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This paper presents a technique for predicting noise generated by airfoil structures that combines deep learning techniques with traditional numerical methods. In traditional numerical methods, accurately predicting the noise of airfoil structures requires significant computational resources, making it challenging to perform low-noise optimization design for these structures. To expedite the prediction process, this study introduces Conditional Generative Adversarial Networks (CGAN). By replacing the generator and discriminator of CGAN with traditional regression neural network models, the suitability of CGAN for regression prediction is ensured. In this study, the data computation was accelerated by expanding the kernel function in the traditional boundary element method using a Taylor series. Based on the resulting data, an alternative predictive model for wing structure noise was developed by integrating Conditional Generative Adversarial Networks (CGAN). Finally, the effectiveness and feasibility of the proposed method are demonstrated through three case studies.
Keywords: airfoil structure, CGAN, boundary element, aeroacoustic noise, computational fluid dynamics

1 INTRODUCTION
The propeller is usually an open (non-enclosed) rotating mechanical device with multiple blades, and it has a history of nearly a century as an aviation propulsion system [1, 2]. As early as the 1940s, propellers were widely used in various types of aircraft, and the development of propeller technology has always been closely linked to the development of aircraft. Propeller engines are still widely used in military and civilian aircraft today, mainly due to their excellent fuel economy [3]. However, the propulsion speed of propellers significantly decreases under high subsonic conditions, resulting in relatively low cruising speeds for propeller-driven aircraft. Later, the concept of contra-rotating propeller engines was proposed. The contra-rotating propeller engine is a conceptually different aviation engine related to the turboprop engine and turbofan engine, and it is also referred to as a propeller fan engine, advanced turboprop engine, un ducted fan, or ultra-high bypass ratio turbofan engine [4, 5]. The design objective is to balance the efficiency and fuel economy of turboprop engines with the cruising speed and performance of turbofan engines [6–8], filling the speed gap between conventional turboprop engines and turbofan engines. It effectively addresses the contradiction between the cruising speed and propulsive efficiency of conventional turboprop engines and turbofan engines, and it is the direction of development for the propulsion systems of future medium-sized transport aircraft [9].
Compared to the 1980s, although modern contra-rotating propellers have made significant advances in aerodynamic design [10], noise optimization techniques, and manufacturing processes, according to NASA’s research, contra-rotating propeller engines still have a noise level that is more than 10 dB higher than that of ducted fan engines [11]. Therefore, aerodynamic and noise optimization design remains a key technical issue in the development of contra-rotating propellers [12]. However, due to the complex aerodynamic disturbances such as viscous wake interference, potential flow field interference, and propeller tip vortex interference between the two rows of propellers, the aerodynamic noise mechanism is more complicated [13–15]. Therefore, noise prediction and acoustic optimization design of propeller engines have become one of the key technologies in propeller design [16].
As the main component of propeller noise, accurate prediction of the noise generated by airfoils can guide the optimization design of propellers. Currently, in addition to using engineering estimation methods based on empirical theories, common methods for predicting airfoil vibration noise mainly rely on numerical calculation methods [17]. Engineering estimation methods typically use semi-theoretical and semi-empirical formulas combined with structural sound radiation theory and measured data. Engineering estimation methods are convenient and fast, but they are mainly applicable to specific structures or their similar models. Numerical simulation methods mainly rely on finite element methods (FEM) [18], boundary element methods (BEM) [19–21], and computational aeroacoustic methods (CAA) [22]. Among them, CAA methods combine computational fluid dynamics (CFD) simulations and the FW-H analogy method, which can simultaneously obtain the near-field flow distribution of the structure and the far-field acoustic characteristics, making it one of the reliable methods. However, in the pre-processing stage of CAA calculations, it is necessary to establish a very detailed model in the computer, which requires a significant amount of time and leads to a longer prediction process. Therefore, developing efficient aerodynamic noise prediction methods by combining deep learning methods can significantly reduce the computational cost of aerodynamic noise [23, 24]. This is of great importance for guiding the optimization design of low-noise propellers.
In light of the reflect on mentioned, the objective of this study is to propose a new method for analyzing the uncertainty of piezoelectric and flexoelectric characteristics using Conditional Generative Adversarial Networks (CGAN), which is a machine learning (ML) technique [25–27]. CGAN has emerged as a significant advancement in the field of ML, allowing for the generation of high-quality predictions and opening up new possibilities for data-driven creativity and problem-solving [28]. Generative Adversarial Networks (GANs) [29] revolutionized image generation [30]. However, GANs are limited in controlling the output of the generated network. For example, when dealing with the MINIST dataset consisting of handwritten digits from 0 to 9, GANs may generate any number as output without predictability. This lack of control hinders the practicality of GANs in real-world scenarios [31–33].
To address this issue, Conditional Generative Adversarial Networks (CGANs) are introduced. CGANs include a conditional variable that allows for control over the behavior of the generator network, constraining the output to a user-specified distribution and improving stability [34]. Adversarial training in CGANs not only enables the generation of accurate and realistic images but also helps in learning the relationships between data [35]. CGANs have found applications in various domains, including image synthesis for generating new images with specific attributes [36, 37], data augmentation to enhance the performance of ML models, style transfer for applying the style of one image to another, and text-to-image synthesis based on textual descriptions. Moreover, there have been several variations introduced in different fields, such as DCGAN [38] and DAGAN [39], among others [40, 41].
This paper primarily focuses on combining CGAN with traditional numerical simulation methods to predict the vibration noise of airfoil structures [42], reducing the cumbersome calculations involved in numerical methods and speeding up the prediction process of airfoil structure noise [43]. Figure 1 illustrates the process of establishing a surrogate model using CGAN.
[image: Flowchart illustrating a two-step process. The first section, "Physical Problem and Calculation Method," includes "Model Parameter Settings," "CFD/BEM," and "Dataset Calculation." The second section, "CGAN Proxy Prediction Model," features "Establishing a Proxy Model," "Adjusting Model Structure," "Single Working Condition," and "Multiple Load Cases." Lines indicate the flow between sections and elements.]FIGURE 1 | Process of establishing a proxy prediction model for predicting wing structure noise.
2 CONDITIONAL GENERATION ADVERSARIAL NEURAL NETWORK THEORY
2.1 Generate adversarial neural networks
Generative Adversarial Networks (GAN) are an innovative technology that combines deep learning with probability theory. It consists of two competing neural networks that have the ability to learn independently and aims to learn and mimic the distribution of real data through unsupervised learning [44, 45]. The basic structure of GAN includes a generator and a discriminator, which compete against each other during the iterative training process. The objective is to make the generated data resemble the characteristics of real data as much as possible [46]. The generator is responsible for creating data that can deceive the discriminator by making it appear close to authentic data, the discriminator aims to distinguish between genuine and synthesized data. In this process, both sides continuously learn and self-optimize, aiming to reach the Nash equilibrium point in game theory, where the generated data is indistinguishable from real data. The flowchart of the GAN process is shown in Figure 2.
[image: Flowchart illustrating a Generative Adversarial Network (GAN). Noise input \(Z\) feeds into Generator \(G\), producing Generated Data. This data is compared with Real Data by Discriminator \(D\). The final output is the Discriminator's decision processed in a loop.]FIGURE 2 | GAN process structure diagram.
The input to the generator model G is random noise z, and its output is a sample that resembles the distribution of real data. On the other hand, the input to the discriminator model D is either real data x or samples generated by G, denoted as G(z) [47]. When the input is x, the discriminator D outputs 1, and when the input is G(z), the discriminator D outputs 0. The abilities of G and D improve during the iterative training process and eventually reach an equilibrium state where D cannot distinguish between the two types of input data, indicating that the generator G has successfully approximated the distribution of real data [48]. The loss of GAN is closely related to the losses of G and D. The loss function of GAN is represented by Equation 1.
[image: Objective function for a Generative Adversarial Network (GAN). It involves minimizing over generator \( G \) and maximizing over discriminator \( D \), with expectations over real data \( x \) and latent space \( z \).]
Both [image: Seems like there's no image uploaded. Please upload the image or provide a URL for it, and I'll be glad to help with the alternate text.] and [image: It seems there was an issue with the image upload or description. Please try uploading the image again, or provide a description or URL of the image so I can help you create the alt text.] represent the distribution of real data and noise data, respectively. In the training of GAN, the generator G is first fixed, and the discriminator D is trained with the main objective of improving D’s ability to discriminate between the two sources of data [49]. Then, the discriminator model is fixed, and the generator model is trained to generate data that can deceive the discriminator as much as possible. The introduction of GAN has provided more possibilities for the development of deep learning, receiving extensive attention from scholars worldwide at that time. However, GAN also has its limitations, such as asynchronous training of the generator and discriminator, low accuracy of generated data, high variability in generated data, and difficulty in reaching an equilibrium state. These issues restrict the application of GAN in various fields, especially in practical engineering scenarios where many problems cannot be directly solved by formulas. To address these issues, researchers have proposed derivative models such as CGAN, which incorporates conditional information into the GAN framework, transforming the originally unsupervised learning GAN into a supervised learning approach. This provides a direction for data generation in GAN and greatly expands its application areas. Many subsequent variants of GAN have been inspired by CGAN. Therefore, in this study, we have decided to use CGAN for noise data prediction. The following sections will provide a detailed introduction to CGAN.
2.2 Conditional generation adversarial neural network
Conditional Generative Adversarial Networks (CGANs), developed by Mirza [13] introduce conditional variables into the model, which constrain the process of data generation and enable targeted generation of desired data. This model introduces conditional variables into the network architecture to guide the data generation process and achieve targeted generation of specific data. The CGAN architecture is similar to the original GAN [49], but with the addition of extra conditional variables, denoted as y, in both the generator G and discriminator D. This modification allows CGAN to operate as a controlled and supervised network model. The objective function of CGAN is presented in Equation 2, which incorporates conditional probabilities to form a constrained maximin function.
[image: Mathematical expression showing the minimax optimization function for generative adversarial networks (GANs). It includes the expectation of log probabilities under data distribution and generator distribution, optimizing discriminator \(D\) and generator \(G\) as described in equation (2).]
Figure 3 presents the CGAN model, which is built upon the core concept of Nash equilibrium derived from game theory. It mainly consists of two network structures, [image: Looks like you attempted to upload an image, but it did not come through. Please try uploading the image again, and I will be happy to help with the alt text.] and [image: Please upload the image or provide a URL to generate the alternate text.], which can be regarded as players in the game. [image: A black uppercase letter "G" in a serif font, resembling Times New Roman, against a white background. The letter is centered within the frame.]’s function is to learn data distribution features from real data as much as possible, and then generate false data that may confuse the discriminator. The primary role of the discriminator is to effectively differentiate between real and generated data, thereby accurately determining the source of the data. To outperform each other, both the generator and discriminator must continuously enhance and optimize their abilities. This iterative process of improvement and optimization in CGAN aims to achieve a Nash equilibrium between the two components. For the generation model [image: It looks like there was an issue with image upload. Please try uploading the image again, or provide a URL if you prefer. If there’s a caption or specific context, feel free to include that as well.], its input is random noise [image: Please upload the image or provide a link to it, and I will generate the alternate text for you.] and corresponding conditional information [image: Please upload the image or provide a URL so I can generate the alt text for it.], and its output is generated sample similar to real data distribution. The discriminator model [image: Please upload the image or provide a URL for me to generate the alternate text.] is designed to take real data [image: Please upload the image or provide a URL so I can generate the alternate text for you.], corresponding conditional information [image: Please provide an image or a URL, and I will generate the alt text for you.], and generated sample [image: Mathematical expression showing a function \( G(y, z) \), indicating a relationship between variables \( y \) and \( z \).] as inputs. It assigns an output of 1 or 0, depending on whether the input is real data or a generated sample, respectively. Its main function is a dichotomous test. The mutual game optimization process of generator [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] and discriminator [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] makes the ability of [image: It seems there was an issue with uploading your image. Please try uploading it again, and I will help you generate the alternate text.] and [image: Please upload the image or provide a link to it so I can generate the appropriate alt text for you.] continuously improve and finally reach an equilibrium state, that is, discriminator [image: Please upload the image or provide a URL to generate the alt text.] can no longer distinguish between the two types of input data. The training of CGAN is a process of [image: If you have an image you would like me to generate alt text for, please upload it or provide a URL.] and [image: Please provide the image or a URL to the image you would like described, and I can help generate the alt text for it.] alternating repeatedly, so its loss function is closely related to the loss function of [image: Please upload the image or provide a link so I can generate the alternate text for it.] and [image: Please upload the image or provide a URL for me to generate the alternate text.], which can be expressed as Equation 3:
[image: Equation displaying the loss function for a Generative Adversarial Network (GAN). The equation consists of two parts: one with the expected value of the log of the discriminator's output for real data, and another for the log of one minus the discriminator's output for generated data.]
[image: Diagram of a Generative Adversarial Network (GAN) showing the flow between components. Conditional information and real data input into the discriminator. Noise and conditional information input into the generator. The generator produces generated data, which, along with real data, is fed into the discriminator. The discriminator outputs a result indicating whether the input data is real or generated.]FIGURE 3 | CGAN training flowchart.
where [image: Sorry, I can't help with the request directly. If you have an image file or URL, please upload it, and I can generate the alternate text for it.] represents the distribution of input data, [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL if available. You can also add a caption for additional context if needed.](.) and [image: It seems there is no visible image uploaded. Please upload the image or provide a URL so I can assist with generating the alternate text.](.) represent the output of [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] and [image: A gray, uppercase letter "G" displayed on a white background, with visible pixelation due to the low resolution of thirteen by thirteen pixels.] respectively, z is random noise. The loss function for [image: Please upload the image you would like me to generate alternate text for.] and [image: Please upload the image you would like me to describe, or provide a URL. You can also add any specific context you feel is necessary.] is written as Equation 5:
[image: The image shows a mathematical equation representing the loss function for a discriminator in a Generative Adversarial Network (GAN): \(L_D = -E_{x,y \sim p_{\text{data}}(x,y)}[\log D(x,y)] - E_{x,y \sim p_{z},p_{y}(z,y)}[\log (1 - D(G(z,y), y))]\).]
[image: Mathematical equation representing the loss function for a Generative Adversarial Network (GAN). The equation shows \( L_G = E_{z \sim p_z, y \sim p_y} [\log(1 - D(G(z, y)), y)] \), labeled as equation (5).]
where [image: Certainly! Please upload the image or provide a URL for me to create the alternate text. If you have a caption, feel free to share it as well.], and when the prediction accuracy of the neural network is high enough. The optimal result of the predicted value can be considered as the optimization result of the original problem.
After the introduction of conditional variables y, the discriminator and generator in CGAN are responsible for distinguishing between real and generated data under the given condition and generating corresponding data, respectively. Figure 4 illustrates the training process of CGAN, where both the generator G and discriminator D take into account the additional information y as inputs.
[image: Diagram illustrating a generative adversarial network (GAN). The upper section labeled "Generator" shows input variables \( z \) and \( y \) leading to generated data \( G(z|y) \). The lower section labeled "Discriminator" shows real data \( x \) and \( y \) being evaluated as \( D(x|y) \). Arrows indicate data flow between components.]FIGURE 4 | Schematic diagram of CGAN structure: Generator [image: Sure, please upload the image or provide a URL so I can help generate the alternative text.] and Discriminator [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL or description if possible.].
3 ACOUSTIC BOUNDARY ELEMENT METHOD
First, the common Burton-Miller-based equation of boundary integral is employed to accurately evaluate the sound pressure field at broadband frequencies, as follows
[image: Mathematical equation involving integrals over a surface \(S\). The expression includes terms with integrals featuring functions \(C(x)\), \(p(x)\), \(q(x)\), \(F(x, y)\), \(H(x, y)\), \(G(x, y)\), \(K(x, y)\), and parameters \(\alpha\) and \(a\). The equation expresses relationships between these functions and variables, incorporating derivative \(\frac{\partial p_{\text{inc}}(x)}{\partial n}\).]
where [image: It seems like there might have been an error in uploading the image. Could you please try uploading the image again or provide more details?] represents the coupling parameter: defined as [image: The formula displays alpha equals i over k, where alpha is a variable, and i and k are coefficients.] where [image: It seems like there was an error with uploading the image. Please try uploading the image again, and I will be happy to help you generate the alternate text.] and [image: Please provide the image by uploading it or sharing a URL, and I will create the alternate text for you.] in other cases. The symbol [image: It seems that no image was uploaded. Please upload the image or provide a URL, and I would be happy to help generate the alternate text.] represents the wave number, where [image: Mathematical expression depicting the wave number \( k \) as the speed of light \( c \) divided by angular frequency \( \omega \).], with [image: Please upload the image or provide a URL so I can generate the alt text for you.] being the angular frequency and [image: Please upload the image or provide the URL so I can help generate the alt text for it.] being the speed of sound. When the point of source [image: Please upload the image you'd like me to describe.] is located on a border that is smooth [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Text "C(x) = 1/2" displayed in a mathematical format.], the sound pressure is indicated by [image: It seems like you attempted to include an image, but it did not come through properly. Please try uploading the image again or provide a URL.], [image: Please upload the image or provide a URL so I can help generate the alt text.] represents the sound pressure at the field point [image: It seems you might have forgotten to upload the image. Please try uploading it again, and I’ll be glad to help with the alternate text.], while [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I would be happy to help you generate the alt text.] represents its normal derivative. [image: Mathematical expression displaying "p sub inc" followed by "(x)" in italics, indicating a function or equation with the variable x.] represents the plane wave’s incident acoustic pressure. The function of Green [image: It seems like part of the request is missing, as there is no image provided. Please upload the image or provide a URL, and I will be happy to help with the alternate text.] and the equation given in Equation 6 and its corresponding derivative are defined as follows.
[image: Mathematical expressions within curly brackets. They define four functions: \(G(x, y)\), \(F(x, y)\), \(K(x, y)\), and \(H(x, y)\). Each function involves derivatives and expressions with Bessel functions denoted by \(H_0^{(1)}(kr)\), \(H_1^{(1)}(kr)\), and \(H_2^{(1)}(kr)\). The expressions also include partial derivatives \(\frac{\partial}{\partial n(x)}\) and \(\frac{\partial}{\partial n(y)}\), and complex constants \(i\) and \(k\), with coordinates \(x\) and \(y\).]
where [image: Mathematical expression of the Hankel function of the first kind, denoted as \(H_n^{(1)}(kr)\), where \(n\) is the order and \(kr\) is the argument.] represents the nth order Hankel function of the first kind for the Green’s function [image: I'm sorry, it seems there's a misunderstanding. I can't generate alternate text for that since it's a mathematical expression, not an image. If you have an image you'd like me to describe, please upload it or provide a link.], [image: Mathematical expression representing the imaginary unit, "i," equal to the square root of negative one.], [image: The equation \( r = |x - y| \) represents the relationship where \( r \) is the absolute difference between variables \( x \) and \( y \).] represents the distance between the source and field points, [image: The image consists of the mathematical expression \( n_j \) in italic font, commonly used in mathematical or scientific contexts to represent an index or a subscript variable.] is the Cartesian component of [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.] or [image: Please upload the image or provide a URL to it, so I can generate the alternate text for you.] and [image: Partial derivative equation: the derivative of the variable "r" with respect to "n" equals "r" subscript "j" multiplied by "n" subscript "j".].
The boundary of the structure’s surface is discretized using constant elements. Subsequently, after gathering all the collocation points (nodes) at the center of each element, Equation 6 is reformulated in matrix form as follows.
[image: Equation showing \( \mathbf{Hp} = \mathbf{Gq} + \mathbf{p}_{\text{inc}} \), labeled as equation 7.]
In the above equation, H and G represent the coefficient matrices utilized in the BEM. These matrices are characterized by their high density and non-symmetry, and they also exhibit frequency-dependent variations. The vectors [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: I cannot generate alt text without viewing the image. Please provide the image by uploading it, and I will help you describe it.] are denoted by [image: It seems there might have been an issue with the image upload. Please try uploading the image again, and I will be happy to help create an alternate text for it.] and [image: Please upload the image or provide a URL so I can generate the alt text for it.] respectively, and [image: The image depicts the symbol "P" with "inc" as a subscript, likely representing the incident power in a scientific or mathematical context.] represents the incident wave vector. Taking into account the impedance boundary condition [image: Mathematical expression showing \( q(x) = i k \beta(x) p(x) \), where \( i \) is the imaginary unit, \( k \) is a constant, and \( \beta(x) \) and \( p(x) \) are functions of \( x \).], Equation 7 can be rewritten as
[image: It seems like there is no visible image in your request. Please upload the image or provide a URL for me to generate the alternate text.]
in which the diagonal matrix [image: Please upload the image or provide a URL so I can generate the alternate text for it.] can be expressed as Equation 9.
[image: Matrix equation featuring **B** equal to \(i k\) times a diagonal matrix, with diagonal elements \(\beta_1\) to \(\beta_n\) and zeros elsewhere, labeled as equation nine.]
where the normalized acoustic impedance value of the ith element is represented by [image: Please upload the image or provide a URL to it, and I will help you generate the alt text.]. Incorporating the external sound field, the sound pressure [image: It seems there was an error or missing information. Please upload the image or provide a URL, and I will generate the alternate text for you.] can be represented as Equation 10.
[image: Mathematical equation showing \( \mathbf{p}_r = [\mathbf{H}_f - \mathbf{G}_f \mathbf{B}] \mathbf{p} + \mathbf{p}_f^{inc} \), and the equation number is (10).]
where akin to the coefficient matrix in Equation 7, [image: It seems there might have been a misunderstanding. Please upload the image or provide a URL to generate accurate alt text.] and [image: Please upload the image or provide a URL for it so I can generate the alternate text for you.] stand for the coefficient matrices corresponding to field points [image: Please upload the image or provide a URL so I can generate the alternate text for you.] situated in the external acoustic domain. The Taylor expansion of the [image: Please upload the image or provide a URL so I can help generate the alternate text.]-th order Hankel function of the first kind at the frequency [image: The equation \( z_0 = k_0 r \) is shown, representing a possible mathematical or physical relationship involving variables \( z_0 \), \( k_0 \), and \( r \).] is given by
[image: The image shows a mathematical formula for \( H_n^{(1)}(z) \), which is expressed as an infinite series sum from \( m = 0 \) to infinity. The formula is \( (z - z_0)^m / m! \) multiplied by the \( m \)-th derivative of \( H_n^{(1)}(z) \) at \( z = z_0, \) labeled as equation (11).]
in which [image: Expression showing the m-th derivative of the Hankel function of the first kind, \( H_n^{(1)}(z) \), evaluated at \( z = z_0 \).]. Replacing [image: It looks like you attempted to share an image, but it did not come through. Please try uploading the image again or provide a URL.] and [image: It seems there's an issue with the image upload. Please try uploading the image again, and I'll be happy to help generate alt text for it.] with [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] and [image: Sure, please upload the image or provide a URL for it.] respectively, we obtain the Taylor series expansion of the kernel function in Equation 6. As deriving an explicit expression for the [image: It seems there’s an error with the image upload. Please try uploading the image again, or provide a URL if it's online. You can also include a caption for context.]-th derivative of the [image: Please upload an image or provide a URL for me to generate the alternate text. Optionally, you can add a caption for additional context.]-th order Hankel function is highly intricate, this paper uses the recursive form as in Equation 12.
[image: The equation shows the derivative of the Hankel function: dH sub n superscript (1)(z) over dz equals negative n over z times H sub n superscript (1)(z) minus H sub n plus 1 superscript (1)(z), labeled as equation 12.]
Through successive differentiations with respect to the variable [image: Please upload the image you would like me to generate alt text for.], we derive the recursive expression for the [image: Please upload the image you'd like me to analyze, and I'll generate the alternate text for you.]-th derivative of the [image: Please upload the image or provide a URL so I can generate the alt text for you.]-th order Hankel function.
[image: Mathematical equation showing the relationship between different derivatives of \( H_n^{(1)}(z) \). It includes a summation from 1 to \( m \), factorial terms, and exponents. The equation ends with a subtraction term involving \( H_{n+1}^{(1)}(z) \).]
Next, by substituting Equation 13 into Equation 11, we derive the expansion of [image: Mathematical expression depicting the Hankel function of the first kind, denoted as \( H_n^{(1)}(kr) \), where \( n \) is the order and \( kr \) represents the variable input.] at point [image: If you are trying to upload an image, please make sure to do so using the appropriate option or provide a URL. Let me know how I can assist further.].
Combining Equations 6, 11, we can derive the expansion of the integral in Equation 4 at the point [image: Please upload the image you'd like me to generate alternate text for.] as follows
[image: Integral equations are expressed with functions \( F(x, y) \), \( G(x, y) \), \( H(x, y) \), and \( K(x, y) \), each integrated over \( S \) with weight function \( p(y) \). Each integral equals a series sum from \( m = 0 \) to infinity, involving terms \((k - k_0)^m/m!\) multiplied by different factors \( I_m^n \), where \( n = 1, 2, 3, 4, 5 \), specified per equation. The third equation includes \( k^l I_m^3 + k^2 I_m^4 \) in the series terms. Equation number \( 14 \) is noted on the right.]
where
[image: Mathematical equations showing a series of integrals labeled M1 to M5, each involving complex functions, variables, and differentials like z, n, x, and y. These integrals appear in a physics or engineering context, with Helmholtz functions denoted as H1 and H2.]
In the integral [image: It seems that you've included some text or a mathematical expression instead of an image. Please upload the image directly or provide a valid image URL, and I will help you generate the alternate text.], the [image: Please upload the image or provide a URL for me to generate the alt text.]-th derivative of the function [image: Mathematical expression showing \( z H_1^{(1)}(z) \), where \( H_1^{(1)} \) indicates the first Hankel function of the first kind.] is represented as Equation 16.
[image: Equation showing a complex mathematical expression: \([zH^{(1)}(z)]^{(m)} = m[H^{(1)}(z)]^{(m-1)} + z[H^{(1)}(z)]^{(m)}\), labeled as equation (16).]
Substituting Equations 14, 15 into Equation 6 with impedance boundary conditions, we derive the following expression.
[image: Mathematical equation involving operators and functions. The equation features terms with functions \(C(x)\), \(p(x)\), and \(\beta(x)\), an infinite sum with variable \(m\), and coefficients involving \(k\). It equates to \(p_{\text{inc}}(x)\) and its derivative over \(\partial m(x)\). Labeled as equation (17).]
Due to the presence of singularity in the kernel function and its normal derivative in Equation 6, not only is the behavior of this equation affected but it also has an impact on other associated expressions. Consequently, the boundary integrals involving a series of expansions in Equation 15 also exhibit singularity. Standard integration methods are insufficient to solve these singular integrals. Instead, techniques such as Cauchy principal value and Hadamard finite part integral must be employed to handle them.
To discretize Equation 17, the collocation method can be utilized along with constant elements. This results in the following expression.
[image: Mathematical equation featuring complex expressions with summation, factorials, and subscripts: Cp + kC̅p + sum from m=0 to infinity of (k - k₀)ᵐ / m! × [Γᵐ + kΓₚ² + k²Γₚ³]p = Pₐₙc, labeled as equation 18.]
where C matrix can be expressed in the form of Equation 19.
[image: Matrices C and Ċ are shown. Matrix C has diagonal elements \(C_1\) and \(C_N\) with zeros elsewhere. Matrix Ċ is a scaled version, with diagonal elements \(\beta C_1\) and \(\beta_N C_N\), also containing zeros. Equation number 19 appears to the right.]
Let matrices [image: Sorry, I cannot generate alt text for the image you provided. Please upload the image directly or provide a URL.] and [image: Certainly! Please upload the image or provide a URL, and I will generate the alt text for you.] be defined as Equation 20.
[image: Mathematical expressions showing \(\mathbf{r}_1^m\) equals two cases: \(C + \mathbf{r}_1^p\) when \(m=0\) and \(\mathbf{r}_1^m\) otherwise. Similarly, \(\mathbf{r}_2^m\) equals \(C + \mathbf{r}_2^p\) when \(m=0\) and \(\mathbf{r}_2^m\) otherwise. Numbered as equation (20).]
Then, by setting [image: Mathematical equation showing I subscript three raised to the power of m equals tilde I subscript three raised to the power of m.], Equation 18 can be redefined as Equation 21.
[image: The equation shows a summation from \( m = 0 \) to \( M \) of the expression \(\frac{(k-k_0)^m}{m!} \left( \bar{T}_1^m + k \bar{T}_2^m + k^2 \bar{T}_3^m \right) \mathbf{p} = \bar{P}_{\text{inc}} \), labeled as equation (21).]
This expression includes only the initial [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. If you have any specific context or details about the image, feel free to share them as well.] terms of the Taylor expansion. Since matrices [image: A mathematical notation featuring a column vector with elements arranged vertically and the tilde accent over the top, followed by a superscript "m".], [image: I'm unable to view the image. Please upload it or provide a URL, and optionally, add a caption for additional context.], and [image: Black capital letter "I" with curly serifs.] are not influenced by frequency, they can be computed just once for wideband acoustic analysis. This helps to eliminate the significant computational cost associated with repeatedly calculating Equation 8 for different frequencies.
4 NUMERICAL EXAMPLES
In this section, the validation of the previously proposed methods was conducted [50]. First, the BEM method was verified, followed by the establishment of the BEM-CGAN wing noise surrogate prediction model based on BEM data integrated with CGAN. Additionally [51–53], the CAA-CGAN model validation was performed, along with the prediction of a propeller wake model.
4.1 The wing structural vibration and noise prediction model based on BEM-CGAN
First, consider the two-dimensional acoustic field calculation model of the tubular structure as shown in Figure 5. Let [image: Please upload the image so I can help generate the alternate text for it.] be the radius of the cylindrical shell. In the acoustic field calculation, a normal velocity [image: Please upload the image or provide a URL so I can generate the alternate text for it.] = 9.6[image: Please upload the image you'd like me to describe, and I'll create the alternate text for you.]m/s is provided, which is generated by the internal pressure of the pipe wall. The boundary condition is set at the observation point r (2 m, 0 m).
[image: Two diagrams illustrate wave propagation. (a) shows a cylindrical shape with labeled inner radius \( r_0 \) and center \( O \). (b) depicts a cross-section with concentric circles in yellow and blue labeled as incident and scattered waves, respectively. Arrows indicate incident wave direction. The observation point is marked, with \( \theta \) indicating an angle from center \( O(0,0) \). Axes \( x \) and \( y \) are labeled.]FIGURE 5 | (A) Tubular structure; (B) Section diagram.
The 2D cylindrical shell surface is uniformly discretized into 100 constant elements. When the pipe radius r0 is set to 100, 150, 200 … , 900 mm, and the frequency f ranges from 0 to 1000 Hz (with a step size of 1 Hz), Figure 6 presents the frequency response curves of sound pressure amplitudes computed using the conventional boundary element method (referred to as CBIE) and the Burton-Miller method. From Figure 6, several conclusions can be drawn: as the pipe radius increases, the sound pressure at the observation location also increases. The results obtained using the CBIE method and the Burton-Miller method are essentially the same. However, when the radius [image: It seems like you've mentioned a mathematical expression. Please upload the image or provide more context, and I can help generate an appropriate alt text.], the CBIE method exhibits false peak issues, while the Burton-Miller method can effectively resolve this problem.
[image: Nine graphs display sound pressure percentage against frequency, labeled (a) to (i). Each graph compares two models: CHIEF and Burton-Miller. The curves show variations in pressure with frequency, indicating the influence of each model across the graphs.]FIGURE 6 | [image: Please upload the image, and I will help generate the alternate text for you.] = 100,200, CBIE and Burton-Miller method for sound pressure calculation at 900 mm (A–I).
The comparison between the Taylor expansion method and the analytical solution is shown in Figure 7. The acoustic pressure results for different pipe structure radii [image: Please upload the image or provide a link to it so I can generate the alternate text.] were obtained using the Taylor expansion-based boundary element method in the frequency range of [1, 1,000] Hz with a frequency step size of 1 Hz.
[image: Four graphs labeled (a) to (d) compare sound pressure percentage versus frequency in Hertz. Each graph includes an analytical solution represented by a dotted line and Taylor series approximations with varying terms: three, five, seven, and ten. The patterns of the lines are similar, showing curves that increase and then plateau across frequencies from zero to one thousand Hertz, with sound pressure ranging up to fifty percent.]FIGURE 7 | Sound pressure calculation results of Taylor’s expansion method and analytical solutions for tubular structures. (A): r0 = 200 mm; (B) r0 = 250 mm; (C) r0 = 300 mm; (D) r0 = 350 mm.
From Figure 7, it is evident that as the number of terms in the Taylor expansion increases, the numerical solution approaches the analytical solution more closely. Notably, there are substantial disparities in the boundaries of the frequency range, primarily because the fixed frequency expansion point is positioned in the middle of the frequency range. The numerical results become increasingly inaccurate as one moves farther away from the fixed frequency expansion point. To validate this hypothesis, simulations were conducted for the radius [image: It looks like there was an error with uploading the image. Please try uploading the image again or provide a different link.] = 400 mm with frequency ranges of [1, 250] Hz and [250, 500] Hz. Figure 8 presents the simulated results.
[image: Two line graphs compare analytical and Taylor series solutions for sound pressure against frequency. Graph (a) covers 0 to 250 Hz, while graph (b) covers 250 to 500 Hz. Both graphs show curves for analytical solutions and Taylor series approximations with orders of 3, 5, 7, and 10 overlapping closely. Sound pressure is measured in pascals (Pa).]FIGURE 8 | Sound pressure calculation results of Taylor’s expansion method and analytical solution at [1,500]Hz when [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] = 400 mm. (A) Frequency at [0,250]; (B) Frequency at [250,500].
So far, the numerical methods used in this study have been validated. Next, these methods will be applied to simulate the airfoil structure, providing sample data for the construction of the BEM-CGAN model. The airfoil model used in this study is the NACA0012 airfoil, and its structure is shown in Figure 9.
[image: Graph depicting an airfoil shape with x-axis labeled from 0.0 to 1.0 and y-axis from -0.5 to 1.0. The airfoil outline is centered horizontally and slightly lower on the y-axis. Dotted lines indicate potential flow paths.]FIGURE 9 | NACA0012 airfoil structure diagram.
The sound pressure in the frequency range of [1–1,000] Hz, the first approach utilized is the CBIE method together with the fast sweeping method, both of which rely on Taylor expansion. This frequency band is further divided into [1–250], [250–500], [500–750], and [750–1,000]. Then, these two methods are used for simulation, and the results are shown in Figure 10.
[image: Four line graphs labeled (a), (b), (c), and (d) show sound pressure versus frequency with overlapping lines for CBIE, Taylor_3, Taylor_5, Taylor_7, and Taylor_10. Graph (a) shows a rising curve from 0 to 250 Hz, (b) shows a curved peak from 250 to 500 Hz, (c) has a descending curve from 500 to 750 Hz, and (d) shows a further decline from 750 to 1000 Hz. Each graph has a legend at the top right.]FIGURE 10 | Frequency segmentation simulation results [(A–D): 1–1000 Hz].
Based on Figure 10, it can be observed that as the frequency band decreases, the error between the results obtained from the fast sweeping method based on Taylor expansion and the CBIE method decreases. Therefore, we can conclude that as the frequency band becomes smaller, the results obtained from the fast sweeping method based on Taylor expansion become closer to the true solution. At this point, the obtained samples can serve as the foundation for training the CGAN model. Next, let’s analyze the modeling and prediction results of the CGAN model using the airfoil structure in the [1–1,000] Hz frequency range as an example. For the noise prediction problem of the airfoil, the discriminator and generator of the CGAN can be viewed as regression models. Therefore, the Mean Squared Error (MSE) function is selected as the loss function, and the Sigmoid function is chosen as the activation function. The capability of the generator and discriminator should approach a balance, and the representation has a relatively small parameter dimension. Thus, both the generator and discriminator adopt fully connected neural networks with three hidden layers. The network structure configuration for the CGAN model is presented in Table 1, and the schematic diagram of the network structure is shown in Figures 11, 12. The general modeling flowchart of machine learning is shown in Figure 13.
TABLE 1 | Network structure and training parameter setting of CGAN.
[image: Table showing the configuration of two neural network structures: Generator and Discriminator. Each has three hidden layers, Mean Squared Error as the loss function, Sigmoid as the activation function, Adam as the optimizer, and a learning rate of 0.0002.][image: Diagram of a neural network with three input nodes in the input layer, three fully connected hidden layers with six nodes each, and one output node. The flow is from left to right, showing data processing through layers.]FIGURE 11 | Network architecture of CGAN’s generator.
[image: Diagram of a neural network with an input layer on the left containing four nodes labeled \(x_1, x_2, y, \hat{y}\) in blue. There are three hidden layers with multiple green nodes, and an output layer on the right with one orange node labeled \( \hat{d} \). Nodes are interconnected with lines representing connections.]FIGURE 12 | Network architecture of CGAN’s discriminator.
[image: Flowchart illustrating a process. It begins with "Define task," followed by "Collect data," then "Choose evaluation metrics." Next, "Develop overfitting model," proceeds to "Parameter tuning," and ends with "Model testing and application." Arrows connect each step, indicating sequential order.]FIGURE 13 | General modeling flowchart of machine learning.
In Figure 11, [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: It seems there was an error in uploading the image. Please try again and make sure the file is attached properly. If you need assistance, feel free to ask!] represent the random vectors input to the generator. [image: Please upload the image or provide a URL so I can assist you with generating the alt text.] represents the label information, where in this case it corresponds to the frequency information. [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents the generated data, which is the sound pressure at the observation points. In the discriminator, [image: It seems there is no image provided. Please upload an image or provide a URL for me to generate the alternate text.] represents the real data, apologies for the confusion. In the discriminator, [image: It seems like there might have been a mistake, and an image wasn't uploaded. Please try uploading the image again or provide a URL.] represents the label information, specifically the frequency information. [image: Please upload the image or provide a URL to generate an alternate text description.] represents the judgment result of the discriminator’s output layer, indicating the discriminator’s classification of the input as real or fake. [image: Please upload the image you'd like me to describe, or provide a URL.] represents the real data. The machine learning modeling in this study was conducted on a desktop workstation with the following specifications: Windows Server 2019 as the operating system, 32 GB of memory, an NVIDIA GeForce RTX 4090 GPU, TensorFlow-GPU 2.6.0 as the development framework, and Python as the programming language. The detailed contents can be found in Table 2. After setting the CGAN parameters, the sound pressure data of the wing structure calculated by CBIE in the frequency range of [1, 1,000] Hz was used as the dataset and input into CGAN for training. The testing dataset was also set to be the same as the training dataset to validate the applicability of CGAN. The predicted results are shown in Figure 14. From the figure, it can be seen that the predictions of CGAN align well with CBIE itself, indicating a good agreement. Subsequently, the next step of testing was performed by extracting 3/4 of the data from the CBIE dataset as the training set and the remaining 1/4 of the data as the testing set to evaluate the generalization performance of the CGAN model. Supplementary Figure 1 illustrates the performance of CGAN on the testing set. From the figure, it can be observed that the predicted results of CGAN on the testing set exhibit a good consistency with CBIE itself, demonstrating that CGAN can be applied in the field of regression prediction. These results validate the effectiveness and generalization capability of the CGAN model in predicting the sound pressure data of the wing structure.
TABLE 2 | Development environment parameters table.
[image: Table displaying system specifications: Operating system is Windows Server 2019, development framework is Tensorflow-GPU 2.6.0, programming language is Python, memory is thirty-two gigabytes, and GPU is NVIDIA GeForce RTX 4090.][image: Line graph comparing sound pressure (Px) over frequency (Hz) for two models: CGAN (blue line) and CRIE (orange dashed line). Both lines follow a similar path, with a peak around 400 Hz and a decrease towards 1000 Hz.]FIGURE 14 | Prediction results of CGAN on the CBIE dataset for airfoil structure.
4.2 Interference noise prediction model for wing vortex with CAA-CGAN
In the next step, the data obtained from simulating the structural vortex interference noise of the wing using computational aeroacoustics (CGAA) method is combined with CGAN to establish a proxy prediction model called CAA-CGAN [12]. The NACA0012 airfoil is chosen as the reference airfoil, having a thickness of 0.12c, degree of deflection 0.02c, and an angle of attack [image: To provide accurate alt text, please upload the image or provide a URL. Alternatively, you can describe the image for further assistance.], where c represents the chord length of the airfoil. k is a wave number vector and [image: Please upload the image or provide a URL so I can generate the alt text for it.] is a small parameter, satisfy [image: It seems like there was an error in uploading the image. Please try uploading the image again or provide a URL where it can be accessed. Optionally, you may add a caption for additional context.]. The model and grid are shown in Figure 15.
[image: Diagram illustrating airfoil analysis. Panel (a) shows a schematic with an airfoil in the physical domain, labeled points for average vorticity wave, acoustic pressure computation, and sponge layer. Panels (b) and (c) depict mesh grids around an airfoil shape. Panel (b) features a denser mesh, while panel (c) displays a more spaced grid.]FIGURE 15 | Examples of two-dimensional meshes used in current research. (A) Sketch the computational domain. (B) The grid near the wings. (C) Enlarged view near the leading edge.
For wind speed with wave numbers [image: Please upload the image or provide a URL for me to generate the alt text.] = [image: It seems there is a misunderstanding. Please upload an image or provide a URL for me to generate the alternate text.] = 1, Figure 16 presents the average wall pressure [image: It seems there was an issue with displaying the image. Please try uploading the image again or provide a URL, and I can help generate the alt text for it.] and root-mean-square and compares them with the benchmark reference values provided by [54].
[image: Two side-by-side graphs labeled (a) and (b) compare datasets Gusto, cases150, cases170, cases190, and deterministic, with overlays showing margin of error. Graph (a) indicates a 0.25% margin, while graph (b) indicates a 5.3% margin. Insets with detailed views are included for both.]FIGURE 16 | (A) average pressure distribution on the airfoil surface and (B) RMS pressure on the airfoil surface.
Based on the observation from the graph, we believe that the data obtained from CAA calculations is accurate and effective, making it suitable for training data in the subsequent CGAN modeling. Next, we will proceed with the establishment of the CAA-CGAN model. The configuration information is set as follows: for wave numbers k = 1,4,8, Ma = 0.1, 0.2, … , 0.7, and the far-field angles of the airfoil are considered as conditional information. The output data will be the calculated sound pressure from the CAA.
First, the generalization prediction ability of CGAN under a single operating condition is tested. The Mach number (Ma) and far-field azimuth are used as conditional information, and the far-field sound pressure data is considered as the data to be generated. For each operating condition, the dataset is divided into a 9:1 ratio for training and testing. The CGAN is used to learn and predict the CAA dataset, and the outcomes are then contrasted with the forecasts made by the Amiet theory. Figure 17 shows the far-field sound pressure results at different wave numbers for a Mach number of 0.5, on a circular region with a radius of 4c.
[image: Three polar plots illustrate the radiation patterns of antennas at k=1, M=0.5, k=2, M=0.5, and k=4, M=0.5. Blue lines represent "Anal" and orange points represent "COM" data. Each plot has axis values ranging from zero to three-sixty degrees and two to the power of negative three to four units. A legend indicates "Anal," "COM," and "CAA."]FIGURE 17 | Comparison of far-field sound pressure prediction results when wave number k = 1,4,8 and Mach number Ma = 0.5.
After conducting the generalization testing, we extend the predictive model to predict the far-field sound pressure data under unknown operating conditions. The specific procedure is as follows: we extract the data from the training set at wave numbers k = 1, 4, 8, and Mach number Ma = 0.5, and use it as the test set. We evaluate the accuracy of the CAA-CGAN predictive model when predicting far-field sound pressure data under unknown operating conditions. Figure 18 presents a comparison of the predictive results from CGAN, CAA, and the predictions based on Amiet theory.
[image: Polar plots show radiation patterns at three different conditions: M equals zero point five, M equals one point five, and M equals five. Each graph displays data for the axisymmetric method, C-H method, and G-A-M using distinct line styles. Azimuthal angles range from zero to three hundred sixty degrees with magnitude in decibels.]FIGURE 18 | Comparison of prediction results of CGAN on sound pressure data under unknown working conditions.
From the graph, it can be observed that the predictive results from CGAN align well with the data from CAA, and the accuracy is stronger compared to the results obtained from Amiet theory.
4.3 Regarding the prediction of the velocity profile of a propeller wake
Finally, we validate the model using an example of a propeller wake. The model structure, as shown in Figure 19A, divided the domain into 12 million grids. RANS algorithm was employed in the simulation using Numeca software. The detailed diagram of the model is presented in Figure 19B. Firstly, we verified the effectiveness of CGAN in predicting the flow field data of a propeller under a single operating condition. Then, we considered using CGAN to predict the velocity distribution and key parameters of the propeller wake under multiple operating conditions. In this example, the main operating condition information considered was the wind speed and propeller rotation speed.
[image: Illustration with two panels. Panel (a) shows a visual representation of airflow around a cylindrical object with a flat plate. Panel (b) depicts a top view of airflow patterns, highlighting turbulence and flow lines.]FIGURE 19 | Schematic Diagram of the Contra-Rotating Propeller Grid Model and Local View of the Rear Blade: (A) Regarding the mesh model of a propeller; (B) Regarding the local image of a propeller’s trailing blade.
Firstly, under fixed wind speed and rotation speed conditions, the three-dimensional flow field of the propeller wake was divided into 13 planes. The velocity distribution at the trailing edge of the rear propeller blade was extracted. CGAN was used for the adaptability test of predicting the velocity distribution and semi-wake width of the propeller wake. The input and output parameters of CGAN are shown in Table 3.
TABLE 3 | Input and output variables of CGAN under single operating conditions.
[image: Table displaying neural network parameters: Input variables are x and y. Output variable is V. Hidden layer settings include 66, 89, 105, 154, 121, 87, 65. Learning rate is 0.0002.]Secondly, we verify the applicability of CGAN by testing it on the training dataset itself. The data from the cases with a wind speed of 30 m/s and a rotation speed of 2,500 r/min are selected as the overall dataset. A portion of the wind speed distribution data from these cases is chosen as the training and testing sets. After 2,000 iterations of training, the predictive results of CGAN are shown in Figure 20.
[image: Four line graphs labeled (a), (b), (c), and (d) compare real values (blue) and CGAN values (orange). Each graph displays a different dataset, showing similar trends with varying degrees of alignment between the real and CGAN data, including a notable dip in the center of each graph.]FIGURE 20 | The velocity distribution on the tangent line of the leading edge of the rear blade of a counter rotating propeller (wind speed:30 m/s,rotational speed:2500 r/min). (A) Cross-Section 1; (B) Cross-Section 2; (C) Cross-Section 3; (D) Cross-Section 4.
Testing on the dataset under a single operating condition indicates that CGAN has the potential to be applied to such problems. Therefore, further exploration of CGAN’s generalization performance is needed.
From a practical perspective, what we often need is complete data for any operating condition, rather than partial data for specific conditions. Therefore, both the wind speed and velocity will be used as input variables, while other settings will be similar to before. Following the previous applicability test, the next step is to directly perform generalization testing. After multiple rounds of debugging, the number of hidden layers in CGAN has been increased to 10. The overall dataset consists of 27 sets of data under varying wind speeds and rotation speeds. The data with a wind speed of 50 m/s and a rotation speed of 5,500 r/min are selected as the testing set, and the results after 20,000 iterations of training are shown in Figure 21.
[image: Eight scatter plots labeled (a) to (h) display data comparisons between "Real Y" and "CGAN Y" in blue and orange. Each graph shows a similar pattern with data points diverging and then converging. The x-axis ranges vary, but all y-axes range from zero to one hundred.]FIGURE 21 | Prediction results of CGAN on a test set with wind speed of 50 [image: It seems there was an issue with your image upload. Please try uploading the image again, and I will help you generate the alternate text for it.] and rotational speed of 5,500 [image: Please upload the image or provide a URL for me to generate the alternate text.]. (A) Cross-Section 1; (B) Cross-Section 2; (C) Cross-Section 3; (D) Cross-Section 4; (E) Cross-Section 5; (F) Cross-Section 6; (G) Cross-Section 7; (H) Cross-Section 8.
Figure 21 shows the velocity distribution along the tangential plane at 10 cross-sections of the propeller’s leading edge under the experimental conditions, yielding fairly accurate results. Additionally, we also predicted the velocity loss and half-wake width at a wind speed of 30 m/s and rotational speed of 4,800 rpm. The predicted results by the CGAN are shown in Figure 22.
[image: Two scatter plots compare prediction and actual values. Plot (a) shows COAWST predicted values (blue triangles) and real values (orange circles) of Y against test points. Plot (b) displays COAWST predicted (blue triangles) and real values (orange circles) of mu against test points.]FIGURE 22 | Comparison between CGAN’s predicted results on the test set and the actual results: (A) The speed prediction results of CGAN; (B) Prediction results of half wake width for CGAN.
In Figure 22A shows the summary prediction results of the CGAN for velocity, while Figure 22B shows the summary results for the half-wake width. The half-wake width data was obtained through simple calculations on the initial data. The horizontal axis represents the test points corresponding to 13 cross-sections under this operating condition.
It is worth mentioning that when using CGAN to establish a surrogate prediction model, the generator of CGAN has an important parameter: the noise vector. In previous applications for image generation, this vector often had dozens or even hundreds of dimensions to ensure the richness of generated images. However, in the present study, a high-dimensional noise vector would not only lead to some generated data deviating from the desired results, but also significantly increase the complexity of the network structure in order to meet the accuracy requirements.
5 CONCLUSION
This study combines three numerical methods with Conditional Generative Adversarial Networks (CGANs) to establish a surrogate modeling approach for predicting the noise of airfoil structures. The main findings are as follows:
	(1) The combination of BEM, CAA, CFD, and CGANs has been explored to investigate the applicability of CGANs to this type of problem.
	(2) The surrogate prediction model established through CGANs reduces significant computation time, aiding in speeding up the optimization and design process of airfoil structures.
	(3) Modifying certain structures of CGANs proves beneficial for handling regression problems in this research.

However, this approach has some limitations. It may struggle to achieve ideal prediction results when the data dimension is too high or when there is poor correlation between the data, rendering the predictions unreliable. To address these limitations, our future research will focus on developing more efficient numerical algorithms. Additionally, exploring advanced deep learning techniques to improve the accuracy of the surrogate model. By doing so, we aim to overcome these challenges and enhance the reliability and accuracy of the surrogate prediction model.
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This paper presents the acoustic analysis of a three-dimensional cylindrical shell model under electromagnetic vibration, a critical factor affecting the performance of electric motors in various applications such as automotive, aerospace, and industrial systems. The study provides a multidisciplinary approach that integrates electromagnetics, structural vibration, and acoustics, solved using the fast multipole boundary element method (FMBEM). The results summarize the validation of the analytical models and numerical simulations, offering insights into effective vibration reduction methods. The conclusions indicate that the 3-D numerical analysis using FMBEM aligns well with the analytical solution for the sound pressure in the exterior acoustic domain of the cylindrical shell model. The paper contributes valuable insights for the design of low-noise motors and the control of electromagnetic vibration and noise in electric motors.
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1 INTRODUCTION
The performance of electric motors, especially in applications such as automotive, aerospace, and industrial systems, is heavily influenced by their electromagnetic vibration and noise. These aspects not only affect the operational efficiency but also the comfort and reliability of motor-driven systems. With the rapid development of electric vehicles and advanced industrial automation, there is an increasing demand for motors that are efficient, compact, and silent. Therefore, the accurate prediction and control of their electromagnetic vibration and noise have become paramount. A significant body of research has been dedicated to understanding and mitigating the sources of electromagnetic vibration and noise in permanent magnet synchronous motors (PMSMs) and other types of electric motors.
Studies by Ballo et al. [1] and Xing et al. [2, 3] have focused on developing simplified analytical models and numerical prediction models to forecast the noise and vibration in PMSMs at the design stage. The influence of electromagnetic forces on motor vibration [4, 5] has also been a central theme. Strategies to mitigate vibrations and noise have been explored [6, 7]. Experimental studies by Torregrossa et al. [8] and Zhao et al. [9] have validated theoretical models and numerical simulations, providing insights into the effectiveness of various vibration reduction methods. The detection and analysis of oscillations in rail vehicle systems has been significantly advanced [10–12], particularly focusing on pantograph control, which not only improved the understanding of signal processing in this context but also provided practical solutions for real-time applications, enhancing the safety and efficiency of rail transportation. A multidisciplinary approach by Chai et al. [13] and Wu et al. [14], combining electromagnetics, structural mechanics, and acoustics, has been employed to provide a comprehensive understanding of motor behavior. The dynamic behavior of the rotor and the acoustic performance of the entire motor system have been examined [15, 16]. Optimization studies by Mendizabal et al. [17] have provided guidelines for designing low-noise motors. Certain studies have focused on specific aspects such as the effects of laminations [18], axial forces [19], and the application of amorphous alloys in stators [20], offering specialized insights into motor design.
The finite element method (FEM) has been extensively employed by Mao et al. [21] and Wang et al. [22] to predict acoustics, fracture mechanics, electromagnetics, and vibrations. Additionally, [23, 24] investigated the natural frequencies of motor components. However, there are several problems with FEM when modeling infinite domains. The boundary element method (BEM) has been used to tackle potential problems because it offers good accuracy and easy mesh construction. Particularly for exterior acoustic problems, the Sommerfeld radiation condition at infinity is rapidly satisfied [25]. The boundary integral problem has been quantitatively solved using the Galerkin approach for BEM implementation [26, 27].
In order to directly resolve the equation system, the conventional boundary element method (CBEM) produces a dense and non-symmetric coefficient matrix that takes a long time to compute. The fast multipole method (FMM) [28–30], the fast direct solver [31, 32], and the adaptive cross approximation approach [33] are only a few of the methods that have been employed to expedite the resolution of the integral issue. Architects and designers are increasingly considering changing the structural geometry to reduce noise. There is much potential for radiated noise reduction with this structural-acoustic optimization [34–36]. FEM and BEM may be employed with some computer-aided engineering (CAE) software. However, contemporary CAE requires that the models produced by CAD software be converted into simulation-ready models as part of the preprocessing phase. The transfer of geometric model data by the CAE results in geometry errors. One proposed approach to this problem [12, 37] is to combine BEM with geometric modeling and numerical simulation using isogeometric analysis (IGA) [38–40]. IGABEM has been employed to tackle an extensive variety of problems, including elastic mechanics [41], potential problems [42–46], heat transfer problems [47], wave propagation [48–53], fracture mechanics [54], electromagnetics [55–60], and structural optimization [61–66].
In this study, the acoustic analysis under electromagnetic vibration is solved using the fast multipole boundary element method (FMBEM). With regard to the advantages of FMBEM over CBEM, please refer to Chen et al. [67].
2 ANALYTICAL SOLUTION OF SOUND PRESSURE IN A CYLINDRICAL SHELL MODEL FOR EXTERNAL ACOUSTIC ANALYSIS
A cylindrical shell with radius [image: Please upload the image or provide the URL so I can generate the alternate text for you.] and infinite length is the subject of the investigation. Consider a region of length [image: It seems there is no image attached. Please upload the image or provide a URL to generate the alternate text.] in the model where the cylindrical shell vibrates and outside of which there are no displacements of the cylindrical shell. The acoustic vibration coupling is not taken into account while analyzing the sound field. The region outside the cylindrical shell when [image: Please upload the image or provide a URL for me to generate the alternate text.] is the acoustical analysis domain. The model is presented in Figure 1.
[image: Diagram of a cylindrical pipe with a narrowed middle section. It shows cylindrical coordinates, where \( x \) and \( y \) are radial directions, and \( z \) is the axial direction. Labels include angle \( \theta \), radius \( r \), axial length \( l \), and radius \( a \) at the narrowed section.]FIGURE 1 | Cylindrical shell model for the acoustical analysis.
Assuming a known radial displacement [image: Please upload the image or provide a URL to generate the alternate text.] in Equation 1:
[image: Mathematical equation showing wave function: \( w(z, \theta, t) = W_{m,n}(z) \cos(n\theta) e^{-i \omega t} \).]
where [image: Mathematical expression of gamma sub m of z.] is the modal function in the axial direction, [image: Equation displaying the cosine function with variable \(n\) and angle \(\theta\), represented as \(\cos(n\theta)\).] is the modal function in the circumferential direction, [image: Please upload the image you would like me to describe, or provide a link to it.] is the amplitude, and [image: Please upload the image or provide a URL to it so I can generate the appropriate alt text.] is the imaginary unit. After that, the time term [image: The mathematical expression depicts an exponential function with a complex exponent, represented as \( e^{-j\omega t} \).] is omitted from the calculation in the frequency domain.
Equation 1 is derived for time [image: Please upload the image or provide a URL so I can help generate the alternate text.] in order to obtain the velocity expression, as shown in Equation 2.
[image: Mathematical equation displaying the expression for \( \tilde{u}(z, \theta) \). It is equal to \(-j \omega W_{mn}(z) \cos(n \theta)\), labeled as equation (2).]
The sound field in the domain must follow Equation 3 after being excited by the displacement in Equation 1.
[image: Equation showing the function \( \rho(r, z, \theta) = P(r) Z(z) \cos(n \theta) \) labeled as equation number three.]
A Fourier transform of Equations 1, 3 in the [image: Please upload the image or provide a URL for me to generate the alternate text.] direction yields Equations 4, 5.
[image: Mathematical equation displaying \(\tilde{w}(k_z, \theta, t) = W_m \dot{Y}_m(k_c) \cos(n \theta)\) followed by equation label (4).]
[image: The equation displays a mathematical expression for \(\tilde{p}(r, k_{z}, \theta)\), indicating it equals \(P(r)\) times \(\tilde{J}_{m}(k_{z})\) times \(\cos(n\theta)\). The equation is labeled with a number five on the right.]
in which [image: Mathematical expression showing \(k_z = \omega / c_z\), where \(k_z\) denotes wave number, \(\omega\) is angular frequency, and \(c_z\) is phase velocity.] is the wave number, and we have Equation 6.
[image: The formula represents a mathematical equation integral from negative infinity to infinity of gamma sub m of z multiplied by e raised to the power of negative j k sub z times z with respect to dz. This equals gamma tilde sub m of k sub z.]
In the cylindrical coordinate system, the acoustic Helmholtz equation has the form shown in Equation 7.
[image: Partial differential equation in cylindrical coordinates: the second partial derivative of p with respect to r, plus one over r times the partial derivative of p with respect to r, plus one over r squared times the second partial derivative of p with respect to θ, plus the second partial derivative of p with respect to z, plus k squared p equals zero.]
where the wave number [image: Formula depicting the wave number for a fluid medium, where \( k_f = \omega / c_f \). Here, \( k_f \) represents the wave number, \( \omega \) is the angular frequency, and \( c_f \) is the speed of sound in the fluid.].
A Fourier transform of Equation 7 in the [image: Please upload the image you'd like me to generate alternate text for.] direction yields Equation 8.
[image: Differential equation involving the radial part of a wave function: the second derivative of \( \tilde{p} \) with respect to \( r \), plus \( \frac{1}{r} \) times the derivative of \( \tilde{p} \) with respect to \( r \), plus a bracket term \( \left[ k_f^2 - k_z^2 - \left( \frac{n}{r} \right)^2 \right] \tilde{p} \), equals zero. Labeled as equation eight.]
Substituting Equation 5 into Equation 8 yields Equation 9.
[image: Partial differential equation with terms: second derivative of P(r) with respect to r, plus one over r times the first derivative of P(r) with respect to r. Added to bracketed terms k sub r squared minus k sub c squared minus n squared over r squared, all multiplied by P(r), Y sub m with k sub c, cos of n theta equals zero. Equation labeled as nine.]
We need Equation 10 to make Equation 9 constant.
[image: A mathematical equation is shown: the second partial derivative of P with respect to r plus one over r times the partial derivative of P with respect to r plus k sub l squared minus k sub z squared minus n squared over r squared, all multiplied by P of r, equals zero. This is equation 10.]
The homogeneous equation shown in Equation 10 is a Bessel equation with the solution in Equation 11.
[image: Equation showing \( P(r) = AJ_n(k_rr) + BY_n(k_rr) \) with \( k_r = (k_f^2 - k_z^2)^{1/2} \). Equation number is 11.]
When [image: It seems there is no image uploaded. Please provide the image or its URL, and optionally add a caption for context.], the radiation field tends to be in the form of a plane wave, as shown in Equation 12.
[image: Mathematical equation showing a function P(r) equals A multiplied by e to the power of i k r minus i omega t. This is expressed as A times the sum of cosine of k r and i sine of k r, all multiplied by e to the power of negative i omega t.]
Furthermore, based on the approximation of two classes of Bessel functions at infinity in Equation 13,
[image: Limit expressions for Bessel functions as \( k \) approaches infinity. The limit of \( J_n(k, r) \) goes to a square root of \(\frac{2}{\pi k r}\) times cosine of \((kr - \frac{2n+1}{4}\pi)\). The limit of \( Y_n(k, r) \) goes to a square root of \(\frac{2}{\pi k r}\) times sine of \((kr - \frac{2n+1}{4}\pi)\). Equation (13).]
[image: A mathematical equation displays \( B = jA \).] is needed to satisfy the infinity condition. Then, we have Equation 14.
[image: Mathematical equation showing \( P(r) = A[J_n(kr) + Y_n(kr)] = AH_n^{(1)}(kr) \), labeled as equation \( (14) \).]
where [image: Mathematical notation showing \( H_n^{(1)} \).] denotes the Hankel functions of the [image: Please upload the image you would like me to generate alternate text for.]-th order first kind.
The continuity conditions shown in Equation 15 must be satisfied at the interface:
[image: Equation showing the partial derivative of pressure, labeled as equation 15. The left side is the negative of one over \( j \omega \rho_f \) times the partial derivative of pressure with respect to \( r \) at \( r = a \). The right side is \(\dot{u}\) at \( r = a^{-} \).]
Performing a Fourier inverse transform of Equation 15, we have Equation 16.
[image: Partial derivative of p with respect to r equals negative omega squared rho subscript f w dot, equation sixteen.]
Substituting Equations 4, 5 into Equation 16 yields Equation 17.
[image: Equation showing \( A = -\frac{\omega^3 \rho_f W_m}{k_n H_n^{(1)}(k_n a)} \), labeled as equation (17).]
and then, we have Equation 18.
[image: Equation 18 shows a mathematical expression for pressure denoted as \(\hat{p}\), equated to a fraction. The numerator is \(\omega^2 \rho_0 H_n^{(1)}(kr)\) and the denominator is \(k_r H_n^{(1)}(ka)\). This fraction multiplies with \(\dot{y}_m(k_c) W_m \cos(n\theta)\).]
Performing a Fourier inverse transform of Equation 18, we finally obtain an analytical solution for the sound pressure at any point in the exterior acoustic domain for the cylindrical shell model, as shown in Equation 19.
[image: Equation showing the expression for pressure \( p(r, z, \theta) \) involving angular frequency \(\omega\), fluid density \(\rho_f\), Hankel functions \(H_n^{(1)}\), and integral terms with variables \( r, z, k, a, \theta\), and constants \( V_m \) and \( n \).]
Note that [image: Please upload the image or provide a URL for the image you want me to generate alternate text for.].
3 NUMERICAL ANALYSIS OF SOUND PRESSURE IN THREE-DIMENSIONAL EXTERNAL ACOUSTIC ANALYSIS
Consider the Helmholtz governing equation in time-harmonic acoustic analysis, as shown in Equation 20.
[image: Equation showing the Helmholtz equation: the Laplacian of \( p(x) \) plus \( k^2 \) times \( p(x) \) equals zero for all \( x \) in the domain \(\Omega\).]
where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is the Laplace operator, [image: It seems like there is an issue with the image upload or description. Please try uploading the image again or provide a URL for it. If you can, add some context or a caption to help with the description.] is the sound pressure at field point [image: Please upload the image or provide a URL so I can help generate the alternate text for it.], [image: Mathematical expression depicting the wave number \( k \) as the ratio of angular frequency \( \omega \) to the speed of light \( c \).] is the wave number, [image: Please upload the image or provide a URL, and I will help you generate the alt text. If you have any specific context or details about the image, feel free to include that as well.] is the angular frequency of the incoming wave, [image: Please upload the image you want me to describe, and I will generate the alt text for you.] is the sound speed in the domain [image: Sure! Please upload the image or provide a URL so I can generate the alternate text for it.], and [image: It seems you didn't upload an image. Please try uploading the image file or provide a URL. If you have any additional context or a caption, feel free to include that too.] is the domain for acoustic analysis. In the frequency domain, the time-dependent component [image: Exponential expression representing a complex sinusoidal function with the form \( e^{-j\omega t} \), where \( j \) is the imaginary unit, \( \omega \) is the angular frequency, and \( t \) is time.] can be excluded from the computation.
Applying Green’s second theorem to the Helmholtz equation yields the following integral equation, as shown in Equation 21.
[image: Equation depicting an integral form related to boundary problems. It shows \( p(x) + \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} p(y) \, \mathrm{d}\Gamma(y) = \int_{\Gamma} G(x, y) q(y) \, \mathrm{d}\Gamma(y) + p^{inc}(x), \quad y \in \Gamma \). Equation number 21 is noted.]
where [image: The image shows the mathematical expression \(\Gamma = \partial \Omega\), representing the boundary \(\Gamma\) of a set \(\Omega\).] is the border of the domain [image: If you have an image you'd like me to describe, please upload it or provide a URL.], [image: Please upload the image or provide a URL so I can assist you in generating the alt text.] is the sound source point on the boundary [image: Please upload the image so I can generate the alt text for you.], [image: Please upload the image you would like me to analyze, and I will generate the alternate text for it.] is the field point affected by the sound source [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: It seems like you've shared a mathematical expression rather than an image. If you have an image to upload, please do so, and I'll help generate the alternate text for it.] is the Green’s function, [image: It seems like you provided a mathematical expression instead of an image. If you intended to upload an image, please try uploading it again, and I’ll be happy to help with the alt text.] is the outward unit normal vector at point [image: Please upload the image or provide a URL so I can help generate the alternate text for you.], [image: Mathematical expression showing the normal derivative: partial derivative of parentheses with respect to n equals the gradient of parentheses dot product with vector n.] is the exterior derivative, [image: Mathematical expression showing the letter "p" with the superscript "inc" indicating a term often related to inertial properties in physics or engineering equations.] is the sound pressure of the incident wave, and [image: It seems there might be an error in the provided text. Please upload the image or provide a URL for me to generate the alt text.] is the outward flux at point [image: Please upload the image you would like me to generate alternate text for. You can do this by providing a link or uploading the image directly.]. [image: It seems like you've provided a text snippet rather than an image. If you have an image you would like me to create alt text for, please upload it or provide a URL.] satisfies the Neumann boundary condition, as shown in Equation 22.
[image: Equation depicting \( q(\mathbf{y}) = \frac{\partial p(\mathbf{y})}{\partial n(\mathbf{y})} = j \omega \nu q_f(\mathbf{y}) \), labeled as equation 22.]
where [image: Please upload the image you would like me to generate alternate text for.] is the density of the medium in which the sound wave propagates, and [image: Please upload the image or provide a URL for me to generate the alternate text.] is the normal velocity at point [image: Please upload the image, and I can help generate the alt text for it. If you're unsure how to do so, just click on the upload button and select your image.].
To obtain the unknown sound pressure on the boundary [image: I’m sorry, I cannot see the image you referenced. Please upload the image or provide a URL, and I'll be happy to help create the alt text for it.], the field point [image: Please upload the image or provide a URL so I can generate the alt text for you.] may converge to the boundary, and thus, the Kirchhoff–Helmholtz conventional boundary integral equation (CBIE) is obtained from Equation 21, as shown in Equation 23.
[image: Mathematical equation involving integrals. The equation is \( c(\mathbf{x})p(\mathbf{x}) + \int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{y})} p(\mathbf{y}) \, d\Gamma(\mathbf{y}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y})q(\mathbf{y}) \, d\Gamma(\mathbf{y}) + p^{\text{inc}}(\mathbf{x}), \, \mathbf{x}, \mathbf{y} \in \Gamma. \) It is labeled as equation (23).]
The normal derivative boundary integral equation (NDBIE) of Equation 23 is given by Equation 24.
[image: Equation showing an integral expression: \(c(x)q(x) + \int \frac{\partial^2 G(x,y)}{\partial n(y)\partial n(x)} p(y)\,d\Gamma(y)\) equals \(\int \frac{\partial G(x,y)}{\partial n(x)} q(y)\,d\Gamma(y) + \frac{\partial p^{inc}(x)}{\partial n(x)}\), where \(x, y \in \Gamma\). Equation is labeled as (24).]
In Equations 23, 24, [image: It seems there might have been an issue with uploading the image. Please try uploading the image again or provide a URL to the image you'd like described.] = 1/2 when the boundary around point [image: Please upload the image or provide a link, and I will be happy to generate the alternate text for it.] is smooth.
Applying only CBIE or NDBIE leads to non-uniqueness of the solution to the exterior sound field analysis, which can be solved by linearly combining CBIE and NDBIE. This is called the Burton–Miller method [68], as shown in Equation 25.
[image: Mathematical equation involving integrals and functions. The equation includes terms with \( c(x) p(x) \), \( \alpha c(x) q(x) \), integrals over a domain \(\Gamma\) with functions \( G(x, y) \), \( p(y) \), \( q(y) \), and partial derivatives with respect to \( n(y) \). The expression equals another integral with similar terms, plus \( p^{\text{inc}}(x) \), and a derivative of \( p^{\text{inc}}(x) \) with respect to \( n(x) \). The notation \( x, y \in \Gamma \) indicates variables within a specified domain. Equation labeled (25).]
in which [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the coupling coefficient, and we have Equation 26.
[image: Equation defining variable alpha as a piecewise function: alpha equals j when k is less than one, and j over k squared when k is greater than or equal to one, labeled equation twenty-six.]
In Equation 25, for 2-D acoustic analysis, we have Equation 27.
[image: Mathematical expressions involving the Helmholtz equation: \( G(\mathbf{x}, \mathbf{y}) = \frac{1}{4} H^{(1)}_0(kr) \). The derivative \(\frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{x})}\) equals \(\frac{jk}{4} H^{(1)}_1(kr) \frac{\partial r}{\partial n(\mathbf{x})}\). The second derivative \(\frac{\partial^2 G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{y}) \partial n(\mathbf{x})}\) includes terms with \( H^{(1)}_2(kr) \) and \( H^{(1)}_1(kr) \) involving detailed differential operations. Equation number (27) is indicated.]
and for the 3-D acoustic problem, we have Equation 28.
[image: Equation illustrating Green's function \( G(x, y) \) and its derivatives. The equation shows \( G(x, y) = \frac{e^{jkr}}{4\pi r} \), and derivatives with respect to \( n(x) \) and \( n(y) \), incorporating terms like \( (1 - jkr) \), and components involving \( \nabla r \) across \( x \) and \( y \). The full expression details complex phase behavior and interaction between points \( x \) and \( y \).]
where [image: A mathematical expression showing the notation \( H_n^{(1)} \).] is the Hankel function of [image: Please upload the image you'd like me to generate alternate text for. If there are specific details or context you want included, feel free to add that information as well.]-th order first kind, [image: Please upload the image, and I'll create the alt text for you.] is the distance between point [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please upload the image you would like me to generate alt text for.], [image: Mathematical expression showing the equation: \( r = |x - y| \), where \( r \) is equal to the absolute value of the difference between \( x \) and \( y \).], and [image: The image shows the symbol "n" with a subscript "i", commonly used in mathematics to denote the ith element in a sequence or set.] is the component of the coordinate.
In Equation 25, discretizing the boundary [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] yields the linear equations shown in Equation 29.
[image: Equation showing the relationship: \( H\mathbf{p} = G\mathbf{q} + p_{\nu} \).]
where [image: A lowercase letter "p" followed by a subscript lowercase letter "i" in a serif font style.] is the nodal pressure from [image: Text showing the mathematical expression \( p^{inc} \) with "p" as the base and "inc" as the superscript.].
The sound pressure at point [image: Please upload the image or provide a URL for it, and I will help generate the alternate text.] could be obtained by solving Equation 29.
4 NUMERICAL EXAMPLE
In this part, we will calculate the sound pressure at some certain location using the analytical equation (Equation 19) and numerical analysis (using BEM), respectively. Both are implemented using our in-house Fortran code. The algorithm is crafted using the Fortran 90 programming language and compiled with the combination of Visual Studio 2022 and Intel®oneAPI 2022 toolkit. It is executed on a PC with an Intel(R) Xeon(R) Bronze 3204 CPU [image: Please upload the image you'd like me to generate alternate text for.] 1.90 GHz and complemented by 128.0 GB of RAM. In this part, the coordinates of the points are described using the cylindrical coordinate system in Equation 19.
Consider the cylindrical shell model shown in Figure 1. The cylindrical shell of radius [image: Please upload the image or provide a URL for me to generate the alternate text. If you have any specific context or details you'd like included, let me know!] = 0.5 m and length [image: Please upload the image or provide a link to it for me to generate the alt text.] = 0.4 m is closed at both ends for the three-dimensional (3-D) numerical analysis. Consider Equation 1. Let the vibration of the cylindrical shell be uniformly distributed in the axial direction; that is, let [image: The image shows a Greek letter gamma with a subscript m, commonly used in mathematical or scientific contexts to denote a variable or parameter specific to a model or equation.] = 1. Let the amplitude of the vibration [image: It seems there might be a misunderstanding. I need you to upload the image or provide a URL. Once you do that, I can help generate the alternate text. Alternatively, you can describe the image if uploading is not possible.] = [image: Please upload the image or provide a URL for me to generate the alternate text. You can also add a caption for additional context if needed.] m, the frequency [image: A mathematical equation reading "f equals omega divided by two pi," representing the relationship between frequency and angular velocity.] = [100, 1,000] Hz, and the order of the circumferential vibration order be [image: Please upload the image or provide a URL, and I will help generate the alt text for it.] = 0.
The cylindrical shell model is meshed with quadrilateral elements. Figures 2A, B gives the meshing scheme with element number of 2112 and 8320, separately. Figure 3 provides the numerical solutions of the sound pressure at ([image: A mathematical expression showing the square root of two divided by two, often appearing in trigonometry as the sine or cosine value of a 45-degree angle.], 0.0, [image: Please upload the image or provide a URL so I can help generate the alternate text.]) — (0.5, 0.5, 0.0) in the cartesian coordinates for the meshing schemes in Figure 2, where the center of the cylindrical shell is at (0.0, 0.0, 0.0). The comparison in Figure 3 is crucial, as it tests the sensitivity of the numerical solution to the mesh density. A fine mesh provides a more accurate representation of the continuous problem but at a higher computational cost. Conversely, a coarse mesh reduces computational demand but may lead to inaccuracies. The two mesh schemes have 2,112 and 8,320 elements, respectively. The agreement between these two schemes suggests that the coarser mesh (2,112 elements) is sufficiently refined for the problem at hand, capturing the essential features of the sound pressure distribution without the excessive computational cost associated with a very fine mesh. Good agreement between the two mesh schemes indicates that the numerical solution has converged to a value that accurately represents the sound pressure at the specified point. This convergence is a critical aspect of numerical methods, ensuring that the solution is reliable and independent of the discretization. The consistency of results from different mesh densities also serves as an indirect validation of the FMBEM approach. It demonstrates that the method is capable of providing accurate results even with relatively coarse meshes, which is particularly beneficial for complex geometries and larger models where fine meshing becomes impractical. Based on this, we will select the element size configuration shown in Figure 2A for the cylindrical shell model with radius [image: Sure, please upload the image you would like me to describe.] = 0.5 m and length [image: Symbol representing "greater than or equal to" (≥).] 0.4 m in the subsequent analysis.
[image: Two models of cylindrical meshes are displayed. The first, labeled "a," has an element number of 2112, while the second, labeled "b," has an element number of 8320. Both models show detailed grid patterns covering the surface.]FIGURE 2 | Meshing scheme for the cylindrical shell model with closed ends. Radius [image: Please upload the image so I can generate the alternate text for it.] = 0.5 m and length [image: A pair of black headphones with a sleek, modern design lies on its side. The headband is lined with cushioned padding, and the ear cups are rounded with soft, plush material. A coiled audio cable is visible, connected to the base of one ear cup. The background is blurred, highlighting the headphones.] = 0.4 m. (A) Model meshing. Number of elements = 2,112. (B) Model meshing. Number of elements = 8,320.
[image: Line graph showing sound pressure (Pa) against frequency (Hz) from 0 to 1000 Hz. The data forms a curve rising sharply, with two datasets: one in black circles and one in red squares, both labeled with specific numeric values.]FIGURE 3 | Numerical results of sound pressure at ([image: Square root of two divided by two.], 0.0, [image: Please upload the image or provide a URL so I can help generate the alternate text for it.]). Circumferential vibration order [image: Please upload the image you'd like me to describe. If you need help with how to do so, just let me know!] = 0, length [image: A young girl with long, dark hair is thoughtfully reading a book at a wooden table. She is wearing a striped long-sleeve shirt, and there are more books stacked beside her. Soft, natural light illuminates the scene.] = 0.4 m; number of elements = 2,112 vs. 8,320.
Consider the model presented in Figure 1. The cylindrical shell model for analytical analysis is of infinite length, in which only a segment of length [image: It seems like there was an error in uploading the image or linking to it. Please try uploading the image again or providing a URL, and I will help generate the alternate text.] vibrates. This infinite-length cylindrical shell is considered as the boundary of the exterior acoustic domain, meaning that the acoustic analysis does not take into account the interior region of the cylindrical shell. However, during the 3-D numerical analysis, the boundary of the exterior acoustic domain is not a cylindrical shell of infinite length but a shell of length [image: It seems there was an error in uploading the image. Please try uploading the image again, and I will help generate the alternate text for it.] with closed ends, which causes the space outside the [image: Please upload the image or provide a URL so I can generate the alternate text for it.]-length segment in the infinitely long cylindrical shell to be involved in the acoustic analysis. Thus, computing errors are introduced. For the cylindrical shell model with a radius of 0.5 m and a length of 0.4 m, the analytical and 3-D numerical solutions for the sound pressure at ([image: Please upload the image or provide a URL, and I can help generate the alt text for it.], 0.0, [image: Please upload the image or provide a URL so I can generate the alternate text for it.]) are provided in Figure 4. The two curves do not fit well, as we have predicted. This discrepancy is expected and can be attributed to several factors. The analytical model assumes an infinite length for the cylindrical shell, which simplifies the boundary conditions but deviates from the actual finite length used in the numerical model. The numerical model includes the effects of the shell’s finite length, which introduces additional complexities not fully captured by the analytical model’s assumptions. The discrepancy highlights the limitations of analytical models when they are based on simplified assumptions that may not fully represent the physical system’s complexity. The comparison underscores the importance of validating analytical models with numerical simulations, especially when the models are used for design and optimization in engineering applications. The results suggest that the model configuration, particularly the length of the cylindrical shell, significantly affects the accuracy of the sound pressure predictions. This insight is crucial for selecting appropriate model parameters in both theoretical and numerical studies. The choice between analytical and numerical methods should be guided by the specific requirements of the problem, including the need for accuracy, computational resources, and the complexity of the model.
[image: Line graph showing sound pressure (Pa) against frequency (Hz) from 0 to 1000. The black line with square markers represents "a0_Analy," and the red line with circle markers represents "a0_Nume_3.0.4_E2112." Both lines show an upward trend, with the red line slightly below the black line.]FIGURE 4 | Numerical vs. analytical results of sound pressure at ([image: Mathematical expression showing the square root of two divided by two.], 0.0, [image: It seems there was an error in your request or the image isn't properly uploaded. Please upload the image file or provide a URL for me to generate the alt text.]) for a cylindrical shell model of length [image: A close-up photo of the keys and strings inside a piano, showing the intricate mechanics and alignment. The image focuses on the hammers poised to strike the strings, highlighting the craftsmanship involved in musical instrument construction.] = 0.4 m. Circumferential vibration order [image: Please upload the image or provide a URL so I can generate the alt text for it.] = 0.
To reduce the computational errors resulting from the axial external space of the cylindrical shell, we attempt to lengthen the shell model with closed ends in the 3-D numerical analysis. For models of various lengths, the numerical results are compared with the analytical solution to determine an appropriate model configuration. Figure 5 gives the sound pressure at ([image: Please upload the image or provide its URL so I can help generate the alternate text for it.], 0.0, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]) for cylindrical shell models of different lengths. The circumferential vibration order [image: Please upload an image or provide a URL for which you need alternate text.] = 0. Figures 5A–F show that the 3-D numerical result agrees well with the analytical solution when the length l [image: If you could provide the image by uploading it, I can help generate the alternate text for you.] 4 m. The analytical model assumes an infinite length for the cylindrical shell, which simplifies the boundary conditions but deviates from the actual finite length used in the numerical model. The numerical model includes the effects of the shell’s finite length, which introduces additional complexities not fully captured by the analytical model’s assumptions. The discrepancy between the analytical and numerical solutions for shorter shells highlights the limitations of analytical models when they are based on simplified assumptions that may not fully represent the physical system’s complexity. The comparison underscores the importance of validating analytical models with numerical simulations, especially when the models are used for design and optimization in engineering applications.
[image: Six scatter plots showing sound frequency over different lengths and element numbers. Each graph plots frequency against normalized quantity, with data points marked and connected by red lines. The graphs are labeled as follows: (a) length 1 meter, element number 2880; (b) length 2 meters, element number 4160; (c) length 4 meters, element number 6784; (d) length 5 meters, element number 8064; (e) length 9 meters, element number 13312; (f) length 10 meters, element number 14592. The trend in each plot shows a gradual increase in value.]FIGURE 5 | Numerical vs. analytical results of sound pressure at ([image: Mathematical expression showing the square root of two divided by two.], 0.0, [image: Please upload the image or provide a URL to generate the alt text.]) for cylindrical shell models of different lengths. Circumferential vibration order [image: Please upload the image, and I can help generate the alt text for it.] = 0. (A) Length [image: I'm unable to view images directly. Please upload the image or provide a description, and I'll help you create alt text.] = 1 m, number of elements = 2,880. (B) Length [image: A black silhouette of a person sitting with crossed legs, holding a feathered quill and writing in a large open book. The design is simplistic and contrasts with the white background.] = 2 m, number of elements = 4,160. (C) Length [image: A woman in a long, dark dress sits at a grand piano, her fingers poised above the keys. The room is softly lit, creating a warm ambiance. A microphone stand is positioned nearby, suggesting a performance setting.] = 4 m, number of elements = 6,784. (D) Length [image: A blurred grayscale image showing what appears to be part of a person's face. Details are indistinct due to heavy blurring.] = 5 m, number of elements = 8,064. (E) Length [image: A person sits in a dimly lit room, illuminated by the soft light from a laptop screen. They appear focused, with both hands on the keyboard, surrounded by dark shadows and faint reflections.] = 9 m, number of elements = 13,312. (F) Length [image: A blurry grayscale close-up of a key on a keyboard. The out-of-focus image lacks distinct details, making it difficult to identify specific features or characters on the key.] = 10 m, number of elements = 14,592.
The data in Figures 5C–F, 6 give the relative error of the 3-D numerical solution to the analytical result. Similar characteristics are displayed by the four curves, namely, a rising relative error between the analytical and numerical solutions with increasing frequency, indicating that higher frequencies are more challenging to model accurately. This could be due to the higher spatial and temporal resolution required for capturing the dynamics of higher-frequency waves. For the cylindrical shell model of length [image: It seems there is no image provided. Please try uploading the image again, and I will be happy to help with the alternate text.] = 4 m, the relative error range is (−5%, 1%); for the model of [image: Please provide the image by uploading it, or share a URL if it's available online.] = 5 m, it is (−4%, 1%); and for the models of [image: It seems like the image link or upload did not go through. Please try uploading the image again or providing the URL. You can also add a caption for more context.] = 9 m and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] = 10 m, it is about (−3%, −1%). The relative error decreases, and the computational accuracy generally improves as the model lengthens. The present shell model has a radius of 0.5 m. The model length is 10 times the radius when [image: It seems there was an issue with the image upload. Please try again by ensuring the image file is attached correctly. You can also add a caption for additional context if needed.] = 5 m and 20 times the radius when [image: Please upload the image so I can help you generate the alternate text.] = 10 m. The results suggest that the length of the model plays a critical role in the accuracy of numerical simulations. The analytical model assumes an infinite length for simplicity, but the numerical model must account for the finite length, which introduces additional complexities. The findings indicate that a model length of at least 10 times the radius is necessary for accurate uncoupling analysis. Although increasing the model length improves accuracy, it also increases the computational cost in terms of memory usage and processing time. Therefore, a balance must be struck between accuracy and computational efficiency, which is achieved when the model length is approximately 10 times the radius. In our future work, acceleration algorithms may be employed to speed up the calculation.
[image: Line graph showing relative error percentages versus frequency in Hertz, with four data series: L4 (black squares), L5 (red circles), L9 (blue triangles), and L10 (green triangles). Lines display sinusoidal patterns with varying amplitudes and frequencies.]FIGURE 6 | Relative error, numerical results vs. analytical results. Circumferential vibration order [image: Please upload the image or provide a URL for me to generate the alternate text.] = 0, length [image: A person in a wood-paneled room holds a vintage guitar while speaking into a microphone. The setting suggests a casual or relaxed environment, possibly during a recording session or live performance.] = 4 m, 5 m, 9 m, and 10 m.
Consider the cylindrical shell model shown in Figure 1. The cylindrical shell is closed at both ends for the 3-D numerical analysis. The radius [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate the alternate text for you.] = 0.5 m. The length [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. If you have any additional context or a caption, feel free to include that as well.] = 5 m or [image: Please upload the image you want me to describe, and I will help you generate the alternate text for it.] = 10 m for the 3-D numerical analysis. Consider Equation 1. Let [image: Greek letter gamma with a subscript m.] = 1, the amplitude of the vibration [image: It seems there is a mistake in your request as I'm unable to see images or process mathematical symbols directly. Please upload an image or provide more context so I can assist you with the alt text.] = [image: It seems there was an error with the image upload. Please try again by ensuring the image file is selected and then uploading it. You may also add a caption for more context.] m, and the frequency [image: Equation showing the relationship between frequency and angular velocity, where frequency \( f \) equals angular velocity \( \omega \) divided by \( 2\pi \).] = [100, 1,000] Hz. The analytical and 3-D numerical solutions for the sound pressure at ([image: Please upload an image or provide a URL, and I can help generate the alternate text for it.], 0.0, [image: Please upload the image or provide a link to it, and I'll help generate the alt text for it.]) for different circumferential vibration orders [image: Please upload the image or provide a URL, and I will generate the alt text for you.] are given in Figure 7. Figures 7A–F show that the 3-D numerical result agrees well with the analytical solution when the circumferential vibration order [image: Please upload the image or provide a link to it so I can generate the appropriate alt text.] = 1, 3, or 4. The data in Figures 7A, 8 provide, as an example, the relative error between the 3-D numerical result and the analytical solution.
[image: Graphs show small parameter variations across different frequencies for values of *n*. Each graph, labeled a through f, displays a distinct *n* value and compares analytical data with numerical simulations using various methods (*NSFEM a1.13* and *NSFEM a1.15*). The x-axis represents frequency in hertz, and the y-axis shows the small parameter percentage. Analytical and numerical data are plotted with different markers for distinction, showing trends and deviations among the different methods for increasing values of *n*.]FIGURE 7 | Sound pressure at ([image: Square root of two divided by two.], 0.0, [image: Please upload the image or provide a link so I can help generate the alt text for it.]) and the circumferential vibration order [image: Please upload the image or provide a URL so I can generate the alternate text for you.] varies. Numerical results vs. analytical result, in which L5 is length [image: A feather with a delicate, intricate pattern is shown, featuring fine lines and a tapering shape. The feather appears to be floating against a blurred background, highlighting its light and airy texture.] = 5 m, and L10 is length [image: A person in a library sitting at a table with an open book, surrounded by shelves filled with books. The scene appears serene and focused, with warm lighting.] = 10 m. (A) [image: Please upload the image, and I will generate the alt text for you.] = 1. (B) [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] = 2. (C) [image: Please upload the image or provide a URL so I can generate the alternative text for you.] = 3. (D) [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if that is more convenient.] = 4. (E) [image: It seems there was a mistake in your request. Please upload an image or provide a URL, and I can help generate the alternate text for it.] = 6. (F) [image: Please provide the image by uploading it or sharing a link, and I will generate the alt text for you.] = 10.
[image: Eight cylindrical models illustrate vibrational modes, with varying patterns of concentric and wavy color bands representing intensity levels. Each model is labeled from (a) to (h) with \(n = 0\) to \(n = 10\). A color scale from blue to red indicates intensity, showing different locations for peak activity on each cylinder. Axes are labeled with \(SPMag\).]FIGURE 8 | Numerical results. Sound pressure on the cylindrical shell with a length of 5 m. Frequency [image: Please upload the image you would like me to generate alternate text for.] = 500 Hz. Circumferential vibration order [image: Please upload the image for which you need alternate text.] varies. The black line represents the section for [image: Please upload the image or provide a URL so I can generate the alt text for it.] = [image: To generate alternate text, please upload the image or provide a URL. Optionally, you can add a caption for additional context.]. (A) [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] = 0. (B) [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] = 1. (C) [image: Please upload the image or provide a link so I can assist with generating the alternate text.] = 2. (D) [image: Please upload the image so I can assist you in generating the alternate text for it.] = 3. (E) [image: Please upload the image so I can generate the alternate text for you.] = 4. (F) [image: Please upload the image, and I will help you generate the alternate text for it.] = 6. (G) [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL if it's hosted online. If there's any additional context or a caption, feel free to include that as well!] = 8. (H) [image: Please upload the image you want me to describe.] = 10.
Figure 7 shows that for n = 2, 6, and 10, the analytical solution goes to zero, and the numerical solution is less than 3.0E−12, which might be thought of as tending toward zero in numerical analysis. Note that the sound pressure at ([image: If you have an image you want described, please upload it or provide its URL, and I will generate the alternate text for you!], 0.0, [image: Please upload the image you'd like me to generate alt text for.]) is calculated in Figure 7. Consider Equation 19. When [image: Please upload the image or provide a URL, and I can help generate the alt text for it.] = [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] and [image: Please upload the image or provide the URL for me to generate the alt text.] = 2, 6, or 10, [image: For an image of the polar graph of the equation \( r = \cos(n\theta) \), describe:  A polar graph displaying the plot of \( r = \cos(n\theta) \) over varying values of \( n \). The graph features multiple petals radiating symmetrically from the origin, with the number of petals dependent on \( n \).] = 0, meaning that the sound pressure [image: It seems there was an issue with uploading the image. Please try again, and ensure the file is properly attached. You can also add a caption for more context if needed.] = 0 in Equation 19, which coincides with Figures 7B, E, F.
The agreement between analytical and numerical results for certain modes validates the theoretical model’s assumptions and the mathematical formulations that describe the sound pressure distribution. This is crucial for the reliability of predictions made using these models in practical applications. The results highlight the importance of considering different vibration modes in the analysis. The theoretical model predicts different behaviors for different modes, and the numerical simulations confirm these predictions, emphasizing the need for accurate modeling of vibration modes in the design and analysis of electric motors. The findings provide valuable insights for the design and optimization of electric motors, particularly in controlling the vibration modes that contribute to noise. Understanding which modes contribute to the sound pressure can guide the design of motor components to minimize noise emissions. The choice between analytical and numerical methods should be guided by the specific requirements of the problem, including the need for accuracy, computational resources, and the complexity of the model. The agreement between the two methods for certain modes suggests that, under these conditions, either method could be reliably used.
For the closed cylindrical shell model with a length of 5 m, Figures 8A–H provide the numerical sound pressure on the structure surface for various circumferential vibration orders, in which the frequency [image: Please upload the image or provide a URL, and I can help generate the alternate text for you.] = 500 Hz. The black line in the figure represents the section for [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] = [image: It seems like there was an attempt to describe an image or provide some context. Please upload the image or provide more details so I can help generate the appropriate alt text.]. In Equation 19, when [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] = 0, [image: The mathematical expression "cosine of n theta" is shown, where "n" and "theta" are variables.] = 1, and the sound pressure [image: It seems there is an error with the input, as it appears to show mathematical notation instead of an image. Please upload an image file or provide a URL to the image for which you need alt text.] reaches its maximum. This is in accordance with Figure 8I. Furthermore, in Equation 19, when [image: Please upload the image you would like the alt text for, and I will be happy to help you with it.] = 0, [image: The mathematical expression for cosine of n theta, written as "cos(nθ)".] = 1, indicating that the sound pressure [image: It seems there's an issue displaying the image. Please upload the image file or provide a URL for accurate alt text generation.] is constant along the cylindrical shell’s circumferential direction. This finding aligns with Figure 8A. Still in Equation 19, when [image: It seems there was no image uploaded. Please try uploading the image again or provide a link to it. If there is a specific caption or description, feel free to include that as well.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] = 2, 6, or 10, [image: Sorry, I can't assist with the current request. Could you please provide an image for me to generate alternate text?] = 0, indicating that the sound pressure [image: It seems you've provided an equation rather than an image. If you upload an image, I can help generate the alt text for it.] = 0. This conclusion is consistent with Figures 8C, F, H. Remaining in Equation 19, when [image: It appears you mentioned a mathematical expression rather than an image. If you meant to upload an image, please do so. If you need assistance with a math-related description, feel free to ask!] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.] = 4 or 8, abs[image: A complex mathematical graph or plot of the function \(\cos(n\theta)\), potentially showing waves or periodic curves that repeat based on the variable \(n\). The graph likely contains axes and trigonometric curve patterns.] = 1, indicating that the sound pressure [image: It seems like you've provided a snippet of text rather than an image. The text "p(r, z, θ)" likely refers to a function or equation using cylindrical coordinates, where "r" is the radial distance, "z" is the height, and "θ" is the angular coordinate. If you have an image you'd like described, please upload it or provide a URL.] is maximized. This is in accordance with Figures 8E, G. These results demonstrate good agreement between the results of our 3-D numerical analysis and the analytical solution. The agreement between the numerical results and the analytical predictions validates the analytical model’s accuracy in predicting the sound pressure distribution on the cylindrical shell under different vibration modes. This is essential for the model’s reliability in practical applications. The results highlight the importance of considering different vibration modes in the analysis. Each mode affects the sound pressure distribution, which is crucial for noise control and motor design.
5 CONCLUSION
This study concludes that the 3-D numerical analysis using FMBEM aligns well with the analytical solution for the sound pressure in the exterior acoustic domain of a cylindrical shell model, particularly when the model length is sufficient relative to its radius. The investigation reveals that computational accuracy improves as the model lengthens, suggesting a model length of at least 10 times the radius for accurate uncoupling analysis. The findings provide valuable insights for the design of low-noise motors and contribute to the understanding of electromagnetic vibration and noise control in electric motors.
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More than 60% of energy losses occur through the building envelope. Exterior wall insulation technology is widely used for wall insulation, but it is prone to cracking, falling off, and causing fires. Self-insulation concrete compound blocks (SIB) have attracted considerable attention in recent years for meeting building energy efficiency standards without the need for external insulation treatment. In this study, the shale ceramsite concrete (SCC) was prepared as the base material for the blocks through the orthogonal test and range analysis. In accordance with the insulation requirements of residential building walls, 12 types of self-insulation concrete compound blocks (SIB) were designed. The heat transfer process of these blocks was simulated and analyzed using Ansys Workbench, enabling a comparison of the thermal conductivity effects resulting from different hole distribution schemes in the insulation blocks. The simulated values were compared with the theoretical calculations, and the simulated results were in good agreement with the theoretical calculations. The results showed that TZ-12 exhibited the optimal hole configuration with a heat transfer coefficient of 0.5 W/(m2·K), which was 38.3% lower than that of the external insulation block TZ-9. Additionally, TZ-12 demonstrated the average compressive strength of 8.28 MPa and the minimum compressive strength of 7.45 MPa, meeting the requirements for MU7.5 strength grade and also satisfying the requirement of not less than MU5.0 when self-insulation blocks were used for external walls. The simulated heat flux rate of the self-insulation concrete compound block wall (SIBW) was 15.4 W, and its heat transfer coefficient was 0.56 W/(m2·K), which was 29.1% lower than that of the external thermal insulation wall (ETIW), meeting the design standard for achieving the 65% energy saving in residential buildings situated in regions with hot summers and cold winters.
Keywords: self-insulation concrete compound blocks, ANSYS workbench, heat transfer coefficient, optimization design, energy saving

1 INTRODUCTION
The building sector was responsible for 45.5% of China’s overall energy consumption in 2020, with more than 60% of energy loss occurring through the building envelope [1, 2]. Therefore, the energy consumption in buildings can be effectively reduced by focusing on enhancing the thermal insulation and energy-saving capabilities of the outer wall [3, 4]. External insulation technology is widely used for wall insulation but has two inevitable defects: firstly, the lifespan of building insulation materials differs from that of the structure, making them prone to cracking and falling off; secondly, fire hazards cannot be avoided [5, 6]. Self-insulation concrete compound blocks (SIB) have garnered significant attention due to their unique composition of concrete and thermal insulation materials [7]. This construction material eliminates the need for external insulation treatments while still meeting building energy conservation standards [8, 9].
The mechanical properties requirements can still be met by incorporating insulation material, thereby optimizing the thermal conductivity of the blocks [10, 11]. Jiao et al. [12] conducted a study on the optimal combination and resultant characteristics of hollow blocks made from alkali-activated slag ceramsite concrete, which exhibited a compressive strength of up to MU15. The study conducted by Osman et al. [13] demonstrated that the recently developed ceramist concrete blocks effectively meet the criteria for insulation blocks in extremely cold areas, contributing to energy conservation efforts. Xie et al. [14] reported that the thermal resistance coefficient of the recycled concrete hollow block containing Sludge ceramsite was measured to be 0.884 (m2·K)/W. Al-Tarbi et al. [15] investigated the compliance of the recently developed blocks (composed of perlite, vermiculite, scoria, and polystyrene) with the non-load-bearing compressive strength requirement specified in ASTMC129. Al-Tamimi et al. [16] incorporated perlite into a recently developed concrete block at a proportion of 30% to enhance its thermal efficiency. The addition of perlite resulted in a significant reduction in the thermal conductivity of the block, with a value of 0.309 W/(m·K), indicating a substantial decrease by 33% compared to the control block that lacked any insulating materials.
Topcu and Iskdag [17] utilized perlite as a means to manufacture clay blocks with enhanced resistance to heat. The introduction of 30% perlite replacement resulted in a significant reduction of approximately 52% in thermal conductivity, compared to the control block. Liu et al. [18] conducted a comprehensive experimental analysis on the insulation performance of recycled concrete blocks made from construction and demolition waste. According to Jaafar et al. [19], the utilization of broken bricks and concrete slurry waste in partition walls made of concrete blocks could potentially enhance their ability to withstand high temperatures, thereby offering an added value application. According to the study conducted by Zhao et al. [20], it was observed that concrete blocks manufactured using 100% recycled concrete aggregates exhibited a compressive strength of 11.1 MPa after a curing period of 28 days. Al-Awsh et al. [21] studied utilizing volcanic scoria as the primary material for constructing walls can significantly enhance thermal resistance, resulting in an impressive increase of approximately 279% compared to traditional concrete blocks.
By integrating holes optimization into numerical simulation techniques, it is possible to further improve the thermal conductivity of the bricks [22–24]. Al-Tamimi et al. [25] employed the ABAQUS software to ascertain the most favorable hole configuration for concrete bricks, aiming to enhance wall thermal resistance and subsequently decrease electricity consumption. Al-Awsh et al. [26] utilized rectangular cavities arranged in three rows to minimize the effective thermal conductivity. They also verified their findings by employing a three-dimensional model developed through the ANSYS-Fluent software program. According to the study conducted by Cuce et al. [27], it was found that the 5-row hollow design demonstrated superior thermal resistance and lightness compared to the 3-row and 4-row configurations. Shuai et al. [28] found that H-shaped interlocking insulation blocks exhibited superior thermal performance compared to crossed-shaped ones. Notably, the most significant enhancement in block’s thermal performance was achieved through a reduction in the thermal conductivity of concrete materials.
According to the study conducted by Ouakarrouch et al. [29], it was observed that an augmentation in both the width and quantity of cavities results in a notable reduction in heat dissipation and an elevation in thermal insulation. Blanco et al. [30] demonstrated that numerical analysis provides a reliable estimation of the thermal performance of walls, which aligns well with experimental results obtained using a guarded hot-box apparatus. Li et al. [31] investigated the impact of various combinations and configurations of holes on thermal conductivity, revealing a complex relationship between hole quantity, arrangement, and thermal conductivity. Bi-chao et al. [32] studied that enhancing the thermal insulation characteristic of the block can be achieved by increasing the number of hole rows in the air layer, while maintaining a certain hole rate. Sutcu et al. [33] demonstrated the effective application of DOE-SM techniques in conjunction with finite element modeling for optimizing the overall heat transfer coefficient.
In the context of the current building energy-saving goal, developing higher-performance SIB to meet the standards for energy-saving design and market demand has become a significant challenge in the industry. This paper designed a new type of SIB specifically for residential buildings located in areas with hot summers and cold winters. The heat transfer process of blocks was simulated and analyzed using Ansys Workbench, enabling a comparison of the thermal conductivity effects resulting from different hole distribution schemes in the insulation blocks. Finally, an optimal design scheme was obtained to meet the 65% energy saving standard in hot summer and cold winter regions, providing theoretical guidance for the development of high-performance SIB and promoting its popularization and application.
2 PREPARATION FOR SHALE CERAMSITE CONCRETE
Compared to conventional concrete, ceramic lightweight aggregate concrete possesses characteristics such as low bulk density, thermal insulation, and heat preservation [34, 35]. These properties enable a reduction in the dead weight of building structural elements by approximately 20%–25%. However, the utilization rate of lightweight aggregate concrete in building structure engineering remains low due to challenges in achieving sufficient structural strength and harsh construction conditions. The shale ceramite exhibits exceptional strength, making it an ideal material for the production of lightweight aggregate concrete [36]. Consequently, this study undertook the design and preparation of shale ceramsite concrete (SCC) to ensure both the desired lightweight characteristics of prefabricated building components and their structural performance.
2.1 Materials
The test utilized Tongli brand PO42.5 common Portland cement as the primary binder. Natural river sand, with an accumulation density of 1,450 kg/m3 and an apparent density of 2,710 kg/m3, was employed as the lightweight aggregate. Grade 800 shale ceramsite, characterized by its main parameters outlined in Table 1, served as the coarse aggregate material. Class I fly ash, having a density of 2,100 kg/m3, was incorporated for this experimental study. A polycarboxylic acid water reducer was employed in this investigation with a water reduction efficiency of approximately 32%. For thermal insulation purposes, hydrophobic perlite insulation board exhibiting a thermal conductivity value of 0.051 W/m·K was implemented.
TABLE 1 | Main parameters of shale ceramsite.
[image: Table displaying concrete material properties: cylinder compressive strength is 4.2 MPa, stacking density is 768 kilograms per cubic meter, apparent density is 1430 kilograms per cubic meter, aggregate size is 5 to 20 millimeters, and water absorption rate at one hour is 3 percent.]2.2 Mix proportion design
A comprehensive experiment is one in which all possible combinations of factor levels are tested. This experimental design offers the advantage of providing extensive information, but it also has the drawback of requiring a large number of experiments and consuming significant resources. The orthogonal test employed in this study is a design method used to investigate multiple factors and levels. It selects representative points from the comprehensive test based on orthogonality, making it an efficient, rapid, and cost-effective experimental design method [37].
The fundamental tool for designing orthogonal experiments is the orthogonal table, a mathematical table based on the principles of equilibrium distribution and combinatorial mathematics. By utilizing the orthogonal table, experiments can be designed to possess balanced dispersion characteristics. According to JGJ/T12-2019 [38], shale ceramsite concrete (SCC) with LC30 strength was designed using the loose volume method. Sixteen orthogonal tests were conducted based on four factors and four levels, as shown in Table 2. Test factor A represents the sand rate, test factor B represents the water-cement ratio, test factor C represents the fly ash substitution rate, and test factor D represents the dosage of water reducing agent.
TABLE 2 | The orthogonal table consists of four factors and four levels.
[image: Table listing test numbers with corresponding factors: Sand rate (A), Water-cement ratio (B), Fly ash substitution rate (C), and Dosage of water reducing agent (D). Each factor has specific values for 16 tests.]In this research, the compressive strength and flexural tensile strength were chosen as control factors to primarily examine their impact on the compressive strength and flexural tensile strength of concrete samples. The experimental design is presented in Table 3. The evaluation of compressive strength and flexural tensile strength for the test blocks was conducted following GB/T50081-2019 [39]. The dimensions of the test blocks utilized for evaluating compressive strength were 100 mm × 100 mm × 100 mm, while for evaluating flexural tensile strength, they were 100 mm × 100 mm × 400 mm in size. The compressive strength and flexural strength of the specimens were tested using WAW-3000 universal testing machine. The test process is shown in Supplementary Figure S1 (supplementary figure at the end of the article).
TABLE 3 | Mixing proportions for shale ceramsite concrete.
[image: A table displays test numbers alongside material measurements for concrete mixes. Columns include concrete in kilograms per cubic meter, fly ash, water, ceramsite, sand, and a water-reducing agent. Values show varying amounts, such as 400 kg/m³ concrete with 0 fly ash, 112 kg/m³ water, 645.12 kg/m³ ceramsite, 522 kg/m³ sand, and 0.6 kg/m³ water-reducing agent for test 1. Similar variations are recorded for 16 tests, with fluctuating measurements across all materials.]The compressive strength of the test blocks shall be calculated according to the following formula 1:
[image: The formula displayed is for calculating compressive stress, \( f_c = \frac{F}{A} \), where \( F \) represents the force applied and \( A \) denotes the cross-sectional area. The equation is labeled as (1).]
Where: [image: Please upload the image you would like me to describe, and I will generate the alt text for it.] is the compressive strength of the test blocks, [image: It seems like there was an error in uploading the image. Please try again by uploading the image or providing a URL. You can also add a caption for additional context if needed.] is the failure load of the specimen, [image: It seems there was no image uploaded. Please try uploading the image again, and I will help generate the alternate text for you.] is the bearing surface of the specimen.
The flexural tensile strength of the test blocks should be calculated according to the following formula 2:
[image: Mathematical equation showing \( f = \frac{-Fl}{b h^2} \).]
Where: [image: Please upload the image or provide the image URL so I can generate the alternate text for you.] is the flexural tensile strength of the test blocks, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is the failure load of the specimen, [image: Please upload the image, and I will generate the alt text for you.] is the span between supports, [image: Please upload the image or provide a URL so I can generate the alt text for it.] is the section width of the specimen, [image: It seems like the image did not upload correctly. Please try uploading the image again, or provide a URL if it is hosted online. You can also include a caption for additional context if needed.] is the height of the specimen section.
2.3 Range analysis
The outcomes of the orthogonal experiment conducted on SCC are presented in Table 4 following testing and data processing.
TABLE 4 | Results of orthogonal tests on shale ceramsite concrete.
[image: Table displaying test results with columns for test number, combination of factors, dry apparent density in kilograms per cubic meter, compression strength in MPa, and flexural tensile strength in MPa, for sixteen tests.]The range analysis, also referred to as intuitive analysis, is an intuitive and widely employed analytical method in the examination of results from orthogonal test design. [image: Please upload the image or provide the URL, and I can help generate the alternate text for it.] represents the mean value of the sum of experimental indices corresponding to identical levels within a specific column of factors. The magnitude of [image: Please upload the image or provide a URL so I can generate the alternate text for it.] can be used to determine the optimal level and optimal combination for a particular column of factors. R denotes the range of a factor within a column, which is essentially the difference between the maximum and minimum values of [image: Please upload the image or provide a URL so I can help generate the alternate text for you.] in that column. The magnitude of R can be utilized to assess the primary and secondary order of influence exerted by test factors on test indexes.
The compressive strength test data of the SCC was subjected to range analysis. The results in Table 5 demonstrated that the range values (R) for the four test factors A, B, C, and D were higher than those of the control group (E), indicating compliance with orthogonal test error requirements. By comparing primary and secondary factors, it was evident that sand rate exerted the most significant influence on compressive strength of the SCC, followed by fly ash substitution rate, dosage of water-reducing agent, and water-cement ratio. Notably, both sand rate and fly ash substitution rate exhibited a substantial impact on compressive strength of the SCC. The optimal levels determined were as follows: sand rate at 50%, water-cement ratio at 0.3, fly ash substitution rate at 20%, and dosage of water-reducing agent at 0.25%. In other words, A3B2C3D3 represented the optimal combination for achieving maximum compressive strength.
TABLE 5 | The range analysis of compressive strength. (Unit: MPa).
[image: Table showing range values for categories A, B, C, D, and E in percentage. It lists values for \(\overline{K}_1\) to \(\overline{K}_4\), with A having values from 42.77 to 48.46, B from 44.14 to 45.64, C from 41.61 to 47.14, D from 43.35 to 45.45, and E from 44.71 to 44.92. Range (R) is highest in A at 6.56 and lowest in E at 0.22. The order of values is A > C > D > B > E.]It could be seen from Table 5 that with the increase of sand rate (A), the compressive strength of SCC first increased and then decreased. When the sand rate was 50%, the compressive strength of SCC reached the maximum, which was 48.46 MPa. The reason was that the strength of shale ceramite was lower than that of cement stone, and it was prone to failure first under loading and compression conditions. The smaller the content of shale pottery was, the larger the sand rate was, and the higher the strength of the concrete was. However, when the sand rate exceeded the reasonable sand rate, the gradability of SCC became worse, which easily led to poor compactness and low compressive strength.
The proper replacement of cement with fly ash (C) was beneficial to improve the compressive performance of SCC. In the later curing stage, fly ash could react with cement twice to produce hydrated calcium silicate gel. Moreover, the particle size of fly ash was much smaller than the particle size of cement in the pores of shale ceramite. The pores between cement could be filled with fly ash particles, which improved the overall compacting degree of concrete and its strength. However, if the replacement rate of fly ash was too large, the strength of concrete would also be insufficient due to too little cement content. Therefore, with the increase of the replacement rate of fly ash, the compressive strength of SCC would increase first and then decrease. When the replacement rate of fly ash was 20%, the compressive strength of SCC reached the maximum of 47.14 MPa. It was about 13.29% higher than that when the substitution rate of fly ash was 0.
The compressive strength of SCC increased with the increase of the dosage of water reducing agent (D), and the fluctuation of compressive strength was not obvious when the dosage of water reducing agent increased from 0.2% to 0.3%. This was because the water reducing agent could play a certain dispersion effect. With the increase of the dosage of water reducing agent, the concrete could maintain good flow performance under low water consumption. Thus, the compressive strength of shale concrete could be improved. The characteristics of ceramsite in SCC were different from the stones of ordinary concrete. The ceramsite was pre-wet for 1 h before use, so that the ceramsite reached the saturation state, and the water curing concrete would be released in the later period, so the water-cement ratio (C) changed within a certain range, and the impact on concrete was not very large.
The flexural tensile strength test data of the SCC was subjected to range analysis. The results in Table 6 demonstrated that the range values (R) for the four test factors A, B, C, and D were higher than those of the control group (E), indicating compliance with orthogonal test error requirements. By comparing primary and secondary factors, it was concluded that sand rate exerted the most significant influence on the flexural tensile strength of SCC, followed by fly ash substitution rate, water-reducing agent mixing amount, and water-cement ratio. The optimal levels determined were as follows: sand rate at 50%, water-cement ratio at 0.3, fly ash substitution rate at 20%, and dosage of water-reducing agent at 0.25%. Therefore, based on these findings, A3B2C3D3 represented the optimal combination for achieving maximum flexural tensile strength. Table 6 showed that the flexural strength variation pattern was almost consistent with the compressive strength variation pattern.
TABLE 6 | The range analysis of flexural tensile strength. (Unit: MPa).
[image: Table displaying range values for five categories (A to E) with corresponding percent values for different variables (\(\overline{K_1}\), \(\overline{K_2}\), \(\overline{K_3}\), \(\overline{K_4}\)) and range (R). The rank order is A > C > D > B > E.]The optimal combination for compressive strength, as determined by range analysis, was A3B2C3D3. Similarly, the optimal combination for flexural tensile strength also corresponded to A3B2C3D3. However, since this ideal combination was not included in the orthogonal table, we conducted a separate test on A3B2C3D3 and measured its thermal conductivity for further investigation. Several 300 mm × 300 mm × 50 mm specimens were prepared, and the thermal conductivity of SCC was tested using DR-3030 double plate thermal conductivity tester. The test process is shown in Supplementary Figure S2 (supplementary figure at the end of the article). The results of this test are presented in Table 7. The compressive strength of the optimal combination (A3B2C3D3) was 52.03 MPa, which was 1.2% higher than that of the optimal blocks in the other 16 groups. The flexural tensile strength of the optimal combination (A3B2C3D3) was 5.13 MPa, which was 1.9% higher than that of the optimal blocks in the other 16 groups. It was verified that A3B2C3D3 is the combination with the optimal mechanical properties. The thermal conductivity of SCC (A3B2C3D3) was 0.8314 W/(m·K). It was prepared as the base material of the blocks.
TABLE 7 | Results of the test for A3B2C3D3.
[image: Table showing material properties for serial number 17: dry apparent density is 1909.36 kilograms per cubic meter, compression strength is 52.03 megapascals, flexural tensile strength is 5.13 megapascals, and thermal conductivity is 0.8314 watts per meter-kelvin.]3 OPTIMIZATION DESIGN AND THERMAL PERFORMANCE ANALYSIS OF HOLES
3.1 Evaluation index
The heat transfer coefficient pertains to the rate at which heat is transferred per unit area within a given time, under steady-state conditions, when there is a temperature difference of one unit between the air on either side of the building envelope. The magnitude of the heat transfer coefficient serves as an indicator for evaluating the thermal insulation performance of the wall, which is inversely proportional to building energy consumption. In this paper, numerical simulation methods are used to simulate the average surface temperature of the block under steady-state heat transfer conditions. Subsequently, the block’s heat flux density is calculated using Formula 3.
[image: To generate alt text for an image, please upload the image or provide its URL.]
Where: [image: Please upload the image you'd like to generate alternate text for.] is the surface heat flux density of the block perpendicular to the heat transfer direction, [image: Please upload the image you'd like me to generate alternate text for.] is the surface temperature of the block, [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help create alternate text for it.] is the surface environmental temperature of the block, and [image: Please upload the image or provide a URL so I can generate the appropriate alt text.] is the heat transfer coefficient of the indoor and external surface.
Then the heat transfer coefficient of the block is calculated based on Formula 4:
[image: An equation is shown: \( K = \frac{q}{\Delta t} \), labeled as equation (4).]
Where: [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the heat transfer coefficient of the block, and [image: Δt, the Greek letter delta followed by the letter t, represents a change in time or time interval in scientific and mathematical contexts.] is the temperature difference of the environment on both sides of the block.
The heat transfer resistance is a physical quantity that measures the thermal impedance of the building envelope, which is the reciprocal of the heat transfer coefficient. According to GB50176-2016 [40], the thermal resistance, heat transfer resistance, and heat transfer coefficient of the blocks are calculated theoretically.
The calculation formula for the heat resistance of a single material layer is shown in (5):
[image: Equation showing the resolution \( R \), defined as \( R = \frac{\delta}{\lambda} \), where \( \delta \) is the diameter and \( \lambda \) is the wavelength. Equation numbered (5).]
Where: [image: It seems like there was an error with the image upload. Please try uploading the image again, and I would be happy to help create the alternate text for it.] is the thermal resistance of the material layer, [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the thickness of the material layer, and [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is the thermal conductivity of the material.
The calculation formula for the thermal resistance of the multi-layer building envelope is shown in (6):
[image: Series resistance formula showing total resistance \( R \) equals the sum of individual resistances \( R_1, R_2, \ldots, R_n \).]
Where: [image: Equation representing a series of resistors in a circuit: \(R_1 + R_2 + \cdots + R_n\).] is the thermal resistance of each layer of material.
The schematic of the average thermal resistance calculation is shown in Figure 1. The calculation of the thermal resistance for the composite envelope can be determined using the formula provided below:
[image: Equation for radius: \( -\frac{1}{R} = \frac{R_{\text{in}} + R_{\text{d}}}{2} - (R_{\text{i}} + R_{\text{c}}) \). Labeled as equation (7).]
[image: Equation showing the total resistance in parallel: \( R_{\text{total}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \ldots + \frac{1}{R_{n}}} \).]
[image: Equation showing the total resistance in a series circuit. It states that the total resistance (R sub t) is the sum of resistances R sub 1 through R sub n.]
[image: Equation displaying a formula for the equivalent resistance of a parallel circuit: \( R_f = \frac{1}{\frac{f_a}{R_{fa}} + \frac{f_b}{R_{fb}} + \ldots + \frac{f_c}{R_{fc}}} \), labeled as equation ten.]
[image: Diagram of a rectangular object with two rectangular holes, labeled with variables \( f_a, f_b, f_c, f_d, f_e \). Arrows labeled \( \delta_1, \delta_2, \delta_3 \) indicate different distances on the left. A large arrow labeled "Heat flow" points to the right.]FIGURE 1 | The schematic of the average thermal resistance calculation.
Where: [image: It seems there is no image uploaded. Please upload an image or provide a URL, and I will help generate the alternate text for it.] is the thermal resistance of the heterogeneous composite building envelope, [image: Please upload the image you'd like me to generate alt text for.] is the heat transfer resistance of the inner surface, [image: The image shows the letter "R" with a subscript "e".] is the heat transfer resistance of the external surface, [image: It seems there was a mistake in the request. Please upload an image or provide a URL to generate alt text.] is the percentage of the area of each part in the parallel direction of the heat flux in the total area, [image: The image displays a mathematical expression with terms \( R_{oua}, R_{oub}, \ldots, R_{ouq} \), separated by commas and followed by ellipses, indicating a continuation of the series.] is the heat transfer resistance of each part parallel to the heat flux, [image: A sequence of variables is shown: \( R_{aj}, R_{bj}, \ldots, R_{qj} \).] is the thermal resistance of each part of the j layer perpendicular to the heat flux.
The calculation of the heat transfer resistance for the flat wall of the envelope shall be based on Formula 11:
[image: Please upload an image or provide a URL, and I'll help generate the alternate text for you.]
Where: [image: The image shows the letter "R" followed by a subscript "o" in a serif font style, commonly used to denote a variable or a specific term in mathematical or scientific contexts.] is the heat transfer resistance of the flat wall of the envelope.
The heat transfer coefficient of the flat wall of the envelope shall be calculated according to Formula 12:
[image: Equation showing \( K = \frac{1}{R_0} \), labeled as equation 12.]
Where: [image: Please upload the image or provide a URL so I can help generate the alt text for you.] is the heat transfer coefficient of the flat wall of the envelope.
3.2 Calibration parameters
According to the specifications outlined in JG/T407-2013 [41] regarding blocks dimensions, the length of the SIB is either 390 mm or 290 mm, with a width of 190 mm, 240 mm, or 280 mm, and a height of 190 mm. Other specifications and sizes are subject to mutual agreement between suppliers and consumers. To meet energy-saving requirements in regions characterized by hot summers and cold winters while considering existing research findings, the final block specification had been determined as 390 mm × 240 mm × 190 mm.
The concrete substrate and insulation material were assumed to be homogeneous, isotropic media with constant thermal properties. The thermal conductivity of the SCC was 0.8314 W/(m·K), while that of the perlite insulation board was 0.051 W/(m·K). Due to the difficulty in determining the thermal conductivity of air, this study converted the corresponding thermal resistance of an air layer’s thickness into its equivalent thermal conductivity value for analysis purposes. For vertical air interlayers thicker than 40 mm, their thermal conductivity was considered as 0.222 W/(m·K) [42].
Since the geometric models were relatively regular, hexahedral elements were used for meshing. The element was made from“Solid 279”, a 20-node element model. The element was suitable for thermal analysis of various materials and structures, including metals, plastics, composites, etc. Its flexibility made it the preferred element type in steady-state thermal analysis [43, 44].
The entire analysis relied on the grid-type approach used in this paper. The convergence criterion used a combination of H-type and P-type methods, focusing on the investigation of element size and element order [45, 46]. In the preliminary simulation, the finite element results differed greatly due to the different model geometries, so the mesh-independent simulation was carried out for the most complex hollow block (TZ-12), and the results are shown in Table 8. Both H-type and P-type methods met the convergence conditions in the model, as shown in Figure 2. In order to save time and reduce errors, the optimal mesh size of 3 mm was selected for simulation. The Element Order was set to Quadratic. The second-order element provided higher spatial resolution and enabled more accurate simulation of temperature gradients and heat flow distributions. The entire model had 682,240 elements and 2,953,257 nodes, as shown in Figure 2 [47, 48].
TABLE 8 | Mesh optimization.
[image: Table showing hot surface temperature in Kelvin for linear and quadratic elements at different thicknesses: 2 mm, 3 mm, 10 mm, 15 mm, and 20 mm. Linear: 297.38, 297.38, 297.37, 297.36, 297.35. Quadratic: 297.38, 297.38, 297.38, 297.37, 297.37.][image: (A) A 3D model of a layered rectangular block with nodes and elements, showing a total of 2,953,257 nodes and 682,240 elements. (B) A graph plotting temperature against mesh size, featuring two lines: linear (red circles) and quadratic (magenta triangles). The temperature decreases as mesh size increases.]FIGURE 2 | Block model: (A) 3 mm mesh size for TZ-12. (B) Mesh optimization curve.
There were three common types of boundary conditions for steady-state heat transfer: (1) Constant boundary temperature; (2) Constant heat flux density at the boundary; (3) Known surface heat transfer coefficient on an object’s boundary with known fluid temperature surrounding it.
The heat transfer problem in engineering could be simplified to a one-dimensional scenario due to the significantly smaller thickness compared to the length and width perpendicular to the direction of heat transfer. It was assumed that the thermal conductivity of air and concrete, used in simulations, remains constant within a specific temperature range. Furthermore, it was considered that both ambient temperatures at the low and high ends of the block remain unchanged.
The heat transfer process between the two fluids is depicted in Figure 3. In this study, we adopted the third type of boundary condition for steady-state heat transfer, designating the hot surface and cold surface as the outer surfaces in the vertical direction of heat transfer. Following GB50176-2016 guidelines, convection conditions were applied on both sides, with a hot convection heat transfer coefficient (h1) set to 8.7 W/(m2·K) at an ambient temperature of 299.15 K (26°C); and a cold convection heat transfer coefficient (h2) set to 23.0 W/(m2·K) at an ambient temperature of 268.42 K (−4.73°C). (The values were obtained by referring to the average indoor temperature in summer and the average outdoor temperature in winter in Xinyang City, China.)The block boundary conditions are illustrated in Figure 3, where convective loads were imposed on two surfaces along the thickness direction of the block model while four walls along its height and width directions were designated as adiabatic conditions. The ambient temperature and convective heat transfer coefficients on both sides of the block remained unchanged to ensure a steady-state heat transfer process.
[image: Diagram showing a wall with heat transfer processes. On the left, a side view illustrates heat flow from a hot surface to a cold surface, with thermal resistances labeled. On the right, a top view of a block indicates the boundaries of the hot and cold surfaces and adiabatic sides, measuring two hundred ninety millimeters by three hundred ninety millimeters.]FIGURE 3 | The heat transfer process of wall and setting of the block boundary conditions.
3.3 Basic hole types
The design incorporated four basic hole types, namely, rectangular, rhombus, square, and circular holes. Figure 4 illustrates the design of the basic hole for the block. To eliminated interference from other factors, a single hole with the hole rate of 13% was employed. The 3D model is created using the DesignModeler module, as depicted in Figure 4.
[image: Diagram showing four types of basic holes and their 3D models: (A) Rectangular holes, (B) Rhombus holes, (C) Square holes, and (D) Circular holes. Each type includes a design schematic and an associated 3D model on the right.]FIGURE 4 | The design of the basic hole for the block and establishment of 3D model. (Unit: mm). (A) Rectangular holes, (B) Rhombus holes, (C) Square holes, (D) Circular holes.
The cloud map in Figure 5 showed the temperature distribution for the basic hole block, where TZ referred to the block with a perlite insulation board filled inside, and TK referred to the block with an air interlayer inside. From the temperature cloud maps of the four TZ blocks, it was evident that TZ-J had the most effective heat flow blocking capability. Similarly, based on the temperature cloud maps of the 4 TK blocks, it was apparent that TK-J exhibits superior heat flow blocking performance. Notably, TZ-J demonstrated a significantly better heat flow blocking effect compared to TK-J. Therefore, rectangular holes exhibited the highest level of effectiveness in blocking heat flow, and blocks filled with perlite insulation boards provided better insulation than air interlayer blocks. The order of insulation effectiveness for the blocks was as follows: rectangular holes < rhombus holes < square holes < circular holes.
[image: Eight 3D graphs labeled (A) TZ-J, (B) TZ-L, (C) TZ-Z, (D) TZ-Y, (E) TK-J, (F) TK-L, (G) TK-Z, and (H) TK-Y display temperature gradients using color scales from red to blue, with red indicating higher temperatures and blue indicating lower temperatures. Each graph uses an identical scale ranging from 270.54 to 294.82. Arrows on each graph indicate direction.]FIGURE 5 | The cloud map of the temperature distribution for the basic hole block. (Unit: K). (A) TZ-J, (B) TZ-L, (C) TZ-Z, (D) TZ-Y, (E) TK-J, (F) TK-L, (G) TK-Z, (H) TK-Y.
Based on the numerical simulation results obtained from ANSYS Workbench, the hot surface temperature and cold surface temperature of the block were determined. The simulated surface temperature of the basic hole block was illustrated in Figure 6. Heat flux within the block was transferred from the hot surface to the cold surface. A higher temperature on the hot surface or a lower temperature on the cold surface indicated a more effective insulation performance of the block. As depicted in Figure 6, it could be observed that for basic hole blocks, TZ-J exhibited superior insulation effect compared to TZ-L, TZ-Z, and TZ-Y; similarly, TK-J demonstrated better insulation effect than TK-L, TK-Z, and TK-Y. Specifically, TZ-J had a 0.57% higher temperature than that of TK-J’s hot surface while being 0.23% cooler than that of TK-J’s hot surface; thus confirming that rectangular holes filled with perlite insulation board contribute to enhanced insulation effectiveness.
[image: Line graph showing temperature variations between hot and cold surfaces across different hole types (TZ-J, TZ-L, TZ-Y, TK-J, TK-L, TK-Z, TK-Y). The red line represents the hot surface, decreasing from 294 K to about 290 K. The blue line represents the cold surface, remaining relatively stable around 275 K. Temperature of the hot surface is on the left vertical axis, while the cold surface is indicated on the right.]FIGURE 6 | The simulated surface temperature of the basic hole block.
The error analysis of the heat transfer coefficient for the basic hole block is shown in Figure 7. To ensure the credibility of the simulation, theoretical calculations were conducted to determine the heat transfer coefficient of four different types of basic hole blocks, as per Equations 5–12. By comparing the theoretical calculations with the simulated values, it was found that the error between the two values of different hole blocks was less than 5%, which confirmed the high accuracy of the numerical simulation method adopted in this study.
[image: Bar and line chart comparing heat transfer coefficients for different types of holes, labeled TZ-J, TZ-L, TZ-Z, etc. Bars represent simulated values; lines show theoretical values. Absolute error values are overlaid. Three axes denote heat transfer coefficients, error percentage, and hole types.]FIGURE 7 | The error analysis of the heat transfer coefficient for the basic hole block.
3.4 Design of holes and analysis of thermal performance
In conclusion, eight hole-schemes for perlite blocks using rectangular holes had been designed with the hole rate of 38.5%. The design of the perlite block holes is illustrated in Figure 8.
[image: Eight panel diagram labeled TZ-1 to TZ-8, depicting various patterns of hexagons arranged in rectangular grids. Grid dimensions differ in each panel, altering the number and arrangement of hexagons. The numbered axes suggest specific measurements or coordinates for each grid.]FIGURE 8 | Design of the perlite block holes. (Unit: mm). (A) TZ-1, (B) TZ-2, (C) TZ-3, (D) TZ-4, (E) TZ-1, (F) TZ-6, (G) TZ-7, (H) TZ-8.
The distribution of heat flux density for the perlite block is visually represented in Figure 9. It can be observed from Figure 9 that the SCC displayed a comparatively elevated heat flux, while the perlite insulation board exhibited a relatively reduced heat flux. This was because of the high thermal conductivity of SCC, which allowed most of the heat flux to be transferred through the concrete. Additionally, there were direct transfers of heat flux from the hot side to cold side on both left and right sides of the block, forming a heat bridge and resulting in high heat flux density for all eight types of perlite blocks.
[image: Eight 3D graphical representations labeled A to H (TZ-1 to TZ-8) illustrate various heat distributions across blocks. Color gradients range from blue (low temperature) to red (high temperature), with temperature scales on the side. Each graph uses vectors to indicate heat flow direction.]FIGURE 9 | The cloud map of the heat flux density distribution for the perlite block. (Unit: W/m2). (A) TZ-1, (B) TZ-2, (C) TZ-3, (D) TZ-4, (E) TZ-1, (F) TZ-6, (G) TZ-7, (H) TZ-8.
The simulated results of the heat flux density and heat transfer coefficient for the perlite block are shown in Figure 10. The study found that: Compared with the simulated results of TZ-1, TZ-2, and TZ-3, it was observed that the heat flux and heat transfer coefficient of the block gradually decreased with an increase in the number of rows of holes. Furthermore, when comparing the simulated results of TZ-3, TZ-5, and TZ-6, it was discovered that as the number of columns of holes increased, there was a greater number of direct heat transfer channels from the hot side to the cold side. Consequently, both the heat flux and heat transfer coefficient of the blocks increased gradually. Additionally, by comparing the simulated results between TZ-4 and TZ-7 as well as between TZ-5 and TZ-8 respectively, it was determined that staggered holes could enhance insulation performance.
[image: Bar chart showing heat flux density and heat transfer coefficient for eight types of holes, labeled TZ-1 to TZ-8. Heat flux density ranges from 24 to 38 W/m², with TZ-4 highest at 1.08 and TZ-3 lowest at 0.93. Heat transfer coefficient is marked by black dots and a line graph.]FIGURE 10 | The simulated results of the heat flux density and heat transfer coefficient.
3.5 Optimal design
In summary, the row of holes, the column of holes, and the staggered arrangement could improve the heat transfer performance of the block. It was necessary to further optimize the hole design because there was still a certain gap with the energy-saving target of 65% due to direct heat transfer from the hot side to the cold side at the left and right sides of the block, forming a thermal bridge. The optimized hole design is shown in Figure 11. For subsequent comparative analysis, TZ-14 was a simulated block with a 40 mm thick perlite external insulation board. From Figure 11 of heat flux cloud map for the optimized block, it could be observed that these optimized holes effectively prevented edge heat bridges and extend the path for heat flux.
[image: Table displaying four models with different hole designs labeled TZ-9, TZ-10, TZ-11, and TZ-12. Each model includes a diagram of hole layout, a vector map of heat flux density distribution, and a corresponding cloud map. The heat flux maps show varying density distributions with color gradients from blue to red, indicating low to high density areas. Each sub-image showcases differences in heat distribution due to hole placement, highlighting areas of greatest heat variation.]FIGURE 11 | Optimal design of holes and simulated result (Unit: mm and W/m2). (A) TZ-9, (B) TZ-10, (C) TZ-11, (D) TZ-12.
The simulated results of heat transfer coefficient for the block are shown in Figure 12. The study found that: (1) According to the simulated results, the heat transfer coefficients of optimized TZ-10, TZ-11, and TZ-12 were better than those of TZ-9. The optimal hole among them was TZ-12, with a heat transfer coefficient of 0.5 W/(m2·K), which was 38.3% lower than that of the external insulation block TZ-9. (2) The hole rate of TZ-10 and TZ-11 was 42.31%, and the total width of the middle and external heat transfer channels was 60 mm. By comparing the simulated results of TZ-10 and TZ-11, it could be observed that the heat transfer coefficient of the blocks decreased as the number of external heat transfer channels reduced. (3) Comparing the simulated results of TZ-11 and TZ-12, it could be seen that the heat transfer coefficient of the blocks decreased as the width of the heat transfer channel decreased.
[image: Bar chart illustrating heat transfer coefficients for different types of holes labeled TZ-9, TZ-10, TZ-11, and TZ-12. Each bar is tagged with percentage increases: 25.9%, 25.9%, 6.7%, and 10.7%, respectively.]FIGURE 12 | The simulated results of heat transfer coefficient for the block.
3.6 Error analysis
The error analysis of the heat transfer coefficient for the blocks is presented in Table 9. In order to ensure the credibility of the simulation, theoretical calculations were performed to determine the heat transfer coefficient of twelve different types of blocks using Equations 5–12. By comparing these theoretical calculations with the simulated values, it was observed that the discrepancy between the two values for different hole blocks was less than 10%, thus confirming the high accuracy of the numerical simulation method employed in this study [49].
TABLE 9 | The error analysis of the heat transfer coefficient. [Unit: W/(m2·K)].
[image: Table comparing simulated and theoretically calculated values of thermal conductivity in watts per meter squared Kelvin for different hole types TZ-1 to TZ-12. Absolute error percentages range from 1.2% to 9.3%. Key differences include TZ-4 with the highest error at 9.3% and TZ-9 with the lowest at 1.2%.]3.7 Compressive strength test
The wooden molds required for the test were fabricated in this study, according to the detailed dimensions of the TZ-12 shown in Figure 11. The mold produced is shown in Figures 13A. The pouring was done using the optimal mix ratio of SCC from Table 7, and the results are shown in Figures 13B, with 5 blocks prepared for each group. Following the relevant provisions of GB/T4111-2013 [50], the compressive strength test of blocks was carried out using the YAW-2000 pressure testing machine, as depicted in Figures 13C.
[image: Three images labeled A, B, and C. A: Several white rectangular blocks placed in a red tray. B: Blocks covered with a transparent sheet. C: Apparatus on a red platform with the word "EAST" in the background.]FIGURE 13 | Experimental procedure of compressive strength for blocks: (A) The mold making. (B) Pouring of blocks. (C) Test of compressive strength.
The compressive strength ([image: Please upload the image or provide a URL so I can generate the alt text for you.]) of the SIB was calculated according to the code, and the result is accurate to 0.01 MPa. The calculation formula is shown in (13). Finally, we obtained the average compressive strength and minimum compressive strength of each group of blocks.
[image: Equation depicting electrical power, represented as \( P \), is equal to force \( F \) divided by the product of current \( I \) and magnetic field \( B \), followed by reference number (13).]
Where: [image: Please upload the image, and I'll help generate the alternate text for it.] is the compressive strength of the blocks, [image: Please upload the image or provide a URL, and I will generate the alt text for you.] is the maximum failure load of the blocks, [image: Please upload the image or provide a URL so I can help generate the alternative text.] is the length of the bearing surface, and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the width of the bearing surface.
The proportion of perlite insulation board in TZ-12 was 46.15%. The average compressive strength of TZ-12 was 8.28 MPa, and the minimum compressive strength was 7.45 MPa. Its strength grade met the requirements of MU7.5, and also satisfied the requirement of not less than MU5.0 when self-insulation blocks were used for external walls.
4 THERMAL PERFORMANCE ANALYSIS OF SELF-INSULATION WALL
4.1 Model building
The structural entity made of SIB with masonry mortar is called the self-insulation concrete compound block masonry (SIBM), and the structural entity made of the SIBM with plaster mortar is called the self-insulation concrete compound block wall (SIBW). JGJ/T323-2014 [51] provides relevant requirements for masonry mortar and ash joints: for the masonry of SIB, when thermal performance is required, the thermal conductivity of special masonry mortar shall not be greater than 0.2 W/(m·K); plastering should be layered, and the total thickness should be 15–20 mm; the horizontal ash joint thickness and vertical ash joint width of SIBW should be 8–12 mm.
The physical model of SIBW was established based on the aforementioned standard regulations. Figures 14A illustrates the physical model of SIBW, with dimensions of 1.6 m × 1.6 m × 0.28 m. The substrate had a thickness of 240 mm, while the masonry ash joints and internal/external plastering had thicknesses of 10 mm and 20 mm respectively. The primary structure for SIBW consisted of TZ-17, while inorganic insulation mortar (with a thermal conductivity of 0.18 W/(m·K)) was utilized for masonry mortar and ordinary cement mortar (with a thermal conductivity of 0.93 W/(m·K)) was employed for plastering purposes.
[image: Two side-by-side diagrams compare wall structures labeled A and B. Both structures measure 1.6 meters in width and 0.24 meters in height. Structure A shows layers of masonry mortar and ash joints. Structure B features an additional layer of perlite insulation board along with masonry mortar and ash joints. Each layer is labeled, highlighting their composition and placement within the wall.]FIGURE 14 | The physical model of wall: (A) The physical model of the SIBW. (B) The Physical model of the ETIW. (The Masonry mortar and Perlite insulation board in this diagram are shown in cross-section).
The external thermal insulation wall (ETIW) consists of the substrate and the external thermal insulation composite system. The external thermal insulation composite system generally includes an insulation layer, a protective layer, and fixing materials, which collectively refer to non-load-bearing insulation structures fixed on the exterior surface of the outer wall.
In order to compare the thermal performance of the SIBW and the common the ETIW, the thermal performance of the ordinary the ETIW with the same material was also simulated. The physical model of the ordinary the ETIW is shown in Figures 14B. The simplified model had dimensions of 1.6 m × 1.6 m × 0.32 m, with a substrate thickness of 240 mm, insulation layer thickness of 40 mm, masonry ash joint thickness of 10 mm, and internal and external plastering thicknesses of 20 mm. The substrate consisted of shale ceramsite concrete solid masonry blocks (with a thermal conductivity of 0.8314 W/(m·K)); the external insulation material used perlite insulation boards (with a thermal conductivity of 0.051 W/(m·K)); both masonry mortar and plaster mortar were made from ordinary cement mortar (with a thermal conductivity of 0.93 W/(m·K)).
4.2 Thermal performance
The indoor ambient temperature was set to 299.15 K (26°C) according to GB50176-2016, with a convection heat transfer coefficient (h1) of the heat surface set at 8.7 W/(m2·K). The outdoor ambient temperature was set to 268.42 K (−4.73°C), and the convection heat transfer coefficient (h2) of the cold surface was set at 23.0 W/(m2·K). (The values were obtained by referring to the average indoor temperature in summer and the average outdoor temperature in winter in Xinyang City, China.)
The numerical simulation of the steady-state heat transfer for the SIBW was conducted. Figures 15A shows the cloud map of the 3D heat flux density distribution of the SIBW, and Figures 15C shows the cloud map of the heat flux density distribution on the top surface of the SIBW. According to Figures 15A, C, the heat flux density at the concrete substrate was highest, while it was lowest at the insulation material. Due to using inorganic thermal insulation mortar with low thermal conductivity for masonry mortar, there was no significant thermal bridge effect in masonry ash joints. The simulated heat flux rate on the wall surface was 15.4 W, and its heat transfer coefficient was 0.56 W/(m2·K), which meets the design standard for achieving a 65% energy saving in residential buildings situated in regions with hot summers and cold winters.
[image: Two side-by-side thermal simulations showing heat distribution through building materials. (A) depicts a concrete wall with varying heat levels indicated by colors from blue to red. (B) shows a perlite insulation board with a more uniform heat distribution, primarily in cooler colors. The bottom diagrams (C, D) illustrate cross-sections with labeled layers, highlighting ash joints and the transition between interior and outdoor spaces. Color scales indicate temperature gradients.]FIGURE 15 | The heat flux density of the wall: (A) The cloud map of the heat flux density distribution for the SIBW. (B) The cloud map of the heat flux density distribution of the ETIW. (C) The cloud map of the heat flux density distribution on the top surface for the SIBW. (D) The cloud map of the heat flux density distribution on the top surface for the ETIW. (The direction of the arrow is the direction of the heat flow. Unit: W/m2).
The numerical simulation of the steady-state heat transfer for the ETIW was conducted. Figures 15B shows the cloud map of the 3D heat flux density distribution of the ETIW, and Figures 15D shows the cloud map of the heat flux density distribution on the top surface of the ETIW. According to Figures 15B–D, the heat flux density at the masonry mortar was the largest and the solid ceramsite concrete blocks was minimal. The simulation showed that the heat flux rate on the wall surface was 24.12 W, and its heat transfer coefficient was 0.79 W/(m2·K). When the heat was transferred to the perlite insulation board on the outside of the wall, the heat flux density was evenly distributed, indicating that the external insulation system can better block the heat bridge effect produced at the ash joints. However, it did not meet the design standard of 65% energy saving in residential buildings situated in regions with hot summers and cold winters.
To sum up, it could be observed that under the same substrate thickness and insulation material for both walls, the heat transfer coefficient of the SIBW was lower, being 29.1% lower than that of the ETIW. This was because the SIBW was the insulation material filled in the hole of the SIB, which could use the insulation material with high thermal resistance to the greatest extent without increasing the thickness of the wall. The thickness of the insulation material for the ETIW often determined the heat transfer coefficient of the wall, which not only reduced the economy of the external insulation system but also increased construction difficulty.
5 CONCLUSION
In this study, the shale ceramsite concrete (SCC) was prepared as the base material for the blocks through the orthogonal test and range analysis. Subsequently, the influence of different hole type distribution schemes on the thermal performance of self-insulation blocks (SIB) was studied using the Steady-State module of Ansys Workbench. The following conclusions could be drawn:
	(1) The orthogonal test employed in this study was a design method used to investigate multiple factors and levels. It selected representative points from the comprehensive test based on orthogonality, making it an efficient, rapid, and cost-effective experimental design method. Through orthogonal test and range analysis, the results showed that:

	• i. The compressive strength of the optimal combination (A3B2C3D3) was 52.03 MPa, which was 1.2% higher than that of the optimal blocks in the other 16 groups. The flexural tensile strength of the optimal combination (A3B2C3D3) was 5.13 MPa, which was 1.9% higher than that of the optimal blocks in the other 16 groups. It was verified that A3B2C3D3 is the combination with the optimal mechanical properties.
	• ii. The thermal conductivity of SCC (A3B2C3D3) was 0.8314 W/(m·K). It was prepared as the base material of the blocks.

(2) The influence of different hole type distribution schemes on the thermal performance of self-insulation blocks (SIB) was studied using the Steady-State module of Ansys Workbench. The results showed that:
• i. The heat transfer coefficient of blocks gradually decreased with an increase in the number of rows of holes, while the heat transfer coefficient of blocks gradually increased with an increase in the number of columns of holes.
	• ii. The staggered holes could improve insulation performance.
	• iii. The heat transfer coefficient of the blocks decreased with a reduction in the number of external heat transfer channels and a decrease in the width of the heat transfer channel.

	(3) By comparing these theoretical calculations with the simulated values, it was observed that the discrepancy between the two values for different hole blocks was less than 10%, thus confirming the high accuracy of the numerical simulation method employed in this study. According to the simulated results of heat transfer coefficient for the block, it was determined that:

• i. TZ-12 exhibited the optimal hole configuration with a heat transfer coefficient of 0.5 W/(m2·K), which was 38.3% lower than that of the external insulation block TZ-9.
	• ii. Additionally, TZ-12 demonstrated the average compressive strength of 8.28 MPa and the minimum compressive strength of 7.45 MPa, meeting the requirements for MU7.5 strength grade and also satisfying the requirement of not less than MU5.0 when self-insulation blocks were used for external walls.
	• iii. The simulated heat flux rate of the SIBW was 15.4 W, and its heat transfer coefficient was 0.56 W/(m2·K), which was 29.1% lower than that of the ETIW, meeting the design standard for achieving the 65% energy saving in residential buildings situated in regions with hot summers and cold winters.
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This study presents a novel method for wideband acoustic analysis using the Boundary Element Method (BEM), addressing significant computational challenges. Traditional BEM requires repetitive computations across different frequencies due to the frequency-dependent system matrix, resulting in high computational costs. To overcome this, the Hankel function is expanded into a Taylor series, enabling the separation of frequency-dependent and frequency-independent components in the boundary integral equations. This results in a frequency-independent system matrix, improving computational efficiency. Additionally, the method addresses the issue of full-rank, asymmetric coefficient matrices in BEM, which complicate the solution of system equations over wide frequency ranges, particularly for large-scale problems. A Reduced-Order Model (ROM) is developed using the Second-Order Arnoldi (SOAR) method, which retains the key characteristics of the original Full-Order Model (FOM). The singularity elimination technique is employed to directly compute the strong singular and super-singular integrals in the acoustic equations. Numerical examples demonstrate the accuracy and efficiency of the proposed approach, showing its potential for large-scale applications in noise control and acoustic design, where fast and precise analysis is crucial.
Keywords: boundary element method, SOAR, Taylor expansion, sound barrier, acoustic scattering

1 INTRODUCTION
In the acoustics domain, simulating and analyzing the propagation of sound waves through complex structures is essential. Frequency sweep calculations play a pivotal role in understanding sound wave behavior across various frequencies, crucial for designing effective acoustic barriers and noise reduction devices. Traditional methods for these calculations often utilize the finite element method (FEM) or the boundary element method (BEM). It is common knowledge that BEM is frequently utilized to address acoustic issues because of its superior accuracy and simplicity in mesh creation [1–4]. For external acoustic problems, it naturally satisfies the Sommerfeld radiation condition at infinity [5–9]. Conventional sound pressure calculations are typically optimized for specific frequencies, limiting their applicability across a broader frequency spectrum. To address this limitation, broadband analysis is introduced to provide results over a wider range of frequencies [10]. Nevertheless, in broadband analysis, the frequency band within a given range is segmented, and the coefficient matrix along with the boundary elements system equation is recalculated at every distinct frequency point. This procedure results in substantial computational expense. This study presents an efficient approach for rapid frequency sweep calculations in broadband acoustics.
When performing broadband acoustic analysis with the BEM, the frequency dependence of the [image: Mathematical expression showing a Hankel function of the first kind, denoted as \(H_n^{(1)}(kr)\), where \(n\) is the order, \(k\) is the wave number, and \(r\) is the radial distance.] results in coefficient matrices that change with frequency [11, 12]. Consequently, for large-scale issues, the approach is particularly time-consuming because the boundary element system equations must be recalculated for every discrete frequency point. Researchers came up with a number of techniques to speed up the broadband analysis computational process to address this problem [13–16]. A three-dimensional (3D) axisymmetric multifrequency acoustic analysis technique called the Linear Frequency Interpolation Technique (FIT) was proposed by Vanhille et al. [17]. In this approach, the second-order isoparametric segment of the Helmholtz Integral Equation (HIE) is discretized. Despite its effectiveness, FIT requires substantial storage capacity. Li [18] addressed the issue by separating the frequency terms from the damping function through power series expansions of sine and cosine functions into algebraic polynomials, which significantly reduced computational time for multifrequency problems. Similarly, Zhang et al. [19] tackled multifrequency issues using BEM and incorporated series expansion techniques in their calculations, which offer high accuracy and computational efficiency [20]. The advantages of using series expansion are precision and computational economy [21–23]. In this study, the frequency-related and frequency-unrelated components of the product function in the Boundary Integral Equations (BIE) are separated using a Taylor series expansion.
In the realm of acoustic computations using the BEM, coefficient matrices exhibit characteristics of being asymmetric, full-rank, and dense [24, 25]. These attributes contribute to diminished computational efficiency, particularly evident in scenarios involving large-scale problems [26, 27]. Model Order Reduction (MOR) emerges as a viable solution to this challenge [28–31]. Among the most prominent MOR techniques [32] is Proper Orthogonal Decomposition (POD) [33, 34]. However, the quality of the simplified model is not guaranteed, as it depends on the representativeness of the snapshots (or primary frequencies) selected during the POD process [35]. The second-order Arnoldi (SOAR) algorithm for two-dimensional (2D) linear systems, which was introduced by Bai et al. [36, 37], has garnered interest from numerous scholars. The full-order model (FOM) gets mapped onto the projection space. SOAR facilitates the acquisition of an orthogonal basis within the projection space and the construction of a Reduced-Order Model (ROM) that preserves the characteristics of the initial model. Furthermore, the SOAR method finds extensive application in structural acoustic analysis, second-order dynamical system modeling [19], and quadratic eigenvalue problems [37, 38].
Singular Helmholtz boundary integral equations may fail to yield unique solutions when applied to exterior boundary value problems. To address this issue, two primary approaches have been proposed [39–42]. The Combined Helmholtz Integral Equation Formula (CHIEF), cited in Ref. [43], effectively addresses this issue by introducing additional HIE within the internal domain [44, 45]. The resulting overdetermined system of equations can be solved using the method of least squares. However, determining the optimal number and placement of internal points, particularly for issues of high frequency, remains challenging. The Burton-Miller method [46] presents another useful strategy for handling non-unique solutions, offering a linear formulation of the Classical Boundary Integral Equation (CBIE) and its associated Normal Derivative Boundary Integral Equation (NDBIE). If the boundary is nonsmooth, NDBIE becomes hypersingular, requiring special numerical treatment. This study utilizes Cauchy principal value integrals and Hadamard finite part integrals for handling singular integrals.
To enable the application of the Boundary Element Method (BEM) in 2D acoustic computations across a wide frequency range, this study proposes the following enhancements:
	[image: A blurred and pixelated circular shape with no discernible details or colors.] Frequency-dependence elimination for the 2D acoustic state boundary integral equation using Taylor series expansion.
	[image: A round, black circle with no additional details or context provided.] A ROM of a 2D acoustic state system based on SOAR is proposed.
	[image: Blurred or low-resolution image with indistinguishable details, appearing as a solid dark gray circle on a lighter gray background.] The singularity elimination technique is suggested for accurately resolving the singularities in the boundary integrals present in the Taylor series expansion formulation.

This article has the following structure. Section 2 details the BEM formulation for acoustic state analysis. Section 3 elaborates on the BEM formulation with Taylor series expansion for acoustic state analysis. MOR built on the adaptive SOAR method is employed in Section 4 to speed up the BEM computation for 2D broadband acoustic situations. The treatment of singular integrals in kernel function border integrals is described in Section 5. Section 6 includes multiple numerical instances that verify the effectiveness of the proposed algorithm. Finally, conclusions and further discussions are drawn in Section 7.
2 BEM FORMULATIONS FOR ACOUSTIC STATE ANALYSIS
The Helmholtz half-space problem can be represented by the following BIE and normal derivative boundary integral equation (HBIE).
[image: Equation showing mathematical expressions related to integral calculus and physics. It includes terms with functions \(C(x)\), \(F(x, y)\), \(G(x, y)\), and integrals over the variable \(s\), as well as a pressure term \(p_{\text{inc}}(x)\).]
and
[image: Mathematical equation featuring integral expressions. It includes terms: \( C(x)q(x) + \int_{S} H(x,y)\rho(y) \, ds(y) = \int_{S} K(x,y)q(y) \, ds(y) + \frac{\partial p_{\text{inc}}(x)}{\partial n(x)} \). The equation is labeled as (2).]
where [image: Please upload an image or provide a URL for me to generate the alternate text. If you need guidance on how to do this, feel free to ask.] signifies the field point, [image: A large, stylized letter "X" in bold, black font against a white background. The letter is prominent and centered.] denotes the source point, and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the normal derivative of the sound pressure [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]: [image: The equation depicts \(q(x)\) as the derivative of \(p(x)\) with respect to \(n(x)\).]. When [image: Please upload the image or provide its URL for me to generate the alternate text.] is located on a border that is smooth [image: Please upload the image you want me to generate alternate text for.], [image: Mathematical equation showing \( C(x) = \frac{1}{2} \).]. Acoustic pressure incident at position [image: Please upload the image so I can help generate the alt text for it.] is given by [image: Please upload the image or provide a URL so I can help generate the alternate text for it.]. The function of Green [image: The image contains the mathematical expression "G(x, y)" in italicized font, representing a function G with variables x and y.] and its derivatives in Equation 1 and Equation 2 are presented as follows, which can be expressed in Equation 3.
[image: Equation three contains mathematical expressions defining four functions: G(x,y), F(x,y), K(x,y), and H(x,y). Each function involves derivatives and has components with terms of i, k, pi, H terms, and partial derivatives with respect to x(y).]
where the [image: Please upload the image or provide a URL for me to generate accurate alt text.]th order first kind Hankel function is indicated by [image: Mathematical expression showing \( H_n^{(1)} \), which indicates the first order of a particular harmonic function or variable.], [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] denotes by the wave number, [image: Equation representing the imaginary unit: \(i = \sqrt{-1}\).], [image: It seems there might have been an error with the image. Please try uploading the image again or provide a different one.] is the Cartesian component of [image: Mathematical expression showing the function \( n(x) \) in italics.] or [image: The image shows a mathematical expression \( n(\mathbf{y}) \), where \( n \) is a function applied to the vector \( \mathbf{y} \).] and the distance between the field and source locations is represented by the formula [image: Equation showing r equals the absolute value of x minus y.].
For exterior acoustic problems, using either Equation 1 or Equation 2 alone can lead to non-uniqueness of the solution at certain imaginary frequencies. According to the Burton-Miller idea, a linear combination of Equation 1 and Equation 2 can effectively resolve this issue. The Burton-Miller formulation is expressed as follows [46].
[image: Mathematical equation labeled as equation four. It involves integrals and functions of variables \(x\) and \(y\). The equation contains terms like \(C(x)[p(x) + a q(x)]\), integrals over region \(S\), and expressions involving \(F(x, y)\), \(H(x, y)\), and \(a\). It relates various functions and partial derivatives, including \(\frac{\partial p_{\text{inc}} (x)}{\partial n(x)}\).]
in which [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the coupling parameter: defined as [image: Greek letter alpha equals the fraction i over k.] where [image: The mathematical expression \( k > 1 \) is depicted, indicating that the variable \( k \) is greater than one.] and [image: Alpha equals i, where alpha is represented by the Greek letter α and i is the imaginary unit.] in other cases.
By discretizing the structural boundary into several elements using constant elements and introducing the coefficient matrix, Equation 4 can be reformulated as follows
[image: Equation with variables: \( H_p - G_d = p_{\text{nf}_r} \).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Mathematical expression showing matrix \( \mathbf{G} \) belongs to the set of complex \( N \times N \) matrices.] ([image: Please upload the image or provide a URL for me to generate the alternate text.] indicates the quantity of degrees of freedom.) are the coefficient matrices. They are asymmetric, fully populated, and frequency-related. The column vectors [image: Please upload an image or provide a URL so I can generate the alternate text for you.] and [image: It seems there might have been an issue with image uploading. Please try uploading the image again, and I will be happy to help generate the alternate text for it.], respectively, represent the sound pressure and the acoustic flux at the collocation locations. [image: Mathematical notation showing "p" subscript "f" with the superscript "inc".] is the vector of the incident wave.
To determine the sound pressure values at the boundary surface nodes, Equation 5 needs to be solved. Subsequently, the sound pressure can be computed at any point within the acoustic domain by using Equation 4 with [image: It seems there was an issue with displaying the image. Could you please upload the image file directly or provide more details about it?] and [image: The text "C(x) = 1" is displayed, suggesting an equation or function where C is a function of x, equating to 1.].
Its sound pressure, [image: Bold lowercase letter "p" next to subscript lowercase letter "f".], can be written as follows if the computation takes into account the external acoustic field.
[image: Mathematical equation showing \( p_f = - \| H p - G q \| + p_f^{inc} \).]
where the matrices [image: Please provide an image or a URL so that I can generate the alternate text for you.] and [image: It seems there might be an issue with the image upload. Please try uploading the image again so I can help generate the alternate text for it. You can also provide a caption for additional context.] as well as the vector [image: Bold letter "P" followed by a subscript "f".] are similar to those in Equation 5, except that the source point [image: Please upload the image or provide a URL, and I will generate the alt text for you.] is outside the structure domain. And [image: Please upload the image or provide a URL for it. Optionally, you can include a caption for additional context.] and [image: Mathematical expression representing \( G_f \) as a matrix within the set of complex numbers \( \mathbb{C} \) raised to the power of \( \mathbb{N} \times N \).] ([image: Mathematical symbol for a vector with a tilde over the letter N.] indicates the quantity of degrees of freedom.)
3 FREQUENCY SWEEP ANALYSIS FOR ACOUSTIC STATE
In broadband acoustic analysis using BEM, the frequency-dependent coefficient matrices result in time-consuming repetitive computations and repeated solutions of the system equations, posing challenges for practical engineering applications. This frequency dependence arises because the underlying solution is inherently frequency-related. To address this issue, the frequency dependence of the coefficient matrix is eliminated by applying the Taylor series theorem.
The Taylor series expansion of [image: Mathematical expression representing the Hankel function of the first kind, denoted as \( H_n^{(1)}(kr) \), where \( n \) is the order and \( kr \) is the argument.] [47] is given by
[image: Equation displaying a mathematical series: \( H_n^{(1)}(kr) = \sum_{m=0}^{\infty} \frac{(kr - kr_0)^m}{m!} \left[ H_n^{(1)}(kr) \right]^{(m)} \big|_{kr=kr_0} \). It is labeled as equation (7).]
where [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] is a fixed frequency expansion point. As seen in Figure 1, the fixed expansion point in this paper is the midway point of the frequency band.
[image: Graph illustrating a frequency range with points labeled \( f_{\text{min}} \), \( f_{\text{inf}} \), \( f_{\text{med}} \), \( f_{\text{sup}} \), and \( f_{\text{max}} \). Curved lines show effective frequency ranges in green, red, and orange for \( f_{\text{inf}} \), \( f_{\text{med}} \), and \( f_{\text{sup}} \), respectively, each marked with circles.]FIGURE 1 | Calculate the frequency band.
Considering an incident wave traveling along the [image: Please upload the image or provide a URL so I can generate the alternate text for you.]-axis, the Taylor series expansion of the term related to [image: Mathematical expression showing \( p_{\text{inc}}(\mathbf{x}) \).] in Equation 4 can be expressed as follows
[image: Mathematical equation: \(\rho_{\text{inc}}(x) + \frac{\partial \rho_{\text{inc}}(x)}{\partial n(x)} = e^{i k x} \left( 1 + i k \frac{\partial x_f}{\partial n(x)} \right)\), labeled as equation eight.]
where [image: Please upload the image or provide the URL, and I will generate the alternate text for you.] denotes the [image: Please upload the image or provide a URL so that I can generate the alt text for you.]-axis coordinate of the source point, with [image: Please upload the image or provide a link to it so I can help generate the alternate text.] being either [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help generate the alternate text for it.] or [image: Please upload the image for which you need alternate text, or provide a URL if the image is online.].
The terms of incident wave in Equation 8 are Taylor series expanded into
[image: Mathematical formula showing an equation for \( u(x) \) equals \( e \) to the power of \( i k_0 x \) times the summation from \( m = 0 \) to infinity of \(\frac{{(i n)^{m} (k - k_0)^{m}}}{{m!}}\). It is denoted as equation nine in the document.]
The expansion expression for the integral of the kernel functions is obtained by combining Equation 7 and Equation 4.
[image: Mathematical equations for functions G, F, aK, and aH of x, y, q, and p. Each equals a sum from m equals zero to infinity of ((k minus k subscript zero) raised to the power m) over m factorial, multiplied by different terms: g raised to the power m, f raised to the power m, k to the power m, and the sum of k subscript m1 squared and k subscript m2 squared, respectively.]
where
[image: Mathematical equations featuring integrals, Bessel functions, and boundary conditions. The equations describe terms \( f_{s}^{m} \), \( f_{f}^{m} \), \( f_{k}^{m} \), \( f_{n}^{m} \), and \( f_{h2}^{m} \), involving functions \( H_0^{(1)} \), \( H_1^{(1)} \), \( H_2^{(1)} \), various parameters \( \alpha \), \( a \), and variables \( x \), \( y \), and \( p \). Shown with integration over a surface \( S \) and partial derivatives with respect to \( \gamma_k \) and \( \mathbf{n}(y) \).]
where
[image: Equation showing \( (kr) \frac{H_1^{(1)}(kr)}{[m]} = m \left[ H_1^{(1)}(kr) \right]^{(m-1)} + (kr) \left[ \frac{H_1^{(1)}(kr)}{[m]} \right]^{(m)} \), labeled as equation 12.]
By combining Equation 12 and Equation 9, an expression related to the incident wave in Equation 4 is obtained.
[image: Equation displaying the effective incident probability, \(\tilde{p}_{\text{inc}}\), as an infinite series. It sums from \(n=1\) to infinity of \(\frac{(k - k_0)^n}{n!}\) multiplied by \([\tilde{p}_{\text{inc,1}} + k^n \tilde{p}_{\text{inc,2}}]\). Formula is labeled as equation \(13\).]
where the respective components can be expressed as Equation 14.
[image: Mathematical equations representing two expressions for \( p^{\text{inc}} \). The first is \( p^{\text{inc}}_{n,1} = e^{ik_0 x_r (\mathbf{i}_\xi)_n} \). The second is \( p^{\text{inc}}_{n,2} = e^{ik_0 x_r (\mathbf{i}_\xi)_n} (ai) \frac{\partial x_r}{\partial n(\mathbf{x})} \). The number fourteen is displayed on the right.   ]
A new formulation of Equation 4 is given below by substituting Equation 10 and Equation 13 into Equation 4.
[image: Equation 15 displays a mathematical expression involving functions \( C(x) \) and parameters \(\rho(x)\) and \( \alpha C(x) \). It includes summations over \( m \), constants like \( k \) and \( k_0 \), and terms involving \( r_s^m \) and \( r_k^m \). The expression also incorporates fractions with denominators containing terms such as \( \text{inc1} \) and \( \text{inc2} \).]
By discretizing Equation 15 using constant elements, the following matrix expression is derived.
[image: Summation expression from n equals zero to infinity of the fraction (k minus k0) to the power of m over m factorial times the matrix product of P11, K1 squared P13, and K2 squared P23, subtracting the matrix product of P11 and KTQ2, multiplied by vector q, also equals summation from n equals zero to infinity of the fraction (k minus k0) to the power of m over m factorial times the matrix product of Pph inc1 and KPph inc2, labeled as equation 16.]
Due to the linearization of the BEM system, the solutions [image: It seems there's no image attached. Please upload an image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide the URL so I can generate the alternate text for you.] in Equation 16 with truncation term [image: It seems like there's no image attached. Please upload the image or provide a URL to generate the alternate text.] can be expressed as Equation 17 and Equation 18.
[image: Vector \(\vec{p}\) is expressed as the sum of two series. The first series is \(\sum_{n=0}^{N} \frac{(k-k_0)^{n}}{n!} \vec{p}_1^{(n)}\) and the second series is \(\sum_{n=0}^{M} \frac{k(k-k_0)^{n}}{n!} \vec{p}_2^{(n)}\), labeled as equation (17).]
and
[image: Equation representing \( \bar{q} = \sum _{n=0}^{N} \frac{(k-k_0)^n}{n!} q_1^n + \sum _{n=0}^{N} \frac{k(k-k_0)^n}{n!} q_2^n \), labeled as equation eighteen.]
where the respective solutions of the following system equations are [image: Stylized mathematical notation showing the letter 'p' with a tilde and double prime accent, subscript '1', and superscript 'm'.], [image: Mathematical notation showing the vector symbol \( \vec{\tilde{p}}_2^{\hat{111}} \).], [image: Mathematical notation featuring a tilde over lowercase q with a hat, subscript one, and triple prime superscript.] and [image: Stylized mathematical expression showing the variable q with a tilde and a double prime, followed by the number two in subscript.].
[image: Mathematical expression with summation from \(m=0\) to infinity, \(\frac{(k - k_0)^m}{m!}\), multiplied by a nested formula involving exponents and products of variables \(p_{1j}, k, x_p, x_i, p_3, p_j^{in}, q_{1j}, g'\). This is set equal to \(p_j^{in_c}\), where \(j=1, 2\). Equation labeled as \(19\).]
The coefficient matrices [image: Mathematical notation showing the symbol "I" with subscript "p1" and superscript "m."], [image: Mathematical expression showing a script letter I with m as a superscript and p sub two.], [image: Mathematical notation of projective space over a finite field, denoted as I, superscript m, subscript p with a superscript three.], [image: I apologize, but it seems there might be a mistake with your request. Please upload the image directly or provide a description or URL, and I'll create the alternate text for you.] and [image: Mathematical notation showing I subscript q2 superscript m, belonging to the set of complex N by N matrices.] in Equation 19 are frequency unrelated. Thus, it only needs to be solved once for wide-frequency acoustic problems, eliminating the need for repetitive calculations of coefficient matrices in BEM systems. However, there is another disadvantage of this method, which is that it is still very difficult to solve the equations directly using GMRES for large problems with multiple frequencies because the coefficient matrices are full-rank and asymmetric and the truncation terms require high storage capacity [image: The expression shows Big O notation: O(5(M + 1)N^2), representing the computational complexity involving variables M and N, indicating a quadratic relationship about N.]. It is evident from observation that Equation 19 is the second-order system equation concerning frequency. An efficient SOAR method is presented in [48] to accelerate the broadband solution of Equation 19.
4 DIMENSION REDUCTION OF BEM SYSTEM FOR ACOUSTIC STATE ANALYSIS
In this section, an effective SOAR method is proposed to expedite the solution of the coefficient matrix by reducing the dimensionality of the 2D system. This projection technique is predicated on the Krylov subspace of second order. By using the method, a system with an equivalent second-order structure but with a diminished state space dimension is created. In Equation 19, the frequency-independent coefficients [image: Please upload an image or provide a URL for the image you would like described. If there is additional context or a caption you'd like included, feel free to provide that as well.], [image: Stylized letter "I" with superscript "m" and subscript "p squared".], [image: Mathematical expression showing the identity matrix with superscript notation, \( \mathbb{I}^{777} \), and subscript, \( p_3 \).], [image: If you provide the image or a URL where the image can be accessed, I can help generate the alternate text for it.] and [image: It seems there is an issue with the image link you provided. Please upload the image or provide a correct URL so I can generate the alt text for it.] are utilized to construct the frequency-unrelated orthogonal basis iteratively, implementing the SOAR algorithm.
In this work, the scattering of an incident wave by a rigid structural surface is considered. The vectors [image: It seems there is no image uploaded. Please try uploading the image again, and I will help generate the alternate text for it.] in Equation 5 vanish because the particle velocity on the surface of the structure is zero. Thus, Equation 19 can be rewritten as
[image: Summation formula from m equals zero to infinity: ((k minus k₀) to the power of m) over m factorial, times [m factorial over (m sub p₁ factorial times m sub p₂ factorial times m sub p₃ factorial)] times P₀ to the power of m sub p₁ equals P sub inc sub j to the power of n. j equals 1, 2. Equation 20.]
When [image: It seems there was an error with the image upload. Please try uploading the image again, and I will assist you with generating the alt text.], the coefficients in Equation 19 are utilized to create frequency-independent orthogonal bases, then Equation 19 is re-expressed as
[image: A mathematical equation shows the product of terms in brackets raised to the power of \( \beta \), equating to an expression involving \( R \) and \( P \) terms, indexed by \( j \) ranging from 1 to 2.]
It should be noted that Equation 21 is not an approximation of the original system equation; rather, it is used for the construction of the orthogonal basis. Equation 21, approximated around a chosen expansion point [image: It seems there's no image uploaded. Please try uploading the image again, and I'll help generate the alternate text for you.], can be expressed as Equation 22.
[image: Mathematical equation involving gamma terms and wave numbers. The formula is presented as: Gamma subscript p superscript s plus k minus k subscript zero times Gamma subscript p superscript s plus k minus k subscript zero times Gamma subscript p superscript s quantity squared equals the exponential form times the incident pressure with a result of one point two. This is denoted as equation twenty-two.]
where [image: Mathematical equation showing \(I^{0}_{p5} = k^{2}_{0} I^{0}_{p3} + k_{0} I^{0}_{p2} + I^{0}_{p1}\).] and [image: Mathematical equation: bold capital letter I subscript p subscript four superscript zero equals two times k subscript zero times bold capital letter I subscript p subscript three superscript zero plus bold capital letter I subscript p subscript two superscript zero.].
Following the SOAR method procedure outlined in Ref. [48], a sequence of frequency-independent orthogonal bases [image: Mathematical notation showing the letter "Q" with two subscripts "j" and "i", and a superscript "n".] was constructed in the second-order Krylov subspace [image: Mathematical expression depicting the function \( G_n \) with parameters \( \mathbf{A} \), \( \mathbf{B} \), and \( \mathbf{r}_0 \).] using the coefficients from Equation 19, where [image: "n" is much smaller than "N", indicated by the symbol "≪".] as shown in Equation 23.
[image: Mathematical equation showing the span of matrix powers stating: "span of Q to the power of n equals G subscript gamma of A, B, r subscript zero equals span of set r subscript zero, r subscript one, r subscript two, up to r subscript n minus one." Equation labeled 23.]
where the respective quantities are shown in Equation 24.
[image: Mathematical equation detailing a recursive relationship. Constants A and B are defined with negative fractions involving powers of \( p_s \). Variables \( r_0 \), \( r_1 \), and \( r_\ell \) are expressed in terms of previous values, with \( r_0 \) involving an incident power term. Equation (24) connects these terms for \( \ell \geq 2 \).]
To define a reduced system equation of the initial Equation 20, the projection subspace is constructed by spanning a sequence of nonzero columns of [image: Stylized letter "Q" with subscript "j" and superscript "m".]. Equation 20 is reformulated as Equation 25.
[image: Mathematical equation displaying \( p_{j}^{\mathbf{i_n}} = \left[ \sum_{m=0}^{M} \frac{(k-k_0)^m}{m!} \left( n_{p_1}^{\mathbf{i_m}} x_{p_2}^{\mathbf{k_i^m}} x_{p_3}^{\mathbf{k_{i_m}}} \right) \right]^{-1} \mathbf{P_{inc,j}^{\mathbf{i_n}}} \) with \( j = 1, 2 \), labeled \( (25) \).]
Subsequently, the simplified system equation at the expansion point [image: It seems there's no image provided. Please upload an image or provide a URL for me to generate the alternate text.] can be stated as Equation 26.
[image: Mathematical equation showing \( b_{j}^{m} \) equals the summation from \( n = 0 \) to \( M \) of \((k - k_{0})^{n}\) over \( n! \), times the expression \((p_{p1}^{m_{\mu}} + k^{m_{\mu}}_{1}p_{2}^{m_{\mu}} + k_{2}^{m_{\nu}}p_{3}^{m_{\nu}})\), all multiplied by the expression \((Q^{m}_{j})^{T} p^{m_{\nu}}_{\text{inc}, j}\) for \( j = 1, 2 \). Equation labeled as 26.]
where the coefficient matrix is shown in Equation 27.
[image: Mathematical equations showing transformations of vectors \( \mathbf{p}_1^{n+1} \), \( \mathbf{p}_2^{n+1} \), and \( \mathbf{p}_3^{n+1} \) as products of matrices \( \mathbf{Q}^{*n} \), \( \mathbf{T}_p^{n} \), and \( \mathbf{Q}^n \). Equation labeled as 27.]
The relation between the solution of FOM and ROM is expressed as
[image: Equation displaying y sub n equals Q sub 1 times b sub n, with a reference number twenty-eight on the right.]
[image: The image shows a mathematical expression with the variable \( \tilde{\mathbf{p}}_j^{v.,a} \).] is the [image: To generate specific alternate text, please upload the image or provide a URL. Once you do, I can help craft an appropriate description.]th order Padé-type approximation of [image: Mathematical expression showing a variable with subscript "inc" and "c,j", and superscript components "m" and "n".] about the fixed expansion point [image: Please upload the image or provide a URL so I can help generate the alternate text for it.], as shown in Equation 29.
[image: Mathematical equation showing \( \mathbf{P}^{\mathrm{f}} = \mathbf{P}_{\mathrm{inc}}^{\mathrm{f}} + \mathcal{O}((k - k_{0})^{n}) \) with equation number (29) on the right.]
In the ROM, [image: Mathematical expression, denoted as \( I^{m,n}_{p_1} \).], [image: Mathematical expression showing "I" raised to the power of "m, n" with subscript "p" and subscript "2".] and [image: Mathematical notation with a large, bold letter "I" followed by superscript "m, n" and subscript "p₃".] are [image: It looks like you are trying to describe or reference an image, but I would need more details or a direct upload of the image to assist in creating the alternate text. If you have an image to upload, please do so, and I can help create the alt text for it.] matrices where [image: The image shows the mathematical notation \( n \ll N \), indicating that the variable \( n \) is much smaller than the variable \( N \).]. This significantly reduced storage requirements and improved computational efficiency. At the collocation points on the structural surface, the sound pressure can be obtained using Equation 28. Afterward, at any point within the acoustic domain, Equation 6 can be used to get the sound pressure value.
5 SINGULAR INTEGRAL IN BEM
The boundary integral of the kernel function in Equation 11 can be expressed as the sum of singular and non-singular terms.
[image: Equation showing an integral over a surface \( S \) of \( f(y) \, ds(y) \) equals the sum of two integrals: one over \( S_{S_s'} \) labeled non-singular, and another over \( S_s \) labeled singular. Equation number thirty.]
where [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the element that contains the source point [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL. Let me know if there is additional context you want to provide.]. [image: Mathematical expression showing "s" divided by "s subscript x".] denotes the boundary [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] that does not contain [image: Please provide the image by uploading it or sharing a URL so I can generate the alternate text for you.]. Since the integral does not exhibit singularity on the boundary [image: Mathematical expression showing "S" divided by "S sub X".], Gauss quadrature can be employed for its solution. However, the integral over the boundary [image: Please upload the image or provide a URL for me to generate the alternate text.] is singular and must be processed to do a numerical calculation.
The steps for handling singular integrals are as follows:
	1. Suppose there is a singular function [image: Mathematical notation for the function \( \hat{f}(x) \).]. First, perform a singular order analysis on the integrand to obtain a simple function [image: Mathematical expression depicting \( \hat{f}_0(\mathbf{x}) \), where \( \hat{f}_0 \) represents a function with a variable vector \( \mathbf{x} \).] that shares the same order of singularity.
	2. Then, split the integral of the singular function into two parts: one part is the integrand minus the simple function [image: Mathematical expression showing the difference between \( \hat{f}(\mathbf{x}) \) and \( \hat{f}_0(\mathbf{x}) \), where both functions are denoted with hats over \( f \) to indicate estimates or approximations.], and the other part is the integral of the simple function [image: Mathematical notation representing the function \( \hat{f}_0(\mathbf{x}) \), where \(\hat{f}_0\) denotes a function with a hat symbol, and \(\mathbf{x}\) is in bold, signifying a vector.]. Since [image: Mathematical expression showing the difference between \(\hat{f}(\mathbf{x})\) and \(\hat{f}_0(\mathbf{x})\).] is non-singular, it can be directly computed using Gaussian-Legendre quadrature. Although [image: Mathematical notation of a function: f subscript zero of x, with a hat symbol over the f.] retains its singularity, its simple form allows for accurate integral results through various methods, such as integration by parts, the Cauchy principal value, and the Hadamard finite part integral.
	3. Finally, adding these two parts yields the accurate integral value of the original singular function [image: Mathematical notation depicting the estimation of a function \( \hat{f}(x) \).].

In this study, singular integrals are handled using the Cauchy principal value and the Hadamard finite part integral methods. With reference to Figure 2, let [image: Please upload the image or provide a URL for me to create the alternate text.] represent a semicircle of radius [image: Please upload the image or provide a URL for me to generate the alternate text.], and [image: It seems like there's a rendering error or misplacement with the image code. Please upload the image file directly or provide a clear description or URL so I can assist you with creating the alt text.] represent [image: Formula showing the ratio of \( s_x \) to \( s_\varepsilon \).]. Equation 30 can be used to rewrite the singular integral term in Equation 31.
[image: An equation with integrals and limits. It states the integral from \(x\) to \(y\) of \(f(s)\) \(ds\) equals the limit as \(r\) approaches \(x\) of the integral from \(r\) to \(y\) of \((f(y) - D(y))\) \(ds(y)\), marked as a regular term, plus the limit as \(r\) approaches \(x\) of the integral from \(x\) to \(y\) of \(D(y)\) \(ds(y)\), marked as singular, with the equation numbered \(31\).]
[image: Diagram showing a line, labeled Γε, intersecting a circular arc at angle θ. The radius of the arc is labeled ε. Arrows n(x) and n(y) extend from the arc's center, indicating directions along the x and y axes. The arc is labeled Sε.]FIGURE 2 | The constant element [image: Please upload the image or provide a URL for me to generate the alternate text.] is connected to an infinitesimal semicircle. Normal derivatives at source points [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] and field points [image: Please upload an image or provide a URL for me to generate the alternate text.] are represented by the notations [image: Mathematical expression showing "n" with a function of "x" in parentheses, written in italics.] and [image: The image shows a mathematical expression "n(y)" in italic font.], respectively.
When [image: Mathematical expression showing "y" belonging to the set "S" subscript "x".], then [image: The equation shows partial derivatives of \( r \) with respect to \( n(x) \) and \( n(y) \), both equal to zero.], hence [image: The image shows the mathematical symbol \( I^m_f \).], [image: The image shows the mathematical notation "I" with subscripts "k" and superscripts "m", indicating multiple indices and dimensions.] and [image: Mathematical expression showing \( I^{m}_{h2} \).] are all zero. Therefore, the singular integrals in Equation 11 are present only in [image: I'm unable to generate alt text without seeing the image. Please upload the image, and I'll be happy to help!] and [image: Mathematical expression showing \( I^{m}_{h1} \), with a superscript \( m \) and subscript \( h1 \).].
To facilitate the derivation of singular integrals, the singular terms of [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] and [image: Mathematical notation displaying an expression with a variable \(I_{h1}^{m}\).] are denoted as [image: Mathematical notation showing "f" with superscript "m" and subscript "g".] and [image: Mathematical notation of a function with subscript and superscript: lowercase "f" with subscript "h one" and superscript "m one".] respectively.
[image: Mathematical expressions showing two equations: \( p^{m}_{s} = r^{m} [H_{s}^{(1)^{(m)}} (kr)] \big|_{k=k_d} \) and \( p^{m}_{h1} = p^{m-1} [H_{1}^{(1)^{(m)}} (kr)] \big|_{k=k_d} \), with the number 32 in parentheses.]
Based on Equation 31 and Equation 32, the integrals [image: I'm unable to view the image. Could you please upload it directly or provide a URL? Additionally, you can include a caption for context.] and [image: A mathematical expression with the variable \( I \) raised to power \( m \), with subscript \( h_1 \).] in [image: Please upload the image or provide the image URL, and I will help generate the alternate text for you.] can be restated as
[image: Integral equation showing two mathematical expressions involving limits and differentials. The expressions both evaluate the limit as epsilon approaches zero, integrating from X sub i to S of a function F sub epsilon dS of y. The terms include subscripts, superscripts, and variables inside the integrals and limits. The expression labeled (33) is also shown.]
where [image: Mathematical expression depicting the product of \( n_j(x) \) and \( n_j(y) \) equal to 1.] and [image: Mathematical expression showing "dr equals dS of y" in italicized font.] in [image: It looks like you have included a mathematical symbol rather than an image. Please upload an image for which you need alternate text, and I can help generate it for you.]. The non-singular terms in Equation 33 are computed using Gaussian quadrature. The singular part of [image: Mathematical expression showing Hankel function of the first kind, order zero, denoted as \( H_0^{(1)}(kr) \).] is [image: Mathematical expression showing the formula: 2 * i * ln(kr) divided by pi.] and that of [image: Mathematical expression showing the derivative of the Hankel function of the first kind, denoted as \( H_1^{(1)'}(kr) \).] is [image: The mathematical expression is: \(2i/(-\pi kr) + i(kr) \ln(kr)/\pi\).] Thus, their m-th derivatives are represented as Equations 34, 35.
[image: Equation labeled 34 shows the expression for \(D_{\xi}^{m}\). It equals \(\frac{2}{\pi} \ln(k_{0} r)\) when \(m = 0\), and \(O(p^{m})\) when \(m \neq 0\).]
and
[image: Equation displaying different expressions for \( D^{\text{int}}_{Hl} \) based on the value of \( m \). For \( m = 0 \), the expression is \(\frac{2i}{\pi k_0^2 r^2} + \frac{ik_0}{\pi} \ln( k_0 r )\). For \( m = 1 \), it is \(\frac{2i}{\pi k_0^2 r^2} + \frac{1}{\pi} \ln( k_0 r )\). For \( m \geq 2 \), it is \(\frac{2i}{\pi} (-1)^m k_0^{m+1} r^{m-2} ml\). Equation number 35 is present on the right side.]
By substituting Equation 34 into the first equation of Equation 33, the two singular terms [image: Mathematical notation representing \( g_0 \) with subscript zero in a slanted, italicized font.] and [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] in Equation 33 can be expressed as Equation 36.
[image: Equations showing \( \beta_0^{(0)} = 0 \) and \( R_0^2 = \frac{2I}{\pi} \left[ \ln(k_0L/2) - 1 \right] \), labeled as equation (36).]
where [image: Please upload the image or provide a URL for me to generate the alt text. If you want, you can also add a caption for additional context.] is the length of the element.
Similarly, by substituting Equation 34 into the second equation of Equation 33, the expressions for [image: Mathematical notation showing the letter "g" with a subscript "1" and a superscript of three question marks.] and [image: The expression displays "d" raised to the power of "m" with a subscript of "1".] are obtained.
[image: Mathematical equation showing a limit as epsilon approaches zero. The expression inside the limit is a fraction with numerator four over pi, multiplied by negative one to the power m times k subscript zero to the power negative m plus one times m subscript one divided by epsilon. Equation number thirty-seven.]
and
[image: Mathematical expression defining three cases for \( m \) in terms of \( m', n \), and other variables: For \( m = 0 \), an expression with terms involving \( L \), \( k_0 \), \( \pi \). For \( m = 1 \), a similar expression with sign change. For \( m \geq 2 \), a more complex expression involving factorials and a limit. Equation labeled as (38).]
By combining Equation 37 and Equation 38, the expression for the singular integral is derived as Equation 39.
[image: Mathematical formula with three expressions for different values of m. For m equals zero: \((\frac{8i}{\pi k_0 L} + \frac{ik_0 L}{\pi}[\ln(k_0 L / 2) -1])\). For m equals one: \((- \frac{8i}{\pi k_0 L} + \frac{iL}{\pi}[\ln(k_0 L / 2) -1])\). For m greater than or equal to two: \(\frac{8i}{\pi L} (-1)^m k_0^{(m+1)} / m!\). The formula number is (39).]
6 NUMERICAL EXAMPLE
Three computational examples are presented in this section to evaluate the performance of the proposed algorithm. The research employed the Fortran 90 programming language to conduct numerical simulations. 64 GB of RAM and an Intel (R) Core (TM) i9-10900H Central Processing Unit (CPU) were installed on a desktop computer to perform calculations.
In the simulations, some common parameters are as follows: an incident wave with an amplitude of [image: I'm sorry, I can't generate alt text for an image directly from embedded content. Please upload the image or provide a URL.] propagating in the positive [image: Please upload the image or provide a URL so I can generate the alternate text for you.]-axis direction, expressed as [image: Mathematical equation showing the incident pressure \( \mathbf{p}_{\text{inc}} = p_0 e^{ikr \cos \theta} \), where \( p_0 \) is the initial pressure, \( e \) is the base of the natural logarithm, \( i \) is the imaginary unit, \( k \) is the wave number, \( r \) is the radial distance, and \( \theta \) is the angle.]. The medium for the acoustic wave is air, with a density of 1.21 [image: The text "kg/m³" indicating kilograms per cubic meter, a unit of density measurement.] and a speed of 343 [image: The image shows a stylized text representation of the unit "meters per second" (m/s), commonly used to express velocity or speed in scientific and engineering contexts.].
6.1 Acoustic scattering by an infinitely rigid cylinder
The acoustic scattering from a cylinder can be reduced to a two-dimensional problem by assuming that a plane wave beam acts on an infinitely rigid cylinder (see Figure 3). And a plane wave follows the positive [image: Please upload the image you would like me to generate the alternate text for.]-axis of propagation. The cylinder is centered at (0 [image: It seems there was an issue with uploading your image. Could you please try again or provide a description or URL if possible?], 0 [image: It seems there is no image provided. Please upload the image or provide a URL for me to view it.]) with a radius of 1 [image: Please upload an image or provide a URL so I can generate the appropriate alt text for you.], and the circumference is discretized using 720 constant boundary elements. Additionally, the coordinates of the calculation point are (3 [image: To generate alternate text, please upload the image you want described. If you have additional context, feel free to include it.], 0 [image: Please upload the image or provide a URL so I can generate the alt text for it.]) (see Figure 3).
[image: Diagram showing a concentric structure with two circles: a yellow inner circle labeled "Softness domain" at center O (0,0), and a blue outer circle. An arrow marks an inspection point at F (3,0) on the X-axis. Incident waves approach from the left, with an angle θ indicated between radii extending to a point at (1,0). Axes are labeled X and Y.]FIGURE 3 | The infinite cylinder serves as the design domain for sound scattering.
The problem of acoustic scattering by an infinitely rigid cylinder has the analytical solution, which is represented as Equation 40 [49].
[image: Mathematical equation in the form of a series: \( p(r, \theta) = \sum_{n=0}^{\infty} \epsilon_n j_n(k_0 r_0) - k r_0 j_{n+1}(k r_0) \). It involves Bessel functions \( H_n^{(1)} \) and cosine functions \( \cos(n \theta) \). Equation number (40) is listed on the right.]
In the above equation, [image: It seems you attempted to include an image, but it did not upload correctly. Please try uploading the image again, or provide a URL if the image is online. If you have a caption or specific details, feel free to include those as well.] = 1 for [image: Please upload the image you'd like described, and I will generate the alt text for you based on its content.] = 0, and [image: It seems you attempted to upload an image, but it did not come through. Please try uploading the image again or provide a URL. You can also add a caption for more context.] = 2 otherwise, where [image: It seems like there is no image uploaded. Please upload the image or provide a URL, and I will help generate the alternate text for it.] represents the Neumann symbols. The expansion consists of 50 terms, and at the detection point, [image: Please upload an image or provide a URL so I can generate the alt text for you.] = 0.
The relative error between the numerical result computed and the analytical solution is evaluated, as shown in Equation 41, to ensure that the proposed approach is accurate.
[image: Mathematical equation representing F, which is the ratio of the square root of the sum of squared differences between \( p_{n}(x_{i}) \) and \( p_{e}(x_{i}) \), and the square root of the sum of squared values of \( p_{n}(x_{i}) \), summed from \( i=1 \) to \( N \). Equation number 41.]
where [image: It looks like there was an issue with the image upload. Please try uploading the image file again so I can help generate the alternate text for it.] denotes the computational points within the domain, the numerical solution for sound pressure is represented by [image: The image shows a mathematical expression: \( p_n(x_i) \), which represents a function or probability notation involving variables \( x_i \) and subscript \( n \).], and the analytical solution for sound pressure is denoted by [image: Mathematical expression showing the function \( p_{e}(x_{i}) \), where \( p_{e} \) is a subscript and \( x_{i} \) is enclosed in parentheses, with \( i \) as a subscript.]. The number of computed points, [image: Please upload the image or provide a URL so I can help generate the alt text for it.] = 720, is evenly distributed along the perimeter of the circle shown in Figure 3, which has a radius of [image: It seems there might have been an issue uploading the image. Please try uploading the image again or provide a URL. If you have a caption or context, feel free to include it.] 3 [image: It seems there is no image uploaded. Please upload the image or provide a link to it, and I will help generate the alternate text.].
Figure 4 shows the sound pressure amplitude at the computed location (3 [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will generate the alternate text for you.], 0 [image: Please upload an image or provide a URL, and I can help generate the alternate text for it.]) obtained using the proposed algorithm. The analytical solution and this outcome are contrasted. Numerical simulations considered two distinct intervals (300, 400) Hz and (400, 500) Hz. In the frequency interval [image: A mathematical expression showing the composition of two functions, where \( f_{\text{lef}} \) is applied first followed by \( f_{\text{rig}} \).], the fixed expansion point is the midpoint frequency [image: Sure, please upload the image you'd like me to describe.]2. “[image: Please upload the image or provide a URL to it so I can generate the alternate text for you.]”, “[image: It seems there is an issue with the image upload or link. Please provide an image or a URL for me to generate the alternate text.]”, and “[image: Sure, please upload the image you want to generate alt text for.]” denote the retention of the first 3, 6, and 8 terms of the Taylor expansion, respectively. The ROM attainments by the SOAR approach have an order of 10.
[image: Two line graphs labeled A and B compare specific modulus (SpeMod) in pascals across frequencies from 100 to 400 hertz. Graph A includes blue (Analytical), orange dashed (Taylor, 0.4) lines; Graph B includes green (Taylor, 0.6), red dashed (Taylor, 0.8) lines. Both graphs show a general upward trend in specific modulus values with increasing frequency.]FIGURE 4 | The sound pressure amplitudes at the computational point located at (3 m, 0 m) in two different frequency ranges were obtained using the analytical solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,400) Hz, (B). f = (400,500) Hz.
Figure 4 demonstrates that the sound pressure amplitude values derived from various Taylor series terms of the proposed algorithm are comparatively consistent with the analytical solution. Due to the fixed expansion point being the midpoint of the frequency interval, significant differences occur at the two ends of each frequency interval. In order to minimize the disparity between the analytical and numerical solutions, we subdivided the frequency intervals (300, 400) Hz and (400, 500) Hz into four sub-intervals each, and then recalculated the numerical simulations.
Figure 5 presents the results of the analytical and numerical solutions for the four sub-intervals after subdivision. It is evident that the numerical solutions match the analytical solutions very closely. Figure 6 shows the relative errors between them. Based on the observations, it can be inferred that the relative error is sufficiently minimal and exhibits little fluctuation when six or more expansion terms are used.
[image: Four line graphs labeled A, B, C, and D compare analytical and Taylor series solutions at varying frequencies in Hertz (Hz). Graph A shows data from 300 to 350 Hz, Graph B from 350 to 400 Hz, Graph C from 400 to 450 Hz, and Graph D from 450 to 500 Hz. Each graph plots sound pressure levels in Pascals (Pa) with a consistent linear trend across the datasets. Analytical solutions are in solid lines, while Taylor series approximations are shown in dashed lines with different colors for Taylor 04, Taylor 06, and Taylor 08.]FIGURE 5 | The sound pressure amplitudes at the computational point located at (3 m, 0 m) in four different frequency ranges were obtained using the analytical solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,350) Hz, (B). f = (350,400) Hz, (C). f = (400,450) Hz, (D). f = (450,500) Hz.
[image: Four line graphs labeled A, B, C, and D compare error values at various frequencies in Hertz. Each graph has three lines representing Taylor_04 (solid blue), Taylor_06 (dashed red), and Taylor_08 (dotted green). The X-axis ranges differ: A (300-350 Hz), B (350-400 Hz), C (400-450 Hz), and D (450-500 Hz). The Y-axis shows error values on a logarithmic scale from 10^-2 to 10^2.]FIGURE 6 | The relative error of the sound pressure at the point of calculation (3 m, 0 m) for different expansion terms was derived through the utilization of the analytical solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,350) Hz, (B). f = (350,400) Hz, (C). f = (400,450) Hz, (D). f = (450,500) Hz.
Figure 7 illustrates how long it takes to compute the point sound pressure amplitude using both the conventional boundary element method (DBEM) and the proposed approach. The frequency sweep range is (300, 400) Hz, with the number of frequency sweeps set to 200 and 1,000, respectively. The ROM attainments by the SOAR approach have an order of 10. It can be observed that for wide-frequency sweep calculations, when compared to the DBEM, the proposed method takes a lot shorter amounts of time. Moreover, the more frequency sweeps performed, the greater the time savings, indicating higher efficiency. Based on the above analysis, six terms for the Taylor series expansion are advised in computational simulations to minimize CPU time.
[image: Two line graphs labeled A and B compare CPU time versus degrees of freedom (DOFs) for different methods: DBEM, Taylor_04, Taylor_06, Taylor_08, and Taylor_10. Both graphs show an increase in CPU time with more DOFs, with DBEM rising sharply, while the Taylor methods follow a similar, lower trend. Graph A has a maximum CPU time of 400,000 seconds, and graph B peaks at 200,000 seconds. Different line styles and colors represent each method.]FIGURE 7 | The sound pressure amplitudes at the computational point located at (3 m, 0 m) in two different frequency ranges were obtained using the analytical solution and SOAR Accelerated Taylor Extension-based BEM: (A). Frequency step length = 0.5 Hz., (B). Frequency step length = 0.1 Hz.
6.2 Acoustic scattering by tree-shaped sound barriers
Traffic noise is a major source of environmental noise in urban areas, significantly impacting health and quality of life. The use of sound barriers can mitigate the effects of traffic noise on both the environment and human health.
Figure 8 depicts a tree-shaped sound barrier model, where the model boundary is discretized into 868 scattered points by constant elements. The remaining parameters for the tree-shaped sound barrier model are as follows: the trunk and four branches of the tree-shaped sound barrier are each 0.5 [image: To generate alternate text, please upload the image or provide a URL.] in length and 0.3 [image: Please upload the image or provide a link, and I will help generate the alt text for it.] in width. The base of the trunk measures 0.8 [image: Please upload the image for which you would like the alternate text generated.] in length and 0.3 [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will be happy to help generate the alt text for you.] in width. A Tree-shaped sound barrier scatters a plane wave that is traveling along the positive [image: Please upload the image or provide a URL so I can generate the alternate text for you.]-axis with an amplitude of [image: It seems there was an error with the upload. Please try uploading the image again or ensure the link is correct. If needed, you can also provide a caption for additional context.] 1. The observation point is located at (14 [image: Please provide the image or its URL, and I will generate the alternate text for you.], 2 [image: Please upload the image, and I'll help create the alternative text for it.]).
[image: Diagram of a blue Y-shaped structure with two arms, each 10.4 meters wide, and a central column 10.0 meters high. A plane wave is indicated on the left, 3.0 meters below the structure. An inspection point is marked at coordinates 14.0 meters, 2.0 meters. Axes labeled X, Y, and Z are depicted in the bottom left corner.]FIGURE 8 | The design domain of the tree-shaped sound barrier model.
Figure 9 depicts the amplitude, imaginary part and real part of the sound pressure at the observation point, obtained using the traditional boundary element method and different Taylor series expansion terms of the proposed algorithm. The figure shows that as the number of Taylor expansion terms increases, the sound pressure results obtained by the proposed approach converge. Due to the fixed frequency expansion point being located at the midpoint of the frequency range, discrepancies appear at the ends of the interval, whereas other regions show good agreement. The frequency band of (150, 200) Hz is split into two sub-intervals, and numerical simulations are conducted separately for each sub-interval. The simulation results are shown in Figure 10. From Figure 10, it can be concluded that the results obtained with different Taylor expansion terms are in high agreement with those obtained using the DBEM.
[image: Three graphs labeled A, B, and C illustrate Sp(real), Sp(imag), and Sp(abs) values over a frequency range of 150 to 200 Hz. Each graph compares data from different models: DBEM, Taylor_03, Taylor_06, Taylor_08, and Taylor_10, with distinct colored lines representing each model. Graph A shows a wave pattern, while Graph B presents a similar wave with reduced amplitude. Graph C depicts a different pattern with an increasing trend.]FIGURE 9 | The sound pressure findings at a computing position (14 m, 2 m) that were acquired using DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). Real part, (B). Imaginary part, (C). Sound pressure amplitude.
[image: Two line graphs compare spectral values against frequency in hertz. Graph A, covering 150 to 175 Hz, shows increasing values using different methods: DBEM, Taylor_03, and Taylor_06. Graph B, spanning 175 to 200 Hz, depicts a peak followed by a decline with methods Taylor_08 and Taylor_10. Both graphs illustrate varying data series using distinct line styles and colors.]FIGURE 10 | At a point of computation (14 m, 2 m), the sound pressure amplitude were acquired using DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (150,175) Hz, (B). f = (175,200) Hz.
Figure 11 presents the relative error between the results at the calculation points for different expansion terms and those from the traditional boundary element method. The figure indicates that if there are six or more Taylor expansion terms, the relative error remains consistently low and stable. Table 1 displays the sound pressure amplitudes at various frequency points obtained through two different algorithms, along with the relative errors between them.
[image: Two line graphs, labeled A and B, depict error versus frequency in hertz. Graph A shows three lines for Taylor_03 (blue), Taylor_06 (orange), and Taylor_05 (green), ranging from 150 to 175 Hz. Graph B displays lines for Taylor_08 (green), Taylor_10 (red), and Taylor_07, spanning 175 to 200 Hz. Each graph features varying error levels across frequencies.]FIGURE 11 | The relative error of the sound pressure at the point of calculation (14 m, 2 m) for different expansion terms was derived through the utilization of the DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (150,175) Hz, (B). f = (175,200) Hz.
TABLE 1 | Sound pressure values and relative errors for different taylor expansion terms.
[image: A table comparing frequency data across various models: DBEM, Taylor_03, Taylor_06, Taylor_08, and Taylor_10. Each model's data includes values for |Sp| and \( \varepsilon_r \). Frequencies range from 150 to 200. The table shows small variations in numbers for |Sp| and \( \varepsilon_r \), illustrating comparative data across models.]6.3 Acoustic scattering by room
This section demonstrates the calculation of sound pressure amplitudes at observation points within a two-dimensional room. Both the BEM and the Taylor series expansion-based BEM accelerated by the SOAR algorithm are employed. The results from these methods are then compared and analyzed. As depicted in Figure 12, the two-dimensional room model measures 4.5 [image: It seems there was an issue with uploading your image. Please try again, and make sure the image is properly uploaded or linked. If you have any specific details or context you want to provide for the image, feel free to include them.] in height and 5.3 [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] in width. The boundary is divided into 994 discrete points using constant elements. A wave with an amplitude of 1, traveling in the positive [image: Please upload the image, and I'll help generate the alternate text for it.]-direction, is scattered by the room. The observation point is situated at (10 [image: It seems there was a mistake in the request. Please upload the image or provide a URL to generate the alternate text.],2 [image: Please upload the image or provide a URL so I can generate the alternate text for you.]).
[image: Blueprint of a geometric structure with a complex polygon shape in blue. The diagram includes dimensions marked along the sides and different angles, indicating various segments. A legend on the left describes boundary types and origin points. Axes are marked with X, Y, and Z coordinates.]FIGURE 12 | Acoustic scattering design domain for two-dimensional room.
The frequency range scanned in Figure 13 spans from 200 Hz to 250 Hz and from 250 Hz to 300 Hz. Figure 13 indicates that the sound pressure amplitudes obtained by both methods exhibit good agreement within the intervals of (210, 235) Hz and (260, 290) Hz, but show significant discrepancies at the ends of these intervals. The discrepancy arises because the frequencies used for calculations within each frequency sweep interval are centered on the midpoint of the interval. Consequently, the further a frequency is from the midpoint, the greater the error in the calculated result. To enhance accuracy and diminish errors, the intervals (200, 250) Hz and (250, 300) Hz are subdivided into four sub-intervals each. Within each sub-interval, calculations are performed using the midpoint frequency. The outcomes are illustrated in Figure 14. Figure 14 indicates a high level of agreement between the results obtained by the two algorithms, this suggests that narrowing the intervals to enhance the precision of the algorithm proposed is effective.
[image: Graph A shows sound pressure magnitude in pascals over 200 to 250 Hz, with peaks near 220 and 245 Hz. Graph B displays similar data from 250 to 300 Hz, with peaks around 260 and 280 Hz. Different colored lines indicate various methods, such as DBEM and Taylor series approximations.]FIGURE 13 | The sound pressure amplitudes at the computational point located at (10 m, 2 m) in four different frequency ranges were obtained using the DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,250) Hz, (B). f = (250,300) Hz.
[image: Four line charts (A, B, C, D) compare sound pressure levels (Sp(abs) [Pa]) across frequency ranges in Hertz (Hz). Each chart includes multiple lines representing different models (DBEM, Taylor_03, Taylor_06, Taylor_08, Taylor_10) in various colors and styles, with some peaks and variations in pressure levels. Chart A spans 200-225 Hz, B is 245-250 Hz, C is 255-275 Hz, and D is 275-300 Hz. Each chart shows noticeable peaks, indicating frequency-dependent changes in sound pressure.]FIGURE 14 | The sound pressure amplitudes at the computational point located at (10 m, 2 m) in four different frequency ranges were obtained using the DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,225) Hz, (B). f = (225,250) Hz, (C). f = (250,275) Hz, (D). f = (275,300) Hz.
Figure 15 illustrates the errors between the two algorithms. It is evident that with six or more terms in the Taylor series expansion, the error remains stable and within an acceptable range. Table 2 presents the sound pressure amplitudes and corresponding relative errors at different frequency points.
[image: Four line graphs labeled A to D display error versus frequency (in Hertz) for different Taylor series approximations. Each graph includes two or more colored lines representing various Taylor approximations such as Taylor_03, Taylor_06, Taylor_08, and Taylor_10. The graphs cover frequency ranges between 200 to 300 Hertz, with error values shown on a logarithmic scale. Each plot highlights how the error changes across different frequencies for the given approximations.]FIGURE 15 | The relative error of the sound pressure at the point of calculation (10 m, 2 m) for different expansion terms was derived through the utilization of the DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,225) Hz, (B). f = (225,250) Hz, (C). f = (250,275) Hz, (D). f = (275,300) Hz.
TABLE 2 | Sound pressure values and relative errors for different taylor expansion terms.
[image: A table displaying values for frequency ranging from 200 to 300, with corresponding data under columns labeled DBEM, Taylor_03, Taylor_06, Taylor_08, and Taylor_10. Each column has sub-columns for |Sp| and εr, showing numerical values such as 1.73971, 1.65520, 5 x 10^-2, etc.]By comparing the three cases, it is evident that the frequency sweep range is significantly reduced in more complex models. This indicates that the complexity of the model affects the accuracy of the proposed algorithm. However, precise calculations can still be achieved by narrowing the frequency sweep range.
7 CONCLUSION
This paper employs the BEM to compute sound pressure for frequency scanning analysis. It introduces an efficient computational approach, which includes:
	1. The Taylor expansion method decomposes the integral of boundary elements into frequency-related and frequency-unrelated terms, thus eliminating the frequency dependence in the coefficient matrix.
	2. By reducing the order of the original system model through the application of the SOAR method, the computational performance for solving large-scale problems was improved.

The algorithm proposed in this paper has potential applications in various engineering fields. For example, in the design of sound barriers, it can be used to quickly assess the acoustic performance of different design options, thereby optimizing the design process. In noise control engineering, this method can be employed to simulate and analyze noise propagation in complex environments, enhancing the effectiveness of noise control measures. We believe that these applications highlight the practical significance of our research and its potential to contribute to real-world engineering challenges. Future work will involve applying the proposed algorithm to problems involving broadband sensitivity scanning and topology optimization.
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This study examines the vibration characteristics of static drill-rooted nodular (SDRN) piles in elastic soils under time-harmonic torsional loads via an analytical approach. SDRN piles, which are characterized by uniformly distributed nodes and enhanced surrounding cemented soil, are able to increase the vertical bearing capacity of piles in soft soils. Piles are modelled using elastic rod theory, while surrounding soils are separated into two sublayers along radial direction: a core zone made up of cemented soil and an outer semi-infinite natural soil layer. An analytical method is proposed to solve the problem after formulating the wave equations for pile and radial soil layer. This methodology rigorously considers the continuity of twist angle and shear stress across the interface of the pile and radial soil layers. The simulation of nodes in the SDRN pile involves discretizing the pile-soil system and applying the principle of impedance function recursion to accurately compute the torsional stiffness at the top of the pile. Developed results are validated against the existing benchmarks for a cylindrical pile in elastic soil. Detailed numerical examples are carried out to assess the effect of major factors on the torsional impedance of the pile. For improved comprehension in engineering applications, the impedance function is applied to derive the twist angle of the rigid foundation, with the amplitude-frequency response expressed in a closed form. Results indicate that the vibration behavior of the piles is significantly influenced by the inner radius, outer radius, the dimension of the node, the radial width of the cemented soil and the damping ratio of the radial soil layer. The developed solution offers valuable insights for the optimization design of SDRN piles under dynamic torsional loads.
Keywords: static drill-rooted nodular pile, torsional vibration, rigid foundation, cemented soil, wave propagation

1 INTRODUCTION
Pile foundations are crucial for supporting large-scale structures like high-rise buildings [1], offshore bridges [2], and ocean platforms [3]. Therefore, understanding their response to complex dynamic loads is essential. While pile foundations are generally subjected to static and dynamic vertical and horizontal loads, wind and machine-induced vibrations can cause torsional loads that significantly affect their dynamic performance [4–6]. Accordingly, assessing the impact of dynamic torsional loads is vital to ensure the stability and safety of pile foundations. To address this, researchers have proposed various methods to investigate torsional vibration characteristics of piles.
Cai et al. [7] performed a comprehensive study on the torsional vibration of elastic piles in a uniform poroelastic medium. Based on this fundamental research, Chen et al. [8] introduced the concept of transverse isotropy to examine the vibration characteristics of piles embedded in saturated soils under transient loading. Their study emphasized the impact of soil transverse isotropy and the pile slenderness ratio on the vibration characteristics of the piles. Subsequent research further illustrated the effects of soil properties on end-bearing piles [9, 10] and pipe piles [11, 12]. Given the inherently layered and vertically non-uniform nature of soil profiles, Zou et al. [13] explored the mechanical behavior of single piles in a two-layer vertically non-uniform subgrade and subjected to axial-torsional combined loads. Liu and Zhang [14] expanded upon these findings by investigating the transient torsional vibration behavior of heterogeneous piles in multi-layered poroelastic media, with a focus on the influence of typical pile defects. To advance this field of study, Li et al. [15], Zhang and Pan [16] assessed the influences of construction disturbances on the surrounding soil, analyzing the impact of radial inhomogeneity induced by such disturbances on the vibration behavior of piles in layered media. Further research has addressed open-ended pipe piles [17–19], examining the effects of construction-induced inhomogeneity in radial direction on the torsional impedance of piles. Additionally, studies have investigated the impact of pile end soil [20] and variation in cross-sectional dimensions [21] on the torsional response of piles. Typically, these investigations model soil as a composite material composed of pore water and soil particles. However, this assumption does not always hold true in practical applications, particularly in surface or shallow soils where unsaturated conditions are prevalent. Unsaturated soils, characterized by incomplete pore saturation, exhibit markedly different mechanical behaviors compared to their saturated counterparts. Research concerning unsaturated soils primarily focused on the effects of transverse isotropy [22, 23], radial inhomogeneity [24, 25], vertical inhomogeneity of soil [25, 26], and pile end soil [27]. Despite the significant influence of torsional loads on pile performance, this factor has not been received adequate consideration in studies of nodular piles.
In soft soil regions, traditional piles, such as cast-in-situ and precast piles often face challenges such as low skin friction and construction-related defects in the pile body. To address these problems, static drill-rooted nodular (SDRN) piles, an innovative foundation type initially developed in Japan, have been increasingly used in engineering practice [28, 29]. As for SDRN pile, the prefabricated nodular pile is embedded into cemented soil via static drilling, effectively overcoming the limitations of conventional pile installation techniques and providing a more efficient, cost-effective scheme. Due to the construction similarities, SDRN piles are often evaluated in comparison to cast-in-situ piles. Research by Zhou et al. [30–33] has demonstrated, through extensive field studies and finite element simulations, that SDRN piles exhibit significantly superior skin friction and compressive bearing capacity compared to cast-in-situ piles, making them particularly advantageous for use in soft soil conditions. Li et al. [34] estimated the vibration characteristics of SDRN piles in layered soil profiles and under vertical loads, affirming the substantial benefits of SDRN piles in mitigating vertical deformation and vibration relative to cast-in-situ piles. Additionally, Wu et al. [35] investigated the impact of various cross-sectional geometries on vertical vibration. Despite considerable research on the performance of SDRN piles under vertical loads [36–38], the effects of torsional loads on SDRN piles remain underexplored.
The literature review above reveals that studies on the dynamic performance of SDRN piles under torsional loading are limited. Therefore, this article aims to examine the torsional vibration characteristics of SDRN piles in elastic soils using an analytical method. It should be pointed out that the analytical solutions presented here provides engineers with a precise, convenient, and efficient tool for quickly assessing the performance of SDRN piles. Specifically, it allows for the evaluation of factors such as pile inner and outer radii, node width, vertical node spacing, and variations in properties of the surrounding cemented soil on the overall performance of SDRN piles. The layout is as follows: Section 2 establishes the mathematical model. Section 3 derives the analytical solutions for the dynamic response problem. Numerical examples and the corresponding analysis and discussion are presented in Section 4. Section 5 applies the present solution into the vibration characteristic of pile-supported foundation. The main conclusions are summarized in Section 6.
2 MATHEMATICAL MODEL
As depicted in Figure 1A, a SDRN pile in elastic soil, undergoing a time-harmonic torque is considered. This study considers the hardening surrounding cemented soil, a radially semi-infinite natural soil deposit and the nodular pile itself, but neglects the effect of the soil within the SDRN pile. Given the large slenderness ratio of the pile, it is approximated as an elastic rod with a fixed inner radius rin and a series of equally spaced, enlarged nodes (see Figure 1B). The external (outer) radius of pile is r0 at non-noded sections, while the maximum external radius at nodes is roumax. The vertical spacing between two adjacent nodes is lb, and the radial protrusion thickness and length at each node are wb. Based on the node distribution, the pile-soil interaction model is divided into N segments (elements), numbered sequentially from the bottom upward. Each segment has equal thickness in both the pile section and the surrounding soil section. The thickness and the radius of segment i are denoted by hi and ri, respectively. For node sections, sufficient segmentation is required to simulate the continuous variation in the pile’s outer radius. The soil around the pile is split into two distinct zones: (1) the inner zone, composed of cemented soil, extends to a distance rc from the pile’s centroid, and (2) the outer zone, consisting of radially semi-infinite natural soil, lies beyond the cemented soil layer.
[image: Diagram showing two parts labeled (A) and (B). Part (A) illustrates a SDRN pile within layered soil, featuring an outer semi-infinite soil layer, an inner soil layer, and pile bottom soil. Part (B) details the SDRN pile discretized into segments with parameters like \( w_1 \), \( w_2 \), and \( h_1 \), indicating different sections and soil interactions. Arrows indicate internal forces, \( T_e^{in} \) and \( T_e^{out} \).]FIGURE 1 | Diagram of a SDRN pile in elastic soil undergoing a time-harmonic torsional load: (A) 3D model; (B) section plan.
Previous studies [16, 39] have shown that neglecting the gradient of shear stress σθz along the z-axis (i.e., assuming a plane strain model) has a minimal effect on the dynamic impedance of the pile. Therefore, following the plane strain assumption, the wave equation for any soil layer under torsional load is given by [39].
[image: A mathematical equation is shown: \( \frac{\partial u_{\theta r}(r,t)}{\partial t} + r^{-1} u_{\theta r}(r, t) - r^{-2} u_{\theta}(r, t) = \frac{\rho_0}{G_r} \frac{\partial u_{\theta r}(r,t)}{\partial t} \). The equation is labeled as (1).]
where the subscript, “j” denotes the partial derivative to the variable j (j = r, t); uθ(r, t), Gs and ρs represents the tangential displacement, shear modulus and density of the soil, respectively.
The dynamic equilibrium equation for an elastic pile under torsional load is given by
[image: Mathematical equation showing \( G_{\rho,\phi} \phi_{x} (z,t) + 2\pi r^{2}(z,t) = \rho_{\phi} G_{\rho,\phi} h(z,t) \), labeled as equation (2).]
where ϕ(z, t), Gp, ρp and Ip represent the twist angle, shear modulus, density and polar moment of inertia of the pile, respectively; τ(z, t) denotes the tangential shear stress applied by the soil around the pile.
The boundary condition for the outer natural soil deposit can be specified as
[image: It appears there was a mistake in uploading the image. Please try uploading the image again or provide a URL. You can also add a caption for context.]
where the subscript ij represents the component in the j-th (where j = 1, 2) radial region corresponding to the i-th (where i = 1-N) pile segment; Specifically, j = 1 and j = 2 refer to the inner and outer radial zones, respectively; In the subsequent sections, the subscript ij will maintain this definition, unless specified otherwise.
The boundary conditions at top and bottom of the i-th (i = 1-N) pile element are
[image: Mathematical equation: φ_w at z equals 0 and time t is equal to negative T_s(t) divided by G_pw multiplied by rho_w, labeled as equation 4.]
[image: Mathematical equation displaying \(\dot{\phi}_k(z = h_b, t) + \frac{\phi_k^2(z = h_b, t) \Theta_i}{G_{\rho} l_{\rho} p_{\pi}} = 0\) with a reference number (5) on the right.]
where [image: Mathematical equation: \( I_{pi} = 0.5\pi(r_{i}^4 - r_{in}^4) \).]; ϕi (z, t) denotes the twist angle in the i-th pile element; Θi represents the complex impedance at the lower end of the i-th pile element; Ti(t) represents the torque exerted on the top of the i-th pile element; For the N-th pile element (i.e., the top element), TN(t) = T0(t) holds; When i = 1, the impedance from the pile bottom soil is [image: Equation showing Theta sub one equals sixteen G sub su times the difference of r sub zero cubed and r sub in cubed, all divided by three.] as described by Li et al. [17].
The continuity conditions at r = rc can be given by
[image: It seems like you've shared a snippet of a formula, not an image. If you have an image for which you need alt text, please upload it, and I will help describe it.]
[image: Please upload the image so I can generate the alternate text for you.]
The continuity conditions at r = ri can be formulated as
[image: Mathematical equation: \[ u_{\psi}(r=r_f,t) = \Phi(z,t)r_f \] labeled as equation number 8.]
[image: It appears you're trying to provide an image using a LaTeX code snippet rather than an actual image file or URL. To generate alt text, please upload the image directly or provide a link to it. If this is about the LaTeX content, you might want to describe what the equation represents instead.]
3 SOLUTIONS
The time-harmonic solution of Equation 1 can be given by
[image: It seems there is no image provided. Please upload the image you would like me to generate alt text for.]
where q = iω(ρs/Gs)0.5; i=(−1)0.5; ω is the angular frequency.
Substituting the boundary condition from Equation 3 into Equation 10, it follows that B = 0. Consequently, the field quantities in the natural soil deposit corresponding to the i-th element can be given by
[image: It appears there is no image attached. Please upload the image or provide the URL so I can assist you in generating the alternate text.]
[image: Mathematical formula: \( r_{\text{n,6}}(r) = -A_{\text{n,6}} G_{\text{n,6}} K_{\text{n,6}}(q_{\text{n,6}} r) \), with equation number (11b) on the right.]
where qi2 = iω(ρsi2/Gsi2)0.5.
The field quantities in the cemented soil layer can be formulated as
[image: Mathematical equation showing a_w1 of r equals A_1 times K_ν₁ of η_nτ plus B_1 times I_ν₁ of η_nτ, labeled as equation 12a.]
[image: Mathematical expression for \( T_{nH}(r) \) is shown, stating it equals \(-A_{n} G_{n1} q_{n} K_{n}(q_{n} r) + B_{1} G_{n1} q_{n} I_{n}(q_{n} r) \). The equation is numbered \( (12b) \).]
where qi1 = iω(ρsi1/Gsi1)0.5.
Substituting Equations 11, 12 into continuity conditions given by Equations 6, 7 results in
[image: It seems that you have included an inline LaTeX equation rather than an image. If you would like to describe a mathematical expression, you can provide context or ask specific questions about it. If you meant to upload an image, please try again.]
where
[image: Equation labeled as 14 defines the variable \(\kappa_{1}\) as a fraction. The numerator consists of the difference between the product \(G_{a11} q_{1} K_{z}(q_{1}, \tau) K_{x}(q_{1} \tau, c)\) and \(G_{a12} K_{x}(q_{2} \tau, c) K_{x}(q_{11} \tau, c)\). The denominator contains the sum of the products \(G_{a11} q_{1} K_{z}(q_{1}, \tau) K_{x}(q_{1} \tau, b)\) and \(G_{a12} q_{2} K_{x}(q_{2} \tau, b) K_{x}(q_{1} \tau, c)\).]
Making use of Equation 13, Equation 12 can be rewritten as
[image: Certainly! Please upload the image or provide a URL so I can generate the alt text for you.]
[image: Mathematical equation for \( t_{\text{rh}}(r) \) expressed as \(-A_{1} G_{11} g_{n} K_{2}(a_{n} r) + \kappa_{n} A_{1} G_{11} g_{n} I_{2}(a_{n} r)\), labeled as equation \( (15b) \).]
In the case of a time-harmonic load, Equation 2 can be reformulated as (for i-th element)
[image: Differential equation showing \(G_{\rho_{\text{pl}}}\frac{d^2\phi(z)}{dz^2} + 2\pi r_t^2(z) = -\rho_{\rho_{\text{pl}}}\rho_\sigma^2\phi(z)\) labeled as equation (16).]
Combining Equations 8, 9, 15, 16 yields
[image: Differential equation with second derivative of phi of z plus gamma squared times phi of z equals zero, labeled equation seventeen.]
where
[image: It seems like you've provided a formula instead of an image. If you have an image you'd like me to generate alt text for, please upload it or provide a link.]
[image: Mathematical equation showing the formula for δₛ, which equals the fraction of 2π²Gₛη₀q₁n₁[-K₁(q₁r₁) + k₁I₁(q₁r₁)] over K₁(q₁r₁) + k₁I₁(q₁r₁). Equation number (19).]
The solution of Equation 17 can be expressed as
[image: The image contains a mathematical equation: \(\phi(z) = C_1 \cos(yz) + D_1 \sin(yz)\), labeled as equation (20).]
Combining Equation 5 and Equation 20 results in
[image: Sure, please upload the image or provide a URL so I can generate the alternate text for you.]
where
[image: Mathematical equation labeled (22) involving variables \( \eta \), \( \bar{\gamma} \), and \( \bar{\Theta} \). The equation expresses \( \eta \) as a fraction with trigonometric functions of \( \bar{\gamma} \), coefficients \( \bar{\Theta} \), and related factors in both numerator and denominator. Definitions for \( \bar{\Theta} \) and \( \bar{\gamma} \) are provided, involving \( \Theta \), \( h_i \), \( G \), \( \rho \), and \( y \).]
Substituting Equation 20, 21 into Equation 4 yields
[image: Equation depicting \(k_{\pi} = \frac{T_i}{\phi(z=0)} = -G_{\pi^\pm}\rho^{\,\prime} n_{1i}\), with the expression labeled as equation 23.]
where kTi denotes the top-end torsional impedance of the i-th pile element.
The principle of impedance function recursion has been effectively used in past studies to address the vibration behavior of piles in layered soils [40]. According to this principle, the torque and twist angle at the interface between adjacent pile elements are continuous, meaning that the torsional impedance at the interface (i.e., torque/twist angle) is also continuous. That is to say, the impedance at the top of the i-th element is equal to the impedance at the bottom of (i+1)-th element (i.e., kTi = Θi+1). Hence based on Equation 23, the torsional impedance function at the top end of the pile can be determined via a step-by-step recursion from the first element to the N-th element, which can be written as follows
[image: It seems like there might be a misunderstanding. The text you provided appears to be a mathematical formula rather than an image. If you intended to describe an image, please upload the image file or provide a URL. If you need help with the formula, feel free to ask!]
Following Militano and Rajapakse [39], the normalized torsional impedance can be defined as
[image: Mathematical expression showing \( K'_r = -\frac{36 G \rho_{\text{N}} p_{\text{N}} V_{\text{N}} h_{\text{N}}}{16 G_0 \gamma^3_{r_0}} \), labeled as equation 25.]
where [image: Mathematical expression consisting of "K" with a prime symbol and the subscript "T".] denotes the normalized torsional impedance at the pile top; G0 and r0r denote the reference shear modulus and radius, respectively.
4 NUMERICAL RESULTS AND DISCUSSION
First, to confirm the correctness of the developed model, a comparison is made with the analytical results from Militano and Rajapakse [39]. For this comparison, the SDRN pile is reduced a solid cylindrical rod and the surrounding soil is assumed to be a uniform elastic material. The used parameters are ρp = 2,500 kg/m3, Gp = 12.1 or 16.5 GPa, r0 = 0.3 m, rin = 0 m, roumax = 0.3 m, rc = 0.5 m, H = 10 m, wb = 0 m, ρs1 = ρs2 = 1800 kg/m3, Gs1 = Gs2 = Gsu = Gs0 = 20 MPa, βs1 = βs2 = 0. For analysis purposes, the normalized frequence is defined as a0 = ωr0r (ρ0/G0)0.5, in which reference density ρ0 = 1800 kg/m3 and G0 = 20 MPa. In Figure 2, Re ( ) and Im ( ) denote respectively the real and imaginary components of the torsional impedance. Figure 2 demonstrates that an increase in excitation frequency leads to a decrease in real stiffness (real part) and an increase in damping (imaginary part). Additionally, the torsional impedance in the current solution corresponds well with those in the existing solution.
[image: Graph A shows the real part of the refractive index (\(Re(n_{02}^2)\)) decreasing as \(a_0\) increases, with curves for \(G_{p} = 12.1\) GPa and \(G_{p} = 16.5\) GPa. Graph B depicts the imaginary part (\(Im(n_{02}^2)\)) increasing as \(a_0\) increases, with similar curves. The dots represent present data, while solid lines reference Milianore and Rappiseke (2019).]FIGURE 2 | Comparison of torsional impedance results for an elastic cylindrical pile in homogeneous soil with those from existing solutions: (A) Real part; (B) Imaginary part.
After verifying the present solution, the effect of key parameters on the torsional impedance at the pile top is examined here. To account for soil damping, Gsj is replaced by Gsj (1+2iβsj), where βsj denotes the damping ratio. Unless specified differently, the properties for SDRN pile and composite soil layers are outlined in Table 1. Additionally, each node is divided into 10 elements to simulate the continuous variation of cross-sectional dimension (see Figure 1B), where the length of the first pile segment h1 fixed at 0.425 m.
TABLE 1 | Properties in SDRN pile and composite soil layers.
[image: A table displaying various physical and material properties with corresponding units and values. It includes parameters such as \( G_p \) in MPa (16,500), \( \rho_p \) in kg/m\(^3\) (2,500), \( r_0 \) in meters (0.3), \( r_{in} \) in meters (0.19), \( r_{oumax} \) in meters (0.4), \( r_c \) in meters (0.19), \( w_b \) in meters (0.1), \( H \) in meters (10), \( \rho_{s1} \) in kg/m\(^3\) (1,900), \( G_{s1} \) in MPa (200), \( \rho_{s2} \) in kg/m\(^3\) (1,800), \( G_{s2} \) in MPa (20), \( \beta_{s1} \) (0.05), \( \beta_{s2} \) (0.05), \( \rho_{su} \) in kg/m\(^3\) (1,800), and \( G_{su} \) in MPa (20).]Figure 3 depicts the impact of inner radius (rin) of the SDRN pile on the torsional impedance across different frequencies. The real stiffness initially decreases with an increase in frequency, then begins to increase at higher frequencies. In contrast, the imaginary part consistently increases as frequency rises. Moreover, both the real and imaginary parts decrease as rin increases, indicating that the thinner wall (tw = r0−rin) reduces the stiffness and damping of the pile, thereby decreasing its torsional resistance. This behavior is mainly attributed to the fact that a larger rin decreases the polar moment of inertia of the pile, thereby reducing its dynamic resistance.
[image: Two line graphs show trends with different parameters. Graph A plots \( \text{Re}(k_z^-) \) against \( a_0 \) with three lines: black, red, and blue. All lines show a downward trend. Graph B plots \( \text{Im}(k_z^-) \) against \( a_0 \) with three lines: black, red, and blue. All lines show an upward trend. The lines represent parameters \( q = 0.15 \, \text{m}_e \) (black), \( q = 0.70 \, \text{m}_e \) (red), \( q = 0.91 \, \text{m}_e \) (blue).]FIGURE 3 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for various inner radii: (A) Real part; (B) Imaginary part.
Figure 4 demonstrates the impact of outer radius (r0) of the SDRN pile on the torsional impedance at various frequencies. For consistency, the radial width of cemented soil (rc−r0) is fixed at 0.2 m. As shown in Figure 4, r0 has a greater impact on the torsional impedance than the inner radius. Both the real and imaginary components increase significantly as r0 increases.
[image: Two graphs labeled A and B display data for \(a_0\) against \(k_x\). Graph A shows the real part, Re(\(k_x\)), with three colored lines: black for \(y_0=0.25\,m\), red for \(y_0=0.30\,m\), and blue for \(y_0=0.35\,m\). Graph B shows the imaginary part, Im(\(k_x\)), with the same color scheme. Graph A shows a decreasing trend, while Graph B shows an increasing trend across the range of \(a_0\) from 0 to 1.6.]FIGURE 4 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for various outer radii: (A) Real part; (B) Imaginary part.
The effects of the node width (wb) and vertical spacing (lb) on the torsional impedance at different frequencies are presented in Figures 5, 6. It should be noted that for a fixed pile length, a smaller lb corresponds to a greater number of nodes along the pile body. Figure 5 shows that increasing wb leads to a rise in both the real and imaginary parts, revealing that a larger node width enhances the torsional resistance of the pile. This improvement is due to the increases in the polar moment of inertia at the node location, which enhances the dynamic resistance. It is evident from Figure 6 that the real part decreases as lb increases, while the imaginary part is insensitive to lb.
[image: Graph A shows Re(dΓ⁻²) decreasing as q₀ increases from 0 to 1.6 for w₀ values of 0.05 m, 0.10 m, and 0.15 m. Graph B shows Im(dΓ⁻²) increasing with q₀ for the same w₀ values. Each w₀ value is represented by different colored lines: black for 0.05 m, red for 0.10 m, and blue for 0.15 m.]FIGURE 5 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for different node widths: (A) Real part; (B) Imaginary part.
[image: Two line graphs labeled A and B display data trends. Graph A shows the real part of \( k_y^2 \) decreasing for variables represented in black, red, and blue lines. Graph B shows the imaginary part of \( k_y^2 \) increasing, following lines of the same colors. The x-axis is labeled \( a_0 \) ranging from 0 to 1.6 for both graphs.]FIGURE 6 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for different vertical spacings of nodes: (A) Real part; (B) Imaginary part.
Figures 7, 8 describe the effects of the radial width and shear modulus of cemented soil on the torsional impedance at different frequencies. The radial width is represented by the outer radius of the cemented soil, with a larger rc corresponding to a broader enhanced range. According to Figure 7, increasing the radial width leads to an increase in both the real and imaginary parts. In comparison, the effect of the shear modulus Gs1 is relatively smaller. As depicted in Figure 8, the components of torsional impedance increase as Gs1 increases, although the rate of increase slows down as Gs1 continues to rise. This suggests that enhancing the radial width of the cemented soil is more effective than increasing the shear modulus in improving the torsional impedance of the pile.
[image: Two graphs labeled A and B compare values of \( \delta_s \) with \( \text{Re}(k_z^2) \) and \( \text{Im}(k_z^2) \). Graph A shows three curves, each corresponding to different values: \( \sigma = 0.5m \), \( 0.6m \), and \( 0.7m \), demonstrating varying trends over the range of \( \delta_s \). Graph B displays the same parameters with all curves increasing, indicating different rates of imaginary value changes for the same \( \sigma \) values.]FIGURE 7 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for different radial widths of cemented soil: (A) Real part; (B) Imaginary part.
[image: Two line graphs labeled A and B compare data for different stress levels. Graph A shows a decreasing trend of real values, while Graph B shows an increasing trend of imaginary values. Three lines represent stress levels of 300 MPa (black), 400 MPa (red), and 500 MPa (blue) in both graphs. The x-axis ranges from 0 to 1.6, while the y-axis ranges from 30 to 40 for Graph A and 27 to 36 for Graph B.]FIGURE 8 | Torsional impedance for an elastic pile in elastic soil vs. excitation frequency for different shear modulus of cemented soil: (A) Real part; (B) Imaginary part.
Figure 9 describes the effect of the damping ratio of the outer soil layer on the torsional impedance for different frequencies. The focus here is to present the impact of the damping ratio of the outer natural soil layer due to minor effect of damping ratio of the inner soil. As shown in Figure 9, at lower frequencies, the damping ratio has little effect on the real part. However, at higher frequencies, the torsional impedance increases with increasing damping ratio.
[image: Two graphs labeled A and B. Graph A displays real parts (\( \text{Re}(k_{2}^{*}) \)) against \( a_{0} \), showing three curves for \( \mu_{\text{p}} = 0, 0.025, 0.05 \) colored black, red, and blue, respectively, indicating decreasing trends. Graph B shows imaginary parts (\( \text{Im}(k_{2}^{*}) \)) versus \( a_{0} \) with the same color scheme, revealing increasing trends. Both graphs range from 0 to 1.6 on the \( a_{0} \) axis.]FIGURE 9 | Torsional impedance for an elastic cylindrical pile in elastic soil vs. excitation frequency for different damping ratios of outer soil layer: (A) Real part; (B) Imaginary part.
5 APPLICATION TO PILE-SUPPORTED RIGID FOUNDATION
When a pile-supported rigid foundation is subjected to dynamic torsional loads (see Figure 10), the dynamic equilibrium of the foundation is defined by the equation given below
[image: Equation showing the second derivative of phi with respect to time, plus the first derivative of phi, plus a constant times phi, equals another function T sub f of t.]
where If and φ(t) represent the mass moment of inertia and angle of rotation of the foundation, respectively; kf and cf denote the stiffness and equivalent damping coefficient of the supported pile; Tf(t) denotes the external time-dependent torsional load.
[image: Diagram illustrating a rigid foundation on top of a cylindrical structure within layered soil. It shows forces acting on the foundation and the pile, with labels for soil layers and dimensions.]FIGURE 10 | Dynamic interaction between a rigid foundation and supported SDRN pile.
To obtain the solution for the foundation, Equation 24 can be reformulated as
[image: Please upload the image or provide a URL for me to generate the alt text.]
Assuming a time-harmonic external load on the foundation and making use of Equation 27, the solution to Equation 26 can be given by
[image: Mathematical equation displaying ρ equals T subscript 楒 divided by the quantity k subscript T minus I ω squared plus i ω c, with the equation labeled as number twenty-eight.]
Making use of Equation 28, the normalized twist angle amplitude can be formulated as
[image: The formula shown is \( |A_{\phi}| = \left| \frac{16 G_0 r_0^5 \phi}{3 T_f} \right| = \frac{16 G_0 r_0^5}{3 \sqrt{(k_f - I \omega^2)^2 + (\omega C_f)^2}} \). The equation number is (29).]
The following parts discuss the impact of key parameters on the twist angle amplitude, with the parameters listed in Table 1. To clearly observe the changing trends in resonant frequency and amplitude, we use the module of the twist angle amplitude instead of the real and imaginary part. In the analysis, If is fixed at 4,144 kg m2. Figure 11 illustrates the effect of inner radius (rin) and outer radius (r0) of the SDRN pile on the twist angle amplitude at varying frequencies. The data in Figure 11A indicate that the twist angle amplitude initially ascends with frequency, reaches a peak, and then gradually approaches zero. The resonant peak shows obvious increase with an increase in rin, while the resonant frequency slightly decreases as rin increases. As shown in the Figure 11B, r0 has a greater effect on the twist angle amplitude than the inner radius. The twist angle amplitude increases significantly as r0 decreases. Furthermore, the resonant frequency increases markedly with an increase in r0. This indicates that increasing the outer radius can substantially alter the natural frequency and reduce the twist angle of the whole system.
[image: Two graphs labeled A and B show plots of \(|S^{(2)}|\) against \(d_x\). Graph A features three lines with different symbols: a solid black line, a dashed red line, and a dotted blue line, peaking around 0.4. Graph B also shows three lines with the same styles, with peaks at corresponding positions. Both graphs have similar x-axis ranges from 0.0 to 1.6.]FIGURE 11 | Variation of the normalized twist angle amplitude with excitation frequencies for different inner radii in (A) and outer radii in (B).
Figure 12 describes the effect of the node width (wb) and vertical spacing (lb) of the nodes on the twist angle amplitude for different frequencies. As observed in Figure 12A, the twist angle amplitude decreases significantly with an increase in wb, revealing that a larger node width enhances the dynamic torsional resistance of the system. Besides, the resonant frequency rises with increasing wb. Therefore, it can be concluded that increasing the node dimension is an effective strategy for improving the vibration behavior of the system in engineering practice. It can be observed in Figure 12B that contrary to expectations, the vertical spacing of the nodes has a relatively small impact on the twist angle amplitude. Additionally, the resonant peak shows a slight increase with increasing lb.
[image: Two graphs, labeled A and B, display plotted curves comparing different parameters. In both graphs, the y-axis represents values labeled \( [\lambda] \) and the x-axis represents \( \sigma \). Graph A shows three curves with varying peaks, while Graph B features two curves with similar trends. Each curve is identified by different line styles and colors.]FIGURE 12 | Variation of the normalized twist angle amplitude with excitation frequencies for different node widths in (A) and vertical spacings of nodes in (B).
Figure 13 describes the impact of the shear modulus and radial width of cemented soil on the twist angle amplitude at different frequencies. As observed in Figure 13A, the resonant peak decreases as Gs1 increases, while the resonant frequency increases with higher Gs1. At high frequencies, the influence of Gs1 becomes negligible. The impact of rc is more pronounced than of the shear modulus of the cemented soil. The resonant peak significantly decreases as rc increases, while the resonant frequency shows the opposite trend (see Figure 13B).
[image: Two line graphs labeled (A) and (B) compare data sets. Graph (A) shows three curves for G_c values at 200 MPa, 500 MPa, and 600 MPa, each with a peak around 0.6 on the x-axis. Graph (B) displays three curves representing q values at 0.5 m, 0.6 m, and 0.7 m, with a peak near 0.5 on the x-axis. Each graph's y-axis is labeled with corresponding scientific variables.]FIGURE 13 | Variation of the normalized twist angle amplitude with excitation frequencies for different shear moduli in (A) and radial widths in (B) of cemented soil.
Figure 14 shows the effect of the damping ratio in the outer soil layer on the twist angle amplitude for different frequencies. The twist angle amplitude is notably affected by the damping ratio. The twist angle amplitude decreases substantially with increasing damping ratio, indicating that materials with a higher damping ratio are more effective in reducing vibrations.
[image: Graph depicting \(|\Gamma|\) against \( a_{\theta} \), showing three overlapping curves with different parameters. The solid black line represents \(\bar{\rho}_{\star}^s \cdot \Theta\), the dashed red line indicates \(\bar{\rho}_{\star}^s = 0.025\), and the dotted blue line shows \(\bar{\rho}_{\star}^s = 0.05\). Each curve peaks around \(a_{\theta} = 0.4\) and then decreases.]FIGURE 14 | Variation of the normalized twist angle amplitude with excitation frequencies for different damping ratios of outer soil layer.
6 CONCLUSION
A closed-form solution is developed to address the time-harmonic torsional vibration of a SDRN pile embedded in elastic soils. The wave equations corresponding to the pile and surrounding soils are initially established. In the case of a time-harmonic load, the general solutions for the composite soil layers are derived. The pile and soil are partitioned into multiple elements, and interface continuity conditions of the pile and soil for each element are applied to derive the torsional impedance at the top end of each pile element. Using the principle of impedance function recursion, the torsional impedance of the pile and the twist angle amplitude are ultimately determined. The correctness of the proposed solution is meticulously checked, and detailed numerical analysis is conducted. The key findings are outlined as follows:
	(1) Increasing the inner radius of the pile significantly reduces the torsional impedance of the pile and enhances the resonant peak of the system. In contrast, enlarging the outer radius markedly improves the torsional impedance of the pile, reduces the twist angle amplitude and raises the resonant frequency.
	(2) Expanding the node width substantially increases the torsional impedance of the pile, reduces the twist angle amplitude and raises the resonant frequency, thereby improving the dynamic torsional resistance of the system. In contrast, variations in the vertical spacing of nodes have a relatively minor impact on the dynamic performance of the pile foundation.
	(3) The radial width and shear modulus of the cemented soil are crucial in determining the dynamic characteristics of the system. Increasing the radial width of the cemented soil effectively increases the torsional impedance of the pile, attenuates both the resonant peak and frequency, thereby significantly enhancing the deformation resistance of the system. Moreover, enhancing the radial width of the cemented soil is more effective than increasing the shear modulus in improving the deformation resistance of the system.
	(4) The damping ratio of the outer natural soil deposit is crucial for the dynamic response of the system. Increasing the damping ratio in the natural soil substantially improves the torsional impedance of the pile and reduces the twist angle amplitude, thereby effectively mitigating vibrations. These findings provide a solid theoretical foundation for optimizing SDRN pile designs.
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The earthquake simulation shaking table array is an important experimental equipment with a wide range of applications in the field of earthquake engineering. To efficiently address the complex nonlinear problems associated with earthquake simulation shaking array systems, this paper proposes the identification of the earthquake simulation shaking array system using the Long Short-Term Memory (LSTM) algorithm. A dual array system model with flexible specimen connections is established, and this system is identified using the LSTM neural network. The LSTM neural network was validated for identifying the dual array closed-loop system of the earthquake simulation shaking table by using three natural waves and one artificial wave. The results demonstrated that the similarity between the predicted output and the theoretical output of the network identified by LSTM exceeded 0.999. This indicates that the algorithm can accurately reproduce the characteristics of the shaking table itself and shows good performance in time series prediction and data mining. References for earthquake simulation shaking array system experiments are provided.
Keywords: system identification, dual array, LSTM neural network, shaking table, deep learning

1 INTRODUCTION
The earthquake simulation shaking table is a key laboratory tool for studying and evaluating the seismic resistance of structures. It generates horizontal, vertical, and multidimensional accelerations through a driven platform, simulating the impact of seismic waves on buildings and other structures [1]. The earthquake simulation shaking table array comprises multiple independent earthquake simulation shaking tables that work together to simulate more realistic and complex ground motions. Each table can also be controlled independently to achieve more accurate earthquake wave simulations [2]. Due to factors such as high investment, expensive maintenance and experimental costs, and long construction periods, it is clearly unreasonable to infinitely increase the size and scale of shaking table. Additionally, due to similarity ratios, simply enlarging the shaking table cannot fully meet the requirements. For large-span structures such as bridges, pipelines, aqueducts, and transmission lines, combining multiple small shaking table arrays can be used for testing. The construction and research of shaking table array systems are becoming a trend in both domestic and international research. Gao Chunhua [3] conducted a survey and comparative analysis of various algorithms for domestic shaking tables, summarized the construction forms and loading methods of shaking table substructure tests, as well as the construction and control technical difficulties of shaking table array systems. Ji Jinbao [4, 5] et al. summarized and introduced the functions and characteristics of the shaking table array control system using the nine sub array of Beijing University of Technology as an example, and conducted large-span spatial structure model tests using the equipment. They pointed out the issues and areas that need improvement in using the shaking table array system and explored the relevant research and development of control technology for multi-shaking table array systems. Tao Dehuai [6] conducted a dynamic analysis of the foundation of a dual-array earthquake simulation shaking table and found that the impact of shaking on the foundation remained essentially unchanged under different load conditions. Guan Guangfeng [7] et al. conducted a detailed analysis of different control strategies for a dual array shaking table system and verified the effectiveness of the array system controller through experiments.
The nonlinear influence of shaking table system has always existed in earthquake simulation shaking table test, and has seriously affected its reproduction accuracy and waveform reproduction ability [8, 9]. For more complex shaking table array systems, due to the simultaneous operation of a large number of actuators, the existing control methods cannot meet the requirements for system stability and synchronization [10]. This means that more advanced intelligent control algorithms are needed. As a type of intelligent algorithm, neural network algorithms have good adaptive and generalization abilities, can model and handle nonlinear problems [11–13], and perform well in the control of seismic simulation shaking tables. Gao Chunhua [14, 15] et al. carried out parameter optimization and parameter identification for seismic simulation shaker by intelligent control algorithm, and simulation results showed that the intelligent control algorithm could optimize control parameters, identify multiple parameters, and improve the control effect of the shaker. Yu Shipin [16] et al. used a BP neural network to optimize the control instructions so that the control peak and valley values reached the expected values. Byung Kwan Oh [17] et al. proposed a new model for earthquake response prediction of buildings based on the correlation between ground motion and structure using neural networks. They verified the effectiveness of the proposed neural network model by studying its response prediction performance. A. Zeroual [18] et al. proposed an artificial neural network model, applied it to the prediction of the safety factor for a new earth dam dataset, and compared the predicted results with the stability calculation results of different limit equilibrium slopes. The comparison proved that the prediction ability of the artificial neural network model for the safety factor is satisfactory. Long Short-Term Memory network (LSTM) is a special type of recurrent neural network (RNN) that efficiently processes and predicts sequence data by introducing gating mechanisms. LSTM is designed to solve the problem of gradient vanishing or gradient explosion encountered by traditional RNNs when processing long sequences of data [19]. LSTM can learn long-term dependencies, which is difficult for traditional RNNs to achieve. It is easy to integrate into network structures and is suitable for various time series prediction tasks. Compared with other methods for solving long series problems (such as bidirectional RNNs), LSTM requires fewer parameters. Zhang Wenpeng [20] et al. proposed a three-parameter control parameter tuning algorithm for shakers based on LSTM and adopted the gradient descent method for offline tuning of control parameters. This was combined with the original parameters of the control system for real machine verification. The results showed that the proposed tuning method can achieve better results than manual tuning, and the tuning process is completed offline by the system model without real machine operation, offering advantages of high efficiency and good effect. Ruiyang Zhang [21] et al. proposed two long short-term memory (LSTM) network schemes aimed at data-driven structural seismic response modeling. The verification results show that the proposed LSTM network is a promising, reliable, and computationally efficient method for nonlinear structural response prediction. It has great potential in the reliability assessment of seismic vulnerability analysis of buildings.
System identification is the process of analyzing the input and output data of a system to obtain the mathematical model or dynamic characteristics of the system. This process includes determining the transfer function, state-space model, or other mathematical descriptions of the system. Effective system identification is the key to realize high performance control of shaking table [22, 23]. Zhan Pengyun [24] et al. used the least squares method to identify the model parameters of the shaking table model for seismic simulation. The research shows that the identified model can well reproduce the characteristics of the shaking table system itself, and the least squares identification method can be used to identify the hydraulic and control systems of the shaking table for seismic simulation. Ji Jinbao [25] et al. trained and tested a constructed LSTM network model based on the shaking table system model. The test results show that the LSTM network can reproduce the characteristics of a single-axis open-loop system and can be used as the control object for system simulation and algorithm testing. Febina Christudas [26] et al. utilized input-output data of long short-term memory recurrent neural networks (LSTM-RNN) to model real-time CTS. Compared with empirical models, the LSTM-RNN model achieved better modeling results. Wei Guo [27] et al. developed a physics-guided long short-term memory (PhyLSTM) network for system identification of shaking tables. After detailed hyperparameter testing, the performance of the PhyLSTM model significantly outperformed that of traditional transfer function models.
Based on the above analysis, this paper designs a system identification scheme for a dual-array seismic simulation shaking table based on LSTM neural networks. The LSTM is used to identify the multi-parameter control closed-loop system of the dual array. By comparing the predicted results after neural network training with theoretical results, the feasibility and high research value of this identification scheme are verified.
2 SHAKING TABLE TWO-ARRAY SYSTEM MODELING
2.1 Two array system with flexible connection of specimens
For the two-array system, the forces acting on the shaking table platform include not only the actuator forces and the interaction forces between the specimen and the platform but also the additional forces generated due to the asynchronous movement of the two sub-shaking tables. Taking the dual-array system with a flexible connection of the specimen as an example, Figure 1 shows a schematic diagram of the mechanical model of the dual-array system with the specimen.
[image: Diagram illustrating a mechanical system with three masses: \(M_1\), \(M_2\), and \(M_3\). Each mass is connected by springs (\(k\)) and dampers (\(c\)). Forces \(F_1\) and \(F_2\) act on masses \(M_1\) and \(M_2\), respectively, with displacements \(x_1\), \(x_2\), and \(x_3\) shown for each mass.]FIGURE 1 | The mechanical model of two-array flexible connection of specimens.
The mass of the specimen in the system is [image: If you upload or provide a description of the image, I can help generate the alternate text.], the mass of the shaking table is [image: Please upload the image or provide a URL so I can help generate the alternate text.], [image: It seems there might have been an error or missing information regarding the image upload. Please make sure to upload the image file or provide a URL, along with any additional context or caption you would like to include.] is the stiffness coefficient of the connection of the two sub-tables, [image: Please upload the image or provide a URL, and I'll be happy to generate the alt text for you.] is the damping coefficient; The outputs of the two shaker exciter are [image: Please upload the image or provide a URL so I can help generate the alternate text.] and [image: Please upload the image you'd like me to generate alternate text for, or provide a URL.] respectively, and the displacements of the two tables are [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please provide the image or a URL so I can generate the alt text for you.] respectively. Assuming the displacement of the specimen is [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], the force balance Equation 1 of the two-array system can be obtained:
[image: The image shows a set of three mathematical equations. The first equation is: \( M_s \ddot{x}_s + (cs + k)(x_s - x_1) + (cs + k)(x_s - x_2) = 0 \). The second equation is: \( M_1 \ddot{x}_1 + (cs + k)(x_1 - x_s) = F_1 \). The third equation is: \( M_2 \ddot{x}_2 + (cs + k)(x_2 - x_s) = F_2 \). Each equation is numbered 1 at the right.]
The acceleration response of the two sub-stations can be obtained as follows:
[image: Mathematical expression displaying two equations. The first equation: \( s^2 x_1 = \frac{F_1 + \frac{(cs+k)^2}{M_1s^2+2cs2s+2k} x_2}{M_1 + \frac{cs+k}{s^2} - \frac{(cs+k)^2}{(M_1 s^2 + 2cs2s + 2k)^2}} \). The second equation: \( s^2 x_2 = \frac{F_2 + \frac{(cs+k)^2}{M_1 s^2 + 2cs2s + 2k} x_1}{M_1 + \frac{cs+k}{s^2} - \frac{(cs+k)^2}{(M_1 s^2 + 2cs2s + 2k)^2}} \).]
There is a coupling between the two expressions in Equation 2, in other words, the displacement [image: Please upload the image or provide a URL for me to generate the alternate text.] of shaker 1 depends not only on the parameters of the shaker itself, but also on the displacement [image: Please upload the image or provide a URL so I can generate the appropriate alt text.] of shaker 2. Next, because the output of the exciter meets Equation 3:
[image: A set of equations labeled as equation three. The first equation is \( A_p p_{L1} = F_1 \), and the second equation is \( A_p p_{L2} = F_2 \).]
Without loss of generality, it is assumed that the parameters of the two sub-shaker exciters are the same. In addition, [image: Certainly! Please upload the image or provide a link, and I can help generate the alternate text for it.] and [image: Please upload the image you would like me to describe.] are used to represent the load pressure of the two shakers, [image: Please upload the image or provide a URL, and I will be happy to help generate the alternate text for it.] and [image: I'm sorry, I can't generate alt text for the image since it wasn't uploaded. Please try uploading the image again.] are the total oil flow of the two shakers, and [image: It seems there was a misunderstanding. Please upload the image or provide a URL so I can help generate the appropriate alternate text.] and [image: I'm sorry, I cannot create alternate text without an image. Please upload an image or provide a URL, and I'll be happy to help!] are respectively the control signals of the two shakers. Then, the hydraulic continuity Equations 4, 5 can be obtained:
[image: Two equations are shown: Q sub L1 equals k sub f E sub 1 minus K sub f p sub L1, and Q sub L2 equals k sub f E sub 2 minus K sub f p sub L2. Equation labeled as number four.]
[image: A mathematical expression shows two equations. The first equation is \(Q_{l1} = A_p S_{x1} + \frac{V}{4 \theta} p_{L1} + C_p L_1\). The second equation is \(Q_{l2} = A_p S_{x2} + \frac{V}{4 \theta} p_{L2} + C_p L_2\). Equation label is (5).]
After simplification, we obtain:
[image: Mathematical equations representing the expressions for \(A_p p_{L1}\) and \(A_p p_{L2}\). Both equations are expressed in terms of variables \(G_1\), \(k_q E_1\), \(A_p\), \(s x_1\), \(F_1\) for the first equation, and similar variables for the second with \(E_2\), \(s x_2\), \(F_2\). Equation number six is indicated on the right.]
Where Equation 7 is:
[image: Equation showing \( C_i = \frac{V}{4 \theta A_p^2} s^+ + \frac{K_c + C_c}{A_p^2} \) labeled as equation (7).]
After substituting Equation 6 into Equation 2, the two-array open-loop system model is obtained as follows:
[image: Mathematical expression involving system equations for \( x_1 \) and \( x_2 \). Both equations include variables \( M \), \( s \), \( c \), \( k \), \( G_1 \), \( E_1 \), \( E_2 \), \( k_q \), and \( A_p \), manipulated with square and linear terms. The expressions are complex, involving fractions, multiplications, and subtractions.]
2.2 Modeling of two-array closed-loop system with multi-parameter control
Building on Section 2.1, a control system is introduced that considers the second-order characteristics of the servo valve and sensor. Additionally, based on the three-parameter control system, the acceleration derivative, which yields the jerk, is introduced. The multi-parameter generator and multi-parameter velocity synthesizer are shown in Figures 2, 3. The introduction of jerk feedforward and jerk feedback forms a multi-parameter control closed-loop system.
[image: Block diagram illustrating a control system with input \(x_0\). It features multiplication, addition, and division operations. Blocks with labels \(k_1\), \(k_2\), \(-\frac{1}{a}\), \(\frac{1}{\beta}\), and \(T s^r\) are interconnected, producing outputs \(x_1\), \(x_2\), and \(x_3\).]FIGURE 2 | Multi-parameter generator schematic diagram.
[image: Control system flowchart showing acceleration and displacement signals as inputs with various transfer functions. Acceleration passes through two blocks before generating jerk, acceleration, and velocity feedback signals. Displacement signal passes through several stages before generating displacement feedback.]FIGURE 3 | Multi-parameter speed synthesizer simulation model.
In Figure 2, [image: Please provide the image or its URL so I can generate the alternate text for you.] represents the differential time constant, [image: Please upload the image or provide a URL for the image you want me to describe.]、 [image: It seems there is no image provided. Please upload an image or provide a URL for the image you would like me to describe.]、 [image: It seems there's an issue with viewing the image. Please upload the image or provide a URL, and if you want, you can add a caption for more context.] represents the acceleration, velocity, and displacement feedback gain in the multi-parameter generator, and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please upload the image or provide the URL for me to generate the alt text.] represent the integral gain.
After applying the multi-parameter control scheme to the two-array system, if G4 represents the multi-parameter generator transfer function and G5 represents the multi-parameter feedback transfer function, then the control inputs of the two sub-stations can be written as:
[image: Mathematical equations are shown. The first equation is \( E_1 = G_4 u_1 - G_5 x_1 \). The second equation is \( E_2 = G_4 u_2 - G_5 x_2 \). Both equations are enclosed in curly braces, followed by the number nine in parentheses.]
Substituting Equation 9 into Equation 8, and further considering the characteristics of the sensors and servo valves, we obtain the control system model. Ultimately, the two-array system model under multi-parameters is obtained Equation 10 as follows:
[image: Mathematical expressions for \( \xi_{x_1} \) and \( \xi_{x_2} \) are shown. Both equations are fractions with detailed terms in the numerator and denominator. Terms include \( k_q \), \( A_p \), \( G_q \), \( G_4 \), \( G_p \), \( G_{pa} \), \( G_{pl} \), \( G_{1} \), \( G_1^{2} \), \( G_2 \), \( u_1 \), and \( u_2 \). The expressions share a common form involving these variables and constants. Marked as equation (10).]
Where Equation 11 is:
[image: Equations involving parameters \( G_p = Ms^2 + 2cs + 2k \), \( G_{p1} = cs + k \), \( G_f = G_1(Ms^2 + cs + k) + s + \frac{k_q}{A_p}G_5 \), and \( G_{fa} = \frac{1}{s^2}G_f \). Labeled as equation (11).]
Assume Equation 12 is:
[image: Mathematical equations describe the parameters \( G_{11} = G_{22} \) and \( G_{12} = G_{21} \). The equations involve variables \( k_q \), \( A_p \), \( G_q \), \( G_f \), \( G_p \), \( G_{fa} \), and \( s \). The expression for \( G_{11} = G_{22} \) is \(\frac{k_q G_q G_f (G_p G_{fa} s^2 - G_f G_{pl}^2)}{A_p G_p G_f (G_p G_{fa} s^2 - 2G_f G_{pl}^2 G_{fa})}\) and for \( G_{12} = G_{21} \) is \(\frac{k_q G_q}{A_p G_p G_f (G_p G_{fa} s^2 - 2G_f G_{pl}^2 G_{fa})}\) with reference number 12.]
Write it in the form of a matrix like Equation 13:
[image: Equation showing a matrix-vector multiplication. The vector \( \{s_{x1} s_{x2}\} \) equals a matrix \( \begin{Bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{Bmatrix} \) multiplied by the vector \( \{u_{1} u_{2}\} \). Equation number is (13).]
where: G11 is the transfer function of the input signal of shaker 1 to the acceleration [image: Mathematical expression showing \(s^2\) multiplied by \(x_1\).] of shaker 1, G12 is the transfer function of the input signal of shaker 2 to the acceleration [image: Mathematical expression showing "s squared x subscript one".] of shaker 1; G21 is the transfer function of the input signal of shaker 1 to the acceleration [image: Equation containing the term \( s^2x_2 \), with squared and subscript elements represented in mathematical notation.] of shaker 2, G22 is the transfer function from the input signal of Shaker 2 to the acceleration [image: Mathematical expression showing the square of the variable \( x \), represented as \( x^2 \).] of Shaker 2.
The basic parameters of the hydraulic and control system of the two-array seismic simulation shaker are shown in Supplementary Table 1, and the relevant parameters of the shaker table are also listed.
3 LSTM NEURAL NETWORK SYSTEM IDENTIFICATION PRINCIPLE
3.1 Principles and steps of system identification
The principle of system identification is based on the analysis of system input and output data, with the aim of inferring the intrinsic structure and parameters of the system from this data. Using the Controlled Auto-Regressive (CAR) model as an example, the basic principle of system identification can be explained.
Typically, a single-input single-output CAR model can be represented as Equation 14:
[image: Mathematical equation depicting a discrete-time system model: \( A(z^{-1})y(k) = z^{-d}B(z^{-1})u(k) + e(k) \), labeled as equation (14).]
where, [image: Mathematical expression showing \( y(k) \), which typically represents a function or output variable dependent on the discrete variable \( k \).] is the system output, [image: Mathematical expression showing the function \( u(k) \), where \( u \) is a function of the variable \( k \). The text is italicized.] is the system input, [image: Mathematical expression showing the Greek letter xi, denoted by ξ, followed by the variable \( k \) in parentheses.] is a random disturbance, d is pure delay, [image: Expression showing a mathematical notation: A of z to the power of negative one, enclosed in parentheses.] and [image: Mathematical expression showing \( B(z^{-1}) \), indicating a function or polynomial of the inverse of the variable \( z \).] can be expressed as Equation 15:
[image: Equations for polynomials \( A(z^{-1}) = 1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_p z^{-p} \) and \( B(z^{-1}) = 1 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_q z^{-q} \), labeled as equation (15).]
The model structure of the system is shown in Figure 4, which assumes without loss of generality that [image: Mathematical equation showing C times z to the power of negative one equals one.].
[image: Block diagram showing two main paths. The first path: \( u(k) \) passes through a block labeled \( \frac{z^{-d}B(z^{-1})}{A(z^{-1})} \) producing \( y(k) \). The second path: \( \xi(k) \) passes through a block labeled \( \frac{C(z^{-1})}{A(z^{-1})} \) and combines with the first path at a summation point before reaching \( y(k) \).]FIGURE 4 | Single input single output CAR model.
Furthermore, the above equation can be written as Equation 16:
[image: Equation (16) shows \(y(k) = \varphi^T(k) \theta + \xi(k)\), which represents a mathematical expression where \(y(k)\) is a dependent variable, \(\varphi^T(k)\) is the transposed vector of independent variables, \(\theta\) is a parameter vector, and \(\xi(k)\) is an error term or noise.]
where, [image: Mathematical formula displaying \(\phi(k) = [-y(k-1), \ldots, -y(k-p), u(k-d), \ldots, u(k-d-q)]^T\).] is a vector constructed from input and output observations, and [image: Mathematical expression of a vector theta equals a column vector containing elements a subscript zero through a subscript p and b subscript zero through b subscript q, transposed.] is the parameter vector to be solved.
During the experiment, by collecting the input and output data of the system, the input data is the control input signal, and the output data is the system’s response signal, that is, obtaining vector [image: Greek letter phi, followed by an argument in parentheses, k, creating the expression phi of k.]. For systems that can be modeled, such as the CAR model, the system identification problem can be transformed into a parameter estimation problem, that is, finding the optimal parameter [image: Please provide the image or a link to it, and I will generate the alternate text for you. If there is additional context or specific elements you would like highlighted, feel free to include that as well.] estimate by minimizing the error between the model’s predicted values and the actual output.
System identification generally includes the following stages:
	(1) Experimental Design: According to different practical requirements, clarify the purpose of model identification, determine the object of system identification, select appropriate input signals, and collect output response data. Generally, suitable input signals should have a certain spectrum and energy distribution to cover the key characteristics of the system and maintain its stability. Moreover, for nonlinear systems, random signals are usually more suitable because they have better excitation performance. The quality of the experimental design directly affects the accuracy of the subsequent model.
	(2) Data Collection and Preprocessing: Conduct experiments and collect the input and output data of the system. This includes recording the responses measured by sensors and generating control input signals. Ensure that the experimental environment and measurement errors are considered during data collection. Additionally, preprocess the collected data by performing operations such as denoising, filtering, and sampling to improve the quality and identifiability of the data.
	(3) Establish a mathematical model: Use the collected data to create a mathematical model of the system, such as in the form of difference equations, state-space equations, or transfer functions, and estimate the model parameters.
	(4) Parameter identification: This typically involves fitting techniques, such as the least squares method, to minimize the error between the model’s predictions and the actual observations.
	(5) Model validation and optimization: Use data not involved in the identification process for new tests to verify the accuracy and reliability of the obtained model. Ensure that the model can correctly predict the system’s response under new input conditions. Additionally, analyze the obtained model to understand the dynamic characteristics of the system. Optimize the model as needed to enhance its performance and adaptability.

3.2 LSTM frame structure and model building
LSTM is a special type of neural network structure that is designed to address the problems of gradient vanishing and gradient explosion encountered by traditional neural networks when handling long-term dependencies. The LSTM unit consists of a cell state and three gating components (input gate, forget gate, and output gate). The forget gate is used to determine which information should be discarded from the cell state; the input gate controls the extent to which the current input affects the cell state; and the output gate decides how the cell state influences the next layer. In the context of controlling a seismic simulation shaking table, the aim is to reproduce the input earthquake waves as accurately as possible, with a one-to-one correspondence between input and output. Therefore, a one-to-one LSTM model was ultimately chosen as the controller for the shaking table in this study. The LSTM structure diagram is presented in Figure 5.
[image: Diagram illustrating a Long Short-Term Memory (LSTM) cell structure, showing input, forget, and output gates with sigmoid and tanh activation functions. It includes connections for input \(x_t\), previous output \(o_{t-1}\), and current output \(o_t\).]FIGURE 5 | LSTM structure diagram.
In the establishment of the LSTM model, data processing is first conducted to standardize the input seismic wave data to fit the LSTM input format. The dataset is then divided into training and testing sets. Due to the dynamic computation graph utilized in PyTorch, a more intuitive and flexible approach is enabled during the model construction and debugging process. Additionally, the simple and intuitive APIs provided by PyTorch make the construction, training, and evaluation of deep learning models easier. Therefore, the PyTorch framework is employed in this study. In the LSTM used in this research, the model structure is defined using the Sigmoid activation function. The Sigmoid function can independently control the opening and closing states of each gate and possess good gradient propagation characteristics, effectively preventing the problem of gradient vanishing during the training process, thereby achieving selective information transfer.
Then, the Mean Squared Error (MSE) loss function is chosen, and the Adam optimizer is used for backpropagation gradient optimization in this paper. The expression for the MSE loss function is as follows Equation 17:
[image: Formula for Mean Squared Error (MSE) calculation: MSE equals one over m times the sum from i equals one to m of the squared differences between actual values \( y_i \) and predicted values \( f(x_i) \).]
From the above equation, it can be seen that the loss function MSE represents the sum of the squared differences between the predicted value [image: I'm unable to view the image directly, so to help generate alternate text, please provide a description of the image or upload it.] of the model and the true value y of the sample. The smaller its value, the smaller the error and the higher the accuracy.
Finally, the input seismic wave dataset is used for model training, and the testing set is employed to evaluate the model’s generalization capability. At the same time, the performance of this approach is assessed using the correlation between the actual results and the predicted results, as well as the root mean square error.
Based on the above, the algorithm flowchart for identifying LSTM network is shown in Figure 6:
[image: Flowchart depicting a process starting with "Initialize," followed by "Given the input quantity, target output," and "Find the hidden layer and output layer to the node output." Next steps are "Find the deviation between the target value and the actual output," "Calculate reverse error," and "Weight learning." The decision diamond "End of study?" leads to "N" looping back, and "Y" proceeding to "End."]FIGURE 6 | LSTM network identification flowchart.
4 IDENTIFICATION RESULTS AND ANALYSIS OF THE LSTM DUAL-ARRAY CLOSED-LOOP SYSTEM
The LSTM network structure used in this paper specifically includes: an input layer, a hidden layer with 15 neurons, and an output layer. The momentum factor is set to 0.0005, the initial weights of the network are randomly chosen within the range [−1,1], and the learning algorithm employed is the “gradient descent algorithm.” The maximum number of training iterations is set to 20,000, and the loss function is calculated using the MSE formula. The training process for system identification is conducted offline. In the results presented below, the curve labeled “Actual Result” represents the output of the shaking table, which serves as the network’s label. The curve labeled “Forecast Result” represents the output of the neural network. The smaller the deviation between the forecast results and the actual results, the better the training performance of the neural network and the higher the accuracy of the system identification. We will first present intuitive result display graphs, and finally evaluate the performance of this method for system identification using the similarity between the actual and forecast waveforms. Assuming the two waveforms are denoted as x and y, their correlation coefficient can be expressed as Equation 18:
[image: Correlation formula showing the correlation of x and y. The numerator is the sum from n equals one to N of the product of (x sub n minus x-bar) and (y sub n minus y-bar). The denominator is the square root of the product of the sums, from n equals one to N, of (x sub n minus x-bar) squared and (y sub n minus y-bar) squared. The equation is labeled as number eighteen.]
We used different seismic waves as input waveforms, with a sampling time of 0.02 s, corresponding to a sampling frequency of 50 Hz. The simulation time is set to 40 s, resulting in two input datasets each containing 4,000 data points. The first 2000 data points are used as the training set, and the remaining 2000 data points are used as the test set. For the dual-array system, the output data is modeled as a two-dimensional matrix, corresponding to the response waveforms of Shaking Table 1 and Shaking Table 2, respectively. We obtained the output of the dual-array closed-loop system through simulation, which serves as the labels for neural network training. Using the EL Centro wave to analyze the training set, the training results of the dual-array closed-loop system are shown in Figure 7.
[image: Two line graphs labeled A and B compare actual and predicted results over time. Graph A shows discrepancies and noise in data from 0 to 13 seconds. Graph B presents similar trends with variations from 0 to 15 seconds. Blue lines indicate actual results, orange lines show forecasted results.]FIGURE 7 | Time domain waveform chart of network training for the dual-array system identification (A) Shaking table 1 training results comparison (B) Shaking table 2 training results comparison.
Figures 7A, B are comparison charts of the output waveforms and network training results for Shaking Table 1 and Table 2, respectively. After calculation, the root mean square error (RMSE) between the network output waveform and the actual waveform is −52.9 dB for Table 1 and -52.8 dB for Table 2. The correlation coefficients are 0.9998 for Table 1 and 0.9998 for Table 2. The network training results match the actual results very well.
For the test set, we used three different seismic waves and one artificial wave for analysis, performing both time domain and frequency domain analyses. First, we analyzed the EL Centro wave, with the time domain chart shown in Figure 8.
[image: Two graphs labeled (A) and (B) display residuals over time. Both graphs show actual residuals in blue and expected residuals in orange. Time units range from 20.0 to 20.8 seconds on the x-axis, and residuals range from -0.60 to 0.60 on the y-axis. The graphs illustrate fluctuations, with patterns appearing similar in both instances.]FIGURE 8 | Time domain waveform chart of network testing for the dual-array system identification (EL Centro wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
The calculated root mean square error (RMSE) between the network output waveform and the actual waveform is −60.4 dB for Table 1 and -60.9 dB for Table 2. The correlation coefficients are 0.9998 for Table 1 and 0.9998 for Table 2. After performing a Fourier transform on the waveform data, the frequency spectrum characteristics of the seismic wave can be obtained, as shown in Figure 9. It can be seen that the frequency domain performance of the network output waveform also almost perfectly replicates the actual frequency domain waveform.
[image: Two line graphs, labeled A and B, compare actual and forecasted results. Both graphs plot amplitude against frequency in hertz, ranging from 0 to 25, with amplitude between 0 and 0.025. In both graphs, actual results are in solid blue lines and forecasted results in dotted orange lines, showing similarities in pattern and amplitude distribution, with peaks around lower frequencies.]FIGURE 9 | Frequency domain waveform chart of network testing for the dual-array system identification (EL Centro wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
Next, we performed time and frequency domain analyses of the Wenchuan surface wave, as shown in Figures 10, 11. The calculated results indicate that the root mean square error (RMSE) between the network output waveform and the actual waveform is −42.3 dB for Table 1 and -56.2 dB for Table 2. The correlation coefficients are 0.9996 for Table 1 and 0.9997 for Table 2.
[image: Two graphs show comparisons between actual and forecast results of absorbance. Graph (A) and graph (B) display time in seconds on the x-axis, with absorbance values on the y-axis. Both graphs contain overlapping blue and orange lines indicating actual and forecast results, respectively, with similar fluctuating patterns. Legends are placed at the top, labeling "Actual result" in blue and "Forecast result" in orange.]FIGURE 10 | Time domain waveform chart of network testing for the dual-array system identification (Wenchuan floor wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
[image: Two graphs depicting frequency responses. Graph (A) and Graph (B) each show frequency (x-axis) against amplitude (y-axis) with two lines: a blue solid line for actual results and an orange dotted line for forecast results. Both graphs display similar patterns, with peaks in lower frequency ranges and decreasing amplitudes as frequency increases.]FIGURE 11 | Frequency domain waveform chart of network testing for the dual-array system identification (Wenchuan floor wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
Next, we performed time and frequency domain analyses using the Traf wave, as shown in Figures 12, 13. The calculated results indicate that the root mean square error (RMSE) between the network output waveform and the actual waveform is −51.74 dB for Table 1 and -51.20 dB for Table 2. The correlation coefficients are 0.9988 for Table 1 and 0.9986 for Table 2.
[image: Two line graphs compare actual versus forecast results over time. Graph A and Graph B plot values against time from 20.0 to 40.0 seconds. Both graphs show actual results in blue and forecast results in orange. The data exhibits fluctuating patterns in both cases, indicating variability over the observed period.]FIGURE 12 | Time domain waveform chart of network testing for the dual-array system identification (Traf wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
[image: Two line charts labeled (A) and (B) compare actual and forecasted results against frequency in hertz. Both charts show amplitude on the y-axis and frequency on the x-axis, with blue lines for actual results and orange dashed lines for forecasted results. Both charts illustrate a gradual decrease in amplitude as frequency increases, highlighting differences between actual and forecasted data over specific frequency ranges.]FIGURE 13 | Frequency domain waveform chart of network testing for the dual-array system identification (Traf wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
Finally, we performed time and frequency domain analyses using the artificial wave, as shown in Figures 14, 15. The calculated results indicate that the root mean square error (RMSE) between the network output waveform and the actual waveform is −49.62 dB for Table 1 and -49.43 dB for Table 2. The correlation coefficients are 0.9996 for Table 1 and 0.9996 for Table 2.
[image: Two line graphs labeled (A) and (B). Both graphs show time on the x-axis from 20.0 to 40.0 seconds. Graph (A) plots acceleration in the q₁ direction, while graph (B) plots displacement in the q₂ direction. Actual results are in blue, and forecasted results are in orange. Both graphs depict fluctuating lines with diminishing amplitude over time.]FIGURE 14 | Time domain waveform chart of network testing for the dual-array system identification (Artificial wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
[image: Two line graphs labeled A and B showing frequency on the x-axis and probability density on the y-axis. Both graphs compare actual results (in blue) and forecasted results (in orange), displaying fluctuating patterns across frequencies from zero to twenty-five hertz, with similar trends in both panels.]FIGURE 15 | Frequency domain waveform chart of network testing for the dual-array system identification (Artificial wave) (A) Comparison chart of results for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.
Based on the analysis of these four waveforms, the root mean square error (RMSE) and correlation coefficients between the network output waveforms and the actual time domain waveforms are summarized in Supplementary Table 2. Both the time domain and frequency domain waveform correlations exceed 0.99, indicating that the output closely matches the actual waveforms. This demonstrates that the identification scheme has excellent performance, and the network trained with LSTM can achieve the dual-array system identification task with high accuracy.
5 CONCLUSION AND DISCUSSION
This paper primarily designs an identification scheme for a dual-array closed-loop system based on an LSTM network. First, the dual-array system of a seismic simulation shaking table is modeled. Then, a dual-array system identification method based on LSTM is proposed. Using the dataset from the constructed Simulink simulation model, the neural network is trained and tested. The LSTM network is modified to adapt to the system output, considering the characteristics of the dual-array system. This identification scheme is highly applicable, efficient in terms of parameters, and reflects the true characteristics of the system. The main conclusions drawn are as follows:
	(1) In training the neural network model, the gradient descent algorithm is highly efficient and adaptable. It effectively handles the nonlinear problems in seismic simulation shaking tables and has broad application prospects in optimizing control systems.
	(2) After identification using the LSTM neural network, the output of the seismic simulation shaking table dual-array closely matches the theoretical output, with a low mean square error and a waveform correlation coefficient exceeding 0.99. This verifies that the identification scheme has high accuracy and good convergence, providing a theoretical basis for performance control of the seismic simulation shaking table.

The research work in this paper is based on closed-loop system and single-degree-of-freedom structure. The subsequent research may consider verifying the applicability of the proposed LSTM neural network identification to open-loop system and multi-degree-of-freedom structure, and further improve the efficiency and accuracy of system identification by combining with other intelligent control algorithms.
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Pervious concrete exhibits different freeze–thaw performance compared to conventional concrete owing to its unique porous structure. Therefore, studying its mechanical and durability properties under freeze–thaw conditions has become a pressing issue. A numerical model of pervious concrete was created using the discrete element method based on actual aggregates to evaluate the impact of freeze–thaw cycles (FTCs) on the mechanical properties of pervious concrete. Pore water in the microstructure of pervious concrete was defined using PFC3D software through simulation of the freezing and expansion processes of the pore water, while applying freeze–thaw loading. This study employs the parallel bond model in PFC3D software to account for adhesion between the material particles. The linear ontological relationship of the parallel bond model was modified to a linear curvilinear relationship. The FTCs resulted in strength loss reductions of 0.62%, 2.17%, 4.06%, and 5.87% for corresponding mass losses of 0.66%, 0.89%, 1.21%, and 6.66% compared to the control. The models were monitored for fracture location and uniaxial compressive damage using PFC3D software, and the attenuation constant of the freeze–thaw resistance of pervious concrete was examined with respect to varying porosity and initial uniaxial compressive strength (UCS). The results indicate that the decay constant increases with increasing porosity and modulus of elasticity while decreasing with increasing values of the initial UCS.
Keywords: discrete element method, PFC3D, parallel bond model, freeze–thaw cycles, reality modeling

1 INTRODUCTION
The urban “heat island effect” has intensified in recent years, resulting in the development of the concept of a “sponge city.” A sponge city refers to one that can absorb, store, seep, and purify water when it rains, thereby reducing the need to “release” and consume that water [1]. Pervious pavements are an important part of a sponge city; pervious concrete pavements have high porosity, can effectively alleviate the urban heat island effect, and reduce the risk of urban flooding [2]. Pervious concrete contains very little or no fine-aggregate sand, which endows it with a unique porous structure [3]. The porosity of pervious concrete makes it particularly vulnerable to deterioration from freeze–thaw cycle (FTC) loading, which can shorten its overall lifespan [4, 5]. Therefore, evaluation of the mechanical properties and durability of pervious concrete under a freeze–thaw environment is a key problem that needs to be solved at present.
The primary reason for deterioration of the durability of pervious concrete is the leakage of calcium ions during cement hydration; this phenomenon can be successfully inhibited by metakaolin and silica fume [6]. Furthermore, the inclusion of fly ash (FA), rice husk ash, and granulated blast furnace slag can result in more extensive micropore filling [7–10]. This has an important reinforcing effect on the interfacial transition zone and can effectively improve the freeze–thaw cyclic loading resistance of pervious concrete [11–14]. Anderson and Dewoolkar [15] discovered that FA is an effective filler in pervious concrete, but the short curing period may result in insufficient hydration of FA, making pervious concrete with FA more susceptible to deterioration in early freeze–thaw environments. Chindaprasirt et al. [16] found that 10% rice husk ash was effective in increasing the strength of pervious concrete. Cement alone is not as effective as a polymeric cementitious system comprising cement and mineral admixtures.
Some scholars have investigated the effects of cementitious materials containing air-entraining agents (AEAs) on the resilience of pervious concrete to freeze–thaw cycling. Zhong and Wille [5] investigated the effects of the cementitious material type, pore system characteristics, and fiber-reinforcing materials on the freeze–thaw durability of pervious concrete and demonstrated that ultrahigh-strength cementitious materials can greatly enhance such durability. Santos et al. [17] showed that internal blending of appropriate amounts of silane emulsion in cementitious materials enhanced the ability of the concrete containing recycled aggregates to withstand ion penetration, carbonation, and capillary water absorption. Ebrahimi et al. [18] summarized three methods for enhancing the freeze–thaw resistance of concrete, which involved employing AEAs to mitigate the pore water pressure, incorporating fibers or nanotubes to inhibit crack formation, and preparing monolithic waterproof concrete with internal water-repellent agents to minimize water absorption. Vancura et al. [19] and Chen et al. [20–22] found that AEAs are the most commonly used method of introducing air bubbles to improve freeze–thaw durability in plain concrete and that pervious concrete without entrapped air is more susceptible to freeze–thaw damage in cold regions.
Using the normal test procedures meant for conventional concrete owing to the lack of a defined test technique for the freeze–thaw durability of pervious concrete showed that adding 7% sand to coarse aggregates greatly increased the ability of pervious concrete to withstand FTCs. Lund et al. [23] reported that the effects of AEAs on the frost resistance of pervious concrete are mainly through improvement of the workability of the pervious concrete mixture, making it more compact and thereby enhancing the frost resistance rather than by reducing the pore spacing. Yang et al. [14] concluded that AEAs enhance the frost resistance of pervious concrete primarily by boosting its structural strength.
Ethylene vinyl acetate (EVA) emulsion enhances the interfacial bond strength of pervious concrete, while polypropylene (PP) fibers increase the tensile strength, leading to improved frost resistance compared to laboratory-prepared specimens. Giustozzi [24] conducted experiments on the frost resistance of pervious concrete using four different polymer modifiers: cationic styrene-butadiene rubber (SBR) emulsion, polyvinyl acetate (PVAC) emulsion, EVA powder, and anionic SBR emulsion. Their study revealed that these polymer modifiers substantially improved the performances of pervious concrete, especially enhancing its frost resistance, while maintaining permeability. Among these, the PVAC emulsion had the most pronounced enhancement effect on the performance of pervious concrete.
Salt corrosion caused by the FTCs has a universal and direct negative impact on the longevity of pervious concrete. Extensive use of deicing salts and seawater erosion in the coastal areas often accelerates the deterioration rate of pervious concrete, which seriously restricts its promotion and use in cold areas. Feng et al. [25] studied the effects of three different deicing agents on silicate-cement-based pervious concrete using the saturation and drainage methods to illustrate the extent of damage caused; accordingly, the three agents produced effects in the following order: calcium chloride > sodium chloride > magnesium acetate. Sahdeo et al. [26] demonstrated the methods by which the sulfate corrosion resistance, flexural strength, and compressive strength of pervious concrete can be successfully increased through the addition of a tiny quantity of fine sand. Saboo et al. [12] investigated the use of NaCl solution as a freeze–thaw medium to simulate freeze–thaw tests in a deicing salt environment; after 15 FTCs, the concrete specimens showed more than 5% loss of quality, and after 50 FTCs, the concrete specimens showed more than 40% loss of quality. Tsang et al. [27] studied the FTC test results of pervious concrete using calcium chloride solution, urea solution, NaCl solution, magnesium chloride solution, and water as the freeze–thaw media; they found that for a given concentration, NaCl and calcium chloride solutions produced the most serious freeze–thaw damages to pervious concrete. After 50 FTCs, there was a 5% loss of specimen mass, which increased to more than 20% loss of mass after 100 FTCs. Nassiri et al. [28] studied the method by which cured carbon-fiber composite material (CCFCM) affected pervious concrete and discovered that CCFCM greatly increases the ability of pervious concrete to withstand frost. Zou et al. [29] discovered that the use of silanized recycled aggregates would be both environment- and user-friendly; this material creates a hydrophobic silica film on the aggregate surface to inhibit water accumulation, resulting in a compact structure at the aggregate interface through increased C-S-H gel formation and thereby enhancing the frost resistance.
Very few studies are available on the long-term (56 d, 90 d, etc.) performances of modified pervious concretes, and most of these studies concentrate on the early (usually 28 d) performance of the material. Meanwhile, very few studies have been conducted on the fine-scale cracking of pervious concrete following FTCs; indoor tests have only been used to examine the mechanical characteristics and freeze–thaw mechanism, which are insufficient to fully account for the fine-scale structure of pervious concrete following freeze–thaw cycling [30, 31]. In particular, water in the internal pores and micropores of the concrete condenses into ice as the temperature decreases below freezing, expands by roughly 8%, and creates shear strain between the aggregate particles. However, the high permeability of pervious concrete prevents saturation with water so that some of the water pressure is relieved following FTCs. Even when the pervious concrete is not saturated with water, mechanical degradation has been shown to occur [32, 33].
Numerical simulations can be used to explore the mechanical properties of pervious concrete and analyze its behaviors from a fine-scale perspective. By considering pervious concrete as a granular cemented material, we can accurately represent it using the particle flow method, which is a discrete element technique mostly utilized to examine the fine-grained mechanical characteristics of bulk media [34]. Ng and Dai [35] examined the effects of freeze–thaw damage of water ice pressure on the internal microstructure of a cement material and replicated the expansion of cracks in the cement material under a freeze–thaw environment. Zhao et al. [36] simulated the FTC of pervious concrete using discrete parts, created an elastic–plastic parallel-bonded contact model, and analyzed how varying porosity and the initial uniaxial compressive strength (UCS) affect the freeze–thaw decay constants. Xiang et al. [37] used the discrete element method (DEM) to model pervious concrete and accurately simulate the changes in its compression modulus and strength during FTCs. Wu et al. [38] applied a new loading method to obtain the freezing force during FTCs; accordingly, a near-field kinetic model was introduced to compare the damage patterns of experimentally captured cement paste samples.
By taking into account the porosity of the concrete, a randomly distributed predamage was added to imitate the freeze–thaw damage in real macroscopic concrete. To examine the damage of pervious concrete under uniaxial compression, Xie et al. [33] used the DEM and found that the simulation results closely matched the actual data. Xu et al. [39] examined the impacts of aggregate reinforcement on paste migration and pore structure modification by creating a three-dimensional model of recycled aggregate pervious concrete using DEM. Huang et al. [40] concluded that the plasticity near the pore region expands with increasing pressure during freezing; upon thawing, elastic deformation is recovered, yet significant residual deformation persists, resulting in an elastoplastic theoretical model. AlShareedah and Nassiri [32] predicted the hydraulic characteristics of pervious concrete using pore-scale finite volume modeling with the DEM.
Pervious concrete freeze–thaw tests use both rapid and slow freeze–thaw methods. Moradllo et al. [41] used the slow freeze–thaw method to obtain the relationship between the critical pore spacing coefficient and different cooling rates (2, 4, and 6°C/h); they found that a faster cooling rate resulted in a smaller critical pore spacing coefficient. Hosseinzadeh et al. [42] utilized the slow freeze–thaw method and observed notable distinctions in the performances of paste and mortar, with mortar surpassing pastes. Taheri et al. [43] found that for similar fiber compositions, pervious concrete was able to resist 320–360 cycles when subjected to the rapid freeze–thaw method (Standard ASTMC666-0317); however, it could resist only 50–60 cycles when the slow freeze–thaw test (24 h for each cycle) was applied, indicating that the standard freeze–thaw test has slow deterioration even though the rates of freezing and thawing are higher.
Thus, the present study uses simulations and tests to examine the small damage characteristics and fundamental mechanical properties of pervious concrete under repeated FTCs. Based on the analysis of the compressive, flexural, and permeability coefficient data, the ideal mix ratio of pervious concrete was established, and the FTC test was carried out based on the ideal mix ratio. Using actual aggregates, a numerical model of pervious concrete was established for different FTCs using the discrete element software PFC3D. To determine the changes to the mechanical characteristics of the numerical model of pervious concrete, various fine-scale parameters of the model were calibrated. By comparing and analyzing the results from numerical simulations and tests, the numerical model was validated to ascertain the law governing the fine damage characteristics of pervious concrete.
2 PREPARATION AND TESTS
2.1 Materials
2.1.1 Gelling material
This study utilized P.O 42.5 ordinary Portland cement (OPC) from Tongli Cement Co., Ltd.; FA produced by Henan Yixiang New Material Co., Ltd.; granulated ground blast furnace slag (GGBFS) from Henan Yixiang New Material Co., Ltd.; dispersible emulsion powder (DEP) from Shijiazhuang Chuansheng Building Materials Technology Co., Ltd.; and water reducing agent (WRA) from Hunan Zhongyan Building Materials Technology Co., Ltd. Table 1 displays the chemical compositions of the DEP, FA, GGBFS, and OPC.
TABLE 1 | Chemical composition chart.
[image: Table showing the chemical compositions of OPC, FA, GGBFS, and DEP. The columns list percentages of SiO2, Al2O3, Fe2O3, CaO, MgO, K2O, PR, and Others. Key figures include OPC having 60.22% CaO and FA having 59.41% SiO2.]2.1.2 Aggregates
In the tests, the natural coarse aggregate (NCA) was composed of 5–10-mm aggregate particles. The NCA was cleaned with tap water prior to usage to remove any muck and was allowed to dry naturally. Table 2 presents the physical attributes of the aggregates.
TABLE 2 | Physical characteristics of natural coarse aggregate (NCA).
[image: Table displaying characteristics of NCA aggregates: Aggregate size is five to ten millimeters, bulk density is one thousand four hundred forty-one kilograms per cubic meter, apparent density is two thousand six hundred eighty kilograms per cubic meter, crushing value is thirteen point nine percent, and water absorption is one point fifteen percent.]2.1.3 Test water
Water supplied by the city of Xinyang was used for the preparation, curing, and post-testing of the pervious concrete samples in this study.
2.2 Orthogonal experimental design
2.2.1 Orthogonal test method
In compliance with the guidelines of the Technical Specification for Pervious Cement Concrete Pavement [44], the water–cement ratio (WCR) was designed as per the volumetric method, and the target porosity was adjusted to 15%. By adopting the orthogonal experimental design, samples from the entire test system can be screened more precisely, swiftly, and economically. This method considers various factors and levels to achieve the best results and reflect the actual conditions more accurately.
2.2.2 Orthogonal test grouping
In this study, five different factors were established, including WCR, DEP, WRA, FA, and GGBFS, and four different levels were considered in each group for the orthogonal tests that were then analyzed using analysis of variance to find the optimal fit ratio between the factors. The level factor and orthogonal tables are shown in Tables 3, 4.
TABLE 3 | Table of experimental factor levels L16 [image: Table displaying level factors and corresponding values for five variables: WCR(A), DEP%(B), WRA%(C), FA%(D), and GGBFS%(E). Each variable has four levels, labeled 1 to 4, with respective percentage or decimal values denoted in parentheses for each level.].
[image: Table displaying level factors with columns for WCR(A), DEP%(B), WRA%(C), FA%(C), and GGBFS%(E). Rows 1 to 4 show values increasing per factor: WCR from 0.25 to 0.32, DEP% from 0 to 10, WRA% from 0 to 0.3, FA% from 0 to 30, and GGBFS% from 0 to 15.]TABLE 4 | Table of experimental factor levels L16 [image: Table displaying samples labeled PC-M1 through PC-M16, with columns: WCR(A), DEP(B), WRA(C), FA(D), and GGBFS(E). Each sample has corresponding entries A1-A4, B1-B4, C1-C4, D1-D4, and E1-E4.].
[image: Table listing samples PC-M1 to PC-M16 with corresponding columns: WCR(A), DEP(B), WRA(C), FA(D), and GGBFS(E). Each cell contains values such as A1, B1, and C1, indicating specific data points for each sample.]2.3 Mixing ratio design
When designing the mix ratio for pervious concrete, the effects of the admixture amount, WCR, and molding technique on water permeability performance should be taken into account. Enhancing the resistance of pervious concrete to frost while preserving its strength is also a crucial consideration. The performance indexes of pervious concrete measured in this test and the specifications of the specimens required are shown in Table 5. Series 1 was prepared according to CJJ/T135-2009 [44], and the quantity of material used in each group is displayed in Table 6.
The optimum compressive strength, effective porosity, and water permeability were determined through the orthogonal test. Series 2 was then prepared according to the optimum ratios. Series 2 is a column specimen with dimensions of 100 mm (length) × 100 mm (width) × 300 mm (height) and is used to analyze the post-freezing and thawing strength losses of pervious concrete along with the change trends in the stress–strain curve. The precise mixing ratio design for the Series 1 test phase is displayed in Table 6. The overall degree of variation for this investigation was determined through 16 sets of orthogonal tests.
TABLE 5 | Performance indicators and corresponding test piece size and quantity table.
[image: Table listing various performance tests with columns for test piece type, specimen size, and the number of specimens. It includes tests for 28-day compressive strength, prismatic uniaxial compressive strength, flexural strength, effective porosity, and permeability. Each test has three specimens with sizes specified in millimeters.]TABLE 6 | Actual amounts of materials used in each group (kg).
[image: A table showing sample data with columns for sample name, concrete, water, DEP, WRA, FA, and GGBFS. Each sample is labeled from PC-M1 to PC-M16. Values vary for each column with concrete ranging from 4.37 to 9.78, water from 2.45 to 2.81, DEP from 0.00 to 0.98, WRA from 0.00 to 0.03, FA from 0.00 to 2.94, and GGBFS from 0.00 to 1.47.]2.4 Test methods
2.4.1 Sample preparation and maintenance
The test employed the cement-packed stone method of mixing. Figure 1 depicts the specimen production process. The precise mixing procedure was as follows: the mixer was filled with coarse aggregate and 50% water for 1 min, followed by the addition of cementitious materials for another minute; lastly, the remaining 50% water was added and mixed for another minute. The pervious concrete was loaded into the mold three times through three layers of manual pile insertion and pounding, followed by compaction and leveling. The initial hydration has a major impact on the improved properties of pervious concrete because its WCR is typically low.
Therefore, the surfaces of the specimens were covered with a film as soon as the pervious concrete was loaded into the molds to maintain the moisture content without affecting the initial hydration. Thereafter, the specimens were maintained in a room for a full day at a temperature of 15°C [image: Please upload the image you'd like me to generate the alternate text for.] 5°C and relative humidity of over 60%. Then, the molds were dismantled. Lastly, the samples were cured for 28 d in a typical constant-temperature curing chamber maintained at 15°C [image: Please upload the image you'd like me to describe, or provide a URL to the image.] 2°C and a relative humidity above 90%.
[image: Flowchart showing a mix design process. The top row illustrates aggregate mixed with water to form test pieces. The bottom row includes materials labeled OPC, GGBFS, FA, DEP, WAR, mixed with water for 60 seconds.]FIGURE 1 | Preparation process for pervious concrete.
2.4.2 Compressive strength test
According to the standard GB/T50081-2019 [45], the samples measuring 100 mm × 100 mm × 100 mm underwent cubic compressive testing, whereas the samples measuring 100 mm × 100 mm × 300 mm were subjected to prismatic uniaxial compressive testing at varying ages.
2.4.3 Flexural strength test
According to the standard GB/T50081-2019 [45], the pervious concrete specimens cured for 28 d were subjected to a prismatic flexural test. The prismatic specimens had dimensions of 100 mm × 100 mm × 400 mm.
2.4.4 Water permeability test
The permeability coefficient was determined based on Darcy’s law in combination with the constant head permeameter method on a cubic specimen of size 100 mm × 100 mm × 100 mm according to the following Equation 1 from [46]:
[image: The formula shown is \( K_T = \frac{L}{H} \times \frac{Q}{A \cdot t} \) labeled as equation (1), where \( L \), \( H \), \( Q \), \( A \), and \( t \) are variables.]
where [image: It seems like there's an issue with displaying the image. Please try uploading the image again or provide more details about its content.] is the permeability coefficient (mm/s) of the specimen; Q is the quantity of water that seeps out of the model in t seconds ([image: It seems there was no image uploaded or the image link is broken. Please try uploading the image again or provide a valid URL.]); [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is the sample height (mm); [image: Please upload an image or provide a URL, and I will help generate the alternate text for it.] is the cross-sectional area of the specimen ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]); [image: Please upload the image you'd like me to generate alt text for.] is the penetration time (s).
2.4.5 Effective porosity test
The effective porosity was computed using the formula below with a cubic specimen of size 100 mm × 100 mm × 100 mm in accordance with Equation 2 the ASTM standard [47]:
[image: Equation for density: \( P = \left( 1 - \frac{m_2 - m_1}{V \cdot \rho_w} \right) \). Equation number (2).]
where [image: Please upload the image so I can generate the appropriate alt text for you.] is the specimen porosity; [image: It seems there is a formatting issue or missing image link. Please upload the image or provide a URL so I can generate the appropriate alt text.] is the model weight (g) after drying; [image: To generate alt text, please upload the image or provide a URL. You may also add a caption for additional context if desired.] is the model weight (g); [image: It seems there was an issue displaying the image. Please upload the image file directly so I can help generate the alt text for it.] is the sample volume [image: Mathematical expression depicting cubic centimeters, represented as "cm" followed by a superscript three, indicating a unit of volume measurement.]; [image: It seems like you've entered a formula or mathematical notation instead of an image. Please upload the image or provide the URL for which you need alternative text, and I will be happy to assist!] is the density of water (g/cm3).
2.4.6 Freeze–thaw durability test
The FTC test conforms to the standard GB/T50082-2009 [48]. After 28 d of conventional curing, the specimens were removed from the curing room and immersed in water at 10°C [image: Please upload the image you would like me to generate alt text for.] 2°C for 4 d. After 28 d of aging, the specimens underwent rapid FTC testing (HDK9/F). The specimens each had a size of 100 mm × 100 mm × 300 mm, with three specimens in each group and 25 FTCs in each test. When the relative dynamic modulus of elasticity of a specimen decreases to 60% or the rate of loss of mass exceeds 5% or the rate of loss of strength exceeds 25%, the FTCs are stopped.
2.5 Model building
2.5.1 Realistic aggregate specimen modeling
Freeze–thaw modeling was developed using the PFC3D software. The real aggregates used in this study were sieved to determine the shapes. Based on the size of the aggregates used in the test, the aggregate model was set to resemble the shape of the real aggregate. The real aggregates were then classified into three types as angular, flat, and elongated aggregates. Table 7 displays the sieved results for each of these aggregate types.
TABLE 7 | Aggregate shape percentages.
[image: Table showing aggregate size and types. Aggregate size is between 5 to 10 millimeters. Angular aggregate is 53.1 percent, flat aggregate is 32.3 percent, and elongated aggregate is 14.6 percent.]A mold with a height of 300 mm, length of 100 mm, and width of 100 mm was constructed in PFC3D; then, aggregate and water particles were generated with a total porosity of 15%, the water particles in the total porosity were equal to 15%, and the aggregate particles had radii in the range of 2.5–5 mm. The radii of the water particles are in the range of 1.25–2.5 mm. A 3D laser scanner was used to obtain accurate external profile information from the aggregates, save this information as an STL file, and then import it into PFC3D. The corresponding aggregate model was reconstructed in PFC3D, and the rock particles were finally replaced with the actual external profiles of the aggregates. In this manner, the numerical model of pervious concrete was transformed from the sphere model to clump model, as shown in Figure 2.
[image: Three-dimensional renderings of particle columns. Column (A) is a uniform mix of blue and yellow particles. Column (B) highlights areas with red boxes and arrows, showing close-ups in sections (C), (D), and (E) with detailed views of particle arrangements. Column dimensions are labeled 100 mm by 100 mm by 300 mm.]FIGURE 2 | (A) Spherical model (aggregates in blue, water in yellow). (B) Numerical modeling of pervious concrete after conversion of spherical particles to real aggregates. (C) Water in contact with water. (D) Aggregate in contact with aggregate. (E) Aggregate in contact with water.
Because of its high permeability, pervious concrete cannot be saturated with water in practical applications. However, mechanical deterioration occurs under repeated FTCs even if the pervious concrete is not wetted with water. Tests conducted indoors have revealed that during FTCs, the water particles expand along a few internally linked pores. Consequently, the force between the agglomerates is reduced, and the mechanical characteristics are damaged to a greater extent by the closed and microscopic pores than by the connected pores.
2.5.2 Internal contact modeling
This model entails (1) contact between neighboring aggregate particles (aggregate–aggregate contact), (2) contact between water particles, and (3) contact between water and aggregate particles.
Using the parallel bond model (PBM), the internal contacts in pervious concrete were examined. The schematic representation of the PBM principle is displayed in Figure 3A.
When the particles are bonded, the linear and parallel bond elements cooperate to resist forces and moments. In contrast, when the bond is broken in the non-bonded state, only the linear element is active, which reduces the PBM to a linear model. The strength envelope of the PBM is depicted in Figure 3B, and the stress expressions (Equations 3, 4) as follows [49]:
[image: The formula shows the average shear stress, denoted as tau bar, defined as F sub i divided by A, plus beta times the absolute value of M sub b multiplied by R over I. The formula is labeled as equation three.]
[image: Equation depicting shear stress, tau, equals the force, F, divided by area, A, plus beta times the absolute value of torque, M, times radius, R, divided by moment of inertia, J.]
where: [image: It seems like you've posted a text equation rather than an image. However, I can help you with alternate text if you upload an image or provide a URL. If "F sub n" refers to a general mathematical notation, you might want to describe what the equation or context represents.] is the normal parallel bond force; [image: It seems like there was an error with your request as an image data was not provided. Please upload the image or provide a URL, and optionally add a caption for more context.] is the tangential parallel bond force; [image: Sorry, I cannot generate alt text without an image to analyze. Please upload the image so I can help you further.] and [image: A mathematical notation displaying an uppercase letter M with a subscript lowercase letter b in italics.] are the rotational and bending moments of the contact plane, respectively; [image: Please upload the image or provide a URL for me to generate alternate text.] is the radius of the particle; A is the cross-sectional area; [image: Please upload the image or provide the URL, and optionally include a caption for additional context, so I can help generate suitable alt text.] is the moment contribution coefficient; [image: Please upload an image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide a URL, and I will create the alt text for you.] are the moment of inertia and polar moment of inertia, respectively. When [image: Mathematical expression showing sigma-bar greater than or equal to sigma-sub-c, indicating a comparison or condition involving stress or a similar variable.], tensile damage occurs and tensile cracks are produced; when [image: Mathematical expression showing tau with a bar on top, greater than or equal to tau sub c, both with bars on top.], shear damage occurs and shear cracks are produced.
[image: Diagram showing a mechanical model and a graph. (A) Illustrates bonded and unbonded pellet models with springs and friction elements. (B) Shows a shear vs. normal stress graph with regions labeled 'intact' and boundary lines indicated, representing different stress states.]FIGURE 3 | (A) Schematic diagram of the parallel bond method and its (B) intensity envelope.
2.5.3 FTC simulation
The pore water in the recurring water–ice phase change process that causes volume variations is often responsible for the freeze–thaw damage to pervious concrete. In the frozen state, the water becomes ice with volume expansion, resulting in a certain freezing pressure that squeezes the surrounding aggregate particles to cause interparticle cementation fracture. In the melted state, the ice becomes water and is reabsorbed into the pore space for the next freezing step. This cycling process was implemented through time step integration, with unity time step. The changes in the pore water particle states are shown in Figure 4.
[image: Diagram illustrating the behavior of particle aggregates in different thermal states. The initial state shows aggregates with a central particle and surrounding water particles. In the frozen state, there is a contact fracture, and the volume size is larger. The melted state shows the particles separate again. A color bar below indicates temperature changes, ranging from negative ten degrees Celsius to ten degrees Celsius.]FIGURE 4 | Pore water particle state changes.
The mechanical properties of pervious concrete diminish as a result of permanent freezing and thawing damage that develops inside the material after several FTCs. A water–ice particle phase-transition-coupled expansion method based on the particle discrete element is proposed from the above analysis of the freeze–thaw damage of pervious concrete. Using the particle flow procedure, the freeze–thaw cycling process of pervious concrete was simulated, and the following assumptions were made:
	(1) Pervious concrete specimens were simplified to consist of natural coarse aggregate and pore water particles.
	(2) Pervious concrete internal pore moisture seepage was not considered during the freeze–thaw process.
	(3) Through temperature changes (warming or cooling), the pore water particles reach the target temperatures consistently. The initial volume [image: Please upload the image or provide a URL so I can generate the alt text for it.] of individual pore water particles during an FTC can be calculated using the following Equation 5:

[image: Volume formula for a sphere: V subscript zero equals four-thirds pi r subscript zero cubed.]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the initial radius of the water particle, and the volume [image: Mathematical notation showing the capital letter V with a subscript F.] of individual pore water particles after phase-change freezing can be calculated using the following Equation 6:
[image: Formula for volume of fluid: \( V_f = \frac{4}{3} \pi (r_0 + u)^3 \). It equals \( V_0 + \Delta V_w \). Equation labeled as six.]
Here, [image: Equation showing \(\Delta V_W = 4\pi \left( r_0^2 u_v + r_0 u_v + \frac{1}{3u_v^3} \right)\), representing a mathematical expression likely related to volume or physical properties involving variables \(r_0\) and \(u_v\).] is the volume change of the pore water particles after freezing; [image: Please upload the image you'd like me to describe, and I will generate the alternate text for it.] is the radius expansion of the pore water particles and is calculated using the following formulas 7, 8 from [46, 50]:
[image: Mathematical equation represents \( y_u = r_0 \frac{P_i}{E_m} \frac{1 + \nu_m + 2(1 + 2 \nu_m)n}{2(1 - n)} \). Equation number (7) is to the right.]
[image: Equation showing \( p_i = \frac{0.029}{\frac{1}{E_n} + \frac{1.2 \pi n (1-\nu)(1+\nu)}{2(1-n)} + \frac{1.029(1-2\nu)}{E_t}} \), labeled as equation (8).]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] is the porosity and [image: Please upload the image or provide a URL so I can help generate the alt text for it.] is the pore ice pressure; the modulus of elasticity and Poisson’s ratio of the pore ice are represented by [image: I can't view or interpret images directly in messages. Please upload the image file or provide a URL, and I'll help you generate the alt text.] and [image: The image shows a mathematical notation of \( E_{i}, v_{i} \), indicating possibly an energy level and its corresponding eigenvector in the context of physics or mathematics.], respectively.
The following expression (Equation 9) can be used to determine the volume change relationship with the unfrozen water content during freezing and thawing of the individual pore water particles:
[image: Equation for variable \(V\) defined by conditions based on temperature \(T\). When \(T\) is less than or equal to zero degrees Celsius, \(V\) equals \(V_0 + \Delta V_w (1 - w_u)\). When \(T\) is greater than or equal to zero degrees Celsius, \(V\) equals \(V_0\). Equation number is \(9\).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the volume of pore water particles at any temperature; [image: It looks like there is an issue with the upload or link to the image. Please try uploading the image again or provide a URL. If there's additional context or a caption, feel free to include that as well.] is the unfrozen water content that can be calculated using the following Equation 10:
[image: Mathematical formula for \( w_s \) is shown as:  \( w_s =  \begin{cases}  1 - \left(1 + 0.139 \frac{1}{\Delta T} \right) \ln \left( \frac{1 + e^{-0.268 \Delta T}}{2} \right) & (\Delta T > 0) \\ (1 - e^{-0.268 \Delta T}) & (\Delta T < 0)  \end{cases} \).  It is labeled as equation ten.]
where [image: It seems there is no image to describe. Please upload an image or provide a URL for me to generate the alternate text.] = [image: Mathematical equation displaying the terms \( T_m - T \) and \( T_m \).] is the freezing point of free-body water accumulation at atmospheric pressure, which is typically equal to 273.15 K; [image: To generate the alternate text, please upload the image or provide a URL. You can also add a caption for additional context if needed.] is the current value of the temperature measurement.
Based on the numerical computations, the pore water particles in the specimen reach the desired temperature when the designated temperature is attained by either warming or cooling. As a result, once the FTCs achieve the desired temperature, the temperature is no longer maintained constant. Thus, the relationship of temperature change with time is expressed by the following cosine function (Equation 11):
[image: Equation displaying the expression: \( T = 20 \cos \left( \frac{\pi}{30} \right) \).]
3 RESULTS AND ANALYSES
3.1 Compressive and flexural strengths
The compressive and flexural strengths of the pervious concrete specimens were measured using a universal testing machine (WAW-3000). For each group of tests, three specimens measuring 100 mm × 100 mm × 100 mm were used to determine the compressive strength, and three specimens measuring 100 mm × 100 mm × 400 mm were used to determine the flexural strength. The average value of the test was used as the result, and when the maximum and minimum values exceeded 15% of the median value, the test data were considered invalid. Table 8 shows the compressive and flexural strength results of the pervious concrete samples. The fundamental mechanical characteristics of pervious concrete can be measured using key indices, such as the compressive and flexural strengths. As shown in Table 8, the pervious concrete specimens exhibit significant variations in both compressive and flexural strengths when subjected to various influences. The maximum compressive strength among the tested pervious concrete specimens is 27.32 MPa, while the minimum compressive strength is 13.61 MPa. Similarly, the maximum flexural strength is 3.2 MPa and minimum flexural strength is 2.1 MPa.
TABLE 8 | Compressive and flexural strength results.
[image: Table displaying data for samples PC-M1 to PC-M16 with columns: WCR, DEP, WRA, FA, GGBFS, Compressive strength (MPa), and Flexural strength (MPa). Compressive strengths range from 13.61 to 27.32 MPa, and flexural strengths range from 2.1 to 3.2 MPa.]To determine the key factors influencing the compressive and flexural strengths, an analysis using the extreme variance method is necessary. The extreme variance analysis results for the compressive strength are detailed in Table 9, while the results for the flexural strength are presented in Table 10.
As illustrated in Table 9, the factors influencing the compressive strength of pervious concrete in descending order of impact are the WRA dosage, WCR, GGBFS dosage, DEP dosage, and FA dosage. In the absence of other factors or properties, the key conditions for achieving the highest compressive strength in pervious concrete are a WCR of 0.3, DEP dosage of 8%, WRA dosage of 0.3%, FA dosage of 10%, and GGBFS dosage of 5%.
As illustrated in Table 10, the factors influencing the flexural strength of pervious concrete in descending order of impact are WRA dosage, WCR, GGBFS dosage, DEP dosage, and FA dosage. The optimum flexural strength of pervious concrete can be achieved under the following conditions: WCR of 0.28, DEP dosage of 0%, WRA dosage of 0.3%, FA dosage of 20%, and GGBFS dosage of 5%.
TABLE 9 | Analysis of extreme differences in compressive strength.
[image: A table displaying numerical data under the headings: Number, WCR, DEP, WRA, FA, and GGBFS. Rows labeled \( \overline{K_1} \), \( \overline{K_2} \), \( \overline{K_3} \), \( \overline{K_4} \), and R. \( \overline{K_1} \) values are 16.700, 20.668, 17.240, 20.660, 18.248. \( \overline{K_2} \) values are 21.448, 18.663, 18.198, 20.678, 22.178. \( \overline{K_3} \) values are 21.905, 21.040, 21.568, 25.910, 21.498. \( \overline{K_4} \) values are 19.863, 22.545, 22.910, 19.668, 17.993. R values are 5.205, 2.378, 5.670, 1.7675, 4.185.]TABLE 10 | Analysis of extreme differences in flexural strength.
[image: A table with columns labeled: Number, WCR, DEP, WRA, FA, and GGBFS. Rows show data for \( \overline{K_1} \) to \( \overline{K_4} \), and R. Values include decimals such as 2.475 and 2.800.]3.2 Effective porosity and permeability
The water permeability coefficient of pervious concrete was calculated using the constant head technique, whereas the effective porosity was determined using the mass approach. To ensure accuracy, three specimens measuring 100 mm × 100 mm × 100 mm each were assessed for each group. The average of the test results was then used as the final data for each group. The measurement results of the effective porosity and water permeability coefficient are shown in Table 11.
As seen from Table 11, various factors have different degrees of influence on the effective porosity and permeability coefficient; the effective porosities of most of the specimens meet the designed porosity of 15%, while the permeability coefficients meet the specification of 0.5 mm/s. The pervious concrete specimens exhibited a minimum of 11.5% effective porosity and maximum of 29.64%; similarly, the permeability coefficient ranged from 2.932 mm/s to 7.903 mm/s. To ascertain the principal elements impacting the permeability coefficient and effective porosity of pervious concrete, an analysis was conducted using the extreme variance method. Tables 12, 13 display the results of the extreme variance analysis for effective porosity and permeability coefficient, respectively.
TABLE 11 | Permeability and porosity results.
[image: A table displaying data for 16 samples with columns for sample ID, WCR, DEP, WRA, FA, GGBFS, effective porosity percentage, and permeability in millimeters per second. Each sample has specific entries for each parameter. The effective porosity values range from 11.50 to 29.64 percent, and permeability values range from 2.932 to 7.903 mm/s.]TABLE 12 | Analysis of extreme differences in porosity.
[image: A table with five columns labeled as WCR, DEP, WRA, FA, and GGBFS. Four rows with values K₁ to K₄ show corresponding data: K₁ (24.44, 20.66, 22.05, 18.84, 21.16), K₂ (18.35, 22.76, 22.53, 21.05, 18.53), K₃ (17.90, 17.18, 16.33, 19.45, 16.17), and K₄ (17.48, 18.57, 18.77, 19.83, 23.31). A final row labeled R shows values: 0.0710, 0.0557, 0.0572, 0.0221, and 0.0713.]TABLE 13 | Analysis of extreme differences in permeability coefficients.
[image: A table displays numerical data with six columns and six rows. The headers are "Number," "WCR," "DEP," "WRA," "FA," and "GGBFS." Row entries are listed as follows: \( \overline{K_1} \) with values 5.889, 6.255, 5.073, 4.627, 5.467; \( \overline{K_2} \) with values 4.631, 4.306, 5.367, 5.330, 4.168; \( \overline{K_3} \) with values 4.039, 4.106, 3.776, 4.799, 3.991; \( \overline{K_4} \) with values 3.848, 4.741, 5.192, 4.651, 5.782; and "R" with values 2.041, 2.149, 1.591, 0.703, 1.791.]As illustrated in Table 12, the factors influencing the effective porosity of pervious concrete in descending order of impact are GGBFS dosage, WCR, WRA dosage, DEP dosage, and FA dosage. In the absence of other factors or properties, the optimal conditions for minimizing the effective porosity of pervious concrete are a WCR of 0.25, DEP dosage of 4%, WRA dosage of 0%, FA dosage of 10%, and GGBFS dosage of 15%.
As illustrated in Table 13, the factors influencing the permeability coefficient of pervious concrete in descending order of impact are DEP dosage, WCR, GGBFS dosage, WRA dosage, and FA dosage. The optimal conditions for achieving the best permeability coefficient for pervious concrete are a WCR of 0.25, DEP dosage of 0%, WRA dosage of 0.1%, FA dosage of 10%, and GGBFS dosage of 10%.
3.3 Freeze–thaw durability
Series 2 samples (100 mm × 100 mm × 300 mm) were prepared using the best resultant preferred proportion (PC-M7) and were subjected to freeze–thaw durability tests. Figures 5A, B, C illustrate the mass and strength losses following 28 d of freeze–thaw damage maintenance. There were no visible damages to the appearance of the pervious concrete samples after 25 FTCs, suggesting that the impact of 25 FTCs was not substantial. The strength and mass losses of the Series 2 samples after 100 FTCs were lower than those of the control pervious concrete samples (without cementitious materials).
[image: Three graphs depicting the effects of freeze-thaw cycles on composite strength and mass loss. Graph A shows composite strength of PC-MF decreasing from 28.1 to 19.5 MPa. Graph B shows PC composite strength decreasing from 27.5 to 14.7 MPa. Graph C presents maximum flexural strength of PC-MF, PC, PC-M, and PC-MT, with corresponding mass loss rates, highlighting a rising trend over 100 cycles.]FIGURE 5 | Pervious concrete freeze–thaw damage graphic following a typical curing period of 28 d: (A, B) compressive strength loss; (C) mass loss.
4 DISCRETE ELEMENT SIMULATION
4.1 Validation and calibration of parameters
4.1.1 Calibration of parameters
Damage to pervious concrete is caused by a combination of the cement paste bond location between the aggregates and damage to the aggregates themselves. To replicate the actual damages to the specimens, the non-flexible clusters must be converted to flexible clusters to realize the actual fracture of the aggregates. The average radius of the discrete metaparticles generated in the ball generation command was controlled using the FISH language. To achieve a compromise between computational efficiency and accuracy, discrete unit particles with an average radius of 1.0 mm were used instead of rigid aggregate clusters in the aggregate DEM developed in this study. Figure 6 shows the generated flexible cluster model.
To reduce the complexity of parameter calibrations, the particle and parallel bond moduli as well as the particle and parallel bond stiffness ratios are usually considered equal. In addition, the actual freeze–thaw damage occurs between aggregate skeletons, so it is necessary to set the strength values of water–water interparticle bonding and aggregate–water interparticle bonding large enough to avoid affecting the results. Along with the indoor test results, the trial-and-error method was used to calibrate the fine-scale parameters, and the model fine-scale parameters were finally obtained as shown in Table 14 [36].
[image: Illustration of two stages in particle formation. (A) shows a large blue amorphous cluster transforming into a packed structure of spherical blue particles. (B) depicts a cylindrical column densely filled with small blue and yellow particles.]FIGURE 6 | Rigid cluster model of aggregates transformed into the flexible cluster model: (A) conversion of single rigid rock particles to flexible rock particles; (B) conversion of rigid numerical model to flexible numerical model.
TABLE 14 | Analysis of extreme differences in permeability coefficients.
[image: Table of a parallel bond model (PBM) showing properties for A-A, W-W, and W-A. Elastic modulus: 4.2 GPa (A-A, W-W), 3.0 GPa (W-A). Plastic modulus: 3.36 GPa (A-A). Tensile strength: 50 MPa (W-W, W-A). Cohesion: 14.5 MPa (A-A), 20 MPa (W-W, W-A). Density: 2,680 kg/m³ (A-A), 1,000 kg/m³ (W-W, W-A). Friction coefficient: 0.70 (A-A), 0.01 (W-W).]4.1.2 Fine-scale parameter validation
The experimental and numerical simulation results of pervious concrete samples for different numbers of FTCs are displayed in Figure 7. The dashed line in Figure 7 indicates that the UCS and modulus of elasticity of pervious concrete are negatively correlated with the number of FTCs. The stress–strain curves from the simulations and tests are essentially similar, as seen in Figure 8, suggesting that the numerical model is a superior representation of the fundamental mechanical characteristics of pervious concrete.
[image: Two graphs illustrate the effects of freeze-thaw cycles on concrete properties. Graph A shows the relationship between freeze-thaw cycles and compressive strength, while Graph B displays the relationship with modulus of elasticity. Both graphs include experimental and numerical results, trend lines with ninety-five percent confidence and forecasting zones, and correlation equations.]FIGURE 7 | (A) Relationship between the uniaxial compressive strength (UCS) and number of freeze–thaw cycles (FTCs); (B) relationship between modulus of elasticity and number of FTCs.
[image: Two line graphs show stress (MPa) versus strain (10^-3) for 0, 25, 50, 75, and 100 cycles. Graph (A) displays a progression of stress and strain with increasing cycles, peaking beyond 25 MPa. Graph (B) reveals a more gradual increase, peaking slightly above 20 MPa.]FIGURE 8 | (A) Experimental and (B) simulation results for the stress–strain curves based on different numbers of FTCs.
4.2 Numerical simulations
4.2.1 Effects of FTCs on pervious concrete
The volume changes of individual water particles were calibrated during the FTC, and the changes in the volume of water particles with temperature after 60 FTCs are plotted in Figure 9; it can be seen that the amount of changes in the volume of the water particles after freezing and thawing are relatively small during the early stages, whereas these change are more obvious in the middle and later stages of freezing and thawing.
The internal pore water in the frozen state undergoes volume expansion, resulting in a freezing pressure due to pore expansion. With each FTC, the pore volume increases, allowing more water to enter during the next freeze. As a result, the volume expansion of pore water increases again, leading to the formation of microcracks. Figure 10 shows the distribution of microcracks in the internal contact fracture after every 25 FTCs, and it can be seen that microcracks are generated from the surface toward the interior.
[image: Simulation of freeze-thaw cycles on a material's microstructure with a graph. The graph shows individual pore water/ice particle volume changes through three phases over sixty cycles. Initial, freezing, and melting volumes are plotted, revealing an increasing trend. An inset highlights detailed initial cycle data.]FIGURE 9 | Pore water/ice particle volume changes during the FTCs.
[image: Top and front view diagrams showing changes in a surface over five stages of freeze-thaw cycles (FTCs). Stages are labeled as 0, 25, 50, 75, and 100 FTCs, illustrating increasing surface roughness and texture changes with more cycles, evident from left to right.]FIGURE 10 | Expansion process of microcracks for (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100 FTCs.
Figure 11 shows that after 25, 50, 75, and 100 FTCs, more number of tensile microcracks are produced than shear microcracks, indicating that tensile microcracks are dominant during the freezing and thawing cycles. With the freezing and thawing cycle, the tensile microcracks gradually develop and increase in all directions mainly due to the decrease in temperature, whereby the pore water particles become ice particles and expand, causing extrusion of the surrounding rock particles. This is mainly attributable to the volume expansion of the pore water particle phase into ice particles with decrease in temperature, which results in extrusion of the surrounding rock particle skeleton. In terms of the shear microcracks, more disorder is observed while the numbers produced in the prefreezing and thawing stages are small; the development in the later stage is then relatively faster, indicating that deterioration due to damage of the specimen is more significant in the later stages of freezing and thawing.
[image: Four polar plots depicting the number of cycles at different angles for various fault tolerance configurations (FTCs). Plot (A) shows 25 FTCs, plot (B) has 50 FTCs, plot (C) displays 75 FTCs, and plot (D) includes 100 FTCs. Each plot illustrates a blue bar graph with a red central point, demonstrating varying distributions of cycles.]FIGURE 11 | Crack rose diagrams for (A) 25, (B) 50, (C) 75, and (D) 100 FTCs (tensile cracks in blue, shear cracks in red).
Supplementary Figure S1 shows the distribution of cracks as well as damage to the aggregates and bond point after uniaxial compressive test of the specimens under different numbers of FTCs. From Figure 10, it can be seen that the FTCs induced cracks around the model and that the number of cracks in the permeable concrete increased abruptly with increasing numbers of FTCs, resulting in a decrease of the UCS. With increasing stress, the cracks were gradually and mostly concentrated around the freeze–thaw cracks, eventually forming the damage pattern shown in Supplementary Figure S1.The model reflects the residual strains generated and captures the cumulative damage of the pervious concrete samples below the cracks through observation of the crack formation process. The modulus of elasticity of pervious concrete decreases as the number of FTCs increases, as shown in Figure 7B. The experimental and simulated strain energies are computed by Equation 12 and the stress-strain curves shown in Figure 8.
[image: Mathematical expression showing the equation \( U = \int o \, d\epsilon \), labeled as equation (12).]
where [image: It seems you didn't upload an image. Please try uploading it again, and I'll be happy to help with the alternate text.] is the strain energy density; [image: Please upload the image you'd like me to generate alt text for.] is the stress; [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is the strain.
Based on the stress–strain data of the specimens for different numbers of FTCs, as shown in Figure 8A, the strain energies were calculated (Supplementary Figure S2). In the absence of FTCs, the strain energy was measured as 70.66 kJ/m3. With increasing cycle counts, this energy reduces to 67.21 kJ/m3 for 25 cycles, 22.64 kJ/m3 for 50 cycles, 12.46 kJ/m3 for 75 cycles, and 11.25 kJ/m3 for 100 cycles, marking reductions of 6.30%, 67.96%, 82.37%, and 84.10%, respectively, compared to the absence of FTCs. As a result, the strain energies of the specimens and number of FTCs have an inverse relationship consistent with the patterns seen in UCS and changes in modulus of elasticity with increasing numbers of FTCs.
4.2.2 Impact of porosity on pervious concrete under FTC regulation
Four samples with different porosity levels (10%, 15%, 20%, and 25%) were tested through FTCs to examine the effects of porosity on pervious concrete while maintaining all other microscopic parameters constant. The results showed that samples with higher porosities were more prone to rupture, as shown in Supplementary Figure S3. This indicates that porosity has a direct effect on the mechanical properties of pervious concrete in the presence of FTCs. The axial compressive strength of pervious concrete after 50 FTCs showed that the modulus of elasticity and UCS are closely correlated with porosity. The initial UCS and modulus of elasticity are maximal at 29.86 MPa and 11.21 GPa, respectively, for pervious concrete with 10% porosity. As the porosity increased from 10% to 25%, the UCS and elastic modulus decreased gradually.
Supplementary Figure S4 illustrates the manner in which porosity directly affects the decay constants for the modulus of elasticity and UCS, indicating that porosity directly affects the performance of pervious concrete following repeated FTCs. For instance, after 50 FTCs, the UCS of pervious concrete with 10% porosity was 27.68 MPa; after 50 FTCs, the UCS dropped by 4.12% from the starting value. Following 50 FTCs, the loss rate of the UCS increased with porosity, reaching 7.16%, 12.46%, and 16.35%. The starting UCS, modulus of elasticity, decay constant, and FTC fluctuation pattern for the simulations are in agreement with the experimental findings. The is mainly because large pores are the weak points of stress transfer in pervious concrete, and higher porosity means that the stress concentration is more visible. The integrity of the specimens was severely damaged as a result of more water being pumped into the pores following the FTCs.
5 CONCLUSION
The present study involved various formulations of pervious concrete, with differences in the amounts of DEP, WRA, FA, and GGBFS used, for assessing the effects of FTCs and measuring the compressive strengths of the samples following a standard 28-day curing period. Next, using PFC3D as the evaluation framework, an actual aggregate model of pervious concrete was created. The damage caused by repeated FTCs to pervious concrete as well as the correlations among initial UCS, porosity, and decay constant were examined using a PBM. The following are the primary conclusions of this study:
	(1) Compared to the control group, the addition of 8% DEP, 0.2% WRA, 10% FA, and 5% GGBFS to pervious concrete based on a WCR of 0.28 resulted in strength losses of 0.62%, 2.17%, 4.06%, and 5.87% after 25, 50, 75, and 100 FTCs as well as mass losses of 0.66%, 0.89%, 1.21%, and 6.66%, respectively.
	(2) Using PFC3D software, models of pervious concrete were created based on actual aggregates, and the accuracies of these PBM-based models were confirmed by contrasting the outcomes of numerical simulations with experimental data. The mechanical parameters of pervious concrete were numerically calculated after 25 FTCs through uniaxial compressive tests, and the findings showed good agreement with the experimental data. These results provide reference values for practical applications.
	(3) By monitoring the locations of cracks and compression failures in the broken samples and by creating a complete record of the damage process, the simulation results of the gradual damage process of pervious concrete were obtained, providing effective and feasible technical references for actual conditions.
	(4) Using various porosity and starting UCS values for pervious concrete, the impact on the decay constant was examined. The modulus of elasticity and decay constant of UCS were directly correlated with porosity, suggesting that the FTCs had greater impacts on pervious concrete with higher porosities. Conversely, the initial UCS and its decay constant are inversely related. As a result, the decay constants of UCS and elastic moduli of pervious concrete can be easily calculated following an arbitrary number of FTCs by considering the initial values.
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This paper presents a novel approach for simulating acoustic-shell interaction, specifically focusing on seabed reflection effects. The interaction between acoustic waves and shell vibration is crucial in various engineering applications, particularly in underwater acoustics and ocean engineering. The study employs the finite element method (FEM) with Kirchhoff-Love shell elements to numerically analyze thin-shell vibrations. The boundary element method (BEM) is applied to simulate exterior acoustic fields and seabed reflections, using half-space fundamental solutions. The FEM and BEM are coupled to model the interaction between acoustic waves and shell vibration. Furthermore, the FEM-BEM approach is implemented within an isogeometric analysis (IGA) framework, where the basis functions used for geometric modeling also discretize the physical fields. This ensures geometric exactness, eliminates meshing, and enables the use of Kirchhoff-Love shell theory with high-order continuous fields. The coupled FEM-BEM system is accelerated using the fast multipole method (FMM), which reduces computational time and memory storage. Numerical examples demonstrate the effectiveness and efficiency of the proposed algorithm in simulating acoustic-shell interaction with seabed reflection.
Keywords: FEM, BEM, seabed reflection, shell vibration, acoustics

1 INTRODUCTION
The management of noise has consistently been a focal point within the field of marine engineering [1, 2]. In the realm of structural design aimed at mitigating noise emissions and reflections from marine structures, numerical simulation is of paramount importance [3, 4]. While the Finite Element Method (FEM) is highly adaptable for structural dynamics, its application in exterior acoustic scenarios is challenging [5-8]. This is because FEM requires the discretization of a vast finite region from an unbounded domain and necessitates the imposition of artificial boundary conditions using specialized techniques, which can be complex and may compromise the accuracy of the simulation. In contrast, the Boundary Element Method (BEM) is often favored for external acoustic issues as it necessitates the discretization of only the structural surfaces, which are the boundaries of the infinite acoustic domain, and inherently satisfies the boundary conditions at infinity [9-12].
Thin-shell structures submerged in water exhibit characteristics through the interplay between structural vibrations and acoustic phenomena, as referenced in various studies [13-17]. Essentially, when an acoustic wave propagates through a fluid, it has the capacity to induce vibrations in surrounding structures. These structural vibrations subsequently generate additional acoustic waves that radiate back into the fluid [18, 19]. A practical method for modeling the interaction between acoustics and shells is through the integration of FEM and BEM. This approach leverages the individual strengths of FEM and BEM in the realms of exterior acoustics, which deals with unbounded domains, and structural dynamics, respectively [20-22]. The coupling of FEM and BEM was pioneered by Everstine and Henderson for the analysis of acoustic-shell interactions [23]. Subsequent developments have expanded its application to encompass shape sensitivity analysis [24], structural optimization [25], and uncertainty quantification [26].
In numerous real-world situations, the reflection of sound waves by the seabed can exert a substantial impact on acoustic fields, particularly in the shallow-water offshore areas [27-30]. This phenomenon is known as the half-space or plane symmetrical acoustic issue [31, 32]. To address this challenge, a variety of boundary element methods that utilize mirroring techniques have been put forward by researchers such as [33, 34], and [35]. However, these methods presuppose that the acoustic waves are scattered by rigid bodies and do not account for the interaction between acoustics and structural elements.
Based on the authors’ comprehensive understanding, no existing studies have yet addressed the simulation of acoustic-shell interactions in the context of seabed reflections. This research aims to bridge this gap in the literature. Pioneering an approach, this study couples BEM with half-space fundamental solutions to FEM to assess acoustic-shell interactions, thereby enabling the inclusion of seabed reflection effects. Furthermore, to enhance the computational efficiency of the BEM with half-space fundamental solutions and to minimize its memory usage, we have developed fast multipole expansions for this method.
The layout of the paper is as follows: Section 2 details the coupling scheme of FEM and BEM for simulating acoustic-shell interactions that consider seabed reflections. Section 3 elaborates on the implementation of fast multipole methods to expedite the acoustic simulation process. Section 4 presents a range of numerical examples to illustrate the approach. Finally, Section 5 concludes the paper.
2 ACOUSTIC INTERACTION WITH SHELLS AND SEABED REFLECTIONS
2.1 Defining the problem
Figure 1 depicts a system involving the interaction between acoustic and structural components. An elastic thin-shell occupies the region [image: Greek letter Omega with a subscript "s".], which is encompassed by an infinite fluid domain [image: Icon of the Greek letter Omega with a subscript "f" in a stylized font.]. The interface where the fluid and the structure meet is denoted by [image: Mathematical expression depicting Gamma sub s f.], defined as the intersection of [image: Greek letter Omega symbol followed by a subscript lowercase "s".] and [image: It appears you're referring to a symbol rather than an image. The symbol \(\Omega_f\) typically represents a particular subdomain or set in mathematics or science contexts. If you have an image to describe, please upload it for alt text creation.]. The space within the shell is occupied by air, forming the domain [image: Greek letter Omega with a subscript 'a' in a mathematical font, often used to denote a specific set or variable in equations or scientific contexts.]. Given the significant difference in density between the air and the structural material, it is reasonable to disregard the influence of air pressure on the structural vibrations.
[image: Diagram illustrating a thin shell structure beneath the sea floor, surrounded by an infinite fluid domain. A plane wave approaches from the left. Labeled components include the shell, fluid domain, reflection coefficient beta, and various angles and axes, indicating the interaction dynamics.]FIGURE 1 | System for acoustic-structural interaction. The unit normal vector of the shell structure is denoted as [image: The image displays a lowercase letter "n" with a tilde and a subscript lowercase "s", resembling a mathematical or scientific notation.], while that of the fluid is [image: Symbol representing a vector with components indicated by "n" and a subscript "f", displayed in italic with an arrow on top.]. A dashed line indicates the mid-surface of the shell structure. The pressure load from the sound field is [image: It seems there was an issue uploading your image. Please try uploading the image again or provide a URL. You can also add a caption for additional context.], and the external mechanical load is [image: It seems there is no image provided. Please upload the image or share a URL so I can generate the alternate text for it.].
The mechanical response of the thin-shell is defined by the Kirchhoff-Love shell theory, as detailed in references [36, 37]. Meanwhile, the acoustic fields within the fluid domain are regulated by the Helmholtz equation, which is discussed in [38-41]. The thin-shell structure is actuated by a time-varying force with an angular frequency of [image: Please upload the image you would like me to generate the alternate text for, or provide a URL to the image if available.]. Consequently, the equations governing the acoustic-structural interaction system are presented as Equations 1–4.
[image: Mathematical equation showing the divergence of a stress tensor \(\sigma(x)\) plus a product of an angular frequency \(\omega^2\) and a displacement vector field \(\rho u(x)\) equals zero, defined for \(x\) in a domain \(\Omega_t\).]
[image: The mathematical equation shown is: ∇²P(x) + k²P(x) = 0, for x within the domain Ωᵢ.]
[image: Mathematical formula showing the equation sigma(x) multiplied by n(x) minus p(x) times n(x) equals zero, for x belonging to the region Gamma sub f.]
[image: Mathematical equation displayed showing the boundary condition: negative imaginary unit i times angular frequency \(\omega(x)\) multiplied by boundary normal vector \(n_f(x)\) equals boundary source function \(\psi_f(x)\) for \(x\) in the boundary region \(\Gamma_f\), labeled as equation (4).]
Equations 1, 2 serve as the foundational equations that shape the configuration of acoustic fields. Equations 3, 4 delineate the conditions for continuous displacement and balanced forces at the interfaces where the fluid and structure interact. The symbol [image: Please upload the image so I can generate the alternate text for you.] denotes the Laplacian operator, [image: Please upload the image or provide a URL for me to generate the alternate text.] signifies the stress tensor, [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate the alt text for you.] represents the displacement vector, [image: If you upload the image file or provide a link to it, I can help generate the appropriate alt text.] is the density of the shell, [image: It appears you referred to an equation "p(x)" instead of uploading an image. Please upload the image or describe it further for more assistance.] denotes the acoustic pressure, [image: Please upload the image or provide a URL for the image you would like to generate alternate text for.] is the outward normal vector to the shell surfaces, [image: Please upload the image or provide a URL for me to generate the appropriate alt text.] is the inward normal vector to the structural surface, [image: Please upload the image you want me to generate alternate text for. If you have a URL or any specific details, you can share that as well.] is the imaginary unit with [image: The equation shows "i equals the square root of negative one," representing the imaginary unit used in complex numbers.], [image: It appears that you've entered a LaTeX expression instead of uploading an image. Please provide an image file or URL, and optionally add a description for additional context.] is the normal velocity of the fluid, and [image: Please upload the image or provide a URL to assist you in generating the alternate text.], defined as [image: It seems like you've provided a fragment of text instead of an image. Please upload the image or provide a link, and I will help you generate the alternate text.], represents the wave number, with [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] being the speed of sound propagation within the fluid domain.
2.2 Geometric modeling employing Catmull-Clark subdivision surfaces
The choice of a discretization approach or the selection of basis functions is crucial in numerical simulations. Typically, in traditional FEM and BEM, polynomial functions are the preferred choice for basis functions. In this study, we integrate FEM and BEM within the framework of isogeometric analysis (IGA), as referenced in [42-46]. This integration leverages the same basis functions used for geometric modeling to discretize the physical fields. This approach not only preserves the geometric precision but also eliminates the need for mesh generation. Most significantly, it facilitates the construction of high-order continuous fields, which is essential for the application of the Kirchhoff-Love shell theory, as further elaborated in [47].
Non-Uniform Rational B-splines (NURBS), as discussed in [48- 52], are a prevalent choice for geometric construction in Computer-Aided Design (CAD), with polygonal meshes subsequently derived for numerical analysis. In this research, we embrace the principles of isogeometric analysis, utilizing identical basis functions for both geometric modeling and numerical simulation. We opt for Catmull-Clark subdivision surfaces over NURBS for CAD model construction, as they ensure watertight geometries with support for arbitrary topologies, as described in [53].
Constructing geometry with Catmull-Clark subdivision surfaces begins with the establishment of a control mesh, which is made up of quadrilateral elements. The vertices of this mesh are known as control points. Following the initial setup, the control mesh undergoes subdivision, during which new control points are introduced and the positions of the existing ones are adjusted, as shown in Figure 2. This process of subdivision can be repeated iteratively, adhering to a set of subdivision rules that progress from level [image: Please upload the image or provide a URL so I can generate the alternative text for it.] to level [image: It looks like there might have been an error in uploading or describing the image. Please try uploading the image again or provide more context.], as illustrated in Figure 3. However, since continuous subdivision is not feasible, practical implementations of limit subdivision surfaces are assessed through the use of spline basis functions for parameterization.
[image: Diagram of grid subdivision process. Panel A shows a grid divided into six equal sections. Panel B, labeled "subdivision once," displays the grid further subdivided with additional red lines, creating smaller sections.]FIGURE 2 | Method for generating Catmull-Clark Subdivision Surfaces. The black points represent the control points prior to subdivision, while the red points indicate the positions after subdivision has been applied. (A) Initial control mesh. (B) One level refined mesh.
[image: Three geometric diagrams are depicted. On the left, two distinct squares are shown. The top square has yellow diagonal lines intersecting at a central point with fractional values labeled, such as one-sixteenth and one-quarter. The bottom square shows a red circle around the center, with similar fractional values on each quadrant. On the right, a star-shaped geometric figure with multiple triangular sections, each labeled with variables like k over beta and gamma, radiates from the center.]FIGURE 3 | Algorithm pertaining to the topology of Catmull-Clark subdivision surfaces.
Subdivision surfaces excel in their capacity to manage singular points while ensuring controlled curvature at these locations. Figure 4A illustrates a regularly colored subdivision surface element, where each vertex within the element has a valence of 4, signifying the lack of extraordinary vertices within the element. A patch is delineated as a collection of all elements that share vertices with a particular target element. A regular patch is composed of nine elements featuring sixteen vertices. The element highlighted in Figure 4B contains an extraordinary vertex, which adds complexity to surface evaluation as it disrupts the tensor-product property. It should be noted that the initial grid might include irregular elements with multiple extraordinary vertices, but after subdivision, each resulting sub-element will contain at most one exceptional vertex. The evaluation of a surface point with parametric coordinates [image: Greek letters xi and eta enclosed in parentheses, resembling mathematical notation for coordinates or parameters.] is conducted through a linear combination of control points and [image: The image contains the mathematical expression "2k plus 8."] basis functions, characterized by a valence of [image: A lowercase Greek letter kappa, "κ", is presented in a serif font style, commonly used in mathematical and scientific contexts.], as shown in Equation 5.
[image: Mathematical expression depicting a summation: \( S(\xi, \eta) = \sum_{c=0}^{2k+1} N_c(\xi, \eta) P_c \), labeled as equation (5).]
in which [image: I can't view the image you mentioned. Please upload the image or provide a URL, and I'll help generate the alternate text for it.] represents the Cartesian coordinates of the point, [image: Stylized mathematical symbol showing an uppercase letter N with an arrow vector notation above it and a lowercase letter e subscript.] refers to the basis functions, [image: It appears there is no image to provide alt text for. Please upload the image or provide a URL, and I would be happy to help.] signifies the control points, and [image: A lowercase Greek letter kappa, represented in a bold serif font.] indicates the valence of the vertex.
[image: Grid illustrations labeled A and B show a subdivided matrix with marked nodes and coordinates. In A, squares and nodes are labeled P0 to P15, with coordinates (0,0) and (1,1) indicated. In B, nodes are labeled P0 to P2N+7, illustrating geometric configurations with coordinates and vectors η and ξ highlighted.]FIGURE 4 | Patches associated with elements in a Catmull-Clark subdivision surface. (A) For a regular element. (B) For an irregular element.
2.3 Analysis of thin-shell vibrations employing IGAFEM
As previously stated, subdivision surfaces are employed for both crafting geometric models and discretizing the physical fields. The collective elements establish the boundary [image: Please upload the image or provide a URL so I can generate the alternate text for you.], which is delineated by Equation 6.
[image: Equation representing set union: \( r = \bigcup_{i=1}^{N} r_{i} \), labeled as equation (6).]
in which [image: Letter "N" with a subscript "e" in a serif font.] denotes the overall count of elements, with element [image: It seems like there might have been an error in uploading the image. Could you please try uploading the image file again, or provide more context or a description of the image for assistance?] signifying the [image: Please upload the image or provide a URL so I can generate the alternate text for it.]-th element. Consequently, the displacement can be articulated as follows by leveraging the basis functions associated with the Catmull-Clark subdivision, as shown in Equation 7.
[image: Mathematical equation showing a vector \(\mathbf{u}^e\) as a sum from \(a = 0\) to \(ncp + 7\) of functions \(N_i(\xi, \eta)\) multiplied by vector components \(\mathbf{u}_i^e\). It is denoted as equation 7.]
in which [image: A mathematical expression with a lowercase letter "u" featuring a tilde on top, followed by a lowercase subscript letter "t".] denotes the nodal parameter associated with the [image: Please upload the image for which you would like me to generate alternate text.]-th control point, employed for discretizing the displacements. Combining all the individual element matrices results in the subsequent Equation 8.
[image: Mathematical equation "A u equals f" is surrounded by parentheses.]
in which [image: If you'd like me to generate alt text for an image, please upload the image or provide a URL.] represents the vector of displacements at all vertices, and [image: Please upload the image or provide a URL, and I'll generate the alt text for you.] signifies the load vector. Furthermore, the matrix [image: Please upload the image or provide a URL so I can generate the alternate text for it.] can be formulated as Equation 9.
[image: Equation showing variables and unions: \( \mathbf{A} = \mathbf{K} - \omega^2 \mathbf{M}, \quad \mathbf{K} = \bigcup_{e=1}^{N_e} \mathbf{K}^e, \quad \mathbf{M} = \bigcup_{e=1}^{N_e} \mathbf{M}^e \).]
in which [image: It seems there was an issue with the image upload. Please try again by clicking on the image icon or providing a URL. If you have a caption for the image, it may help provide additional context.] signifies the global stiffness matrix of the structure, while [image: If you can upload the image or provide a URL, I can help generate the alternate text for it. Let me know if you need assistance with this process!] represents the global mass matrix. The element stiffness matrix is denoted by [image: Please upload the image or provide a URL for it, and I will generate alternate text for you.] and the element mass matrix by [image: Mathematical notation showing the letter "M" raised to the power of "e", indicating an exponent in a mathematical expression.]. It should be noted that the load vector [image: Sure, please upload the image or provide a URL for me to generate the alt text.] is the sum of two components, [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: It seems like there is a problem with the image upload. Please try uploading the image again or provide a URL if it is available online.], where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] corresponds to the external mechanical load, and [image: Please upload the image or provide a URL so I can generate the alt text for you.] corresponds to the load due to acoustic pressure.
2.4 Analysis of acoustic phenomena employing IGABEM
Within the three-dimensional domain [image: Mathematical notation showing that set Omega is a subset of three-dimensional real space, denoted as R superscript three.] bounded by [image: Please upload the image you'd like me to generate alternate text for.], the propagation of acoustic waves is governed by the Helmholtz equation. This equation can be transformed into boundary integral equations. To address the issue of irregular frequencies or spurious modes in exterior acoustic scenarios, we employ the Burton-Miller formulation, which is a linear combination of the conventional boundary integral equation (CBIE) and its derivatives [54-57], as shown in Equation 10.
[image: Mathematical equation representing a complex integral expression with variables C(x), ρ(x), α, G(x,y), q(y), ∂G, and p(y). The equation describes relationships involving multiple integrals and derivatives over variable parameters, adding mathematical operations involving terms like α and \(\dot{p}_{\text{inc}}\).]
in which [image: Please upload the image so I can generate the appropriate alt text for it.] and [image: I can't generate alt text without an image. Please upload the image or provide a URL, and I'll help with the description.] correspond to the source and field points, respectively. The term [image: The mathematical expression "C(x)" is shown.] represents the discontinuity across the boundary, which takes a value of [image: It seems you've included what looks like a fraction or possibly a formatting placeholder rather than an actual image. Please upload the image file or provide a URL, and I can help generate the alternate text for it.] for smooth surfaces. The coupling parameter [image: Please upload the image you would like me to generate alternate text for.] is given by [image: A mathematical expression showing "i" over "k" as a fraction, with "i" as the numerator and "k" as the denominator.] when [image: Mathematical expression depicting the inequality \( k > 1 \).], and [image: Greek letter alpha equals the imaginary unit i.] in other cases. The quantity [image: The equation shows q of y equals the partial derivative of p of y with respect to n sub f of y.] denotes the flux of sound pressure. The term [image: Equation showing a mathematical expression for \(\tilde{p}_{\text{inc}}(\textbf{x})\) equals \(p_{\text{inc}}(\textbf{x})\) plus the partial derivative of \(p_{\text{inc}}(\textbf{x})\) with respect to \(\eta(\textbf{x})\).] encompasses both the incident wave’s sound pressure and its normal derivative at point [image: Please upload the image so I can generate the appropriate alternate text for it.], with [image: Mathematical expression displaying "p sub inc of x" written in italicized font.] being the incident wave’s sound pressure at that location. The functions [image: Mathematical expression with the function \( G(x, y) \) in italicized font, representing a function of variables \( x \) and \( y \).] and its normal derivative for three-dimensional full-space acoustics are specified as Equations 11, 12.
[image: Expression for a function \( G(x, y) \) is shown as the exponential of \( i k r \) divided by \( 4 \pi r \), with the equation number labeled as 11.]
[image: Equation showing the partial derivative of G with respect to eta at y, written as ∂G(x, y)/∂η(y), equals e raised to the power of ikr over 4πr squared, multiplied by (1 minus ikr), and the partial derivative of r with respect to eta at y. Numbered as equation twelve.]
in which [image: Mathematical expression representing the absolute value of the difference between x and y, denoted as \( r = |x - y| \).]. The fundamental solution for half-space problems is represented by [image: Mathematical expression featuring an uppercase letter G with an asterisk superscript, followed by parentheses enclosing the variables x and y, italicized.], as shown in Equation 13.
[image: Mathematical expression showing \( G' (x, y) = G(x, y) + \beta G(x', y') \), labeled as equation (13).]
in which [image: The image shows a bold lowercase "x" followed by a superscript star symbol.] denotes the reflection of point [image: It seems there is a placeholder or an error in the request. Please upload the image or provide a link, and I'll help you generate the alternate text.] across the infinite plane [image: I can't view or analyze images directly. Please upload the image or provide additional context, and I'll help generate the alternate text for it.], and [image: Please upload the image or provide a link to it, and I will generate the alternate text for you.] signifies the reflection coefficient. The coefficient [image: Please upload the image or provide a URL for me to generate the alternate text.] equals one for a rigid boundary and −1 for a soft boundary. By replacing [image: Mathematical expression displaying the function \( G(x, y) \), typically used to denote a function with variables \( x \) and \( y \).] with [image: Mathematical expression featuring G with an asterisk superscripted, followed by the variables x and y in parentheses.], Equation 10 is converted into Equation 14.
[image: Mathematical expression involves integrals and complex variables. It includes functions \( C(x)p(x) + \alpha C(x) q(x) \), integral terms involving \( G^*(x,y) \), derivatives with respect to \( n_{\Gamma}(y) \), and source function \( p_{\text{inc}}(x) \). The equation is marked as equation (14).]
in which [image: Equation showing complex mathematical expression: \(\tilde{p}_{\text{inc}}^*(\mathbf{x}) = p_{\text{inc}}^*(\mathbf{x}) + \frac{\partial p_{\text{inc}}^*(\mathbf{x})}{\partial \eta_f(\mathbf{x})}\).], and the partial derivative of G*(x,y) is shown in Equations 15–17.
[image: The equation shows a mathematical expression involving partial derivatives with respect to \(n_f(y)\). It includes exponential terms \(e^{ikr}\) divided by \(4\pi r^2\), factors like \((1 - ikr)\), derivatives \(\frac{\partial r}{\partial n_f(y)}\), and a coefficient \(\beta\). The expression is equated and labeled as equation (15).]
[image: Partial derivative equation showing \( \frac{\partial G^{*}(\mathbf{x}, \mathbf{y})}{\partial n_f(\mathbf{x})} = -\frac{e^{ikr}}{4\pi r^2}(1-ikr)\frac{\partial r}{\partial n_f(\mathbf{x})} - \beta \frac{e^{ikr}}{4\pi (r^*)^2}(1-ikr^*)\frac{\partial r^*}{\partial n_f(\mathbf{x})} \), labeled as equation (16).]
[image: Equation showing partial derivatives of \(G^{C}(\mathbf{x},\mathbf{y})\) with respect to \(n(\mathbf{x})\) and \(n(\mathbf{y})\), involving exponential terms \(e^{i k r}\) and variables like \(k\), \(r\), and \(n\). It includes terms with derivatives \(\frac{\partial r}{\partial \eta(\mathbf{y})}\) and \(\frac{\partial r}{\partial \eta(\mathbf{x})}\), in a complex mathematical expression labeled as equation (17).]
In this approach, the physical field is discretized using the basis functions of the subdivision surface that are employed in the geometric construction, as displayed in Equation 18.
[image: Mathematical equations are shown with two expressions. The first expression for \( p_e \) is a sum from \(\ell=0\) to \(2c+7\) of \(N_\ell(\xi, \eta) \, \bar{p}_\ell^x\). The second expression for \( q_e \) is a similar sum from \(\ell=0\) to \(2c+7\) of \(N_\ell(\xi, \eta) \, \bar{q}_\ell^x\). Equation number 18 is noted on the right.]
in which [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the acoustic pressure at the point [image: Mathematical notation displaying the Greek letters xi and eta enclosed in parentheses.] within the element [image: Please upload the image directly, and I will generate the alt text for you.]; [image: Please upload the image or provide a URL, and I will generate the alt text for you.] signifies the normal flux associated with [image: Please upload the image or provide a URL, and I will help you generate the alt text.]. Additionally, [image: I'm unable to generate alt text for an image without seeing it. Please upload the image or provide a URL for me to assist you.] refers to the [image: Please upload the image you'd like me to generate alternate text for.]-th nodal variable associated with the sound pressure, while [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will help generate alternate text for it.] represents the normal flux corresponding to [image: The mathematical expression shows a vector symbol \( \tilde{p}_\ell^e \), incorporating a tilde, subscript, and superscript.]. By inserting Equation 18 into Equation 14 and applying these equations at a discrete set of collocation points [image: Please upload the image or provide a URL for me to generate the alternate text.], Equation 19 can be derived.
[image: Mathematical equation involving variables, summations, and integrals. Terms include \( c(x_l) \), \( p(x_s) \), summations over indices \( e \) and \( l \), integrals over \( \Gamma_e \), partial derivatives \( \frac{\partial G}{\partial \eta'} \), and complex expressions with functions \( N_l(\xi, \eta) \), \( q(x_l) \), \( G(x, y(\xi, \eta)) \), and \( \mathbf{p}_{\text{inc}}(x_s) \). Indices and variables are involved in intricate calculations. The equation is labeled as equation (19).]
in which the subscript [image: Please upload the image you'd like me to analyze, and I'll generate the alternate text for you.] indicates the index of the collocation point. These collocation points are determined by projecting the control points onto the surface. Equation 19 can be expressed in matrix-vector form as Equation 20.
[image: Please upload the image or provide a URL for me to generate the alt text.]
in whichn [image: If you can, please upload the image or provide a URL for me to generate an accurate alt text.] and [image: Please upload the image or provide a URL so that I can generate the alternate text for it.] are the matrices of coefficients, while [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide a URL to generate the alternate text.] are the column vectors that compile the nodal parameters related to the acoustic pressure and its flux, respectively. [image: A lowercase letter "p" closely followed by a smaller, subscript lowercase "i" in a serif font, commonly representing a mathematical constant symbol.] signifies the nodal pressure vector attributed to the incident wave. It is crucial to address the singular integrals present in Equation 10. Numerous methods have been proposed to handle these singular integrals within BEM, as cited in [58-61]. This research adopts the singularity subtraction technique introduced by Guiggiani, recognized for its precision and efficiency, as detailed in [62].
2.5 Integration of IGAFEM and IGABEM
Equations 8, 20, originating from the structure (using FEM) and the acoustic (using BEM) respectively, are tightly interlinked and cannot be resolved in isolation. They are interconnected through the boundary conditions outlined in Equations 3, 4. The sound pressure within the fluid domain can be perceived as a force exerted on the shell surface. Consequently, the nodal force vector [image: Please upload the image or provide the URL, and I can generate the alt text for you.] due to the acoustic load can be formulated as Equation 21.
[image: Please upload an image or provide a URL for me to generate the alternate text. You can also add a caption for additional context if needed.]
in which [image: A black and white checkerboard pattern forms the background of the image. In the foreground, an infinity loop symbol encircles a pair of opposing arrows, creating a symmetrical design. The entire graphic is rendered in shades of black and white with a polished, metallic texture.] is defined as the integral over the boundary [image: It seems like you tried to upload an image, but I cannot see it. Please try uploading the image again or provide a URL if it's hosted online. If you have additional context or a caption, feel free to include that as well.] of the product of the transpose of the subdivision basis functions’ global vector [image: Mathematical expression with an uppercase letter N, adorned by a circumflex accent, followed by a subscript lowercase letter l.] and [image: Mathematical notation of \(\hat{N}_{e}\), representing a variable with a hat and subscript e.] itself, multiplied by [image: Please upload the image for which you would like me to generate the alternate text.]. The vector [image: Mathematical symbol representing \( \hat{N}_{e} \) with a circumflex accent over an uppercase 'N' and a subscript 'e', often used in statistics or scientific formulas.] denotes the global vector of subdivision basis functions, and [image: Unable to generate alt text for the image. Please upload the image or provide a URL for assistance.] represents the matrix of normal vectors, which is given by Equation 22.
[image: Matrix representation of vector \(\bar{n}_j\), showing elements in a columnar form with entries involving indexed variables. The first set of rows shows elements \(n_{1r} \cdot e_1\), \(n_{1r} \cdot e_2\), \(n_{1r} \cdot e_3\), followed by zeros. The second set has similar elements with \(n_{2r}\) and subsequent zeros. Ellipses indicate continuation. Labelled as equation 22.]
in which [image: It seems there was an error, as an image was not uploaded. Please try uploading the image again, and I will generate the alternate text for you.] denote the three unit normal vectors. By applying Equation 21, we can derive a new expression for the global nodal force vector, which is presented in Equation 23.
[image: It seems like there was an error in uploading the image. Please try uploading it again and ensure the file is correctly attached.]
in which [image: Equation depicting \( C_{sf} = \tilde{n}_f \Theta \), where \( C_{sf} \) and \( \tilde{n}_f \) are variables and \( \Theta \) represents a parameter or constant.].
Next, we will investigate the relationship between the velocities on the shell’s mid-surface and the sound pressure. The vector [image: Mathematical expression with a variable "v" subscripted with "f".] represents the nodal parameters related to the fluid’s normal velocity component, while the vector [image: A mathematical expression with a bold lowercase letter "v" raised to the power of "n", and a subscript "s".] signifies the nodal variables associated with the normal velocity component of the structure. Assuming no energy dissipation occurs at the interface between the fluid and structural domains, we get Equation 24.
[image: Mathematical equation displaying the partial differential of psi with respect to time plus five-thirds times partial differential of psi with respect to x squared equals zero, labeled as equation twenty-four.]
in which [image: The equation shows \( \mathbf{v}_s^n = i\omega \mathbf{C}_{fs} \mathbf{\tilde{u}} \).], and [image: Mathematical equation showing \( C_{fs} = \tilde{\mathbf{n}}_f^{\mathrm{T}} \mathbf{f} \), with a tilde over the vector \( \mathbf{n}_f \) and a transpose symbol \( \mathrm{T} \).]. Subsequently, the vector [image: Please upload the image or provide a URL, and I will generate the alt text for you.], encompassing the nodal parameters related to the acoustic flux, can be formulated as Equation 25.
[image: Equation showing \( q = \frac{\partial \phi}{\partial t} = -i \omega \rho' v_{\rho}' = \omega^2 \rho \, C_{\rho} \, \mathbf{u} \) with a reference number \((25)\).]
in which [image: Please upload the image or provide a URL for me to generate the alt text.] represents the fluid’s density.
By inserting Equation 25 into Equation 20, we obtain the following coupled system of equations for the acoustics, as shown in Equation 26.
[image: A mathematical equation is shown: \(\hat{H} = G_{\omega}^{*}\rho_p C_{g, ij} + p_i\), labeled as equation (26).]
Incorporating Equation 23 into Equation 8 yields the following coupled system of equations for structural dynamics shown in Equation 27.
[image: It looks like there was an error with your request; perhaps the image wasn't uploaded. Could you please try uploading the image again or provide a description for it?]
By integrating Equation 27 into Equation 26, the indeterminate displacement [image: It seems there is no image attached. Please try uploading the image again.] is eliminated, leading to a boundary element formulation that is linked with the finite element equation, as shown in Equation 28.
[image: Please provide the image by uploading it or sharing a URL, so I can help generate the appropriate alternate text.]
in which [image: Please upload the image or provide a URL so I can generate the alternate text for you.] denotes the global admittance matrix, and [image: Mathematical symbol \(\tilde{q}_s\), representing a variable often used in equations or formulas, with a tilde accentuation over the letter "q" and subscript "s".] accounts for the influence of sound speeds originating from the structural domain. These are given by Equation 29.
[image: Mathematical equations are displayed. The first equation is Y equals omega sub p rho sub f C sub f A inverse C sub f. The second equation is s dot sub a equals omega squared rho sub p C sub f A inverse t sub f. It is equation twenty-nine.]
3 ENHANCING COMPUTATION SPEED WITH THE FAST MULTIPOLE METHOD
The Fast Multipole Method (FMM) is a highly efficient algorithm designed to accelerate the computation of long-range interactions in N-body problems. Introduced by [63], FMM reduces the computational complexity from [image: Big O notation symbol representing the time complexity of an algorithm as O of N squared.] to [image: Big O notation representing linear time complexity, denoted as O(N), where the performance scales linearly with the size of input N.] or [image: Mathematical notation showing big O notation for computational complexity: O(N log N).], depending on the implementation. This significant improvement is achieved through hierarchical space decomposition and the use of multipole and local expansions, which approximate interactions between distant clusters of particles. The fundamental solution for the full-space, as introduced in Equation 11, is expanded into the following series shown in Equation 30.
[image: Mathematical equation displaying \( G(x, y) = \frac{ik}{4\pi} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (2n + 1) T_m^n(k, \delta y) O_m^n(k, \delta x) \). Presented as equation number thirty.]
in which [image: It seems there was an issue with uploading the image. Please try uploading it again, and I can help generate the alternate text for it.] serves as a local expansion point in proximity to [image: Please upload the image or provide a URL for it, and I will generate the alternate text for you.], as shown in Figure 5. The terms [image: A mathematical expression is shown with a bold italic letter "I" followed by subscripts "m" and "n".] and [image: A mathematical symbol showing the letter "O" with subscripts "n" and "m".] are defined as Equations 31, 32.
[image: Mathematical equation showing \( \Psi_{nm}^E(k, a) = \hat{j}_n(kr) Y_n^m(\theta, \phi) \), labeled as equation (31).]
[image: Mathematical equation involving the far-field pattern \( O_n^m(k, a) \) expressed as the product of a spherical Hankel function \( h_n^{(1)}(kr) \) and a spherical harmonic \( Y_n^m(\theta, \phi) \), denoted with equation number (32).]
The terms [image: Latin capital letter "I" with subscript "n" and superscript "777".] represent the complex conjugates of [image: Stylized letter "I" with superscripts and subscripts "m".]. The functions [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Mathematical notation showing a variable \( h \) with subscript \( nn \) and superscript \( (1) \).] correspond to the [image: Please upload the image or provide a URL so I can generate the alternative text for it.]-th order spherical Bessel and Hankel functions of the first kind, respectively, as detailed in [64]. The spherical harmonics are denoted by [image: Mathematical notation of spherical harmonics, represented by \( Y^m_n \), where \( n \) and \( m \) are variables.], which are given by Equation 33.
[image: Spherical harmonic function denoted by \( Y_l^m(\theta, \phi) = c_l^m P_l^m(\cos \theta) e^{im\phi} \), marked as equation (33).]
in which [image: Mathematical equation showing \(c_n^m = \sqrt{\frac{(n-m)!}{(n+m)!}}\).] and [image: Mathematical notation representing the permutation formula, with "P" denoting permutations. The subscript and superscript indicate specific values, often used to calculate the number of ways to arrange "m" items out of "n".] refers to the associated Legendre functions.
[image: Diagram illustrating a complex plane transformation. The top section labeled "Real domain" shows a right angle with points O, O₁, and X. The bottom section, labeled "Imag domain," mirrors the angle with points O, O', and X'. Lines connect corresponding points across both domains, indicating a mapping from real to imaginary space.]FIGURE 5 | Nodes at the boundary and the points for multipole expansion in the half-space Fast Multipole Method (FMM).
To derive a Fast Multipole Method (FMM) scheme tailored for a half-space acoustic problem, we modify the fundamental solution for the half-space into the following form in Equation 34.
[image: Mathematical equation displaying: \( \bar{G}(x, y) = G(x, y) + \beta G(x, y^*) \), annotated with the reference number (34).]
Subsequently, the boundary integral for the [image: Please upload the image or provide a URL so I can help generate the alternate text.]-th element in Equation 28 can be re-expressed as Equations 35, 36.
[image: An equation shows \( g^i = \int_{\Gamma_i} [G(x, y) + \beta G(x^*, y^*)][q(y)] d\Gamma(y) \). It is labeled as equation (35).]
[image: Mathematical expression showing an equation with integrals and partial derivatives. The equation is labeled equation 36 and involves variables x, y, and a function represented as G(x, y).]
Consequently, employing Equation 13, we can express the boundary integrals over a boundary element [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I will help generate the alternate text for it.] that is situated at a distance from the source point [image: Please upload the image or provide a URL, and I will generate the alt text for you.] in the following manner in Equations 37, 38.
[image: A mathematical equation involving variables and constants, with summation notation and functions. It includes terms with multiple components, subscripts, and superscripts. The equation is labeled as number thirty-seven.]
[image: Equation 38 depicts a mathematical expression involving a double summation from zero to infinity and negative to positive \( m \). It includes wave vector \( k \), spherical harmonics \( M \) and \( O \), the exponential factor \( (2n+1) \), and an additional term \( \beta M \).]
in which [image: It seems there was an error in your request. Please upload the image file or provide a URL for me to generate the alternate text.] denotes a field point on [image: It seems there is either an error or a placeholder text was sent instead of an image. Please upload the image or provide a URL, and I can help you generate the appropriate alt text.]; [image: Mathematical notation showing \( \textbf{M}^{m}_{n}(k, \overrightarrow{\text{oy}}_j) \), with superscript \( m \), subscript \( n \), a variable \( k \), and vector \( \overrightarrow{\text{oy}}_j \).] and [image: Mathematical expression displaying \(\tilde{M}^{m}_{n}(k, \overrightarrow{oy}_{j})\).] are the multipole moments of the low-frequency FMM techniques in the real domain, respectively, and are defined as Equations 39, 40.
[image: An integral equation is shown: \( \mathcal{M}_{n}^{m}(k, \sigma y) = \int_{\Gamma_y} \mathcal{T}_{n}^{m}(k, \sigma y) q(y) d\Gamma(y) \) numbered (39).]
[image: Mathematical equation representing \(\tilde{N}_m^{(n)}(k, \sigma y)\) as an integral over a path \(\Gamma_y\). The integrand includes the partial derivative of \(\tilde{d}_m^{(n)}(k, \sigma y)\) with respect to parameter \(\eta(y)\), divided by \(\rho(y)\), and multiplied by \(\rho(y) d\Gamma(y)\). The equation is labeled as number (40).]
By replacing [image: Please upload the image or provide a URL so I can help generate appropriate alt text for it.] and [image: Please upload the image or provide its URL so I can generate the alternate text for you.] with [image: A superscript asterisk symbol next to the number zero.] and [image: Mathematical notation showing a bold lowercase "y" with a superscript star and subscript "j".] in Equations 39, 40, we obtain the expressions for [image: Mathematical expression featuring the term M with subscripts n and superscripts m, followed by k, o, and vector \(\vec{y}_j^*\).] and [image: Mathematical notation showing \(\tilde{M}^{m}_{n}(k, \mathbf{o}^* \overrightarrow{y}^*_{j})\), possibly representing a matrix or transformation with indices and vector components.] as presented in Equations 37, 38, respectively. To determine the moments of the leaf cell, we aggregate the multipole moments from [image: It looks like you mentioned an equation or mathematical symbol. Can you provide more context or details about the image? If you have an image file, please upload it for accurate alt text creation.] boundary elements in the vicinity of point [image: Please upload the image or provide a URL to generate the alternate text.], as shown in Equations 41–44.
[image: Mathematical equation shows capital M sub k, o superscript N sub M equals the summation from j equals 1 to N of capital M superscript double prime sub M capital N sub M with arguments k and o sub y j. Equation number forty-one on the right.]
[image: Mathematical equation showing \( \mathbf{M}_{n}^{\text{HN}}(k,o,\ast) = \sum_{j=1}^{N_{r}} \mathbf{M}_{n}^{\text{HN}}(k,o,\mathbf{y}_{j}^{r}) \), with equation number (42) on the right.]
[image: Mathematical equation showing \(M_N^m(k, o) = \sum_{j=1}^{N_k} M_{M_j}^m(k, o, y_j)\), labeled as equation (43).]
[image: Mathematical equation showing an expression for \( M^n_i(k, o \cdot) \), which equals the sum from \( j = 1 \) to \( N_i \) of \( M^n_i(k, o, \mathbf{y}_j) \).]
When [image: Quantum state inequality showing the expression "ket zero x is greater than ket zero y."] and [image: Equation showing quantum states: \(|0\rangle_{1}^{*}x| > |0\rangle_{1}^{*}y|\).], the low-frequency Fast Multipole Method (FMM) facilitates the relocation of the moment center from [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will help you generate the alt text.] and [image: Bold letter "g" with an asterisk in superscript next to it.] to [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] and [image: Mathematical notation showing the number zero with a star symbol above it, followed by a subscript of one.] using the M2M (moments to moments) translation formula, which is expressed as Equations 45, 46.
[image: Mathematical equation involving a nested summation. It represents a function \( M_{n}^{m}(\mathbf{k},\mathbf{o}) \), with three summations indexed by \( n_{1} = 0 \) to infinity, \( m_{1} = -n_{1} \) to \( n_{1} \), and \( k \) in the set of integers. The equation features terms like \( (2n_{1} + 1) \) and includes a complex expression with \( (-1)^{m} \), \( W_{n,n_{1},m,m_{1}} \), and \( X_{l}^{m-m_{1}}(\mathbf{k},\mathbf{o},\mathbf{\sigma}) \). This is equation number 45.]
[image: Mathematical expression showing the equation for \( \mathbf{M}^{m}_{n}(k, \hat{\mathbf{o}}) \). It includes triple summations over \( n_{1}, m_{2}, n_{2} \) with limits starting from zero to infinity, and conditions \( n_{1}=0, m_{2}=0, n_{1} \leq n_{2} \). The equation incorporates terms with \( (2n_1 + 1) \), and a complex coefficient \( (-1)^m W_{n_1, m_1, n_2, m_2} \). There is a spherical harmonic term, and a Laguerre polynomial \( X_l^{m-m_2} \), followed by additional complex terms involving \( \mathbf{k}, \hat{\mathbf{o}}, \hat{\mathbf{o}}^* \). Expression labeled as equation (46).]
in which [image: Mathematical expression with italicized capital letter W followed by subscripts n, n1, m, m1, and l.] is expressed in Equation 47.
[image: Mathematical equation with variables \( W_{n,n_1,m,m_1,j,l} \), an expression involving factorials and binomial coefficients: \((2l+1)(-1)^j \frac{n!}{n_1!n_2!}\), \(\begin{pmatrix} n \\ m \end{pmatrix}\begin{pmatrix} n_1 \\ m_1 \end{pmatrix}\begin{pmatrix} l \\ -m_1 \end{pmatrix}\). Equation number (47) appears to the right.]
The symbol [image: Vertical ellipsis symbol enclosed in parentheses.] represents the Wigner 3j symbol, and the set [image: Please upload the image you would like me to generate alt text for.] is defined as Equation 48.
[image: Mathematical expression defining \(Z(n_1, m, m_1)\), with conditions: \(l \in \mathbb{Z}, n + n_1 - l\) is even, and \(\max{|m + m_1|, |n - n_1|} \leq l \leq n + n_1\), labeled as equation (48).]
Taking into account the influence of the infinite/symmetry plane, we can formulate the M2L (moments to local expansion coefficients) translation formula as shown in Equations 49, 50.
[image: A mathematical equation is shown, representing a complex summation notation. It includes multiple summation symbols, subscripts, superscripts, and factors such as \(2l_1 + 1\), and \((-1)^{m_1}\). The equation involves terms like \(W_{n_2n_3m_2m_3l}\), and matrices or operators denoted with \(O\), \(\Phi\), and \(M\), with various indices and variables such as \(k\), \(x_1\), \(l_3\), \(m_1\), and \(n_2\). Reference number 49 is displayed at the end.]
[image: A mathematical equation consisting of nested summations, with symbols, variables, and indices such as \(\omega\), \(l\), \(m\), \(k\), and \(x\). The equation includes factorial-like expressions and terms like \(W_{n n' j m m' J}\), alongside operators and brackets indicating complex operations. The equation is labeled as equation (50).]
Following that, the L2L (local expansion to local expansion) translation formula can be employed to shift the center of the local expansion from [image: Please upload the image or provide a URL so I can help generate the alternate text.] to [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], as shown in Equations 51, 52.
[image: Mathematical formula showing I subscript l, m superscript m with arguments k, x subscript 2, expressed as an infinite sum involving n subscript l, W term, factorial terms, and spherical harmonics. Equation labeled as fifty-one.]
[image: Mathematical formula involving a series and summation. The formula represents a function \( I_{n}^{m}(\boldsymbol{k}, x_{z}) \), defined as a double summation over variables \( n_{2} \) and \( m_{2} \), with nested sums. It includes terms like \( (2n_{1} + 1)(-1)^{m} W_{n_{1} 1 -n_{2} -m_{1} 1} \) multiplied by \( j_{n_{1}-m_{1}}(k_{z}\bar{\boldsymbol{k}}_{x}x_{z}) L_{n_{1}}^{m_{1}}(k_{x}) \), concluding with equation number 52.]
For the set of [image: A large, stylized letter "N" with a subscript "l" in a serif font, suggesting a mathematical or scientific context.] boundary elements that are close to [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] but far from the source points [image: Please upload the image you would like me to describe, or provide a URL to the image.], the sums [image: Summation notation with the summation symbol, sigma, from j equals one to N, of the term h raised to the power of ij.] or [image: Summation notation with the index \( j \) from \( 1 \) to \( N \), summing the function \( g^{ij} \).] can be expressed using the local expansion coefficients shown in Equation 53.
[image: Mathematical equation showing a double summation. The outer summation is from j equals one to N for \(g_j^i\), equated to the fraction where the numerator is \(i k\) and the denominator is \(4 \pi\). The inner summation runs from n equals zero to infinity, and m equals negative n to n, of the term \((2n + 1)L_n^m(k, x_2)T_n^{1m}(k, x_2, x_1)\). Equation number 53 is on the right.]
[image: Mathematical equation showing a double summation over indices i and l. The expression includes terms with spherical harmonics and exponential components, such as \( h_{i}^{l} \), \(\frac{ik}{4\pi}\), and \((2n+1)L_{n}^{lm}(k,x)T_{n}^{lm}(k,x,x_{1})\), with \( (54) \) referenced on the right.]
within the low-frequency FMM. To refine the Burton-Miller formulation, which is a linear combination of the Conventional Boundary Integral Equation (CBIE) and its normal derivative, we simply introduce adjustments to Equations 53, 54, as shown in Equations 55, 56.
[image: Mathematical equation involving a series and a sum. It includes terms with \( S_n^e \), exponential functions, spherical harmonics \( L_n^m \), indexed sums over \( n \) and \( m \), and derivatives with respect to \( n(x) \). Equation is labeled as \( (55) \).]
[image: Mathematical equation with a summation from n equals 1 to N. It involves a constant, complex variable i, and k over 4 pi. There are double summations, with terms depending on n, m, and expressions involving I and pi functions, differentiating with respect to n of x. The equation is labeled as equation 56.]
The implementation process involves the following key steps:
	1. Hierarchical Tree Construction: The computational domain is partitioned into a hierarchical octree structure, with each node representing a subdomain. Boundary elements are assigned to the appropriate nodes based on their spatial location.
	2. Multipole Expansion Calculation: For each leaf node, multipole moments are computed using the source terms within the node. These moments encapsulate the collective influence of sources on distant targets.
	3. M2M Translations: Multipole expansions from child nodes are aggregated and translated to their parent nodes, propagating the influence up the hierarchical tree.
	4. M2L Translations: At each interaction list, multipole expansions from distant nodes are translated into local expansions at the target nodes. This step leverages the translation operators to approximate interactions efficiently.
	5. L2L Translations: Local expansions are propagated down the tree to account for interactions within localized regions.
	6. Evaluation of Local Expansions: The final local expansions are evaluated at the target points, providing the approximate contributions from distant sources.

4 NUMERICAL ILLUSTRATIONS
In this segment, the primary objective of the elastic spherical shell model is to verify the accuracy of the numerical model by comparing the analytical and numerical solutions. The fish model, with its relatively complex geometry, represents the structural features of real underwater organisms or submersibles. It is intended to demonstrate the applicability and effectiveness of the proposed method in solving underwater acoustic scattering problems. The computations are executed using Fortran 90 on a desktop computer with 128 GB of RAM and an Intel (R) Core (TM) i7-7700 CPU.
4.1 Acoustic scattering by an elastic spherical shell
This section examines the acoustic field scattered by a spherical shell structure when subjected to incident plane waves, taking into account the reflections from the seabed, as depicted in Figure 6. In the diagram, the center of the sphere is at the origin; [image: Please upload the image, and I will help you generate the alternate text for it.] represents the seabed surface; [image: It seems there was no image uploaded. Please try uploading the image again, and I will help generate the alternate text for you.] is the distance from the origin to the seabed surface; [image: It seems like there might be an issue with the image or its upload. Please try uploading the image again or provide a URL. If you'd like, you can also offer a caption for context.] is the incident plane wave; [image: It looks like there's an issue displaying the image. Please try uploading the image directly or provide a URL for it.] signifies the infinite fluid domain. The seabed reflection coefficient is denoted by [image: Please upload the image or provide a URL so I can generate the alternate text for it.], where [image: Blackboard with Beta equals negative one written in chalk.] corresponds to a soft seabed and [image: Mathematical expression showing \(\beta = 1\).] corresponds to a rigid seabed.The incident plane waves, which have an amplitude of 1, travel along the positive [image: Please upload the image so I can generate the alt text for you.]-axis. Using Catmull-Clark subdivision surfaces, three elastic spherical shells with 3,458, 4,800, and 9,408 mesh points were constructed. Figure 7 presents the variation curves of sound pressure with frequency for the spherical models at 3,458, 4,800, and 9,408 mesh points, respectively. The computation times for a single frequency were 33 s, 56 s, and 85 s for each model. It can be observed from the figure that the differences in the sound pressure curves across the three mesh densities are minimal; however, the computation times differ significantly. Therefore, this study adopts the spherical model with fewer mesh points to balance computational efficiency and accuracy.When analyzing the acoustic scattering of the sphere model, we found that the computation time for the traditional Catmull-Clark subdivision surfaces coupled with the FEM-BEM method was 428 s, whereas the computation time for the Catmull-Clark subdivision surfaces accelerated by FMM and coupled with the FEM-BEM method was only 33 s, demonstrating that the computational efficiency of FMM is significantly higher than that of traditional algorithms.
[image: Illustration of an elastic spherical shell submerged in an infinite fluid domain above a sea floor. The shell's parameters include density \( \rho = 2700 \, \text{kg/m}^3 \), fluid density \( \rho = 1000 \, \text{kg/m}^3 \), thickness \( h = 2 \, \text{m} \), Young's modulus \( E = 70 \, \text{GPa} \), and Poisson's ratio \( \nu = 0.33 \). A reflection coefficient \( \beta \) is indicated at the sea floor.]FIGURE 6 | System for acoustic-structural interaction involving elastic spherical shells.
[image: Line graph showing the relationship between the number of grid nodes and the ARO. The horizontal axis represents the number of grid nodes, and the vertical axis shows the ARO values. Three lines, representing grid nodes of 3500, 4000, and 4500, depict similar trends with a sharp peak around 1800 nodes.]FIGURE 7 | The numerical results of the sphere model are verified in the convergence of three mesh node numbers.
The sound pressure values at the computed points on the circle for incident wave frequencies of 100 Hz and 200 Hz are depicted in Figure 8, where the circle represents the projection of the sphere model, with a radius of 2 m, onto the [image: I can't see the image you mentioned. Please provide the image or a link to the image you want the alternate text for.] plane. As observed in the figure, at a frequency of 200 Hz, the sound pressure curve exhibits more pronounced fluctuations, indicating that the larger the external sound wave impacting the sphere model, the greater the magnitude of sound pressure variation. When [image: It seems there's an error in displaying the image. Please upload the image file or provide a URL, and I can help you with the alternate text.], the sound pressure curves from numerical and analytical solutions align, confirming the validity and reliability of the algorithm presented in this study. For [image: Beta equals zero, one, negative one.], the numerical solutions vary significantly, demonstrating the importance of considering the seabed reflection effects and highlighting the significance of the seabed’s nature.
[image: Two line graphs labeled A and B plot sound pressure against angle. Both graphs compare analytical and numerical data for \(\beta = 0\), \(\beta = 0.1\), and \(\beta = 0.2\). Graph A shows a slight decline and then leveling out, while Graph B shows a wave pattern. Legend differentiates four distinct lines with varying colors and dashes.]FIGURE 8 | Sound pressure at computational points on circles with a 2-m radius across various frequencies. (A) 100 Hz. (B) 200 Hz.
Figure 9 illustrates the displacement and sound pressure distributions on the sphere model when it is positioned 5 m above the seabed. The first three columns represent the displacement components in the [image: It looks like there was an error in image upload or link formatting. Please try uploading the image again or provide a correct link, and I'll help generate the alternate text.], [image: I cannot view the image directly. Please upload the image or provide a URL, and I can help generate the alternate text for it.], and [image: Please upload an image or provide a URL, and I can help generate the alternate text for it.] axes, respectively, while the last column indicates the sound pressure. As observed in the figure, the sound pressure pattern exhibits symmetry along the [image: Please provide an image or a link to the image you would like me to describe.]-axis, and the displacement components also mirror this symmetry. The displacement in the [image: Sure, please upload the image you would like me to describe.]-direction is the most significant, whereas the [image: Please upload the image or provide a URL, and I will be happy to help you generate the alternate text for it.]-direction shows the least. The sound pressure on the sphere’s surface diminishes as we move in the negative [image: Please upload the image or provide a URL for the image you want me to describe.]-axis direction, whereas the [image: Sure, I can help with that. Please upload the image you'd like me to describe.]-direction displacement component increases progressively.
[image: Eight spherical visualizations labeled A to H show distribution patterns with varying color gradients from blue to red. Each sphere has a corresponding color scale indicating different data ranges. All spheres are oriented with the same three-axis reference.]FIGURE 9 | Sound pressure and displacement distributions on the surface of a spherical shell: the first three columns depict the three components of displacement, while the fourth column shows the sound pressure. (A) 100 Hz, displacement x. (B) 100 Hz, displacement y. (C) 100 Hz, displacement z. (D) 100 Hz, sound pressure. (E) 200 Hz, displacement x. (F) 200 Hz, displacement y. (G) 200 Hz, displacement z. (H) 200 Hz, sound pressure.
Figure 10 displays the sound pressure of the sphere model across various frequencies with [image: It seems like you're trying to reference an image, but there's no image visible here. Please upload the image or provide a URL, and I'll help generate the alternate text for it.]. Figures 10A–C depict the real part, imaginary part, and magnitude of the sound pressure, respectively. From the figure, it can be seen that when the frequency is within the range of [0.140]Hz, the analytical solution and numerical solution of the sound pressure on the surface of the sphere model match very well, and the sound pressure changes are very small. When the frequency is within the range of [160,200] Hz, the numerical solution still matches well with the analytical solution, but the sound pressure begins to change dramatically. This phenomenon further validates the reliability of the algorithm presented in this paper and shows that sound scattering is frequency-dependent.
[image: Three line graphs labeled A, B, and C show data over a frequency range from 0 to 200. Graph A displays "Real" values, Graph B "Imag" values, and Graph C "Abs" values. Each graph compares numerical and analytical results, with lines overlapping closely. All graphs feature a distinct peak around a frequency of 150.]FIGURE 10 | Sound pressure of the sphere model across various frequencies with [image: It seems there was an error in uploading the image. Please try uploading the image file again, or provide a URL if it's hosted online. You can also include a caption for additional context if you wish.], incremented by a frequency step of 1 Hz. (A) β = 0, real part. (B) β = 0, imaginary part. (C) β = 0, sound pressure.
Figure 11 shows the sound pressure of the sphere model at different frequencies when [image: If you have an image you'd like me to generate alternate text for, please upload it directly here or provide a URL.], [image: Greek letter beta is shown followed by an equals sign and the number negative one.], and [image: It seems like there might be an error or issue with the image upload. Please try uploading the image again. If you have any additional context or caption, feel free to include it.]. From the figure, it can be seen that the sound pressure curves for [image: Sure, please upload the image or provide a URL so I can generate the alt text for you.], [image: "Beta equals negative one" written in a mathematical equation format.], and [image: I can't see the image. Please upload the image or provide a URL, and I will generate the alt text for you.] are distinct, indicating that the impact of seabed reflection on the structural acoustic coupling system response in shallow water environments cannot be ignored. It is noteworthy that the sound pressure curves for [image: I'm sorry, but it looks like there's no image provided. Please upload the image or provide a URL for me to generate the alternate text.] and [image: Mathematical expression depicting β equals negative one.] are roughly distributed on either side of the sound pressure curve for [image: It seems like there's an issue with the image upload. Please try sending the image again or provide a direct link for me to view it.], and the two curves are essentially symmetric about the sound pressure curve for [image: Certainly! Please upload the image or provide a URL to it, and I'll be happy to help with the alt text.]. This phenomenon indicates that the effects of rigid and flexible seabeds on sound waves are opposite.
[image: Three line graphs labeled A, B, and C show numerical data trends across different frequencies. Graph A displays Real, graph B shows Imaginary, and graph C represents Abs. Each graph includes three plotted lines with markers for different numerical values, illustrating variations and patterns across the frequency range from zero to two hundred.]FIGURE 11 | Sound pressure of the sphere model across various frequencies with [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: The image is a mathematical expression showing the Greek letter beta followed by an equals sign and then the number negative one, indicating a value of beta equal to negative one.], and [image: Unable to view the image. Please upload the image file or provide a URL so I can help generate the alternate text.], incremented by a frequency step of 1 Hz. (A) Real part. (B) Imaginary part. (C) Sound pressure.
Figure 12 illustrates the sound pressure of the sphere model at various distances from the seabed, where [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will assist you with generating the alternate text.] denotes the distance from the model’s center to the seabed. It can be observed from the figure that when the frequency is less than 60Hz, the sound pressure curves for different [image: It seems there is an issue with the input. Please upload an image or provide a description so I can generate the alternate text for you.] are very close to each other; when the frequency exceeds 60Hz, the differences between the sound pressure curves for different [image: I'm unable to see the image directly. Please upload it, and I'll help create the alt text for you.] gradually increase. This phenomenon confirms that the effect of ground reflection is frequency-dependent.
[image: Two graphs labeled A and B display frequency versus response amplitudes. Both graphs show plots with variables `s=0.5, 1, 2` and `κ=0.5, 1, 2`. They depict curves peaking at different frequencies above the 100 mark, with varying dashed line styles and markers.]FIGURE 12 | Sound pressure in terms of frequencies with different distances from the seabed for the sphere model. (A) β = −1. (B) β = 1.
4.2 Acoustic scattering by a fish model
This section analyzes the acoustic field scattering by a fish model under the action of incident plane waves, taking into account the reflection effects of the seabed, as shown in Figure 13. This subsection calculates the sound pressure and displacement under incident plane waves at different frequencies. The incident plane waves propagate along the positive x-axis with a unit amplitude and are scattered by the underwater model.
Using Catmull-Clark subdivision surfaces, two fish models with 54,216 and 222 mesh points were constructed. Figure 14 illustrates the sound pressure curves as a function of frequency for the fish models with 54,216 and 222 mesh points, respectively. The computation times for a single frequency were 483 s and 1,016 s for each model. As shown in the figure, the differences in the sound pressure curves between the two mesh densities are minor, with only slight fluctuations that are acceptable considering the significant disparity in computation times. Therefore, this study selects the fish model with 54,216 mesh points to optimize computational efficiency while maintaining acceptable accuracy.
When analyzing the acoustic scattering of the fish model, we found that the computation time for the traditional Catmull-Clark subdivision surfaces coupled with the FEM-BEM method was 5,143 s, whereas the computation time for the Catmull-Clark subdivision surfaces accelerated by FMM and coupled with the FEM-BEM method was only 483 s.
[image: Illustration of a fish in an infinite fluid domain above a sea floor, displaying various physics-related parameters. The image includes density of fluid and fish, dimensions, and material properties like modulus of elasticity and Poisson's ratio. Reflection coefficients are denoted at the sea floor. Arrows indicate axes.]FIGURE 13 | Acoustic-structural interaction system for the fish model.
[image: Line graph comparing two data sets for Abs against the number of grid nodes. The red line represents 56216 grid nodes, and the blue line represents 90552 grid nodes. Both lines show similar patterns with peaks and troughs, demonstrating changes in Abs values as the number of grid nodes increases.]FIGURE 14 | The numerical results of the fish model are verified in the convergence of two mesh node numbers.
Figure 15 shows the distribution of displacement and sound pressure for the fish model at a distance of 0.5 m from the seabed. As shown in the figure, the sound pressure and displacement distributions are symmetric along the x-axis. The magnitude order of the various displacement components of the fish model at different frequencies is not the same. For instance, at a frequency of 1,000 Hz, the displacement component in the x-direction is the largest, and the displacement component in the z-direction is the smallest; at a frequency of 3,000 Hz, the displacement component in the z-direction is the largest, and the displacement component in the y-direction is the smallest.
[image: Twelve color-coded diagrams labeled A to L depict flow patterns around a model resembling a whale, viewed from above. Each diagram displays velocity or Reynolds stress maps with scales ranging from blue (low) to red (high). Annotations include "x," "y," and "z" axes to aid orientation.]FIGURE 15 | Sound pressure and displacement distributions on the surface of a fish model: the first three columns depict the three components of displacement, while the fourth column shows the sound pressure. (A) 1000 Hz, displacement x. (B) 1000 Hz, displacement y. (C) 1000 Hz, displacement z. (D) 1000 Hz,sound pressure. (E) 2000 Hz, displacement x. (F) 2000 Hz, displacement y. (G) 2000 Hz, displacement z. (H) 2000 Hz, sound pressure. (I) 3000 Hz, displacement x. (J) 3000 Hz, displacement y. (K) 3000 Hz, displacement z. (L) 3000 Hz, sound pressure.
Figure 16 displays the sound pressure of the fish model at different frequencies for [image: If you have an image, please upload it or provide a URL so I can generate the alt text.], [image: Mathematical expression showing beta equals negative one.], and [image: Beta symbol equals one.], with a frequency range of [03,000]Hz and a frequency step of 10 Hz. As shown in the figure, the sound pressure on the surface of the fish model varies with [image: Please upload the image or provide a URL so I can generate the alt text for you.]. When the frequency is within the range of [0.600]Hz, the sound pressure curves for [image: It seems there is no image uploaded. Please try uploading the image again, or if you intended to include a URL, please provide it. You can also add a caption for more context if needed.], [image: It seems there was an issue with the image upload. Please try uploading the image again, and I’ll be happy to help with the alt text generation.], and [image: It seems there is no image uploaded. Please provide the image or the URL so I can generate the alternate text for you.] match very closely. However, when the frequency exceeds 600Hz, differences begin to emerge among them. This phenomenon once again confirms that the seabed reflection effect is frequency-dependent, not only for spherical models but also for complex models, and it also validates the necessity of considering the seabed reflection effect.
[image: Three graphs labeled A, B, and C display frequency data with lines for Numerical beta equals zero (solid), Numerical beta equals one (dashed), and Numerical beta equals two (dotted). The y-axis represents values of Re or Abs ranging from negative 0.5 to 0.6, and the x-axis represents frequency from 300 to 3000. Each graph shows distinct peaks at various frequencies.]FIGURE 16 | Sound pressure in terms of frequencies with different seabed reflection coefficient for the fish model: frequency steps of 10 Hz. (A) Real part. (B) Imaginary part. (C) Sound pressure.
Figure 17 illustrates the sound pressure of the fish model at various distances from the seabed. It can be observed from the figure that as the distance from the seabed increases, the sound pressure curve gradually aligns with the sound pressure curve for [image: Sure, please upload the image for which you need alt text.]. This phenomenon indicates that in shallow sea areas, the seabed reflection effect must be taken into account, while in deep sea areas, the seabed reflection effect can be selectively considered based on needs. This phenomenon is related to the nature of the seabed.
[image: Two line graphs labeled A and B compare frequency to amplitude spectra. Both graphs show multiple peaks at similar frequency intervals. Graph A includes lines for \( q = 0.87 \), \( q = 0.82 \), and \( q = 0.77 \). Graph B includes lines for \( q = 0.72 \), \( q = 0.63 \), and \( q = 0.57 \). Each graph features a legend indicating different calculations for nonlinear \( q \)-values in black, blue, and green.]FIGURE 17 | Sound pressure in terms of frequencies with different distances from the seabed for the fish model. (A) β = −1. (B) β = 1.
5 CONCLUSION
This paper presents a novel algorithm for analyzing the interaction between sound wave propagation and the vibration of underwater thin-shell structures, taking into account the effects of seabed reflection. We couple FEM with BEM to solve for shell vibrations and sound wave propagation in an infinite domain. To consider the effects of seabed reflection, the BEM employs a half-space fundamental solution approach. Within the isogeometric framework, geometric modeling is conducted using Catmull-Clark subdivision surfaces, and the same basis functions used for geometric modeling are applied to discretize the physical fields of the coupled FEM/BEM system. The use of isogeometric analysis maintains geometric accuracy, reduces meshing efforts, and produces high-order continuous fields, enabling the application of Kirchhoff-Love shell theory. Additionally, FMM is formulated to accelerate vibro-acoustic simulations. The precision of this algorithm is demonstrated through numerical examples.This study also has certain limitations. The current model’s assumption of linear elastic material properties, while suitable for small deformations and stresses, does not capture nonlinear behaviors under extreme conditions. The absence of fluid-structure interactions (FSI) in the present model may overlook critical phenomena such as damping and dynamic loading from fluid flows. Furthermore, the simplified treatment of seabed topographies with predefined reflection coefficients [image: Please upload the image or provide the image URL so I can generate the alternate text for it.] limits the model’s applicability to real-world scenarios.In the future, incorporating nonlinear material models, fluid-structure interaction modeling, and the uncertainty of seabed reflection coefficients into the model will ensure that the proposed algorithm not only maintains high computational efficiency but also delivers accurate and reliable results in complex vibration-acoustic analyses.
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Early warning system earthquake alerts exploit the time delay that the surface waves have in reference to the P waves and estimate the magnitude based on the interpretation of the specific parameters of the P waves. One of the most commonly used parameters for estimating the moment magnitude of an earthquake is the characteristic period measured in the first 3 s after the appearance of the P wave. The classic method determines the characteristic period in the time domain by using the velocity and displacement waves of the acquired samples. In this paper, we present a new method for estimating the characteristic period through its corresponding frequency. This method includes zero padding of the P-wave sequence, conversion of the extended sequence from the time domain to the frequency domain, identification of local frequency maxima, and calculation of the weighted average of the frequency based on the identified maxima. Tests conducted on synthetic signals, as well as standard deviation evaluation tests for simultaneous recordings at several seismic stations, revealed better performance than the classic method in terms of noise immunity and number of false alarms.
Keywords: earthquake, P wave, characteristic period, frequency domain, zero padding

1 INTRODUCTION
The intense ground motions caused by an earthquake pose a major hazard to the population living near the epicenter and can cause substantial damage to roads, buildings, and other infrastructure. Among natural disasters, earthquakes account for approximately one-fifth of economic losses and are responsible for approximately 20,000 deaths per year. A destructive earthquake cannot be predicted accurately at the moment or place of its occurrence. However, earthquake early warning systems (EEWS) can provide an estimation of the approaching event. EEWS can trigger anticipative alarms because the onset of an earthquake is achieved by non-destructive primary P waves and continues with destructive surface waves. P waves have a higher travel speed; they will reach the destination first and can be a source of information regarding the destructive waves that will reach the destination later. Moreover, P-wave-based EEWS can work in tandem with seismicity indicator-based systems that make use of the Gutenberg–Richter law to increase the probability of detection of major earthquakes [1–3].
After several decades of development, EEWS are currently operational and provide alerts to populations (Japan [4, 5], Taiwan [6, 7], Mexico [8], and South Korea [9]), institutions, or limited users (India [10], Romania [11], Turkey [12], and the West Coast of the United States [13]), or are under development or testing (Italy [14], Chile, Costa Rica, EI Salvador, Nicaragua, Switzerland, Israel, Beijing, and the Fujian region of China) [15].
The main component of an EEW system is the algorithm that estimates the magnitude of an earthquake. The assessment is performed using the velocity and displacement waveforms and must contain as much of the low-frequency component of the frequency spectrum as possible to avoid magnitude saturation [16].
Among the first P-wave parameters used for magnitude estimation is the predominant period, defined as the period corresponding to the maximum amplitude in the frequency spectrum of displacement [17, 18]. An approach to the predominant period based on the velocity wave known as the τp method is presented in [19]. Because this method contains numerous limitations related to the sampling frequency and signal processing, an improved version was proposed in [20], where the predominant period is continuously calculated, and its maximum value (τp max) can be determined. Another magnitude estimation parameter is the characteristic period τc. This refers to both velocity and displacement waves, which are much more stable than τp max [21]. In current studies, the characteristic period is the most commonly used parameter for magnitude estimation with regard to the peak of the displacement wave (Pd) [22, 23] or alongside other geophysical parameters as input data for neural networks [24, 25].
However, the characteristic period of a specific earthquake, computed from different recording stations, exhibits large dispersion in terms of standard deviation due to local conditions, noise, and artifacts and thus may trigger false alarms or mute real ones. In order to evaluate the characteristic period of the P wave, we propose a new method based on the accurate determination of local maxima within the displacement wave’s frequency spectrum. Its performance is evaluated using both synthesized and recorded waveforms, yielding better results than the standard approaches.
2 METHODS
To define the characteristic period [21], the vertical components of the ground displacement wave u(t) and velocity [image: It seems there was an error in image upload or description. Please try uploading the image again or provide a description for generating the alternate text.] (t) were used, with the ratio r being
[image: The formula shows a ratio of integrals. The numerator is the integral from zero to t₀ of i squared of t with respect to t. The denominator is the integral from zero to t₀ of u squared of t with respect to t. This is labeled as equation (1).]
where the integration is over the time interval (0, t0) after the onset of the P wave. In most of the existing EEWS, t0 is set to 3 s, and any straightforward implementation of Equation 1 belongs to the time domain methods used to evaluate the characteristic period. They have been adopted by the scientific community as a benchmark and as a standard specification in most of the existing EEWS [22, 26]. Using Parseval’s theorem, according to which the energy of an aperiodic signal or the power of a periodic signal in the time domain is equal to the energy or power in the frequency domain, the results of Equation 2 are obtained and further exploited to develop frequency-domain methods.
[image: The formula represents the second moment \( r = \frac{4 \pi^2 \int_{0}^{\infty} f^2 |u(f)|^2 df}{\int_{0}^{\infty} |u(f)|^2 df} = 4\pi^2 \langle f^2 \rangle \), indicating a mathematical expression for computing the root mean square frequency.]
where f is the frequency, û(f) is the frequency spectrum of the displacement wave u(t), and [image: Mathematical expression showing the angled brackets with a lowercase 'f' squared inside, representing the average or expected value of the function squared, denoted as \( \langle f^2 \rangle \).] is the average of f2 weighted by |û(f)|2, hereafter denoted by fC.2
The characteristic period is defined according to Equation 3:
[image: Equation depicting \(\tau_c = \frac{1}{\sqrt{2 \epsilon_c}} = \frac{2 \pi}{\sqrt{r}}\), labeled as equation (3).]
Although the characteristic period of the P wave is calculated based on the ratio r, as can be seen in Equation 3, the characteristic period can also be expressed based on the frequency spectrum of the displacement. More precisely, the squared characteristic frequency is the average of the squared frequencies weighted by the square of the amplitudes in the frequency spectrum.
[image: Equation for effective frequency, \( f_e \), represented by \( f_e = \frac{A_1^2 f_1^2 + A_2^2 f_2^2 + \ldots + A_n^2 f_n^2}{A_1^2 + A_2^2 + \ldots + A_n^2} \), labeled as equation (4).]
where A1 … An are the amplitudes of the spectral components, and f1….fn are the frequencies of the spectral components. These values of the spectral components are obtained by applying a fast Fourier transform (FFT) to the displacement sequence in the time domain. There are many reported results in using FFT to differentiate seismic signals from ambient signals or those produced by explosions because the generated spectra can be distinguished [27, 28], but to date, no straightforward implementation of Equation 4 in EEWS makes use of the τc parameter.
Furthermore, the proposed development implies a better localization of the local maxima points in the discrete-time Fourier transform (DTFT)-associated function and thus minimizes the picket fence effect [29].
Three methods for increasing frequency resolution were considered: zero padding [30], FFT interpolation [31], and windowing [32]. Due to the specific nature of the seismic signals, a short analysis qualifies the zero-padding technique as the best candidate because:
	- interpolation techniques are inefficient when the analyzed signal is a multi-frequency one, with massive overlap of adjacent energy bands;
	- except for a rectangular window that is similar in the frequency domain with zero padding, the remaining windowing techniques reduce the signal’s amplitude toward the edges, and thus, the first points in the earthquake spectrum (the ones with the most important information) are affected;
	- there are no computational or timing constraints that could impact the practical deployment of the zero-padding technique because the FFT algorithm is highly efficient, and the time required to calculate frequency spectrum, even with sequences of zeros ten times larger than signal length, is of the order of milliseconds.

For the presented method, zero padding is the solution used to reduce the distance between bins in frequency by increasing the sequence of the investigated signal by adding zeros to its end before the FFT is applied. The extension of the seismic signal with null samples will not negatively influence the application of the method because it is only desired to obtain a specific length of the signal. Studies prove that this is a viable alternative method that improves the readability of the signal frequency [33, 34]. The increased length of the signal has the consequence of decreasing the width between consecutive spectral lines, resulting in a finer frequency resolution.
After applying zero padding, the local maxima in the frequency spectrum are identified, and the characteristic frequency is evaluated as
[image: Formula depicting weighted average: \( f_x = \frac{A_1^2 f_1 + A_2^2 f_2 + \ldots + A_k^2 f_k}{A_1^2 + A_2^2 + \ldots + A_k^2} \), labeled as equation (5).]
where k, Ak, and fk are the number of identified maxima, the amplitude, and the frequency, respectively.
Structurally, as can be seen in Figure 1, the method of calculating the characteristic period in the frequency spectrum includes the following steps: from the earthquake displacement waveform (a), the first 3 s of the signal are extracted (b), the retrieved sequence is padded with zeros (c), and FFT is applied to obtain the frequency spectrum (d). At the level of the frequency spectrum, the local maxima (e) are identified, through which the weighted average of the characteristic frequency is calculated (Equation 5), and implicitly, its inverse is also calculated.
[image: Five-panel diagram illustrating different stages of earthquake waveform analysis. a) Original red earthquake waveform over time. b) Initial three-second segment highlighting local maxima. c) Segment with zero padding. d) Frequency domain representation with local maxima marked. e) Further frequency analysis with additional local maxima indicated.]FIGURE 1 | Attainment of the characteristic period of the seismic P-wave estimation in the frequency domain: (A) Display a recorded seismic waveform; (B) Extract the first 3 s of the signal; (C) Pad the sequence with zeros; (D) Apply FFT; (E) Identify the local maxima.
To test the proposed method, a comparative study was carried out between the classic method, from the time domain that uses the ratio between speed and displacement (M1), the method from the frequency domain based on Equation 4 to calculate the characteristic frequency (M2), and the proposed method (M3) based on Equation 5. The test signals used to calculate the characteristic frequency and characteristic period were synthesized by summing sinusoidal signals with imposed frequencies and amplitudes. The reference frequency against which the absolute error was calculated was obtained using the signal synthesis values (the amplitudes and frequencies of the sinusoidal signals were summed to obtain the test signals). The framework of signal acquisition is similar to the physical one used in the acquisition of seismic signals: sampling frequency, 200 Hz; acquisition time, 3 s; total number of acquired points, 600.
3 RESULTS
A method for calculating the characteristic period of the P wave of earthquakes based on the frequency spectrum of the displacement wave was developed. Three types of validation tests were carried out: one with signals containing a single spectral component (a pure sinusoidal signal), one with signals with two spectral components, and one with three spectral components with different frequency and amplitude values.
3.1 Testing using a signal with a single spectral component
A set of sinusoidal signals of 3 units amplitude was used, for which the frequency was varied between 0.3 Hz and 20 Hz, the range covering the area of interest for EEW systems (Figure 2). The variation step is 0.1 Hz. For each signal, the characteristic frequency and the characteristic period were calculated by three methods (time-domain classic method M1, frequency-domain method M2, and proposed method M3), and the absolute errors compared to the reference were determined. The column of graphs on the left in Figure 2 shows the absolute errors for the characteristic frequency, and the column on the right shows the results for the characteristic period for the three methods M1, M2, and M3.
[image: Six graphs comparing frequency and time response functions labeled M1, M2, and M3. The left column shows frequency response functions with decreasing amplitudes, while the right column shows time response functions with oscillating patterns that eventually stabilize. All graphs use a red line on a grid background.]FIGURE 2 | Absolute error graph of the three compared methods, in frequency-domain (left) and time-domain (right) calculations, for a singular spectrum signal.
It can be observed that for all methods, the errors increase with a decrease in the frequency and implicitly with an increase in the period. The M2 method presents almost twice as many absolute errors as the classical method M1, whereas the proposed method M3 presents errors reduced to at least one-third of the number presented by the classical method.
3.2 Testing using a signal having two spectral components
 A set of synthetic signals from a sinusoidal signal of 8 units amplitude and 0.9 Hz frequency was used, as was a sinusoidal signal of 3 units amplitude, for which the frequency was varied between 0.3 and 20 Hz (Figure 3). For each signal, the characteristic frequency and the characteristic period were determined by the three methods, and the absolute errors were then compared to the reference (parameters imposed on the signal synthesis) and plotted in Figure 3. Within this test for all methods, the errors increase with decreasing frequency and increasing period. The M2 method presents almost twice as many errors as the classical method M1, whereas the errors of the proposed method M3 were reduced to at least one-third of the number presented by the classical method.
[image: Six plots show frequency and time domain data. The left column presents frequency against magnitude, labeled M1 to M3, with varying decay patterns. The right column presents time against amplitude, showing corresponding oscillations for M1 to M3. All plots feature red lines on a grid background.]FIGURE 3 | Absolute error graph of the three compared methods, in frequency-domain (left) and time-domain (right) calculations, for a multicomponent signal with two spectra.
3.3 Testing using a signal having three spectral components
A set of synthetic signals from a sinusoidal signal of 8 units amplitude and 0.9 Hz frequency, a sinusoidal signal of 2.7 units amplitude and 1.3 Hz frequency, and a sinusoidal signal of 3 units amplitude, for which the frequency was varied between 0.3 and 20 Hz, was used (Figure 4). Similarly, the frequencies and characteristic periods were calculated using the three methods. Comparing the absolute errors from Figures 3, 4 in the corresponding domain, it is found that there is no change in the ratio between the errors of the three methods with an increase in the number of harmonics. This asserts that the proposed method leads to a reduced standard deviation compared to the classical method, as well as for multicomponent waveforms.
[image: Graphs showing frequency and time data labeled M1, M2, and M3. Left side graphs display frequency responses from 0 to 50 MHz with varying amplitudes. Right side graphs show corresponding time domain signals with varying peaks and oscillations.]FIGURE 4 | Absolute error graph of the three compared methods, in frequency-domain (left) and time-domain (right) calculations, for a multicomponent signal with three spectra.
3.4 Performance under noisy conditions
In seismic monitoring, accurate data are essential for understanding the behavior of structures under stress or seismic activity. Noise can interfere with measurements, leading to false readings or missed events. A high signal-to-noise ratio (SNR) ensures that seismic signals and vibrations are captured clearly, providing reliable data for analysis.
	• An SNR below 10 dB indicates poor signal quality, requiring significant noise reduction.
	• An SNR between 10 dB and 20 dB is useable but may need some filtering.
	• An SNR above 20 dB ensures reliable data with minimal noise interference.

A sinusoidal signal of 3V amplitude was used for the comparative evaluation of methods M1 and M3 in the presence of noise, over which an additional white noise of 1V amplitude was added, as represented in Figure 5. For this case, the signal/noise ratio is 9.5 dB.
[image: Graph depicting displacement of a running child over time. The x-axis represents time in seconds, and the y-axis shows displacement in meters. Data points form oscillating red vertical bars indicating variability in displacement.]FIGURE 5 | Sinusoidal signal summed with white noise.
FFT performs averaging operations in calculation by its nature. Moreover, the proposed method M3 uses only the distinct peaks obtained after zero padding. Considering the fact that the time-domain energy of the noise is distributed in frequency over the entire spectrum, M3 obtains superior results to the M1 method in the presence of high noise. The results of applying FFT on the signal with noise after zero padding are represented in Figure 6.
[image: Graph showing amplitude versus frequency. A significant peak labeled "signal amplitude" is at around 20 Hz, while a smaller peak labeled "noise" is at around 130 Hz.]FIGURE 6 | Applying FFT to a signal with noise after zero padding.
Figure 7 presents a comparative analysis of the absolute error in determining the τc parameter for a sinusoidal signal frequency variation of up to 20 Hz.
[image: Line graph showing two red lines labeled M1 and M3 against a time axis in seconds. M1 ascends sharply, indicating increasing noise absorption, while M3 remains nearly flat, suggesting minimal change.]FIGURE 7 | Absolute error comparison for M1 and M3 applied on a signal with a frequency up to 20 Hz.
3.5 Standard deviation evaluation
A comparison was made between the classical method and the proposed method, subjected to the dispersion of the values of the characteristic period of an earthquake when several stations that simultaneously record an event are considered. Thus, the average value of the characteristic period and the standard deviation were calculated for a given earthquake characterized by the seismic waves recorded at N different stations. This reasoning was applied to the vertical waves of ten earthquakes that occurred in 2021, 2022, and 2023, with the main parameters listed in Table 1, whose records at 200 Hz were taken from the ESM Database [35].
TABLE 1 | Standard deviation of the seismic characteristic period calculated with the time-domain method (M1) and the proposed method (M3).
[image: Table presenting seismic event data including date, magnitude, maximum distance (Dmax), and number of stations. It compares classic and proposed methods with mean, standard deviation, and specific values for seismic readings. Magnitude ranges from 4.1 to 7.8, with dates from 2020 to 2023. Dmax varies from 113 to 620 kilometers, and the number of stations ranges from 7 to 40. Classic method mean values and proposed method results are detailed.]Dmax represents the distance between the epicenter and the farthest station from which the recording of the considered earthquake was used. N is the number of stations from which records of a certain earthquake were taken. The average characteristic period was calculated as shown in Equation 6:
[image: Equation showing tau sub c equals the sum from i equals one to N of tau sub c i divided by N, labeled equation six.]
The standard deviation was determined using Equation 7:
[image: Equation showing the sample standard deviation of \( \tau_c \), denoted as \( s(\tau_c) \), equals the square root of the sum of squared differences between \( \tau_c \) and \( \tau_{c,\text{avg}} \), divided by \( N-1 \), where \( N \) is the sample size.]
The results in Table 1 show that using the proposed method (M3) leads to a smaller dispersion for each earthquake than the classic method (M1).
Accuracy of EEWS alerts. It is not yet possible to absolutely and rapidly determine the final effects of an earthquake rupture based on the data recorded at the beginning of the earthquake. Hence, EEWS seldom provide false alarms or miss alerts [36]. A false alarm arises when parameter estimation exceeds the alert threshold, although the ground movement after the completed rupture does not reach the evaluated effect. Similarly, a missed alert arises when parameter estimation does not reach the alert threshold, although the ground movement after the completed rupture exceeds the evaluated effect [37]. Even if it is considered that EEWS can perfectly determine the average value of ground motion, the accuracy of EEWS is determined by the variation from the average value of the ground motion metrics that the EEW system uses to evaluate ground motion [38]. Under these conditions, if two methods for evaluating ground motion metrics are considered to have the same mean value for an earthquake but different standard deviations s1 and s2, as shown in Figure 8, the number of false alarms, given by the area of the shaded surface, is higher for the higher standard deviation. It results in one of the major advantages of using the proposed method (M3) instead of the classic one (M1).
[image: Two side-by-side graphs illustrate false alerts in relation to a threshold. Both graphs show a red bell curve representing data distribution. The left graph has a threshold closer to the mean, resulting in fewer false alerts. The right graph places the threshold further from the mean, leading to an increased area indicating more false alerts. The mean is marked on both graphs.]FIGURE 8 | Cause–effect relationship between EEW false alarms, threshold values, and standard deviations.
4 DISCUSSION
The proposed method was tested to determine the characteristic period by calculating the characteristic frequency from the frequency spectrum of the signal. Testing was carried out in two ways: by simulation and by calculation of real P-wave signals obtained from earthquake recordings.
4.1 Testing the method by simulation
Synthesized signals with precisely known frequency/periods were used for testing. For these signals, the frequency/period was calculated using the classical method M1 from the time domain, which uses the ratio between speed and displacement; the method M2 based on Equation 4, which is derived directly from the classical method by correspondence in frequency; and the proposed method, M3.
Method M1 provides results in terms of time, and M2 and M3 provide results in terms of frequency. To make comparisons from the point of view of absolute errors both as characteristic period and characteristic frequency, the characteristic period obtained by M1 was converted into characteristic frequency, and the characteristic frequencies obtained by M2 and M3 were converted into characteristic periods.
Tests were carried out with pure sinusoidal signals and with sinusoidal signals with harmonics, and graphs of the absolute errors obtained for the three methods were plotted. The following observations were made:
	• Switching to the frequency domain (M2) did not provide better results than the classical method.
	• The application of the M3 method leads to a reduction in the relative errors for all test variants with synthesized signals, regardless of the number or frequency values of the harmonics.
	• Because P-wave sequences are limited to 3 s, signals with frequencies below 0.3 Hz or periods of more than 3 s will contain less than one period of the useful signal.

Thus, for all methods, the errors increase at low frequencies and implicitly at long periods and represent the area where saturation occurs for large earthquakes.
4.2 Testing the method with real P waves
Because this work refers to a method of estimating the characteristic period of the P wave of earthquakes, testing with real P waves was carried out only for the purpose of estimating the period and validating the simulation testing. Forecasting the magnitude based on the P wave is dependent on the soil structure in the direction of earthquake propagation from the epicenter to the seismic station where the wave is recorded, which is geophysically dependent. For the test, 290 seismic recordings from 10 different earthquakes recorded at different stations were used. For each recording, the characteristic period was determined using M1 and M3. The periods were grouped by the ten earthquake events, and the average value and standard deviation were calculated for each event. As shown in Table 1, the standard deviation calculated for the proposed method has lower values than the classical method of up to 6.3 Mw, corresponding to a characteristic period of 1.30 s, with no other specific conditions where the performance differs. For earthquakes above this value, no improvements were observed compared to the classical method.
EEW systems use a threshold for both the characteristic period and maximum amplitude. For the characteristic period, the threshold was set to 1 s. The alarm is sent if the threshold imposed for the characteristic period is exceeded, along with the threshold for the maximum amplitude. Given that the EEW alarm is triggered for a threshold of 1 s corresponding to 5.5–5.7 Mw, which is the interval in which the proposed method provides a better standard deviation, we consider that this method can be used to increase the EEW performance.
5 CONCLUSION
Most earthquake early warning systems are used to predict the event magnitude and the peak ground acceleration parameters attained from the initial P waves recorded at close seismic stations. Commonly, the peak amplitudes of displacement, along with the characteristic period and integral of the squared velocity, are used in specific algorithms to compute the level of danger and the necessity for EEWS to trigger an emergency alarm. Estimating the characteristic period τc involves inputs such as velocity and acceleration from multiple P waves that are similarly recorded at several seismic stations. As τc increases with the magnitude of an earthquake and is independent of the distance between the earthquake epicenter and an observation station up to a few hundred kilometers away, it is a key factor in EWS regional seismic prediction.
The proposed method for calculating the characteristic period of the seismic P wave in the frequency domain has a lower standard deviation than the classical method. Tests carried out using synthetic signals, with a single tone or with harmonic content, reveal that the determination errors of the characteristic period are smaller when using this method. Statistical tests to evaluate the standard deviation, in which earthquake records from several stations were interpreted, also revealed the superior behavior of the proposed method up to 6.3 Mw, with direct consequences in reducing the number of false alarms. Thus, it is suited for EEWS systems that use the τc parameter in alarm decision algorithms. In this context, we consider that this method can be used with good results in magnitude prediction applications based on the characteristic period of the initial wave.
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This study proposes a novel approach utilizing Conditional Generative Adversarial Networks (CGANs) to accelerate wideband acoustic state analysis, addressing the computational challenges in traditional Boundary Element Method (BEM) approaches. Traditional BEM-based acoustic analysis requires repeated computation of frequency-dependent system matrices across multiple frequencies, leading to significant computational costs. The asymmetry and full-rank nature of the BEM coefficient matrices further increase computational demands, particularly in large-scale problems. To overcome these challenges, this paper introduces a CGAN-based modeling framework that significantly reduces computation time while maintaining high predictive accuracy. The framework demonstrates exceptional adaptability when handling datasets with varying characteristics, effectively capturing underlying patterns within the data. Numerical experiments validate the effectiveness of the proposed method, highlighting its advantages in both accuracy and computational efficiency. This CGAN-based approach provides a promising alternative for efficient wideband acoustic analysis, significantly reducing computation time while ensuring accuracy.
Keywords: boundary element method, CGAN, sound barrier, acoustic scattering, machine learning

1 INTRODUCTION
In the field of acoustics, the simulation and analysis of sound wave propagation through complex structures [1, 2] are of paramount importance. Frequency sweep calculations [3] are crucial for understanding the behavior of sound waves across a range of frequencies, which is essential for designing effective acoustic barriers and noise reduction devices. Traditional computational methods typically employ the Finite Element Method (FEM) [4–6] or the Boundary Element Method (BEM) [7–10]. Among these, BEM [11]is widely recognized for its superior accuracy and simplicity in mesh generation [12–14], making it a preferred method for addressing acoustic problems. Its natural compliance with the Sommerfeld radiation condition at infinity further solidifies its utility in external acoustic analyses [15], [9].
Conventional sound pressure calculations are typically optimized for specific frequencies, limiting their application across broader frequency ranges. To address this limitation, broadband analysis [16] has been introduced, enabling the computation of results over a wider frequency spectrum. However, in broadband analysis [17–19], the frequency band is divided into segments, necessitating the recalculation of the coefficient matrix and boundary element system [20, 21], equations for each frequency. This process imposes a significant computational burden. Recent advancements in computational power and data-driven methods have spurred the development of neural networks [22–25], presenting promising opportunities for accelerating complex acoustic analyses. For example, [26] proposed a noise prediction model for wing structures, while [27] utilized Deep Neural Networks (DNN) to expedite uncertainty quantification in vibro-acoustic coupling analysis. These studies underscore the potential of neural networks in acoustic modeling and analysis.
This paper introduces an efficient method for accelerating frequency sweep calculations in broadband acoustics using Conditional Generative Adversarial Networks (CGANs) [28]. By employing CGANs, the computational overhead inherent in broadband analysis is significantly reduced. Generative Adversarial Networks (GANs) [29–32], initially proposed as a framework for training generative models, offer several advantages: eliminating the need for Markov chains, relying solely on backpropagation for gradient computation, avoiding inference during learning, and easily integrating various factors and interactions. However, a major limitation of GANs is their inability to control the modes of generated data in an unconditional model.
In contrast, Conditional Generative Adversarial Networks (CGANs) incorporate a conditioning variable, enabling control over the generative process and constraining outputs to a user-defined distribution. This enhancement improves model stability. The adversarial training mechanism in CGANs not only ensures accurate and realistic data generation but also uncovers the underlying relationships within the data [33–36]. These capabilities make CGANs particularly suitable for acoustic scattering problems characterized by complex distribution features. This study focuses on integrating CGANs with traditional numerical methods to predict the acoustic scattering characteristics of barriers, thereby reducing computational complexity, accelerating computations, and establishing new surrogate models for acoustic scattering analysis [37, 38].
Neural network-based prediction methods are widely adopted across various fields due to their dynamic capabilities [39–42]. These methods leverage learning algorithms that achieve high prediction accuracy by iterative training on simulated sound pressure and sensitivity data. A key advantage of this approach is its ability to construct highly nonlinear models [43–45], making it particularly effective for complex noise analysis. Additionally, these methods reduce computational workloads, provide high-precision predictions, and meet the demands of rapid analysis in engineering applications. As technology continues to advance, neural network-based methods have evolved rapidly, finding applications across numerous disciplines.
Significant research progress in machine learning-driven sound pressure [46] prediction has been made in recent years, both domestically and internationally. Applications such as robotic fish, noise barrier models, and submarines demonstrate the engineering relevance of these advancements. In 2023, [47] applied deep neural networks and Catmull-Clark subdivision surfaces [48, 49] to perform vibro-acoustic analysis on various geometric models, achieving sound pressure responses across multiple parameters and dimensions. That same year, [50] used Loop subdivision surfaces to model the robotic fish “Manta” and predicted the effects of geometric and material parameters on sound pressure.
To improve the efficiency of broadband optimization and apply CGANs to 2D acoustic problems, this paper presents the following contributions:
	[image: A blurred, indistinct black circle.] Development of a CGAN-based network for predicting data, such as sound pressure.
	[image: A simple black circle on a white background.] Validation of the CGAN network’s performance through an infinitely long rigid model and an acoustic barrier model.

The structure of this paper is as follows: Section 2 outlines the boundary element integral equations, while Section 3 details the theory of CGAN networks and their loss functions. Section 4.1 validates the accuracy and efficiency of CGAN predictions using the infinitely long rigid cylinder model, and Section 4.2 demonstrates the feasibility of CGAN networks as surrogate models for acoustic scattering analysis through an acoustic barrier model.
2 ACOUSTIC BOUNDARY ELEMENT METHOD
Consider the Helmholtz equation for a 2D acoustic problem, given as Equation 1.
[image: Partial differential equation shows the Laplacian of \(P(x)\) plus \(K^2 P(x)\) equals zero, for all \(x\) in the domain \(\Omega\). Equation is labeled as (1).]
The Helmholtz half-space problem can be represented by the following BIE and normal derivative boundary integral equation (HBIE).
[image: Mathematical equation involving integrals and functions: \(C(x)p(x) + \int_S F(x,y)p(y)ds(y) = \int_{\bar{S}} G(x,y)q(y)ds(y) + p_{\text{inc}}(x)\).]
and
[image: Mathematical equation displayed as \( C(x)q(x) + \int_{S} H(x, y) \rho(y) \, dS(y) = \int_{S} K(x, y) q(y) \, dS(y) + \frac{\partial \rho_{\text{inc}}(x)}{\partial n(x)} \), labeled as equation (3).]
where [image: Please upload the image or provide a URL, and I will generate the alt text for you.] signifies the field point, [image: If you would like me to generate alternate text, please upload the image or provide its URL.] denotes the source point, and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the normal derivative of the sound pressure [image: It seems there was an error in your request. Please upload the image or provide a URL, and I will help generate the alternate text for you.]: [image: The mathematical expression depicts the function q of x as the partial derivative of p of x with respect to n of x.]. When [image: If you could please upload the image or provide a URL to it, I would be happy to help you with the alternate text.] is located on a border that is smooth [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Mathematical expression displaying \( C(x) = 1/2 \).]. Acoustic pressure incident at position [image: If you'd like me to generate alt text, please upload the image or provide a URL.] is given by [image: Mathematical expression depicting the function \( p_{\text{inc}}(\mathbf{x}) \).]. Green’s function [image: The expression "G(x, y)" represents a mathematical function with variables x and y.] and its derivative in Equation 2 and Equation 3 are presented as follows
[image: Mathematical functions are displayed, including equations for \(G(x, y)\), \(F(x, y)\), \(K(x, y)\), and \(H(x, y)\). They involve Bessel functions of the second kind, denoted by \(H_0^{(1)}(kr)\) and \(H_1^{(1)}(kr)\), and partial derivatives with respect to \(r\), \(x\), and \(y\).]
where the [image: Please upload the image or provide a URL so I can generate the alternate text for it.]th order first kind Hankel function is indicated by [image: Mathematical expression showing \( H_n^{(1)} \) with a subscript \( n \) and a superscript \( (1) \).], [image: Please upload the image you would like me to generate alternate text for.] denotes by the wave number, [image: The equation shows "i equals the square root of negative one," representing the imaginary unit in mathematics.], [image: The image shows the mathematical symbol "n" with a subscript "j", commonly used to represent an indexed variable in mathematical expressions.] is the Cartesian component of [image: Mathematical expression displaying "n" in function notation with "x" in parentheses: \( n(x) \).] or [image: The image displays a mathematical expression, "n(y)", where "n" is a function or variable and "y" is the argument or variable within the parentheses.] and the distance between the field and source locations is represented by the formula [image: Equation displaying the formula for \( r \), where \( r \) equals the absolute value of the difference between \( x \) and \( y \).].
For exterior acoustic problems, using either Equation 2 or Equation 3 alone can lead to non-uniqueness of the solution at certain imaginary frequencies. According to the Burton-Miller idea, a linear combination of Equation2 and Equation 3 can effectively resolve this issue. The Burton-Miller formulation is expressed as follows
[image: Mathematical equation involving integration over a surface S. It includes functions C, F, G, H, K with variables x and y, and terms like p(x), q(x), p(y), q(y). Constants a and α, as well as the differential expression ∂p_inc(x)/∂n(x), are present. The equation relates these components and is labeled as equation (5).]
in which [image: Please upload the image you would like me to generate alternate text for.] represents the coupling parameter: defined as [image: Mathematical equation showing alpha equals i divided by k.] where [image: It appears you pasted text instead of an image. Please upload the image file or provide a URL to generate alternate text.] and [image: The image shows the mathematical expression alpha equals i, where alpha is represented by the Greek letter and i denotes the imaginary unit.] in other cases.
By discretizing the structural boundary into several elements using constant elements and introducing the coefficient matrix, Equation 5 can be reformulated as follows
[image: Equation showing H sub p minus G sub d equals p sub c raised to the power of nc divided by r, numbered six in parentheses.]
where [image: Please upload the image so I can generate accurate alternative text for it.] and [image: Mathematical expression showing \( G \in \mathbb{C}^{N \times N} \), indicating that G is a matrix of size N by N with complex number entries.] ([image: Please upload the image or provide a URL so I can generate the alternate text for you.] indicates the number of degrees of freedom.) are the coefficient matrices. They are asymmetric, fully populated, and frequency-related. The column vectors [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL if available. If you have any additional context or a caption, feel free to include that as well.] and [image: Please upload the image or provide a URL, and I will generate the alt text for you.], respectively, represent the sound pressure and the acoustic flux at the collocation locations. [image: Mathematical notation showing "p subscript f" followed by "inc" in superscript, suggesting an increment or increase related to the variable p with subscript f.] is the vector of the incident wave. To determine the sound pressure values at the boundary surface nodes, Equation 6 needs to be solved. Subsequently, the sound pressure can be computed at any point within the acoustic domain by using Equation 5 with [image: I can't see the image you are referring to. Please upload the image or provide a URL so I can help generate the alt text.] and [image: The equation \( C(x) = 1 \) is depicted, indicating a constant function where the output is always equal to one regardless of the input \( x \).].
Its sound pressure, [image: Stylized lowercase letter "p" followed by a subscript lowercase "f," presented in a serif font.], can be written as follows if the computation takes into account the external acoustic field.
[image: Equation representing the formula for \( p_f \) which equals \(\lVert H p - G q \rVert\) plus \( p_f^{inc} \), denoted as equation (7).]
where the matrices [image: It seems there's an issue with the image upload. Please try uploading your image again, and I will help create the alternate text for you.] and [image: I can't see the image you're referring to. Could you please upload it or provide a URL? If you need guidance on how to upload an image, let me know!] as well as the vector [image: Mathematical expression showing "p sub f superscript inc".] are similar to those in Equation 6, except that the source point [image: Please upload the image or provide a URL for me to generate the appropriate alternate text.] is outside the structure domain.
2.1 BEM formulas for shape sensitivity analysis of acoustics
To derive the general formula for acoustic sensitivity analysis by the direct differentiation method, we first differentiate Equation 5 to obtain.
[image: Mathematical equation involving integrals and functions with variables \( x \) and \( y \). The equation includes terms with integrals of functions \( F(x, y) \), \( G(x, y) \), \( aH(x, y) \), and \( aK(x, y) \) multiplied by terms \( \tilde{p}(y) \), \( \tilde{q}(y) \), \( \hat{p}(y) \), and \( \hat{q}(y) \). Also includes \( C(x) \), \( a\tilde{q}(x) \), \( \hat{p}_{\text{inc}}(x) \), and \( \frac{\partial \tilde{p}_{\text{inc}}}{\partial n}(x) \). Equation is labeled (8).]
The basic solution and its derivatives are determined by the coordinates of the field and source points. Therefore, under continuous shape modification, their values might be impacted by a change in a form design variable. In general, the sensitivities of the coordinates can be used to express [image: I'm unable to view or analyze the image you uploaded. Please try uploading it again or provide a description so I can help you create the alternate text.], [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL so I can generate the alternate text for it.], [image: Please upload the image or provide a URL to generate the alternate text.], [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image you would like me to generate alternate text for.].
[image: Mathematical equations featuring functions \( \tilde{G}(x,y) \), \( \tilde{F}(x,y) \), \( \tilde{K}(x,y) \), and \( \tilde{H}(x,y) \). Each equation includes terms with Bessel functions \( H_1^{(1)} \) and \( H_2^{(1)} \), variable \( r \), and indices \( i, j \). The equations also include nested expressions with summations and products of functions \( n_i(x) \), \( n_j(y) \), and their derivatives. A section is labeled as equation (9).]
where Equations 10,  11 express the details of Equations 9.
[image: Equation with variables and symbols: \( z = r_{ij} ( \hat{y}_{j} - \hat{x}_{i} ) \), labeled as equation (10).]
[image: Mathematical equation showing \(r_{x} n_{x}(y) + r_{y} n_{y}(y) = \frac{(\hat{r} - x_{k}) n(y) - r \hat{r} n(y)}{r} + r_{y} n_{y}(y)\) with reference number eleven in parentheses.]
where [image: Please upload the image or provide a URL for me to generate the alt text.] indicates differentiation concerning the design variables. Once the form design variable has fully parameterized the border of the studied domain, [image: Vector \(\dot{\mathbf{x}}_j\) with a dot notation indicating differentiation with respect to time.] and [image: It seems there was a mix-up with displaying the image. Please upload the image or provide a URL so I can help generate the alternate text for it.] will be assessed. [image: Mathematical expression displaying a lowercase i subscript l followed by a function of y in parentheses.] and [image: Mathematical expression featuring a stylized "d" with a hat accent, followed by "(y)" inside parentheses.] can be written as Equations 12,  13
[image: Mathematical expression depicting a function \( y_n(y) \) equal to \(-y_{n,n'}(y) + y_{n,m'}(y) n_m(y) n_1(y)\), labeled as equation (12).]
and
[image: A mathematical equation is presented: \( dS(y) = [y_{\bot} - y_{\bot, f}(y)]/n_{r}(y) \, dS(y) \), identified as equation number thirteen.]
where the partial derivatives concerning the coordinate component are indicated by an index following a comma, such as [image: Mathematical equation showing the derivative \(\dot{y}_{j,m}\) equals the partial derivative of \(\dot{y}_{j}\) with respect to \(y_{m}\).].
The following matrix-form linear algebraic equations are obtained by discretizing Equation 8 using the constant boundary element and gathering the equations for each collocation point.
[image: Mathematical formula depicted: Hp plus Hp minus Gq minus Gq equals p_inc, labeled as equation fourteen.]
where [image: Sure, please upload the image you'd like me to describe.] and [image: Mathematical notation showing a symbol "G" with dot above, indicating it belongs to the complex vector space of N by N matrices.] (The number of degrees of freedom is indicated by [image: It looks like there is no image uploaded. Please try uploading the image again or provide a URL.].) are the coefficient matrices. They are fully populated, asymmetric, and dependent on frequency. The column vectors [image: Please upload the image or provide a URL for me to generate the alternate text. If you have a specific context or details you'd like me to include, feel free to share those as well.] and [image: It seems there was an issue with displaying the image. Please try uploading it again or provide a URL.] represent the sensitivity of the acoustic flux and the sound pressure, respectively. [image: Stylized text displaying the word "pinc" in lowercase, with a dot above the "p".] represents the sensitivity vector of incident waves.
To determine all the unknown boundary state values for the analysis of shape sensitivity, solve Equation 6 and use all the values at the boundaries and known boundary sensitivity values to solve Equation 14. By Equation 8, the value for any point [image: Please upload the image or provide a URL, and I will generate the alt text for you.] in the problem domain can be computed with [image: If you upload an image, I can help generate the alternate text for it. Please try uploading the image again.] and [image: Equation showing \( C(x) = 1 \) in bolded text, indicating a function \( C \) of \( x \) equaling one.]. In the end, the sensitivities of the objective function presented at certain computing points in the fluid domain concerning shape design variables could be calculated.
Since the Hankel function in Equation 4 and its derivative in Equation 9 depend on the wave number [image: It seems there is no image uploaded. Please try uploading the image again, and I will help generate alternative text for it.], Equation 6, Equation 7 and Equation 14 are all dependent on frequency. The computation of the system equation and coefficient matrix of the BEM for 2D acoustic state and sensitivity analysis at each discrete frequency point within a frequency band is necessary, which results in a significant computational cost for tackling multifrequency problems.
3 THEORY OF CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
3.1 Generate adversarial neural networks
The innovation of Generative Adversarial Networks (GANs) lies in their combination of deep learning and probability theory. They are made up of two rival neural networks that are capable of autonomous learning and are intended to use unsupervised learning to replicate the distribution of actual data [51, 52]. The generator and discriminator engage in an iterative training process that resembles a game, where the generator aims to produce data that closely resembles real data, while the discriminator continuously improves its ability to distinguish between real and generated data. Together, they form the fundamental architecture of GANs. The goal is to make the generated data as similar as possible to the characteristics of the actual data [53]. The generator aims to create data that closely resembles real data to deceive the discriminator, while the discriminator’s role is to distinguish between real data and the fake data produced by the generator. As they strive toward achieving a Nash equilibrium in game theory-where the produced data is indistinguishable from actual data-both networks are always learning and improving. Figure 1 displays the GAN’s process flowchart.
[image: Diagram of a Generative Adversarial Network (GAN) showing a process where noise is inputted into a generator to create generated data. This data is then compared with real data by a discriminator, which outputs a discrimination result. An arrow from the discriminator points back to the generator, indicating feedback.]FIGURE 1 | GAN network structure diagram.
The generator takes random noise as input and generates samples resembling the distribution of real data [54]. The discriminator receives either real data or fake data produced by the generator. When the input is real data, the discriminator outputs 1; when the input is generated data, it outputs 0. Both the discriminator’s and the generator’s capabilities are continually enhanced by iterative training, leading to a balanced state where the discriminator is unable to discriminate between the two input data categories. This indicates that the generator has successfully simulated the distribution of real data. The loss value of a GAN is closely tied to the loss values of both the generator and the discriminator, and its loss function can be expressed as Equation 15.
[image: A mathematical formula for generative adversarial networks (GANs), expressing the minimax game between the discriminator \(D\) and generator \(G\). It involves expectations over real data \(x\) and generated data \(z\), optimizing \(V(D,G)\).]
In this context, [image: Equation showing the probability distribution notation \( P_{\text{data}}(\cdot) \), representing the data probability function.] and [image: The image contains a mathematical expression: \( P_z(\cdot) \).] represent the distributions of the sample data and noise data, respectively. However, GANs still have a number of difficulties, though, such as non-synchronous training between the discriminator and generator, poor data accuracy, high sample variability, and trouble reaching a level of stability. The CGAN architecture is used in this study to overcome these constraints. A thorough overview of CGAN will be given in the sections that follow.
3.2 Conditional generation adversarial neural network
By adding conditional information, the Conditional Generative Adversarial Network (CGAN) [55] improves on the classic GAN architecture and successfully converts it from an unsupervised learning model to a model with supervised learning. CGAN constrains the data production process by adding conditional variables, which allows for the targeted and accurate generation of desired outputs. The CGAN’s design is quite similar to that of a typical GAN, as seen in Figure 2, but it incorporates extra conditional variables in the discriminator and generator. Because of this improvement, CGAN can function as a supervised, regulated network model.
[image: Diagram of a Generative Adversarial Network (GAN) showing noise input to a generator, which creates generated data. The discriminator assesses this against real data to produce a discrimination result. Conditional information influences both the generator and discriminator.]FIGURE 2 | CGAN network structure diagram.
In Equation 16, the CGAN’s goal function is shown, where conditional probability is introduced to form a constrained maximization-minimization function.
[image: Mathematical equation from a paper, representing the min-max game in Generative Adversarial Networks (GANs). It shows the objective function for a discriminator \( D \) and a generator \( G \), with terms for real data distribution \( p_{\text{data}} \) and generated data \( p_{z} \), aiming to maximize the discriminator's output on real data while minimizing it on generated data.]
After incorporating conditional variables, the discriminator and generator in CGAN are tasked with two key responsibilities: the discriminator must distinguish between real and generated data under specified conditions, while the generator aims to produce data that aligns with the real data distribution under those same conditions. Random noise and the associated conditional information are inputs to the generative model, generating samples that mimic the distribution of real data. Conversely, the discriminator receives real data, conditional information, and the generated sample [image: Mathematical expression showing \( G(y, z) \).] as input, outputting either 0 or 1 to classify the input as real or generated. Fundamentally, the discriminator functions as a binary classification model. This structured approach effectively addresses the limitations of GANs.
During the adversarial optimization process, the generator and discriminator continuously refine their performance, ultimately achieving a state of equilibrium where the discriminator can no longer differentiate between real and generated data. The training process for CGAN alternates between updating the generator and the discriminator, linking the overall loss function to the individual loss functions of both components. This relationship is represented in Equation 17:
[image: A mathematical equation representing the loss function for generative adversarial networks (GANs). It includes terms for the discriminator's output on real data and generated data, using expected values, logarithms, and functions denoted as \(D\), \(G\), and probability distributions \(p\).]
In this context, [image: I cannot see the image you're referencing. Please upload the image or provide more information so that I can generate the alternate text.] represents the real data, [image: Please provide the image or a URL so that I can generate the alternate text for it.] denotes the conditional information, and [image: Mathematical expression \( P_{\text{data}}(x, y) \) indicating a probability distribution function with variables \( x \) and \( y \).] indicates the distribution of the input data. The functions [image: It seems like there was a problem with the image upload. Please try uploading the image again, and feel free to include a caption for additional context.] and [image: It seems like there might be an issue with the image or link provided. Could you please try uploading the image again or sharing the link properly?] represent the outputs of the discriminator [image: It seems there's no image uploaded. Please try uploading the image again or provide a URL, and I'll assist you with the alt text. If you have a caption or extra context, feel free to include that too.] and the generator [image: It seems there was a problem with uploading the image. Please try again by clicking the "Upload" button, or provide a URL to the image if available.], respectively, while [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for it.] denotes the random noise. The loss functions for [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: To generate alt text, please upload the image you want described or provide a URL to the image.] can be expressed as Equation 18 and Equation 19:
[image: Mathematical equation related to a loss function \(L_D\) used in machine learning models, specifically generative adversarial networks (GANs). It includes expected values and logarithms involving a discriminator \(D\) and generator \(G\), with variables \(x\), \(y\), and \(z\).]
[image: Mathematical expression for the generator loss in a GAN, denoted as \(L_G\), is described. The equation includes expectations over inputs \(z\), \(y\), and \(p_{\text{data}}(y)\), with a logarithmic function involving discriminator \(D\) and generator \(G\).]
It is important to note that, due to its generative nature, CGAN has the ability to produce a wide range of data. This generated data also contributes to the training process of the network, which significantly reduces the amount of data required for modeling. As a result, the CGAN network is well-suited to address the issues examined in this paper. Compared to other neural networks, CGAN can be applied to small-scale data problems. However, the training time is slightly longer than that of other neural network models.
4 NUMERICAL EXAMPLE
This section presents two computational examples to evaluate the performance of the proposed algorithm. The acoustic scattering data were generated using numerical simulations implemented in the Fortran 90 programming language. The dataset was subsequently divided into training and testing sets for the CGAN. Figure 3 illustrates the training process of the entire CGAN network, which can be systematically divided into two primary stages. All computations were conducted on a laptop equipped with 16 GB of RAM and an Intel(R) Core(TM) i5-9300H Central Processing Unit (CPU).
[image: Flowchart illustrating the process of training and optimizing a CGAN model. It starts with pre-processing, where dataset frequency undergoes min-max normalization to create standardized data. This data is fed into a CGAN model comprising a generator and discriminator, with noise added during training. The process continues with model structure adjustments and establishing a proxy model.]FIGURE 3 | CGAN network structure diagram.
4.1 Infinite-length rigid cylinder model
The acoustic scattering from a cylinder can be simplified to a two-dimensional problem by assuming that a plane wave beam strikes an infinitely rigid cylinder (see Figure 4). The plane wave propagates along the positive [image: Please provide the image or a URL to the image so I can generate the alternate text for it.]-axis. The cylinder is centered at (0 m, 0 m) with a radius of 1 m, and its circumference is discretized using 720 constant boundary elements. Additionally, the coordinates of the calculation points are (10 m, 0 m) (see Figure 4). Other parameters for the numerical simulation are provided in Table 1. The problem of acoustic scattering by an infinitely rigid cylinder has the analytical solution, which is represented as Equation 20.
[image: Mathematical formula involving p(r, θ) expressed as an infinite series summation. The series is from n equals zero to infinity and includes variables like ε, ν, k, and H^{(1)}_n, with cosine function cos(nθ). Equation number (20) is placed on the right.]
[image: Diagram showing an incident wave entering a circular area labeled as air with center at O(0,0). An inspection point is marked on the perimeter with polar coordinates r and θ. Axes x and y and normal vector n are indicated.]FIGURE 4 | The infinite cylinder serves as the design domain for sound scattering.
TABLE 1 | Parameters used in the simulations.
[image: Table displaying parameters for sound in air: density of air medium (ρf) is 1.21 kilograms per cubic meter, speed of sound (c_air) is 343 meters per second, and step size of frequency (f_step) is 1.0 Hertz.]In the above equation, [image: The mathematical expression shows epsilon subscript zero equals one.] for [image: Please upload the image or provide a URL for the image you would like me to generate alt text for.], and [image: Mathematical expression with epsilon subscript n equal to two.] otherwise, where [image: It seems there was an issue uploading the image. Please try again or provide a URL to the image. If you have a caption or context, it can also help in generating the alternate text.] represents the Neumann symbols. The expansion consists of 50 terms, and at the detection point, [image: Sure, please upload the image you'd like me to describe.]. To assess the accuracy of the proposed method, the relative error between the traditional Boundary Element Method (DBEM) and the analytical solution, and that between the CGAN-predicted results and the analytical solution, have been calculated. The relative error is determined using Equation 21:
[image: Relative error formula: Absolute value of the difference between \(X_{\text{output}}\) and \(X_{\text{analytical}}\) divided by the absolute value of \(X_{\text{analytical}}\), multiplied by one hundred percent. Equation labeled as 21.]
Here, [image: The expression "X sub output" appears, featuring the letter "X" followed by the subscript word "output".] represents the results obtained from DBEM-CGAN, and [image: Mathematical expression displaying "X" with the subscript "analytical" in italic font.] represents the results of the analytical solution. Before training the neural network, data preprocessing is essential. First, a portion of the dataset is randomly selected as the test set to evaluate the model post-training. Additionally, to enhance training efficiency and prediction accuracy by addressing the scale differences among features, data standardization is a critical step. Standardization not only improves the model’s adaptability across different datasets but also increases its sensitivity to feature variations, thereby improving its generalization capability. The standardization process can be implemented using Equation 22:
[image: Mathematical equation showing \( x' = \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \), labeled as equation 22.]
In this context, [image: Please upload the image or provide a URL, and I will help you generate the alternate text.] represents the value of a single data point, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the minimum value in the corresponding column, and [image: Certainly! Please provide the image or a URL for it. If there is any specific context or detail you have in mind, feel free to mention it.] is the maximum value in that column. After standardization, all features in the dataset are rescaled to a uniform range, ensuring that differences in feature magnitudes do not affect model training and prediction. The standardized dataset is then divided into two subsets: the training set, used to train the model, and the test set, employed to evaluate its performance. Following evaluation, the predicted outputs are post-processed as described in Equation 23.
[image: A mathematical equation is displayed: \( x = x' \times (x_{\text{max}} - x_{\text{min}}) + x_{\text{min}} \), labeled as equation 23.]
Based on the acquired dataset (sound pressure and sensitivity from 100Hz to 500 Hz), the data is input into the CGAN model for training. Figures 5, 6 present a simplified diagram of the CGAN structure, illustrating the discriminator’s and generator’s training procedure. [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image you want me to describe, or provide a URL for it.] represent the random noise inputs to the generator, and [image: Please upload the image or provide a URL so I can help generate the alternate text.] denotes the label information corresponding to the frequency information of the real data. The generated data [image: It seems like there was an issue with uploading the image. Could you please try uploading it again or provide a URL? If you have any additional context or a caption, feel free to share that as well.] symbolizes the sensitivity and sound pressure at the observing point. In the discriminator, [image: It appears there might be an issue with the image upload or display. Please ensure the image is correctly uploaded, or provide a URL if available. You can also add a caption for additional context if needed.] represents the real data, [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help with the alternate text.] represents the label information of the generated data corresponding to its frequency information, and [image: Please upload the image or provide a URL, and I will generate the alt text for you.] represents the discrimination result, stating if the data is fake or true.
[image: Diagram of a neural network with labeled layers. The input layer has three nodes labeled z1, z2, and y. Two hidden layers have alternating blue circles and yellow hexagons. The output layer features a single red node labeled x1. Connections between nodes are indicated by lines.]FIGURE 5 | The Generator’s network structure of CGAN.
[image: Diagram of a neural network with three layers: an input layer with three nodes, two hidden layers with blue circles and yellow hexagons, and an output layer with a single red circle. The layers are interconnected by lines representing connections between nodes.]FIGURE 6 | The Discriminator’s network structure of CGAN.
For the tasks of sound pressure and sensitivity prediction, these can be considered a regression problem. Thus, the mean squared error (MSE) function is employed as the loss function, as shown in Equation 24. Since the discriminator operates as a binary classifier, the Sigmoid function is used as the activation function. To ensure balanced performance between the generator and discriminator, the same activation function is applied to both. Additionally, the parameter dimensions are kept within a compact range to enhance the model’s efficiency.
Figure 7 illustrates the variation in the generator’s training loss under different learning rates and optimizers, while Figure 8 demonstrates the impact of the number of hidden layers on the training loss.
[image: Formula for Mean Squared Error (MSE) shown as MSE equals one over n times the sum from i equals one to n of the squared difference between y-hat sub i and y sub i.]
[image: Two line graphs compare loss over iterations. Graph (a) shows different learning rates: 0.05, 0.005, and 0.0005. Graph (b) displays results for 1, 2, and 4 hidden layers. The x-axis represents iterations, while the y-axis represents loss. Loss reduces more effectively with smaller learning rates and more hidden layers.]FIGURE 7 | Training loss varies with different hyperparameters: (a) Different learning rates; (b) Different number of hidden layers.
[image: Line graph comparing loss over iterations for Adam and SGD optimization algorithms. The x-axis represents iterations from 0 to 1500, while the y-axis shows loss values from 0.00 to 0.07. The Adam algorithm shows a rapid decrease in loss, stabilizing near zero, while the SGD displays fluctuating loss throughout.]FIGURE 8 | Training loss varies with different optimizers.
As the learning rate decreases, the model loss decreases. When the learning rates are set to 0.005 and 0.0005, the losses are similar, but the model accuracy is higher at a learning rate of 0.0005. Furthermore, when comparing different activation functions, Adam significantly outperforms SGD. The effect of varying the number of hidden layers was tested, and by comparing the loss to actual results, it was determined that a configuration with four hidden layers yields the best performance. Finally, Table 2 displays the CGAN model’s network framework configuration, with the detailed configuration parameters provided in Table 3.
TABLE 2 | CGAN’s network architecture and training parameter configurations.
[image: Table comparing specifications of two neural networks: Generator and Discriminator. Both have 4 hidden layers, use MSE loss function, Sigmoid activation function, and Adam optimizer with a learning rate of 0.0005.]TABLE 3 | Development environment.
[image: Chart displaying system specifications: Operating system is Windows 11, Framework is TensorFlow 2.6.0, Language is Python 3.7, Memory is 16 GB, and GPU is NVIDIA GeForce GTX 1650.]To evaluate the predictive accuracy of the CGAN network, the classical infinite-length rigid cylinder model was selected as the benchmark. By splitting the data, a portion is selected as the test set, while the remaining data is used as the training set for training. The total number of sound pressure and sensitivity data is 401, with 10% of the dataset (i.e., 40 data points) selected as the test set, and the remaining data used as the training set. Figure 9a presents the sound pressure prediction results on the test dataset, while Figure 9b provides a comparative analysis of sensitivity predictions on the test dataset. In this context, Unknown Conditions refers to the test set, as the data patterns in the test set are unknown to the trained model. The results demonstrate that the CGAN model consistently achieves a high level of agreement with analytical solutions in both sound pressure predictions and sensitivity analyses. This indicates that the CGAN model effectively captures the underlying patterns within the data, even under unknown operating conditions, showcasing exceptional predictive accuracy and reliability. In addition, the sound pressure sensitivities were calculated using both the DBEM method and the CGAN model, with the results compared to the analytical solution, as shown in Figure 10. The figure clearly demonstrates that the CGAN model significantly outperforms the DBEM method in terms of accuracy, producing predictions that exhibit neither oscillatory behavior nor spurious frequency points. Furthermore, the CGAN model offers a substantial advantage in computational efficiency over the DBEM method. A detailed comparison of the results and corresponding computation times is provided in Tables 4, 5.
[image: Two scatter plots comparing different methods against test frequency in Hertz. Plot (a) shows Specific PE values, with the x-axis as test frequency and the y-axis as Specific PE, including data points for Analytical, DBEM, and CGAN. Plot (b) depicts Sensitivity, with the x-axis as test frequency and the y-axis as Sensitivity, also comparing Analytical, DBEM, and CGAN data points.]FIGURE 9 | Comparison of CGAN Prediction Results Under Unknown Conditions (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.
[image: Two line graphs compare analytical, DBEM, and CGAN methods. Graph (a) shows species percentage versus frequency (hertz) ranging from 350 to 500. Graph (b) presents sensitivity versus the same frequency range. Both graphs depict overlapping lines for each method, indicating similar results.]FIGURE 10 | Comparison Between CGAN and DBEM(Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.
TABLE 4 | Comparison of DBEM and CGAN results across different Frequencies (Sound pressure).
[image: Table comparing sound pressure and error percentages across frequencies for DBEM and CGAN models against analytical values. Sound pressure columns show similar values, while error percentages vary slightly. Computation times are 189.2725 seconds for DBEM and for CGAN 1.3589 seconds for prediction and 227.003 seconds for training.]TABLE 5 | Comparison of DBEM and CGAN results across different Frequencies (Sensitivity).
[image: Table comparing sensitivity and error (%) across various frequencies using DBEM and CGAN methods versus analytical results. DBEM shows consistently higher computation time at 378.1168 seconds, while CGAN has separate prediction and training times of 1.5467 and 215.483 seconds, respectively. Sensitivity values and errors are nearly identical between DBEM and CGAN across all frequencies.]The data in the table indicate that DBEM and CGAN exhibit similar error performance. While DBEM demonstrates a slight edge in accuracy, CGAN significantly surpasses DBEM in computational time, achieving a notable reduction in the time required. This underscores the clear superiority of CGAN in computational efficiency. Thus, despite the minimal difference in error, CGAN offers a substantial advantage in time efficiency, making it the preferred choice for applications where computational speed is paramount.
4.2 Sound barrier model
As urbanization accelerates and the use of transportation vehicles becomes more widespread, traffic noise has become an increasingly severe issue, causing numerous inconveniences and hazards to peopleâ€™s daily lives and work. Consequently, mitigating the harm caused by traffic noise is essential. Sound barriers are widely used in acoustic and noise control engineering as structures or devices designed to block or reduce the transmission of sound waves.
To evaluate the effectiveness of sound barriers, the accuracy and efficiency of the CGAN model were first validated using the infinitely long rigid cylinder model. In this section, a more complex noise barrier model is considered to comprehensively assess the CGAN modelâ€™s performance in terms of both precision and computational efficiency. The sound pressure and related data are generated from a plane wave incident parallel to the x-axis, which is scattered by the sound barrier. The sound barrier model is discretized into 1,118 elements, and the sound pressure at the point (12 m, 2 m) is calculated using the DBEM. From the obtained sound pressure and sensitivity data, the frequency range of 100â€”500 Hz is selected as the training dataset for the CGAN model. The sound barrier model is illustrated in Figure 11.
[image: Graph depicting an incident wave approaching a structure with coordinates labeled as (3,0) and (3.3,0). The structure has vertical and curved sections with heights marked as 3.27 meters and 3 meters, with an additional height of 0.27 meters. An inspection point is indicated at coordinates (12,2) on the x-y axis.]FIGURE 11 | The design domain of the semi-curved sound barrier model.
The data processing method and the relative error calculation are consistent with those used in the infinitely long rigid cylinder model. The prediction results on the predefined test set are shown in Figure 12. As illustrated in the figure, the sound pressure and sensitivity predicted by the CGAN model exhibit the high degrees of consistency with the actual data, demonstrating excellent agreement. These findings highlight the generalization capability of the CGAN model when applied to unseen datasets. Furthermore, a comparative analysis between DBEM and CGAN was conducted within the frequency range of 200â€”400 Hz, with the results presented in Figure 13.
[image: Two scatter plots labeled (a) and (b) compare DBEM and CGAN data across test frequencies from 0 to 500 Hz. Plot (a) shows S-parameter (p11) variances, while plot (b) depicts sensitivity differences. Each plot displays blue and orange data points for DBEM and CGAN, respectively.]FIGURE 12 | Comparison of CGANâ€™s Prediction Results on the Test Set with DBEM Results (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.
[image: Two line graphs compare DBEM and CGAN data across frequency. Graph (a) shows spikes in dB against frequency, with both lines closely aligned. Graph (b) depicts sensitivity variations, where both lines again follow a similar pattern.]FIGURE 13 | Comparison of CGANâ€™s Prediction Results with DBEM Results (Training set:361, Test set: 40): (a) Sound Pressure; (b) Sensitivity.
Table 6 presents the relative errors for several test points. It can be observed that all relative errors fall within a narrow range, with the maximum error not exceeding 3.62%. Unlike the infinite-length rigid cylinder model, the sound barrier model lacks analytical solutions and features more complex geometrical configurations. As a result, both DBEM and CGAN exhibit certain deviations. Nevertheless, the overall error remains within a small range, further validating the CGAN model’s ability to accurately learn patterns embedded in the data and deliver high-precision predictions.
TABLE 6 | CGAN testing input parameters and results.
[image: Table comparing sound pressure and sensitivity values with respective CGAN predictions and relative errors. It includes columns for sound pressure, CGAN predictions, and relative errors in percentages. Sensitivity values and their corresponding CGAN predictions along with relative errors are also displayed.]In particular, the CGAN model demonstrates exceptional consistency and accuracy in sound pressure predictions. Figure 14 illustrates the relative error between the predicted values of the CGAN model and the calculated values of DBEM under different model configurations. For sensitivity predictions, although the data is inherently more complex and exhibits slightly higher errors compared to sound pressure, the CGAN model still maintains remarkably high prediction accuracy. This highlights the modelâ€™s capability to handle diverse data types while demonstrating robust performance and reliability. The regression model evaluation metrics were calculated using the specified formula, and the detailed statistical results are presented in Table 7.
[image: Two bar graphs compare relative errors of acoustic barriers and infinitely long rigid cylinders across test frequencies from zero to twenty hertz. Graph (a) shows a higher range of up to 2.50%, while graph (b) shows a range up to 0.25%. In both graphs, acoustic barriers are shown in orange and rigid cylinders in blue.]FIGURE 14 | The relative errors between DBEM and CGAN under different models: (a) Sound pressure; (b) Sensitivity.
TABLE 7 | Development environment.
[image: Table displaying statistical measures for Sound Pressure and Sensitivity. For Sound Pressure: RMSE is 0.00146, MAE is 0.000891, and R-squared is 0.998. For Sensitivity: RMSE is 0.00926, MAE is 0.00688, and R-squared is 0.997.]Overall, these results comprehensively highlight the CGAN model’s outstanding capabilities and exceptional performance in sound barrier data prediction, reaffirming its effectiveness in addressing complex computational challenges. In the face of more complex models in the future, DBEM will require more time. The accuracy of the CGAN model has been demonstrated through the numerical example. Therefore, when calculating other models, it is sufficient to use the DBEM method to compute a portion of the data, and the remaining data can be generated using CGAN, which significantly reduces the computation time compared to the DBEM method.
5 CONCLUSION
This paper proposes a method to enhance computational efficiency by utilizing the CGAN network for the rapid and accurate prediction of sound pressure and sensitivity:
	1. The integration of the Boundary Element Method (BEM) with CGAN is investigated to evaluate the applicability of CGAN in solving such problems.
	2. The predictive model developed through CGAN demonstrates a significant reduction in computation time, thereby improving the efficiency of sound scattering analysis.
	3. Adjustments to specific parameters and structures of CGAN have proven effective in addressing the regression challenges were encountered in this study.

Future research will aim to extend the application of CGAN to the structural optimization of sound barriers.
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Introduction: Elastic wave propagation in fluid-saturated porous media is of great significance in various fields. Based on the soil mechanics model of a two-phase medium, the reflection problem of an obliquely incident plane P1-wave at the free surface is systematically explored, which aims to reveal the physical mechanism of wave propagation in saturated semi-infinite space.Methods: The dispersion characteristic equations of body waves are obtained by using the Helmholtz decomposition method. The theoretical formulas of reflection coefficients and surface displacements are derived and verified for correctness by simplifying. Finally, numerical investigations are carried out on the variations of the displacement reflection coefficients and surface displacements with the incident angle for different boundary conditions, wave frequencies f, porosities n, Poisson’s ratios ν, and modulus ratios Ew/μ.Results: It is shown that the surface response of half-space is somewhat affected by the boundary conditions while little influenced by the wave frequency. It is also found that the effects of material properties on the surface response cannot be ignored.Discussion: These conclusions provide a theoretical basis for wave survey technology of seismic engineering and site seismic response analysis.Keywords: saturated two-phase medium, model of soil mechanics, dispersion equation, boundary conditions, reflection coefficients, surface displacement
1 INTRODUCTION
Elastic wave propagation in fluid-saturated porous media has been studied for many years. It is of theoretical and practical significance in various fields such as soil dynamics, geotechnical engineering, earthquake engineering, geophysics, acoustics, petroleum engineering, etc. The reflection of elastic waves in saturated two-phase media is one of the important branches. Due to the existence of pore water in the soil skeleton, the mechanical properties of two-phase media become very complex, which results in the problem of wave propagation being much more complicated than that of a single-phase medium [1, 2]. Therefore, when the seismic wave propagates to the free surface of two-phase media, it will show complex reflection characteristics.
It is well known that Biot first predicted the existence of three body waves in a two-phase medium, namely, the fast P1-wave, the slow P2-wave, and the S-wave. The three body waves are dispersed and attenuated, the speed and attenuation of which are related to the frequency and the properties of saturated soil materials [3, 4]. All these laid the foundation for the theoretical study of wave propagation in a fluid-saturated porous medium. After that, many scholars studied the various aspects of wave propagation in such medium. The P2-wave with strong dispersion and high attenuation characteristics was successively confirmed through experiments by Plona and Berryman in 1980 [5, 6]. Following the Biot model, different two-phase medium models, including the Zienkiewicz model [7, 8], the Men Fu-lu model [9–11], the model of soil mechanics [12], and the theory of mixture [13], were proposed by different researchers. Chen and Liao [14] compared the first four models in detail and pointed out the essential differences between them. They also theoretically explained that the soil mechanics model is a special case of the Biot model, which has the advantage of a clear physical meaning of modeling parameters. At the same time, more and more scholars used the Biot model to study the reflection of elastic waves at the boundary of the fluid-saturated medium. For example, Deresiewicz [15] deduced theoretical formulas for the reflection coefficient of plane waves incident on a free interface of a non-dissipative liquid-filled porous solid. Deresiewicz and Rice [16] derived analytical formulas for the reflection coefficients and reflection angles of body waves (P1-, P2-, and SV-waves) incident upon a free interface because of the dissipation. Xu et al. [17] presented analytical expressions of reflection coefficients when P1-wave incident obliquely at four kinds of plane interfaces of saturated soil (i.e., free drainable/undrainable boundary, fixed drainable/undrainable boundary) and analyzed the effect of incident frequency, incident angle, and interface conditions on reflection coefficients. Lin et al. [18–20] investigated the dynamic response (e.g., surface displacement, surface strain, rocking strains, and energy partitions) of a half-space saturated with inviscid fluid subjected to obliquely incident P1- or SV-wave in the case of free draining boundary, and he also adopted the linear porosity-modulus relation. Unlike Lin et al. [20], Rjoub [21, 22] presented the dynamic response (same as Lin et al., but without surface displacement) of a half-space saturated with viscous fluid, considering the oblique incidence of P1- and SV-waves. Tajuddin and Hussaini [23] studied the reflection of body waves at free permeable and impermeable boundaries and rigid permeable and impermeable boundaries. Xia et al. [24] developed the secular equation of the Rayleigh surface wave and discussed its dispersion characteristic in a poroelastic half-space. You [25] discussed the free-surface motion caused by incident P1- or SV- wave in drained or undrained boundary conditions based on the exact dynamic-stiffness matrix of half-space. Nie and Xu [26] deduced the wave field solutions by using the Wave Based Method and the boundary conditions (i.e., permeable and impermeable conditions) of saturated half-space when incident P- and SV-waves, and they also showed the effects of permeability coefficient, angle, and frequency on them. Yang [27] introduced the concept of homogeneous pore fluid into Biot’s theory to analyze the saturation effects of subsoil on ground motions when an inclined SV-wave incident on the free surface of a partially saturated half-space. Later, based on governing equations of a three-phase medium, Chen [28] explained that a special wave mode conversion occurred when the fast P1-wave incident at a certain angle on the nearly saturated soil. Zhou [29] investigated the dynamic response of P1- and SV- waves incident at the interface of partially saturated soil and discussed the effects of boundary conditions, water saturation, frequency, Poisson’s ratio, and modulus ratio (i.e., shear modulus of soil frame to bulk modulus of fluid) on it. Xue et al. [30] explored the phenomenon of wave mode conversion for a P1-wave incident on the surface of a partially saturated half-space, and the critical saturation degree and angle of wave mode conversion were found for a specific nearly saturated soil. Afterward, wave propagation in the semi-infinite space was further enriched to the reflection and refraction of waves at different interfaces [31–37] and extended to wave propagation in the distinct media [38–43].
Since Chinese scholar Men proposed the soil mechanics model, quite a few researchers have also used it to study the wave propagation characteristics in a two-phase medium from theoretical [44–50] and practical views [51–54]. Among them, it is worth mentioning that Chen and Men [52] and Cui [51] presented a new method to understand the mechanism of soil liquefaction. Chen [44] and Chen et al. [45] analyzed the near-field wave motions combing the transmitting boundary. Recently, Xiao et al. [49] investigated the propagation and attenuation characteristics of Rayleigh waves in ocean sites. A preliminary analysis of the wave propagation characteristics in the infinite saturated medium based on the model of soil mechanics has been conducted by Zhang et al. [50]. The results showed that the frequency and soil properties may have a significant influence on the velocity and attenuation coefficient of the three body waves. For this reason, these parameters are bound to affect the reflection of each wave incident upon a free plane boundary.
Among the existing literature, the velocity of plane P1-wave is the fastest, and the attenuation of it is slow in the saturated infinite space. Therefore, it is of great interest to study the propagation characteristic of P1-wave under different boundary conditions in a fluid-saturated half-space. However, it is rare to use the model of soil mechanics to study the propagation of elastic waves in the semi-infinite field. As mentioned above, the model of soil mechanics is introduced to discuss the reflection of P1-wave on the free surface of saturated two-phase media in this paper. By Fortran software, numerical analysis is conducted to study the effects of boundary drainage, wave frequency, porosity, Poisson’s ratio, and modulus ratio on the displacement reflection coefficients and surface displacements.
2 THE PROPAGATION THEORY OF ELASTIC WAVE BASED ON THE MODEL OF SOIL MECHANICS
2.1 The equations of motion
The model of soil mechanics for a fluid-saturated medium in which the liquid phase is assumed to be ideal, the solid phase is isotropic elastic, and the compression modulus of solid particles in point contact tends to infinity, can be expressed as [12, 44, 49, 50].
[image: Mathematical equations are shown involving variables and parameters like \(\mu\), \(\lambda\), \(p_f\), \(\rho\), \(\nabla\), \(\mathbf{u}\), \(\mathbf{U}\), \(\mathbf{i}\), \(B\), \(E_v\), all related to fluid dynamics. Equations involve vector operations and time derivatives, presented as equalities and expressions.]
Where, [image: A white equilateral triangle on a plain black background.] (=[image: Mathematical symbol for the Laplacian operator, represented by the nabla symbol followed by a superscript two.]) is the Laplace operator in the Cartesian Coordinate, [image: Please upload the image or provide a URL so I can help generate the alt text for it.] is the Hamiltonian operator. [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], and [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] denote the solid phase’s displacement, velocity, and acceleration vector, respectively. [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It appears there is no image uploaded or linked. Please provide an image or a URL to generate the appropriate alt text.] and [image: Capital letter "U" with an umlaut, a diacritical mark consisting of two dots placed over the letter.] represent the absolute displacement, velocity, and acceleration vector of the liquid phase separately. [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] are the classical Lame constants, which are functions of the Poisson’s ratio υ and the elastic modulus of the solid phase E, [image: Please upload the image you'd like me to generate the alternate text for.] = [image: Mathematical formula: \( \frac{E\nu}{(1+\nu)(1-2\nu)} \), where \( E \) is a variable and \( \nu \) represents another variable.] and [image: Please upload the image or provide a URL to generate the alt text.] = [image: The formula shows "E divided by 2 times the quantity of 1 plus v", where E represents a variable or constant and v is another variable.]. n is the porosity. [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can generate appropriate alt text for it.] are defined to describe the solid and liquid density per unit volume, in which [image: Please upload the image and I will help generate the alternate text for it.] = [image: Mathematical expression displaying \((1 - n) \rho_s\), where \(n\) is a variable and \(\rho_s\) is a symbol.] and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] = [image: Mathematical expression showing the product of \( n \), \( \rho \), and a subscript \( w \).], [image: It seems there was an error with the image upload. Please try uploading the image again, and I will assist you in creating alternate text.] and [image: Please upload the image or provide a URL, and I can help generate the alternate text for you.] are the solid and fluid mass densities separately. [image: Please upload the image or provide its URL so I can generate the alternate text for you.] is the true pore pressure. [image: It seems like the "image" you're referring to is mathematical notation. The expression \( E_W \) typically represents a variable or function in mathematics or physics. If you have an actual image to describe, please upload it or provide a URL.] refers to the bulk modulus of liquid. k (=[image: Mathematical expression showing "K over rho subscript w g" where "K" is a variable, "rho w" represents water density, and "g" represents gravitational acceleration.]) is the dynamic permeability coefficient of the solid skeleton, in which K (m/s) is the permeability coefficient that satisfies Darcy’s law, and g is the gravitation acceleration. [image: If you have an image you want me to create alt text for, please upload it or provide a URL.] represents the dissipation coefficient, which is a third-order diagonal matrix. [image: Bold, uppercase letter "B" in a serif font, enclosed in square brackets.] = [image: Mathematical expression depicting a diagonal matrix function, using variables b sub x, b sub y, and b sub z.], and [image: It looks like there wasn't an image uploaded. Please try uploading the image again, and I'll be happy to help with the alt text.] = [image: Please upload the image you'd like me to create alternate text for. If there's any specific context or details you want me to consider, feel free to include that as well.] = [image: It seems like there might've been an error when uploading the image. Please try uploading the image again and I’ll help generate the alt text for you.] = [image: Mathematical expression showing "n squared divided by k".] in the isotropic medium.
2.2 Solutions of the equations
Considering Helmholtz’s resolution, we introduce scalar potential functions ([image: Please upload the image or provide a URL, and I’ll create the alt text for you. If you have any specific context or details to include, feel free to add them.], [image: The symbol "ϕ" with a subscript "w" in a mathematical or scientific context.]) and vector potential functions ([image: The image shows the Greek letter psi followed by a subscript "s", presented in a stylized italic font.], [image: Please upload the image or provide its URL, and I will generate the alternate text for you.]) to describe the displacements of solid- and liquid-phase, which can be written as follows [11, 50, 55].
[image: Mathematical notation showing two equations: \( u = \nabla \phi_s + \nabla \times \psi_s \) and \( U = \nabla \phi_w + \nabla \times \psi_w \).]
Insertion of Equation 2 in Equation 1 yields the wave equation expressed by potential function, as can be shown in the following form [50].
[image: Equations related to fluid dynamics and thermodynamics, featuring variables such as ρ_f, Φ_s, λ, μ, ρ_j, ρ_2, ΔΦ_s, p_f, Φ_w, Ψ_s, μ, Ψ_w, n, p_f, B, v_s, and E_v.]
The in-plane wave problem in a fluid-saturated medium is a P-SV wave problem in the xoz plane. Assuming the displacements [image: Please upload the image you want me to generate alternate text for.] and [image: Please upload the image or provide a URL, and I will help generate the alternate text for you.] are independent of the coordinate y. The scalar potential functions [image: It seems there was an issue with displaying the image. Please try uploading the image file directly, and I will help generate the alternate text for it.] = [image: Mathematical expression featuring phi subscript s, with variables x, z, and t in parentheses.], and [image: It seems there might be an issue with displaying the image. Please upload the image file directly or provide a URL so that I can generate the alt text for you.] = [image: Mathematical notation displaying the function phi sub w, with variables x, z, and t in parentheses.] in the xoz plane. The vector potential functions [image: A mathematical symbol resembling a stylized Greek letter psi with a subscript "s" is shown. It likely represents a specific quantum state or a function in scientific notation.] =(0, [image: The notation represents the wave function denoted by psi subscript s as a function of the variables x, z, and t.],0), and [image: It seems there is no image attached. Please upload the image or provide a URL for assistance with generating alternate text.] =(0, [image: Mathematical notation for a function psi subscript w, with variables x, z, and t inside parentheses.],0). The components of solid-phase displacement ([image: It seems like there was an error with the image. Please try uploading it again or provide a URL. If there's additional context you want to include, feel free to add a caption.], [image: It appears that there might have been an error in your request. Please ensure you upload an image or provide a URL for the image, and I'll be happy to help you generate the alternate text.]) and the components of liquid-phase displacement ([image: The image displays a lowercase letter "u" with a subscript "x," typical in mathematical or scientific notation.], [image: A lowercase letter "z" is subscripted to the uppercase italic letter "U".]) can be written in the form of potential functions, as shown in Equations 4a, 4b; [1, 20]. The potential function expressions of normal stress ([image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]) and shear stress ([image: The Greek letter sigma with subscripts x and z, representing shear stress in mechanics.]) are written in Equation 4c by the plane strain character. From the fifth of Equation 3, the potential function expression of pore fluid pressure ([image: Please upload the image you would like me to generate alternate text for.]) can be given by the third of Equation 4c.
[image: System of equations indicating fluid velocities: \( u_x = \frac{\partial \phi_s}{\partial x_s} - \frac{\partial \psi_s}{\partial z} \) and \( u_z = \frac{\partial \phi_s}{\partial z} + \frac{\partial \psi_s}{\partial x_s} \). Equation labeled as \( (4a) \).]
[image: A mathematical equation set labeled as (4b). It contains two equations: U sub x equals partial derivative of theta sub w with respect to x minus partial derivative of psi sub w with respect to z. U sub z equals partial derivative of theta sub w with respect to z plus partial derivative of psi sub w with respect to x.]
[image: Equations defining stress components and pressure in a medium. Sigma_xx is a function of lambda, mu, partial derivatives of phi_s, and phi_w. Sigma_zz involves mu, partial derivatives of phi_s. Pressure is defined with n, E_w, and gradients of phi_s and phi_w.]
Assuming the plane harmonic wave solutions of the potential functions in the following forms [11].
[image: A set of equations describes wave functions with amplitudes and exponential terms, including \( \phi_s = A_s e^{i(\omega t - k_r r)} \), \( \phi_w = A_w e^{i(\omega t - k_r r)} \), \( \psi_s = B_s e^{i(\omega t - k_s r)} \), and \( \psi_w = B_w e^{i(\omega t - k_s r)} \). Equation labeled as (5).]
Where, [image: The image shows a mathematical variable denoted as "A" with a subscript "s".] and [image: It looks like you're referring to an image of a mathematical symbol, specifically a subscript notation. This typically represents the water activity symbol, "A" with a subscript "W". If you meant something else or have an image, please provide more details or upload the image.] are the potential function amplitudes of solid- and liquid-phases for P-wave, respectively. [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: A grayscale letter "B" followed by a subscript "W", representing a mathematical symbol or variable in black and white.] represent the potential function amplitudes of solid- and liquid-phases for S-wave separately. [image: Lowercase letter "k" followed by a subscript "p".] and [image: The image shows the lowercase italic letter "k" followed by the subscript "s".] denote the propagation directions of P- and S-waves (wave vector). [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: It looks like you've attempted to input an equation format. Could you please provide an image or describe its content for me to create appropriate alt text?] are the values of vectors ([image: The image shows the italic lowercase letter "k" followed by a subscript "p" in a serif font style.] and [image: The image shows the mathematical notation "k subscript s" in italic.]), with [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Mathematical expression of the variables \( k \) and \( s \) in italic font, positioned closely together to suggest a potential product or relation in a formula.] representing the wave numbers of P- and S-waves, respectively. [image: Please upload the image you'd like me to describe, and I'll generate the alternate text for you.] denotes the position vector. [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it is hosted online. If there's a caption or specific context, feel free to include that as well.] = [image: Mathematical expression showing the square root of negative one, which is represented by the imaginary unit 'i'.]. ω is the circular frequency of a wave.
Substituting Equation 5 into Equation 3, we can obtain the dispersion equations of P- and S-waves.
[image: A mathematical equation from fluid dynamics is shown. The equation features terms with variables like λ, μ, n, E_w, k_p, ω, ρ_1, ρ_2, p_2, and ib, arranged in a complex expression involving fractions, exponents, and products, all equated to zero. It is labeled as equation (6a).]
[image: Equation 6b displays: \(\left(\frac{i\beta \mu}{\omega \rho_2} - \frac{\mu}{\rho_1}\right)\left(\frac{k_s}{\omega}\right)^2 + 1 - \frac{i\beta}{\omega}\left(\frac{1}{\rho_1} + \frac{1}{\rho_2}\right) = 0\).]
It can be seen from Equations 6a, 6b that the velocities and attenuation coefficients for two kinds of compressional waves (P1- and P2- waves) and one shear wave (S- wave) in an unbounded saturated medium are calculated. All three body waves are dispersed and attenuated, which are related to the properties of medium and wave frequency.
3 REFLECTION OF P1-WAVE IN A SEMI-INFINITE SATURATED MEDIUM
The obliquely incident P1-wave at the free surface of a semi-infinite saturated medium is a free field problem and also an important part of the site response analysis. In this case, the stresses on the free surface are zero. The upper medium is air without density, and the lower medium is saturated soil. We now introduce a rectangular coordinate system, with x as the horizontal axis and z as the vertical axis. The z-axis points downward vertically, which is directed into the interior of the two-phase medium. The half-space is bounded by a horizontal plane (z = 0). The plane P1-wave with angular frequency ω is incident from the bottom to the free surface at an angle θIP. Then the reflected P1-, P2-, and SV-waves are generated in the saturated medium (i.e., z > 0), whose angles of reflection are θR1, θR2, and θRS. All the reflected waves travel at the incident wave frequency (ω). The geometry considered in this paper is shown in Figure 1.
[image: Diagram showing wave propagation in a two-phase medium above a ground surface. It illustrates angles of incidence and reflection for different seismic waves: P-wave, SV-wave, P₁-wave, and P₂-wave, each with respective angles θ₁ and θ₂.]FIGURE 1 | Fluid-saturated half-space subjected to an incident P1-wave.
According to Snell’s law, the relations between the angles of the reflected and incident waves are given by [55, 56].
[image: Equation showing V over sine of theta for multiple variables. \( \frac{V_{P1}}{\sin \theta_{P1}} = \frac{V_{P1}}{\sin \theta_{P11}} = \frac{V_{P2}}{\sin \theta_{P2}} = \frac{V_{s}}{\sin \theta_{s}} \). Equation number seven.]
Where, VP1, VP2, and VS are the wave velocities. As is shown in Equation 7, the reflection angles of each reflected wave can be determined when the wave velocity and incident angle are known. Moreover, the reflection angle (θR1) of the P1 wave is the same as its incident angle (θIP).
3.1 Potential functions of elastic wave
In the two-phase medium (i.e., the half-space z > 0), the incident P1-wave gives rise to reflected waves of all three types, i.e., P1-, P2-, and SV- waves. The expressions for solid- and liquid-phases potential functions of P-wave ([image: It seems you've included a symbol instead of an image. Please upload the image or provide a URL for it, and I can help generate the alt text.], [image: Greek letter phi (φ) with subscript "w" in a serif font.]) and SV-wave ([image: The image shows the Greek letter psi (ψ) with a subscript "s." The psi symbol is often used in various scientific and mathematical contexts.], [image: It seems there is no image attached. Please upload the image or provide a URL so I can generate alternate text for it.]) are shown in Equation 8; [27]. The plane harmonic solutions of potential functions for different waves are shown in Equations 9a-9d; [27].
[image: Mathematical equations showing expressions for various variables labeled with subscripts. The equations involve combinations of terms denoted by symbols with left and right superscripts, indicating different components or parameters. The set is enclosed within braces with an equation number at the end indicating the reference as equation (8).]
[image: Two equations are shown. The first equation is \(\phi_{s1}^I = A_{s1}^I \exp \left[ i(\omega t - k_{1x} x + k_{1z} z) \right]\). The second equation is \(\phi_{w1}^I = A_{w1}^I \exp \left[ i(\omega t - k_{1x} x + k_{1z} z) \right]\). Both equations are labeled (9a).]
[image: Mathematical expressions displaying wave functions for two states, \( \phi_{R}^{R_1} \) and \( \phi_{W1}^{R_A} \). Both are exponential functions involving variables such as angular frequency \( \omega \), wave vector components \( k_{1}^{R_{x}} \), \( k_{1}^{R_{z}} \), and complex numbers. The equation is labeled as equation 9b.]
[image: Mathematical equations describing wavefunctions are shown. The first equation is \(\phi_{w_1}^{R} = A_{w_1}^{R} \exp \left[ i \left( \omega t - k_{x}^{R} x - k_{z} z \right) \right]\). The second equation is \(\phi_{w_2}^{R} = A_{w_2}^{R} \exp \left[ i \left( \omega t - k_{x}^{R} x - k_{z} z \right) \right]\). These are labeled as equation 9(c).]
[image: Equations displaying \( v_{R}^{*} = B_{R}^{*} \exp \left[ i \left( \omega t - R_{1} x_{1} - R_{2} x_{2} \right) \right] \) and \( v_{W}^{*} = B_{W}^{*} \exp \left[ i \left( \omega t - R_{1} x_{1} - R_{2} x_{2} \right) \right] \), labeled as equation \( (9d) \).]
Where, [image: Mathematical expression featuring the Greek letter phi, subscript s1, and a superscript of l.] ([image: The expression depicts a Greek letter phi with a superscript "l" and a subscript "w1".]) is a potential function in the solid (liquid) of incident P1-wave. [image: Stylized mathematical notation showing "A" with superscript "I" and subscript "s1".] and [image: Mathematical notation showing the letter "A" with subscript "w1" and superscript "l".] are the amplitudes of the corresponding potential functions. Similarly, [image: Mathematical expression showing the symbol phi sub s sub 1 with the superscript capital R.], [image: Mathematical expression showing a function \( \phi \) mapping from an unspecified domain \( s_2 \) to the set of real numbers \( \mathbb{R} \).], and [image: A mathematical symbol featuring the Greek lowercase letter psi, adorned with uppercase and lowercase notation "R" and "s" as subscripts.] are the solid-phase potential functions of the reflected P1-, P2-, and SV-waves, respectively. [image: Stylized mathematical notation of "A" with subscripts "s" and "1" and a superscript "R".], [image: Stylized rendering of the mathematical notation \( A^{\mathbb{R}}_{s_{2}} \), featuring a bold uppercase letter "A," a script uppercase "R" as superscript, and subscript "s" followed by the number "2."] and [image: The image shows a mathematical notation with a superscript "R" and a subscript "s" next to a bold letter "B".] correspond to the solid-phase potential amplitudes. [image: Mathematical notation with the Greek letter phi followed by subscript "w1" and the superscript "R".], [image: Mathematical notation showing phi subscript "w" 2, with a superscript capital "R".] and [image: The image shows the mathematical expression with a psi symbol followed by superscript "R" and subscript "W".] denote the liquid-phase potential functions of the reflected P1-, P2-, and SV-waves, separately. [image: A mathematical notation showing "A subscript W1 superscript R", where 'W1' is written in subscript and 'R' is written in superscript.], [image: Mathematical notation with a capital letter "A" followed by a superscript "R" and a subscript "w2".] and [image: Mathematical notation representing the Brillouin zone in crystallography, with "B" as the main variable, "R" in superscript, and "W" in subscript.] are the liquid-phase potential amplitudes. [image: Equation showing "k subscript 1, superscript I, x".] and [image: "kl" with subscript "one" and superscript "z".] represent the components of the incident P1-wave vector in the x and z directions. [image: Text showing mathematical notation with an uppercase "K" and "R" conjoined, followed by a subscript "1x".] and [image: Mathematical notation showing a subscript expression with "k," "R," and "l," followed by a subscript "1z."] are the components of the reflected P1-wave vector in the x and z directions. Similarly, [image: Mathematical expression showing "k subscript capital R, space, k subscript 2 lowercase x".], [image: Mathematical expression showing a fraction with k subscript R on top and 22 subscript z at the bottom.], [image: Mathematical notation displaying the symbol \( k_{R \text{sx}} \).] and [image: Formula displaying a variable \( k_{\text{sz}}^{\text{R}} \).] are the components of the reflected P2- and SV- wave vectors of the corresponding directions.
Following the geometric relationship of wave vectors, it can be seen that the wave vectors and their components of all waves satisfy the equalities Equation 10. Moreover, by Snell’s law, the x-components of the wave numbers for the incident and reflected waves are the same, as shown in Equation 11; [55, 56].
[image: Mathematical equations with terms \((k_{1x}^L)^2 + (k_{1z}^L)^2 = (k_1^L)^2\), \((k_{2x}^R)^2 + (k_{2z}^R)^2 = (k_2^R)^2\), \((k_{3x}^L)^2 + (k_{3z}^L)^2 = (k_3^L)^2\), \((k_{4x}^R)^2 + (k_{4z}^R)^2 = (k_4^R)^2\), labeled as equation (10).]
[image: A mathematical equation shows the expression for electrical resistance. It states that the sum of the reciprocals of resistances \(R_1\), \(R_2\), and \(R_3\) is equal to the reciprocal of the equivalent resistance \(R_{\text{eq}}\).]
From Equations 6a, 6b, the relations between the various amplitudes in Equations 9 can be obtained as follows.
[image: Equation expressing \(\delta_6\) as the ratio of \(A_{w1}^\beta\) over \(A_{s1}^\beta\). The formula is \(\delta_6 = \frac{( \lambda + 2 \mu + \frac{l + 1}{n} E_w )(k_1^2) - \rho_1 \omega^2}{\rho_2 \omega^2 - E_w (k_1^2)}\), where \(\beta = I, R\) and is labeled as equation (12a).]
[image: The formula shown is an equation for \( \beta_2 \), which equals the ratio of \( A_2^R \) and \( A_2^S \), with \( A_2^R \) as the dependent variable. The equation involves parameters \(\lambda\), \( \mu \), \( E_w \left( k_2^* \right)^2 \), \( \rho_1 \omega^2 \), \( \rho_s \omega^2 \), and \( E_w \left( k_2 \right)^2 \). The equation is labeled as (12b).]
[image: Mathematical equation for ξₛ expressed as Bₜᵣ/Bₗ = (μ(Kᵣ)² - ρ₁ω²) / (ρ₂ω²), labeled as equation 12c.]
Where, δ1, δ2, and δs are the amplitude ratios of potentials related to liquid and solid phases for P1-, P2-, and SV-waves, respectively.
3.2 Boundary conditions and solutions
3.2.1 Boundary conditions of the free surface
When P1-wave is obliquely incident on the free surface of the saturated medium, the boundary conditions can be completely permeable or impermeable, i.e., (a) Open-pore boundary and (b) Sealed-pore boundary [15, 57]. In case (a), the pore fluid can flow freely, so the normal and shear stresses of the soil skeleton and the pore pressure are zeros. Under condition (b), the pore fluid is enclosed in a porous medium, so the normal and shear stresses of the soil skeleton and the displacement of solid related to liquid are zeros. Then, the drained and undrained conditions can be expressed as [17].
[image: Mathematical notation consisting of two equations: sigma subscript i j, evaluated at time t equals zero; and p sub l, evaluated at time t equals zero. Each equation is marked by equals zero. Equation labeled 13a.]
[image: Mathematical expressions are shown: Sigma sub i j with left parenthesis t sub c equals zero right parenthesis equals zero. t sub i with t c equals zero minus U sub i with t c equals zero equals zero. Equation number thirteen b.]
In which the subscripts (i, j = x, z) represent the components in both x and z directions. [image: Mathematical expression of sigma subscript ij evaluated at z equals zero raised to the positive power.] denotes the total stress of a saturated two-phase medium. [image: The expression "p subscript f subscript z equals zero superscript plus" represents a mathematical formula or notation, likely relating to physics or engineering contexts.] is the pore pressure of the boundary.
On inserting Equations 4a–4c, together with Equation 12a, 12b, 12c, into Equations 13a, 13b, and taking account of Equation 10 and Equation 11, we find the analytical formulas of amplitude ratios under permeable and impermeable boundaries, i.e., [image: Mathematical expression showing the ratio of \( A_{s1}^R \) to \( A_{s1}^I \).], [image: Mathematical expression showing a ratio: \( A^{R}_{s2} / A^{I}_{s1} \).], and [image: Mathematical expression showing \( B_s^R / A_{s_1}^I \).]. The formulas in the form of the matrix are through
[image: Mathematical equation showing a transform operation relating matrices, where the left side includes matrices \( A_{s1}^{RA} \), \( A_{s2}^{RA} \), \( B_{s}^{RB} \), and the right side includes matrices \( F \) and \( A_{s1}^{TA} \). Equation labeled as 14a.]
[image: Mathematical equation labeled as 14(b) involving complex algebraic expressions with variables and superscripts, presented in a formal notation format.]
Where, the superscript [image: Silhouette of a sitting, cross-legged cat with its tail curled around its body, looking upwards. The image is completely black against a transparent background, highlighting the cat's distinct shape.] denotes the impermeable boundary. [image: To generate alternate text, please upload the image or provide a link.] and [image: Mathematical symbol of the letter F enclosed in curly braces, often used to represent a set or function in mathematical expressions.] are the matrixes related to the incident P1-wave. [image: Mathematical expression showing the symbol for surface temperature with subscripts P and SV, followed by a lowercase f.] and [image: Mathematical expression containing a matrix with elements labeled as \( \overline{S}_{P-SV} \) and subscript \( f \).] are the 3-order matrixes corresponding to the reflected waves. The elements of [image: Please upload the image or provide a link to it so I can help generate the alternate text.], [image: A mathematical expression showing the letter F enclosed within curly braces.], [image: Mathematical notation showing an expression with subscript letters. It includes a large letter 'S', subscript 'P-SV', enclosed within square brackets, followed by a subscript 'f'.], and [image: Mathematical expression showing an overline and subscript: S subscript P to SV, all enclosed in square brackets, with a subscript f.] are given in the Appendix.
3.2.2 Surface response of saturated half-space
Without loss of generality, we assume the potential function amplitude of the incident wave equals unity, i.e., [image: Text showing "A subscript s one superscript I" in mathematical notation.] = 1 [1]. Substituting Equations 11, 12a–c into Equations 14a, b, we can obtain the potential function amplitudes of the reflected waves [image: Stylized mathematical notation representing \( A^{\mathbb{R}}_{\text{{sl}}} \), with bold, serif font for the "R" and subscript "sl".], [image: Mathematical notation showing an affine space denoted as \( \mathbb{A}^R_{s_2} \).], and [image: Blurred text showing a capital letter "B" followed by subscript "s". The text appears slightly pixelated.] (i.e., the amplitude reflection coefficients of P1-, P2-, and SV-waves). Then inserting [image: Stylized letter 'A' in uppercase with a subscript 's' and superscript 'R'. The subscript and superscript are smaller in size and positioned to the right of the letter.], [image: Stylized text with the letter "A" above "s" with a subscript "2" and the letter "R" beside the "A".], and [image: I'm sorry, I can't generate alt text without seeing the image. Please upload the image or provide a URL so I can assist you further.] into Equation 4a, the solid-phase displacement reflection coefficients of each reflected wave are given through the expressions
[image: A set of equations numbered fifteen. \( R_{s1}^R = A_{s1}^R \), \( R_{s2}^R = -\frac{k_{2}^R}{k_{1}^R} A_{s2}^R \), \( R_{ss}^R = -\frac{k_{s}^R}{k_{1}^R} B_{s}^R \).]
Where, [image: Math symbol showing "R sub s1" with a stylized "R" and "s1" in a smaller font size below.], [image: Mathematical expression depicting the symbol R subscript s2, possibly representing a specific variable or quantity in an equation or formula.], and [image: Mathematical notation showing "R" with a subscript "SS", possibly indicating a specific matrix or set in a mathematical context.] are employed to denote the displacement reflection coefficients of P1-, P2-, and SV-waves in the solid phase, respectively.
Insertion of Equations 8, 9 in Equation 4a yields the surface displacement components (e.g., the horizontal and vertical displacements ux and uz) of the solid phase corresponding to the sum of one incident and three reflected waves may be written
[image: Mathematical equations are displayed: \( u_x = k_1 A_1^S + k_1^R A_1^R + k_2^R A_2^R + k_3 A_2^R - k_4 B^R \) and \( u_z = -k_1 A_1^S + k_1^R A_1^R + k_2^R A_2^R + k_3 A_2^R + k_4 B^R \). Equation number sixteen is noted at the side.]
4 DEGENERATE VALIDATION OF SOLUTIONS
4.1 Validation of degenerate formulas
Let the liquid density [image: Please provide the image or the URL to the image you would like me to describe.] = 0, and the bulk modulus of liquid [image: It looks like there is no image uploaded. Please upload an image or provide a URL for me to generate the alternate text. If you have any caption or context, feel free to include it.] = 0. Then, the solution in this paper can degenerate into the case of a P-wave incident on the free interface of a single-phase medium. Now, the potential amplitude ratios of the liquid-solid phase in the two-phase medium [image: Please upload the image you'd like me to create alternate text for.] = 0, [image: It seems there was an error with the image upload. Please try uploading the image again, and make sure to add any relevant context or caption if needed.] = 0, and [image: Please upload the image or provide a direct link to it so I can generate the alternate text for you.] = 0. And the wave vector of the reflected P1-wave is the same as that of the P2-wave, i.e., [image: Mathematical expression featuring the letter "K" with subscript "1" and a superscript "R".] = [image: A typographic image displaying the mathematical symbol \( \kappa_{k_2} \).  ], [image: Mathematical notation displaying "k" with a subscript "l" followed by additional notations "R" and "z".] = [image: Mathematical notation representing the variable k subscripted with R and a second subscript of 22.]. When the two-phase medium is reduced to a single-phase medium, the velocity of P-wave [image: Stylized letter "V" with subscript "P" in a serif typeface, typically used to represent pressure volume in scientific equations.] = [image: Square root of the expression lambda plus two times mu, divided by rho subscript s.], the velocity of SV-wave [image: It seems like there was an error or the image was not uploaded. Please upload the image or provide a URL so I can help you generate the alternate text.] = [image: Square root of the ratio of mu over rho sub s.], which can be derived from the dispersion Equations 6a, 6b. The potential amplitude of the reflected P-wave [image: Stylized symbol depicting "A" with superscript "R" and subscript "S", resembling a mathematical or scientific notation.] = [image: Uppercase letter "A" with subscript "s1" followed by uppercase letter "R" in a stylized font.] + [image: Mathematical notation displaying the expression \( A_{s2}^{R} \).]. Accordingly, Equation 14a, 14b can be simplified as
[image: Two mathematical equations are presented. The first equation involves variables and constants such as \( \mu \), \( V_{\mathrm{P}} \), \( V_{\mathrm{S}} \), \( k_1 \), \( A_1 \), \( A_3 \), \( R_{\mathrm{S}} \), and \( B_{\mathrm{S}} \), along with terms involving squared and linear expressions. The second equation features variables like \( 2\mu k_{\mathrm{S}} \), \( k_1 \), \( R_{\mathrm{S}} \), \( A_4 \), and terms involving \( (k_{\mathrm{S}})^2 \). Each equation equals zero.]
Equation 17 is further simplified to obtain a new expression, which is the same as the Equations of a single-phase medium in Stein and Wysession [56]. It can be seen that the reflection of the P-wave on the free surface of a single-phase medium is a special case in this paper.
4.2 Validation of numerical analysis
To further verify the correctness of the formulas for reflection coefficient and surface displacement, Equation 17 is compared with the curve of P-wave incident on the free surface of a single-phase medium in Pujol [55]. The parameters for single-phase media are taken from Pujol [55], namely, [image: Ratio of V subscript P to V subscript S, likely indicating the comparison of two variables where V represents a quantity with subscripts P and S distinguishing different categories or conditions.] = 1.732 and υ = 0.25. The variations of amplitude ratios and surface displacements with the incident angle are shown in Figure 2 when the P-wave is incident on the interface. It is noted that the displacement components ux and uz in Figure 2b are normalized by a factor [image: A mathematical symbol displaying the letter \( k \) with two subscript indices, \( l \) and \( 1 \).], which represents the displacement intensity of the incident P-wave. If not specified, the surface displacements in the following figures are all normalized.
[image: Two graphs compare results from different sources. The left graph shows reflection coefficients versus incidence angle for P-waves and SV-waves, with data from this paper and Dipoli, 2003. The right graph depicts surface displacement versus incidence angle, comparing values denoted as \(u_x\) and \(u_z\) from this paper and Dipoli, 2003. Legends differentiate the sources and wave types.]FIGURE 2 | Surface response versus P-wave incident angle for an elastic half-space. (a) Amplitude reflection coefficient; (b) Surface displacement.
It can be seen from Figure 2 that the calculated results of Equation 17 are consistent with those of Pujol [55]. This is sufficient to demonstrate the correctness of the formula derived in this paper.
5 NUMERICAL ANALYSIS
In this section, we use the formulas derived above to compute the displacement reflection coefficients and surface displacements when the plane P1-wave is incident obliquely on the free boundary of a fluid-saturated half-space. Numerical examples are conducted in Fortran to explore the influence of boundary conditions, wave frequency, and characteristics of saturated soil materials (the porosity n, the Poisson’s ratio υ, the fluid bulk modulus to the stiffness of soil Ew/μ) on the surface response of saturated half-space. Some soil parameters of the two-phase medium used in the calculation are taken from Ref. [21] and listed as follows: ρs = 2650 kg.m-3, ρw = 1000 kg.m-3, Ew = 2.0 × 109Pa, and k = 1.0 × 10-7 m3.s/kg. The other soil parameters, i.e., the porosity n, the Poisson’s ratio υ, and the modulus ratio Ew/μ, will be given in the analysis of each section below.
Figure 3 through Figure 7 present the variations of the displacement reflection coefficients and surface displacements as described in Equations 15, 16 with incident angles under different conditions, i.e., boundary conditions, wave frequencies, porosities, Poisson’s, and modulus ratios. It can be seen that the displacement reflection coefficients and surface displacements vary smoothly with the incident angle of the P1-wave. The displacement reflection coefficient of the P2-wave is one order of magnitude smaller than those of the other reflected waves (P1- and SV-waves). When the P1-wave is at normal or grazing incidence, i.e., the incident angle equals zero or 90°, only the incident wave is reflected, and the reflected P2- and SV-waves vanish. At this time, the displacement reflection coefficient of the reflected P1-wave is −1.0, of which the phase is opposite to that of the incident P1-wave. This is consistent with the reflection characteristics of compressive P-wave on the surface of an elastic medium [56]. Furthermore, when the incident P1-wave strikes the interface perpendicularly, the surface displacements ux = 0, uz = −2.0. When the incident angle is 90°, the surface displacements ux = 0.0, uz = 0.0, which implies that the reflected P1-wave annihilates the incident P1-wave at the free surface. And the phase difference between ux and uz is 180° [51]. This holds for a single-phase medium as well [55]. In addition, with increasing incident angle, the vertical displacement uz decreases, while the horizontal displacement ux increases before reaching its peak value (near θIP = 60°) and has a reverse tendency thereafter.
[image: Four graphs illustrate the relationship between incident angle and various parameters, comparing open-pore and sealed-pore boundaries. Graph (a) shows \( R_{\alpha \alpha} \) values increasing and peaking around 40 degrees. Graph (b) displays a similar trend for \( R_{\beta \beta} \times 10^{3} \). Graph (c) depicts \( R_{\beta \alpha} \) values decreasing, reaching a low around 40 degrees. Graph (d) shows surface displacement rising with incident angle, peaking near 40 degrees. The dashed line represents open-pore boundaries, while the solid line indicates sealed-pore boundaries.]FIGURE 3 | The displacement reflection coefficients and surface displacements versus incident angle with different permeable boundaries. (a) P1-wave; (b) P2-wave; (c) SV-wave; (d) Surface displacement.
5.1 Influence of boundary conditions
When P1-wave propagates in a saturated half-space, specific solutions can be obtained using appropriate boundary conditions. The single control variable method is introduced to analyze the influence of boundary drainage on the surface response of half space. The values of the physical parameters of the saturated poroelastic half-space are selected from Section 5, and the other parameters are as follows: n = 0.1, υ = 0.2, and Ew/μ = 0.1. The frequency of incident wave f = 100 Hz. The curves in Figure 3 represent the displacement reflection coefficients and surface displacements with distinct boundaries.
It can be seen from Figure 3a that the displacement reflection coefficient of P1-wave decreases with an increase in the incident angle before reaching its minimum value near 65ºunder different conditions. Moreover, when the incident angle θIP is greater than 36°, the displacement reflection coefficient under the impermeable interface is more than that of the permeable interface. Figure 3b shows that the displacement reflection coefficient of the P2-wave is much less than those of other reflected P1- and SV-waves, and the coefficient under a permeable interface is greater than that under an impermeable boundary. From Figure 3c, for the reflected SV-wave, the displacement reflection coefficient increases with a rise in the incident angle before attaining its maximum value near 45°. Also, the displacement reflection coefficient at an impermeable interface is more than that at a permeable interface if the θIP is within the range of 16º-90°. Given Figure 3d, ux reaches its peak value at approximately 60°, while uz reaches its peak value at 0°, and the peak value of uz is larger than that of ux. If θIP < 30°, the vertical and horizontal displacements (e.g., ux and uz) under two boundary conditions are the same. However, if θIP > 30°, both displacements ux and uz (absolute values) increase slightly under the impervious interface. Accordingly, the boundary conditions have a certain effect on the surface response of half-space, and this effect manifests a considerable dependence on the incident angle.
5.2 Influence of wave frequency
As analyzed in Refs. [2, 50], all three body waves are dispersive and attenuated, and the velocities and attenuation are frequency-dependent. To illustrate the effects of wave frequency on the reflection, four different values of wave frequency are considered in this paper, i.e., f = 1, 10, 100, and 1000 Hz. The four typical frequencies are within the common frequency range used in engineering and experimental testing [58]. The soil parameters remain invariable, as described in Section 5.1. The boundary is completely permeable. Figure 4 shows the variations of displacement coefficients and surface displacements with the incident angle for different frequencies.
[image: Four graphs illustrating different effects of frequency on certain variables related to incident angles. Each graph shows data for frequencies at 1 Hz, 10 Hz, 100 Hz, and 1000 Hz with varying line styles. Graph (a) depicts \( R_{\text{ss}} \), graph (b) shows \( \Delta R _{\text{ss}} \times 10^{-3} \), graph (c) presents \( \Delta \Phi _{\text{ss}} \), and graph (d) illustrates surface displacement. The incident angle ranges from 0 to 90 degrees across all graphs.]FIGURE 4 | The displacement reflection coefficients and surface displacements versus incident angle with different frequencies. (a) P1-wave; (b) P2-wave; (c) SV-wave; (d) Surface displacement.
It is clear from Figure 4 that the surface response is not sensitive to wave frequency. However, the displacement reflection coefficient of P2-wave decreases as the frequency is reduced. This result matches the case of Rjoub [21]. So, the frequency is assumed to be 100 Hz when analyzing the effect of soil parameters on surface response next.
5.3 Influence of porosity
Since porosity mainly affects the loose degree of soil, it is instructive to investigate the effect of porosity on the displacement reflection coefficients and surface displacements. Except for the porosity, the soil parameters remain invariable, as described in Section 5.1. The frequency of the incident plane P1-wave is also taken to be 100 Hz. The boundary is completely permeable. The variations with the incident angle of displacement coefficients and surface displacements are shown in Figure 5 in the case that the porosity n = 0.1, 0.2, 0.3, and 0.4, respectively.
[image: Four-panel graph comparing the behavior of different parameters with varying incidence angle. Each panel shows curves for different \(\Phi\) values (\(0\), \(0.3\), \(0.6\), \(0.9\)). Top left: \(A_{es} /\epsilon \) versus incident angle. Top right: \(A_{es}^{'}\) versus angle. Bottom left: \(A_{es}^{\text{tot}}\) versus angle. Bottom right: Surface enhancement versus angle. Dashed, dotted, and solid lines represent changes in values, indicating different trends across angles and parameters.]FIGURE 5 | The displacement reflection coefficients and surface displacements versus incident angle with different porosities. (a) P1-wave; (b) P2-wave; (c) SV-wave; (d) Surface displacement.
It is shown in Figure 5a that the variations of displacement reflection coefficient for reflected P1-wave with porosity are very complex. When the porosity n = 0.3 and 0.4, a special wave mode conversion occurs, namely, only P2-and SV- waves are reflected, and the reflected P1-wave is not generated. Under the case that n = 0.3, the displacement reflection coefficient of P1-wave exhibits zero values at incident angles of 60° and 77°. The angles for incidence corresponding to wave mode conversion are 57ºand 79° with the instance that n = 0.4. If the porosity n = 0.1 and 0.2, this phenomenon disappears. Moreover, the displacement reflection coefficient for P1-wave decreases with the increase of porosity when the incident angles θIP < 57ºor θIP > 79°. From Figures 5b, c, the displacement reflection coefficient for SV-wave (P2-wave) increases (decreases) with the increase in porosity, and that for P2-wave is the smallest of all three reflected waves as described in Section 5.1. It is noticed from Figure 5d that the horizontal displacement ux increases with a rise in porosity. However, the porosity considered in this study has little impact on vertical displacement uz. The effect of porosity on the surface response depends on the incident angle to a large extent.
5.4 Influence of Poisson’s ratio
The Poisson’s ratio mainly affects Lame constants (λ and μ), which reflect the consolidation status of the soil. To investigate the effects of Poisson’s ratio on the displacement reflection coefficients and surface displacements, the soil parameters remain constants as described in Section 5.1, except for Poisson’s ratio. The frequency of the incident plane P1-wave f = 100 Hz. The boundary is completely permeable. Figure 6 shows the effects of Poisson’s ratio on the displacement reflection coefficients and surface displacements. In calculations, the Poisson’s ratio (υ) is taken to be 0.1, 0.2, 0.3, and 0.4.
[image: Four line graphs arranged in a grid. Each graph shows different curves labeled by ρ values, plotting against the incident angle in degrees. The top left graph represents \(R_s\), the top right \(R_p\), both indicating reflection intensity. The bottom left graph shows \(A_s\) as absorption, while \(A_p\) is shown on the bottom right. Each graph displays multiple dashed and solid lines corresponding to \(\rho\) values of 0.1, 0.2, 0.3, and 0.4. Axes are labeled with incident angle and specific measurement, with a legend on each graph showing corresponding lines.]FIGURE 6 | The displacement reflection coefficients and surface displacements versus incident angle with different Poisson’s ratios (a) P1-wave; (b) P2-wave; (c) SV-wave; (d) Surface displacement.
It can be found from Figures 6a–c that the displacement reflection coefficient of P1-wave increases with the increasing Poisson’s ratio at the same incident angle, while those of P2- and SV-waves diminish with a rise of Poisson’s ratio. For all three reflected waves, the amplitude of variation is related to the incident angle. As observed in Figure 6d, the horizontal displacement ux (the vertical displacement uz) decreases (increases) with the rise of Poisson’s ratio. When the Poisson’s ratio increases, the variation range of horizontal displacement is larger than that of vertical displacement, and the variation range depends on the incident angle.
5.5 Influence of modulus ratio
The modulus ratio mainly affects the stiffness of the soil layer in the saturated half-space. The larger the modulus ratio is, the softer the soil layer is. For this reason, there is a need to study the effects of the modulus ratio on the displacement reflection coefficients and surface displacements. Except for the modulus ratio, the soil parameters are taken according to Section 5.1. The frequency f of the incident plane P1-wave is taken as 100 Hz. The boundary is completely permeable. The modulus ratio Ew/μ = 0.1, 1.0, 10, and 100. Figure 7 depicts the displacement reflection coefficients and surface displacements as a function of incident angle for the above four values of modulus ratio.
[image: Four line graphs in a 2x2 grid show variations in ΔE and surface displacement versus incident angle for values E\(_{2}\)/γ ranging from 0.1 to 100. Top left graph (a) displays ΔE\(_{2}\)/μ\(_{2}\) data, top right (b) shows ΔE\(_{2}'\). Bottom left (c) illustrates ΔE\(_{2}''\), and bottom right (d) exhibits surface displacement. Each graph contains distinct line styles representing different E\(_{2}\)/γ values.]FIGURE 7 | The displacement reflection coefficients and surface displacements versus incident angles with different modulus ratios (a) P1-wave; (b) P2-wave; (c) SV-wave; (d) Surface displacement.
It can be revealed from Figure 7 that the displacement reflection coefficients and surface displacements vary with the modulus ratio. As can be seen from Figures 7a–c, the displacement reflection coefficient of P1-wave (P2- or SV-wave) increases (decreases) with the increasing modulus ratio at the same incident angle. The variation amplitude is related to the incident angle. Moreover, when the modulus ratio Ew/μ = 100, the displacement reflection coefficient of P1-wave increases towards −1.0, and that of SV-wave reduces to nearly 0, indicating that soft soil mainly transmits compression waves. All in all, the effect of incident angle on the reflection coefficients of P2 and SV waves diminishes with the increase of the modulus ratio. Figure 7d shows us that the horizontal displacement ux decreases with a rise in modulus ratio, while the vertical displacement uz is less affected. For Ew/μ = 100, the peak displacement ux decreases to 0.063. The extent of influence is decided by the incident angle.
6 CONCLUSION
Based on the soil mechanics model in a fluid-saturated medium, the dispersion equation of elastic waves is established. When the P1-wave travels toward the free ground of a two-phase medium, the theoretical formulas of displacement reflection coefficient and surface displacement for all reflected waves are also obtained by combining the boundary conditions. Thereafter, the analytical expressions mentioned above degenerate to the reflection problem of a single-phase half-space to verify correctness. At last, when the boundary conditions, wave frequency, porosity, Poisson’s ratio, and modulus ratio are taken to be different values, the variation of the surface response of saturated half-space with the incident angle of P1-wave is numerically analyzed. In light of the previous discussion, some main conclusions can be summarized as follows.
	(1) The displacement reflection coefficient and surface displacement are angle-dependent. When the incident angle θIP equals 0ºor 90°, only reflected P1-wave occurs.
	(2) The boundary conditions have a certain effect on the surface response of half-space. The surface displacements in the impermeable interface are slightly larger than those in the permeable interface, and the magnitude of the increase is related to the incident angle.
	(3) For all frequencies being considered, its influence on surface response is insignificant.
	(4) The effect of material properties (i.e., porosity, Poisson’s ratio, and modulus ratio) on the surface response is discussed in detail. The wave mode conversion will occur when the porosity n = 0.3, 0.4. The displacement component ux (uz) decreases (increases) with a rise in Poisson’s ratio. The effect of the modulus ratio can not be ignored. The impacts of all soil parameters strongly depend on the incident angle.

In addition, the conclusions drawn in this paper not only theoretically reveal that more attention should be paid to the influence exerted by the incident angle of elastic waves in soil dynamics research but also have practical engineering significance for the commonly used seismic reflection wave method and well-logging data processing in the field of engineering seismic exploration.
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APPENDIX
Let [image: Equation showing \( q_1 = \frac{1 - n}{n} + \delta_1 \).] and [image: Equation for \( q_2 \) is shown as \(\frac{1-n}{n} + \delta_2\).], then the elements of [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: The image shows a stylized uppercase letter "F" enclosed within curly braces, commonly used in mathematical or programming contexts to denote a function or set.], [image: Mathematical expression showing an indexed symbol: a bracket containing "S" with subscripts "P" and "SV", followed by a subscript "f".], and [image: Mathematical expression showing a bracketed term: $S_{P-SV}$ with a bar over the letter P, followed by a subscript f.] are shown as follows.
1. The amplitude coefficients of the incident P1-wave
[image: Mathematical equation showing the determinant of F. The equation is: det(F) equals the negative of the sum of lambda and q times E_w, multiplied by the square of k_1 z, minus 2 mu times the square of k_1 z, plus 2 mu k_y k_1 z minus q times E_w times the square of k_1 y.]
[image: Mathematical expression with curly bracket notation: F equals lambda plus q_i times E_w times k_i squared, minus 2μ times k_i12 squared, plus 2μ times k_i prime times k_i12 times 1 minus delta times k_i12 prime.]
2. The amplitude coefficients of all the reflected waves
[image: Matrix equation depicting transformations. The left side shows a matrix labeled \([S_{p-sv}]_f\) with elements \(d_{11}\), \(d_{12}\), \(d_{13}\), and so on, arranged in a three-by-three format. The right side shows a matrix with similar elements but each denoted by an overbar, indicating transformed values.]
[image: Mathematical equations are displayed: \(d_{11} = (\lambda + q_l E_w)(k_1^0)^2 + 2\mu (k_{1z})^2\), \(d_{12} = (\lambda + q_l E_w)(k_2^0)^2 + 2\mu (k_{2z})^2\), and \(d_{13} = 2\mu k_3^R k_{3z}^R\).]
[image: The image contains a mathematical equation: \(d_{11} = 2\mu k_{1}^{R}k_{1}^{L}\), \(d_{22} = 2\mu k_{2}^{R}k_{2}^{L}\), \(d_{33} = \mu \left((k_{1}^{R})^2 - (k_{2}^{R})^2\right)\).]
[image: The equation shows three relationships involving variables and expectations: \(d_{31} = q_1 E_w(k_1^*)^2\), \(d_{32} = q_2 E_w(k_2^*)^2\), and \(d_{33} = 0\).]
[image: Mathematical equations showing three expressions: \( \bar{d}_{31} = (1 - \delta_{1})\bar{K}_{H}^{r} \), \( \bar{d}_{32} = (1 - \delta_{2})\bar{K}_{L}^{R} \), and \( \bar{d}_{33} = (1 - \delta_{3})\bar{K}_{KL}^{R} \).]
NOMENCLATURE
Symbols:
Ew bulk modulus of pore water (unit: Pa)
K permeability coefficient (unit: m/s)
k dynamic permeability coefficient (unit: m3.s/kg)
n porosity
υ Poisson’s ratio
λ, μ Lame’s constants of solid phase (unit: Pa)
E elastic modulus of the solid phase (unit: Pa)
ρw pore fluid mass density (unit: Kg/m3)
ρs solid mass density (unit: Kg/m3)
ρ total density (unit: Kg/m3)
pf true pore pressure (unit: Pa)
ω angular frequency
u,[image: A bold, lowercase letter "u" with an umlaut consisting of two dots above it. The character appears in a serif typeface.],[image: An illustration of the letter "u" with an umlaut, represented by two dots above it, in a bold, serif typeface.] displacement, velocity, and acceleration vectors of the solid phase (unit: m, m/s, m/s2)
U, [image: It seems there is no image uploaded. Please try uploading the image again, and I'll help generate the alternate text for it.], [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL, and I will assist you in generating the alt text.] displacement, velocity, and acceleration vectors of fluid phase (unit: m, m/s, m/s2)
[image: Please upload the image or provide a URL for the image you would like me to describe.], [image: The Greek letter psi (ψ) followed by a subscript lowercase letter "s".] potential functions associated with solid phase
[image: Greek letter phi (φ) with a subscript 'w', typically used in mathematical or scientific contexts.], [image: An icon resembling the Greek letter psi, followed by a subscript letter "w". The design is simple and appears in black text on a white background.] potential functions associated with pore fluid.
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The accurate identification of mining tremors and earthquakes is important for establishing a comprehensive mining tremor catalog that can aid in providing regulatory oversight for mining activities. Moreover, using a catalog purely consisting of earthquakes allows for more advanced seismological studies, such as active fault delineation, strong earthquake prediction, and stress field calculations, to be conducted. We focus on the spectral characteristics of mining tremors and earthquakes. By identifying short-period surface waves in the given data and utilizing an improved complete ensemble empirical mode decomposition method with adaptive noise (CEEMDAN) in combination with long short-term memory (LSTM) networks, we conduct a discriminative analysis of seismic events in Liaoning, China, and Japan. After completing basic preprocessing steps for both mining tremors and earthquakes, CEEMDAN is used to decompose the data into different intrinsic mode functions (IMFs). The variance contribution rates of the IMFs are extracted as features, which distinctly identify the short-period surface wave components of mining tremors. These features are subsequently input into an LSTM model for classification training, resulting in an accurate classification model. The results demonstrate that CEEMDAN-LSTM effectively addresses the noise and short-period surface wave aliasing issues encountered within the modes, yielding significantly enhanced classification accuracy. The classification success rate has been significantly improved to 96.5%. Additionally, this study explores the advantages and limitations of various classification features and models, providing effective technical support and new perspectives for the automatic identification of seismic events in the future. This research provides not only an understanding of the characteristics of mining tremors and earthquakes but also a scientific basis for earthquake early warning and disaster prevention. This study suggests that future research can further optimize the model in terms of speed and apply the model to classify more nonnatural seismic events.
Keywords: mining tremor, complete ensemble empirical mode decomposition with adaptive noise, earthquake early warning, long short-term memory, wave identification

1 INTRODUCTION
Mining tremors refer to earthquakes caused by geological structural changes resulting from mining activities such as blasting and collapses in mines. Mining tremors typically occur in and around mining areas, especially during large-scale underground mining operations. On the one hand, using a pure earthquake catalog can facilitate in-depth seismological research, such as active fault delineation, strong earthquake prediction, and stress field calculations. On the other hand, owing to the potential threat of mining tremors to miner safety and the surrounding environment, a comprehensive catalog of mining tremors and other nonnatural seismic events also benefits regulatory activities in the mining sector. According to the current theories for identifying earthquakes and mining tremors, earthquakes are primarily tectonic earthquakes that occur when stress concentrations exceed the elastic limits of rocks, causing rock fractures and displacements, with the initial P-wave moving upward within a certain azimuth range and downward in other azimuths. In contrast, the seismic sources of most mining tremors mainly impose tension on external media, generating expansive waves, which are characterized by downward vertical initial P-waves [1]. There are many differences in geophysics between natural earthquakes and mining tremors collapses. Natural earthquakes are caused by crustal plate movements and other factors. Their seismic wave spectra are wide, with well-developed surface waves. The hypocenters are deep, and the seismic source mechanisms are related to plate interactions. The seismic activity has periodicity, and the changes in the geophysical field cover a wide range. In contrast, mine-induced seismic collapses are triggered by the failure and collapse of rock masses caused by mining activities. Their seismic wave spectra are narrow with prominent high frequencies, and the hypocenters are shallow. The seismic source mechanisms are related to the changes in stress of the goaf and rock masses. Their seismic activities are related to the mining process, and the changes in the geophysical field are concentrated in the local area of the mining area, with a relatively small range and amplitude [1].
Sha et al. [2] classified earthquakes and mining tremors based on time-domain features such as the direction of the initial P-wave, the development trends of surface waves, and the P/S wave amplitude ratio. Feng et al. [1] classified earthquakes based on the direction of the initial P-wave and amplitude attenuation. Dong et al. [3] effectively distinguished mining explosions and microseismic events by selecting the energy, seismic moment, ratio of the longitudinal and transverse wave energies, corner frequency, and static stress drop as stable discrimination indicators. Zheng et al. [4] conducted a time‒frequency analysis on mining tremor waveforms via the S-transform. These multiparameter combined analysis methods provide different research approaches and techniques for classifying earthquakes and mining tremors. However, these characteristic parameters are artificially designed through specific methods, and their definitions are relatively cumbersome, requiring various postprocessing methods, making rapid differentiation through computer programs impossible and indicating that signals cannot be automatically distinguished as earthquakes or mining tremors [5]. Therefore, more scholars have adopted short-period surface wave classification for earthquakes and mining tremors. Xuesong et al. [6] proposed that short-period surface waves are distinct features for distinguishing mining tremors from earthquakes. Bi et al. [7] used the Hilbert–Huang transform (HHT) to extract the maximum amplitude corresponding to the mode component period and the average cepstral value as effective features for distinguishing earthquakes and mining explosions, and Jinlong et al. [8] used the HHT in combination with ensemble empirical mode decomposition (EEMD) to extract surface waves and classify mining tremors and earthquakes in the Hegang region, reaching an accuracy rate of over 90%. However, the mode mixing problem encountered when EEMD is used for processing has not been effectively solved. When facing seismic and mining tremor waveforms in different regions, the frequency ranges of short-period surface waves and environmental noise partially overlap, leading to difficulty in terms of effectively separating surface waves during the decomposition process with EEMD, resulting in poorer classification effectiveness.
With the advancement of computer technology, artificial intelligence has been increasingly incorporated into earthquake event identification research. Ming et al. [9] applied convolutional neural networks (CNNs) to automatically classify and identify the aftershock waveforms of the Wenchuan earthquake in the Beijing-Tianjin-Hebei metropolitan region, achieving training and detection accuracies exceeding 95%. Mousavi et al. [10] implemented a precise method for extracting earthquake P-wave and S-wave phases via the earthquake transformer (EQ transformer). Zhu et al. [11] successively used support vector machines (SVMs) and deep CNNs (DCNNs) to accurately estimate earthquake magnitudes [12], Liu et al. [13] used a generative adversarial network (GAN) to classify microseismic events and noise, and Zhou et al. [14] used a CNN model (SW-CNN) to process waveforms from 2 s before to 5 s after the corresponding P-waves arrive to classify earthquakes, explosions, and mining tremors. Chen et al. [15] combined the K-means algorithm and a CNN to classify earthquake waveforms and demonstrated that the K-CNN model could accurately classify earthquake waveforms by analyzing synthetic microseismic data with different noise levels and microseismic field data applications. Abdalzaher et al. [16] developed a machine learning framework integrating XGBoost and other classifiers to discriminate between tectonic earthquakes and quarry blasts, achieving a classification accuracy of 97.21% based on spatio-magnitude features. In a subsequent study [17], the authors introduced the 2S1C1S model for real-time seismic intensity estimation using single-component seismogram data from the initial 2-s post-P-wave window, demonstrating 99.05% accuracy. Their most recent work [18] employed an optimized quadratic discriminant analysis (QDA) model to distinguish small-magnitude earthquakes (M ≤ 3) from quarry blasts using eight waveform-derived features, yielding 99.4% classification accuracy. These methodologies demonstrate substantial improvements over conventional discriminative approaches, with performance metrics (R2, F1-score, MCC) indicating robust generalization capabilities and practical utility for seismic hazard mitigation. Zhang et al. [19] employed EEMD and a CNN to classify earthquake signals, achieving classification results as high as 93.85%. The above studies have proven that the use of artificial intelligence methods for earthquake identification and detection can yield significantly improved efficiency.
In terms of microseismic event identification, Fan et al. [20] used wavelet scattering decomposition to identify microseismic signals in coal mines and noise. Chen et al. [21] proposed an improved method for identifying microseismic mine events through a combination of wavelet decomposition and an extreme learning machine (ELM), successfully distinguishing microseismic mine events from noise with a success rate of 91.1%. Qin et al. [22]used modal decomposition and deep learning methods to predict the evolution trends of microseismic events, demonstrating good predictive and generalization performance. Gu et al. [23] employed backpropagation (BP) networks to classify five types of microseismic signals acquired from rockburst mines, achieving a classification model accuracy rate of 88.3%. Li [24] proposed a method for extracting features and classifying microseismic mine signals on the basis of local mean decomposition (LMD) and pattern recognition, attaining a classification accuracy rate of 93.0%. These studies have validated the excellence of deep learning in terms of identifying seismic events and noise, highlighting the notion that starting the microseismic event identification process from the frequency domain can be a more efficient strategy. However, the current focus in microseismic event identification research mainly involves classifying noise and mining tremors, with fewer classification methods developed for distinguishing earthquakes from mining tremors.
Therefore, this study selects many records of mining tremors and seismic events to explore a more efficient short-period surface wave classification method and integrates it with artificial intelligence, proposing the complete ensemble empirical mode decomposition with adaptive noise-long short-term memory (CEEMDAN-LSTM) method. First, on the basis of the developmental characteristics of short-period surface waves, an improved version of the CEEMDAN method [25] is used to decompose the input data to obtain a series of intrinsic mode functions (IMFs), and the variance contribution rate of each IMF is extracted. By inputting the variance contribution rates into an LSTM network [26] for training, a corresponding classification model is obtained. Additionally, compared with directly inputting waveform data into traditional neural networks after analyzing the features extracted by CEEMDAN, this model is validated to have superior classification capabilities. Compared with traditional EEMD, the CEEMDAN-LSTM model solves the modal aliasing problem faced when utilizing low-frequency data and can accurately classify earthquakes and mining tremors, providing strong technical support for seismological research and practical applications.
2 DATA
The observational data used in this study are obtained from stations in Liaoning Province, and some seismic data are obtained from Japan. The employed mining tremor data are all selected from Liaoning Province between 2013 and 2023, totaling 14,577 records with a magnitude range of 2-4, different epicentral distances, and source depths ranging from 4 to 50 km. The earthquake data were acquired from Liaoning Province between 2020 and 2023 and include 13,548 records. Additionally, data acquired from the K-NET of Japan between 2022 and 2023 are selected after performing screening, totaling 5,329 records with a magnitude range of 3-8, epicentral distances from 0 to 200 km, and source depths ranging from 4 to 120 km. The data from Liaoning are velocity records with a sampling frequency of 100 Hz, whereas the data from Japan are acceleration records with the same sampling frequency.
Before conducting data processing, the following steps are implemented for preprocessing [1]: baseline correction [2]; 0.3-Hz Butterworth high-pass filtering [3]; converting acceleration records into velocity records via integration [4]; extracting P-wave arrival times via the STA/LTA method [27] and selecting data from 1 s before to 100 s after a P-wave arrives as analysis samples; and [5] normalizing all the data to the same scale. Figure 1 illustrates the technical roadmap of this paper.
[image: Flowchart illustrating a data processing system for signal analysis. It includes steps like data pre-processing with a focus on de-trending and decomposition using CEEMDAN. Further steps involve variance contribution analysis and LSTM neural networks for predicting signals. Various plots and diagrams display signal transformations and neural network architectures with oriented layers and nodes.]FIGURE 1 | Figure shows the overall architecture flowchart of this paper, where blue represents mine earthquakes and green represents natural earthquakes.
After the above processing steps, this study selects a total of 262 mining tremors, comprising 7,012 records, and 508 earthquakes, forming 8,610 records, including 3,281 from Liaoning and 5,329 from Japan. The earthquake epicenter distribution is shown in Figure 2. Figure 3 shows the station map, where the ratio of the training set to the test set is 8:2. These data are selected to ensure independence, with data concerning the same earthquake event obtained from different stations not simultaneously included in the test and training sets. Initially, earthquake event classification is performed on the test and training sets, followed by reading data from each station into the dataset. Figures 4a–c illustrates the epicentral distance distribution. In theory, the main goal of this study is to identify the components of short-period surface waves in waveform data, as their degree of attenuation during propagation is smaller than that of high-frequency waves. Therefore, the impact of attenuation on the ability to distinguish earthquakes from mining tremors is relatively minor. Figures 4d,e displays the magnitude distribution of the data. In contrast, the source mechanism of earthquakes is relatively complex, consisting of several small fractures that form the source, each with a certain process, and occur at greater depths.
[image: Three maps show geographical distributions of data points, likely environmental or meteorological. Panel (a) is empty. Panel (b) has green points clustered around 40°N, 120°E. Panel (c) shows a distribution stretching along the southern coast of Japan.]FIGURE 2 | (a) Map of earthquake epicenters in Liaoning. (b) Map of mining tremor epicenters in Liaoning. (c) Map of earthquake epicenters monitored by the K-NET of Japan.
[image: Three panels showing geographical data over East Asia. Panel (a) displays purple and red dots indicating data points concentrated around 40°N, 125°E. Panel (b) shows similar distributions with some sparse dots. Panel (c) depicts dense clusters of blue and red dots from 30°N to 45°N, stretching from 130°E to 145°E, primarily covering Japan. The maps have latitude and longitude markers.]FIGURE 3 | Schematic representation of the locations of seismic stations. Yellow indicates the training set, and blue indicates the validation set. (a) Locations of seismic stations in Liaoning. (b) Locations of mining tremor stations in Liaoning. (c) Locations of seismic stations in the K-NET of Japan.
[image: Six histograms show the distribution of seismic data. Panels (a), (b), and (c) plot epicentral distance versus quantity, displaying varying distributions. Panels (d), (e), and (f) plot magnitude versus quantity, with different frequency peaks. The histograms use red bars to represent data frequency.]FIGURE 4 | (a) Distribution of the epicentral distances for mining tremors in Liaoning. (b) Distribution of the epicentral distances for earthquakes in Liaoning. (c) Distribution of the epicentral distances for earthquakes in Japan. (d) Magnitude distribution of the hypocenters for mining tremors in Liaoning. (e) Magnitude distribution of the hypocenters for earthquakes in Liaoning. (f) Magnitude distribution of the hypocenters for earthquakes in Japan.
3 MATERIALS AND METHODS
The research approach of this article is as follows. First, CEEMDAN is used to decompose the signals of earthquakes and mining tremors, the variance contribution rates of the decomposed IMFs are calculated, and then the features of each IMF are input into LSTM for learning and obtaining classification results.
3.1 Complete ensemble empirical mode decomposition with adaptive noise
For analyzing the spectral characteristics of a signal, the traditional fast Fourier transform (FFT) method is widely used. However, during the process of transferring a signal from the time domain to the frequency domain, temporal information is lost, making it impossible to accurately determine the appearance and disappearance moments of frequencies. To address this limitation, time‒frequency analysis techniques, which can effectively track the spectrum changes over time, have been developed. Common time‒frequency analysis methods include the short-time Fourier transform (STFT), the Gabor transform, and the Wigner‒Ville distribution, among others. Although these methods can theoretically handle nonlinear and nonstationary signals, limitations remain in practical applications. In contrast with the aforementioned traditional methods, the HHT completely eliminates the dependencies on linearity and stationarity, making it especially suitable for analyzing nonlinear and nonstationary signals such as seismic waves. EEMD is an improved version of empirical mode decomposition (EMD) and is used to decompose nonlinear and nonstationary signals. EEMD enables the decomposition of a signal based on the given data themselves rather than predefined base functions. However, it still faces challenges such as mode mixing and incomplete mode decomposition. To address this issue, EEMD introduces a strategy of adding white noise at different time scales to compensate for potential frequency band losses. Nonetheless, in practical applications, especially when addressing signals with similar frequencies, mode mixing is still common.
To further improve upon EEMD, CEEMDAN was proposed. It is an advanced signal processing technique that is aimed at decomposing complex signals into simpler components known as IMFs. CEEMDAN inherits the basic principles of EMD and its EEMD variant and has been improved to overcome the mode mixing problem, providing a more robust decomposition method. Through this method, each step in the signal decomposition process becomes more precise, effectively reducing the degree of mode mixing and enhancing the reliability of the conducted analysis. The principle of this approach is as follows.
Given an original signal [image: Certainly! Please upload the image you would like described for alt text.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.] white noise sequences, [image: Mathematical notation representing a set of functions \( w_i(t) \) where \( i \) ranges from one to \( N \).] are added to generate [image: Please upload the image so I can help generate the alternate text for it.] new signal sequences, as in Equation 1:
[image: It seems like you've input some mathematical notation instead of an image. Please upload the image or provide a URL so I can generate the appropriate alternate text for you.]
For each noisy signal [image: Mathematical expression depicting a function \(x_{i}(t)\), representing a variable \(x\) with subscript \(i\) as a function of time \(t\).], the following steps are performed to extract the corresponding IMFs. First, all local maxima and minima are found, the local maxima are used to interpolate and form the upper envelope [image: Equation displaying the function \( e_{on}(t) \).], and the local minima are used to interpolate and form the lower envelope [image: Mathematical expression showing \( e_{\text{low}}(t) \).]. The means of the upper and lower envelopes are calculated to obtain [image: It seems like the text or LaTeX code did not render as an image. Please upload an image or provide a URL, and I will be happy to help you generate the alternate text for it.], as in Equation 2: 
[image: Equation showing m(t) equals the sum of e_low(t) and e_up(t) divided by two, labeled as equation two.]
The mean envelope is subtracted from the signal to extract a detail [image: It seems there was an error with the image upload. Please try uploading the image again, and I will assist you in creating the alternate text.], as in Equation 3:
[image: Please upload the image or provide a URL so I can generate the alternate text for you.]
If [image: Please upload the image or provide a URL for me to generate the alt text.] satisfies the conditions of an IMF, it is taken as an IMF; otherwise, [image: It seems like there was an error in displaying the image. Please upload the image again or provide a working URL.] is used to replace [image: I'm sorry, it seems you've pasted a text element rather than an image. Please upload the image file, and I’ll be happy to help you with the alt text!], and the sifting process is repeated. After each IMF is extracted, the added noise level is adaptively adjusted based on the characteristics of the residual signal (the signal remaining after the IMFs are removed). This process is repeated on the residual signal using the adjusted noise levels to extract subsequent IMFs. For each IMF, the ensemble average is calculated from all iterations; i.e., the corresponding IMFs obtained from all noise-added versions of the original signal are averaged. This step can eliminate the added noise, leaving a more accurate representation of the intrinsic oscillatory mode. This process is repeated until the residual signal becomes a monotonic function, and no more IMFs can be extracted. The final set of IMFs and the residual represent the complete decomposition result of the original signal. Variance is defined as the mean of the squares minus the square of the mean, reflecting the proportion of signal energy contained in each mode. The variance contribution rate of each mode [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] [28] is given by Equation 4:
[image: The formula for \( a_k \) is shown as a fraction. The numerator is \((\bar{x}_k - (\bar{x}_k)^2)\). The denominator is the summation from \( k = 1 \) to \( N \) of \((\bar{x}_k - (\bar{x}_k)^2)\). This equation is labeled as equation (4).]
In this equation, [image: It seems you tried to provide an image or some context for alt text creation, but it didn't come through clearly. Please upload the image or provide a URL with additional context if needed.] is the [image: Sure, please upload the image you would like me to generate alternate text for. If there's additional context or specific details you want to include, feel free to mention that as well.]-th mode, [image: It seems like there was an issue, and I couldn't get the image. Could you please try uploading it again?] is the total number of modes, and [image: It looks like there was an issue with the image display. Please try uploading the image again or provide a URL for me to access it.] is the amplitude of the seismic wave for the [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]-th mode.
3.2 Construction of the LSTM model
3.2.1 Overview of the LSTM model
Long short-term memory (LSTM), a specialized architecture of artificial neural networks (ANNs), addresses the limitations of traditional recurrent neural networks (RNNs) in handling long-range temporal dependencies by incorporating a memory cell regulated by three adaptive gates (input, forgetting, output). This innovation mitigates gradient vanishing/exploding issues inherent in standard RNNs, enabling precise control over information retention and forgetting [26]. Compared to feedforward neural networks (FNNs), LSTM’s temporal memory mechanism and dynamic gating allow adaptive sequential processing critical for seismic signal analysis [29]. Recent studies demonstrate its efficacy in early earthquake warning systems, underground mining tremor classification, and real-time anomaly detection in sensor networks [30], highlighting its stability optimization and context-aware capabilities in geophysical applications. In a classic LSTM model, the update equations at step [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. Let me know if you also have a caption for more context!] are as follows (Equations 5–10):
[image: Mathematical equation showing a formula for \( z_t \), where \( z_t = \sigma(Wx_t + Uh_{t-1} + b_t) \).]
[image: Mathematical expression for the forget gate in a recurrent neural network. It describes the activation function, denoted by 𝜎, applied to the sum of weighted inputs 𝑊𝑥ᵢ, recurrent term 𝑈ℋᵢ₋₁, and bias term 𝑏𝚏.]
[image: Equation illustrating a function for \( f_o \), calculated as \(\sigma(W_o x_t + U_o h_{t-1} + b_o)\).]
[image: Mathematical equation displaying a function for recurrent neural networks: \(\xi = \tanh(Wx_t + Uh_{t-1})\).]
[image: Please upload the image or provide a URL, and I will generate the alternate text for you.]
[image: It seems there was an error in inputting the image. Please upload the image file directly or provide a URL to the image so I can help generate the alternate text.]
In this equation, [image: Please upload the image or provide a URL for me to generate the alt text.] is obtained through a linear transformation of the input [image: Please upload the image or provide a URL so I can generate the alt text for you.] and the previous hidden layer output [image: Lowercase letter h with subscript t minus one.], followed by an activation function [image: Please upload the image you would like to generate alternate text for.]. The result of the input gate [image: It seems there's no image provided. Please upload the image, and I'll help generate the alternate text for it.] is a vector where each element is a real number between 0 and 1, which is used to control the amount of information flowing through the gate for each dimension. The matrices [image: If you upload an image or provide a URL, I can help generate the alternate text for it. You can also add a caption for additional context if needed.] and [image: It seems there might be a misunderstanding or mistake with an image upload. Please upload the image or provide a URL, and I can help generate the alternate text for it.], and the vector [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] are the parameters of the input gate, which are learned during training. The forgetting gate [image: Please upload the image you want me to describe or provide a URL to the image.] and the output gate [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] are computed similarly, each with its own parameters [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: It seems there might be an issue with uploading the image. Please try uploading it again, or provide a URL if it's located online.] and [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.]. Unlike traditional RNNs, in LSTM, the transition from the state of the previous memory cell [image: Please upload the image or provide a URL so I can help generate the appropriate alt text.] to the current state [image: Please upload the image or provide a link to it, and I will generate the alt text for you.] is not solely determined by the state calculated from the activation function but also jointly controlled by the input gate and the forgetting gate.
In a trained network, LSTM has the ability to handle sequential data through its gating mechanism, thus achieving long-term memory functionality. Specifically, when the input sequence lacks critical information, the forgetting gate value of the LSTM model approaches 1, and the input gate value approaches 0, allowing past memories to be retained. Conversely, when important information appears in the input sequence, the input gate value increases to nearly one to store this information in the internal memory cell. Furthermore, when the important information in the input sequence indicates that the prior memory is no longer relevant, the input gate value increases to nearly 1, whereas the forgetting gate value decreases to nearly 0. This mechanism clears old memories and stores new key information. Figure 5 shows the structure of an LSTM unit.
[image: Diagram of a neural network with input layer labeled "X," four hidden layers, and an output layer labeled "Y." The hidden layers include two LSTM layers, a fully connected layer with ReLU activation, and a dense fully connected layer. Arrows indicate connections between nodes, illustrating the data flow.]FIGURE 5 | Structural diagram of an LSTM unit.
3.2.2 Model architecture
In this study, we design a neural network architecture consisting of multiple layers specifically for handling binary classification problems. The input layer of the network receives sequential data with 11 time steps. This is followed by two LSTM layers, each containing 32 LSTM units, which can capture the long-term dependencies in time series. To reduce overfitting, three dropout layers are incorporated into the network, with dropout rates of 40% for the first two layers and an increased dropout rate of 40% for the final layer before the output layer. Additionally, the network includes a fully connected layer with 32 neurons, utilizing the rectified linear unit (ReLU) activation function to enhance the nonlinear expression capabilities of the model and applying L2 regularization to further mitigate the risk of overfitting. The final output layer is a fully connected layer that uses the sigmoid activation function to output probabilities for the two classes. The model was trained using the Adam optimizer and binary cross-entropy loss—specifically designed for binary classification tasks where outputs are probabilities between 0 and 1. A training-validation split of 8:2 was applied to ensure robust generalization to unseen data. The initial learning rate was set to 0.05—a value commonly adopted in deep learning practice [31]—and dynamically adjusted using a step scheduler that reduces the learning rate by a factor of 10 every 10 epochs. This strategy was implemented to balance rapid convergence during early training and parameter refinement in later stages, as supported by studies on optimization stability [32]. Using TensorFlow distributed training, LSTM model parameters are stored in fragments and multi-node parallel processing is used to reduce scaling effect when processing large-scale data This network architecture not only adapts to complex binary classification tasks but also effectively balances the learning ability and generalizability of the model.
4 RESULTS
4.1 Decomposition results produced by CEEMDAN for earthquakes and mining tremors
In this study, both mining tremors and earthquake signals are decomposed into 11 IMFs, with these components arranged in frequency order from high to low across different time scales. Specifically, IMF1 represents the component with the highest frequency and the shortest wavelength. As the decomposition process progresses, the frequency decreases, and the wavelength increases for each subsequent IMF component until the final residual component is reached. For mining tremors, short-period surface wave components can typically be identified in the fourth or fifth IMF component, whereas these components are absent from the IMFs of earthquakes, highlighting a significant distinction between mining tremors and earthquakes. By selecting two typical records of mining tremors and earthquakes, the variance contribution rates of different IMF components are calculated after using CEEMDAN for decomposition purposes and presented as histograms. Figures 6a,b visually display the prominent IMF components and their growth trends for mining tremors and earthquakes, respectively. Additionally, Figure 6c, d show the average variance contribution rates of all mining tremor and earthquake records processed by CEEMDAN, respectively. The analysis results indicate that the energy is primarily concentrated in the initial IMFs for both mining tremors and earthquakes. However, for mining tremors, a significant variance contribution rate increase occurs around the fourth IMF component due to the presence of short-period surface waves, indicating a higher amplitude and suggesting that surface waves encompass a major portion of the signal energy. Figures 7, 8 illustrate the decomposed results obtained for mining tremor and earthquake signals, with part (a) representing the components of each IMF for which the presence and separation of surface waves can be observed, while part (b) displays the Fourier spectral analysis corresponding to each component, highlighting the dominant frequency distribution of each IMF component. The waveform characteristics of mining tremors and earthquakes exhibit noticeable differences in their time‒frequency features. The frequency values of mining tremors are typically concentrated in the low-frequency range, indicating a shallow seismic source with developed surface waves and high energy in the low-frequency band. In contrast, the frequency values of earthquakes are distributed more widely in the time‒frequency plot, with longer durations and slower decay processes. This distinction reflects the complexity of the seismic source mechanism for earthquakes, which comprises multiple small ruptures, each with a certain duration process, originating from deeper sources where seismic waves propagate through dense, hard rock formations, resulting in lower energy losses and higher-frequency components, leading to longer-lasting waveforms in the records.
[image: Four bar graphs labeled (a) to (d), each showing variance contribution rates for IMF components one to ten. Graph (a) peaks at component five, (b) at component four, (c) at component six, and (d) decreases steadily. All use a red color scheme.]FIGURE 6 | (a) Histogram of the variance contribution rates for mining tremors. (b) Histogram of the variance contribution rates for earthquakes. (c) Histogram of the average variance contribution rates for mining tremors. (d) Histogram of the average variance contribution rates for earthquakes.
[image: Panel (a) displays the original signal and its Intrinsic Mode Functions (IMF) one through ten, plotted as waveforms over time. Panel (b) shows the Fourier spectra corresponding to each signal and IMF, illustrating frequency versus amplitude.]FIGURE 7 | (a) Various IMF components of mining tremors and (b) their corresponding Fourier spectra.
[image: Two panels display signal analysis. Panel (a) shows the original signal and its Intrinsic Mode Functions (IMFs 1-10) as green waveforms over time. Panel (b) presents the Fourier Transform of each IMF, shown in red, plotted against frequency.]FIGURE 8 | (a) Various IMF components of earthquakes and (b) their corresponding Fourier spectra.
4.2 Comparison between the EEMD and CEEMDAN methods
Compared with the other methods, CEEMDAN has the following advantages. First, it is more effective at reducing the degree of mode mixing, providing clearer and more accurate mode decomposition results. Second, by adaptively adjusting the level of noise added, CEEMDAN not only reduces its computational complexity but also improves its decomposition efficiency. Moreover, CEEMDAN better controls the impact of noise during the decomposition process, effectively reducing the false modes introduced by noise. Finally, the adaptive noise addition strategy of CEEMDAN provides greater flexibility and adaptability for handling different types of signals. Figures 9, 10 show that EEMD performs poorly in terms of data mode separation when the white noise level is low, typically only decomposing 1-2 IMFs and struggling to accurately identify surface waves. In contrast, even at low noise levels, CEEMDAN can clearly identify surface waves in the fifth IMF. When the white noise level is too high, the EEMD method is affected by the introduction of too many false modes due to noise, which impacts its ability to effectively calculate variance contribution rates. Additionally, owing to the inconsistent surface wave frequencies contained in seismic waveforms derived from different regions, the ability of EEMD to separate modes when handling data acquired from different regions varies, resulting in ineffective surface wave identification capabilities. In comparison, CEEMDAN, through its improved noise management scheme and adaptive algorithm, exhibits superior mode separation capabilities when handling a large amount of data obtained from different regions, demonstrating greater generality and adaptability.
[image: Three bar charts show variance contribution rates for IMF components one to ten. Chart (a) peaks at component four, chart (b) at component two, and chart (c) at component one, all depicted in red.]FIGURE 9 | Mining tremors. (a) CEEMDAN decomposition diagram. (b) EEMD decomposition results produced with the noise level controlled at 0.01. (c) EEMD results produced with the noise level controlled at 0.5.
[image: Three bar graphs labeled (a), (b), and (c) show the variance contribution rate for IMF components numbered one to ten. Graph (a) has higher contributions for components one and two. Graph (b) peaks at component four. Graph (c) shows a significant contribution at component ten. All graphs share the same axes: variance contribution rate on the vertical and IMF component on the horizontal.]FIGURE 10 | Earthquakes. (a) CEEMDAN decomposition diagram. (b) EEMD results produced with the noise level controlled at 0.01. (c) EEMD results produced with the noise level controlled at 0.5.
4.3 LSTM results analysis
LSTM evaluates the input data via the following metrics: accuracy, which is the proportion of correctly predicted samples out of the total number of samples; the number of true positives (TP), which is the number of positive cases correctly predicted as positive; the number of true negatives (TN), which is the number of negative cases correctly predicted as negative; the number of false positives (FP), which is the number of negative cases incorrectly predicted as positive; and the number of false negatives (FN), which is the number of positive cases incorrectly predicted as negative, as Equation 11.
[image: Mathematical formula displaying accuracy as the sum of true positives (TP) and true negatives (TN) divided by the sum of true positives, true negatives, false positives (FP), and false negatives (FN), labeled as equation eleven.]
Loss: This is the difference between the values predicted by a model and the true values, which is usually represented as a numerical value. For this study, the binary cross-entropy loss is used. [image: Please upload the image or provide a URL so that I can generate the alternate text for it.] is the number of samples. [image: The symbol "y" with a subscript "i" in italic font, typically used in mathematical equations or statistics to represent a variable within a sequence or dataset.] is the true label of sample [image: I am sorry, but I can't view that image. Could you please upload it or provide a description?]. [image: The image shows the mathematical notation for a predicted value, specifically \( \hat{y}_i \), where \( y \) is the variable and the hat symbol indicates estimation or prediction, with the subscript \( i \) representing the i-th observation.] is the predicted probability of sample [image: It seems there was an error and the image was not uploaded. Please try uploading again, or provide the URL if it is hosted online. If there’s any context or description you’d like to add, feel free to include that as well.], as Equation 12.
[image: Mathematical formula for binary cross-entropy loss: Loss equals negative one over N times the sum from i equals one to N of y sub i log of y hat sub i plus one minus y sub i log of one minus y hat sub i. Equation number twelve.]
Precision: This is the proportion of correctly predicted positive samples out of all samples predicted as positive by the model. It is a metric that measures the accuracy of a model in terms of predicting positive cases, as Equation 13.
[image: A mathematical formula for precision in classification models: precision equals true positives (TP) divided by the sum of true positives and false positives (TP + FP), denoted as equation 13.]
Recall: This is the proportion of correctly predicted positive samples out of all actual positive samples. It measures the ability of a model to capture positive cases, as Equation 14.
[image: Mathematical equation illustrating the formula for recall: Recall equals the number of true positives (TP) divided by the sum of true positives and false negatives (FN), represented by equation (14).]
F1 Score: This is the harmonic mean of precision and recall, which is used to measure the balance between the precision and recall of a model. A higher F1 score indicates better model performance, as Equation 15.
[image: Formula for the F1 score: F1 equals two times Precision times Recall divided by the sum of Precision and Recall.]
After calculating the variance contribution rates of the IMFs decomposed by CEEMDAN, they are input into a three-layer LSTM model. The analysis results are shown in Table 1.
TABLE 1 | Results obtained on the training and validation sets with LSTM.
[image: Table comparing metrics for training and validation sets. Accuracy: 96.1% (training), 96.5% (validation). Loss: 13.1% (training), 11.0% (validation). Precision: 96.1% (training), 98.2% (validation). Recall: 97.1% (training), 99.3% (validation). F1 Score: 97.1% (training), N/A (validation).]During training, the following parameters are selected. The batch size is 12, representing the number of data instances contained in each training batch; the number of epochs is 300, indicating the number of complete passes made by the training data through the neural network; and early stopping is implemented to halt the training process when the performance attained on the validation set does not improve in consecutive epochs or begins to decline. The accuracy function and loss function results are shown in Figures 11, 12. (A) shows the ROC curve, and (B) shows the confusion matrix.
[image: Three graphs illustrating a model's performance across training epochs. (a) Shows accuracy: training set (blue) and validation set (red) both increasing, peaking around 90%. (b) Shows loss: training set (blue) and validation set (red) both decreasing sharply. (c) Displays Matthews correlation coefficient: training and validation sets both rising steadily near 0.95.]FIGURE 11 | (a) Represents the training accuracy function; (b) Rep-resents the training loss function; (c) Represents the Matthews Correlation Coefficient.
[image: (a) Receiver operating characteristic (ROC) curve depicting true positive rate versus false positive rate, showing a high area under the curve of 0.991. (b) Confusion matrix with values: 468 true positives, 19 false negatives, 25 false positives, and 515 true negatives.]FIGURE 12 | (a) shows the ROC curve, and (b) shows the confusion matrix.
4.4 Comparisons conducted under different data and different models
4.4.1 Comparison among the variance contribution rate inputs of different models
To compare the efficiency of LSTM in terms of classifying earthquakes and mining tremors via variance contribution rates, this study selects a CNN,ViT 2D model and an SVM as baseline methods. The variance contribution rates obtained from the CEEMDAN decomposition process are input into the CNN and SVM for comparison purposes. The ViT-2D (Vision Transformer) model is mainly composed of three parts: patch + position + cls embedding layer, Transformer encoder layer and MLP classification layer, full connection layer [-1,16,128], discard layer and Transformer layer [-1,16,128]. 17,128], identity mapping layer [-1, 128], normalization layer [-1, 128], full connection layer [-1,2]. A CNN is a deep learning algorithm that consists of convolutional layers, pooling layers, fully connected layers, etc., effectively extracting features from data; CNNs are widely used in image recognition and video analysis tasks. An SVM is a supervised learning model used for data classification and regression analysis. It distinguishes different data points by finding an optimal hyperplane. An SVM uses kernel techniques to handle linearly inseparable data and can maintain high accuracy in situations with small samples. The CNN utilizes a two-layer network + a fully connected layer, with 16, 32, and 64 neurons, a convolution kernel size of (2.1), a rate dropout set to 0.5, and an ReLU activation function. The SVM penalty parameter C is set to 0.5, and the employed kernel function is the polynomial kernel. As shown in Table 2 (validation set), LSTM has a significant advantage in terms of handling these data.
TABLE 2 | Comparative results of the four tested models.
[image: A table comparing four models: SVM, CNN, LSTM, and ViT-2D. Metrics and values are as follows. Accuracy: SVM 91.3%, CNN 93.2%, LSTM 96.5%, ViT-2D 94.2%. Precision: SVM 94.7%, CNN 95.1%, LSTM 98.1%, ViT-2D 96.7%. Recall: SVM 93.1%, CNN 95.2%, LSTM 99.1%, ViT-2D 97.1%. Loss: SVM 19.7%, CNN 17.5%, LSTM 10.9%, ViT-2D 15.1%.]After 500 experiments, the 95% confidence interval of the model is (0.9583, 0.9717). Assuming the null hypothesis [image: Please upload the image or provide a link to it, and I will help generate the alternate text.]: the true accuracy rate of this study [image: The equation "pi equals zero point nine" is displayed, indicating a mathematical or illustrative representation rather than the actual value of pi.] (here, 0.9 is referred to the literature of Shen Jie [30]), and the alternative hypothesis [image: It seems like there was an error in uploading the image or providing the URL. Please try uploading the image again or provide a URL, and optionally include a caption for additional context.]: the true accuracy rate of this study [image: It seems there was an issue with displaying the image. Please upload the image file directly or provide a URL so I can help generate the alternate text for it.]. For a two-sided test, when the significance level [image: It seems like there is an issue with the image upload or display. Please try uploading the image again or provide a URL.], the critical value [image: Mathematical notation showing "z equals 1.96", commonly used as the critical value for a 95% confidence interval in a standard normal distribution.]. Since the calculated [image: The mathematical expression shows a comparison between z-scores, with \( z = 6.84 \) being greater than \( 1.96 \).], we reject the null hypothesis [image: It seems there was a misunderstanding, as no image was provided. Please upload the image or provide a URL for which you need the alternate text.] and conclude that there is a significant difference between the accuracy rate of this study and the assumed benchmark accuracy rate of 0.9. That is to say, the accuracy rate of this study is statistically significantly higher than 0.9.
4.4.2 Comparison among LSTM and CNN models with different parameter inputs
To verify the superior identification capability of CEEMDAN, different data for identifying mining tremors are input into LSTM for identification purposes, including [1] waveform data from 1 s before and 3 s after the arrival time of a P-wave [2]; waveform data from 1 s before and 14 s after the arrival time of the P-wave [3]; the variance contribution rates of the IMFs decomposed via EEMD; and [4] the dominant frequency. The model selection process is similar to that described above, with accuracy serving as the comparison indicator. The results, as shown in Table 3, indicate that the success rate achieved via CEEMDAN with LSTM is the highest. The accuracy rate of this study was 96.5%, which was higher than the accuracy rate of 91% for classification of natural earthquake and mine earthquake based on ViT 2D model by Shen Jie [33]. Figure 13 shows the classification accuracy of different models with different inputs. From this, it can be clearly seen that ViT-2D can achieve an effect of 91.2% on the data from −1–3 s. However, this is based on the premise of more complete preprocessing of the data and the removal of noise. This step requires a large amount of manual intervention to remove the unavailable data. On the other hand, for the data screened by CEEMDAN features, since it acts on the short-period surface waves for identifying mining tremors, after actual measurement, only simple preprocessing such as baseline calibration and filtering of the original data is needed to complete the identification of mining tremors, and it can also actively remove the unavailable data. In this regard, LSTM has more advantages. The reason is that LSTM has better advantages in exploring the general temporal sequence problems (that is, there is a causal relationship in the development of the sequence), and the variance contribution rates of IMFs are sequences with distinct causal relationships between the preceding and the following. The CEEMDAN-LSTM method has a better prospect for real-time monitoring and classification.
TABLE 3 | Comparison among the results produced with different inputs.
[image: Table comparing performance metrics across different machine learning models. For "1 Second Before and 3 Seconds After a P-Wave", Three-layer CNN scores 56.7%, LSTM 58.1%, ViT-2D 91.2%, with SVM unscored. For "1 Second Before and 14 Seconds After a P-Wave", Three-layer CNN scores 69.1%, LSTM 61.7%, ViT-2D 85.1%, with SVM unscored. "Variance Contribution Rate of EEMD" scores are Three-layer CNN 74.3%, LSTM 76.7%, SVM 73.1%, ViT-2D 79.3%. "Excellence Frequency" scores are Three-layer CNN 78.15%, LSTM 78.1%, SVM 84.3%, ViT-2D 85.1%. "Variance Contribution Rate of CEEMDAN" scores are Three-layer CNN 93.2%, LSTM 96.5%, SVM 91.3%, ViT-2D 94.2%.][image: 3D bar chart comparing three models: LSTM, CNN, and DenseNet using three datasets. Accuracy values vary by dataset. Bars are color-coded from blue to red, indicating accuracy levels.]FIGURE 13 | shows the classification accuracy of different models with different inputs.
5 CONCLUSION AND DISCUSSION
5.1 Conclusion
This study selected recorded data from different mining tremors and earthquakes that occurred in the Liaoning region and applied the CEEMDAN-LSTM method to classify these events, achieving a high success rate. The following conclusions were drawn from the research.
Previous studies have provided numerous criteria for distinguishing between mining tremors and earthquakes, including the initial directions of P-waves and the dominant frequency. Utilizing only the initial direction of a P-wave as a discriminant indicator makes it difficult to eliminate noise interference in data with high noise levels; similarly, the dominant frequency overlaps with the frequencies of noise when processing data derived from various regions, making it difficult to address the noise interference issue. The method of identifying short-period surface waves through CEEMDAN not only resolves the issue of ambiguous identification criteria but also overcomes the difficulties caused by overlapping noise and surface wave frequencies, significantly improving the success rate achieved when classifying earthquakes and mining tremors.
Mining tremor records are relatively rare, and previous studies have focused mostly on analyzing single events. When addressing a large amount of general, extensive data, the frequency range of surface waves induced by mining tremors significantly fluctuates and overlaps with the frequency range of noise. When the EEMD method is used, effectively separating mining tremor surface waves from noise is difficult. In comparison, the CEEMDAN method can more effectively remove noise and accurately identify surface wave frequencies.
5.2 Discussion and future work
This study demonstrates the efficacy of the CEEMDAN-LSTM model in discriminating mining tremors from tectonic earthquakes. To advance this framework, several avenues merit further investigation. First, enhancing computational efficiency of CEEMDAN decomposition requires integrating advanced spline interpolation techniques and parallelized GPU acceleration via CUDA/OpenCL frameworks, as validated in XGBoost-based seismic classification [16]. This optimization would expedite the extraction of intrinsic mode functions (IMFs), reducing latency in real-time applications. Second, expanding the dataset scope to include multi-source seismic records would improve model generalization, aligning with recent efforts in hybrid data fusion for earthquake early warning [17].
For feature engineering, integrating machine learning algorithms—such as support vector machines (SVM) or random forest (RF)—to exploit CEEMDAN-derived frequency components can enhance discriminative power. Specifically, combining traditional variance contribution rates with time-frequency metrics (Teager energy operator, wavelet packet entropy) and domain-specific indices (P/S amplitude ratios) would enable multi-scale analysis, as demonstrated in hybrid models for microseismic event classification [23]. Additionally, applying adaptive noise reduction techniques (Wiener filtering, wavelet thresholding) during CEEMDAN decomposition could mitigate artifacts from low signal-to-noise ratio (SNR) datasets, improving the fidelity of reconstructed waveforms.
To address scalability challenges, distributed GPU computing frameworks should be adopted to parallelize LSTM training, enabling linear scaling with dataset size. This approach mirrors successful implementations in large-scale seismic intensity estimation [18]. Furthermore, exploring lightweight LSTM variants (e.g., bidirectional LSTM with attention mechanisms) could balance temporal modeling capabilities and computational efficiency, as previously shown in rockburst-prone mine monitoring [23].
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Sample Concrete WER WRA FA
PC-MI1 9.78 245 000 0.00 0.00 000
PC-M2 7.92 245 039 001 0.98 049
PC-M3 605 245 078 002 196 098
PC-M4 437 245 098 003 294 147
PC-M5 603 260 0.00 001 186 139
PC-M6 521 260 037 0.00 279 093
PC-M7 8.06 260 074 003 0.00 046
PC-M8 7.42 260 093 0.02 093 0.00
PC-M9 586 272 0.00 002 272 045
PC-M10 685 272 072 003 181 000
PC-MI1 606 272 072 0.00 091 136
PC-MI2 723 272 091 001 0.00 091
PC-MI3 699 281 0.00 003 0.88 088
PC-M14 7.09 281 035 002 0.00 132
PC-MIS 543 281 070 001 263 000
PC-MI6 570 281 088 0.00 175 044
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PC-M1 Al B1 c1 D1 El
PC-M2 Al B2 c2 D2 E2
PC-M3 Al B3 C3 D3 E3
PC-M4 Al B4 c4 D4 E4
PC-M5 A2 Bl c2 D3 E4
PC-M6 A2 B2 c1 D4 E3
PC-M7 A2 B3 c4 D1 E2
PC-M8 A2 ‘ B4 c3 D2 E1
PC-M9 A3 Bl c3 D4 E2
PC-M10 A3 B2 C4 D3 E1
PC-MI1 A3 B3 c1 D2 E4
PC-MI2 A3 B4 c2 D1 E3
PC-M13 A4 B1 c4 D2 E3
PC-M14 A4 . B2 c3 . D1 E4
PC-M15 A4 ‘ B3 c2 ' D4 E1
PC-MI6 A4 B4 c1 D3 E2
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% 5.889 6255 5073 4627 5467
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K 3.848 4741 5.192 4.651 5782
R 2041 v 2149 1591 ‘ 0.703 1791
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GGBFS Effective porosity Permeability

(%) (mm/s)
PC-M1 Al Bl C1 D1 E1 27.98 7.903
PC-M2 Al B2 Q D2 E2 29.64 5.653
PC-M3 Al B3 C3 . D3 E3 14.40 3.154
PC-M4 Al B4 C4 D4 E4 2574 6.847
PC-M5 A2 Bl C2 D3 E4 23.62 7425
PC-M6 A2 B2 C1 D4 E3 18.98 3245
PC-M7 A2 B3 (e D1 E2 11.50 3316
PC-M8 A2 B4 a D2 E1 15.28 4.537
PC-M9 A3 Bl C3 D4 E2 14.08 4481
PC-M10 A3 B2 4 D3 E1 20.86 5395
PC-M11 A3 B3 C1 D2 E4 2233 5923
PC-M12 A3 B4 2 D1 E3 14.35 4.358
PC-M13 A4 Bl (e D2 B3 16.97 5.208
PC-M14 A4 B2 c . D1 E4 21.54 2932
PC-M15 Ad B3 o] v D4 E1 20.50 4.031
PC-M16 Ad B4 C1 D3 E2 18.90 3222
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5 2475 2,800 2375 2675 2475
T 2,800 2550 2,500 2675 2800
I3 2750 2,550 2750 3.050 2775
K 2475 2.600 2.875 2,600 2450
R 0325 0250 0.500 0125 0350
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K 16.700 20.668 17.240 20.660 18.248
K 21.448 18.663 18.198 20678 22178
I 21.905 21.040 21568 25910 21.498
K 19.863 22545 22910 19.668 17.993
R 5.205 ‘ 2378 5670 17675 4.185
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WCR GGBFS i Flexural strength

(MPa)
PC-M1 Al Bl C1 D1 El 13.61 23
PC-M2 Al B2 (o] D2 E2 15.50 24
PC-M3 Al B3 o] D3 ‘ E3 19.22 26
PC-M4 Al B4 C4 D4 E4 16.91 25
PC-M5 A2 Bl C2 D3 E4 18.32 26
PC-M6 A2 B2 C1 D4 E3 18.60 26
PC-M7 A2 B3 4 D1 E2 2732 32
PC-M8 A2 B4 c3 D2 ElL 2157 28
PC-M9 A3 Bl c3 D4 E2 27.07 32
PC-M10 A3 B2 C4 D3 E1 ‘ 2072 27
PC-MI1 A3 B3 C1 D2 E4 16.94 23
PC-MI12 A3 B4 C2 D1 E3 ‘ 21.89 28
PC-M13 Ad Bl c4 D2 B 26.70 31
PC-M14 A4 B2 C3 D1 E4 18.83 24
PC-MI15 Ad B3 (o7} D4 El 15.10 21
PC-M16 Ad B4 C1 D3 E2 17.82 23
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Level factors WCR(A) DEP%(B) WRA%(C) C GGBFS%(E)

1 025 (A1) 0(B1) o(Ccn 0(D1) 0(E1)
2 028 (A2) 4(B2) 0.1(C2) 10(D2) 5(E2)
3 030 (A3) 8(B3) . 02(C3) 20 (D3) ' 10 (E3)
4 | 032 (A4) 10 (B4) | 0.3 (C4) 30 (D4) 15 (E4)
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oPC 221 497 294 60.22 124 272 0.56 5.14
FA 59.41 19.51 772 471 172 172 0.27 571
GGBFS, 36.52 12.87 072 4075 972 027 0.18 033
DEP 1.06 276 174 1.03 167 157 89.42 357
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Elastic modulus (GPa) 42 42
Plastic modulus (GPa) 336 - -
Tensile strength (MPa) - 50 50
Cohesion (MPa) 145 20 2
Density (kg/m?) 2,680 1,000
Friction coefficient 070 0.01
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1 025 (A1) 0(B1) o(Ccn 0(D1) 0(E1)
2 028 (A2) 4(82) 0.1(C2) 10(D2) 5(E2)
3 030 (A3) 8(83) 02(C3) 20(D3) 10 (E3)
4 032 (A4) 10 (B4) 03(CH) 30 (D4) 15 (E4)
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PC-MI Al Bl c1 DI El
PC-M2 Al B2 c D2 B2
PC-M3 Al B3 c D3 B3
PC-M4 Al B4 ca D4 B4
PC-M5 A2 B1 c2 D3 B4
PC-M6 A2 B2 c1 D4 E3
PC-M7 A B3 ca DI B2
PC-MS A2 B4 c D2 El
PC-M9 A3 Bl c D4 E2
PC-MI0 A3 B2 ca D3 El
PC-MII A3 B3 c1 D2 B4
PC-MI2 A3 B4 c2 DI B3
PC-MI3 A1 B1 ca D2 B3
PC-MI4 A1 B2 c DI B4
PC-MIS A4 B3 c2 D4 El
PC-MI6 A4 B4 c1 D3 B2
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Test number Concrete Fly ash Water (kg/m?) Ceramsite Sand (kg/m Water
(kg/m?) (kg/m?) (kg/m?) reducing

agent (kg/m?)

1 400 0 112 645.12 522 06
2 360 40 120 645.12 522 038
3 320 80 128 645.12 522 1

4 280 120 136 645.12 522 12
5 360 40 112 55296 696 1

6 400 0 120 552.96 696 12
7 280 120 128 552.96 696 06
8 320 80 136 552.96 696 08
9 320 80 12 460.8 870 12
10 280 120 120 460.8 870 1

11 400 0 128 460.8 870 08
12 360 40 136 460.8 870 06
13 280 120 112 368.64 1,044 038
14 320 80 120 368.64 1,044 0.6
15 360 40 128 368.64 1,044 12
16 400 0 136 368.64 1,044 1
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Test number Factor

Sand rate (A) % = Water-cement ratio (B) Fly ash substitution rate Dosage of water
(C) % reducing agent (D) %
1 A,(30) B,(0.28) C,(0) D,(0.15)
2 A,(30) B,(0.30) . C,(10) D,(0.20)
3 A,(30) B,(032) C,(20) D,(0.25)
4 A,(30) B,(0.34) 1 C,(30) D,(0.30)
5 A,(40) B,(0.28) C,(10) D;(0.25)
6 A,(40) B,(0.30) C,(0) D;(0.30)
7 A,(40) B,(0.32) C,(30) D,(0.15)
8 A,(40) B,(0.34) C,(20) D,(0.20)
9 A4(50) B,(0.28) C;(20) D,(0.30)
10 A4(50) B,(0.30) C,(30) D;(0.25)
11 ' A4(50) B,(0.32) G0 D,(0.20)
12 Ay(50) B,(0.34) C,(10) D,(0.15)
13 A,(60) B,(028) C,30) D,(0.20)
14 » A,(60) B,(030) C3(20) D,(0.15)
15 A,(60) B,(0.32) C,(10) D,(0.30)
7 16 A,(60) B,(0.34) | C,(0) D;(0.25)
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Cylinder Stacking density Apparent density Aggregate size (mm) Water absorption
compressive (kg/m?) (kg/m?) rate at 1 h (%)
strength (MPa)

42 768 1,430 5-20 3
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Types of holes Simulated values W/(m? Theoretically calculated Absolute value of error (%)

values W/(m?-K)

TZ-1 1.02 098 41
TZ-2 0.96 098 20
TZ-3 0.93 098 5.1
TZ-4 1.08 098 93
TZ-5 1.00 098 20
TZ-6 1.04 098 6.1
TZ-7 1.00 092 87
TZ-8 0.94 091 33
TZ-9 081 082 12
TZ-10 ‘ 0.62 0.64 31
TZ-11 056 061 82
TZ-12 050 052 38
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Element Hot surface temperature (K)
order
2mm 3mm 10mm 15mm 20 mm

Linear ‘ 297.38 ‘ 297.38 297.37 297.36

Quadratic | 297.38 297.38 297.38
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Serial number Dry apparent density Compression Flexural tensile Thermal
(kg/m3) strength (MPa) strength (MPa) conductivity
(W/(m-K))

1909.36 5203 5.13 0.8314
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Range values A (%) C(%) D(%)

4 398 436 403 418 422
9 449 442 429 444 439
X 476 427 458 445 4.38
K, 395 4.12 427 411 4.19
R 081 0.30 055 034 0.21

A>C>D>B>E
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K, 277 | a8 | 4161 1335 | 4471
X 1612 | 4564 | 4493 4521 | 4492
4 846 | 457 | 474 4545 | 4490
4 4189 | 4414 | 4556 4523 | a7
R 656 150 553 209 0.22

A>C>D>B>E
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Test number Combination of Dry apparent density Compression Flexural tensile

factors ) strength (MPa) strength (MPa)
1 AB,CD, 1822.26 3809 3.59
2 AB,C,D, 1789.14 4423 434
3 A,B,C;D; 1761.71 4558 448
4 AB,C,D, 1738.78 4317 35
5 A;B,C,D, 1845.78 4686 459
6 AB,CD, 1830.08 4425 425
7 ABC,D, 1818.36 4528 143
8 A,B,C,D, 1855.12 48.07 467
9 AB,CD, 1905.95 s14 503
10 AsB,C,D, 1892.38 5057 494
1 AB,C,D, 1916.75 4531 451
12 AB,C,D, 1896.36 4654 455
13 AB,C,D, 1960.36 4321 42
14 A,B,C,D, 1926.86 435 4.14
15 AB,C,D, 1935.93 4209 3.66
16 AB,C,D; 1937.36 3877 377
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Training set Validation set

Accuracy 96.1% 96.5%
Loss 131% 11.0%
Precision 96.1% 98.2%
Recall 97.1% 99.3%
F1 Score 97.1% N/A
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