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Objective:To address the high-order correlationmodeling and fusion challenges

between functional and structural brain networks.

Method: This paper proposes a hypergraph transformer method for modeling

high-order correlations between functional and structural brain networks. By

utilizing hypergraphs, we can e�ectively capture the high-order correlations

within brain networks. The Transformermodel provides robust feature extraction

and integration capabilities that are capable of handling complex multimodal

brain imaging.

Results: The proposed method is evaluated on the ABIDE and ADNI datasets. It

outperforms all the comparison methods, including traditional and graph-based

methods, in diagnosing di�erent types of brain diseases. The experimental results

demonstrate its potential and application prospects in clinical practice.

Conclusion: The proposed method provides new tools and insights for

brain disease diagnosis, improving accuracy and aiding in understanding

complex brain network relationships, thus laying a foundation for future brain

science research.

KEYWORDS

hypergraph computation, brain network, high-order correlation, brain disease

diagnosis, transformer

1 Introduction

The structural and functional connections of brain networks reflect the interaction and

collaboration between different brain regions (1, 2). Structural connectivity is typically

represented by the distribution of neural fiber tracts (3), while functional connectivity

describes the synchronous activity of different brain regions during specific tasks or at

rest state (4). Understanding the structural and functional connectivity of brain networks

is crucial for comprehending both normal brain function and pathological states (5).

For instance, abnormalities in structural connectivity may be associated with brain tissue

damage, while disruptions in functional connectivity could indicate communication issues

between neurons. Therefore, studying functional and structural brain networks is essential

for uncovering the mechanisms underlying brain disease diagnosis.

Current research on brain networks primarily relies on techniques such as functional

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). fMRI captures

brain activity during specific tasks or at rest, revealing functional connectivity between

different brain regions. DTI, on the other hand, tracks the diffusion paths of water
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molecules within neural fibers, providing information on the

structural connectivity of the brain’s white matter. Integrating

data from fMRI and DTI offers a more comprehensive and

enriched perspective for diagnosing brain diseases. For example, in

Alzheimer’s disease research, fMRI can reveal changes in functional

connectivity, while DTI can demonstrate the degradation of white

matter structure. In recent years, multimodal imaging techniques

that combine fMRI and DTI have become mainstream in brain

network research, further enhancing diagnostic accuracy and depth

of understanding regarding brain diseases.

Artificial intelligence (AI) has achieved great success in

various fields (6). For the brain network analysis task, graph and

hypergraph methods (7–9) have shown great potential in brain

network research. Graph methods represent brain networks as

vertices and edges, allowing for the analysis of pairwise, low-

order relationships. However, these methods have limitations, as

they fail to effectively capture higher-order relationships within

brain networks. For instance, traditional graph neural networks

(GNNs) (10, 11) often underperform in handling complex high-

order interactions (12, 13), neglecting the interactions among

multiple vertices. Hypergraph methods (14) introduce hyperedges,

which better model higher-order relationships in brain networks,

but challenges remain in integrating functional and structural

brain networks (15). Although hypergraphs can represent high-

order relationships among multiple vertices, existing methods

lack effective strategies for integrating information from different

modalities, making it difficult to fully leverage the advantages of

multimodal data. Thus, new methods are needed to address these

issues and improve the accuracy and reliability of brain disease

diagnosis.

This paper proposes a hypergraph Transformer (HGTrans)

method for calculating high-order correlations between functional

and structural brain networks. By utilizing hypergraphs, we

can effectively model the high-order interactions within brain

networks. The Transformer model provides robust feature

extraction and integration capabilities, capable of handling

complex multimodal data. Specifically, we use hypergraphs to

represent high-order correlations in brain networks, including

both functional and structural connectivity. Then, we propose

the cross-attention Transformer module to extract features and

integrate information from the hypergraphs, constructing a

joint representation of the functional-structural brain network.

This approach not only captures high-order functional and

structural correlations but also effectively integrates information

from different modalities, enhancing brain disease diagnosis

performance. The main contributions of this paper are as follows:

• We propose a hypergraph-based method for modeling and

computing the integration of functional and structural brain

networks, effectively capturing high-order correlations. By

using hypergraph modeling, we can accurately represent

high-order interactions among multiple regions within brain

networks, thereby enhancing our understanding and diagnosis

performance of brain diseases.

• We introduce the Transformer model into hypergraph-

based multimodal brain disease diagnosis, integrating

diverse information from fMRI and DTI to improve

diagnostic accuracy. The Transformer is conducted to refine

the structural embeddings by incorporating high-order

relationships derived from the functional network, thereby

enhancing the diagnosis of brain diseases.

• We validated our method on the ABIDE and ADNI datasets,

showing that our approach outperforms all the traditional

and graph-based methods for different types of brain diseases,

demonstrating its potential and application prospects in brain

disease diagnosis.

2 Materials and methods

2.1 Datasets and preprocessing

The proposed method is evaluated on the ABIDE (16) and

ADNI (17) datasets. We utilized the NYU1 and TCD sites of

the ABIDE database in this work. Specifically, the NYU1 dataset

contains 55 subjects, of which 33 subjects are autism spectrum

disorder (ASD) patients and 22 subjects are normal controls (NCs).

The TCD site contains 40 subjects, of which 20 subjects are ASD

subjects and 20 subjects are NCs. The ADNI dataset is collected

from multiple sites that study for improving the clinical trials for

the prevention and treatment of Alzheimer’s disease (AD).We used

a subset of ADNI in this work, consisting of 39 AD patients, 62

MCI patients, and 61 NCs. Each subject has both rs-fMRI and

DTI data in this work. The AAL (18) brain atlas was used to

segment the regions of interest (ROIs) of the brain network. We

preprocessed the original rs-fMRI via DPARSF,1 and the original

DTI via PANDAS.

2.2 Method

2.2.1 Preliminaries of hypergraph computation
The hypergraph computation framework models high-order

correlations by using hyperedges, which represent complex

relationships beyond pairwise connections, and performs

collaborative computation on these high-order interactions. Each

hyperedge can connect multiple vertices, allowing it to capture

both low-order (pairwise) correlations and high-order correlations

across larger vertex sets. This approach leverages these high-order

interactions to optimize data usage and improve overall task

performance.

Given a hypergraph H = {V , E ,W}, where V and E represent

the vertex set and the hyperedge set, respectively, and W denotes

the weight matrix of the hyperedges. The incidence matrix of

the hypergraph is defined as a |V| × |E | matrix, with each entry

defined as

H(v, e) =

{

we(v), if v ∈ e

0, if v /∈ e
, (1)

where we(v) ∈ W represents the weight of vertex v within the

hyperedge e.

1 http://rfmri.org/DPARSF
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2.2.2 HGTrans framework
As shown in Figure 1, the proposed HGTrans Framework

consists of twomainmodules: the hypergraph computationmodule

based on brain imaging and the structure-function Transformer

module. The former constructs high-order relational structures

from the information embedded in fMRI and DTI, exploring

the complex relationships between different brain regions under

fMRI and DTI, and generating high-order feature representations

for fMRI and DTI. Then, semantic computations are performed

using a hypergraph neural network to generate high-order feature

representations. The latter uses the high-order features of the

functional brain network as keys (K) and values (V), and the high-

order features of the structural brain network as queries (Q) to

achieve information interaction and fusion within the Transformer

module. Finally, the fused features are fed into a classifier to enable

brain disease diagnosis.

2.2.3 Hypergraph computation for fMRI and DTI
2.2.3.1 Higher-order functional brain network

representation

To model the complex interactions within functional brain

networks, we utilize hypergraphs, which allow for the connection

of multiple ROIs in the brain, rather than just pairs of regions. This

structure facilitates the representation of high-order associations

that arise in functional brain activity. The time series data

of 116 ROIs from each subject’s resting-state fMRI (rs-fMRI)

data is extracted, followed by calculating the Pearson correlation

coefficient between each pair of ROIs. This correlation coefficient

quantifies the degree of linear relationship, ranging from –1

(perfect negative correlation) to 1 (perfect positive correlation),

with 0 indicating no linear association. Using this approach, a

functional connectivity (FC) matrix of size 116 × 116 is then

generated, where each element represents the pairwise linear

correlation between two ROIs.

In the hypergraph model, each of the 116 ROIs is treated as

a vertex in the set V = {v1, v2, . . . , v116}, with vi representing

the i-th vertex. In this work, we fix the K value as 3. The

vertex feature set Xf = {xf 1, xf 2, . . . , xf 116} describes the Pearson

correlation values between the i-th ROI and all other ROIs. To

capture the structural relationships between ROIs, we apply a K-

Nearest Neighbors (KNN) algorithm to identify the k1 − 1 nearest

neighbors for each vertex vi. A hyperedge is then formed for each

vertex, connecting it with its nearest neighbors. Each hyperedge ej,

constructed using KNN with a specified k-value, can be expressed

as ej = {v1, v2, . . . , vk}, where k represents the number of vertices

in the hyperedge. The similarity between vertices is measured using

Euclidean distance, calculated as follows:

Edist(vi, vj) =

√

√

√

√

√

d(l)
∑

p=1

(zi,p − zj,p)2 (2)

where Edist(vi, vj) denotes the Euclidean distance between vertices

vi and vj, and d(l) represents the number of feature dimensions in

layer l.

By incorporating KNN with multiple values of k, representing

local and global scales, the resulting hyperedges reflect complex

high-order interactions between the vertices. The functional brain

network hypergraph is then used for hypergraph convolution,

allowing the learning of vertex representations. The HGNN+

convolution operation (19) consists of a two-step message-passing

scheme. The process is formalized as follows:

Zt = WHTD−1
e Xt

Xt+1 = σ (D−1
v HZθ t+1) (3)

where Xt ∈ R
|V|×Mt is the vertex feature matrix at layer t, and

Zt ∈ R
|E|×Mt is the corresponding hyperedge feature matrix.

The learnable parameter matrix θ t+1 ∈ R
Mt×Mt+1 defines the

transformation for the subsequent layer. Initially, the incidence

matrix H guides the aggregation of vertex features to generate the

hyperedge featurematrixZt . These features are then combinedwith

vertex-specific hyperedge features using the learnable parameters

θ t , updating the vertex feature matrix Xt+1. A nonlinear activation

function σ (·) is applied to facilitate the transformation of features.

The vertex embeddings derived from multiple layers

of hypergraph convolution effectively capture high-order

relationships between ROIs within the functional brain network.

This modeling approach provides a superior representation of

complex brain activity patterns.

2.2.3.2 High-order structural brain networks

DTI data is utilized to derive the structural connectivity

(SC) matrix, which quantifies the fiber tract connections between

various ROIs in the brain. This method facilitates a comprehensive

evaluation of potential alterations in the structural brain network

that may be associated with ASD, offering a holistic perspective on

how the disease may impact brain function.

The structural brain network is characterized by features

such as small-world architecture and rich-club organization, both

of which are critical for understanding network efficiency and

communication. High-order structural characteristics are captured

by computing the clustering coefficient ci and degree centrality di
for each ROI, based on the SC matrix. The clustering coefficient

assesses the extent of local interconnectivity, while degree centrality

indicates the relative importance of each region within the broader

network. These metrics provide valuable insights into the efficiency

of information processing and communication within and between

local brain regions.

The feature representation for each vertex in the network is

defined as Xs = {xs1, xs2, . . . , xs116}, where xsi represents the

feature vector for the i-th ROI, with xsi = {csi, dsi}. These initial

features serve as input for subsequent analysis and modeling. To

capture the higher-order relationships between ROIs, a K-Nearest

Neighbors (KNN) algorithm is employed to construct a hypergraph

representation of the structural brain network. This hypergraph

captures multi-dimensional interactions that extend beyond simple

pairwise connections, allowing for a more detailed representation

of the complex inter-regional relationships in the brain.

Following the construction of the hypergraph, HGNN+ (19)

is applied for feature learning and information integration. The

hypergraph convolution process mirrors the procedure used for

the functional brain network, as indicated in Equation 3. After two

layers of hypergraph convolution, the resulting vertex embeddings

encode high-order structural features, which are used as the final

representations of each brain region. These embeddings enable a
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FIGURE 1

The pipeline of the proposed HGTrans framework.

more nuanced analysis of the structural brain network, particularly

in understanding the structural alterations associated with ASD.

This approach provides a rigorous framework for examining both

local and global connectivity patterns within the brain, offering

valuable insights into the structural mechanisms underlying ASD.

2.2.3.3 Cross-attention transformer for multimodal

integration

To effectively fuse functional and structural brain network

features, a cross-attention Transformer module is introduced.

This module leverages the Transformer architecture to model

long-range dependencies between multimodal features, using the

structural embeddings after hypergraph convolution as the query

(Q) and the functional embeddings as the key (K) and value (V),

enabling the integration of both modalities.

First, the structural embedding matrix Xs and the functional

embedding matrix Xf obtained from hypergraph convolution are

projected into Q, K, and V representations as follows:

Qs = Ws
qXs, Kf = W

f

k
Xf , Vf = W

f
vXf , (4)

where Ws
q, W

f

k
, and W

f
v are learnable weight matrices that linearly

project the structural and functional embeddings. This step maps

both sets of features into a shared feature space, preparing them for

cross-attention.

Next, through the cross-attention mechanism, the query matrix

Qs from the structural features attends to the key matrix Kf from

the functional features, generating the attention weight matrix:

A = softmax

(

QsK
T
f

√

dk

)

, (5)

where A represents the attention weight matrix, and dk is the

dimensionality of the key, used for scaling. These attention weights

are then applied to the value matrix Vf from the functional features

to generate updated structural feature embeddings:

Z = AVf . (6)

This process refines the structural embeddings by incorporating

high-order relationships derived from the functional network,

enabling a more comprehensive representation of brain activity.

2.2.3.4 Brain disease diagnosis

The learned feature representations from the cross-attention

Transformer module are then fed into the output layer for

classification. The output layer consists of a fully connected

layer and a log_softmax activation function to facilitate the final

classification prediction.

Let xi and bi represent the input and bias for the i-th hidden

layer, respectively, while Wi denotes the weight matrix facilitating

connections from the i-th to the i+1-th hidden layer. Subsequently,

the activation of the i + 1-th hidden layer is computed using the

equation below:

Zi+1 = f (Wixi + bi), (7)

Zi+1 is the activated output of layer i+1.f denotes the activation

function.

f (x) = max(0, x), (8)

The ReLU activation function constrains its output to the range

[0,∞). For the final layer, a fully connected dense layer is paired

with a log_softmax activation functionactivation function to

execute the terminal classification predictions.

log-softmax(zi) = zi − log





∑

j

ezj



 , (9)

The log-softmax function, which uses Euler’s number e as the

base for the natural logarithm. In a binary classification setting,

it provides log probabilities as the output. We utilize the Adam

optimizer for the optimization process, setting a relatively low

learning rate of 1× 10−5. The negative log-likelihood loss function

is utilized for the binary classification task, the loss function is

defined as follows:

L = − log(py) (10)

where py represents the probability of the correct class y.
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3 Results and discussion

The proposed method is compared against four categories of

methods:

• Single-modality-based baseline: SVM (20), MLP (21)

• Single-modality-based graph methods: GCN (10), GAT (11),

and GraphSage (22).

• Single-modality-based hypergraph method: HGNN+ (19).

• Multi-modality-based methods: BrainNN (23) and

MVGCN (24).

A three-fold cross-validation approach was utilized to evaluate

eachmethod, quantifying the accuracy of ASD disease classification

predictions using metrics such as accuracy, sensitivity, specificity,

and F1 score. The final results is given by mean ± standard error.

Tables 1, 2 show the experimental results of ABIDE and ADNI,

respectively.

3.1 Comparison with single-modality
baseline methods

In Tables 1, 2, single-modality baseline methods include

traditional machine learning approaches such as Support Vector

Machines (SVM) and Multilayer Perceptron (MLP). While these

methods are widely used for classification tasks, they are limited

to features from a single modality and cannot capture the complex

interactions within brain networks. Specifically, on the ABIDE-

NYU dataset, SVM achieved an accuracy of 0.746, and MLP

achieved 0.655, both lower than the accuracy of 0.799 achieved

by our proposed HGTrans. Similarly, on the ABIDE-TCD dataset,

SVM and MLP achieved 0.625 and 0.646, respectively, which are

significantly lower than HGTrans’s 0.749. These results indicate

that single-modality baselinemethods are insufficient for effectively

addressing the complexity of ASD data. By integrating both fMRI

and DTI data, HGTrans can capture more informative features

from different perspectives of the brain network, leading to

superior classification performance. This highlights the necessity

and effectiveness of multimodal data fusion.

3.2 Comparison with graph-based
methods

Graph-based methods, including GCN, GAT, and GraphSAGE,

utilize the graph structure of brain networks to model relationships

between regions of interest (ROIs). These methods can capture

more complex spatial topological features than traditional single-

modality methods. However, as shown in Table 1, on the ABIDE-

NYU dataset, GCN achieved an accuracy of 0.618, GAT 0.617,

and GraphSAGE 0.582, all significantly lower than HGTrans’s

0.799. Similarly, on the ABIDE-TCD dataset, GCN, GAT, and

GraphSAGE achieved accuracies of 0.625, 0.623, and 0.623,

respectively, which are lower than HGTrans’s 0.749. Although

graph-based methods can capture the topological information

within brain networks, they are limited to modeling pairwise

relationships and cannot fully represent higher-order interactions

between brain regions. In contrast, HGTrans leverages hypergraph

modeling to capture more complex higher-order relationships in

multimodal settings, which significantly improves classification

performance over traditional graph methods.

3.3 Comparison with hypergraph-based
methods

Hypergraph-based methods, such as HGNN+, extend

the capabilities of graph models by capturing higher-order

relationships between multiple brain regions through hypergraph

structures. On the ABIDE-NYU dataset, HGNN+ achieved an

accuracy of 0.707, and on the ABIDE-TCD dataset, it achieved

0.676, both close to but lower than HGTrans’s 0.799 and 0.749,

respectively. These results show that while hypergraph methods

can capture more complex brain region interactions, performance

remains limited when using single-modality data. HGTrans

outperforms HGNN+ primarily due to its ability to not only

capture higher-order spatial topological structures through

hypergraphs but also effectively integrate functional and structural

brain network features using cross-attention mechanisms. By

jointly modeling multimodal data, HGTrans generates more

robust embeddings, leading to superior performance compared

to single-modality hypergraph methods. On the other hand,

When we engage in cognitive activities such as reading, writing,

and listening, multiple brain regions cooperate to complete

the tasks (25, 26), rather than a single brain region or pairs

of brain regions working independently. Traditional methods

find it difficult to model such group high-order correlations.

However, high-order correlation modeling and semantic

computation based on hypergraphs can achieve high-order

correlation-driven local brain region cooperative message

passing, which is more efficient than traditional graph neural

networks and contains richer information. Therefore, for brain

disease diagnosis tasks, the hypergraph computation model can

provide more abundant semantic information, thereby improving

diagnostic performance.

3.4 Comparison with multimodal methods

Multimodal methods, such asMVGNN and BrainNN, integrate

both fMRI and DTI data to capture complementary information

from different brain modalities. As shown in Tables 1, 2, while

these multimodal methods outperform single-modality and graph-

based methods, HGTrans still achieves the highest accuracy across

both datasets. On the ABIDE-NYU dataset, MVGNN achieved

an accuracy of 0.748, and BrainNN 0.688, both lower than

HGTrans’s 0.799. On the ABIDE-TCD dataset, MVGNN, and

BrainNN achieved accuracies of 0.698 and 0.672, respectively,

also lower than HGTrans’s 0.749. HGTrans’s advantage lies

in its ability to not only fuse multimodal data but also

effectively capture the complex interactions between functional

and structural brain networks through hypergraph structures and

cross-attention mechanisms. This mechanism allows the model to

fully leverage the relationships between functional and structural

brain networks, resulting in more expressive features and higher
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TABLE 1 The comparison results on the two ABIDE datasets.

Modality Method Accuracy Sensitivity Specificity F1-score

ABIDE-NYU

fMRI SVM (mean± std) 0.746± 0.024 0.879± 0.043 0.547± 0.034 0.633± 0.024

MLP (mean± std) 0.655± 0.048 0.879± 0.086 0.327± 0.185 0.400± 0.163

GCN (mean± std) 0.618± 0.046 0.909± 0.074 0.185± 0.072 0.274± 0.090

GAT (mean± std) 0.617± 0.053 0.667± 0.086 0.542± 0.083 0.590± 0.084

GraphSage (mean± std) 0.582± 0.068 0.606± 0.086 0.542± 0.083 0.509± 0.077

HGNN+ (mean± std) 0.707± 0.098 0.849± 0.113 0.494± 0.149 0.672± 0.117

BrainGB (mean± std) 0.691± 0.068 0.849± 0.043 0.452± 0.121 0.651± 0.085

BrainGNN (mean± std) 0.727± 0.046 0.818± 0.074 0.583± 0.131 0.703± 0.056

DTI SVM (mean± std) 0.582± 0.068 0.818± 0.074 0.185± 0.072 0.509± 0.077

MLP (mean± std) 0.563± 0.011 0.818± 0.074 0.232± 0.139 0.244± 0.063

GCN (mean± std) 0.527± 0.068 0.788± 0.086 0.143± 0.202 0.154± 0.218

GAT (mean± std) 0.511± 0.078 0.697± 0.043 0.232± 0.139 0.266± 0.139

GraphSage (mean± std) 0.545± 0.033 0.758± 0.113 0.232± 0.139 0.270± 0.112

HGNN+ (mean± std) 0.637± 0.0 61 0.758± 0.113 0.548± 0.034 0.622± 0.056

fMRI&DTI BrainNN (mean± std) 0.688± 0.142 0.788± 0.086 0.536± 0.278 0.669± 0.049

MVGCN (mean± std) 0.748± 0.104 0.909± 0.091 0.512± 0.238 0.602± 0.206

HGTrans (mean± std) 0.799± 0.0957 0.909± 0.074 0.631± 0.144 0.778± 0.110

ABIDE-TCD

fMRI SVM (mean± std) 0.625± 0.112 0.650± 0.200 0.600± 0.255 0.628± 0.101

MLP (mean± std) 0.646± 0.136 0.500± 0.175 0.794± 0.900 0.636± 0.140

GCN (mean± std) 0.625± 0.126 0.794± 0.147 0.468± 0.258 0.526± 0.018

GAT (mean± std) 0.623± 0.072 0.667± 0.294 0.611± 0.235 0.595± 0.112

GraphSage (mean± std) 0.623± 0.072 0.556± 0.192 0.706± 0.107 0.652± 0.045

HGNN+ (mean± std) 0.676± 0.067 0.659± 0.124 0.363± 0.059 0.500± 0.082

BrainGB (mean± std) 0.691± 0.068 0.849± 0.043 0.452± 0.121 0.651± 0.085

BrainGNN (mean± std) 0.698± 0.070 0.746± 0.081 0.651± 0.059 0.697± 0.069

DTI SVM (mean± std) 0.582± 0.068 0.818± 0.074 0.185± 0.072 0.509± 0.077

MLP (mean± std) 0.526± 0.065 0.508± 0.259 0.548± 0.236 0.514± 0.112

GCN (mean± std) 0.527± 0.068 0.788± 0.086 0.143± 0.202 0.154± 0.218

GAT (mean± std) 0.601± 0.127 0.651± 0.059 0.564± 0.224 0.568± 0.166

GraphSage (mean± std) 0.500± 0.031 0.540± 0.157 0.437± 0.224 0.436± 0.165

HGNN+ (mean± std) 0.498± 0.136 0.349± 0.059 0.667± 0.294 0.482± 0.123

fMRI&DTI BrainNN (mean± std) 0.672± 0.080 0.444± 0.098 0.897± 0.074 0.732± 0.067

MVGCN (mean± std) 0.698± 0.113 0.659± 0.170 0.746± 0.081 0.714± 0.101

HGTrans (mean± std) 0.749± 0.098 0.970± 0.043 0.698± 0.022 0.748± 0.097

classification accuracy. There are also some domain adaption

methods (27, 28) that can be used to transfer knowledge between

structural and functional brain imaging. Although these cross-

modal information transfer methods can achieve inference with

only one modality in the testing phase, the performance is

greatly limited by the lack of shared labels to guide the cross

modality fusion.

4 Conclusion

In this study, we proposed a hypergraph Transformer-based

approach to model and compute high-order associations between

functional and structural brain networks. Our method effectively

integrates multimodal data from fMRI and DTI, overcoming

the limitations of traditional graph methods that can only
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TABLE 2 The comparison results on the ADNI dataset.

Modality Method Accuracy Sensitivity Specificity F1-score

fMRI SVM (mean± std) 0.709± 0.041 0.487± 0.096 0.852± 0.001 0.563± 0.079

MLP (mean± std) 0.700± 0.050 0.410± 0.131 0.886± 0.002 0.644± 0.077

GCN (mean± std) 0.639± 0.068 0.462± 0.109 0.721± 0.050 0.591± 0.082

GAT (mean± std) 0.660± 0.026 0.436± 0.096 0.805± 0.064 0.618± 0.037

HGNN+ (mean± std) 0.710± 0.037 0.641± 0.192 0.756± 0.099 0.689± 0.054

BrainGB (mean± std) 0.690± 0.063 0.513± 0.254 0.802± 0.073 0.646± 0.097

BrainGNN (mean± std) 0.700± 0.004 0.487± 0.036 0.837± 0.019 0.665± 0.009

DTI SVM (mean± std) 0.650± 0.023 0.539± 0.126 0.724± 0.115 0.539± 0.045

MLP (mean± std) 0.690± 0.059 0.436± 0.158 0.853± 0.037 0.640± 0.086

GCN (mean± std) 0.683± 0.085 0.571± 0.106 0.756± 0.099 0.664± 0.089

GAT (mean± std) 0.669± 0.068 0.436± 0.096 0.818± 0.065 0.628± 0.075

HGNN+ (mean± std) 0.690± 0.039 0.462± 0.109 0.837± 0.019 0.649± 0.057

fMRI&DTI BrainNN (mean± std) 0.701± 0.045 0.487± 0.131 0.838± 0.097 0.661± 0.055

MVGCN (mean± std) 0.690± 0.050 0.462± 0.063 0.837± 0.081 0.538± 0.061

HGTrans (mean± std) 0.740± 0.050 0.539± 0.109 0.851± 0.109 0.698± 0.049

capture pairwise relationships. By leveraging hypergraphs to

model complex higher-order interactions and employing the

Transformer architecture for feature extraction and integration,

our approach has demonstrated significant improvements

in brain disease diagnosis. The experimental results on the

ABIDE and ADNI datasets show that the proposed method

consistently outperforms existing approaches, confirming

its effectiveness in enhancing the accuracy of brain disease

classification. The introduction of a hypergraph-based model

and the application of Transformer networks provide a robust

framework for multimodal brain network analysis, advancing

our understanding of the relationship between structural and

functional connectivity.
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This study aims to leverage the advanced capabilities of quantum computing to
construct an efficient framework for processing large-scale health data, uncover
potential higher-order correlations in medicine, and enhance the accuracy of
smart healthcare diagnosis and treatment. A data processing framework is
developed using quantum annealing algorithms and quantum circuits. We call
it the quantum medical data simulation computational model (Q-MDSC). A
unique encoding method based on quantum bits is employed for health data
features, such as encoding symptom information from electronic health
records into different quantum bits and representing different alleles of
genetic data through superposition states of quantum bits. The properties of
quantum entanglement are utilized to relate different data types, and quantum
parallelism is harnessed to process multiple data combinations simultaneously.
Additionally, this quantum computing framework is compared with traditional
data mining methods using the same datasets, which include the Cochrane
Systematic Review Database (https://www.cochranelibrary.com), the BioASQ
Dataset (https://participants-area.bioasq.org), the PubMed Central Dataset
(https://www.ncbi.nlm.nih.gov/pmc), and the Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov). The datasets are divided into training and
testing sets in a 7:3 ratio during the experiments. Tests are conducted on
association mining tasks of varying data scales and complexities, ranging from
simple symptom-disease associations to complex gene-symptom-disease
higher-order associations. The results indicate that, when processing large-
scale data, the quantum computing framework improves overall
computational speed by approximately 45% compared to traditional
algorithms. Regarding uncovering higher-order correlations, the quantum
computing framework enhances accuracy by about 30% relative to traditional
algorithms. For early disease prediction, the accuracy achieved with the new
framework is approximately 25% higher than that of conventional methods.
Furthermore, for personalized treatment plan matching, the matching
accuracy of the quantum computing framework surpasses traditional
approaches by about 35%. These findings demonstrate the significant potential
of the quantum computing-based smart healthcare framework for processing
large-scale health data in the context of higher-order correlation mining,
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paving new pathways for the development of smart healthcare. This study utilizes
multiple public datasets to achieve breakthroughs in computational speed, higher-
order correlation mining, early disease prediction, and personalized treatment plan
matching, thus opening new avenues for advancing smart healthcare.

KEYWORDS

quantum computing, smart healthcare, higher-order correlation, quantum annealing
algorithm, quantum circuits
Introduction

With the rapid development of information technology and

computational science, the demand for medical data collection

and analysis in the current healthcare field is increasing (1).

Particularly when addressing complex disease models and

personalized medical plans, traditional computational techniques’

limitations in processing speed and correlation analysis have

become evident (2). Quantum computing-based smart healthcare

offers a novel solution that leverages the properties of quantum

physics, such as quantum superposition, entanglement, and

parallelism, providing unprecedented computational power and

speed to tackle these complex issues (3). As a technology with

immense potential, quantum computing has demonstrated

performance that surpasses traditional computing in various

fields, particularly in optimization problems, physical simulations,

and artificial intelligence (4). Although the application of

quantum computing in medical data processing and analysis is

still in its early stages, it has already shown significant promise.

Quantum computing can process vast amounts of data extremely

quickly, providing in-depth analysis of complex data

relationships, which is particularly important for developing

smart healthcare (5).

Data mining and analysis are crucial for disease diagnosis,

treatment, and health management in smart healthcare. As

quantum computing technology has emerged in recent years,

more studies have explored its potential applications in medical

data processing. Early research, such as that by Coccia et al.,

highlights that the unique physical properties of quantum

computing, such as quantum superposition and entanglement,

offer new insights for processing complex medical data.

Traditional computing often faces limitations in computational

efficiency and the depth of data relationship exploration when

dealing with large-scale medical data (6). Quantum computing,

with its qubits capable of simultaneously representing multiple

states compared to classical bits, theoretically allows for

processing various data combinations in a single operation,

thereby enhancing data processing speed. Aithal focused on the

preliminary applications of quantum computing in medical

image analysis. Although it differed from the high-order

correlation mining explored in this study, his research

demonstrated the feasibility of quantum computing in handling

complex types of medical data. In medical imaging, quantum

computing optimizes the image feature extraction process

through specialized quantum algorithms, providing more

accurate image information for subsequent disease diagnosis.
0213
This indicated that quantum computing held potential

application value across various aspects of medical data

processing. Traditional data mining methods have been widely

applied in the medical field (7). Radha and Gopalakrishnan

elaborated on applying traditional machine learning algorithms,

such as decision trees and support vector machines, in disease

diagnosis. These algorithms constructed classification models to

predict diseases by learning from known case data. However, as

the scale of medical data continued to expand and the

complexity of data increased, traditional methods faced

significant challenges. For instance, when processing large-scale

electronic health record data, the computational time for feature

selection and model training in traditional algorithms increased

significantly (8). As Coccia explored, traditional algorithms often

struggled to capture complex interactions among multiple

variables when mining high-order correlations, which limited the

understanding of deep-rooted disease causes and the formulation

of personalized medical plans. In handling large-scale data,

quantum computing has already shown tremendous advantages

(9). Abbas demonstrated through theoretical analysis that

quantum algorithms exhibited a significantly slower growth rate

in computational complexity when handling data optimization

problems with numerous variables and constraints compared to

traditional algorithms. This characteristic made quantum

computing more efficient in processing large-scale health

data (10). Giani and Eldredge used quantum annealing

algorithms to process large-scale bioinformatics data in practical

applications. They found that quantum computing could

quickly identify optimal or near-optimal solutions, providing

empirical solid support for its application in medical data

processing. Numerous studies have also achieved results

regarding quantum computing’s ability to mine data correlations

(11). Thomasian and Adashi proposed leveraging quantum

entanglement properties to extract correlations within financial

data, offering insights applicable to extracting correlations in

medical data. In the medical field, mining correlations between

data was crucial for disease diagnosis and treatment; for

instance, complex higher-order correlations might exist between

genes and diseases, as well as symptoms and diseases (12).

Saini et al. attempted to construct data association models

using quantum circuits to mine simple correlations in medical

data, laying a foundation for future research despite not

addressing higher-order correlation mining (13). In summary,

prior research has established a theoretical and practical

foundation for applying quantum computing in healthcare. This

study builds upon that foundation to innovate and expand the
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development of a more comprehensive quantum computing-

based smart healthcare framework, paving new avenues for

its advancement.

This study aims to explore and develop a quantum computing-

based smart healthcare framework, focusing on applying quantum

annealing algorithms and quantum circuit design in mining

higher-order correlations in medicine. By comparing traditional

data processing methods with quantum-based approaches, this

study not only investigates advantages in processing speed

and accuracy but also evaluates the potential of this method in

real medical applications using multiple publicly available

medical datasets, including Cochrane, BioASQ, PubMed Central,

and The Cancer Genome Atlas (TCGA). We use qubits to

process data, use quantum algorithms and processes in the

calculation process, and verify data accuracy and accuracy

through quantum measurements, ensuring efficient processing

based on large amounts of medical data. The quantum

computing model proposed in this paper belongs to the

embedded model, which has improved the data processing

performance by integrating with other traditional data processing

models. Quantum computing is significant for mining higher-

order medical correlations, as it can substantially enhance

diagnostic and treatment precision while advancing personalized

medical solutions, thereby improving patient outcomes and

quality of life.
Construction of a quantum
computing-based smart healthcare
framework

Application concepts of quantum computing in
the smart healthcare system
(1) Alignment of Quantum Characteristics with Smart Healthcare

Needs: The properties of quantum computing—quantum

superposition, entanglement, and parallelism—align closely

with the requirements of smart healthcare (14). Quantum

superposition can efficiently represent complex information

such as genetic data. The entanglement property can

correlate various types of medical data, including symptoms,

genes, and lifestyle habits, aiding in exploring disease

causation and formulating personalized treatment plans.

Parallelism allows quantum bits to process multiple data

combinations simultaneously, significantly enhancing the

speed of large-scale medical data processing (15).

(2) Patient-Centric Concept: A patient-centric approach is at the

core of the quantum smart healthcare framework. Patient

data serves as the foundation, encompassing multifaceted

information. In diagnosis, quantum computing can integrate

data mining to uncover higher-order correlations and

identify early disease signs. In treatment, it can analyze

higher-order correlations among genes, symptoms, and

diseases to predict treatment outcomes, assisting doctors in

developing personalized plans (16).

(3) Data Integration and Security Considerations: Data

integration is crucial. Medical data originates from diverse
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sources and varies in format, necessitating the establishment

of unified standards and interfaces to convert data formats

while preserving semantic information (17). Additionally,

data security is paramount. Quantum computing’s quantum

key distribution can ensure the security of data transmission

and storage, and it can be combined with differential

privacy techniques to achieve data sharing while

safeguarding privacy and adhering to privacy protection

regulations and ethical principles (18). Figure 1 illustrates

the application concepts of quantum computing technology.

In Figure 1, quantum computing technology demonstrates

significant advantages for its application within the smart

healthcare system. The property of quantum superposition allows

quantum bits to exist in multiple states simultaneously, providing

a distinct advantage in medical data processing (19). For instance,

the complex states found in genetic data can be represented more

efficiently through quantum computing, reducing data storage

requirements and processing complexity. Quantum entanglement

enables deep correlations between different types of patient data,

such as symptoms, genes, and lifestyle habits, offering a

comprehensive perspective for exploring disease causation and

assisting in accurate clinical assessments. Quantum parallelism

facilitates the simultaneous processing of numerous combinations

of vast medical data, such as extensive electronic health records

and genetic databases, significantly shortening data processing

times, accelerating disease diagnosis, and formulating personalized

treatment plans (20). Moreover, the security features of quantum

computing, particularly quantum key distribution, ensure the

safety of medical data during transmission and storage, effectively

protecting patient privacy (21).

Integration of quantum computing with medical
higher-order correlation mining

Quantum algorithms and programs are essential tools to

improve medical big data, and qubit representation is used in

data processing and presentation to provide data processing

efficiency. Quantum measurement makes the reception and

output of extensive data more accurate and has a higher fault

tolerance rate.

(1) Quantum Bit Encoding and Medical Data Representation:

Quantum bit encoding is crucial when integrating quantum

computing with medical higher-order correlation mining.

Medical data is complex and diverse, including electronic

health records and genetic data (22). Traditional encoding

methods struggle to process this efficiently, while quantum

bits offer a novel solution. For example, symptoms

in electronic health records can be encoded as different states

of quantum bits, allowing multiple symptoms to coexist in

superposition. Different alleles in genetic data can also be

represented through superposition states of quantum bits,

improving data representation efficiency and richness, thus

laying a foundation for higher-order correlation mining (23).

(2) Utilizing Quantum Entanglement to Mine Data Relationships:

Quantum entanglement is extraordinarily significant for mining

higher-order correlations in medicine. The relationships among
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FIGURE 1

Application concepts of quantum computing technology.
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genes, symptoms, and diseases are complex and often involve

interactions among multiple factors. Quantum entanglement

can link different types of data, such as entangling the quantum

bits of genes and symptoms so that manipulating one instantly

affects the state of the other, allowing for discovering hidden

higher-order correlations—something traditional methods

struggle to achieve (24).

(3) Accelerating Higher-Order Correlation Analysis with Quantum

Parallelism: Quantum parallelism offers clear advantages in

analyzing higher-order correlations in medicine. Analyzing

higher-order correlations involves searching through vast

combinations of data, a task that traditional methods

undertake sequentially, which is time-consuming. Quantum

computing can leverage quantum parallelism to process

multiple data combinations simultaneously. For example,

studying higher-order correlations among genes, symptoms,

and diseases can analyze all possible combinations

simultaneously, drastically reducing time and providing

critical insights for clinical applications (25).

(4) Application of Quantum Algorithms in Medical Higher-Order

Correlation Mining: Quantum algorithms play a vital role in

medical higher-order correlation mining. The quantum

annealing algorithm has unique advantages in addressing

optimization problems, enabling it to quickly find global or

near-optimal solutions when searching for the best
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correlation models (viewed as optimization problems).

Quantum circuit algorithms can be customized to accurately

mine higher-order correlations among different data types,

advancing the deep integration of quantum computing with

medicine (26). For a system with n quantum bits, its

quantum state jCi can be expressed as shown in Equation (1):

Ci ¼
X2n�1

x¼0
ax

��� ���xi (1)

x is a binary number. x can be expressed as shown in Equation (2).

A vector transformation of x can be expressed as shown in

Equation (3). Equation (4) is the sum result.

x ¼ xn�1xn�2 � � � x0 (2)

jxi ¼jxn�1i � jxn�2i � � � � �jx0i (3)

X2n�1

x¼0
jaxj2 ¼ 1 (4)

In the representation of medical data, for example, n disease-

related features (such as genetic loci, symptom indicators, etc.)

can be encoded as n quantum bits, and the values of ax can be

determined based on the joint probability distribution of these
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features in the overall dataset (27). When measuring jCi, the
probability of obtaining the result x is given by Equation (5):

P(x) ¼ jaxj2 (5)

For instance, when analyzing a set of quantum states related to

disease-associated genes and symptoms, measuring the

probability of a specific combination of genes and symptoms can

be used to assess the likelihood of these combinations in disease

occurrence (28). For a quantum system consisting of subsystems

A and B, with an overall quantum state represented as rAB, the

reduced density matrix for subsystem A is given by Equation (6):

rA ¼ TrB(rAB) (6)

TrB denotes the trace operation taken over subsystem B. The

relative entropy entanglement measure ER(rAB) is defined by

Equation (7):

ER(rAB) ¼ min
s[D

S(rAB k s) (7)

D represents the set of separable states, S stands for entropy.

Entropy is a representation for calculating quantum energy or

work and the quantum relative entropy is given by Equation (8):

S(rAB k s) ¼ Tr(rAB(logrAB � logs)) (8)

In medical data mining, calculating the relative entropy

entanglement between the gene and symptom data subsystem

allows for quantifying their entangled relationship, thereby

facilitating the exploration of high-order correlations (29). For a

search space of size N ¼ 2n containing possible gene-symptom-

disease association combinations, the number of iterations k for

the quantum search algorithm is defined by Equation (9):

k ¼ p

4

ffiffiffiffiffi
N
M

r$ %
(9)

M is the number of target states in the search space. This formula

accounts for the case where the target state is not unique. In the

context of high-order medical correlation mining, M can

represent the number of states that satisfy specific disease

association patterns (30). Assuming there are m medical data

features (such as genes, symptoms, environmental factors, etc.),

these can be mapped to spin variables si i ¼ 1, 2, � � � , m in the

quantum annealing algorithm, where si ¼ +1. The energy

function E(s1, s2, � � � , sm) can be expressed as Equation (10):

E(s1, s2, � � � , sm) ¼ �
Xm

i¼1

Xm
j¼iþ1Jijsisj�Xm

i¼1hisi

þ
Xm

i¼1

Xm
j¼iþ1

Xm
k¼jþ1Kijksisjsk þ � � � (10)
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Jij represents the second-order interaction term, indicating the

strength of the correlation between features i and j; hi is the

external bias term, reflecting the inherent tendency of a single

feature; Kijk is the third-order interaction term, representing

high-order correlations among three features. Higher-order terms

can be added based on the actual complexity of the medical data

and the requirements for high-order correlation mining (31). In

quantum support vector machines, the kernel function is a

critical component. Suppose there are two medical data samples

j~xi and j~yi. The quantum kernel function K(~x,~y) can be defined

by Equation (11):

K(~x,~y) ¼ ~xh jUyU j~yi (11)

U is a unitary transformation operation, and Uy is its conjugate

transpose (32). This kernel function measures the similarity

between two samples in the quantum feature space. It can be

employed to differentiate gene-symptom patterns under different

disease states in high-order medical correlation mining. For a

training dataset {(j~xii, yi)}, the decision function is represented

by Equation (12):

f (j~xi) ¼ sign
Xn

i¼1
aiyiK(~xi,~x)þ b

� �
(12)

ai is the coefficient obtained through optimization algorithms, and

b is the bias term (33). In Figure 2, the results of the model

algorithm design are displayed.

In Figure 2, electronic medical records and genetic data are

extracted from raw medical data and mapped to quantum state

representations of symptoms and genetic markers during the

data preprocessing phase. Next, entanglement discovery is

conducted, creating entangled states from the quantum states of

symptoms and genes and calculating entanglement metrics.

Following this, high-order correlation mining is performed,

applying correlation functions to the entangled states and

utilizing quantum parallel processing to combine results and

measure high-order correlations. Finally, in the optimization

phase, correlations are mapped to the Ising model, defining an

energy function and using quantum annealing to find the

optimal state, which is then mapped back to obtain the

optimized correlation model. Singh et al. evaluated six different

models using the computational efficiency of alternative models

and selected Kriging for subsequent analysis based on their

superior performance in approximating the relationship between

the design parameters and the objective function (34).
Research data

The datasets used in this study include: (1) Cochrane

Systematic Review Dataset (https://www.cochranelibrary.com):

This dataset is a vital resource in the field of evidence-based

medicine, comprising numerous rigorously selected and evaluated

medical research reviews covering various aspects of treatment,
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FIGURE 2

Model algorithm design.
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FIGURE 3

Model computation speed evaluation (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed Central Dataset; (d) TCGA.

Mei and Zhang 10.3389/fdgth.2024.1502745
prevention, and diagnosis of diseases. It provides high-quality

evidence support for medical decision-making and plays a crucial

role in researching the effectiveness of disease interventions. (2)

BioASQ Dataset (https://participants-area.bioasq.org): This

dataset primarily supports research in biomedical question-

answering systems, containing relevant information from

biomedical literature, aiding in the development of intelligent

systems capable of accurately answering biomedical questions. It

reflects the diversity and complexity of biomedical knowledge,

significantly enhancing healthcare information retrieval and Q&A

capabilities. (3) PubMed Central Dataset (https://www.ncbi.nlm.

nih.gov/pmc): PubMed Central is a comprehensive biomedical

literature repository, with datasets encompassing a vast array of

medical research papers and reviews, spanning from basic
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medical research to clinical practice. This dataset provides a rich

information source for medical researchers, facilitating the

exploration of disease mechanisms and new treatment methods.

(4) TCGA (https://portal.gdc.cancer.gov): The TCGA dataset

focuses on tumor genomic research, collecting genomic and

clinical data from numerous tumor samples. Analyzing these

data allows for a deeper understanding of tumor onset and

progression mechanisms, discovering gene mutations associated

with tumors, and providing crucial evidence for precision

diagnosis, treatment, and drug development in oncology.

The performance evaluation of a quantum computing-based

intelligent healthcare framework is significant. To investigate the

performance enhancement of the proposed model, six traditional

models are selected for comparison to clarify the research value.
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FIGURE 4

Performance evaluation of the model in mining high-order correlations (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed
Central Dataset; (d) TCGA.
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The K-Nearest Neighbors (KNN) (35) algorithm relies on instance

learning, determining categories based on sample distances for

medical disease classification, but experiences a significant

computational burden with large-scale data and is sensitive to

feature scaling. The Principal Component Analysis-Logistic

Regression Hybrid Model (PCA-LRHM) (36) combines the

advantages of both methods to reduce dimensionality before

classification, alleviating issues related to high-dimensional data

complexity. However, PCA may lose information, and logistic

regression has a limited capacity for handling non-linear

relationships. The Gradient Boosting Decision Tree (GBDT) (37)

utilizes ensemble learning based on decision trees to improve

disease prediction accuracy gradually. Yet, it can be complex,
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time-consuming to train, and prone to overfitting. The Hidden

Markov Model (HMM) (38) estimates disease states based on

sequence data; however, its assumptions do not fully align with

real-world medical scenarios, and increasing states lead to

exponential complexity. The Deep Belief Network (DBN) (39), a

deep learning model, can extract complex data information but

requires extensive data and long training times, exhibiting poor

interpretability. The eXtreme Gradient Boosting (XGBoost) (40)

algorithm performs well across various medical tasks. It can

enhance generalization ability, though it may lag behind the

quantum computing framework in handling large-scale and high-

order correlation mining. This comparison allows for a

multidimensional assessment of the proposed model’s value.
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FIGURE 5

Early disease prediction evaluation results (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed Central Dataset; (d) TCGA.
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Evaluation of the quantum computing-
based intelligent healthcare system

Basic performance evaluation of the quantum
computing framework

The essential performance evaluation of the quantum

computing framework is crucial in a quantum computing-

based intelligent healthcare system. As quantum technology

gradually integrates into the healthcare sector, accurately

assessing its framework performance is critical to effectively

determine its ability to process medical data and mine

high-order medical correlations. This not only affects the
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accuracy of medical decision-making but also impacts the

overall development of intelligent healthcare. In Figure 3,

the evaluation demonstrates the improvement in model

computation speed.

In Figure 3, the quantum computing framework

demonstrates significant performance advantages in large-scale

data processing scenarios. Through rigorous experiments and

statistical data analysis, the quantum computing framework

shows a marked improvement in overall computation speed

compared to traditional algorithms, with an average

enhancement exceeding 45%. This improvement is attributed

to the unique physical properties of quantum computing, such
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FIGURE 6

Evaluation of the model’s personalized treatment plan matching effectiveness (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset;
(c) PubMed Central Dataset; (d) TCGA.
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as quantum superposition and quantum parallelism. Quantum

superposition allows qubits to represent multiple states

simultaneously, thereby increasing data representation capacity.

Quantum parallelism enables the quantum computing

framework to process multiple data combinations

simultaneously, contrasting sharply with the traditional

approach of handling data combinations sequentially,

significantly enhancing computational efficiency. Figure 4

displays the evaluation results for the model’s performance in

mining high-order correlations.
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In Figure 4, the quantum computing framework exhibits

significant advantages in accuracy compared to traditional

algorithms in mining high-order correlations in medical data.

By analyzing various medical datasets, the quantum computing

framework demonstrates its effectiveness through unique

characteristics. Traditional algorithms may have limitations

when handling complex high-order correlations, whereas the

quantum computing framework leverages properties such as

quantum entanglement to relate different data types.

Experimental data indicate that the quantum computing
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framework achieves an accuracy improvement of over 30% relative

to traditional algorithms.
Evaluation of the application effects of quantum
computing models in intelligent healthcare
systems

The data within intelligent healthcare systems is complex and

vast, presenting numerous limitations for traditional computing.

Due to properties such as quantum superposition, entanglement,

and parallelism, the introduction of quantum computing models

is crucial. Accurately assessing their application effects is vital for

developing intelligent healthcare, directly impacting medical data

processing, disease diagnosis, and treatment decision-making.

Figure 5 presents the evaluation results of early disease

prediction using the new framework.

In Figure 5, the new framework demonstrates significant

advantages in the task of early disease prediction. By employing

this new framework, results show a noticeable improvement in

accuracy compared to traditional methods. Specifically, after testing

and analyzing a large number of disease sample data, the new

framework achieves an accuracy increase of approximately 25% in

early disease prediction compared to traditional methods. This

enhancement is essential for disease prevention and control and the

rational allocation of medical resources. Figure 6 displays the

evaluation results of the model’s personalized treatment plan

matching effectiveness.

Figure 6 shows that the quantum computing framework offers

distinct advantages in matching personalized treatment plans,

contrasting sharply with traditional methods. Comparative

experiments across multiple datasets reveal that the quantum

framework significantly improves matching accuracy by about

35% over conventional approaches, representing a notable

advancement for precision medicine.
Conclusion

This study aims to construct a quantum computing-based

intelligent healthcare framework, exploring the applications of

quantum annealing algorithms and quantum circuit design in

mining high-order medical correlations. Quantum thinking and

computational models offer new paths for processing large amounts

of medical data and are an essential attempt. Various quantum

computing technologies are integrated throughout the research

process with medical data processing. For instance, quantum bits

encode medical data, data relationships are mined through quantum

entanglement, and analysis is accelerated by quantum parallelism. In

contrast, quantum algorithms are applied to delve deeper into high-

order correlations. Several publicly available datasets are employed to

evaluate the framework’s performance, including the Cochrane

Systematic Review Dataset, BioASQ Dataset, PubMed Central

Dataset, and TCGA. The results indicate that the quantum

computing framework excels in multiple aspects. It demonstrates an

average computation speed improvement of approximately 45%

when processing large-scale data compared to traditional algorithms;
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accuracy in mining high-order correlations improves by around

30%; early disease prediction accuracy increases by about 25%; and

matching accuracy for personalized treatment plans enhances by

approximately 35%. These results highlight the tremendous potential

of the quantum computing framework in intelligent healthcare,

providing strong support for improving diagnostic and treatment

precision and advancing personalized medicine development.

However, this study also has certain limitations. The development of

quantum computing technology is not yet mature, and issues related

to hardware stability and scalability may constrain the practical

application of the framework. Quantum algorithms are complex

and present a high barrier to entry for healthcare professionals and

some researchers. Information loss or incomplete adaptation to

the medical data structure may also occur during data encoding and

processing. Despite these limitations, the prospects for quantum

computing in intelligent healthcare remain broad. As quantum

technology advances, it is expected to overcome existing challenges,

further optimizing the quantum gradually computing-based

intelligent healthcare framework and propelling intelligent

healthcare to new heights, ultimately positively impacting healthcare

transformation and patient well-being.
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for patients with recurrent
hepatolithiasis: a multicentre
retrospective study
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Hui Hou4, Cheng Wang5, Zheng Lu6, Xiaoming Wang7,
Xiaoping Geng1 and Fubao Liu1*
1Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
2Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong
Kong, Hong Kong, Hong Kong SAR, China, 3Department of Analytics, Marketing and Operations,
Imperial College London, London, United Kingdom, 4Department of General Surgery, The Second
Affiliated Hospital of Anhui Medical University, Hefei, China, 5Department of General Surgery, The First
Affiliated Hospital of the University of Science and Technology of China, Hefei, China, 6Department of
General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China, 7Department
of General Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China

Background: Methods for accurately predicting the prognosis of patients with
recurrent hepatolithiasis (RH) after biliary surgery are lacking. This study aimed
to develop a model that dynamically predicts the risk of hepatolithiasis
recurrence using a machine-learning (ML) approach based on multiple clinical
high-order correlation data.
Materials and methods: Data from patients with RH who underwent surgery at five
centres between January 2015 and December 2020 were collected and divided into
training and testing sets. Nine predictive models, which we named the Correlation
Analysis and Recurrence Evaluation System (CARES), were developed and
compared using machine learning (ML) methods to predict the patients’ dynamic
recurrence risk within 5 post-operative years. We adopted a k-fold cross validation
with k= 10 and tested model performance on a separate testing set. The area
under the receiver operating characteristic curve was used to evaluate the
performance of the models, and the significance and direction of each predictive
variable were interpreted and justified based on Shapley Additive Explanations.
Results: Models based on ML methods outperformed those based on traditional
regression analysis in predicting the recurrent risk of patients with RH, with
Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine
(LightGBM) showing the best performance, both yielding an AUC (Area Under
the receiver operating characteristic Curve) of∼0.9 or higher at predictions. These
models were proved to have even better performance on testing sets than in a
10-fold cross validation, indicating that the model was not overfitted. The SHAP
method revealed that immediate stone clearance, final stone clearance, number
of previous surgeries, and preoperative CA19-9 index were the most important
predictors of recurrence after reoperation in RH patients. An online version of the
CARES model was implemented.
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Conclusion: The CARES model was firstly developed based on ML methods and
further encapsulated into an online version for predicting the recurrence of
patients with RH after hepatectomy, which can guide clinical decision-making
and personalised postoperative surveillance.

KEYWORDS

recurrent hepatolithiasis, machine learning, prediction model, high-order correlation
data, machine learning operations
1 Introduction

1.1 Background

Hepatolithiasis is a benign disease that is common in Asia,

including China, Japan, and South Korea, with a prevalence of

20%–50% (1, 2). In recent years, the prevalence of this disease has

been increasing in Western countries, probably due to increased

immigration from the East and changes in Western dietary habits

(3, 4). Although benign, hepatolithiasis is a disease that is difficult

to treat and, thus, characterised by high rates of treatment failure

and recurrence. It can lead to progressive biliary strictures, liver

abscesses, cirrhosis, liver atrophy, and even cholangiocarcinoma (5).

Hepatolithiasis is treated with medications and non-surgical

methods, such as endoscopy, as well as with surgical procedures (6).

As non-surgical methods have various limitations, hepatectomy has

better generalisability, lower rates of residual stones, and lower

recurrence rates (7). According to the available studies, hepatectomy

for hepatolithiasis is associated with a higher survival rate and lower

incidences of bile duct stenosis, recurrence, and cholangitis (8).

Recurrent hepatolithiasis (RH) is the recurrence of

hepatolithiasis in patients who have undergone medical treatments

for hepatolithiasis, such as partial hepatectomy, choledochotomy,

and lithotripsy. RH is difficult to resolve because of stone re-

formation and pyogenic cholangitis (9, 10). Therefore, effective

prediction of patient prognosis is of great significance in guiding

decision-making and personalised postoperative surveillance.
1.2 Rationale and knowledge gap

According to our previous studies, the Nakayama classification

(based on stone distribution), the classification proposed by

Tsunoda et al. (based on dilatation or stenosis), the Chinese

classification model proposed by the Biliary Tract Research

Group of the Chinese Medical Association, and a nomogram

based on traditional linear regression have some value in

predicting the prognosis of patients with RH (11). However,

these methods use linear assumptions and cannot simulate

complex, multidimensional, and non-linear relationships between

different predictor variables in biological systems; thus, their

predictive performance is limited. They are also extremely
ic; AI, artificial intelligence; AUC
tion system; CT, computed tom
etic resonance cholangiopancrea
tor machine; US, ultrasound; XG
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complex and expensive to learn, and the inability to obtain

information about risk changes in the postoperative period and

intuitive predictions renders it difficult to use for clinical

guidance. Novel solutions capable of handling potentially non-

linear variables are in high demand for accurate predictions.
1.3 Objective

Machine learning (ML) is a field of artificial intelligence (AI)

that can uncover differences and connections in complex and

large datasets and can be used to predict future outcomes (12).

Hence, we aimed to apply an ML approach, named the

Correlation Analysis and Recurrence Evaluation System (CARES),

to build a recurrence risk prediction model for RH patients after

surgery using nine ML models, based on a multicentre database.

This manuscript is written following STROBE checklist.
2 Materials and methods

2.1 Study population

The clinical and prognostic data of 1,962 patients who

underwent surgery for hepatolithiasis between January 2015 and

December 2020 at the First Affiliated Hospital of Anhui Medical

University, Second Affiliated Hospital of Anhui Medical

University, First Affiliated Hospital of the University of Science

and Technology of China, First Affiliated Hospital of Bengbu

Medical College, and First Affiliated Hospital of Wannan

Medical College were retrospectively collected. All five regional

medical centres are tertiary hospitals and high-volume surgical

centres that use similar approaches to treat hepatolithiasis.

Standardized treatment of patients can provide greater benefits

while minimizing risks such as misdiagnosis and underdiagnosis.

In addition, it helps to eliminate bias due to inconsistent

treatment strategies or assessment criteria.
2.2 Ethics approval

The study was conducted in accordance with the Declaration of

Helsinki (as revised in 2013). The study was approved by
, area under the receiver operating characteristic curve; CA19-9, carbohydrate antigen
ography; DT, decision tree; KNN, K-nearest neighbour; LightGBM, light gradient-
tography; NNW, neural network; RF, random forest; RH, recurrent hepatolithiasis;
Boost, extreme gradient boosting.
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institutional ethics committee of the First Affiliated Hospital of

Anhui Medical University (NO. Quick-PJ2021-08-19), and the

need for obtaining informed consent was exempted owing to the

retrospective nature of the present study.
2.3 Inclusion and exclusion criteria

The inclusion criteria were as follows: (1). having undergone at

least one biliary surgery for hepatolithiasis; (2). preoperative

imaging confirming RH; (3). intraoperative confirmation of

hepatolithiasis; (4). preoperative Child-Pugh classification of

grade A or B that improved to grade A. The exclusion criteria

were as follows: (1). history of abdominal surgery not involving

the biliary system; (2). combined with malignancy; (3).

incomplete clinical or follow-up data; (4). perioperative death.
2.4 Data collection

2.4.1 Preoperative examination and preparation
Basic patient information, including age, sex, body mass index,

time of previous surgery, surgical procedure, and symptoms before

admission, was retrospectively collected. Preoperative blood markers,

including liver and renal function, blood counts, tumour markers,

and coagulation factors, were collected at least 1 week before surgery.

Inflammation-based scores were calculated, including the albumin/

globulin, neutrophil/lymphocyte, and platelet/lymphocyte ratios.

Imaging tools, including ultrasound (US), computed tomography

(CT), magnetic resonance imaging, and magnetic resonance

cholangiopancreatography (MRCP), were selectedly used to

document in detail the distribution of stone locations, biliary

narrowing, and hepatic lobe atrophy. In some patients with complex

bilateral stones, the future residual liver volume and total functional

liver volume were calculated using three-dimensional visualisation

techniques, and the indocyanine green 15 min retention rate was

tested to ensure the safety of the procedure. This test will not be used

in patients with a history of indocyanine green allergy and a history

of iodine allergy (indocyanine green contains iodine and therefore

may cause iodine allergy). If the patients did not reach Child-Pugh

class A preoperatively, they received hepatoprotective therapy until

their liver function improved to Child-Pugh class A.
2.4.2 Intraoperative strategy and findings
All the surgeries were performed by experienced hepatobiliary

surgeons. As patients who had undergone one or more

laparotomies tended to have more severe abdominal adhesions, a

detailed surgical plan and biliary drainage strategy were

formulated based on the location of the stone, sphincter of Oddi

function, cirrhosis, and hepatic lobe atrophy, which were

confirmed in the preoperative examination and reconfirmed

intraoperatively after the surgery. Detailed intraoperative findings,

operative approach and duration of surgery were recorded, and

choledochoscopy was performed to assess whether the stones

were immediately removed. Bile acid was collected

intraoperatively for bacterial culture and drug sensitivity testing.
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2.4.3 Postoperative examination examination and
decision

Postoperative specimens were pathologically diagnosed and

described by experienced pathologists from five medical centres.

Postoperative complications, including bile leakage, pancreatic

fistula, infection, and abdominal bleeding, as well as

postoperative blood markers, bile culture, and blood culture

results were recorded. Before discharge, abdominal CT and

cholangiography or choledochoscopy was used in patients with

external T-tube drainage to confirm whether the stone was

immediately removed. For patients without instant clearance,

choledochoscopy is usually performed through the T-tube sinus

tract several times at 6–8 weeks postoperatively until the stone is

removed or cannot be removed by any means. For patients with

instant clearance, T-tube cholangiography was performed 2

weeks postoperatively. If residual stones were observed,

choledochoscopy would be performed, as described above.
2.4.4 Follow-up and data collection
All patients were followed up every 3 months after discharge by

the supervising physician in the hepatobiliary surgery clinic or by

telephone. Follow-up evaluation included assessment of clinical

signs and symptoms, routine blood tests, liver function assessment,

and US, CT, or MRCP for residual or recurrent stones. Prognosis

was evaluated according to the Terblanche criteria (13) and was

considered poor if it was Terblanche classification grade III

(serious bile duct-related symptoms requiring treatment) or IV

(with anastomotic stricture or bile duct stone formation requiring

surgical treatment, resulting in disease-related cancer or death),

which was the endpoint of this study.
2.4.5 Missing data handling
Regarding data collection, missing data were dealt with

differently in model training and deployment.

During Model Training, for the construction of our machine

learning model, we believe in utilizing the most complete and

accurate dataset possible. Thus, when an entry has one or more

missing feature values, we decided to exclude it from the training

process. This approach ensures that our model is trained only on

complete cases, minimizing potential biases or inaccuracies that

might arise from imputed data.

In our preprocessing steps, the dropna() function was

employed to exclude such entries. We’re confident that this

method is appropriate given our dataset’s size and the relative

infrequency of missing values. Moreover, we ensured that the

removal of these data points did not introduce any bias by

examining the distribution of outcomes among the dropped and

retained entries.

DuringModelDeployment, we deemed that in a real-world clinical

setting, excluding a patient’s data due to a single missing value might

not be feasible or desirable. Thus, when our model is used on new

patient data, if any feature values are missing, we replace them with

the average (mean) value derived from our training dataset. It allows

our model to generate predictions even when some data might be

temporarily unavailable or missing, and using the mean value from
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our training set serves as a neutral placeholder, minimizing the

potential impact on the model’s prediction.
2.5 Statistical analysis

2.5.1 Data splitting
In our study, the dataset was divided between training and testing

sets. The patient data from the First Affiliated Hospital of Anhui

Medical University, Second Affiliated Hospital of Anhui Medical

University, and First Affiliated Hospital of the University of Science

and Technology of China (82.7%) were used for the training set

and those from the First Affiliated Hospital of Bengbu Medical

College and First Affiliated Hospital of Wannan Medical College

(17.3%) for the testing set. This testing set is entirely independent

from the training set, thereby enabling out-of-sample evaluation.

Differences in the clinical characteristics of the included

patients were compared using independent samples t-test, Mann–

Whitney U-test, or χ2 test, and the statistical significance level

was set at 0.05.

2.5.2 Model training
Nine machine learning models were used to build a predictive

model for recurrence after RH. These models were selected because

they represent different types of machine learning algorithms,

including linear models [Logistic Regression (LR)], tree-based

models [Decision Tree (DT), Random Rorest (RF), Light

Gradient-Boosting Machine (LightGBM), Extreme Gradient

Boosting (XGBoost)], integrated methods [XGBoost and

Adaptive Boosting (AdaBoost)], support vector machine (SVM),

neural network (NNW), and instance-based methods [K-nearest

neighbour (KNN)]. By comparing the performance of these

different models, the model that performs the best for this

particular prediction task can be identified.

All features underwent scaling using the StandardScaler(). This

method ensured features were on a similar scale, centering them

around zero with a standard deviation of one. To address dataset

size limitation and potential class imbalance, ADASYN (Adaptive

Synthetic Sampling) was chosen as our oversampling technique.

This method was preferred over others like RandomOverSampler

due to its ability to generate synthetic samples in regions where the

data distribution is sparse. This adaptive approach minimized the

risk of overfitting while effectively balancing the class distribution.

To improve the predictive efficacy of the model, five time nodes

were set with a spacing of 1 in the range of 1–5 years. For patients

who experience recurrence within the first year, we will still

incorporate them into the model development in the second

year. This was because our time nodes is measured in “k” years,

rather than specifically in the “kth” year. This decision was based

on the clinical significance of predicting a patient’s recurrence in

a few years, and providing an intuitive and dynamic recurrence

curve, rather than solely predicting recurrence in a specific year.

From our original dataset, two key variables were present:

“recurrence” (a binary indicator) and “recurrence_time”

(quantified in months). Utilizing these, we generated our target

variables, “recurrence_in_k_years”.
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All 84 features were retained in the model to ensure

comprehensive data capture and to avoid the premature

exclusion of potentially relevant predictors. The reliance on

advanced algorithms such as XGB and LightGBM, known for

their proficiency in handling high-dimensional data, further

justified this decision. The study of feature importance was not

conducted for optimization purposes, but rather to provide

clinically relevant insights. By understanding which features were

deemed most influential by the models, valuable information can

be provided to the clinical community about the factors crucial

for predicting disease recurrence. Recognizing the distinct

consequences of false negatives vs. false positives in medical

scenarios, we additionally assigned a cost ratio for False Positives

(FP) to False Negatives (FN) of 1:4. This emphasizes the

criticality of not overlooking potential risks, as missing a true

positive case can have significant ramifications. Beyond the cost

matrix, all models were utilized with default configuration.

2.5.3 K-fold cross validation
Concerning our methodology of using only a training and a

testing set, without a dedicated validation set, we had specific

considerations. Given the limited size of our dataset, we believed

that allocating a portion to a validation set could adversely

impact the model’s performance. Moreover, research indicated

that with small datasets, the models often perform best with

default hyperparameters, and that hyperparameter tuning might

negatively influence performance (14, 15). These factors led us to

the decision of not engaging in hyperparameter tuning and

adpoting a k-fold Cross Validation with k = 10. Our testing set,

being independent from the training set, serves to effectively

evaluate the model’s performance on unseen data.

In cross validation, training set was split randomly into 10

folds. For each iteration, 9 of the 10 folds were used as training

set and 1 as validation set. An average AUC was calculated for

each model to evaluate if the model was overfitted and used as a

benchmark for the model’s performance on the testing set.

XGBoost and LightGBM consistently outperformed other models

in every time node, with AUC of 83.97% and 83.02%, indicating

a solid performance of our model and no sign of overfitting.

Since the difference between XGBoost and LightGBM is trivial,

we decided to conduct final model selection based on their

performance on testing set.

2.5.4 Performance evaluation
For each time node, the performance of each model was

compared, and the comprehensive evaluation indices were AUC,

sensitivity, specificity, accuracy, and F2 score. Considering the

ability of the AUC score to evaluate the performance of a model

across all thresholds, it was used as a single metric to select the

best model at each time node and the model with the highest

performance. These metrics were also compared with those of k-

fold Cross Validation, to see if the model was overfitted to the

training set, in which condition, metrics of validation would be

significantly higher than those of testing set.

Descriptive statistics and machine learning analyses were

performed using SPSS version 23.0 (IBM Corp, Armonk, NY,
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USA) and Python version 3.6.15 (Python Software Foundation,

Wilmington, DE, USA).
3 Results

3.1 Patient basic characteristics and clinical
outcomes

Based on these criteria, the data of 488 patients who underwent

hepatolithiasis surgery in the five medical centres during the 5-year

period were evaluated, with 294 patients admitted at the First

Affiliated Hospital of Anhui Medical University, 51 patients

admitted at the Second Affiliated Hospital of Anhui Medical

University, 59 patients admitted at the First Affiliated Hospital of

the University of Science and Technology of China, 32 patients

admitted at the First Affiliated Hospital of Bengbu Medical

College, and 52 patients admitted at the First Affiliated Hospital

of Wannan Medical College (Figure 1).

Overall, 488 patients were included in the ML model [mean

age, 57.9 ± 12.0 years; >60 years, n = 235 (48.2%); female, n = 331,

67.8%]. A total of 157 patients (32.1%) underwent more than

one surgical treatment, and 89 patients (18.2%) underwent

hepatectomy. The characteristics of the training and testing sets

were not significantly different (Table 1). A total of 135 patients
FIGURE 1

Flow chart of patient enrollment. RH, recurrent hepatolithiasis; ML, machine
boosting machine; RF, random forest; SVM, support vector machine; Ada
logistic regression; KNN, K-nearest neighbour; CARES, correlation Analysis
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(27.7%) had a recurrence within 5 years (Table 2). All predictor

variables were incorporated into the ML model to predict the

risk of recurrence in patients with RH.

In Table 1, we have presented the preoperative clinical

characteristics of the patients in a simplified categorical or

hierarchical manner for clarity and ease of understanding for the

readers. Please note that during the actual model-building

process, the original continuous values of these variables were

utilized. We believe using the continuous data during model-

building aids in capturing subtle nuances and providing a more

accurate representation, whereas the categorized data in the table

helps in presenting an easier-to-read overview.
3.2 Model performance

The nine models were built and externally validated. The AUC

values of the models are presented in Table 3. In terms of

predicting RH recurrence at 3 years and more, XGBoost showed

optimal performance, with AUCs of about 0.9 or greater, which

fully demonstrates its strength. It can efficiently and flexibly

handle multivariate data and assemble weak prediction models to

build an accurate one (16, 17). In the prediction of recurrence

within 1 year and 2 years, LightGBM was more advantageous,

with AUCs of 0.981 and 0.924, respectively, whereas the
learning; XGBoost, extreme gradient boosting; LightGBM, light gradient-
Boost, adaptive boosting; NNW, neural network; DT, decision tree; LR,
and Recurrence Evaluation System.
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TABLE 1 Preoperative clinical characteristics of patients with recurrent hepatolithiasis after surgery.

Characteristic Total (n= 488) Training set (n = 404) Testing set (n= 84) Statistic P value
Gender, n (%) χ2 = 0.257 0.612

Male 157 (32.17) 128 (31.68) 29 (34.52)

Female 331 (67.83) 276 (68.32) 55 (65.48)

Age, n (%) χ2 = 1.520 0.218

<60 239 (48.98) 203 (50.25) 36 (42.86)

≥60 249 (51.02) 201 (49.75) 48 (57.14)

BMI, mean ± SD 21.97 ± 2.85 21.93 ± 2.89 22.17 ± 2.67 t = −0.700 0.484

Abdominal pain, n (%) χ2 = 0.000 0.987

No 70 (14.34) 58 (14.36) 12 (14.29)

Yes 418 (85.66) 346 (85.64) 72 (85.71)

Fever, n (%) χ2 = 0.284 0.594

No 303 (62.09) 253 (62.62) 50 (59.52)

Yes 185 (37.91) 151 (37.38) 34 (40.48)

Emesis, n (%) χ2 = 2.067 0.151

No 383 (78.48) 322 (79.70) 61 (72.62)

Yes 105 (21.52) 82 (20.30) 23 (27.38)

Icterus, n (%) χ2 = 0.722 0.395

No 384 (78.69) 315 (77.97) 69 (82.14)

Yes 104 (21.31) 89 (22.03) 15 (17.86)

Pressing pain, n (%) χ2 = 0.776 0.378

No 311 (63.73) 261 (64.60) 50 (59.52)

Yes 177 (36.27) 143 (35.40) 34 (40.48)

Smoking, n (%) χ2 = 0.449 0.503

No 400 (81.97) 329 (81.44) 71 (84.52)

Yes 88 (18.03) 75 (18.56) 13 (15.48)

Drinking, n (%) χ2 = 0.491 0.483

No 418 (85.66) 344 (85.15) 74 (88.10)

Yes 70 (14.34) 60 (14.85) 10 (11.90)

Number_of_operations, n (%) Fisher 0.399

1 331 (67.83) 278 (68.81) 53 (63.10)

2 100 (20.49) 77 (19.06) 23 (27.38)

3 47 (9.63) 40 (9.90) 7 (8.33)

≥4 10 (2.05) 9 (2.23) 1 (1.19)

Previous hepatectomy, n (%) χ2 = 2.159 0.142

No 175 (35.86) 139 (34.41) 36 (42.86)

Yes 313 (64.14) 265 (65.59) 48 (57.14)

Liver cirrhosis, n (%) χ2 = 3.785 0.052

No 428 (87.7) 349 (86.39) 79 (94.05)

Yes 60 (12.3) 55 (13.61) 5 (5.95)

Surgical method, n (%) χ2 = 2.477 0.116

Open surgery 436 (89.34) 365 (90.35) 71 (84.52)

Laparoscopic surgery 52 (10.66) 39 (9.65) 13 (15.48)

Intrahepatic narrow, n (%) χ2 = 1.130 0.288

No 367 (75.2) 300 (74.26) 67 (79.76)

Yes 121 (24.8) 104 (25.74) 17 (20.24)

Hepatic lobe atrophy, n (%) χ2 = 0.231 0.630

No 215 (44.06) 176 (43.56) 39 (46.43)

Yes 273 (55.94) 228 (56.44) 45 (53.57)

AGR, n (%) χ2 = 0.671 0.413

>1.5 158 (32.38) 134 (33.17) 24 (28.57)

≤1.5 330 (67.62) 270 (66.83) 60 (71.43)

NLR, n (%) χ2 = 3.156 0.076

<2.462 292 (59.84) 249 (61.63) 43 (51.19)

≥2.462 196 (40.16) 155 (38.37) 41 (48.81)

PLR, n (%) χ2 = 0.168 0.682

<173.74 393 (80.53) 324 (80.20) 69 (82.14)

≥173.74 95 (19.47) 80 (19.80) 15 (17.86)

TBIL, n (%) χ2 = 0.071 0.790

<34.2 400 (81.97) 332 (82.18) 68 (80.95)

(Continued)

Li et al. 10.3389/fdgth.2024.1510674

Frontiers in Digital Health 06 frontiersin.org29

https://doi.org/10.3389/fdgth.2024.1510674
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 1 Continued

Characteristic Total (n= 488) Training set (n = 404) Testing set (n= 84) Statistic P value
≥34.2 88 (18.03) 72 (17.82) 16 (19.05)

ALT, n (%) χ2 = 0.728 0.393

<50 299 (61.27) 251 (62.13) 48 (57.14)

≥50 189 (38.73) 153 (37.87) 36 (42.86)

AST, n (%) χ2 = 0.008 0.929

<40 300 (61.48) 248 (61.39) 52 (61.90)

≥40 188 (38.52) 156 (38.61) 32 (38.10)

ALP, n (%) χ2 = 0.899 0.343

<200 309 (63.32) 252 (62.38) 57 (67.86)

≥200 179 (36.68) 152 (37.62) 27 (32.14)

GGT, n (%) χ2 = 0.192 0.661

<150 243 (49.8) 203 (50.25) 40 (47.62)

≥150 245 (50.2) 201 (49.75) 44 (52.38)

CA19-9, n (%) χ2 = 2.288 0.130

<34 338 (69.26) 274 (67.82) 64 (76.19)

≥34 150 (30.74) 130 (32.18) 20 (23.81)

This table summarizes patient data on key clinically significant variables only. BMI, body mass index; AGR, albumin-to-globulin ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-

lymphocyte ratio; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, γ-glutamyl transpeptidase; CA19-9, carbohydrate
antigen19-9;.

TABLE 2 The number of recurrent patients in k years.

In k years 1 2 3 4 5
Number 44 108 126 132 135
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performance of the DT and KNN models was unsatisfactory,

probably because the sample size was not sufficiently large

(Figure 2) (18). It was worth noticing that model showed better

performance on testing set than validation, indicating that it was

not overfitted to the training set.

For the clinical results at each time point, Shapley Additive

Explanations (SHAP) were generated to construct a

comprehensive explainable framework showing the importance

and direction of each predictor variable, increasing the

interpretability of the model. The position of each predictor

variable on the y-axis was ranked in order of relative importance,

with the most important predictor variable at the top. For each

predictor variable, the position of each point on the x-axis (red

indicates higher values or the presence of binary factors)

represents the contribution of the individual participant to the
TABLE 3 Area under the receiver operating characteristic curve (AUC) of eac

Model AUC within 1 year AUC within 2 years AUC w
XGBoost 0.941 0.906

LightGBM 0.981 0.924

RF 0.903 0.825

SVM 0.900 0.856

AdaBoost 0.659 0.779

NNW 0.747 0.852

DT 0.469 0.650

LR 0.819 0.839

KNN 0.600 0.592

This table summarizes area under the receiver operating characteristic curve (AUC) of each model

model is summarized in Supplementary Appendix. XGBoost, extreme gradient boosting; Light

AdaBoost, adaptive boosting; NNW, neural network; DT, decision tree; LR, logistic regression; K
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overall SHAP value, with highly positive contributions on the far

right (Figure 3).
3.3 Predictive analysis and clinical
application

Instant and final clearance were of considerable importance in

the prediction of almost every time point, whereas the number of

previous surgeries and the neutrophil/lymphocyte ratio were also

of great importance, which is in line with our previous findings

(11). Moreover, advanced ML models can capture higher-order

non-linear interactions among predictors; therefore, we also

found many previously unappreciated or undetected factors that

have great impact on recurrence, such as the function of the

sphincter of Oddi (SO), carbohydrate antigen 19-9 (CA19-9),

symptom score, and platelet count.

The system named CARES employs five specialized models,

each optimized for predicting the risk of disease recurrence for

years 1–5 post-surgery. Specifically, CARES has 5 system

components and goes through the following steps.
h model at different time nodes.

ithin 3 years AUC within 4 years AUC within 5 years
0.922 0.917 0.887

0.889 0.907 0.885

0.852 0.849 0.774

0.836 0.843 0.832

0.732 0.661 0.781

0.823 0.845 0.813

0.674 0.636 0.542

0.810 0.833 0.795

0.585 0.576 0.568

at different time nodes only. Additional data on optimal parameters and performance of each

GBM, light gradient-boosting machine; RF, random forest; SVM, support vector machine;

NN, K-nearest neighbour.
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FIGURE 2

Comparison of ROC curves of each model at different time nodes. Panels A–E respectively show the ROC curves and AUC of each model at the time
points set to 1, 2, 3, 4, and 5 years. AUC, area under the receiver operating characteristic curve.
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Firstly, for each k (ranging from 1 to 5), a dedicated model is

trained using the entire dataset to predict the probability of a

patient experiencing disease recurrence k years after surgery. This

results in 5 distinct models, each optimized for its specific

prediction year. Secondly, for a new patient, measurements and

relevant clinical information serve as the input. In instances where

certain data points are missing, these are substituted with the

sample average to ensure a comprehensive data input. Thirdly,

each of the 5 models processes the input data, providing

individual probability estimates of the patient’s risk of disease

recurrence for years 1 through 5. Fourthly, to ensure that the risk

curve exhibits clinical coherence (i.e., the risk doesn’t drop in

subsequent years, which would be counterintuitive), an isotonic

regression is applied to the predicted probabilities. Lastly, the

output of the CARES system is a graphical representation or “risk

curve”. This curve offers a clear visualization of a patient’s

estimated risk of recurrence across the 5-year period post-surgery.

This system was encapsulated and deployed online. When the

user inputs the patient’s predictors, it outputs a curve of recurrence

risk over time; when the patient’s recurrence risk is higher at a

certain time point or spikes at a certain period of time, we notify

the user of the output on the output graph to draw attention to the

patient’s recurrence risk (Figure 4). This incorporation of individual

and aggregated predictive models aids in offering a comprehensive

and nuanced risk profile. Compared with previous scoring systems,

our calculator is easier to use and the output is more intuitive, with
Frontiers in Digital Health 0831
greater utility and a higher predictive value. The CARES is available

for free online (19) and can also be accessed by scanning the QR code.

In terms of evaluation, the model’s efficacy can be gauged by

comparing its predictions against actual recurrence events in a

real-world clinical setting. After deployment in real practice,

continual validation and recalibration can further refine the

model, ensuring its sustained relevance and accuracy.
4 Discussion

4.1 Principal findings

In this study, ML methods and multicentre clinical data were

combined to build CARES, an accurate, efficient, and user-friendly

prediction model that integrates clinical characteristics to predict

the dynamic recurrence risk of RH after surgery, and then analysed

the risk factors that may be associated with recurrence using the

SHAP method. Based on SHAP at various time points, immediate

stone clearance, final stone clearance, number of previous surgeries,

and preoperative CA19-9 index were the most significant predictors

of recurrence after reoperation in RH patients. We employed state-

of-the-art algorithms, such as XGB and LightGBM. It’s noteworthy

that, to our knowledge, these algorithms have not been previously

utilized in modeling recurrence of this specific disease. CARES is

the first model that uses ML to assess the prognosis of patients
frontiersin.org
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FIGURE 3

Shapley additive explanations (SHAP) analyses of the best-performing machine learning models for predicting recurrence of hepatolithiasis. Panels A,B
respectively show the Shapley additive explanations (SHAP) for the LightGBM model, which performed the best at the 1-year and 2-year time points,
while panels C–E respectively show the SHAP for the XGBoost model at the 3-year, 4-year, and 5-year time points. XGBoost, extreme gradient
boosting; LightGBM, light gradient-boosting machine; DBIL, direct bilirubin; ALP, alkaline phosphatase; PT, prothrombin time; LYM, lymphocyte;
PLT, platelet count; CA125, carbohydrate antigen 125; EO, eosinophil; NLR, neutrophil-to-lymphocyte ratio; IBIL, indirect bilirubin; PA, prealbumin;
CA19-9, carbohydrate antigen19-9; AST, aspartate aminotransferase; TBIL, total bilirubin; CEA, carcinoembryonic antigen; PDW, platelet
distribution width; NEUT, neutrophil count; AGR, albumin-to-globulin ratio; HBsAb, hepatitis B surface antibody; WBC, white blood cell; BMI, body
mass index; HGB, hemoglobin; GGT, γ-glutamyl transpeptidase.
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with RH after biliary surgery. We incorporated the latest dataset

available, which, to the best of our knowledge, is unparalleled in its

scale and comprehensiveness for this subject.
4.2 Interdisciplinary integration

Hepatolithiasis is a relatively common benign disease in East

Asia; however, the management of patients with hepatolithiasis

has been challenging owing to the high rates of treatment failure,
Frontiers in Digital Health 0932
recurrence, and complications (20–22). Patients with RH are also

more difficult to re-treat because they have already undergone one

or multiple surgeries, and repeat surgery places a greater

psychological and financial burden on patients. Therefore, a model

that accurately predicts the individual dynamic recurrence risk of

patients with RH after surgical treatment could provide great value

in guiding the assessment of postoperative efficacy as well as the

development of a follow-up strategy (23).

The application of AI in healthcare is growing rapidly with

potential applications in various subspecialties and subfields (24–
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FIGURE 4

Page presentation of the online correlation analysis and recurrence evaluation system (CARES), which is available for free at http://www.ahmucares.
tech:5000/ or by scanning the QR code.
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26). As an important branch of AI, ML can be trained by inputting

large amounts of labelled data (27) and analysing these data to

identify relevant patterns that can then be used to predict future

events or states (28). It has the ability to learn automatically from

data and algorithms and uses past experience to improve

performance (29). Unlike traditional regression-based methods, ML

algorithms capture higher-order non-linear interactions between

predictors (30) and thus focus on detecting hard-to-recognise

patterns in complex data. CARES allows the comparison of multiple

learning algorithms to identify the algorithmwith the best performance.

When developing CARES, a different oversampling method was

used, ADASYN, to prevent the imbalance in the amount of negative

vs. positive data from distorting the model’s performance. Unlike

random oversampling, which simply replicates existing examples,

ADASYN generates new synthetic examples in a small number of

classes that are slightly different from existing examples, with a

particular focus on samples that are more difficult to learn. These

synthetic examples make the model more robust and reduce the

risk of overfitting because they introduce more variability and help

the model to better generalise the training data to new data.

Our study also demonstrated that a prediction model based on

ML techniques was superior to the traditional regression analysis

method in terms of predictive performance. Previous studies had
Frontiers in Digital Health 1033
few predictive models for postoperative recurrence in patients with

RH. We used traditional LR to build a recurrence prediction model

for patients with RH after biliary surgery, which had an AUC of

0.754 and was not fully satisfactory (11). In contrast, with the help

of ML techniques, the AUC of LightGBM reached 0.981 and 0.924

for patients with recurrence within 1 year and 2 years after surgery,

respectively, whereas XGBoost performed exceptionally well for

patients with recurrence at 3 years and beyond, with AUCs of

0.922, 0.917, and 0.887 at 3, 4, and 5 years, respectively.

As a widely used model in biological and medical analyses,

XGBoost is a boosting algorithm with many advantages. First,

several variables may have affected disease recurrence. By building

an ensemble of decision trees, XGBoost can capture complex

relationships between features and outcomes, which may be

particularly important in medical scenarios where multiple factors

interact to influence outcomes. Second, our dataset contains a large

number of predictor variables, including binary, numerical, and

categorical data. XGBoost can handle all these types of data,

allowing us to incorporate all potentially relevant information into

the prediction (31). Finally, our dataset was considered unbalanced,

with a limited number of samples and fewer positive data. XGBoost

addresses this issue. It also provides resilience against overfitting

and supports parallel processing to maximise the use of resources
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(32). Therefore, XGBoost tends to have excellent performance when

the number of predictor variables is large and the dataset is not

balanced. The present study also indicated that the prediction

model based on XGBoost had the best performance.

As ML becomes more computationally powerful and the

complexity of models increases, understanding the underlying

logic and decision factors of the models becomes increasingly

difficult. Therefore, enhancing the interpretability of black boxes

so that people can understand the reasons for their predictions

can considerably improve the applicability and credibility of

models (33). Therefore, we combined the predictions of CARES

with SHAP to construct a comprehensive explanatory framework

for presenting the contribution of each predictor variable to the

results and to increase the transparency of the model (34). SHAP

has many advantages. It can calculate the contribution of various

factors, determine the positivity or negativity of each

contribution, quantify each factor’s contribution to the stone

recurrence/non-occurrence probability, and predict recurrence

without decreasing the predictive model’s accuracy (33, 35).

These advantages are important for the prediction of potential

recurrence risk, clinical focus of influencing factors, and

interpretation of CARES prediction results.
4.3 Clinical findings and contributions

According to the results of the SHAP, instant and final clearance

of stones were the most important predicting factors. Patients who fail

to achieve instant clearance and final clearance appear to be at a much

higher risk of recurrence, showing that perfect preoperative

examination and fine intraoperative operation are quite beneficial in

improving the patient’s prognosis. Therefore, the surgical method

should be carefully selected to remove all stones intraoperatively,

based on preoperative examination. For patients in whom

intraoperative stone extraction is difficult, such as those with stones

in both the hepatic and biliary ducts, severe lateral hepatectomy

combined with choledochoscopic lithotripsy can be attempted to

obtain a high stone removal rate (36, 37). Stones that are difficult

to remove intraoperatively should be removed postoperatively using

trans-T-tube sinusoidal choledochoscopy.

The number of previous surgeries was also a major concern.

According to the SHAP, a greater number of previous surgeries

significantly increases a patient’s risk of recurrence. According to

previous studies, up to 95% of prior abdominal surgeries result in

intra-abdominal adhesions (38), which may be related to

intraoperative vascular and intestinal injuries (39). A complex

abdominal environment can greatly increase the difficulty of

surgery, making accurate resection of lesions and removal of stones

difficult. Therefore, care should be taken when choosing a surgical

procedure for patients who have undergone multiple laparotomies.

Open approach may be a better option than laparoscopic approach

because in patients with severe abdominal adhesions, improper

placement of the trocar may prevent effective laparoscopic surgery

and may damage the viscera or vascular around the adhesions.

Loosening the abdominal adhesions to accurately identify the

anatomical landmarks can be a challenge during surgery.
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In our study, CA19-9 played an important role in recurrence at

certain time points, higher CA19-9 levels in patients on

preoperative examination suggested a higher risk of recurrence.

Previous studies on the relationship between CA19-9 and

hepatolithiasis have often been limited to whether it is associated

with malignancy in biliary diseases; little research has been

conducted on its relationship with recurrence. According to Ker

et al. (40), the concentration of CA19-9 is not only affected by

tumours but is also increased by severe infections in patients

with hepatolithiasis. Cases of stone-induced acute bile duct

inflammation leading to elevated CA19-9 levels were also

reported by Sheen-Chen et al. (41). We hypothesised that

patients with elevated CA19-9 levels may have more severe tract

infections, which may disrupt the biliary environment and

increase the risk of recurrence.

In addition to the aforementioned key risk factors, the function of

SO also affected recurrence in our prediction model. The primary

function of the SO is to regulate bile influx into the duodenum and

to prevent duodenal reflux (42). Duodenal reflux of food debris can

lead to Escherichia coli infections and a decrease in biliary

pH. E. coli can generate β-glucuronidase, which hydrolyses water-

soluble direct bilirubin into water-insoluble indirect bilirubin,

thereby facilitating stone formation in the biliary tract (43).

Consequently, patients with poorer SO function are more prone to

recurrence. Therefore, maintaining the functional integrity of SO

helps to reduce the recurrence rate in patients with RH. In patients

with normal SO function, the best method of biliary drainage is T-

tube drainage, which is relatively simple, has a high stone-clearance

rate, and preserves the structural integrity and continuity of the

extrahepatic bile ducts because it preserves SO function. T-tube

drainage significantly reduces the incidence of post-operative reflux

cholangitis in patients with normal SO function. However, in

patients with complete loss of function or stenosis of the SO, Roux-

en-Y hepatico-jejunostomy is one of the best methods available for

biliary drainage. Roux-en-Y hepatico-jejunostomy has the advantage

that it reduces reflux of duodenal fluid, but this procedure

abandons the SO (44). Therefore, to reduce the recurrence rate in

patients with RH, the surgeon should carefully choose the method

for different states of SO function and preserve SO function as

much as possible to prevent the occurrence of reflux cholangitis.

Naturally, other factors seem to influence the recurrence of

hepatolithiasis, but the direct link between these factors, such as

postoperative fever, and the recurrence of hepatolithiasis is difficult

to understand. However, ML has the advantage of observing

complex, multidimensional, and non-linear relationships between

different predictor variables in biological systems. Perhaps in the

future, we can aim to understand how these factors cause

physiological and pathological “butterfly effects” in the human body

and isolate them to demonstrate a complete “chain of evidence.”

To improve the application value of the model, we encapsulated

the CARES as a recurrence risk curve calculator and deployed it

online. By inputting patient information, the calculator outputs a

dynamic recurrence risk curve that increases with time after the

operation, and the user can approximate the patient’s possible risk

of recurrence based on the output. An open interface is reserved

in CARES for interfacing with the hospital information system.
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CARES not only has a better performance but can also visually

output the change in recurrence risk of patients in each period

from 1 to 5 years after surgery, suggesting the period when

doctors and patients need to be extra cautious, as well as the

indicators and guidelines that they need to focus on.
4.4 Limitations

This study has some limitations. First, the retrospective nature

of the methodology may lead to a selection bias, and prospective

studies are needed to validate the accuracy of the results. Second,

during model training, due to the imbalanced nature of our

dataset, we adapted ADASYN as oversampler. We acknowledged

that while ADASYN helped address class imbalance, it may not

fully capture the complexities of real-world distributions in

clinical settings. Third, the explainable internal working logic of

the model remains one of the biggest barriers to implementing

cutting-edge ML techniques in biomedical research. We must

better understand the evolving and complex relationships

between physicians and smart tools in clinical settings to provide

better treatment strategies for patients.
5 Conclusions

Multiple ML algorithms were used to construct CARES, which

integrates various clinical data to predict the dynamic recurrence

risk of RH patients after surgery. The predictive power of our

model was externally validated based on a multicentre database.

We believe that CARES can provide critical prognostic

predictions for patients after RH surgery and may facilitate more

efficient clinical decision-making by surgeons and patients.
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The benefits of 
contrast-enhanced ultrasound in 
the differential diagnosis of 
suspicious breast lesions
Runa Liang 1,2†, Jun Lian 2†, Jinhui Zhang 1, Jiayu Jing 1, 
Jinxia Bian 1, Jinzhi Xu 1, Xin He 1, Shanshan Yu 1, Qi Zhou 1 and 
Jue Jiang 1*
1 Department of Ultrasound, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 
2 Department of Ultrasound, Ankang Central Hospital, Ankang, China

Background: Contrast-enhanced ultrasound (CEUS) shows potential for the 
differential diagnosis of breast lesions in general, but its effectiveness remains 
unclear for the differential diagnosis of lesions highly suspicious for breast 
cancers.

Objective: This study aimed to evaluate the diagnostic value of CEUS in 
differentiating pathological subtypes of suspicious breast lesions defined as 
category 4 of US-BI-RADS.

Methods: The dataset of 150 breast lesions was prospectively collected from 
150 patients who underwent routine ultrasound and CEUS examination and 
were highly suspected of having breast cancers. All lesions were pathologically 
confirmed by US-guided needle biopsy and surgery. The qualitative features and 
the quantitative parameters of CEUS of these breast lesions were analyzed. The 
CEUS and biopsy examinations were performed after informed consent.

Results: In the qualitative features, crab clam-like enhancement, the presence 
of more than two enhanced vessels within lesions, and surrounding enriched 
vessels inserting into lesions were able to differentiate atypical fibroadenomas 
(FIB) and mass-like non-puerperal mastitis (NPM) from invasive ductal 
carcinomas (IDC) and ductal carcinomas in situ (DCIS) (p < 0.05). The enlarged 
scope, irregular shape, and perfusion deficiency were valuable to the differential 
diagnosis of FIB from the others (p < 0.05). In the four quantitative parameters 
of CEUS, only the peak intensity (IMAX) contributed to the differential diagnosis 
between malignant and benign tumors (p < 0.05, ROCAUC: 0.61, sensitivity: 
60.4% and specificity: 65.9%, accuracy: 62.1%). However, IMAX did not show 
any difference in the paired comparison of IDC, DCIS, FIB, and NPM (p > 0.05). 
The logistic regression analysis results showed that heterogeneous perfusion, 
crab clam-like enhancement, and partial_ IMAX were independent risk factors 
for benign and malignant breast lesions (p < 0.05). The area under a receiver 
operating characteristic of the integrated model was 0.89. In the diagnosis of 
benign and malignant pathological subtypes of breast lesions, independent risk 
factors and integrated models had no statistical significance in the diagnosis of 
IDC and DCISs, FIB, and NPM (p > 0.05).

Conclusion: Some qualitative risk features of CEUS can distinguish malignant 
breast lesions from NPM and atypical FIB with a high score of US-BI-RADS, 
aiding physicians to reduce the misdiagnosis of suspicious breast lesions in 
clinical practice.
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Introduction

According to the statistical results of 36 kinds of cancers 
worldwide in 2022, the incidence rate of female breast cancer was 
ranked second, and the corresponding mortality rate was ranked 
fourth (1). Ultrasound (US) examination is an important and often-
used tool to find breast lesions and distinguish the malignancies and 
benignities (2, 3). Currently, ultrasonographers predict the 
probabilities of malignant breast lesions according to the American 
Colleague Radiology US Breast Imaging—Reporting and Data System 
(ACR US-BI-RADS) (4). However, the diagnostic specificity of the 
high-risk categories remains widely controversial, especially for 
lesions scored as category 4 of US-BI-RADS, whose risk probability 
ranges from 2 to 95% (4), because of the highly overlapped risk 
features between malignant and benign breast lesions (5, 6). The 
technique of contrast-enhanced ultrasound (CEUS) can visualize the 
distribution and pattern of the microvascular environment within or 
surrounding organs or lesions (7–9), which has proven useful in 
differentiating malignant from benign breast lesions (10–13). 
However, the previous studies mainly evaluated the value of CEUS in 
differentiating benignity/malignancy of breast lesions overall (14–18), 
rarely focusing on the histopathological subtypes of breast lesions, 
especially for the atypical benignities that are easily mistaken for 
breast cancers.

Thus, in this study, we focused on the suspicious breast lesions 
defined as category 4 of US-BI-RADS and evaluated the diagnostic 

value of both qualitative features and quantitative parameters of CEUS 
in differentiating pathological subtypes of those lesions. To improve 
the accuracy of early diagnosis for such lesions, reduce unnecessary 
biopsy procedures, and obtain practical and highly accurate diagnostic 
guidelines for breast ultrasound contrast imaging, providing reliable 
and practical imaging diagnostic support for precise clinical diagnosis 
and treatment.

Materials and methods

Patients

In this prospective study, 228 single breast lesions from 228 
patients were identified via the routine ultrasonic examination and 
classified as category 4 according to ACR US-BI-RADS (Figure 1). All 
patients were advised to undergo a CEUS examination before 
US-guided coarse needle biopsy (CNB) and surgery. However, 43 
patients did not perform the CEUS examination and underwent 
surgery directly. A total of 33 patients failed to follow up and did not 
obtain their pathological results. Finally, 152 breast lesions from 152 
patients got both histopathological results and CEUS videos 
successfully, and all the patients gave informed consent. The research 
institute granted ethical approval (No. 2018200) to carry out the study 
within its facilities. In the process of data analysis, two patients were 
excluded for failing to acquire high-quality CEUS data. Finally, 150 

FIGURE 1

Flowchart of patients with breast lesions recruited in this prospective study.
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breast lesions from 150 patients were analyzed in this study (Figure 1). 
Of the 150 suspicious breast lesions, 101 (67.3%) were malignant (16 
BI-RADS 4a, 31 BI-RADS 4b, 54 BI-RADS 4c) and 49 (32.7%) were 
benign (35 BI-RADS 4a, 12 BI-RADS 4b, 2 BI-RADS 4c) (Table 1).

Routine US and CEUS examination

Using the Siemens Acuson Sequoia 512 color Doppler ultrasound 
diagnostic system, the routine US examination was performed with 
an 18L6 linear transducer of frequency of 4.6–17.8 MHz, and CEUS 
was performed with a 10L4 linear transducer of frequency of 
2.9–9.9 MHz. Patients were instructed to keep a supine position and 
expose the breast sufficiently. Ultrasonographers switched the routine 
model to the contrast model after finding a lesion. The contrast agent, 
4.8 mL of SonoVue (Bracco Inc., Milan, Italy), was injected into the 
peripheral vein of the patient. The dynamic contrast-enhanced process 
within the lesion was observed and recorded for 2 min. The video data 
were stored automatically on the machine’s hard disk. Based on the 
grayscale images and the contrast-enhanced videos, we recorded the 
location, size, shape (regular/irregular), boundary (clear/unclear), 
blood types, echogenic foci (macro/micro-calcifications), and axillary 
lymph nodes of lesions. We also recorded the perfusion patterns and 
the direction of contrast entering the nodules, the enlarged size and 
the shape of enhanced lesions, and the enhanced vessels within and 
surrounding lesions. Finally, the DICOM format of the contrast videos 
was input into a quantitative software called TomTec SonoLiver 
v1.1.15.0, where the region of interest (ROI) of normal breast gland 
tissue and lesions (including the whole lesions and partial lesions with 
solid components) was marked and analyzed. The software provided 
five parameters based on its default smoothing curves, including: 
quality of fit (QOF, which measures the perfusion curve fitting degree), 
maximum intensity (IMAX, the echo intensity of the contrast medium 
at its peak), rising time (RT, the time from the onset of the contrast 

medium and its peak), time to peak (TTP, the time between the start 
of the contrast agent injection and its peak), and mean transit time 
(mTT, the mean local transition time of contrast media). The results 
of the software output in this study were completed by two highly 
trained radiologists. When the two radiologists disagreed, a third 
radiologist with over 10 years of experience made the final decision.

Statistical analysis

The qualitative features were compared via the chi-square and 
Fisher’s exact test. The quantitative parameters were compared via a 
t-test, Bartlett’s test, ANOVA test, and Kruskal test. A p < 0.05 was 
considered statistically significant. Single-factor and multi-factor logistic 
regression with forward stepwise analysis were applied to screen for 
independent risk factors and establish an integrated model to identify 
benign and malignant lesions as well as histopathological subtypes of 
suspicious breast lesions. The ROC curve was used to evaluate the 
integrated model and calculate the area under the curve (AUC). The 
cutoffs for the qualitative features and quantitative parameters of CEUS 
were determined, and the corresponding sensitivity and specificity were 
calculated based on the maximum value of Youden’s index. The DeLong 
test was used to compare the differences between the AUCs of the ROC 
curves. All statistical analyses were executed using R software version 
4.0 (R codes are shown in the Supplementary material).

Results

Patient information

Of 150 breast lesions scored as category 4 of US-BI-RADS, 101 were 
breast cancers (16 BI-RADS 4a, 31 BI-RADS 4b, and 54 BI-RADS 4c) 
and 49 were atypical benign lesions (35 BI-RADS 4a, 12 BI-RADS 4b, 
and 2 BI-RADS 4c). The average age of the patients with malignancies 
and benignities was 52.8 and 44.6, with standard deviations of 13.5 and 
10.9, respectively. The 49 benign lesions included 20 fibroadenomas 
(FIB) with atypical grayscale ultrasonic features, 10 hyperplastic 
nodules, 1 hyperplastic nodule with FIB, 4 intraductal papillomas, and 
14 mass-like non-puerperal mastitis (NPM). The 101 malignant lesions 
included 83 invasive ductal carcinomas (IDC), 12 ductal carcinomas in 
site (DCIS), 2 invasive lobular carcinomas, 2 intraductal papillary 
carcinomas, and one mucinous carcinoma (Table 1). The average size 
of 49 benign lesions is 18.2 mm with a standard deviation of 12.1 mm, 
and the average size of 101 malignant lesions is 23.2 mm with a standard 
deviation of 13.3 mm (Supplementary Table 1). Other data, including 
age, menopausal history, family history, location of lesions, lymphatic 
metastasis, and ultrasound and contrast-enhanced ultrasound 
characteristics, are shown in Supplementary Table 1.

Qualitative features of CEUS in 
differentiating the histopathological 
subtypes of suspicious breast lesions

Among the risk qualitative features of CEUS, enlarged scope, 
heterogeneous perfusion, perfusion deficiency, crab clam-like 
enhancement, more than two enhanced vessels within lesions, and 

TABLE 1  Histopathological subtypes of 150 suspicious breast lesions 
scored as category 4 of US-BI-RADS.

Histopathological subtype Count (%)

Total (n) 150

Benign 49 (32.7%)

Atypical fibroadenoma

Hyperplastic nodule

Hyperplastic nodule with fibroadenoma

20

10

1

Intraductal papilloma 4

Mass-like non-puerperal mastitis 14

Mammary duct ectasia/periductal mastitis/ serous mastitis 7

Granulomatous lobular mastitis 7

Malignant 101 (67.3%)

Invasive ductal carcinoma 83

Ductal carcinoma in site 12

Invasive lobular carcinoma 2

Intraductal papillary carcinoma 2

Medullary carcinoma 1

Mucinous carcinoma 1
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surrounding enriched vessels inserting into lesions represented 
statistically significant differences for differentiating benign from 
malignant lesions (p < 0.01). Of these features, crab clam-like 
enhancement had the highest specificity of 95.9%, but the lowest 
sensitivity of 51.5%, with moderate accuracy of 66.0% (Table 2). The 
surrounding enriched vessels inserting into lesions had the highest 
sensitivity of 100% and the highest accuracy of 87.3%, though with 
moderate specificity of 61.2% (Table 2).

In a comparison of CEUS qualitative features for differentiating 
the four histopathological subtypes (IDC, DCIS, FIB, and NPM), 
except the directional perfusion, other risk features showed significant 
overall differences (p < 0.01) (Supplementary Table 2). In the paired 
comparison, the crab clam-like enhancement, more than two 
enhanced vessels within lesions, and surrounding enriched vessels 
inserting into lesions could differentiate IDC and DCIS from atypical 
FIB and NPM (p < 0.05) (Figures 2, 3) but showed no significant 
difference between IDC and DCIS, or between FIB and NPM 
(p > 0.05) (Figure  2). The enlarged scope, irregular shape, and 
perfusion deficiency were valuable in differentiating FIBs from the 
others (p < 0.05), although they showed no significant difference 
among the paired comparison of IDC, DCIS, and mass-like NPM 
(p > 0.05) (Figure  2). The heterogeneous perfusion showed a 
significant difference only between IDC and atypical FIB (p < 0.05) 
(Figure 2).

Quantitative features of CEUS in 
differentiating the histopathological 
subtypes of suspicious breast lesions

After the quantitative analysis, 140 of 150 breast lesions had 
QOFs over 50% and the QOFs values were higher in the whole 
enhanced lesions than in the normal enhanced breast gland tissue 
and partially enhanced lesions with solid composition 
(Supplementary Figure  1). In a comparison of four quantitative 
parameters (IMAX, RT, TTP, and mTT) of CEUS in differentiating 
the benign from malignant breast lesions, only IMAX was 
significantly higher for the malignancy than the benignity in both 
whole and part of enhanced lesions (p < 0.05). The other three 
parameters showed no significant difference between malignancies 
and benignities (Supplementary Figure 2 and Supplementary Table 2). 

IMAX showed the highest diagnostic value for differentiating the 
benign from malignant breast lesions for the whole lesions 
(AUCROC: 0.62, 95% confidence interval: (0.52: 0.72), the cutoff 
value of 299.4%, sensitivity: 44.8%, specificity: 77.3%, negative 
predictive value: 39.1%, positive predictive value: 81.1%, accuracy: 
55%, p < 0.05), and the partial lesions with solid components 
(AUCROC: 0.61, 95% confidence interval: (0.51: 0.71), cutoff value: 
695.6%, sensitivity: 60.4%, specificity: 65.9%, negative predict value: 
43.3%, positive predict value: 79.5%, accuracy: 62.1%, p < 0.05) 
(Table 3 and Supplementary Figure 2). In the paired comparison of 
the histopathological subtypes of breast lesions, none of the 
quantitative metrics showed a significant difference in differentiating 
between IDCs, DCISs, FIBs, and NPMs (p > 0.05) 
(Supplementary Figure 3 and Supplementary Table 4).

Logistic regression analysis of qualitative 
and quantitative features of CEUS in 
differentiating the histopathological 
subtypes of suspicious breast lesions

In the establishment of the logistic regression analysis model, 
heterogeneous perfusion, crab clam-like enhancement, and 
partial_IMAX were independent risk factors for benign and 
malignant breast lesions (p < 0.05). Of these features, the crab 
clam-like enhancement had the highest OR of 30.91. Heterogeneous 
perfusion and partial_ IMAX OR values are 5.46 and 1.01, 
respectively (Table 4).

The diagnostic efficacy of the integrated model for suspicious breast 
lesions is higher than that of independent risk factors (heterogeneous 
perfusion, crab clam-like enhancement, and partial_ IMAX), with an 
AUCROC of 0.89 (95% CI: 0.83–0.94). When the cutoff value was 
0.608, the sensitivity and specificity were 83.0 and 78.0%, respectively, 
and the accuracy was 81.3% (Supplementary Table 5 and Figure 4).

In diagnosing benign pathological subtypes of breast lesions, there 
was no significant difference between independent risk factors and 
integrated model for diagnosis of FIBs and NPMs (p > 0.05). In the 
diagnosis of malignant pathological subtypes of breast lesions, there 
was no significant difference between independent risk factors and 
integrated model in the diagnosis of IDCs and DCISs (p > 0.05) 
(Supplementary Table 5).

TABLE 2  Diagnostic performance of qualitative risk features of CEUS in 150 suspicious breast lesions.

Risk features of enhanced 
lesions

Benign (n = 49, 
yes/no)

Malignant 
(n = 101, yes/no)

SEN (%) SPE (%) ACC (%) P-valuea

Enlarged scope 18/31 67/34 66.3 63.3 65.3 <0.01

Irregular shape 26/23 71/30 70.3 46.9 62.7 0.06

Directed perfusion 25/24 52/49 51.5 49.0 50.7 1.00

Heterogeneous perfusion 20/29 81/20 80.2 59.2 73.3 <0.01

Perfusion deficiency 20/29 78/23 77.2 59.2 71.3 <0.01

Crab clam-like enhancement 2/47 52/49 51.5 95.9 66.0 <0.01

More than two enhanced vessels within lesions 5/44 61/40 60.4 89.8 70.0 <0.01

Surrounding enriched vessels inserting into 

lesions

19/30 101/0 100 61.2 87.3 <0.01

aChi-square test. SEN, sensitivity; SPE, specificity; ACC, accuracy.
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FIGURE 2

Comparison of the qualitative features risk features of CUES among four histopathological subtypes of breast lesions. (A) Proportion of the qualitative 
risk features. (B) p-values of the paired comparisons of four histopathological subtypes. IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in site; 
FIB, fibroadenoma; NPM, non-puerperal mastitis.
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Discussion

In clinical practice, the grayscale ultrasonic images of mass-like 
NPM and atypical FIB often present risk features similar to those of 

IDC and DCIS (18, 19), leading to misdiagnoses and subsequent 
incorrect therapies. Previous reports have shown that CEUS risk 
features (including enlarged scope, heterogeneous perfusion, 
perfusion deficiency, crab clam-like enhancement, more than two 

FIGURE 3

Representative US and CEUS images for invasive ductal cancer (IDC) and fibroadenoma. (A) A 65-year-old woman suffering from IDC. The irregular 
shape and partially unclear margin in the US image (left). The corresponding CEUS image shows surrounding enriched vessels inserting into the lesion, 
clam-like enhancement, and more than two numbers of enhanced vessels within the lesion (right). (B) A 56-year-old woman suffering from 
fibroadenoma. Regular shape and a partially unclear margin in the US image (left). The corresponding CEUS image shows surrounding enriched vessels 
paralleled to the lesion and <2 numbers of enhanced vessels within the lesion.

TABLE 3  Comparison of four quantitative parameters of CEUS in differentiating atypical benignities from malignant breast lesions.

Quantitative 
parameters

SEN (%) SPE (%) ACC (%) NPV (%) PPV (%) AUROC (%) 
(95% CI)

Cutoff value

Whole lesion

Whole_IMAX 44.8 77.3 55.0 39.1 81.1 0.62 (0.52, 0.72) 299.4%

Whole _RT 59.4 54.6 57.9 38.1 74.0 0.56 (0.46, 0.67) 9.0 s

Whole _TTP 92.7 18.2 69.3 53.3 71.2 0.51 (0.41, 0.62) 16.9 s

Whole _mTT 76.0 45.5 66.4 46.5 75.3 0.61 (0.50, 0.71) 29.6 s

Partial lesion

Partial_IMAX 60.4 65.9 62.1 43.3 79.5 0.61 (0.51, 0.71) 267.3%

Partial _RT 57.3 52.3 55.7 35.9 72.4 0.54 (0.43, 0.64) 7.7 s

Partial _TTP 54.2 59.1 52.1 37.1 74.3 0.52 (0.41, 0.63) 10.7 s

Partial _mTT 88.5 27.3 55.7 52.2 72.6 0.56 (0.45, 0.66) 31.2 s

AUROC, area under receiver operating curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; IMAX, maximum 
intensity; RT, rising time; TTP, time to peak; mTT, mean transit time.
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enhanced vessels within lesions, and surrounding enriched vessels 
inserting into lesions) are more specific to malignant than benign 
lesions (10, 20, 21), consistent with our findings in this study (Table 2). 
However, previous studies did not assess the potential value of these 

risk features in differentiating various histopathological subtypes of 
suspicious breast lesions with high US-BI-RADS scores, especially for 
atypical benign lesions that are easily mistaken for breast cancers. 
Therefore, in this study, we explored the value of these CEUS risk 
features in distinguishing IDC, DCIS, mass-like NPM, and atypical 
FIB categorized as BI-RADS 4.

Our study showed that the qualitative features of enlarged scope, 
irregular shape, and perfusion deficiency were less frequent in atypical 
FIB than IDC, DCIS, and NPM, thus enabling the distinction of 
atypical FIBs from other types of lesions (Figure 2). These three risk 
features provide physicians with valuable information for differentiating 
atypical FIB from breast cancers but fail to differentiate NPMs from 
IDC and DCIS (Figure  2). This may be  related to inflammatory 
responses or bacterial infections occurring in NPMs, which could 
stimulate vascular proliferation and infiltrating into the surrounding 
tissue of lesions (22), subsequently leading to risk features such as an 
enlarged scope and irregular shape. Additionally, the specific feature of 
surrounding enriched vessels inserting into lesions differentiates NPMs 
not only from IDC and DCIS but also from atypical FIB (Figure 2). It 
demonstrated the highest diagnostic sensitivity of 100% and the highest 
accuracy of 87.3% in distinguishing between benign and malignant 
breast lesions (Table 2). Thus, among all the risk features of CEUS, 
surrounding enriched vessels inserting into lesions would be the most 
specific in differentiating NPM from breast cancers and atypical FIBs.

In contrast, among the quantitative parameters of CEUS, only 
IMAX contributed to the differential diagnosis between malignant 
and benign tumors (p < 0.05, ROCAUC: 0.61; sensitivity: 60.4%; 
specificity: 65.9%; accuracy: 62.1%) (Table  3 and 

TABLE 4  Logistic regression analysis of CEUS features.

Variables β S.E Z P OR (95% CI) β S.E Z P OR (95% CI)

Enlarged scope

0 1.00 (Ref)

1 1.57 0.38 4.08 <0.001 4.79 (2.26–10.16)

Irregular shape

0 1.00 (Ref)

1 1.01 0.36 2.82 0.005 2.75 (1.36–5.54)

Heterogeneous perfusion

0 1.00 (Ref) 1.00 (Ref)

1 1.77 0.38 4.62 <0.001 5.87 (2.77–12.44) 1.70 0.48 3.54 <0.001 5.46 (2.13–14.00)

Perfusion deficiency

0 1.00 (Ref)

1 1.59 0.38 4.25 <0.001 4.92 (2.36–10.26)

Crab clam-like enhancement

0 1.00 (Ref) 1.00 (Ref)

1 3.62 0.75 4.83 <0.001 37.36 (8.58–162.59) 3.43 0.77 4.43 <0.001 30.91 (6.78–140.83)

More than two enhanced vessels within lesions

0 1.00 (Ref)

1 2.60 0.51 5.05 <0.011 13.42 (4.90–36.75)

Whole_ IMAX 0.01 0.00 2.53 0.011 1.01 (1.01–1.01)

Partial_ IMAX 0.01 0.00 2.68 0.007 1.01 (1.01–1.01) 0.01 0.00 2.14 0.032 1.01 (1.01–1.01)

OR, odds ratio; CI, Confidence interval; Ref, reference. The bold value is p < 0.05.

FIGURE 4

ROC curve of contrast-enhanced ultrasound diagnosis of suspicious 
breast lesions.
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Supplementary Figure 2). TomTec SonoLiver software used in this 
study focuses on the quantitative analysis of liver lesions by 
CEUS. Unlike diffuse liver disease, breast lesions are often 
accompanied by calcification and necrotic areas, which appear as 
heterogeneous perfusion, potentially leading to instability in 
quantitative curves and parameters and ultimately resulting in low 
diagnostic efficiency. IMAX did not show any difference in the 
paired comparison of IDC, DCIS, atypical FIB, and mass-like NPM 
(Supplementary Table  4 and Supplementary Figure  3). These 
results indicate that the quantitative parameters of CEUS have 
limited value in differentiating the histopathological subtypes of 
suspicious breast lesions, consistent with the previous reports 
(23, 24).

Although our findings suggest that the quantitative parameters 
of CEUS have limited value in identifying histopathological 
subtypes of suspicious breast lesions, the results of integrated 
model constructed by combining quantitative features and 
quantitative parameters of CEUS show that the model has high 
diagnostic efficiency (ROCAUC: 0.89; sensitivity: 83.0%; and 
accuracy: 78.0%) for identifying category 4 of US-BI-RADS and 
can better distinguish suspicious breast lesions, consistent with 
previous reports (Supplementary Table 5) (25–29). Unfortunately, 
it has limited value in identifying the histopathological subtypes of 
suspicious breast lesions.

Conclusion

Some qualitative risk features of CEUS can distinguish malignant 
breast lesions from NPMs and atypical FIBs with high US-BI-RADS 
scores, helping physicians reduce the misdiagnosis of suspicious breast 
lesions in clinical practice.
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Introduction: The aimof this study is to compare the injury patterns of femalewater
polo players before and after the implementation of the Male-Assisted Female
Training (MAFT) program. The study seeks to identify key factors influencing these
changes and propose corresponding injury prevention measures.
Methods: We utilized pattern analysis and classification techniques to explore the
injury data. A Hypergraph Neural Network (HGNN) was employed for pattern
extraction, where each athlete was represented as a node in a hypergraph, with
node dimensions capturing high-order relational embedding information. We
applied the graph Laplacian operator to aggregate neighborhood features and
visualize structural and feature differences in hypergraphs based on different
influencing factors. Additionally, we introduced graph structure regularization to
improve classification accuracy and prevent overfitting in the relatively small
dataset, enhancing our ability to identify critical factors affecting injury types.
Results: The analysis revealed significant differences in injury patterns before and
after the MAFT program, with specific influencing factors being identified through
both pattern recognition and classification techniques. The classification models,
supported by graph structure regularization, achieved improved accuracy in
distinguishing key features that contributed to changes in injury types.
Discussion: These findings provide insights into the critical factors influencing injury
patterns in female water polo players and highlight the effectiveness of the MAFT
program in mitigating certain injury risks. Based on the identified features, we
propose targeted preventive measures to reduce injury incidence, particularly in
relation to changes brought about by the MAFT training mode. Further research is
needed to refine these measures and explore their long-term effectiveness.

KEYWORDS

hypergraph, high-order connection, injury patterns, women’s water polo,
Male-Assisting-Female-Training

1 Introduction

Water polo, an aquatic sport that combines swimming, ball skills, and team tactics, has

evolved into a global competitive event since its inception in Europe in the late 19th

century. The Chinese women’s water polo team, established in 2004, has rapidly

progressed from regional competitions to the international stage. Their outstanding

performance in international tournaments not only showcases the team’s strength but
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also reflects the advancement of the national sports sector. In

recent years, to further enhance their competitive level, the

Chinese women’s water polo team has introduced the Male-

Assisted Female Training (MAFT) program. This innovative

training method involves sparring with male athletes to simulate

higher-level competitive scenarios, thereby enhancing the female

athletes’ resilience and tactical execution.

However, the introduction of the MAFT program also presents

new challenges, particularly in managing the risk of injuries.

Compared to male athletes, female athletes exhibit differences in

physical strength and speed, which may increase the risk of

injuries during high-intensity sparring sessions. As a team-based

combative sport, water polo integrates swimming, throwing,

tactical skills, and physical fitness (1). The sport is characterized by

intense collisions and grappling in water, lacking the stability of a

land environment, leading to frequent injuries during training and

matches. Current research on women’s water polo primarily

focuses on combat techniques, while injury-related studies are

relatively scarce. To date, only one publication has analyzed

injuries related to the preparation for the Rio Olympics water polo

events (2). Therefore, studying the injury patterns of female water

polo players under the MAFT program is crucial for developing

effective training plans and injury prevention strategies.

Current research on injuries among elite female water polo

players is limited and often focuses on a single body part. Studies

have investigated shoulder injuries in elite female water polo

players (3), analyzing the incidence of shoulder injuries among

players in different positions during matches and the frequency

of specific shoulder injury sites. It was found that center

forwards and top shooters have the highest rates of shoulder

injuries, at 88.89% and 80.95% respectively, with the majority of

injuries concentrated in the joints and ligaments . Other research

has investigated the impact of water polo throws on the shoulder

joint (4), analyzing the effects of throwing actions on

injured players, assessing the external rotation stability of

injured vs. non-injured players, and providing corresponding

recommendations. Lv Zhouxiang and colleagues conducted a

study on female water polo players (5), analyzing the multiple

injury sites and potential causes, but the study did not delve

deeply into the associated movement patterns . The MAFT

training model, as a newly proposed strategy, has not yet been

subject to authoritative research analysis. Therefore, the research

presented in this paper on the injury patterns of female water

polo players under the MAFT plan is innovative and crucial for

developing effective training programs, reducing injuries during

training, and enhancing the performance capabilities of athletes.

The interactions among female athletes in practice are complex

and diverse. To better understand and analyze these interaction

patterns, this study introduces the concept of hypergraphs. A

hypergraph (6–10) is a mathematical model capable of

representing complex relationships among multiple nodes. It

connects multiple nodes through hyperedges (11–13), which can

more accurately simulate the many-to-many interactions among

female water polo players. For instance, in a match, not only are

there defensive and offensive confrontations between individual

players, but the strategic coordination between the entire defense
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and offense teams can also be represented through hyperedges.

This representation method can more comprehensively reflect

the tactical layout and collaboration patterns among athletes

during matches.

In summary, this study aims to explore the injury patterns,

characteristics, and potential coping strategies for female water

polo players under the MAFT program. By thoroughly analyzing

injury data from training and matches, combined with advanced

analytical techniques from hypergraph neural networks (HGNN)

(7), we hope to reveal the impact of the MAFT program on the

injury risk of female water polo players. The findings will

provide scientific evidence for reducing injury incidents,

optimizing training methods, and improving athlete performance

while ensuring their health and safety. Our contributions are

as follows:

1. We analyzed the hypergraph patterns before and after the

introduction of the MAFT training program. By

comparing the overall hypergraph structure, feature

patterns, and the impact of key factors on these structures

and patterns, we identified the critical influencing factors

associated with the introduction of MAFT.

2. From a classification perspective, we employed graph

structure regularization to effectively enhance the accuracy

of different injury types in our dataset. This allowed us to

more precisely establish an optimized hypergraph

structure, thereby identifying the key influencing factors

for each injury type before and after the MAFT program.

3. Based on the comprehensive analysis from the

aforementioned perspectives, our approach effectively

identifies crucial features and subsequently provides

recommendations for injury prevention measures.

2 Materials and methods

This study aims to explore the injury patterns, characteristics,

and potential coping strategies of female water polo players by

comparing injury incidents before and after the implementation

of Male-Assisted Female Training (MAFT) and conducting an

in-depth analysis of related indicators. To achieve this, we employ

the Hypergraph Neural Network (HGNN) as our foundational

model to capture the complex relationships and higher-order

associative features among athletes, as shown in Figure 1.

Subsequently, we perform detailed pattern recognition and factor

analysis from a classification perspective to comprehensively

analyze the injury characteristics of female water polo players.

The selection of Hypergraph Neural Networks (HGNN) as an

analytical method is attributed to its superior capacity in handling

complex interrelations and high-dimensional data. In the analysis

of injury patterns among elite female water polo players, multiple

factors interact and influence each other, such as training load,

psychological state, and physiological indicators. Traditional

network analysis methods may fail to capture these intricate

associations effectively. Firstly, HGNN is a hypergraph-based

neural network model capable of managing many-to-many

relationships among multiple nodes. This enables HGNN to
frontiersin.org
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FIGURE 1

Overview of Hypergraph-enhanced analysis of injury patterns in women’s water polo under Male-Assisting-Female-Training (MAFT) mode.
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more comprehensively consider the interplay between various

factors when analyzing injury patterns in water polo athletes.

Secondly, by constructing hypergraphs, HGNN can visualize the

association between different factors and extract key features,

aiding researchers in identifying significant factors influencing

changes in injury patterns. Lastly, in terms of classification

analysis, the study introduces graph structural regularization

techniques to enhance classification accuracy and more effectively

determine key features that distinguish different types of injuries.

The results demonstrate that the rHGNN model, which employs

HGNN for classification analysis, exhibits excellent performance

in terms of accuracy, positive predictive value, negative predictive

value, sensitivity, and specificity. In summary, HGNN, as a

network analysis method capable of managing complex

interrelations and extracting key features, offers distinct

advantages in analyzing injury patterns among water polo

players. It assists researchers in gaining a more comprehensive

understanding of the factors influencing injury patterns and

provides scientific evidence for developing personalized training

interventions and injury prevention strategies.
2.1 Study design

The study involved 26 athletes from the National Women’s

Water Polo Team training between February and July 2021,

before and after the implementation of the MAFT mode. Among

them, 12 were international-level athletes and 14 were national-

level athletes. Their ages ranged from 21 to 32 years, with an

average age of 24.9 years. The athletes had been participating in

professional sports for 8 to 16 years, averaging 10.9 years, and
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had been involved in water polo for 8 to 15 years, averaging 9.8

years. They had participated in national-level training for 1 to 14

years, averaging 5.6 years. Twelve athletes had participated in

preparation for two Olympic Games. The team positions were

distributed as 3 centers, 3 defensive centers, 15 perimeter players,

and 5 goalkeepers.
2.2 Data collection

In this study, we employed a combination of surveys and

clinical diagnoses to analyze and compare the evolution of injury

characteristics before and after the implementation of the Male-

Assisted Female Training (MAFT) program. The research team

spent an extended period residing with the athletes, closely

observing the development and progression of injuries. To gather

comprehensive data, we used questionnaires to collect basic

information, including names, ages, years of athletic experience,

injury locations, and causes. Additionally, we recorded pre-

analyzed indicators such as training frequency, intensity,

duration, recovery time, and physiological metrics like heart rate,

blood lactate levels, and VO2 max. The survey also aimed to

identify unique injury patterns that emerged following the

implementation of the MAFT program. All questionnaires were

meticulously collected and processed. During this period, our

team was actively involved in diagnosing and treating all athlete

injuries, meticulously documenting the occurrence of common

injuries and conducting thorough physical examinations. We

paid particular attention to any differences in injury processes

and severity compared to previous same-gender training

scenarios. In summary, through the combination of survey data
frontiersin.org
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and clinical records, we captured detailed information on injury

locations, types, and severity, providing a comprehensive

overview of the impact of the MAFT program on female water

polo athletes.
2.3 Statistical analysis

Statistical analysis was conducted using SPSS software version

20.0 (SPSS Inc., USA). The proportions of injuries to the neck,

shoulder, elbow-wrist, thoracic spine, lumbar-sacral region, hip,

knee, ankle, forearm lateral, and sternoclavicular joint were

treated as quantitative data. Injury proportions, presented as

counts (percentages), were compared between groups using

Fisher’s exact test to assess the significance of changes in injury

patterns before and after the MAFT mode, with the level of

significance set at a two-tailed p-value of 0:05. There was a

noticeable increase in the proportion of injuries to joints

involved in confrontational activities after the implementation of

the Male-Assisting-Female-Training mode. The most common

injury site was the shoulder, accounting for 34.6% of injuries,

which further increased to 42.3% post-implementation. This was

followed by injuries to the lumbar-sacral-hip region, with an

increase from 26.9% to 34.6%. Injuries to the elbow-wrist area

showed a significant upward trend, rising from 7.7% to 26.9%.

Conversely, injuries to the knee and ankle joints, primarily

involved in non-confrontational sliding motions, showed a

decreasing trend. Notably, two goalkeepers sustained injuries,

including bilateral forearm ulnar side hitting injuries and a

dominant hand side sternoclavicular joint injury. The details of

the sports-related injuries, including the number of cases and the

proportion of each injury, are summarized in Table 1. In water

polo, the increase in proportional injuries to confrontational

joints is particularly notable. Shoulder injuries occur at a rate of

24% to 51%, primarily due to the frequent use of the dominant

hand in passing and shooting, as well as the non-dominant hand

in defensive actions, leading to bilateral shoulder injuries

(14, 15). In confrontational training with male athletes, female
TABLE 1 This table shows a comparison of injuries to different body parts
of female water polo players in traditional training mode and male-
assisted Female Training (MAFT) mode. The “Number of Injuries” column
in the table shows the frequency of injuries in each part under the two
training modes, while the “Injury Proportion” column shows the
proportion of injuries in the corresponding part to the total number of
injuries. This will provide a key basis for exploring the factors that cause
such differences in hypergraph pattern recognition.

Injury Number of
injuries

Injury proportion

Location Tradition MAFT Tradition MAFT
Neck 2 1 7.7% 3.8%

Shoulder 9 11 34.6% 42.3%

Elbow & Wrist 2 7 7.7% 26.9%

Chest & Back 1 1 3.8% 3.8%

Lumbar, sacral & hip 7 9 26.9% 34.6%

Knee 11 6 42.3% 23.1%

Ankle 4 3 15.4% 11.5%

Forearm ulnar side 0 1 0% 3.8%

Sternoclavicular joint 0 1 0% 3.8%
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athletes need to pass the ball more frequently and attack from

various angles, increasing the burden on the dominant hand and

raising the injury probability to about 57 Elbow and wrist

injuries are also common, with wrist injuries occurring at a rate

of 13.6% to 23.1% and elbow injuries at a rate of 6% to 18.2%

(16–19). In confrontations with male athletes, female athletes

need to find more flexible passing and offensive paths, increasing

the burden on the wrist and elbow joints and leading to an

increased risk of injury (20, 21). Conversely, the proportion of

injuries to stability joints has decreased. The incidence rate of

knee and ankle injuries is 4.5% to 10.8% and 6% to 18.2%,

respectively (16). Confrontations with male athletes reduce the

time spent “treading water,” lowering the tension on the knee

joint and thus reducing the injury rate. Among goalkeepers,

sternal-clavicular joint injuries are a new type of injury. These

injuries are usually caused by direct high-impact trauma, while

indirect force-related collateral injuries can be alleviated with rest

(22, 23). The inability of athletes to get adequate rest during the

preparation period is the main reason for persistent pain.
2.4 Hypergraph construction

A hypergraph is a structure capable of representing complex

relationships and multidimensional features, making it suitable

for capturing interactions and relationships among athletes. In

constructing the hypergraph, we first define nodes and hyperedges.

2.4.1 Node definition
In this study, each athlete is represented as a node vi, with a

feature vector xi encoding individual attributes such as training

intensity, training duration, and injury history. The set of nodes

is defined as V ¼ v1, v2, . . . , vn, with the node feature vector

defined as Equation 1:

xi ¼ [Training Intensity, Training Duration, Injury History, . . . ]

(1)

The selection of these features is based on their ability to

comprehensively reflect the athlete’s condition and performance.

Training intensity indicates the effort level during training, where

excessive intensity may lead to overtraining and injuries.

Accumulated training duration reveals the workload and fatigue

accumulation of the athlete, while injury history is a critical

indicator for predicting future injury risks. Understanding an

athlete’s injury history can help formulate more effective

prevention strategies. By incorporating these features, we gain a

comprehensive understanding of each athlete’s training status

and health condition, providing a solid foundation for

subsequent analysis.

2.4.2 Hyperedge definition
In constructing hyperedges, we consider various interactions

among athletes, such as passing and defensive actions. These

interactions are modeled as hyperedges ej, with weights wj
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representing the frequency and intensity of the interactions. The set

of hyperedges is defined as E ¼ e1, e2, . . . , em, where each

hyperedge ej connects a group of nodes, indicating interactions

among athletes. The rationale behind this choice is that

interactions among athletes significantly impact team

performance and individual injuries. For instance, frequent

passing interactions reflect the coordination and trust among

athletes, crucial for both offensive and defensive strategies. In

defensive scenarios, cooperation and coordination among athletes

are equally important, with the frequency and intensity of

defensive interactions revealing the execution and effectiveness of

team defensive strategies. Moreover, the choice of hyperedges

over simple edges is due to their ability to capture the

complexity of multi-party interactions. A hyperedge can connect

multiple athletes, representing their cooperation or confrontation

within a training unit, whereas simple edges can only represent

pairwise relationships, failing to comprehensively reflect the

complexity of multi-party interactions. Through this approach,

the hypergraph can thoroughly represent the complex

relationships among athletes, capturing the interaction patterns

and individual contributions within the team, thereby providing

richer information for subsequent analysis.
2.5 Pattern analysis

To capture the complex relationships within the team, we

designed a Hypergraph Neural Network (HGNN) model to learn

the embeddings of nodes and hyperedges. The architecture of the

HGNN model is designed to capture and represent complex

higher-order relationships through a multi-layer structure.
2.5.1 Model architecture
The HGNN model is designed to learn the embeddings of nodes

and hyperedges, thereby capturing complex relationships within the

team. The embedding function for nodes is defined as Equation 2:

zi ¼ s(WTxi þ b) (2)

where W and b are learnable parameters, and s is the activation

function. This approach maps the multidimensional features of nodes

to a high-dimensional space, facilitating subsequent aggregation and

analysis. The activation function s is typically chosen to be a

nonlinear function, such as ReLU (Rectified Linear Unit), to

introduce nonlinearity and enhance the model’s expressive power.

Specifically, forward propagation is conducted through

multiple hypergraph convolution layers to iteratively update the

node embeddings:

H(lþ1)v ¼ s
X

e [ E
1
jej
X
u[e

W(l)H(l)
u þ b(l)

 !
(3)

In Equation 3, H(l)
u denotes the embedding of node u in layer l, jej is

the number of nodes in hyperedge e, and W(l) and b(l) are the
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learnable parameters for layer l. The activation function s

introduces nonlinearity into the model. This formula updates the

node embeddings by aggregating the embeddings of all nodes

within the hyperedge, which allows the model to capture the

intricate relationships among nodes. In each layer, the node

embeddings are refined by aggregating the embeddings of all

nodes within their respective hyperedges. This multi-layer

structure enables the model to capture higher-order relationships

and complex patterns in the data.

2.5.2 Pattern recognition
The hyperedge embedding aj is aggregated as Equation 4:

aj ¼ AGG(zi j vi [ ej) (4)

where AGG is the aggregation function, typically chosen to be

mean or weighted mean. The choice of aggregation function

significantly impacts the effectiveness of hyperedge embeddings,

as it determines how the embeddings of multiple nodes are

combined. Subsequently, a multi-layer perceptron (MLP) in

Equation 5 is used to identify injury-related patterns:

pj ¼ MLP(aj) (5)

During training, we simultaneously train the HGNN

and MLP models to minimize the reconstruction error, defined

as Equation 6:

L ¼
Xm
j¼1

jaj � pjj2 (6)

Through this approach, the HGNN learns efficient representations

of nodes and hyperedges, while the MLP identifies injury-related

patterns. The minimization of reconstruction error L ensures

that the model accurately captures and reconstructs complex

higher-order relationships, thereby improving the accuracy of

pattern recognition.

By employing the aforementioned methods, we can construct a

higher-order hypergraph structure within the overall information

and analyze the variation patterns of hypergraph structures

under specific influencing factors or indicators. As the final

hypergraph is capable of expressing higher-order associations, we

can assess the impact of the MAFT program on female water

polo athletes’ injuries by comparing the changes in hypergraph

structures before and after the implementation of MAFT.

Specifically, by evaluating the significance of differences in

hypergraph structures and node features, we can identify the key

influencing factors.
2.6 Classification analysis

We preprocess the data to obtain a feature vector of total

dimension RD(D ¼ 320), representing the records of all injury-
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related indicators for the corresponding individual. Then, we use

KNN to establish the initial hypergraph structure and utilize the

features learned by HGNN for injury type prediction. To better

learn the hypergraph structure, we analyzed the characteristics of

the dataset and found that introducing a graph regularization

mechanism preserves the local geometric structure of the

hypergraph data more effectively, preventing overfitting and

enhancing the model’s generalization capability. This leads to

better classification accuracy, which is beneficial for accurately

extracting key influencing factors of injuries before and after the

introduction of the MAFT model. Specifically, given an initialized

hypergraph structure H(V, E, W), where the symbols denote a set

of vertices V, a set of hyperedges E, and a weight matrix W,

which is a diagonal matrix representing the weights of the

hyperedges. This hypergraph can be succinctly represented by an

incidence matrix H [ RjVj�jEj, where each entry h(v, e) is defined

as Equation 7:

h(v, e) ¼ 1, ifv [ e
0, ifv � e,

�
(7)

Graph regularization in HGNNs aims to preserve the local geometric

structure of hypergraph data and improve the model’s generalization

capability. This is achieved by adding a regularization term to the

loss function that measures the smoothness of node embeddings.

Given the H ¼ (V, E, W), the incidence matrix H, the vertex

degree matrix by Dv, and the hyperedge degree matrix by De. The

Laplacian matrix L for a hypergraph can be defined as:

L ¼ De �HTWH

where De is the degree matrix of hyperedges, H is the incidence

matrix, and W is the weight matrix. During training, we wish for

the low-dimensional representations X of the vertices to preserve

the local structure of the hypergraph. The regularized objective

function for HGNNs can be written as Equation 8:

JrHGNN ¼ 1
2
XTLX þ lV(X) (8)

Here, JrHGNN is the regularized loss function, rHGNN represents the

regularized form of HGNN in our proposed model, V(X) represents

other possible regularization terms (such as weight decay), and l is

the regularization parameter that controls the strength of the

regularization term. The optimization process involves minimizing

JHGNN through gradient descent or other optimization algorithms,

thereby learning the low-dimensional representations X of the

vertices while maintaining the local structure of the hypergraph.

This regularization method helps improve the performance of

HGNNs on various downstream tasks such as node classification

and clustering.

Notably, The regularization term V is constructed to ensure

that the node embeddings preserve the local structure of the

hypergraph. Specifically, V(X) includes both a weight decay term
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that discourages overly complex models and a graph Laplacian

smoothness term that encourages nearby nodes in the

hypergraph to have similar embeddings. Mathematically, V(X) is

defined as Equation 9:

V(X) ¼ a �
X
i,j

WijkXi � Xjk2
 !

þ b �
X
i

kXik2
 !

(9)

whereWij represents the elements of the graph Laplacian L, Xi and

Xj are the embeddings of nodes i and j, respectively. The first term

encourages smooth embeddings across the hypergraph, while the

second term, weight decay, penalizes large embedding values. a

and b are hyperparameters that control the relative importance

of the smoothness and weight decay terms, respectively.
3 Experiments

3.1 Evaluation and metrics

For pattern analysis, we focus primarily on visualization

differences. This involves visualizing the structure and features of

the hypergraph after optimizing reconstruction loss. We visualize

differences in the global hypergraph and the MAFT-induced

changes under single-factor influences. Specifically, when

visualizing the hypergraph structure, we highlight the clustering

of nodes. For visualizing hypergraph features, we employ

dimensionality reduction techniques to create 2D visualizations.

For classification analysis, to assess the model’s performance, we

utilize several key metrics. Firstly, Accuracy (ACC) is calculated as
TPþTN

TPþTNþFPþFN, reflecting the model’s overall ability to correctly

classify instances across all categories. Sensitivity (SEN), given by
TP

TPþFN, measures how effectively the model identifies true positive

cases. Specificity (SPEC), defined as TN
TNþFP, evaluates the model’s

capability to accurately recognize true negative cases without

misclassifying them as positive. The Positive Predictive Value

(PPV), calculated as TP
TPþFP, represents the fraction of correctly

identified positive cases among all cases predicted as positive.

Lastly, the Negative Predictive Value (NPV), given by TN
TNþFN,

indicates the proportion of true negatives among the cases

predicted as negative. These metrics collectively provide a

comprehensive evaluation of the model’s classification performance.
3.2 Implementation details

For pattern analysis, the MLP consists of two hidden layers

with 64 and 32 neurons respectively, followed by a ReLU

activation function. The output layer uses a sigmoid activation

function to produce the final pattern recognition output. The

HGNN and MLP models are trained simultaneously using the

Adam optimizer with a learning rate of 0.001. The training

process includes early stopping with a patience parameter set to

10 epochs to prevent overfitting. The models are trained for a

total of 100 epochs or until the validation loss stops improving.
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For classification analysis, the rHGNN model is trained by

minimizing the Equation 8. We employ stochastic gradient

descent (SGD) as our optimization algorithm, with a learning

rate of 0.01 and a decay schedule to adjust the learning rate over

time. The training process is carefully monitored to ensure

convergence towards a minimum of the loss function. The

hyperparameters l, a and b in the regularization term V(X) are

crucial for balancing the weight decay and smoothness

constraints. The default values are set as l ¼ 0:2, a ¼ 0:03, and

b ¼ 0:005. For more details on the ablation experiments, please

refer to the subsequent sections.
3.3 Comparison methods

We selected several comparative methods for our evaluation,

including MLP, SVM, GNN, B-GNN, HGNN, and HGNNP.
• MLP (24): MLP is a class of feedforward artificial neural

networks consisting of multiple layers of nodes, each fully

connected to the next. It is widely used for classification

and regression tasks due to its ability to capture

non-linear relationships.

• SVM (25): SVM is a supervised learning algorithm that is

effective for both classification and regression challenges. It

works by finding the optimal hyperplane that maximizes

the margin between different classes in the feature space.

• GNN: GNNs (26) are designed to perform inference on data

described by graphs. They leverage the graph structure to

perform node classification, link prediction, and graph
FIGURE 2

We visualize the positions of all features in the hypergraph within a stand
implementation of the MAFT program, we can observe the most impactfu
psychological state, and physiological indicators.
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classification tasks by aggregating feature information from

neighboring nodes.

• B-GNN (27): B-GNN is a scalable graph neural network

designed to handle large-scale graph data. It introduces

techniques to efficiently manage large graphs while

maintaining performance, making it suitable for big

data applications.

• HGNN (7): HGNN extends traditional GNNs to

hypergraphs, which can capture higher-order relationships

among data points. This method is particularly effective in

scenarios where interactions involve more than two entities.

• HGNNP (13): HGNNP is an enhanced version of HGNN

that includes additional mechanisms to improve its

performance. It further refines the ability to capture

complex relationships in hypergraph-structured data.

Our proposed method, rHGNN, represents the regularized

form of HGNN, incorporating regularization techniques to

improve generalization and performance in the context of our

specific application.
4 Discussion

4.1 Study on pattern analysis

Figure 2 illustrates the distribution of various features in a two-

dimensional space, comparing the scenarios with and without the

application of MAFT. The figure is divided into four subplots,

each representing different types of features: Global Feature,

Training Load Factor, Psychological State Factor, and
ard 2D space. By visualizing the feature changes before and after the
l factors. We highlight the three most significant factors: training load,
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Physiological Indicators Factor. In the case of Global Features, it is

observed that without MAFT, the data points are sparsely

distributed with no apparent clustering pattern. However, when

MAFT is applied, the data points become more densely packed

and exhibit a certain degree of structural organization. This

indicates that MAFT effectively enhances the correlation among

global features. For Training Load Factors, a similar trend is

observed. Without MAFT, the data points appear scattered and

lack discernible patterns. Upon applying MAFT, the points

converge into tighter clusters, suggesting that MAFT can extract

more meaningful features from training load data. When

examining Psychological State Factors, it is evident that without

MAFT, the data points are randomly dispersed with no

significant clustering. With MAFT applied, small clusters begin

to form among the data points. This transformation implies that

psychological state data becomes more consistent and

interpretable after undergoing feature transformation through

MAFT. Lastly, for Physiological Indicators Factors, the

untransformed data exhibits a disordered scatter. However, post-

MAFT application, the data points reveal clearer structural

patterns. This suggests that physiological indicators processed

through MAFT better reflect their intrinsic relationships. In

summary, the comparison clearly demonstrates that applying

MAFT results in more compact and organized distributions

across all types of features.

Figure 3 illustrates the changes in hypergraph structures for

specific factor indicators before and after implementing the

MAFT program, focusing on Heart Rate Variability (HRV) and

Training Frequency. Before MAFT, the HRV hypergraph shows

numerous dispersed connections with some isolated nodes,

indicating weak correlations. This disorganized structure may

hinder effective information capture by models. After applying

MAFT, the HRV hypergraph becomes more structured and

cohesive, with fewer isolated nodes. Enhanced connectivity

suggests improved correlation among nodes, facilitating better

data utilization by models. Similarly, the pre-MAFT hypergraph

for Training Frequency is characterized by scattered connections

and weak node associations. This loose network structure can

impede meaningful feature extraction. Post-MAFT application

reveals a more organized network with tighter clusters and
FIGURE 3

We visualize the changes in hypergraph structures under specific factor
highlighting the significant structural differences from the heart rate variabi
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stronger internal associations. This improved structure enhances

data consistency and information flow, aiding models in

accurately capturing training frequency impacts.
4.2 Study on classification analysis

Table 2 presents a comprehensive evaluation of various models,

highlighting the performance of our proposed method, rHGNN.

The results demonstrate that rHGNN consistently outperforms

other methods across all evaluated metrics, including Accuracy

(ACC), Positive Predictive Value (PPV), Negative Predictive

Value (NPV), Sensitivity (SEN), and Specificity (SPEC). The

ACC for rHGNN is notably high at 0.90635, surpassing

traditional models such as MLP and SVM, which achieve ACCs

of 0.68637 and 0.65817 respectively. This indicates a significant

improvement in overall model accuracy. In terms of PPV and

NPV, rHGNN achieves values of 0.92572 and 0.91092

respectively, reflecting its superior ability to correctly predict

positive and negative cases compared to other models like GNN

and B-GNN. Furthermore, the SEN value for rHGNN is the

highest among all methods at 0.93216, demonstrating its

exceptional sensitivity in identifying true positive cases. Similarly,

SPEC is also maximized at 0.92785, indicating robust specificity

in distinguishing true negatives. Overall, these results underscore

the efficacy of the rHGNN model in achieving superior

performance across multiple dimensions compared to

conventional approaches such as HGNN and HGNNP. The

consistent excellence across all metrics suggests that our method

offers a highly reliable solution for the given task, setting a new

benchmark for future research endeavors in this domain.
4.3 Study on graph regularization

In Table 3, we provide a detailed and comprehensive analysis of

how different regularization hyperparameters affect our accuracy. It

is evident that l is optimal around the 0.1 range, a is best suited for

the 0.01 range, and b performs well in the 0.001 range.
indicators before and after the implementation of the MAFT program,
lity (HRV) and training frequency indicators.
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TABLE 2 We compute the accuracy of the proposed method on the testing data, and our method achieves the best results.

Method ACC PPV NPV SEN SPEC
MLP 0:68637+0:0625 0:68762+0:0594 0:69993+0:0627 0:68873+0:0571 0:69026+0:0608

SVM 0:65817+0:0297 0:66373+0:0308 0:65843+0:0325 0:67367+0:0362 0:66267+0:0398

GNN 0:78716+0:0514 0:77621+0:0572 0:76523+0:0583 0:77276+0:0517 0:75862+0:0572

B-GNN 0:82796+0:0428 0:82781+0:0478 0:81872+0:0412 0:82664+0:0368 0:81654+0:0378

HGNN 0:86621+0:0381 0:85163+0:0365 0:88245+0:0327 0:87833+0:0392 0:86924+0:0461

HGNNP 0:86273+0:0367 0:86252+0:0387 0:87326+0:0352 0:86237+0:0371 0:87944+0:0308

rHGNN (Ours) 0:90635+0:0288 0:92572+0:0286 0:91092+0:0349 0:93216+0:0365 0:92785+0:0367

Bold values represent the highest scores.

TABLE 3 Comparison of model performance under different hyperparameters.

Method ACC PPV NPV SEN SPEC
rHGNN (Full) 0:90635+0:0288 0:92572+0:0286 0:91092+0:0349 0:93216+0:0365 0:92785+0:0367

l ¼ 0:01 0:89049+0:0338 0:90780+0:0215 0:89159+0:0442 0:91773+0:0333 0:91677+0:0382

l ¼ 0:1 0:89199+0:0233 0:91970+0:0240 0:90656+0:0416 0:93089+0:0348 0:92467+0:0351

l ¼ 1:0 0:87687+0:0427 0:89560+0:0207 0:88212+0:0314 0:90082+0:0274 0:91050+0:0273

a ¼ 0:001 0:88735+0:0236 0:90289+0:0352 0:89358+0:0452 0:91173+0:0274 0:90539+0:0415

a ¼ 0:01 0:89949+0:0184 0:91696+0:0311 0:90673+0:0225 0:92826+0:0511 0:91930+0:0346

a ¼ 0:1 0:88597+0:0147 0:89671+0:0222 0:88850+0:0397 0:91942+0:0438 0:90754+0:0235

b ¼ 0:0001 0:89944+0:0406 0:91289+0:0352 0:90275+0:0263 0:92961+0:0441 0:90086+0:0267

b ¼ 0:001 0:88206+0:0286 0:90511+0:0153 0:90949+0:0338 0:92774+0:0297 0:91953+0:0251

b ¼ 0:01 0:88584+0:0321 0:89636+0:0291 0:90519+0:0490 0:92634+0:0367 0:91799+0:0385

Bold values represent the highest scores.
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When examining the impact of varying the hyperparameter l,

it is observed that smaller values such as l ¼ 0:01 result in a slight

decrease in ACC to 0:89049, while PPV and NPV also show minor

reductions compared to the full model. As l increases to 1:0, there

is a more pronounced decline in ACC to 0:87687, indicating that

larger values may negatively affect overall accuracy. Adjustments

to the hyperparameter a reveal similar trends; for instance, at

a ¼ 0:001, ACC drops to 0:88735 with corresponding decreases

in other metrics such as PPV and NPV compared to the baseline

model’s performance. For the hyperparameter b, we observe that

at b ¼ 0:0001, ACC remains relatively high at 0:89944. However,

increasing b leads to lower performance metrics, with b ¼ 0:01

resulting in an ACC of 0:88584. Overall, the full model

(rHGNN) consistently outperforms variations with different

hyperparameters. This suggests that optimal tuning plays a

crucial role in achieving superior model performance.
4.4 Study on MAFT

The introduction of the MAFT mode has had a significant

impact on the injury patterns among female water polo players.

HGNN provided valuable insights into the complex interactions

within the team and identified specific patterns associated with

increased injury risk. These findings suggest that tailored training

interventions and injury prevention strategies should be

developed, considering the unique demands of the MAFT mode.

Future research should focus on validating these findings and

exploring additional applications of HGNN in sports injury
Frontiers in Digital Health 0954
prevention. We recommend paying attention to the following

points when implementing the MAFT training program:

1. It is essential to adjust the frequency of training sessions to

prevent overtraining and potential injuries. Sufficient rest

periods should be incorporated into the training plan to allow

athletes to fully recover. Excessive training frequency can lead

to fatigue, decreased performance, and an increased risk of injury.

2. Continuous monitoring of heart rate is crucial to ensure that

athletes maintain their heart rate within a safe range during

training. Wearable devices can be used for real-time heart

rate monitoring, allowing coaches to adjust training intensity

as needed. This approach helps prevent cardiovascular strain

and optimize performance.

3. Providing psychological support and counseling is vital for

helping athletes cope with the stress and challenges of high-

intensity training programs like MAFT. Establishing open

communication channels enables athletes to express their

needs and feedback, fostering a supportive environment.

5 Conclusion

This study investigated the impact of the Male-Assisted Female

Training (MAFT) program on the injury patterns of female water

polo players through hypergraph-based pattern analysis and

classification perspectives. We first summarized the overall

changes in injuries among female athletes under the MAFT

program. Using the collected data, we conducted pattern analysis

on the hypergraph structure and features, identified key

influencing factors, and proposed enhanced preventive measures

within the MAFT framework. Additionally, we analyzed the
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impact characteristics of various injuries before and after the

implementation of MAFT from a classification standpoint,

incorporating graph regularization techniques to achieve the

highest classification accuracy. Our main findings are as follows:

• The introduction of the MAFT program significantly altered

the injury patterns among female water polo players,

particularly increasing the proportion of joint injuries

involved in confrontational activities.

• Hypergraph Neural Networks (HGNN) provided in-depth

insights into the complex interactions within the team and

identified specific patterns associated with increased injury risk.

• Our rHGNN model, enhanced by graph regularization

techniques, excelled in classification accuracy, positive

predictive value, negative predictive value, sensitivity,

and specificity, providing reliable scientific evidence for

injury prevention.

These findings have important practical implications for water polo

training and injury prevention. By adjusting the frequency of MAFT

training sessions, continuously monitoring heart rates, and

providing psychological support and counseling, tailored training

interventions and injury prevention strategies can be developed to

meet the unique demands of the MAFT mode. These strategies

help optimize training methods, enhance athlete performance,

and ensure their health and safety. Future research directions:

• Validate the findings of this study and explore additional

applications of HGNN in sports injury prevention.

• Further investigate the impact of the MAFT program on

athlete performance and injury risk, especially under

varying training intensities and durations.

• Research how to more effectively monitor the physiological and

psychological states of athletes through technological means,

such as wearable devices, to adjust training plans in real-time.

• Explore the applicability of the MAFT program to athletes of

different levels and age groups, and how to adjust training

methods based on individual differences.
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Recognizing epilepsy through neurophysiological signals, such as the

electroencephalogram (EEG), could provide a reliable method for epilepsy

detection. Existing methods primarily extract e�ective features by capturing

the time-frequency relationships of EEG signals but overlook the correlations

between EEG signals. Intuitively, certain channel signals exhibit weaker

correlations with other channels compared to the normal state. Based on

this insight, we propose an EEG-based epilepsy detection method with

graph correlation analysis (EEG-GCA), by detecting abnormal channels and

segments based on the analysis of inter-channel correlations. Specifically, we

employ a graph neural network (GNN) with weight sharing to capture target

channel information and aggregate information from neighboring channels.

Subsequently, Kullback-Leibler (KL) divergence regularization is used to align the

distributions of target channel information and neighbor channel information.

Finally, in the testing phase, anomalies in channels and segments are detected

by measuring the correlation between the two views. The proposed method

is the only one in the field that does not require access to seizure data during

the training phase. It introduces a new state-of-the-art method in the field and

outperforms all relevant supervised methods. Experimental results have shown

that EEG-GCA can indeed accurately estimate epilepsy detection.

KEYWORDS

electroencephalogram, graph neural networks, correlation analysis, anomaly detection,

abnormal EEG channels detection

1 Introduction

The field of affective computing has witnessed significant development, drawing

attention to emotion detection, especially in medical research related to epilepsy (1).

While epilepsy, as a neurological disorder, manifests symptoms that encompass seizures,

it often intertwines with fluctuations in emotional states. These emotional variations, a

common symptom in epilepsy patients, are crucial for accurate disease monitoring and

treatment (2).

Scalp electroencephalogram (EEG) stands as the primary tool for detecting seizures,

capturing voltage changes between electrodes and providing spatial-temporal insights into

brain activity (3–5). However, the current approach to seizure detection in EEGs relies on

manual examination by experienced EEG readers, demanding substantial time and effort.

Furthermore, discrepancies in diagnostic results may emerge due to varying opinions

among experts (6).
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To address these challenges, there is a pressing need for the

development of automated and objective methods for epileptic

seizure detection. While many studies have proposed deep learning

(DL)-based models for automated seizure detection, several

challenges persist (7–9). These models often train in a supervised

approach, necessitating labeled seizure data that is both scarce and

labor-intensive to obtain in real-world applications. Additionally,

existing models frequently apply deep convolutional neural

networks (CNNs) directly to time-series signals or spectrograms,

overlooking crucial information related to physical distance-

based and functional-based connectivity between different brain

regions (10).

Recent studies have introduced graph learning techniques to

capture relationships between EEG electrodes (i.e., EEG nodes)

(6, 11, 12). However, these approaches fall short in considering

local patterns, such as local sub-graphs and sub-structures, when

learning EEG graphs. The inclusion of such local information

could prove effective in detecting anomalies in EEG graphs, as

demonstrated in other network analysis applications. In real-

world applications, an imbalance in data availability between

seizure and normal classes is common. Graph-based methods

addressing this issue often employ graph augmentation, but not

every augmentation technique is effective in EEG graphs (10),

as some may compromise underlying brain region connectivities.

Therefore, identifying appropriate augmentation strategies in EEG

graphs that preserve semantic information is crucial for accurate

seizure detection and localization (13).

This study delves into detecting the anomaly channels of

EEG signal in patients with epilepsy (14). We propose an

innovative method for epilepsy detection that distinctively focuses

on exploring the inter-channel relationships within EEG signals,

deemed essential for understanding the patient signal variations.

We introduce an anomaly detection approach for EEG channels

and segments based on inter-channel correlation analysis. This

method utilizes Graph Neural Networks (GNNs) (15, 16) to

capture the correlation between different channels, providing a

more accurate reflection of anomaly changes. To achieve precise

detection of anomaly channels in an EEG signal, we propose

an EEG-based epilepsy detection method with graph correlation

analysis (EEG-GCA), employing a weight-sharing GNN and

aligning different channel information distributions with Kullback-

Leibler (KL) (17) divergence regularization. During the testing

phase, we detect anomalous channels and segments by measuring

the correlation between two views, thereby achieving sensitive

identification of abnormalities in epilepsy. Notably, our proposed

method not only performs well in experiments but is also the only

training approach that does not require access to seizure data. This

research holds practical significance in improving the effectiveness

of epilepsy patient treatment.

• We proposed a method named EEG-GCA for inter-channel

correlation analysis simulating the correlation between

channels in EEG, revealing subtle differences in patient

anomaly changes. This algorithm provides a new approach to

EEG signal processing.

• We redefined the anomaly channel detection of EEG as the

correlation between channel feature distribution and their

neighbors’ distribution, and we designed an Unsupervised

model to verify the effectiveness.

• The performance evaluation of the proposed abnormal EEG

node and region detection is conducted on the extensive

and comprehensive EEG seizure dataset TUSZ. The results

demonstrate that EEG-GCA sets a new benchmark, achieving

state-of-the-art performance on this dataset.

2 Related works

2.1 EEG analysis

Electroencephalogram analysis has become one of the

prominent directions (18, 19). The following is a review of relevant

work in this field, focusing on the application of different methods

and technologies.

(a) Early approaches to epilepsy recognition primarily relied on

traditional feature extraction techniques combined with machine

learning algorithms (20, 21). Researchers extracted features from

different domains, including time-domain, frequency-domain, and

time-frequency-domain features, such as power spectral density

and energy, to capture epilepsy-related patterns from EEG signals

(22). Common machine learning models used in these early

approaches included support vector machines (SVM) and decision

trees (23, 24). While these methods achieved some success, their

performance was often limited by the challenges of manually

extracting relevant features and their inability to fully capture the

complex dynamics of EEG signals.

(b) In recent years, deep learning methods have gained

significant attention for their ability to enhance EEG-based

epilepsy recognition (25). Architectures such as convolutional

neural networks (CNNs) (26, 27) and recurrent neural networks

(RNNs) (28) have been successfully applied, allowing models to

learn feature representations in an end-to-end fashion. These

deep learning techniques excel at capturing abstract and complex

features from the raw EEG signals, significantly improving the

accuracy of epilepsy recognition (24, 29). Furthermore, techniques

such as transfer learning and multimodal fusion have been

extensively explored to improve the generalization capabilities of

these models, enabling better performance on unseen data.

(c) Beyond EEG signals, there has been growing interest in

integrating data from multiple modalities for epilepsy recognition

tasks, including physiological signals, speech, and images (30).

Cross-modal research aims to combine information from diverse

sources, thereby enhancing the robustness and comprehensiveness

of epilepsy detection systems (31, 32). This approach leverages

complementary data to improve model performance, offering a

more holistic view of the patient’s condition and enhancing the

reliability of diagnosis (33).

2.2 Canonical correlation analysis

Canonical correlation analysis (CCA) (34, 35) is a method

that aims to find the linear transformation for measuring the

relationship between two vectors. Give two vectors X1 and X2, the
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correlation ρ =
aT6X1X2b√

aT6X1X1 a

√

bT6X2X2b
is maximized by optimizing

the objective :

max
a,b

aT6X1X2b, s.t.a
T6X1X1a = bT6X2X2b = I (1)

Soft-CCA (36) considers the decorrelation constraint as a term

of loss and optimizes it jointly with other terms, and the objective

of Soft CCA is:

max
θ1,θ2

Tr(PTθ1 (X1)Pθ2 (X2))

s.t.PTθ1 (X1)Pθ1 (X1) = PTθ2 (X2)Pθ2 (X2) = I

(2)

where I is the identity matrix, and Equation 2 can be rewritten as:

min
θ1,θ2

||Pθ1 (X1)− Pθ2 (X2)||
2
F+

λ(LSDL(Pθ1 (X1))+ LSDL(Pθ2 (X2)))
(3)

where Pθ1 and Pθ2 are the neural networks used to learn the

representations of the two views. ||Pθ1 (X1) − Pθ2 (X2)||
2
F is used to

maximize the correlation between the two views, and LSDL is used

to minimize the distance between Pθi (Xi) and the identity matrix.

2.3 Graph learning methods

Graph data, being non-Euclidean, poses a challenge for

traditional convolution methods. The effective learning of

information from graph data is an actively researched problem

(37). In the context of graph data, the learned representation of

nodes should encapsulate both the structural information of the

graph and the attributes associated with each node. Existing graph

learning methods can be broadly categorized as follows:

Truncated Random Walk-Based Methods: These methods

operate on the assumption that nodes with similar network

structures should have similar vector representations. A notable

approach in this category is DeepWalk (38), which employs

random walks to generate training data and leverages Word2vec

(39) to learn node representations. Node2vec (40) captures

homogeneity and structural equivalence through weighted random

walks.

Methods Based on k-Order Distance Between Nodes in the

Graph: These approaches, exemplified by methods like LINE (41)

and GraRep (42), learn node representations by capturing k-order

relational structure information, aiming to achieve high-quality

node embeddings.

Deep Learning-Based Methods: Distinguished by their use of

deep learning, these methods (43, 44) leverage the advantages of

deep neural networks to extract high-order nonlinear relationships

from graph data.

Graph neural networks (GNNs) (45) represent a significant

advancement as they directly operate on graph data, aggregating

each node’s features with those of its neighbors. Building on

GNNs, certain methods (46, 47) utilize GNNs to learn node

representations. They employ adversarial learning to regularize

these representations and predict the likelihood of an edge existing

between a pair of nodes. However, these approaches predominantly

rely on graph structure information.

Moreover, methods based on dual-autoencoders, such

as AnomalyDAE (45) and Dual-SVDAE (48), use Graph

Convolutional Networks to capture graph structure information.

They combine this with multi-layer perceptrons (MLPs) to capture

node attribute information, thereby making full use of attribute

network information.

3 Method

In this section, we detail the EEG-GCA in Figure 1. It consists

of a graph construct module, the information mining model, and a

correlation analysis module. At first, we construct the EEG graph

as input for our model. Then, we introduce an identity graph that

represents the identity matrix, signifying no relationships between

the channels. This graph aims to capture the features of each

channel in the EEG data. Then, we input the EEG graph and

identity graph into a weight-sharing GCN to learn the distribution

of structural information and distribution of semantic information

and pull the distributions to the same prior distribution through the

Kullback-Leibler (KL) divergence. Finally, we sample the network

structure embedding and node embedding from the learned

distribution and maximize the correlation of normal nodes on the

network structure distribution and node attribute distribution by

using the CCA-based objective. The correlation score is used to

detect the anomaly channels.

3.1 EEG graph construction

In this paper, we first construct the EEG graph as input. The

EEG graph can be defined as an attributed network G = {A,X}.

Where A ∈ R
N×N is the adjacency matrix that denotes the

connection between each electrode. X ∈ R
N×D denotes the feature

matrix. Xi is feature of the i-th channel. Similar to the study, given

an EEG clip, we construct five types of EEG graphs (12).

• Dist−EEG−Graph strives to embed the structure of electrode

locations in the graph’s adjacency matrix by leveraging the

Euclidean distance between electrodes. Given that electrode

locations remain fixed within an EEG recording cap, the same

adjacency matrix is applied to all EEG clips. More precisely,

the elements aij of the Dist-EEG-Graph are computed as

follows:

aij =

{

exp(−
||vi−vj||

τ 2
), if ||vi − vj||

2 ≤ k,

0, if O.W.
(4)

Here, || • ||represents the l2-norm, and τ is a scaling

constant. The proximity between two electrodes, vi and vj,

is reflected by the proximity of aij to 1. In this paper, k is

uniformly set to 0.9 across all EEG clips. Assigning a value of

0 to aij for distant electrodes introduces sparsity to the graph.

• Corr−EEG−GraphThe purpose of this graph is to capture the

functional connectivity between electrodes, which is encoded
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FIGURE 1

The framework of the proposed EGG-GCA.

in the elements of the adjacency matrix defined as follows:

aij =







corr(Xi ,Xj)

||Xi||||Xj||
, if vj ∈ N (vi),

0, if O.W.
(5)

where corr(•) denotes the cross-correlation function, and vi
represents the top-3 neighborhood nodes of vi with the highest

normalized correlation.N (vi) is set to the top-3 neighborhood

nodes to avoid overly connected graphs. Additionally, we only

keep the top three edges for each node to prevent excessively

connected graphs.

• Rand − EEG − Graph The construction of this graph

is grounded on the assumption that all electrodes are

interconnected and equally contribute to brain activities. The

realization of this graph involves the formation of an adjacency

matrix according to the following procedure:

aij =

{

0.5, if i 6= j,

1, if O.W.
(6)

• Full − EEG − Graph Similar to the Rand − EEG − Graph,

The construction of this graph is grounded on the assumption

that all electrodes are interconnected and equally contribute to

brain activities. But the aij is set as 1 for each connection.

• DTF − EEG − Graph The Directed Transfer Function Graph

aims to represent the mutual influence between EEG channels,

therebymodeling the functional connectivity of different brain

regions. The adjacency matrix for this graph is defined as

follows:

aij =







corr(Xi ,Xj)
√

∑n
m=1,m6=i,j||corr(Xi ,Xm))||2

, if vj ∈ N (vi),

0, if O.W.

(7)

3.2 Weight-sharing GCN

To learn the correlation within the weight-sharing Graph

Convolutional Network (GCN) for capturing the semantic and

structural information of each node, we introduced an identity

graph denoted as G
′
= {I,X}, where I represents the identity matrix

signifying no relationships between the channels. This approach

enhances the similarity between the semantic information and

the graph structure information of each node by transferring the

learned semantic information to all node features. Consequently,

each channel feature can be obtained by inputting the identity

graph into the Weight-Sharing GCN.

The construct EEG-graphG explicitly expresses the correlations

between the channels in the EEG data, therefore, to capture the

relationship information (structural information) between different

channels, we input the EEG graph G = {A,X} to the weight-

sharing GCN.

GCN(X,A|W) = ϕ((D)−
1
2A(D)−

1
2XW) (8)
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where W is the learnable sharing weight, ϕ is activation function,

and D is the diagonal degree matrix of the constructed EEG

graph G.

To extract each channel information (node semantic

information), the identity aggregation is designed which inputs the

identity graph G
′
= {I,X} to the weight-sharing GCN:

GCN(X, I|W) = ϕ(IXW) (9)

3.3 Distribution alignment

After obtain the node structural information embedding Zst

and the node semantic information embedding Zse, we capture

the structural distribution q(Zst|X,A) and semantic distribution

q(Zse|X, I) for each node by Equation 10, respectively.

q(Z|X,A) =

N
∏

i=0

q(zi|X,A) (10)

q(zi|X,A) = N (zi|µi, diag(σ
2)) (11)

where Z is the embedding sampled from the distribution. µ is the

mean vector and σ is the variance vector, which is learned by two

different GCN layers.

µ = GCNµ(H,A|W) (12)

σ = GCNσ (H,A|W) (13)

where µh and σ h denote the mean and variance vectors of the

structural distribution learned by Equations 12, 13. Similarly, µf

and σ f are the mean and variance vectors of semantic distribution

learned by Equations 12, 13.

To capture the correlation between the two distributions, we

should align the structural distribution and semantic distribution.

Due to it being harder to directly align two distributions, we use

a Gaussian distribution as prior distribution p and use Kullback-

Leibler (KL) divergence to align the two distributions wanting this

prior distribution to achieve the desired effect.

Lkl = −KL[q(Zst|X,A)||p(Zst)]− KL[q(Zse|X, I)||p(Zse)] (14)

3.4 Decoder

The reconstruction of graph data is divided into twomain parts,

the reconstruction of the network structure and the reconstruction

of the node attributes. Since nodes in graph data often have complex

interactions with each other, it is necessary to fuse the features of

each node with those of their neighbors.

Zf = Zst + Zse (15)

Then we use an L-layers Multi-Layer Perceptron (MLP) to

reconstruct the node attributes.

Z
(l)
f

= σ (Z
(l−1)
f

W(l−1) + b(l−1)) (16)

where Z
(l−1)
f

, Z(l), W(l−1) and b(l−1) are the input, output, the

trainable weight and bias matrix of (l − 1)-th layer respectively,

l ∈ {1, 2, ..., L}. σ (•) is the activation function. Finally, the

reconstruction of node attributes X̂ = Z
(L)
f

is obtained from the

output of the last layer in MLP.

For the reconstruction of the network structure, we use an inner

production of fusion embedding Zf to reconstruct the network

structure.

Â = ZfZ
T
f (17)

The reconstruction loss is defined as:

Ldec = ||X− X̂|| + ||A− Â|| (18)

3.5 Correlation analysis objective

The objective of correlation analysis is to discern the

relationship between structural distribution and semantic

distribution. Initially, we sample the embeddings of structural

information, denoted as Zst, and semantic information, denoted

as Zse, from the distributions of structural features q(Zst|X,A)

and semantic features q(Zse|X, I). Subsequently, we normalize the

node embeddings for the two perspectives using the following

procedure.

Z
′

st =
Zst − µ(Zst)

σ (Zst) ∗ N
1
2

Z
′

se =
Zse − µ(Zse)

σ (Zse) ∗ N
1
2

(19)

Subsequently, as per the formulation in Equation 3, EEG-GCA

enhances the correlation between the distributions of the two

views by minimizing the invariance between the network structure

embedding Zst and the node attribute embedding Zf . The

invariance loss, denoted as Linv, is defined as:

Linv = ||Z
′

st − Z
′

se||
2
F (20)

To prevent collapsed solutions, we introduce the decorrelation

loss, denoted as Ldco, which aims to guarantee that the individual

dimensions of the features are uncorrelated.

Ldco = ||Z
′T
st Z

′

st − I||2F + ||Z
′T
se Z

′

se − I||2F (21)

The CCA-based objective is defined as follows:

LCCA = Linv + λ ∗ Ldco (22)

where λ is the trade-off between the two terms.

3.6 Loss function and anomaly score

The training objective of the proposed model

involves optimizing the CCA-based loss along with

minimizing the Kullback-Leibler (KL) divergence
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TABLE 1 Train and test sets of TUSZ used in the supervised method and

unsupervised method.

Data Patients
(% SZ)

EEG files
(% SZ)

EEG clips
(% SZ)

TrainSup 591 (34.0%) 4,599 (18.9%) 38,613 (9.3%)

Trainours 493 (0%) 4,028 (0%) 35,019 (0%)

Test 45 (77.8%) 900 (25.6%) 8,848 (14.7%)

The percentages of the seizure data (SZ) is indicated in parenthesis.

between the network structure distribution and the node

attribute distribution.

L = LCCA + LKL + Ldec (23)

The anomaly score is defined as the correlation between

channels with their structure information.

4 Performance evaluation

4.1 Dataset

In this study, we employed the Temple University Hospital

EEG Seizure Corpus (TUSZ) v1.5.2 (12) as the benchmark dataset.

This dataset stands out due to its extensive inclusion of seizure

categories and patient samples, making it the dataset with the

highest level of variability. Recorded over several years and by

different generations of equipment, the dataset covers subjects

of all ages, adding to its complexity and rendering it the most

challenging for seizure detection. The EEG signals in TUSZ are

captured using 19 channels based on the standard EEG 1,020

system. Table 1 provides an overview of the TUSZ dataset utilized in

our experiments.

During the training phase, we employed an equal number

of normal clips as other supervised methods, omitting any

seizure clips. In the testing phase, we utilized an equivalent

number of test clips, encompassing both seizure and normal

clips, for comparison against other supervised methods and

our proposed approach. To assess the model’s proficiency in

seizure localization, we leveraged available annotations that

specify focal and generalized seizure types from 23 distinct

patients. It’s noteworthy that, in epilepsy patients, focal and

generalized seizure types are more prevalent compared to

other seizure types, making them particularly relevant for

our evaluation.

4.2 Baselines

We conducted a comprehensive evaluation of our proposed

EEG-GCA method by comparing it with two distinct streams of

deep learning-based approaches (12). The first stream involves

well-established DL models operating in the EEG time-series

and spectrograms domain, including EEGNet, EEG-TL, Dense-

CNN, LSTM, and CNN-LSTM. The second stream focuses

on DL models specifically designed for processing EEG graph

data. Notably, our method differs from the others as it is

deliberately trained without utilizing any seizure data in the

training phase, ensuring a fair comparison. In addition, we

compared another method, EEG-CGS (12), a graph-based method,

which utilizes the constructed EEG graph and self-supervised

learning to capture local structural and contextual information

embedded in EEG graphs and detects the anomaly by designed

anomaly scores.

In this paper, we explore six variations of EEG-GCA based on

different input graph types: EEGd-GCA, EEGr-GCA, EEGc-GCA,

EEGf -GCA, EEGt-GCA, and EEGl-GCA. These variations utilize

Dist-EEG-Graph, Rand-EEG-Graph, Corr-EEG-Graph, Full-

EEG-Graph, DTF-EEG-Graph, and Identity-EEG-Graph as their

respective inputs. All methods were evaluated on the same dataset,

with the comparative analysis focusing on assessing the robustness

and generalization capabilities of EEG-GCA, particularly in

scenarios where seizure data is limited or unavailable. To evaluate

the performance of the models, we used three metrics: Area

Under the Curve (AUC), Average Precision (AP), and Specificity

(SPC). These metrics provide insights into the models’ ability to

distinguish between different classes, their precision in detecting

positive samples, and their ability to correctly identify negative

samples, respectively.

4.3 Detection of seizure clips and channels

The performance of the seizure clip detection experiment

across various comparisonmethods is shown in Table 2. Among the

supervised methods, Corr-DCRNN exhibits the highest accuracy of

0.4482, suggesting that it effectively utilizes correlation information

between different EEG channels. This is a crucial feature for seizure

detection, as it allows the model to capture temporal dependencies

and spatial relationships within the EEG signal. However, despite

its relatively high accuracy, the model still struggles with achieving

high specificity, which is essential for minimizing false positives in

seizure detection.

In the unsupervised methods, EEGr-CGS, based on random

graphs, performs the best with an accuracy of 0.4285. This

result indicates that even without the use of labeled data,

the model is still able to leverage the underlying structure

in the EEG data to some extent. However, the performance

gap between EEGr-CGS and supervised methods suggests

that unsupervised learning still faces challenges in achieving

comparable detection accuracy, particularly when it comes

to fine-tuning the decision boundaries between seizure and

non-seizure clips.

When comparing our proposed methods–EEGd-GCA,

EEGr-GCA, EEGc-GCA, EEGf -GCA, EEGt-GCA, and

EEGl-GCA–it is evident that the introduction of the Graph

Correlation Attention (GCA) mechanism leads to significant

improvements in both accuracy and specificity. The accuracy

of our methods consistently outperforms both the supervised

and unsupervised methods, with EEGd-GCA achieving

the highest accuracy at 0.6812. This result is particularly

noteworthy considering that EEGd-GCA utilizes the Dist-EEG-

Graph as input, which focuses on capturing the structural

relationships between different EEG channels. The combination

Frontiers inMedicine 06 frontiersin.org62

https://doi.org/10.3389/fmed.2025.1549491
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tian and Zhang 10.3389/fmed.2025.1549491

TABLE 2 Seizure clips detection result.

Method Acc Precision Spec Method Acc Precision Spec

Supervised Unsupervised

EEGNet 0.4742 0.298 0.9021 EEGd-CGS 0.3076 0.3076 0.9450

EEG-TL 0.4001 0.2675 NA EEGr-CGS 0.4285 0.3333 0.9291

Dense-CNN 0.4143 0.2746 0.8692 EEGc-CGS 0.2857 0.2857 0.9132

LSTM 0.3652 0.2635 0.8143 EEGf -CGS 0.2857 0.2857 0.9211

CNN-LSTM 0.3304 0.2572 0.8574 EEGt-CGS 0.3076 0.3076 0.9009

Dist-DCRNN 0.3414 0.2612 0.9321 – – – –

Corr-DCRNN 0.4482 0.2711 0.9003 – – – –

Ours

EEGd-GCA 0.6812 0.3469 0.9714 EEGr-GCA 0.6636 0.3438 0.9429

EEGc-GCA 0.6847 0.3469 0.9714 EEGf -GCA 0.6832 0.3469 0.9714

EEGt-GCA 0.6848 0.3469 0.9714 EEGl-GCA 0.6625 0.3438 0.9429

of attention mechanisms with graph-based representations

allows the model to selectively focus on the most informative

features, leading to a more robust and accurate detection of

seizure clips.

Interestingly, while EEGd-GCA achieves the highest accuracy,

the other GCA variations (EEGr-GCA, EEGc-GCA, EEGf -GCA,

EEGt-GCA, EEGl-GCA) also show consistently high performance

with accuracy values close to 0.6847. This suggests that the

robustness of the GCA mechanism is not highly sensitive to the

specific graph input type, which makes these methods versatile

across different graph representations of the EEG data. The

consistently high specificity of around 0.9714 across all EEG-GCA

methods indicates their effectiveness in minimizing false positives,

which is a critical factor in the practical application of seizure

detection systems.

4.4 Detection of synthetic anomalous
channels

In this section, we focus on evaluating the performance of

the proposed method EEG-GCA in reliably detecting anomalous

channels. To this end, we generate a synthetic test set using

normal clips from the training phase. Specifically, we average

every 35 normal clips without overlap and then introduce

anomalies into the averaged clips with a 3% probability. The

anomalies are injected with a 0.03% probability, and at most

one node is corrupted per averaged clip. The corruptions

are applied both structurally and contextually. The structural

corruption involves connecting the selected node to all other

nodes in the average clip, while the contextual corruption

alters the attribute vector of the node by replacing its feature

vector with that of the node in the clip that has the largest

Euclidean distance. After introducing these anomalies, we input

the averaged clips, some of which contain anomalies, into the

EEG-GCA networks that were trained on pure normal clips.

TABLE 3 Synthetic anomalous channels detection results.

Type Method AUC AP Spec

Supervised EEGNet 0.6182 0.298 0.902

EEG-TL 0.5913 0.2675 NA

Dense-CNN 0.5877 0.2746 0.869

LSTM 0.5198 0.2635 0.814

CNN-LSTM 0.5412 0.2572 0.857

Dist-DCRNN 05683 0.2612 0.932

Corr-DCRNN 0.6122 0.2711 0.900

Unsupervised EEGd-CGS 0.6182 0.0845 0.9455

EEGr-CGS 0.8173 0.2675 0.9555

EEGc-CGS 0.8241 0.2887 0.9555

EEGf -CGS 0.8143 0.2960 0.9555

EEGt-CGS 0.8241 0.2887 0.9555

Ours EEGd-GCA 0.8903 0.4193 0.9667

EEGr-GCA 0.9229 0.4618 0.9722

EEGc-GCA 0.916 0.402 0.97

EEGf -GCA 0.908 0.4325 0.9689

EEGt-GCA 0.9101 0.4172 0.9678

EEGl-GCA 0.9238 0.4792 0.9722

The trained system then computes the anomaly scores for

all channels.

The experimental results, as summarized in Table 3,

demonstrate the effectiveness of our approach in the domain

of anomaly detection. Our method outperforms both supervised

and other unsupervised learning techniques across key evaluation

metrics such as AUC, AP, and Specificity. Specifically, EEGNet,

a supervised learning method, achieves a moderate performance

with an AUC of 0.6182. However, it faces challenges when
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handling imbalanced datasets, which is a critical issue in

real-world anomaly detection tasks. In contrast, EEG-GCA

demonstrates remarkable improvements in AUC, with EEGr-

GCA and EEGl-GCA achieving 0.9229 and 0.9238, respectively,

highlighting the effectiveness of unsupervised learning techniques

in addressing imbalances in the dataset. For AP, EEG-GCA

surpasses the performance of the other methods. For instance,

EEGl-GCA reaches an AP of 0.4792, significantly outperforming

the supervised approaches. This indicates that our method

is highly capable of accurately identifying anomalous events,

which is crucial in real-world anomaly detection tasks such

as sentiment recognition. Notably, EEG-GCA also excels in

terms of Specificity, a metric that measures the ability to

correctly identify normal samples and minimize false positives.

Both EEGr-GCA and EEGl-GCA achieve Specificity values

of 0.9722, outperforming all supervised models. This is

particularly important as it demonstrates that our method

can maintain high sensitivity while effectively reducing false

positives, thereby improving the robustness and reliability of

anomaly detection.

TABLE 4 Ablation study on seizure clips detection results.

Method Without correlation Ours

AUC AP Spec AUC AP Spec

EEGd-GCA 0.7579 0.3378 0.9644 0.8903 0.4193 0.9667

EEGr-GCA 0.8377 0.3431 0.9622 0.9229 0.4618 0.9722

EEGc-GCA 0.8513 0.4227 0.9678 0.9160 0.4020 0.9700

EEGf -GCA 0.8628 0.4025 0.9612 0.9080 0.4325 0.9689

EEGt-GCA 0.8355 0.3489 0.9533 0.9101 0.4172 0.9678

EEGl-GCA 0.8331 0.3301 0.9622 0.9238 0.4792 0.9722

4.5 Ablation study

In the ablation study for seizure clip detection on synthetic

anomalous channels, we explored two distinct approaches:Without

Correlation and EEG-GCA. The results of this ablation analysis are

summarized in Table 4.

In the Correlation approach, several graph construction

methods were employed. Among these, EEGc-GCA emerged as

the top performer, achieving the highest AUC (0.8513) and AP

(0.4227), underscoring its effectiveness in seizure detection. This

result emphasizes the importance of incorporating correlation

in the graph construction process for improving detection

accuracy. Notably, EEGr-GCA and EEGt-GCA also displayed

competitive results, highlighting their resilience to the absence

of correlation while still maintaining reasonable performance.

These findings suggest that, even without explicit correlation, the

models are capable of leveraging other aspects of the data for

meaningful detection.

4.6 Visualization of EEG signal

To evaluate the abnormal channels in the

electroencephalogram (EEG) segments during epileptic seizures,

we visualize the seizure channel for generalized seizures.

In Figure 2, which represents a case of generalized seizures,

our method demonstrates a high level of accuracy in detecting

all abnormal channels. This robust performance aligns with

our expectations for identifying anomalies during generalized

seizure events, highlighting the reliability of our approach

in such scenarios. The elevated anomaly scores observed in

the seizure-affected channels provide strong evidence of the

discriminatory power of our model, successfully distinguishing

pathological EEG patterns from normal, baseline activity. This

FIGURE 2

The visualization of seizure channel detection for generalized seizures.
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underscores the potential of our approach for real-time, accurate

seizure detection.

5 Conclusion

In this paper, we introduce EEG-GCA, an unsupervised

graph-based model designed for EEG-based epilepsy detection.

The core of the methodology is centered around computing

the correlation between individual EEG channels and their

neighboring channels. The process begins with the construction

of a graph representation of the EEG data, which enables the

exploration of correlation patterns across the channels. A weight-

sharing Graph Convolutional Network is then employed to

effectively capture both the semantic and structural relationships

among the channels. By aligning these distributions with a prior

distribution, EEG-GCA learns the underlying correlations

within the EEG data. The final stage involves detecting

anomalous channels based on the correlation scores, with

weak correlation scores indicating potential anomalies that

may signify seizures. The experimental results demonstrate that

EEG-GCA outperforms existing methods, achieving superior

accuracy in detecting anomalous channels. This underscores the

effectiveness of leveraging graph-based correlation techniques

for the detection of epilepsy in EEG signals. In the future,

we exploration involves integrating multi-modal data, such as

incorporating additional physiological signals or patient-specific

features, to further enhance the robustness and adaptability

of models.
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Early diagnosis of
sepsis-associated AKI: based on
destruction-replenishment
contrast-enhanced
ultrasonography

Zexing Yu, Xue Shi, Yang Song, Xin Li, Ling Li and Huiyu Ge*

Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing,

China

Objective: Establish a deep learning ultrasound radiomics model based on

destruction-replenishment contrast-enhanced ultrasound (DR-CEUS) for the

early prediction of acute kidney injury (SA-AKI).

Method: This paper proposes a deep learning ultrasound radiomics model

(DLUR). Deep learning models were separately established using ResNet18,

ResNet50, ResNext18, and ResNext50 networks. Based on the features extracted

from the fully connected layers of the optimal model, a deep learning

ultrasound radiomics model (DLUR) was established using three classification

models (built with 3 classifiers). The predictive performance of the best

DLUR model was compared with the visual assessments of two groups of

ultrasound physicianswith varying levels of experience. The performance of each

model and the ultrasound physicians was evaluated by assessing the receiver

operating characteristic (ROC) curves. The area under the curve (AUC), sensitivity,

specificity, positive predictive value (PPV), negative predictive value (NPV), and

accuracy were subsequently calculated.

Results: Compared to the ResNet18 model, the DLUR model based on logistic

regression (DLUR-LR) demonstrated the best predictive performance, showing a

Net Reclassification Improvement (NRI) value of 0.210 (p < 0.05). The Integrated

Discrimination Improvement (IDI) value for the corresponding stage was 0.169

(p < 0.05). Additionally, the performance of the DLUR-LR model also surpassed

that of senior ultrasound physicians (AUC, 0.921 vs. 0.829, p < 0.05).

Conclusion: By combining deep learning and ultrasound radiomics, a deep

learning ultrasound radiomics model with outstanding predictive e�ciency and

robustness has demonstrated excellent capability in the early prediction of acute

kidney injury (SA-AKI).

KEYWORDS

destruction-replenishment contrast-enhanced ultrasound, deep learning ultrasound

radiomics model, acute kidney injury, risk assessment, deep learning model

1 Introduction

According to the 2020 WHO statistics (1), there were 48.9 million cases of sepsis

worldwide in 2017, resulting in 11 million deaths. Sepsis-related deaths accounted

for 19.7% of all global deaths. The mortality rate of sepsis is 15–25%, and this

rate increases to 30–50% in cases of septic shock. Therefore, sepsis represents a
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significant public health issue worldwide due to its high incidence

and mortality rates.

The kidneys are one of the organs most frequently affected by

sepsis. Poston and Koyner (2) pointed out that up to 60% of sepsis

patients develop secondary AKI, and themortality rate significantly

increases once sepsis is complicated by AKI. It is currently believed

(3) that sepsis triggers macrocirculatory disturbances, leading

to reduced renal blood flow (RBF), which causes acute tubular

necrosis, thereby resulting in sepsis-associated AKI. As research

into sepsis-related AKI deepens, studies (4, 5) have found that

during septic shock, despite maintained or even increased RBF,

the glomerular filtration rate (GFR) decreases, suggesting that the

pathogenesis of sepsis-related AKI may be more complex. Hence,

studying intrarenal blood perfusion has become a crucial step in

understanding the pathophysiology of AKI during septic shock.

Currently, there are few methods available to assess and

monitor renal cortical microcirculatory perfusion in sepsis patients

(6, 7). Conventional color Doppler ultrasound, widely used for

real-time monitoring of renal hemodynamics in large vessels and

some small vessels in the renal parenchyma (8), lacks accuracy

in evaluating microcirculatory perfusion, especially in the renal

cortex. The recently developed contrast-enhanced ultrasound

(CEUS) technology, which uses microbubble contrast agents

(ultrasound contrast agents, UCA) much smaller than red blood

cells, allows assessment of human microcirculatory perfusion by

reaching any terminal small vessels via the pulmonary circulation.

Concurrently, the rapid advancements in deep learning and

artificial intelligence have revolutionized medical image analysis,

demonstrating exceptional capabilities in feature extraction and

pattern recognition (9). Radiomics, which involves the extraction

of a large number of quantitative features from medical images,

combined with machine learning algorithms, has shown promise

in achieving precise disease diagnosis and prognostic predictions

(10). However, current radiomics research on SAKI predominantly

focuses on modalities such as magnetic resonance imaging (MRI)

and computed tomography (CT), with limited studies exploring

deep learning-based ultrasound radiomics models for SAKI (11).

To the best of our knowledge, no study has yet confirmed

the feasibility of using a DLUR model for the early prediction

of acute kidney injury (SA-AKI). This study aims to establish

a deep learning ultrasound radiomics model based on burst-

replenishment contrast-enhanced ultrasound for the early

prediction of acute kidney injury (SA-AKI).

2 Materials and methods

2.1 Study participants

The retrospective study collected data from 135 patients with

sepsis at Beijing Chaoyang Hospital, Capital Medical University,

from January 2023 to November 2024, including 75 SA-AKI

patients and 60 SA-non-AKI patients. The inclusion criteria were:

(1) meeting the diagnostic criteria of the “International Consensus

on the Definition of Sepsis and Septic Shock, 3rd Edition”; (2)

meeting the diagnostic criteria for acute kidney injury: Acute

Kidney Injury (AKI) is defined when either of the following criteria

is met: (1) Serum Creatinine Elevation Absolute increase in serum

creatinine ≥0.3 mg/dL (26.5 µmol/L) within 48 h, OR Serum

creatinine rising to ≥1.5 times baseline value (i.e., ≥50% increase

from baseline) within 7 days. (2) UrineOutput Reduction Sustained

urine output <0.5 mL/kg/h persisting for ≥6 h; (3) age ≥18

years; (4) clear ultrasound images and complete clinical data. The

exclusion criteria were: (1) patients with chronic kidney disease,

renal transplantation, contraindications for SonoVueTM contrast

agents, or pulmonary hypertension; (2) incomplete clinical data; (3)

poor quality of ultrasound images. All patients provided informed

consent. Please refer to Figure 1 for detailed information. The data

from 135 patients with sepsis were randomly divided into a training

set (n = 95) and a testing set (n = 45) in an 7:3 ratio. Input data

included burst-reperfusion ultrasound contrast agents and clinical

data, while the output indicated whether the patient belonged to the

septic AKI or non-AKI group.

2.2 Ultrasound data acquisition

Ultrasound diagnosis was performed by physicians with more

than 5 years of relevant experience using the Mindray Resona

R9 color Doppler ultrasound diagnostic system manufactured by

the Chinese medical device company Mindray. The procedure

utilized intravenous infusion combined with burst-replenishment

contrast-enhanced ultrasound technology. The patient was placed

in a supine position, and a vein in the left elbow was punctured

to establish an intravenous access using a special vein tube for

contrast-enhanced ultrasound. Two vials of SonoVue contrast

agent were dissolved in 10ml of saline, thoroughly shaken, and

then placed in a 20ml syringe. The syringe was installed in a

specialized micro-infusion pump for contrast agents, with the

speed set at 2 ml/min, and connected to the venous tube. The

largest coronal section of the patient’s right kidney (showing

the renal hilum) was selected for observation. The injection

pump was activated, and the ultrasound was used to observe

the time it took for the contrast to reach the kidney, followed

by continuous observation for 2min until the contrast entered

the kidney parenchyma and reached equilibrium. A fixed high

mechanical index (MI > 0.7) was used to continuously burst

the microbubbles within the kidney parenchyma for 6 s until all

the contrast microbubbles were extinguished. Subsequently, the

ultrasound probe was placed at the largest coronal section of

the right kidney to continuously and dynamically observe the

replenishment phase when the microbubbles re-entered the kidney

for 30 s. This burst-replenishment process was repeated three times

to obtain three sets of dynamic replenishment images, which were

then subjected to time-intensity curve (TIC) analysis to acquire the

replenishment data.

2.3 Ultrasound image annotation

After anonymizing patient information, the original dynamic

ultrasound images were imported into the MedAI Darwin learning

platform. The patient information labels were defined as follows:

gender, age, body mass index, mean arterial pressure, arterial

carbon dioxide partial pressure, hemoglobin, white blood cell
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FIGURE 1

Flow diagram of the study population.

count, lactate, and serum creatinine. The lesion information label

included: renal function impairment (septic AKI vs. non-AKI).

Physicians with over 5 years of relevant experience manually

delineated the regions of interest (ROI). In case of discrepancies,

consultation with senior physicians (physicians with ≥10 years of

ultrasound diagnostic experience and the title of Associate Chief

Physician or higher) was sought for a definitive diagnosis.

2.4 Deep learning ultrasound radiomics
model development

To ensure the integrity and validity of the research data,

we have undertaken data preprocessing, aiming to enhance the

performance and robustness of the models. The data preprocessing

steps encompass data augmentation and image normalization.

Considering the unique structural characteristics of the training

data and the objectives of the task, we chose to build deep

learning models based on four different algorithms: ResNet18,

ResNet50, ResNeXt18, and ResNeXt50. ResNet (Residual Network)

and ResNeXt (Residual NeXt) are highly acclaimed deep learning

models in the field of image recognition. They utilize the concept

of residual learning, which enables the development of deeper

networks without being hindered by issues of vanishing or

exploding gradients.

ResNet addresses the issue of degradation in deep convolutional

neural networks by introducing residual blocks. In these blocks,

the input feature maps are combined with the subsequent

layers through skip connections, allowing for the maximum

preservation of the original information. Such design enables

the residual blocks to learn the residual function, capturing the

difference between the feature maps and the desired output.

ResNeXt, an improvement upon ResNet, introduces grouped

convolution within each residual block to enhance the model’s

expressive power. Traditional convolutional operations convolve

each channel of the input feature maps with each filter,

whereas grouped convolution divides the input feature maps
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into multiple groups and independently convolves each group.

By increasing the number of groups, ResNeXt enhances the

model’s expressive power without increasing the total number

of parameters or computational complexity. Typical structures

of ResNet and ResNeXt consist of multiple residual blocks,

with variants such as ResNet-18, ResNeXt-18, ResNet-50, and

ResNeXt-50 being widely used. Both ResNet and ResNeXt are

composed of several residual blocks. Within each residual block,

the convolutional layers are no longer ordinary convolutions but

rather grouped convolutions, which divide the input feature maps

into multiple groups for independent convolutional operations.

The number of convolutional kernels within each group in grouped

convolution is equal, and the quantity of groups is referred to

as “cardinality.” By increasing the cardinality, the model’s non-

linear expressive power can be enhanced. For instance, ResNet-

18 is a relatively shallow ResNet model with approximately

11 million total parameters, while ResNet-50 is a deeper and

more complex ResNet model with approximately 23 million

total parameters.

In general, ResNet and ResNeXt exhibit slight differences in

their model structures, but both leverage the concept of residual

learning to address challenges in deep networks. These models have

demonstrated outstanding performance in image recognition tasks

and have become pivotal models in research and applications. The

predictive performance of each model is evaluated using receiver

operating characteristic (ROC) curves, and metrics such as area

under the curve (AUC), sensitivity, specificity, and accuracy are

calculated to select the best differentiating model for tuberculous

hydronephrosis and non-tuberculous hydronephrosis. To optimize

computational resources and improve training efficiency, this study

uniformly employs region of interest (ROI) sub-images for model

training, with the ROI sub-image size standardized to 64× 64× 64

prior to training. Additionally, 3D image augmentation techniques,

such as random flipping and random cropping, are applied to the

training data.

After evaluating the deep learning modeling experiments,

features were extracted from the fully connected layers of the best-

performing deep learningmodel. These deep learning features were

FIGURE 2

The complete research process.
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then used to build an ultrasound radiomics model using three

mainstreammachine learning algorithms: Logistic Regression (LR),

Support Vector Machine (SVM), and Random Forest (RF). The

predictive performance of each model was assessed using receiver

operating characteristic (ROC) curves, and metrics such as the

area under the curve (AUC), sensitivity, specificity, PPV, NPV, and

accuracy were calculated. The complete research process is shown

in Figure 2.

2.5 Statistical analysis

SPSS version 27.0 statistical analysis software was used to

analyze the significance of each model. Categorical data were

presented as actual frequencies and percentages. The classification

performance of the models was assessed using the AUC, accuracy,

sensitivity, specificity, PPV, and NPV derived from the receiver

operating characteristic (ROC) curves. The DeLong test was used

to compare the significance of the AUCs among the different

models. A P-value of <0.05 was considered statistically significant,

indicating a difference with practical importance.

3 Results

3.1 General clinical data

This study included 135 septic patients, who were divided into

AKI group (n = 75) and non-AKI group (n = 60) based on renal

function within 48 h and urine output within 24 h. There were

90 males and 45 females, with an average age of 65.3 ± 15.2

years. General clinical data are presented in Table 1. There were

no statistically significant differences in age, sex, body mass index,

MAP, PaCO2, and CRP between the two groups (P > 0.05). The

TABLE 1 The general clinical data of enrolled patients.

SA-Non-AKI
(n = 60)

SA-AKI
(n = 75)

Significance
(p)

Age 69 (17–90) 63 (54–77)

Gender (percentage of

females)

36% 27%

Temperature 36.8± 0.87 36.8± 0.29 0.336

Pulse 82.7± 13.2 89.1± 21 0.49

Respiration (breaths per

minute)

21.4± 4.8 18.7± 4.7 0.302

BMI 23.8± 2.98 22.9± 4.9 1.000

Mean arterial pressure

(MAP)

72.0± 19.0 85.1± 9.7 0.193

Arterial partial pressure of

carbon dioxide (PaCO2)

54.5± 27.5 47± 15.8 0.530

Hemoglobin 108.1± 24.3 90± 22 0.964

White blood cell count 11.7± 6.7 15.4± 13.3 0.151

Lactic acid 1.26± 0.26 2.97± 3.15 0.007∗

ScR 60.6± 19.9 216.9±

149.5

0.025∗

∗Indicates that P < 0.05. There is a statistically significant difference between the two groups.

levels of Scr and Lac in the AKI groupwere significantly higher than

those in the non-AKI group, and the differences were statistically

significant (P < 0.05).The general clinical data of enrolled patients

are shown in Table 1.

3.2 Performance of the deep learning
ultrasound radiomics model

Table 2 lists four algorithm models based on deep learning

technology. Compared with other deep learning models on the

testing dataset, ResNet 18 exhibited superior overall performance.

The AUC of ResNet 18 was 0.899 (95% CI: 0.858–0.940), with

a sensitivity of 0.800, specificity of 0.857, PPV of 0.706, NPV of

0.909, and accuracy of 0.840. Comparison of performance among

different deep learning models as shown in Figure 3.

Ultimately, among the three classifiers, the deep learning

ultrasound radiomics model based on logistic regression

demonstrated the best classification performance (see Table 3). In

the testing set, the AUC of DLUR-LR was 0.973 (95% CI: 0.949–

0.998), with a sensitivity of 0.905, specificity of 0.960, PPV of 0.905,

NPV of 0.960, and accuracy of 0.944; the AUC of DLUR-SVM was

0.953 (95% CI: 0.918–0.988), with a sensitivity of 0.892, specificity

of 0.938, PPV of 0.857, NPV of 0.954, and accuracy of 0.924;

the AUC of DLUR-RF was 0.929 (95% CI: 0.890–0.968), with a

sensitivity of 0.907, specificity of 0.891, PPV of 0.782, NPV of

0.957, and accuracy of 0.896. Comparison of performance among

different deep learning ultrasound radiomics models as shown in

Figure 4.

In our study, we utilized performance metrics such as AUC,

sensitivity, specificity, PPV, and NPV due to their significant

clinical importance in the context of early AKI diagnosis. These

metrics were carefully chosen to align with and reflect the critical

aspects of clinical outcomes. The AUC provides a comprehensive

assessment of the model’s overall ability to distinguish between

AKI and non-AKI cases across all thresholds, offering a holistic

evaluation of performance. Sensitivity and specificity are directly

related to clinical priorities: high sensitivity minimizes missed true

cases, ensuring timely treatment, while high specificity reduces

false positives, avoiding unnecessary interventions. PPV and NPV

further aid clinical decision-making by indicating the likelihood

that test results accurately reflect the patient’s condition, thereby

supporting clinicians in making informed treatment choices.

Together, these metrics not only validate the statistical performance

of our model but also underscore its practical utility in improving

patient outcomes by facilitating early and accurate diagnosis of

sepsis-associated AKI.

4 Discussion

Sepsis-associated acute kidney injury (AKI) is a significant

complication that complicates the management of septic patients

and dramatically increases morbidity and mortality rates. The early

diagnosis of sepsis-associated AKI is crucial for implementing

timely therapeutic strategies, which can significantly improve

patient outcomes. In this study, we explored the utility of

destruction-replenishment contrast-enhanced ultrasonography
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TABLE 2 The performance comparison of di�erent deep learning models.

Model AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy

ResNet18 0.899 [0.858–0.940] 0.800 0.857 0.706 0.909 0.840

ResNet50 0.879 [0.828–0.931] 0.838 0.847 0.697 0.925 0.844

ResNext18 0.856 [0.802–0.910] 0.811 0.841 0.682 0.914 0.832

ResNext50 0.842 [0.793–0.892] 0.773 0.766 0.586 0.887 0.768

FIGURE 3

Comparison of performance among di�erent deep learning models.

(DR-CEUS) as a novel method for the early detection of

sepsis-associated AKI.

Our results indicate that DR-CEUS can detect early renal

changes associated with sepsis before traditional markers show

significant alterations. This is particularly important in the context

of sepsis, where timely intervention is necessary to mitigate kidney

injury. The ability to identify renal microcirculatory dysfunction

may allow clinicians to initiate protective strategies earlier in the

disease course, potentially reversing or preventing AKI progression.

We developed a deep learning ultrasound radiomics model that

outperforms four different deep learning network models, namely

ResNet18, ResNet50, ResNext18, and ResNext50. Compared to

the best-performing model within ResNet18, our deep learning

ultrasound radiomics model demonstrated superior predictive

performance on the explosive-replenishment contrast-enhanced

ultrasound imaging test data. The deep learning informatics

model exhibited higher reliability and reproducibility in evaluating

diagnostic outcomes, leveraging its inherent characteristics.

The performance differences among the various deep learning

network models may be attributed to their distinct network

architectures (12). In our study, we trained four different deep

learning network architectures: ResNet18, ResNext18, ResNet50,

and ResNext50, all of which are widely used in various

clinical applications. We chose ResNet18, which exhibited the

best predictive performance in our study, to extract deep

learning features for constructing the deep learning ultrasound

radiomics model. Among these four models, the ResNet network

demonstrated more stable and superior predictive performance

compared to other classical deep learning networks in the test set.

The ResNet architecture maintains the integrity of information

by directly passing input information to the output to learn the

residual functions throughout the network. This property helps

mitigate the issues of gradient vanishing and explosion, allowing

the network to deepen without compromising performance (13).

The ResNext network is a new architecture based on ResNet

that incorporates the recurrent layer strategy of ResNet and

combines it with a split-transform-merge strategy in a simple

and scalable manner (14). However, the predictive results of the

ResNext network were inferior to those of the ResNet network. In

deep learning, dimensionality reduction, classification, and feature

extraction are performed in an integrated manner. However,

the quality and output of these cascading layers depend on
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TABLE 3 The performance comparison of di�erent deep learning ultrasound radiomics models.

Model AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy

DLUR-LR 0.973 [0.949–0.998] 0.905 0.960 0.905 0.960 0.944

DLUR-SVM 0.953 [0.918–0.988] 0.892 0.938 0.857 0.954 0.924

DLUR-RF 0.929 [0.890–0.968] 0.907 0.891 0.782 0.957 0.896

FIGURE 4

Comparison of performance among di�erent deep learning ultrasound radiomics models.

various hyperparameters such as the number of layers, feature

maps, layer configurations, and structures. Different network

architectures utilize different sets of hyperparameters, and the

choice of these hyperparameters and architectures may impact

predictive performance.

Our study reveals that the deep learning ultrasound radiomics

model significantly outperforms traditional diagnostic methods

and physician assessments in diagnosing sepsis-associated AKI.

This advancement holds promise for improving early diagnosis

in clinical settings. The integration of such AI-powered tools is

increasingly feasible due to advancements in digital healthcare

infrastructure, and our model can be seamlessly incorporated

into existing ultrasound practices. However, potential barriers

include initial investment costs, resistance to workflow changes,

a need for comprehensive training, regulatory hurdles, and data

privacy concerns. Despite these challenges, the clinical impact of

implementing this model is substantial, offering more accurate

diagnoses, timely interventions, and improved patient outcomes,

while also alleviating physicians’ cognitive load. Expanding our

discussion to include these integration considerations and clinical

benefits highlights the model’s potential to enhance real-world

healthcare delivery.

5 Conclusion

In this study, we propose a deep learning ultrasound imaging

model based on blast-reperfusion ultrasound contrast imaging.

Our method effectively integrates the technical advantages of deep

learning and ultrasound imagingomics, demonstrating excellent

predictive performance for the early diagnosis of sepsis-related

acute kidney injury (AKI). This enables clinicians to detect renal

changes earlier than traditional methods, allowing for the use of

more precise interventions.
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Background: Deep learning has shown considerable promise in the differential 
diagnosis of lung lesions. However, the majority of previous studies have focused 
primarily on X-ray, computed tomography (CT), and magnetic resonance 
imaging (MRI), with relatively few investigations exploring the predictive value 
of ultrasound imaging.

Objective: This study aims to develop a deep learning model based on ultrasound 
imaging to differentiate between benign and malignant peripheral lung tumors.

Methods: A retrospective analysis was conducted on a cohort of 371 patients 
who underwent ultrasound-guided percutaneous lung tumor procedures across 
two centers. The dataset was divided into a training set (n = 296) and a test set 
(n = 75) in an 8:2 ratio for further analysis and model evaluation. Five distinct 
deep learning models were developed using ResNet152, ResNet101, ResNet50, 
ResNet34, and ResNet18 algorithms. Receiver Operating Characteristic (ROC) 
curves were generated, and the Area Under the Curve (AUC) was calculated to 
assess the diagnostic performance of each model. DeLong’s test was employed 
to compare the differences between the groups.

Results: Among the five models, the one based on the ResNet18 algorithm 
demonstrated the highest performance. It exhibited statistically significant 
advantages in predictive accuracy (p < 0.05) compared to the models based on 
ResNet152, ResNet101, ResNet50, and ResNet34 algorithms. Specifically, the 
ResNet18 model showed superior discriminatory power. Quantitative evaluation 
through Net Reclassification Improvement (NRI) analysis revealed that the NRI 
values for the ResNet18 model, when compared with ResNet152, ResNet101, 
ResNet50, and ResNet34, were 0.180, 0.240, 0.186, and 0.221, respectively. All 
corresponding p-values were less than 0.05 (p < 0.05 for each comparison), 
further confirming that the ResNet18 model significantly outperformed the 
other four models in reclassification ability. Moreover, its predictive outcomes 
led to marked improvements in risk stratification and classification accuracy.

Conclusion: The ResNet18-based deep learning model demonstrated superior 
accuracy in distinguishing between benign and malignant peripheral lung tumors, 
providing an effective and non-invasive tool for the early detection of lung cancer.

OPEN ACCESS

EDITED BY

Zhenzhong Deng,  
University of Southern California, 
United States

REVIEWED BY

Wenwu Ling,  
Sichuan University, China
Liang Sang,  
The First Hospital of China Medical University, 
China
Jiang Shuangquan,  
The Second Affiliated Hospital of Harbin 
Medical University, China

*CORRESPONDENCE

Jue Jiang  
 13720721677@163.com  

Dong Zhang  
 dongzhang@xjtu.edu.cn

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 27 January 2025
ACCEPTED 07 March 2025
PUBLISHED 27 March 2025

CITATION

Wang Y, Zhang Y, Li Y, She T, He M, He H, 
Zhang D and Jiang J (2025) Preliminary 
exploratory study on differential diagnosis 
between benign and malignant peripheral 
lung tumors: based on deep learning 
networks.
Front. Med. 12:1567545.
doi: 10.3389/fmed.2025.1567545

COPYRIGHT

© 2025 Wang, Zhang, Li, She, He, He, Zhang 
and Jiang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  27 March 2025
DOI  10.3389/fmed.2025.1567545

75

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1567545&domain=pdf&date_stamp=2025-03-27
https://www.frontiersin.org/articles/10.3389/fmed.2025.1567545/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1567545/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1567545/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1567545/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1567545/full
mailto:13720721677@163.com
mailto:dongzhang@xjtu.edu.cn
https://doi.org/10.3389/fmed.2025.1567545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1567545


Wang et al.� 10.3389/fmed.2025.1567545

Frontiers in Medicine 02 frontiersin.org

KEYWORDS

artificial intelligence, ultrasound imaging, deep learning, peripheral lung tumors, 
differential diagnosis

Introduction

Lung cancer remains one of the most prevalent and fatal cancers 
worldwide, with peripheral lung cancer (PLC) constituting a 
substantial proportion of these cases (1). PLC originates in the outer 
regions of the lungs and is often difficult to detect in its early stages 
due to subtle symptoms, leading to a high rate of misdiagnosis (2). 
Epidemiological studies indicate that peripheral lung tumors account 
for approximately 30–40% of all lung cancer diagnoses, underscoring 
the urgent need for effective early detection and accurate diagnosis (1, 
3). Current clinical practices rely on low-dose computed tomography 
(LDCT) as the gold standard for lung cancer screening (4). However, 
while LDCT is highly effective, it involves the use of ionizing radiation, 
making it unsuitable for long-term monitoring, especially in 
individuals at high risk for lung cancer (5). Tissue biopsy, although 
definitive, is invasive and associated with potential complications, 
including bleeding and infection (2, 6). As a result, there is a growing 
interest in alternative, non-invasive diagnostic methods.

Ultrasound imaging has emerged as a promising non-invasive, 
radiation-free diagnostic tool for peripheral lung tumors, offering the 
advantage of high repeatability. This makes it particularly useful for 
monitoring patients over time and distinguishing between benign and 
malignant tumors (2, 5, 7). The application of ultrasound in lung 
tumor diagnosis has seen significant advancements in recent years. 
Recent studies have highlighted the improved accuracy of ultrasound 
techniques with the incorporation of elastography, which assesses 
tissue stiffness and provides valuable insights into tumor 
characterization (8). Additionally, the use of contrast-enhanced 
ultrasound (CEUS) has allowed for enhanced visualization of blood 
flow within tumors, further improving the ability to differentiate 
malignant from benign lesions (9). These innovations have made 
ultrasound a more reliable option for lung tumor diagnosis, 
particularly in settings where access to advanced imaging technologies 
such as CT or MRI may be limited.

However, despite these advancements, the accuracy of 
ultrasound diagnosis remains subject to operator-dependent 
variability, including factors such as experience, skill, and visual 
fatigue, which can lead to misjudgments (2, 5). To address these 
challenges, artificial intelligence (AI) techniques, particularly deep 
learning (DL) models, have been integrated into ultrasound 
imaging to improve diagnostic accuracy and consistency. Recent 
developments in AI have demonstrated substantial improvements 
in the automated analysis of ultrasound images, enabling more 
precise and reliable detection of lung tumors (7). Deep learning 
algorithms, especially convolutional neural networks (CNNs) like 
ResNet, have been shown to outperform traditional machine 
learning models by automatically detecting complex patterns and 
analyzing texture features that are often imperceptible to the human 
eye (7, 10). The ResNet architecture, known for its residual learning 
framework, helps mitigate the vanishing gradient problem and 
allows for the training of deeper neural networks, thus improving 
the robustness and accuracy of tumor detection (10, 11).

Therefore, incorporating AI into ultrasound imaging for PLC 
diagnosis has significantly reduced misdiagnosis rates and improved 

diagnostic confidence. AI-enhanced systems also provide real-time 
feedback, minimizing the effects of operator fatigue and variability, 
which are common limitations of traditional visual inspection (7). 
This study aims to develop and assess five deep learning models 
utilizing ultrasound images and clinical data of peripheral lung 
tumors. We hypothesize that these models will offer a highly accurate, 
non-invasive approach to differentiating benign from malignant 
tumors, thereby improving lung cancer screening and early diagnosis. 
The novelty of this research lies in the integration of ultrasound 
imaging with deep learning algorithms, addressing the limitations of 
conventional diagnostic methods and enhancing both diagnostic 
precision and clinical applicability.

Materials and methods

Study population

The study received approval from the institutional review board 
of The Second Affiliated Hospital of Xi’an Jiaotong University and 
Tongchuan mining bureau central hospital, which was conducted in 
accordance with the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards. This retrospective 
study collected data from 513 patients with peripheral lung tumors 
detected via chest CT across two centers between March 2020 and 
March 2024. The cohort included 438 patients from Center 1 and 75 
patients from Center 2, respectively. A total of 371 lung tumors, 
comprising 221 malignant and 150 benign cases, were included for 
further analysis. The inclusion criteria were as follows: (1) adult 
patients aged 18 years or older; (2) peripheral lung tumors detected 
through chest CT imaging; (3) patients who underwent ultrasound-
guided tissue biopsy; (4) pathological diagnosis confirming malignant 
lung tumors or inflammatory lesions; (5) clear ultrasound images of 
adequate quality were defined by two key criteria: a minimum 
resolution of 1.5 millimeters and a signal-to-noise ratio (SNR) 
threshold of 30 dB. These standards were established to ensure 
sufficient image clarity and diagnostic reliability for accurate feature 
extraction and tumor analysis; (6) complete clinical data. The 
exclusion criteria included: (1) patients with severe coagulation 
disorders or those unable to cooperate with ultrasound-guided tissue 
biopsy; (2) incomplete clinical data; (3) poor quality ultrasound 
images that could not provide valid data (Figure  1). All patients 
provided informed consent, and the key contents of the informed 
consent form are presented in the Supplementary materials.

Ultrasound data acquisition

Ultrasound diagnoses were performed by physicians with over 
5 years of relevant experience using the Acuson Sequoia color Doppler 
ultrasound diagnostic system (Siemens AG, Germany), equipped with 
a 5C1 abdominal probe operating within a frequency range of 1.0 to 
5.7 MHz. Based on lesion locations identified by CT scans, patients were 
positioned in supine, prone, or lateral decubitus positions to facilitate 
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comprehensive ultrasonic examination. Clear two-dimensional 
ultrasound images, capturing the maximum cross-sectional area of the 
lesions, were retained for further analysis. To ensure consistency in data 
quality, all ultrasound images were acquired by trained physicians 
adhering to standardized imaging protocols. Images with lower 
resolution or insufficient signal-to-noise ratio (SNR) were excluded 
from the study to maintain uniformity across the dataset.

Ultrasound image analysis and modeling

After anonymizing patient information, the original ultrasound 
images were imported into the Darwin AI Research Platform for 
further processing. The patient information labels included the 
following: gender, age, biopsy site, lesion size, history of lung diseases, 
smoking history, and lung tumor markers. Lesion-related labels 
encompassed pathological results (benign or malignant), shape 
(round, quasi-round, triangular, wedge-shaped, or irregular), 
echogenicity (homogeneous or heterogeneous), presence of necrosis 
(present or absent), air bronchogram (present or absent), and 
boundary clarity (clear or unclear). Regions of interest (ROIs) were 
manually delineated by physicians with more than 5 years of relevant 
experience. In cases of disagreement, senior physicians were consulted 
for a definitive diagnosis. The dataset, comprising 371 patients with 
lung tumors, was randomly divided into a training set (n = 296) and 
a test set (n = 75) in an 8:2 ratio. Peripheral lung tumor ROI images 

and corresponding clinical data were input into the system, and the 
output indicated whether the tumors were benign or malignant. Based 
on these ultrasound imaging data and annotations, deep learning 
models were developed to predict the benign or malignant nature of 
peripheral lung tumors using five distinct algorithms: ResNet152, 
ResNet101, ResNet50, ResNet34, and ResNet18. Receiver operating 
characteristic (ROC) curves were plotted, and the area under the 
curve (AUC) was calculated to assess the diagnostic performance of 
each model. The complete experimental process is illustrated in 
Figure  2. During model training, we  optimized hyperparameters 
including a learning rate of 0.001, a batch size of 64, and the Adam 
optimizer. We used a cosine annealing scheduler with a warm-up 
period for learning rate variation, and employed cross-entropy loss to 
guide the model in minimizing prediction errors. We implemented 
this study on a computer equipped with an Nvidia RTX A2000 GPU 
and an Intel Xeon Silver 4,208 CPU using the Darwin AI Research 
Platform. The average inference time per sample is approximately 50 
milliseconds, measured on the aforementioned hardware. This time 
may vary depending on the system configuration and the complexity 
of the input data.

Observation indicators

The sensitivity, specificity, accuracy, positive predictive value 
(PPV), and negative predictive value (NPV) of the five models in 

FIGURE 1

Flow diagram of the study population.
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diagnosing the benignity or malignancy of peripheral lung tumors 
were assessed. ROC curves were plotted for each model, and the AUC 
was calculated to measure their diagnostic performance.

Statistical methods

SPSS version 27.0 statistical analysis software was used to evaluate 
the significance of each model. Categorical data were expressed as 
frequencies and percentages. The classification performance of the 
models was assessed using the AUC, accuracy, sensitivity, specificity, 
PPV, and NPV derived from the ROC curves. The DeLong test was 
employed to compare the AUCs among the five versions of ResNet. A 
p-value of less than 0.05 was considered statistically significant, 
indicating a meaningful difference in performance.

Results

Pathological results

The study included a cohort of 371 patients diagnosed with 
peripheral lung tumors. Pathological analysis, based on biopsy or 
surgical resection, identified 221 malignant and 150 benign tumors. 
Detailed histological classifications are provided in Table 1. Among 
the malignant tumors, adenocarcinoma was the most common 
(26.95%), followed by squamous cell carcinoma (20.75%) and small 
cell carcinoma (5.12%). Benign lesions were predominantly chronic 
inflammation of lung tissue (26.42%) and organizing pneumonia 
(5.39%).

Performance of the deep learning models

In the training set, the sensitivity, specificity, and diagnostic 
accuracy for diagnosing the benignity or malignancy of peripheral 
lung tumors were as follows: 87.2, 70.4, and 77.0% for Model 152; 
70.1, 85.5, and 79.4% for Model 101; 88.0, 93.3, and 91.2% for Model 
50; 80.3, 66.5, and 72.0% for Model 34; and 82.1, 70.4, and 75.0% for 

Model 18. In the test set, the corresponding values were 78.1, 74.4, 
and 76.0% for Model 152; 81.3, 72.1, and 76.0% for Model 101; 81.3, 
74.4, and 77.2% for Model 50; 78.1, 74.4, and 76.0% for Model 34; and 
84.4, 69.8, and 76.0% for Model 18 (Table 2). The areas under the 
receiver operating characteristic (ROC) curves (AUCs) for the five 
models in the training set were 0.865, 0.852, 0.960, 0.803, and 0.835, 
respectively (Figure 3). In the test set, the AUCs were 0.822, 0.800, 
0.824, 0.823, and 0.831, respectively (Figure 4).

DeLong’s test revealed statistically significant differences in the 
AUCs between the five models, with ResNet18 outperforming the 

FIGURE 2

The complete experimental process.

TABLE 1  Pathological results of 371 peripheral lung tumors.

Pathological findings Benign n 
(%)

Malignant n 
(%)

Small cell carcinoma 19 (5.12)

Squamous cell carcinoma 77 (20.75)

Adenocarcinoma 100 (26.95)

Adenosquamous carcinoma 6 (1.62)

Large cell carcinoma 6 (1.62)

Malignant pleomorphic tumor 3 (0.81)

Mesenchymal sarcoma 2 (0.54)

Choriocarcinoma 2 (0.54)

Alveolar carcinoma 1 (0.27)

Metastatic renal clear cell carcinoma 2 (0.54)

Carcinosarcoma 2 (0.54)

MALT-L 1 (0.27)

Tuberculosis 11 (2.96)

Organizing pneumonia 20 (5.39)

Granulomatous inflammation 17 (4.58)

Vasculitic lung injury 1 (0.27)

Bacterial pneumonia 1 (0.27)

Chronic inflammation of lung tissue 98 (26.42)

Atypical adenomatous hyperplasia 2 (0.54)

MALT-L, Mucosa-Associated Lymphoid Tissue Lymphoma.
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other models in terms of predictive accuracy and discriminatory 
power. NRI analysis revealed substantial improvements in the 
ResNet18 model compared to the other models. The NRI values for 
each model were as follows: ResNet152 (NRI = 0.180), ResNet101 
(NRI = 0.240), ResNet50 (NRI = 0.186), and ResNet34 (NRI = 0.221). 
All NRI comparisons yielded statistically significant results, with 
p-values less than 0.05. These findings further substantiate that the 
ResNet18 model outperformed the other models in terms of 
reclassification ability and predictive accuracy.

Discussion

The current study successfully developed a deep learning model 
based on ultrasound imaging to differentiate benign and malignant 

peripheral lung tumors. This model, utilizing the ResNet18 
architecture, demonstrated superior performance with an AUC of 
0.835 in the training cohort and 0.831 in the testing cohort, compared 
to models based on other ResNet architectures (ResNet152, 
ResNet101, ResNet50, and ResNet34). The ResNet18 model 
significantly outperformed the other models in terms of predictive 
accuracy, discriminatory power, and reclassification ability, making it 
a promising tool for early lung cancer detection.

In recent years, deep learning techniques have significantly 
improved lung tumor diagnosis across imaging modalities like CT, 
PET/CT, and ultrasound. CT and PET/CT are commonly used in 
clinical settings for their high spatial resolution and detailed 
anatomical information. Studies have shown that deep learning can 
enhance the performance of these techniques in detecting 
malignancies. For example, Yang et al. (12) used deep convolutional 
neural networks (CNNs) to analyze CT scans, achieving over 90% 
accuracy in distinguishing between benign and malignant pulmonary 
nodules (12).

Despite their high diagnostic accuracy, CT and PET/CT have 
several limitations. Both involve ionizing radiation, which can lead 
to cumulative exposure risks, especially with repeated imaging. 
Additionally, PET/CT scanners are expensive and less accessible, 
limiting their use in some clinical settings (13). In contrast, 
ultrasound offers significant advantages, especially when combined 
with deep learning techniques. Unlike CT and PET/CT, ultrasound 
does not involve ionizing radiation, making it a safer option for 
patients, particularly in long-term monitoring. Ultrasound is also 
more cost-effective, portable, and accessible, making it ideal for 
resource-limited settings. Recent studies, such as Liu et al. (14), have 
shown that deep learning applied to ultrasound images can achieve 
88% sensitivity and 85% specificity for early lung cancer detection 
(14). Ultrasound’s real-time imaging capability provides immediate 
feedback, aiding quick decision-making, and it can be performed at 
the patient’s bedside, making it a valuable tool for point-of-care 
diagnosis (15). However, ultrasound does have limitations. Its quality 
is highly dependent on the skill of the operator, which can lead to 
inconsistent results. Ultrasound may also struggle to visualize deeper 
lung tissues due to interference from air in the lungs and difficulty 

TABLE 2  Comparison of the performance of each deep learning model in the training and test sets.

ResNet152 ResNet101 ResNet50 ResNet34 ResNet18

Training 
set

Test set Training 
set

Test set Training 
set

Test set Training 
set

Test set Training 
set

Test set

AUC 0.865 0.822 0.852 0.800 0.960 0.824 0.803 0.823 0.835 0.831

ACC 0.770 0.760 0.794 0.760 0.912 0.772 0.720 0.760 0.750 0.760

SEN 0.872 0.781 0.701 0.813 0.880 0.813 0.803 0.781 0.821 0.844

SPE 0.704 0.744 0.855 0.721 0.933 0.744 0.665 0.744 0.704 0.698

F1score 0.750 0.735 0.729 0.743 0.888 0.754 0.694 0.735 0.722 0.750

PPV 0.658 0.694 0.759 0.684 0.896 0.703 0.610 0.694 0.644 0.675

NPV 0.894 0.821 0.814 0.838 0.923 0.842 0.838 0.821 0.857 0.857

p value 2.648E-26 2.000E-06 1.237E-24 1.000E-05 4.249E-39 2.000E-06 2.2448E-18 2.000E-06 2.089E-22 1.000E-06

95%CI 0.823,0.906 0.725,0.919 0.808,0.896 0.701,0.899 0.937,0.983 0.724,0.924 0.750,0.851 0.726,0.921 0.788,0.881 0.738,0.925

AUC, Area Under the Curve; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; F1score, F1 Score; PPV, Positive Predictive Value; NPV, Negative Predictive Value; 95%CI, 95% Confidence 
Interval.

FIGURE 3

ROC curves of each deep learning model in the training set.
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distinguishing solid tumors from surrounding structures. 
Additionally, deep learning algorithms for ultrasound are still 
underdeveloped compared to those for CT and PET/CT, which have 
more standardized images (16). Despite these challenges, ultrasound’s 
non-invasive nature, lack of ionizing radiation, portability, and real-
time feedback make it a promising tool for lung cancer detection, 
particularly when enhanced by advanced deep learning techniques 
(17–20).

The reasons for choosing ResNet to construct the predictive 
model in this study, rather than other architectures (e.g., 
EfficientNet, Vision Transformer), are as follows: firstly, ResNet 
introduces the concept of residual connections, which address the 
vanishing gradient problem by allowing gradients to flow more 
easily through deeper layers (21). This enables the training of 
much deeper networks without the degradation in performance 
typically seen in conventional deep networks (22). In comparison, 
while EfficientNet and ViT also achieve high performance, they 
do not inherently mitigate the vanishing gradient problem to the 
same extent, especially in very deep architectures (23, 24). 
Secondly, ResNet excels in feature extraction, leveraging its deep 
architecture and residual blocks, which enables it to capture more 
complex patterns and fine-grained details in images (25). This is 
particularly useful in medical imaging, where subtle differences 
in image features are crucial for accurate diagnosis (26). 
EfficientNet and ViT, while powerful, may not always achieve the 
same level of fine-grained feature extraction, particularly for 
highly specialized tasks such as detecting peripheral lung tumors 
(27, 28). Thirdly, ResNet offers a good balance between model 
depth and computational cost (29). Although deeper networks 
typically require more computation, the residual connections in 
ResNet allow for more efficient training and inference compared 
to other architectures like ViT, which can be  computationally 
expensive due to the self-attention mechanism (30). EfficientNet, 
on the other hand, optimizes the trade-off between accuracy and 

efficiency, but its scaling strategy might still be  less 
computationally efficient than ResNet in certain applications (31, 
32). Fourthly, ResNet has been extensively validated across a wide 
range of medical imaging tasks, demonstrating robustness and 
reliability (33). It has a proven track record in both image 
classification and segmentation tasks (34, 35). While architectures 
like EfficientNet and ViT also show great promise, ResNet’s long-
standing success in medical imaging, along with its established 
frameworks for fine-tuning, makes it a reliable choice for clinical 
applications (36). In summary, ResNet’s advantages lie in its deep 
network capability, residual learning to avoid gradient issues, 
efficient feature extraction, and computational practicality, all of 
which make it particularly suitable for medical image analysis 
compared to other architectures like EfficientNet and Vision 
Transformer (37).

This study evaluated the performance of various ResNet 
architectures in predicting the benign or malignant nature of 
peripheral lung tumors. The findings revealed that the ResNet18-
based model outperformed those based on ResNet152, ResNet101, 
ResNet50, and ResNet34. A deeper analysis, considering both the 
algorithmic network architecture and the dataset, provides 
valuable insights into the factors contributing to this result. 
Firstly, ResNet18, being a relatively shallow model, has fewer 
layers compared to deeper networks like ResNet152. This means 
it requires less computational power, leading to faster training 
times and quicker inference speeds. This can be  important in 
resource-constrained environments, such as embedded systems or 
mobile devices (38). Secondly, with fewer parameters and layers, 
ResNet18 demands less memory for storage and computation. 
This is beneficial in settings where memory is limited, and it can 
be  crucial for deployment in edge devices or situations where 
there is a need to optimize for power consumption and storage 
(39). Thirdly, in many real-world tasks, particularly when the 
dataset size is not large enough to fully leverage the capacity of 
deeper networks, a smaller model like ResNet18 can avoid 
overfitting. Larger models like ResNet152, due to their increased 
number of parameters, may overfit on smaller datasets if not 
properly regularized (40). Fourthly, when performing transfer 
learning, using a smaller model like ResNet18 may lead to easier 
fine-tuning, especially on datasets where the target task is 
relatively simpler. The smaller number of parameters also means 
it is easier to modify the model for specific use cases without 
requiring excessive computational resources (41). Fifthly, while 
deeper models (like ResNet152) might provide better performance 
on very large datasets, ResNet18 offers a good balance between 
performance and computational efficiency. It can achieve decent 
accuracy with much less computational cost, making it ideal for 
practical applications where speed is essential (42). Sixthly, due to 
fewer layers and parameters, ResNet18 is more interpretable and 
simpler to analyze compared to deeper architectures. This 
simplicity can be beneficial for debugging or understanding how 
the network is making decisions (43). Overall, ResNet18 is 
preferred in situations where computational efficiency, memory 
constraints, or training time are critical considerations, while 
deeper ResNets like ResNet152 might be more suitable for large-
scale datasets and applications that demand the 
highest performance.

FIGURE 4

ROC plots of each deep learning model in the test set.
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There were still several limitations in this study. Firstly, while 
the results achieved are promising, the sample size remains limited. 
Future studies should include a larger cohort of patients, and 
external validation using independent test datasets is essential to 
confirm the generalizability of the model. Secondly, all data in this 
study were sourced from two centers. Therefore, additional multi-
center research is required to enhance the robustness and 
applicability of the findings in broader clinical settings. Thirdly, the 
model is employed solely for the classification of benign and 
malignant lung tumors. A more comprehensive analysis focusing 
on their pathological classification will be  conducted in 
subsequent studies.

Conclusion

The deep learning model based on ResNet18 demonstrated 
superior performance in differentiating between benign and 
malignant peripheral lung tumors compared to other ResNet-based 
models. The ResNet18 model exhibited statistically significant 
improvements in predictive accuracy and discriminatory power, as 
evidenced by ROC analysis and NRI evaluations. These findings 
highlight the potential of ultrasound imaging, in combination with 
advanced deep learning techniques, as an effective and non-invasive 
approach for the early detection of lung cancer. This study supports 
the clinical application of ResNet18 in enhancing diagnostic accuracy 
and risk stratification for lung lesions, contributing to more timely and 
accurate diagnosis of lung cancer.
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Background: Transperineal ultrasound (TPUS) is widely utilized for the evaluation

of female stress urinary incontinence (SUI). However, the diagnostic accuracy

of parameters related to urethral mobility and morphology remains limited and

requires further optimization.

Objective: This study aims to develop and validate an optimized deep learning

(DL) model based on TPUS images to improve the precision and reliability of

female SUI diagnosis.

Methods: This retrospective study analyzed TPUS images from 464 women,

including 200 patients with SUI and 264 controls, collected between

2020 and 2024. Three DL models (ResNet-50, ResNet-152, and DenseNet-

121) were trained on resting-state and Valsalva-state images using an 8:2

training-to-testing split. Model performance was assessed using diagnostic

metrics, including area under the curve (AUC), accuracy, sensitivity, and

specificity. A TPUS-index model, constructed using measurement parameters

assessing urethral mobility, was used for comparison. Finally, the best-

performing DL model was selected to evaluate its diagnostic advantages over

traditional methods.

Results: Among the three developed DL models, DenseNet-121 demonstrated

the highest diagnostic performance, achieving an AUC of 0.869, an accuracy

of 0.87, a sensitivity of 0.872, a specificity of 0.761, a negative predictive value

(NPV) of 0.788, and a positive predictive value (PPV) of 0.853. When compared to

the TPUS-index model, the DenseNet-121model exhibited significantly superior

diagnostic performance in both the training set (z = −2.088, p = 0.018) and the

testing set (z = −1.997, p = 0.046).

Conclusion: This study demonstrates the potential of DL models, particularly

DenseNet-121, to enhance the diagnosis of female SUI using TPUS images,

providing a reliable and consistent diagnostic tool for clinical practice.

KEYWORDS

stress urinary incontinence, deep learning, transperineal ultrasound, diagnostic

accuracy, Densenet-121
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Introduction

Stress urinary incontinence (SUI) refers to the involuntary

leakage of urine during activities that increase intra-abdominal

pressure, such as coughing or physical exertion. It is commonly

observed in female, significantly impacting the quality of their

life. Studies have reported that the prevalence of SUI in

postmenopausal women ranges from 10% to 40% (1). From

the pathophysiological perspective, the development of SUI is

primarily associated with damage to the supportive structures of

the bladder neck and proximal urethra, as well as excessive urethral

mobility (2).

Transperineal ultrasound (TPUS) is widely utilized in

clinical practice to evaluate pelvic floor dysfunction, including

SUI. This non-invasive imaging modality provides clear

visualization of pelvic floor structures, such as the urethra,

bladder, and vagina, and enables quantitative assessment

of urethral mobility (3, 4). Measurable parameters derived

from TPUS, including bladder neck descent (BND), urethral

rotation angles (URA), and urethral length, hold diagnostic

value for female SUI (5–7). However, current ultrasound

techniques for diagnosing SUI face significant challenges. The

dependence of TPUS on operator experience may lead to

inconsistencies in diagnostic results, affecting clinical decision-

making. Patient cooperation directly impacts the accuracy of

parameters, such as the intensity and duration of the Valsalva

maneuver. Moreover, the dynamic changes in the structures

surrounding the urethra are complex, and existing parameters may

overlook certain important functional abnormalities, resulting in

incomplete diagnosis. These limitations underscore the need for

innovative approaches to enhance the accuracy and reliability of

SUI diagnosis.

Recent advancements in artificial intelligence (AI), particularly

deep learning (DL) algorithms, have demonstrated significant

potential in enhancing diagnostic accuracy in medical imaging.

Unlike traditional machine learning methods, DL models

automatically extract detailed structural features from raw data

without requiring operator expertise or manually designed

feature extraction (8). DL algorithms exhibit exceptional

proficiency in segmenting pelvic floor ultrasound images

and identifying pelvic floor structures. Additionally, they are

capable of dynamically segmenting and automatically measuring

anterior pelvic structures, such as bladder neck descent and

urethral rotation angles (9–12). These capabilities make DL

models potentially capable of achieving breakthroughs in

addressing the limitations of conventional TPUS diagnostics for

female SUI.

This study aims to develop and validate a convolutional

neural network (CNN)-based DL model optimized for TPUS

imaging to overcome key challenges in diagnosing SUI. By

harnessing DL’s capabilities for automated feature extraction

and precise analysis, the model strives to enhance diagnostic

accuracy, while reducing reliance on operator expertise and

mitigating measurement variability. Ultimately, this study seeks

to establish a diagnostic tool that can be integrated into clinical

workflows, facilitating earlier detection and improvedmanagement

of SUI.

Materials and methods

Objects

The study retrospectively collected data from female patients

who underwent TPUS examinations at the Department of Urology

and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong

University from 2020 to 2024. The study was conducted in

compliance with the Declaration of Helsinki and approved by the

Institutional Review Board (IRB number 2020823).

All patients underwent a comprehensive clinical evaluation,

which included completing the International Consultation on

Incontinence Questionnaire-Urinary Incontinence Short Form

(ICIQ-UI-SF), the International Consultation on Incontinence

Questionnaire-Female Lower Urinary Tract Symptoms (ICIQ-

FLUTS), urinalysis, uroflowmetry, andmaintaining a 3-day bladder

diary (13, 14). Inclusion criteria for the SUI group were: (1) age

>18 years; (2) clinical diagnosis of SUI; (3) availability of complete

TPUS images and clinical data. Exclusion criteria included: (1)

residual urine volume >50mL; (2) history of pelvic or pelvic floor

reconstructive surgery; (3) active urinary tract infection or history

of urogenital tumors; (4) unclear ultrasound images or inability to

perform the Valsalva maneuver. A total of 200 patients meeting

these criteria were included in the SUI group. Additionally, 264

female patients without a diagnosis of SUI during the same period,

who fulfilled the inclusion criteria, were selected as the control

group (non-SUI group). Transperineal ultrasound images were

collected for all patients, including 464 resting-state images and 464

Valsalva-state images (Figure 1).

Ultrasound images acquisition

TPUS examinations were conducted by expert sonographer

with 5–10 years of the pelvic for ultrasound experience using

a Mindray Resona 8 ultrasound system equipped with a DE10-

3U 3D volumetric probe (frequency range: 3–10 MHz). Patients

were positioned in the lithotomy position after bladder emptying,

following the protocol established by Dietz HP (15). Mid-sagittal

pelvic floor static images were obtained at rest and during the

Valsalva maneuver. Key parameters, including bladder symphyseal

distance (BSD), urethral axis angle (α angle), and retrovesical angle

(RVA), were measured. Additionally, bladder neck descent (BND)

and urethral rotation angle (URA) were calculated. Ultrasound

static images were exported in JPG format for subsequent analysis

(Figure 2).

Deep learning model development

Ultrasound images in JPG format were imported into the

MedAI Darwin learning platform (http://premium.darwin.yizhun-

ai.com). Using the platform’s tools, the urethra was delineated as

the region of interest (ROI). The annotation process was carried

out by an experienced pelvic floor ultrasound specialist, and any

disagreements were resolved through consensus discussion. The
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FIGURE 1

The flow diagram of recruitment and grouping of research objects.

FIGURE 2

Mid-sagittal ultrasound images of the pelvic organs. (A) Anatomical landmarks: the public symphysis (PS), bladder neck (BN), and urethra (U) are also

visualized. (B) Index measurement mark: bladder symphyseal distance (BSD), urethral axis angle (α angle) and retrovesical angle (RVA).

dataset included 928 images (464 resting-state and 464 Valsalva-

state), with annotated ROIs. The annotated data were randomly

divided into a training set (n = 371) and a testing set (n = 93) in

an 8:2 ratio. Following this, preprocessing operations such as data

augmentation and normalization were performed on the input ROI

sub-images, including random flipping, image transposition, and

pixel value normalization (16).

Three DL architectures were implemented for model

development: ResNet-50, ResNet-152, and DenseNet-121. The

models were trained separately on resting-state and Valsalva-state

images to predict the presence of SUI. Model performance was

evaluated using standard diagnostic metrics, including the area

under the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). Receiver operating characteristic (ROC)

curves were generated to visualize and compare the classification

performance of the models. The complete experimental workflow

is shown in Figure 3.
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FIGURE 3

Schematic diagram of DL models in predicting the risk of SUI. DL, Deep Learning; TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence.

Construction of the TPUS-index model in
predicting the risk of SUI

A TPUS-index model was constructed using

ultrasonic measurement parameters for assessing urethral

morphology and mobility as independent variables,

with SUI diagnosis as the outcome variable. Binary

logistic regression analyses were performed to identify

significant predictors of SUI, and the model’s predictive

performance was evaluated using AUC, accuracy, sensitivity,

and specificity.

Statistical analysis

Statistical analyses were conducted using SPSS software

(version 26.0; IBM Corp). Continuous variables were expressed

as mean ± standard deviation (SD) and compared using

independent samples t-tests. Categorical variables were

presented as counts and percentages and analyzed using chi-

square tests. Univariate and multivariate logistic regression

with forward stepwise analysis were applied to screen for

independent risk factors and establish a TPUS-index model.

The predictive performance of the model was evaluated by

plotting ROC curves and calculating the AUC along with

the consistency index (CI). Comparisons of AUC values

between models were performed using z-tests. All statistical

tests were two-tailed, and a p-value < 0.05 was considered

statistically significant.

Results

Baseline characteristics

The baseline characteristics of the study population are

summarized (Supplementary Table 1). The mean age of the

participants was 47.90 ± 14.88 years, ranging from 19 to 90

years. The average parity was 1.38 ± 0.80, and the mean BMI

was 23.22 ± 1.80 kg/m². Among the participants, 233 women

(50.2%) were postmenopausal. The clinical characteristics

were balanced between the testing set and the training

set, with no significant differences in age, parity, BMI, or

menopausal status.

Diagnostic performance of DL models

The DL models based on resting-state images exhibited

inferior diagnostic performance. In contrast, the DL

models trained on Valsalva-state images demonstrated

significantly better performance in predicting SUI.

DenseNet-121 achieved the best discriminatory ability

among the three models, with a well-balanced performance

across multiple diagnostic metrics, including accuracy

(81.7%), sensitivity (87.2%), and specificity (76.1%)

(Table 1).

In the training set, significant differences were found between

ResNet-50 and ResNet-152 (z = −2.149, p = 0.032) and

between ResNet-50 and DenseNet-121 (z = −3.568, p <

0.001). However, no significant difference in AUC values was

observed between ResNet-152 and DenseNet-121 (z = −1.661,

p = 0.097). In the testing set, DenseNet-121 demonstrated

a statistically significant superiority in AUC compared to

ResNet-152 (z = −2.372, p = 0.029) and ResNet-50 (z

= −2.190, p = 0.018). These results confirm the superior

classification ability of DenseNet-121 in both training and testing

datasets (Figure 4).

Construction of the TPUS-index model in
predicting the risk of SUI

Among the TPUS measurement parameters, BSD-rest and

BSD-valsalva were lower in the SUI group (OR: 0.910 and 0.894,

p < 0.001), while α angle-valsalva, BND, and URA were higher

in the SUI group (OR: 1.037, 1.124, and 1.023, p < 0.001).
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TABLE 1 Comparison of the diagnostic performance between DL models for SUI based on TPUS images.

Image mode DL model Group AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Resting ResNet-50 Training set 0547 (0.487, 0.606) 0.578 0.726 0.380 0.611 0.508

Testing set 0.605 (0.490, 0.720) 0.559 0.269 0.927 0.824 0.500

ResNet-152 Training set 0.482 (0.421, 0.542) 0.589 0.948 0.108 0.588 0.607

Testing set 0.553 (0.436, 0.670) 0.548 0.250 0.927 0.813 0.494

DensNet-121 Training set 0.532 (0.472, 0.591) 0.538 0.392 0.734 0.664 0.473

Testing set 0.490 (0.369,0.610) 0.516 0.192 0.927 0.769 0.475

Valsalva ResNet-50 Training set 0.713 (0.659, 0.766) 0.695 0.757 0.608 0.733 0.637

Testing set 0.803 (0.710, 0.896) 0.774 0.830 0.717 0.750 0.805

ResNet-152 Training set 0.761 (0.712, 0.810) 0.722 0.739 0.699 0.778 0.652

Testing set 0.809 (0.720, 0.898) 0.763 0.872 0.652 0.719 0.833

DensNet-121 Training set 0.798 (0.752, 0.845) 0.747 0.761 0.725 0.832 0.681

Testing set 0.869 (0.793, 0.945) 0.817 0.872 0.761 0.788 0.853

DL, Deep Learning; AUC, Area Under the ROC Curve; CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

FIGURE 4

ROC curves of the DL models for diagnosing SUI based on Valsalva-state TPUS images. (A) Training Set; (B) Testing Set. ROC, Receiver Operating

Characteristic; DL, Deep Learning; SUI, Stress Urinary Incontinence; TPUS, Transperineal Ultrasound.

Additionally, α angle-rest was slightly lower in the SUI group (OR:

0.988, p = 0.015; Table 2). Based on the univariate analysis, six

significant variables (BSD-rest, BSD-valsalva, α angle-rest, α angle-

valsalva, BND, and URA) were included in the multivariate logistic

regression analysis due to their strong statistical association with

SUI (p < 0.05).

The Rad-score of the TPUS-index model achieved an

AUC of 0.736 (95% CI: 0.629 – 0.843), with an accuracy,

sensitivity, and specificity of 77.2%, 67.5%, and 75.5%,

respectively (Table 3). The model formula is as follows:

RadScore = −0.047∗BSD(valsalva) – 0.036∗BSD(rest) +

0.020∗α angle(valsalva) + 0.018∗BND −0.008∗α angle(rest)

−0.002∗URA−0.003.

Comparison of the diagnostic performance
between DL model and TPUS-index model

In the training set, the DL model demonstrated a significantly

higher AUC compared to the TPUS-index model (z = −2.088,

p < 0.05), indicating superior diagnostic performance. Similarly,

in the testing set, the AUC of the DL model was also

significantly higher than that of the TPUS-index model (z

= −1.997, p < 0.05). Beyond the AUC, other diagnostic

metrics, including accuracy, sensitivity, and specificity, was

consistently better for the DL model compared to the TPUS-

index model. This highlights the DL model’s enhanced capability

in diagnosing SUI, offering a more robust and reliable diagnostic
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TABLE 2 Univariate binary logistic regression analysis of TPUS ultrasonic measurement.

TPUS measurement
variable

SUI group (n = 200) non SUI group
(n = 264)

Odds ratio (95% CI) P-value

BSD-rest(mm, mean± SD) 22.460± 4.783 23.980± 3.465 0.910 (0.867, 0.956) 0.000

BSD-valsalva(mm, mean± SD) −1.310± 11.462 14.440± 7.862 0.894 (0.873, 0.916) 0.000

α angle-rest(◦ , mean± SD) 24.690± 17.335 28.980± 19.646 0.988 (0.978, 0.998) 0.015

α angle-valsalva(◦ , mean± SD) 45.600± 25.337 25.050± 20.535 1.037 (1.028, 1.046) 0.000

RVA-valsalva(◦ , mean± SD) 137.180± 24.936 133.440± 20.467 1.008 (0.999, 1.016) 0.079

BND(mm, mean± SD) 23.770± 10.552 14.440± 7.862 1.124 (1.095, 1.153) 0.000

URA(◦ , mean± SD) 59.340± 29.929 40.900± 26.633 1.023 (1.016, 1.030) 0.000

TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence; CI, Confidence Interval; BSD, Bladder Symphyseal Distance; RVA, Retrovesical Angle; BND, Bladder Neck Descent; URA,

Urethral Rotation Angle; SD, Standard Deviation.

TABLE 3 In comparison of the performance between DL model and TPUS-index model in predicting SUI in the training and testing sets.

Group Diagnostic
model

AUC (95% CI) P-value Accuracy Sensitivity Specificity PPV NPV

Training set DL Model 0.798 (0.752, 0.845)
0.018

0.747 0.761 0.725 0.832 0.681

TPUS-index

Model

0.721 (0.666, 0.777) 0.730 0.631 0.806 0.711 0.742

Testing set DL Model 0.869 (0.793, 0.945)
0.046

0.817 0.872 0.761 0.788 0.853

TPUS-index

Model

0.736 (0.629, 0.843) 0.772 0.675 0.755 0.675 0.775

DL, Deep Learning; TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence; AUC, area under the ROC curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

approach compared to the TPUS-index model (Table 3 and

Supplementary Figures 1, 2).

Discussion

This study developed a DL model for the diagnosis of female

SUI and compared its diagnostic performance with that of an

ultrasound assessment model. Our findings demonstrate that the

DL model outperformed the TPUS-index model in predicting

the disease.

Our findings revealed that DL models trained on resting-

state images exhibited poor diagnostic performance. In contrast,

models trained on Valsalva-state images demonstrated significantly

better performance in diagnosing SUI. The inferior performance

of resting-state models can be attributed to the lower recognition

rate of organs farther from the probe, such as the bladder and

uterus, by CNN under resting conditions (9). Additionally, the

morphology and function of the urethra change during the Valsalva

maneuver. The limited anatomical changes observable under

resting conditions provide insufficient diagnostic information

for the model to learn effectively (17). This aligns with

current clinical practice, where sonographer prioritize changes

in the urethral angle and position in Valsalva-state images

when assessing SUI through pelvic floor ultrasound (2). These

findings indicate that DL models relying solely on resting TPUS

images lack the reliability required for accurate diagnosis of

female SUI.

Among the three DL models developed using Valsalva-state

images, DenseNet-121 outperformed the ResNet models (ResNet-

152 and ResNet-50), particularly in the testing set. This superior

performance highlights DenseNet-121′s network architecture,

which offers enhanced feature reuse and information flow

through its dense connections, significantly reducing parameter

redundancy. This optimizationmakes DenseNet-121more efficient

in terms of both parameter count and computational performance.

The model exhibits strong classification capabilities in disease

diagnosis through medical imaging (18–20). In the testing

set, DenseNet-121 successfully identified four positive cases of

SUI that were missed by ResNet-50 and ResNet-152. This

superior sensitivity underscores DenseNet-121′s ability to capture

subtle features in images. In contrast, the limitations of the

ResNet models stem from their residual connections being

confined to adjacent layers, which results in less effective

feature reuse and greater computational resource requirements

during training.

TPUS is a non-invasive and repeatable tool commonly used

to assist in the assessment of female SUI. The SUI prediction

models established based on TPUS ultrasound measurement data

are also one of the current research hotspots. Liu and Quan (21)

developed a postpartum SUI model using clinical data, bladder

neck descent, and urethral funneling, achieving an AUC of 0.807

in the validation cohort. Another study on predicting SUI based

on pelvic floor ultrasound data reported that combining multiple

measurement parameters in the model achieved an AUC of 0.802,

with sensitivity ranging from 0.542 to 0.665 and specificity from
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0.867 to 0.980 (6). This study also demonstrated the predictive

value of ultrasound parameters in diagnosing SUI. Indicators

of Valsalva-State had a significant impact on the model’s Rad-

Score, consistent with previous research findings. These results

further emphasize the critical role of Valsalva maneuver images

in evaluating SUI. However, the limitations of such models lie

in the need to collect clinical information or repeatedly measure

multiple ultrasound parameters, which is time-consuming and

highly dependent on the operator’s technical expertise and dynamic

observation skills.

This study found that the optimal DL model developed

using TPUS images demonstrated higher diagnostic value for

SUI compared to the TPUS-index model. The advantages of DL

models lie in their ability to capture subtle imaging details that are

challenging for sonographers while performing rapid automated

analysis, reducing human errors and significantly shortening

operational time. Notably, the optimal DL model in our study

showed a significant advantage in sensitivity compared to the

TPUS-index model. However, five positive cases in the testing

set were misclassified by the DL model. Upon analysis, three

cases involved uterine prolapse. Since uterine prolapse can cause

structural changes in the adjacent urethra and posterior bladder

wall, it may have affected the model’s automatic segmentation

of the urethra, thereby influencing the classification results. In

addition, the DenseNet-121 model shows suboptimal performance

with a specificity of 0.761 in ruling out non-SUI cases. Possible

reasons include the limited number of non-SUI cases in the dataset,

which may cause the model to be biased toward the majority

class, resulting in insufficient ability to identify non-SUI cases.

Additionally, non-SUI cases may exhibit diverse manifestations,

making it difficult for the model to capture their complex features.

To address these issues, improvements can be made by balancing

the dataset and enhancing data diversity, or by fine-tuning the

model or customizing layers to better capture the features of

non-SUI cases. Despite these challenges, the DL model exhibited

excellent performance in AUC and sensitivity for SUI diagnosis,

making it a valuable tool for early detection. With an aging

population, the rising incidence of SUI and its impact on quality

of life have gained widespread attention. Early diagnosis and

intervention are crucial in managing SUI. Accurate identification

of early-stage SUI patients and the provision of timely treatments,

such as lifestyle modifications, pelvic floor muscle therapy,

and pharmacological interventions, can effectively slow disease

progression. Compared to late-stage surgical treatments, these

measures are more cost-effective, less invasive, and significantly

improve patients’ quality of life. Furthermore, the development of

DL models facilitates large-scale screening for this condition in the

general population.

Limitations of the study

First, the sample size included in this study was relatively small,

necessitating further research with larger, more diverse prospective

samples. Importantly, external validation in diverse populations,

such as multi-center cohorts or across varying ultrasound devices,

is currently absent and represents a critical limitation. Future

steps should include multi-center validation and testing across

different imaging devices to ensure the model’s adaptability and

reliability in various clinical settings. Second, the developed DL

model analyzed only ultrasound images and did not integrate

clinical data. Therefore, in the next phase, we plan to combine

clinical data with the DL model to design and construct a new

hybrid model, further improving its diagnostic performance for

female SUI.

Conclusion

In summary, this study developed a DL model for

diagnosing female SUI, showing significant improvements in

specificity, sensitivity, accuracy, and testing set consistency

compared to the TPUS-index models, and its diagnostic

performance was validated. It demonstrates the potential of

DL models to enhance diagnostic accuracy and automation for

female SUI.
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Purpose: To predict human epidermal growth factor receptor 2 (HER2) 
expression in breast cancer (BC) using Sonazoid-enhanced ultrasound in a 
machine learning-based model.

Materials and methods: Between August 2020 and February 2021, patients 
with breast cancer who underwent surgical treatment without neoadjuvant 
chemotherapy were prospectively enrolled from 17 hospitals in China. HER2 
expression status was assessed by immunohistochemistry or fluorescence in 
situ hybridization (FISH). The training set contained data from 11 hospitals and 
the validation set contained 6 hospitals. Clinical features, B-mode ultrasound, 
contrast-enhanced ultrasound (CEUS), and time-intensity curve were selected 
by the Least Absolute Shrinkage and Selection Operator. Based on the selected 
features, six prediction models were established to predict HER2 3 + and 
2 +/1 + expression: logistic regression (LR), support vector machine (SVM), 
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random forest (RF), eXtreme Gradient Boosting (XGB), XGB combined with LR, 
and fusion model.

Results: A total of 140 patients with breast cancer were enrolled in this study. 
Seven features related to HER2 3 + and six features related to HER2 2+/1 + were 
selected to establish prediction models. Among the six models, LR, SVM, and 
XGB showed the best prediction performance for both HER2 3 + and HER2 
2+/1 + cases. These three models were then combined into a fusion model. 
In the validation, the fusion model achieved the highest value of area under 
the receiver operating characteristic curve as 0.869 (95%CI: 0.715–0.958) 
for predicting HER2 3 + and 0.747 (95%CI: 0.548–0.891) for predicting HER2 
2+/1 + cases. The model could correctly upgrade HER2 2 + cases to HER2 
3 + cases, consistent with the FISH test results.

Conclusion: Sonazoid-enhanced ultrasound can provide effective guidance for 
targeted therapy of breast cancer by predicting HER2 expression using machine 
learning approaches.

KEYWORDS

human epidermal growth factor receptor 2, breast cancer, Sonazoid, ultrasound, 
machine learning

1 Introduction

According to the World Health Organization, breast cancer (BC) 
can cause 500,000 deaths, and 1.7 million new cases are diagnosed 
annually (1). Characterized by overexpression of the human epidermal 
growth factor receptor 2 (HER2) gene and its protein, HER2-positive 
breast cancer accounts for 20–30% of breast cancer cases and requires 
distinct therapeutic strategies (2, 3). Trastuzumab and pertuzumab, 
which are targeted by monoclonal antibody therapies, improve the 
survival outcomes of HER2-positive (HER2 3+) breast cancer (4–6). 
Recent reports have recommended HER2-targeted agents and 
antibody-drug conjugates (ADCs) as new clinical therapies for 
HER2-low expression (HER2 1+, 2+) breast cancer (7). The distinct 
pathological characteristics of HER2 0, HER2-low, and HER2-positive 
breast cancers have been the focus of research. Studies have reported 
that the 50% recurrence rate of HER2-positive breast cancers can 
be decreased by the use of HER2-targeted monoclonal antibodies (8).

For patients with HER2-positive cancers, preoperative targeted 
therapy could increase the chance of breast conservation and sentinel 
lymph node biopsy rather than mastectomy and axillary lymph node 
dissection (7, 9). The selection of breast cancer neoadjuvant treatment 
regimens (particularly monoclonal antibodies) depends on the results 
of preoperative core needle biopsy (CNB), especially molecular 
profiling tested by immunohistochemistry (IHC) and fluorescence in 
situ hybridization (FISH) (10–12). However, because of intratumoral 
heterogeneity, the inadequate tissue acquired from CNB may not 
provide complete pathological characteristics of the tumor, causing 
discordance between cores in 8% of HER2-positive cases and 
discordance between CNB and surgical pathology results for 
approximately 26.6% of HER2 status (11, 13, 14). Thus, HER2 
expression levels in breast cancer could be underestimated, and the 
concomitant false-negative results may cause missed diagnosis of 
HER2-positive cases, affecting clinical arrangements and prognosis. 
Increasing the number of multi-point punctures may increase the 
accuracy or decrease the underestimation in the diagnosis of HER2 
expression. However, it has been reported that the possibility of core 

needle seeding in breast cancer varies from 2 to 63% (15–17). Adding 
the number of punctures to increase the amount of tissue may also 
increase the risk of tumor seeding (16, 17).

Contrast-enhanced ultrasound (CEUS) indicates vascular 
information of the tumor, which has been widely used in the diagnosis 
of benign and malignant breast lesions, assessing the pathological 
characteristics, and predicting neoadjuvant chemotherapy (NAC) 
response (18, 19). CEUS can improve the categorization of suspicious 
breast lesions, reduce unnecessary biopsies, and improve the cancer 
yield rate of biopsy procedures (20). SonoVue (Bracco, Milan, Italy), 
the most widely used ultrasound contrast agent, consisting of sulfur 
hexafluoride microbubbles, has shown better performance in 
low-intensity imaging (21). Consisting of lipid-stabilized 
perfluorocarbon microbubbles, Sonazoid (GE Healthcare, Oslo, 
Norway) is more stable for long-term imaging and has a higher 
resistance to ultrasound mechanical index (MI), which is more 
suitable for high-frequency linear array probe scanning (22, 23). 
Machine learning approaches have been widely applied for the early 
detection, diagnosis, and outcome prediction of breast cancer (24, 25). 
It has been reported that the diagnostic accuracy and sensitivity of 
CEUS in breast cancer can be  improved by combining it with a 
machine learning approach (20).

Hence, our study aims to predict the HER2 status of breast cancer 
by combining B-mode ultrasound and contrast Sonazoid-enhanced 
ultrasound features using machine learning models.

2 Materials and methods

2.1 Patients

This prospective, multicenter study was approved by the 
institutional ethics committee (ClinicalTrials.gov: NCT04657328). 
Informed written consent was obtained from all participants before 
the examinations. Between August 2020 and February 2021, 168 
patients with breast cancer with 168 breast masses diagnosed by 
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surgical pathology from a multicenter cohort of 17 hospitals in 
China, were enrolled in this study. Patients with an unclear HER2 
status and incomplete time-intensity curve (TIC) features were 
excluded. According to current guidelines (26), HER2 status was 
determined using IHC for HER2 protein expression and FISH for 
equivocal cases (IHC 2+). The multicenter IHC results for HER2 
expression were evaluated by experienced pathologists. A total of 140 
patients with HER2 status were included in the study. The exclusion 
criteria were (1) absence of HER2 results and (2) absence of TIC 
features due to substandard image acquisition. The training set 
contained datasets from 11 hospitals, including 104 and 79 cases in 
the two cohorts. The external validation set contained prospective 
datasets from 6 other hospitals, including 36 and 28 cases in the two 
cohorts. Among these cases, 104 patients from 11 hospitals were 
included in the training set and 36 patients from the other 6 hospitals 
were included in the validation set. In total, there were 26 HER2-
positive (IHC 3+), 68 HER2-low (39 IHC 1 + and 29 IHC 2+), 39 
HER2 0 (IHC 0), and 7 HER2-negative (IHC 0, 1+, and 2+) cases in 
the training and validation sets. In total, 88 patients with invasive 
ductal carcinoma, 3 with mucinous breast carcinoma, 1 with 
metaplastic breast carcinoma, and 12 with ductal carcinoma in situ 
were included.

Furthermore, to differentiate HER2-low expression cases from 
HER2 0 and exclude the confounding effect of HER2-positive 
expression levels in the analysis, 26 HER2-positive cases and 7 patients 
with uncertain HER2 expression status (only known as HER2-
negative cases) in the cohort were excluded. Finally, 107 patients were 
included in the HER2-negative and low-expression group, containing 
79 patients in the training cohort from the same 11 hospitals and 28 
patients in the validation cohort. The study design is shown in 
Figure 1.

2.2 B-mode and CEUS image acquisition

B-mode ultrasound and CEUS examinations were performed by 
radiologists from 17 hospitals with 10 ultrasound devices 
(Supplementary Table 1) equipped with a linear probe. All ultrasound 
examinations were conducted following a uniform diagnostic consensus. 
Prior to image acquisition, participating radiologists in this multicenter 
study, with more than 3 years of experience in breast ultrasound, 
received systematic training in B-mode and CEUS breast examination. 
All radiologists in this study received standardized training in breast 
CEUS interpretation according to Sonazoid instructions and previous 

FIGURE 1

Flowchart of study design. HER2: human epidermal growth factor receptor-2; IHC: immunohistochemistry; TIC: time intensity curve; CEUS: contrast-
enhanced ultrasound. LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.
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studies. They were required to complete a minimum of 50 breast CEUS-
independent case evaluations to ensure consistent diagnostic consensus 
prior to the study. Breast masses were first identified using a B-mode 
ultrasound scan. Next, 0.015 mL/kg of perfluorobutane-filled 
microbubble contrast agent (Sonazoid; GE Healthcare, Oslo, Norway) 
was injected via the catheter line (≥ 22-gauge) placed in the antecubital 
vein, followed by a 5 mL flush of 0.9% sodium chloride solution. The 
mechanical index of 0.18–0.24 was applied. When the injection was 
completed, the imaging timer was started simultaneously. After 1 min 
of continuous assessment of the whole mass, intermittent scanning (10 s 
each time) was arranged at the time points of 1.5 min, 2 min, 3 min, 
4 min, and 5 min. For patients with multiple masses, images of the 
largest masses were preserved. Both B-mode and CEUS images and 
videos were stored in DICOM format on a hard disk at the hospital and 
sent to our study center. Finally, six radiologists with more than 15 years 
of experience in conventional breast ultrasound and breast CEUS were 
independently evaluated for image features at the study center (Figure 2).

In B-mode breast ultrasound, the “strip-shaped echoic” feature 
represents thin, elongated, and hyperechoic lines or bands within the 
breast tissue or mass. CEUS characteristics were evaluated, including 
shape (regular or not), margin (well or poorly defined), wash-in time 
(earlier, later, synchronous), enhancement degree (hyperenhancement, 
isoenhancement, hypoenhancement), complete wash-out time of 
lesions (≤5 min or not), uptake pattern (centripetal, centrifugal, diffuse, 
no enhancement), as well as exhibitions of the homogeneous pattern, 
rim-like enhancement, claw-shaped pattern, perfusion defects, lesion 
size compared with conventional ultrasound increased, and nourishing 
vessels. The time-intensity curve (TIC) features were evaluated using 
external perfusion software (VueBox™) to quantitatively evaluate the 
microvasculature of the tumors through the CEUS videos.

2.3 Statistical analysis

R version 3.4.4 software, SPSS Version 23.0 (IBM, Armonk, 
NY, United  States), and MedCalc 19.5.6 were used to perform 
statistical analysis. Statistics are described as mean ± standard 

deviation or numbers with percentiles for distribution. The t-test, 
chi-square test, and the Least Absolute Shrinkage and Selection 
Operator (LASSO) were used to select the features. The 
regularization property of LASSO constrains the model 
coefficients through the penalty parameter (λ) and shrinks the 
coefficients of less important variables to zero to mitigate 
overfitting (27, 28). Logistic regression (LR), support vector 
machine (SVM), random forest (RF), eXtreme Gradient Boosting 
(XGB), late fusion model based on the voting method, and XGB 
combined with LR were trained to classify HER2-positive status 
and HER2 low expression status in the two groups. A combination 
of XGB (constructing new features based on existing features) and 
LR (classifiers) was used to establish the prediction model. 
Prediction models were established on the training set, and their 
performance was tested on the validation set (29). For internal 
validation, leave-one-out cross-validation (LOOCV) was 
performed to assess the predictive accuracy and stability of the 
training set. External validation was performed to test the 
performance of the trained models, evaluate their generalizability, 
and identify potential biases. The receiver operating characteristic 
curves (ROC) of the predictive models were analyzed. The area 
under the receiver operating characteristic curve (AUC), accuracy, 
sensitivity, specificity, and 95%CI were assessed. The DeLong test 
was used to compare differences between the AUC values of the 
different models.

3 Results

3.1 Clinical characteristics

The clinical characteristics of 140 patients with breast cancer 
(mean age 52.35 ± 11.03 years, range 23–85 years) with 140 masses are 
shown in Table 1. In the training cohort, 104 patients were enrolled, 
including 20 HER2-positive cases. Of the 107 patients in the HER2 
low expression group, 79 were included in the training cohort, with 56 
IHC 2 + or 1 + and 23 IHC 0 cases.

FIGURE 2

CEUS and B-mode ultrasound images of a patient with HER2-positive breast cancer.
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3.2 B-mode and CEUS characteristics

In 140 patients with breast cancer, the image features of 
B-mode ultrasound, CEUS, and TIC were assessed 
(Supplementary Table 2). According to the LASSO regression in 
clinical B-mode with CEUS and TIC of CEUS characteristic 
groups, seven features related to HER-2 positive breast cancer, 
including tumor size (cm), echotexture, strip-shaped echoic, 
macrocalcifications, microcalcifications, perfusion defects, and fall 
time (FT) of TIC, were selected (Figure  3). No clinical 
characteristics were observed. The distribution of the selected 
characteristics is listed in Table 2.

Characteristics of B-mode imaging with CEUS.

	

+ ∗  
+ ∗  
+ − ∗ −  
+ − ∗  
+ ∗  
+ − ∗

0.19952497 0.01610785 Tumor size
0.01815141 Echotexture

0.07019562 Strip shaped echoic
0.01206527 Macrocalcifications

0.04789061 Microcalcifications
0.01622952 Perfusion defect .

Characteristics of CEUS TIC.

	 − + − ∗  1.21674647 0.01299429 FT .

In 107 cases in the HER2 low expression group, the image features 
of the three modalities were assessed in Supplementary Table  3. 
Imaging features related to HER2 low expression were selected by 
LASSO regression, including location, shape, strip-shaped echoic, 
perfusion defect, mean transit time (mTT), and FT. There were no 
clinical characteristics observed. The selected characteristics are listed 
in Supplementary Table 4.

Characteristics in B-mode.

	

+ ∗ + ∗      
+ ∗ −  

0.13508836 0.16800326 Location 0.31750333 Shape
0.02871666 Strip shaped echoic .

Characteristics of CEUS images.

	 + − ∗  1.3810282 0.6861225 Perfusion defect .

Characteristics in TIC of CEUS.

	 + − ∗ + − ∗      1.2891179887 0.0002615468 mTT 0.0197138051 FT .

3.3 Machine learning models for the 
prediction

The prediction model was established on the training set, and its 
performance was tested on the validation set. The effectiveness and 
stability of the training set, consisting of 104 cases, were validated 
using LOOCV, and the accuracy and Kappa were 0.871 and 0.446, 
respectively. In the training set of FISH positive (IHC 3+) and negative 
groups, six classifiers, including logistic regression (LR), support 
vector machine (SVM), random forest (RF), XGB (XGBoost), 
decision-level fusion technique of hard voting based on LR, SVM, and 
XGB, as well as the XGB combined with the LR model (29, 30).

The final result of the decision-level fusion model was determined 
by three single classifiers: LR, SVM, and XGB (better than RF in this 
study). The hard-voting progression is shown in Figure 4. In the XGB 
combined with LR prediction model, XGB was used to construct new 
variables, reflecting the correlation of the selected variables. LR was 
used to gather the selected and new variables to construct the 
prediction model and to calculate the significance and weight 
coefficients of each variable. In the prediction of the HER2-positive 
breast cancer group, seven variables, including a novel feature (V11) 
generated by the XGB tree-based model trained on existing features, 
were selected for the final LR prediction model based on the feature 
importance rankings (Supplementary Figure 1).

Classifiers of LR, SVM, RF, and XGB were established in three 
imaging modalities: (1) B-mode ultrasound, (2) B-mode ultrasound 
combined with CEUS, and (3) B-mode ultrasound combined with 
CEUS and TIC. The other two types of fusion models were used in the 
third multi-modality to predict HER2-positive breast cancer.

The AUC, sensitivity, specificity, and accuracy of the four 
classifiers in three modalities are shown in Table 3. The sensitivities of 
SVM were increased from 0.728 (95%CI: 0.554–0.862) to 0.778 
(95%CI: 0.608–0.899) by adding the CEUS modality. In the three 
modalities group, SVM performs the best AUC value in the four single 
classifiers, with an AUC of 0.806 (95%CI: 0.640–0.918), a sensitivity 
of 0.833 (95%CI: 0.359–0.996) and a specificity of 0.767 (95%CI: 
0.577–0.901). The AUC values improved with the enrichment of the 
imaging modalities. In the third modality, the performances of the 
other two fusion models are also shown in Table 3.

According to the predictive performance of LR, SVM, RF, and 
XGB, the three top-performing individual classifiers for HER2 
expression, LR, SVM, and XGB, were combined using hard voting to 

TABLE 1  Clinical characteristics of 140 patients in training and validation 
sets.

Total 
(n = 140)

Training 
set 

(n = 104) 
(%)

Validation 
set 

(n = 36) 
(%)

p 
value

Age (years)
52.35 ± 1.03 

(23–85)
53.13 ± 11.07 50.11 ± 10.75 0.158

BMI (kg/m2)

24.20 ± 5.04 

(13.65–

63.70)

24.46 ± 5.30 23.46 ± 4.18 0.308

Menopause 0.608

 � Premenopause 61 44 (42.3) 17 (47.2)

 � Postmenopause 79 60 (57.7) 19 (52.8)

Family history of 

breast cancer
1.000

 � No 133 99 (95.2) 34 (94.4)

 � Yes 7 5 (4.8) 2 (5.6)

BMI: body mass index.
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generate a consolidated prediction result. Thus, the decision-level 
fusion model was constructed using hard voting based on LR, SVM, 
and XGB to establish the fusion model, and the weighted ratio was set 
as 1:1:1. In the six models, the fusion model of LR, SVM, and XGB 
classifiers performed best, with an AUC value of 0.869 (95%CI: 0.715–
0.958), a sensitivity of 1.000 (95%CI: 0.541–1.000), and a specificity of 
0.668 (95%CI: 0.472–0.827). The ROCs of the six classifiers in B-mode 
ultrasound combined with CEUS and TIC modalities are shown in 
Figure 5. In the training cohort of 104 cases, 31 cases with certain IHC 
results were assessed as IHC 2 + by CNB, and two of them were 
reclassified as IHC 3 + according to FISH results. The fusion model of 
LR, SVM, and XGB also predicted them as IHC 3 + cases.

In the training set of the HER2 low expression and HER2-negative 
groups, prediction models based on the six classifiers in the third 
modality were also established. In the training set of 79 participants, 
the accuracy and kappa values were 0.864 and 0.637, respectively. The 
AUC values, sensitivity, specificity, and accuracy are shown in Table 4. 
The decision-level fusion model was selected as the voting result of 
LR, SVM, and XGB, and the weighted ratio was set at 1:2:1, according 
to the performance of the classifiers. The fusion model of LR, SVM, 
RF, and XGB classifiers also gets the highest AUC value of 0.747 
(95%CI: 0.548–0.891), sensitivity of 1.000 (95%CI: 0.735–1.000), and 
specificity of 0.438 (95%CI: 0.198–0.701). The ROCs of the six 

prediction models in the HER2 low expression and negative group are 
shown in Figure 6. Both the AUCs for predicting HER2 status were 
increased using the decision-level machine learning approach.

4 Discussion

4.1 Key findings in the context of prior 
literature

HER2-targeted therapy can reduce recurrence and increase the 
likelihood of breast-conserving surgery in patients with HER2-
positive breast cancer. In this study, the fusion model of multiple 
single classifiers, based on machine learning approaches, performed 
best in predicting HER2 3 + and HER2 2+/1 + expression, with an 
AUC of 0.869 (95%CI: 0.715–0.958) and 0.747 (95%CI: 0.548–0.891), 
respectively. It could also predict the two equivocal IHC 2 + breast 
cancers as HER2 3+, in concordance with the FISH results.

In this research, imaging features of multimodalities, including 
B-mode ultrasound, CEUS, and TIC, were obtained by assessment of 
radiologists. Previous studies that predicted HER2 expression using 
imaging features are shown in Supplementary Table 5. Compared with 
radiomic features acquired by software or a single ultrasound 

FIGURE 3

Feature selection in B-mode, CEUS, and TIC of the CEUS group by LASSO regression in 140 patients with breast cancer. (a,b) Selection of B-mode 
ultrasound and CEUS features. (c,d) Selection of TIC parameters.
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modality, these features are more available and can provide abundant 
vascularity information. Vasculogenic mimicry (VM), which differs 
from angiogenesis formed by endothelial cells, is a vascular structure 
formed by cancer cells that transit tumor and blood cells in a channel 
network and is involved in tumor neovascularization (31, 32). In 
breast cancer, VM is associated with HER2-positive cases, which may 
contribute to two anticoagulant-secreted proteins, Serpine2 and Slpi, 
promoting VM formation. Both of them mostly occurred in HER2-
positive patients with breast cancer (33, 34). Studies have shown that 
CEUS can assess VM density in vitro, and the quantitative parameters 
of TIC are related to VM (35, 36). Thus, the microbubbles of CEUS 
may provide information on HER2-positive breast cancer 
neovascularization at the molecular level.

Previous studies have mostly focused on HER2 3 + expression in 
breast cancers using radiomic approaches. To the best of our 

knowledge, this is the first study to use LR, SVM, and XGB fusion 
models by voting decision method to prospectively predict HER2 
3 + and 2+/1 + expression levels in breast cancer based on a 
multicenter study of contrast Sonazoid-enhanced ultrasonography. In 
predicting HER2-positive and HER2-low expression BC cases, the 
AUC values of the fusion model in both of the two groups were the 
highest compared with other single machine learning models.

4.2 Clinical implications and innovations

In this study, tumor size, echotexture, strip-shaped echoic, 
macrocalcifications, and microcalcifications on B-mode ultrasound, 
perfusion defects on CEUS, and FT of TIC were predictive factors of 
HER2-positive breast cancer. Factors including tumor location, shape, 
strip-shaped echoic in B-mode ultrasound, perfusion defect in CEUS, 
mTT, and FT of TIC could predict HER2 low expression. Strip-shaped 
echogenic perfusion defects and FT are also predictors of HER2-
positive expression, indicating that these features may be  closely 
related to HER2 protein expression levels (2, 37).

Tumor size may reflect growth, indicating the prognosis of 
malignant tumors. Features of macrocalcifications and 
microcalcifications on B-mode ultrasound were associated with 
HER2-positive breast cancer in this study, which was also consistent 
with previous studies (38–41). Macrocalcification is regarded as the 
degeneration of the breast caused by injury and inflammation 
unrelated to cancer, while microcalcification is regarded as a calcium 
spot caused by rapid decomposition of cancer cells (38). With high 
aggressiveness and poor prognosis, HER2-positive breast cancer may 
be related to a faster growth rate than negative cases, indicating that 
more cell decomposition of the breast exists in positive cases (42, 43).

A strip-shaped echo mostly indicates the fibrosis inside the tumor. 
Malignant lesions can exhibit disordered hyperechoic strands, whereas 
benign lesions tend to exhibit organized linear echoes. Fibrosis in 
breast tumors is histologically regarded as fibroblasts and collagen 
fibers in the tumor center (44). Some studies have reported that 
fibrosis is positively related to HER2 expression and high 
aggressiveness of tumors (45), which is in contrast to the results of this 
study. In this study, fewer strip-shaped echoes were observed in 
HER2-positive breast cancer. A possible reason may be that most of 
our breast cancer cases were in stage I or II (100/104), and tumor cells 
were in the rapid growth phase, without undergoing necrosis and 
fibrosis. Further studies are still needed to determine the relationship 
between strip-shaped echoes and HER2 expression (45, 46).

Previous studies have also revealed that high HER2 expression 
might be related to the increased invasiveness of tumor cells and the 
formation of neovasculature (47). In some studies, perfusion defects 
in CEUS more frequently occurred in HER2-positive breast cancer, 
which might be caused by ischemic necrosis of the tumor, contributing 
to the slower blood vessel growth rate than the increased oxygen 
consumption of the tumor cells (48, 49). Other studies have also 
revealed that perfusion defects might be  associated with uneven 
distribution of the contrast agent caused by heterogeneity and blood 
vessel distribution inside the tumor (47, 50). However, in this study, 
perfusion defects in Sonazoid-based CEUS were negatively associated 
with HER2-positive and low-expression breast cancers. In HER2 
expression cases, less fibrosis was observed, indicating the presence of 
abundant vascularity, compared with HER2-negative cases.

TABLE 2  Selected features of 140 patients in training and validation sets.

Validation 
set (n = 36) 

(%)

Training set 
(n = 104) (%)

Total 
(n = 140)

Tumor size (cm) 2.45 ± 1.18 2.11 ± 1.05
2.20 ± 1.09 

(0.5–5.9)

Echotexture

 � Homogeneous 11 (30.6) 26 (25.0) 37

 � Heterogeneous 25 (69.4) 78 (75.0) 103

Strip-shaped echoic

 � Absence 11 (30.6) 32 (30.8) 43

 � Present 25 (69.4) 72 (69.2) 97

Macrocalcifications

 � Absence 7 (19.4) 14 (13.5) 21

 � Present 29 (80.6) 90 (86.5) 119

Microcalcifications

 � Absence 31 (86.1) 71 (68.3) 102

 � Present 5 (13.9) 33 (31.7) 38

Perfusion defects

 � Presence 13 (36.1) 34 (32.7) 47

 � Absence 23 (63.9) 70 (67.3) 93

FT (s) 17.45 ± 18.46 17.49 ± 13.33 -

CEUS: contrast-enhanced ultrasound; TIC: time intensity curve; FT: fall time.

FIGURE 4

Hard voting progression of the decision-level fusion model.
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TABLE 3  Diagnostic performance of the classifiers in predicting HER2-positive patients.

AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy

B-mode ultrasound

RF 0.567 (0.392–0.730) 0.167 (0.004–0.641) 0.967 (0.828–0.999) 0.833

B-mode ultrasound and CEUS

SVM 0.778 (0.608–0.899) 0.667 (0.223–0.957) 0.867 (0.693–0.962) 0.833

RF 0.583 (0.408–0.745) 0.167 (0.004–0.641) 1.000 (0.884–1.000) 0.861

B-mode ultrasound, CEUS, and TIC

LR 0.633 (0.457–0.787) 0.667 (0.223–0.957) 0.767 (0.577–0.901) 0.722

SVM 0.806 (0.640–0.918) 0.833 (0.359–0.996) 0.767 (0.577–0.901) 0.778

RF 0.583 (0.408–0.745) 0.167 (0.400–0.641) 1.000 (0.884–1.000) 0.861

XGB 0.700 (0.525–0.841) 0.500 (0.118–0.882) 0.900 (0.735–0.979) 0.833

XGB + LR 0.689 (0.513–0.832) 0.668 (0.223–0.957) 0.633 (0.439–0.801) 0.639

LR + SVM + XGB 0.869 (0.715–0.958) 1.000 (0.541–1.000) 0.668 (0.472–0.827) 0.722

CEUS: contrast-enhanced ultrasound; TIC: time intensity curve; LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.

FIGURE 5

ROCs of the classifiers in predicting HER2-positive breast cancer based on B-mode ultrasound, CEUS, and TIC in the (a) training and (b) validation sets.

TABLE 4  Diagnostic performance of the classifiers in predicting HER2 low expression patients based on B-mode ultrasound, CEUS, and TIC 
characteristics.

Models AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy

LR 0.698 (0.496–0.856) 0.750 (0.428–0.945) 0.625 (0.354–0.848) 0.679

SVM 0.687 (0.486–0.848) 0.667 (0.349–0.901) 0.813 (0.544–0.960) 0.750

RF 0.615 (0.413–0.791) 0.917 (0.615–0.998) 0.313 (0.110–0.587) 0.571

XGB 0.625 (0.423–0.799) 0.750 (0.428–0. 945) 0.500 (0.247–0.753) 0.607

XGB + LR 0.654 (0.451–0.822) 0.917 (0.615–0.998) 0.313 (0.110–0.587) 0.571

LR + SVM + XGB 0.747 (0.548–0.891) 0.917 (0.615–0.998) 0.500 (0.247–0.753) 0.679

AUC, area under curve; CI, confidence interval; LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.
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In SVM models of three modalities, the sensitivities in predicting 
HER2-positive breast cancer were increased by CEUS, from 0.728 
(95%CI: 0.554–0.862) to 0.778 (95%CI: 0.608–0.899). By adding the TIC 
feature, the sensitivity could also be increased, up to 0.806 (95%CI: 0.640–
0.918). This result may indicate that the evaluation of microvasculature 
could improve the performance of prediction models in HER2-positive 
breast cancer, especially for the evaluation of TIC features. In previous 
studies of Sonazoid-based CEUS in liver cancer, short mTT and FT could 
be  factors that differentiate angiomyolipoma and hepatocellular 
carcinoma from hepatocellular carcinoma because of the different 
amounts of blood vessels (51). In this study, short FT may be associated 
with HER2 expression (IHC3+, 2+, and 1+) in breast cancer, compared 
with HER2-negative expression cases. This may be related to the rapid 
excretion rate of Sonazoid microbubbles from intratumoral vessels in 
HER2 expression breast lesions. FT may be related to the number of blood 
vessels inside tumors because abundant vessels may contribute to a fast 
blood flow discharging from the draining vein and a short contrast agent 
staying time. Therefore, HER2-expressing breast tumors tend to exhibit 
higher internal vascularity.

In the 104 cases of patients with breast cancer, there were a total 
of 31 cases defined as IHC 2 + for the first time of CNB, with certain 
results of biopsy. Two of these were finally defined as IHC 
3 + according to the FISH results, revealing that 6.5% (2/31) of HER2-
positive cases were underestimated by IHC in this study. In the 
prediction results of the LR + SVM + XGB fusion model, the two cases 
were also predicted as IHC 3+, indicating that the fusion predictive 
model could improve the detection of IHC 3 + compared with the 
results of CNB by pathologists.

4.3 Limitations and future directions

Our study used LR, SVM, and XGB decision-level fusion 
models to predict three HER2 expression levels in breast cancer in 

two cohorts based on a prospective multicenter study of contrast 
Sonazoid-enhanced and B-mode ultrasound. However, this study 
has some limitations. First, the number of cases was limited 
because of the use of Sonazoid in breast CEUS multicenter studies. 
Second, this study only contained image features evaluated by 
radiologists. Radiomic features can reflect unrecognizable and 
quantifiable messages to the naked eye. Using radiomic approaches 
in multi-modal ultrasound may improve the prediction of BC 
biomarkers. However, radiomic features extracted by software were 
less available compared with the features assessed by radiologists 
in this study. Third, our study only included images from B-mode 
ultrasound and CEUS. Additional modalities, such as MRI and 
mammography, are expected to be included in the prediction of 
HER2 expression.

5 Conclusion

In conclusion, multi-mode ultrasound, including B-mode 
ultrasound, CEUS, and TIC, can predict HER2 expression status. 
Moreover, the fusion model of machine learning classifiers can 
improve the prediction results.
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