothelial carcinoma, NSCLC 2017
‘human)
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Forward primer Reverse primer (5'-3')

(5'-3)

PRKAA2

TCAATCGTTCTGTCGCCA CGTTAGCATCATAGGAAGGG

CHGB ‘
SLC7A5 ‘

GRIP2 ‘

GACCACCATTCAACCCAC CCCAACTCTCCTCACICTG
GCCGAGGAGAAGGAAGA TGCCCGAGCCGATAATG

CCCTCGTGTGCTTCATCG GCTTCCTCCATAGTCCC
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No
of cases

Molecular
target

Possible mechanism

Specific
habbits

gender

Scheel et al., 2016 (5)

Zand et al., 2020 (6)

Giotakis et al., 2019 (7)

Pruneri et al,, 1999 (8)

Maurizi et al,, 1996 (9)

Garcia-Cabo et al., 2020 (10)

Aronsohn et al., 2003 (11)

Dai et al,, 2015 (12)

Monico et al., 2018 (13)

Bruine et al,, 2019 (14)

Shen et al., 2011 (15)

Zhu et al., 2007 (16)

58patients

Out of 82, 75
were positive

78

132

140

133

35

55

80

52

82

23

TP53

CD1

Bcl2L12

P21 and p27

EGFR

E-cadherin
and -catenin

FAK

NOTCH 1
and 2
FGFR1

PTEN

DJ-1 protein

TrkB

‘TP53 mutation affects the apoptotic protein BCl-x],
which then interferes Cyclin D1 and promotes the
phosphorylation of RB for facilitating cell
progression in LSC

Mutation in the CD1 alters the functions of RB and
cellular activities such as DNA damage response
checkpoint and cell cycle exit in the LSC

Cdk activity primarily inhibited by the proteins p21
and p27

P21 and P27 in (LSCC) can increase tumor
aggression, advanced clinical stage, and metastasis
via affecting

Cdk activity. p21 expression correlates with elevated
levels of Ki67, cyclin D, and cyclin E, while p27 is
linked to accumulation of p53 and promote cell
cycle progression

EGER has been correlated with the anaplastic
lymphoma kinase (ALK) ratio to induce neoplastic
process in LSC.

E-cadherin to N-cadherin significantly influences the
characteristics of epithelial-mesenchymal transitions
in LSC via affecting the expression of ZEB2.

integrin B1 and FAK signaling facilitate invasion and
metastasis in LSCC. FAK phosphorylation activates
the paxillin and SATA1 pathways, resulting in
increased expression of MMP-2 and MMP-26, and
enhances cell invasiveness and migration in LSCC.

NOTCH?2 or 3 receptors can also involve in the cell
growth and survival and metastasis in the LSC.

Overexpression of FGFRI is linked to lymph node
metastasis and poor survival outcomes in LSC.

PTEN is decreased in LSCC, evidenced by the
increase in tumor degree, indicating in the LSC.

The high level of DJ-1 expression might indicate
worse T stage, pPTNM pathologic stage and
differentiation.

Survivin and DJ-1 mediated mechanism inhibits the
apoptosis by mitigating the PTEN via PI3K-AKT/
PKB pathways.

Trk-B induce metastasis by suppressing anoikis

Smoking
habbits

smoking

Smoking

Smoking

Tobacco and
alcohol
consumption

Male (48)/
female (10)

69 male and
13 female

73 male/
5 female

129 male/
3 (female)

Males (130)/
females( 10)

127 (Men)
6 (women)

34 male
1 female

5 female/
69 males

11 female and
41 male

6 female and
17 male

Stage 3
(24)
Stage
4 (34)

(38
patients)
are stage 2
and (10
patients)
4th stage

1(15/78)

11 (11/78)
111 (25/78)
1V (27/78)

Stage 1 and
2(74)
stage 3 and
4 (58)

Stage 1 an
2 (9), stage
3 (17) and
stage
4(33)

17 (stage
1), 16
(stage 2),
34 (stage
3), and 15
(stage 4),
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Stages

Assay

High vs. low ERCC1
expression

95% CI

p-value

Data extraction
model

1 Langetal 015)

2 Ciaparrone etal.
(ao13)

3 el Qo)

4 Xeeal Qo)

5 Anetal Qo)

6 | Prochnow etal
(a019)

7 Gongetal (2019)

$ | Rawrietal 2020)

9| Aksoy etal Q019)

10 Chitapanarux et al
(2020)

1 Wangetal @oan)

2 Hu el (02)

Note: M:male, F: emal, P prospect

Country  Sample size
Continent  2041-231
1810
China 76 (M9, Fi17)
Asa
Taly 18 (M9, F9)
Europe.
China 334 (M244, E90)
Asia
China 200 (M2
Asia
Korea 204 (M73, E31)
Asia
Germany 453 (159 patents
Europe. excluded)
(M35, Ei1)
China 156 (67 patients
Asia excluded)
7, F69)
India 98 (M98
Asia
Tukey | 335 patients excluded)
Asia 24, F9)
Thailand 262 (M3, E79)
Asia
Taivan 98 (M2, F6)
Asia
China 78 (M9, E19)
Asia

. Reetrospective,IHC: immunohistochenisey, RT-PCR: el
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He

He

He

He
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RT-PCR

e

He

He

RT-PCR

32.(121%) vs. 44 (57.89%)

36 75%) vs. 12 (25%)

118 (3532%) vs. 216 (647%)

136 (36.6%) vs. 65 (76.9%)

136 (66.66%) vs. 68 (3333%)

135 (4592%) vs. 159 (54.08%)

41 (224%) vs. 48 (347%)

9.(50%) vs. 49 (50%)

15 (5357%) vs. 13 (46.43%)

135 (5152%) vs. 127 (48.48%)

58 (59.18%) vs. 40 (10.82%)
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Parameters

Frequency

Percentage (%

21-40 years 7 9.09
41-60 years 47 61.04
61-80 years. 29.87

Normal BMI

39

50.65

‘Underweight

42.86

Lower Middle 38.96
Upper Lower 38 4935
Upper Middle 1169

Tongue bite

No habits

Alcohol consumption 45 58.44
Tobacco smoking 36 4675
Tobacco chewing 30 38.96
Betel leaf or paan chewing 26 3377
Areca nut or gutka chewing 2 33.77

Cheek bite

No comorbidities 75.32
Hypertension 12 15.58
Diabetes mellitus 9 11.69
Cerebrovascular accident 4 519
Respiratory diseases: Asthma, COPD, and Old TB 2 260

Ischemic heart disease

No familial history of cancer 7013
Patients with familial history of cancer 23 29.87
Breast 1 130
Breast and Brain 1 130
Hematological 3 390
HNC 13 16.88
HNC and Breast 1 130
Thyroid 1 130
Uterus 2 260

Well differentiated (Grade 1) 35.06
Moderately differentiated (Grade 2) 43 5584
Poorly differentiated (Grade 3)

Stage 11T 2078
Stage IV 61 79.22
Stage IVA 47 61.04
Stage IVB 18.18

Oral Cavity Cancer 5195
Buccal mucosa cancer 13 16.88
Tongue cancer 18 2338
Floor of the mouth 3 3.90
Gingivobuceal sulcus 1 130
Hard palate 1 130
Retromolar trigone 4 519
Laryngeal cancer 13 16.88
Supraglottic cancer 5 649
Aryepiglottic cancer 2 2,60
Epiglottic cancer 1 130
Vocal cord cancer 5 649
Hypopharynx cancer 1 1429
Cricopharynx 2 2,60
Pyriform fossa 9 1169
Oropharynx cancer 8 1039
Base of tongue cancer 5 649
Soft palate 3 3.90
Cancer of unknown primary cause 3 3.90
Lymph node 2 260
Brachial cleft cyst 1 130
Nasopharynx cancer (Nasal cavity)

Total concurrent CRT (CCRT) 7143
Concurrent CRT (CCRT) 46 59.74
CCRT with adjuvant chemotherapy 9 11.69
Surgery with adjuvant CCRT 28.57

1039
4 6 7.79
5 44 57.14

60 Gy 2208
66 Gy 43 55.84
70 Gy 2208
—
29.87
33 37 48.05
35 17 2208
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Parameters

expressions of genes

Genes p-value p-value (50% p-value Overall
% vs. 50%) vs. 100%) (0% vs. 100%) p-value
ERCCI 0.14.(0.05,041) | 019 (006,044) | 023 (0.08, 068) 0301 00017 oo p< 0001
ACTL6A 477(192,12065) | 387 (100,881) | 543 (1535,9.26) 0028 [ 0459 0362 0729
Sociodemographic/ Median Expression of ERCC1 and ACTL6A
Clinical
Age Groups
21-40 years ERCCI 012(004,036) | 019 (008,023) | 012(007,032) 0397 0672 0499 0651
10 years ACTL6A W2 | 639098 | 471 (s | 0128 o612 0499 0565
41-60 years ERCCI 022 (0,05, 06) 017 006,049 | 034013,0105) | 0782 0005* 0077 0005+
41-60 years ACTL6A 149(221,1173) | 593 (261,907) | 678 (253,995) 000 0582 0691 0587
61-80 years ERCCI 001 005,03 | 01900403 | 021008,03) | 0217 [ 0079 0068 0009
61-80 years ACTL6A 476(142,1198) | 114 (077,605 | 206 (085, 7.16) 0007 0783 0066 0199
BMI
» Underweight ERCCI 0.11(005,0385) | 012 (006,025 | 02 (0075, 056) 0543 0031 0136 0029*
Underweight ACTL6A 519(123,1155) | 315 081,715 | 437 (154, 890) 0.183 0432 0357 0754
Normal ERCCI 0.15 005, 0.6) 020 006,0.44) | 0.26 (012, 0.88) 0619 [ 0033 0121 0021*
Normal ACTL6A 405 (214, 1189) | 425 (105,884) | 584 (117,995 0.264 | 059 0967 0975
Overveight ERCCI 027(004,0345) | 0.19 (0085, 132) | 051 (021,2975) 0225 008 0068 0076
Overweight ACTL6A 2059 (02,256 | 904 (585,1275) | 678 (489, 1289) | 0.080 | 05686 0225 0549
Social Habits
No habits ERCCI 025(0.09,040) | 010 004,014) | 0.10 (005, 031) 0236 0610 0917 0772
*Ves haits ERCCI 0.13(0.05,041) | 019 (006,045) | 026 (0097, 0.89) 0153 | 0001+ 0007 p< 0001
*No habis ACTLGA WA | 2001900 | 837 (46 1069 | 0063 0176 100 0565
Yes habits ACTL6A L2199 | 3w em) | S Ao | 0.089 0652 0366 0876
No smoking ERCCI 026 (0085,096) | 017 (006,044) | 021 (0095, 1.09) 0559 0003 0340 0032
*Smoking ERCCI 0095 005,029 | 0195 007,040) | 0265008,06) | 0016 [ 0087 0003 0001
No Smoking ACTL6A 636(266,1413) | 487 (095,906 | 704 (319, 1060) 0013 | 0390 0496 0552
Smoking ACTL6A 368(133,971 | 3315(116,7.62) | 4695 (1.09,7.93) 0530 0888 0599 1000
No Alcohol consumption ERCCI 024(0.09,060) | 011 (004,038) | 021 (007, 067) 0.206 | oour 0742 0103
Aleohol consumption ERCC1 0.11(004,030) | 019(009,030) | 032(0125,078) oo 0024 0002 p< 0001
No alcohol consumption ACTL6A 427149, 1152) | 275 (084,730) | 526 (117, 9.82) 0.166 0176 0601 0680
‘Alcohol consumption ACTLGA 627 (244,1372) | 593(148,927) | 559 (195,817) 0079 0906 009 0766
No tobacco chewing ERCCI 011(004,026) | 019 (006,029) | 025 (008, 061) 0137 | 00020 0.006" p< 0001
Tobacco chewing ERCCI 028 (0.067,089) | 019 (006,078) | 022 (013, 117) 0982 0094 0447 0126
No tobacco chewing ACTL6A WS 1M | 31000574 | 81508 | 0030 [ 0174 0608 072
Tobacco chewing ACTL6A 601 (254,1250) | 674(082 1145) | 697 (189, 1138) 0441 0586 0417 0905
No betel leaf chewing ERCCI 0.14(0.05,041) | 019 006,029) | 022 (008, 051) 0927 0007 0176 0.009"
Betel leaf chewing ERCCI 013 (0037,.0397) | 0205 (006,072) | 044 (0115, 1.32) 0092 I 0029 0014 0002*
No Betel leaf chewing ACTL6A WAy | s | a0 | 0033 [ 0910 0275 0662
Betel leaf chewing ACTLGA 48 (321, 1359) 61086900 | 6916514 | 0.439 0382 0929 0832
No areca nut or gutka chewing ERCCI | 0.14 (0.05,040) | 017 (006,044) | 031 (0.14, 088) 0231 | 0010* 0.008* p <0001
v nut or gutks chewing BRCCI | 012 (0047,0557) | 020 0015, 04) | 0195 (07, 061) 0957 | 0020* 0493 0137
No areca nut or gutka chewing 737 (268,1373) | 550 (114,947) | 543(129,902) 0034 0593 0058 0494
ACTL6A
Areca nut or gutka chewing ACTL6A | 326 (122,661) | 299 (0.85,749) | 549 (159, 11.56) 0657 0035 0209 0173
Comorbidity
No comorbidity ERCCI 0130050465 | 0190077, 0.48) | 0225 (009,097) 0227 0006* 0.038" 0003+
No comorbidity ACTLGA 383(142,1249) | 382(106,893) | 572(159, 9.61) 0277 0619 0612 0852
Presence of comorbidity ERCCI 01500505 | 0120005,029 | 03100505 | 0948 0036* 0121 oo
Presence of comrbidiy ACTL6A S9076 179 | 389096750 | 5302982 | oo [ 0601 0398 0229
Stages
Stage 111 ERCCI 0245(0.08,127) | 021 (0.045,043) | 0.19 (008, 0.55) 0535 021 0623 0867
Stage 1l ACTL6A 271090, 190 | 383850 | 5626413 | 0756 | 0148 0469 0269
Stage IV ERCCI 012(005,0399) | 0190060455 | 027 095,078 | 0153 0002 0001+ p< 0001
Stage IV ACTL6A S I B [ 0947 0156 0452
Histopathology
Poorly differentiated ERCCI 029(009,115) | 026 014,088 | 025 (010, 157) 0672 0446 0866 0651
Poorly differentiated ACTL6A 268 (141,773) | 425 (289,889) | 385 (L15,878) 0612 0866 0398 0368
Moderately differentiated ERCCI 01200503 | 015006040 | 021 (009,099 | 0974 | 0001 0053 0001+
Moderately differentiated ACTL6A 627(293,1349) | 315 (094,878) | 589 (193,9.02) 0001+ | 0358 0098 0.108
Well differentiated ERCCI 014004042 | 020 006,049 | 027 008, 068) 0.082 0237 0.038" 0030*
Well differentiated ACTL6A 405 (1.25,13.7) 605 (75.88) | 518 (117,1390) 0829 100 0848 0772
Type of HNC
Oral cavity cancer ERCCI 0.13(0.05,069) | 0.185(006,044) | 029 (0.12,103) 0632 0017+ 0050* 0007+
Oral cavity cancer ACTL6A 757 @a5,137) | 64397, 1108) | 73 (15, 1440) | 0.162 [ 0707 0364 0928
Laryngeal cancer ERCCI 0220003 | 01500503 | 022 (005, 043) 0.506 [ 0208 0649 0146
Laryngeal cancer ERCCI 177052,95 | 2309475 | 53 0m6m | 0249 0753 0701 0584
*Hypopharyngeal cancer ERCCI 009 (0.04,036) | 010 006,070) | 0.5 (006, 1.14) 0046 0333 0139 0027+
Hypopharyngeal cancer ERCCI 338(066,736) | 550 (080,7.50) | 446 (0.80, 878) 0.859 | 0721 0929 0368
Oropharyngeal cancer ERCC1 0085 (0027, 024) | 024 (019,028) | 020 (011, 076) 0123 I 0315 0161 0079
Oropharyngeal cancer ACTLEA S0 09) | 9026 | 590757 | 0123 [ 0017+ 0674 0223
CUP ERCCI 039(023,042) | 035002039 | 062(027,068) 0.593 0285 0285 0717
CUP ACTL6A 405 (3.03, 6.36) 17505680 | 369 (105,2089) 0593 [ 0285 100 0717
' Nasopharyngeal cancer ERCC1 091(020,116) | 044 (003,063) | 081 (037, 117) 0,655 | 0180 0655 0607
*Nasopharyngeal cancer ERCCI 07 o 8S) | 6 05,66 | 946036139 | 0655 [ 0655 0655 1000
Therapy
CCRT ERCCI 012(005,039) | 019 006,029) | 021 (009, 051) 0418 0010* 0071 0003+
corT AcTien WAL Sy | 325084760 | 533(142,837) 0053 [ 0639 0135 0608
Surgery plus adjuvant CCRT ERCC1 | 0.165 (0.05,0.465) | 0.195 (0.057,052) | 0345 (0080, 1.34) 0.490 0032 0044 0027
Surgery plus adjuvant CCRT ACTL6A | 490 (192,1359) | 503 (259,926) | 7.40 (174, 15:84) Il 0306 0661 0465 0580
Cycles of chemotherapy
3 cycles ERCCI 0185 0.06,038) | 0.15 (0,075, 087) | 029 (022, 188) 0779 0025 0233 0093
3 cycles ACTL6A 389 (094,859 | 257 (080,644) | 875(191,139) 0.401 0069 0674 0417
4 cycles ERCCI 0105 0.07,028) | 0.145(0.05,283) | 021 (0082, 1.85) 0345 06 0463 0607
4 cycles ACTLGA 131 (1161260) | 496 (159,1610) | 818 (586, 9.23) 0917 0463 0345 0607
5 cycles ERCCI 011005,05 | 0190000 | 0290057,06) | 0741 | 0005 0083 0007
5 cycles ACTL6A 494(182,132) | 438(123,936) | 527 (138,7.66) 0327 062 0143 0853
6 cycles ERCCI 022 005,040 | 01700604 | 013007 110y | 0354 0176 0212 0055
6 cycles ACTLGA 575(3.381349) | 425(094749) | 5.8 (1101578) 0022 07 0778 0698
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Concurrent
chemoradiation
(n = 5,326)

Surgery and

postoperative radiation
(n =1,079)

Surgery and postoperative
chemoradiation
(n =971)

Age, median (IQR), y

60.0 (53.0-67.0)

61.0 (54.0-70.0)

59.0 (53.0-60.0)

‘Tumor size, median (IQR), mm

32.0 (24.0-44.0)

35.0 (25.0-45.0)

38.0 (27.0-50.0)

Married 2,911 (54.7) 540 (50.1) 494 (50.9)
Ethnicity-White 4,496 (84.4) 859 (79.6) 770 (79.3)
Male 4,410 (82.8) 787 (72.9) 742 (76.4)
Grade
1 333(6.3) 111 (10.3) 86 (8.9)
i 2,565 (48.2) 670 (62.1) 532 (54.8)
ik 2,380 (44.7) 295 (27.3) 350 (36.0)
v 48 (0.9) 3(03) 3(03)
Laterality
Left 960 (18.0) 84(7.8) 92(9.5)
Right 1,031 (19.4) 95 (8.8) 90 (9.3)
Not paired 3,335 (62.6) 90 (83.4) 789 (81.3)
Oral cavity
Lip 1(0.0) 17 (1.6) 6(0.6)
Base of tongue 1,832 (34.4) 48 (4.4) 76 (7.8)
Other parts of tongue 230 (4.3) 105 (9.7) 132 (13.6)
Gum 23 (0.4) 144 (13.3) 95(9.8)
Palate 115(2.2) 32(3.0) 30 (3.1)
Floor of mouth 82(1.5) 166 (15.4) 135 (13.9)
Mouth 81(1.5) 131(12.1) 132 (13.6)
Pharynx
Tonsil 1,432 (26.7) 7(0.6) 14 (1.4)
Oropharynx 106 (2.0) 1(0.1) 1(0.1)
Pyriform 270 (5.1) 3(03) 0(0.0)
Hypopharynx 207 (3.9) 3(03) 6(0.6)
Paranasal sinus 30 (0.6) 17(1.6) 12(1.2)
Larynx 926 (17.4) 405 (37.5) 332(34.2)
Stage
juig 1,501 (28.2) 289 (26.8) 153 (15.8)
IVa 3,825 (71.8) 790(73.2) 818 (84.2)
T stage
T1 706 (13.3) 77(7.1) 69(7.1)
TINOS 4(0.1) 1(0.1) 0(0.0)
Tla 2(0.0) 0(0.0) 0(0.0)
T1b 1(0.0) 1(0.1) 0(0.0)
T2 2,071 (38.9) 163 (15.1) 165 (17.0)
T3 1,422 (26.7) 262 (24.3) 194 (20.0)
T4a 1,120 (21.0) 575(533) 543 (55.9)
N stage
NO 669 (12.6) 451 (41.8) 195 (20.1)
N1 1,320 (24.8) 257 (23.8) 205 (21.1)
N2NOS 112 (2.1) 7(0.6) 8(0.8)
N2a 398 (7.5) 32(3.0) 38(3.9)
N2b 1,685 (31.6) 232 (21.5) 331 (34.1)
N2c 1,142 (21.4) 100 (9.3) 194 (20.0)

Follow-up, median (IQR), month

64.0 (17.0-107.0)

410 (14.0-89.0)

33.0 (13.0-84.0)
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IPTW-
adjusted
HR

5-year
DRMST
(month)

IPTW-
adjusted
5—year
DRMST
(month)

5-year ARR
(%)

IPTW-
adjusted
5-year ARR
(V4]

Chemoradiation vs. surgery plus radiation/chemoradiation
BITES 0.92(0.81-1.04) | 0.84(0.72-0.98) | 6.71(4.75-8.67) 10.40 16.90 14.80 0.21(0.21-0.22) | 0.19(0.18-0.20)
(8.33-12.75) (12.50-21.20) (10.60-19.10)
CMHE 0.77 (0.67-0.89) Reference -0.23 425 (2.20-6.36) 271 —1.78 020 (0.19-020) | 0.22 (0.22-0.23)
(~2.16-1.71) (~7.04-1.63) (~5.98-2.42)
DeepSurv | 0.77 (0.67-0.89) Reference -0.23 Reference —2.64 -1.79 0.37(0.35-039) | 0.29 (0.27-0.32)
(=2.16-1.71) (—6.97-1.69) (—5.99-2.42)
RSF 0.82(0.73-0.92) | 0.85(0.75-0.96) | 7.37 (5.48-9.25) | 9.70 (7.65-12.49) 13.90 1020 0.17 (0.17-0.18) | 0.18 (0.16-0.19)
(9.78-18.10) (6.11-14.30)
CPH 0.76 (0.67-0.86) | 0.98 (0.78-1.24) | 3.74(1.88-5.61) | 4.84(2.72-6.25) | 7.52(3.34-11.70) | 6.93 (2.89-11.00) 0.17 0.17 (0.16-0.18)
(0.16-0.18)
NCCN 0.88 (0.73-1.06) | 0.87 (0.73-0.96) —4.12 —4.37 —=9.29 —8.34
(=631-—1.92) | (—6.40--2.12) | (—1420-—4.43) | (—13.00-—3.65)
IPTW— 5-—year IPTW— IPTW—
adjusted DRMST adjusted adjusted
HR (month) 5-year 5-year ARR
DRMST (VA
(month)
Surgery plus radiation vs. surgery plus chemoradiation
BITES 0.87 (0.72-1.06) | 0.7 (0.61-0.85) | 4.59 (1.18-8.01) | 4.65(1.32-7.73) 1110 10.50 0.22(021-023) | 0.20 (0.18-0.22)
(3.58-18.60) (3.16-17.90)
CMHE 0.82 (0.66-1.03) | 0.83(0.65-1.07) | 3.56(0.14-6.98) | 3.55(0.29-7.36) 4.60 4.66 0.23(0.22-0.23) | 0.22(0.21-0.23)
(~2.96-12.20) (~2.75-12.10)
DeepSurv | 0.93(0.76-1.15) | 0.94(0.76-1.17) -1.26 —122 —151 —1.31 0.33(030-037) | 0.45 (0.40-0.48)
(—4.69-2.18) (—4.80-2.02) (—9.09-6.07) (—8.75-6.14)
RSF 0.86 (0.71-1.04) | 0.90 (0.73-1.10) | 2.55(~0.91-6.00) | 2.59 (—0.73-5.94) 6.88 637 0.17 (0.16-0.19) | 0.18 (0.17-0.20)
(~7.23-14.50) (~1.10-13.80)
CPH 0.84 (0.67-1.05) | 0.79(0.61-1.02) | 3.66(0.13-7.18) | 3.61 (0.04-7.22) | 7.93 (0.19-15.70) 739 0.17 0.18 (0.16-0.21)
(—0.23-15.00) (0.15-0.18)

IPTW, inverse probability weighting: HR, multivariate hazards ratio; DRMST, the difference in restricted mean survival time; ARR, absolute risk reductions IBSa, integrated Brier score in
chemoradiation group; IBSb, integrated Brier score in surgery plus radiation/chemoradiation group; IBSc, integrated Brier score in surgery plus radiation group; IBSd, integrated Brier score in
surgery plus chemoradiation group; BITES, Balanced Individual Treatment Effect for Survival data; CMHE, Cox Mixtures with Heterogeneous Effects; CPH, Cox proportional hazards model;

RSE, random survival forest; NCCN, National comprehensive cancer network guideline; Reference, statistical model did not fit.

The bold font indicates that the model performed best in this metric.

According to the NCCN guidelines, surgery is reccommended for patients with the following location characteristics and TNM stages: oral cavity cancer patients with T3 and N0, T1-3 and N
1-3, or T4a and NO-3; laryngeal cancer patients with T4a and N-3; ethmoid sinus patients with T3-4a; and maxillary sinus patients with T3-4 and N0 or T1-4a and N+.
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