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In January of 2015, under the 1st International Caparica Conference in 
Antibiotic Resistance, a Research Topic entitled: “Surveying Antimicrobial 
Resistance: Approaches, Issues, and Challenges to overcome”, was published
(http://journal.frontiersin.org/researchtopic/3763/surveying-antimicrobial-resistance-
approaches-issues-and-challenges-to-overcome). The problem of antimicrobial 
resistance (AMR), caused by excessive and inappropriate use of antibiotics, is a public 
health issue that concerns us all. The introduction of penicillin in the 1940s, the start of 
the antibiotics era, has been recognized as one of the greatest advances in therapeutic 
medicine. However, according to the World Health Organization (WHO), AMR infections 
are now an increasing worldwide public health threat and a post-antibiotic era is 
imminent, where common infections and minor injuries could be fatal. AMR is a typical 
‘One Health’ problem, in which livestock animals and the environment constitute AMR 
reservoirs and transmission routes to and from the human population. Without effective 
antimicrobials to counter and prevent infections, other major achievements in modern 
medicine, such as organ transplantation, cancer chemotherapy and major surgery, risk 
being compromised.

AMR infections in animals have negative outcomes on animal health, welfare, 
biosecurity and production. In 2006, the ban of growth promoting antibiotics 
highlighted antibiotic use in animal production as a risk factor in the development 
of antibiotic resistant bacteria. Bacteria can be transferred to humans via several 
routes; consumption of animal products, exposure through contact with animals, 
and the contamination of ground and surface waters by animal waste products. 
Therefore, it is of utmost importance that antimicrobial use in animals is reduced to 
a minimum, without compromising animal health and welfare.

Mechanisms of bacterial antibiotic resistance are classified according to the types of 
antibiotic molecules or their targets in the cell. Environmental antibiotic-resistance 
genes are spread then acquired by clinically relevant microorganisms. Many resistance 
genes are conveyed into pathogen genomes via mobile genetic elements such as 
plasmids, transposons or integrons, increasing the propagation of potential resistant 
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pathogens. Substantial progress has already been made in elucidating the basic 
regulatory networks that endow bacteria with their extraordinary capacity to adapt 
to a diversity of lifestyles and external stress factors.

So how will we face bacteria in the future?
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Editorial on the Research Topic

Surveying Antimicrobial Resistance: The New Complexity of the Problem

The 2nd International Caparica Conference in Antibiotic Resistance (IC2AR) was held in Caparica,
Portugal from 11 to 15 June 2017. This very successful meeting had a clear One Health vision and
attracted 216 attendees from 39 countries keen to exchange knowledge and expertise on diverse but
interrelated topics. Formal contributions totaled over 131 oral presentations, 19 short presentations
and 49 posters. The results and insights from this meeting are now being made accessible to the
general scientific community in this special issue of the Frontiers in Microbiology Research Topic.

The introduction of penicillin in the 1940s, the start of the antibiotics era, has been recognized
as one of the greatest advances in therapeutic medicine. However, according to the World Health
Organization (WHO), antimicrobial resistant infections are now an increasing worldwide public
health threat and a post-antibiotic era is imminent when even common infections and minor
injuries could be fatal. Antimicrobial resistance (AMR) reduces the effectiveness of treatment and
patients remain infected for a longer period, thereby increasing the potential to spread resistant
microorganisms to others, according to WHO. Without effective antimicrobials to counter and
prevent infections, other major achievements in modern medicine, such as organ transplantation,
cancer chemotherapy and major surgery, risk being compromised. According to The State of the
World’s Antibiotics, two-thirds of the 100,000 tons of antibiotics produced globally each year are
used in animal husbandry, and of the 27 antimicrobials used in animals, 18 are also used for human
medicine. In terms of global sales in 2009, the top three antimicrobial classes for use in animals were
macrolides, penicillins and tetracyclines, all of which are categorized as being critical for human
medicine. The growth of global trade and travel allows resistant microorganisms to be spread
rapidly to distant countries and continents, which threatens health security and risks damaging
trade and economics.

AMR is becoming one of the most threatening public health issues worldwide. In Europe, the
Mediterranean countries are most at risk, possibly due to a complex combination of antibiotic use
practices, socio-economic factors and climate changes. For economies that rely heavily on tourism
and export of food crops, the current situation is delicate. For the well-being and safety of the
populations and for socio-economic stability, the increase in AMR must be reversed.
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AMR infections in animals have negative outcomes on animal
health, welfare, biosecurity and production. Growth promoting
antimicrobials have been banned in the EU countries in 2006,
however they are in widespread use in other countries outside
the EU. Antibiotic use in animal production was highlighted as a
risk factor in the development of antibiotic resistant bacteria that
can be transferred to humans via several routes.

With the increasing resistance of bacterial pathogens to
present-day antibiotics and the lack of a robust pipeline to
generate novel antimicrobial substances, more innovative and
efficient approaches are needed to develop anti-infective drugs.
Proteomics and genomics technologies already offer sensitive
and specific methods for identification of microbial food
contaminants and their toxins. So, there is a lot to learn and
discuss about these cutting-edge methods.

AMR within populations of different infectious agents is a
worldwide public health threat. Already the available treatment
options for common infections in some settings are becoming
ineffective. There are now reports of bacterial resistance to all
antibiotic classes used in either human or veterinary medicine,
and in several cases, of an association between antibiotic use and
the development of clinical resistance. To counter this emergent
problem, theWorld Health Organization has appealed for urgent
and concerted action by governments, health professionals,
industry, civil society and patients to slow down the spread of
drug resistance, limit its impact today, and so preserve medical
advances for future generations.

The prevalence of AMR varies greatly between and within
countries and between different pathogens. The widespread use
of antimicrobial agents in human and veterinary medicine for
therapeutic and prophylactic purposes has been identified as the
main determinant for the emergence and spread of resistant
bacteria. However, there are hardly any specific integrated studies
that indicate how the risk could be limited. Progress has been
made in recent years in understanding the AMR mechanisms
underlying the emergence of the resistance genes and their
spread, but there are still major gaps. Co-integrated research
on resistance in animals and the environment together with in-
depth pharmacokinetics and pharmacodynamics of antibiotics
will contribute to this understanding. As One Health Initiatives
get underway, a global perspective must be encouraged and
maintained even for very focused investigations.

Livestock and the environment constitute AMR reservoirs
and transmission routes to and from the human population.
Environmental antibiotic resistance genes are spread then
acquired by clinically relevant microorganisms. Many resistance
genes are conveyed into pathogen genomes via mobile genetic
elements such as plasmids, transposons or integrons, increasing
the propagation of potentially resistant pathogens and the
intricacies of these adaptive mechanisms are still the focus of
investigation. This Research Topic presents original research
on integrative and conjugative elements and the staphylococcal
cassette chromosome, as well as new studies of resistance gene
variants borne by plasmids or transposons, and characterization
of the regulation of their gene expression.

Substantial progress has already been made in elucidating
the basic regulatory networks that endow bacteria with their

extraordinary capacity to adapt to a diversity of lifestyles
and external stress factors. The articles collated here describe
microbial life in a vast spectrum of natural and manmade
settings. Just to illustrate this variety, micro-organism samples
studied have been collected from 2m depth of sediment on
the Red Sea coast and from the International Space Station
orbiting 400 km above the Earth’s surface (Rehman and Leiknes;
Sobisch et al.). Microbes from aquatic ecosystems of seas, rivers
and wetlands have also been analyzed (Rehman and Leiknes;
Tuo et al.; Sen et al.). Farming and food production contexts
cover organic, conventional and intensive agriculture (Zheng
et al.; Cadena et al.; Liu et al.; Miranda et al.; Armalyte et al.;
McMillan et al.; Zajac et al.). The non-food animal hosts studied
range from wild primates in Brazilian forests and flocks of
crows over US farmland to pet cats and dogs in Spanish
homes (Grassotti et al.; Roberts et al.; Gómez-Sanz et al.; Sen
et al.). Clinical research comes from hospitals in a range of
different healthcare systems with presentation of a range of
pathologies and includes the analysis of historical specimens
providing some longer-term perspective that is valuable in
depicting the timescale of mutation and spread of resistance
(Manageiro et al.; Bostanghadiri et al.; Ferreira et al.; Palmeiro
et al.; Pinto et al.). The fundamental ecology of microbiota is
still a strong focus with investigations of quorum sensing, biofilm
formation, stress responses and resistance mechanisms (Knight
et al.; Rehman and Leiknes; Martins et al.; Sobisch et al.; Yang
et al.). Without a robust pipeline to generate novel antimicrobial
substances, more innovative and efficient approaches are needed
to develop anti-infective drugs and some of these will be based on
specific biological functions or the dynamics and interactions of
microbial populations (Grassotti et al.; Igrejas et al.; Jäger et al.;
Troiano et al.; Zhang et al.; Armalyte et al.).

Improvement of food safety standards helps to strengthen the
competitiveness of the food industry. To achieve this, microbial
food contamination, risks and exposures must be analyzed,
assessed, monitored, controlled and traced throughout the food
supply chains from production and storage to processing,
packaging, distribution, catering, and preparation at home.Many
of the papers published here deal with some stage or aspect of this
complex process (Dominguez et al.; Cui et al.; McMillan et al.;
Zajac et al.). It is important to design research that contributes
to ensuring the safety of food of animal origin while addressing
the sustainability of food production, supply and consumption,
along the whole food chain and related services from field to
fork. When dealing with the issue of safe food, healthy diets
and sustainable consumption, the control of foodborne outbreaks
must always be a priority (Isidro et al.). Current research
focuses strongly on the detection of foodborne pathogens and
specific spoilage organisms from food of animal origin along
different production chains (slaughterhouses, restaurants, meat
product manufacturers, fisheries). Important microbiological
hazards responsible for foodborne outbreaks are analyzed,
such as those involving Salmonella sp., Campylobacter spp.,
E. coli, Listeria spp., or Aeromonas spp. (Bai et al.; Hormeño
et al.; Peng et al.; Beshiru et al.; Cyoia et al.; Islam et al.).
Researchers will continue to develop new approaches to analyze
and interpret more complex and emerging microbial pathogens
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using molecular, serotyping and phylogenetic methods. Expected
developments will be in pinpointing and surveying prevalence,
contamination sources, public health risks, and strategies to
improve food safety and quality (Dandachi et al.; Igrejas et al.;
Domokos et al.; Zeineldin et al.). For example, packaging,
temperature treatments, and traditional methods for meat
preservation (fermentation, drying, spices and herbs, wine)
may be revisited with modern technologies (Sparo et al.;
Igrejas et al.). With the policies to reduce the use of additives
and promote environmentally sustainable production of meat
products, research to develop and validate organic preservation
procedures will be necessary (Beshiru et al.; Li et al.; Sen et al.;
Wieczorek et al.).

On the subject of food safety, studies on the resurgence
of AMR as a pandemic threat must be included. Presently
and in the near future, antimicrobial peptides produced by
different microorganisms will be characterized to generate
novel applications in human and veterinary medicine and in
food conservation. Such discoveries will also facilitate research
on antibiotic resistance and molecular characterization of
virulence factors in microbiota from different ecological niches.
Antimicrobial peptides are indeed the subjects of original
research, review, and opinion articles published here which give
some indication of current strategic thinking (Pizzolato-Cezar
et al.; Vasilchenko and Rogozhin).

Proteomics and genomics technologies already offer sensitive
and specific methods for identification of microbial food
contaminants and their toxins. A perusal of the techniques and
technologies used in AMR research shows that whole-genome
sequencing is now well-entrenched alongside conventional
molecular and microbiological techniques, an approach that
is clearly increasing the diversity, depth and pace of AMR
monitoring and basic research. Impact studies that analyze and
assess some of the cumulated economic, epidemiological or
environmental data are also featured here (Annavajhala et al.).

To summarize, this Research Topic brings together a group of
leading researchers from all over the world who have described
different aspects of AMR patterns found in diverse ecosystems.
The articles address the epidemiology of resistance in animal
and zoonotic pathogens, mobile elements containing resistance
genes, the omics of AMR, emerging AMRmechanisms, control of
resistant infections, establishing antimicrobial use and resistance
surveillance systems, and alternative strategies to overcome the
problem of AMR worldwide. In this conference an attempt was
made to present the latest research on possibilities to manage
this question. The meeting carried out an integrated approach to
research and presented a universal vision of the importance of
antimicrobial resistance in different ecosystems and what can be
done about it.

We want to thank the reviewers for their many thoughtful
and insightful comments, and the authors for their high-quality
contributions. In closing, we would like to encourage readers
to participate in the 4th edition of the International Caparica
Conference in Antibiotic Resistance to be held in 2021 (http://
www.bioscopegroup.org/index.php/congresses).
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The increased presence of clinically relevant multidrug resistant bacteria in natural

environments is an emerging challenge for global health care. Little is known regarding

the occurrence of extended-spectrum beta-lactamase producing Escherichia coli

(ESBL-E. coli) from environmental sentinels in Pakistan. The goal of the current study

was to gain insights into the prevalence and phylogenetic relationships of ESBL-E. coli

recovered from wild birds in Pakistan during winter migration. After initial screening of

fecal samples on selective chromogenic agar, ESBL-E.coli were analyzed phenotypically

using the Vitek-2 automated system. Genotypic characterization was performed using

whole genome sequencing (WGS) followed by an in-depth in silico analysis. Of 150

birds screened, 26 (17.3%) were fecal carriers of ESBL-E. coli. Of these, 88.4%

isolates exhibited multidrug resistance (MDR) phenotypes. Resistance to cefotaxime,

ceftazidime, ampicillin, doxycycline, tetracycline and sulfamethoxazole/trimethoprim

(CTX-CAZ-AM-DC-TE-SXT) represented the most common pattern of MDR (76.9%).

WGS data analysis found blaCTX-M-15 as the predominant ESBL genotype (92.3%). Other

genes encoding resistance to sulfonamides (sul1/sul2/sul3), aminoglycosides (strA, strB,

aadA1, aadA2, aadA5, aac(3)-IId-like, aac(3)-IVa-like and aph(4)-Ia), trimethoprim (dfrA14

or dfrA17), tetracyclines [tet(A)/tet(B)], and fluoroquinolones (qnrS1) were detected

commonly, often encoded on IncF-type plasmids (76.9%). ESBL-E. coli were assigned to

17 different sequence types (STs) of which ST10 and ST7097 (4 isolates each) were the

most abundant followed by ST4720, ST93, and ST1139 (2 isolates each). Core-genome

phylogeny of the isolates found low numbers (0–29) of single nucleotide polymorphisms

(SNPs) in isolates belonged to ST7097 originated from two different locations (Chashma

barrage and Rasul barrage). Similar trends were found among isolates belong to ST1139.

In addition, WGS-based plasmid typing and S1-digestion found plasmids of the same

pMLST type (IncF[F-:A-:B53]) and similar sizes in different bacterial and avian hosts

suggesting horizontal gene transfer as another possibility for the spread of ESBL-E. coli

in avian wildlife in Pakistan.

Keywords: antimicrobial resistance, wild birds, ESBL-producing E. coli, genomic epidemiology, Pakistan
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INTRODUCTION

The intensive use of antimicrobials in human and veterinary
medicine has resulted in an emergence of antimicrobial
resistance (AMR) in humans, animals and the environment
at large (Radhouani et al., 2014; Berendonk et al., 2015).
Enterobacteriaceae producing ESBLs have increasingly emerged
due to the widespread use of cephalosporins and represent a
major challenge in infection control (Pitout and Laupland, 2008).
Currently, the most commonly encountered ESBL enzyme is the
plasmid-encoded CTX-M-type. In particular, an E. coli clone
of sequence type 131 (ST131) carrying the CTX-M-15 ESBL
has been commonly found in clinical and non-clinical settings
(Nicolas-Chanoine et al., 2014).

Previous studies have suggested the environment including
water, soil and wildlife as the source for clinically relevant
ESBL-E. coli (Wright, 2010; Blaak et al., 2015; Guenther
et al., 2017), thereby possibly transmitting certain ESBL-E. coli
clonal lineages or ESBL-plasmids from natural environments to
humans, livestock or companion animals. Wild migratory birds
have been discussed as sentinels and a potential vectors for the
transboundary spread of ESBL- producing bacteria (Raza et al.,
2017). Furthermore, wildlife has been considered as reservoir of
potentially zoonotic extra-intestinal pathogenic E. coli (ExPEC)
strains in earlier studies (Ewers et al., 2009; Gordon and Cowling,
2012).

Recently, it has been suggested that certain clonal lineages
distinguished by very low number of single nucleotide
polymorphisms (SNPs) circulate at the human-animal-
environment interfaces which strongly supports the One
Health perspective of AMR (Falgenhauer et al., 2016; Schaufler
et al., 2016). Pakistan is among the Asian countries that harbor a
large number of migratory birds during winter migration along
the Indus route coming from Siberia and Central Asia. In this
study, we screened wild migratory birds from four different
wetland habitats along the Indus migration route in Pakistan
to assess the prevalence of ESBL-E. coli and to subsequently
characterize them in-depth via whole genome sequencing
to assess AMR genes, multi locus sequence types (MLST),
plasmid replicon types, and virulence-associated genes (VAGs).
Additionally, the core genomes of identical STs were analyzed
for SNPs.

MATERIALS AND METHODS

Sample Collection and Isolation of ESBL-
E. coli
In a study conducted between 2013 and 2015, fecal samples
of 150 wild migratory birds were collected from four wetland
habitats in Pakistan (Figure 1; Raza et al., 2017). These birds
included Eurasian coot (Fulica atra: n = 60), mallard duck
(Anas platyrhynchos: n = 20), common pochard (Aythya farina:
n= 15), red headed pochard (Netta rufina: n=10), shoveler duck
(Anas clypeata: n= 15), Eurasian wigeon (Anas penelope: n= 15)
and rosy starling (Pastor roseus: n = 15). Fecal samples were
directly streaked on CHROMagar-ESBL plates (CHROMagar
Co., Paris, France) and incubated at 37◦C overnight. One

putative E. coli colony per sample was selected and confirmed
by API 20E biochemical strips (bioMérieux, Marcy l’Etoile,
France).

ESBL Confirmation and Antimicrobial
Susceptibility Testing
Confirmation of the ESBL production was done by double disc
synergy test according to the CLSI guidelines (CLSI, 2012)
and approved using the Vitek-2 compact system (AST-card
GN38, bioMérieux, Germany), which was also used for analyzing
additional phenotypic AMRs. Multi-drug resistance (MDR) was
defined as resistance to three or more different classes of
antimicrobials (Magiorakos et al., 2012).

Whole Genome Sequencing
DNA extraction of confirmed ESBL-E. coli isolates were
performed using MasterPureTM Purification Kit (Epicenter
Biotechnologies, WI) according to the manufacturer’s
instruction. Whole genome sequencing (WGS) and assembly of
reads was performed as previously described (Schaufler et al.,
2016; Guenther et al., 2017). Briefly, WGS was performed on
an Illumina MiSeq (Illumina, San Diego, CA) using an Illumina
Nextera XT library with 300 bp paired-end sequencing. Quality
control (QC) was performed using the NGS tool kit (70% of
bases with a phred score >20). QC report from the assembled
genomes has been provided in (Table S1). De novo assembly of
high-quality filtered reads into contiguous sequences (contigs)
and nodes was done using SPAdes. For each E. coli analyzed by
WGS, a minimum 90-fold coverage was yielded.

In Silico Analysis
WGS data from multiple bacterial isolates were analyzed
simultaneously for their multi-locus sequence types (MLSTs),
antibiotic resistance genes, plasmid replicon types and
pMLST using the Bacterial Analysis Pipeline Tool at the
web service of Center for Genomic Epidemiology (http://
www.genomicepidemiology.org/) (Thomsen et al., 2016).
In the case of quinolone resistance genes gyrA and parC
detection, the Resistance Gene Identifier (RGI) tool of CARD
(Comprehensive Antibiotic Resistance Database) was used
(McArthur et al., 2013). Virulence associated genes (VAGs)
were detected with an in-house reference sequence collection
which maps Illumina reads against chromosomal and plasmid
virulence genes found in the Virulence Factor Database for
E. coli (http://www.mgc.ac.cn/VFs/). In case of strains lacking
plasmids, the chromosomal location of the blaCTX−M gene
was also analyzed with Geneious v. 7.1.2 (Guenther et al.,
2017).

For phylogenetic analysis, SNPs between the core genome
of isolates were calculated using Harvest suite 1.0 (parsnp)
(Treangen et al., 2014) and the number of SNPs in any
two isolates were calculated using distance matrix generated
in MEGA 7.0 Software (http://www.mega software.net/). The
phylogenetic tree of the core genomes was visualized using iTOL
3 (http://itol.embl.de/) (Letunic and Bork, 2016).
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FIGURE 1 | Sampling location and migratory routes of wild birds studied.

S1 Digestion
Isolates displaying the pMLST type IncF[F-:A-:B53] were
analyzed by S1-nuclease PFGE (Guerra et al., 2004) using the
following running conditions: 1–25 s, 17 h, 6 V/cm, 120V.

RESULTS

Prevalence and Phenotypic Resistance of
ESBL-producing E. coli
Twenty-six of 150 birds were fecal carriers of ESBL-producing
E. coli (17.3%), which correspond to six different avian

species spread across all sampling areas (Table 1). Of 26
ESBL- producing E. coli isolates, 23/26 (88.4%) showed a
MDR phenotype. The most common MDR phenotype was
cefotaxime, ceftazidime, ampicillin, doxycycline, tetracycline
and sulfamethoxazole /trimethoprim (CTX-CAZ-AM-DC-
TE-SXT) found in 20/26 (76.9%) isolates (Table 1). In
general, trimethoprim/sulfamethoxazole resistance was the
most common non-beta-lactam phenotype (92.3%) followed
by resistance to tetracycline (84.6%), doxycycline (80.7%),
marbofloxacin and enrofloxacin (15.3%). One of these isolates
(Pk-13) showed resistance to colistin and has been reported

Frontiers in Microbiology | www.frontiersin.org 3 December 2017 | Volume 8 | Article 247616

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mohsin et al. ESBL-Producing E. coli in Migratory Birds

T
A
B
L
E
1
|
C
h
a
ra
c
te
ris
tic
s
o
f
th
e
E
S
B
L
p
ro
d
u
c
in
g
E
.
c
o
li
is
o
la
te
s
fr
o
m

w
ild

m
ig
ra
to
ry

b
ird

s
in

P
a
ki
st
a
n
.

S
a
m
p
le

ID

H
o
s
t
S
p
e
c
ie
s

D
a
te

o
f

Is
o
la
ti
o
n

S
a
m
p
li
n
g

lo
c
a
ti
o
n

A
n
ti
b
io
ti
c

re
s
is
ta
n
c
e
s

B
e
ta
-

la
c
ta
m

g
e
n
e
s

C
o
li
s
ti
n

A
m
in
o
g
ly
c
o
s
id
e

S
u
lp
h
o
n
a
m
id
e

Q
u
in
o
lo
n
e

T
ri
m
e
th
o
p
ri
m

Te
tr
a
c
y
c
li
n
e

P
h
e
n
ic
o
l

F
o
s
fo
m
y
c
in

S
T

P
la
s
m
id

re
p
li
c
o
n
ty
p
e
s

p
M
L
S
T
s
u
m
m
a
ry

S
1
-d

ig
e
s
t

p
la
s
m
id

s
iz
e
s

V
A
G
s

P
k-
1

R
o
sy

S
ta
rli
n
g

(P
a
s
to
r
ro
s
e
u
s
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

H
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

T
E
,
S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)-
lik
e

S
T-
2
0
2

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

n
.d
.

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
2

R
o
sy

S
ta
rli
n
g

(P
a
s
to
r
ro
s
e
u
s
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

H
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

C
,
D
C
,

T
E
,
E
N
R
,

M
R
B
,
S
X
T

b
la
C
T
X
-M

-1
5

a
a
d
A
1
,a
a
d
A
2

s
u
l3

d
fr
A
1
2

te
t(
A
)-
lik
e

c
m
lA
1
-l
ik
e

S
T-
2
2
4

N
o
re
p
lic
o
n

n
.d
.

m
a
tA

(e
c
p
R
),
a
s
tA

(E
a
s
t-
1
),
m
a
lX
,
o
m
p
A

P
k-
3

R
o
sy

S
ta
rli
n
g

(P
a
s
to
r
ro
s
e
u
s
)

0
1
/0
1
/2
0
1
4

Tr
im

m
u

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2
-l
ik
e

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
0

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
kb

fim
C
,
m
a
tA

(e
c
p
R
),

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
4

R
e
d
-h
e
a
d
e
d

p
o
c
a
h
a
rd

(N
e
tt
a
ru
fin
a
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
0

In
c
F
IB
,
In
c
I1

In
c
F
[F
-:
A
-:
B
5
3
],

In
c
I1
[U
n
kn

o
w
n
S
T
]

1
1
0
/9
0
kb

fim
C
,
s
it
A
,
a
s
tA

(E
a
s
t-
1
),
m
a
lX
,
o
m
p
A

P
k-
5

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
0

In
c
Y

n
.d
.

fim
C
,
fy
u
A
,
ir
p
2
,
a
s
tA

(E
a
s
t-
1
),
m
a
lX
,
o
m
p
A

P
k-
6

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,
D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
,

b
la
T
E
M
-1
C

a
a
d
A
5
,s
tr
A
,s
tr
B

s
u
l2

d
fr
A
1
7

te
t(
A
)

S
T-
4
7
2
0

In
c
F
IC
,
In
c
I1
,

In
c
F
IB
,
In
c
F
II

In
c
I1
[S
T-
3
],

In
c
F
[F
1
8
:A
-:
B
1
]

n
.d
.

b
fp
m
,
fim

C
,
m
e
ta
A

(e
c
p
R
),
ts
h
,
a
s
tA

(E
a
s
t-
1
),
fy
u
A
,
ir
o
N
,

ir
p
2
,
iu
c
D
,
iu
tA
,
s
it
A
,

s
it
B
,
s
it
C
,
s
it
D
,
c
vi
,
tr
a
T,

o
m
p
A
,
m
a
lX

P
k-
7

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
,

b
la
T
E
M
-1
C

a
a
d
A
5
,s
tr
A
,s
tr
B
-

lik
e

s
u
l2

d
fr
A
1
7

te
t(
A
)-
lik
e

S
T-
4
7
2
0

In
c
F
IC
,
In
c
I1
,

In
c
F
IB
,
In
c
F
II

In
c
I1
[S
T-
3
],

In
c
F
[F
1
8
:A
-:
B
1
]

n
.d
.

b
fp
m
,
fim

C
,
m
e
ta
A

(e
c
p
R
),
ts
h
,
a
s
tA

(E
a
s
t-
1
),
fy
u
A
,
ir
o
N
,

iu
c
D
,
iu
tA
,
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
c
vi
,
tr
a
T,

o
m
p
A
,
m
a
lX

P
k-
8

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

2
0
/0
1
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
7
0
9
7

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
1
0
/9
0
kb

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
m
a
lX
,
o
m
p
A

P
k-
9

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

2
0
/0
1
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
B
)

S
T-
1
7
2
2

N
o
re
p
lic
o
n

n
.d
.

fim
C
,
m
a
tA

(e
c
p
R
),

s
fa
X
,
a
s
tA

(E
a
s
t-
1
),

c
h
u
A
,
m
a
lX
,
o
m
p
A

P
k-
1
0

R
e
d
-h
e
a
d
e
d

p
o
c
a
h
a
rd

(N
e
tt
a
ru
fin
a
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P

b
la
C
T
X
-M

-1
5

Q
n
rS
1

S
T-
5
8

N
o
re
p
lic
o
n

n
.d
.

m
a
tA

(e
c
p
R
),
a
s
tA

(E
a
s
t-
1
),
m
a
lX
,
o
m
p
A

P
k-
1
1

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-3
3
-l
ik
e

S
T-
3
6
1

In
c
F
IC
,
In
c
F
IB
,

In
c
Y

In
c
F
[F
4
6
*:
A
-:
B
1
6
]

n
.d
.

m
a
tA

(e
c
p
R
),
o
m
p
A

P
k
-1
2

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

G
M
,

T
M
,
C
,
D
C
,

T
E
,
S
X
T

b
la
C
T
X
-M

-1
5

a
a
c
(3
)-
IV
a
-l
ik
e
,

a
p
h
(4
)-
Ia
,
s
tr
A
-l
ik
e
,

s
tr
B
-l
ik
e

s
u
l2

d
fr
A
1
4
-l
ik
e

te
t(
A
)

c
a
tA
2
-l
ik
e

fo
s
A

S
T-
6
0
2

In
c
F
IB
,
In
c
F
IA
,

In
c
F
IC
,
In
c
F
II

In
c
F
[F
1
8
:A
5
:B
1
]

n
.d
.

fim
C
,
m
e
ta
A
(e
c
p
R
),

a
s
tA

(E
a
s
t-
1
),
ir
o
N
,

iu
c
D
,
iu
tA
,
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
c
vi
,
tr
a
T,

o
m
p
A
,
m
a
lX

P
k
-1
3

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

C
O
,
P
O
,

D
C
,
T
E
,
E
N
R
,

M
R
B
,
S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

m
c
r-
1

a
a
d
A
1
,a
a
d
A
2
-

lik
e
,s
tr
A
,s
tr
B

s
u
l2
,s
u
l3

d
fr
A
1
4
-l
ik
e

te
t(
B
)

c
m
lA
1
-l
ik
e

S
T-
3
5
4

In
c
F
II,
In
c
H
I2
,

In
c
F
IB
,
In
c
F
IA
,

In
c
I2

In
c
H
I2
[S
T-
3
],

In
c
F
[F
3
6
:A
6
*:
B
1
]

n
.d
.

fim
C
,
m
e
ta
A
(e
c
p
R
),

a
s
tA

(E
a
s
t-
1
),
c
h
u
A
,

ir
o
N
,
iu
c
D
,
iu
tA
,
s
it
B
,

s
it
C
,
c
vi
,
o
m
p
A
,
m
a
lX

P
k-
1
4

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

1
1
/0
2
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-

1
5
,b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
0

In
c
Y

n
.d
.

a
s
tA

(E
a
s
t-
1
),
fy
u
A
,

ir
p
2
,
m
a
lX
,
o
m
p
A

P
k-
1
5

M
a
lla
rd

d
u
c
k

(A
n
a
s

p
la
ty
rh
yn
c
h
o
s
)

1
6
/0
2
/2
0
1
5

R
a
su

lb
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
1
3
9

In
c
F
IB
,
p
0
1
1
1

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
/1
0
0
kb

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
1
6

S
h
o
ve
le
r
d
u
c
k

(A
n
a
s
c
ly
p
e
a
ta
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

G
M
,

T
M
,
E
N
R
,

M
R
B
,
S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

a
a
c
(3
)-
IId
-

lik
e
,a
a
d
A
2
,s
tr
A
-

lik
e
,s
tr
B

s
u
l1
,s
u
l2

d
fr
A
1
2

S
T-
6
1
7

C
o
lR
N
A
I

n
.d
.

m
a
tA

(e
c
p
R
),
a
s
tA

(E
a
s
t-
1
),
m
a
lX
,
o
m
p
A
,

ti
a

(C
o
n
ti
n
u
e
d
)

Frontiers in Microbiology | www.frontiersin.org 4 December 2017 | Volume 8 | Article 247617

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mohsin et al. ESBL-Producing E. coli in Migratory Birds

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

S
a
m
p
le

ID

H
o
s
t
S
p
e
c
ie
s

D
a
te

o
f

Is
o
la
ti
o
n

S
a
m
p
li
n
g

lo
c
a
ti
o
n

A
n
ti
b
io
ti
c

re
s
is
ta
n
c
e
s

B
e
ta
-

la
c
ta
m

g
e
n
e
s

C
o
li
s
ti
n

A
m
in
o
g
ly
c
o
s
id
e

S
u
lp
h
o
n
a
m
id
e

Q
u
in
o
lo
n
e

T
ri
m
e
th
o
p
ri
m

Te
tr
a
c
y
c
li
n
e

P
h
e
n
ic
o
l

F
o
s
fo
m
y
c
in

S
T

P
la
s
m
id

re
p
li
c
o
n
ty
p
e
s

p
M
L
S
T
s
u
m
m
a
ry

S
1
-d

ig
e
s
t

p
la
s
m
id

s
iz
e
s

V
A
G
s

P
k-
1
7

S
h
o
ve
le
r
d
u
c
k

(A
n
a
s
c
ly
p
e
a
ta
)

1
6
/1
2
/2
0
1
3

B
a
llo
ki

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
3
0
3

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
kb

m
a
tA

(e
c
p
R
),
a
s
tA

(E
a
s
t-
1
),
fy
u
A
,
ir
p
2
,

m
a
lX
,
o
m
p
A

P
k-
1
8

E
u
ra
si
a
n
w
ig
e
o
n

(A
n
a
s
p
e
n
e
lo
p
)

0
1
/0
1
/2
0
1
4

Tr
im

m
u

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B
-l
ik
e

s
u
l2

Q
n
rS
1

d
fr
A
1

S
T-
2
9
1
4

In
c
F
II,
In
c
Q
1
,

In
c
B
/O

/K
/Z

In
c
F
[F
5
5
*:
A
-:
B
-]

n
.d
.

m
a
tA

(e
c
p
R
),
a
s
tA

(E
a
s
t-
1
),
c
h
u
A
,

kp
s
M
T
_
ll,
tr
a
T,
m
a
lX
,

o
m
p
A

P
k
-1
9

E
u
ra
si
a
n
w
ig
e
o
n

(A
n
a
s
p
e
n
e
lo
p
)

0
1
/0
1
/2
0
1
4

Tr
im

m
u

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
3
7
1
6

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
kb

/
4
0
kb

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
2
0

M
a
lla
rd

d
u
c
k

(A
n
a
s

p
la
ty
rh
yn
c
h
o
s
)

0
1
/0
1
/2
0
1
4

Tr
im

m
u

h
e
a
d
w
o
rk
s

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

E
N
R
,
M
R
B
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
4
2
1

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
/3
0
kb

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
2
1

M
a
lla
rd

d
u
c
k

(A
n
a
s

p
la
ty
rh
yn
c
h
o
s
)

0
1
/0
3
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
7
0
9
7

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
/
4
0
/3
0
kb

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
m
a
lX
,
o
m
p
A

P
k-
2
3

M
a
lla
rd

d
u
c
k

(A
n
a
s

p
la
ty
rh
yn
c
h
o
s
)

0
1
/0
3
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
),
te
t(
B
)

S
T-
9
3

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

6
0
kb

h
e
k/
h
ra
,
m
a
tA

(e
c
p
R
),

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
kp
s
M
T
_
ll,

m
a
lX
,
o
m
p
A

P
k-
2
4

M
a
lla
rd

d
u
c
k

(A
n
a
s

p
la
ty
rh
yn
c
h
o
s
)

1
6
/0
2
/2
0
1
5

R
a
su

lb
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-

1
5
,b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
7
0
9
7

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

n
.d
.

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
m
a
lX
,
o
m
p
A

P
k-
2
6

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

0
1
/0
3
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
7
0
9
7

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
/1
0
0
kb

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
m
a
lX
,
o
m
p
A

P
k-
2
9

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

0
1
/0
3
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
)

S
T-
1
1
3
9

In
c
F
IB
,
p
0
1
1
1

In
c
F
[F
-:
A
-:
B
5
3
]

1
3
0
/
0
0
kb

a
s
tA

(E
a
s
t-
1
),
m
a
lX
,

o
m
p
A

P
k-
3
0

E
u
ra
si
a
n
c
o
o
t

(F
u
lic
a
a
tr
a
)

0
1
/0
3
/2
0
1
4

C
h
a
sh

m
a

b
a
rr
a
g
e

C
T
X
,
C
A
Z
,

A
M
P,

D
C
,
T
E
,

S
X
T

b
la
C
T
X
-M

-1
5
,

b
la
T
E
M
-1
B

s
tr
A
,s
tr
B

s
u
l2

Q
n
rS
1

d
fr
A
1
4
-l
ik
e

te
t(
A
),
te
t(
B
)

S
T-
9
3

In
c
F
IB

In
c
F
[F
-:
A
-:
B
5
3
]

6
0
kb

h
e
k/
h
ra
,
m
a
tA

(e
c
p
R
),

a
s
tA

(E
a
s
t-
1
),
s
it
A
,
s
it
B
,

s
it
C
,
s
it
D
,
kp
s
M
T
_
ll,

m
a
lX
,
o
m
p
A

A
M
P,
a
m
p
ic
ill
in
;
C
,
c
h
lo
ra
m
p
h
e
n
ic
o
l;
C
O
,
c
o
lis
ti
n
,
D
C
,
d
o
xy
c
yc
lin
e
;
E
N
R
,
e
n
ro
flo
xa
c
in
;
G
M
,
g
e
n
ta
m
ic
in
;
M
R
B
,
m
a
rb
o
flo
xa
c
in
;
S
X
T,
P
O
,
p
o
ly
m
yx
in
;
s
u
lfa
m
e
th
o
xa
zo
le
/t
ri
m
e
th
o
p
ri
m
;
T
E
,
te
tr
a
c
yc
lin
e
;
T
M
,
to
b
ra
m
yc
in
a
s
tA

(E
a
s
t-
1
),
h
e
a
t

s
ta
b
le
c
yt
o
to
xi
n
a
s
s
o
c
ia
te
d
w
it
h
e
n
te
ro
a
g
g
re
g
a
ti
ve

E
.
c
o
li;
m
a
lX
,
p
h
o
s
p
h
o
tr
a
n
s
fe
ra
s
e
s
ys
te
m
e
n
zy
m
e
II;
m
a
tA
,
e
c
p
o
p
e
ro
n
e
n
c
o
d
e
s
E
c
p
R
;
o
m
p
A
,
o
u
te
r
m
e
m
b
ra
n
e
p
ro
te
in
A
;
fim

C
,
Ty
p
e
1
fim

b
ri
a
;
s
it
A
,
s
it
B
,
s
it
C
,
s
it
D
,
S
a
lm
o
n
e
lla

ir
o
n

tr
a
n
s
p
o
rt
s
ys
te
m
;
b
fp
m
,
b
u
n
d
le
-f
o
rm
in
g
p
ilu
s
m
o
rp
h
o
g
e
n
e
s
is
;
fy
u
A
,
ye
rs
in
ia
b
a
c
ti
n
re
c
e
p
to
r;
ir
p
2
,
ir
o
n
re
p
re
s
s
ib
le
p
ro
te
in
;
ts
h
,
te
m
p
e
ra
tu
re
s
e
n
s
it
iv
e
h
e
m
a
g
g
lu
ti
n
in
;
ir
o
N
,
s
id
e
ro
p
h
o
re
re
c
e
p
to
r;
iu
c
D
,
a
e
ro
b
a
c
ti
n
;
iu
tA
,
ir
o
n
u
p
ta
ke

tr
a
n
s
p
o
rt
;

c
vi
,
s
tr
u
c
tu
ra
lg
e
n
e
s
o
f
c
o
lic
in
V
o
p
e
ro
n
;
tr
a
T,
tr
a
n
s
fe
r
p
ro
te
in
;
kp
s
M
T
T
_
II,
g
ro
u
p
II
c
a
p
s
u
le
a
n
ti
g
e
n
;
h
e
k/
h
rA
,
h
e
a
t
re
s
is
ta
n
t
h
e
m
a
g
g
lu
ti
n
in
;
c
h
u
A
,
E
.
c
o
li
h
a
e
m
u
ti
liz
a
ti
o
n
;
ti
a
,
to
xi
g
e
n
ic
in
va
s
io
n
lo
c
u
s
;
s
fa
X
,
fim

b
ri
a
e

Frontiers in Microbiology | www.frontiersin.org 5 December 2017 | Volume 8 | Article 247618

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mohsin et al. ESBL-Producing E. coli in Migratory Birds

in our previous publication (Mohsin et al., 2016; Table 1). All
isolates were susceptible to carbapenems.

Antibiotic Resistance and Virulence Genes
WGS revealed that all of 26 ESBL-E. coli isolates harbored the
blaCTX−M gene with blaCTX−M-15 as the most dominant 24/26
(92.3%) genotype (Table 1). Of these, 19 isolates also harbored
blaTEM−1B whereas two isolates carried blaCTX−M−1 together
with bla TEM-1C. Among non-beta-lactam resistance, genes
conferring resistance to sulfonamide and trimethoprim were
predominant 24/26 (92.3%) followed by aminoglycosides 23/26
(88.4%), tetracycline 22/26 (84.6%) and quinolones 19/26 (73%).
We found that most of the isolates carried the sul2 gene, alone
or in combination with sul1 or sul3 for sulfonamide resistance. A
total of 7 different genes encoding resistance for aminoglycoside
were detected. Of these, most common were strA and strB,
alone or in combination with aadA1, aadA2, aadA5, aac(3)-
IId-like, aac(3)-IVa-like, and aph(4)-Ia. Overall, genotypic data
strongly correlated with phenotypic resistance data. Virulence
gene analysis exhibited an overall low number of VAGs in
wild birds studied. ExPEC were defined as suggested previously
which is mainly based on the presence of at least two VAGs
including P fimbrial genes papA and papC, S frimbriae genes
sfa/foc, afimbrial adhesion genes afa/dra, group 2 polysaccharide
capsule gene kpsMTII and iron acquisition gene iutA (Nowak
et al., 2017). According to this definition, none of the isolates is
regarded as ExPEC (Table 1). All isolates contained E. coli outer
membrane protein A gene (ompA). Other common genes were
malX, astA and iha coding phosphotransferase system enzyme II,
enteroaggregative heat-stable toxin EAST1 and iron-regulated-
gene-homologue adhesion, respectively.

MLST, Plasmid Replicon Types and
Plasmid Profile Analysis
In this study, 17 different STs were observed among the 26
sequenced ESBL-E. coli. Among the known STs, the most
common ones were ST10 and ST7097 (each n=4) followed
by ST4720, ST93, and ST1139 (2 isolates each) whereas one
isolate each of ST1421, ST354, ST224, ST1303, ST2914, ST202,
ST602, ST58, ST617, ST361, ST3716, and ST1722 were found
(Table 1). In silico plasmid replicon typing revealed the IncF-
type plasmid as the most common (20/26; 76.9%). The other
replicon types detected in this study included IncY, IncI1, IncI2,
IncHI2, IncQ1, IncB/O/K/Z. Out of 20 isolates with IncF replicon
type, 19 belonged to IncFIB class followed by IncFII (n = 5),
IncFIC (n = 4) and IncFIA (n= 2). pMLST of the IncF plasmids
revealed the presence of one common plasmid type F-:A-:B53
(n = 14). Analysis of the plasmid size with S1 digestion showed
a 130 kb plasmid in most of the isolates (Table 1). In contrast, no
replicons were detected in the Pk-2, Pk-9 and Pk-10 but those
isolates harbored blaCTX−M-15 encoded on large contigs whose
annotation pointed toward a chromosomal integration of the
resistance gene.

Whole Genome Phylogeny
Core-genome based phylogenetic analysis of 26 isolates grouped
E. coli into four clusters. Most of the sequenced isolates clustered

together in accordance with their ST (Figure 2). Core genome
alignment showed very few SNPs ranging from 0 to 29 among
isolates Pk-8, Pk-21, Pk-24, and Pk-26 (Figure 2 and Table S2).
All of these strains belonged to ST7097 and originated from two
different hosts (Eurasian coot and mallard duck) and sampling
locations (Chashma barrage and Rasul barrage). Likewise, only
29 SNPs were present between Pk-15 and Pk-29 isolates although
recovered from different hosts (Eurasian coot and mallard duck)
and locations (Chashma barrage and Rasul barrage). More
strikingly, only one SNP was found between Eurasian coot
isolates Pk-5 and Pk-14 originated from Chashma barrage. Fewer
than 28 SNPs were observed between Pk-23 and Pk-30 (isolated
from mallard duck and Eurasian coot from Chashma barrage).
Two blaCTX−M−1-producing E. coli Pk-6 and Pk-7 were marked
by only four SNPs and were recovered from a similar geographic
location and host (Figure 2). Numbers of SNPs for the individual
isolates are displayed in Table S2.

DISCUSSION

Wild migratory birds have been suggested as a reservoir of
ESBL-producing E. coli in a number of studies worldwide
(Guenther et al., 2011, 2012; Bonnedahl et al., 2015; Atterby
et al., 2016). More recently, we reported the occurrence of bla-
CTX−M−15 producing Klebsiella pneumoniae (Raza et al., 2017) in
wild migratory bird populations in Pakistan. We therefore also
screened for ESBL-producing E. coli and their clonal relatedness
using WGS, as there is lack of knowledge regarding genetic
diversity of ESBL-E. coli isolates from environmental niches
in Asia. E. coli is an excellent indicator species to study the
spread of AMR through fecal pollution of water and waterfowl
can be considered as sentinel of AMR in the environment
(Guenther et al., 2011). The present study indicates high carriage
rates of ESBL-producing E. coli (17%) in migratory birds along
the Indus migration route in Pakistan. This high prevalence
mirrors those reported in migratory gulls from Bangladesh
(17.3%) (Hasan et al., 2014) and is comparable to another study
from Bangladesh which reported 30% ESBL-E. coli from wild
ducks (Hasan et al., 2012). This is underlining the important
role of waterfowl as carrier of ESBL-producing E. coli in
Asia and also adding the important Indus avian migration
route to the environments influenced by human healthcare
practices.

WGS showed blaCTX−M−15 was the predominant ESBL
genotype in this study. This is in agreement with some previous
findings from wild birds in Bangladesh (Hasan et al., 2014),
Germany (Guenther et al., 2010) and North America (Poirel
et al., 2012). CTX-M-15 has now a worldwide distribution and
although it is commonly associated with human and pet ESBL-
isolates, it is also very common in avian wildlife (Wang et al.,
2017).

In fact, summing up the current literature it becomes obvious
that the emergence of ESBL-producing E. coli in wildlife is
associated with the success of the blaCTX−M family in hospitals
(Guenther et al., 2011). The reason why blaCTX−M producing
E. coli are also very successful in the environment remain unclear
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FIGURE 2 | Whole Genome phylogeny based upon core genomes of 26 avian ESBL-E. coli. The tree was produced using Harvest Suite and drawn by MEGA5

software.

but recent studies suggest that plasmids carrying those genes
confer more advantages than mere resistance to the bacterial host
strains (Schaufler et al., 2016). A previous study also indicated
high rates of blaCTX−M−15 from human clinical isolates in
Pakistan (Habeeb et al., 2014), however as we did not include
human isolates in this study their relatedness remains to be
clarified in the future.

Besides their spread via plasmids, very recently the new trend
of chromosomal integration of ESBL-encoding genes has been
demonstrated in clinical E. coli isolates of ST38, ST410, ST131
and ST648 (Hirai et al., 2013; Rodríguez et al., 2014; Falgenhauer
et al., 2016) and also in non-clinical ST38 isolates from wild birds
(Guenther et al., 2017). Similarly, we detected the chromosomal
insertion of blaCTX−M−15 genes among E. coli of different STs
(ST224, ST1722 and ST58), which have been found as plasmid
carrying ESBL-producers in clinical and non-clinical samples,
worldwide (Zurfluh et al., 2013; Leangapichart et al., 2016). This
scenario has also been recently shown for E. coli strains of ST38
from Mongolian wild birds, which were very closely related to a
clinical outbreak strain from the UK (Guenther et al., 2017).

As mentioned above, wildlife has been reported to carry
ExPEC strains, we therefore also screened for the occurrence of
VAGs to gain information on pathotype. However, we detected
no ExPEC strain in our isolates. Most of the strains harbored
only a few VAGs and are likely commensal strains. However,
all the E. coli carried serum resistance ompA gene (Table 1).
We also found high frequency of astA and iha genes. These
are only putative virulence genes and their exact involvement
in the pathogenesis is not well understood, although they have

been frequently reported in enteroaggregative E. coli and avian
pathogenic E. coli (Nowak et al., 2017).

We found a large diversity of sequence types within the avian
isolates including typical ESBL-associated sequence types like
ST10, ST224, ST617 (Guenther et al., 2011; Sherchan et al., 2015),
and ST354 (Zhang et al., 2016). However, globally distributed
high risk clones like ST131, ST410, and ST648 were not found
in this study. Earlier studies from human clinical E. coli isolates
from Pakistan reported those sequence types including ST131
and ST648 (Mushtaq et al., 2011; Pesesky et al., 2015), indicating
that different clonal population of E. colimight be present in wild
birds and the human population in Pakistan but this finding can
also be due to the low number of birds sampled.

Interestingly we found identical STs in isolates originating
from different avian host species and geographic locations
(Figure 2). Core genome phylogenetic analysis of those isolates
showed that within identical STs only a small number of
SNPs ranged from 1 to 29 were found. This suggests a recent
interspecies transmission and long-distance dissemination of
certain clonal ESBL-lineages by wild birds as it has been reported
earlier (Guenther et al., 2017). The origins of most of these birds
are remote areas in Siberia and Central Asia and exposure to
antimicrobials is less likely in these areas. The high rates of MDR
isolates detected from the wild migratory bird are of concern and
could be due to anthropogenic activities from the surrounding
environment. In addition to the clonal spread of certain STs our
data showed the common occurrence of a plasmid replicon type
(IncFIB, F-:A-:B53) linked to a 130 kb plasmid. This plasmid
was found in all four wetlands tested and in five of the seven
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different avian species. Together with the large number of minor
STs points toward the spread of a blaCTX−M resistance plasmid
of the pMLST type F-:A-:B53 among a naive E. coli population in
the avian hosts.

The transmission dynamics of ESBL-producing E. coli in
a natural environment are complex. Wild birds have been
suggested as sentinels for the spread and transmission of multi-
resistant strains in the environment. It is widely believed that
the spread of ESBL-E. coli is driven both by plasmid transfer
in commensal and pathogenic strains as well as by the clonal
spread of certain lineages in local areas. In this study we were
able to detect both main mechanisms in wild migratory birds in
Pakistan underlining the suitability of avian sentinels. In addition
our data highlights the potential for regional and intercontinental
transmission of ESBL-producing E. coli clones and resistance
plasmids via migratory birds.
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Acinetobacter spp. are important nosocomial pathogens, in particular the Acinetobacter
baumannii-calcoaceticus complex, which have become a global public health threat due
to increasing resistance to carbapenems and almost all other antimicrobial compounds.
High rates of resistance have been reported among countries in Southeast Asia,
including Malaysia. In this review, we examine the antimicrobial resistance profiles
of Acinetobacter spp. hospital isolates from Malaysia over a period of nearly three
decades (1987–2016) with data obtained from various peer-reviewed publications as
well as the Malaysian National Surveillance on Antibiotic Resistance (NSAR). NSAR
data indicated that for most antimicrobial compounds, including carbapenems, the peak
resistance rates were reached around 2008–2009 and thereafter, rates have remained
fairly constant (e.g., 50–60% for carbapenems). Individual reports from various hospitals
in Peninsular Malaysia do not always reflect the nationwide resistance rates and often
showed higher rates of resistance. We also reviewed the epidemiology and mechanisms
of resistance that have been investigated in Malaysian Acinetobacter spp. isolates,
particularly carbapenem resistance and found that blaOXA−23 is the most prevalent
acquired carbapenemase-encoding gene. From the very few published reports and
whole genome sequences that are available, most of the Acinetobacter spp. isolates
from Malaysia belonged to the Global Clone 2 (GC2) CC92 group with ST195 being the
predominant sequence type. The quality of data and analysis in the national surveillance
reports could be improved and more molecular epidemiology and genomics studies
need to be carried out for further in-depth understanding of Malaysian Acinetobacter
spp. isolates.

Keywords: Acinetobacter, antimicrobial resistance, Malaysia, surveillance data, epidemiology, resistance
mechanisms

Abbreviations: Abc complex, Acinetobacter baumannii–calcoaceticus complex; ADC, Acinetobacter-derived
cephalosporinase; CC, clonal complex; HSA, Hospital Sultanah Aminah; HSNZ, Hospital Sultanah Nur Zahirah; HUSM,
Hospital Universiti Sains Malaysia; IMR, Institute of Medical Research; LPS, lipopolysaccharide; MBL, metallo-β-lactamase;
MDR, multidrug resistance; MLST, multilocus sequence typing; NSAR, National Surveillance of Antibiotic Resistance;
UKMMC, Universiti Kebangsaan Malaysia Medical Centre; UMMC, University of Malaya Medical Centre; WGS, whole
genome sequencing.
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INTRODUCTION

Acinetobacter spp. are Gram-negative opportunistic pathogens
associated with severe nosocomial infections including
pneumonia, bloodstream, urinary tract and wound infections,
as well as meningitis. The majority of infections are due to the
A. baumannii–A. calcoaceticus (Abc) complex with A. baumannii
being the most clinically important species (Dijkshoorn et al.,
2007; Clark et al., 2016; Gonzalez-Villoria and Valverde-
Garduno, 2016). The genus Acinetobacter is taxonomically
complex with unambiguous identification at the species level
particularly problematic (Gundi et al., 2009). A. baumannii, A.
nosocomialis, A. pittii and A. calcoaceticus, which is usually an
environmental species, along with two novel pathogenic species,
A. seifertii and A. djikshoorniae cannot be reliably differentiated
by phenotypic tests, and are thus usually grouped together
as the Abc complex (Gerner-Smidt et al., 1991; Nemec et al.,
2015; Cosgaya et al., 2016; Marí-Almirall et al., 2017). Accurate
identification at the species level requires sequencing of the RNA
polymerase β-subunit gene, rpoB, and/or the DNA gyrase B
gene, gyrB (Gundi et al., 2009), with full-length 16S rRNA gene
sequencing proven unreliable (Wang et al., 2014).

Carbapenems are broad-spectrum β-lactam antibiotics that
have been the treatment of choice for Acinetobacter infections,
particularly in critically ill patients (Fishbain and Peleg, 2010).
However, the increasing prevalence of carbapenem-resistant
A. baumannii, particularly in the last two decades, has been of
immense concern such that carbapenem-resistant A. baumannii
is now listed as the top priority pathogen in urgent need
of new antimicrobials by the World Health Organization in
February 2017 (World Health Organization, 2017). This is due
to Acinetobacter spp., especially A. baumannii, having extensive
intrinsic antimicrobial resistance mechanisms coupled with the
inherent ability to easily acquire new resistance determinants
through mobile genetic elements such as plasmids, transposons
and genomic islands (Peleg et al., 2008; Doi et al., 2015).
Carbapenem-resistant A. baumannii is the most common
pathogen associated with nosocomial infections in Southeast
Asia (Mendes et al., 2013; Suwantarat and Carroll, 2016), a
region which groups together 11 nations with disparate incomes
and levels of development. The surveillance of antimicrobial
resistance among common pathogens was one of the important
recommendations issued by the World Health Organization
(WHO) in 2001 to slow down the emergence and contain
the spread of bacterial resistance (WHO, 2001). Only four
Southeast Asian countries, namely Singapore, Thailand, Malaysia
and the Philippines have established national antimicrobial
surveillance programs; poorer countries such as Myanmar
and East Timor (or Timor-Leste) are hampered by limited
microbiology laboratory capabilities (Hsu et al., 2017). Malaysia,
which is considered as an upper middle income nation and
with an active national antimicrobial surveillance program,
has surprisingly few publications and little comprehensive
data available on Acinetobacter spp. infections (McNeil et al.,
2016). A recent paper that estimated the mortality attributable
to multidrug-resistant pathogens in nosocomial infections in
Thailand clearly showed that Acinetobacter spp. is the leading

cause of hospital-acquired infections with the highest attributable
mortality at around 40% (Lim et al., 2016). It would not be
surprising if similar burdens of Acinetobacter infection are
present in neighboring Malaysia but such data have not been
published.

In this review, we look at the resistance trends of several
antimicrobials for Acinetobacter spp. isolated in Malaysia with
data obtained from individual studies (which usually involves
strains isolated from single institutions/healthcare centers) as
well as from the Malaysian National Surveillance on Antibiotic
Resistance (NSAR), and spanning a period of nearly three
decades, between 1987 and 2016. We also cover the various
mechanisms of resistance that have been elucidated, in particular
carbapenem resistance, and finally, we review the epidemiological
and genomic studies of Acinetobacter spp. that have been
published, thereby giving us an overview of the state of
Acinetobacter antimicrobial resistance and epidemiology in this
Southeast Asian nation.

ANTIBIOTIC SUSCEPTIBILITY PROFILES

The Institute for Medical Research (IMR), Malaysia, publishes the
NSAR results from 2003 onward (except year 2006) online1 which
surveys isolates from various hospitals throughout Malaysia,
including Sabah and Sarawak in Borneo. The number of hospitals
involved and the sample sizes differ each year but have increased
from just 12 hospitals in 2007 to 41 hospitals in 2016. Prior
to 2007, the NSAR data only presented the total number of
isolates that were analyzed for that particular year (i.e., for 2003–
2005) without indicating the source of these isolates. The names
of the participating hospitals were only published from 2009
onward. Nevertheless, the data did not indicate the prevaling
resistance rates for individual participating hospitals but rather
was analyzed as a total cumulative pool of isolates.

The Clinical and Laboratories Standard Institute (CLSI)
currently lists 24 antimicrobial agents from nine groups with
breakpoints for Acinetobacter spp. (CLSI, 2017). A joint initiative
between the European Centre for Disease Prevention and
Control (ECDC) and the US Centers for Disease Prevention and
Control (CDC) led to the development of standard definitions of
MDR, extensive drug resistance (XDR) and pandrug resistance
(PDR) in an effort to harmonize the antimicrobial resistance
surveillance systems (Magiorakos et al., 2012). The ECDC-
CDC recommendation for Acinetobacter spp. covered 22 of
the 24 CLSI antimicrobial agents (omitting piperacillin from
the penicillin group and gatifloxacin from the fluroquinolone
group; see Table 1) (Magiorakos et al., 2012). In the Malaysian
NSAR reports, only six groups of antimicrobials were regularly
tested (no data was available for antibiotics under the folate
pathway inhibitor group and limited data available for the
lipopeptides polymyxin B and colistin). The NSAR data do not
give any indication on the prevalence of MDR (let alone XDR
or PDR) among the isolates that were tested. No mention was

1http://www.imr.gov.my/en/component/content/article/75-english-content/
national-collabration/1469-nsar.html
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made in the NSAR reports to differentiate between infection
and colonization and whether the isolates were obtained from
hospital-acquired or community-acquired infections. The source
of the bacterial isolates (i.e., whether they were isolated from
blood, pus, tracheal aspirates, or other clinical samples) were
only stated in the NSAR reports of 2015 onward. We are thus
unable to assess the quality assurance or the validity of the NSAR
data but these are nevertheless presented here as they are the
only publically available nationwide data available for Malaysia.
Besides NSAR, there were also scattered reports from other
researchers throughout Malaysia who obtained Acinetobacter
spp. samples from various hospitals throughout the country,
albeit only in Peninsular Malaysia and not in the states of Sabah
and Sarawak in Borneo (see Figure 1 for the geographical location
of these studies). These Acinetobacter spp. were isolated from
clinical specimens in the respective hospital laboratories and the
sources of these isolates were usually presented in these reports.
However, whether these were hospital-acquired or community-
acquired infections are not known. The panel of antibiotics
used by these researchers differs from the NSAR report, thus
making meaningful comparisons difficult. Nevertheless, there are
some common antimicrobials that were used throughout the few
research papers that have been published and here, we summarize
and review these results.

Carbapenems
Carbapenems are usually the drug of choice for serious
Acinetobacter infections; nevertheless their utility is increasingly
compromised by the rapid emergence of resistance (Peleg et al.,
2008; Doi et al., 2015). Acinetobacter spp. isolates (n = 21)
from the UMMC, which is located in the capital city of Kuala
Lumpur, and collected in 1987 showed imipenem resistance
rates of only 4.8% but a decade after that, imipenem resistance
rates have increased to 36.4% for isolates collected between 1996
and 1998 (n = 88) (Figure 2) (Misbah et al., 2004). The first
NSAR data in 2003 showed that the national resistance rate for
meropenem was slightly below 30% and this was also reflected
in a study of isolates from HUSM, located in the northeastern
state of Kelantan, from 2003–2004 (Deris et al., 2009). However,
by 2008, the NSAR data showed that the resistance rates for
meropenem as well as imipenem have reached 50%. Nevertheless,
there has not been any drastic increase in the nationwide
carbapenem resistance rates from 2008–2016 which has stayed
around 50–60%. Several studies on A. baumannii isolates from
individual hospitals showed carbapenem resistance rates higher
than the national average: ICU isolates from the UMMC collected
from 2006–2009 showed very high resistance rates for imipenem
at 96.5% and meropenem at 98.2% (Kong et al., 2011), as did
isolates from several ward in Hospital Selayang (located also
in Kuala Lumpur) in 2010 with a 92.5% resistance rate for
meropenem whereas the imipenem resistance rate was lower at
67.5% (Nazmul et al., 2012). Likewise, A. baumannii isolates
collected in 2010 and 2011 from various ward in HSA in the
southern state of Johor, displayed resistance rates of 88% for both
imipenem and meropenem (Dhanoa et al., 2015). Resistance rates
of >70% were also reported for isolates from UKMMC (located
south of Kuala Lumpur) in 2010–2011 (Biglari et al., 2015, 2017)

and HSNZ (located in the east coast state of Terengganu) in
2011(Lean et al., 2014).

Cephalosporins
The national A. baumannii resistance rates for the extended-
spectrum cephalosporins of the third generation, ceftazidime,
and the fourth generation, cefepime, were around 30% in
2003 but increased to around 50% between 2005 and 2009
(Figure 3). The resistance rates for both ceftazidime and cefepime
remained within the 50–60% range throughout 2010–2014. From
2015 onward NSAR only reported rates for ceftazidine, which
maintained between 55 and 60%. Reports of strains that were

TABLE 1 | List of antimicrobials recommended by the European Centre for
Disease Prevention and Control (ECDC) and the United States Centers for Disease
Prevention and Control (CDC) for standard definitions of multidrug resistance,
extensive drug resistance and pandrug resistance for Acinetobacter spp.
(Magiorakos et al., 2012) along with the antimicrobial agents with available
breakpoints as given by the Clinical and Laboratories Standard Institute (CLSI) in
its 2017 edition (CLSI, 2017).

Antimicrobial agent Inclusion in ECDC-CDC

with CLSI breakpoints recommendation

Penicillins

Piperacillin No

β-lactam/β-lactamase inhibitor

Ampicillin/Sulbactam Yes

Piperacillin/Tazobactam Yes

Ticarcillin/Clavulanante Yes

Cephams

Ceftazidime Yes

Cefepime Yes

Cefotaxime Yes

Ceftriaxone Yes

Carbapenems

Doripenem Yes

Imipenem Yes

Meropenem Yes

Lipopeptides

Colistin Yes

Polymyxin B Yes

Aminoglycosides

Gentamicin Yes

Tobramyxin Yes

Amikacin Yes

Netilmycin Yes

Tetracycline

Doxycycline Yes

Minocycline Yes

Tetracycline Yes

Fluoroquinolones

Ciprofloxacin Yes

Levofloxacin Yes

Gatifloxacin No

Folate pathway inhibitors

Trimethoprim-sulfamethoxazole Yes

Antimicrobial groups are given in bold.
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FIGURE 1 | Map of Malaysia indicating the geographical location of the hospitals in which the Acinetobacter spp. isolates were obtained for the various individual
studies that had been conducted and reviewed in this paper. The various states within Malaysia are indicated in blue whereas neighboring countries are labeled in
brown. HUSM, Hospital Universiti Sains Malaysia; HSNZ, Hospital Sultanah Nur Zahirah; HSA, Hospital Sultanah Aminah; HRPB, Hospital Raja Perempuan Bainun;
UKMMC, Universiti Kebangsaan Malaysia Medical Centre; UMMC, University Malaya Medical Centre.

FIGURE 2 | Carbapenem resistance rates for Malaysian Acinetobacter spp. isolates (1987–2016). IMP, imipenem; MEM, meropenem. Data from the National
Surveillance for Antibiotic Resistance (NSAR) is included and labeled as “NSAR” in purple-colored fonts. Data from the other studies are as follows: UMMC from
1987 and between 1996 and 1998, (Misbah et al., 2004); HUSM between 2003 and 2006, (Deris et al., 2009); and between 2005 and 2009, (Ariffin et al., 2012);
UMMC between 2008 and 2009, (Dhabaan et al., 2012); Hospital Selayang (H. SLYG) in 2010, (Nazmul et al., 2012); UKMMC between 2010 and 2011, (Biglari
et al., 2015, 2017); Various, collected from various hospitals mainly around the town of Ipoh in the state of Perak in 2010 and 2011, (Kor et al., 2014); HSNZ in 2011,
(Lean et al., 2014); and Hospital Sultanah Aminah (HSA) between 2011 and 2012 (Dhanoa et al., 2015).

isolated from individual hospitals showed higher resistance rates
for ceftazidime and cefepime when compared to the national
average: strains from HSA in 2010 and 2011(Dhanoa et al.,
2015) showed resistance rates of nearly 90% whereas strains from
UKMMC from 2010 and 2011 (Biglari et al., 2015) and HSNZ
in 2011 (Lean et al., 2014) showed resistance rates of around
70%. Ceftazidime resistance rates for A. baumannii isolates from
Hospital Selayang in 2010 (Nazmul et al., 2012) were closer to the
national resistance rate of 58% for that year, as was the resistance
rate for cefepime of isolates from UMMC in 2008–2009 (51%)
although the resistance rate for ceftazidime was about 10% higher
than the national resistance rate for that period of time (Dhabaan
et al., 2012). In stark contrast, all 170 isolates obtained from the

ICU of UMMC in 2006–2009 were resistant to ceftazidime and
cefepime (Kong et al., 2011). Very high ceftazidime resistance
rates had earlier been reported for Acinetobacter spp. isolates
from UMMC that were isolated in 1987 (81%) and between 1996
and 1998 (97.7%) (Misbah et al., 2004).

The resistance rates for another third generation extended-
spectrum cephalosporin, cefotaxime, were consistently higher
than ceftazidime and cefepime (Figure 3). NSAR first reported
the national resistance rates for cefotaxime in 2007 and this was
already at 75.4%. An earlier study from HUSM from 2003–2004
showed an even higher cefotaxime resistance rate at 88% (Deris
et al., 2009) and this reached 94.7% in strains isolated from
the same hospital between 2005 and 2009 (Ariffin et al., 2012).
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FIGURE 3 | Cepholosporin resistance rates for Malaysian Acinetobacter spp. isolates (1987–2016). CTX, cefotaxime; CAZ, ceftazidime; and FEP, cefepime. Data
from the National Surveillance for Antibiotic Resistance (NSAR) is included and labeled as “NSAR” in purple-colored fonts. Data from the other studies are as follows:
UMMC from 1987 and between 1996 and 1998, (Misbah et al., 2004); HUSM between 2003 and 2006, (Deris et al., 2009); and between 2005 and 2009, (Ariffin
et al., 2012); UMMC between 2008 and 2009, (Dhabaan et al., 2012); Hospital Selayang (H. SLYG) in 2010, (Nazmul et al., 2012); UKMMC between 2010 and 2011,
(Biglari et al., 2015, 2017); Various, collected from various hospitals mainly around the town of Ipoh in the state of Perak in 2010 and 2011, (Kor et al., 2014); HSNZ
in 2011, (Lean et al., 2014); and Hospital Sultanah Aminah (HSA) between 2011 and 2012 (Dhanoa et al., 2015).

The national resistance rates for cefotaxime remained above 70%
for 2009–2012 but dipped slightly below 70% in 2013–2014.
Cefotaxime resistance rates for UKMMC in 2010–2011 (Biglari
et al., 2015) and HSNZ in 2011 (Lean et al., 2014) were similar to
the national resistance rate at that time frame (i.e., around 70%).
Interestingly, cefotaxime resistance for Acinetobacter spp. isolates
from UMMC from 1987 was even higher at 81% and this further
increased to 97.7% in isolates obtained from 1996–1998 (Misbah
et al., 2004). No data for cefotaxime were available in the NSAR
reports for 2015 and 2016.

No NSAR data is also available for the fourth extended-
spectrum cephalosporin that was listed in the CLSI and the
ECDC-CDC guidelines, i.e., ceftriaxone. However, data from
Acinetobacter spp. isolates obtained from UMMC in 1987 showed
a high resistance rate of 90.5% and this further increased to 97.7%
for isolates in 1996–1998 (Misbah et al., 2004). By the following
decade, a 100% resistance rate to ceftriaxone was reported for
Acinetobacter isolates from the UMMC ICU (collected from
2006–2009) (Kong et al., 2011).

Aminoglycosides
The NSAR report from 2003 showed a nationwide gentamicin
resistance rate of 39.1% and an amikacin resistance rate that
is four-fold lower at 8.8%. Resistance rates steadily increased
and by 2008, the resistance rates for both aminoglycosides
were similar although the rates for amikacin were around 2–
5% lower than that of gentamicin (Figure 4). Throughout this
period, gentamicin resistance rates increased from 39.1% in
2003 to about 50% in 2010 and remained around that level
until the latest NSAR report for 2016. When looking at the

aminoglycoside resistance data from individual hospitals as
reported by other groups of researchers, the resistance rates for
gentamicin were generally higher than for amikacin as shown
in the NSAR data (Figure 4). However, isolates from three
hospitals showed around 20% higher resistance rates than the
NSAR data: UKMMC in 2010–2011 (70.2% for gentamicin)
(Biglari et al., 2015), HSNZ in 2011 (66.7% for gentamicin,
57.4% for amikacin) (Lean et al., 2014) and HSA in 2011–2012
(79.5% for gentamicin, 72.4% for amikacin) (Dhanoa et al., 2015).
A random sample of 42 A. baumannii isolates from various
hospitals in Malaysia taken from 2008–2009 yielded a gentamicin
resistance rate of 76.2% (Kim et al., 2013), which is also above
the national resistance rate as reported by NSAR, although for
this particular study, the isolates chosen were all carbapenem
resistant.

Fluoroquinolones
Only ciprofloxacin from the fluoroquinolone group of
antimicrobials has been used to assess the antimicrobial
susceptibility rates for Acinetobacter spp. in Malaysia. The NSAR
data showed that ciprofloxacin resistance rates increased from
about 20% in 2003 to around 50% in 2008 with rates remaining
around 50–55% until the latest report for 2016. Results from
individual hospitals more or less reflected the national trend
with the exception of UKMMC in 2010–2011 which showed a
resistance rate of 79.6% (Biglari et al., 2017), HSNZ in 2011 with
a rate of 66.1% (Lean et al., 2014) and HSA in 2011–2012 with
a rate of 84.1% (Dhanoa et al., 2015). ICU isolates from UMMC
(2006–2009) showed highest ciprofloxacin resistance rates at
99.4% (Kong et al., 2011).
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FIGURE 4 | Aminoglycoside resistance rates for Malaysian Acinetobacter spp. isolates (1987–2016). CN, gentamicin; AK, amikacin. Data from the National
Surveillance for Antibiotic Resistance (NSAR) is included and labeled as “NSAR” in purple-colored fonts. Data from the other studies are as follows: UMMC from
1987 and between 1996 and 1998, (Misbah et al., 2004); HUSM between 2003 and 2006, (Deris et al., 2009); and between 2005 and 2009, (Ariffin et al., 2012);
UMMC between 2008 and 2009, (Dhabaan et al., 2012); Hospital Selayang (H. SLYG) in 2010, (Nazmul et al., 2012); UKMMC between 2010 and 2011, (Biglari
et al., 2015, 2017); Various, collected from various hospitals mainly around the town of Ipoh in the state of Perak in 2010 and 2011, (Kor et al., 2014); HSNZ in 2011,
(Lean et al., 2014); and Hospital Sultanah Aminah (HSA) between 2011 and 2012 (Dhanoa et al., 2015).

FIGURE 5 | Resistance rates for β-lactam/β-lactamase combination in Malaysian Acinetobacter spp. isolates (2003–2016). TZP, piperacillin/tazobactam; TIM,
ticarcillin/clavulanate; SAM, ampicillin/sulbactam; SCF, cefoperazone/sulbactam. Data from the National Surveillance for Antibiotic Resistance (NSAR) is included and
labeled as “NSAR” in purple-colored fonts. Data from the other studies are as follows: HUSM between 2003 and 2006, (Deris et al., 2009); and between 2005 and
2009, (Ariffin et al., 2012); UMMC between 2008 and 2009, (Dhabaan et al., 2012); Hospital Selayang (H. SLYG) in 2010, (Nazmul et al., 2012); UKMMC between
2010 and 2011, (Biglari et al., 2015, 2017); Various, collected from various hospitals mainly around the town of Ipoh in the state of Perak in 2010 and 2011, (Kor
et al., 2014); HSNZ in 2011, (Lean et al., 2014); and Hospital Sultanah Aminah (HSA) between 2011 and 2012 (Dhanoa et al., 2015).
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Penicillins
NSAR reported Acinetobacter spp. resistance rates for ampicillin
and piperacillin from 2007 to 2014. The Malaysian Acinetobacter
isolates displayed very high resistance rates for ampicillin, which
averaged at 89.2% whereas piperacillin showed a lower average
resistance rate of 55.6% within the 7-year surveillance period.

β-Lactam/β-Lactamase Inhibitor
Combination
The national resistance rate of Acinetobacter spp. toward the
combination of piperacillin/tazobactam was relatively low (at
19.2%) in 2003 but this gradually increased to 55.8% by 2008
(Figure 5). NSAR data showed that from 2008 to 2016, the
national resistance rates for piperacillin/tazobactam remained
within the 55–60% range. However, reports of strains isolated
from individual hospitals showed markedly higher resistance
rates, as had been observed for other antimicrobials. Isolates from
HSA in 2011 and 2012 (Dhanoa et al., 2015) showed resistance
rates of about 90% whereas the resistance rates were lower at
around 70% for UKMMC in 2010 and 2011 (Biglari et al., 2015),
and HSNZ in 2011 (Lean et al., 2014) (Figure 5).

NSAR data for the combination of ticarcillin/clavulanate
was available from 2007–2014 and the national Acinetobacter
spp. resistance rates remained around the 40% level with the
exception of 2010 when it spiked to 57.6% before decreasing to
47.8% the following year (Figure 5). The national resistance rate
for ampicillin/sulbactam was around 40% from 2005 to 2009,
thereafter increasing to between 50 and 60% from 2010 to 2016
(Figure 5). Reported resistance rates for the ampicillin/sulbactam
combination from individual hospitals were higher, at 84.1%
in the HSA A. baumannii isolates obtained in 2011 and 2012
(Dhanoa et al., 2015), and about 70% for the UKMMC isolates
between 2010 and 2011 (Biglari et al., 2015) and the HSNZ
isolates in 2011 (Lean et al., 2014). Lower resistance rates were
generally observed for the sulbactam/cefoperazone combination
when compared to ampicillin/sulbactam. When NSAR first
reported data for sulbactam/cefoperazone in 2005, the resistance
rate was at 14% and remained around that level for 2007–2008.
The national sulbactam/cefoperazone resistance rate increased
considerably to 33.4% in 2009 and it remained between 40 and
45% from 2010 to 2016 with the notable exception of 2014
where the reported rate was at 25.7%. However, A. baumannii
isolates from HSA (in 2011 and 2012) showed a much higher
sulbactam/cefoperazone resistance rate of 94.1%, higher than
the ampicillin/sulbactam resistance rate of 84.1% (Dhanoa et al.,
2015).

Tetracyclines
There are very few reports on the prevalence of tetracycline
resistance in Malaysian Acinetobacter isolates. Lean et al. (2014)
reported that out of 54 A. baumannii isolates that were collected
from various ward in HSNZ in Terengganu during 2011, 87%
were resistant to tetracycline while 61.1% were resistant to
doxycycline. Similar high resistance rates for tetracycline were
reported (79.1%) for a collection of 43 MDR A. baumannii
isolates that were obtained from various hospitals mainly around

the town of Ipoh, Malaysia although the year of their collection
and the identity of the hospitals were not stated (Kor et al., 2014).

Tigecycline is a semisynthetic antibiotic belonging to the
tetracycline-derived glycylcycline family and along with the
lipopeptides or polymyxins (i.e., polymyxin B and colistin,
or polymyxin E), tigecycline is considered one of the ‘last
resort’ drugs for the treatment of Acinetobacter infections (Lim
et al., 2011; Doi et al., 2015; Li et al., 2015; Pogue et al.,
2015). However, it should be noted that guidelines such as
the latest Infectious Diseases Society of America (IDSA) and
the American Thoracic Society (ATS) for the management
of adults with hospital-acquired pneumonia and ventilator-
associated pneumonia (HAP/VAP) strongly recommends against
the use of tigecycline in Acinetobacter infections (Kalil et al.,
2016). Latest systematic reviews and meta-analyses also disfavor
the use of a tigecycline-based regimen for the treatment of
MDR A. baumannii infections, despite its lower nephrotoxicity
compared with colistin (Ni et al., 2016; Kengkla et al., 2017).
NSAR only reported tigecycline resistance rates for A. baumannii
blood isolates from 2013–2016 with fairly constant rates of 15–
18% for the 4 year period. An earlier study from the UMMC with
isolates obtained from 2008–2009 indicated a 5% intermediate
susceptibility to tigecycline for their clinical isolates but a
much higher percentage (60%) of intermediate susceptibility for
hospital environmental isolates (Dhabaan et al., 2012), which
is surprising and a cause for concern. On the other hand, Kor
et al. (2014) had reported a 58.1% tigecycline resistance rate
on their collection of 43 MDR A. baumannii from various
hospitals in Ipoh but their susceptibility testing for tigecycline
was performed using the Kirby-Bauer disk diffusion assay for
which no standard breakpoints were available. The 2008–2009
UMMC isolates were assessed for tigecycline susceptibility using
both E-test and broth microdilution, and the MIC breakpoints
from the United States Food and Drug Administration (FDA)
were used for their interpretation of tigecycline susceptibility
(Dhabaan et al., 2012), a move which was recently supported
(Nicolau et al., 2015) in the absence of any CLSI guidelines
for tigecycline until now (CLSI, 2017). Broth microdilution is
recommended for determining tigecycline MIC values as a report
had shown that tigecycline MICs varied greatly according to
the in vitro testing methods used with Etest giving significantly
elevated MICs and were thus, deemed inaccurate (Marchaim
et al., 2014).

Polymyxins (Lipopeptides)
NSAR only reported A. baumannii resistance rates for colistin
from 2015 onward where rates were low at 0.8% in 2015
and all isolates were susceptible in 2016. Data for the other
polymyxin, polymyxin B, was only reported for blood isolates
of A. baumannii from 2013–2016 with a resistance rate of
1.4% in 2013 and all isolates susceptible in 2014–2016. In stark
contrast, Lean et al. (2014) had reported an alarmingly high
resistance rate of 25.9% for polymyxin B in HSNZ. So far,
this is the only peer-reviewed, published report of polymyxin
resistant A. baumannii from Malaysia. The UMMC study on
A. baumannii isolates obtained from 2008 and 2009 did not detect
any polymyxin resistance (Dhabaan et al., 2012), as were isolates
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obtained from the UMMC ICU earlier (between 2006 and 2009)
(Kong et al., 2011). Likewise, no polymyxin-resistant isolates were
found in the 2011–2012 HSA study (Dhanoa et al., 2015) and the
2010– 2011 UKMMC study (Biglari et al., 2013).

RESISTANCE MECHANISMS

Carbapenem Resistance
Carbapenem resistance in Acinetobacter spp. is now increasingly
reported worldwide and is usually mediated by enzymatic
inactivation (via carbapenemases), active efflux of drugs and
target site modification (i.e., altered penicillin-binding proteins)
(Zarrilli et al., 2009). More than 210 β-lactamases belonging to
16 families have been identified in Acinetobacter spp. (Zhao and
Hu, 2012) with class D β-lactamases being the most widespread
carbapenemase in A. baumannii (Zarrilli et al., 2009; Bush,
2013). Class B metallo-β-lactamases (MBL; IMP-, VIM-, SIM-
and NDM-types) have also been sporadically reported worldwide
in A. baumannii, being able to hydrolyze carbapenems and other
β-lactams, except aztreonam, and resistant to clinically available
β-lactamase inhibitors (Zhao and Hu, 2012). Several insertion
sequence (IS) elements such as ISAba1, ISAba2, ISAba3 and IS18,
have been found to increase the expression of class D β-lactamase
genes (including blaOXA−23−like and blaOXA−58−like genes) when
they are inserted immediately upstream due to the presence of
an outward-directing promoter at the ends of these IS elements
(Zarrilli et al., 2009; Hsu et al., 2017). The A. baumannnii
chromosome also encodes an intrinsic blaOXA−51−like gene that is
weakly expressed but does not confer resistance to carbapenems.
However, it has been demonstrated that insertion of an ISAba1
element upstream of the gene conferred carbapenem resistance
(Turton et al., 2006).

There are very few papers that have investigated the
possible carbapenem resistance mechanisms in Acinetobacter
spp. isolates from Malaysia. The blaOXA−23 gene appeared to
be the predominant acquired carbapenemase in the Malaysian
A. baumannii isolates, which is not surprising as blaOXA−23 is the
most common cause of carbapenem resistance in A. baumannii,
and the most widely spread acquired OXA carbapenemase
worldwide (Kamolvit et al., 2015). The prevalence of the
blaOXA−23 gene was 75.9% in the 2011 A. baumannii HSNZ
isolates (Lean et al., 2014) and 82% in the 2010–2011 UKMMC
isolates (Biglari et al., 2015, 2017). In an earlier study, nearly 95%
of carbapenem-resistant Acinetobacter spp. isolated in 2003–2004
from UMMC, were positive for blaOXA−23 (Wong et al., 2009).
However, almost half of the UKMMC isolates that contained
the ISAba1-blaOXA−51−like configuration were susceptible to
carbapenems, leading the authors to conclude that ISAba1 may
not upregulate the expression of the intrinsic blaOXA−51−like gene
and mediate carbapenem resistance (Biglari et al., 2015), as had
been previously proposed (Turton et al., 2006). No blaOXA−24−like
and blaOXA−58−like genes were detected so far in the Malaysian
A. baumannii isolates (Biglari et al., 2015; Lean et al., 2014)
although these class D β-lactamases have been found elsewhere,
particularly in European isolates (D’Andrea et al., 2009; Merino
et al., 2010; Novovic et al., 2015; Chatterjee et al., 2016). Among

the Class B MBLs, only blaIMP has been reported albeit only
in 9.9% of the UKMMC A. baumannii isolates (Biglari et al.,
2015) and 5.1% in the carbapenem-resistant 2003–2004 UMMC
Acinetobacter spp. isolates (Wong et al., 2009), whereas neither
blaIMP nor blaVIM was found in the HSNZ A. baumannii isolates
from 2011 (Lean et al., 2014). Southern hybridization localized
the blaIMP−4 gene in an A. calcoaceticus isolate from UMMC to a
class 1 integron on an approximately 35 kb plasmid (Wong et al.,
2009). Interestingly, genome sequencing of an A. pittii isolated in
2014 from a hospital in the state of Perak (in Peninsular Malaysia)
led to the discovery of blaNDM−1 and blaOXA−58 co-residing in the
isolate (Ang et al., 2016). The blaNDM−1 gene was found within
a 10,038 bp composite transposon which resided on a 140 kb
megaplasmid whereas the blaOXA−58 gene was located on a 35 kb
plasmid. Metallo-β-lactamase production in this A. pittii strain
was validated by testing with the Etest MBL kit from BioMériux
(Ang et al., 2016).

Cephalosporin Resistance
Acinetobacter spp. are known to encode Acinetobacter-specific
AmpC cephalosporinases in the chromosome, designated ADCs
(Hujer et al., 2005). More than 45 variants of ADCs (ADC-1
to ADC-56) have been categorized for the genus Acinetobacter
with many more that remain uncategorized (Zhao and Hu, 2012).
In cephalosporin-resistant A. baumannii isolates from UKMMC,
the blaADC gene was present in 93.7% of the isolates and in most
of these blaADC-positive isolates, ISAba1 was detected upstream
of the blaADC gene (Biglari et al., 2015). ADCs are normally
expressed at low levels and are not inducible (Hujer et al.,
2005) but the insertion of ISAba1 upstream often leads to the
overexpression of these cephalosporinases (Héritier et al., 2006).
The specific ADC type was, however, not determined for the
UKMMC isolates. The blaADC sequence from 3 cephalosporin-
resistant A. baumannii from HSNZ isolated in 2011 (i.e., AC12,
AC29 and AC30) were found to be a hitherto uncategorized
ADC (with R80S and G246S mutations in reference to ADC-7)
(Lean et al., 2015, 2016). However, these blaADC genes were
characterized as belonging to the ampC allele 20 in a recent
paper reporting on the re-curation of the A. baumannii-encoded
ampC genes in a new database hosted at http://pubmlst.org/
abaumannii (Karah et al., 2017). These blaADC genes from
A. baumannii AC12, AC29 and AC30 were cloned into a
pET30a expression vector and expressed in Escherichia coli BL21,
leading to the recombinant E. coli strains displaying resistance
to ceftazidime, cefepime, aztreonam and even imipenem (Lean
et al., 2016). This suggests that the ADC from these isolates were
indeed extended-spectrum Acinetobacter-derived AmpC (ESAC)
as ADCs typically hydrolyze penicillins, narrow- and extended-
spectrum cephalosporins but not carbapenems and zwitterionic
cephalosporins such as cefepime (Rodríguez-Martínez et al.,
2010; Lean et al., 2016).

Other Resistance Mechanisms
The main mechanisms of fluroquinolone resistance are
mutations that alter the target sites DNA gyrase (encoded by
gyrA and gyrB) and DNA topoisomerase IV (encoded by parC
and parE) (Jacoby, 2005). Ciprofloxacin-resistant A. baumannii
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isolates from UKMMC and A. baumannii AC12, AC29 and AC30
from HSNZ all displayed the characteristic serine-to-leucine
substitution at position 83 for GyrA and position 80 for ParC
(Lean et al., 2015, 2016; Biglari et al., 2017), mutations which have
been implicated in fluoroquinolone resistance in Acinetobacter
(Wisplinghoff et al., 2000; Fournier et al., 2006).

Resistance to polymyxins (polymxin B and colistin) in
A. baumannii is mediated by multiple factors but is mainly due to
modification of the LPS moieties that form the outer membrane
layer of the cell (Olaitan et al., 2014; Jeannot et al., 2017;
Poirel et al., 2017). In some polymyxin-resistant A. baumannii,
phosphoethanolamine is enzymatically added to the lipid A of
LPS (Arroyo et al., 2011) whereas in other resistant isolates, the
LPS part of the outer membrane is completely absent due to
mutations in the genes involved in LPS biosynthesis (Moffatt
et al., 2010, 2011; Henry et al., 2012). These LPS alterations
decrease the net negative charge, preventing the binding of the
cationic polymyxin molecules to the bacterial surface (Jeannot
et al., 2017; Poirel et al., 2017). PmrAB is a two-component
regulatory system that regulates the expression of the genes
involved in LPS modification; some mutations in pmrAB resulted
in polymyxin resistance due to constitutive upregulation of the
LPS modification pathway (Arroyo et al., 2011; Park et al.,
2011; Lim et al., 2015; Dahdouh et al., 2017). Investigations
into the polymyxin-resistant A. baumannii isolates from HSNZ
in 2011 indicated a P102H mutation in the pmrA gene in all
resistant isolates and several point mutations in the lpxC, lpxD
and lpsB genes involved in LPS biosynthesis (Lean et al., 2014).
Further experimental studies on two of these polymyxin-resistant
isolates, A. baumannii AC12 and AC30, indicated upregulation
of the pmrB gene as well as possible impairment (but not
total loss) of the LPS (Lean et al., 2016). These mutations
are intrinsic, and not transmissible, and are likely the result
of selective pressure (Jeannot et al., 2017; Poirel et al., 2017).
However, the recent discovery of the transmissible polymyxin-
resistant genes, mcr-1, mcr-1.2, and mcr-2 (which encode
phosphoethanolamine transferases) in Enterobacteriaceae (Liu
et al., 2015; Giamarellou, 2016) raised the alarming possibility
of its spread to Acinetobacter spp. and other bacteria. Although
no reports of mcr-positive Acinetobacter spp. have emerged until
now, it is likely just a matter of time as the mcr genes are
carried on transmissible plasmids (Malhotra-Kumar et al., 2016;
Jeannot et al., 2017). A recent report highlighted this when it
was shown that laboratory transformation of an mcr-1-encoded
recombinant plasmid into several strains of A. baumannii led to
the development of colistin resistance in these strains (Liu et al.,
2017).

EPIDEMIOLOGY AND GENOMICS

Prior to the current accessibilty of WGS, various molecular
methods were available for investigating the epidemiology of
A. baumannii. Pulsed-field gel electrophoresis (PFGE) was the
gold standard for epidemiological investigations of pathogenic
bacteria including A. baumannii but suffers from limitations
such as its labor- and time-intensiveness (2–4 days) and the

lack of reliable inter-laboratory reproducibility despite the
availability of guidelines for comparison of band positions (Rafei
et al., 2014). Other electrophoretic band-based typing methods
such as random amplified polymorphic DNA (RAPD) and
repetitive sequence-based PCR (Rep-PCR) have been used for
A. baumannii, but both suffer from lack of intra- and inter-
laboratory reproducibility (van Belkum et al., 2007; Rafei et al.,
2014). MLST remains the most widely accepted typing technique
to study clonality and population structure of A. baumannii
even in the era of WGS (Zarrilli et al., 2013; Rafei et al., 2014).
MLST accesses the genetic variation that occurs in housekeeping
genes by considering each unique sequence of the housekeeping
gene as an allele type with a sequence type (ST) defined by
combination of allele types for each gene in the MLST scheme.
There are currently two MLST schemes for A. baumannii: (1) the
Bartual or the Oxford scheme, which is based on seven genes
(gltA, gyrB, gdhB, recA, cpn60, gpi, and rpoD) (Bartual et al.,
2005; Wisplinghoff et al., 2008), and (2) the Institut Pasteur
scheme which is also based on seven genes (cnp60, fusA, gltA,
pyrG, recA, rplB and rpoB) (Diancourt et al., 2010), three of
which (i.e., cpn60, recA and gltA) is common with the Oxford
scheme.

Despite the availability of various molecular typing
methods for A. baumannii, papers reporting on the molecular
epidemiology of A. baumannii in Malaysia are few and
far between. Acinetobacter isolates from UMMC obtained
from 1987 and from 1996–1998 were subjected to Rep-PCR
fingerprinting (Misbah et al., 2004) whereas those obtained
from the same medical centre in 2006–2009 were analyzed by
PFGE (Kong et al., 2011). PFGE profiles revealed the likelihood
of a persistent A. baumannii clone endemic to the ICU with
several environmental isolates and an isolate from the hands of
a healthcare worker showing closely related PFGE profiles with
isolates from patients (Kong et al., 2011). Similarly, Rep-PCR
fingerprints indicated the presence of two distinct Acinetobacter
lineages at UMMC that could have persisted from 1987 to
1996–1998 (Misbah et al., 2004). However, any meaningful
comparisons between these two studies could not be made due
to the different fingerprint methods that were used. Hence, an
opportunity has been lost to assess the evolution of Acinetobacter
spp. in the same medical center over a span of two decades. PFGE
has also been used to investigate the A. baumannii isolates from
HSNZ in 2011 (Lean et al., 2014) and Acinetobacter spp. isolates
from HSA in 2010–2011 (Dhanoa et al., 2015). In both cases,
endemicity of a prevalent clone in the respective hospitals as
determined by their closely related pulsed-field ApaI profiles, was
inferred and all isolates belonging to these prevalent clones were
carbapenem resistant (Lean et al., 2014; Dhanoa et al., 2015).
Clonal relatedness of A. baumannii isolates from UKMMC
(2010–2011) was assessed by Rep-PCR which indicated 31 clones
among the 162 A. baumannii isolates at a cutoff value of 90%
similarity (Biglari et al., 2017). Unlike the HSNZ and HSA
studies, the UKMMC study did not have any strong inference
of a prevalent clone within the hospital during the time period
of the investigation, based on the Rep-PCR profiles which
showed considerable diversity between the isolates (Biglari et al.,
2017).
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TABLE 2 | Available whole genome sequences of A. baumannii isolated from Malaysia in the NCBI GenBank database.

A. baumannii strain Source of isolate ST (Oxford scheme) ST (Pasteur scheme) Accession number Reference∗

AC12 Blood ST195 ST2 CP007549.3 Lean et al., 2015

AC29 Endotracheal secretion ST195 ST2 CP007535.2 Lean et al., 2016

AC30 Endotracheal secretion ST195 ST2 CP007577.1 Lean et al., 2016

PR07 Blood ST734 ST239 CP012035.1 Izwan et al., 2015

269 Mucoid sputum Unknown ST119 JQNV00000000 NA

863 Mucoid sputum ST938 ST2 LZTF00000000 NA

461 Wound swab ST195 ST2 LCTE00000000 NA

341 Mucopurulent sputum ST938 ST2 JQSD00000000 NA

∗NA, not available .

Kim et al. (2013) gave an indication of the Oxford scheme
STs that were prevalent in Malaysian A. baumannii isolates
when they characterized 38 isolates obtained from Malaysia
as part of the Asian Network for Surveillance of Resistance
Pathogens (ANSORP) study on hospital-acquired pneumonia
from 2008–2009. The majority of the Malaysian isolates (30
isolates; 78.9%) belonged to clonal complex 92 (CC92), out of
which ST92 (12 isolates; 31.6%), ST195 (7 isolates; 18.4%) and
ST426 (7 isolates; 18.4%) were the most frequently identified
STs (Kim et al., 2013). Three A. baumannii isolates from
HSNZ (2011) that were subjected to WGS (namely AC12, AC29
and AC30) were all found to be ST195 (Lean et al., 2015,
2016). Similarly, when MLST was performed on seven selected
A. baumannii UKMMC isolates (based on their major Rep-PCR
profiles), six were found to be ST195 whereas the other isolate was
found to be ST208 (Biglari et al., 2017). We mined the GenBank
database for A. baumannii genome sequences from Malaysia
(Table 2) and found that only one of the other five available
genomes were ST195 (A. baumannii strain 461). A. baumannii
269 had an unknown ST based on the Oxford scheme but was
typed as ST119 using the Pasteur scheme (Table 1). Hence, based
on the small number of isolates and limited studies that are
available, it would appear that the A. baumannii isolates from
Malaysia mainly belonged to the Global Clone 2 (GC2) CC92,
with ST195 being the predominant ST.

CONCLUSION

In this review, we have comprehensively examined the trends
of antimicrobial resistance in Acinetobacter spp. isolated from
various hospitals in Malaysia covering a period of nearly
three decades from 1987 to 2016. The national Acinetobacter
spp. carbapenem resistance rate currently stands at around
60%, which is similar to the levels reported for 2015 in
two of Malaysia’s neighboring countries which have national
surveillance programs, i.e., Singapore (50%), and the Philippines
(54.1%), whereas Thailand reported a higher rate of 73.7%
(Hsu et al., 2017). The major acquired carbapenemase gene in
Acinetobacter spp. isolated from Malaysia is blaOXA−23, as had
been reported in these three neighboring countries although it
should be noted that these data were obtained from individual
studies and not through their respective national surveillance
programs (Hsu et al., 2017). Although results from the Malaysian

national surveillance program, NSAR, are publically available
online from 2003 onward, the data and analysis could be
vastly improved, as we had pointed out here and in a recent
commentary (McNeil et al., 2016). Good quality surveillance
data is an important component in the global fight against
the spread of antimicrobial resistance and the paucity of
such essential epidemiological data often leads to delayed or
suboptimal revisions in policies and guidelines, which in turn,
strengthens the vicious cycle of the careless use of antibiotics
by medical practitioners (Laxminarayan et al., 2013). Ideally,
a comprehensive surveillance programme should also include
molecular epidemiological testing which would enable us to
have an in-depth understanding of the origins and extent of
the antimicrobial resistance problem (Hsu et al., 2017) but
this will likely not be implemented in the near future due to
the limited resources of these countries with the exception of
perhaps Singapore. Closer collaborations between institutes that
handle the national surveillance programs with other academic
or research institutions with the relevant resources and skills
for molecular epidemiology and WGS should be fostered to
better expedite and improve the quality of the surveillance
data. This is particularly pressing for priority pathogens such
as Acinetobacter spp. for which containing and preventing the
spread of antimicrobial resistance is of paramount importance to
prevent a possible “antibiotic apocalypse” whereby such bacterial
infections would no longer be treatable with antibiotics.
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The emergence and spread of the mobile colistin resistance gene (mcr-1) has become
a major global public health concern. So far, this gene has been widely detected
in food animals, pets, food, and humans. However, there is little information on the
contamination of mcr-1-containing bacteria in farming soils. In August 2016, a survey
of ESBL-producing Escherichia coli isolated from farming soils was conducted in
Shandong Province, China. We observed colistin resistance in 12 of 53 (22.6%) ESBL-
producing Enterobacteriaceae isolates from farming soil. Six mcr-1-positive E. coli
strains originating from a livestock-intensive area were found. The isolates belonged
to four different STs (ST2060, ST3014, ST6756, and ST1560) and harbored extensive
additional resistance genes. An E. coli with blaNDM-1 was also detected in a soil sample
from the same area. Comparative whole genome sequencing and S1-PFGE analysis
indicated that mcr-1 was chromosomally encoded in four isolates and located on IncHI2
plasmids in two isolates. To our knowledge, we report the first isolation of mcr-1 in
ESBL-producing E. coli from farming soils. This work highlights the importance of active
surveillance of colistin-resistant organisms in soil. Moreover, investigations addressing
the influence of animal manure application on the transmission of mcr-1-producing
bacteria are also warranted.

Keywords: mcr-1, ESBLs, Escherichia coli, farming soil, animal manure

INTRODUCTION

Antimicrobial resistance determinants, the dissemination of which are facilitated by human
activities, are increasingly being recognized as emerging environmental contaminants with the
potential to pose a threat to human health (Sanderson et al., 2016). It is well-recognized that
large amounts of antibiotics are released from humans and animals into agricultural fields by
manure fertilization (Jechalke et al., 2014). Subsequently, these substances may affect the structure

Frontiers in Microbiology | www.frontiersin.org 1 December 2017 | Volume 8 | Article 251036

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02510
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02510
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02510&domain=pdf&date_stamp=2017-12-14
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02510/full
http://loop.frontiersin.org/people/392523/overview
http://loop.frontiersin.org/people/463289/overview
http://loop.frontiersin.org/people/456728/overview
http://loop.frontiersin.org/people/473381/overview
http://loop.frontiersin.org/people/402964/overview
http://loop.frontiersin.org/people/412572/overview
http://loop.frontiersin.org/people/421062/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02510 December 12, 2017 Time: 16:38 # 2

Zheng et al. MCR-1-Positive E. coli in Soil

and function of in situ bacterial communities and further lead
to an increased abundance and transferability of antibiotic
resistance genes (ARGs) (Jechalke et al., 2014). Extended-
spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is
an important group of multidrug-resistant (MDR) bacteria
which constitutes a major public health concern (Bush and
Fisher, 2011). Antimicrobial therapy with colistin alone, or
in combination with other antibiotics, is regarded as a “last-
line” treatment option against bacterial infections caused
by MDR Gram-negative pathogens (Paterson and Harris,
2016). Globally, there are increasing reports of colistin-
resistant Enterobacteriaceae. Bacteria that produce ESBLs or
carbapenemases in particular, are associated with colistin
resistance; these colistin-resistant bacteria pose a severe health
threat due to the limited therapeutic options available (van Duin
and Doi, 2015).

Recently, concerns were raised regarding the increasing
prevalence of colistin-resistant Enterobacteriaceae due to the
discovery of the first plasmid-mediated colistin resistance gene,
mcr-1, which was identified in China (Liu et al., 2016). Since
the first report of mcr-1, mcr genes, including mcr-1/2/3/4/5
have been detected in animals, food, human microbiota, and
clinical samples in over 30 countries (Gao et al., 2016; Xavier
et al., 2016; Borowiak et al., 2017; Carattoli et al., 2017; Yin
et al., 2017). Notably, our and other research groups have
already found Enterobacteriaceae isolates containing MCR-1 and
carbapenemases, raising serious concerns about the possible
global dissemination and spread of pan-resistant pathogens
(Zheng et al., 2016).

To date, the mcr gene has been detected worldwide in human
and animal samples; however, its occurrence in environmental
samples has rarely been described. Several previous studies have
documented the emergence of mcr-harboring, ESBL-producing
Enterobacteriaceae in river and waste water (Zurfuh et al.,
2016; Ovejero et al., 2017; Sun P. et al., 2017), suggesting
that the mcr gene has spread from veterinary to aquatic
environments. Colistin resistance is a threat to human and
animal health worldwide, and soil ecosystems are one of
the major environmental contamination sectors of antibiotic-
resistant bacteria. However, the extent and significance of
emergence of MCR-producing isolates in soil has not been
elucidated.

The aim of this study was to describe the occurrence of
Escherichia coli isolates harboring both the blaCTX-M and mcr
genes that were originally isolated from farming soils in China.
We also sought to reveal the genomic structure of mcr-positive
E. coli isolates and to decipher the colistin resistance mechanisms
among these environmental isolates.

MATERIALS AND METHODS

Study Site and Soil Sampling
In August 2016, we collected farming soil samples from 32
distinct rural sites in Shandong Province, China (Supplementary
Figure S1). The families at the study sites most commonly lived
in a four-room house with an outdoor toilet located in the yard.

Most families kept chicken and pigs in the yard. Toilet waste was
disposed by the family itself and manure from animals were often
applied to agricultural fields. Three non-repeated samples were
obtained from each site, which is geo-positioned with a precision
<0.5 m. All samples were collected from deeper layers (depth
3–10 cm) within a 20 cm × 20 cm area and kept on ice during
transport.

Isolation of ESBL-Producers
Each sample (2.0 g) was homogenized with a fivefold volume
of sterile Luria-Bertani (LB) liquid medium (∼10 ml) and
cultured at 37◦C overnight. The enriched solutions were plated
on MacConkey agar plates with 2 mg/L cefotaxime for 18–
24 h at 37◦C to isolate potential ESBL-producing strains. ESBL
production was confirmed via the double-disk synergy test
(DDST) in accordance with Clinical and Laboratory Standards
Institute (CLSI) guidelines (CLSI, 2017). ESBL-producing isolates
were identified by matrix-assisted laser desorption ionization-
time of flight mass spectrometry (MALDI-TOF MS).

Antimicrobial Susceptibility Testing and
Detection of Resistance Genes
Broth microdilution was performed for antimicrobial
susceptibility testing of ESBL producers, and the results
were interpreted using CLSI breakpoints. EUCAST breakpoints
were used for colistin and tigecycline1. The ESBL-producing
isolates were further subjected to PCR for the detection of mcr
genes (mcr-1, mcr-2, mcr-3, and mcr-4), carbapenemase genes
and ESBL genes, as previously described (Branas et al., 2015; Liu
et al., 2016; Xavier et al., 2016; Carattoli et al., 2017; Yin et al.,
2017).

Multilocus Sequence Typing and
Pulsed-Field Gel Electrophoresis
Multilocus sequence typing (MLST) was undertaken in
accordance with protocols described in the E. coli database
(Wirth et al., 2006) and the Klebsiella pneumoniae database
(Brisse et al., 2009). The clonality of mcr-1-positive isolates was
assessed by XbaI-pulsed-field gel electrophoresis (PFGE) and
cutoff lines at 85% were used to analyze genetic relatedness
(Zheng et al., 2015). S1-PFGE, hybridization, and conjugation
experiments were performed as previously described (Zheng
et al., 2016).

Whole Genome Sequencing (WGS) and in
Silico Analyses
To characterize the genetic features of the mcr-bearing isolates,
whole-genome sequencing (WGS) was performed on six isolates
using the Illumina HiSeq platform (Illumina, San Diego, CA,
United States). WGS data quality control was performed as
previously described (Zhang et al., 2014). Sequencing data were
assembled using SOAPdenovo (Luo et al., 2012) and queries
were then generated by utilizing the ResFinder 2.1 (Zankari
et al., 2012) database to identify acquired ARGs. PlasmidFinder

1http://www.eucast.org
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1.3 was employed to identify plasmid replicon types (Carattoli
et al., 2014). Plasmid profiling using plasmidSPAdes to assemble
plasmids from WGS data was also performed (Antipov et al.,
2016).

Conjugation Experiments and Plasmid
Analysis
The transferability of mcr-bearing plasmids from isolates
was determined using filter mating with E. coli J53 as the
recipient strain, mixed at a ratio of 1:1 in broth culture,
as previously described (Zheng et al., 2015). The resulting
transconjugants were selected on BHI agar plates amended with
colistin (2 mg/L). The colonies were identified as E. coli J53
via MALDI-TOF MS and such colonies were screened and
sequenced for the presence of mcr-1 gene. Plasmid sizes were
determined using the S1-nuclease PFGE (S1-PFGE) method
(Zheng et al., 2015). Additionally, Southern blotting analysis
was performed to determine genetic location using specific
probes for the mcr gene. Identification of replicon types
of the plasmid incompatibility (Inc) groups was performed
by multiplex PCR, as described previously (Carattoli et al.,
2005).

Accession Numbers
The whole genome sequences of mcr-1-positive E. coli strains
were deposited in GenBank under the following accession
numbers: accession no. MVOR00000000 (E4), MVOS00000000
(E11), MVOT00000000 (E24), MVOU00000000 (E38),
MVOV00000000 (E43), and MVOW00000000 (E47).

RESULTS AND DISCUSSION

Identification of ESBL-Producing
Enterobacteriaceae
Analysis of 96 soil samples led to the isolation of 53 ESBL-
producing Enterobacteriaceae, including 42 E. coli isolates and
11 K. pneumoniae isolates. MIC results demonstrated that
50 (96.2%) isolates exhibited multidrug resistance, which was
defined as resistance to at least three different classes of
antimicrobial agents (Supplementary Table S1). The highest
susceptibility rate was observed for imipenem (100%), followed
by meropenem (96.2%), tigecycline (94.3%), colistin (79.2%), and
polymyxin B (75.5%). blaCTX-M genes were detected in 50 (96.2%)
isolates. The most prevalent blaCTX-M gene was blaCTX-M-14
(n= 21), followed by blaCTX-M-27 (n= 13), blaCTX-M-65 (n= 10),
blaCTX-M-55 (n = 9), blaCTX-M-11 (n = 2), and blaCTX-M-3,
blaCTX-M-15, and blaCTX-M-17 (n = 1 for each) (Supplementary
Table S2). For E. coli in a clinical context, ST10, ST38, ST131,
and ST405 are responsible for the dissemination of CTX-M
worldwide (Hernandez and Gonzalez-Acuna, 2016). The STs
among the ESBL-producing E. coli observed in this study were
quite different and only ST10 (n = 2) was detected among
the aforementioned STs. Notably, although NDM-1-producing
strains are rarely recovered from soil (Wang and Sun, 2015), the
blaNDM-1 gene was identified in strain E28 (Supplementary Table

S1). In addition, 10 (23.8%) E. coli and 2 (18.2%) K. pneumoniae
were resistant to colistin and polymyxin B. The currently known
resistance mechanisms to colistin involve modifications of the
lipopolysaccharide and can either be encoded chromosomally
or by the plasmid-borne mcr-1/2/3/4 (Poirel et al., 2017). In
our study, six isolates were positive for mcr-1 and none of the
isolates carried mcr-2/3/4 determinants. DNA sequencing of the
full-length mcr gene revealed 100% matching nucleotide identity
with the mcr-1 sequence described in the original publication.
Interestingly, mcr-1-producing isolates were recovered from five
sampling sites, all of which were located in an area with intensive
livestock farming (Supplementary Figure S1). In addition, except
for isolates E31 and E7, isolates E91, E95, K63, and K64
were highly resistant to colistin (>16 mg/l). The resistance
mechanism responsible for the high MICs observed could
be due to mutations in the two-component system pmrAB,
which can lead to increases in the extent of LPS modifications
which in turn lowers the affinity to colistin (Poirel et al.,
2017).

Occurrence of MCR-1-Harboring E. coli
in Farming Soil
The six mcr-1-producers belonged to ST2060 (n = 3), ST3014,
ST6756, and ST1560 (Figure 1). These STs have not been
previously reported to be associated with mcr-1. The diverse STs
exhibited genetic heterogeneity, which has also been observed
in other reports on MCR-1-producing E. coli (Veldman et al.,
2016; Wang et al., 2016). These findings imply the complex
genetic diversity of both the mcr-1 gene and its E. coli hosts
in soils in China. As a consequence, there is an urgent
need to formulate a comprehensive strategy to prevent further
dissemination of mcr-1 in multidrug-resistant isolates. The
isolates E38, E43, and E47 presented highly similar profiles,
indicating the clonality of these MCR-1-producing strains
(Figure 1). S1-PFGE and hybridization showed that the MCR-
1-producing isolates had multiple plasmids that ranged from 30
to 250 kb (Figure 2A). Moreover, the mcr-1 gene was located
on a 220 kb plasmid in isolates E11 and E24. Interestingly,
southern blot and conjugation experiments produced negative
results for E4, E38, E43 and E47, indicating that the mcr-1
gene was chromosomally encoded in these isolates (Figure 2B
and Supplementary Table S3). Chromosome-based mcr-1 genes
have also been found in previous studies (Falgenhauer et al.,
2016; Li et al., 2016). Our study revealed unexpected diversity
in the mcr-1-harboring strains present in the examined soil
samples.

China produces an estimated 2.1 trillion kg of swine and
chicken annually (Zhou et al., 2016). Prior to the Chinese
government’s ban of colistin as a feed additive for animals in
Nov 1, 2016, the consumption of colistin was more than 8,000
tons (Walsh and Wu, 2016). The long-term usage of huge
amounts of colistin may have established a selection pressure
facilitating the generation and dissemination of colistin-resistant
isolates in feces, especially in chicken, as antimicrobial agents
were often administered orally to these animals (Nguyen et al.,
2016). Predictably, colistin-resistant strains have been widely
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FIGURE 1 | Molecular and genotypic profiles of six mcr-1-producing Escherichia coli isolates from farming soil. Summary of molecular epidemiological
characteristics of the six mcr-1-producing E. coli isolates. The dendrogram of PFGE patterns was constructed using BioNumerics v6.6 with UPGMA clustering. The
scale bar indicates percentage of genetic relatedness.

FIGURE 2 | (A) Plasmid profiles of six mcr-1-positive isolates generated using the restriction enzyme S1, with Salmonella enterica serovar Branderup as the
molecular mass marker. (B) Southern blot hybridization with a mcr-1-specific probe. The MCR-F1 (5′-TGCAGCATACTTCTGTGTGGT-3′) and MCR-R1
(5′-CACCGAGTAGATTGGCATGA-3′) primers were used.

detected in fecal samples from food animals in China (Bai
et al., 2016). To the best of our knowledge, no report to date
have described mcr-positive Enterobacteriaceae isolated from
soil samples. However, mcr-positive E. coli have been identified
in river water, vegetable samples (Zurfuh et al., 2016) and
sewage water (Ovejero et al., 2017). Interestingly, one study
investigated the transmission of mcr-1-containing bacteria into
the environment around farm areas in Germany and found seven
mcr-1-positive E. coli strains originating from environmental
boot swabs, dog feces, stable flies, and manure (Guenther
et al., 2017). More pertinently, a recent report revealed that
mcr-1 producers have been identified in drinking water from
Shandong Province (Sun P. et al., 2017). Notably, in rural areas of
China, especially areas with intensive livestock farming, animal

manure is widely used as organic fertilizer (Zhu et al., 2013).
These findings were consistent with our results, although the
contribution of soil-contaminant routes to the spread of mcr-
1-harboring bacteria requires additional investigation. Our data
suggest potential contamination of soil with bacteria harboring
the mcr-1 gene from animal manure, since in our study, all of
the isolated mcr-1-producers were recovered from a livestock-
intensive area.

Genomics Features of MCR-1-Producing
Isolates
Whole-genome sequencing produced 4,717,954, 5,886,228,
4,302,436, 5,043,375, 4,164,486, and 5,989,082 pairs of 150-bp
reads for E4, E11, E24, E38, E43, and E47, respectively. Assembly
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of these isolates’ genomes resulted in 109, 179, 124, 116, 119
and 113 contigs larger than 500 bp, comprising 4.9 megabases
of sequence and representing a median 309-fold coverage
(Supplementary Table S4).

The wide-spread use of antibiotics in animal production
leads to a contamination of animal feces and urine with the
parent antimicrobial compound and MDR bacteria, resulting
in contamination of the farming soils with ARGs (Xu et al.,
2015). All of the sequenced mcr-1-positive isolates found in this
study harbored multiple resistance genes, inducing multidrug
resistance, and multiple plasmid Inc types, suggesting that
multiple plasmids were present, a finding consistent with our
plasmid profiling results (Figure 2). The blaTEM−1B, floR, and
sul1 genes and aminoglycoside resistance genes [aac(6′)Ib-cr,
aph(3′)-Ia or aadA] were detected in all mcr-1-positive E. coli
strains; these findings explain the extensively drug-resistant
phenotype of these E. coli isolates (Figure 1 and Supplementary
Table S1). The E38, E43, and E47 strains were genetically
closely related; this finding was consistent with our observations
for PFGE profiles, indicating the isolate-driven spread of the
mcr-1 gene. Interestingly, isolates E11 and E24 shared the
same plasmid Inc types although PFGE results showed their
relative heterogeneity, indicating the prevalence of mcr-1-bearing
plasmids in this livestock-intensive area and their broad-host-
range characteristics which facilitates the dissemination of the
mcr-1 gene (Figures 1, 2). A recent study also revealed that the
worldwide dissemination of mcr-1 was mainly mediated by highly
promiscuous plasmids rather than several populations of mcr-1-
carrying clones (Matamoros et al., 2017). The clones may have
the intrinsic ability of acquiring antimicrobial resistance genes,
including mcr-1, enabling them to play a potential role as a
reservoir for this gene and facilitate the prevalence of mcr-1 gene
in local regions.

We identified plasmid replicons in all six isolates, including
one type of plasmid in E4, three types of plasmids in E11, and
four types of plasmids in E24, E38, E43, and E47. Via BLAST
analysis of the plasmid sequences assembled by plasmidSPAdes,
we also found seven different types of plasmids in these strains,
a result consistent with the S1-PFGE findings (Figure 2A). In
isolate E11, mcr-1 was carried on an IncHI2 plasmid. A search
of the nr/nt database revealed sequence homology between the
assembled large plasmid contig (60.4 kb) and the annotated mcr-
1-positive IncHI2 plasmid pHNSHP45-2 (GenBank: KU341381)
(Supplementary Figure S2A). For isolate E24, a mcr-1-harboring
contig (37.5 kb) was found to be 99% identical to the mcr-1-
positive IncHI2 plasmid pMR0516mcr (GenBank: KX276657)
(Supplementary Figure S2B). Notably, the sequence of pap2-
mcr-1-ISApl1 region was identified in both plasmids, which is
usually found in mcr-1-carrying plasmids (Wang et al., 2017).
In addition, the genetic context of the chromosomally encoded
mcr-1 genes was similar to that reported in a previous study, i.e.,
mcr-1 was observed in a structure consisting of ISApl1-IRR-mcr-
1-hp (Supplementary Figure S3) (Sun J. et al., 2017). ISApl1 is a
member of the IS30 family, and contributes to the mobilization
of the mcr-1 cassette into the chromosome through recognition of
different related IRRs, which could perfectly match with 3′-end of

mcr-1-hp to form a circular intermediate (Dona et al., 2017; Sun
J. et al., 2017).

CONCLUSION

To the best of our knowledge, this investigation involved the first
survey of MCR-1 in ESBL-producing E. coli isolates from farming
soils. It is well-known that the mcr-1 gene can spread through
food chains. This study further highlights the possibility that mcr-
1 may enter humans via soil contamination and thereby threaten
public health. Rates of mcr-1 carriage are likely to rise rapidly
in the examined region due to the environmental contamination
with mcr-1 described in this work and a previous study (Sun P.
et al., 2017). Therefore, investigations addressing the influence
of animal manure application on the transmission of mcr-1
producers are of great significance, and improved multisectoral
surveillance for colistin-resistant E. coli in Zhucheng City and
nearby regions is warranted.
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The aim of this study was to evaluate the influence of apramycin administration on
the development of antibiotic resistance in Escherichia coli (E. coli) strains isolated
from chicken feces and houseflies under field conditions. Chickens in the medicated
group (n = 25,000) were given successive prophylactic doses (0.5 mg/l) of apramycin
in their drinking water from Days 1 to 5, while no antibiotics were added to the
un-medicated groups drinking water (n = 25,000). Over 40 days, a total of 1170
E. coli strains were isolated from fecal samples obtained from medicated and
un-medicated chickens and houseflies from the same chicken farm. Apramycin MIC90
values for E. coli strains obtained from the medicated group increased 32–128 times
from Days 2 to 6 (256–1024 µg/ml) when compared to those on Day 0 (8 µg/ml). Strains
isolated from un-medicated chickens and houseflies had consistently low MIC90 values
(8–16 µg/ml) during the first week, but showed a dramatic increase from Days 8 to 10
(128–1024 µg/ml). The apramycin resistance gene aac(3)-IV was detected in E. coli
strains from medicated (n = 71), un-medicated (n = 32), and housefly groups (n = 42).
All strains positive for aac(3)-IV were classified into 12 pulsed-field gel electrophoresis
(PFGE) types. PFGE types A, E, and G were the predominant types in both the
medicated and housefly groups, suggesting houseflies play an important role in
spreading E. coli-resistant strains. Taken together, our study revealed that apramycin
administration could facilitate the occurrence of apramycin-resistant E. coli and the
apramycin resistance gene acc(3)-IV. In turn, these strains could be transmitted by
houseflies, thus increasing the potential risk of spreading multi-drug-resistant E. coli
to the public.
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INTRODUCTION

Antimicrobial resistance emerges from the use of antimicrobials
in animals and the subsequent transfer of resistance bacteria from
those animals to the broader environment (Berendonk et al.,
2015). The influence of antimicrobial usage on the prevalence of
resistant strains in animals is of great concern for wider public
health (da Costa et al., 2008; Martins da Costa et al., 2011; Sato
et al., 2014).

Apramycin is an aminoglycoside antibiotic that has been
used in animal husbandry since the early 1980s. It is still
used in several European countries and it was approved
for use in China in 1999 (Zhang et al., 2009). It is
used to treat or prevent infections caused by Gram-negative
bacteria such as colibacillosis, salmonellosis, and bacterial
enteritis in poultry, swine, and calves (Antunes et al., 2011).
Epidemiological investigations of apramycin-resistant bacteria
from food producing animals showed differential prevalence of
apramycin resistance in different animals (Choi et al., 2011). To
date, there are two known resistance genes that confer resistance
to apramycin in E. coli. One is the most prevalent apramycin
resistance gene, aac(3)-IV, which codes for an aminoglycoside 3-
N-acetyltransferase type-IV enzyme (Davies and Oconnor, 1978).
The other is npmA, which was identified in a clinical E. coli
strain in 2007 and subsequently found to encode for a 16S rRNA
m1A1408 methyltransferase (Wachino et al., 2007).

According to a previous study in China, apramycin-
resistant E. coli are not only resistant to apramycin itself,
such strains have also been found to be multi-resistant to
several other antimicrobial agents (Zhang et al., 2009). This
could complicate therapeutic options for bacteriosis treatment
in both farm animals and humans (Zhang et al., 2009).
A few studies have shown that apramycin treatment caused
significant selective pressure in prevalence of resistance E. coli
in swine (Mathew et al., 2003; Jensen et al., 2006). However,
its influence on E. coli found in chicken has not yet been
investigated.

The risk of flies disseminating resistant bacteria from
livestock and poultry farms to the public has been a
subject of increasing concern. Flies captured from different
animal rearing facilities had been shown to be vectors for
different microorganisms, some of which may be foodborne
pathogens that are potentially threatening to human health
(Forster et al., 2007). Moreover, flies also function as
transmission vehicles for ESBL-producing E. coli from
cattle (Usui et al., 2013) as well as laying hens and broilers
(Blaak et al., 2014). However, the influence of apramycin
administration on the development of antibiotic resistance in
E. coli from chicken feces and houseflies has not been fully
investigated.

Given this, our study was designed to evaluate three questions:
(i) the influence on the development and persistence of
apramycin resistance in E. coli isolated from fecal and houseflies
in a chicken farm after preventive use of apramycin; (ii) the
relationships between apramycin-resistant E. coil isolated from
chicken feces and houseflies; and (iii) the characterization of
apramycin-resistant E. coli found in houseflies.

MATERIALS AND METHODS

Study Setting
This study was conducted in a chicken farm with two
different poultry houses (1000 m2 each). The two houses
were separated about 50 m to each other. After hatching,
50,000 chickens were equally and randomly allocated into two
poultry houses (Day 0). Chickens in the medicated group
(n = 25,000) were given successive prophylactic doses (0.5 mg/l)
of apramycinsulfate (Shandong Qilu King-phar Pharmaceutical
Co., Ltd., Shandong, China) in their drinking water from Days 1
to 5. In comparison, the un-medicated group (n = 25,000) was
given drinking water without apramycin. No other antibiotics
were used during the study period. Add antibiotic to drinking
water for 5 days is the normal production behavior of the
laying hens company. This study was carried out without
any additional interference with the growth of the chickens.
The protocol was approved by the Animal Ethics Committee
of Sichuan University. We confirm that the best practice
veterinary care and informed consent has been granted by the
owners.

Samples were taken from each group as described in Table 1.
Specifically, 15 cloacal swabs were collected from both the
medicated and un-medicated groups at Day 0 and placed
separately into sterile plastic bags. Fifteen sterilized plates
were randomly placed under selected cages along two main
diagonals of the poultry house containing both the medicated and
un-medicated groups. Plates were placed at 12:00 am and
withdrawn at 3:00 pm to allow for the collection of fresh fecal
samples. Collections occurred on Days 1, 2, 3, 4, 5, 6, 8, 10, 15,
20, 30, and 40. Flies were captured using a sweep net on each
sampling day from both of the two houses and approximately
30 flies were individually placed into sterile tubes for later
morphological classification. All samples were placed into cool
boxes containing ice packs and transported to the lab within 4 h
for immediate bacterial isolation.

Bacterial Isolation
The cloacal swabs (n = 30) were separately put into 10 ml
phosphate-buffered saline (PBS) and thoroughly vortexed. The
resulting suspension was then 10-fold serial diluted with PBS
and 100 µl of the dilution was plated onto eosin methylene blue
(EMB) agar (Hangzhou Microbial Reagent Co., Ltd., Hangzhou,
China) and incubated at 37◦C overnight.

Fecal samples were collected from medicated (n = 15) and
un-medicated groups (n = 15) at each sampling time. From these
fresh fecal samples, 0.1 g was put into 10 ml PBS and thoroughly
vortexed. The resulting suspension was 10-fold serial diluted with
PBS and 100 µl was plated onto EMB agar and incubated at 37◦C
overnight.

Houseflies were collected at each sampling time, as previously
described. Collected houseflies were morphologically identified
using a stereomicroscope and 15 houseflies were randomly
chosen for subsequent E. coli isolation. Each housefly was put into
10 ml PBS and thoroughly vortexed. The resulting suspension
was 10 times gradient diluted with PBS, 100 µl was plated onto
EMB agar, then incubated at 37◦C overnight.
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TABLE 1 | Sample collection and E. coli isolation.

Groups Sample types Number of samples/number of E. coli isolated Total number of E. coli

Pre-medicationa On-medicationb Off-medicationc

Un-medicated group Cloacal swab 15/30 – – 390

Fresh feces – 15/30 15/30

Medicated group Cloacal swab 15/30 – – 390

Fresh feces – 15/30 15/30

Houseflies group Housefly 15/30 15/30 15/30 390

Total number of E. coli 90 450 630 1170

aSampling time at day 0 when chicken was hatched and transferred to the farm. bSampling time at Days 1–5 when apramycin was administrated. cSampling time at Days
6, 8, 10, 15, 20, 30, and 40 after apramycin was administrated.

After overnight incubation, two colonies from each plate
were selected for each sample. All isolates were then confirmed
as being E. coli using a biochemical identification kit for
Enterobacteriaceae (Hangzhou Microbial Reagent Co. Ltd.,
Hangzhou, China). All the confirmed E. coli isolates were kept
frozen (−70◦C) with 25% glycerol pending further analysis.

Antimicrobial Susceptibility Testing
The minimum inhibitory concentration (MIC) of
apramycinsulfate (China Institute of Veterinary Drugs Control,
Beijing, China) for all E. coli isolates was determined using the
agar dilution method following the guidelines of the Clinical and
Laboratory Standards Institute [CLSI] (2012a). In short, E. coli
strains were subcultured on Luria Bertani (LB) agar at 37◦C for
12 h. A clearly separate colony of the E. coli isolate was picked
and a suspension of each strain in saline solution was adjusted
to match the 0.5 McFarland standard. Mueller–Hinton (MH)
plates that contain different apramycinsulfate concentration
(0.125–1024 µg/ml) were seeded with a multipoint inoculum
replicator and incubated at 35◦C for 16–18 h. E. coli ATCC
25922 was used as the quality control strain. MIC data were only
accepted if MICs of the control strains were within the required
reference ranges. MIC90 (the MIC that ≥90% tested bacteria
were inhibited for each sampling group) was used to evaluate the
changes trend of apramycin resistance.

Apramycin Resistance Gene Detection
For detection of apramycin resistance genes, genomic DNA
was prepared using a QIAamp DNA Mini Kit according to
the manufacturer’s instructions (Qiagen Inc., Valencia, CA,
United States). Apramycin resistance genes aac(3)-IV and npmA
were screened for all E. coli isolates as previously described (Yates
et al., 2004; Zhou et al., 2010).

Pulsed-Field Gel Electrophoresis (PFGE)
Typing of aac(3)-IV-Positive Strains
The clonal relatedness of aac(3)-IV-positive isolates were typed
by PFGE as previously described (Gautom, 1997). Briefly, 145
aac(3)-IV-positive isolates were subcultured on LB agar at 37◦C
for 12 h. A single colony of each isolate was suspended with
cotton swab in about 2 ml of TE buffer. The cell suspensions
were adjusted to 20% transmittance by using a bioMérieux Vitek
(Hazelwood, MO, United States). Proteinase K and lysozyme

were added into 100 ml cell suspensions at final concentration
of 1 mg/ml each and then incubated at 37◦C for 10–15 min.
Following the lysozyme–proteinase K incubation, 7 ml of 20%
sodium dodecyl sulfate (50◦C) and 140 ml of 1.2% InCert
Agarose (50◦C) were mixed with each bacterial suspension.
Then the mixture was immediately added to plug molds (Bio-
Rad Laboratories). After that, each solid plug was transferred
to 2-ml round-bottom tubes with 1.5 ml of ESP buffer and
incubated at 55◦C for 2 h in a water bath. Then five times
washes with 8–10 ml TE buffer (50◦C) each in a shaker water
bath for 15 min were carried out. For restriction endonuclease
digestion, two 1-mm-thick slices of each plug were incubated
at 37◦C for 3 h with 50 U of XbaI enzyme. The plugs were
then soaked in standard 0.5 Tris–borate–EDTA (TBE) prior
to electrophoresis. The electrophoretic conditions used were as
follows: initial switch time, 2.16 s; final switch time, 54.17 s;
run time, 22 h; angle, 120◦; gradient, 6.0 V/cm; temperature,
14◦C; ramping factor, linear. PFGE profiles were analyzed using
the BioNumerics Program (Applied Maths, Sint-Martens-Latem,
Belgium) as previously described (Yates et al., 2004). The clonal
clusters with a similarity cutoff value of 80% were used in this
study.

Antimicrobial Resistance Phenotype and
Genotype of aac(3)-IV-Positive Strains
To investigate the antimicrobial resistance patterns and
resistance genes of aac(3)-IV-positive isolates belonging to
different PFGE types, we tested one isolate of each PFGE
type for susceptibility to 22 antimicrobial agents. This process
was conducted using the disk diffusion method according to
CLSI guidelines (Clinical and Laboratory Standards Institute
[CLSI], 2012b). Briefly, MH agar plate was inoculated with
suspensions of bacteria, equivalent to standard 0.5 McFarland.
Subsequently, the disks of different antimicrobial agents
were placed on media and then incubated at 35◦C for
16–18 h. The tested antimicrobial agents were as follows:
ampicillin (10 µg), piperacillin (100 µg), cefazolin (30 µg),
ceftazidime (30 µg), cefotaxime (30 µg), ceftriaxone (30 µg),
cefepime (30 µg), amoxicillin/clavulanic acid (20/10 µg),
ampicillin/sulbactam (10/10 µg), piperacillin/tazobactam
(100/10 µg), aztreonam (30 µg), imipenem (10 µg), meropenem
(10 µg), tetracycline (30 µg), doxycycline (30 µg), ciprofloxacin
(5 µg), levofloxacin (5 µg), gentamicin (10 µg), amikacin
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(30 µg), sulfamethoxazole/trimethoprim (1.25/23.75 µg),
chloramphenicol (30 µg), and florfenicol (30 µg). All tested
antimicrobial agents were obtained from Oxoid (Basingstoke,
United Kingdom). E. coli ATCC 25922 was used as the control
strain. The obtained data were interpreted according to CLSI
recommendations (Clinical and Laboratory Standards Institute
[CLSI], 2016).

Finally, we screened for the presence of 25 additional
types of resistance genes and integron integrates genes
in the 12 aac(3)-IV-positive isolates were screened using
primers and PCR conditions as previously described: blaTEM,
blaSHV, blaOXA−1−like, blaCTX−M−group 1, blaCTX−M−group 2,
blaCTX−M−group 9, blaCTX−M−group 8/25 (Dallenne et al., 2010),
tetA, tetB, tetM (Ng et al., 2001), qnrA, qnrB, qnrC, qnrD (Schink
et al., 2012), aac(3)-IIa, aac(6′)-Ib, ant(3′′)-Ia, aph(3′)-IIa (Zhang
et al., 2012), sulI, sulII (Kerrn et al., 2002), cfr, cmlA, floR
(Keyes et al., 2000; Kehrenberg and Schwarz, 2006), IntI, and
IntII (Ishikawa, 2011).

Statistical Analysis
Statistical analysis was performed using SPSS software for
Windows, version 18.0 (SPSS Inc., Chicago, IL, United States).
Data were analyzed using descriptive statistics and χ2 tests.
A P-value < 0.05 was considered statistically significant.

RESULTS

Bacterial Isolation
Over the course of the 40-day testing period, a total of 585
samples were collected. Two E. coli strains were selected from
each sample. As shown in Table 1, a total of 1170 E. coli
isolates from the medicated group (n = 390), un-medicated group
(n = 390), and housefly group (n = 390) were obtained. Prior
to apramycin administration (Day 0), 90 E. coli strains were
collected from the included samples, 450 E. coli strains were
collected during apramycin administration (Days 1–5), and 630
E. coli strains were collected after apramycin administration.

The Changes of MIC90 for Apramycin
Minimum inhibitory concentration for apramycin was tested for
all 1170 E. coli isolates. MIC90 was used to evaluate the changes
trend of apramycin resistance (Figure 1).

For E. coli isolates obtained from the medicated group,
apramycin MIC90 was at a low level (8 µg/ml) prior to apramycin
administration (Day 0). After the addition of apramycin, MIC90
increased significantly from Days 2 to 6 and was maintained
above 512 µg/ml compared to that in Day 0 and Day 1 (P < 0.05).
This was with the exception of Day 5, which sustained a level of
256 µg/ml. However, ending apramycin administration resulted
in a substantial decrease in MIC90 (8–16 µg/ml) from Days 8 to
15. To our surprise, MIC90 increased again (above 512 µg/ml)
from Days 20 to 40.

For E. coli isolates obtained from the un-medicated group,
apramycin MIC90 was remained at low level (8–16 µg/ml) from
Days 0 to 8. This was with the exception of Day 3, which
sustained a level of 64 µg/ml. Days 10–20 saw a dramatic increase

(128–1024 µg/ml), but a subsequent decrease to 8 µg/ml from
Days 30 to 40. Significant difference was found for the MIC90
values between E. coli isolates from the un-medicated group and
medicated group (P < 0.05).

For E. coli isolated from houseflies, apramycin MIC90
remained at a low level (8–16 µg/ml) from Days 0 to 6, then
increased and fluctuated between 256 and 1024 µg/ml from
Days 8 to 40. MIC90 values for apramycin were significantly
different between 1–6 days and 8–40 days for E. coli isolated from
houseflies (P < 0.05).

Detection Rates of Apramycin
Resistance Gene
Apramycin resistance genes aac(3)-IV and npmA were screened
for all 1170 E. coli isolates. Aac(3)-IV was detected in 32, 71, and
42 E. coli isolates from the un-medicated, medicated, and housefly
groups, respectively. npmA gene was not detected in any samples
from this study. The change of aac(3)-IV frequency is shown in
Figure 2.

For the medicated group, aac(3)-IV detection rate was 6.67%
before treatment (Day 0) and showed a steady increase from Day
1 (3.33%) to Day 4 (63.33%). Rates then decreased and fluctuated
between 0 and 23.33% from Days 5 to 40. Noticeably, aac(3)-IV
detection rates were still higher than Day 0. This rate held even
35 days after treatment (Day 40).

For the un-medicated group, aac(3)-IV detection rate showed
no drastic change when compared to Day 0. Rates fluctuated
between 3.33 and 16.67% for the entirety of the experiment.

For the housefly group, aac(3)-IV detection rate was low from
Days 0 to 6 (0–3.33%), then increased and fluctuated between
13.33 and 36.67% from Days 8 to 40.

The aac(3)-IV detection rate was significantly different
between medicated group and un-medicated group from days
3 to 4 (P < 0.05). No significant difference was found between
un-medicated group and housefly group (P > 0.5).

PFGE Typing of aac(3)-IV-Positive Strains
A total of 145 aac(3)-IV-positive E. coli isolates from the
un-medicated (n = 32), medicated (n = 71), and housefly groups
(n = 42) were analyzed using PFGE and 12 PFGE types were
characterized (Figure 3). Among these, the three predominant
PFGE types that emerged in the un-medicated group were types
A (n = 12), B (n = 4), and D (n = 5). In the medicated group, the
three major types were types A (n = 8), E (n = 39), and G (n = 9)
and the housefly group were types A (n = 7), E (n = 11), and G
(n = 19). PFGE types A, E, and G were the predominant types
in both the medicated and housefly groups, suggesting houseflies
play an important role in the spread of antibiotic-resistant E. coli.

Characterization of Antimicrobial
Resistance Phenotype and Genotype of
aac(3)-IV-Positive Strains
Antimicrobial resistance profiles of the 12 E. coli isolates
from each PFGE type are shown in Table 2. All tested
isolates were multi-resistant, showing an antimicrobial-resistant
phenotype to 10–18 antibiotics. Furthermore, all 12 isolates
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FIGURE 1 | The changes of MIC90 for apramycin of E. coli isolated from chicken feces (medicated and un-medicated groups) and houseflies. Apramycin was
administrated from Days 1 to 5 in their drinking water (0.5 mg/l) for the medicated group.

FIGURE 2 | The changes of aac(3)-IV detection rate of E. coli isolated from chicken feces (medicated and un-medicated groups) and houseflies. Apramycin was
administrated from Days 1 to 5 in their drinking water (0.5 mg/l) for the medicated group.

were co-resistant to the following antibiotics: ampicillin,
tetracycline, doxycycline, ciprofloxacin, levofloxacin, gentamicin,
and sulfamethoxazole/trimethoprim. They showed sensitivity to
piperacillin/tazobactam, imipenem, meropenem, and amikacin.
The number of isolates resistant to other antimicrobials ranged
from 4 to 11 (Table 2).

Resistance gene screening results showed multiple resistance
genes co-existed in all 12 different E. coli isolates from each
PFGE type (Table 2). The isolates among the 12 different
PFGE types harboring resistance genes other than aac(3)-IV
are shown in Table 2. Remarkably, 10 isolates harbored at
least one ESBL genes (blaCTX−M−group 1or9). Moreover, among
the 12 isolates, 11 were positive for the type I integrase gene
intI.

DISCUSSION

Increasing attention has been paid to verify whether the extensive
uses of antibiotics in food animals poses a risk to human

health. Studies regarding the association between antibiotic
administration and the development and persistence of resistant
bacteria may provide guidance for more accurate antibiotic usage
in animal husbandry.

Previous studies have suggested that apramycin
administration can promote resistance E. coli isolated from
swine (Mathew et al., 2003; Jensen et al., 2006). However, the
influence of apramycin administration on E. coli resistance in
chicken has not yet been reported. In this study, we demonstrated
that the use of apramycin could facilitate E. col I resistance from
the first day after administration to 1 day after cessation.
Apramycin MIC90 dropped to a relatively low level 3 days
after cessation, but increased again from Days 20 to 40 after
cessation. Some studies have investigated the influence of
other antibiotics on resistance changes of E. coli isolated from
different farm animals (Smith et al., 2007; Martins da Costa
et al., 2011; Sato et al., 2014). These previous studies have also
demonstrated that antimicrobials caused selective pressure and
resulted in increased resistance to bacteria originating from
animals.
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FIGURE 3 | PFGE analysis of aac(3)-IV-positive E. coli isolates. A total of 145 aac(3)-IV-positive E. coli isolates from the un-medicated (n = 32), medicated (n = 71),
and housefly groups (n = 42) were characterized into 12 PFGE types.

TABLE 2 | Antimicrobial resistance profile of aac(3)-IV-positive E. coli isolates of different PFGE types.

PFGE type Resistance phenotypea Resistance genotype

A AMP, PRL, KZ, CTX, CRO, AMC, SAM, ATM, TE, DO, CIP, LEV, CN,
SXT, C

blaOXA, blaCTX−M−group 9, tetA, SulI, SulII, aac(6′)-Ib, ant(3′ ′)-Ia,
aac(3)-IV, cmlA, intI

B AMP, PRL, KZ, CTX, CRO, SAM, TE, DO, CIP, LEV, CN, SXT, C, FFC blaTEM, blaCTX−M−group 9, tetA, SulII, ant(3′ ′)-Ia, aac(3)-IV, floR, cmlA, intI

C AMP, PRL, KZ, CAZ, CTX, CRO, FEP, SAM, ATM, TE, DO, CIP, LEV,
CN, SXT, C, FFC

blaTEM, blaCTX−M−group 1, blaCTX−M−group 9, tetA, SulI, SulII, aac(3)-IV,
floR, intI

D AMP, SAM, TE, DO, CIP, LEV, CN, SXT, C, FFC blaOXA, tetA, SulI, SulII, aac(6′)-Ib, ant(3′ ′)-Ia, aac(3)-IV, floR, cmlA, intI

E AMP, PRL, KZ, CAZ, CTX, CRO, FEP, AMC, SAM, ATM, TE, DO, CIP,
LEV, CN, SXT, C, FFC

blaTEM, blaOXA, blaCTX−M−group 1, SulI, SulII, aac(3)-IIa, aac(6′)-Ib,
ant(3′ ′)-Ia, aac(3)-IV, floR, cmlA, intI

F AMP, PRL, AMC, SAM, TE, DO, CIP, LEV, CN, SXT, C, FFC blaTEM, blaOXA, tetA, SulI, SulII, aac(3)-IIa, aac(6′)-Ib, ant(3′ ′)-Ia,
aac(3)-IV, floR, cmlA, intI

G AMP, PRL, KZ, CAZ, CTX, CRO, FEP, AMC, SAM, ATM, TE, DO, CIP,
LEV, CN, SXT

blaTEM, blaOXA, blaCTX−M−group 1, tetA, SulI, SulII, aac(6′)-Ib, aac(3)-IV,
intI

H AMP, PRL, KZ, CTX, CRO, FEP, SAM, ATM, TE, DO, CIP, LEV, CN, SXT,
C, FFC

blaCTX−M−group 9, SulII, aac(3)-IV, floR

I AMP, PRL, KZ, CTX, CRO, ATM, TE, DO, CIP, LEV, CN, SXT, C, FFC blaCTX−M−group 9, tetA, SulI, SulII, ant(3′ ′)-Ia, aac(3)-IV, floR, intI

J AMP, PRL, KZ, CTX, CRO, FEP, ATM, TE, DO, CIP, LEV, CN, SXT, C,
FFC

blaCTX−M−group 9, tetA, SulI, SulII, ant(3′ ′)-Ia, aac(3)-IV, floR, intI

K AMP, PRL, KZ, CTX, CRO, SAM, TE, DO, CIP, LEV, CN, SXT, C, FFC blaOXA, blaCTX−M−group 9, tetA, SulI, SulII, aac(6′)-Ib, ant(3′ ′)-Ia,
aac(3)-IV, floR, cmlA, intI

L AMP, PRL, KZ, CAZ, CTX, CRO, FEP, SAM, ATM, TE, DO, CIP, LEV,
CN, SXT, C, FFC

blaCTX−M−group 1, blaCTX−M−group 9, tetA, SulII, aac(3)-IV, floR, intI

aAMP, ampicillin; PRL, piperacillin; KZ, cefazolin; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; FEP, cefepime; AMC, amoxicillin/clavulanic acid;
SAM, ampicillin/sulbactam; ATM, aztreonam; TE, tetracycline; DO, doxycycline; CIP, ciprofloxacin; LEV, levofloxacin; CN, gentamicin; SXT, sulfamethoxazole/trimethoprim;
C, chloramphenicol; FFC, florfenicol.

Noticeably, a high MIC90 was persistent even after stopping
antibiotic treatment in the medicated group (Days 20–40). This
value was higher than prior to antibiotic treatment, results that
have also been found in a separate study (Smith et al., 2007).
These findings could be due to the clonal dissemination of
resistant strains and the capacity of E. coli to exchange resistance
genes (da Costa et al., 2009). One of the potential reasons could
be due to the dissemination of resistant strains by flies. Because

according to the results of MIC90 of the flies group (Figure 1), the
MIC90 values remained at a high level (256–1024 mg/ml) from
days 20 to 40 in the housefly group.

MIC90 in the un-medicated group also increased at Day 3
and again from Days 10 to 20. This change in antibiotic
resistance has also been observed in other studies featuring no
antimicrobial treatment (Diarra et al., 2007; da Costa et al.,
2009). These findings might be due to the influence of resistant
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strains in the farm environment and animal feed on microbial
composition in the chicken gut (Apajalahti et al., 2004; Martins
da Costa et al., 2011). We also hypothesized that the change
of resistant phenotype of the un-medicated group was due to
the spread of the resistant strains from the medicated group
to un-medicated group through environmental factors (e.g., air,
dust, mice, and flies). There are two reasons for this: first,
compared with medicated group, the increase of MIC90 values
of the un-medicated group was relatively delayed. Second, the
trend of drug-resistant phenotype of the un-medicated group and
housefly group was very similar, which suggested the resistant
strains might be spread from the medicated group to un-
medicated group by houseflies.

Furthermore, the influence of antimicrobial administration
on resistance phenotype and genotype of E. coli isolated from
houseflies captured from a poultry farm was investigated for
the first time. Our study found that apramycin administration
also promoted resistance of E. coli isolated from houseflies.
However, the change of apramycin resistance in E. coli isolated
from houseflies group was not as synchronous as that seen in the
medicated group. To this end, MIC90 values rose from Days 2 to
6 (except for Day 5) in the medicated group, but remained at a
low level (8–16 µg/ml) in the housefly group. Furthermore, while
MIC90 values dropped from Days 8 to 15 in the medicated group,
values rose above 256 µg/ml in the housefly group.

Pulsed-field gel electrophoresis analysis of aac(3)-IV-positive
E. coli isolates indicated that the same strains were present in
both fecal samples and houseflies. Furthermore, the predominant
three PFGE types in the medicated group (A, E, and G) were also
the predominant three PFGE types in the housefly group. This
suggests that houseflies are transmission vehicles from chicken
feces for resistant bacterial strains. Therefore, as the use of
antimicrobials increases the presence of resistant strains in food
producing animals, it will also likely increase the potential for
further dissemination by houseflies to the public. Similar results
have been found in pig farms, as E. coli isolates from flies and pigs
showed the same resistance phenotype, genes, and PFGE profiles
(Literak et al., 2009).

Resistance profiles of the aac(3)-IV-positive isolates of
different PFGE types indicated multi-drug resistance was very
common, which is consistent with other studies (da Costa et al.,
2009; Zhang et al., 2009). Therefore, apramycin administration

does not only cause selective effects on resistance itself, but also
to other antimicrobials. Noticeably, among these apramycin-
resistant isolates, the ESBL-producing strains were very common
(10/12). More critically, some of these ESBL-producing strains
also existed in houseflies. This would only increase their
disseminating opportunity, posing a great potential risk to public
health. Other studies have also shown that flies were capable of
spreading ESBL-producing E. coli from poultry and cattle (Usui
et al., 2013; Blaak et al., 2014).

CONCLUSION

Our study found that apramycin administration increased the
occurrence of aac(3)-IV-resistant isolates from chicken feces and
houseflies. Moreover, houseflies transmitted resistant bacteria
from chicken feces, thus increasing the potential risk of spreading
these multi-resistant isolates to the public. Critical management
strategies of antimicrobial usage in animal husbandry and pest
control should be undertaken to better control and reduce this
risk.
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The Chilean salmon industry has undergone a rapid development making the country
the world’s second largest producer of farmed salmon, but this growth has been
accompanied by an intensive use of antibiotics. This overuse has become so significant
that Chilean salmon aquaculture currently has one of the highest rates of antibiotic
consumption per ton of harvested fish in the world. This review has focused on
discussing use of antibiotics and current status of scientific knowledge regarding to
incidence of antimicrobial resistance and associated genes in the Chilean salmonid
farms. Over recent years there has been a consistent increase in the amount of
antimicrobials used by Chilean salmonid farms, from 143.2 tons in 2010 to 382.5
tons in 2016. During 2016, Chilean companies utilized approximately 0.53 kg of
antibiotics per ton of harvested salmon, 363.4 tons (95%) were used in marine farms,
and 19.1 tons (5%) in freshwater farms dedicated to smolt production. Florfenicol
and oxytetracycline were by far the most frequently used antibiotics during 2016
(82.5 and 16.8%, respectively), mainly being used to treat Piscirickettsia salmonis,
currently considered the main bacterial threat to this industry. However, the increasing
development of this industry in Chile, as well as the intensive use of antimicrobials, has
not been accompanied by the necessary scientific research needed to understand the
impact of the intensive use of antibiotics in this industry. Over the last two decades
several studies assessing antimicrobial resistance and the resistome in the freshwater
and marine environment impacted by salmon farming have been conducted, but
information on the ecological and environmental consequences of antibiotic use in fish
farming is still scarce. In addition, studies reporting the antimicrobial susceptibility of
bacterial pathogens, mainly P. salmonis, have been developed, but a high number of
these studies were aimed at setting their epidemiological cut-off values. In conclusion,
further studies are urgently required, mainly focused on understanding the evolution
and epidemiology of resistance genes in Chilean salmonid farming, and to investigate
the feasibility of a link between these genes among bacteria from salmonid farms and
human and fish pathogens.
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INTRODUCTION

It is well known that many fisheries resources have been
overexploited, and that many are currently depleted, and unable
to support the global demand for seafood. In this context,
world aquaculture is seen as a key industry in satisfying the
growing demand for food for human consumption. Currently,
aquaculture supplies more than 50% of all the seafood produced
for human consumption, having increased production 20-fold
between 1970 and 2010 (up from 2.6 to 60.4 million of tons per
year) with a mean annual growth rate of 7.8% (Troell et al., 2014),
resulting in the fastest growing food-production industry in the
world (FAO, 2014).

Chile is the eighth largest producer of aquaculture products
in the world, with the salmonids (Atlantic salmon Salmo
salar, rainbow trout Oncorhynchus mykiss, and Coho salmon
Oncorhynchus kisutch – in order of relevance) and blue mussels
(Mytilus chilensis) as the principal products (FAO, 2014). Chilean
salmon aquaculture has developed rapidly over the last three
decades, making Chile the world’s second largest producer of
salmon after Norway, producing more than 900 thousand tons
in 2014 (SERNAPESCA, 2017a). However, this high productivity
has been achieved by intensive farming, i.e., huge biomass
grown at high densities of fish per unit of water volume,
which has resulted in an increased susceptibility of fish to
diseases caused by viruses, bacteria, fungi, and parasites (Quesada
et al., 2013). Common intensive husbandry practices as well as
management procedures on salmon farms, such as stripping of
broodstock, handling, vaccination, crowding, grading, starvation,
antimicrobial treatments as well as loading and transport can lead
to an increased susceptibility to a wide range of diseases. These
stressors can also lead to injury and the impaired performance
of reared salmon, which are usually kept in crowded conditions
which facilitate the transmission of infectious pathologies (Poppe
et al., 2002; Håstein, 2004). Thus, over recent decades, this
increase in productivity has been accompanied by an increased
use of chemicals, mainly antibiotics, which are commonly used
for prevention and treatment of bacterial disease in salmon
farming (Miranda, 2012). Antimicrobials used in salmonid
farming are mainly administered to the fish through medicated
feed, thus there is significant potential for a large proportion
of the drug to enter the environment via uneaten medicated
feed in addition to through urinary and fecal excretion (Cravedi
et al., 1987; Kemper, 2008). It has been demonstrated that
a significant amount of oxytetracycline is released through
leaching from uneaten feed (Capone et al., 1996) and losses
from uneaten feed may increase during a disease outbreak,
especially if the disease or the lower palatability of medicated
feed results in a loss of appetite (Hustvedt et al., 1991).
This leads to the accumulation of antibiotic residues in the
aquatic environment especially in marine sediments, where
they can persist for months, favoring the selection of resistant
microorganisms and consequently affecting the natural microbial
activity and biogeochemical processes (Hollis and Ahmed,
2014).

Traditionally, antibiotics have been widely used in
aquaculture to prevent and treat bacterial diseases (Romero

et al., 2012). Excessive use of antibiotic in aquaculture
in many countries has caused problems and concerns
due to the development and dissemination of bacterial
resistance, food safety hazards and environmental issues
(World Health Organization, 2016). However, despite the
negative impact of the use of antibiotics, the role of antibiotic
usage in aquaculture in the development of resistance and
dissemination of antimicrobial resistance genes (ARG) is still
poorly understood (Done et al., 2015). Evidence suggests that
antibiotics also promote the selection and spread of a broad
and diverse set of ARG that form the resistome, facilitating
the horizontal transfer of these genes among different bacteria
and posing a health risk when they are transferred to human
pathogens.

In this context, antibiotic use by the Chilean aquaculture is
a particular case worth studying, because as far as it is known
and based on the data available, production in Chile has one of
the highest rates of antibiotic consumption per ton harvested
worldwide. This is even more relevant, considering that high
amounts of antibiotics are discharged annually into the waters
of Chilean Patagonia, a pristine area of high conservation value,
which contains a mosaic of unique ecosystems and three World
Biosphere Reserves.

Various reviews have addressed at least partially the issue
of antibiotic use in Chilean salmon farming (Cabello, 2004,
2006; Burridge et al., 2010; Millanao et al., 2011; Miranda,
2012; Romero et al., 2012; Cabello et al., 2013, 2016),
mainly focusing on the potential impacts on human health,
but studies providing information on the environmental
consequences of the use of antibiotics in Chilean salmonid
farming are still scarce. This review is focused on the
available knowledge, encompassing information on antibiotic
utilization over the last decade in Chilean salmonid aquaculture
and the available published studies concerning antibiotic
resistance in the farm associated microbiota and fish bacterial
pathogens.

USE OF ANTIBIOTICS IN CHILEAN
SALMON AQUACULTURE

Antibiotics are not only utilized in human medicine, but also
worldwide in livestock to treat bacterial infections and/or to
promote animal growth (Du and Liu, 2012). Despite the lack
of information on antibiotic use in many countries, worldwide
antibiotic usage has been estimated to be in the range of 100–
200 thousand tons per year (Wise, 2002; Kümmerer, 2003), with
about half of this amount being used for veterinary purposes
(Sarmah et al., 2006). For example, in 2009 13,000 tons were used
in animal production within the United States of America alone
(FDA, 2009), whereas 382.5 tons were used by the Chilean salmon
industry during 2016. These levels must be of concern if it is taken
into account that most of them are poorly absorbed at the tissue
level and then excreted, at levels of between 40 and 90%, into the
environment via animal urine or feces (Kemper, 2008).

The amount of antibiotics used in aquaculture worldwide is
very difficult to estimate as the different countries involved vary
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widely with respect to their registration systems, and for this
reason in many cases information is unavailable or impossible
to compare due to gaps in the data (Heuer et al., 2009; Romero
et al., 2012). However, within countries that have a registration
system, a large variation in antibiotic use has been reported. For
example, while Norway uses 1 g per ton of salmon produced,
Vietnam requires 700 g per ton of shrimp (Smith, 2008). In
fact, shrimp cultured in Vietnam along with Chilean salmon
farming, are examples of industries exhibiting the highest rates
of aquaculture antibiotic consumption in the world (Van Boeckel
et al., 2015).

Chile is the second largest producer of salmon, accounting
for approximately one third of the global salmonid production,
behind only by Norway, and ahead of Scotland and Canada
(Ibieta et al., 2011; Asche et al., 2013). However, Chile has
significantly higher rates of antibiotic consumption than the
other three countries. The amount used to produce 1 ton of
salmon in Chile between 2011 and 2015 was on average more
than 1,500 times higher than in Norway (NORM/NORM-VET,
2016; SERNAPESCA, 2017b).

This is of significant concern considering that the geographic
area used by Chile for salmon farming is 4 times smaller than
that used by Norway (Buschmann et al., 2006). Despite the fact
that Norwegian production of farmed salmonids has more than
doubled between 2003 and 2014, the use of antibacterials in
aquaculture there has decreased by half over the same period
(Directorate of Fisheries, 2015). This low antibiotic consumption
is mainly a consequence of the availability of highly effective
vaccines against furunculosis and vibriosis pathologies, as well
as the rapid implementation of efficient zoo-sanitary measures
and a significant improvement in biosecurity policies such as
zoning and the spatial re-arrangement of marine production
sites to minimize the horizontal spread of infections (Midtlyng
et al., 2011). Unlike Norway, the higher mortality in Chile
is attributed to bacterial infections as opposed to viruses,
particularly the intracellular pathogen Piscirickettsia salmonis
which causes the highest mortality in the marine phase of the
culture and for which there are currently no effective vaccines nor
an efficient and reliable antibiotic therapy (Rozas and Enríquez,
2014).

Looking at the antibiotic per ton of harvested salmon, during
the last four years (2013–2016), Chilean companies used annually
on average 580 g of antibiotic per ton of harvested salmon,
surpassing the average levels used during the period 2005–2012
(438 g of antibiotic per ton of harvested salmon). Over recent
years a consistent increase in the amount of antimicrobials
used by Chilean salmonid farms, from 143.2 tons in 2010 to
382.5 tons in 2016, has been observed (SERNAPESCA, 2017b).
During 2016, Chilean companies utilized approximately 0.53 kg
of antibiotic per ton of harvested salmon, surpassing the levels
used during 2005 and 2006 (0.39 and 0.53 kg per ton of
harvested salmon, respectively), just prior to the infectious
salmon anemia virus outbreak and the subsequent collapse
of Chilean farmed fish production (Table 1). This indicates
that beyond the fluctuations in the use of antibiotic during
the last decade, the levels of antibiotic use by the Chilean
farming salmon are far from decreasing. Of the 382.5 tons

TABLE 1 | Antibiotic use in Chilean salmon industry (SERNAPESCA, 2011,
2017b).

Year Antimicrobial Harvested fish Ratio (kg

use (tons) (thousands of tons) per harvested ton)

2005 239.2 614.0 0.39

2006 343.8 647.6 0.53

2007 385.6 600.6 0.64

2008 325.6 630.6 0.52

2009 184.5 474.2 0.39

2010 143.2 466.9 0.31

2011 206.8 649.5 0.32

2012 337.9 826.9 0.41

2013 450.7 786.1 0.57

2014 563.2 955.2 0.59

2015 557.2 883.1 0.63

2016 382.5 727.8 0.53

of antibiotics used on Chilean salmon farms during 2016,
363.4 tons (95%) were used in marine farms, whereas only
19.1 tons (5%) were used in freshwater centers dedicated to
smolt production. These large differences in the quantities used
are explained by the amount of antibiotic used to treat the
P. salmonis bacterium in marine environments (SERNAPESCA,
2017b).

Among the six antibiotics currently approved for use in
Chilean salmon aquaculture, florfenicol and oxytetracycline were
by far the most frequently used during 2016 (82.5 and 16.8%,
respectively) (SERNAPESCA, 2017b). It must be noted that the
use of antibiotics has changed since 2005 (Figure 1), with an
observable progressive increase in the use of florfenicol and
oxytetracycline compared to the decrease in the use of the
quinolones, oxolinic acid, and flumequine (SERNAPESCA, 2011,
2017b). The dominance of florfenicol in marine-based salmonid
faming in Chile is mainly because it is the first choice for the
treatment of P. salmonis, currently considered the main bacterial
threat to the salmonid farm industry. The quinolones are a
class of highly effective antibiotics extensively used in human
medicine and consequently their use in animal production has
been severely restricted by the World Health Organization,
however, their use in animal production is not prohibited in
many countries (Collignon et al., 2016). Despite the fact that
during 2016 Chilean salmon farms did not report any use of
oxolinic acid and that only 0.3% of the antimicrobials used was
flumequine (Figure 1), it is clearly a priority to implement new
regulations in the Chilean salmon industry, prohibiting the use
of quinolones.

Despite the regulations and control of antibiotic usage
in aquaculture imposed by the Chilean government, it must
be concluded that until 2015 the use of antibiotics in
this industry was higher than the amount reported. As
an example only 22 out of 25 Chilean salmon farming
companies agreed to release individualized information on
their antimicrobial use in the marine phase of culture during
2015 (SERNAPESCA, 2016). To solve this issue, from 2016
it has been mandatory for all salmon companies in Chile to
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FIGURE 1 | Annual use of antimicrobials authorized for use in Chilean salmon farming between 2005 and 2016 (SERNAPESCA, 2011, 2017b).

provide the information of their use of antibiotics during fish
culture.

ANTIBIOTIC RESISTANCE IN THE
AQUATIC AND SALMON FARM
ENVIRONMENTS

For many decades, the general opinion of scientists and
physicians was that resistance to antibiotics and the presence
of genetic determinants was a problem confined to the hospital
environment. Only recently has it been recognized that antibiotic
resistant microorganisms and associated resistance determinants
are ubiquitous in nature, and that they are even present in pristine
environments which have never been exposed to antimicrobial
contamination (Allen et al., 2010; Knapp et al., 2011; Miranda,
2012). Several studies have indicated the occurrence of a great
diversity of resistance genes, leading to the suggestion that the
environment is a reservoir and an important source of new
and emerging antibiotic resistance genes (ARGs) (Riesenfeld
et al., 2004; D’Costa et al., 2006, 2007; Dantas et al., 2008;
Allen et al., 2010; Donato et al., 2010; Wright, 2010). This
discovery has led to a rethink on the origin of bacterial antibiotic
resistance in pathogenic bacteria, accepting the assumption
that the emergence of ARGs in pathogenic bacteria is likely
to have arisen in natural environments (Nesme and Simonet,
2015). The term “resistome” was proposed in order to aid in
our understanding of the origin, evolution and emergence of
antibiotic resistance and was defined as the collection of all
genes that might contribute to antimicrobial resistance (Wright,
2007). The resistome encompasses not only the genes encoding
for antimicrobial resistance associated with bacterial pathogens,
but also includes all the genes present in non-pathogenic species
that dominate the natural environment (D’Costa et al., 2006).
Thus, the resistome of a particular environment could include:

precursor genes that express low resistance to antimicrobial
molecules or affinity; cryptic resistance genes with no or low
phenotypic expression in their host; and clinical resistance genes
such as broad spectrum beta-lactamases, which confer resistance
to high concentrations of antibiotics (Wright, 2007). It has been
noted that ARGs present in pathogens can undertake different
roles when they are found in an environmental host, as it is
the host and the genomic context in which the gene is found
that determines its phenotypic expression (Nesme and Simonet,
2015).

Traditionally, most of studies concerning antibiotic resistant
bacteria and their resistance-encoding genes are based on
techniques developed for cultivable bacteria, or molecular
procedures using polymerase chain reaction primers only able
to detect specific known antibiotic resistance-encoding genes
(Miranda and Zemelman, 2002b; Buschmann et al., 2012; Di
Cesare et al., 2013), but these techniques are unable to detect
unknown ARGs (Petersen et al., 2002; Dang et al., 2008;
Taviani et al., 2008). Furthermore, even when the use of
these techniques has produced important findings, it has been
concluded that they have the limitation of covering only a small
fraction (< 0.1% in the marine environment) of the ARGs in
the environment (Vaz-Moreira et al., 2014). The exponential
increase in databases including sequences from genomes and
metagenomes has allowed in silico sequence analysis of ARGs
on the basis of comparisons with sequences described from
pathogenic bacteria (Gibson et al., 2014; Nesme and Simonet,
2015). Functional metagenomics is a methodology that covers
all components of a bacterial community (culturable and non-
culturable) and does not depend on databases of previously
known sequences which are generally isolated from bacteria
from clinical settings (Mullany, 2014). Indeed, when genes with
resistance phenotypes from metagenomic libraries are compared
with known genes, frequently less than 65% of similarity at the
amino-acid level is observed (Pehrsson et al., 2013). In a recent
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study using functional metagenomics on soil samples, nearly
3,000 genes encoding for antibiotic resistance were described,
and most of them were new undescribed genes (Forsberg et al.,
2014). Thus, different studies using functional metagenomics
have found that ARGs are highly diverse and widely distributed,
exhibiting little or no similarity to sequences of known genes
(Lang et al., 2010; Schmieder and Edwards, 2012; Su et al., 2014).

The ARGs in natural ecosystems evolved over millions of
years, long before the therapeutic use of antibiotics (Baquero
et al., 2009). Currently, environmental resistomes are a vast
and diverse collection of resistance genes, and also constitute
a potential source of resistance genes for human pathogens
(Martínez, 2008). There is significant evidence that various
resistance genes present in human pathogenic bacteria have an
environmental origin, strongly supporting the hypothesis that the
transfer of genes encoding for antimicrobial resistance from the
aquatic to the human clinic compartment is of importance.

However, until now it has been difficult to demonstrate the
transfer of ARGs from the environment to clinically relevant
bacteria or identify the mechanisms involved in this transfer
(Finley et al., 2013; Perry and Wright, 2013; Vaz-Moreira
et al., 2014). This may be due to the existence of restrictions
or “bottlenecks” that modulate the transfer of resistance
determinants from the original host to human pathogens, such as
ecological connectivity, founder effects, and fitness costs as was
noted by Martínez (2011).

The enhancement of selection and the environmental
distribution of antibiotic resistant bacteria by the intensive use
of antibiotics in aquaculture have been well-established (Smith,
2008; Miranda, 2012). Antibiotics used in fish aquaculture are
typically administered via medicated feed, thus the first contact
the antibiotic has with microorganisms occurs in the intestine
of the fish. Considering the high densities of the bacterial
populations present, the intestinal environment provides optimal
conditions for the selection of antibiotic resistant bacteria (Le Bris
et al., 2007). In fact, the increase in the levels of antibiotic resistant
bacteria in the digestive system of fish under antimicrobial
therapy is well documented (Austin and Al-Zahrani, 1988;
DePaola et al., 1995). The next step is the dispersal of commensal
or pathogenic antibiotic resistant bacteria from the intestinal
environment to the water column or sediments through fish feces
(Herwig et al., 1997; Samuelsen et al., 2000; Navarrete et al., 2008).
It should also be considered that the medicated feed can also be
ingested by wild fish living around the salmon cages, increasing
the levels of antibiotic resistant bacteria in the intestine of these
fishes also (Björklund et al., 1990; Ervik et al., 1994). Furthermore,
the presence of antibiotic residues inside fish muscle has also
been demonstrated, and obviously these residues can enter the
human intestine if the fish is consumed without cooking (Fortt
et al., 2007). The detection of tetracycline and quinolones in wild
fish living near fish farms suggests that the environmental effects
of antibiotic use in aquaculture have spread beyond the salmon
farming cages (Fortt et al., 2007).

Marine sediments beneath fish cages are also an important
compartment where selection of antibiotic resistant bacteria and
the dissemination of the ARGs can be strongly enhanced. Many
studies have demonstrated a strong correlation between the

antibiotic use and the increase in antibiotic resistant bacteria
in the sediments beneath the fish farm cages (Björklund et al.,
1991; Herwig et al., 1997; Schmidt et al., 2000). In fact, bacteria
resistant to antibiotics frequently administered in fish farms
have been detected at high frequencies in fish farms and
the surrounding aquatic environments (Nygaard et al., 1992;
Samuelsen et al., 1992; Schmidt et al., 2000; Petersen et al.,
2002; Cabello et al., 2016). Furthermore, the prophylactic and
therapeutic utilization of antibiotics in aquaculture not only
favors the selection of antibiotic resistant bacteria, but also
the selection and dissemination of their respective antibiotic
resistance-encoding genes (Yang et al., 2013). Consequently,
genes codifying different resistances have been detected and
quantified in fish farm environments (Tamminen et al., 2010;
Muziasari et al., 2014). Similar results have been described for
several tetracycline resistance genes [tet(A), tet(C), tet(H), and
tet(M)] (Tamminen et al., 2010). In another study, using one
plasmid metagenomic library and high throughput sequencing,
58 genes codifying for resistance against 11 antibiotics were
detected in marine sediments impacted by a fish farm (Yang et al.,
2013). Many of these genes shared more than 90% similarity
with transposons and plasmids described for human pathogens,
suggesting the occurrence of an important frequency of mobility
of these ARGs to human pathogenic bacteria (Yang et al., 2013).
Another recent study performed on sediment samples from
fish farms located in the Northern Baltic Sea, indicated that
the resistome associated with fish farms can be from native
ARGs enriched by antibiotic use, modifying the diversity and
distribution of ARGs in the sediment (Muziasari et al., 2017).
At the same time the enrichment of mobile genetic elements by
antibiotic use was also detected, which indicates the potential risk
of the ARGs spreading to other environments (Muziasari et al.,
2017).

STUDIES ON ANTIBIOTIC RESISTANCE
ASSOCIATED WITH CHILEAN SALMON
FARMING

Farm-Associated Microbiota
Antibiotic use in aquaculture, as well as in other anthropogenic
activities, has been widely associated with the selection and
prevalence of resistant bacteria, and also the spread of their
resistance genes (Cabello et al., 2013, 2016). This is something
which must be of concern to the Chilean salmon industry,
considering the large amounts of antibiotics used and the
resulting high concentrations released into the surrounding
aquatic environment (Kemper, 2008). Despite this concern, only
a few studies concerning antimicrobial resistance in Chilean
salmonid farming have been conducted in Chile (Table 2),
and of these, only a few were related to the impact of this
activity on the surrounding environment (Table 3). Among these,
Buschmann et al. (2012) found barely measurable antibiotic
concentrations, with the exception of flumequine, that was
detected at trace levels in 8 of 36 collected sediment samples, with
no significant differences between the control and impacted sites.
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TABLE 2 | Studies of antibacterial resistance in Chilean salmonid farming.

Issue Number Year

Resistant microbiota

Freshwater 6 2002–2015

Marine 5 2012–2018

Fish pathogens

Piscirickettsia salmonis 9 1996–2017

Flavobacterium psychrophilum 2 2012, 2016

Aeromonas salmonicida 1 2015

Vibrio ordalii 1 2013

Streptococcus phocae 1 2011

The authors argued that presence of residues of flumequine in the
sediment from an apparently pristine control site was probably
the result of transport by water currents of both unchanged
antimicrobials and their antimicrobially active metabolites,
concluding that excessive use of antimicrobials in Chilean salmon
aquaculture may also have an effect on marine sediments far
from where these activities take place (Buschmann et al., 2012).
Additionally, Contreras and Miranda (2011) detected no residues
of oxytetracycline, florfenicol, flumequine, or oxolinic acid in
sediments from eight salmon farms located in Southern Chile.
Apparently, the persistence of antimicrobial residues in salmon
farm impacted-sediments is higher at freshwater-based farms
than in those below marine farms.

Based on the previous descriptions of the fate of antimicrobials
in the aquatic environment, the lack of detection of highly
persistent antimicrobials such as oxytetracycline, flumequine,
and oxolinic acid in aquaculture impacted sediments, strongly
suggests that these antimicrobials are mainly diluted and
carried off by currents. In under-cage sediments, adsorption
or attachment of antibiotics to particulate matter will usually
result in their inactivation, but considering that these processes
are dynamic and reversible, adsorbed antibiotics are expected
to leach from these sites with their antibacterial activity intact
and able to select for antimicrobial resistant bacteria, exerting
a continuous low level selective pressure on the sedimentary
microbiota. This could explain the recovery of high levels of
antibiotic-resistant bacteria in under-cage sediments from farms
with no history of antimicrobial usage, as was demonstrated by
Miranda and Rojas (2007).

In Chile the detection and reporting of antimicrobial residues
associated with the salmon farming industry is currently not
mandatory. However, many salmon farming companies in Chile
commonly carry out monitoring of various parameters, including
assessments of sedimentary antibacterial residues from beneath
salmon cages. Unfortunately this data is not made public nor
is it made available to the Chilean regulatory agency. It is
essential that the concentrations of antimicrobial residues in
freshwater and marine sediments impacted by the Chilean
salmonid industry are known in order that efficient guidelines
for their regulation can be implemented. Currently only a
veterinarian prescription is required to approve their use, and
their progressive impact on the surrounding environment is
not considered. It is strongly believed that the accumulation of

antibacterial residues in sediments beneath salmon pens must
preclude their use and that a rotation of the administered drugs
is required.

It must be noted that even in the absence of detectable
amounts of antimicrobials in water or sediments impacted by
Chilean salmon farming, these environments are commonly
associated with a high incidence of antibiotic multi-resistant
bacteria and their respective resistance genes against a high
diversity of antimicrobials, including oxytetracycline, florfenicol,
and oxolinic acid (Miranda and Zemelman, 2002b; Miranda and
Rojas, 2007; Buschmann et al., 2012). These results suggest that
these environments enhance the persistence of resistant bacteria
and associated genes even in absence of a selective pressure.

The most intensively used antibacterial in Chilean freshwater
salmonid farms is oxytetracycline, comprising 86.8% of
the total drugs used in freshwater-based farms for the
treatment of flavobacteriosis during 2016 (SERNAPESCA,
2017b) and consequently various studies assessing the levels
of oxytetracycline-resistant bacteria as well as characterizing
their associated tet genes have been performed (Miranda
and Zemelman, 2002a,b; Miranda et al., 2003; Roberts
et al., 2015). Miranda and Zemelman (2002b) found a high
proportion of bacterial resistance to high levels of oxytetracycline
(100 µg mL−1) mainly from fingerling and effluent samples
of a land-based farm (19.2 and 39.8%, respectively), as well as
from the pelletized feed used in other salmon farms (34.3%).
They found that resistant strains recovered from sampled farms
showed high levels of resistance to oxytetracycline, exhibiting
minimum inhibitory concentrations (MICs) ranging from 64
to 2,048 µg mL−1. Furthermore, Miranda and Zemelman
(2002a) studied 103 oxytetracycline-resistant strains recovered
from various sources at four Chilean freshwater salmonid
farms, finding high taxonomic variability within the resistant
microbiota, with a predominance of multi-drug resistant
Pseudomonas strains. In addition, a high simultaneous resistance
to various antimicrobials was detected in the studied strains,
with 74 strains exhibiting resistance to 6–10 antimicrobials. Most
of these strains showed resistance to amoxicillin, erythromycin
and furazolidone, as well as a high frequency of resistance to
florfenicol, cefotaxime, and trimethoprim–sulfamethoxazole, but
a low incidence of resistance to quinolones.

In another study by Miranda and Rojas (2007) florfenicol
resistance among microbiota associated with two Chilean
freshwater-based salmon farms with different histories of
antimicrobial usage and located in two different lakes was
investigated providing evidence of high levels of resistance
to florfenicol in under-cage sediments (26.4%) at the salmon
farm with a recent history of florfenicol usage, whereas under-
cage sediments at the salmon farm with no recent history of
antimicrobial usage exhibited low levels of resistance (0.69%).
However, it must be noted that non-impacted control sediments
from one of the studied lakes also exhibited high levels of
resistance (18.6%) with a high predominance of Pseudomonas
species. The authors also observed the important occurrence of
intrinsic resistance among resistant bacteria, as was observed by
Kerry et al. (1994) for marine sediments free from anthropogenic
impact, where a high incidence of pseudomonads, a group
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TABLE 3 | Studies of antibiotic resistance of bacteria associated to Chilean salmonid farming.

Source No. of isolates Main result Reference

Freshwater Water, Pellet
Sediment, Fish

103A High proportions of low- and high-level OTC-resistant bacteria mainly from
pellet and effluent samples. Resistant bacteria were mostly non-fermenting
bacteria (77.7%), exhibiting MICs ranging from 64 to 2,048 µg mL−1.

Miranda and Zemelman, 2002b

Water, Pellet
Sediment, Fish

103A A high number of bacteria resistant to AML, ERY, and FR, and an important
frequency of resistance to FFC, CTX, and SXT was found, whereas
resistance to G, K, FLU, and ENR was rather low. A high frequency (74
strains) of resistance to 6–10 antibacterial agents was detected.

Miranda and Zemelman, 2002a

Water, Pellet
Sediment, Fish

25A Fifteen of the isolates carried one of seven different tetracycline (tet) genes
[tet(A), tet(B), tet(E), tet(H), tet(l), tet(34), and tet(35)] and 10 had unknown
tet genes

Miranda et al., 2003

Water, Pellet
Sediment, Fish

70A Proportions of florfenicol resistance in under-cage sediments from salmon
farm under florfenicol therapy (26.40%) were significantly higher than those
from a farm with no recent history of antibacterial therapy (0.69%),
detecting high levels of resistance to AML, ERY, FR, and SXT and
susceptibility to G, K, and ENR

Miranda and Rojas, 2007

Water, Pellet
Sediment, Fish

119A The floR gene was detected in 26 strains (21.8%) and most of the
floR-carrying strains were glucose fermenters resistant to S and OTC. FFC
resistance in most of non-fermenters (82 strains), was partially mediated by
non-specific efflux pumps

Fernández-Alarcón et al., 2010

Water, Pellet
Sediment, Fish

10A Six of the isolates carried the tet(39) gene, encoding for an efflux protein,
such as the Corynebacterium, Pseudomonas, and Psychrobacter species.

Roberts et al., 2015

Seawater Sediment 24A
+ 24C Increase of resistance to FFC, OT, and OA in aquaculture site. Detection of

genes Tet(A), tet(B), tet(S), tet(K), tet(M), aac(6’)-Ib-cr, and intI1 among
resistant isolates.

Buschmann et al., 2012

Sediment 124A
+ 76C 32, 16, and 53% of resistance to FFC, OT, and OA at aquaculture site.

Detection of genes tet(A), tet(G), dfrA1, dfrA5, dfrA13, sul1, sul2, and
blaTEM in resistant isolates.

Shah et al., 2014

Sediment 4A Isolates carried the aac(6’)-Ib-cr gene, conferring reduced susceptibility to
quinolones and kanamycin.

Aedo et al., 2014

Sediment
Water

24A
+ 24C Genes tet(A), tet(B), tet(K), tet(M), qnrA, qnrB, qnrS, and aac(6’)-Ib-cr were

detected in marine bacteria from aquaculture and control sites.
Tomova et al., 2015

Sediment
Water

23A
+ 23C intI1 gene detected in isolates from aquaculture (11) and control (11) sites.

qnrA, qnrB, and qnrS genes in four marine isolates were chromosomally
located.

Tomova et al., 2018

A, aquaculture impacted site; C, control site; FFC, florfenicol; OT, oxytetracycline; OA, oxolinic acid; AML, amoxicillin; ERY, erythromycin; FR, furazolidone; CTX, cefotaxime;
SXT, trimethoprim–sulfamethoxazole; G, gentamicin; K, kanamycin; FLU, flumequine; ENR, enrofloxacin; S, streptomycin.

that exhibits innate resistance to various antimicrobials, was
detected (Sengeløv et al., 2003). Finally, the use of unmedicated
pelletized feed in a lake-based salmon farm was high (34.8%),
suggesting that in certain cases this could be an important
source of resistant bacteria for Chilean aquaculture impacted
environments.

From these studies, an important number of resistant strains
were demonstrated to carry several specific genes encoding for
antimicrobial resistance such as floR and tet genes (Miranda
et al., 2003; Fernández-Alarcón et al., 2010). In addition, a
high number of other resistant strains were probably carrying
new and previously uncharacterized antimicrobial-resistance
encoding genes. This was recently demonstrated by Roberts
et al. (2015), who studied 10 tetracycline-resistant strains
isolated in 1999 from Chilean freshwater salmon farms, which
tested negative for 22 tet genes, but six strains were later
found to be carrying the tet(39) gene, while the other four
strains most probably carried other unknown tet genes. To
date, only two studies assessing the mobility of resistance
encoding genes carried on bacteria recovered from various

Chilean salmon farms have been conducted. Miranda et al.
(2003) and Roberts et al. (2015) demonstrated the ability
of a diverse group of tet genes to be transferred to an
Escherichia coli recipient. This suggests that salmon farming
is highly relevant to the enrichment of the environmental
resistome, exhibiting the characteristics required to spread
enteric bacterial species, which could play an important role
in waterborne human disease. Despite the intensive use of
large amounts of antimicrobials in the Chilean salmon farming
industry and its role as an important reservoir of resistant
bacteria carrying antibiotic-encoding genes, no studies of the
transfer of genes encoding for antimicrobial resistance from
salmon farming associated bacteria to pathogens have been
conducted.

More recently, additional studies assessing antimicrobial
resistance in the marine environment impacted by Chilean
salmon farming have been conducted. In a study by Buschmann
et al. (2012) strains recovered near to salmon culture cages
in Chile exhibited high incidences of tet, qnr, and floR
genes encoding for resistance to tetracyclines, quinolones and
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florfenicol, respectively, but in a later study the authors confirmed
the absence of qnr and floR genes among these strains (Shah et al.,
2014). In the most recent study, the authors found an important
incidence of genes encoding for sulfonamide and trimethoprim
resistance (sul and dfrA, respectively) as well as the presence of
mobile genetic elements such as class 1 and 2 integrons (Shah
et al., 2014). In addition, the same group identified the aac(6)-
Ib-cr gene, encoding for an aminoglycoside acetyltransferase that
confers reduced susceptibility to quinolone and kanamycin in
marine bacteria associated with sediments impacted by a Chilean
salmon farm, identical to the gene carried by urinary tract isolates
of E. coli, suggesting the occurrence of a flow of this gene between
these bacteria isolated from different environments (Aedo et al.,
2014). In a more recent study, Tomova et al. (2015) studied a
number of marine strains recovered from a Chilean aquaculture
site at the same location, detecting in some of them the presence
of tet, qnr, and floR genes, but concluding that undescribed
tetracycline, quinolone and florfenicol resistance genes were
probably carried by the majority of these strains. It must be noted
that qnr genes encode for a low-level resistance to quinolones
and are frequently associated with plasmids, suggesting a high
feasibility of their mobility by horizontal transfer. Tomova et al.
(2015) reported a high incidence of the qnrB gene among
quinolone-selected bacteria and demonstrated that quinolone-
resistant urinary E. coli isolated from patients living close to
the sampled site were significantly enriched with qnrB, qnrS,
and qnrA genes, compared to isolates from other regions not
associated with aquaculture. The authors found that sequences
of some of these genes were identical to those detected in
the antimicrobial-resistant marine bacteria, and suggested the
occurrence of horizontal gene transfer between antimicrobial-
resistant marine bacteria and human pathogens (Tomova et al.,
2015). Using the same isolates the authors detected the integrase
encoding gene intI1 in an important number of isolates recovered
from non-impacted (11 isolates) and aquaculture impacted (11
isolates) sites (Tomova et al., 2018). Otherwise, the authors
detected the chromosomally located qnrA, qnrB, and qnrS genes
in four marine isolates, but these genes were no associated to
integron gene cassettes (Tomova et al., 2018). In conclusion,
these studies demonstrated a high concordance between the used
antibiotics and the occurrence of associated resistance genes in
Chilean salmonid farming providing evidence of an important
occurrence of genes encoding for resistance to florfenicol (floR),
tetracyclines (tet), and sulfonamides (sul), which suggest that
this industry plays an important role as a reservoir of these
genes.

Finally, it must be noted that all previous studies dealing
with the issue of antimicrobial resistance in Chilean salmonid
aquaculture have only considered the antibiotic resistant
bacteria and some of the ARGs belonging to the culturable
bacterial pool, which is known to be less than 1% of all
environmental bacteria. Despite having proven that aquaculture
supporting environments are an important source of new ARGs,
the occurrence of important biases and limitations in our
understanding of the real consequences of the release of these
antibiotics into the aquatic environments must be recognized,
and that an increased focus is required to demonstrate a direct

relationship between environmental- and human-pathogenic
antibiotic resistomes.

Bacterial Pathogens
It should be noted that various studies reporting the antimicrobial
resistance of several bacterial pathogens associated with Chilean
salmon farms have been published (Table 4). In the absence
of stated clinical breakpoints most of the studies of bacterial
pathogens in Chilean aquaculture aim to generate standard
protocols and establish epidemiological cut-off values to
differentiate between wild-type (WT) and non-wild-type (NWT)
populations. It must be noted that variations in cut-off values
are indicative of changes in the antibiotic susceptibility of
populations of the pathogenic species, but epidemiological
cut-off (COWT) values are protocol specific and need to be
developed for all salmonid pathogens in Chile. Avendaño-
Herrera et al. (2011) calculated the epidemiological cut-off values
of florfenicol, erythromycin and oxytetracycline for Streptococcus
phocae strains mostly recovered from diseased Atlantic salmon
(Salmo salar), indicating that of the 19 strains isolated from
2004 onward, 18 strains were classified as NWT (non-fully
susceptible). The authors suggested the importance of reducing
oxytetracycline use for the streptococcal treatment. In another
study, Henríquez-Núñez et al. (2012) studied a total of 40
Flavobacterium psychrophilum isolates obtained from Chilean
salmon farms to determine their antimicrobial susceptibility to
oxytetracycline, florfenicol, and oxolinic acid, finding that 90,
92.5, and 85%, respectively of strains were resistant to the three
antimicrobials. Furthermore, 39 of the 40 isolates carried a single
plasmid or combinations of two plasmids, but a relationship
between plasmid and resistance could not be established. In a
recent study, Miranda et al. (2016) determined the susceptibility
of 125 F. psychrophilum Chilean isolates to antimicrobials used
in fish farming and calculated their COWT values by using an
agar dilution MIC method and a disk diffusion method. The
data generated by the disk diffusion protocol used in this work
were shown to have low precision, in agreement with Henríquez-
Núñez et al. (2012), confirming that MIC determination would
be the preferred method for susceptibility testing for this species.
The NWT frequencies obtained using MIC data, were 24% for
amoxicillin, 8% for florfenicol, and 70% for oxytetracycline,
whereas for the quinolones oxolinic acid, flumequine, and
enrofloxacin the frequencies of NWT isolates were 45, 39, and
38%, respectively using MIC data. The significant frequencies of
isolates exhibiting reduced susceptibility to oxytetracycline and
quinolones may result from treatment failures when these agents
were used (Miranda et al., 2016). The occurrence of resistance
to oxytetracycline, florfenicol, and oxolinic acid among some
Chilean strains of Vibrio ordalii isolated from diseased salmonids
has also been reported (Poblete-Morales et al., 2013). In a further
study, Valdés et al. (2015) studied the draft genome sequence of
an antibiotic-resistant strain of Aeromonas salmonicida isolated
from infected rainbow trout, finding various efflux pumps and
putative genes that confer resistance to macrolides, β-lactamics,
florfenicol, and quinolones, concluding that efflux pumps are the
main mechanisms of resistance to non-β-lactamic antibiotics.
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TABLE 4 | Studies of antibiotic resistance of pathogenic bacteria associated to Chilean salmonid farming.

Species No. of isolates Main result Reference

Piscirickettsia salmonis 4 MIC and MBC values of CM, G, OTC, OA, and FLU using cytopathic effect
on cell cultures

Smith et al., 1996

2 A formulated medium is proposed to be used in antimicrobial susceptibility
assays for P. salmonis

Yáñez et al., 2014

20 Single point mutation in gyrA gene is responsible for the quinolone resistant
phenotype

Henríquez et al., 2015

292 ECOWT values of FFC, OTC, OA, and FLU Henríquez et al., 2016

2 Florfenicol can modulate RND gene expression and increase efflux pump
activity

Sandoval et al., 2016

3 (genome) Six specific genes, encoding for specific transporter proteins eventually
relevant in conferring resistance to FFC and OTC

Cartes et al., 2017

58 ECOWT values of FFC and OTC using MIC data Contreras-Lynch et al., 2017

1 (genome) The genome of an oxytetracycline-resistant strain bearing a
multidrug-resistance plasmid is described

Bohle et al., 2017

247 Resistance to quinolones (71.3%) and oxytetracycline (8.1%) Saavedra et al., 2017

Flavobacterium psychrophilum 40 ECOWT values of FFC, OTC, and OA for MIC data Henríquez-Núñez et al., 2012

125 ECOWT values of AML, FFC, OTC, OA, FLU, and ENR using MIC and
antibiogram data

Miranda et al., 2016

Aeromonas salmonicida 1 (genome) Strain isolated from infected rainbow trout contained several efflux pumps
and putative genes that confer resistance to macrolides, β-lactamics,
florfenicol, and quinolones

Valdés et al., 2015

Vibrio ordalii 24 ECOWT values of FFC, OTC and OA using MIC and antibiogram data Poblete-Morales et al., 2013

Streptococcus phocae 31 ECOWT values of ERY, FFC, and OTC Avendaño-Herrera et al., 2011

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; CM, chloramphenicol; G, gentamicin; AML, amoxicillin; FFC, florfenicol; OTC,
oxytetracycline; OA, oxolinic acid; FLU, flumequine; ENR, enrofloxacin; ERY, erythromycin; RND, resistance nodulation division; ECOWT, epidemiological cut-off value
for the fully susceptible to the antibacterial agent population (wild-type).

Piscirickettsiosis, the disease caused by the intracellular
pathogenic bacteria P. salmonis, is currently the most important
bacterial pathology of seawater salmonid farming in Chile,
accounting during 2016 for the 74.6 and 86.8% of the mortality
in the Chilean salmon industry for Atlantic salmon and rainbow
trout, respectively (SERNAPESCA, 2017a), and consequently it
is the main target of antimicrobial therapies administered in
the Chilean salmon industry (Rozas and Enríquez, 2014). With
this in mind, based on a systematic review of available scientific
literature, Mardones et al. (2018) concluded that the emergence
and frequency of P. salmonis antibiotic resistant strains are topics
which require further research, but the authors claimed that
there is no published work that developed harmonized schemes
for monitoring antimicrobial resistance and effectiveness against
P. salmonis, neither the ecological impact nor costs associated
with treatment strategies. However, various studies addressing
the susceptibility to antimicrobial agents among Chilean
P. salmonis strains have been conducted (Table 4). Smith
et al. (1996) studied the antimicrobial susceptibility of four
Chilean strains of P. salmonis by using cell monolayer-based
MIC assays which detected significant variation in antimicrobial
susceptibility patterns, whereas Yáñez et al. (2014) found a high
susceptibility to florfenicol and oxytetracycline, but only three
P. salmonis strains were studied. In another study, Henríquez
et al. (2015) reported an important incidence of resistance to
quinolones mediated by a single point mutation in the gyrA
gene among P. salmonis strains isolated from diseased salmon
in Chile. More recently, Henríquez et al. (2016) studied the

susceptibility to quinolones, florfenicol, and oxytetracycline of
292 P. salmonis strains collected over 5 years, providing evidence
of a high incidence of strains exhibiting resistance to quinolones,
but suggesting that resistance to florfenicol and oxytetracycline is
still developing. In further study, Sandoval et al. (2016) detected
different florfenicol susceptibilities in two Chilean P. salmonis
strains, observing that in the less susceptible strain florfenicol
could modulate the gene expression of the multi-drug resistance-
related efflux pump belonging to the resistance nodulation
division (RND) family and increasing efflux pump activity. The
authors concluded that the acrAB efflux pump is essential for
P. salmonis survival at critical florfenicol concentrations and
for the generation of antibiotic-resistant bacterial strains. More
recently, Cartes et al. (2017) analyzed whole genomes of 3
P. salmonis isolates exhibiting different degrees of susceptibility
to florfenicol and oxytetracycline, detecting genes encoding for
specific transporter proteins. The authors suggested that these
strains possess a greater number of membrane carriers, such
as MDR (multidrug resistance) type (Cartes et al., 2017). On
the other hand, Saavedra et al. (2017) studied a high number
of isolates of this species, finding a high incidence of non-
susceptible isolates to quinolones, but only a low percentage of
non-susceptible to oxytetracycline, whereas all studied isolates
were susceptible to florfenicol. In another recent study, Bohle
et al. (2017) described the genome of an oxytetracycline-resistant
P. salmonis isolate bearing a multidrug-resistance plasmid unique
to this isolate and harboring a tet determinant, but no other
resistance-encoding genes were described. Finally, in an attempt
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to standardize protocols and criteria for studying antibacterial
susceptibility of this pathogen, Contreras-Lynch et al. (2017)
proposed a standard protocol and stated the epidemiological
cut-off values for florfenicol and oxytetracycline for this species.

CONCLUSION

The growth of salmon aquaculture in Southern Chile is an
example of industrial development that over only a few decades
has gained a prominent place in global seafood markets. Along
with this explosive development, this salmon farming industry
has excessively utilized antibiotics to treat or prevent salmon
diseases. Currently, 0.53 kg of antibiotics per ton of harvested
salmon are used in the treatment and prevention of salmon
diseases (data for 2016), 95% of which is used in the marine
culturing phase to treat P. salmonis infections and 99.6% is
comprised of just two antibiotics, florfenicol and oxytetracycline
(SERNAPESCA, 2017b). Under this scenario, hundreds of tons
of antibiotics enter the marine environment causing possibly
negative environmental consequences and potential risks for
human health. If we take account of the pharmacokinetic
properties of both antibiotics, and assume that all administered
antibiotic (by feed) was consumed, we can estimate that 40
tons of oxytetracycline and 3 tons of florfenicol were released
into the marine environment in 2016. This is highly significant
considering that in the last 10 years these antibiotics have been
the most frequently used by industry.

Antibiotics entering marine environments favor the selection
of antibiotic resistance among environmental bacteria and fish
pathogens, and may also affect the activity of bacteria driving
biogeochemical cycles in marine sediments. Furthermore, these
chemicals can modify resistomes by selecting antibiotic resistance
genes (ARGs) and increasing the rates of horizontal gene transfer,
thereby increasing the probability of antibiotic resistance gene
transfer from environmental to human pathogenic bacteria.
These effects are of significant importance for Southern Chile,
where antibiotics are used excessively in salmonid farming
when compared to the other salmon producing countries.
Therefore, antibiotic use by Chilean salmon farms has become
a controversial issue due to the possible effects of high
concentrations of antibiotics being released into nominally
pristine environments, such as Chilean Patagonia. The Pacific
coast of Patagonia is comprised of a vast area of fjords and canals,
much of which is protected either within National Parks or close
to them. Yet despite this protection the areas being used for
aquaculture are constantly expanding into ever more remote and
previously unimpacted areas.

Despite that over the last two decades only few studies
assessing antimicrobial resistance and the resistome in the
freshwater and marine environment impacted by salmon farming
have been conducted, most of them demonstrated that Chilean
salmonid farm industry plays an important role as a reservoir
of antibiotic resistant microbiota and associated resistance
genes. Furthermore, previous studies have shown that even
in the absence of detectable amounts of antimicrobials in
several sediments impacted by Chilean salmon farming, these

environments are commonly associated with a high incidence of
antibiotic multi-resistant bacteria and their respective resistance
genes against a high diversity of antimicrobials, including
oxytetracycline, florfenicol, and oxolinic acid. This might suggest
that these environments enhance the selection and persistence of
resistant bacteria and associated genes even in the absence of a
selective pressure.

Considering that the Chilean salmon farming industry is one
of the worldwide leaders in the use of antibiotics, studies on
antibiotic resistant microbiota and related resistome are still
very scarce and much data is required to understand the role
of these environments in the maintenance and dissemination
of antibacterial resistance. Thus, studies aimed at increasing
knowledge of environmental resistomes associated with Chilean
salmon farming and the possibility of their mobilization to
the human clinical compartment are crucial for managing
the potential threat to human public health. In this trend,
surveillance studies of antibacterial resistance in under-cage
sediments must be mandatory for all Chilean salmonid farms to
avoid spread of selected resistance/genes to the human clinical
compartment.

Furthermore, the growing incidence of antimicrobial-
resistance among bacterial pathogens causing outbreaks in
the Chilean salmon industry is probably a consequence of the
intensive use of antibiotics in this industry, suggesting the urgent
requirement for the application of a strict controls in order to
avoid the overuse of antimicrobials, and the implementation of
a regular surveillance program in order to detect the emergence
and prevalence of ARGs in the environment. The observed
irregular effects of antimicrobial therapies in controlling
P. salmonis in Chilean salmonid farms suggest that the bacterium
has developed some level of resistance. Thus, it is important
that the rational and well-controlled use of antimicrobials is
implemented soon in order to decrease the selective pressure
imposed on this pathogenic species and consequently avoid the
selection of multi-drug resistant strains.

In conclusion, further studies are urgently required, mainly
focused on understanding the evolution and epidemiology of
resistance genes in Chilean salmonid farming, particularly those
encoding for resistance to antibiotics used in humans and
to determine the feasibility of a link between these genes
among bacteria from salmonid farms and human and fish
pathogens. Furthermore, a harmonization of protocols and
epidemiological cut-off values used to categorize pathogen
isolates in all diagnostic labs is urgently required to avoid
therapy failures. Considering that P. salmonis is a particularly
important pathogen in Chilean salmon farming, causing the
highest mortalities from infectious diseases (SERNAPESCA,
2017a), the development of efficient strategies for its control
as well as understanding its antimicrobial susceptibility status,
should be an urgent priority for the industry. Because of this
trend, is understandable that most of published studies are
related to this pathogenic species. Various Chilean researchers
are currently elucidating the antibacterial resistance mechanisms
involved in detected non-susceptible isolates, in accordance with
the conclusions stated in a recent study (Mardones et al., 2018).
Finally, having demonstrated the high prevalence of antibiotic
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resistant bacteria carrying transferable resistance genes in the
Chilean salmonid farm industry it is an urgent necessity to
implement antibiotic resistance surveillance programs and a
high number of complementary initiatives to reduce the rate of
increase of resistance in this industry. It is important to note
that dissemination of surveillance data should not be restricted to
the scientific community but must include all major stakeholders
including the Chilean government regulatory agencies.
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Brachyspira hyodysenteriae is the aetiological agent of swine dysentery, a globally

distributed disease that causes profound economic loss, impedes the free trade and

movement of animals, and has significant impact on pig health. Infection is generally

treated with antibiotics of which pleuromutilins, such as tiamulin, are widely used for

this purpose, but reports of resistance worldwide threaten continued effective control. In

Brachyspira hyodysenteriae pleuromutilin resistance has been associated with mutations

in chromosomal genes encoding ribosome-associated functions, however the dynamics

of resistance acquisition are poorly understood, compromising stewardship efforts

to preserve pleuromutilin effectiveness. In this study we undertook whole genome

sequencing (WGS) and phenotypic susceptibility testing of 34 UK field isolates and

3 control strains to investigate pleuromutilin resistance in Brachyspira hyodysenteriae.

Genome-wide association studies identified a new pleuromutilin resistance gene, tva(A)

(tiamulin valnemulin antibiotic resistance), encoding a predicted ABC-F transporter. In

vitro culture of isolates in the presence of inhibitory or sub-inhibitory concentrations of

tiamulin showed that tva(A) confers reduced pleuromutilin susceptibility that does not

lead to clinical resistance but facilitates the development of higher-level resistance via

mutations in genes encoding ribosome-associated functions. Genome sequencing of

antibiotic-exposed isolates identified both new and previously described mutations in

chromosomal genes associated with reduced pleuromutilin susceptibility, including the

23S rRNA gene and rplC, which encodes the L3 ribosomal protein. Interesting three

antibiotic-exposed isolates harboured mutations in fusA, encoding Elongation Factor G,

a gene not previously associated with pleuromutilin resistance. A longitudinal molecular

epidemiological examination of two episodes of swine dysentery at the same farm

indicated that tva(A) contributed to development of tiamulin resistance in vivo in a manner

consistent with that seen experimentally in vitro. The in vitro studies further showed

that tva(A) broadened the mutant selection window and raised the mutant prevention
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concentration above reported in vivo antibiotic concentrations obtained when

administered at certain doses. We show how the identification and characterisation of

tva(A), a new marker for pleuromutilin resistance, provides evidence to inform treatment

regimes and reduce the development of resistance to this class of highly important

antimicrobial agents.

Keywords: Brachyspira hyodysenteriae, swine dysentery, antimicrobial resistance, tiamulin, pleuromutilin,

antimicrobial resistance gene

INTRODUCTION

Pigs are an important source of meat and provide the second
highest share of meat consumed worldwide (OECD)1. Swine
dysentery (SD) is a severe mucohaemorrhagic colitis affecting
pigs and is of significant economic, and pig health and welfare
importance (Hampson, 2012; Alvarez-Ordóñez et al., 2013).
Economic costs of SD can be large, estimated at $115 million
to the US swine industry in 1994 and $8.30 to medicate each
SD-positive animal in 1990 (Burrough et al., 2013). In the
United Kingdom (UK) SD was estimated to cost £4–10 per
infected pig in 2012 (Alderton, 2012). These losses arise from
reduced feed conversion and weight gain, the high morbidity of
disease (up to 90%), costs associated with treatment of clinical
disease and metaphylaxis, hygiene measures, and disruption to
the trade of pigs (Hampson, 2012; Alvarez-Ordóñez et al., 2013).
The disease is distributed worldwide and the classical etiological
agent is Brachyspira hyodysenteriae, an anaerobic spirochaete
which resides in the large intestine of infected pigs. Antibiotic
treatment is critical for control of disease on infected units,
and is also part of treatment and elimination programmes
for SD, especially as no commercial vaccines against SD are
available. Inmost jurisdictions however the number of efficacious
antibiotics available to treat SD is severely limited (Hampson,
2012; Kulathunga and Rubin, 2017). For example, in the UK
antibiotics authorised for the treatment of SD are limited to the
pleuromutilins tiamulin and valnemulin, the macrolides tylosin
and tylvalosin, and lincomycin (a lincosamide); although off-
label use of other antibiotics (e.g., doxycycline) is permitted
under the cascade system, a risk-based decision tree that allows
veterinarians to employ clinical judgement to treat an animal
with an alternative product when there is no appropriate
authorised veterinary medicine available. Tiamulin is the most
widely used antibiotic for treatment of SD, due to efficacy
towards B. hyodysenteriae and relatively short withdrawal
periods (van Duijkeren et al., 2014). The World Organisation
for Animal Health has classed tiamulin and valnemulin as
Veterinary Highly Important Antimicrobial Agents, given their
critical importance for the treatment of SD and the lack of
alternatives (Anonymous, 2007). In the USA the proposed
withdrawal of carbadox (Anonymous, 2014), a compound used
to control SD which is already withdrawn from use in the
European Union and Canada, and recent recommendations
in the European Union to withdraw the indication for oral

1OECD. Meat comsumption (indicator).

formulations of tylosin (EuropeanMedicines Agency, 2014b) and
certain oral lincomycin (European Medicines Agency, 2017) and
lincomycin-spectinomycin combinations (European Medicines
Agency, 2014a) for treatment of SD caused by B. hyodysenteriae
would further restrict antimicrobial therapy options available to
veterinarians.

A major threat to the effective control of SD is resistance
of B. hyodysenteriae to pleuromutilins and/or other antibiotics,
indeed isolates with reduced susceptibility have been reported in
North America, Europe, Japan, and Australia, and the prevalence
of resistance appears to be increasing (Karlsson et al., 2002;
Lobová et al., 2004; Hidalgo et al., 2009; Pringle et al., 2012;
Swedres-Svarm, 2015; Kajiwara et al., 2016; Mirajkar et al.,
2016; Mahu et al., 2017; De Luca et al., 2018). Reduced
antibiotic susceptibility can lead to suboptimal or ineffective
antibiotic treatment, resulting in increased economic impact
to producers, adverse effects on pig health and welfare, and
development of antibiotic resistance. Furthermore, multidrug
resistance has been reported and in some herds B. hyodysenteriae
has become resistant to all authorised antimicrobials, leaving
depopulation and elimination of infection through thorough
cleansing and disinfection, and then restocking as the only
effective course of action (Hampson, 2012; Strugnell et al., 2013),
which has significant cost. Reduced antibiotic susceptibility in
B. hyodysenteriae has been associated with the presence of lnu(C)
(lincosamides) (De Luca et al., 2018) and point mutations at
specific positions in the 16S rRNA gene (doxycycline), 23S rRNA
gene (macrolides, lincosamides, and pleuromutilins) and rplC,
the gene encoding the L3 ribosomal protein (pleuromutilins)
(Karlsson et al., 1999; Pringle et al., 2004, 2007; Hidalgo et al.,
2011; Hillen et al., 2014; De Luca et al., 2018). The development
of resistance to pleuromutilins in B. hyodysenteriae is thought to
occur in a stepwise manner both in vitro and in vivo, suggesting
that multiple mutations are required for the emergence of
high level resistance (Karlsson et al., 2001; Hidalgo et al.,
2011; van Duijkeren et al., 2014), however the dynamics and
mechanisms of emergence of resistance to pleuromutilins remain
poorly defined. Furthermore B. hyodysenteriae isolates with
reduced susceptibility to pleuromutilins but without relevant
point mutations have been described, while for other mutations
there is debate on their role in conferring resistance (Pringle
et al., 2004; Hidalgo et al., 2011; Hillen et al., 2014; Mahu
et al., 2017). This debate indicates that our understanding
is incomplete and suggests that other unidentified mutations
and/or genes may be involved in pleuromutilin resistance in
B. hyodysenteriae.
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In this study we have examined the molecular basis for
antimicrobial resistance in B. hyodysenteriae isolates recovered
from pigs in the UK (n = 34) and ATCC control strains
(n = 3) by whole genome sequencing (WGS) and antimicrobial
susceptibility testing. Genome-wide association studies were
employed to screen for new genes associated with reduced
pleuromutilin susceptibility. We additionally investigated
mechanisms underlying the emergence of pleuromutilin
resistance in vitro by sequencing mutant isolates obtained after
single exposure of isolates to inhibitory tiamulin concentrations
or following repeated culture in sub-inhibitory concentrations.
Antibiotic exposure can select for mutational changes conferring
resistance to the antimicrobial which has been used, with cross-
resistance occurring where those mutations confer resistance to
several antimicrobial compounds (Karlsson et al., 1999, 2001;
Pringle et al., 2004). We applied the principles of the mutation
prevention concentration (MPC) hypothesis, which defines
the antibiotic concentration at which mutations giving rise to
resistance do not occur (Drlica and Zhao, 2007), when exposing
isolates to inhibitory tiamulin concentrations. The MPC has
been applied to assess the development of resistance to various
antibiotics including quinolones, macrolides, tetracyclines, and
pleuromutilins in many bacterial species including Escherichia
coli, Salmonella enterica, Mycoplasma gallisepticum, and
Staphylococcus aureus (Randall et al., 2004; Drlica and Zhao,
2007; Ozawa and Asai, 2013; Zhang et al., 2017). Maintaining
antibiotic concentrations above the MPC during therapy is
thought to help reduce the development of resistance (Drlica and
Zhao, 2007) and we related our findings to published tiamulin
pharmacokinetic and pharmacodynamic parameters in pigs to
help inform veterinary options for the treatment of SD.

MATERIALS AND METHODS

Isolates and Culture Methods
Thirty three UK field isolates of B. hyodysenteriae recovered from
submissions to the Animal and Plant Health Agency between
2005 and 2013 from 22 pig holdings were used in this study
(Table 1). Isolates were derived from diagnostic samples (n= 32)
or samples collected to assess infection status as part of disease
control (n = 1). Samples were of three types: excreted faecal
samples not collected directly from live pigs (n = 20); faeces or
intestinal contents collected from dead pigs (n = 12, no animals
were euthanased specifically for this publication); or rectal swabs
(n= 1) collected from individual live pigs by veterinary surgeons,
which did not require anaesthesia, and was not harmful to the
pigs. This sampling strategy is part of the normal veterinary
diagnostic investigation of this type of disease on a farm and as
such is not for scientific purpose and therefore not covered by the
Animal (Scientific Procedures) Act 1986. Sampling which is for
the immediate or long term benefit of the individual animal, its
immediate cohort or the wider epidemiological group, is covered
as an act of veterinary clinical practice within the Veterinary
Surgeon’s Act 1966. The UK field strain P18A was also included
in the panel, which was isolated from a pig with swine dysentery
in the late 1970s (Lemcke and Burrows, 1981) and is used as a
control for susceptibility testing at APHA (Griffiths et al., 2008).
All isolates were recovered from cases of swine dysentery, except

BH23 which was isolated from an apparently healthy animal that
showed no clinical signs of swine dysentery. At Holdings A and B
isolates were recovered on different sampling dates, allowing on-
farm disease episodes to be followed; information on tiamulin use
was also available for these farms. Additionally, three reference
strains were included in this work: B78T (ATCC 27164), B204
(ATCC 31212), and WA1 (ATCC 49526).

Isolates were cultured on fastidious anaerobe blood agar
(FABA) in an anaerobic cabinet (Don Whitley Scientific) in
anaerobic gas (10% H2, 10% CO2, and 80% N2) at 38◦C for
3–5 days. Broth cultures of B. hyodysenteriae were prepared by
aseptically picking from the agar surface with a sterile inoculation
loop and inoculating into pre-reduced Brain Heart Infusion
Broth (BHIB) with 10% Horse Serum (Oxoid or E and O
Laboratories Ltd.).

Susceptibility Testing
Minimum Inhibitory Concentrations (MICs) for tiamulin,
valnemulin, tylosin, tylvalosin, doxycycline, and lincomycin were
determined by broth dilution using VetMIC Brachy plates
(National Veterinary Institute, Uppsala, Sweden) (Karlsson et al.,
2003). Isolates were plated from stock culture onto FABA
plates and sub-cultured twice before testing according to the
manufacturer’s instructions. Plates were incubated for 4 days at
38◦C with shaking at 80 rpm and the MIC was recorded as the
lowest concentration of the antimicrobial agent that prevented
visible growth. For all samples purity was demonstrated and
viable counts (CFU ml−1) estimated by creating a 10-fold
dilution series in pre-reduced BHIB + 10% FCS and plating on
FABA plates. Strain B78T was used as control in each batch of
tests (Pringle et al., 2006).

Selection for Resistant Mutants at
Inhibitory Concentrations
The isolates selected for these experiments comprised the
reference strains B78T and WA1 and 16 field isolates, with
different tiamulinMICs spanning≤0.063 to 4 mg/L and different
genotypes (STs) (Table S4). Isolates were plated from stock
culture onto FABA and sub-cultured twice. For each isolate
the growth from four plates was harvested into 10ml broth
culture and incubated overnight at 38◦C with shaking at 100
rpm. The McFarland of the broth was determined using a
densitometer (Grant Instruments) and 100 µl when then plated
onto each of four FABA plates supplemented with dilutions of
tiamulin hydrogen fumarate (Sigma-Aldrich, UK) at the MIC as
determined by broth dilution and three doubling concentrations
above this (Table S4). The purity and CFUml−1 of the broth
culture was determined by creating a 10-fold dilution series in
broth and plating on FABA plates. Plates were incubated for
up to 5 days at 38◦C. Zones of haemolysis on the antibiotic
containing plates indicative of resistant colonies were counted,
picked and streaked onto FABA containing tiamulin at the same
concentration as the plate picked from. A single CFU was then
picked and sub-cultured on FABA with tiamulin until there was
sufficient growth to create a stock culture and a cell pellet for
DNA extraction. Subsequently, stock cultures of mutant isolates
were tested for antibiotic susceptibility as described above. The
mutation frequency was calculated as the number of mutants
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TABLE 1 | Summary of the 34 field isolates and three reference strains examined in this project, sorted by tiamulin Minimum Inhibitory Concentration (MIC).

Isolate ID ST Holding Year and month Tiamulin MIC

(ECOFF >0.25

mg/L)

Valnemulin MIC

(ECOFF >0.125

mg/L)

23S rRNA L2 protein L3 protein tva(A)

G2032A G2201T G2535A T50N N148S

WA1 26 Reference strain 2000s-n/a <=0.063 <=0.031

B204 54 Reference strain 1970s-n/a <=0.063 <=0.031

B78T 56 Reference strain 1970s-n/a <=0.063 <=0.031

P18A 4 Not known 1970s-n/a <=0.063 <=0.031

BH13 88 A 2009-8 <=0.063 <=0.031

BH26 88 B 2012-1 <=0.063 <=0.031

BH8 88 C 2008-10 <=0.063 <=0.031

BH35 91 AR 2012-1 <=0.063 <=0.031

BH7 239 R1 2008-9 <=0.063 <=0.031

BH9 88 C 2008-11 0.125 <=0.031

BH15 8 X 2010-5 0.25 0.5 A tva(A)

BH2 8 Z 2005-11 0.25 0.5 tva(A)

BH3 8 Z 2005-11 0.25 0.5 tva(A)

BH20 52 CB 2010-12 0.25 0.25 tva(A)

BH28 88 B 2012-2 0.25 <=0.031 Ser

BH34 8 CQ 2012-9 0.5 0.5 A tva(A)

BH16 87 CN 2010-6 0.5 0.125 C A Ser

BH14 88 A 2009-10 0.5 1 tva(A)

BH29 88 B 2012-3 0.5 0.5 tva(A)

BH37 240 G 2013-5 0.5 1 A tva(A)

BH24 52 CM 2011-1 1 0.5 tva(A)

BH6 240 II 2008-7 1 1 A tva(A)

BH23 167 BF 2010-12 2 1 A Asn tva(A)

BH38 52 CP 2013-9 4 4 tva(A)

BH25 8 AB 2011-6 8 4 A tva(A)

BH27 8 CO 2012-1 8 2 tva(A)

BH17 87 J 2010-7 8 >4 C A Ser tva(A)

BH30 240 H 2012-3 8 2 Ser tva(A)

BH32 240 H 2012-3 8 4 Ser tva(A)

BH12 87 J 2009-7 >8 >4 C A Ser tva(A)

BH33 87 K 2012-6 >8 >4 C A Ser tva(A)

BH36 87 O 2013-1 >8 >4 C A Ser tva(A)

BH18 88 A 2010-10 >8 >4 A tva(A)

BH19 88 A 2010-10 >8 >4 A tva(A)

BH21 88 A 2010-11 >8 >4 A tva(A)

BH22 88 A 2010-11 >8 >4 A tva(A)

BH31 240 H 2012-3 >8 >8 Ser tva(A)

Holding of origin is given as an anonymized letter code, together with year and month of sampling. The MICs for tiamulin and valnemulin are shown; bold text indicates MICs above

the ECOFF values as given in column headers. The presence of SNPs identified in the 23S rRNA gene and amino acid substitutions in L2 and L3 proteins associated with reduced

pleuromutilin susceptibility are indicated; blank, wild-type; ST, Sequence Type. Presence of tva(A) indicated.

recovered per CFUml−1 and the selection index was calculated
as the MPC:MIC ratio by dividing the MPC values by the MIC
values.

Selection for Resistant Mutants at
Sub-inhibitory Concentrations
Ten isolates (Table S6) were plated from stock culture onto FABA
and sub-cultured twice. Isolates were then plated onto FABA and
a tiamulin MIC Test Strip (Launch Diagnostics, UK) aseptically
applied. Subsequently, isolates were sub-cultured twice a week,

by harvesting growth along the line of inhibition and re-plating
in the presence of a tiamulin MIC Test Strip. As the growth
became rich the concentration of tiamulin was increased, using
doubling concentrations prepared in sterile discs (Oxoid, UK and
Sigma-Aldrich, UK). At points during the experiment a portion
of growth was plated onto FABA in the absence of antibiotic,
cultured for 3–4 days and used to prepare a stock culture for
storage at −80◦C and a cell pellet for DNA extraction. Five
of the isolates were additionally sub-cultured twice weekly in
the absence of tiamulin and stock cultures prepared during the
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experiment. Selected stock cultures were tested for antibiotic
susceptibility as described above.

Whole Genome Sequencing and Analysis
DNA extracts were prepared from cell pellets using Prepman
Ultra (Life Technologies, UK) according the manufacturer’s
protocol. Nextera XT libraries were prepared for WGS (Illumina,
Lesser Chesterford, UK) and sequenced on an Illumina MiSeq
platform v2 2x 150 bp paired-end protocol. The raw sequences
for each isolate were analysed with the Nullarbour pipeline
(version 1.20; Seemann et al.2) using the closed genome
of WA1 (Bellgard et al., 2009) as reference, and SPAdes
version 3.9.0 (Bankevich et al., 2012) and Prokka version
1.11 (Seemann, 2014) for genome assembly and annotation
respectively. The published genomes of 41 B. hyodysenteriae
isolates from swine (Black et al., 2015; La et al., 2016b) were
included in this analysis. A maximum likelihood phylogenetic
tree using the SNPs located within chromosomal regions
present for all the strains was constructed using FastTree
(Price et al., 2009). Species were assigned by Kraken (Wood
and Salzberg, 2014) (version 0.10.5-beta) and Roary (Page
et al., 2015) used to generate gene presence/absence lists.
Genome-wide association studies to identify genes having
significant association (p < 0.05; after Bonferroni correction
for multiple tests) with reduced susceptibility to tiamulin and
valnemulin were performed using Scoary (Brynildsrud et al.,
2016).

Additionally each isolate was analysed using SeqFinder
(Anjum et al., 2016), in which the raw sequences were filtered
and trimmed using Trimmomatic (Bolger et al., 2014), with
the parameters for the minimum quality threshold equal to 20,
sliding window equal to 10, and minimum sequence length
equal to 36. The raw trimmed and filtered data was mapped
onto the genome of the WA1 chromosome (Accession number
NC_012225) and plasmid (Accession number NC_012226)
(Bellgard et al., 2009) using SMALT (Sanger Institute). The
published genomes of 41 B. hyodysenteriae isolates from swine
(Bellgard et al., 2009; Black et al., 2015) were also mapped
to WA1. Single nucleotide polymorphisms (SNPs) with respect
to WA1 were calculated using SAMTOOLS software (Li and
Durbin, 2009; Li et al., 2009). SNPs were filtered using the
quality thresholds of minimum coverage equal to 4, minimum
proportion of raw sequences agreeing with the SNP call equal
to 80%, and SAMTOOLS SNP quality score >150. Isolate
sequence type (ST) was determined by extracting the seven
house-keeping genes of the B. hyodysenteriae MLST scheme
(adh, alp, est, gdh, glpK, pgm, and thi) (La et al., 2009) and
interrogation of the PubMLST database (https://pubmlst.org/
brachyspira/). Differences between the genomes of closely related
isolates (e.g., parent and mutant isolates) were examined by
comparison of the SNPs determined by SeqFinder using custom
scripts and by extracting mapped genes of interest for alignment

2Seemann, T., Goncalves da Silva, A., Bulach, D. M., Schultz, M. B., Kwong, J. C.,
Howden, B. P. (San Francisco: Github). Available online at: https://github.com/
tseemann/nullarbor [Accessed: August 03 Aug 2016].

using the Clustal V method in MegAlign (version 11; DNAstar
Inc.).

The whole genome sequences and sequence of tva(A) from
isolate BH14 were deposited in the European Nucleotide Archive
under study accession number PRJEB24023.

The presence of SNP mutants associated with reduced
susceptibility to antibiotics in the VetMIC Brachy panel was
assessed as follows: doxycycline and mutation at G1058 in the
16S rRNA gene (Pringle et al., 2007); tylosin and lincomycin and
mutation at A2058 in the 23S rRNA gene (Karlsson et al., 1999;
Hidalgo et al., 2011); tylvalosin and a mutation at A2058 and/or
A2059 in the 23S rRNA gene (Hidalgo et al., 2011). Reduced
susceptibility to tiamulin and valnemulin was assessed using
mutations at positions G2032, C2055, G2201, G2447, C2499,
C2504, and G2535 in the 23S rRNA gene and with SNPs causing
non-synonymous substitutions at amino acids N148 and S149 in
the 50S ribosomal protein L3 (Pringle et al., 2004; Hidalgo et al.,
2011; Hillen et al., 2014). E. coli numbering was used for the 16S
and 23S rRNA genes and polypeptide sequences were numbered
according to sequence in strain WA1. The correlation of the
presence of a SNP with reduced susceptibility was evaluated
by two-by-two table analysis (Mackinnon, 2000), where test
specificity, sensitivity, and the predictive value of a positive
and negative test were calculated using the following criteria:
mutant SNP and MIC > ECOFF value were true positive (TP),
wild type SNP andMIC≤ ECOFF value were true negative (TN),
mutant SNP but MIC ≤ ECOFF value were false positive (FP),
and wild type SNP but MIC > ECOFF value were false negative
(FN). The correlation was also evaluated for each antibiotic in
this manner for the presence/absence of tva(A).

RESULTS AND DISCUSSION

Genome Sequencing Revealed
Considerable Diversity in UK
B. hyodysenteriae
The 34 UK B. hyodysenteriae isolates sequenced for this study
were obtained from submissions to APHA between 2005 and
2013, except P18A which was a historical UK strain isolated
from a pig with swine dysentery in the late 1970s (Lemcke and
Burrows, 1981; Table 1). The genome properties of these isolates,
including genome size, GC%, and number of predicted coding
sequences were similar to the reference strain WA1 (Bellgard
et al., 2009) and other published B. hyodysenteriae genomes
(Black et al., 2015; La et al., 2016b; De Luca et al., 2018; Table S1).
As only 43 B. hyodysenteriae genomes have been published to
date, the B. hyodysenteriae MLST scheme (La et al., 2009) was
used to place these UK isolates into a global context. Each
UK isolate was assigned to one of eight sequence types (ST)
of which two were new variants not represented in the MLST
database (https://pubmlst.org/brachyspira/), five had previously
been identified in the UK and/or other European countries
(Figure 1) and the historical strain P18A (1970s) was ST4 which
has been previously described in the UK (NX; 2010s) and Canada
(FMV89.3323; 1990s). The Australian isolate WA100 (2010s)
was also ST4 by genome analysis, but in the MLST database
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(La et al., 2009) is classed as ST130 due to a difference in one
allele. Importantly, none of the 33 contemporary UK isolates
(2005–2013) had STs associated with regions outside Europe,
such as North America, Asia and Australia, possibly reflecting pig
trading relationships.

A maximum likelihood phylogenetic tree was constructed
using core genome SNPs from the WGS of the 34 UK isolates
and 43 published B. hyodysenteriae genomes (Bellgard et al., 2009;
Black et al., 2015; La et al., 2016b; De Luca et al., 2018; Figure 1).
Most UK isolates from this study (n = 32) formed a sub-cluster
that also contained isolates from Germany and the Canadian ST4
isolate. The two UK isolates that did not fall into this group (BH7
and BH35) formed a separate sub-cluster containing a German,
a Canadian and a previously sequenced UK isolate. A number
of UK and German isolates had considerable diversity in their
core genome and formed a distinct sub-cluster (Figure 1). The
most distantly related isolates were BH23 from the UK and the
weakly haemolytic German isolates JR11-13 (La et al., 2016b).
Interestingly, BH23 also had a weak haemolysis phenotype in
culture and was isolated from an apparently healthy animal that
showed no clinical signs of swine dysentery.

The phylogenetic tree further showed that, while there is
considerable diversity in the B. hyodysenteriae core genome,
the core genome of individual clones remained very stable over
prolonged periods of times as demonstrated by the relatively low
numbers of SNPs between isolates collected at different times
from the same holdings, such as the isolates from Holding A
(≤69 SNPs). The diversity and stability of the B. hyodysenteriae
genome has been noted previously (Black et al., 2015) but
these data provide new insight in the farm environment. The
phylogenetic tree also gave greater resolution than MLST into
the molecular epidemiological investigation of disease episodes
at different holdings and identified, for example, three distinct
sub-clades from three different holdings within the ST88 branch
(Figure 1), including holdings A and B which had known
epidemiological links (Strugnell et al., 2013). It is also interesting
to note the high degree of core genome conservation in ST4
isolates from three continents collected in different decades,
particularly as Australia banned imports of live pigs in the mid-
1980s (La et al., 2016a).

Reduced Antibiotic Susceptibility Can Be
Predicted From Genotype
The susceptibility of the 34 field strains and 3 ATCC strains
was determined by broth dilution (Karlsson et al., 2003) for
tiamulin and valnemulin (Table 1) and for tylsoin, tylvalosin,
lincomycin and doxycycline (Table S2). For each antibiotic,
an isolate was defined as having reduced susceptibility if
the MIC exceeded the environmental cut-off (ECOFF) value
(Pringle et al., 2012). The WGS of each isolate was examined
for mutations in the 16S rRNA, 23S rRNA, and rplC genes
associated with resistance to these antibiotics (Table 1). Reduced
susceptibility to tylosin, lincomycin, tylvalosin, and doxycycline
(i.e., antimicrobial phenotype) correlated well with the presence
of relevant mutant SNPs (i.e., genotype), giving good (≥80%)
sensitivity, specificity, positive predictive values, and negative

TABLE 2 | Reduced tiamulin and valnemulin susceptibility predicted by genome

sequence based on the presence of mutations in chromosomal genes or the

presence of tva(A).

Tiamulin Valnemulin

Chromosomal

SNPs

tva(A) Chromosomal

SNPs

tva(A)

Sensitivity 77% 95% 68% 100%

Specificity 87% 73% 83% 100%

Positive predictive value 89% 84% 89% 100%

Negative predictive

value

72% 92% 56% 100%

True positive 17 21 17 25

True negative 13 11 10 12

False positive 2 4 2 0

False negative 5 1 8 0

Isolate genotypes and susceptibilities described in Table 1. Specificity, sensitivity, and the

predictive value of a positive and negative test were calculated using two-by-two table

analysis (Mackinnon, 2000) with the following criteria: SNP/tva(A) presence and MIC >

ECOFF value were true positive (TP), wild type SNP and MIC ≤ ECOFF value were true

negative (TN), SNP/tva(A) presence but MIC ≤ ECOFF value were false positive (FP),

and wild type SNP but MIC > ECOFF value were false negative (FN). Values ≥ 80% are

indicated in bold font.

predictive values, as calculated using two-by-two table analysis
(Table S3) (Mackinnon, 2000), in accordance with previous
studies (Karlsson et al., 1999, 2003; Pringle et al., 2007; Hidalgo
et al., 2011; Alvarez-Ordóñez et al., 2013; Mahu et al., 2017; De
Luca et al., 2018). A new polymorphism (G1058T) associated
with reduced doxycycline susceptibility was identified in the 16S
rRNA gene of isolates BH6 and BH37.

Correspondence between SNPs and reduced susceptibility
to tiamulin and valnemulin was poorer, largely due to the
greater number of isolates with reduced susceptibility but
no mutation (Table 2), a phenomenon previously noted by
others (Pringle et al., 2004; Hidalgo et al., 2011; Hillen
et al., 2014; Mahu et al., 2017). To identify new mutations
potentially associated with reduced pleuromutilin susceptibility
we examined genes encoding the 50S ribosomal proteins L2,
L4, and L22 for amino acid substitutions, as they have a
possible role in pleuromutilin resistance (Hillen et al., 2014).
There was no variation in the L4 amino acid sequence
and L22 was also highly conserved. The predicted amino
acid sequence of the L2 protein was identical in all but
one isolate: BH23 which had a T50N substitution at a
conserved threonine residue and a tiamulin MIC of 2 mg/L
(Table 1).

Identification of a New Pleuromutilin
Resistance Gene
We next employed a genome-wide association study to search
for genes associated with reduced pleuromutilin susceptibility
and identified one gene significantly associated with isolates
having reduced valnemulin susceptibility (p < 0.000003 after
Bonferroni correction for multiple tests). Two-by-two table
analysis using this gene as a predictor of reduced valnemulin
susceptibility gave 100% sensitivity and specificity (Table 2). This
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FIGURE 1 | A phylogenetic construction of Brachyspira hyodysenteriae isolates using a maximum-likelihood tree. The 34 field isolates sequenced in this project have

been included together with 43 published B. hyodysenteriae genomes. The Sequence Type (ST) of the 34 isolates sequenced in this study together with countries in

which these STs have been described previously is shown.

gene was also identified when examining reduced susceptibility
to tiamulin but the association was not significant (p < 0.0606
after Bonferroni correction). However using the gene as a
predictor of reduced tiamulin susceptibility gave an improved
sensitivity and negative predictive value compared to SNPs
only (Table 2); the lower specificity arose because four isolates
with a tiamulin MIC at the ECOFF value carried this gene
(Table 1). One isolate with reduced tiamulin susceptibility
(BH16) did not possess this gene although it did carry three

mutations in ribosome-associated genes associated with reduced
pleuromutilin susceptibility (Table 1). Of the 14 isolates which
had a tiamulin MIC > 2 mg/L, and thus meeting criteria
proposed for clinical resistance (Duinhof et al., 2008; Swedres-
Svarm, 2015), 12 (86%) carried both the newly identified gene
and one or more SNPs associated with reduced pleuromutilin
susceptibility (Table 1).

The newly identified 1,518 bp gene encoded a highly
conserved 505 amino acid polypeptide in which Pfam analysis
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(Finn et al., 2016) identified two regions with strong similarity
to ABC transporter domains (E-values≤ 3e-10), each containing
a Walker A, Walker B, and ABC signature motif, but no
transmembrane domain (Figure S1). This structure is found in
ATP-binding cassette (ABC) proteins of the ABC-F subfamily
(Kerr et al., 2005; Wilson, 2016). Antibiotic resistance ABC-
F proteins act as ribosome protection proteins (Sharkey et al.,
2016) and have been described in Gram positive bacteria, falling
into three main groups according to the resistance phenotypes
they confer (Kerr et al., 2005; Sharkey et al., 2016). The newly
identified ABC-F gene had an overall amino acid identity
of <23% to proteins from these groups and was distantly
related in a phylogenetic tree (Figure S2). The new gene was
also present in 10 published B. hyodysenteriae genomes, but
only the Italian isolate BH718 has published pleuromutilin
susceptibilities, having tiamulin and valnemulin MICs above
the ECOFF (De Luca et al., 2018). Furthermore, a closely
related gene (86% amino acid identity) was identified in the
Brachyspira pilosicoli isolates WesB and B2904 (Figure S2). We
have named the B. hyodysenteriae ABC-F gene tva(A) (tiamulin
valnemulin antibiotic resistance) and the B. pilosicoli variant
tva(B). Pleuromutilins target the ribosomal peptidyl transferase
centre (Long et al., 2006) and we therefore propose that tva(A)
may reduce susceptibility to these antibiotics by acting as an
ABC-F ribosome protection protein. In future the cloning and
overexpression of tva(A) in a heterologous system, such as
Escherichia coli, can be undertaken to examine this further.

Resistance mediated by ABC-F proteins in Gram-positive
bacteria is often transferable as the genes can reside on
mobilisable plasmids. Analysis of the nucleotide region
surrounding tva(A) for all isolates indicated that it was located
on the chromosome and not on the only plasmid present in
B. hyodysenteriae. Furthermore, the synteny of tva(A) was
identical in every isolate, being invariably placed between a
cell division protein (WA1 locus ID RS04455) and an operon
containing an oxidoreductase (RS04460) and an efflux pump of
the multi-drug and toxic compound extrusion (MATE) family
(RS04465), as shown for two isolates in Figure 2. Although
the synteny of tva(B) within the two B. pilosicoli genomes
was identical they had no similarity to B. hyodysenteriae
synteny (Figure 2). In contrast to the lincomycin resistance
gene lnu(C) recently reported in B. hyodysenteriae (De Luca
et al., 2018), no transposon and/or insertion element sequences
were identified in the vicinity of tva(A). However sequence
alignment identified highly conserved motifs upstream and
downstream of tva(A), absent in isolates without tva(A). For
example, an AC dinucleotide motif flanked tva(A) (Figure S3),
which may have been duplicated following insertion and
with the subsequent loss of the transposon or insertion
sequence, as has recently been described for mcr-1 in Moraxella
spp. (AbuOun et al., 2017). Furthermore an inverted repeat
flanked tva(A) and may indicate a site of recombination
(Figure S3). However at present there is insufficient evidence
to unambiguously conclude that tva(A) is mobilisable but
it is interesting to note that the tva(A) GC content was not
greatly different to the B. hyodysenteriae average (27.5% vs.
29.5%).

FIGURE 2 | Chromosomal arrangement of genes in Brachyspira

hyodysenteriae and Brachyspira pilosicoli surrounding tva(A) and tva(B)

respectively. B. hyodysenteriae genes labelled according to the locus tag in the

reference strain WA1 (Accession number NC_012225); tva(A) is not present in

WA1 and therefore has no locus tag. Genes have been coloured to indicate

tva(A) and tva(B) in red and other genes in blue. WA1 and BH13 were tiamulin

susceptible (MIC ≤ 0.063 mg/L). Field isolates BH14 and BH29 were

recovered from different holdings, harboured tva(A) and had intermediate

tiamulin MICs (0.5 mg/L). Also shown is the region surrounding tva(B) from

B. pilosicoli isolates B2904 (Accession number CP003490; locus tag

B2904_orf1849) and WesB (Accession number HE793032; locus tag

WESB_0884); other genes labelled according to their locus tags. Regions of

homology between isolates are shown by grey shading. Image generated

using EasyFig (Sullivan et al., 2011).

The Dynamics of Tiamulin Resistance
Development in Vitro
We next examined the development of tiamulin resistance and
the significance of tva(A) using in vitro studies. In one set of
experiments 18 isolates were cultured at inhibitory tiamulin
concentrations: the MIC as determined by broth dilution and
three doubling concentrations above this (Table S4). This
approach allowed us to investigate the tiamulin MPC and define
the mutant selection window (MSW), which lies between the
MIC and the MPC and is the concentration range at which
resistant mutants may arise (Drlica and Zhao, 2007). No mutants
were observed with the six isolates which did not carry tva(A)
(Table S4). Fifteen mutants were recovered from five of the
six isolates tested which carried tva(A) and had a tiamulin
MIC between 0.25 and 1 mg/L (Table S4). Of the five tiamulin
resistant isolates tested, all harbouring tva(A), one mutant was
recovered from BH38 (Table S4), the only resistant isolate tested
in which no resistance mutations in ribosome-associated genes
were identified (Table 1). For 17/18 isolates tested, the MPC
was within the tiamulin concentration range used and less than
three doublings above the MIC; two mutants were recovered
from BH29 at the highest tiamulin concentration used for this
isolate (Table S4). All isolates that did not harbour tva(A) had
MPCs which did not exceed 0.5 mg/L and the selection index
(MPC:MIC ratio) was 1, whereas isolates harbouring tva(A),
and with a tiamulin MIC ≤ 2 mg/L, had MPCs from 0.5 to
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at least 8 mg/L and a selection index of 1–8 (Table S4). These
results indicate that tva(A) raises the MPC and widens the MSW.
Mutants were only recovered from isolates harbouring tva(A)
and the geometric mean of mutation frequency was 1.88× 10−8,
similar to mutation rates reported for E. coli and S. enterica
exposed to quinolones (Randall et al., 2004; Ozawa and Asai,
2013).

Ten of the 16mutants were recovered from one isolate (BH20)
which we termed as “hypermutable” due to the large numbers of
mutants it generated in comparison to other isolates. All purified
mutants showed an increase in tiamulin and valnemulin MICs
compared to their parent isolate (Table S5) but no increasedMICs
for tylosin, lincomycin, tylvalosin, and doxycycline. Analysis of
the WGS of mutants showed that each had between one and
nine new SNPs, absent in the parent isolate, with 10 isolates
having only one new SNP (Table S5). Twelve mutants had a
SNP in the 23S rRNA gene, of which nine were at positions
previously associated with tiamulin resistance (G2032A, C2055T,
and C2499T) and three were at new positions (G577A, G1846T,
and C1902T), as detailed in Table S5. The polymorphisms at
C2055 and C2499 are new mutations associated with tiamulin
resistance, as only adenine substitutions at these positions have
been reported previously (Pringle et al., 2004). Two mutants had
a SNP in rplC, one resulting in a S149I amino acid change in
the L3 ribosomal protein (described previously Pringle et al.,
2004) and the other gave a new amino acid change (S149R).
Anothermutant had a SNP in the fusA gene, encoding Elongation
Factor-G (EF-G), which resulted in an A261V substitution at the
conserved alanine residue in the G5 box. One mutant isolate
had no SNPs in ribosome-associated genes but had a single
SNP in a gene encoding ribose-phosphate pyrophosphokinase
that resulted in an amino acid substitution (Table S5), but the
role of this enzyme in tiamulin resistance is unknown. SNPs
not associated with the ribosome were also identified in six
other mutants, with most (16/21) located in non-coding regions
(Table S5).

In a separate in vitro screen for tiamulin resistant mutants,
10 isolates were repeatedly sub-cultured in the presence of
sub-inhibitory concentrations of tiamulin for up to 70 sub-
cultures, with concentrations increased during this period as
growth became rich, similar to earlier studies (Karlsson et al.,
1999; Pringle et al., 2004). Five of these isolates were also
repeatedly sub-cultured in the absence of tiamulin for the
same time period to determine any baseline changes that may
occur. Isolates were collected after 30, 45, 60, and/or 70 sub-
cultures and tested by broth dilution to determine changes
that may have occurred in antibiotic susceptibilities (Table
S6). The tiamulin resistant isolate BH30 showed no significant
alteration in tiamulin susceptibility after 60 sub-cultures in
either the presence or absence of the antibiotic and, following
WGS, SNPs were detected in the tiamulin exposed and non-
exposed BH30 sub-cultures but none were present in ribosome-
associated genes (Table S6). The remaining nine isolates exposed
to tiamulin showed from 2 to 5 two-fold increases in tiamulin
MIC (Table S6) and a concomitant increase in valnemulin
MIC but no alteration in susceptibilities to tylosin, tylvalosin,
doxycycline, and lincomycin. Interestingly, for isolates without

tva(A) (initial MIC ≤ 0.25 mg/L) the MIC post-tiamulin
exposure did not exceed 2 mg/L, whereas for isolates harbouring
tva(A) (initial MIC 0.25–1 mg/L) MICs post-exposure were >2
mg/L, indicating resistance to tiamulin. Genome sequencing
showed that 8/9 of these tiamulin-exposed isolates had SNPs
in ribosome-associated genes, which were absent in the parent
isolate (Table S6). Six isolates had mutations in the 23S rRNA,
four at previously described positions (G2032A, C2055T, and
G2447T), one at a position also identified in theMPC experiment
(G577T) and another at a new position (C2179T). Two isolates
(BH15 and BH37) acquired non-synonymous SNPs in the fusA
gene, which together with the fusA mutant from the MPC
experiment, provide the first evidence for an association of
EF-G with reduced pleuromutilin resistance. EF-G acts during
the translocation step of the elongation cycle of bacterial
protein synthesis, the step immediately following the peptide-
bond formation step which is inhibited by pleuromutilins
(Wilson, 2014). Mutations in fusA of Staphylococcus spp.
confer resistance to fusidic acid, an antibiotic that inhibits
translocation (Farrell et al., 2011). BH37 additionally acquired
a SNP in rplC causing as S149I substitution in the L3 protein.
The newly identified mutations were not present in any of
the UK field isolates analysed or published B. hyodysenteriae
genomes.

Importantly, sub-culture of the susceptible isolates B78T,
BH13, and BH20 in the absence of tiamulin did not alter
tiamulin or valnemulin MICs or give rise to mutations in
ribosome-associated genes (Table S6). However, for BH14
there was an increase in pleuromutilin MICs both with
and without exposure to tiamulin, although no SNPs were
identified in ribosome-associated genes in sub-cultured strains
from either group, which requires further investigation, as
it may represent a subset of strains that can become
“naturally” resistant to tiamulin without any exposure possibly
through de-repression or up-regulation of some key regulatory
genes.

The Role of tva(A) in the Development of
Pleuromutilin Resistance Development
The results provided by the two in vitro experiments provide the
basis of a hypothesis describing how resistance to pleuromutilin
antibiotics develops in B. hyodysenteriae, which is summarised in
Table 3. The hypothesis derives from the observation that isolates
which did not carry tva(A) were generally susceptible to tiamulin,
and nomutants were recovered from these isolates when exposed
to inhibitory tiamulin concentrations. Furthermore, although
isolates without tva(A) could acquire resistance mutations
and consequently reduced pleuromutilin susceptibility following
repeated exposure to sub-inhibitory tiamulin concentrations,
they did not develop clinical resistance despite prolonged
exposure to high tiamulin concentrations (e.g., discs containing
1,000 µg tiamulin). In contrast, generally all isolates with MICs
between the ECOFF value and the clinical breakpoint carried
tva(A); as did four isolates with a tiamulin MIC at the ECOFF
(Table 1). Clinically resistant mutants were recovered from
5/6 tva(A) isolates following exposure to inhibitory tiamulin
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TABLE 3 | Hypothesis for pleuromutilin resistance development in B. hyodysenteriae.

Tiamulin resistance phenotype Resistance genotype Tiamulin

inhibitory

concentration (Single

exposure)

Tiamulin

sub-inhibitory

concentration

(Repeated exposure)

No antibiotic

(Repeated

exposure)

Category MIC (mg/L) Chromosomal SNPs tva(A)

Susceptible ≤0.25 No Noa No change

(remains susceptible)

Becomes intermediate

(not resistant)

No change

(remains

susceptible)

Intermediate >0.25 to ≤2 No Yesb Can become resistant Becomes resistant No change

(remains

intermediate)

Resistant >2 Yesc Yes No change

(remains resistant)

No change

(remains resistant)

No change

(remains

resistant)

Susceptible isolates have tiamulin MICs equal to or less than the ECOFF value (Pringle et al., 2012), resistant isolates exceed the proposed clinical breakpoint (Duinhof et al., 2008;

Swedres-Svarm, 2015), and intermediate isolates reside in between.
aFour susceptible isolates had an MIC of 0.25 mg/L and harboured tva(A).
bOne intermediate isolate had an MIC of 0.5 mg/L, did not carry tva(A) but did harbour chromosomal SNPs associated with resistance.
cTwo resistant isolates did not harbour known chromosomal SNPs associated with resistance.

concentrations and from the six isolates repeatedly exposed to
sub-inhibitory tiamulin concentrations. Therefore our results
indicate that tva(A) is critical for the development of clinical
pleuromutilin resistance and most highly resistant isolates
harboured both tva(A) and mutations in ribosome-associated
genes. Further support is provided by the fact that the same
mutation in the 23S rRNA gene increased the tiamulin MIC of
an isolate without tva(A) to an intermediate level (>0.25 to ≤2
mg/L) whereas an isolate with tva(A) harbouring thesemutations
became highly resistant (>2 mg/L); e.g., compare isolates BH13
and BH20 in Table S6.

The development of resistance observed in vitro during
sustained exposure to tiamulin was mirrored in vivo, as shown
in a longitudinal molecular epidemiological examination of two
episodes of swine dysentery at the same farm (Holding A). The
same clone was found to be responsible for the two disease
episodes, which were separated by 1 year (Figure 1; Table 1).
The first episode was treated with tiamulin and the initial
isolate (BH13) was susceptible to tiamulin and did not harbour
tva(A). Isolate BH14, obtained 2 months later during the first
episode, had a raised tiamulin MIC of 0.5 mg/L, had only 69
SNPs difference to BH13 in the core genome but now carried
tva(A). Four isolates recovered a year later (BH18, BH19, BH21,
and BH22), during the second disease episode, were clinically
resistant and retained tva(A) but now carried 1–4 new SNPs not
present in BH14, including a G2032A mutation in the 23S rRNA
gene (Table 1).

We therefore propose that tva(A) confers reduced
pleuromutilin susceptibility in B. hyodysenteriae that does
not lead to clinical resistance but facilitates the development
of higher-level resistance via mutations in ribosome-associated
genes. This proposed mechanism of resistance development
to pleuromutilins aligns with and refines the stepwise manner
proposed previously (Karlsson et al., 2001; Hidalgo et al., 2011;
van Duijkeren et al., 2014). It is similar to that reported for
plasmid-mediated quinolone resistance genes in several species

(Jacoby et al., 2014), and likely explains reported contradictions
regarding the capability of particular mutations to confer
tiamulin resistance.

Evidence to Inform Swine Dysentery
Control On-Farm
The data we present on the tiamulin MSW and MPC for
B. hyodysenteriae can also help inform measures designed
to prevent the development of resistance on-farm. In the
UK, the authorised dosage for tiamulin products for pigs
provides for two treatment regimens: high doses at an inclusion
level of 100–200 ppm (5–10 mg/kg bodyweight) in feed
for 7–10 days to treat clinical swine dysentery caused by
B. hyodysenteriae and a lower dosage at an inclusion level
of 40 ppm (2 mg/kg bodyweight) in feed for 2–4 weeks
for the metaphylaxis of swine dysentery (https://www.vmd.
defra.gov.uk/ProductInformationDatabase/). Similar regimes are
employed in other jurisdictions. There are limited data available
for the pharmacokinetics and pharmacodynamics of tiamulin
in pigs, but one report presents estimated colon contents
concentrations (CCC) for tiamulin following treatment at doses
of 38.5 ppm (CCC <1.98 mg/L), 110 ppm (CCC 2.84 mg/L),
and 220 ppm (CCC 8.05 mg/L) in feed for 14 days (Burch
and Hammer, 2013). Comparison of CCC to the MSW and
MPC defined in this work shows that for isolates without
tva(A), the MPC was exceeded by the CCC obtained at all
three doses. Thus either treatment regimen could be expected
to deliver sufficient antibiotic to treat infection and prevent
emergence of resistance. However, in tva(A) positive isolates,
the MSW was expanded and the MPC was higher than the
CCC obtained with doses at 38.5 ppm and also at 110 ppm for
some isolates tested. Thus isolates harbouring tva(A) have the
potential to acquire high level resistance under these treatment
regimens, whereas the higher therapeutic dose should limit
development of clinical resistance. Therefore it would be valuable
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to establish whether the tva(A) gene is present or absent in
the B. hyodysenteriae infecting the pigs. This is particularly
important when tiamulin is used at the metaphylactic dose as
this would provide an extended opportunity for B. hyodysenteriae
harbouring tva(A) to remain within the MSW, increasing the
potential for clinical resistance to develop. Regular determination
of isolate susceptibility on farms using tiamulin for metaphylaxis
is recommended, particularly if tva(A) was present. Use of
different licensed antimicrobials presents another option if the
tva(A) gene is detected, however resistance to these can be
common. Increasing the metaphylactic dose to the treatment
dose level might limit development of resistance but would
require a change in authorisation and further research on issues
such as animal safety, environmental impact and other aspects
relating to tiamulin use.

The existence and potential mobilisation of tva(A) may
also prove relevant to human clinical medicine due to the
sustained interest in the use of pleuromutilins to treat human
bacterial infections; retapamulin was approved for topical use
in the USA in 2007 and lefamulin, highly active against
multidrug resistant S. pneumoniae and S. aureus, was recently
reported as being in phase III development for systemic use
(Eyal et al., 2016).

In conclusion this work has provided new insights into the
diversity of B. hyodysenteriae genomes, an important aetiological
agent for swine dysentery, and demonstrated the utility of WGS
approaches for the molecular epidemiological investigation
of disease episodes. Reduced antibiotic susceptibility can

be confidently predicted from genome sequences and
we have described an expanded repertoire of genes and
SNPs associated with pleuromutilin resistance. Indeed, the
identification of tva(A) gives a deeper understanding of the
development of resistance to pleuromutilins and provides
evidence-based science that can be practically applied on-
farm to assist efforts to reduce the development of resistance
to this class of highly important veterinary antimicrobial
agents.
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There is widespread agreement that agricultural antibiotic resistance should be reduced,
however, it is unclear from the available literature what an appropriate target for reduction
would be. Organic farms provide a unique opportunity to disentangle questions of
agricultural antibiotic drug use from questions of antibiotic resistance in the soil. In
this study, soil was collected from 12 certified organic farms in Nebraska, evaluated
for the presence of tetracycline and sulfonamide resistance genes (n = 15 targets),
and correlated to soil physical, chemical, and biological parameters. Tetracycline and
sulfonamide antibiotic resistance genes (ARGs) were found in soils from all 12 farms, and
182 of the 196 soil samples (93%). The most frequently detected gene was tetG (55% of
samples), followed by tet(Q) (49%), tet(S) (46%), tet(X) (30%), and tetA(P) (29%). Soil was
collected from two depths. No differences in ARGs were observed based on soil depth.
Positive correlations were noted between ARG presence and soil electrical conductivity,
and concentrations of Ca, Na, and Mehlich-3 phosphorus. Data from this study point
to possible relationships between selected soil properties and individual tetracycline
resistance genes, including tet(O) which is a common target for environmental samples.
We compared organic farm results to previously published data from prairie soils and
found significant differences in detection frequency for 12 genes, eight of which were
more commonly detected in prairie soils. Of interest, when tetracycline ARG results
were sorted by gene mechanism, the efflux genes were generally present in higher
frequency in the prairie soils, while the ribosomal protection and enzymatic genes were
more frequently detected in organic farm soils, suggesting a possible ecological role for
specific tetracycline resistance mechanisms. By comparing soil from organic farms with
prairie soils, we can start to determine baseline effects of low-chemical input agricultural
production practices on multiple measures of resistance.
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INTRODUCTION

The global emergence of antibiotic resistance has led to the
immediate need to find ways to mitigate resistance in the
environment. Agricultural antibiotic resistance is an issue that
has gained national and international attention (Topp et al.,
2017), and there is concern that resistance from cropland and
livestock will be transferred through the environment and cause
untreatable infectious disease in people and animals (Durso and
Cook, 2014). In conventional food animal production, livestock,
and poultry are commonly given antibiotics to treat and prevent
illnesses (Du and Liu, 2012). However, research has indicated
that only 10 to 20% of antibiotics administered are absorbed
into animal tissue: the majority is excreted in manure (Ok et al.,
2011). The presence of antibiotic residues in manure may lead
to selection and proliferation of strains of antibiotic resistant
bacteria (ARB); thus, manure from livestock facilities is a source
of antibiotic drugs, ARB, and antibiotic resistance genes (ARGs)
excreted into the environment (Binh et al., 2008; Heuer et al.,
2011). There is widespread agreement and support for the idea
that agricultural antibiotic resistance should be reduced, with
an emphasis on reducing transfer of resistance from practices
such as land application of animal manures (Heuer et al.,
2011; Pruden et al., 2013; Marti et al., 2014), and spraying of
antibiotics to control bacterial disease in fruit crops (Stockwell
and Duffy, 2012). However, the details of a realistic reduction
target are elusive. In order to develop effective methods to reduce
resistance, it is important to first obtain baseline information
on how basic agricultural practices are involved in resistance
transfer. There remain many knowledge gaps surrounding the
basic ecology of antibiotic resistance on farms and in fields,
such as how variable is any particular measure of resistance
within or between farms? And from a human and animal health
standpoint, which types of resistance should be measured or
tracked?

Organic farms provide a unique and valuable opportunity to
disentangle questions of agricultural drug use from questions
of antibiotic resistance. Since antibiotic drugs use is severely
restricted in organic operations, these farms provide a natural
starting place for assessing background and baseline levels of ARB
and ARG in agricultural production settings (Rothrock et al.,
2016b).

In Nebraska, over 90% of the land mass is devoted to
agriculture, with cattle, corn, soybeans, hogs, and eggs being
the top agricultural commodities, in order of value (Nebraska
Department of Agriculture [NDA], 2017). In 2016, the USDA
National Agricultural Statistics Service reported a total of 48,400
farm operations in Nebraska (National Agriculture Statistics
Service [NASS], 2016). Of these, 267 were certified organic
according to the USDA Agricultural Marketing Service’s Organic
Integrity Database (United States Department of Agriculture
[USDA], 2017). A previous study characterized ARB/ARG in
native Nebraskan prairie soils, providing a reference point for
resistance in soils with minimal anthropogenic inputs (Durso
et al., 2016); however, data on resistance in organic farm soils
from this region are lacking. Here we assess prevalence and
distribution of selected tetracycline and sulfonamide resistance

genes in soil from 12 USDA certified organic farming operations
in Nebraska. Resistance gene distributions were compared within
and among different organic operations and at different soil
sampling depths. In addition, this study explored relationships
between ARGs and soil physical, chemical, and biological
characteristics. There is some indication that soil nutrient
levels may impact the prevalence of ARB/ARG (Udikovic-Kolic
et al., 2014; Zhou et al., 2017); therefore, we hypothesize that
relationships will be observed between ARG frequency and
selected soil characteristics.

MATERIALS AND METHODS

Soil Collection and Analyses
Soil samples were collected from 12 certified organic farms in
Nebraska. The crops grown are listed in Table 1. There were
no animals on pasture at the time of collection. Information
on whether or not manure had been used as a soil amendment
within the last three years is provided in Table 1. A total of 98
soil cores (15.24 cm) were collected between May 22 and June
6, 2013. Aboveground residue and large roots were removed.
Soil for microbiological analysis was collected using a gardener’s
trough which was cleaned following each sample, placed in
polyethylene bags and immediately stored on ice for transport to
the laboratory. Soil for chemical analysis and aggregate stability
were collected using a spade. In total, 98 cores were collected
from 12 farms. Samples were collected at two depths (0.0–7.6 cm
and 7.6–15.2 cm), homogenized by hand-mixing of the bag,
and stored at −80◦C, resulting in a total of 196 soil samples
that were evaluated for ARG targets. Soil analyses, including
determination of coarse particular organic matter (CPOM), fine
particulate organic matter (FPOM), microaggregates (MicAg),
large and small macroaggregates (Lmac, Smac), pH, electrical
conductivity (EC), and fatty acid profiles were performed as
part of a separate study, using methods that have previously
been described (Cambardella and Elliott, 1994; Drijber et al.,
2000; Cambardella et al., 2001; Grigera et al., 2006). Chemical
analyses were performed at Ward Laboratories, Kearney, NE,
United States. Briefly, Nitrate-nitrogen was extracted using a Ca
solution to flocculate soil clays, and analyzed using a cadmium
reduction procedure, with a flow injection analyzer; phosphorus
was extracted by the Mehlich P-3 test, using an extracting solution
of 0.013 N HNO3 and 0.015 N NH4F; potassium was extracted
using 1 N ammonium acetate, and analyzed with a flame emission
mode of an atomic absorption spectrophotometer; sulfur was
extracted using calcium phosphate, followed by barium sulfate
turbidity determined by flow injection analysis; micronutrients
were extracted with a chelated DTPA solution and Ca and Mg
were extracted using an ammonium acetate solution an measured
with an atomic absorption spectrophotometer.

Molecular Analyses
Isolation and purification of DNA from bulk soil samples
(n = 196) was conducted with the DNeasy PowerSoil Kit (Qiagen
Sciences Inc., Germantown, MD, United States) according to
the manufacturer’s protocol. A Bead Ruptor 24 homogenizer
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TABLE 1 | Description of sample collection sites.

Farm No. of cores Crop at time of collection Previous crop(s) Recent

manure

1 6 W. wheat Soybeans, corn Yes

2 4 Warm and cool perennial grasses Warm and cool perennial grasses Yes

3 6 Wheat, fallow, millet Wheat, fallow, millet Yes

4 2 Mix vegetables Mix vegetables No

5 11 Oats, corn, alfalfa, pasture mix∗ Oats, corn, alfalfa, pasture mix∗ Yes

6 7 Pasture, oats, w. wheat Soy, pasture, oats, corn, w. wheat Yes

7 10 Corn Soybeans, corn Yes

8 10 Soy, oats, alfalfa, corn, pasture Soy, oats, alfalfa, corn, pasture Yes

9 7 Pasture, oats, corn, sorghum, millet Pasture, oats, corn, sorghum, millet Yes

10 8 Soybeans Corn Yes

11 16 Popcorn, hay, pasture, soy, barley Popcorn, hay, pasture, soy, barley Yes

12 11 Wheat, soy, corn, alfalfa, pasture, oats Wheat, soy, corn, alfalfa, pasture, oats Yes

Samples for each depth were formed in the field at the time of sampling, resulting in two soil samples location. A “yes” in the “recent manure” column means that some
or all of the samples from that farm were collected from areas which had received manure within the last three years. Not all fields within a farm necessarily had “recent
manure.” ∗Pasture mix contains (pasture, oats, buck wheat, turnip, radish). “W. wheat” indicates winter wheat. “Soy” indicates soybean.

(OMNI International, Kennesaw, GA, United States) was used
for sample mixing during DNA isolation. Purified DNA was
quantified using a NanoDrop3300 (ThermoFisher, Waltham,
MA, United States), and used directly in the polymerase chain
reactions (PCRs). All samples were subjected to the PCR for
detection of 15 tetracycline and sulfonamide resistance genes
(Supplementary Table S1), resulting in 2,940 total PCR assays
performed. There are 29 genes known to code for resistance
to tetracyclines (Roberts, 2005), and four genes known to code
for resistance to sulfonamide (Razavi et al., 2017). We chose a
subset of the tetracycline resistance genes for which multiplex
PCR reactions had previously been described (Ng et al., 2001).
Since sul1 is one of the most frequently detected sulfonamide
resistance genes (Phuong Hoa et al., 2008), and since it has been
closely associated with class 1 integrons responsible for transfer
of ARGs between bacteria, we chose sul1 for this study. The
PCR reactions were performed as previously described for ARG
in soils (Ng et al., 2001; Pei et al., 2006; Durso et al., 2016).
In brief, thermocycling conditions were one cycle of 94◦C for
2 min, followed by 30 cycles of denaturation at 94◦C (60 s),
annealing at primer-specific temperatures (see Supplementary
Table S1) for 60 s, and extension at 72◦C (90 s), with a 5-
min final extension at 72◦C for 5 min. Bands were visualized
using Invitrogen SYBR Safe DNA gel stain (Life Technologies,
Carlsbad, CA, United States) added directly to tris-acetate-EDTA
2% agarose gels, and documented using a UVP Gel Doc-ItTS3

imaging system (UVP, LLC, Upland, CA, United States). Note
that standard PCR assays can only report the presence or absence
of the selected target, and do not provide information on the
amount of the targets in the sample.

Data Analysis
The SAS GLM procedure was used to determine differences for
each of the soil physical, chemical, and biological parameters
between samples positive and negative for each ARG target
(SAS Institute, 2008). Results are reported for both P ≤ 0.05
and P ≤ 0.1 probability levels. Significant correlations between

number of positive ARG targets per sample and various soil
parameters were identified at the (P ≤ 0.05) level using Pearson
correlation coefficients. The MEANS procedure was used to
examine farm-level depth-based differences in soil parameters.
Differences in the proportions of ARG between surface and
deeper cores or between organic farms and prairies were
determined using the TABLES statement in PROC FREQ and
designating the CHISQ option (equivalent to a Z test for the
equality of proportions). Antibiotic fingerprinting was performed
as previously described by concatenating individual ARG target
results (Durso et al., 2011). Individual ARG assay results were
coded as 1 if the target was detected in the sample and 0 if the
target was not detected in the sample. Then, these results were
combined into a 14-digit binary “fingerprint” for each sample,
and used for comparison purposes.

RESULTS

Tetracycline and/or sulfonamide resistance genes were found in
soils collected from all 12 organic farms (100%) (Supplementary
Figure S1), in 94 of 98 cores (96%) and in 178 of the 196
soil samples (91%). This study examined 15 ARG targets, and
all but one [tet(C)] were found in at least one of the 196 soil
samples (Figure 1). The most frequently detected genes at the
farm level (n = 12 farms) were tet(G), tetA(P), and tet(Q) with
83%, 92%, and 100% of the farms positive for each of these
targets, respectively (Figure 1). At the individual soil sample
level (n = 196 samples), the most frequently detected genes were
tet(G) (55% of samples), followed by tet(Q) (49%), tet(S) (46%),
tet(X) (30%), and tetA(P) (29%) (Figure 1). Most of the samples
(91%) were positive for at least one of the 15 targets, and 82%
were positive for two or more of the tested ARGs. The number
of positive ARG targets (n = 15 total) ranged from 3 to 11 at
any single farm, and from 0 to 8 in any single soil sample. The
distribution of multi-gene detection at the farm, core, and sample
level is displayed in (Supplementary Figure S2).
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FIGURE 1 | Farm, core, and sample level prevalence of selected antibiotic
resistance genes.

Each of the 98 cores was split into 0.0–7.6 cm and
7.6–15.2 cm depths. Although some of the soil physical,
chemical, and biological properties differed with depth (Table 2),
significant depth-based differences were generally not observed
for individual resistance genes. The only ARG for which a
difference was observed was tet(L). When the depth-based data
was analyzed at the core level by farm, tet(L) was detected more
frequently (P = 0.025) in the surface soils (0–7.1 cm) compared
to soils from the lower depth (7.1–15.2 cm). Since major depth-
based differences were not observed, further analysis of ARGs and
soil parameters were performed only on the surface samples.

For each tetracycline resistance gene, mean values for soil
parameters in the upper surface cores (0–7.1 cm) were compared
for the samples that were positive vs negative for each ARG
(Table 3). Table 3 reports that 86 out of 476 gene-by-soil-
parameter analyses were statistically significant. This analysis
examined mean values for each soil parameter in the ARG
positive samples, compared to the mean values in the ARG
negative samples. Examining this set of data for those results
likely to be biologically significant, four stand out because
they were significant for four or more genes which trend
positively for that soil parameter. EC, Ca, Na, and Mehlich-3
phosphorus (MehP) values were all consistently higher in the
ARG positive soils. These four parameters are related to each
other and together influence EC. In addition to having higher
mean values for the positive ARG soils, these four measures
(EC, Ca, Na, and MehP) were also positively correlated with the
total number of ARG-positive targets (Supplementary Table S2).
The relationships between number of detected resistance genes
and soil physical and chemical parameters were examined using
Pearson Correlation Coefficients (Supplementary Table S2).
Significant differences (P < 0.05) or tendencies to differ (P < 0.1)
were observed. The proportion of positive samples that were and
were not exposed to manure within three years of collection
are described in Supplementary Table S3, with statistically
significant increases of sulI, tet(G), and tet(O) in the manured
plots, and tet(D) in the non-manured plots.

Examining which gene targets had similar results for
individual soil parameters (Table 3), EC and Ca had significantly
higher mean values in samples where tet(B) and tetA(P) were

detected. The Na and MehP values were higher in soil samples
where tet(B), tet(L), tet(M), tet(O), and tet(S) were detected.
Organic carbon, soil organic matter, and organic nitrogen
measurements tended to have lower mean values in soils positive
for tet(G) but were greater in soils positive for tet(B), tet(O),
and tet(Q). The tet(B) gene appears at first glance to be most
frequently associated with non-random changes in soil properties
in positive compared to negative soils, however, note that there
are only three positive samples in this group, so it is unlikely that
there is any biological significance to these numbers (Table 3).

For each sample, each ARG is coded as detected = 1 or not
detected = 0. These values are concatenated (i.e., linked together
in a series) to create an ARG profile or fingerprint (Durso et al.,
2011), serving as a molecular antibiogram. The ARG diversity
profiles of the 12 farms sampled is presented in Figure 2. On
average, 72% of the profiles were unique for each farm, with a
range between 43% and 100% of profiles from each farm found
exclusively in that farm With the exception of Farm 11, the
majority of the samples within each farm had a unique ARG
profile (range 0.43–1.00, mean 0.72, median 0.74), where a value
of 1.0 indicates that every sample had a unique profile.

Using the SAS two sample test of equality of proportions (SAS
Institute, 2008), we compared frequency of detection of targets
from the current set of certified organic farm soils with results
from a previously published set of native Nebraskan prairie soils
(Durso et al., 2016). Significant differences were seen in the
frequency of detection from certified organic farms compared to
native prairie soils for 12 of 15 targets at the farm level (Table 4).

DISCUSSION

Organic farms present a unique opportunity to determine
impacts of agriculture on antibiotic resistance in soil, without
the routine antibiotic drug inputs associated with conventional
production practices. Soils from 12 USDA certified organic farms
in Nebraska were probed for the presence of tetracycline and
sulfonamide resistance genes. All farms were positive for at least
three, and up to 12 of the 15 assayed genes, demonstrating that
ARGs are common in agricultural soils, even in the absence
of routine antibiotic drug or pesticide use. These data support
other work done in organic farming operations examining
ARGs in organic cattle, swine, and poultry production (Stanton
et al., 2011; Rothrock et al., 2016a; Sancheza et al., 2016),
where ARGs were also detected even when antibiotic drugs
were not administered to animals. It was not surprising to
detect sulfonamide and/or tetracycline ARGs at every farm
sampled, as they occur naturally in soils, and have been
detected in soils and water from around the globe, including
ungrazed native prairie soils from the same region of Nebraska
in which this study was conducted (D’Costa et al., 2006,
2007; Allen et al., 2010; Durso et al., 2012, 2016; Cytryn,
2013).

There is broad consensus that agricultural antibiotic resistance
needs to be reduced, but little information is available to
inform what a target level should be, and no consensus on
which targets to measure. As part of identifying which targets
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TABLE 2 | Mean soil measurements by depth.

Soil factor Mean Mean P-value

0.0–7.6 cm 7.6–15.2 cm

Coarse particulate organic matter (g/kg soil) 0.44 0.26 <0.0001

Fine particulate organic matter (g/kg soil) 0.60 0.61 −

Organic nitrogen (g/kg soil) 0.21 0.17 <0.0001

Organic carbon (g/kg soil) 2.02 1.67 −

Carbon (g/kg soil) 9.78 9.60 −

Large macroaggregates (% soil wt) 15.28 16.53 −

Small macroaggregates (% soil wt) 38.01 38.47 −

Micro aggregates (% soil wt) 23.90 24.92 −

Total water saturation (C/kg soil) 77.18 79.92 −

pH (unitless) 7.02 6.68 −

Buffer pH∗ (unitless) 7.09 7.02 −

Electrical conductivity (dS/m) 0.39 0.35 <0.05

Soil organic matter (%) 3.30 2.83 <0.0001

Nitrate [NO3] (mg/kg soil) 19.22 11.75 <0.05

Potassium [K] (mg/kg soil) 672.26 544.10 <0.05

Sulfur [S] (mg/kg) 14.18 12.87 <0.05

Zinc [Zn] (mg/kg soil) 3.14 2.16 <0.05

Calcium [Ca] (mg/kg soil) 3129.54 3117.73 −

Magnesium [Mg] (mg/kg soil) 384.36 387.46 −

Sodium [Na] (mg/kg soil) 18.48 24.54 −

Cation exchange capacity (cmol/kg) 21.33 21.50 −

Mehlich-3 phosphorus (mg/kg) 105.68 82.53 −

Total fatty acid (nmol/g soil) 112.15 70.85 <0.0001

Fatty acids fungi:bacteria (ratio) 0.30 0.22 <0.0001

Fatty acids bacteria (nmol/g soil) 56.59 37.29 <0.0001

Fatty acids actinomycetes (nmol/g soil) 7.35 4.34 <0.0001

Fatty acids cyclopropyl (nmol/g soil) 10.28 7.62 <0.0001

Fatty acids bacteria:cyclopropyl (ratio) 5.59 4.97 <0.0001

Fatty acids eukaryotes (nmol/g soil) 3.62 2.33 <0.0001

Fatty acids arbuscular mycorrhizal fungi [AMF] (nmol/g soil) 7.60 6.16 <0.05

Fatty acids saprophtes:fungi (ratio) 14.62 7.04 <0.0001

Sand (%) 19.70 20.01 −

Clay (%) 28.11 30.40 −

Silt (%) 50.37 48.10 −

∗Buffer pH is used to determine the lime rate. A buffering solution of lime that is 0.6 effective Ca carbonate equivalent is added to each sample. To determine lime
recommendation, pH is compared to buffer pH. If the difference is large, it suggests that the soil pH is easily changed.

to measure in agricultural and environmental settings, it is
informative to examine the frequency of detection for the
tetracycline and sulfonamide gene targets in the 12 Nebraskan
certified organic farms. In this instance, tet(G), tet(Q), tet(S),
tet(X), and tetA(P) were most frequently detected (Figure 1),
and are recommend as the most informative for future studies
in these soils. The sul(I) gene has been proposed as a marker
of human impacts (Pruden et al., 2006). In the current study
sul(I) was detected at 50% of the farms, but in only 14% of
the individual soil samples. This suggests that the utility of
this gene as a general marker of anthropogenic agricultural
activity might vary depending on the frequency and depth of
sampling.

No statistically significant differences were observed for the
incidence of various resistance genes from soil collected between
0 and 7.6 cm and that from 7.6 to 15.2 cm samples, with

exception of tet(L). It is unclear from the data if the tet(L) result
is biologically significant, as there were only three farms positive
for tet(L) in this study, and the differences between the depths
can be attributed to values from a single farm. Because the two
depths compared in this study are both found within in the
upper soil horizon, we conclude that these soils can be sampled
within the top 15.2 cm without affecting ARG prevalence data.
We know that bacterial phylogeny is correlated with ARG profiles
(Fosberg et al., 2016), so it is expected that changes in a bacterial
community structure will impact overall ARG carriage. However,
for this set of soil and ARG targets, no changes in ARG profiles
were observed at the two depths. This is an interesting disconnect
with our current understanding that soil bacterial communities
change with depth (Zhang et al., 2016), a finding that is reflected
in the summary FAME data for these organic farms (Table 2).
Although no qualitative differences in ARGs were observed for
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FIGURE 2 | Diversity of selected antibiotic resistance genes by farm. Graph shows the percent of samples from each farm that were positive for each gene. “Percent
unique” indicates the number of sample ARG profiles that are unique for each farm. For example, in farm 1, 8 of the 10 profiles were unique = 0.80. H is the Shannon
diversity index for each farm. “F1–F12” indicates farms 1–12.

TABLE 4 | Comparison of tetracycline and sulfonamide resistance gene prevalence in organic farms and native prairies in Nebraska.

Gene Mechanism Conventional manure
prevalence (%)

Organic farm soil
(n = 98)

Prairie soil
(n = 100)

P-value

Sul1 Enzyme 100A,B 16 91 <0.0001

tet(A) Efflux 8C 2 52 <0.0001

tet(B) Efflux 0–4B,C 2 27 <0.0001

tet(C) Efflux 0–100%B,C,D 0 14 0.0001

tet(D) Efflux No data 29 55 0.0004

tet(E) Efflux 28B 14 15 0.887

tet(G) Efflux No data 56 15 <0.0001

tet(K) Efflux No data 0 9 0.0024

tet(L) Efflux No data 13 34 0.0006

tet(M) Ribosomal 80–100%B,D 11 15 0.4316

tet(O) Ribosomal 85–100%B,D 8 37 <0.0001

tetA(P) Ribosomal No data 30 17 0.359

tet(Q) Ribosomal 80–100%B,D 48 0 <0.0001

tet(S) Ribosomal 49B 45 12 <0.0001

tet(X) Enzymatic No data 33 2 <0.0001

Mean # ARGs∗∗ 3.07 3.94

P-value is for comparison of gene % positive in organic vs prairie soils. Manure prevalence % values are calculated from data from peer-reviewed publications that
measured gene prevalence from various manure-impacted substrates. AData from Marti et al. (2014). BData from Storteboom et al. (2010). CData from Sengeløv et al.
(2003). DData from Jindal et al. (2006). ∗∗Based on n = 15 assayed for this study.

these soils, it may be that quantitative depth-based differences
exist for the ARG targets in organic farm soils within the upper
15.2 cm, but they were not revealed with presence/absence data
we collected. The ARG antibiogram results reported here are
a strong indicator that additional sampling would likely yield
additional unique profiles. It is possible, therefore, that the data
reported here are an underestimation of the prevalence and
distribution of the assayed genes.

ARGs and Soil Properties
Antibiotic resistance genes are ubiquitous in soil (D’Costa et al.,
2006; Durso et al., 2012), and the soil is thought to be a direct
source for resistance genes that are associated with untreatable
infectious disease in hospitals and clinics (Fosberg et al., 2012).
As such, there is value in exploring the impact of soil properties
on survival and persistence of ARGs in the soil matrix. It has been
shown that the presence of metals in soil can provide a selective

Frontiers in Microbiology | www.frontiersin.org 7 June 2018 | Volume 9 | Article 128384

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01283 June 28, 2018 Time: 17:51 # 8

Cadena et al. ARGs in Organic Farm Soil

pressure for antibiotic resistance (Knapp et al., 2011), but little
is known about the impacts of other physical and chemical
parameters as they relate to antibiotic resistance. In this study, we
identified relationships between multiple physical and chemical
properties of the soil, and frequency of detection of sulfonamide
and tetracycline resistance genes.

We observed higher EC values in ARG positive vs negative
soils. EC is considered an indicator of soil health, influencing crop
yield, nutrient availability and activity of soil microorganisms.
EC values are also used to identify areas of manure deposition
in feedlots and fields (Woodbury et al., 2009). Manure is a
common amendment in organic systems, whether deposited
via grazing or applied directly as a soil amendment, and it is
known to enrich for ARGs in the soil (Udikovic-Kolic et al.,
2014; Kyselkova et al., 2015), but this study was specifically
not structured to discern the specific role of manures on ARGs
in organic production systems. However, statistically significant
greater numbers of ARGs were detected at sites having some
history of manure application (Supplementary Table S3). If
the patterns observed in this study apply more broadly, then
EC measurements might be helpful in identifying soil regions
that are more or less likely to be enriched for tetracycline or
sulfonamide resistance genes. Soil Ca, Na, and MehP values were
also consistently higher in the ARG positive soils, and may also
be useful indicators either individually or as they related to and
influence EC.

Sand, clay, TotWSA, pH, C, CEC, Bac:Cyclo, and FPOM did
not seem to cluster with the other three groups or with each other,
and they had varying relationships with tetracycline resistance
genes. Interestingly FPOM had a consistently lower mean
value with selected ARG targets [tet(G), tet(L), tet(M), tet(O),
tetA(P)]. FPOM is an easily decomposable part of non-living
soil organic matter. It provides resources for microorganisms
and nutrients for plant growth. It is possible that the patterns
we observed were related to complex interactions involved in
active rhizosphere growth. Fatty acid data support the idea
that there were active rhizosphere interactions in these soils.
The cyclopropane fatty acids are found in a subset of Gram-
negative bacteria, including a number of enteric and gut-
associated bacteria like Escherichia and Salmonella, as well
as soil dwelling bacteria such as Rhizobium (Grogan and
Cronan, 1997). Because of the large number of enterics in
this group, this fatty acid profile is of particular interest
when exploring antibiotic resistance. We observed two ARG
targets [tet(B), tet(O)] associated with significantly higher
cyclopropane values as measured by fatty acid methyl ester
analysis.

Comparison With Pristine and
Conventional Agriculture Sites
The Nebraskan certified organic farm data can be compared to
previous data collected from 20 ungrazed native prairie sites,
also in Nebraska (Durso et al., 2016). Identical methods were
used for gene detection in both studies. Surprisingly, of the 12
targets that were significantly different between certified organic
farm and prairie sites, 8 of 12 were less frequently detected
in the farm soils than the prairie soils. We initially assumed

that anthropogenic practices, such as farming, were likely to
increase any measure of AR. However, in this instance we
observed that the native prairies had “more resistance” than the
farm soils, as measured by frequency of detection of selected
ARG targets. Additionally, the mean number of different ARGs
(n = 15 total) in the native prairie soils was 3.94, compared to
only 3.07 for the organic farms. Again, numerically, the native
prairie soils have “more resistance” than the farm soils. Since
ARGs are, for the most part, carried inside of bacteria, and
since bacterial phylogeny has a strong influence on the types
of ARGs present in a sample (Fosberg et al., 2016), the fact
that ARGs were more frequently detected in native prairie soils,
and that there was a greater diversity of tetracycline resistance
genes in native prairie soils, could potentially be explained
by the expected greater microbial diversity in native prairie
compared to farmed soils (Convention on Biological Diversity,
2010). Importantly, these data compare the number of different
gene types, and do not take into account the absolute amount
of each gene present. Our conclusions do not exclude the
possibility that agricultural systems might have a greater total
number of the target genes (absolute number or per 16S), as
that was not measured as part of the current study. It is also
important to note that there is currently no direct evidence
that links soil ARG numbers or diversity with human health
outcomes: the data collected in this study was not intended to
address risk to human populations from agriculture. Finally,
gene-based studies, such as the one reported here, can provide
a valuable insight into the ecology of ARGs in agroecosystems,
but PCR methods only reveal if a target is present in a
sample. We have no information on whether or not the gene
is expressed, or whether the gene is contained within a viable
cell.

There are three main mechanisms of action for tetracycline
resistance (Table 4). When the tetracycline resistance gene results
were sorted by gene mechanism of action, the tetracycline efflux
genes were generally present in higher frequency in the prairie
soils, while the genes with ribosomal protection and enzymatic
mechanisms of action were generally present in higher frequency
in the organic farm soils. Individual ARGs each have their own
ecologies (Durso et al., 2016). And although the current study
design prevents us from drawing conclusions beyond the specific
sites studied, the interpretation of our current results raises the
possibility that there might be functional ecological significance
that correlates with tetracycline resistance gene mechanism of
action.

The long-term applied goal of studies of these types is to
identify which ARG targets are the most relevant for agricultural
production settings, and provide a starting point for identifying
realistic targets for ARGs on farms and in fields. To that end,
despite limited data, we can also compare our organic farm soil
results to data collected from manures at conventional animal
operations, where antibiotics would be used more frequently
(Table 4). The tet(M) gene occurred at 15% or less of samples
in both the organic farm and prairie soils. However, this same
target was measured in 80–100% of conventionally raised animal
manures in studies by Jindal et al. (2006) and Storteboom
et al. (2010). This suggests that tet(M) prevalence could serve
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as a useful indicator of recent manure-borne resistance in the
environment, and that there is potential utility in monitoring this
gene over time when manures are land applied. Our conclusion
on tet(M) supports European efforts that have identified tet(M)
detection as a possible tool to track and monitor ARG transport
from and within agricultural systems (Berendonk et al., 2015).

Organic farm soils can serve as a baseline for determining
realistic target levels of ARGs in agricultural production settings.
They also provide valuable information for studies probing
the ecology of antibiotic resistance on farms and in fields.
By comparing organic farms with less disturbed soils, such as
native prairies, we can start to determine what kinds of impacts
agricultural production practices may have on multiple measures
of resistance. It is unclear if the relationships we observed are due
to management, underlying macroecological (i.e., weather), or
geophysical (i.e., soil type) factors. Additional studies are needed
to determine if these relationships are broadly applicable across
different spatial and temporal scales.
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Pseudomonas aeruginosa
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Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Quorum sensing (QS) is the process by which bacteria communicate with each other
through small signaling molecules such as N-acylhomoserine lactones (AHLs). Certain
bacteria can degrade AHL molecules by a process called quorum quenching (QQ);
therefore, QQ can be used to control bacterial infections and biofilm formation. In this
study, we aimed to identify new species of bacteria with QQ activity. Red Sea sediments
were collected either from the close vicinity of seagrass or from areas with no vegetation.
We isolated 72 bacterial strains, which were tested for their ability to degrade/inactivate
AHL molecules. Chromobacterium violaceum CV026-based bioassay was used for the
initial screening of isolates with QQ activity. QQ activity was further quantified using
high-performance liquid chromatography-tandem mass spectrometry. We found that
these isolates could degrade AHL molecules of different acyl chain lengths as well as
modifications. 16S-rRNA sequencing of positive QQ isolates showed that they belonged
to three different genera. Specifically, two isolates belonged to the genus Erythrobacter;
four, Labrenzia; and one, Bacterioplanes. The genome of one representative isolate
from each genus was sequenced, and potential QQ enzymes, namely, lactonases and
acylases, were identified. The ability of these isolates to degrade the 3OXOC12-AHLs
produced by Pseudomonas aeruginosa PAO1 and hence inhibit biofilm formation was
investigated. Our results showed that the isolate VG12 (genus Labrenzia) is better than
other isolates at controlling biofilm formation by PAO1 and degradation of different
AHL molecules. Time-course experiments to study AHL degradation showed that VG1
(genus Erythrobacter) could degrade AHLs faster than other isolates. Thus, QQ bacteria
or enzymes can be used in combination with an antibacterial to overcome antibiotic
resistance.

Keywords: quorum quenching, marine bacteria, N-acylhomoserine lactone degradation, Red Sea sediments,
biofilm inhibition

INTRODUCTION

Quorum sensing (QS) is the molecular mechanism by which bacteria monitor their population
density in the local environment and regulate their behavior in a collective manner (Fuqua et al.,
1994). QS is achieved by bacteria through the production of small chemical signaling molecules,
collectively known as auto-inducers. Bacteria produce various kinds of auto-inducers that differ

Frontiers in Microbiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 135488

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01354
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.01354
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01354&domain=pdf&date_stamp=2018-07-17
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01354/full
http://loop.frontiersin.org/people/464877/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01354 July 17, 2018 Time: 16:1 # 2

Rehman and Leiknes Biofilm Reduction by QQ Bacteria

in chemical structure and mechanism of action. Broadly, auto-
inducers are categorized into three types: (i) acylhomoserine
lactones (AHLs), (ii) auto-inducing peptides (AIPs), and (iii)
auto-inducer 2 (AI-2) (Huang et al., 2016). QS is used by
bacteria to regulate biofilm formation, conjugal DNA transfer,
pathogenesis, production of extracellular polysaccharides, and
other processes (Galloway et al., 2011). QS blockade is
hypothesized to be of use to control infections and biofilm
formation by bacteria.

Quorum quenching (QQ) refers to the mechanism by which
bacterial communication can be interrupted. QQ can be achieved
by inhibiting the production of auto-inducers, their detection by
receptors, or their degradation (Natrah et al., 2011). Interference
of QS by blocking signal production is not very common and few
reports discuss this approach (Hentzer and Givskov, 2003). Many
organisms such as algae (Givskov et al., 1996), plant (Gao et al.,
2003), and bacteria (Teasdale et al., 2009) produce molecules
that are structurally similar to AHLs, and therefore, competitively
inhibit their binding to receptors. Certain mammalian cells (Yang
et al., 2005) and bacteria (Dong and Zhang, 2005; Romero et al.,
2011; Torres et al., 2016) produce enzymes that can degrade
or modify AHLs. Bacteria from both terrestrial and marine
environments are known to produce AHL-degrading/modifying
enzymes (Dong et al., 2002; Romero et al., 2008). The widespread
prevalence of QQ enzymes in bacterial communities suggest that
it provides competitive advantage to the producer in terms of
food and space.

In the wake of rising antimicrobial resistance and toxic
impact of antimicrobials on the environment, it is necessary
to explore alternative methods to control bacterial infections.
QQ is one such alternative, which has been successfully tested
in diverse industries (Bzdrenga et al., 2017). For example, QQ
has been successfully employed to reduce the pathogenicity
of common plant pathogens (Zhang et al., 2007). Similarly,
QQ can reduce membrane biofouling in wastewater treatment
plants (Oh et al., 2012; Kim et al., 2015; Huang et al., 2016).
Successful utilization of QQ in lab-scale wastewater treatment
plants has allowed its application in large pilot-scale wastewater
treatment plants (Lee et al., 2016). In aquaculture industry,
QQ has shown positive results in the disruption of bacterial
infections (Cao et al., 2012; Romero et al., 2014; Vinoj et al.,
2014; Torres et al., 2016). Recently, QQ was tested for its
ability to mitigate the biofouling of reverse osmosis membranes
used in seawater desalination (Oh et al., 2017). QQ also has
other potential applications such as control of biofouling on the
hulls of shipping vessels and fishnets and bio-corrosion of oil
production wells. Therefore, there is a need to identify new/novel
bacterial species that can produce robust enzymes for use in
non-conventional environments; our study is an attempt toward
this.

Bacteria can produce three different types of enzymes that
can degrade or modify AHLs (Dong and Zhang, 2005): AHL-
lactonases hydrolyze the lactone moiety of AHLs (Dong et al.,
2001), AHL-acylases hydrolyze the amide bond between lactone
ring and acyl chain (Lin et al., 2003), and AHL-oxidoreductase
oxidize or reduce the third carbon of the acyl chain of AHL
molecules. Generally, hydrolysis of AHL molecules results in

complete loss of activity, while oxidation/reduction reduces their
activity (Chowdhary et al., 2007). This suggests that lactonases
and acylases are more potent and useful in inhibiting bacterial
communication.

Quorum quenching is gaining importance as a new way to
control bacterial biofilms in medical and industrial domains,
aquaculture, and water treatment plants (Torres et al., 2016;
Bzdrenga et al., 2017). In this study, we attempted to isolate
bacteria from sea sediments that can degrade AHLs and interfere
with bacterial communication. We focused on QQ based on
AHL inhibition because AHL-based QS is predominantly used by
gram-negative bacteria, which are the dominant bacteria found
in marine environments and are regarded as early colonizers
during biofilm formation (Dang and Lovell, 2000; Zhang et al.,
2006). For bacterial isolation, we used sediments from the Red
Sea because this particular niche has not been explored from
the point of view of QQ. Furthermore, this niche might help us
identify new/novel species of bacteria that can be used for biofilm
control for applications wherein terrestrial bacteria cannot be
used. Screening of these isolates helped identify bacteria with QQ
activity. Sequencing the genomes of these isolates allowed us to
identify open reading frames (ORFs) encoding QQ enzymes. We
further showed that these isolates can be used to degrade a wide
range of AHL molecules as well as inhibit biofilm formation by
Pseudomonas aeruginosa PAO1.

MATERIALS AND METHODS

Sample Collection and Isolation of
Bacteria
Red Sea sediment cores were collected at a depth of 1–2 m
from the coastal area (22.389778 and 39.135556) 12 km north of
Thuwal, Saudi Arabia, in February 2016. Samples were collected
from two different areas: one with vegetation (seagrass) and one
without vegetation. Sediments were sampled using 30-cm-long
acrylic cylindrical tube with a diameter of 5 cm. An ∼20-cm
sediment core was collected, and the remaining headspace was
filled with indigenous seawater. After sediment collection, rubber
stoppers were inserted to seal the two ends of the cylinder.
Sampled sediments were stored at 30◦C and used to isolate QQ
bacteria at the earliest to avoid any negative effect of storage.
About 1 g of sea sediments collected from a depth of 2 cm from
the surface of the sampling cylinder was suspended in 1 mL
of 0.2-µm filtered autoclaved seawater and vortexed. Samples
were allowed to stand for 1–2 min to allow the particles to
settle down. The supernatant was then subjected to 10-fold
serial dilution. Each dilution was plated on Marine Agar (MA)
(HIMEDIA, India), R2A agar (HIMEDIA, India), and Casamino
acids (CAS) agar (VWR, United States). Both R2A and CAS agar
were prepared in 75% of 0.2-µm-membrane-filtered autoclaved
seawater. The plates were incubated at 30◦C for 1 week.
Colony-forming units observed on plates (with 30–300 colonies)
were enumerated, and the colonies were further subcultured
onto sterile agar plates based on macroscopic characteristics.
Single colonies were further streaked twice to obtain pure
cultures.
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QQ Assay
The isolated strains were tested for QQ activity by using the
AHL biosensor strain Chromobacterium violaceum CV026. This
sensor strain has been used to detect C6-AHLs in various studies
(McClean et al., 1997; Romero et al., 2011; Torres et al., 2016).
The isolates were grown in 0.5 mL of the isolation medium
and incubated at 30◦C with shaking at 150 rpm. C6-AHLs were
added to this bacterial culture to reach a final concentration of
10 µM (2 µg/mL) and further incubated for 24 h at 30◦C with
shaking. The pH of this mixture was measured to confirm that
the observed degradation of AHLs was not caused by alkaline
pH (Yates et al., 2002). C6-AHLs mixed with cell-free medium
were used as the negative control. The bacterial cultures were
centrifuged to pellet the cells, and the remaining C6-AHLs in
the culture supernatant were detected by the following method.
Luria-Bertani (LB) agar plates were overlaid with 5 mL of
1/100th-dilution of an overnight culture of the biosensor strain
CV026 mixed with LB soft agar (0.7%). After the biosensor
layer was solidified, 6-mm wells were created in the medium
by using sterile pipette tips. These wells were filled with the
culture supernatant and incubated at 30◦C for 24 h. Solvent
without C6-AHLs was used as the blank. The appearance of
a purple halo around the well-indicated the absence of QQ
activity. On the other hand, strains with QQ activity degraded
C6-AHLs, and therefore, the biosensor strain was not activated.
Thus, halo formation was not observed. Furthermore, the culture
supernatant of QQ isolates was tested for the production of
C6-AHLs.

No purple halos were observed in the CAS and R2A cell-
free media (negative controls), which showed that these media
cannot be used for QQ assay. Therefore, for these isolates, we
slightly modified the QQ assay, as described previously (Uroz
et al., 2005; Shepherd and Lindow, 2009). Briefly, 24-h-old
bacterial cultures were centrifuged to obtain cell pellets. These
pellets were suspended in 0.5 mL of 1X phosphate-buffered saline
(PBS) containing 10 µM C6-AHLs and incubated overnight at
30◦C with shaking. The remaining procedure was as described
above.

QQ Assay With Heat-Inactivated Bacteria
To ensure that the loss of C6-AHL activity observed in QQ-
positive strains was not due to the adsorption of these molecules
onto the cell surface, the bacterial cells were heat killed. Bacterial
cells were heated at 100◦C for 15 min. Heat-killed bacterial cells
were allowed to cool down for 10 min at room temperature. QQ
assay was performed as described above. Bacterial cell death was
confirmed by plating 150 µL of the heat-treated cell suspension
on respective culture medium.

Detection and Localization of
AHL-Degradation Activity
This assay was performed as described previously with slight
modifications (Romero et al., 2008; Torres et al., 2016). About
200 mL of the overnight culture suspension of QQ-positive
isolates was centrifuged at 7000 × g for 10 min. Cell pellets were
washed with an equal volume of 1X PBS and re-suspended in

50 mL of PBS. Cells were lysed by intermittent ultra-sonication
(Qsonica, United States) for 5 min in a cold water bath at a
frequency of 15 kHz. Lysed cells were centrifuged at 16000 × g
for 30 min at 4◦C. Cell lysates were filtered through a 0.2-µm-
pore-sized-membrane filter. The protein concentration of the cell
lysates was determined with Qubit (Invitrogen, United States). To
determine AHL-degradation activity, 500 µL of the cell lysates
was incubated with 10 µM C6-AHLs for 24 h at 30◦C, with
shaking at 140 rpm. The remaining C6-AHLs were detected by
a well-diffusion agar plate assay, as described above. Cell lysate
without C6-AHLs was used as the control. To understand the
chemical nature of QQ activity, the cell lysates were heated
at 95 and 105◦C for 10 min. Furthermore, the cell lysates
were fractionated using 10-kDa centrifugal filters (Amicon,
United States) and QQ activity was analyzed for both the
retentate and filtrate of cell lysates.

HPLC-MS-Based Analysis of AHLs
The ability of isolates to degrade different types of AHLs
was studied by using high-performance liquid chromatography-
tandem mass spectrometry (HPLC-MS) as described previously
(Romero et al., 2011). Briefly, overnight bacterial cultures
were centrifuged and re-suspended in PBS containing 10 µM
AHL. This mixture was incubated overnight at 30◦C with
shaking. For the time-course experiment, the samples were
withdrawn every hour for 5 h. To extract AHLs, the cells
were separated by centrifugation at 7000 × g for 5 min,
and the PBS was extracted twice with an equal volume of
ethyl acetate (Fisher Scientific, United States). Ethyl acetate
was evaporated under a flux of nitrogen at 40◦C, and the
final extract was suspended in 400 µL of acetonitrile (Fisher
Scientific, United States) for HPLC-MS. PBS containing equal
amount of AHLs was used as the negative control. To determine
whether the QQ activity was caused by the hydrolysis of
lactone ring (lactonolysis), the bacterial cells were incubated
overnight with PBS containing 50 µM 3OHC10-AHLs. The cell-
free supernatant was acidified to a pH of 2 by adding 10 mM
hydrochloric acid (HCl). The acidified supernatant was incubated
overnight at room temperature to allow re-cyclization of lactone
ring. AHLs were extracted from this solution as described
above.

High-performance liquid chromatography 1100 series
equipped with ZORBAX Eclipse XDB-C18 (4.6 mm × 250 mm
column; 5-µm particle size; Agilent Technologies, United States)
kept at 45◦C was used for analysis. About 10 µL of the extract
was injected at a flow rate of 0.45 mL/min. For elution, a mobile
phase consisting of solvent B (methanol with 0.1% formic acid)
and solvent A (25 mM ammonium formate with 0.1% formic
acid) was used. The gradient profile used was 1 min of 10%
solvent B, followed by a linear gradient gradually increasing to
95% of solvent B over 15 min. Solvent B (95%) was then stabilized
for 4 min. The column was re-equilibrated for a total of 5 min.
MS data were obtained on TSQ Vantage triple-quadruple mass
spectrometer (Thermo Fisher Scientific, United States) by using
positive-ion electrospray and multiple-reaction-monitoring
(MRM) mode.
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Bacterial Identification Based on
16S-rRNA Gene Sequencing
About 500 µL of the overnight bacterial suspension was
centrifuged and the cell pellets were re-suspended in 500 µL of
nuclease-free water. Bacterial cells were lysed by heating at 95◦C
for 10 min, followed by cooling for 15 min at room temperature.
The lysed bacterial cells were centrifuged at 12000 × g for
3 min, and 1 µL of the supernatant was used as template DNA
for polymerase chain reaction (PCR). A set of three primer
pairs, namely, (27F-785R), (341F-907R), and (785F-1492R) was
used to amplify the I6S-rRNA gene. Primer sequences are
available in Supplementary Table 4. Following PCR conditions
were used: initial denaturation at 95◦C, followed by 30 cycles
of denaturation at 94◦C for 30 s; primer annealing at 52◦C
(27F-785R), 62◦C (341F-907R), and 53◦C (785F-1492R) for
30 s; and extension at 72◦C for 1 min. Final extension was
performed at 72◦C for 5 min. The PCR product was analyzed
by gel electrophoresis and purified using the ExoSap-IT PCR
product cleanup kit (Affymetrix, United States), according to
manufacturer’s instructions. The purified DNA was submitted
for Sanger sequencing. The three overlapping sequences were
aligned to obtain a single rRNA molecule for use in BLAST
search (Altschul et al., 1997) against the 16S-rRNA gene
sequences available in the GenBank database. The 16S-rRNA
gene sequences of close relatives, as determined by BLAST
and the QQ bacteria described in literature, were used for
phylogenetic analysis.

For phylogenetic analysis, the SINA software package available
in SILVA rRNA database (Quast et al., 2013) was used to align
16S-rRNA gene sequences. The aligned sequences were subjected
to phylogenetic tree construction by using MEGA7 (Kumar et al.,
2016) software at default parameters.

Acylhomoserine Lactones (AHLs)
Following AHLs were used in this study; N-butyryl-DL-
homoserine lactone (C4-AHLs), N-hexanoyl-DL-homoserine
lactone (C6-AHLs), N-decanoyl-DL-homoserine lactone (C10-
AHLs), N-tetradecanoyl-DL-homoserine lactone (C14-AHLs),
N-(3-oxodecanoyl)- DL-homoserine lactone (3OXOC10-AHLs),
N-(3-hydroxydecanoyl)- DL-homoserine lactone (3OHC10-
AHLs), and N-(3-oxododecanoyl)- L-homoserine lactone
(3OXOC12-AHLs). All AHLs used in this study were purchased
from Sigma, United States.

Biofilm Formation and Quantification
The impact of QQ bacteria on biofilm formation by P. aeruginosa
PAO1 was studied using a recently described segregated culture
bioassay (Oh et al., 2017). In this assay, QQ bacteria are physically
separated from PAO1 by using a semipermeable membrane
(Transwell polycarbonate membrane cell inserts; Corning, NY,
United States). PAO1 (OD600 = 0.01) was directly inoculated
into the wells of a 24- or 6-well microtiter plates. QQ bacteria
(live or dead) were added into the membrane inserts and
installed into the wells. As a control, QQ bacteria were killed
by incubating the cells in 4% paraformaldehyde for 30 min at
room temperature. Cell death was confirmed by spreading the

cell suspension on R2A or MA plates. The inoculated microtiter
plates were incubated for 24 h at 30◦C with shaking at 60 rpm.
The membrane inserts were removed, and the OD600 of the
PAO1 cell suspension was measured to determine the effects of
QQ bacteria on growth, if any. Biofilm formation by PAO1 on
the wells was measured using the crystal violet assay (Coffey
and Anderson, 2014). PAO1 culture was also used for the
extraction and quantification of 3OXOC12-AHLs, as described
above. Furthermore, 3OXOC12-AHLs were quantified in the
control sample (LB) as well as VG1, VG12, and NV9.

Genome Sequencing and Annotation
Genomic DNA of the strains to be sequenced was extracted
using QIAGEN genomic-tip 100/G columns (QIAGEN,
Germany). A genome-sequencing library was prepared using the
Pacific Biosciences (PacBio) 20-kb template preparation kit by
employing the BluePippin size selection system and sequenced
on PacBio RS platform. The PacBio reads were assembled using
the CANU WGS assembler version 1.4 (Koren et al., 2017).
The assembled genome was annotated using the Automatic
Annotation of Microbial Genomes (AAMG) pipeline (Alam
et al., 2013). For functional annotation, the predicted ORFs
were compared to the latest version of UniProt (The Uniprot
Consortium, 2017) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2014).

Statistical Analysis
Mean and standard deviation were calculated for AHL
degradation and biofilm inhibition assays. Further statistical
analyses such as analysis of variance (ANOVA) with Bonferroni
corrected post hoc t-test and also Student’s t-test were preformed
where statistical significance was (p-value < 0.0063) or
(p-value < 0.05) respectively. All the statistical analyses were
performed in Microsoft R© Excel version 16.9.

RESULTS

Bacterial Isolates
Different number of CFUs were obtained, from both types of
sea sediment samples by using three different culture media. The
CFU/gram of sea sediment is listed in Supplementary Figure 1.
For all culture media, the number of CFUs obtained from the
samples from non-vegetative areas was higher compared to
that from the samples collected from the vicinity of vegetation
(Supplementary Figure 1).

Higher CFUs were observed on MA medium, compared
to R2A and CAS media. The highest number of CFUs, that
is, 6.6 × 104, was obtained from the samples obtained from
non-vegetative areas that were plated on MA. For the samples
collected from the vicinity of vegetation, 4.4 × 104 CFUs were
obtained on MA (Supplementary Figure 1), which was four-
times higher than that obtained on R2A and CAS media. Isolates
exhibiting different colony morphology were selected for QQ
assay.
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Biosensor-Based Detection of QQ
Activity
About 71 bacterial isolates were screened for QQ activity. A solid
plate assay was performed using the biosensor strain C. violaceum
CV026, which produces a purple pigment violacein in response
to C6-AHLs (McClean et al., 1997). The QQ strains can degrade
AHLs, which, in turn, did not allow the development of any color.
The number of isolates tested and those testing positive for QQ
activity is listed in Table 1. Of the 14 QQ-positive isolates, 64.3%
were isolated on the R2A medium, followed by MA (21.5%) and
CAS (14.3%). However, the QQ-positive CAS and MA isolates
showed only partial degradation of C6-AHLs, as indicated by the
small/faint purple halos (Supplementary Figures 2, 3). Most QQ-
positive isolates obtained on R2A showed complete degradation
of AHLs. Overall, 22.4% isolates from the samples obtained
from areas near vegetation and 13.6% isolates from the samples
obtained from areas without vegetation were positive for QQ
activity (Table 1). C6-AHL production by the QQ isolates was
not detected.

Some previous studies investigating the QQ potential of
marine bacteria used marine broth for QQ assay (Romero et al.,
2011; Torres et al., 2016). Therefore, we tried to cultivate the
isolates obtained on R2A and CAS media in marine broth.
However, except VG12, none of them grew in marine broth,
although they did grow on MA. VG12 cultivated in marine broth
continued to remain positive for QQ activity.

Quorum quenching assay performed using heat-killed QQ
isolates ruled out the possibility that the observed loss of AHLs
was due to adsorption onto bacterial cells (data not shown).
Bacterial isolates that retained QQ activity after heat treatment
were not included in further analyses. Of the 14 isolates, eight
were selected for further analyses.

QQ Analysis Based on HPLC–MS
The QQ activity of the positive strains, as determined by the
biosensor assay, was further confirmed by HPLC-MS. The ability
of QQ bacteria to degrade different types of AHLs was also
investigated. For this, QQ-positive bacterial cultures were mixed
with AHLs of different acyl chain lengths and modifications

TABLE 1 | Number and QQ activity of the strains isolated from different samples
(vegetative and non-vegetative) by using different media.

Sample/medium Isolates tested for QQ QQ based on CV026

Vegetative

MA 21 2

R2A 18 7

CAS 10 2

Non-vegetative

MA 6 1

R2A 10 2

CAS 6 0

Total 71 14

Number of isolates with positive QQ activity (based on C6-AHL degradation in the
Chromobacterium violaceum CV026 assay) is shown.

(C4-AHLs, C6-AHLs, C10-AHLs, 3OXOC10-AHLs, 3OHC10-
AHLs, and C14-AHLs). After 24 h of incubation, the final pH
was < 7.5, which excluded the possibility of the hydrolysis of the
lactone ring of AHL molecules due to alkalinity. The remaining
AHLs were extracted and quantified (Figures 1A–E, 2A). All
the strains showed significant reduction in the amount of AHLs,
compared to the negative control (Figure 1). Analysis of variance
(ANOVA) along with Bonferroni’s corrected post hoc t-test was
applied, which showed significant reduction of AHLs by the
QQ strains (p-value < 0.0063), compared to the blank sample.
The degradation capacity of all isolates was higher for C10-
AHLs and C14-AHLs, compared to C6-AHLs (Figures 1A–C).
All QQ bacteria caused > 90% reduction in the quantities of C10
and C14-AHLs (Figures 1A,B). These results are in agreement
with previous reports wherein the reduction in the amount of
long-acyl-chain AHLs was higher compared to that in case of
short-acyl-chain AHLs (Romero et al., 2008; Romero et al., 2011;
Torres et al., 2016).

The ability of these QQ bacteria to degrade differently
modified C10-AHLs (3OXO-AHLs and 3OH-AHLs) was
also investigated (Figures 1D,E). The strain VG16 displayed
inconsistent cultivability; therefore, it was not included in
further analyses. In a recent study, most QQ bacteria were
able to degrade a wide range of AHLs, but they could not
effectively degrade 3OHC10-AHLs (Torres et al., 2016). Similar
to this, all QQ-positive isolates in this study could degrade
3OXOC10-AHLs more effectively, compared to 3OHC10-AHLs
(Figures 1D,E).

We also studied the ability of bacteria to degrade C4-AHLs.
For this analysis, three QQ-positive bacteria (VG1, VG12, and
NV9) belonging to different genera were selected. Of these,
VG12 showed maximum degradation (>80 ± 8.9%) of C4-AHLs
(Figure 2A), while NV9 showed only 26 ± 13% reduction and
VG1 did not show significant degradation (Figure 2A).

To identify the nature of QQ activity, i.e., lactonase or acylase,
3OXOC10-AHLs degraded by VG1, VG12, and NV9 were treated
with HCl. Acidification resulted in the reformation of lactone
ring that suggested lactonase activity (Yates et al., 2002; Romero
et al., 2008). In NV9, ∼63.5 ± 4% of 3OXOC10-AHLs was
recovered after HCl treatment. In VG12 and VG1, only 2 ± 0.003
and 0.004 ± 0.009% of AHLs, respectively, were recovered after
acidification (Figure 2B).

QQ Activity and Its Localization
The location of QQ activity (extracellular or intracellular)
was studied for VG1, VG12, and NV9. Cell-free supernatants
and lysates were incubated with C6-AHLs. Cell lysates and
culture supernatant of VG1 were able to degrade C6-AHLs
(Supplementary Figure 2B). No QQ activity was detected in
the culture supernatant and cell lysates of VG12 and NV9
(Supplementary Figure 2B). Heat treatment of the cell lysates
of VG1 at 95 and 105◦C did not result in loss of QQ activity.
After fractionation of the cell lysates of VG1 by using 10-kDa
filters, QQ activity was detected only in the retentate but not in
the filtrate (data not shown). This suggested that the molecules
responsible for QQ activity are larger than 10-kDa.
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FIGURE 1 | Degradation of AHLs by the isolated bacteria. The amount of AHLs degraded by different isolates is listed, relative to the negative control. Quantification
of AHLs was performed as described in Section “Materials and Methods.” Briefly, AHLs were extracted with ethyl acetate, which was evaporated under a flux of
nitrogen gas. The extracted AHLs were re-suspended in acetonitrile and quantified by HPLC-MS. Cell-free PBS was used as the negative control (100%). Values are
the mean of three replicates; error bars represent standard deviation. Charts (A–E) illustrates the degradation of C6, C10, C14, 3OXOC10-AHLs, and
3OHC10-AHLs, respectively.

Time-Course Experiment of AHL
Degradation
The kinetics of the degradation of 3OXOC10-AHLs by VG1,
VG12, and NV9 was also investigated. The isolate VG1 caused
98.7 ± 0.11% reduction in the first hour, while VG12 caused
58 ± 1.4% reduction and NV9 caused only 26.9 ± 8.2%

reduction in the amount of AHLs (Figure 3). However, after
2 h, the amount of AHLs degraded by VG1 and VG12 was
almost equal, i.e., 99.9 ± 0.01 and 98 ± 0.7%, respectively,
while only 50 ± 3.4% of the AHLs was degraded by NV9.
Maximum reduction of 3OXOC10-AHLs by NV9 occurred after
4 h (Figure 3).

Frontiers in Microbiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 135493

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01354 July 17, 2018 Time: 16:1 # 7

Rehman and Leiknes Biofilm Reduction by QQ Bacteria

FIGURE 2 | Degradation and acidification of AHLs. (A) Relative amount of C4-AHLs degraded by the three isolates is given. For quantification, the C4-AHLs were
extracted with ethyl acetate and subsequently dried and re-suspended in acetonitrile for injection in HPLC-MS. Cell-free PBS served as the negative control (100%).
Experiments were performed in triplicate; error bars represent the standard deviation of the mean value. Student’s t-test showed significant reduction in the amount
of C4-AHLs by VG12 (p-value = 0.003) and NV9 (p-value = 0.03). No significant degradation of C4-AHLs by VG1 was observed (p-value = 0.11). (B) Acidification of
3OXOC10-AHLs after incubation with QQ bacteria. Relative amount of AHLs before and after acidification is given. Black bars represent the amount of AHLs after
incubation with PBS (negative control is 100%) or QQ bacteria. Gray bars represent the amount of AHLs recovered after acidification. Error bars represent the
standard deviation for the three independent replicates.

Identification of QQ Isolates
Phylogenetic analyses showed that all the seven QQ isolates
belonged to the phylum Proteobacteria (Supplementary Table 1).

Except NV9, all other isolates [VG1, VG3, VG6(B), VG12,
VG7, and NV1] belonged to the class Alphaproteobacteria
and two different genera Erythrobacter and Labrenzia.
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FIGURE 3 | Time-course experiment to study AHL degradation. Log10 of the relative amount of AHLs quantified at each time point is given along the y-axis. AHLs
were quantified using HPLC–MS, as described in Section “Materials and Methods.” The amount of AHLs at 0 h is considered 100%. Control (PBS) sample and
different strains are represented by different colors, as indicated in the legend. Standard deviation at each time point was <10%.

Isolate NV9 belonged to the class Gammaproteobacteria
and genus Bacterioplanes (Supplementary Figure 4 and
Table 1).

Isolates VG1 displayed 100% identity to Erythrobacter flavus
SW-52, which was also isolated from the marine environment
(Yoon et al., 2003). As described for E. flavus, VG1 formed yellow
colonies on agar plates. Isolate VG3 showed 99% identity to
Erythrobacter sp. JL-378 and also formed yellow colonies on R2A
agar.

Four isolates, namely, VG6(B), VG12, VG7, and NV1,
belonged to the genus Labrenzia. Different species of Labrenzia
that were identified based on 16S-rRNA gene sequence homology
are listed in Supplementary Table 1. VG12 showed 99% identity
to Alphaproteobacterium JL001 that was isolated from marine
sponges. Phylogenetic analysis showed that VG12 is closely
related to the other Labrenzia species identified in this study
and previously (Supplementary Figure 4). Isolate VG7 showed
99% identity to Labrenzia sp. A-3-20, which was recently isolated
from the soft corals found in Baltic sea (Pham et al., 2016). NV1
displayed 99% identity to Labrenzia sp. R-666638. All species
of genus Labrenzia that have been identified so far, have been
isolated from marine environments (Biebl et al., 2007; Camacho
et al., 2016).

The 16S-rRNA sequence of the QQ isolate NV9 (obtained
from areas without vegetation) showed 99% identity to that of
a recently proposed bacterial species Bacterioplanes sanyensis
(Wang et al., 2014), also isolated from marine environment.

The phylogenetic relationship of the QQ isolates discussed
in this study and other marine bacteria is illustrated in
Supplementary Figure 4.

Effect of QQ Bacteria on Biofilm
Formation
VG12 was able to significantly reduce biofilm formation by
PAO1. Live VG12 cells could reduce biofilm formation by
25 ± 0.018% compared to dead VG12 cells (Figure 4A). However,
no significant reduction was induced by VG1 and NV9 in the
biofilm formation of PAO1.

Pseudomonas aeruginosa PAO1 produces 3OXO-C12AHLs,
which directly or directly control the expression of virulence
factors and biofilm formation (Williams and Camara, 2009).
Therefore, the amount of 3OXO-C12AHLs in the supernatant of
PAO1 incubated with live/dead QQ bacteria was also quantified.
However, no significant degradation of 3OXO-C12AHLs was
detected (Figure 4B). No 3OXO-C12AHLs were detected in case
of LB, VG1, VG12, and NV9.

Identification of Lactonases and
Acylases in the Genome Sequences
For each strain, the genomic features and their counts are listed
in Supplementary Table 3. The genome sequences were submitted
to GenBank; the accession numbers for VG1 is CP022528,
VG12 is CP022529, and NV9 is CP022530. Annotations for
VG1 are available1, VG122, and NV93. Based on average
nucleotide identity (ANI), a new quality control test implemented
by GenBank, VG12 was designated as Labrenzia sp. VG12

1https://bit.ly/2uoXhX1
2https://bit.ly/2mr70HU
3https://bit.ly/2NpfrPA
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FIGURE 4 | Biofilm formation by Pseudomonas aeruginosa PAO1 incubated with live and dead QQ strains. (A) This experiment was performed in microtiter plates
with membrane inserts for wells, as described in Section “Materials and Methods.” The y-axis indicates the OD590 of the crystal violet bound to the wells. White bars
represent biofilm formation by PAO1 without any live or dead QQ bacteria. Gray bars represent biofilm formation by PAO1 incubated with live QQ cells, while black
bars represent biofilm formation by PAO1 incubated with dead QQ bacteria. LB broth was used as the negative control. Error bars represent the standard deviation
for the three replicates. Student’s t-test was applied to determine significance; p-values: VG1 (0.29), VG12 (0.04), and NV9 (0.09). (B) Relative amount of
3OXOC12-AHLs in the supernatant of PAO1 incubated with live or dead QQ bacteria. The amount of AHLs in the supernatant of PAO1 incubated with live QQ
bacteria is shown as gray bars, while that detected in the presence of dead QQ bacteria is shown as black bars. The amount of AHLs produced by PAO1 (without
live/dead QQ bacteria) is shown by white bars (100%). Error bars represent the standard deviation. Student’s t-test showed no significant difference in the amount of
3OXOC12-AHLs in the PAO1 supernatant incubated with live/dead VG1 (p-value = 0.16), VG12 (p-value = 0.219), and NV9 (p-value = 0.22).

because of its low similarity with the type strain Labrenzia
alba.

Annotated genomes were searched for the homologs of
AHL lactonases and acylases, which are members of the
metallo-beta-lactamase (MBL) and N-terminal nucleophile

hydrolases (Ntn-hydrolases) superfamilies, respectively (Utari
et al., 2017).

VG1 genomic annotations showed that the two
ORFs (VG1_000001122 and VG1_000002328) are KEGG
orthologs of AHL-lactonases (K13075). UniProt annotations
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TABLE 2 | Genomic IDs of the ORFs of the sequenced strains, showing homology
to AHL-lactonases or AHL-acylases.

Strains ORFs (ID)

Lactonases Acylases

VG1 VG1_000001122 VG1_000002924

VG1_000002328

VG12 VG12_000006578

VG12_000000021

VG12_000000913

VG12_000003727

VG12_000004165

NV9 NV9_000000564

Open reading frames predicted by both KEGG and UniProt are listed; the amino
acid sequences of these ORFs can be accessed using the annotation links given in
Section “Results.”

further confirmed that these proteins are beta-lactamases.
Similarly, both KEGG (K07116) and UniProt annotations
suggest that ORF VG1_000002924 is an AHL-acylase
(Table 2).

For VG12, both KEGG Orthology and UniProt predicted
that VG12_000000021, VG12_000006578, VG12_000000913,
and VG12_000004165 belong to the lactonase group and/or are
MBL members. The protein product (VG12_000003727) was
predicted as AHL-lactonase by KEGG, but UniProt showed it to
be Ribonuclease Z. BLAST analysis of this ORF showed that it
is 90% identical to the MBL superfamily of proteins (Table 2).
No homolog of AHL-acylases was identified for VG12, neither by
KEGG nor UniProt.

For NV9, both KEGG and UniProt annotations indicated that
NV9_000000564 is an AHL-acylase (Table 2).

Apart from these ORFs, the genomes of VG1, VG12, and NV9
carry other proteins that are homologous to MBL and amidases.
The locus IDs of these ORFs are given in Supplementary Table 2.

DISCUSSION

The emergence of antimicrobial resistance has underscored the
need to develop new strategies to control bacterial infections and
biofilms. Furthermore, the environmentally toxic biocides used
in water treatment, agriculture, and oil and shipping industry
warrant the search of sustainable and non-toxic alternatives. QS
is a potential target for use as a new therapeutic approach because
of its role in bacterial infection and biofilm formation. One such
opportunity can be identified by exploring QQ because of its
potential benefits.

In this study, cultivable bacteria were isolated from Red
Sea sediments collected from two different niches, i.e., areas
with and without vegetation. Unexpectedly, a higher number
of bacteria was isolated from the samples collected from areas
without vegetation, which can be attributed to the fact that
vegetative bacteria require the compounds produced by plants
for their growth (Supplementary Figure 1). This can also be
attributed to the inherent bias observed in the plate count

method. By screening all isolates, we identified that ∼20% of
the isolates exhibit QQ activity (Table 1). These results are
similar to those of previous studies, which reported higher
prevalence of QQ-positive bacteria in the marine environment,
compared to the terrestrial environment (Romero et al., 2011;
Saurav et al., 2016). It is important to note that we only used
C. violaceum CV026-based assay for the initial screening of QQ
bacteria, and thus, the number of positive isolates might be
underestimated.

Quorum quenching bacteria have been detected and isolated
from dense microbial communities in various systems (Tan
et al., 2015; Saurav et al., 2016). Similarly, in this study,
a higher percentage of QQ bacteria was detected from
samples collected from areas with vegetation compared to
those from areas without vegetation (Table 1). However,
the vegetative bacteria identified in this study might not
be permanently associated with seagrass because their close
relatives have been isolated from different marine niches. It
can also be that the microbial community associated with
seagrass is dynamic, and that the QS and QQ activities
play a role in the assembly of functional communities, as
reported in case of tobacco rhizosphere and granular sludge
community (d’Angelo-Picard et al., 2005; Tan et al., 2015).
However, the biotechnological significance of QQ bacteria
renders the association of these isolates with seagrass less
important.

Not all QQ-positive isolates completely degraded the
C6-AHLs involved in CV026 bioassay (Supplementary
Figures 2A, 3). Moreover, some isolates did not show
reproducible QQ activity, and thus, this inconsistency (Saurav
et al., 2016) warrants further exploration of the regulatory
mechanisms of expression of QQ activity. Isolates that displayed
QQ activity even after heat killing (data not shown) indicate that
either QQ activity is non-enzymatic and/or the loss of AHLs
was due to adsorption onto cellular debris. However, it could
also be attributed to the fact that the QQ is enzymatic and that
these enzymes are heat resistant. A recent study has shown that
Aii20J, an AHL-lactonase from Tenacibaculum sp. 20J, can retain
its activity even after heating up to 100◦C for 10 min (Mayer
et al., 2015). We will investigate the possibility of heat-resistant
enzymes in our future studies.

Based on our findings (Figures 1, 2A) and those of others
(Romero et al., 2011; Torres et al., 2013; Tan et al., 2015), there
appears to be a general feature: QQ bacteria capable of degrading
small-chain AHLs can almost always degrade medium- and long-
chain AHLs. A recent study, wherein 12 QQ bacteria were
identified, showed that these bacteria could degrade a variety
of different AHLs, but none of them could degrade C4-AHLs
(Torres et al., 2016). This suggests that future studies in search
of QQ bacteria should primarily focus on identifying bacteria
capable of degrading small-acyl-chain AHLs.

Although QQ activity has been observed in either cell lysate
or cell-free supernatant (Uroz et al., 2005; Shepherd and Lindow,
2009), to the best of our knowledge, it has not been detected
in both fractions. The QQ activity found in both the cell lysate
and supernatant of VG1 might represent a new class of QQ
enzymes (Supplementary Figure 2B). However, it is possible that
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QQ molecules were released into the supernatant during sample
preparation. Our results showing that the cell lysates of VG1
retain QQ activity even after heating at 105◦C (data not shown)
appear to contradict the heat killing of whole cells that can result
in the loss of QQ activity. The exact reason for this observation
is unknown, but it is possible that in case of cell lysates, the
QQ enzyme can reform its 3D structure when cooled after
heating. Fractionation of VG1 cell lysates with the 10-kDa-filter
rule out the possibility that QQ is caused by small-molecular-
weight metabolites that could be heat resistant. Unexpectedly,
for VG12 and NV9, QQ activity was lost upon cell lysis. It is
possible that the QQ enzymes of these strains are sensitive to
our methods of cell disruption (sonication) or that these enzymes
need certain factors/conditions for their activity, which are lost
on cell lysis.

All QQ-positive isolates identified in this study belong to
Proteobacteria (Supplementary Figure 4 and Table 1). These
results are consistent with those of previous reports, where
majority of the QQ bacteria identified were also Proteobacteria
(Romero et al., 2011; Tan et al., 2015; Saurav et al., 2016; Torres
et al., 2016). This is not surprising because Proteobacteria is
predominant in various marine environments (Gonzalez and
Moran, 1997).

Although disputed, it has been suggested that AHL-acylases
are not active against small-acyl-chain AHLs such as C4-AHLs
(Shepherd and Lindow, 2009; Czajkowski et al., 2011). If this
is correct, then degradation of C4-AHLs and restoration of the
degraded 3OXOC10-AHLs after acidification suggest that the
QQ activity observed in NV9 is primarily caused by lactonase
(Figures 2A,B). Genomic annotation of NV9 identified one ORFs
(NV9_000000104) (Supplementary Table 2) that belongs to the
MBL superfamily, which could be responsible for the observed
QQ activity. In VG12, although the acidification of degraded
AHLs restored only 2% of AHLs (Figure 2B), the ability of
VG12 to effectively degrade C4-AHLs suggests lactonase activity
(Figure 2A). It is possible that, in case of VG12, the hydrolyzed
lactone ring of 3OXOC10-AHLs was further modified and was
unable to reform the lactone ring. Furthermore, the prediction
of only AHL-lactonases in the genome sequence of VG12
(Table 2 and Supplementary Table 2) suggests that lactonases
are responsible for QQ activity. Similarly, the genome sequence
of a close relative of VG12, namely, Labrenzia alba CECT
755, carries only AHL-lactonases (CTQ52848.1, CTQ54016.1,
CTQ52453.1, CTQ55013.1, and CTQ55918.1); no AHL-acylase
was detected. For VG1, although both AHL-lactonases and
acylases are predicted in the genome sequence (Table 2 and
Supplementary Table 2), its inability to degrade C4-AHLs
(Figure 2A) and inability to relactonize 3OXOC10-AHLs
after acidification (Figure 2B) suggest that AHL-acylases are
responsible for QQ activity in this case. Interestingly, unlike
VG1, the genome annotation of Erythrobacter species such
as E. longus strain DSM 6997 (GenBank: JMIW0000000.1),
Erythrobacter sp. HL-111 (GenBank: LT629743.1), and E. citreus
strain LAMA915 (GenBank: JYNE00000000.1) show only
AHL-acylases (KEO91396.1, SDS44800.1, SDT09981.1, and
KNH01491.1) while no AHL-lactonase was detected in these
bacteria. However, this difference might be caused by the

different annotation methods/pipelines used. It is important
to note that some recently discovered QQ enzymes did not
show any sequence homology to the typical AHL-lactonases
and acylases (Torres et al., 2017). Hence, it remains possible
that the observed QQ activity is caused by a new class of
enzymes.

The time-course experiment showed that VG1 can quickly
degrade AHLs, closely followed by VG12 (Figure 3). We used
3OXOC10-AHLs for this assay, and it is possible that slow
degradation by NV9 reflects its specificity for AHLs with a certain
kind of acyl chains.

None of the QQ isolates was able to completely inhibit biofilm
formation (Figure 4A), may be because biofilm formation is
a complex process involving many factors (Flemming et al.,
2016).We also tested QQ isolates for their ability to degrade
the 3OXOC12-AHLs produced by PAO1 (Figure 4B), because
3OXOC12-AHLs lie higher in the hierarchy of the QS signaling
cascade and regulate the expression of other QS molecules
(C4-AHLs), production of virulence factors, and formation of
biofilms (Whitehead et al., 2001; Williams and Camara, 2009).
The observed ineffective degradation of 3OXOC12-AHLs and
biofilm inhibition might be caused by certain PAO1 metabolites
that inhibited the QQ activity of our isolates. It is also possible
that 3OXOC12-AHLs are not a preferred substrate for our QQ
isolates. A significant reduction in biofilm formation by VG12
might be the result of effective degradation of C4-AHLs caused
by this isolate (Figures 2A, 4A). Based on our results, VG12
appears to be best isolate among others for the inhibition of
biofilm formation and kinetics and diversity of AHL degradation
(Figures 1–3, 4A). It also appears to be the best candidate
for future studies employing bacteria as an anti-biofouling
agent.

Quorum quenching alone might not completely abolish
bacterial infections and biofilms, but it can be used in
combination with other antimicrobial agents to achieve desired
results. Combinatorial therapies are gaining importance because
no single therapy or drug can effectively control bacteria for
longer time periods, given that the bacteria will eventually
develop resistance (Fischbach, 2011). Furthermore, QQ enzymes
can confer resistance against antibiotics (Kusada et al., 2017).
Therefore, improved understanding of these enzymes will
provide opportunities to overcome such resistance.

In this study, we found bacteria belonging to three different
genera, namely, Erythrobacter, Labrenzia, and Bacterioplanes,
that can degrade AHLs. Although extracted metabolite-based
QQ activity has been described for Erythrobacter and Labrenzia
(Saurav et al., 2016), the bacteria identified in this study represent
a new species whose QQ activity has not been described before.
We have identified potential QQ genes and our future studies will
focus on cloning these genes and investigating their mechanism
of action.
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The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long

periods promotes the selection of resistant microorganisms and the subsequent risk

of spreading this resistance to the human population and the environment. Global

concern about antimicrobial resistance development and transference of resistance

genes from animal to human has been rising. The goal of our research was to

evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant

Escherichia coli from poultry production systems that use AGPs, and characterize the

resistance determinants associated to transferable platforms. E. coli strains (n = 41)

were obtained from fecal samples collected from typical Argentine commercial broiler

farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine,

was determined. Isolates were tested by PCR for the presence of mcr-1, extended

spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance

(PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant

studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of

the isolates. Resistance to several antimicrobials was determined and all colistin-resistant

isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism

responsible for third generation cephalosporins resistance, and PMQR determinants

were also identified. In addition, co-transference of the qnrB determinant on the

mcr-1-positive transconjugants was corroborated, which suggests that these resistance

genes are likely to be located in the same plasmid. In this work a wide range of

antimicrobial resistance mechanisms were identified in E. coli strains isolated from the

environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in

animals under intensive production systems and its consequences for public health.

Keywords: Colistin, mcr-1, food-borne bacteria, Escherichia coli, CTX-M-2, qnrB, multi drug resistance
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INTRODUCTION

Antimicrobial agents have been used extensively for prevention
and treatment of infectious diseases in food animals (Dibner
and Richards, 2005; Niewold, 2007). The concomitant risk of
spreading antibiotic resistance to human population through
the food supply chain and the environment is important since
many classes of these antimicrobial agents are also used in
human medicine. Therefore, increased global concern regarding
development of antimicrobial resistance and transference of
resistance genes from animals to humans has been rising
(Ljungquist et al., 2016; Madec et al., 2017; Wang et al., 2017).

Various antimicrobials have been widely used by the poultry
industry as antibiotic growth promoters (AGPs) since the
1950s. To reduce costs of production, AGPs have been
added into feed to promote weight gain by optimizing feed
conversion ratios (Moore and Evenson, 1946; Jukes et al., 1950).
In contrast to therapeutic usages of antimicrobials that are
administered at high doses for a limited period of time, AGPs
are used in sub-therapeutic doses during longer periods. This
situation is particularly favorable for the selection of resistant
microorganisms (Diarra et al., 2007).

Any use of antimicrobial agents may contribute to clinical
relevant antimicrobial resistance. One of the first findings
that led to strong recommendations (and even banning)
for the use of AGP in the European Union (EU) was
the finding that administration of avoparcin, a glycopeptide
AGP, was involved in emerging glycopeptide-resistant bacteria
(Howarth and Poulter, 1996). In the same way, use of colistin
as an AGP in livestock led to the emergence and silent
dissemination of plasmid-mediated mechanisms involved with
polymyxin resistance (Rhouma et al., 2016). International
organizations responsible for human, animal health, and
food production (World Health Organization-WHO/World
Organization for Animal Health-OIE/ Food and Agriculture
Organization-FAO) carried out systematic evaluations on
the impact of veterinary antimicrobial resistance on public
health, and they stated that the misuse and overuse of
antimicrobials is accelerating the processes of antimicrobial
resistance. As a result, this topic is now considered as one
of the critical issues in developed and developing countries
as indicated by the United Nations General Assembly in
2016.

As part of a technical support program to national
poultry producers, our team conducted studies to understand
the antimicrobial resistance evolution in food-borne bacteria
under commercial production systems in Argentina. Our
studies included the selection of Escherichia coli as an
indicator microorganism and concluded that almost 50% of
the strains were found to be resistant to colistin used as
AGP (Dominguez et al., 2017) which was much higher than
reported in studies published previously. Therefore, the aim
of this work was to evaluate the susceptibility pattern to
different classes of antimicrobials of colistin-resistant E. coli
isolated from poultry production systems that use AGP,
and to characterize the resistance determinants associated to
transmissible elements.

MATERIALS AND METHODS

Sampling and E. coli Isolation
Fresh fecal samples were collected from 129 commercial broiler
farms located in the most relevant production areas of Argentina
(Entre Rios and Buenos Aires Provinces). At the moment of the
sampling, healthy 4–6 week-old broiler chickens were at the end
of the rearing cycle in the farms (Dominguez et al., 2017). Each E.
coli strain was isolated from a pool of 10 feces samples collected
in different sections of each barn. All samples were placed into
boxes containing ice packs and immediately transported to the
laboratory to isolate the microorganism by culture on non-
antibiotic-supplemented MacConkey agar plates at 37◦C for 18–
24 h. Isolates were initially selected by the morphology of the
colonies and further identified by standard biochemical tests
(Brenner and Farmer, 2015). According to the size of the farms, a
fixed number of isolates were arbitrarily selected: 2 isolates from
small (less than 50,000 birds), 3 from medium (between 50,000
and 150,000 birds) and 6 from large (more than 150,000 birds)
farms. Overall 304 E. coli isolates were obtained (Dominguez
et al., 2017). In the present study a subset of 31 strains resistant to
colistin and 10 susceptible -according to EUCAST criteria- were
analyzed (EUCAST 2017)1. These strains were isolated from 11
farms belonging to 3 different integrated companies located at
Entre Rios and Buenos Aires Provinces.

Phenotypic Antimicrobial Susceptibility
Testing
Antibiotic susceptibility was determined by agar disk diffusion
test against 23 antibiotics representing seven antimicrobial
classes, commonly used in human and veterinary medicine.
Antimicrobial susceptibility was determined for the following
agents:

• ß-lactams including:

� Penicillins: Ampicillin (AMP), Amoxicillin-Clavulanic
Acid (AMC)

� Second generation cephalosporins: Cefuroxime (CXM)
� Third generation cephalosporins (TGC): Ceftiofur (CFT),

Cefotaxime (CTX), Ceftriaxone (CRO), Ceftazidime (CAZ)
� Cephamycins: Cefoxitin (FOX)
� Fourth generation cephalosporins: Cefepime (FEP)
� Monobactams: Aztreonam (ATM)
� Carbapenems: Imipenem (IMI), Meropenem (MEM)

• Aminoglycosides: Kanamycin (KAN), Gentamicin (GEN),
Amikacin (AMI), Streptomycin (STR)

• Tetracyclines: Tetracycline (TET)
• Quinolones: Nalidixic Acid (NAL), Ciprofloxacin (CIP),

Enrofloxacin (ENR)
• Sulfonamides: Trimethoprim-Sulfamethoxazole (SXT)
• Phenicols: Chloramphenicol (CLR)
• Polymyxins: Colistin (COL)

The results were interpreted according to the Clinical and
Laboratory Standards Institute (CLSI) criteria, (CLSI, 2017) and

1http://www.eucast.org
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TABLE 1 | Targets, primers, sequence, and product size used for PCR and sequencing of mcr-1, BLEE, ESBL, AmpC, and PMQR genes.

Targets Primers Nucleotide Secuence (5′-3′) Size (bp) References

mcr-1 CLR5-F CGGTCAGTCCGTTTGTTC 344 Liu et al., 2016

CLR5-R CTTGGTCGGTCTGTA GGG

blaCTX−M−like CTX-M

GRAL F

ATGTGCAGYACCAGTAARGTKATGGC 500 Ghiglione, 2015

CTX-M

GRAL R

CCGCTGCCGCTYTTATCVCCBAC

blaCTX−M−group1 CTX-M-1 CF ATGGTTAAAAAATCACTGC 864 Saba Villarroel et al., 2017

CTX-M-1 CR GGTGACGATTTTAGCCGC

CTX-M-1 FpK AAATGGTTAAAAAATCACTGC 876 Ghiglione, 2015

CTX-M-1 RpK CTACAAACCGTCGGTGACGAT

blaCTX−M−group2 CTX-M-2 FpK TAATGATGACTCAGAGCATTCGC 900 Ghiglione, 2015

CTX-M-2 RpK GCATCAGAAACCGTGGGTTACG

CTX-M-2 CF TTAATGATGACTCAGAGCATTC 910 Bertona et al., 2005

CTX-M-2 CR GATACCTCGCTCCATTTATTGC

blaCTX−M−group8 CTX-M-8 CF TGAATACTTCAGCCACACG 923 Saba Villarroel et al., 2017

CTX-M-8 CR TAGAATTAATAACCGTCGGT

CTX-M-8 FpK AGATGATGAGACATCGCGTTAAGC 1184 Ghiglione, 2015

CTX-M-8 RpK TTAATAACCGTCGGTGACG

blaCTX−M−group9 CTX-M-9 CF ATGGTGACAAAGAGAGTGC 876 Saba Villarroel et al., 2017

CTX-M-9C R TCACAGCCCTTCGGCGATG

CTX-M-9 FpK AGATGGTGACAAAGAGAGTGC 876 Ghiglione, 2015

CTX-M-9 RpK TTACAGCCCTTCGGCGATG

blaCTX−M−group25 CTX-M-25 CF ATGAGAMAWMGCGTWARGC 878 Saba Villarroel et al., 2017

CTX-M-25

CR

TAGAATTAATAACCGTCGGTGAC

blapAmpC MOXMF GCT GCT CAA GGA GCA CAG GAT 520 Cejas et al., 2012

MOXMR CAC ATT GAC ATA GGT GTG GTG C

CITMF TGG CCA GAA CTG ACA GGC AAA 462

CITMR TTT CTC CTG AAC GTC GCT GGC

DHAMF AAC TTT CAC AGC TGT GCT GGG T 405

DHAMR CCG TAC GCA TAC TGG CTT TGC

ACCMF AAC AGC CTC AGC AGC CGG TTA 346

ACCMR TTC GCC GCA ATC ATC CCT AGC

EBCMF TCG GTA AAG CCG ATG TTG CGG 302

EBCMR CTT CCA CTG CGG CTG CCA GTT

FOXMF AAC ATG GGG TAT CAG GGA GAT G 190

FOXMR CAA AGC GCG TAA CCG GAT TGG

blaCMY−2 CMY -F ATGATGAAAAAATCGTTATGCT 1146

CMY-R TTATTGCAGCTTTTCAAGAATGCG

qnrA qnrA-F AGAGGATTTCTCACGCCAGG 580 Cruz et al., 2013

qnrA-R TGCCAGGCACAGATCTTGAC

qnrS qnrS-F GCAAGTTCATTGAACAGGGT 428

qnrS-R TCTAAACCGTCGAGTTCGGCG

qnrC qnrC-F GGGTTGTACATTTATTGAATCG 330

qnrC-R CACCTACCCATTTATTTTCA

qnrD qnrD-F CGAGATCAATTTACGGGGAATA 582

qnrD-R AACAAGCTGAAGCGCCTG

qnrB qnrB-F GGMATHGAAAATCGCCACTG 264

qnrB-R TTTGCYGYYCGCCAGTCGAA

(Continued)
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TABLE 1 | Continued

Targets Primers Nucleotide Secuence (5′-3′) Size (bp) References

qnrBIF-F ATGWYGYCATTACTGTATA 676

qnrBIF-R CCMATHAYMGCGATRCCAAG

qnrBcf-F GTTRGCGAAAAAATTRACAG 626

qnrBIF-R CCMATHAYMGCGATRCCAAG

qepA qepA-F ACATCTACGGCTTCTTCGTCG 501

qepA-R AACTGCTTGAGCCCGTAGATC

acc(6′)-lb aac(6′)Ib-F CGATCTCATATCGTCGAGTGTT 447

aac(6′)Ib-R TTAGGCATCACTGCGTGTTC

oqxA oqxA-F CTCGGCGCGATGATGCT 393

oqxA-R CCACTCTTCACGGGAGACGA

oqxB oqxB-F TTCTCCCCCGGCGGGAAGTAC 513

oqxB-R CTCGGCCATTTTGGCGCGTA

(CLSI, 2013). Susceptibility to colistin was evaluated by broth
microdilution and results were interpreted according to the
European Committee on Antimicrobial Susceptibility Testing
guidelines (EUCAST).

E. coli strains resistant to three or more antimicrobial classes
were categorized as multidrug resistant (MDR). Phenotypic
screening for extended spectrum β-lactamase (ESBL) and
plasmid mediated AmpC (pAmpC) was conducted performing
synergy test using cefotaxime/clavulanic acid (CTX/CLA, 30/10
µg), ceftazidime/clavulanic acid (CAZ/CLA, 30/10 µg) and
phenyl-boronic acid (PBA, 300µg) containing disks, respectively
(Yagi et al., 2005; CLSI, 2017). E. coli ATCC 25922 and E. coli
ATCC 35218 were included as control.

Molecular Analysis of Resistance
All strains were tested by PCR for the presence of transferable
resistance markers (mcr-1, ESBL, pAmpC, and plasmid mediated
quinolone resistance—PMQR- coding- genes) using primers
listed in Table 1. In the case of mcr-1 detection, the full mcr-
1 gene was amplified and sequenced by using CLR5-F in
combination with MCR1-R (5′-TGCGGTCTTTGACTTTGTC)
(this study). Total DNA was obtained by boiling bacterial
suspensions and plasmid DNA was purified according to Kado
and Liu method (Kado and Liu, 1981).

Plasmid Conjugation Studies
To assess mcr-1 plasmid transferability, conjugation studies by
liquid mating were performed. Salmonella M1744 and E. coli
J53 strains were used as recipient and randomly chosen mcr-
1-positive strains from each farm were used as donors. After
the conjugation, the transconjugants obtained from Salmonella
M1744 were selected in TSA media supplemented with colistin
(2µg/mL), whereas those obtained from E. coli J53 were selected
with sodium azide (200µg/mL) and colistin (1µg/mL). To
confirm successful conjugation, colonies obtained in the selective
media were screened for mcr-1 gene by PCR and then colistin
MIC was determined for both transconjugant and parental E.
coli strains by the broth microdilution as described before. In

addition, co-resistance to other antimicrobials was assessed by
agar disk diffusion method as previously described.

Molecular Typing by PCR-Based
Techniques
Clonality of the isolates was determined by the homology
relationships among fragments amplified by ERIC-PCR
(Enterobacterial Repetitive Intergenic Consensus) and REP-PCR
(Repetitive Extragenic Palindromic) according to Versalovic et al.
(1991). Dendrograms were constructed by GelJ 1.0 program,
using UPGMA algorithm and applying the DICE correlation
coefficient.

Statistical Analysis
Significant differences (p< 0.05) in the association among strains
according to the presence of genes were determined by Pearson’s
Chi-squared test with Yates continuity correction using Epidat
software (version 4.1).

RESULTS AND DISCUSSION

Resistance to Colistin and mcr−1 Gene
Detection
The presence of mcr-1 in Argentina was already detected in
E. coli isolates recovered from invasive infections in humans
(Rapoport et al., 2016) and has also been found in bacteria
isolated from domestic animals (Dominguez et al., 2017). The
E. coli strains included in the present report were classified
in the base of their susceptibility to colistin following the
recommendations of the European Committee on Antimicrobial
Susceptibility Testing (EUCAST, 2017). All strains considered
resistant to colistin harbored the mcr-1 gene as demonstrated
by PCR, and the sequenced gene was identical to the previously
published sequence, accession number KP347127.1 (Liu et al.,
2016). Additionally, from the 10 strains classified as colistin-
susceptible, 3 of them were positive for the mcr-1 gene
(Table 2).

From the 31 colistin resistant/mcr-1-positive E. coli strains, 28
showed MICs ranging from 4 to ≥ 32µg/mL. Although the disk
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TABLE 2 | Characteristics of Escherichia coli recovered from different farms in Buenos Aires and Entre Ríos, Argentina, 2014.

Provinces Farms Strain MIC to colistin

(µg/mL)

Resistance determinant*

mcr-1 AmpC blaCTX-M qnrA qnrB qnrD qnrS oqxAB qepA

Buenos Aires 1 E. coli 190-02 2 (S)

E. coli 241-S1 8 (R) CTX-M-14

E. coli 241-S3 1 (S)

2 E. coli 190-06 0.5 (S)

E. coli 241-S2 1 (S)

E. coli 241-S4 1 (S) CTX-M-2

3 E. coli 241-L1 8 (R)

E. coli 241-L2 2 (S) CTX-M-2

E. coli 190-08 8 (R) CMY-2 CTX-M-2

E. coli 190-10 8 (R) CTX-M-2+ CTX-M14

E. coli 241-L3 0,5 (S) CTX-M-2

4 E. coli 190-13 8 (R) CTX-M-2+ CTX-M14

E. coli 190-14 8 (R) CTX-M-2

E. coli 241-P2 4 (R) CTX-M-2

E. coli 241-P3 8 (R) CMY-2

E. coli 241-P4 2 (S) CTX-M-2+ CTX-M14

E. coli 241-P1 8(R) CTX-M-2

5 E. coli 190-15 8(R)

E. coli 190-16 4 (R)

E. coli 241-Z1 8 (R) CTX-M-2

E. coli 241-Z2 16 (R) CTX-M-2

E. coli 241-Z3 8(R) CTX-M-2

6 E. coli 190-17 8 (R) CMY-2 CTX-M-2

E. coli 190-18 4 (R) CTX-M-2

E. coli 241-K1 8 (R) CTX-M-14

E. coli 241-K2 8 (R) CTX-M-2

E. coli 241-K3 2 (S) CTX-M-2

E. coli 241-K4 8 (R) CTX-M-2+ CTX-M14

7 E. coli 241-B2 2 (S)

E. coli 241-B3 8 (R) CTX-M-2

E. coli 241-B1 4(R) CTX-M-2

Entre Ríos 8 E. coli 191-08 8 (R) CTX-M-2

E. coli 191-07 8 (R) CMY-2 CTX-M-2

9 E. coli 191-11 8 (R)

E. coli 191-12 32 (R)

E. coli 191-13 16 (R)

10 E. coli 191-16 4 (R)

E. coli 191-17 8 (R) CTX-M-2

11 E. coli 191-21 8 (R) CTX-M-2

E. coli 191-23 32 (R) CTX-M-2+ CTX-M14

E. coli 191-22 8 (R) CTX-M-2

*The squares in gray indicate presence of the gene; while the squares in white indicate absence of the studied gene. (R) resistant and (S) susceptible by MIC determinations with colistin.

diffusion method (10 µg colistin disk) is not yet standardized
for polymyxins, all 28 strains displayed colistin inhibition zone
≤11mm. The remaining strains (3/31) showed MICs between
4 and 8µg/mL but nevertheless displayed inhibition zones
≥ 11mm with colistin. Although molecular detection is the
most appropriate technique for mcr-1 identification, a strong

association with the phenotypic methodologies to detect mcr-1-
mediated colistin resistance was observed.

Previous works describe the transferable nature of the mcr-
1 gene (Liu et al., 2016). In the present work, the mcr-
1-mediated colistin resistance was successfully transferred by
conjugation to both recipient laboratory strains (E. coli J53
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and Salmonella M1744). Two out of ten mcr-1-positive strains
from each farm (Table 3) were obtained from liquid mating
experiments performed using poultry E. coli strains as plasmid
donors. Plasmids carrying themcr-1 gene conjugated at a transfer
frequency of ∼1.5 × 10−3 transconjugants per donor cell.
Accordant to results obtained by Liu et al. (2016), we found
that MIC for colistin of the transconjugants increased four- and
eight-fold compared to the original recipient strains.

Molecular typing analysis by the ERIC-PCR and REP-PCR
showed that all E. coli carrying mcr-1 gene from this study had
high clonal diversity and thus considered as genetically unrelated
Figure S1. These results are in concordance with previous reports
that describe the wide distribution of the mcr-1 gene among E.
coli isolates independently of bacterial source or host species,
suggesting a non-clonal spread of colistin resistance (Fernandes
et al., 2016; Rapoport et al., 2016). In addition, this study reports
a successful plasmid–gene combination of these E. coli strains in
healthy broiler chickens, which may play a role in the emergence
and spread of this gene.

Resistance to Other Antimicrobials
Resistance to Fluoroquinolones and Detection of

Plasmid-Mediated Quinolone Resistant (PMQR)

Genes
Further determinations of antimicrobial susceptibility of
mcr-1-positive strains demonstrated high rates of multidrug
resistance, since 85% (29/34) of the tested strains were resistant
to at least three different classes of antimicrobial agents
(Figure 1).

Simultaneous resistance to colistin and quinolones or
fluoroquinolones was relatively high (Figure 1A), since 94%
(32/34) of the mcr-1-positive strains were resistant to nalidixic
acid (NAL), 67.6% (23/34) to ciprofloxacin (CIP), and 76.5%
(26/34) to enrofloxacin (ENR). Almost three from every four
strains (76.5%) harbored a PMQRmarker and the most prevalent
determinants were qnrS (20/34) and qnrB (18/34). Almost three
from every four strains (76.5%) harbored a PMQR marker and
the most prevalent determinants were qnrS (20/34) and qnrB

(18/34). Other PMQRs such as qnrA (2/34), qnrD (1/34) and the
efflux pumps oqxAB (5/34) and qepA (5/34) were also identified.
These results are consistent with the analysis made by Huang
et al. (2009) in isolates from China, who also found a high ratio
of E. coli strains harboring PMQR determinants and the authors
suggest that this fact may be related to the extended use or misuse
of antimicrobials in poultry.

Although no significant genotypic relation (p > 0.05) was
found between mcr-1-positive strains and plasmid mediated
quinolone resistance genes (PMQR), results obtained in
conjugation experiments suggest that fluoroquinolone and
colistin resistance can be simultaneously co-transferred, since
both transconjugants (EC 190-14 TC and EC 191-07 TC or
EC 191-07 TCS) displayed decreased susceptibility to NAL
and were positive for qnrB gene detection (Table 3). However,
the large number of strains carrying genetic determinants for
fluoroquinolones in healthy broilers was relatively high; this
scenario suggests that other selective forces such as colistin used
as AGP (Morales et al., 2012) or therapeutic antimicrobial misuse
are driving the selection of fluoroquinolone-resistant bacteria.

Resistance to β-Lactams and Detection of Extended

Spectrum β-Lactamase (ESBL) and Plasmidic AmpC

β-Lactamase
The antimicrobial susceptibility analysis showed a relatively high
percentage of AMP resistance 82.4% (28/34) among the mcr-
1-positive strains and a strong relation between susceptibility
to both antimicrobials as determined by disk diffusion tests (R:
0.33, p < 0.05). Considering the susceptibility showed to AMP,
a high percentage of resistance (between 76.5 and 79.4%) was
also observed in oxyimino-cephalosporins (CTX, CRO and CFT,
a cephalosporin used in veterinary medicine) and FEP (70.6%).
However, very little resistance to CAZ and FOX was detected,
while all isolates remained susceptible to carbapenems (IMI and
MEM) (Figure 1B). In contrast, most clinical E. coli strains
were found to be susceptible to a wide range of antimicrobials,
including carbapenems (Lai et al., 2017).

TABLE 3 | Plasmid conjugation studies.

Disk diffusion test* PCR

Strains MIC to colistin (µg/mL) NAL CIP mcr-1/PMQR/CTX-M

E. coli 190-14 8 R R mcr-1+ qnrB+qnrS+CTX-M-2

EC190-14 TC** 4 I S mcr-1+ qnrB

E. coli 191-07 8 I S mcr-1+ qnrB+ CTX-M-2+ CMY-2

EC191-07 TC** 4 I S mcr-1+ qnrB

E. coli J53 0,5 S S –

EC191-07 TCS*** 8 I S mcr-1+ qnrB

Salmonella M1744 1 S – –

*(R) resistant, (I) intermediate and (S) susceptible by disk diffusion test: Nalidixic Acid (NAL), Ciprofloxacin (CIP).

**TC: transconjugants obtained using E. coli J53 as the recipient strain.

***TCS: transconjugants obtained using Salmonella M1744 as the recipient strain.
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FIGURE 1 | Antimicrobial susceptibility profiles. Percentage of antimicrobial susceptibility in the isolates analyzed. (A) Fluoroquinolones, (B) β-lactams, and (C) Other

antimicrobials. AMP, ampicillin; AMC, amoxicillin-clavulanic acid; CXM, cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; CRO, ceftriaxone; CFT, ceftiofur; FEP,

cefepime; FOX, cefoxitin; ATM, aztreonam; IMI, imipenem; MEM, meropenem; NAL, nalidixic acid; CIP, ciprofloxacin; ENR, Enrofloxacin; KAN, kanamycin; GEN,

gentamicin; STR, streptomycin; AMI, amikacin; SXT, trimethoprim-sulfamethoxazole; TET, tetracycline; and CLR, chloramphenicol.

CTX-M-producing enterobacteria are widespread among
human population and an increasing number of reports describes
their presence in livestock environments as well as in food from
animal origin (Lazarus et al., 2015). Our findings demonstrate
that also healthy birds may act as a reservoir of blaCTX−M−2

and blaCTX−M−14 genes. In the recent past, CTX-M-2 was the

dominant ESBL group among human clinical Enterobacteriaceae
isolates in South America (Quinteros et al., 2003; Minarini et al.,
2007; Saba Villarroel et al., 2017). From 26 extended- spectrum
cephalosporins (ESC)-resistant and mcr-1-positive strains, 18
strains (18/34, 56%) were CTX-M-2 producers and two produce
CTX-M-14. Five strains harbored both CTX-M genes. CMY-2
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was identified in 4 strains (3 were also CTX-M-2 producers)
(Table 2). According to these results, the main mechanism
responsible for TGC resistance was the production of CTX-M
cefotaximases which explained the low resistance rates to FOX
and CAZ. ESBLs from groups CTX-M-2 and CTX-M-14 were
previously identified in mcr-1-carrying E. coli recovered from
human samples (Rapoport et al., 2016) and from wild birds (kelp
gulls) in the south of Argentina (Liakopoulos et al., 2016).

The cosmopolitan CTX-M-15 variant belonging to the CTX-
M-1 subfamily, which is also widespread in human clinical
isolates from Argentina, (Sennati et al., 2012), could not be found
in this study. This finding was unexpected since reports from
Brazil, where poultry productive systems are similar to Argentina
(Botelho et al., 2015), described the presence of the CTX-M-15
ESBL and the coexistence of CTX-M-8 and CMY-2 in E. coli
isolates recovered from chicken meat.

Many studies in E. coli strains, most of them involving
isolates from animals, have demonstrated the presence of
mcr-1 gene together with ESBL (Rhouma and Letellier,
2017). In the present work, despite the presence of the
CTX-M-2 gene in the parental strain, no co-selection
of ESC-resistant was observed in the transconjugants
(Table 3).

Although 50% of the E. coli strains analyzed carried both
sets of ESBL and PMQR genes, no association between the
presence of ESBL and a specific PMQR mechanism (p > 0.05)
was observed. Additionally, aac (6′)-Ib-cr gene was not detected.
It is remarkable the absence of aac (6′)-Ib-cr gene, and the lack
of association between ESBL and PMQR which is usually found
in some Enterobacteriaceae isolated from human (Andres et al.,
2013; Cruz et al., 2013) in Argentina.

A large variability of PMQR determinants was also observed
in TGC-sensitive (without ESBL) andmcr-1-positive strains with
a similar proportion of qnrB and qnrS genes. To a lesser extent,
some of these strains also showed oqxAB gene. According to the
results of this study, we suggest that E. coli strains from broiler
chickens could be the reservoir not only of the mcr-1 gene, but
also of PMQR and ESBL genes.

Resistance to Other Antimicrobials-Multiple Drug

Resistance (MDR)
Most of the mcr-1-positive strains were determined to carry
ESBL or PMQR-genes and also most of them were resistant
to other classes of antimicrobial agents. This is probably due
to the fact that the aforementioned genes are commonly
found in mobile elements such as conjugative plasmids that
also harbor resistant determinants to different groups of
antimicrobials and confer the MDR phenotype. It is of particular
concern that 39/41 (95.1%) strains considered in this study
(including mcr-1-negative strains) expressed a multi-resistance
phenotype.

The percentage of strains resistant to aminoglycosides and
mcr-1-positive strains was variable and drug dependent.
Resistance rates to this family was STR>KAN (79.4%,
23.6%) and GEN (20.6%). All strains remained susceptible
to AMI (Figure 1C). Resistance to TET (79.4%) was relatively
high, as expected considering the extensive use in animal

medicine, which is in concordance with previous studies
were TET resistance markers are frequently found in
E. coli strains (Argudín et al., 2017). To a lesser extent,
also resistance to SXT (50%) and CLR (44%) was also
detected.

CONCLUSIONS

The results highlight that commercial broiler farms can be
an important reservoir of mcr-1-carrying E. coli strains. In
fact, the high occurrence of E. coli isolates (76%) carrying
the mcr-1 gene is alarming and has not been reported in any
other part of the world (Delgado-Blas et al., 2016; Fernandes
et al., 2016; Kawanishi et al., 2017; Meinersmann et al., 2017;
Monte et al., 2017; Whang et al., 2018). These differences
could be associated with the method of screening used in
the present report since a higher number of unrelated farms
separated from a relatively high distance were considered.
Although this may be related to particularities of the productive
system, the local practices are quite similar to the ones from
other countries in South America that were administering
colistin without any restriction. A potential combination of
antibiotics used in the productive system, climatic variations and
other variables, may influence the spread of mcr-1 and these
scenarios could also contribute to the selection of multi-resistant
bacteria.

In this study, we determined the presence of resistance
determinants in colistin-resistant E. coli strains from the
environment of an intensive production system such as broiler
chickens destined to consumption. A wide range of phenotypic
resistance to both antibiotics in veterinary and human medicine
was identified and resistance to colistin, quinolones and β-
lactams was observed in the analyzed strains. The proportion of
resistance to other antimicrobial families (SXT, TET, CLR, and
aminoglycoside) was relatively high, underlining the presence
of a large number of isolates with a MDR profile. The ability
the co-transference of the qnrB determinant on the mcr-
1-positive transconjugants was corroborated, which suggests
that these resistance genes are likely to be located in the
same plasmid thus transforming it into a more successful
clone.
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Acinetobacter nosocomialis is a member of the Acinetobacter

calcoaceticus-Acinetobacter baumannii (ACB) complex. Increasingly, reports are

emerging of the pathogenic profile and multidrug resistance (MDR) phenotype

of this species. To define novel therapies to overcome resistance, we queried

the role of the major efflux pumps in A. nosocomialis strain M2 on antimicrobial

susceptibility profiles. A. nosocomialis strains with the following mutations were

engineered by allelic replacement; 1adeB, 1adeJ, and 1adeB/adeJ. In these isogenic

strains, we show that the 1adeJ mutation increased susceptibility to beta-lactams,

beta-lactam/beta-lactamase inhibitors, chloramphenicol, monobactam, tigecycline,

and trimethoprim. The 1adeB mutation had a minor effect on resistance to certain

beta-lactams, rifampicin and tigecycline. In addition, the 1adeJ mutation resulted in a

significant decrease in surface motility and a minor decrease in biofilm formation. Our

results indicate that the efflux pump, AdeIJK, has additional roles outside of antibiotic

resistance in A. nosocomialis.

Keywords: Acinetobacter, RND-efflux, motility, biofilm, antimicrobial resistance

INTRODUCTION

Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen that is grouped into the
Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex (Nemec et al., 2011; Visca
et al., 2011). The ability of A. nosocomialis to cause disease in humans is well-recognized
(Wisplinghoff et al., 2012; Chusri et al., 2014; Huang et al., 2014), although studies suggest
the virulence of this bacterium may be lower than the closely related bacterium Acinetobacter
baumannii (Peleg et al., 2012; Lee et al., 2013; Yang et al., 2013; Fitzpatrick et al., 2015). Many
potential virulence factors have been identified in A. nosocomialis and include a CTFR inhibitory
factor (Cif), a protein O-glycosylation system, a type-I secretion system, a type-II secretion system,
secretion of outer membrane vesicles, the OmpA protein, the CpaA protease, and quorum sensing
(Niu et al., 2008; Bahl et al., 2014; Harding et al., 2015, 2016, 2017; Nho et al., 2015; Weber et al.,
2015; Kim et al., 2016; Kinsella et al., 2017).
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A. nosocomialis strain M2 was isolated in 1996 from a hip
infection and has been extensively studied, particularly with
respect to the virulence factors described above. M2 was formerly
classified as A. baumannii, but whole genome sequencing
resulted in its reclassification (Carruthers et al., 2013). While
A. nosocomialis can be highly resistant to antibiotics, the role of
RND-type efflux pumps in this process has not been investigated
in this bacterium. Two primary efflux systems in the closely
related A. baumannii are the AdeABC and AdeIJK efflux systems
(Magnet et al., 2001; Damier-Piolle et al., 2008). Each efflux
system is composed of an outer membrane channel (AdeC,
AdeK), a membrane fusion protein (AdeA, AdeI) and an inner
membrane transporter (AdeB, AdeJ). In addition to the efflux of
antimicrobials, these systems can impact additional phenotypes
in the cell, such as surface motility, biofilm formation, and
virulence (Yoon et al., 2015; Richmond et al., 2016).

In this study, we investigated the role of AdeABC and AdeIJK
orthologs in A. nosocomialis. Similar to what is observed in
A. baumannii, loss of AdeIJK had a major impact on antibiotic
susceptibility profiles. In contrast, the loss of AdeABC had
a minimal impact on susceptibility. Interestingly, the loss of
AdeIJK reduced surface motility, indicating additional roles for
this RND-type efflux system in A. nosocomialis.

MATERIALS AND METHODS

Bacterial Growth Conditions, Strains, and
Plasmids
A. nosocomialis strain M2 was used for all studies and has been
described previously (Carruthers et al., 2013). E. coli strains
EC100D and CC118 were used for general cloning. E. coli
strain SM10 was used for bacterial conjugations. Growth media
consisted of 10 g tryptone, 5 g yeast extract, and 5 g NaCl per liter.
Agar was added at 15 g per liter. For sucrose counter-selections,
media was prepared as described above, but without NaCl and
containing 10% sucrose. Cloning vectors were pBC.SK- (Agilent)
and pKNG101 (Kaniga et al., 1991).

Construction of adeB and adeJ Mutations
Internal fragments of the adeB and adeJ genes were obtained
by PCR amplification of M2 genomic DNA using the following
primers. peg93.for 5′- TTGCTAAGTATTCCTAAATTAC-3′

and peg93.rev 5′- TTAGGAAGAGATTTTTTTC−3′ for adeB,
and peg1681.for 5′- ATGGCACAATTTTTTATTCATC−3′ and
peg1681.rev 5′- TCACGATTTATGCTCCTGAG-3′ for adeJ. The
resulting PCR generated fragments were cloned into the pBC.SK
digested plasmid with SmaI, creating padeB and padeJ. The
padeB plasmid was then digested with NarI, which digests
once in the middle of the adeB gene and treated with T4
DNA polymerase to create blunt ends. This was then re-ligated
to create a frameshift mutation in adeB. The plasmid padeJ
was digested with SphI, which cuts once in the middle of
adeJ, treated with T4 DNA polymerase to create blunt ends
and re-ligated to create an adeJ frameshift mutation. The
mutated adeB and adeJ genes were then excised as an XbaI-
SalI fragment and cloned into the suicide vector pKNG101
digested with XbaI and SalI. Each plasmid was transformed into

E. coli SM10 and then introduced into the A. nosocomialis M2
chromosome by conjugation. Exconjugants were grown for 10
generations in LB broth without antibiotic and dilutions were
plated on lysogeny broth (LB) plates without sodium chloride
and containing 10% sucrose. Colonies containing the adeB or
adeJ frameshift mutations were identified by PCR amplifying
each gene and the digesting the resulting PCR products with
either NarI for adeB or SphI for adeJ. The presence of each
chromosomal mutation was indicated by the failure of each
enzyme to digest the fragment and each mutation was verified
by DNA sequence analysis. To create an adeB, adeJ double
mutant, the adeB mutant was used as the parent and the adeJ
mutation was crossed into the chromosome as described above.
To create an adeB::Km mutation, an EZ-Tn5<Kan-2> insertion
centrally located in the adeB gene present in pKNG101 was
recombined into the chromosomal copy of adeB as described
above.

Antimicrobial Susceptibility Testing
A. nosocomialis strain M2 and its isogenic derivatives were
subject to antimicrobial susceptibility testing using E-Test Strips,
Trek, and MicroScan platforms. Additionally, disk diffusion
assays were performed using Mueller Hinton agar for several
antibiotics alone and in combination with boronic acid transition
state inhibitor (BATSI) compounds SM23 and S02030 (Powers
et al., 2014; Nguyen et al., 2016). For TREK, strains were tested
once. For the disc diffusion and Etest assays, strains were tested
in duplicate.

Motility Assays
The base media for motility assays consisted of 10 g tryptone,
5 g yeast extract, and 5 g NaCl per liter. Media was solidified
using 0.35% Eiken agar (Eiken Chemical Ltd. Tokyo, Japan).
Plates were used the same day they were prepared. For testing
the motility of the M2 strain and various mutants, cultures were
grown up to early log phase, adjusted to the same optical density
of A600 = 0.15 by the addition of sterile LB broth and a 1 µl drop
was placed on the center of the plate. Plates were incubated at
30◦C andmotility wasmeasured after 14 h. Statistical analysis was
done using the Student’s T-test.

Biofilm Analysis
Cells for biofilm analysis were taken directly from freezer stocks
and grown in 2ml 0.5X LB without shaking at room temperature
to an optical density A600 of 0.1. Each tube was then used
to inoculate wells of a 96 well microtiter plate with 150 µl
of culture. Plates were incubated stationary at 30 or 37◦C for
24 h. The optical density of each well was read at A600 for
cell growth and the planktonic cells were removed. To stain
biofilms, 250 µl of 10% crystal violet was added to each well for
30min. The crystal violet was gently decanted and each well was
gently washed three times with distilled water. Three hundred
microliters of 33% acetic acid was added to each well to solubilize
the crystal violet and the absorbance of a 1/10 dilution was
read at A585. Statistical analysis was done using the Student’s
T-test.
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TABLE 1 | Antimicrobial susceptibility profiles.

M2

wild-type

M2

1adeB

M2

1adeJ

M2

1adeB, 1adeJ

E-TEST (mg/L)

Ampicillin 24 16 8 8

Cefotaxime >32 24 1.5 1.5

Ceftriaxone >32 >32 3 3

Chloramphenicol 64 64 6 6

Amikacin 4 3 3 3

Rifampin 12 8 3 3

Tigecycline 0.25 0.19 0.032 0.023

Trimethoprim >32 >32 1.5 1.5

TREK (mg/L)

Piperacillin/tazobactam 16/4 ≤8/4 ≤8/4 <8/4

Ceftazidime 4 4 ≤1 ≤1

Cefuroxime 16 16 ≤4 ≤4

Amikacin ≤4 ≤4 ≤4 ≤4

Aztreonam >16 >16 4 4

Meropenem <1 <1 <1 <1

RESULTS

Analysis of AdeABC and AdeIJK
RND-Efflux Systems in A. nosocomialis
A. nosocomialis strain M2 contains orthologs of AdeA, AdeB
and AdeC that share 94, 98, and 92 percent amino acid identify,
respectively, to the corresponding proteins in A. baumannii
strain AB5075.UW. In addition, orthologs of the AdeIJK
proteins were found with 97, 99, and 98 percent identity to
the corresponding proteins in A. baumannii AB5075.UW. To
investigate the function of each RND-type efflux system, null
alleles in the adeB and adeJ genes, encoding the inner membrane
transporter for each system were constructed by introducing
frameshift mutations in each gene into the chromosome by allelic
replacement (section Materials and Methods).

The antibiotic susceptibility profile of each mutant was then
determined for a panel of antibiotics representing different
classes (Table 1). The loss of adeB had a minimal effect on the
overall levels of resistance and a slight increase in susceptibility
was observed for ampicillin, cefotaxime, amikacin, rifampin,
and tigecyline (Table 1). This result was surprising as the
AdeABC system has a prominent role in antibiotic resistance
in A. baumannii (Magnet et al., 2001). To determine if this
adeB frameshift mutation was somehow being suppressed or
was not a null allele, we constructed an adeB::Km mutation,
where the adeB gene was disrupted in the middle of the coding
region. However, this adeB::km mutant displayed the same level
of resistance to ampicillin (128µg/ml), tetracycline (2µg/ml),
and ciprofloxacin (0.38µg/ml) as wild-type, indicating that
the previously isolated frameshift mutation in adeB was non-
functional.

The effect of a mutation in adeJ on antibiotic susceptibility
was far more pronounced, where cells became more susceptible
to the following antibiotics; ampicillin (3-fold), cefotaxime

TABLE 2 | Disk diffusion results (zone size in mm).

Antibiotic (mg/L) + inhibitor

(mg/L)

M2 M2,

1adeB

M2,

1adeJ

M2

1adeB1adeJ

Ampicillin 10 12 12 18 18

Ampicillin 10 + SM23 10 15 15 21 21

Ampicillin 10 + S02030 10 15 14 19 19

Ceftazidime 10 18 18 23 23

Ceftazidime 10 + SM23 10 18 18 23 24

Ceftazidime 10 + SM02030 10 18 19 24 23

Cefotaxime 10 16 16 24 24

Cefotaxime 10 + SM23 10 16 17 27 26

Cefotaxime 10 + S02030 10 16 16 26 25

Meropenem 10 24 24 30 30

Meropenem 10 + SM23 10 25 25 30 30

Meropenem 10 + S02030 10 24 24 30 29

(>15-fold), ceftriaxone (>10-fold), chloramphenicol (>10-fold),
rifampin (4-fold), tigecycline (8-fold), and trimethoprim (>20-
fold) (Table 1). The antibiotic susceptibility profiles were also
examined for an adeB/adeJ double mutant to determine if the
loss of both efflux systems had additional effects. However, the
adeB/adeJ double mutant essentially phenocopied the adeJ single
mutant (Table 1).

We next assayed the role of AdeB and AdeJ efflux pumps
in the handling of the boronic acid transition state inhibitors
(BATSIs) SM23 and S02030 (Powers et al., 2014; Nguyen et al.,
2016). These BATSIs either mimic the acylation or deacylation
transition state. Paired with a penicillin (ampicillin), carbapenem
(meropenem), or cephalosporin (ceftazidimne or cefepime) as
performed herein, the BATSI can act to inhibit serine based
beta-lactamases in-vitro. As a result of this mechanism of action,
class C cephalosporinases possess the greatest affinity for these
compounds (e.g., ADC cephalosporinase in A. nosocomialis).
Our results indicate that the BATSI studied are substrates
for the AdeIJK efflux pump in A. nosocomialis (Table 2). In
particular, the susceptibility of wild-type M2 to cefotaxime
is unaffected by these inhibitors, but in the presence of the
adeJ mutation, these inhibitors now increase susceptibility to
cefotaxime (Table 2).

Role of AdeABC and AdeIJK in Motility
A. nosocomialis strain M2 is capable of rapidly translocating
across soft agar surfaces (Clemmer et al., 2011). Although the
mechanism responsible for this motility is unclear, a number
of genes have been identified that reduce motility including
mutations in the abaI autoinducer synthase responsible for
quorum sensing signal production (Clemmer et al., 2011).
We tested the wild-type M2 parent and the isogenic adeB
and adeJ mutants for their motility phenotypes at 30 degrees.
The adeB mutation did not significantly alter surface motility
(Figures 1A,B). In contrast, the adeJ mutation had a pronounced
effect on surface motility, with a greater than 50% reduction
relative to the wild-type M2 parent (Figure 1). Interestingly, this
motility defect was temperature dependent, at 37 degrees the
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FIGURE 1 | Surface motility of wild-type M2 and efflux mutants. Wild-type M2

and the isogenic adeB and adeJ mutants were assayed for surface motility as

described in the Materials and Methods. In (A), motility of the indicated strains

is shown after 14 h at 30◦C. Motility was quantitated from 4 separate

experiments at 30◦C (B) and 37◦C (C). Error bars represent standard

deviation of the mean. N.S. indicates a p-value > 0.05.

adeJ mutant exhibited a similar level of motility as wild-type
(Figure 1C).

In a previous study, the motility of A. nosocomialis M2
was shown to be dependent on production of the quorum
sensing signal 3-OH C12-HSL (Clemmer et al., 2011). To
investigate the possibility that the motility defect in the adeJ
mutant was due to the failure to export 3-OH-C12-HSL, an
Agrobacterium tumefaciens traG-lacZ biosensor strain was used
to assay signal production in the adeJ mutant and wild-type
M2 (Niu et al., 2008). However, no significant differences
in signal production were observed between these strains
(Supplementary Figure 1).

FIGURE 2 | Biofilm formation. Wild-type M2 and the isogenic adeB and adeJ

mutants were assayed for biofilm formation in microtiter wells grown at 30 or

37◦C for 24 h. Values represent crystal violet staining/cell density (A585 / A600 )

ratio and error bars represent standard deviation of the mean. N.S. indicates a

p-value > 0.05.

Role of AdeABC and AdeIJK in Biofilm
Formation
The role of AdeABC and AdeIJK in biofilm formation was
also examined. When biofilms were formed on the surface of
polystyrene microtiter wells, biofilm formation by the adeB and
adeJ mutants were similar to wild-type M2 after 24 h of growth
at 30◦C (Figure 2). At 37◦C, only the adeJ mutant showed a
statistically significant reduction in biofilm formation, with a 24%
decrease relative to wild-type (Figure 2).

DISCUSSION

In this study, the roles of AdeABC and AdeIJK orthologs
in A. nosocomialis were addressed. Both a frameshift allele
in the adeB gene and an adeB::Km disruption did not result
in a major change in antibiotic resistance profiles, which is
in contrast to that observed in A. baumannii (Magnet et al.,
2001). Several possibilities can account for these differences.
First, the adeABC genes may be expressed at very low levels
in A. nosocomialis M2, therefore, the loss of this efflux system
would have a minimal impact. In A. baumanii, the AdeABC
system is typically expressed at low levels and inactivation of
these genes in some strains does not produce a phenotype
(Yoon et al., 2015; Leus et al., 2018). Increased expression can
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result from mutations in the AdeRS two-component system. In
A. nosocomialisM2, the AdeR and AdeS proteins did not contain
amino acid substitutions previously associated with increased
AdeABC expression (Marchand et al., 2004; Yoon et al., 2013;
Gerson et al., 2018). Based on this information, we propose
that the AdeABC genes are tightly regulated by AdeRS and
the levels of expression in the M2 strain do not contribute
to intrinsic resistance. We also tested the role of AdeABC in
both surface motility and biofilm formation and no significant
changes were observed in the adeB mutant relative to wild-type
(Figures 1, 2).

In contrast, the AdeIJK efflux system was shown to play a
significant role in antibiotic efflux, where a mutation inactivating
this system had a pronounced effect on antibiotic susceptibility
(Table 1). This observation is consistent with previous studies
in A. baumannii demonstrating that efflux mediated by AdeIJK
contributes substantially to antibiotic resistance. In addition,
the loss of AdeIJK strongly reduced surface motility with a
greater than 50% reduction compared to wild-type (Figure 1).
The loss of AdeIJK resulted in a modest (24%) reduction in
biofilm formation, which is also consistent with previous studies
in A. baumannii, where the loss of AdeIJK resulted in a 20%
reduction in biofilm formation (Yoon et al., 2015). The decreased
surface motility and biofilm formation in the adeJ mutant were
not the result of decreased production of the quorum sensing
signal 3-OH C12-HSL, which has been shown to be important for
both surface motility and biofilm formation in A. nosocomialis
(Niu et al., 2008; Clemmer et al., 2011).

The mechanism that results in loss of motility when the
AdeIJK system in inactivated is unknown, but may indicate a

role for AdeIJK in secretion of a lipopeptide surfactant that is
required for motilty (Clemmer et al., 2011; Rumbo-Feal et al.,
2017) or in the secretion of 1,3-diaminopropane, also required
for motility (Skiebe et al., 2012). This also indicates that in
addition to antibiotic efflux, there are cellular functions mediated
by AdeIJK, indicating a general role for this RND-type efflux
system in general physiology of A. nosocomialis.
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Background/Objectives: Aspergillus fumigatus is the leading cause of invasive
aspergillosis. Treatment is hindered by the emergence of resistance to triazole
antimycotic agents. Here, we present the prevalence of triazole resistance among clinical
isolates at a major centralized medical mycology laboratory in London, United Kingdom,
in the period 1998–2017.

Methods: A large number (n = 1469) of clinical A. fumigatus isolates from unselected
clinical specimens were identified and their susceptibility against three triazoles,
amphotericin B and three echinocandin agents was carried out. All isolates were
identified phenotypically and antifungal susceptibility testing was carried out by using
a standard broth microdilution method.

Results: Retrospective surveillance (1998–2011) shows 5/1151 (0.43%) isolates were
resistant to at least one of the clinically used triazole antifungal agents. Prospective
surveillance (2015–2017) shows 7/356 (2.2%) isolates were resistant to at least
one triazole antifungals demonstrating an increase in incidence of triazole-resistant
A. fumigatus in our laboratory. Among five isolates collected from 2015 to 2017 and
available for molecular testing, three harbored TR34/L98H alteration in the cyp51A gene
that are associated with the acquisition of resistance in the non-patient environment.

Conclusion: These data show that historically low prevalence of azole resistance may
be increasing, warranting further surveillance of susceptible patients.
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INTRODUCTION

Aspergillus fumigatus is a ubiquitous ascomycete mold and
the primary etiologic agent of aspergillosis which varies in
severity and clinical presentation. These manifestations include a
spectrum of conditions including colonization, allergic response
in allergic bronchopulmonary aspergillosis, chronic pulmonary
aspergillosis, aspergilloma, and to the most severe form, invasive
aspergillosis (Kosmidis and Denning, 2015). Sensitization to
Aspergillus in patients with severe asthma is another form of
disease. Aspergillus bronchitis is a recently described condition,
especially in patients with cystic fibrosis (CF) or bronchiectasis,
lung transplant recipients, and those receiving mechanical
ventilation in intensive care units (Kosmidis and Denning, 2015).
Moreover, aspergillosis may occur in immunocompetent hosts
with influenza infection (Crum-Cianflone, 2016).

Triazoles have been the most widely used antifungal agents
in prophylaxis and treatment of Aspergillus-related infections
(Verweij et al., 2015). The Infectious Diseases Society of
America (IDSA) guideline recommends the triazole antifungal
voriconazole as the first line agent for the primary treatment of
IA (Patterson et al., 2016). Since the late 2000s there has been
a steady increase in the number of reported resistance to azole
antifungals in A. fumigatus, causing a major clinical concern
with subsequent treatment failure among some patients (Verweij
et al., 2007; Chowdhary et al., 2013). The emergence and global
spread of azole-resistant isolates led to a fundamental question as
to whether first line clinical use of mold-active triazoles can be
retained (Verweij et al., 2015).

The molecular basis of resistance to triazoles in A. fumigatus
mainly involves the environmentally driven polymorphism
TR34/L98H, which consists of a tandem repeat (TR) of 34 bases
in the promoter of the cyp51A gene and a leucine-to-histidine
change at codon 98 (Mellado et al., 2007); this polymorphism
is globally widespread in environmental and clinical isolates
(Chowdhary et al., 2015, 2017). Another cyp51A-mediated
resistance alteration that leads to high-level voriconazole
resistance, TR46/Y121F/T289A, has also been described in
A. fumigatus (van der Linden et al., 2013). In contrast, non-
synonymous mutations in the cyp51A gene cause structural
alterations due to amino acid substitutions and are sufficient
to induce resistance to some or all triazole drugs. Numerous
mutations in cyp51A have been reported that confer resistance to
triazoles in vitro. These resistant mutations often evolve during
prolonged azole treatment in patients with chronic forms of
aspergillosis (Hagiwara et al., 2016). In A. fumigatus, cyp51A gene
encodes lanosterol 14-α-sterol demethylase which is required for
the biosynthesis of ergosterol, an essential component of the
fungal cell membrane (Chowdhary et al., 2014).

The true prevalence of azole resistance in A. fumigatus is
largely unknown and multiple factors including sample size,
method of detection and geographical differences in the studied
samples might affect the prevalence rate of azole-resistant isolates
(Verweij et al., 2016a). Overall azole resistance rates of 0–27.8%
have been determined from different surveys (Vermeulen et al.,
2013; Hagiwara et al., 2016; Chowdhary et al., 2017). Despite the
global emergence of triazole resistance, the prevalence data on

azole-resistant A. fumigatus in the United Kingdom is limited
to reports (Howard et al., 2009; Bueid et al., 2010; Denning
et al., 2011) generated by the National Aspergillosis Centre
in Manchester. Howard and co-workers (Howard et al., 2009)
have reported an increase in azole resistance (5%) in clinical
A. fumigatus isolates since 2004. Later, another alarming increase
in azole resistance frequency to 14% in 2008 and 20% in 2009
was reported by Bueid et al. (2010). Recent published data
from the Public Health England, showed 8, 7, and 4.5% of
clinical isolates referred to the National Mycology Reference
Laboratory in, 2016 were resistant to itraconazole, posaconazole,
and voriconazole, respectively (Public Health England, 2017),
though the mechanism of resistance among these azole-resistant
isolates remained unknown.

We hypothesized that prevalence of azole-resistant
A. fumigatus reported by specialist or referral centers may
not represent the true prevalence of azole resistance occurring
in other institutions with different patient populations, thus
surveillance studies at regional level are warranted. Our
centralized mycology laboratory provides diagnostic service
to eight major hospitals with mixed specialties in North West
London, plus over 100 primary care providers, all serving a
population of 2.5 million. The main patient population at risk
of invasive fungal infections is diverse with high adult and
pediatric hematology, oncology, renal transplant and intensive
care caseloads. To investigate the prevalence of azole-resistance
in clinical A. fumigatus isolates, antifungal susceptibility profiles
of a large collection of unique clinical isolates of A. fumigatus
collected over 17 years were retrospectively reviewed.

MATERIALS AND METHODS

Data Collection
Our objective was to investigate the prevalence of azole-resistance
in A. fumigatus isolates in a major centralized diagnostic
mycology service based at the Imperial College Healthcare
National Health Service trust, which provides diagnostic
mycology service to the North West London area. Retrospective
data on antifungal susceptibility profiles of a large collection
of clinical A. fumigatus isolates tested between January 1998 –
December 2017 was extracted from the laboratory database.
This database is populated with antifungal minimum inhibitory
concentration (MIC) data against fungal isolates cultured from
diverse clinical samples from a mixed and unselected patient
population. No data were available for period of January 2012–
December 2014 as no susceptibility testing was carried out for
molds during this period.

Fungal Isolates
All isolates were identified as A. fumigatus species complex based
on culture colonial morphology and microscopic characteristics.
Adhesive tape technique was used for microscopic examination
of fungal cultures. In addition, growth at 45◦C was used to
exclude most cryptic species. The identification of isolates
with elevated azole MICs was confirmed by matrix-assisted
laser desorption ionization–time of flight mass spectrometry
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(MALDI–TOF MS). Identification by MALDI–TOF MS was
performed with a Microflex LT system (Bruker Daltonics,
Bremen, Germany) using Biotyper 3.0 software with the
additional fungi library (Bruker Daltonics, Bremen, Germany)
according to the manufacturer’s recommendations. Exact
identification of azole-resistant A. fumigatus isolates was
confirmed by sequencing the partial calmodulin gene (CaM
locus) as previously described (Samson et al., 2014).

Antifungal Susceptibility Testing (AFST)
Antifungal susceptibility testing was carried out according to the
CLSI M38-A2 standard broth microdilution method (Clinical
and Laboratory Standards Institute, 2008) for filamentous fungi
(isolates tested 1998–2011) and EUCAST EDEF 9.1 (Arendrup
et al., 2012) (isolates tested 2015–2017). MICs were read at 48 h as
the concentration of drug that elicited 100% inhibition of growth
(amphotericin B, itraconazole, posaconazole, voriconazole) or as
the minimum effective concentration (MEC) for caspofungin,
anidulafungin, micafungin, in which the end-point is read as the
lowest concentration at which the fungal hyphae can be seen to
be stunted with swollen tips using an inverted microscope. For
interpretation of MIC values, the EUCAST clinical breakpoints
for A. fumigatus were used (Arendrup et al., 2012). For
itraconazole, voriconazole, and amphotericin B MICs of ≤1 mg/L
(susceptible) and >2 mg/L (resistant) and posaconazole MICs
of ≤0.125 mg/L (susceptible) and >0.25 mg/L (resistant).
No clinical breakpoints for the echinocandins have yet been
established for Aspergillus. Quality control for AFST was ensured
by testing the following type strains: Candida parapsilosis ATCC
22019, Candida krusei ATCC 6258, A. fumigatus NCPF 7097 and
A. fumigatus NCPF 7100.

Fungal DNA Extraction
Fungal genomic DNA was extracted as previously described
(Abdolrasouli et al., 2015). Briefly, gDNA was extracted
with an optimized MasterPure yeast DNA purification kit
(Epicentre Biotechnologies, Cambridge, United Kingdom) with
an additional bead-beating step included. Harvested conidia
were homogenized using 1.0-mm-diameter zirconia/silica beads
(BioSpec Products, Bartlesville, OK, United States) in a FastPrep-
24 system (MP Biomedicals, Solon, OH, United States) at 4.5
m/s for 45 s. DNA samples were stored at −80◦C for molecular
testing.

Genotype Testing
Five isolates collected from 2015 to 2017 with raised MICs
to at least one triazole agent were available for molecular
analysis. A commercially available real-time PCR and high-
resolution melt-curve analysis, AsperGenius R© (PathoNostics,
Maastricht, Netherlands) was utilized to detect alterations in
cyp51A conferring resistance to triazole antifungal agents. The
AsperGenius R© resistance multiplex assay targets the single-copy
cyp51A gene of A. fumigatus and detects the TR34, L98H, Y121F,
and T289A mutations to differentiate wild-type from mutant
A. fumigatus isolates via melting curve analysis. This real-time
PCR was performed according to the manufacturer’s instructions.
The detection of four different fluorescent labels (emission

spectra, 495 nm, 530 nm, 598 nm, and 645 nm) was enabled by
using the Rotor-Gene Q (Qiagen, Heidelberg, Germany) for all
experiments.

Statistical Analysis
Categorical variables were reported as counts and percentages
and were compared using Fisher’s exact tests. Statistical analyses
were two sided, and P < 0.05 was considered to have
statistical significance. Analyses were performed using GraphPad
Prism software (version 6.0; GraphPad Software, La Jolla, CA,
United States).

RESULTS

Fungal Isolates
A total of 1,469 fungal isolates identified as A. fumigatus at
the diagnostic mycology service based in North West London
between 1998 and 2017 included 12 isolates with (minimum
inhibitory concentrations) MICs above the breakpoints for
itraconazole, posaconazole and/or voriconazole. Due to
difference in antifungal susceptibility testing methodology
(methods), results were presented in two time periods
(retrospective 1998–2011; prospective 2015–2017).

Retrospective Surveillance
From 1998 to 2011, a total of 1,151 isolates were identified
as A. fumigatus. Respiratory samples were the most common
(966/1151, 84%) source of isolation. Overall 0.43% (5/1151)
of A. fumigatus isolates from five patients displayed elevated
MICs to triazole antifungal agents. Table 1 summarizes the
characteristics and MIC results of resistant isolates in this study.
For itraconazole, 3/1151 isolates had MIC values above the
sensitive breakpoint (MIC > 2 mg/L). For voriconazole, 3/1151
were classified as resistant (MIC > 2 mg/L). Among 720 isolates
tested against posaconazole, three isolates displayed reduced
susceptibility (MIC ≥ 0.25 mg/L). No isolate in this collection
displayed high level of resistance (MIC > 16 mg/L) to three tested
triazole antifungal agents.

All azole-resistant A. fumigatus isolates were cultured from
sputum samples. Two patients had hematological underlying
diseases, two had chronic respiratory disease and one had human
immunodeficiency virus (HIV) infection. With the exception
of one case (case 1) with unknown outcome, four cases died
(case 2–5). However, we were not able to determine if the death
was attributed to azole-resistant aspergillosis or the underlying
clinical conditions in these patients. One azole-resistant isolate
displayed a concomitant raised MEC (8 mg/L) to caspofungin.
However, all azole-resistant isolates remained susceptible to
amphotericin B. No clinical information on prior azole therapy
was available on any of five patients. The first azole-resistant
A. fumigatus from these five patients was isolated in 2001.

Prospective Surveillance
From 2015 to 2017, a total number of 356 clinical isolates
were identified as A. fumigatus over a 3-year period. Antifungal
susceptibility testing (AFST) was conducted on 318 out of 356
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TABLE 1 | Characteristics of A. fumigatus isolates of this study.

Case Year Gender/Age/
Underlying
disease

Sample type Azole therapy MIC or MEC (mg/L) AFST method cyp51A mutation

ITC VRC PCZ AMB CAS

1 2001 Gender/age
unknown HIV

Sputum Unknown 0.12 4 ND 0.25 ND CLSI M38-A2 ND

2 2007 M/63, respiratory Sputum Unknown 4 0.5 0.25 0.06 0.007 CLSI M38-A2 ND

3 2008 M/34, hematology Sputum Unknown 8 4 2 0.25 8 CLSI M38-A2 ND

4 2008 M/49, respiratory Sputum Unknown 4 1 0.25 0.06 0.007 CLSI M38-A2 ND

5 2009 M/35, hematology Sputum Unknown 0.5 4 0.12 0.06 0.007 CLSI M38-A2 ND

6 2015 M/55, unknown Sputum Unknown >16 1 >16 0.25 0.06 EUCAST WT

>16 2 1 0.5 0.06 WT

2 2 1 0.5 0.06 ND

7 2016 M/73, necrotizing
aspergillosis of the
lung

Sputum Yes 16 >16 4 0.5 0.03 EUCAST TR34/L98H

8 2016 F/68, asthma, and
bronchiectasis

Sputum Yes >16 2 0.5 0.5 0.06 EUCAST TR34/L98H

9 2017 M/39, trauma, and
Intensive care

BAL No 4 0.5 0.12 0.25 0.03 EUCAST TR34/L98H

10 2017 M/66, HIV,
aspergilloma, and
hemoptysis

Sputum Yes 8 0.5 1 0.5 0.06 EUCAST ND

AFST, antifungal susceptibility testing; AMB, amphotericin B; CAS, caspofungin; CLSI, Clinical Laboratory Standards Institute; EUCAST, European Committee on
Antimicrobial Susceptibility Testing; F, female; HIV, human immunodeficiency virus; ITC, itraconazole; M, male; MEC, minimum effective concentration; MIC, minimum
inhibitory concentration; ND, not done; PCZ, posaconazole, VRC, voriconazole; WT, wild-type.

(89.3%) isolates. Among isolates with AFST data, the majority
(289/318, 90.9%) were cultured from either sputum (n = 179) or
bronchoalveolar lavage (BAL) fluid (n = 110) samples.

Seven isolates showed MIC of ≥2 mg/L to itraconazole (2.2%).
This ranged from one isolate being intermediate (MIC = 2 mg/L),
two isolates had MIC of 4 and 8 mg/L and four isolates
displayed high level itraconazole resistance (MIC ≥ 16 mg/L)
(Table 1). Only one isolate demonstrated high level resistance
to voriconazole (MIC > 16 mg/L) while the remaining isolates
showed intermediate (n = 3) or susceptible phenotype to
voriconazole (n = 3). While six isolates displayed resistance to
posaconazole (MIC > 0.25 mg/L), high level of resistance against
posaconazole was only detected in one isolate. Notably, one
isolate from case 7, displayed a pan-azole resistant phenotype.

The seven azole-resistant isolates were recovered from five
patients. All of the resistant strains remained sensitive to
amphotericin B and caspofungin. All triazole-resistant isolates
were cultured from respiratory samples. All clinical isolates with
azole-resistant phenotype were confirmed as A. fumigatus using
matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI–TOF MS).

Azole Resistance Prevalence
Overall, reduced susceptibility to triazoles antifungal agents
remained low in a large collection of unselected clinical
A. fumigatus isolates tested in our centralized mycology
laboratory in London. In total, only 0.81% (12/1469) isolates with
available AFST data displayed reduced susceptibility to at least
one triazole antifungal agent over a period of 17 years. However,
prevalence of azole-resistant A. fumigatus was increased from

0.43% in 1998–2011 to 2.2% in 2015–2017 (P < 0.05, Fisher
Exact test). Within the study period, pan-azole resistance has
been recorded amongst tested isolates, however its occurrence
remains rare (n = 1).

Mechanism of Resistance
From 12 clinical A. fumigatus isolates with azole-resistant
phenotype, five isolates collected from 2015 to 2017 were
available to investigate their molecular mechanism of resistance.
When tested for mechanism of resistance using AsperGenius R©

high resolution melt-curve analysis, TR34/L98H was present in
three isolates (60%). Two isolates with azole-resistant phenotype
did not show any alteration in TR34/L98H when tested by
AsperGenius R© assay.

DISCUSSION

Although the prevalence of azole resistance in A. fumigatus
has been investigated in diverse populations and in
different countries (Hagiwara et al., 2016; Verweij et al.,
2016b; Chowdhary et al., 2017), the true frequency of
resistance in the United Kingdom remains largely unknown.
This is predominantly because previous reports from
United Kingdom were all based on studies (Howard et al.,
2006, 2009; Bueid et al., 2010; Denning et al., 2011) carried
out in the National Aspergillosis Centre in Manchester
which represented a very specific patient sub-population
predominantly with chronic forms of aspergillosis. In
essence therefore this population did not represent other
general and mixed patient cohorts in other centers with
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different underlying diseases such as hemato-oncology
or solid organ transplantation. Furthermore there is no
national surveillance program to actively screen clinical or
environmental isolates for resistance to triazole antifungal
agents in the United Kingdom. The prevalence of azole-
resistant A. fumigatus may differ considerably from center
to center depending on the geographical location of studied
hospitals. To compound this, most clinical microbiology
laboratories in United Kingdom either do not routinely test
Aspergillus isolates for antifungal susceptibility testing or
refer those isolates deemed clinically significant to reference
laboratories. Expert recommendation by the recently instituted
International Society for Human and Animal Mycology
(ISHAM) Aspergillus Resistance Surveillance Working Group
has highlighted the importance of performing local surveillance
in order to determine the presence of azole resistance and
adjust treatment guidelines if necessary (Resendiz Sharpe et al.,
2018).

In the present study the prevalence of azole-resistant
A. fumigatus recovered from clinical samples collected
from unselected patient populations remains low. Among
all clinical isolates tested from 1998 to 2011, only 0.43%
(5/1151) demonstrated reduced susceptibility to at least
one triazole antifungal agent. This figure increased to 2.2%
(7/318) between 2015 and 2017, when a prospective passive
surveillance program was carried out over a 3-year period
in the same laboratory. This increase in the incidence of
triazole resistance among mixed patient population, was
in agreement with the general increase described in the
recently published ESPAUR report (Public Health England,
2017). Arguably, the 8.5% itraconazole resistance among
A. fumigatus isolates tested at the national reference laboratory
may represent a bias due to testing clinical isolates that
were predominantly originated from patients with refractory
disease or in whom more exposure to medical triazoles was
expected. Internationally, resistance prevalence in populations
comprising of mixed patient groups is consistent with published
data from countries such as Denmark (Jensen et al., 2016),
France (Alanio et al., 2011), India (Chowdhary et al., 2015),
Iran (Mohammadi et al., 2016), Pakistan (Perveen et al.,
2016), Kuwait (Ahmad et al., 2014), Australia (Kidd et al.,
2015), and United States (Berkow et al., 2018) where,
overall, prevalence of antifungal resistant A. fumigatus
remained low.

This study showed a clear difference in the prevalence of
azole-resistant A. fumigatus in London when compared to the
previously published data from NAC in Manchester (Howard
et al., 2009; Bueid et al., 2010; Denning et al., 2011). This
significant variation in the proportion of resistance, suggested
that patients with chronic airway diseases might be at higher
risk of colonization and/or infection with azole-resistant
A. fumigatus when compared to general or mixed patient
cohorts. Similarly, prevalence of azole resistance in clinical
A. fumigatus in French patient populations was dependent on
underlying clinical conditions; 1.1% in hematological patients,
1.8% in unselected patients (Alanio et al., 2011), and 8%
to 12.2% in patients with cystic fibrosis (Morio et al., 2012;

Guegan et al., 2018). This finding supports the recommendations
by van der Linden et al. (2016) about the need to determine
azole resistance frequency at the hospital level and within
different patient groups. Additionally, recording clinical
data to include triazole duration and dose administered for
prophylaxis and/or treatment in conjunction with therapeutic
drug monitoring will elucidate the potential relationship
between previous azole exposure and development of antifungal
resistance.

To investigate the common cyp51A-dependent mechanisms of
resistance, DNA extracts from five available fungal isolates with
azole-resistant phenotype were tested with AsperGenius R©

multiplex RT-PCR assay followed with high resolution
melt-curve analysis. TR34/L98H detected in 3/5 (60%).
This is the first time that presence of this polymorphism
has been shown in London. Two A. fumigatus with azole-
resistant phenotype (both from case 6 isolated in 2015) did
not demonstrate any TR34/L98H or TR46/Y121F/T289A
alterations. Unfortunately none of the five azole-resistant
isolates found between 2001 and 2009 were available for further
analysis so we cannot, at this stage, determine whether the
incidence of these alleles has increased across the period of
study. Furthermore, recovering azole-resistant A. fumigatus
from patients with retroviral and hematological underlying
conditions in this study indicates that isolation of azole-
resistance A. fumigatus is not limited patients with respiratory
disorders.

Limitations of our study include the absence of data for a
period of 3 years (2012–2015) when antifungal susceptibility
testing was excluded from the routine diagnostic service.
Molecular basis of azole-resistant in two isolates with no
alteration in cyp51A gene remains unknown. Mutations in hot
spots in cyp51A gene or other non-cyp51A-related mechanisms
like efflux pumps might be responsible for elevated MIC
values to triazoles in these two isolates. Furthermore, six azole-
resistant A. fumigatus isolates were not available for molecular
testing.

The current study identifies an overall low proportion
of azole resistance (0.81%) in clinical A. fumigatus isolates
obtained from a mixed and diverse patient population in
London, United Kingdom. However, there are signs that
this may be changing as there has been an increase in
recent years showing that further cross-sectional studies
are necessary to establish whether this trend is mirroring
that seen in other European countries. It is also necessary
to conduct similar surveillance studies in specific patient
populations such as those with chronic respiratory diseases
at regional level to investigate whether the prevalence of
triazole resistance varies between different patient cohorts.
The discovery of environmentally driven TR34/L98H
among azole-resistant A. fumigatus isolates is of clinical
significance suggesting a spillover of environmentally acquired
antifungal resistance into susceptible patients. Systematic,
continual and multi-center surveillance programs at a
nation-wide scale are warranted to provide comprehensive
epidemiological data on triazole-resistant A. fumigatus in
United Kingdom.
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In recent years, extended ESBL and carbapenemase producing Gram negative bacteria

have becomewidespread in hospitals, community settings and the environment. This has

been triggered by the few therapeutic options left when infections with these multi-drug

resistant organisms occur. The emergence of resistance to colistin, the last therapeutic

option against carbapenem-resistant bacteria, worsened the situation. Recently, animals

were regarded as potent antimicrobial reservoir and a possible source of infection

to humans. Enteric Gram negative bacteria in animals can be easily transmitted to

humans by direct contact or indirectly through the handling and consumption of

undercooked/uncooked animal products. In the Mediterranean basin, little is known

about the current overall epidemiology of multi-drug resistant bacteria in livestock,

companion, and domestic animals. This review describes the current epidemiology

of ESBL, carbapenemase producers and colistin resistant bacteria of animal origin

in this region of the world. The CTX-M group 1 seems to prevail in animals in this

area, followed by SHV-12 and CTX-M group 9. The dissemination of carbapenemase

producers and colistin resistance remains low. Isolated multi-drug resistant bacteria

were often co-resistant to non-beta-lactam antibiotics, frequently used in veterinary

medicine as treatment, growth promoters, prophylaxis and in human medicine for

therapeutic purposes. Antibiotics used in veterinary medicine in this area include mainly

tetracycline, aminoglycosides, fluoroquinolones, and polymyxins. Indeed, it appears that

the emergence of ESBL and carbapenemase producers in animals is not related to the

use of beta-lactam antibiotics but is, rather, due to the co-selective pressure applied

by the over usage of non-beta-lactams. The level of antibiotic consumption in animals

should be, therefore, re-considered in the Mediterranean area especially in North Africa

and western Asia where no accurate data are available about the level of antibiotic

consumption in animals.

Keywords: ESBL, carbapenemase, mcr-1, Mediterranean, livestock
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BACKGROUND

Antimicrobial resistance is an emerging and rapidly evolving
phenomenon. This phenomenon is currently observed in all
bacterial species including clinically important Gram negative
bacilli (GNB) (Rubin and Pitout, 2014). Gram negative bacilli,
“enterobacteriaceae and non-fermenters” are normal inhabitants
of the human intestinal microflora (Vaishnavi, 2013); they are
responsible for the most common hospital and community
acquired infections. Antibiotic resistance in GNB is mediated by
target drug modification (Lambert, 2005), changes in bacterial
cell permeability (Delcour, 2009) and, most importantly, the
production of hydrolyzing enzymes, namely beta-lactamases.
The most common beta-lactamases which are now widespread
include the extended spectrum beta-lactamases (ESBL) (SHV,
TEM, OXA, and CTX-M types), AmpC beta-lactamases,
and carbapenemases (MBL, KPC, and class D oxacillinases)
(Giedraitiene et al., 2011; Poirel et al., 2011). These enzymes
provide the bacterium with resistance toward the majority of
therapeutic options available in the clinical market. Furthermore,
resistance determinants of these enzymes are often located on
plasmids carrying resistance genes to other non-beta-lactam
antibiotics, thus further limiting treatment options (Guerra et al.,
2014).

The emergence of colistin resistance in GNB is another
concern. Colistin belongs to the polymyxin group of polypeptide
antibiotics (Olaitan et al., 2014a). Previously abandoned due
to its nephrotoxicity and neurotoxicity, it is now in use once
again and is considered to be the last resort antimicrobial agent
against carbapenem resistant GNB (Kempf et al., 2013). Colistin
resistance can be mediated either by the acquisition of the
plasmid mediated “mcr” gene or by chromosomal mutations that
lead to modification of the lipid A moiety of lipopolysaccharide
(LPS), which is considered the primary target of colistin in Gram
negative bacilli (Baron et al., 2016).

It is currently known that, in addition to the human intestinal
microflora, resistant GNB can be found in water, soil, and fecal
animal matter (Verraes et al., 2013). In fact, there is increasing
evidence that animals constitute a potent reservoir of resistant
GNB (Ewers et al., 2012). This is mainly due to the over-
and misuse of antibiotics in veterinary medicine (Guerra et al.,
2014): antibiotics are not only prescribed for treatment but are
also administered for disease prevention and growth promotion
(Economou and Gousia, 2015). Although studies have shown
that the direct threat of resistant GNB to human health is still
controversial (Olsen et al., 2014), the wide dissemination of these
resistant organisms is worrying due to their ease of transmission
(Rolain, 2013) and their high potential contribution to the spread
of bacterial resistance across all ecosystems (Pomba et al., 2017).
In this review, we attempt to describe the epidemiology of
ESBL, AmpC and carbapenemase producing GNB of animal
origin in the Mediterranean region. Colistin resistance in
GNB in the same area is also described. The Mediterranean
basin is a region of the world that compromises a wide
diversity of populations. It includes five Asian countries (Cyprus,
Israel, Lebanon, Syria, and Turkey), eleven European countries
(Albania, Bosnia, Croatia, France, Greece, Herzegovina, Italy,

Monaco, Montenegro, Slovenia, and Spain) and five African
countries (Algeria, Egypt, Libya, Morocco, and Tunisia).

DISTRIBUTION OF ESBLS AND AMPC
PRODUCERS IN ANIMALS

Chicken and Food of Poultry Origin
Poultry production is a complex system in the food and
agricultural industry. It includes breeding chickens for meat
and eggs. Chickens are kept either as a “breeding flock” or
as a “broiler flock” for human consumption. Along with eggs,
broilers are traded and transported across different countries
around the world (Dierikx et al., 2013). This trade results in a
vulnerable system that can be hacked by multi-drug resistant
organisms (MDRO), i.e., once a MDRO is introduced into the
production chain, it can be transferred internationally. This is
why the dissemination of ESBL and AmpC-producing GNB,
recently extensively reported in chicken farms (Blaak et al.,
2015) is worrying, as these can contribute to not only local
but global dissemination of antimicrobial resistance (Dierikx
et al., 2013). Studies have shown that the carriage of ESBL
and AmpC producers in chicken is persistent (Huijbers et al.,
2016). ESBL and AmpC producers are isolated from grandparent
breeding stock (Nilsson et al., 2014), broiler chickens (Reich et al.,
2013), retail meat (Choi et al., 2015), and at the slaughterhouses
(Maciuca et al., 2015).

In the Mediterranean basin, the first detection of ESBL in
chicken dates back to 2000 in Greece, when a CTX-M-32
harboring Salmonella enterica was isolated from poultry end
products (Politi et al., 2005). Since then, many studies have
reported the emergence of ESBL in poultry in the Mediterranean
area. In Italy for instance, the first ESBL reported was a
case of SHV-12 detected in Salmonella spp (Chiaretto et al.,
2008). Salmonella infantis species harboring CTX-M-1 were
later isolated in 2011 from broiler chicken flocks. These strains
led to human infection in Italy in 2013–2014 (Franco et al.,
2015). In both studies, isolated strains were co-resistant to
non-beta-lactam antibiotics, notably nalidixic acid, sulfonamide,
trimethoprim, and tetracyclines. According to the European
Food Safety Authority and the European Center for Disease
Prevention and Control recent report, S. infantis is the fourth
most common serovar detected in humans in the European
Union and that is mostly being observed in the turkey and broiler
chain. In this report, it has been stated that this serovar has been
able to extensively disseminate along the broiler production chain
(EFSA, 2017). Indeed it has been suggested that the consumption
of contaminated chicken meat is among the most common
sources of salmonellosis in humans (Antunes et al., 2016).
Furthermore, in Italy, opportunistic pathogen such as Escherichia
coli isolates producing CTX-M-32, CTX-M-1, and SHV-12 type
beta-lactamases were also reported (Giufrè et al., 2012). These
strains were retrieved from flocks which had no prior treatment
with cephalosporins. It is proposed that the prescription of other
antimicrobials such as enrofloxacin and tylosin is responsible
for the co-selection of the aforementioned resistant organisms
(Bortolaia et al., 2010). Reports on chicken feces (Giufrè
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et al., 2012), broiler chicken samples, and retail chicken meat
(Ghodousi et al., 2016) showed that these latter carried E. coli
producing CTX-M-grp-1, CTX-M-grp-2, and CTX-M-grp-9
enzymes in Italy. The co-existence of these enzymes with AmpC
beta-lactamases was also reported, including CTX-M-1/CMY-
2 (Accogli et al., 2013) and CIT-like/CTX-M (Ghodousi et al.,
2015) in E. coli of poultry origin. CTX-M and AmpC beta-
lactamase producers in the Italian poultry belong mostly to
the A and B phylogroups with the genes being carried mainly
on IncI1 plasmids. In France, the only report from poultry
was the detection of two CTX-M-1-producing E. coli isolates
(Meunier et al., 2006). CTX-M-1 was linked to the insertion
sequence ISEcp1 (Meunier et al., 2006). This insertion sequence
has been previously described as being a potent contributor to the
mobilization and insertion of blaCTX-M genes (El Salabi et al.,
2013). Although no studies described the emergence of ESBL in
the Slovenian animal sector, one study reported the presence of
CTX-M-1 and SHV-12-producing in Slovenian raw chickenmeat
samples sold on the Swiss market (Zogg et al., 2016).

In Spain, the Spanish Veterinary Antimicrobial Resistance
Surveillance Network (VAV) monitored antimicrobial resistance
of Salmonella enterica in healthy broilers in 2003–2004: two
CTX-M-9 producers were isolated (Riaño et al., 2006). During
the same period, ESBL-producing E. coli were also detected
(Mesa et al., 2006; Moreno et al., 2007). Indeed, it seems
that early monitoring systems often targeted resistance in
Salmonella species, as these are common causative agents of
human infections of food of animal origin (Antunes et al., 2016).
Thereafter, as bacterial resistance became widely disseminated
in all environments (Stoll et al., 2012), researchers began to
think of poultry as a reservoir of resistance in enteric organisms.
For instance, Egea et al. found that the prevalence of retail
poultry meat colonized by CTX-M and/or SHV producing
E. coli increased from 62.5% in 2007 to 93.3% in 2010 (Egea
et al., 2012). During these three years, a significant increase
was observed at the level of A0 and D1 phylogroups. Egea
et al. suggested that the rise of meat colonization is muli-
clonal since only 2 strains from the main phylogroup detected
in this study showed genetic relatedness by PFGE typing.
Thus, it appears that the diffusion of ESBL producers in retail
chicken meat is related rather to successful spread of one or
several plasmids carrying the blaCTX-M and blaSHV genes
(Egea et al., 2012). Apart from E. coli, ESBL production in
the poultry production system in Spain was also detected in
Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis,
and Serratia fonticola (Ojer-Usoz et al., 2013). In parallel, CMY-
2 is the only AmpC beta-lactamase type reported in E. coli
originating from chicken in this country (Blanc et al., 2006;
Cortés et al., 2010; Solà-Ginés et al., 2015b). Apart from chicken,
one study in Spain reported the detection of CTX-M-1, CTX-
M-9, CTX-M-14 harboring E. coli strains in flies surrounding
chicken farms (Solà-Ginés et al., 2015a). For instance, the
detection of ESBL producers in flies reflects on one side the
contamination status of the farm housing environment; and
on the other side, it contributes to the colonization of other
broilers with ESBL producing E. coli strains (Solà-Ginés et al.,
2015a).

In Turkey, the first ESBL production in animals was
detected in K. pneumoniae and Klebsiella oxytoca in 2007–
2008 (Gundogan et al., 2011). In 2012–2014, E. coli producing
CTX-M-1, CTX-M-3, CTX-M-15, CTX-M-8 as well as SHV-
5 and SHV-12 were identified in raw chicken meat samples
in different areas across the country (Perrin-Guyomard et al.,
2016)-(Tekiner and Ozpinar, 2016). The A, D1 and D2
were the most common phylogroups detected. In the same
aforementioned study, ESBL was also detected in E. cloacae,
Citrobacter werkmanii, and K. pneumoniae (CTX-M-1) (Tekiner
and Ozpinar, 2016). Similarly, CMY-2 type beta-lactamase was
detected in E. coli (Pehlivanlar Onen et al., 2015) as well as
in E. cloacae (Tekiner and Ozpinar, 2016). In Lebanon, CTX-
M type beta-lactamase followed by CMY AmpC beta-lactamase
appear to dominate the Lebanese chicken farms (Dandachi et al.,
2018b). MLST typing of CTX-M positive E. coli strains revealed
the presence of different sequence types across the territory.
Furthermore, a significant resistance of ESBL producers toward
gentamicin was observed. The spread of ESBL producers in
Lebanon could be attributed in part to the co-selective pressure
applied by the heavy usage of gentamicin in the veterinary sector
as previously reported (Dandachi et al., 2018b). In Israel, only one
study showed the presence of CTX-M-producing E. coli of A, B,
and D phylogroups in liver samples of dead broiler chickens and
ready-to-market chicken meat (Qabajah et al., 2014).

Concerning Africa, ESBL was first detected in E. coli strains
isolated from foods of poultry origin in Tunisia in 2006. These
harbored SHV-5, CTX-M-8, CTX-M-14, and CTX-M-1 type
beta-lactamases (Jouini et al., 2007). It appears that in this
country, blaCTX-M-1 and blaCMY-2 are the dominant genes
responsible for ESBL and AmpC production in E. coli isolated
from chicken samples (Ben Slama et al., 2010; Ben Sallem
et al., 2012). This is in addition to blaCTX-M-15, blaCTX-M-
14 (Maamar et al., 2016), and blaCTX-M-9 that were detected
in E. coli isolated from the fecal samples of dead/diseased
chickens (Grami et al., 2014). ESBL genes in Tunisia appear
to be located on various plasmids carried by different E. coli
phylogroups. These include mainly IncI1 followed by IncF and
IncFIB (Table 2). blaCTX-M as well as CMYgenes in Tunisia
were found to be also associated to the ISEcp1 insertion sequence.
Furthermore, apart from the CMY gene, AmpC production in
E. coli strains in this country was found to be also mediated via
mutations in the promoter region of the chromosomal AmpC
gene (Ben Slama et al., 2010). In Algeria, CTX-M-like enzymes
were detected in E. coli (Mezhoud et al., 2015; Chabou et al., 2017)
as well as in other species such as ST15 Salmonella Heidelberg
(Djeffal et al., 2017). In their study, Djeffal et al. reported the
detection of the same sequence type “ST15” of Salmonella spp
isolated from both chicken and human. This emphasizes on the
hypothesis that the poultry production system could constitute
a potent contributor to the diffusion of multi-drug resistant
Salmonella in the human population (Djeffal et al., 2017). In
parallel, blaSHV-12 and CMY-2 genes were detected in E. coli
strains recovered from slaughtered broilers’ intestinal swabs
(Belmahdi et al., 2016).

In Egypt, E. coli producing CTX-M-15 and CMY-2 were
initially reported from blood samples from the hearts of

Frontiers in Microbiology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 2299126

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dandachi et al. Multi-Drug Resistance in Animals of the Mediterranean

septicemic broilers in 2011 (Ahmed and Shimamoto, 2013).
CTX-M-15 and CTX-M-14 were further detected in E. coli,
K. pneumoniae, K. oxytoca, and Enterobacter spp isolated from
chicken carcasses in the north of Egypt (Abdallah et al., 2015;
Ahmed and Shimamoto, 2015). E. coli isolates harboring SHV-12
have also been reported in Egypt; although they originated from
liver and heart samples of chickens affected with colibacillosis
(El-Shazly et al., 2017; Figure 1). Similarly to other countries
in the Mediterranean basin, ESBL producers in the Egyptian
poultry sector belong mainly to the A and B1 phylogroups
with the blaCTX-M genes being associated with ISEcp1
(Table 2).

Cattle and Sheep
Cattle and sheep are essential members of the human food and
agricultural system. For humans, cattle and sheep serve as a
source of meat and milk. In agriculture, their feces are commonly
used as manure for artificial fertilization (Nyberg et al., 2014). As
it is now widely recognized that animals’ intestines are a normal
habitat for wild type and resistant micro-organisms (Nelson
et al., 2013), it has been suggested that if resistant bacteria
contaminated animal manures are used without prior treatment,
there is a potential risk of transmitting this resistance to the
surrounding environment and to the human population (Hruby
et al., 2016). This transmission may occur through irrigation and

drinking water without treatment (Hruby et al., 2016) or through
animals grazing on contaminated lands (Bagge et al., 2009).

In France, the first identification of an ESBL producer in cattle
dates back to 2004 when E. coli strains harboring CTX-M-1 and
CTX-M-15 were isolated from cows (Meunier et al., 2006). E. coli
producing the CTX-M-15 type ESBL were later isolated from
the fecal sample of a dead calf (Valat et al., 2012) and from the
feces of cattle located in 10 different geographical areas in France
(Madec et al., 2012). In the aforementioned study, CTX-M-15
was carried on IncI1 plasmids but also on F31:A4:B1/IncFII and
F2:A–:B–/IncFII plasmids which has been extensively reported
in humans (Madec et al., 2012). Although CTX-M-15 appears
to be dominant in French cattle, other ESBL types were also
reported in E. coli (Hartmann et al., 2012) and Klebsiella species
(Dahmen et al., 2013b; Haenni et al., 2014a) such as CTX-M-
1, CTX-M-14, CTX-M-9, CTX-M-2, CTX-M-32, CTX-M-57,
CTX-M-3 (Dahmen et al., 2013b; Haenni et al., 2014a), and
TEM-71(Hartmann et al., 2012). These latter were carried by
E. coli strains of different sequence types such as ST23, ST58,
ST10, ST45, ST88, ST2210, ST2212-ST2215, ST2497, and ST2498
(Table 1); no epidemic clones such as ST101 were detected.
Moreover, two studies in France detected AmpC-producing
E. coli in calves. In both, AmpC beta-lactamase production was
suggested as being due to highly conserved mutations in the
promotor/attenuator region and to an over-expression of the

FIGURE 1 | Geographical distribution of ESBLs and their correspondent animal hosts in the Mediterranean Basin. N.B: only SHV and TEM genes confirmed by

sequencing as ESBL were included.
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TABLE 1 | Non Beta-lactam resistance in MDR of animal origin vs. antibiotic consumption in the Mediterranean Basin.

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Algeria Poultry E. coli (17) CTX-M (17) CMX,NAL,SXT Unknown Mezhoud et al., 2015

Poultry E. coli (16) CTX-M (2), SHV (14),

CMY (4)

AMK, CIP, KAN, NAL, STR,

TOB

Belmahdi et al., 2016

Poultry Salmonella spp (11) CTX-M (11) CIP Djeffal et al., 2017

Cattle A. baumannii (1) NDM (1) CIP Chaalal et al., 2016;

Yaici et al., 2016

Cattle E. coli (4) NDM (4), CTX-M (4),

CMY (4),

Yaici et al., 2016

Birds E. coli (11) CTX-M (11) CIP, NAL, NEO SXT, TET, Meguenni et al., 2015

Birds A. baumannii (4) OXA (4) Morakchi et al., 2017

Dogs E. coli (1) NDM (1) FLU, TET Yousfi et al., 2015

Dogs E. coli (15) CTX-M (13), SHV (3) CIP, GEN, NAL, SUL, SXT,

TET, TMP, TOB

Yousfi et al., 2016b

Dogs E. coli (3) CTX-M (1), CMY (1),

NDM (1), OXA-48 (2)

GEN, CIP, NAL, SXT, TEM,

TOB,

Yousfi et al., 2016a

Cats E. coli (2) CMY (1), OXA-48 (2) CIP, GEN, NAL, SXT, TEM,

TOB

Yousfi et al., 2016a

Cats E. coli (5) CTX-M (5) CIP, NAL, SUL, SXT, TET,

TMP, TOB

Yousfi et al., 2016b

Fish E. coli (22) CTX-M (16), TEM (6) AMK, CIP, CMX, GEN, KAN,

NAL, NET, OFX

Brahmi et al., 2016

Fish A. baumannii (2) OXA-23 (2) CIP, GEN, KAN, SXT Brahmi et al., 2016

Macaques K. pneumoniae (7) CTX-M (7) CIP, FOS, GEN, SXT Bachiri et al., 2017

Wild Boars E. coli (30) CTX-M (30) AMK, CIP, FOS, GEN, SXT,

TET

Bachiri et al., 2017

K. pneumoniae (10) CTX-M (10)

Tunisia Poultry E. coli (13) CTX-M (12), CMY (1) CIP, CHL, GEN, NAL, SXT,

SUL, STR, TET

Streptomycin, Tetracycline,

Sulphonamides,

Trimethoprim

Ben Slama et al., 2010;

Ben Sallem et al., 2012

Poultry E. coli (67) CTX-M (42), CMY (24) AMK, GEN, NAL, NOR,

SXT, TET

Mnif et al., 2012

Poultry E. coli (16) CTX-M (16) NAL, SXT, STR, SUL, TET Kilani et al., 2015

Poultry E. coli (7) CTX-M (7) NAL, STR, TET, SUL, TMP Grami et al., 2013

Poultry E. coli (10) CTX-M (8), TEM (1),

CMY (2)

NAL, SXT, SUL, TET, STR Ben Sallem et al., 2012

Poultry E. coli (48) CTX-M (35), CMY (13) AMK, CIP, GEN, MIN, NAL,

SXT, TET

Maamar et al., 2016

Poultry E. coli (5) CTX-M (4), SHV (1) Jouini et al., 2013

Cattle E. coli (1) CTX-M (1) GEN, TOB, TET Grami et al., 2014

Beef E. coli (1) CTX-M (1) CIP, NAL, SXT, SUL, TET Ben Slama et al., 2010

Beef E. coli (5) CTX-M (5) CHL, GEN, STR, SUL, SXT,

TET, TOB

Jouini et al., 2013

Sheep E. coli (3) CTX-M (5), TEM (1) CIP, GEN, NAL, SXT, SUL,

STR, TET

Ben Slama et al., 2010

Dogs E. coli (6) CTX-M (6) CHL, ENR. GEN, KAN,

NAL, NET, SUL, STR, TET,

TMP, TOB

Grami et al., 2013

Dogs E. coli (6) CTX-M (5), CMY (1) CIP, NAL, SXT, STR, SUL,

TET

Sallem et al., 2013

Cats E. coli (1) CTX-M (1) NAL, STR, SUL, TET, TMP, Grami et al., 2013

Cats E. coli (8) CTX-M (8) CIP, KAN, NAL, STR, SXT,

SUL, TET

Sallem et al., 2013

Dromedaries E. coli (1) CTX-M (1) SUL, TET Ben Sallem et al., 2012

(Continued)
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TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Egypt Poultry E. coli (18) CTX-M (7), CMY (11) CHL, CIP, KAN, NAL, SPX,

STR, SXT, TET

Fluoroquinolones,

Tetracyclines,

Aminoglycosides,

Cefotaxime

Ahmed and

Shimamoto, 2013;

Dahshan et al., 2015

Poultry E. coli (9) CTX-M (2), SHV (1),

TEM (1), CMY (1)

CIP, CMX, DOX, GEN, STR El-Shazly et al., 2017

Poultry K. pneumoniae (15) NDM (15), KPC (14),

OXA (12)

- Hamza et al., 2016

Poultry K. pneumoniae (11) ,

K. oxytoca (1)

NDM (12) Abdallah et al., 2015

E. coli (8) CTX-M (8)

K. pneumoniae (40) CTX-M (40)

K. oxytoca (2) CTX-M (2)

Enterobacter spp (9) CTX-M (9)

Cattle E. coli (112) CTX-M (106), OXA (6) FOS, FLU, CMX, CHL, MLS,

TET,

Tetracycline, quinolones Braun et al., 2016

Cattle E. coli (8) CTX-M (2), SHV (5),

CMY (1)

NAL, SXT, STR, TET Ahmed et al., 2009

Beef E. coli (4) CTX-M (1), SHV (1),

CMY (2)

CHL, CIP, GEN, KAN, NAL,

SPX, STR, SXT, TET

Fluoroquinolones Ahmed and

Shimamoto, 2015

Cats E. coli (5) CTX-M (5) Abdel-Moein and

Samir, 2014

Dogs E. coli (11) CTX-M (11) Abdel-Moein and

Samir, 2014

K. pneumoniae (3) CTX-M (3)

P. mirabilis (1) CTX-M (1)

Palestine Cattle E. coli (287) CTX-M (287) SXT, STR, TET Chlortetracycline,

doxycycline,

Norfloxacin, Cephalexin,

Ceftiofur,

Sulfa agents, Gentamicin,

Monensin

Adler et al., 2015

K. pneumoniae (4) SHV (4) CHL, CIP, GEN

Poultry E. coli (9) CTX-M (9) Qabajah et al., 2014

Lebanon Poultry E. coli (217),

K. pneumoniae (8),

P. mirabilis (3),

E. albertii (2),

E. fergusonii (1),

E. cloacae (3),

CTX-M, CMY CIP, GEN, SXT Gentamicin, Tetracyclines Dandachi et al., 2018a

Cattle E. coli (27) CTX-M (27) CHL, ENR, GEN, KAN,

NAL, STR, SUL, TET, TMP

Penicillin G - Streptomycin,

Ampicillin,

Amoxicillin Oxytetracycline,

Gentamicin,

Gundogan et al., 2011;

Diab et al., 2016

Fowl A. baumannii (1) OXA-48 (1) AMK, GEN, TOB Unknown Al Bayssari et al.,

2015b

Horse A. baumannii (1) OXA-143 (1) Rafei et al., 2015

Rabbit A. pitii (1) OXA-24 (1)

Turkey Poultry CTX-M (60), SHV (4),

CMY (18)

CHL, KAN, NAL, STR, SUL,

TET, TMP

Tetracycline, Quinolones Politi et al., 2005;

Pehlivanlar Onen et al.,

2015

Cattle E. coli (3) CTX-M (2), CMY (1) NAL, SXT, STR, TET

(Continued)
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TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Poultry E. coli (15) CTX-M (15) Tekiner and Ozpinar,

2016

Cattle E. coli (19) CTX-M (19)

Croatia Mussel Aeromonas. Caviae

(25)

CTX-M (11), SHV (11),

FOX (3)

Tetracycline, Amphenicol,

Penicillins,

Sulfonamides,

Trimethoprim,

Fluoroquinolones,

Aminoglycosides,

Polymixins

Maravić et al., 2013;

EMA/ESVAC, 2014

A. Hydrophila (8) CTX-M (8), SHV (2)

Greece Poultry Salmonella enteric (2) CTX-M (2) CHL, KAN, STR, SUL, TMP,

TET

Unknown Politi et al., 2005

Dogs E. coli (8) CMY (8) FLU Vingopoulou et al.,

2014

Slovenia Poultry E. coli (6) CTX-M (2), SHV (4) GEN, NAL, STR, SUL Ceftiofur Chiaretto et al., 2008

Italy Poultry,

Cattle, Swine

Tetracyclines, Amphenicol,

Penicillins,

3rd/4th Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Aminoglycosides,

Polymixins, Pleuromutilins,

Tylosin, Flumequine,

Poultry E. coli (8) CTX-M (7), SHV (1), CIP Giufrè et al., 2012

Poultry E. coli (60) CTX-M (45), CIT-like

(15)

CIP, GEN, SXT, TET Ghodousi et al., 2015

Poultry E. coli (67) CTX-M (24), SHV (43) CIP, NAL, SUL, TMP, TET Bortolaia et al., 2010

Poultry Salmonella spp (12) SHV (12) GENT, NAL, SUL, STR, TET Chiaretto et al., 2008

Poultry Salmonella infantis (30) CTX-M (30) CIP, NAL, SUL, TMP, TET Franco et al., 2015

Swine Salmonella infantis (2) CTX-M (2)

Cattle K. ozaenae (5) CTX-M (5), TEM (1) Stefani et al., 2014

Swine E. coli (15) CTX-M (10), TEM (7)

Dogs K. oxytoca (2) SHV (2), DHA (2) CIP, GEN, KAN, STR, SUL,

TET, TMP

Donati et al., 2014

K. pneumoniae (11) CTX-M (11), SHV (5),

DHA (1)

CIP, GEN, KAN, NAL, TET,

TMP

Dogs K. pneumoniae (1) CTX-M (1), SHV (1) CIP, LEV Bogaerts et al., 2015

E. coli (1) CMY (1) CIP, LEV

Cats K. oxytoca (2) CTX-M (2) CIP, SUL, TMP, TET Donati et al., 2014

K. pneumoniae (4) CTX-M (2), SHV (2),

DHA (1), CMY (1)

CIP, KAN, NAL, SUL, TET,

TMP

Cats E. coli (7) CTX-M (7), CMY (2) CHL, ENR, GEN, NAL, NIT,

SPX, STR, SUL, TET, TMP.

Nebbia et al., 2014

France Poultry,

Cattle, Swine

Tetracycline, Amphenicol,

Penicillins,

1st/2nd/3rd/4th

Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Aminoglycosides,

Polymixins, Pleuromutilins

EMA/ESVAC, 2014

(Continued)
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TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Cattle E. coli (26) CTX-M (21), TEM (5) CHL, GENT, SXT Hartmann et al., 2012

Cattle E. coli (3) CTX-M (3) CHL, ENR, FFC, GEN, KAN,

NAL, STR, SUL, TET, TMP

Meunier et al., 2006

Cattle A. baumannii (9) OXA-23 (9) FOS, KAN, TET Poirel et al., 2012

Cattle E. coli (9) CTX-M (9) CHL, ENR, GEN, KAN,

NAL, NET, OFX, STR, SUL,

TET, TOB, TMP

Madec et al., 2012

Cattle E. coli (5) CTX-M (5) APR, CHL, ENR, GEN,

KAN, NAL, NET, OFX, STR,

SUL, TET, TOB, TMP

Dahmen et al., 2013b

K. pneumoniae (1) CTX-M (1)

Sheep K. pneumoniae (3) CTX-M (3), DHA (3) NAL, SUL, SXT, TET Poirel et al., 2013

E. fergusonii CTX-M (1)

Veal calves E. coli (147) CTX-M (147) APR, CHL, ENR, FFC, GEN,

KAN, NAL, NET, SUL, STR,

TET, TOB, TMP

Haenni et al., 2014a

K. pneumoniae (3) CTX-M (2), SHV (1) FLU, SUL, STR, TET, TMP

Swine E. coli (3) CTX-M (3) CHL, NAL, STR, SUL, TET,

TMP

Meunier et al., 2006

Dog E. cloacae (11) CTX-M (10), SHV (1) FLU, GEN, KAN, QUI, TET,

SUL, STR, TMP

Haenni et al., 2016c

Dog E. coli (47) CTX-M (47), CMY (24) CHL, GEN, KAN, STR, TOB

ENR, FFC, NAL, NET, OFX,

SUL, TET, TMP

Haenni et al., 2014a

Dog E. coli (9) CTX-M (8), TEM (1) GEN, SUL, TET Poirel et al., 2013

K. pneumoniae (8) CTX-M (8), DHA (1) GEN, NAL, SUL, SXT, TET

K. oxytoca (2) CTX-M (2)

Dog P. mirabilis (14) CTX-M (1), CMY (7),

DHA (2), VEB (6)

APR, CHL, ENR, GEN,

KAN, NAL, NET, STR, SUL,

TOB, TMP

Schultz et al., 2017

Dog A. baumannii (2) OXA-23 (2) CIP, SXT Hérivaux et al., 2016

Dog E. coli (3) CMY (2), OXA-48 (1) GEN, NAL Melo et al., 2017

Cat A. baumannii (1) OXA-23 (1) GEN, NAL, SUL, STR, TET Ewers et al., 2016

Cat K. pneumoniae (3) CTX-M (3), DHA (3) NAL, SUL, SXT, TET Unknown Poirel et al., 2013

E. coli (3) CTX-M (3) GEN, SUL, TET Unknown

Cat P. mirabilis (1) CMY (1) ENR, NAL, SUL, TMP Schultz et al., 2017

P. rettgeri (1) CTX-M (1) ENR, NAL, SUL, TMP

Cat E. coli (2) CTX-M (2) STR, TMP Melo et al., 2017

Cat E. cloacae (11) CTX-M (10), SHV (1) FLU, GEN, KAN, QUI, SUL,

STR, TET, TMP

Haenni et al., 2016c

Companions E. coli (19) CTX-M (19) CIP, NAL, SUL, STR, TET Dahmen et al., 2013a

Hedgehog E. coli (1) CTX-M (1), DHA (1) NAL, SUL, SXT, TET Unknown Poirel et al., 2013

Tawny Owl E. coli (1) CTX-M (1)

Domestic

goose

E. coli (1) CTX-M (1)

Rock Pigeon E. coli (1) CTX-M (1)

Horse E. cloacae (14) CTX-M (8), SHV (6) FLU, GEN, KAN, QUI, SUL,

STR, TET, TMP

Haenni et al., 2016c

Horse P. mirabilis (14) VEB (2) ENR, CHL, KAN, NAL, NET,

SUL, STR, TOB, TMP

Unknown Schultz et al., 2017

(Continued)
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TABLE 1 | Continued

Country Animal host Species (number) blagene Type

(number)

Non beta-lactam

Resistance

Antibiotic usage References

Spain Poultry,

Cattle, Swine

Tetracycline, Amphenicol,

Penicillins, 3rd/4th

Cephalosporins,

Sulfonamides,

Trimethoprim, Macrolides,

Lincosamides,

Fluoroquinolones,

Quinolones,

Aminoglycosides,

Polymixins, Pleuromutilins

Abreu et al., 2014;

EMA/ESVAC, 2014

Poultry E. coli (64) CTX-M (44), SHV (6),

TEM (2), CMY (13)

CHL, CIP, FUR, GEN, KAN,

NAL, SUL, SXT, TET, TOB,

TMP

Blanc et al., 2006

Poultry S. enterica (2) CTX-M (1), SHV (1) NAL, SXT, STR, SUL, TET, Riaño et al., 2006

Poultry E. coli (116) CTX-M (116) CIP, NAL, SXT Abreu et al., 2014

Poultry E. coli (11) CTX-M (6), SHV (2),

CMY (2)

CHL, CIP, FFC, GEN, KAN,

NAL, STR, SUL, TET, TMP

Solà-Ginés et al.,

2015b

Poultry E. coli (50) CTX-M (40), CMY (10) NAL Cortés et al., 2010

Poultry E. coli (62) CTX-M (20), SHV (42) CIP, NAL Egea et al., 2012

Swine E. coli (20) CTX-M (20) Solà-Ginés et al.,

2015b

Swine S. enteric (1) SHV (1) SUL, STR, TET Riaño et al., 2006

Swine E. coli (39) CTX-M (27), SHV(12) CIP, CHL, FUR, GEN, KAN,

NAL, SUL, SXT, TET, TMP,

TOB

Blanc et al., 2006

Swine E. coli (20) CTX-M (8), SHV (12) APR, CIP, GEN, NAL, STR,

SUL, TET, TMP

Escudero et al., 2010

Dog E. coli (1) SHV (1) CHL, CIP, NAL, SUL, TET,

TMP

Teshager et al., 2000

Dog E. coli (1) CMY (1) Bogaerts et al., 2015

P. mirabilis (2) CMY (2) DOX, MIN

Dog K. pneumoniae (2) CTX-M (1), VIM (1),

DHA (1)

González-Torralba

et al., 2016

E. cloacae (1) SHV (1)

Deer E. coli (1) CTX-M (1) CIP, CHL, NAL, SXT, TET Unknown Alonso et al., 2016

Rabbit E. coli (1) CMY (1) Unknown Blanc et al., 2006

E. cloacae (3) CTX-M (3)

*APR, refers to apramycin; AMK, amikacin; CIP, ciprofloxacin; CHL, chloramphenicol; CMX, co-trimoxazole; DOX, doxycycline; ENR, enrofloxacin; FFC, florfenicole; FLU, fluoroquinolones;

FOS, fosfomycin; FUR, furazolidone; GEN, gentamicin; KAN, kanamycin; LEV, levofloxacin; MIN, minocycline; MLS, Macrolides; NAL, nalidixic acid; NET, netilmicin; NIT, nitrofurantoin;

NOR, norfloxacin; OFX, oxofloxacin; QUI, quinolones; SPX, spectinomycin; SXT, trimethoprim-sulfamethoxazole; TEM, temocillin; TET, tetracycline; TMP, trimethoprim; TOB, tobramycin.

chromosomal AmpC gene, respectively (Haenni et al., 2014a,c).
In sheep, only one study was conducted in France in which one
CTX-M-1 E. fergusonii and three K. pneumonia harboring both
blaCTX-M-15 and DHA genes were detected (Poirel et al., 2013).
The three K. pneumoniae were co-resistant to nalidixic acid,
sulfonamides, trimethoprim-sulfamethoxazole and tetracycline
and belonged to the same sequence type ST274. In Spain, ESBL-
producing Gram-negative bacilli were isolated from beef samples
collected from different geographical locations (Doi et al., 2010;
Ojer-Usoz et al., 2013). In Italy, Stefani et al. reported the isolation
of five Klebsiella ozaenae harboring CTX-M-1, CTX-M-1/TEM-
24 and CTX-M-15 ESBL types from cattle (Stefani et al., 2014).

In Turkey, a study conducted in 2007–2008, showed the
presence of ESBL-producing K. pneumoniae and K. oxytoca in

raw calf meat (Gundogan et al., 2011). Later on, CTX-M-3 and
CTX-M-15 harboring E. coliwere isolated from beef samples sold
in a market in the south of Turkey (Conen et al., 2015). Recently,
a study conducted by Tekiner et al. reported the isolation of
ESBL-producing E. coli, E. cloacae, and Citrobacter brakii from
raw cows’ milk collected from different cities of Turkey. In these
areas, CTX-M-1 was dominant (Tekiner and Ozpinar, 2016). In
Lebanon the situation differs, in that unlike Turkey but similarly
to other Mediterranean countries, blaCTX-M-15, blaSHV-12,
and blaCTX-M-14 are the dominant ESBL genes prevailing in
E. coli in the Lebanese cattle (Diab et al., 2016). In this latter
study, various sequence types were detected. Of special interest is
the detection of ST10. ST10 was heavily reported in the literature
as being shared between animal and human isolates all over
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the world: Chile (Hernandez et al., 2013), Denmark (Huijbers
et al., 2014), Vietnam (Nguyen et al., 2015), Germany (Belmar
Campos et al., 2014). Indeed, it has been suggested that ST10
became associated with the production and dissemination not
only of CTX-M-type ESBLs but also ofmcr-1 in animals, humans
and environment (Monte et al., 2017). In Israel, Adler et al.
reported the identification of CTX-M-1/CTX-M-9 and SHV-
12 beta-lactamase producing E. coli and K. pneumoniae strains
respectively, which were isolated from cattle farms situated in the
main farming locations across the country (Adler et al., 2015).

In Egypt, SHV-12 (Ahmed et al., 2009) in addition to CTX-M-
1/15 and CTX-M-9 were detected in E. coli strains isolated from
cattle (Braun et al., 2016). On study targeting raw milk samples
reported the detection of SHV-12 /CTX-M-3, in addition to
CMY-2-producing E. coli strains (Ahmed and Shimamoto, 2015).
In Tunisia, E. coli strains producing CTX-M-1 and TEM-20 were
isolated from beef and sheep situated in different areas across the
country (Jouini et al., 2007; Ben Slama et al., 2010). Furthermore,
blaCTX-M-15 was detected in an ST10 E. coli isolate recovered
from the milk sample of cattle affected with mastitis (Grami et al.,
2014). Similarly, In Algeria, Yaici et al. reported the detection of
four ST1284 E. coli strains carrying CTX-M-15, CMY-42, and
NDM-5 in raw milk samples (Yaici et al., 2016).

Swine
Meat from pigs is used by humans for consumption and their
feces are used asmanure for land fertilization. Studies have shown
that antibiotics are usually detected in higher concentrations in
pig manures compared to that of other farm animals (Hou et al.,
2015). This finding reflects high and uncontrolled antimicrobial
usage in swine farms (Woolhouse et al., 2015). Heavy antibiotic
usage creates a selective pressure that contributes to the
emergence and spread of bacterial resistance; in this regard, pigs
are suggested as a potential source of resistant bacteria.

Reports concerning the prevalence of ESBL of swine origin in
the Mediterranean area are very scarce with the majority being
reported from Spain where a blaSHV-12 positive Salmonella
enterica was isolated in the early 2000s (Riaño et al., 2006).
Furthermore, CTX-M-grp-9 (Doi et al., 2010; Ojer-Usoz et al.,
2013), SHV-5 and CTX-M-grp-1 carried by A phylogroup E. coli
strains and SHV-12 carried by B1 E. coli and blaSHV-5 were
detected (Blanc et al., 2006; Cortés et al., 2010). One study
conducted in 13 different Spanish provinces found seven AmpC-
producing E. coli. In these cases, AmpC production was due to
a mutation in the promoter region of the chromosomal AmpC
gene (Escudero et al., 2010). In Italy, TEM-52, CTX-M-1, CTX-
M-15, and CTX-M-1/TEM-201 carrying E. coli were reported in
pigs (Stefani et al., 2014). Franco et al. reported also the presence
of Salmonella infantis carrying CTX-M-1 in swine (Franco et al.,
2015). In France, only one study conducted at the beginning of
the Twenty-first century reported the detection of CTX-M-1-
producing E. coli strains in pigs (Meunier et al., 2006). Similarly
to what is widely observed in the Mediterranean basin, the CTX-
M-1 was associated with the insertion sequence ISEcp1(Meunier
et al., 2006). In Algeria, CTX-M-15 harboring E. coli and
K. pneumoniae strains were isolated in 2014 from wild boars
(Bachiri et al., 2017). MLST typing showed the K. pneumoniae

belongs to the ST584 while on the other hand several sequence
types (ST617, ST131, ST648, ST405, ST1431, ST1421, ST69,
ST226) were observed among E. coli strains (Bachiri et al., 2017).
The aforementioned study was the only one to investigate the
epidemiology of ESBL-producing Gram-negative bacilli in the
African and Asian countries lining the Mediterranean Sea.

Companion Animals
Unlike food producing animals, companion animals are not used
as consumption source of human food, nor are their feces used
as manure for land fertilization. Instead, these animals are kept
for the individual’s protection, entertainment and company. The
number of companion animals has significantly increased in
modern society in recent decades (Pomba et al., 2017). Despite
regular close contact with people, little attention has been given to
the prevalence of antimicrobial resistance in these animals (Scott
Weese, 2008). The close contact between companion animals
such as dogs, cats, and horses and their owners makes the
transmission of resistant organisms more likely to occur (Dierikx
et al., 2012). As such, it is essential to investigate the prevalence of
resistant bacteria in companion animals as well as to identify the
possible risk factors for the transmission of resistant organisms to
humans (Rubin and Pitout, 2014).

In the Mediterranean basin, the first detection of ESBL in
companion animals was in Spain where an E. coli harboring
SHV-12 was isolated from a dog with a urinary tract infection
(Teshager et al., 2000). Subsequently, between 2008 and 2010,
three strains carrying CMY-2 (one ST2171 E. coli and two
P. mirabilis) were recovered from dogs infected with respiratory,
urinary tract and skin and soft tissue infections, respectively
(Bogaerts et al., 2015). In all three strains, the CMY-2 genes were
associated with the ISEcp1. More recently, one K. pneumoniae
and one E. cloacae producing CTX-M-15/DHA and SHV-12,
respectively, were isolated from the fecal swabs of healthy dogs
in this same country (González-Torralba et al., 2016).

In Italy, a study conducted by Donati et al. on 1,555
dog samples of clinical cases and necropsy specimens with
suspicious bacterial infections, between the center and the north
of Italy found two K. oxytoca harboring SHV-12/DHA-1 and
11 K. pneumoniae carrying the following genes: blaCTX-M-
15 (six strains), blaCTX-M-15/DHA-1, blaCTX-M-15/SHV-28,
blaCTX-M-1/SHV-28, and blaCTX-M-1 (Donati et al., 2014). In
this same study, 429 cats’ samples were also investigated revealing
the presence two K. oxytoca producing CTX-M-9 and four
K. pneumoniae producing CTX-M-15 (two isolates), CTX-M-
15/ DHA-1 and SHV-28/CMY-2 beta-lactamases (Donati et al.,
2014). The beta-lactamase and AmpC genes in K. oxytoca strains
isolated from dogs and cats were located on different plasmid
types: IncL/M versus IncHI2 respectively. This is unlike the
K. pneumoniae strains where the blaCTX-M-15 was localized on
the same plasmid IncR and both strains in dogs and cats shared
the same ST340. ST15 and ST101 were also common between
dogs and cats in this study. ST15 and ST101 are among the most
international clones carrying ESBL as well as carbapenemase
genes which became highly detected recently worldwide (Donati
et al., 2014). Another study conducted reported the detection of
CTX-M-1-producingK. pneumoniaewas further reported from a
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dog with urinary tract infection and an E. coli carrying the CMY-
2 type beta-lactamase associated to ISEcp1 also in a diseased cat
with a urinary tract infection (Bogaerts et al., 2015). Infections in
pets with E. coli strains carrying CTX-M-14 (three isolates), CTX-
M-15, CTX-M-1, and CTX-M-14/CMY-2 (two isolates) were also
reported in Italy (Nebbia et al., 2014). The strains also showed
different sequence types and phylogroups (A “ST3848, ST3847,”
B2 “ST131, ST155, ST555, ST4181,” B1 “ST602”) emphasizing
that apparently the dissemination of ESBL and AmpC beta-
lactamase producers is most likely due to the successful spread
of various plasmids carrying these resistance genes (Nebbia et al.,
2014).

In France, the highest number of studies addressing the
prevalence of extended-spectrum-cephalosporin resistance in
companion animals in the Mediterranean was conducted. In
dogs, CTX-M-grp 1 (CTX-M-1, CTX-M-15, CTX-M-3, CTX-
M-32) and CTX-M-grp 9 in addition to CMY-2 and TEM-52
prevail in E. coli (Dahmen et al., 2013a; Poirel et al., 2013;
Haenni et al., 2014b; Bogaerts et al., 2015; Melo et al., 2017).
These genes were mostly carried on IncI1, IncFII, and IncHI2
plasmid types and were harbored by strains of different sequence
types and phylogroups. Furthermore, K. pneumoniae isolated
from dogs showed to produce the CTX-M-15, CTX-M-32, SHV-
12, and DHA-1 have been reported (Poirel et al., 2013; Haenni
et al., 2014b). In parallel, P. mirabilis showed to produce CMY-2,
DHA-16, VEB-6, and CTX-M-15 have been described (Schultz
et al., 2017) and E. cloacae the CTX-M-15, CTX-M-14, CTX-
M-3, and SHV-12 have been identified (Haenni et al., 2016c).
In addition, CTX-M-15 and CMY-2 were also decribed in K.
oxytoca and Salmonella enterica, respectively isolated from dogs
in this same country (Poirel et al., 2013; Haenni et al., 2014b). On
the other hand, in cats, the following distribution was observed:
in E. coli (CTX-M-1, CTX-M-15, CTX-M-32, CTX-M-3, CTX-
M-14) (Poirel et al., 2013; Melo et al., 2017), in K. pneumoniae
(CTX-M-15/DHA) (Poirel et al., 2013), in E. cloacae (CTX-M-
15, SHV-12) (Haenni et al., 2016c), in P. mirabilis (CMY-2)
and in Proteus rettgeri (CTX-M-1) (Schultz et al., 2017). The
dissemination of extended-spectrum-cephalosporin resistance in
companion animals in France necessitates studies addressing the
risk factors responsible for the acquisition of these strains in pets
as well as novel approaches to control the spread of resistance
in these animals. Furthermore, the contribution of the pet
animals to the spread of resistance in the common population in
France should be also investigated. Moreover, France is the only
Mediterranean country in which studies reporting ESBL and/or
AmpC-producing bacteria in horses are available. Between 2010
and 2013, E. cloacae harboring CTX-M-15, CTX-M-1, and SHV-
12 were isolated from clinical samples of horses. These genes
were located on IncHI2 and IncP plasmids and were harbored by
strains of various sequence types such as ST127, ST372, ST145,
ST114, ST135, ST118, ST268, ST107 (Haenni et al., 2016c). Later
on, VEB-6 carrying P. mirabiliswere isolated from healthy horses
(Schultz et al., 2017). In Greece, CMY-2 carried on IncI1 plasmid
and harbored by ST212 E. coli strains were isolated from diseased
canines in 2011 (Vingopoulou et al., 2014). More recently, a
study conducted in Greek households revealed the detection of
extended-spectrum-cephalosporin-resistant E. coli isolates. The

strains presented with different sequence types including the
human pandemic ST131 clone which suggests a possible from
humans to animals and vice-versa (Liakopoulos et al., 2018).

In Egypt, CTX-M beta-lactamases have been detected in E. coli
recovered from cats’ rectal swabs. In this same study, CTX-M-
producing E. coli, K. pneumonia, and P. mirabilis were isolated
from dogs (Abdel-Moein and Samir, 2014). In Algeria, only one
study reported the detection of E. coli strains carrying blaCTX-
M-1, blaCTX-M-15 in cats and blaCTX-M-1, blaCTX-M-15,
blaSHV-12 in dogs (Yousfi et al., 2016b). In Tunisia, CTX-M-1
carrying E. coli were isolated from cats; while from dogs CTX-
M-1, CTX-M-15, and CMY-2-producing E. coli were detected
(Grami et al., 2013; Sallem et al., 2013). CTX-M-1 was mostly
carried on IncI1 plasmid whereas CTX-M-15 on IncFII (Grami
et al., 2013). The blaCTX-M-1 and CMY-2 genes were also found
associated with the ISEcp1. Indeed it appears that the insertion
sequence ISEcp1 might be also responsible for the dissemination
of CMY-2 AmpC genes apart from the blaCTX-M ones.

Wild Birds and Domestic Animals
Besides companion and food producing animals, scattered
reports exist on the isolation of ESBL from domestic animals
such as wild birds and dromedaries in the Mediterranean. For
instance, CTX-M-producing E. coli was isolated from wild birds
in Algeria (Meguenni et al., 2015), Turkey (Yilmaz andGuvensen,
2016), blaCTX-M-1 in addition to blaCTX-M-15 carrying E.
cloacae in France (Bonnedahl et al., 2009). Furthermore, in
France, CTX-M-1 and CTX-M-15 were detected in ST93, ST124,
and ST10 E. coli strains recovered from tawny owls/rock pigeons
and domestic geese, respectively. In addition, a CTX-M-15/DHA-
producing ST274 K. pneumoniae was isolated from a hedgehog
living in the same city (Poirel et al., 2013). Rooks carrying CTX-
M-14 type ESBL in E. coli have been described in Italy and
Spain (Jamborova et al., 2015). Furthermore, in Spain, E. coli
and K. pneumoniae harboring CTX-M-14, CTX-M-1, CTX-M-
32, CTX-M-9, CTX-M-15, CTX-M-14b, CTX-M-3, and CTX-
M-8 were recovered from the fecal samples of gulls (Stedt et al.,
2015). In rabbits, CMY-2-producing E. coli and CTX-M-14,
CTX-M-9-producing E. cloacae were isolated (Blanc et al., 2006;
Mesa et al., 2006). More recently, blaCTX-M-1 was identified
in E. coli isolated from the fecal sample of a deer living in
the Los Alcornocales natural park in southern Spain (Alonso
et al., 2016). In Algeria, blaCTX-M-15 and blaCTX-M-9 genes
were detected in E. coli isolated from the gut and gills of
fish caught in the Mediterranean across Bejaia city (Brahmi
et al., 2016). In this study, it has been suggested that the
presence of beta-lactamase producers is due to contamination
of the fish from river water and the rising amount of untreated
waste that is released into the Mediterranean Sea from the
agricultural as well as the industrial operations (Brahmi et al.,
2016). These findings emphasizes on the importance of the
natural environment in the dissemination of resistance from
humans to animals and vice versa. Furthermore, Bachiri et al.
also reported the detection of CTX-M-15-producing ST584
K. pneumoniae in Barbary macaques situated in national parks
in the north of Algeria (Bachiri et al., 2017). In both Tunisia
and Egypt, CTX-M beta-lactamases were detected in E. coli
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and Pseudomonas aeruginosa recovered from dromedaries and
camels, respectively (Ben Sallem et al., 2012; Elhariri et al., 2017).
In Croatia, the only study investigating the prevalence of ESBL
in animals was conducted in 2009–2010 in mussels caught in the
Adriatic Sea. In this study, 18 Aeromonas species carrying SHV-
12, CTX-M-15, FOX-2, and PER-1 were identified (Maravić et al.,
2013).

Prevalence of Carbapenemase Producers
in Livestock and Domestic Animals
Carbapenems are beta-lactam antibiotics often considered as
the last resort antimicrobial agent against multi-drug resistant
organisms (Temkin et al., 2014). Carbapenems are active against
ESBL and AmpC-producing Gram negative bacilli. Due to the
wide dissemination of multi-drug resistant organisms, these
antimicrobials recently became heavily used in human medicine.
As a result, the emergence of carbapenem resistance has
accelerated and it is now a normal phenomenon encountered
in hospital settings and, to a lesser extent, community settings.
The production of hydrolyzing enzymes called “carbapenemases”
is one of the mechanisms by which carbapenem resistance is
mediated in Gram negative bacilli. These include (a) class A
carbapenemases (KPC, GES, SME, IMI, NMC-A), (b) class B
metallo beta-lactamases “MBL” (NDM, VIM, IMP and TMB),
and (c) class D oxacillinases (Martínez-Martínez and Gonzalez-
Lopez, 2014).

In the Mediterranean basin, in Egypt, OXA-48 and OXA-
181 carbapenemases were detected in E. coli strains recovered
from dairy cattle farms (Braun et al., 2016). In the poultry
production system, one study reported the isolation of K.
pneumonia and K. oxytoca harboring NDM metallo beta-
lactamases (Abdallah et al., 2015). Another study described
the identification of K. pneumoniae carrying OXA-48, NDM
and KPC type carbapenemases. Isolated strains were recovered
from the liver, lungs, and trachea of broiler chicken (Hamza
et al., 2016). In Algeria, NDM-1 and NDM-5 were observed,
respectively, in ST85 Acinetobacter baumannii and ST1284 E. coli
originating from raw milk in the west and north of the country
(Chaalal et al., 2016; Yaici et al., 2016). In E. coli, NDM-5 was
located on an IncX3 plasmid (Yaici et al., 2016). In broilers,
OXA-58 was identified (Chabou et al., 2017) while in pigeons,
in addition to OXA-58 and OXA-23 were detected (Morakchi
et al., 2017). In terms of companion animals, NDM-5 and OXA-
48-producing E. coli were reported from healthy dogs Algeria
(Yousfi et al., 2015, 2016a). The NDM-5 was harbored by an
E. coli strain having the same sequence type ST1284 previously
described in cattle (Yousfi et al., 2015; Yaici et al., 2016). OXA-48
was further detected in healthy and diseased cats in the same city
(Yousfi et al., 2016a). Furthermore, in this same country, two A.
baumannii producing OXA-23 were isolated from fish (Brahmi
et al., 2016). In Lebanon, A. baumannii with different sequence
types (ST294, ST491, ST492, ST493) were detected in a horse’s
mouth carrying OXA-143 (Rafei et al., 2015), and in pigs and
cattle carryingOXA-23(Al Bayssari et al., 2015a). Furthermore, in
cattle, a VIM-2-producing P. aeruginosawas isolated (Al Bayssari
et al., 2015a). In fowl, Bayssari et al. reported the detection of

OXA-23 and OXA-58 harboring A. baumannii and OXA-48-
producing E. coli as well as VIM-2 producing P. aeruginosa (Al
Bayssari et al., 2015b). VIM-2 producers in fowl and cattle were
of different sequence types suggesting the presence of plasmid
that is mediating the spread of this resistance gene. In France,
OXA-23-producingAcinetobacter species were described in cows
and dogs (Poirel et al., 2012; Hérivaux et al., 2016). Melo et al.
reported the detection of OXA-48 located on an IncL plasmid and
carried by an ST372 E. coli strain from dogs in France (Melo et al.,
2017). In contrast, in Spain, only one study reported the isolation
of a VIM-1-producing ST2090 K. pneumoniae from a dog’s rectal
swab (González-Torralba et al., 2016; Figure 2).

Clonal Relationship of Beta-Lactamase
Producers and Plasmid Types of
Beta-Lactamase Genes Isolated From All
Animal Sources
The different phylogroups and sequence types of beta-lactamase
andmcr-1 positive strains as well as the type of plasmids carrying
ESBL, AmpC, carbapenemase, and mcr-1 genes detected in all
animal sources in the Mediterranean region are summarized in
Table 2. In this area of the world, it appears that multi-drug
resistance in the veterinary sector is mediated by the spread of
different phylogroups and sequence types with the main ones
being A, B, and D phylogroups (Table 2). The detection of
ST10 in CTX-M producers in poultry, cattle, pets, and domestic
animals in Algeria, Tunisia, Lebanon, and France is of special
interest. ST10 was often described in the literature as being
common to ESBL E. coli strains of human and avian origin
worldwide such as in Germany (Belmar Campos et al., 2014),
Denmark (Huijbers et al., 2014), Vietnam (Nguyen et al., 2015),
and Chile (Hernandez et al., 2013). ST10 was suggested as being
associated with the spread of CTX-M ESBL types and mcr-1
genes in humans, animals and environments (Monte et al., 2017).
Another distinct finding is the detection of ST101 in dogs and
cats in Italy. ST101 is an international sequence types frequently
detected in pigs (El Garch et al., 2017), broilers (Solà-Ginés et al.,
2015b) as well as in the clinical settings. In several countries,
ST101 was associated to NDM-1 E. coli strains isolated from the
clinical settings of Germany, Canada, Australia, UK, and Pakistan
(Yoo et al., 2013) implying thus that ST101 is a candidate for the
zoonotic transmission to the human population.

More deeply speaking, ESBL and AmpC encoding genes were
mostly carried on conjugative IncI1, IncFIB, IncN, and IncK
plasmids (Table 1). ISEcp1 was the most common insertion
sequence associated with the CTX-M ESBL types with the
main ones being blaCTX-M-1 and blaCTX-M-15 genes. ISEcp1
has been previously described as a potent contributor to the
mobilization and insertion of blaCTX-M genes worldwide (El
Salabi et al., 2013). As for the carbapenemase encoding genes,
these latter were found to be carried by IncX3 and IncL plasmids
detected in E. coli strains isolated from cattle, swine and dogs in
Algeria, Italy, and France, respectively. Overall, the detection of
a variety of sequence types and phylogroups in ESBL and AmpC
producers isolated from animals of all origins within and among
countries’s animals suggests that the dissemination of multi-drug
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FIGURE 2 | Geographical distribution of carbapenemases and mcr colistin resistance gene with their hosts in the Mediterranean. N.B: only OXA genes confirmed by

sequencing as carbapenemases were included.

resistance in the Mediterranean is multi-clonal and related rather
to the diffusion of conjugative plasmids carrying beta-lactamase
genes.

Prevalence of Colistin Resistance in
Livestock and Domestic Animals
Polymyxin E (colistin) and polymyxin B are polycationic
antimicrobial peptides that are considered as the last-line
antibiotic treatment for multi-drug resistant (MDR) Gram-
negative bacterial infections (Olaitan and Li, 2016). From
the 1960s until the 1990s, colistin was considered as an
effective treatment for MDR-GNB (Olaitan et al., 2014b).
However, due its nephrotoxicity within the human body, the
clinical use of this antimicrobial was abandoned (Olaitan
and Li, 2016). Recently, the emergence of carbapenem
resistance in clinically important bacteria such as P.
aeruginosa, A. baumannii, K. pneumonia, and Escherichia
coli, necessitated the re-introduction of colistin into clinical
practice as a last-resort treatment option (Olaitan and Li,
2016).

Colistin is not only administered in humans, its use has
been also described in veterinary medicine. Indeed, it has
been suggested that the uncontrolled use of colistin in animals

has played an important role in the global emergence of
colistin-resistant bacteria (Collignon et al., 2016). The World
Health Organization recently added polymyxins to the list
of critically important antibiotics used in food producing
animals worldwide (Collignon et al., 2016). The main use for
colistin in animals includes the treatment of gastrointestinal
infections caused by E. coli in rabbits, pigs, broilers, veal,
beef, cattle, sheep, and goats; and, in particular, gastrointestinal
infections caused by E. coli (Poirel et al., 2017). Colistin is
mainly administered orally using different formulations such
as premix, powder and oral solutions (Catry et al., 2015). In
European countries, several epidemiological studies reported the
use of colistin in veterinary medicine. In fact, Kempf et al.
reported that colistin is mainly used to inhibit infections caused
by E. coli, a Gram-negative bacillus known as a common
causative agent of diarrhea, septicemia, and colibacillosis in
animals (Kempf et al., 2013). In Spain, Casal et al. revealed
that colistin is among the most frequent administered drug
for the treatment of digestive diseases in pigs (Casal et al.,
2007).

Epidemiologically speaking, the worldwide prevalence of
resistance to polymyxins accounts for 10% of Gram-negative
bacteria with the highest rates being observed in Mediterranean
countries and Southeast Asia (Al-Tawfiq et al., 2017). For many

Frontiers in Microbiology | www.frontiersin.org 13 September 2018 | Volume 9 | Article 2299136

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dandachi et al. Multi-Drug Resistance in Animals of the Mediterranean

TABLE 2 | ST/phylogroups, IS and plasmid types associated with beta-lactamase and mcr genes in the Mediterranean.

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Algeria Poultry E. coli CTX-M 1 ST38, ST2179 Belmahdi et al., 2016

SHV-12 ST1011, ST5086

CMY-2 ST744

Poultry S. Heidelberg CTX-M-1 ST15 Djeffal et al., 2017

Cattle A. baumanii NDM-1 ST85 Chaalal et al., 2016

Cattle E. coli NDM-5/ CMY-42/

CTX-M-15

ST1284 IncX3 (NDM-5) Yaici et al., 2016

Swine K. pneumoniae CTX-M-15 ST584 Bachiri et al., 2017

E. coli CTX-M 15 ST617, ST131, ST648,

ST405, ST1431, ST1421,

ST69, ST226

Dog E. coli CTX-M-15 A, B1, E Yousfi et al., 2016b

CTX-M-1/SHV-12 E

SHV-12 A, B1

Dog E. coli NDM-5 ST1284 Yousfi et al., 2015

Dog E. coli OXA-48 A, D Yousfi et al., 2016a

NDM-5/

CTX-M-15/

CMY-42

A

Cat E. coli CTX-M-1 B1 Yousfi et al., 2016b

CTX-M-15 A, U, E

Cat OXA-48 / CMY-1 U Yousfi et al., 2016a

OXA-48 D

Barbary

Macaques

K. pneumoniae CTX-M-15 ST584 Bachiri et al., 2017

Fish A. baumanii OXA-23 ST2 Brahmi et al., 2016

Fish E. coli CTX-M-15 ST471, ST132, ST398,

ST37,ST477, ST131, ST31

Brahmi et al., 2015

CTX-M-9 ST8

TEM-24 ST31, ST471, ST66, ST21,

ST74

Tunisia Poultry E. coli CTX-M-1 A, B1, D ISEcp1 Ben Sallem et al., 2012

CMY-2 B2 ISEcp1

D ISEcp1D-IS10

Poultry CTX-M-1 ISEcp1/IS26 Jouini et al., 2007

Poultry E. coli CTX-M-1 B1, A Ben Slama et al., 2010

CMY-2 B1

Poultry E. coli CTX-M-1 A, B1, D, B2 IncI1 Mnif et al., 2012

CTX-M-15 A, B1

CTX-M-1/CMY-2 B2 IncI1

CMY-2 A, D, B1 IncI1

Poultry E. coli CTX-M-1 IncI1 Grami et al., 2013

CTX-M-9 IncI1

Poultry E. coli CTX-M-1 A0, A1, D2, B2 Kilani et al., 2015

Poultry E. coli CMY-2 A, B1, D IncI1, IncF, IncFIB,

IncFIA

Maamar et al., 2016

CTX-M-14 B1 IncF ISEcp1-IS903

CTX-M-1 B1, D, A IncI1, IncF, IncFIB,

IncK,

IncY, IncP, IncN

CTX-M-15 D ISEcp1and

ISEcp1-IS5

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Poultry E. coli CTX-M-1/mcr-1 D, H, K IncHI2/ST4 Grami et al., 2016

Poultry E. coli CMY-2/mcr-1 A (ST2197) IncP (mcr-1) ISApl1 Maamar et al., 2018

IncI1 (CMY-2)

Cattle E. coli CTX-M-1 A, B1 Ben Slama et al., 2010

CTX-M-1/ TEM-20 B1

Cattle E. coli CTX-M-1 ISEcp1/IS26 Jouini et al., 2007

CTX-M-14 ISEcp1 and IS903

Cattle E. coli CTX-M-15 ST10 ISEcp1 Grami et al., 2014

Dog E. coli CTX-M-1 IncI1 Grami et al., 2013

CTX-M-15 IncFII

Dog E. coli CMY-2 B1 ISEcp1 Sallem et al., 2013

CTX-M-1 D, B1, A ISEcp1

Cat E. coli CTX-M-1 B1, A, D ISEcp1 Sallem et al., 2013

CTX-M-1/

TEM-135

A ISEcp1 (CTX-M-1)

Cat E. coli CTX-M-1 IncI1 Grami et al., 2013

Dromedaries E. coli CTX-M-1 B1 ISEcp1 Ben Sallem et al., 2012

Egypt Poultry E. coli CTX-M-15 clonal group O25b-ST131 ISEcp1 Ahmed and

Shimamoto, 2013

Poultry E. coli CTX-M A, B1, B2, D Abdallah et al., 2015

Poultry E. coli CTX-M-14 D El-Shazly et al., 2017

SHV-12 D

CMY-2 A, B1, D

Poultry E. coli mcr-1 phylotype A, F, B1 IncFIB; IncI1; IncI2 Lima Barbieri et al.,

2017

Cattle E. coli mcr-1 ST10 Khalifa et al., 2016

Lebanon Poultry E. coli CTX-M ST156, ST5470, ST354,

ST155,

ST3224

Dandachi et al., 2018a

Poultry E. coli mcr-1 ST515 Dandachi et al., 2018b

Cattle E. coli CTX-M-15 A (ST1294, ST2325,

ST1303,

ST4623, ST5204)

Diab et al., 2016

B1 (ST58, ST162, ST4252,

ST155, ST196, ST540)

D (ST69)

CTX-M-14 D (ST457)

CTX-M-15/SHV-

12

A (ST10, ST2450, ST5442)

CTX-M-14/SHV-

12

D (ST457)

SHV-12 A (ST218, ST617, ST5204,

ST1303,ST5728,ST1140,

ST746)

Cattle A. baumanii OXA-23 ST2 Al Bayssari et al.,

2015a

P. aeroginosa VIM-2 ST1762, ST1759

Swine A. baumanii OXA-23 ST491 Al Bayssari et al.,

2015a

Fowl A. baumanii OXA-23 ST492, ST493 Al Bayssari et al.,

2015b

(Continued)

Frontiers in Microbiology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 2299138

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dandachi et al. Multi-Drug Resistance in Animals of the Mediterranean

TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

OXA-58/OXA-23 ST20

P. aeroginosa VIM-2 ST1760, ST1761

Fowl E. coli OXA-48 ST38 Al Bayssari et al.,

2015b

Horse A. baumanii OXA-143 ST294 Rafei et al., 2015

Rabbit A. pitii OXA-24 ST221 Rafei et al., 2015

Palestine Poultry E. coli CTX-M A, B, D Qabajah et al., 2014

Turkey Poultry E. coli CMY-2 A0, B2 D1, D2 Pehlivanlar Onen et al.,

2015

CTX-M-1/CMY-2 A0

CTX-M-1 A1, A0, D1, D2

CTX-M-1/SHV-5 D1

CTX-M-3 A0, D1

CTX-M-15 B1, D1, D2

SHV-12 D1

CTX-M-15/SHV-

12

D2

Italy Poultry E. coli SHV-12 IncI1, IncFIB Bortolaia et al., 2010

CTX-M-1 IncI1, IncFIB, IncN

CTX-M-32 IncN

Poultry E. coli CTX-M-1 IncI1 Accogli et al., 2013

CMY-2 IncI1

Poultry E. coli CTX-M A, B1, B2, D Ghodousi et al., 2015

CIT like B1, B2, D

Poultry E. coli CTX-M B2, ST131 Ghodousi et al., 2016

Swine E. coli OXA-181 B1 (ST359), A (ST641) IncX3 Pulss et al., 2017

mcr-1 A (ST641) IncX4

CMY-2 A (ST641) IncI1

Cat E. coli CMY A ISEcp1/IS26 Bogaerts et al., 2015

Dog K. oxytoca SHV-12, DHA-1 N.I IncL/M Donati et al., 2014

K. pneumoniae CTX-M-15,DHA-1 ST340 IncR (CTX-M-15)

CTX-M-15 ST101

SHV-28, ST15

CTX-M-15,SHV-

28,

ST15

CTX-M-1,SHV-28 ST15 CTX-M-1 in IncN

and IncR

CTX-M-1 ST11

Cat K. oxytoca CTX-M-9 N.I IncHI2 Donati et al., 2014

K. pneumoniae CTX-M-15, DHA-1 ST340 CTX-M-15/DHA-1

on IncR

SHV-28, CMY-2 ST15 CMY-2 on InCI1

CTX-M-15 ST101

Cat E. coli CTX-M-14/CMY-2 A (ST3848, ST3847) Nebbia et al., 2014

CTX-M-14 B2 (ST555, ST4181), B1

(ST602)

CTX-M-1 B2 (ST155)

CTX-M-15 B2 (ST131)

(Continued)
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TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

Slovenia Poultry E. coli CTX-M-1 D Zogg et al., 2016

SHV-12 B1 and D

Spain Poultry E. coli CTX-M-14 ST101, ST156,ST165,

ST350,

ST889, ST1137

IncK Solà-Ginés et al.,

2015b

SHV-12 ST350, ST533 IncI1

CMY-2 ST429, ST131 IncK

Poultry E. coli CMY-2 A, D Cortés et al., 2010

CTX-M-14 A, B1, B2

CTX-M-32 A

CTX-M-9 B1

SHV-12

TEM-52 B1

Poultry E. coli CTX-M-9 O25b:H4-B2-ST131. Mora et al., 2010

Poultry E. coli CTX-M, SHV A, B1, D1 Egea et al., 2012

Poultry,

Swine, Cattle

E. coli CTX-M, SHV B2, D Doi et al., 2010

cattle E. coli mcr-1 /mcr-3/

CTX-M-55

ST533 non mobilizable

IncHI2

Hernández et al., 2017

Swine E. coli CTX-M-1 A Cortés et al., 2010

SHV-5 A

SHV-12 B1

Dog E. coli (1) CMY (1) ST2171 IncK ISEcp1 Bogaerts et al., 2015

P. mirabilis (2) CMY (2)

Dog K. pneumoniae VIM-1 ST2090 González-Torralba

et al., 2016

Deer E. coli CTX-M-1 ST224 IncN IS26 Alonso et al., 2016

Croatia Mussel Aeromonas

spp

CTX-M-15 IncFIB Maravić et al., 2013

France Poultry E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

Cattle E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

CTX-M-15 ISEcp1

Cattle E. coli CTX-M-15 B1 ISEcp1 Valat et al., 2012

Cattle E. coli CTX-M-1 ST2497, ST2498 Hartmann et al., 2012

TEM-71 ST178

Cattle E. coli CTX-M-15, ST2212, ST2213, ST2210,

ST2214,ST2215, ST88

F31:A4:B1/IncFII

F2:A–:B–/IncFII

and IncI1

Madec et al., 2012

Cattle K. pneumoniae CTX-M-14 ST45 F2:A-:B-IncFII Dahmen et al., 2013b

E. coli CTX-M-14 ST23, ST58, ST10, ST45 F2:A-:B-IncFII

CTX-M-1 ST23, ST58 IncI1/ST3

Sheep K. pneumoniae CTX-M-15, DHA all ST274 Poirel et al., 2013

Swine E. coli CTX-M-1 ISEcp1 Meunier et al., 2006

Dogs E. coli CTX-M-15 A (ST410, ST617) IncFII Dahmen et al., 2013a

CTX-M-1 A (ST10), B1 (ST1303,

ST1249)

IncFII

IncFII

Dog A. baumanii OXA-23 ST25 Hérivaux et al., 2016

Dogs E. coli CTX-M-1 ST345, ST1001, ST124 IncI1 Poirel et al., 2013

CTX-M-15 NEW ST N.T

(Continued)

Frontiers in Microbiology | www.frontiersin.org 17 September 2018 | Volume 9 | Article 2299140

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dandachi et al. Multi-Drug Resistance in Animals of the Mediterranean

TABLE 2 | Continued

Country Animal Host Species Bla and/or mcr

genes

ST and/or phylogroup Plasmid type Associated IS Reference

TEM-52 ST359

K. pneumoniae CTX-M-15, DHA-1 ST274

CTX-M-15, ST15

Dogs E. coli CTX-M-1 A, B1,D blaCTX-M-

1/IncI1/ST3

Haenni et al., 2014b

CTX-M-grp9 B2

CMY-2 A, B1, B2, D CMY-2/IncI1/ST2

Dog E. cloacae CTX-M-15 ST114,ST136,ST270,ST100 IncHI2 Haenni et al., 2016c

CTX-M-14 ST102 N.T

CTX-M-3 ST408 N.T

SHV-12 ST268 IncHI2

Dog E. coli CMY ST55 N.T Melo et al., 2017

CMY ST963 N.T

OXA-48 ST372 IncL

Cat K. pneumoniae CTX-M-15, DHA ST274 Poirel et al., 2013

E. coli CTX-M-1 ST124, ST641

CTX-M-14 ST141

Cats E. coli CTX-M-15 A (ST617, ST410) Dahmen et al., 2013a

CTX-M-32 B1 (ST224)

CTX-M-3 B2 (ST493)

CTX-M-14 B1, (ST359), B2 (ST131)

Cat E. cloacae CTX-M-15 1 ST136, others ST114 IncHI2 Haenni et al., 2016c

SHV-12 N.T IncA/C

Cat E. coli CTX-M-14 ST68 IncF Melo et al., 2017

CTX-M-1 ST673 IncFIB

Cat A. baumanii OXA-23 ST1/ST231 Ewers et al., 2016

Hedgehog K. pneumoniae CTX-M-15, DHA ST274 Poirel et al., 2013

Tawny Owl E. coli CTX-M-1 ST93 Poirel et al., 2013

Domestic

goose

E. coli CTX-M-15 ST10 Poirel et al., 2013

Rock pigeon E. coli CTX-M-1 ST124 Poirel et al., 2013

Horse E. cloacae CTX-M-15 ST127, ST372, ST145,

ST114

IncHI2 Haenni et al., 2016c

SHV-12 ST135,ST145,ST118 IncHI2

CTX-M-1 ST268 N.T

ST107 IncP

Greece Dog E. coli CMY-2 ST212 IncI1/ST65 Vingopoulou et al.,

2014

Bla, beta-lactamase; ST, sequence type; IS, insertion sequence; N.T, non typeable.

years, colistin resistance was thought to be mainly mediated by
chromosomic mutations, with no possibility of horizontal gene
transfer. However, the emergence of themcr-1 plasmid mediated
colistin resistance gene (Liu et al., 2016) has thoroughly altered
the view of colistin resistance as a worldwide problem (Baron
et al., 2016). The current epidemiology of colistin resistance is
poorly understood.

In the Mediterranean area (Figure 2), the first detection of
mcr-1 was in an E. coli strain isolated from chickens in Algeria
(Olaitan et al., 2016). This same isolate was further detected in

sheep in another region of this country in 2016 (Chabou et al.,
2017). In Tunisia, Grami et al. reported a high prevalence of
multi-clonal E. coli carrying the mcr-1 gene in three chicken
farms imported from France (Grami et al., 2016). Isolated strains
were found to co-harbor the blaCTX-M-1 ESBL gene along with
mcr-1 on an IncHI2/ST4 plasmid (Table 1; Grami et al., 2016).
Apart from colistin resistance, these strains were also co-resistant
to tetracyclines, quinolones, fluoroquinolones, trimethoprim,
and sulfonamides (Grami et al., 2016). The co-existence of ESBL
andmcr-1 genes on the same plasmid facilitates the dissemination
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of colistin resistant strains by the co-selective pressure applied
via the use of colistin as well as possibly the utilization of
non-beta-lactam antibiotics. Molecular analysis targeting the co-
localization of ESBL andmcr genes along with the onesmediating
resistance toward non-beta-lactams is however warranted in
order to validate this hypothesis. Also in Tunisia, two colistin
resistant E. coli strains positive formcr-1 and harboring the CMY-
2 gene were recently detected in chicken. Both strains shared the
same sequence type “ST2197” in addition to their PFGE patterns.
Themcr-1 gene in these latter was associated with the ISApl1 and
was carried by IncP plasmid while the CMY-2 gene was located
on an IncI1 plasmid type (Maamar et al., 2018). Furthermore, in
this same country, a recent study revealed the absence of mcr-
1 and mcr-2 positive Gram-negative bacilli in camel calves in
southern Tunisia (Rhouma et al., 2018). Likewise, in Egypt, mcr-
1 was detected in E. coli isolated from diseased chickens as well
as from cows displaying subclinical mastitis (Khalifa et al., 2016;
Lima Barbieri et al., 2017). The emergence of mcr-1 in Egypt
can be related to the use of colistin in animal agriculture, and
its ready application as a therapeutic agent for colibacillosis as
well as other infections, in rabbits and calves (Lima Barbieri et al.,
2017). In Southeast Asia, Dandachi et al. reported the detection
of the mcr-1 plasmid mediated colistin resistance gene in E. coli
in poultry in the south of Lebanon (Dandachi et al., 2018a).
This strain had a sequence type of ST515 that was not reported
before in mcr-1 E. coli strains of poultry origin (Dandachi et al.,
2018a).

Of the European countries bordering the Mediterranean,
Spain was the first to report the detection of mcr-1 in E. coli and
Salmonella enterica isolated from farm animals (Quesada et al.,
2016). This could be related to the fact that Spain is one of the
countries were colistin is extensively used in veterinary medicine
(de Jong et al., 2013). More recently, mcr-1 co-existing with mcr-
3 on the same non mobilizable IncHI2 plasmid was detected in
an E. coli strain recovered from cattle feces in a slaughterhouse
(Hernández et al., 2017). In France, as part of routine surveillance
by the French agricultural food sector, mcr-1 was identified in
four Salmonella spp isolated from sausage, food of poultry origin,
and boot swabs taken from broiler farms (Perrin-Guyomard
et al., 2016; Webb et al., 2016). E. coli harboring mcr-1 was
also isolated in France from pig, broiler and turkey samples
(Haenni et al., 2016a). Haenni et al. reported the identification of
unique IncHI2/ST4 plasmid co-localizing mcr-1 and ESBL genes
in an E. coli strain isolated from French veal calves (Haenni
et al., 2016b). In Italy, Carnevali et al. reported the detection of
mcr-1 in Salmonella spp strains isolated from poultry and pigs
(Carnevali et al., 2016). Subsequently,mcr-1 was further detected
in E. coli of swine origin. In the aforementioned report, mcr-1
was co-existent with the carbapenemase OXA-181 in the same
bacterium and was carried on an IncX4 plasmid type (Pulss et al.,
2017). In the Mediterranean basin, likewise ESBL producers,
mcr positive strains belong to different phylogroups and appear
to be not clonally related; however, they were not associated
to a common plasmid or an insertion sequence type. This
questions the molecular mechanism by which the mcr genes are
being disseminating in this region of the world. More molecular
work is warranted in this area especially that mcr genes are

often located on plasmids carrying ESBL and/or carbapenemase
genes.

Antibiotic Use in Animals and Potential
Impact on Public Health
For many years, the use of antibiotics in the veterinary
medicine has increased animal health via lowering mortality
and the incidence of infectious diseases (Hao et al., 2014).
However, in view of the heavy dissemination of resistant
organisms namely ESBL, AmpC, and carbapenemase producers
in addition to the emergence of colistin resistance in livestock
and animals with frequent contacts with human; the efficiency
of antibiotic administration to animals has been reconsidered.
Indeed, antibiotic use in animals is not controlled, in that
these latter are not only prescribed for treatment, but are also
given for prophylaxis and as growth promoters (Economou
and Gousia, 2015). In its recent publication, the world health
organization recommended a reduction but an overall restriction
of the use of medically important antibiotics for prophylaxis and
growth promotion in farm animals (WHO, 2017). According
to the world health organization list of Critically Important
Antimicrobials for Human Medicine (WHO CIA list), these
include mainly extended spectrum cephalosporins, macrolide,
ketolides, glycopeptides and polymixins (WHO CIA, 2017). The
control of antibiotic use in the veterinary sector aims to reduce
the emergence of resistance in addition to preserving the efficacy
of important classes for treatment in the human medicine.

In the Mediterranean region, tetracyclines, aminoglycosides,
sulfonamides, fluoroquinolones, and polymixins are the most
common antimicrobial classes prescribed in the veterinary
sector (Table 1). The usage level of each antibiotic class in
addition to its real purpose of administration apart from
treatment is limited and not well understood in this area of
the world. In fact, it is nowadays accepted that the over-use of
antibiotics in animals is the main driven for the dissemination
of multi-drug resistance (Barton, 2014). As shown in Table 1,
ESBL, AmpC, and carbapenemase producers are often co-
resistant to non-beta-lactam antibiotics with the most common
being gentamicin, streptomycin, tetracycline, trimethoprim-
sulfamethoxazole, nalidixic acid, and ciprofloxacin. One study
conducted in healthy chicken in Tunisia showed the presence
of tetA, tetB, sul1, and sul2 on the same plasmids carrying
the blaCTX-M genes (Maamar et al., 2016). Another study in
Egypt, reported the detection of tetB, qnrB2, qnrA1, aadA1
on the same gene cassette along with the blaCMY-2 AmpC
beta-lactamase gene (Ahmed and Shimamoto, 2013). In Italy,
strA/B, tetD, qnrB, aadA1, sulI genes were associated with
the blaCTX-M and blaSHV ESBL genes types in companion
animals (Donati et al., 2014). Furthermore, in this same country,
aminoglycoside modifying enzymes (aadA1, aadA2), quinolone
resistance genes (qnrS1), florfenicol/chloramphenicol resistance
gene (floR), in addition to tetracycline and sulfonamide resistance
genes (tetA, sul1, sul2, sul3) were found associated with OXA-
48/181 and OXA-48/181/ CMY-2 /mcr-1 positive E. coli strains
isolated from pigs (Pulss et al., 2017). In Salmonella enterica,
Franco et al. reported the detection of a megaplasmid harboring
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the blaCTX-M-1 ESBL gene along with tetA, sulI, dfrA1, and
dfrA14 conferring thus additional resistance toward tetracycline,
sulfonamide, and trimethoprim (Franco et al., 2015). Beta-
lactamase producing Gram-negative bacilli appear thus to be
selected by the co-selective pressure applied by the use of non-
beta-lactam antibiotics in livestock and companion animals.
Surveillance studies addressing the types, purpose and level of
antibiotic classes’ administration in animals of theMediterranean
region are warranted in order to develop approaches that control
the use of antibiotics while preserving animal’s health. This
is especially in Syria, Cyprus, Albania, Montenegro, Bosnia,
Herzogovina, Monacco, Morocco, and Libya where even no data
exists on the prevalence and epidemiology of multi-drug resistant
organisms in animals.

The spread of multi-drug resistant organisms of animal origin
is sparked by the concern of being transmitted to humans;
these latter can then be causative agents for infections with
limited therapeutic options (Bettiol and Harbarth, 2015). The
transfer of resistant organisms from animals to humans can
occur either via direct contact or indirectly via the consumption
of under/uncooked animals products (Dahms et al., 2014).
Recent studies have also highlighted the importance of the farms
surrounding environment in the transmission chain. Air (von
Salviati et al., 2015), dust (Blaak et al., 2015), contaminated
waste waters (Guenther et al., 2011), and soil fertilized with
animal manures (Laube et al., 2014) are all potential sources
from which resistant organisms can be transferred to the
general population. In their study, Olaitan et al. demonstrated
the transfer of a colistin resistant E. coli strain from a pigs
to its owner (Olaitan et al., 2015). This was documented
by both strains (in the pig and its owner) having the same
sequence types and sharing the same virulence as well as
same PFGE patterns (Olaitan et al., 2015). The increased risk
of ESBL fecal carriage in humans with frequent contact with
broilers has been further taken as an evidence of transmission
(Huijbers et al., 2014). Furthermore, sharing the same sequence
types, virulence and PFGE patterns in addition to common
plasmids/ESBL genes are all proofs for the possible transfer of
resistant organisms and/or genes from the veterinary sector to the
human population (Leverstein-van Hall et al., 2011). In Algeria,
Djeffal et al. reported the detection of a common sequence
type (ST15) in Salmonella spp producing ESBL isolated from
both humans and avian isolates (Djeffal et al., 2017). In Egypt,
Hamza et al. showed an abundance of carbapenemase genes
namely blaOXA-48, blaKPC and blaNDM in chicken, drinking
water, and farm workers suggesting a possible transmission of
carbapenemase encoding genes from broilers to farmers and
the surrounding environment (Hamza et al., 2016). Another
study conducted in Italy reported the spread of a multi-
drug resistant clone of “Salmonella enterica subsp. enterica
serovar Infantis” that was first detected in 2011 in broiler
farms and few years later led to human infections most likely
via transmission from the broiler industry (Franco et al.,
2015). In Spain, common blaCTX-M-grp1 and blaCTX-M-
grp9 ESBL genes were detected in retail meat as well as in
E. coli strains isolated from infected and colonized patients
in the same region (Doi et al., 2010). In France, Hartmann

et al. showed a clonal relationship among CTX-M carrying
E. coli strains in cattle and farm cultivated soils (Hartmann
et al., 2012). Another study in cattle, demonstrated that CTX-
M-15 harboring plasmids in non-ST131 E. coli strains are
highly similar to those detected in humans suggesting thus
a multi-clonal plasmidic transmission of multi-drug resistant
organisms from livestock to the humans (Madec et al., 2012). The
detection of common genes and sequence types among animals
and humans and the surrounding environment emphasizes
the need to have a global intervention measures to avoid
the dissemination of multi-drug resistance in the one health
concept.

CONCLUSION

Antimicrobials have been used in veterinary medicine for more
than 50 years. The use of antibiotics proved to be crucial for
animal health by lowering mortality and incidence of diseases,
in addition to controlling the transmission of infectious agents
to the human population. Recently, the dissemination of ESBL,
carbapenemase, and colistin resistant Gram negative bacteria in
food producing animals brought into question the real efficacy
of antibiotic administration in animals in terms of treatment,
prophylaxis and growth promotion. Indeed, the emergence
of MDR in food producing animals has been suggested to
be largely linked to the over and misusage of antibiotics in
veterinary medicine. The level of antibiotic consumption in
animals varies between countries. Although, cephalosporins
are not often prescribed in veterinary medicine, the use of
other non-beta-lactams could account for the co-selection
of multi-drug resistant bacteria. As shown in Table 1, ESBL
and carbapenemase producers were frequently co-resistant to
aminoglycosides, tetracyclines and fluoroquinolones, with these
latter being mostly used in the veterinary field. Furthermore,
the aforementioned antibiotics are classified by the World
Health Organization as critically important antibiotics for human
medicine that should be restricted in the animal field (Collignon
et al., 2016). That said, the direct public health effect of the
transmission of MDR bacteria from animals to humans is still
controversial. Several studies have demonstrated a direct link of
transmission between these two ecosystems. Resistant bacteria
once transmitted to humans can be further selected by the
over-use of antimicrobial agents in the clinical and community
settings. This spread will promote the global dissemination of
bacterial resistance across all ecosystems. The level of antibiotic
consumption in animals in the European countries lining the
Mediterranean is available in the European Surveillance of
Veterinary Antimicrobial Consumption report (EMA/ESVAC,
2014), however this is not the case for the countries in
North Africa and western Asia, where no accurate data are
available. Therefore, surveillance studies investigating the levels
of antibiotic prescription should be conducted in these areas.
Antimicrobial prescriptions in animals should be re-considered
and controlled to limit the spread of bacteria which are cross
resistant to the antibiotics used in human medicine. In addition,
a risk assessment of other factors contributing to the emergence
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of antimicrobial resistance in animals should be conducted
in future studies. Poor sanitary conditions, overcrowding and
poor infection control practices in animals are all possible
contributors to the robust emergence of MDR in food-producing
animals.
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Methicillin-resistant Staphylococcus aureus (MRSA) were identified in macaques, their
environmental facility, and nasal cultures of personnel from the Washington National
Primate Research Center [WaNPRC] and included MRSA ST188 SCCmec IV and MRSA
ST3268 SCCmec V. The aim of the current study was to determine the carriage of
virulence genes, antibiotic resistance genes, and other characteristics of the primate
MRSA isolates to determine if there were any obvious differences that would account
for differences in transmission within the WaNPRC facility. In total, 1,199 samples
from primates were tested for the presence of MRSA resulting in 158 MRSA-positive
samples. Fifteen ST188 isolates (all from Macaca nemestrina) and nine ST3268 (four
from Macaca mulatta, two from Macaca fascicularis, three from M. nemestrina), were
selected for further characterization. All but one of the 15 ST188 isolates had spa
type t189 and the remaining one had spa type t3887. These isolates were resistant
to β-lactams [blaZ, mecA], macrolides/lincosamides [erm(B)], aminoglycosides [aacA-
aphD], and fluoroquinolones. Five isolates were additionally resistant to tetracyclines
[tet(K)] and had elevated MICs for benzalkonium chloride [qacC]. In comparison, the
nine ST3268 isolates had the related spa types t15469 (n = 5) and t13638 (n = 4).
All nine ST3268 isolates were resistant to β-lactams [blaZ, mecA], and tetracyclines
[tet(K)]. Some isolates were additionally resistant to aminoglycosides [aacA-aphD],
fluoroquinolones and/or showed elevated MICs for benzalkonium chloride [qacC]. In
contrast to the ST188 isolates, the ST3268 isolates had the enterotoxin gene cluster egc
[seg, sei, selm, seln, selo, selu] and enterotoxin genes sec and sel. The two clones have
differences regarding their spa types, virulence and antibiotic resistance genes as well
as ST and SCCmec types. However, the data presented does not provide insight into
why ST188 spreads easily while ST3268 did not spread within the WaNPRC in-house
primates.

Keywords: MRSA, Macaca mulatta, Macaca fascicularis, Macaca nemestrina, novel spa type, multi-drug
resistance, colonization, infection
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INTRODUCTION

Methicillin-resistant Staphylococcus aureus (MRSA) is an
important opportunistic pathogen in human and veterinary
medicine and can be a harmless colonizers but may also cause
severe and live-threatening infections (Foster, 2017). MRSA
consists of numerous pandemic, epidemic and sporadic clones
(Monecke et al., 2011). There is very limited data on the carriage
of S. aureus (including MRSA) in captive primates with even
more limited data on MRSA carriage in wild primates in
their natural habitats (Taylor and Grady, 1998; Weese, 2010;
Hanley et al., 2012; Schaumburg et al., 2013; Soge et al., 2016;
Roberts et al., 2018). Prior to 2014, neither S. aureus nor MRSA
were identified in macaques from the Washington National
Primate Research Center [WaNPRC], Seattle WA, United States.
However, in 2014, there were nine cases of MRSA. This led to
the 2015 carriage study, which determined that 17.6% of the
macaques, 3.6% of the primate environmental facility samples
and 2.5% of the primate personnel carried MRSA (Soge et al.,
2016). Initially, all the isolates from macaques, environment
and one of the personnel isolates were MRSA ST188 SCCmec
IV [MLST profile 3, 1, 1, 8, 1, 1, 1, 1]. MRSA ST188 are not
commonly found in North America1 (Soge et al., 2016). Our
previous work showed that the ST188 SCCmec IV represented a
clone and was easily transferred between macaques in the same
cage, the same room or between playmates and contaminated
the primate environment. One primate researcher carried MRSA
ST188 SCCmec IV in the nose, while another carried a normally
human isolated ST8 SCCmec IV (Soge et al., 2016).

In May 2015, a large shipment of macaques [> 90 Macaca
nemestrina] from out-of-state, from other United States Primate
Research Centers and arrived at WaNPRC. Most of these animals
were colonized with MRSA ST3268 SCCmec V [MLST profile
1, 14, 430, 214, 10, 303, 329] (Soge et al., 2016). This was a
novel sequence type (ST) and did not seem to readily spread
within the WaNPRC until later in 2015 when four MRSA ST3268-
positive animals were identified. These appeared to have been
exposed and acquired ST3268 from a contaminated common
procedure room within in the WaNPRC. These animals were
also positive for the simian immunodeficiency virus (SIV) (Soge
et al., 2016). Since the first introduction of MRSA ST3268,
the WaNPRC has continued to receive MRSA ST3268-positive
animals with new shipments of primates but no spread of this
clone was observed. More recently, MRSA ST3268 isolates and
a single locus variant MRSA ST2817 isolates have been detected
in Singaporean long-tailed macaques (Macaca fascicularis) used
in experimental surgery in 2014 and one person who worked in
animal husbandry at the facility. These animals originated from
Vietnam (Hsu et al., 2017). ST3268 differs by one housekeeping
gene [glp] from ST2817, which has been identified in Asia.

The hypothesis of the current study was that there were
some differences in the carriage of virulence factors, antibiotic
resistance genes, and other characteristics between the two MRSA
clones ST188 and ST3268 that might suggest why there is a
different transmission frequency among the WaNPRC macaques.

1https://pubmlst.org/saureus/

MATERIALS AND METHODS

Primate Sampling, MRSA Isolation and
Verification
A total of 1,199 primate samples from the WaNPRC facility
was tested for the presence of MRSA between May and
August 2015. The animals [M. fascicularis, Macaca mulatta,
and M. nemestrina] were in-house animals, as well as, out-
of-state macaques shipped to the facility. The isolates were
previously collected as part of the general care of the animals
approved by the Institutional Animal Care and Use Committee
at the University of Washington, United States, and the
American Society of Primatologists (ASP) Principles for the
Ethical Treatment of Nonhuman Primates (Soge et al., 2016). In
addition, other animals were obtained from different commercial
vendors and different sources outside the United States and
were investigated shortly after their arrival at the WaNPRC
during the quarantine period. MRSA-positive animals were given
baths with chlorhexidine scrub for five consecutive days. The
chlorhexidine was applied to the entire body and scrubbed with
a surgical scrub brush with extra time spent cleaning axillary,
perianal and preputial areas. In addition, animals received nasal
application of mupirocin ointment 2% given twice daily for
5 days at the same time. Animals were sampled again at
two and four weeks after initial MRSA positive culture and
chlorhexidine and mupirocin treatment and retreated if still
MRSA positive. All animals in the colony had initial nasals
cultures done, while wound and/or skin infections were also
sampled when present. All samples were taken from ketamine-
sedated animals using standard microbiological swabs; BD
BBL CultureSwab Plus Amies Medium (Becton Dickinson,
Franklin Lakes, NJ, United States) and/or Starplex Starswab
II (Starplex Scientific, Etobicoke, ON, Canada) as previously
described (Roberts et al., 2011; Soge et al., 2016). For the current
study, colonies were identified as S. aureus by production of
β-hemolysis on blood agar plates and a positive Staphaurex R©

test following manufacturer’s instructions (Remel, Lenexa, KS,
United States; Soge et al., 2016). No isolate was selected unless
they met these criteria (Soge et al., 2016). The presence of the
alternative PBP2’ was determined with the Thermo Scientific
PBP2’ latex agglutination test kit R© using instruction from the
manufacturer (Thermo Fisher Scientific Remel Products, Lenexa,
KS, United States). MRSA isolates were stored at−80◦C. Isolates
were selected without knowledge of the host primate species.
This included 15 of 56 MRSA ST188 SCCmec IV isolates
obtained from 36 animals and selected from various sample sites
including animals that appeared refractory to mupirocin topical
treatment. The 15 ST188 isolates came from ten M. nemestrina
hosts and included three skin samples, and 12 nasal samples
(Table 1). From M. nemestrina Z1242, three different nasal
isolates Z1242N1, Z1242N2, Z1242N3, were selected taken on
Feb 2, April 24, and June 5, 2015 to determine if the same
strain was present over the 5 month time period. This animal
was treated with chlorhexidine scrub and nasal application of
mupirocin ointment between samplings. One M. nemestrina
[Z121] had paired nasal Z121N and skin Z121S isolates taken
May 29, 2015, while M. nemestrina Z123 had two isolates
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from two nasal samples [Z123N1 and Z123N2] isolated May
15 and 29, 2015 and a skin sample [Z123S] isolated May 29,
2015 (Table 1). This animal was treated with chlorhexidine
scrub and mupirocin ointment when first identified as MRSA
positive in May 2015. All these animals were from the WaNPRC
facility.

Nine of the 21 ST3268 SCCmec V isolates were selected
from animals representing different commercial vendors and
out-state-location sources for the macaques. There were seven
nasal samples and two wound samples. The isolates were selected
without knowledge of the host primate species and included
two isolates [A1404N nasal, A1404S skin sample both taken
on July 20, 2015] from a SIV-positive M. mulatta [A1404]
from WaNPRC. M. mulatta A1404 had close contact with the
SIV-positive animal A140 [A140 nasal] and was also from the
WaNPRC (Table 1). Both animals had a compromised immune
system and bite wounds. The other six MRSA ST3268 isolates
originated from macaques shipped from other United States
primate sites, macaques shipped from two different commercial
vendors [A1408, A1535] or directly shipped from China and
having been in quarantine for 6 months in California before
shipping to the WaNPRC [A1524] (Table 1). These nine isolates
came from two M. mulatta [nasal isolates A140, A1404N, and
one wound isolate A1404W], two M. fascicularis [nasal isolates
A1524, A1525] and three M. nemestrina [two nasal A109, Z1403,
one wound site isolate K990W] (Table 1).

All isolates were grown on Brucella agar (Difco Laboratories,
Division BD Sparks, MD, United States) slants and shipped by
courier to Germany for further molecular testing.

DNA Microarray Analysis, MLST,
SCCmec Typing and spa Typing
The Alere StaphyType R© DNA microarray was used for all
isolates as previously described (Monecke et al., 2011, 2016).
The microarray includes 334 target sequences and∼170 separate
genes and allelic variants including species markers, SCCmec,
capsule, agr group typing markers, common antibiotic resistance
genes, toxins and microbial surface components recognizing
adhesive matrix molecules [MSCRAMM] genes. The latter genes
comprise among others clfA and clfB (encoding clumping
factors A and B), fnbA and fnbB (encoding fibronectin binding
proteins A and B), fib (encoding fibrinogen binding protein),
eno (encoding laminin binding protein), and cna (encoding
collagen binding protein), the gene products of which play
a role in the initial attachment of bacteria to host tissue.
The detailed protocol as well as the sequences of primers
and probes have previously been published (Monecke et al.,
2011).

The clonal complexes (CCs) were determined by automated
comparison of the microarray hybridization profiles to a database
of previously characterized isolates (Monecke et al., 2011, 2016).
The spa typing was performed according to Harmsen et al. (2003).
The spa types were determined using the Ridom website.

The MLST typing was done using PCR and sequencing and
the SCCmec typing was performed as previously described prior
to being sent to Germany (Soge et al., 2016).
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Antimicrobial Susceptibility Testing
The antimicrobial susceptibility testing was performed
for 30 antimicrobial agents by broth microdilution
according to the Clinical and Laboratory Standards Institute
(Clinical Laboratory Standard Institute [CLSI], 2018). The
microtiter plates (MCS Swalmen, Netherlands) included
penicillins (penicillin, ampicillin, amoxicillin/clavulanic
acid, oxacillin), carbapenems (imipenem), a macrolide
(erythromycin), a lincosamide (clindamycin), tetracyclines
(tetracycline, doxycycline), aminoglycosides (gentamicin,
streptomycin), a quinolone (ciprofloxacin), an oxazolidinone
(linezolid), a glycopeptide (vancomycin), a streptogramin
combination (quinupristin/dalfopristin), a phenicol
(florfenicol), a pleuromutilin (tiamulin), and the combination
trimethoprim/sulfamethoxazole. The aminoglycoside kanamycin
was tested by broth macrodilution (Clinical Laboratory Standard
Institute [CLSI], 2018, Supplementary Table S1). As there are
no CLSI-approved clinical breakpoints applicable to primates
other than humans, we used the human clinical breakpoints
as listed in the CLSI document M100, 28th edition (Clinical
Laboratory Standard Institute [CLSI], 2018). The breakpoints
for the categories susceptible (S), intermediate (I) and resistant
(R), are as follows: penicillin (S ≤ 0.12 µg/mL, R ≥ 0.25 µg/mL),
oxacillin S ≤ 2 µg/mL, R ≥ 4 µg/mL, ciprofloxacin and
quinupristin/dalfopristin (S ≤ 1 µg/mL, I = 2 mg/mL,
R ≥ 4 µg/mL), gentamicin, doxycycline and tetracycline
(S ≤ 4 µg/mL, I = 8 µg/mL, R ≥ 16 µg/mL), erythromycin
(S ≤ 0,5 µg/mL, I = 1–4 µg/mL, R ≥ 8 µg/mL), clindamycin
(S ≤ 0.5 µg/mL, I = 1–2 µg/mL, R ≥ 4 µg/mL), linezolid
(S ≤ 4 µg/mL, R ≥ 8 µg/mL), trimethoprim/sulfamethoxazole
(S ≤ 2/38 µg/mL, R ≥ 4/76 µg/mL), and vancomycin
(S ≤ 2 µg/mL, I = 4–8 µg/mL, R ≥ 16 µg/mL) (Clinical
Laboratory Standard Institute [CLSI], 2018, Supplementary
Table S1). There are no clinical breakpoints for S. aureus for
ampicillin, amoxicillin-clavulanic acid and imipenem, but if
S. aureus strains are classified as resistant to oxacillin they are
also considered as resistant to other β-lactams. Since there are
no CLSI approved kanamycin breakpoints available, isolates with
MICs of ≥ 64 µg/mL were tentatively considered as resistant
(Feßler et al., 2010). Florfenicol and tiamulin are not used in
human medicine and thus no breakpoints are available.

Susceptibility testing of the biocides benzalkonium chloride,
chlorhexidine, glutardialdehyde, and isopropanol was also
performed by broth macrodilution. For this, a bacterial
suspension was prepared in a tryptone-saline-diluent (TSD; 1 g
tryptone-peptone, 8.5 g sodium chloride in 1 L purified water)
in a concentration of in 1 ×108–1 × 109 cfu/mL from 16 to
24 h old cultures on tryptic soy agar (TSA) (Roth, Karlsruhe,
Germany). This suspension was diluted 1:10. From this dilution,
20 µl were added per each ml double concentrated tryptic
soy broth (2× TSB) (Roth, Karlsruhe, Germany). One ml of
this inoculum was added to a 2-fold benzalkonium chloride
dilution series prepared in 1 mL volumes. The test ranges were as
follows: benzalkonium chloride 0.00005–0.0008%, chlorhexidine
0.000025–0.0008%, glutardialdehyde 0.03–1%, and isopropanol
4 to 12%. The results were read after 24 h incubation at 37◦C
(Feßler et al., 2018).

Macrorestriction Analysis With
Subsequent Pulsed-Field Gel
Electrophoresis (PFGE)
SmaI macrorestriction analysis with subsequent pulsed-field gel
electrophoresis was performed as previously described (Murchan
et al., 2003) and the gels were analyzed according to the criteria
Tenover et al. (1995) and (Deng et al., 2017).

RESULTS

Basic Characteristics of the ST188
SCCmec IV and ST3268 SCCmec V
Isolates
Previously, nasal cultures were performed on 596 primates and
105 (17.6%) were MRSA positives. With the exception of four
animals all in-house primates carried the MRSA ST188, while
the MRSA ST3258 was associated with animals that were shipped
into WaNPRC from other primate facilities and commercial
breeders (Soge et al., 2016). M. nemestrina represent 75% of
the primates in the WaNPRC. All ST188 and ST3268 isolates
were positive for the species markers (rrnD1, gapA, katA, coA,
nuc1, spa, sbi), capsule and agr alleles and consistent with an
identification as S. aureus. All fifteen ST188 isolates selected
for the study came from M. nemestrina hosts and were verified
to have the ST188 MLST profile (3-1-1-8-1-1-1). All but one
had spa type t189 (07-23-12-21-17-34), while the remaining
isolate [Z143] had spa type t3887 (07-23-12-12-34). The nine
ST3268 isolates had a MLST profile of 1-14-430-214-10-303-
329. Two different spa types were identified, t13638 (n = 5) and
t15469 (n = 4). The two spa types differed by the presence of
an additional repeat 17 in spa type t15469 (210-23-02-34-17-
34-34-17-17-23-34) compared to spa type t13638 (210-23-02-
34-17-34-34-17-23-34) (Table 1). The spa type t13638 isolates
were cultured from M. fascicularis and M. nemestrina. This spa
type was first described in a methicillin-susceptible S. aureus
from the United Kingdom2. The spa type t15469, cultured
from M. mulatta, is a novel spa type, first described in these
primate isolates2 (Table 1). In the ST3268 isolates, the spa types
correlated with the host macaque species. The four isolates
from M. mulatta hosts were spa type t15469, while the two
M. fascicularis and M. nemestrina isolates were spa type t13638
(Table 1).

PFGE Profiles
Nine of 15 ST188 [L091 (nasal), Z121N (nasal), Z121S
(skin), Z123N1 (nasal) and Z123N2 (nasal), Z123S (skin),
Z1304 (nasal), Z131S (skin), and Z143 (nasal)], from six
M. nemestrina had indistinguishable PFGE patterns [A]. Five
ST188 isolates originating from three animals [K062 (nasal),
Z1242N1, Z1242N2 and Z1242N3 (nasal), and Z130 (nasal)
shared PFGE sub-pattern [A1], while the ST188 isolate A112
(nasal) had a second PFGE sub-pattern [A2] (Table 1 and
Supplementary Figure S1).

2http://spa.ridom.de/
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Of the nine MRSA ST3268 isolates, seven [A140 (nasal),
A1404N (nasal), A1404W (wound), A1408 (nasal), A1524
(nasal), A1525 (nasal), and K990W (wound)] had the same PFGE
pattern [B]. The isolates A1404N (nasal) and A1404W (wound)
were cultured from the same animal eleven days apart and were
indistinguishable in their PFGE patterns, their resistance pheno-
and genotypes, as well as, their virulence genes (Table 1). The
two sub-patterns B1 and B2 were found in found in single
isolates A109 (nasal) and Z1403 (nasal), respectively (Table 1 and
Supplementary Figure S1).

Resistance Pheno- and Genotypes of the
ST188 SCCmec IV and ST3268 SCCmec
V Isolates
All 21 MRSA isolates were resistant to penicillin and oxacillin.
They carried the mecA gene and the β-lactamase gene blaZ.
All isolates were also resistant to ciprofloxacin. In addition, all
ST188 isolates were resistant to macrolides and lincosamides via
the erm(B) gene and carried the aminoglycoside resistance gene
aacA-aphD mediating gentamicin and kanamycin resistance.
The aacA-aphD gene was only present in five of the ST3268
isolates, which exhibited high kanamycin MICs (≥ 256 mg/L)
and were classified as resistant or intermediate to gentamicin.
The nine MRSA ST3268 isolates were all tetracycline resistant
and carried the tet(K) gene, while only five MRSA ST188
isolates (K062, Z1242N1, Z1242N2, Z1242N3, and Z130), from
3 M. nemestrina, were resistant to tetracycline and carried the
tet(K) gene (Table 1).

From some of the animals, several isolates taken at different
time points [Z1242N2, Z1242N3, Z123N1, and Z123N2] were
included. However, even after one or more rounds of mupirocin
topical treatment and chlorhexidine baths, the MRSA isolates
either persisted in the noses of these juvenile animals or the
animals were re-infected or re-colonized. Treatment success
was measured by MRSA-negative cultures at two and four
weeks after treatment. If the animal was still MRSA-positive,
it was considered as treatment failure. If this happened,
the animal was retreated with mupirocin and chlorhexidine
baths. This primarily happened in juvenile animals. Because
this “treatment failure” was limited to juvenile animals the
veterinarian staff felt that it suggested that the animals were
refractory to clearance of the isolate, the isolate may have become
resistant to mupirocin due to acquisition of the mupirocin
gene mupA or an alternative resistance mechanism, or other
characteristic of being a juvenile M. nemestrina rather than
clearance and reinfection since there was no sign of clearance
in two and four week samples (Table 1). However, none of
these isolates or any of the other isolates in the study were
resistant to mupirocin nor did they carry the mupA gene
(Table 1).

All the isolates were tested for reduced susceptibility
to benzalkonium chloride, while no change was seen with
chlorhexidine, glutardialdehyde, or isopropanol. Some isolates
including ST188 isolates K062, Z1242N1, Z1242N2, Z1242N3,
Z130, and ST3268 isolates A1524, A1525, and K990W, had a
benzalkonium chloride MIC of 0.0004% and carried the qacC

gene. All other isolates, that did not harbor the qacC gene, had
benzalkonium chloride MICs of 0.0001% (Table 1). No other
change in the MIC of disinfectants were observed.

Characterization of Accessory and
Virulence Genes
The nine ST3268 isolates had the enterotoxin gene cluster egc
[seg, sei, selm, seln, selo, selu] and the additional enterotoxin
genes sec and sel. In contrast, none of the ST188 harbored the
enterotoxin gene cluster egc, sec or sel genes (Table 1). The
fifteen ST188 and nine ST3268 isolates carried the hlgA locus
[comprising of hlgA/lukF/lukS], leukocidin genes [lukD/E and
lukX/Y], the aureolysin gene [aur], and the protease genes sspA,
sspB, and sspP. The gene for the S. aureus surface protein G
[sasG] was present among the ST3268 isolates but absent in
the ST188 isolates. Two isolates were additionally tested with
a new array and both A1403 and Z140 were positive for the
carotinoid pigment gene cluster [crtM/N/O/P]. Other isolates
were not tested.

In contrast, the enterotoxin H gene [entH], ORF CM14, and
splE were absent in all isolates (Table 1). The collagen-binding
adhesin [cna] and the protease genes splA, splB were present
in the ST188 isolates but were not detected among the ST3268
isolates. None of the 21 isolates carried PVL genes, the toxic shock
syndrome toxin 1 gene [tst1], exfoliative toxin genes [etA, etB,
etD], or genes associated with β-haemolysin converting phages
(sea, see, scn, chp) (Table 1).

Two ST3268 SCCmec V isolates, A140 from a M. mulatta and
Z1403 from a M. nemestrina, were further tested for SCCmec
accessory genes. The following genes were identified in both
mvaS, cstB-SCC2, ydhK, D1GU38, Q4LAG7, czrC, “ccrAA” (a
recombinase homologue associated with ccrC), and a SCCmec
terminus type 2 (Monecke et al., 2016). This is consistent
with the presence of SCCmec VT+czrC composite elements
as described for the CC398 strain SO385 (GenBank accession
number AM990992.1), a livestock-associated MRSA strain from
Western Europe (Schijffelen et al., 2011).

All isolates from the same animal shared indistinguishable
PFGE patterns, regardless of whether nasal samples were taken
at different times, or nasal and skin samples taken at the same
time from the same M. nemestrina. As shown below, isolates
from the same animal were also indistinguishable with respect to
their resistance pheno- and genotypes, and other genes including
enterotoxin, hemolysin, leukocidin, or PVL genes (Table 1),
suggesting the presence of the same or a closely related strain in
different locations of the animal and/or the persistence of that
strain over time.

DISCUSSION

There have been two different clones present in macaques from
the WaNPRC facility. The in-house clone ST188 was primarily
found in M. nemestrina, the predominant primate species [75%
of the primates] in the WaNPRC facility. At this time, we believe
it was introduced into the facility from primates shipped from
other United States National Primate Research Facility and/or
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commercial vendors around 2014. Then this clone was spread
across the facility mainly via in-house transmission. ST188 has
continued to be isolated from primates in 2018 and from the
primate environment in 2018.

The second MRSA clone ST3268 came from primates that
were originally shipped from two different commercial breeders
in two different states and other primate colonies in the
United States. ST3268 was identified for the first time after
a United States facility shipped ∼90 animals in May 2015
to the WaNPRC. In 2016, MRSA ST3268 SCCmec V-positive
animals were also shipped from a third commercial vendor
in a third state to WaNPRC suggesting that this is the
primary way ST3268 has continued to be introduced into
the WaNPRC. The vendor animals primarily originated from
China or Indonesia. The four MRSA ST3268-positive WaNPRC
animals were those that had contact with MRSA ST3268-
positive animals by following them into a treatment room.
Hence, the assumption was that the treatment room was
contaminated with MRSA ST3268 and the SIV-positive animals
picked up the strain in the treatment room. Similarly, we
have found ST188-positive macaques from both commercial
vendors and other United States primate facilities. The original
source of the MRSA ST188 is not as clear though it can be
found in low prevalence among humans in Asia (Soge et al.,
2016).

As previously reported (Soge et al., 2016) MRSA ST188
isolates have been isolated almost exclusively from Asian humans
but these strains often carry other SCCmec types then found
in the WaNPRC primates. This MLST type is very rarely
reported in North America. One report has identified MSSA
ST188 from sanctuary chimpanzees isolated in Uganda and
ten MSSA ST188 isolated from wild Madagascar lemurs. The
major differences between the two clones other than MLST
and spa type is that ST188 has primarily been associated
with M. nemestrina, the predominate primate in WaNPRC.
In contrast, ST3268 has been identified in all three species
of macaques in the WaNPRC. The two clones also differ in
the carriage of antimicrobial resistance genes. For example,
the erm(B) gene is present in all ST188 isolates studied; but
none of the ST3268 isolates in the current study harbored
this gene. The tet(K) gene is present in all ST3268 in the
current study, but only in some of the ST188 isolates (Table 1).
Only ST3268 isolates carried the fosB gene. All isolates from
both clones were ciprofloxacin resistant. The mechanism of
resistance to ciprofloxacin was not determined, however, in
our previous study with related isolates from macaques in
the WaNPRC center both ST188 and ST3268 isolates carried
a gyrA mutation that resulted in the Ser84Leu amino acid
substitution, suggesting that the isolates in the current study
may also have this mutation (Soge et al., 2016). A few
isolates of both clones had elevated benzalkonium chloride
MICs.

For other genes, there were differences in the carriage of
the egc gene cluster, sec and sel genes with all ST3268 isolates
and none of the ST188 isolates carrying these genes. However,
none of the differences in genes identified could readily explain
the different ability to transfer between the primates within the

WaNPRC or the lack of finding ST3268 in environmental sites
both in 2015 and more recently in 2018 (data not shown).
Recently, Hsu et al. (2017) identified six ST3268 SCCmec V and
two ST2817 SCCmec isolates taken from M. fascicularis used in
experimental surgery in 2014 in Singapore. An additional isolate
was cultured from a person who worked in animal husbandry
in the facility. These animals primarily came from Vietnam
and were imported between 2009 and 2014. Both MLST types
can be regarded as belonging to the same clonal complex (Hsu
et al., 2017). The Singaporean ST3268 SCCmec V isolates were
resistant to ciprofloxacin, gentamicin and tetracycline. MICs
were determined but specific antibiotic resistance genes were
not identified in the Hsu et al., 2017. One Singapore isolate,
DN260, differed from ST3268 WaNPRC United States, TXA, and
TXB isolates by 36 SNPs (Soge et al., 2016; Hsu et al., 2017).
It was unclear in the Hsu study whether the ST3268 was able
to transfer between animals within their facility or if they came
into the facility carrying the MRSA. However, it is possible that
the facility worker acquired his nasal MRSA ST3268 from the
MRSA-positive primates or contaminated work environment.

ST3268 is genetically related to ST2817 which is found in low
prevalence in Asia, previously isolated from a human surgical
wound in Singapore in 20143. However, except for the one worker
all MRSA ST3268 SCCmec V isolates have been isolated from
macaques and thus may very well be a primate-associated strain
that is common in parts of Asia (Soge et al., 2016; Hsu et al.,
2017).

The ST188 clone continues to be the dominant MRSA clone
in the WaNPRC. We examined the two MRSA isolates recovered
in Aug 2017 and both were ST188. As previously shown, we
also found a few methicillin susceptible S. aureus [MSSA] strains
that were ST188 which clustered with the MRSA ST188 from
the WaNPRC primates (Soge et al., 2016). No MSSA that
were ST3268 have been identified though the number of MSSA
examined has been small (Soge et al., 2016). The MRSA ST3268
isolates characterized in the current publication were recovered
over a seven month time period, and could be subdivided into
two spa types, which were found in different species of macaques
(Table 1).

The data from the current study as well as previous studies
(Soge et al., 2016; Hsu et al., 2017) suggest that all primates should
be screened and treated for MRSA carriage prior to being shipped
to other facilities within a country or between countries to reduce
the continual spread of primate-related MRSA.

CONCLUSION

The primate isolates belonged to two different clones, ST188
and ST3268. ST188 was the in-house clone that easily spread
among primates in the colony. It was primarily identified in
M. nemestrina, though this could be due to the predominance
[75%] of this species of macaques in the WaNPRC. Fourteen
of the 15 ST188 isolates exhibited the same spa type t189.
Five isolates carried the tet(K) gene coding for tetracycline

3http://saureus.mlst.net/
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resistance and all had PFGE pattern A1 with all five of
these isolates harboring the qacC gene and showing reduced
susceptibility to benzalkonium chloride. The nine ST188 isolates
with PFGE pattern A were susceptible to tetracyclines and did not
carry tetracycline resistance genes. The other clone, ST3268, was
introduced from external macaques shipped from other United
States primate facilities and United States commercial companies.
ST3268 did not spread easily among the primates even though
each isolate carried the egc enterotoxin gene cluster, sec and sel
genes. One unexpected observation with the ST3268 isolates was
finding that the spa type varied by macaque host species as did the
mobile antibiotic resistance genes and reduced susceptibility to
benzalkonium chloride. However, seven out of nine isolates had
the same PFGE pattern B and the two variants PFGE patterns
B1 and B2 did not correlate with either host macaque species
or antibiotic resistance genes carried suggesting that they are
members of a closely related clone. The data presented does not
provide insight into why ST188 could spread easily while ST3268
did not spread within the WaNPRC facility.
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The environment, human, and animals play an important role in the spread of antibiotic-
resistant bacteria. Enterococci are members of the gastrointestinal tracts of humans
and animals and represent important reservoirs of antibiotic resistance genes. Until
today, few studies have examined antibiotic susceptibility in enterococci isolated from
primates. Therefore, the present study investigated species distribution, antibiotic
susceptibility, and resistance genes in enterococci isolated from wild and captive black
capuchins monkeys (Sapajus nigritus) in Rio Grande do Sul, South Brazil. A total of
24 swabs/fecal samples were collected, including 19 from wild monkeys living in two
forest fragments [São Sebastião do Caí (SSC) and Santa Cruz do Sul (SCS)], and
five in captive [Parque Zoológico da Fundação Zoobotânica (ZOO)], between August
2016 and November 2017. Fifteen colonies were randomly selected from each sample.
Enterococci were identified by MALDI-TOF, tested for susceptibility to 12 antibiotics;
and screened for tet(S), tet(M), tet(L), msrC, and erm(B) genes by PCR. Two-hundred
ninety-six enterococci were isolated (SSC n = 137; SCS n = 86; ZOO n = 73) and
differences in Enterococcus species distribution were detected on three monkey groups,
with low abundance in SCS (1 − D = 0.2), followed by ZOO (1 − D = 0.68), and
SSC (1 − D = 0.73). The enterococci frequently recovered include the following:
Enterococcus faecalis (42.6%), E. hirae (29.1%), and E. faecium (15.9%). Antibiotic-
nonsusceptible was observed in 202 (67.9%) strains. The rate of non-susceptibility
to rifampicin, tetracycline, erythromycin, nitrofurantoin, chloramphenicol, and ampicillin
was 46%, 26%, 22% and 19%, 13%, 0.3%, and 0.3%, respectively. All strains
were susceptible to vancomycin, streptomycin, gentamycin, and linezolid. Forty-three
(14.52%) isolates were identified as multidrug resistant (MDR), and the highest number
of MDR enterococci were E. faecium recovered from wild monkeys living close to
a hospital and water treatment plant. Elevated rates of antibiotic resistance genes
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msrC and tet(L) were isolates from ZOO. In conclusion, differences in the frequency
of enterococci species, antibiotic-nonsusceptible and antibiotic resistance genes in all
groups of monkeys were identified. These data suggest that anthropogenic activities
could have an impact in the resistome of primate gut enterococci communities.

Keywords: Enterococcus, primates, wild and captive capuchin monkeys, Sapajus nigritus, antimicrobial
resistance

INTRODUCTION

Brazil has the greatest biodiversity on the planet, comprising
approximately 103,870 different animal species and the highest
diversity of Primates, around 77 species, including the howler
monkey, the capuchin monkey, the marmoset, and the tamarin
(Brazilian Society of Primatology [SBP], 2016). Sapajus nigritus
(black-horned capuchin or black capuchin monkeys) are part of
the Cebidae family, characterized as robust capuchin monkeys
with adornments or tufts on the head (Rylands et al., 2012).
They are considered the largest omnivorous Neotropical primate,
which is able to adapt its diet according to food availability,
thus bringing them into contact with a wide diversity of
microorganisms. Their diet is composed of approximately 55%
fruits, 33% insects, 8% seeds, 8% leaves (mainly young), and 2%
flowers (National Research Council of the National Academies
[NRC], 2003). Currently, this species occurs in Minas Gerais,
Rio de Janeiro, São Paulo, Paraná, Santa Catarina, and Rio
Grande do Sul states, extending to the Argentinean province
of Misiones (International Union for Conservation of Nature
[IUCN], 2017).

The black capuchin monkeys (S. nigritus) live in different
habitats, from large remnants or continuous to small forests
fragments. Outside of their natural environment, they can be
found in zoological, rehabilitation, or research centers, and even
in urban and rural environments. Additionally, these animals
exhibit a niche overlap with humans in the case of semi-wild
areas (Muehlenbein, 2017). Since the natural habitats of primates
are forests, most interactions between humans and primates
occur in this high-risk interface. In many regions of the world,
omnivorous primate species are adapting to human activities.
Furthermore, the frequency of such interactions has increased
due to ecotourism and/or increasing forest invasion, and these
interactions could lead bacteria exchanges by multiple routes,
namely through the offering of food (Mikich and Liebsch, 2014).
Glover (2014) compared the enteric bacteria of monkeys with
three levels of human contact and determined that the closer
the animals were to humans, the more resistant was the enteric
bacteria to antibiotics. Importantly, Rolland et al. (1985) observed
that wild baboons (Papio cynocephalus) that fed on human debris,
maintained a high proportion of antibiotic-resistant enteric
bacteria than those without human contact.

The environment, humans, and animals play an important
role in the emergence and spread of antibiotic-resistant bacteria.
Singer et al. (2016) described three well-characterized classes
of chemicals – antimicrobials, heavy metals, and biocides –
related to the selection of antibiotic resistance genes. Biological
fluids (e.g., urine and feces) contaminated with antimicrobials

or resistant bacteria from human and animal origins are
released into the environment – especially in soil, sewage,
water, and wastewater – thereby contributing to the spread
of resistance (Baquero et al., 2008; Gothwal and Shashidhar,
2014). The proximity to human activity has showed to increase
the number of resistant bacteria in wild animals, with animals
living near waste or agricultural water harboring more antibiotic-
resistant bacteria than animals living close by unpolluted
water (Allen et al., 2010). Recently, it was demonstrated that
exposure to human antibiotics was associated with changes
in the microbiota composition of baboons (Tsukayama et al.,
2018).

Enterococci are a large genus of bacteria widely distributed
on plants, soil, water, humans, and animals. In humans and
other species, inhabit various sites including the oral cavity,
genitourinary and gastrointestinal tracts (Lebreton et al., 2014).
The genus Enterococcus consists of over 50 diverse species,
and Enterococcus faecalis, E. faecium, E. hirae, E. durans,
E. casseliflavus, E. gallinarum, and E. mundtii are the most
frequently encountered in the gastrointestinal tracts of animals
(Poeta et al., 2005; Cassenego et al., 2011; Lozano et al., 2016;
Medeiros et al., 2017). However, the species evaluation in the
gastrointestinal tract of primates remains little known (Xavier
et al., 2010; Glover, 2014). The species distribution, as well as their
proportions in the different niche can change according to the
host and its age, diet, underlying diseases, and prior antimicrobial
therapy (Lebreton et al., 2014).

Otherwise, enterococci are considered an opportunistic
pathogen, associated with serious infection, such as endocarditis,
urinary, and bloodstream infections, intra-abdominal end intra-
pelvic abscesses, which has been attributed, in part; to the
increasing resistance to a wide range of antimicrobial agents.
The presence of resistant and multidrug-resistant enterococci in
patients has a clinical relevance because of limited therapeutic
options (Higuita and Huycke, 2014). Antimicrobial resistance
to several classes of agents is a remarkable characteristic of
enterococcal isolates. These microorganisms are intrinsically
resistant to some antimicrobial agents commonly prescribed for
Gram-positive cocci, and exhibit resistance to a wide variety of
other antimicrobials by mutation and/or acquisition of genes
through the plasmids and transposons. In fact, many species are
recognized for their ability to acquire and transfer resistance and
virulence genes, which give a selective advantage to Enterococcus
spp. survival and dispersion in the environment (Lebreton et al.,
2014; Miller et al., 2014). The occurrence of antimicrobial
resistance among enterococci is not restricted to the nosocomial
setting, and therefore, resistant strains has been investigated and
monitored in different habitats, providing important information
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regarding about environmental disturbances (Poeta et al., 2005;
Frazzon et al., 2010; Barros et al., 2011; Cassenego et al., 2011;
Santos et al., 2013; Santestevan et al., 2015; Prichula et al.,
2016).

To date, few studies have examined the presence of
enterococci in monkeys, and these studies have focused primarily
on captive animals, perhaps due to the inherent difficulty in
obtaining samples from free-living wild animals (Xavier et al.,
2010; Glover, 2014; Woods et al., 2017). The investigation of the
persistence of enterococci in these animals highlights the impact
of human activities on the environment. Moreover, antibiotic-
resistant enterococci in monkeys are an important point that
must be addressed in the host–microorganism–environment
interactions. Therefore, the objective of the present study was
to evaluate the distribution of enterococci in fecal samples of
free-living and captive black capuchin monkeys from South
Brazil. In addition, the prevalence of antibiotic susceptibility and
antibiotic resistance genes in enterococci isolated from these
primate populations were determinates.

MATERIALS AND METHODS

Sample Collection
Twenty-four samples collected from black capuchin monkeys
between August 2016 and November 2017 were used in the
present study, including samples from animals with free lifestyle
(n = 19) and animals living in captivity (n = 5). Samples were
obtained in Rio Grande do Sul, South Brazil (Supplementary
Data 1).

Samples were taken from three groups of black capuchin
monkeys. Two groups include wild animals from two forest
fragments in Rio Grande do Sul State (Figure 1). In the first
forest fragment located in São Sebastião do Caí (SSC) (29◦ 35′
13′′ S; 51◦ 22′ 17′′ W), samples were obtained from 11 animals,
corresponding to 30% of overall group composition. This forest
fragment is located near to a hospital and water treatment plant.
The area comprises 2% of vegetation, totalizing 9611 hectares of
forest (SOS Mata Atlântica, 2016). In the second forest fragment,
located in Parque Municipal da Gruta dos Índios (Indian Grotto
Municipal Park) in Santa Cruz do Sul (SCS) (29◦ 43′ 03′′ S;
52◦ 25′ 33′′ W), samples were obtained from eight animals,
corresponding to 27% of the overall group. This forest fragment is
located inside of the park, and the animals come without indirect
contact with any park visitor, but maintain contact with garbage
and other food sources. The area comprises 13% of vegetation,
totalizing 539.8 hectares of forest (SOS Mata Atlântica, 2016).
The third group was in captive condition at the Zoological Park
of the Zoobotânica Foundation of Rio Grande do Sul (ZOO)
in Sapucaia do Sul (29◦ 49′ 29′′ S; 51◦ 08′ 54′′ W), and five
samples were collected. The animals were isolated in quarantine
at ZOO since they were rescued from illegal or abusive situations
by the Wild Animals Triage Center (CETAS – IBAMA). The
diet of captive monkeys was composed of extruded ration for
primates (Nuvital Primatas Neotropicais, Nuvital Nutrientes S/A,
Colombo, Brazil) complemented with fruits and vegetables.

Wild capuchin monkeys were captured and manipulated using
conventional methods according to the protocol for sample
collection described by Instituto Chico Mendes de Conservação
da Biodiversidade [ICMBio] (2012) using Tomahawk-type cages.
The ketamine (100 mg/mL) and xylazine (20 mg/mL) were
used intramuscularly for wildlife immobilization (Miranda et al.,
2011).

Rectal swabs and fecal samples were collected by veterinarians,
all animals were clinically healthy and were classified according
to gender and age group. Rectal swabs were collected from the
perirectal area, stored in Stuart transport medium (Kasvi, Paraná,
Brazil), and transported to our laboratory for microbiological
analyses. Fecal samples were collected, individually or in groups,
directly from cages using sterilized wooden sticks. Fecal samples
were placed in sterile tubes, kept on ice, and sent to our laboratory
for storage at−80◦C.

This study was carried out in accordance with the
recommendations of Brazilian Institute of Environment
and Renewable Natural Resources (IBAMA) and Chico
Mendes Institute for Biodiversity Conservation (ICMBio). The
protocol was approved by Information Authorization System in
Biodiversity (SISBIO) number 56640.

Isolation and Identification of
Enterococci
Isolation, enumeration, and characterization of enterococci in
fecal/rectal swabs were performed as previously described by
Prichula et al. (2016) and Santestevan et al. (2015). Swabs or
fecal samples (0.1 g) were inoculated in 9 mL of azide dextrose
broth (Himedia, Mumbai, India) and incubated for 24 h at 37◦C.
Aliquots of 1 mL were placed in 9 mL of saline water, and initial
samples were further diluted 10-fold to obtain a final dilution
factor of 1/1000. From each dilution, 100 µL was inoculated
in brain heart infusion (BHI) agar plates (Himedia, Mumbai,
India) supplemented with 6.5% NaCl, before being incubated
as previously described (Santestevan et al., 2015; Prichula et al.,
2016). Fifteen colonies were randomly selected from each sample.
Phenotypic criteria, such as size/volume, shape, color, gram
staining, catalase production, growth capacity at 45◦C, and bile
aesculin reaction were used to separate the enterococci group and
the non-enterococcal strains. Selected pure colonies were stored
at −20◦C in a 10% (w/v) solution of skim milk (Difco, Sparks,
MD, United States) and 10% (v/v) glycerol (Neon Comercial Ltda,
São Paulo, SP, BR).

The isolates collected were identified using matrix-assisted
laser desorption and ionization time-of-flight technique
(MALDI-TOF) applied to Enterococcus spp. according to the
protocol previously described by Sauget et al. (2017).

Antimicrobial Susceptibility Testing
Susceptibility to antimicrobial agents was performed using
the Kirby–Bauer disk diffusion method recommended by
the Clinical and Laboratory Standards Institute (Clinical and
Laboratory Standards Institute [CLSI], 2016). Twelve antibiotics
commonly used in clinical and veterinary medicine were
evaluated: ampicillin 10 µg (AMP), ciprofloxacin 5 µg (CIP),
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FIGURE 1 | On the left Southern American (top) and Brazil (bottom) maps. On the center, Rio Grande do Sul map showing locations of collected samples site. On
the right-detailed map of the Rio Grande do Sul showing collected samples locations: Top; SSC, São Sebastião do Caí – a fragmented forest coverage of 2%
vegetation of Atlantic Forest, totaling 9611 hectares of forest: Center; SCS, Santa Cruz do Sul – a fragmented forest comprised of 13% vegetation, totaling 539.8
hectares of forest; Botton; ZOO, Zoological (ZOO) at Zoobotanical Foundation of Rio Grande do Sul, in Sapucaia do Sul city.

chloramphenicol 30 µg (CHL), erythromycin 15 µg (ERY),
streptomycin 300 µg (STR), gentamicin 120 µg (GEN), linezolid
30 µg (LNZ), nitrofurantoin 300 µg (NIT), norfloxacin 10 µg
(NOR), rifampicin 5 µg (RIF), tetracycline 30 µg (TET), and
vancomycin 30 µg (VAN). Minimum inhibitory concentration
(MIC) of linezolid was determined by broth microdilution and
interpretation of the results was performed following CLSI
guidelines.

E. faecalis ATCC 51299 and E. faecium ATCC 53519 were
included as control strains.

Strains resistant to three or more unrelated antibiotics were
considered as multidrug-resistant (MDR). Intermediate and
resistant strains were considered in a single category and
classified as antibiotic-nonsusceptible.

Detection of Resistance-Related Genes
in Enterococcus sp.
DNA extraction was performed as described by Depardieu
et al. (2004). PCR was carried out for the detection of six
different resistance-related genes commonly observed in clinical

and environmental enterococci, namely, erm(B), msrC, tet(M),
tet(S), and tet(L) (Sutcliffe et al., 1996; Aarestrup et al.,
2000; Werner et al., 2001; Frazzon et al., 2010; Rathnayake
et al., 2011). erm(B) encodes a ribosomal methylase that
mediates macrolides, lincosamides, and type B streptogramins
resistance; msrC encodes for a macrolide and streptogramin
B efflux pump; tet(M) and tet(S) encodes for tetracycline
resistance via a ribosomal protection protein mechanism; and
tet(L) encodes for tetracycline resistance via efflux pumps
proteins.

Statistical Analysis
The correlation between antimicrobial susceptibility presented
by Enterococcus spp. and monkey collection origins were
analyzed using a cross-table with Pearson’s chi-square test
(χ2) (p ≤ 0.05) and Fisher’s exact test for small samples
(≤5). Simpson’s index of diversity (D) was calculated to
assess the differentiation of enterococci species among the
monkeys from the different locations (Hunter and Gaston,
1988).
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RESULTS

Enterococcus spp. Isolation and
Identification in Fecal Samples
The distribution of Enterococcus species recovered from
fecal/rectal samples of wild and captive black capuchins monkeys
is provided in Table 1. A total of 296 enterococci were isolated,
of those 223 (75%) were recovered from wild (SSC n = 137; SCS
n = 86), and 73 (25%) from captive monkeys (ZOO). Among
enterococci isolated, E. faecalis (42.6%; n = 126), E. hirae (29.1%;
n = 86), and E. faecium (15.9%; n = 47) were detected in all
groups of monkeys; and E. durans (6.8%; n = 20), E. casseliflavus
(4.4%; n = 13), E. raffinosus (0.3%; n = 1), E. avium (0.3%; n = 1),
E. gallinarum (0.3%; n = 1), and Enterococcus sp. (0.3%; n = 1)
were occasionally detected in the animals.

Differences in the distribution of Enterococcus spp. was detected
amongst the three groups of black capuchin monkeys, as shown
in Table 1. Samples from SSC presented the higher difference and
relative abundance of enterococci, when compared to SCS and
ZOO. The Simpsons diversity indexes showed differences between
the three groups, with low abundance to SCS (1 − D = 0.2),
followed by ZOO (1−D = 0.68) and SSC (1−D = 0.73). E. faecalis
was the predominant species recovered from wild monkeys from
SCS (89.5%; n = 77). On the other hand, in fecal samples of wild
monkeys from SSC, the more commonly observed species were
E. faecalis (32.1%; n = 44), E. hirae (35.8%; n = 49), and E. faecium
(19.0%; n = 26). Whereas E. hirae (47.9%; n = 35), E. faecium
(26.0%; n = 19), and E. durans (17.8%; n = 13) were the most
abundant species isolated in fecal samples of captive monkeys.

Antimicrobial Susceptibility Profile
Among the 296 Enterococcus spp. obtained from fecal samples of
black capuchin monkeys, 201 (67.90%) were nonsusceptible to
at least one antibiotic evaluated (Figure 2). Nonsusceptible
to rifampicin (46%), tetracycline (26%), erythromycin
(22%), and quinolones (ciprofloxacin/norfloxacin) (19%) was
commonly observed, whereas nonsusceptible to nitrofurantoin,
chloramphenicol, and ampicillin was observed only in 13%,

TABLE 1 | Species distribution of enterococci in fecal samples of wild and captive
black capuchin monkeys (Sapajus nigritus).

Species Number (%) of Enterococci Isolated From

SSC SCS ZOO Total (%)

E. faecalis 44 (32.1) 77 (89.5) 5 (6.8) 126 (42.6)

E. hirae 49 (35.8) 2 (2.3) 35 (47.9) 86 (29.1)

E. faecium 26 (19.0) 2 (2.3) 19 (26.0) 47 (15.9)

E. durans 7 (5.1) − 13 (17.8) 20 (6.8)

E. casseliflavus 9 (6.6) 4 (4.7) − 13 (4.4)

E. raffinosus 1 (0.7) − − 1 (0.3)

E. avium 1 (0.7) − − 1 (0.3)

E. gallinarum − − 1 (1.4) 1 (0.3)

Enterococcus sp. − 1 (1.2) − 1 (0.3)

Total 137 (100) 86 (100) 73 (100) 296 (100)

SSC, São Sebastião do Caí; SCS, Santa Cruz do Sul; ZOO, Sapucaia do Sul.

0.3%, and 0.3% of the strains, respectively. Further, all isolates
were susceptible to vancomycin, streptomycin, gentamycin,
and linezolid (Table 2). Chi-squared testing showed significant
differences (p ≤ 0.05) in tetracycline-nonsusceptible strains
isolated from wild black capuchin monkeys from SSC when
compared to the other groups.

In relation to species isolated from black capuchin monkeys,
E. durans (90%) and E. faecium (85%), showed elevated
frequency of antibiotic non-susceptibility, followed by E. faecalis
(69%), E. hirae (56%), and E. casseliflavus (54%). Enterococcus
gallinarum strain was only nonsusceptible to quinolones. Unlike
the other species, E. raffinosus, E. avium, and Enterococcus spp.
were susceptible to all antimicrobials tested. Regarding the source
of samples, the occurrence of antibiotic non-susceptible strains
was observed more frequently in isolates from SSC (Figure 2).

Single, double, and MDR profiles were observed in 32%
(n = 94), 22% (n = 64), and 14.52% (n = 43) of strains, respectively.
The percentages of double and MDR strains isolated from wild
monkeys from SCS (10%; n = 9 and 7%; n = 6) and the captive
(16%; n = 12 and 11%; n = 8) were lower compared to wild
monkeys from SSC (39%; n = 54 and 21%; n = 29). Among the
29 MDR strains from SSC, E. faecium was the species with higher
prevalence (54%; n = 14) (Supplementary Data 2).

Frequency of Antibiotic Resistance
Genes
Among the 66 erythromycin-nonsusceptible strains (11 were
resistance and 56 were intermediate resistance), 24 (36%)
contained the msrC, and none the erm(B) gene. Of the 77
tetracycline-nonsusceptible strains, 43 (56%) harbored only the
tet(M), and 24 (31%) have both tet(M) and tet(L) genes. The tet(S)
gene was not found in this study (Table 3).

In relation to species, the results showed that 92.5% E. faecium,
64% E. hirae, and 4% E. faecalis strains harbored msrC gene.
The tet(M) was present in all E. faecalis, E. faecium, and E. hirae
tetracycline-nonsusceptible strains, and tet(L) was detected in
14% E. faecalis, 57.5% E. hirae, and in 11% E. faecium tetracycline-
nonsusceptible strains.

We investigated the association between resistance-related
genes and the sample sources where enterococci species
isolated from captive monkeys presented a higher frequency of
msrC (95%) and tet(L) (57%) genes when compared to wild
monkeys (Table 3). In addition, seven (21%) erythromycin and
tetracycline-nonsusceptible strains from the ZOO harbored both
msrC, tet(M), and tet(L) genes.

DISCUSSION

In this study using fecal samples collected of wild and captive
black capuchin monkeys (S. nigritus) from South Brazil, we were
able to detected different Enterococcus species. To date, only
a few studies have investigated the distribution of enterococci
species in the fecal samples/rectal swabs of wild and captive black
capuchin monkeys. The genus Enterococcus was first reported
in fecal samples from captive capuchin monkeys (Cebus apella)
and common marmoset (Callithrix penicillata) in the Primate
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FIGURE 2 | Numbers of susceptible and nonsusceptible enterococci species isolated from fecal samples of wild (SSC and SCS) and captive (ZOO) black capuchin
monkeys (Sapajus nigritus). SN, identification sample of black capuchin monkeys. SSC, São Sebastião do Caí; SCS, Santa Cruz do Sul; ZOO, Sapucaia do Sul.

TABLE 2 | Antibiotic resistance patterns among enterococci recovered from fecal samples and rectal of wild and captive black capuchin monkeys (Sapajus nigritus).

Number (Percentage) of Nonsusceptible1 Strains to: Profiles

Species (n) AMP∗ QUI∗,1 CHL∗ ERY∗ NIT∗ RIF∗ TET∗ SR∗∗ DR∗∗ MDR∗∗

SSC E. faecalis (44) 0 10 (23) 0 9 (20) 0 26 (59) 3 (7) 12 (27) 8 (18) 6 (14)

E. hirae (49) 0 0 0 4 (8) 4 (8) 22 (45) 27 (55) 12 (24) 12 (24) 7 (14)

E. faecium (26) 0 18 (69) 0 16 (61) 7 (27) 11 (42) 23 (88) 5 (19) 7 (27) 14 (54)

E. durans (7) 1 (14) 0 0 1 (14) 4 (57) 7 (100) 1 (14) 3 (43) 2 (29) 2 (29)

E. casseliflavus (9) 0 1 (11) 0 2 (22) 0 4 (44) 0 3 (33) 2 (22) 0

E. raffinosus (1) 0 0 0 0 0 0 0 0 0 0

E. avium (1) 0 0 0 0 0 0 0 0 0 0

Subtotal (137) 1 (0.7) 29 (21) 0 32 (23) 15 (11) 70 (51) 54 (39) 35 (26) 31 (23) 29 (21)

SCS E. faecalis (77) 0 18 (23) 0 14 (18) 0 41 (53) 7 (9) 36 (47) 16 (21) 4 (5)

E. hirae (2) 0 0 0 0 0 0 0 0 0 0

E. faecium (2) 0 2 (100) 0 1 (50) 0 1 (50) 2 (100) 0 0 2 (100)

E. casseliflavus (4) 0 0 0 0 0 2 (50) 0 2 (50) 0 0

Enterococcus sp. (1) 0 0 0 0 0 0 0 0 0 0

Subtotal (86) 0 20 (23) 0 15 (17) 0 44 (51) 9 (10) 38 (44) 16 (19) 6 (7)

ZOO E. faecalis (5) 0 2 (40) 0 1 (20) 0 5 (100) 4 (80) 0 3 (60) 2 (40)

E. hirae (35) 0 2 (6) 0 7 (20) 15 (43) 8 (23) 6 (17) 7 (20) 6 (17) 4 (11)

E. faecium (19) 0 2 (10) 1 (5) 10 (53) 2 (11) 3 (16) 3 (16) 6 (32) 4 (21) 2 (10)

E. durans (13) 0 0 0 1 (8) 8 (61) 7 (54) 1 (8) 7 (54) 4 (31) 0

E. gallinarum (1) 0 1 (100) 0 0 0 0 0 1 (100) 0 0

Subtotal (73) 0 7 (10) 1 (1) 19 (26) 25 (34) 23 (31) 14 (19) 21 (29) 17 (25) 8 (11)

Total (296) 1 (0.3) 56 (19) 1 (0.3) 66 (22) 40 (13) 137 (46) 77 (26) 94 (32) 64 (22) 43 (14)

1 Intermediate and resistant strains were considered in a single category and classified as antibiotic-nonsusceptible. ∗Antibiotics: AMP, ampicillin; QUI, quinolones
(ciprofloxacin and norfloxacin); CHL, chloramphenicol; ERY, erythromycin; NIT, nitrofurantoin; RIF, rifampicin; TET, tetracycline; ∗∗Profiles: SR, single resistant; DR, double
resistant; MDR, multidrug-resistant.
SSC, São Sebastião do Caí; SCS, Santa Cruz do Sul; ZOO, Sapucaia do Sul.
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TABLE 3 | Resistance-related genes among antibiotic-nonsusceptible enterococci isolated from fecal samples of wild and captive black capuchin monkeys (Sapajus
nigritus).

Antibiotic-Nonsusceptible Strains Tested to:

Erythromycin Tetracycline

Strains R1 I1 n2 (%) of msrC n2 (%) of erm(B) R1 I1 n2 (%) of tet(L) n2 (%) of tet(M) n2 (%) of tet(S)

SSC E. faecalis 1 8 0 0 3 0 1 (33) 3 (100) 0

E. hirae 2 2 0 0 20 7 14 (52) 26 (96) 0

E. faecium 0 16 14 (87.5) 0 21 2 0 16 (70) 0

E. durans 1 0 0 0 1 0 0 0 0

E. casseliflavus 0 2 0 0 0 0 ND ND 0

Subtotal 4 28 14 (44) 0 45 9 15 (28) 45 (83) 0

SCS E. faecalis 0 14 1 (7) 0 7 0 1 (14) 7 (100) 0

E. faecium 0 1 1 (100) 0 2 0 0 2 (100) 0

Subtotal 0 15 2 (13) 0 9 0 1 (11) 9 (100) 0

ZOO E. faecalis 0 1 0 0 4 0 0 4 (100) 0

E. hirae 4 3 7 (100) 0 6 0 5 (83) 6 (100) 0

E. faecium 4 6 10 (100) 0 3 0 3 (100) 3 (100) 0

E. durans 1 0 1 (100) 0 1 0 0 0 0

Subtotal 9 10 18 (95) 0 14 0 8 (57) 13 (93) 0

Total 11 53 34 (51.5) 0 68 9 24 (31) 67 (87) 0

1Number of resistant (R) or I, Intermediate resistant (I) strains.
2Number of positive strains; ND, not determined; SSC, São Sebastião do Caí; SCS, Santa Cruz do Sul; ZOO, Sapucaia do Sul.

Center of the University of Brasília, Brazil (Xavier et al., 2010).
Thereafter, Glover (2014) identified the genus Enterococcus
in the fecal samples from the baboons (Papio) and vervet
monkeys (Chlorocebus pygerythrus) in two rehabilitation centers
in South Africa.

The enterococci species identified here from both wild and
captive black capuchin monkeys have been reported to be
predominant in fecal samples of different animals. Studies
evaluating enterococci species in fecal samples of domestic and
wild animals revealed presence of similar species (Layton et al.,
2010; Cassenego et al., 2011; Franz et al., 2011; Silva et al.,
2012; Nowakiewicz et al., 2014; Santestevan et al., 2015; Prichula
et al., 2016; Medeiros et al., 2017). Among the species identified
in the present study, E. faecalis was predominant. This species
was also the most prevalent species in fecal samples of captive
capuchin monkeys, common marmoset, domesticated mammals,
birds, and wildlife feces, described in previous studies (Lanthier
et al., 2010; Xavier et al., 2010). Nevertheless, it is important
to highlight that some species could be underestimated in the
present study due to the limitation of the method on used for
enterococci isolation based on culturable methods. Although
this method is widely used to isolate enterococci from different
samples; we know that methods evaluating bacterial species in
biological samples based on cultivation could limit the ability to
recover some species occurring in small proportion.

Differences in the frequency of enterococci species in fecal
samples among the three groups of monkeys were observed.
Confinement, diet, and human contact are factors that may
be responsible for this difference (Lebreton et al., 2014). In
fecal samples of wild monkeys from SCS, the E. faecalis was
the dominant species. In contrast, the species distribution of

enterococci in samples of wild monkeys from SSC was more
heterogeneous. These differences in the frequency of enterococci
could be explained by the environmental conditions. In spite
of the fact that both monkeys live in a free-living condition,
monkeys from SCS are in a forest fragment surrounded by an
urban area. Urban forest fragments are considered the most
fragile area, which suffers directly the negative impacts of the
anthropic action (Pereira et al., 2018). The urbanization also
affects the insect species composition, as recently demonstrated
by Melliger et al. (2018), whereas changes in the composition
of ants and spiders were associated with increasing degree of
urbanization. The anthropic action on the forest fragment in
SCS may have reduced the contact of monkeys with diverse
routes transmitting variable enterococci, including insect that
comprised approximately 33% of the diet of these animals.
Besides, the monkeys from SCS are feeding by human and have
access to the garbage left by visitors on the park.

Contrasting with wild monkeys from SCS, the fecal samples
from wild monkeys of SSC showed more dissimilar Enterococcus
species, including E. faecalis, E. hirae, E. faecium, E. durans,
E. casseliflavus, E. raffinosus, E. avium, and E. gallinarum. These
monkeys live in a less urbanized forest fragment with a general
diet, composed by insects, fruits, stems, flowers, and leaves, and
consequently exposed to several Enterococcus species. In captive
monkeys from ZOO, which are feeding with nonhuman dry food –
composed by proteins, crude fiber and fat – supplemented with
fruits and vegetables, the E. hirae, E. faecium, and E. durans were
the most prevalent species. The presence of these Enterococcus
species might be associated with the food source since enterococci
were detected in the feed and feed ingredients samples as described
by da Costa et al. (2007) and Ge et al. (2013).
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Antibiotic-nonsusceptible enterococci species were found in
captive and black capuchin monkeys. Similar studies, detected
resistant bacteria in captive and wild animal from different
environments (Xavier et al., 2010; Santos et al., 2013; Glover, 2014;
Smith et al., 2014; Santestevan et al., 2015; Bondarczuk et al., 2016;
Prichula et al., 2016; Furness et al., 2017; Bengtsson-Palme et al.,
2018). In addition, samples from wild black capuchin monkeys
from SSC presented a high number of antibiotic-nonsusceptible
strains. The antibiotic-nonsusceptible strains isolated from wild
monkeys are a matter of concern since these animals did not
have a history of therapeutic antibiotic exposure. The analysis
of resistant enterococci in these animals emphasizes the role of
human activities on the environment. However, we cannot forget
to mention that wild black capuchin monkeys from SSC live in a
forest fragment near a public hospital and water treatment plant,
and this proximity with these environments should represent
a source of antibiotic-nonsusceptible strains in these animals.
The presence of bacteria antibiotic-nonsusceptible and antibiotic
resistance genes in hospital effluents has been observed and related
to dissemination of resistance in the environment (Brown et al.,
2006; Rodríguez-Mozaz et al., 2014; Xu et al., 2014). For example,
tetracycline and erythromycin prescribed in human and animal
medicine are excreted as active metabolites and remain stable
in the environment (Rahardjo et al., 2011; Rudra et al., 2018;
Schafhauser et al., 2018) to be considered modern pollutants in
soils and aquatic environment (Gothwal and Shashidhar, 2014;
Dizavandi et al., 2016). Another aspect to be considered is the
antibiotic resistome (Wright, 2007; Stewart et al., 2014). Previous
reports have noted the occurrence of resistant bacteria in soil
independent of human activity (Allen et al., 2010). As such, we
cannot exclude the possibility that the resistance found in monkeys
is derived from the gut microbial communities. Tsukayama et al.
(2018) showed that antibiotic resistance is an ancient feature of
gut microbial communities of primate and that sharing habitats
with humans may have an important impact on the structure
and function of this microbiota.

In our study, 14% of the isolated strains were resistant at
least to three or more drugs. The MDR enterococci species have
been isolated from wild and captive animals (Nowakiewicz et al.,
2014; Prichula et al., 2016). It is important to note that an
elevate number of MDR E. faecium isolated from wild monkey
that lives near to the hospital was detected. In the last years,
the emergence of MDR bacteria has become a hospital-acquired
infection problem and, a high number of MDR enterococcal
infections are caused by E. faecium (Kristich et al., 2014).

The resistance-related genes commonly observed in this
environment, msrC, tet(M), and tet(L) was detected in our
samples. Those resistance genes were found in higher frequency
in samples from captive monkeys when compared to wild
monkeys. Perhaps, the captive condition of animals might be
contributing to the acquisition/dispersion and persistence of
these genes in this environmental. Up until now, only two studies
have evaluated resistant genes in enterococci-resistant isolated
from monkeys (Xavier et al., 2010; Woods et al., 2017). Our
data demonstrated the tet(M) gene is widely distributed among
our isolates followed by tet(L). Furthermore, when studying
enterococci from wild marine animals, Prichula et al. (2016)

identified a high prevalence (73.07%) of the tet(M) gene and
a low prevalence (23.07%) of tet(L), which corroborates with
the findings in the present study. Notably, Poeta et al. (2005)
determined that the tet(M) gene is the more prevalent in
enterococci from wild animals in Portugal, other than monkeys.
Moreover, 50% of samples from Santestevan et al. (2015), isolated
from wild sea lions presented tet(M) gene. Despite erm(B) gene is
frequently observed in macrolide-resistant strains isolated from
animals (Poeta et al., 2005; Cassenego et al., 2011), this gene
was not detected in our samples. In addition, the msrC gene
was detected at low frequency in wild monkeys. Additionally,
Prichula et al. (2016) tested the erm(B) and msrC in enterococci
strains isolated from wild marine animals and reported only
the presence of the msrC. It is possible that other genes could
be associated with erythromycin-nonsusceptible strains isolated
from monkeys, like erm(A), erm(C), erm(D), erm(E), erm(F),
erm(G), erm(Q), and the macrolide efflux pump (msrA).

In conclusion, the enterococci isolated in this study from
monkeys living in three distinct areas, showed differences in
the species, in the frequency of antibiotic-nonsusceptible and
antibiotic resistance genes. These differences could be related
to food web interactions, environmental pollutants, and/or
antibiotic resistome. High frequency of MDR strains was
observed in fecal samples of wild monkeys, which live in a forest
fragment near a public hospital. The data presented in this study
suggest that anthropogenic action might be affecting primate-gut
enterococci community.

Finally, further research is necessary to better understand the
evolution of resistance mechanisms presented by enterococci.
Therefore, this study contributes in part to the comprehension
of black capuchin monkey’s microbiota, and to the elucidation
of resistant bacterial strains and spread in wild and captive
environments.
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To evaluate the relationship between pharmacokinetic/pharmacodynamic (PK/PD)
parameters and changes in susceptibility and resistance frequency of Actinobacillus
pleuropneumoniae CVCC 259, a piglet tissue cage (TC) infection model was
established. After A. pleuropneumoniae populations maintained at 108 CFU/mL in TCs,
piglets were treated with various doses of danofloxacin once daily for 5 consecutive days
by intramuscular injection. Both the concentrations of danofloxacin and the population
of vial cells were determined. Changes in susceptibility and resistance frequency were
monitored. Polymerase chain reaction (PCR) amplification of quinolone resistance-
determining regions (QRDRs) and DNA sequencing were performed to identify point
mutations in gyrA, gyrB, parC, and parE genes. Furthermore, the susceptibility of
mutants to danofloxacin and enrofloxacin was determined in the presence or absence
of reserpine to assess whether the mutants were caused by efflux pumps. The MICs
and resistant frequency of A. pleuropneumoniae both increased when danofloxacin
concentrations fluctuated between MIC99 (0.05 µg/mL) and MPC (mutant prevention
concentration, 0.4 µg/mL). As for PK/PD parameters, the resistant mutants were
selected and enriched when AUC24h/MIC99 ranged from 34.68 to 148.65 h or
AUC24h/MPC ranged from 4.33 to 18.58 h. Substitutions of Ser-83→Tyr or Ser-
83→Phe in gyrA and Lys-53→Glu in parC were observed. The susceptibility of
mutants obtained via danofloxacin treatment at 1.25 and 2.5 mg/kg were less affected
by reserpine. These results demonstrate that maintaining the value of AUC24h/MPC
above 18.58 h may produce a desirable antibacterial effect and protect against
A. pleuropneumoniae resistance to danofloxacin.

Keywords: PK/PD, mutant frequency, danofloxacin, Actinobacillus pleuropneumoniae, tissue cage infection
model
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INTRODUCTION

Actinobacillus pleuropneumoniae is the causative agent of
porcine pleuropneumonia, a severe respiratory disease that
is a global problem in pig production. The acute form of
this disease is highly contagious and often fatal, resulting
in considerable economic losses to pig producers (Gutiérrez-
Martín et al., 2006; Matter et al., 2007; Bossé et al., 2015).
Historically, antibacterial therapy was a highly effective and
common measure in controlling this disease. However, resistant
mutants increased gradually due to the misuse of antibacterials.
According to a recent report, the MIC frequency distribution of
danofloxacin against A. pleuropneumoniae gradually increased
during 2011–2015 in both the United States and Canada
(Sweeney et al., 2017). Therefore, a rational antibiotic dosing
regimen should be optimized, not only to eradicate bacterial
infections but also to inhibit the emergence and proliferation of
antibiotic-resistant strains (Toutain et al., 2002).

To design more rational dosage schedules, the antibacterial
effect and pharmacokinetics of antibiotic should be considered
integratedly (Aliabadi and Lees, 2000; Lees and Aliabadi, 2002).
Therefore, the pharmacokinetic/pharmacodynamic (PK/PD)
integration model has been commonly used as an alternative
and preferred approach to dose titration studies for selection of
rational dosage regimens (Toutain and Lees, 2004). To restrict
selection of antibiotic-resistant mutants, various methods have
been proposed. For PK/PD integration, the MIC- and MPC-
related PK/PD parameters (MPC:MIC for the least susceptible
single-step mutant subpopulation) have an important role in
understanding the development of resistance (Firsov et al., 2003).
Indeed, the relationship between PK/PD parameters and resistant
mutants has been studied in several in vitro experiments (Firsov
et al., 2003; Zinner et al., 2003, 2008; Liang et al., 2011). For in vivo
experiments, a tissue cage (TC) infection model has been used as
a feasible system in exploring the relationship between PK/PD
parameters and antibacterial effects (Cui et al., 2006; Zhu et al.,
2012; Zhang et al., 2014a; Xiong et al., 2016).

Danofloxacin is a third-generation quinolone with a broad-
spectrum bactericidal activity and used solely in veterinary.
The pharmacokinetics of danofloxacin has been investigated in
several animals, such as sheep (Aliabadi et al., 2003b), goats
(Aliabadi and Lees, 2001), calf (Sarasola et al., 2002), camel
(Aliabadi et al., 2003a), and pigs (Richez et al., 1997). To
design rational dosage regimen, the PK/PD integration model of
danofloxacin against pathogenic microorgnism has been studied.
A TC model was well applied to explore the antibacterial
activity of danoflocaxin against bacteria, especially in ruminant.
For example, one group (Aliabadi et al., 2003b) has studied
the antibacterial activity of danoflocaxin against Mannheimia
haemolytica in sheep biological fluids. After integrating the
antibacterial effect and PK/PD parameters, the mean values
of AUC/MIC to produce bacteriostasis, bactericidal activity,
and elimination of bacteria were 17.8, 20.2, and 28.7 h for
serum and 20.6, 25.5, and 41.6 h for exudate, respectively.
Another study (Shojaee and Lees, 2003) focused on the PK/PD
integration of danofloxacin against M. haemolytica 3575 in calf
and the mean values of AUC/MIC to produce a bacteriostatic

effect, inhibition of bacterial count by 50%, bactericidal effect,
and elimination of bacteria were 15.9, 16.7, 18.15, and 33.5 h
for serum and 15.0, 16.34, 17.8, and 30.7 h for transudate,
respectively. In camel (Aliabadi et al., 2003a), the PK/PD
modeling of danofloxacin against Escherichia coli 0157-H7 was
developed in serum and TC fluids and the mean values of
AUC−/MIC to produce a bacteriostatic activity, inhibition of
bacterial count by 50%, bactericidal activity, and elimination
of bacteria for serum were 17.20, 20.07, 21.24, and 68.37 h,
respectively. A goat TC model (Aliabadi and Lees, 2001) has been
used to estimate the antibacterial activity of danofloxacin against
M. haemolytica and the mean values of AUC24/MIC in serum
to produce bacteriostasis, bactericidal effect, and elimination
of bacteria were 22.6, 29.6, and 52.2 h, respectively. These
studies provided abundant and original PK/PD data, which
are of great significance for guiding the clinical medication
of danofloxacin in animals. However, there is no paper
about PK/PD integration of danofloxacin in pigs and there
is also no report about correlation analysis between PK/PD
parameters of danofloxacin and bacterial sensitivity changes.
Therefore, PK/PD integration was developed to evaluate the
changes in susceptibility of A. pleuropneumoniae after repeated
administration of danofloxacin in pigs in this manuscript.

In the present study, a standard A. pleuropneumoniae CVCC
259 strain was exposed to various doses of danofloxacin in
a piglet TC infection model at a population of 108 CFU/mL.
The pharmacokinetics of danofloxacin and the changes in
susceptibility and resistance frequency of A. pleuropneumoniae
were examined. We then identified the mutations in the
quinolone resistance-determining regions (QRDRs) of gyrA,
gyrB, parC, and parE genes. Finally, the relationship between
PK/PD parameters and changes in susceptibility and resistance
frequency of A. pleuropneumoniae was analyzed. We aimed to
demonstrate that this model could elucidate the relationship
between emergence of resistant A. pleuropneumoniae and PK/PD
parameters associated with danofloxacin.

MATERIALS AND METHODS

Bacterial Strain, Antibacterial Agents,
and Chemicals
The A. pleuropneumoniae standard strain, CVCC259, was
purchased from the Chinese Veterinary Culture Collection
Center. Danofloxacin mesylate standard (>99%) and
enrofloxacin standard (98%) were kindly supplied by Guangdong
Dahuanong Animal Health Products. Pentobarbital sodium was
purchased from Jian Yang Biotechnology Co., Ltd. Procainamide
hydrochloride was supplied by Xin Zheng Co., Ltd., Tianjin
Pharmaceutical Group. Tryptic Soy Broth (TSB) and Mueller–
Hinton agar (MHA) were purchased from Guangdong Huankai
Microbial Technology. Nicotinamide adenine dinucleotide
(NAD, lot: 20160810) was purchased from MYM biological
technology company limited (Beijing). Newborn bovine
serum was provided by Guangzhou Ruite Biotechnology
Ltd. Compound aminopyrine injection was purchased from
Shandong Zhengmu Biological Pharmaceutical Co., Ltd.
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Determination of MIC, MIC99, and MPC
Actinobacillus pleuropneumoniae was grown in TSB or on
MHA supplemented with 4% newborn bovine serum and 1%
NAD at 1 mg/mL. The MIC was tested by an agar dilution
method according to Clinical and Laboratory Standards Institute
(CLSI) reference methods (Watts, 2013). MIC99 and MPC were
determined as previously described (Lu et al., 2003) with minor
revision. Briefly, for MIC99, bacterial cultures were grown for 8 h
at a constant temperature of 37◦C, at 180–200 rpm/min. Cultures
were serially diluted and a 100 µL inoculum with a concentration
of bacteria at approximately 106 CFU/mL was applied to agar
plates containing various concentrations of danofloxacin. After
incubation at 37◦C, 5% CO2 for 18–20 h, bacterial colonies
were counted, and the fraction relative to the initial bacterial
inoculum was calculated. The MIC is recorded as the lowest drug
concentration preventing visible growth. The MIC99 is defined
as the drug concentrations that inhibited growth of bacteria by
99%.

For MPC, approximately 1010 CFU A. pleuropneumoniae were
inoculated on to multiple danofloxacin-containing agar plates.
After incubation at 37◦C for 72 h, plates were screened every 24 h.
The lowest antibiotic concentration at which no colonies grew
on an agar plate was defined as the preliminary MPC (MPCpr).
For exact MPC, the concentrations of danofloxacin in the agar
decreased at a linear trajectory by 10%, which was based on
MPCpr approaching 1/2 MPCpr. Then, we repeated the method
for the MPCpr test. The lowest antibiotic concentration at which
no colonies grew on an agar plate was defined as the MPC.

Tissue Cage Infection Model
Healthy castrated crossbred piglets (Duroc × Landrace×
Yorkshire), weighing 20–25 kg, were obtained from Guangzhou
Fine Breed Swine Farm. They were housed in individual cages
and fed antibiotic-free fodder (guangchubao premix feed for pig
from the Guangzhou Zhongwang Feed Company) twice a day.
Water was available ad libitum. All the experimental protocols
were approved by the South China Agricultural University
Committee on Animal Ethics (Approval number: 2017A008).

Tissue cages were made using food grade silicone tubes and
the size of the TCs were the same as those described previously
(Zhang et al., 2014b). Implantation surgery was performed under
deep general anesthesia induced by pentobarbital sodium and
local anesthesia by the injection of procainamide hydrochloride.
Two TCs, sterilized with 75% ethyl alcohol and ultraviolet
radiation, were implanted subcutaneously in each piglet. The
TC position was perpendicular to the horizontal plane and one
TC was placed on each side of the neck equidistant from the
jugular vein and spinal cord. After surgery, the piglets received
intramuscular (IM) injection of penicillin (1,000,000 IU/kg) to
prevent infection. Animals were also treated with tetracycline
ointment over the wound twice a day for 3 days. The non-
steroidal anti-inflammatory drug (NSAID), aminopyrine, was
simultaneously administrated by injection for post-operative
analgesia. The animals were allowed to recover from surgery
for 4–5 weeks to permit wound recovery and for the TC to fill
with tissue cage fluid (TCF). After extraction of the TCF with

disposable sterile syringes and bacteriological examination, sterile
TCs were used for the study.

One milliliter of logarithmic growth phase bacterial
suspension (approximately 1010 CFU/mL) was added to
each TC. Two days after infection, 0.5 mL of TCF was extracted
from each TC for bacterial enumeration. The TCFs containing a
bacterial concentration exceeding 108 CFU/mL were used for the
experiment.

Dosing Regimens and Pharmacokinetic
Measurements
Sixteen piglets (eight females and eight males) were randomly
allocated to one control group and seven study groups. The
control group (two piglets and four TCs) was treated with 1 mL
sterile physiological saline. The study groups were treated with
danofloxacin at 0.4, 0.6, 0.8, 1.25, 2.5, 3.5, and 5 mg/kg (four
TCs for each group) of body weight for 5 days, once daily by IM
injection. TCFs (0.3 mL) were collected from the TC at 2, 4, 6,
8, 10, and 24 h after each administration. Samples were clarified
by centrifugation at 3000 × g for 10 min and stored at −20◦C
avoiding light until analyzed within 2 weeks.

Danofloxacin concentrations in TCF were determined by
high-performance liquid chromatography with fluorescence
detection (HPLC-FD; Agilent Technologies, United States; Zhang
et al., 2017). Briefly, after thawing, each sample (200 µL)
including the blank sample was added to the same volume
of acetonitrile for deproteinization, and was then clarified by
centrifugation at 12,000× g for 10 min. Two-hundred microliters
of clear supernatant and 800 µL water were mixed and then
transferred to an HPLC vial. The HPLC was applied with an
Agilent TC-C18 column (250 mm × 4.6 mm, 5 µm) and the
mobile phase was triethylamine phosphate (pH 2.4): acetonitrile
(19:81, v/v) with a flow rate of 0.8 mL/min. The injection
volume was 20 µL. A calibration curve was determined using
nine danofloxacin concentrations (0.001–0.5 µg/mL). The mean
relative recovery (RR) of danofloxacin in TCF samples was
96.9± 9.83% (mean± SD).

Pharmacokinetic parameters, including Cmax (maximum
concentration of drug in samples) and AUC24h (the area under
the concentration–time curve over 24 h), were calculated by the
non-compartmental model using WinNonlin software (version
5.2, Pharsight Corporation, Mountain View, CA, United States).

Quantification of the Time-Kill Curves
and Recovery Curves of Resistant
Mutants
Multiple TCFs (0.5 mL) were collected from the TCs before,
during, and after the treatment (after every administration) at
24 and 48 h after the termination of treatment. To quantify the
numbers of surviving bacteria and resistant mutants, each sample
was serially diluted with sterile saline and 20 µL was inoculated
in triplicate on to drug-free MHA or MHA containing 1 ×MIC
of danofloxacin. After incubation 18–20 h, the resultant bacterial
colonies were counted. The detection limit was 50 CFU/mL. The
time-kill curves were depicted as the number of bacteria on drug-
free MHA, while the recovery curves of resistant mutants were
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drawn as the populations grown on MHA containing 1×MIC of
danofloxacin.

Quantification of Changes in
Susceptibility and Resistant Frequency
Loss of bacterial susceptibility in TCF was examined at before
danofloxacin administration, during the treatment (after every
administration), 24 and 48 h after the termination of treatment.
The stability of mutants was determined by consecutive passage
of A. pleuropneumoniae on to drug-free MHA every 24 h for
5 days. MICs were tested as described above. To evaluate the
contribution of efflux, the susceptibility to both danofloxacin and
enrofloxacin was then determined in the presence or absence of
reserpine at 20 µg/mL.

To detect the resistant frequency of mutants, each sample
was plated on to MHA containing 1 × MIC of danofloxacin
(detection limit 50 CFU/mL). The definition of resistant
frequency was expressed by the ratio of bacterial numbers
counted in the presence of antibiotics to that in the absence of
antibiotics.

Analysis of the Relationship Between
PK/PD Parameters and Resistant
Mutants
Pharmacokinetic/pharmacodynamic parameters such as
AUC24h/MIC99, AUC24h/MPC, %T > MIC99 (the percentage
of the time that drug concentration remains above the MIC99),
%T > MPC (the percentage of time that drug concentration
remains above the MPC), Cmax/MIC99, and Cmax/MPC were
calculated using WinNonlin program (version 5.2, Pharsight
Corporation, Mountain View, CA, United States). Fisher’s exact

test was used for statistical analysis of the relationship between
PK/PD indices and the changes in susceptible. Control group
(two piglets and four TCs) were used as a control. P < 0.05 was
considered to be statistically significant.

PCR Amplification of Quinolone
Resistance-Determining Regions
(QRDRs)
After passage for five generations, mutants with stable MIC
were used for polymerase chain reaction (PCR) amplification.
The nucleotide sequence of the QRDRs of the gyrA, gyrB, parC,
and parE genes were determined as previously described (Wang
et al., 2010). The reagents used for PCR were purchased from
Takara Bio, (Kusatsu, Japan). After amplification, the sequencing
reaction was analyzed by Beijing Genomics Institute using Sanger
sequencing.

RESULTS

MIC, MIC99, and MPC of Danofloxacin
Against A. pleuropneumoniae
The values of MIC, MIC99, and MPC were 0.06, 0.05, and
0.4 µg/mL, respectively. All experiments were performed in
triplicate on different occasions.

Antibacterial Effect and Recovery of
Resistant Mutants
The time-kill curves are depicted in Figure 1 and exhibit the
antibacterial effect of danofloxcin against A. pleuropneumoniae
CVCC259 in TCF after different doses were administered. For

FIGURE 1 | Time-killing curves in the tissue cage fluid of danofloxacin treatment of A. pleuropneumoniae CVCC259. After an infection model was established,
various doses (0.4, 0.6, 0.8, 1.25, 2.5, 3.5, and 5 mg/kg of body weight by IM) of danofloxacin and sterile physiological saline (control group) were administered
intramuscularly once daily for 5 days (indicated by the arrow). n is the number of tissue cages per group.
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FIGURE 2 | Recovery of total and resistant bacteria after administration of danofloxacin at 0.8, 1.25, and 2.5 mg/kg. Concentrations of total bacteria and resistant
mutants were determined in aliquots of tissue cage fluid obtained at the indicated time points after the initiation of treatment. Three representative examples are
shown for piglets in which the danofloxacin concentrations were located between the MIC99 and MPC.

the control group, bacterial populations remained constant
(approximately 108 CFU/mL). Compared to the control group,
administration of danofloxacin at 0.4 mg/kg slightly decreased
bacterial numbers. Bacterial numbers were reduced in response
to the first 4 administrations of danofloxacin at 0.4, 0.6, and
0.8 mg/kg, although there was re-growth of bacteria after
the last treatment. For the danofloxacin dosages at 1.25 and
2.5 mg/kg, bacterial numbers were obviously reduced after the
five administrations, although there was re-growth at 48 h after
the last administration. Administration of danofloxacin at 3.5
and 5 mg/kg caused bacterial numbers to reduce throughout
treatment and they remained low during the growth recovery
phase.

Three representative recovery curves are shown in Figure 2
when the piglets were administrated danofloxacin at 0.8, 1.25,
and 2.5 mg/mL. As a result, the danofloxacin concentrations
were located between the MIC99 and MPC. Both the numbers
of total and resistant bacteria are listed in Figure 2. The
total bacterial populations reduced during treatment and then
gradually increased. However, resistant bacteria numbers were
initially constant or slightly reduced before amplification after
several administrations. At last, the number of mutant and total
bacteria were almost equal.

Pharmacokinetics of Danofloxacin
Danofloxacin concentrations collected at various time points
during the treatment are depicted in Figures 3A1–A7.
Determined by trapezoidal rules, the average values of AUC24h
ranged from 0.96 ± 0.34 to 18.94 ± 3.34 µg·h/mL. The average
maximum concentration (Cmax) ranged from 0.05 ± 0.01 to
1.13 ± 0.15 µg/mL. The detailed values for AUC24h and Cmax
are listed in Table 1. The AUC24h and Cmax values in the TCF
increased in a non-linear fashion with increasing doses and the

correlation coefficients (R2) were 0.95 and 0.91, respectively.
After various dosages of danofloxacin were administered, the
mean concentrations in the TCFs were ranged from MIC99 to
MPC: almost completely below MIC99 (A1), across the MIC99
(A2), completely between MIC99 and MPC (A3–A5), across the
MPC (A6), and above the MPC (A7).

Changes in Susceptibility and Resistant
Frequency
Susceptibility of A. pleuropneumoniae in the TCFs was examined
after administration with different doses of danofloxacin
(Figures 3B1–B7). The MICs gradually increased (Figures 3B2–
B6) when the drug concentrations were partially or completely
located between MIC99 and MPC (Figures 3A2–A6).
The significant increase in MICs (Figures 3B4,B5) were
observed when the concentration of danofloxacin fluctuated
between the MIC99 and MPC (Figures 3A4,A5). When
danofloxacin concentrations were maintained either below
the MIC99 (Figure 3A1) or above the MPC (Figure 3A7),
MIC did not increase, either during or after treatment
(Figures 3B1,B7).

The resistant frequencies are depicted in Figures 3C1–
C7. Dramatic increases (>1000 fold; Figures 3C2–C6) were
observed when the drug concentration located between MIC99
and MPC (Figures 3A2–A6). When drug concentrations were
mostly below the MIC99 (Figure 3A1) or exceeded the MPC
(Figure 3A7), the resistant frequencies slightly increased and
then gradually decreased (Figures 3C1,C7).

Relationships Between PK/PD
Parameters and Resistant Mutants
Pharmacokinetic/pharmacodynamic parameters provide an
empirical way to relate antimicrobial dose to favorable treatment
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FIGURE 3 | Effect of danofloxacin concentration on loss of susceptibility and mutant enrichment. Concentrations of danofloxacin (0.4, 0.6, 0.8, 1.25, 2.5, 3.5, and
5 mg/kg) correspond to the different treatment groups once daily for 5 days. n is the number of tissue cages per group. (A1–A7) The concentration–time curves of
different dosages of danofloxacin. (B1–B7) The values of MIC after each administration of danofloxacin, which corresponded to A1–A7. (C1–C7) The resistant
frequency after each administration of danofloxacin, which corresponded to A1–A7. The dotted line represents MPC and the solid line represents MIC99 in A1–A7.

TABLE 1 | The pharmacokinetic parameters of danofloxacin following multiple
doses in a piglet tissue-cage infection model.

Dosages (mg/kg) AUC24h (µg·h/mL) Cmax (µg/mL)

0.4 0.96 ± 0.34 0.05 ± 0.01

0.6 1.35 ± 0.15 0.06 ± 0.01

0.8 1.98 ± 0.35 0.11 ± 0.02

1.25 3.59 ± 0.69 0.22 ± 0.03

2.5 6.79 ± 0.35 0.38 ± 0.04

3.5 9.00 ± 0.73 0.45 ± 0.02

5 18.94 ± 3.34 1.13 ± 0.15

AUC24h, 24 h area under concentration–time curve; Cmax, maximum concentration.
The AUC24h and Cmax were the mean values of five injections of danofloxacin at
various dosages. Values are listed as mean ± SD.

effects associated with bactericidal agents (Mouton et al.,
2005). The MIC99- and MPC-related PK/PD parameters
are listed in Table 2. Relationships between PK/PD indices,
determined as steady-state values after the fifth dose,
and changes in susceptibility are shown in Table 3. For
fluoroquinolones, the AUC24h/MIC99 index is most commonly
associated with restriction of susceptible bacterial growth
(Craig, 2001). Only two of eight TCs lost susceptibility when
AUC24h/MIC99 < 34.68 h (Table 3 and Figures 3A1,A2).
Loss of bacterial susceptibility occurred in 10 of 12 TCs when
AUC24h/MIC99 was between 34.68 and 148.65 h (Table 3 and
Figures 3A3–A5). Only one of eight TCs lost susceptibility

when the AUC24h/MIC99 exceeded 148.65 h (Table 3 and
Figures 3A6,A7). As for AUC24h/MPC, mutant enrichment
was observed, where 10 of 12 TCs lost susceptibility, when
the AUC24h/MPC was between 4.33 and 18.58 h (Table 3
and Figures 3A3–A5). Only one of eight TCs occurred
loss of susceptibility (Table 3 and Figures 3A6,A7) when
AUC24h/MPC > 18.58 h.

Statistically significant correlations with selection of resistance
for other PK/PD indices are also listed in Table 3. Mutants
were selected by enrichment when the Cmax/MIC99 values were
between 1.09 and 8.42 or Cmax/MPC values were between
0.14 and 1.05. Resistant bacteria were recovered from 12
of 20 TCs when the administration time of danofloxacin
concentration was above the MPC for <29.63% of the dosing
interval.

Characterization of the Contribution of
Efflux and Gene Mutations in QRDRs
Mutants selected from danofloxacin dosages of 0.6, 0.8, and
3.5 mg/kg tended to be non-topoisomerase mutants that
exhibited increased efflux. This was confirmed by adding an
efflux inhibitor (reserpine), which could decrease the MIC for
danofloxacin and enrofloxacin (Table 4). Mutants obtained from
1.25 and 2.5 mg/kg dosages were less affected by reserpine
(Table 4). Mutations in the QRDR target genes are listed in
Table 4. No mutant genes were observed in gyrB and parE.
All mutants had a (Lys-53→Glu) substitution in parC. When
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TABLE 2 | The PK/PD parameters of danofloxacin following multiple doses in a piglet tissue-cage infection model.

Dosages(mg/kg) AUC24h/MIC99(h) AUC24h/MPC(h) Cmax/MIC99 Cmax/MPC %T > MIC99 %T > MPC

0.4 19.18 ± 6.73 0.91 ± 0.30 2.40 ± 0.84 0.11 ± 0.04 1.74 ± 3.77 0

0.6 26.95 ± 3.09 1.28 ± 0.15 3.37 ± 0.39 0.16 ± 0.02 72.23 ± 8.32 0

0.8 39.52 ± 7.02 2.25 ± 0.41 4.94 ± 0.88 0.28 ± 0.05 94.42 ± 11.16 0

1.25 71.79 ± 13.72 4.44 ± 0.53 8.97 ± 1.72 0.55 ± 0.07 100 0

2.5 135.87 ± 6.91 7.60 ± 0.75 16.98 ± 0.86 0.95 ± 0.09 100 15.96 ± 6.38

3.5 179.95 ± 14.53 9.02 ± 0.44 22.49 ± 1.82 1.13 ± 0.05 100 29.63 ± 25.61

5 378.81 ± 66.86 22.55 ± 3.01 47.35 ± 8.36 2.82 ± 0.38 100 98.01 ± 3.98

AUC24h, 24-h area under concentration–time curve; Cmax, maximum concentration; MIC99, the minimum concentration that inhibits colony formation by 99%; MPC,
antibacterial concentration that inhibits growth of the least susceptible single-step mutant subpopulation; %T > MIC99, the percentage of time that drug concentration
remained above MIC99; %T > MPC, the percentage of time that drug concentration remained above MPC. All PK/PD parameters were calculated as the mean values of
multiple doses. Values are listed as mean ± SD.

TABLE 3 | Correlation of PK/PD parameters with selection of resistance.

PK/PD index, value Fraction of tissue cages with resistant bacteria (mutant/total) P

AUC24h/MIC99(h)

<34.678 2/8 0.424

34.68–148.65 10/12 0.008

>148.65 1/8 0.667

AUC24h/MPC(h)

<4.33 2/8 0.424

4.33–18.58 10/12 0.008

>18.58 1/8 0.667

Cmax/MIC99

<1.09 0/4 NA

1.09–8.42 12/16 0.014

>8.42 1/8 0.667

Cmax/MPC

<0.14 0/4 NA

0.14–1.05 12/16 0.014

>1.05 1/8 0.67

T > MIC99

<17.15 2/8 0.424

>17.15 11/20 0.067

T > MPC

<29.63 12/20 0.047

>29.63 1/8 0.667

All PK/PD parameters were determined using total drug concentrations from the tissue cage fluid. A total of 28 tissue cages were analyzed. P-values were calculated
using Fisher’s exact test, with a two infected but untreated piglets (four tissue cages) used as a control. NA, not applicable.

TABLE 4 | Quinolone susceptibility and identification of resistant mutants associated with different dosages of danofloxacin.

MICs (µg/mL) Mutations

Dosages (mg/kg) Danofloxacin Danofloxacin + reserpine Enrofloxacin Enrofloxacin + reserpine gyrA parC

0 0.06 0.03 0.125 0.03 – –

0.6 (n = 2) 0.25 0.125 0.5 0.125 – K53E

0.8 (n = 3) 0.25 0.125 0.5 0.125 – K53E

1.25 (n = 4) 1 1 2 1 S83Y K53E

2.5 (n = 3) 1 1 2 1 S83Y K53E

3.5 (n = 1) 0.5 0.5 1 0.25 S83F K53E

–, No mutant was found; n, the number of tissue cages with mutant strains; gyrA, parC, the target genes of mutations in QRDRs. Reserpine concentration was at
20 µg/mL.
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the dose was 0.6 and 0.8 mg/kg, no substitution was founded
in gyrA. When the dose was 1.25 and 2.5 mg/kg, the mutants
had a (Ser-83→Tyr) substitution in gyrA. When the dose was
3.5 mg/kg, the mutants had a (Ser-83→Phe) substitution in
gyrA.

DISCUSSION

Danofloxacin is a synthetic fluoroquinolone that was developed
solely for veterinary therapeutic purposes and shows a wide
spectrum of bactericidal activity that includes Gram-negative
and some Gram-positive bacteria, mycoplasma, and intracellular
pathogens such as Brucella and Chlamydia species (Sappal et al.,
1996; Sunderland et al., 2003; Rowan et al., 2004). However, with
the abundant application of antibiotics, antibacterial resistance
has emerged as a serious public health problem in both humans
and animals. One of the main reasons for this phenomenon is the
inappropriate dosage regimens (dose, dosage interval, duration
of treatment, routes, and conditions of administration; Toutain
et al., 2002). Even the commonly accepted treatment strategy
of killing susceptible pathogens contributes to the problem by
stimulating selective amplification of resistant mutants during
treatment (Stratton, 2003). Therefore, rational antibiotic dosing
regimens should be optimized, not only to eradicate the
culpable pathogens but they also have an important role in
inhibiting the emergence and proliferation of antibiotic-resistant
strains (Toutain et al., 2002). Therefore, we considered an
exploration of the relationship between the MIC- and MPC-
related PK/PD parameters and emergence of resistant mutants as
being important in elucidating this phenomenon.

In the present study, both the susceptibility and resistant
frequency of A. pleuropneumoniae increased when the
concentration of danofloxacin exceeded MIC99 and below
MPC. Compared with the changes in susceptibility, the
resistant frequency of mutants increased dramatically when
the concentration partially or completely decreased between the
MIC99 and MPC (Figures 3A2–A6) in the present study. This
phenomenon was also observed by other researchers (Cui et al.,
2006; Zhu et al., 2012; Zhang et al., 2014a; Xiong et al., 2016).
We postulate two reasons to explain this phenomenon. One
reason may be the amplification of pre-existing resistant bacteria
(Blondeau, 2009). When drug concentrations were located
between MIC99 and MPC, the total population size reduced and
then gradually re-constituted after several administrations of
danofloxacin. The resistant frequency of mutants significantly
increased but the number of mutants changed only slightly.
These data indicated that a frequency increase may result
from preferential killing of susceptible bacteria. Amplification
of mutants was observed after several treatments (Figure 2).
Another reason that could explain the increase in resistance
frequency may due to gene mutations that arise in bacteria
(Zhang et al., 2014a). After several applications of treatment,
the sequence of nucleotides may change and a new mutant can
be generated (Cui et al., 2006; Zhu et al., 2012). Consequently,
the total population of bacteria was almost equal to the mutant
population.

To assess the clinical effects and their potential in the
prevention of antibiotic resistance development, antimicrobial
PK/PD parameters have been used (Leroy et al., 2012). For
fluoroquinolones, AUC24h/MIC can be applied commonly to
predict favorable outcomes when susceptible populations are
considered (Preston et al., 1998). And for MPC-related PK/PD
indices, AUC24h/MPC is an appropriate parameter because MPC
is the MIC of the least susceptible single-step mutant (Zhao and
Drlica, 2001). In the present study, we considered keeping the
value of AUC24h/MPC > 18.58 h as being a straightforward
way to restrict the acquisition of resistance. The results fitted
well with the conclusions of other researchers (Cui et al., 2006;
Xiong et al., 2016). In an in vivo study, Staphylococcus aureus was
treated with levofloxacin and AUC24h/MPC was also proposed.
In their study, AUC24h/MPC > 25 h correlated with restricted
growth of resistant mutant subpopulations (Cui et al., 2006).
Another researcher studied the relationship between vancomycin
and methicillin-resistant S. aureus (MRSA) in vivo. This group
considered that resistant mutants were not enriched at a value of
AUC24h/MPC > 15 h (Zhu et al., 2012).

Other PK/PD parameters such as Cmax/MIC99, Cmax/MPC,
and T > MPC also exhibited a statistically significant correlation
with resistance frequency. However, it is still not possible
to accurately confirm the concentrations required to generate
resistance in previously susceptible strains. For example, in an
in vitro model, concentrations of antibiotics at the center between
MIC99 and MPC were favorable in selecting a double mutant
(Preston et al., 1998). In the present TC infection model, the
concentration of danofloxacin required below MPC for 70.38% of
the time to enrich mutants when those concentrations fluctuated
above and below the MPC. However, the enrichment of mutants
was observed when the concentration fluctuated above and
below the MIC99 for only 17.15% of the interval time. One
reason, which may explain this difference derives from more
abundant pre-existing resistant mutant subpopulations being
able to survive and expand near MIC99 (Zhou et al., 2000), while
the mutants were killed when the drug concentration was near
the MPC.

In Gram-negative bacteria, fluoroquinolone resistance occurs
mainly by interplay of three mechanisms. This is realized by
stepwise accumulation of mutations in the QRDRs of DNA gyrase
and topoisomerase IV, active efflux of fluoroquinolones, and the
presence of plasmid-borne resistance genes (qnr) protecting the
target topoisomerase (Chu et al., 2005). In our experiment,
the mutants had a (Ser-83→Tyr) or (Ser-83→Phe) substitution
in gyrA and a (Lys-53→Glu) in parC. In a previous study
(Wang et al., 2010), more mutant genes were found. They
characterized the enrofloxacin-resistant A. pleuropneumoniae
isolates and found seven different substitutions in GyrA (G75S,
S83Y, S83F, S83V, D87Y, D87N, and D87H), four different
substitutions in ParC (G83C, S85R, S85Y, and E89K), and five
different substitutions in ParE (P440S, S459F, E461D, E461K, and
D479E).

Although we successfully established a piglet TC infection
model to evaluate the relationship between MIC- and MPC-
based PK/PD parameters and the emergence of resistant mutants,
there are some limitations to our study. First, because of the
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limited number of piglets, the sample size of resistant mutants is
not enough to generalize. Larger datasets should be considered
in future research. Second, although a TC infection model
was suitable for exploring the relationship between PK/PD
indices and antibacterial effects, there are still obvious differences
between TCF and clinically infected organs in animals. Therefore,
for A. pleuropneumoniae, a lung infection model may be
preferable for the study of PD and PK information in future
studies.

CONCLUSION

We successfully established a piglet TC infection model and
investigated the changes in susceptibility and mutant frequencies
of A. pleuropneumoniae after different dosages of danofloxacin.
After analyzing the relationship between MIC- and MPC-
based PK/PD parameters and the emergence of resistant
mutants, we suggest that danofloxacin concentrations should be
maintained above the MPC or AUC24h/MPC > 18.58 h, which

could maintain effective antibacterial activity and minimize the
emergence of resistant A. pleuropneumoniae.
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Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized
as the major bacterial agent responsible for food-transmitted gastroenteritis. The
most effective antimicrobials against Campylobacter are macrolides and some, but
not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by
mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside
O-nucleotidyltransferases. The presence of streptomycin resistance genes was
evaluated among streptomycin-resistant Campylobacter isolated from humans and
animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-
Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible
combinations with a major fraction of the isolates carrying a previously described ant-
like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among
Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown
by gene transfer and phenotype expression in Escherichia coli, unlike detected coding
sequences in C. jejuni that were truncated by an internal frame shift associated to
RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli
isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans,
suggesting a circulation pathway of Campylobacter strains by consuming contaminated
calf meat by bacteria expressing this streptomycin resistance element.

Keywords: Campylobacter coli, Campylobacter jejuni, streptomycin-resistance, aminoglycoside adenylyl
transferases, ANT(6)-I
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INTRODUCTION

Campylobacteriosis is the main cause of foodborne diseases in
the UE and in the United States [Collective Eurosurveillance
Editorial Team, 2015; (Accessed March 2018)1]. The drugs
of choice for the treatment of campylobacteriosis were,
mainly erythromycin (ERY) and ciprofloxacin (CIP), although
quinolones are no longer effective after a fast rise in resistance
mechanisms among Campylobacter species (Carreira et al.,
2012; Hormeño et al., 2016). Aminoglycosides, the third
class of antimicrobials used worldwide after sulfonamides
and beta-lactams, are a recommended alternative for the
treatment of difficult infections caused by thermotolerant
Campylobacter spp. (Wieczorek and Osek, 2013). The advantages
of using aminoglycosides compared to other antimicrobials
are their concentration-dependent bactericidal activity and
relatively predictable pharmacokinetics, and synergism with
other antibiotics (Vakulenko and Mobashery, 2003). Among
aminoglycosides, the first active molecule used was streptomycin
(STR), produced by Streptomyces griseus. STR binds to the
aminoacyl-tRNA site (A site) of the 16S rRNA in the 30S
ribosomal subunit, inducing codon misreading and inhibiting
of translocation (Moazed and Noller, 1987; Woodcock et al.,
1991) which leads to inadequate protein production. When
antibiotic resistance appears it is due to target modification of
ribosomal components, antimicrobial modification, or lowering
drug accumulation in the cell (Vakulenko and Mobashery,
2003). Like in other bacteria, mutation K43R of S12 protein,
a component of the 30S ribosomal subunit encoded by the
rpsL gene, confers high-level of STR resistance in Campylobacter
(Olkkola et al., 2010). Besides that, two out of four ANT(6)-I
subfamily members of aminoglycoside nucleotidyltransferases
(also known as aminoglycosides adenyltransferases of the AADE
family), ANT(6)-Ia and ANT(6)-Ib, are frequently involved in
STR resistance in Campylobacter strains and probably evolved
from Gram-positive bacteria (Pinto-Alphandary et al., 1990;
Shaw et al., 1993; Gibreel et al., 2004; Nirdnoy et al., 2005; Abril
et al., 2010; Qin et al., 2012; Zhao et al., 2016). An additional
role in STR resistance of ANT-like protein has been suggested in
C. coli (Olkkola et al., 2016).

The aim of this work was to characterize the STR resistance
presented in Campylobacter isolates of human and animal origin,
establishing the role of a new enzyme of the ANT(6)-I family,
ANT(6)-Ie, detected in a significant fraction of STR resistant
isolates which molecular typing evidenced spread between animal
and human hosts.

MATERIALS AND METHODS

Bacteria and Antimicrobial Resistance
Campylobacter spp. strains isolated from humans were previously
described (Hormeño et al., 2016) and resulted from systematical
screenings performed during 2010–2012 in fecal samples from

1www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/National
AntimicrobialResistanceMonitoringSystem/default.htm

gastroenteritis patients by the Microbiology services of three
hospitals located in West-Center Spain: San Pedro de Alcántara,
Cáceres; Campo Arañuelo, Cáceres; and Universitario de
Salamanca, Salamanca. Campylobacter spp. isolated from bovine,
fattening pigs and poultry were randomly selected in 2010–2012
from slaughterhouses located all around Spain by the Spanish
Surveillance Network of Antimicrobial Resistance in Bacteria
of Veterinary Origin (VAV Network; Moreno et al., 2000) and
were partially described elsewhere (Florez-Cuadrado et al., 2016).
From each farm, a single Campylobacter isolate was obtained by
culturing pooled feces from animals (bovine and porcine) and
cloacal or meat samples (poultry). Isolates were grown on blood
agar, in a microaerophilic atmosphere (CampyGenTM, Thermo
Scientific) at 42◦C for 24–48 h and were identified by a Vitek-
MS MALDI-TOF system (bioMérieux, Marcy-l’Etoile, France)
to species level. The minimal inhibitory concentrations (MICs)
for STR, ERY, gentamicin (GEN), CIP, and tetracycline (TET)
were determined by agar dilution methods according to the
guidelines of CLSI (Clinical and Laboratory Standards Institute
[CLSI], 2010), including Campylobacter jejuni ATCC 33560 as
the reference strain. Resistance was determined according to the
EUCAST2 (last accessed September of 2018), by using cut-off
values [ecological cut-off value (ECOFF)] of 4 mg/L for STR,
4 mg/L (C. jejuni) or 8 mg/L (C. coli) for ERY, 2 mg/L for GEN,
0.5 mg/L for CIP, and 1 mg/L (C. jejuni) or 2 mg/L (C. coli)
for TET. To test the presence of efflux pumps, MIC to STR
were determined in the presence of the efflux pump inhibitor
phenylalanine-arginine beta-naphthylamide (PaβN, Sigma) at a
concentration of 20 mg/L.

Detection of Resistance Determinants
PCR was performed on DNA obtained by boiling, for 5 min, a
suspension of one or two colonies from pure culture in 250 µL of
milli-Q water, and recovering the supernatant after centrifugation
at 10,000 × g for 10 min. PCR was carried out with 1 µl of
DNA, 0.2 mM of each dNTP (Biotools, Madrid, Spain), 0.5 µM of
each primer [Stab Service (University of Extremadura, Badajoz,
Spain)], 0.025 U/µl of Taq Polymerase (Biotools, Madrid, Spain)
and 1X PCR buffer containing 1.5 mM MgCl2 (Biotools, Madrid,
Spain), during 30 cycles of 94◦C, 30 s; annealing temperature
indicated in Table 1, 30 s; 72◦C, 1 min. Amplicon purification was
done with Speedtools PCR clean-up kit (Biotools, Madrid, Spain),
following the manufacturer’s instructions. DNA sequencing were
performed by STAB Service (DNA Sequencing facilities of the
Universidad de Extremadura, Spain). In silico data analysis was
carried out with bioinformatics tools available in NCBI3, SMS4,
and EBI5.

Mutations in the STR resistance region of the rpsL gene
were screened by sequencing of the PCR amplicon produced by
primers and conditions previously described (Table 1; Olkkola
et al., 2010). Similarly, the possible presence of ant(3”)-Ia genes
carried by Class-I integrons was evaluated by PCR with primers

2www.eucast.org
3http://www.ncbi.nlm.nih.gov
4http://bioinformatics.org/sms
5http://www.ebi.ac.uk
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TABLE 1 | Primers used in this work.

Name Sequence (5′-3′) T1 Bp2 Reference

RPSLF CCAGCGCTTAAAAAT TGTCC 55 247 Olkkola et al., 2010

RPSLR TATCAAGAGCACCA CGAACG

INT1F GGCTCTCGGGTAAC ATCAAGG 54 242 Leverstein-van Hall et al., 2002

INT1R TCAGGAGATCGGAA GACCTC

CSF GGCATCCAAGCAGCAAG 56 VAR3 Lévesque et al., 1995

CSR AAAAGCAGACTTGA CCTGA

SAF TGCAAAA(G/A)CC(G/C) GA(A/G)GATATGG 56 305 This work

SAR TTCCTT(G/T)CG(G/A) CATA(G/T)CC(C/T)TT

SBF GATTGT(T/C)CG(T/C)CAT GAGCTGCT 57 327 This work

SBR GTGCTATCCAGGCAGC CGGTT

SCF TGCCT(A/C)AAATTGG(G/A) T(G/A)AGTT 52 368 This work

SCR ACCTAGCCA(A/G)ATTTCA AA(A/G)CCAAA

STREJF TGCAAAGCGAAAA AAGAAT 49 878 This work

STREJR TTATAATTTTCTTAAAAT TTTGCAAT

STRECF TGCAAAATCAAGATAAAT TTTTAAAAC 51 899 This work

STRECR TTACAATTTTCCTAAAAT TTTACAAT

STREFF GTATGCGCAAAAATGAT TAAAG 50 1110 This work

STREFR AAGGAAAAATTTAAATAT TGGTTTCA

1Annealing temperatures for PCR. 2PCR-Product size in bp. 3Variable size depending on gene-cassette structure (Lévesque et al., 1995).

specific to intI and intI-associated gene cassettes (Table 1). Three
sets of degenerated primers were designed to amplify internal
fragments of genes ant(6)-I (Table 1): ant(6)-Ia (primers SAF and
SAR), ant(6)-Ib (primers SBF and SBR), and ant(6)-Ie (primers
SEF and SER). Further analysis was performed to amplify the
(almost) full coding sequences of ant(6)-Ie genes (Table 1) from
C. jejuni (primers STREJF and STREJR) and C. coli (primers
STRECF and STRECR). Oligonucleotide design was performed
with Oligo v.6 software.

Functional Expression in E. coli
The expression of ant(6)-Ie from C. coli was tested through
cloning the complete gene in the vector pGem-T Easy
(Promega R©), according to the manufacturer’s instructions.
The full length of the gene including its promoter sequence
was amplified by using primers STREFF and STREFR
(Table 1), designed from the genome sequence of C. coli
Z163 (ZP_14079546.1) and assuming that σ70 Campylobacter
promoters have a well-conserved −10 box and lack the −35
box presented in other bacteria (Petersen et al., 2003). The
ligation mixture was electroporated in Escherichia coli XL1-Blue
MRF’ and transformants were selected in Luria-Bertani medium
supplemented with 100 mg/L ampicillin.

Multilocus Sequence Typing of
Campylobacter Isolates From Human
and Animal Origin
A group of Campylobacter isolates was genotyped for flaA-
SVR (short variable region of flaA gene) and multilocus
sequence typing (MLST). PCR fragments of the housekeeping
genes aspA (aspartase A), glnA (glutamine synthetase), gltA
(citrate synthase), glyA (serine hydroxymethyltransferase), pgm
(phosphoglucomutase), tkt (transketolase), and uncA (ATP

synthase a subunit), as well as flaA gene (flagellin), were amplified
and sequenced as described elsewhere (Ugarte-Ruiz et al., 2013).
Allele numbers were assigned by sequence comparisons against
the existing sequences deposited in the Campylobacter MLST
database6.

RESULTS

Streptomycin Resistance Phenotypes in
Isolates From Human Origin
Based on the ECOFF defined by EUCAST for STR resistance
of Campylobacter (MIC > 4 mg/L), 16 out of 141 human
isolates are above the threshold (Figure 1). Among these it
was possible to identify three different phenotypes: high-level
resistance, shown by two C. jejuni strains (MIC > 512 mg/L),
medium-level resistance, in two C. jejuni and five C. coli
isolates (32 ≤ MIC ≤ 256 mg/L), and low-level resistance,
with inhibition of growth immediately above ECOFF, detected
in six C. jejuni and one C. coli (MIC = 8 mg/L). Treatment
with the efflux pump inhibitor PAβN reduced MICs in all
the isolates, with the exception of the highly resistant HSA40,
with maximal susceptibility attained in two isolates from the
medium-level resistance group plus in the seven isolates with
the lowest resistance level (Figure 1). Among analyzed isolates,
low susceptibility against clinically relevant antimicrobials was
generally found to CIP and/or TET but not to ERY or GEN,
although three low-level resistant strains to STR were also found
near the cut-off for CIP and TET (HCC26, HCC27, and HCC34;
Figure 1).

6http://pubmlst.org/campylobacter
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FIGURE 1 | Phenotypic and genotypic analysis of streptomycin (STR) resistant isolates. 1Minimal inhibitory concentrations for STR, erythromycin (ERY), gentamicin
(GEN), ciprofloxacin (CIP), and tetracycline (TET). 2MIC were determined in the presence of PaβN (mg/L). 3Data previously reported (Hormeño et al., 2016).
4Mutations in the RPSL coding sequence were detected by sequencing (WT, no mutation). 5Genes ant(6)-I were amplified with PCR with specific primers. ND, not
determined.

rpsL Polymorphism Among Streptomycin
Resistant Isolates
The rpsL gene region determining resistance to aminoglycosides
(Olkkola et al., 2010) was amplified and sequenced in 15
Campylobacter isolates with MICs above STR ECOFF value
(Accession Nos. LT605180, LT605181, LT605182, LT605184,
LT605185, LT605186, LT605187, LT605190, LT605191,
LT605192, LT605193, LT605194, LT605195, LT605196, and
LT605197). Among 11 polymorphic positions detected, only one
was expressed at protein level corresponding to mutation K43R
(not shown). This occurred in two C. jejuni isolates, HSA32 and
HSA40 (Accession Nos. LT605194 and LT605195), having both
the high-level resistant phenotype (Figure 1).

The ANT(6)-I Family in Campylobacter
The NCBI database includes sequences for three members of the
ANT(6) protein family previously described in Campylobacter:
ANT(6)-Ia, ANT(6)-Ib, and ANT-like sequence cluster (Abril
et al., 2010; Olkkola et al., 2016). The phylogenetic relationships
previously defined within the ANT(6)-I family (Abril et al.,
2010) were re-analyzed (Figure 2), including C. jejuni and
C. coli for clusters ANT(6)-Ia and ANT(6)-Ib, plus the new and
distantly related family member previously identified as ANT-
like (Olkkola et al., 2016). Supported by bootstrapping with a
threshold near 70%, ANT-like sequences cluster is a new member
of the protein family that will be named hereafter ANT(6)-
Ie (Figure 2), the fifth described ANT(6) (aminoglycoside 6-
adenyltransferase) enzyme.

ANT(6)-I Detection in Streptomycin
Resistant Isolates
The role of ANT(6)-I enzymes on STR resistance of
Campylobacter was addressed by using specific primers designed

to detect the coding sequences for ANT(6)-Ia, ANT(6)-Ib,
and ANT(6)-Ie, including degenerated positions for efficient
amplification of homologs of either C. jejuni or C. coli for every
subfamily (Table 1). Among the 16 Campylobacter isolates
resistant to STR detected in this work from human infections,
nine were positive for the presence of ant(6)-I genes with two
isolates positive for the subfamilies ant(6)-Ia, one for ant(6)-Ib
and seven for ant(6)-Ie (Figure 1). The unique two C. jejuni
isolates presenting ant(6)-Ie also have the RSPL polymorphism
K43R and the high-resistance phenotype, whereas the six isolates
with low-level of resistance did not carry any of the screened
genes.

The nucleotide sequences of the seven ant(6)-Ie genes
detected among human isolates, including the six Campylobacter
strains presenting this gene as the unique aminoglycoside 6-
adenyltransferase enzyme, revealed different functional roles
on STR resistance depending on Campylobacter species. The
ant(6)-Ie genes from the two C. jejuni isolates were found non-
functional when compared with the reference used to define
the protein subfamily (ZP_01070142, Figure 2), sharing both
the unique polymorphism C-394-1 (Accession No. LT605198,
isolate HSA32), an out of frame deletion that produces the
premature arrest of translation and the loss of 55% of protein
sequence from its C-terminal end. In contrast, the four ant(6)-
Ie genes from C. coli strains HCC2, HSA28, HSA86, and HCC46
presented identical sequences to ZP_14079546.1, whereas the
polymorphism C466T originating variant P156S in the encoded
protein was detected in the gene from HNA4 isolate (Accession
No. LT605200).

Functional Expression in E. coli of
ANT(6)-Ie
The coding sequence for ANT(6)-Ie from HNA4 was amplified
and cloned in pGEM-T vector and E. coli XL1 Blue (MRF’)
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FIGURE 2 | The ANT(6)-I phylogenetic tree. Multiple sequence alignment was performed by Clustal X 2.1. The phylogenetic tree was deduced by neighbor joining
algorithm, excluding positions with gaps and emulated by NJPlot 2.3. Bootstrap values (N, 100; seeds, 111) are indicated for branches supporting sequence
clustering and assuming previous data (Abril et al., 2010).

cells. Cells carrying the recombinant vector expressed resistance
to STR with a MIC of 64 mg/L, significantly higher than
the control cells transformed with a non-recombinant vector
(MIC = 8 mg/L). Besides, both recipient and transformants
cells remained sensitive to other antimicrobials tested showing
aminoglycoside specificity of the ant(6)-Ie gene: spectinomycin
(MIC ≤ 32 mg/L), GEN (MIC ≤ 1 mg/L), apramycin
(MIC ≤ 4 mg/L), and neomycin (MIC ≤ 4 mg/L).

Genetic and Phenotype Relationships
Among Human and Animal Streptomycin
Resistant Isolates Carrying ANT(6)-Ie
We screened for the three ANT(6)-I encoding genes in
Campylobacter among 65 STR resistant isolates from the three
most common food-producing livestock: poultry, pigs, and cattle
(Table 2). All ant(6)-I genotypes were detected, with C. coli being
largely the most prevalent species among streptomycin resistant
isolates. Interestingly, the presence of the single-gene ant(6)-Ie

genotype represents a major fraction of STR resistant C. coli, with
one fourth of isolates.

Multilocus sequence typing plus flaA typing was performed
in 14 C. coli isolates carrying ant(6)-Ie as the only determinant
expressing STR resistance (Table 3). The multilocus analysis
allowed the detection of a cluster of strains (ST-827, clonal
complex 828) including two isolates from human origin plus one
from bovine. Moreover, one of the human and the bovine origin
isolates shared the same flaA allele 236 and the same resistance
profile against the five clinically relevant antimicrobials tested,
which is considered an indication of a probable common clonal
origin.

DISCUSSION

This work shows the main role of adenylyl transferases belonging
to the ANT(6)-I family on STR resistance in Campylobacter.

TABLE 2 | ant(6)-I genotypes of streptomycin resistant Campylobacter isolates.

Host ant(6)-I profile1

a b e a/b a/e b/e a/b/e Ø 6

Human2 1 1 6(4) - - 1(1) - 7(1) 16 (6)

Poultry 13(8) 1(1) - 10(9) 1(1) - 2(1) 5(1) 32 (21)

Porcine 4(4) - 10(10) 2(2) 7(7) 4(4) 1(1) 1(1) 29 (29)

Bovine 2(1) - 1(1) - 1(1) - - - 4 (3)

6 20(13) 2(1) 17(15) 12(11) 9(9) 5(5) 3(2) 6(3) 81 (59)

1Genotypes were deduced by PCR with primers SAF/R, SBF/R and SCF/R (Table 1). 2Genotypes of human isolates are shown in Figure 1. Data in parentheses refer to
number of isolates belonging to C. coli species. Ø, zero genes detected.
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TABLE 3 | Molecular and antimicrobial resistance typing of Campylobacter isolates carrying1 ant(6)-Ie.

MIC (mg/L)2

Strain Year Origin STR ERY GEN CIP TET CC3 ST4 flaA

ZTA10/00526CPD 2010 Porcine ≥32 1 4 ≥8 ≥32 ST-828 7337 ND

ZTA10/00602CPD 2010 Porcine ≥32 ≥64 4 ≥8 ≥32 ND 7340 ND

ZTA10/00794CPD 2010 Porcine ≥32 1 4 ≥8 ≥32 ST-828 829 ND

ZTA10/01257CPD 2010 Bovine ≥32 1 2 ≥8 ≥32 ST-828 827 0236

ZTA10/01418CPD 2010 Porcine ≥32 ≥64 2 ≥8 ≥32 ST-828 1413 ND

ZTA10/02049CPD 2010 Porcine ≥32 2 2 ≥8 ≥32 ST-828 4950 ND

ZTA11/00514CP 2011 Porcine ≥32 ≥64 2 ≥8 ≥32 ND 7341 0662

ZTA11/00726CP 2011 Porcine ≥32 1 4 0.13 ≥32 ST-828 7338 ND

ZTA11/01342CP 2011 Porcine ≥32 ≥64 4 0.25 ≥32 ST-828 1413 ND

ZTA11/03282CP 2011 Porcine ≥32 0.5 1 ≥8 ≥32 ST-828 1096 0319

ZTA11/03389CP 2011 Porcine ≥32 ≥64 2 ≥8 ≥32 ST-828 2733 ND

HSA028 2010 Human 128 8 2 32 256 ST-828 827 0236

HSA046 2010 Human 64 2 2 0.25 256 ST-828 827 0255

HNA4 2010 Human 32 2 2 2 256 ND 7339 0633

1The fourteen C. coli isolates presenting ant(6)-Ie as the unique streptomycin (STR) resistance determinant (Table 2). 2Minimal inhibitory concentrations for STR,
erythromycin (ERY), gentamicin (GEN), ciprofloxacin (CIP), and tetracycline (TET). 3Clonal Complex. 4Sequence Types and flaA alleles were assigned by MLST database
(see footnote 6). ND, not determined.

Previous reports had described the phenotypic expression of
ANT(6)-I enzymes (Nirdnoy et al., 2005; Abril et al., 2010; Qin
et al., 2012; Olkkola et al., 2016), and now strong evidence is
provided supporting the role of ANT(6)-Ie on STR resistance.
Although ANT(6)-Ie coding sequences were detected in the two
most frequent Campylobacter species, C. jejuni and C. coli, the
association with STR resistance was only proved in C. coli since
no C. jejuni isolate carried this coding sequence as the unique
candidate to express the phenotype (Figure 1 and Table 2).

Besides ANT(6)-I, an additional STR resistance determinant
is ANT(3”)-Ia or AADA which also confers resistance to
spectinomycin. This enzyme is highly prevalent among
enterobacteria (Shaw et al., 1993) and has been detected
associated to class I integrons and their gene cassettes in
Campylobacter, although only anecdotally (Ouellette et al., 1987;
O’Halloran et al., 2004). Indeed, several reports have described
the unsuccessful search of ant(3”) in Campylobacter (van Essen-
Zandbergen et al., 2007; Piccirillo et al., 2013). Similarly, all STR
resistant isolates from humans analyzed in the present work have
been screened for int1 or associated gene cassettes, unsuccessfully
(data not shown). Thus, ANT(6)-I enzymes might be the unique
adenylyl transferases with significant relevance in STR resistance
in Campylobacter.

To the best of our knowledge, this is the first report showing a
RPSL mutation in C. jejuni isolates conferring STR resistance. In
a previous study, with C. coli, it was found that isolates presenting
high-level resistance to STR shared the mutation K43R in RPSL
(Olkkola et al., 2010), similarly to the two C. jejuni isolates
from humans, detected in this work, with MIC > 512 mg/L
(Figure 1). Although both isolates also carry ant(6)-Ie genes,
resistance to STR might be determined by RPSL mutation
since the adenylyl transferase coding sequence is truncated
and most probably not functional. In addition, there was no

contribution to this phenotype from efflux pump activity, as
deduced by the lack of any effect on MIC by PAβN treatment
(Figure 1).

A group of six C. jejuni and one C. coli isolates from humans
that expressed low-level STR-resistance, did not contain any of
the screened determinants and presented a strong decreased
MIC to STR in the presence of PAβN (Figure 1). Thus, efflux
pump activity must be responsible for low-level STR resistance
of these strains, similarly to Mycobacterium tuberculosis where
the effect of outward transporters is known to increase modestly
the MIC for STR (Spies et al., 2008). At least three different
efflux pump systems have been shown to be up-regulated in
Campylobacter strains resistant to a broad range of antimicrobials
(Lin et al., 2005; Akiba et al., 2006; Jeon et al., 2011), so
they could be candidates for determinants to the low level
STR resistance. In addition, treatment with PAβN produced
a strong effect on MIC of Campylobacter isolates carrying
ant(6)-I genes, mostly for those with ant(6)-Ia or ant(6)-Ib as
unique resistance determinants (Figure 1). This observation
might indicate that, among human isolates analyzed in this
work, the only functional adenylyl transferase gene is ant(6)-
Ie and that even these isolates require efflux pump activity to
support the medium-level of resistance. Treatment of ant(6)-
Ie carrying strains with PAβN reduces their STR MIC to
low-level resistance, which might correspond to their in vivo
expression level. Synergic effects of efflux pumps have been
evidenced in Campylobacter with resistance determinants for
quinolones and macrolides, gyrA and 23S rRNA gene mutations,
respectively (Luo et al., 2003; Cagliero et al., 2006; Corcoran
et al., 2006). Indeed, three Campylobacter isolates showing
low-level resistance to STR were also found to have low-level
resistant to CIP and TET (Figure 1), lacked the gyrA C-257-T
mutation conferring low susceptibility to fluoroquinolones
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(Hormeño et al., 2016) and also tetO, the major TET resistant
determinant in this species (not shown, authors’ personal
communication). A weak overexpression of efflux pump activity
might be involved in the antimicrobial resistance phenotype of
these strains.

The set of primers described in this work allows specific
detection of the three ant(6)-I genes described in Campylobacter,
including those belonging to ant(6)-Ie and encoding a
new subfamily of aminoglycoside O-nucleotidyltransferases
(Figure 2) that provides functional information for hundreds
of orthologs annotated as hypothetical proteins, mainly from
Campylobacter and related organisms like Helicobacter. In
addition, the molecular and antimicrobial resistance typing of
Campylobacter isolates expressing ANT(6)-Ie has revealed a
spread pathway for this zoonotic pathogen between cattle and
humans.

AUTHOR CONTRIBUTIONS

SP and AQ conceived and designed the study. LH, MU-R, GP,
CB, and DF-C acquired the samples and data. LH, MU-R, GP,
DF-C, and MC performed the laboratory analysis. SV, SP, LD, MC,

and AQ analyzed and interpreted the data. MC and AQ wrote the
manuscript. All authors have approved the final article.

FUNDING

Authors wish to thank for their support to the Ministry of
Innovation, Science and Technology of Spain (AGL2012-39028-
C03 and AGL2016-74882-C3), the Department of Economy
and Infrastructure of the regional government of Extremadura,
Spain (Group CTS001 and project IB16073), the University
of Extremadura (Group MIVET), the Spanish Ministry of
Agriculture, and the Autonomous Community of Madrid
(S2009/AGR-1489 and S2013/ABI-2747), the FPI program (BES-
2013–065003) from the Spanish Ministry of Economy and
Competitiveness, Fundação para a Ciência e Tecnologia (FCT),
through the strategic project UID/MAR/04292/2013 granted
to MARE and the Integrated Programme of SR&TD “Smart
Valorization of Endogenous Marine Biological Resources Under a
Changing Climate” (reference Centro-01-0145-FEDER- 000018),
co-funded by Centro 2020 program, Portugal 2020, European
Union, through the European Regional Development Fund.

REFERENCES
Abril, C., Brodard, I., and Perreten, V. (2010). Two novel antibiotic resistance

genes, tet(44) and ant(6)-Ib, are located within a transferable athogenicity
island in Campylobacter fetus subsp fetus. Antimicrob. Agents Chemother. 54,
3052–3055. doi: 10.1128/AAC.00304-10

Akiba, M., Lin, J., Barton, Y. W., and Zhang, Q. J. (2006). Interaction of
CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining
cell viability in Campylobacter jejuni. J. Antimicrob. Chemother. 57, 52–60.
doi: 10.1093/jac/dki419

Cagliero, C., Mouline, C., Cloeckaert, A., and Payot, S. (2006). Synergy between
efflux pump CmeABC and modifications in ribosomal proteins L4 and L22
in conferring macrolide resistance in Campylobacter jejuni and Campylobacter
coli. Antimicrob. Agents Chemother. 50, 3893–3896. doi: 10.1128/AAC.00
616-06

Carreira, A. C., Clemente, L., Rocha, T., Tavares, A., Geraldes, M., Barahona, M. J.,
et al. (2012). Comparative genotypic and antimicrobial susceptibility analysis of
zoonotic Campylobacter species isolated from broilers in a nationwide survey
Portugal. J. Food Prot. 75, 2100–2109. doi: 10.4315/0362-028X.JFP-12-183

Clinical and Laboratory Standards Institute [CLSI] (2010). Methods for
Antimicrobial Dilution and Disk Susceptibility Testing for Infrequently-Isolated
or Fastidious Bacteria: Approved Guidelines Approved Guidelines (M45-A).
Wayne, PA: CLSI.

Collective Eurosurveillance Editorial Team (2015). The 2013 joint ECDC/EFSA
report on trends and sources of zoonoses, zoonotic agents and food-borne
outbreaks published. Euro Surveill. 20:21021. doi: 10.2807/ese.20.04.21021-en

Corcoran, D., Quinn, T., Cotter, L., and Fanning, S. (2006). An investigation of the
molecular mechanisms contributing to high-level erythromycin resistance in
Campylobacter. Int. J. Antimicrob. Agents 27, 40–45. doi: 10.1016/j.ijantimicag.
2005.08.019

Florez-Cuadrado, D., Ugarte-Ruiz, M., Quesada, A., Palomo, G., Domínguez, L.,
and Porrero, M. C. (2016). Description of an erm(B)-carrying Campylobacter
coli isolate in Europe. J. Antimicrob. Chemother. 71, 841–843. doi: 10.1093/jac/
dkv383

Gibreel, A., Skold, O., and Taylor, D. E. (2004). Characterization of plasmid-
mediated aphA-3 kanamycin resistance in Campylobacter jejuni. Microb. Drug
Resist. 10, 98–105. doi: 10.1089/1076629041310127

Hormeño, L., Palomo, G., Ugarte-Ruiz, M., Porrero, M. C., Borge, C., Vadillo, S.,
et al. (2016). Identification of the main quinolone resistance determinant in

Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR. Diagn.
Microbiol. Infect. Dis. 84, 236–239. doi: 10.1016/j.diagmicrobio.2015.11.002

Jeon, B., Wang, Y., Hao, H., Barton, Y.-W., and Zhang, Q. (2011). Contribution
of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni.
J. Antimicrob. Chemother. 66, 79–85. doi: 10.1093/jac/dkq418

Leverstein-van Hall, M. A., Paauw, A., Box, A. T. A., Blok, H. E. M., Verhoef, J., and
Fluit, A. C. (2002). Presence of integron-associated resistance in the community
is widespread and contributes to multidrug resistance in the hospital. J. Clin.
Microbiol. 40, 3038–3040. doi: 10.1128/JCM.40.8.3038-3040.2002

Lévesque, C., Piché, L., Larose, C., and Roy, P. H. (1995). PCR mapping of integrons
reveals several novel combinations of resistance genes. Antimicrob. Agents
Chemother. 39, 185–191.

Lin, J., Akiba, M., Sahin, O., and Zhang, Q. J. (2005). CmeR functions as
a transcriptional repressor for the multidrug efflux pump CmeABC in
Campylobacter jejuni. Antimicrob. Agents Chemother. 49, 1067–1075. doi: 10.
1128/AAC.49.3.1067-1075.2005

Luo, N., Sahin, O., Lin, J., Michel, L. O., and Zhang, Q. J. (2003). In vivo selection of
Campylobacter isolates with high levels of fluoroquinolone resistance associated
with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob.
Agents Chemother. 47, 390–394. doi: 10.1028/AAC.47.1.390-394.2003

Moazed, D., and Noller, H. F. (1987). Interaction of antibiotics with functional sites
in 16S ribosomal RNA. Nature 327, 389–394. doi: 10.1038/327389a0

Moreno, M. A., Domínguez, L., Teshager, T., Herrero, I. A., and Porrero, M. C.
(2000). Antibiotic resistance monitoring: the Spanish programme. The VAV
Network. Red de Vigilancia de Resistencias Antibióticas en Bacterias de
Origen Veterinario. Int. J. Antimicrob. Agents 14, 285–290. doi: 10.1016/S0924-
8579(00)00138-2

Nirdnoy, W., Mason, C. J., and Guerry, P. (2005). Mosaic structure of a multiple-
drug-resistant, conjugative plasmid from Campylobacter jejuni. Antimicrob.
Agents Chemother. 49, 2454–2459. doi: 10.1128/AAC.49.6.2454-2459.2005

O’Halloran, F., Lucey, B., Cryan, B., Buckley, T., and Fanning, S. (2004). Molecular
characterization of class 1 integrons from Irish thermophilic Campylobacter spp.
J. Antimicrob. Chemother. 53, 952–957. doi: 10.1093/jac/dkh193

Olkkola, S., Culebro, A., Juntunen, P., Hanninen, M.-L., and Rossi, M. (2016).
Functional genomics in Campylobacter coli identified a novel streptomycin
resistance gene located in a hypervariable genomic region. Microbiology 162,
1157–1166. doi: 10.1099/mic.0.000304

Olkkola, S., Juntunen, P., Heiska, H., Hyytiainen, H., and Hanninen, M. L.
(2010). Mutations in the rpsL gene are involved in streptomycin resistance in

Frontiers in Microbiology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 2515185

https://doi.org/10.1128/AAC.00304-10
https://doi.org/10.1093/jac/dki419
https://doi.org/10.1128/AAC.00616-06
https://doi.org/10.1128/AAC.00616-06
https://doi.org/10.4315/0362-028X.JFP-12-183
https://doi.org/10.2807/ese.20.04.21021-en
https://doi.org/10.1016/j.ijantimicag.2005.08.019
https://doi.org/10.1016/j.ijantimicag.2005.08.019
https://doi.org/10.1093/jac/dkv383
https://doi.org/10.1093/jac/dkv383
https://doi.org/10.1089/1076629041310127
https://doi.org/10.1016/j.diagmicrobio.2015.11.002
https://doi.org/10.1093/jac/dkq418
https://doi.org/10.1128/JCM.40.8.3038-3040.2002
https://doi.org/10.1128/AAC.49.3.1067-1075.2005
https://doi.org/10.1128/AAC.49.3.1067-1075.2005
https://doi.org/10.1028/AAC.47.1.390-394.2003
https://doi.org/10.1038/327389a0
https://doi.org/10.1016/S0924-8579(00)00138-2
https://doi.org/10.1016/S0924-8579(00)00138-2
https://doi.org/10.1128/AAC.49.6.2454-2459.2005
https://doi.org/10.1093/jac/dkh193
https://doi.org/10.1099/mic.0.000304
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02515 October 20, 2018 Time: 18:46 # 8

Hormeño et al. ant(6)-I Genes in Campylobacter

Campylobacter coli. Microb. Drug Resist. 16, 105–110. doi: 10.1089/mdr.2009.
0128

Ouellette, M., Gerbaud, G., Lambert, T., and Courvalin, P. (1987). Acquisition by a
Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from
members of the family Enterobacteriaceae. Antimicrob. Agents Chemother. 31,
1021–1026. doi: 10.1128/AAC.31.7.1021

Petersen, L., Larsen, T. S., Ussery, D. W., On, S. L. W., and Krogh, A. (2003).
RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal
instead of a-35 box. J. Mol. Biol. 326, 1361–1372. doi: 10.1016/S0022-2836(03)
00034-2

Piccirillo, A., Dotto, G., Salata, C., and Giacomelli, M. (2013). Absence of class
1 and class 2 integrons among Campylobacter jejuni and Campylobacter
coli isolated from poultry in Italy. J. Antimicrob. Chemother. 68, 2683–2685.
doi: 10.1093/jac/dkt242

Pinto-Alphandary, H., Mabilat, C., and Courvalin, P. (1990). Emergence of
aminoglycoside resistance genes aadA and aadE in the genus Campylobacter.
Antimicrob. Agents Chemother. 34, 1294–1296. doi: 10.1128/AAC.34.6.1294

Qin, S., Wang, Y., Zhang, Q., Chen, X., Shen, Z., Deng, F., et al. (2012).
Identification of a novel genomic island conferring resistance to multiple
aminoglycoside antibiotics in Campylobacter coli. Antimicrob. Agents
Chemother. 56, 5332–5339. doi: 10.1128/AAC.00809-12

Shaw, K. J., Rather, P. N., Hare, R. S., and Miller, G. H. (1993). Molecular
genetics of aminoglycoside resistance genes and familial relationships of the
aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138–163.

Spies, F. S., da Silva, P. E. A., Ribeiro, M. O., Rossetti, M. L., and Zaha, A.
(2008). Identification of mutations related to streptomycin resistance in clinical
isolates of Mycobacterium tuberculosis and possible involvement of efflux
mechanism. Antimicrob. Agents Chemother. 52, 2947–2949. doi: 10.1128/AAC.
01570-07

Ugarte-Ruiz, M., Wassenaar, T. M., Gomez-Barrero, S., Porrero, M. C., Navarro-
Gonzalez, N., and Dominguez, L. (2013). The effect of different isolation

protocols on detection and molecular characterization of Campylobacter from
poultry. Lett. Appl. Microbiol. 57, 427–435. doi: 10.1111/lam.12130

Vakulenko, S. B., and Mobashery, S. (2003). Versatility of aminoglycosides and
prospects for their future. Clin. Microbiol. Rev. 16, 430–450. doi: 10.1128/CMR.
16.3.430-450.2003

van Essen-Zandbergen, A., Smith, H., Veldman, K., and Mevius, D. (2007).
Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia
coli, Salmonella and Campylobacter spp. in the Netherlands. J. Antimicrob.
Chemother. 59, 746–750. doi: 10.1093/jac/dkl549

Wieczorek, K., and Osek, J. (2013). Antimicrobial resistance mechanisms
among Campylobacter. Biomed. Res. Int. 2013:340605. doi: 10.1155/2013/34
0605

Woodcock, J., Moazed, D., Cannon, M., Davies, J., and Noller, H. F. (1991).
Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal
RNA. EMBO J. 10, 3099–3103.

Zhao, S., Tyson, G. H., Chen, Y., Li, C., Mukherjee, S., Young, S., et al. (2016).
Whole-genome sequencing analysis accurately predicts antimicrobial resistance
phenotypes in Campylobacter spp. Appl. Environ. Microbiol. 82, 459–466. doi:
10.1128/AEM.02873-15

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Hormeño, Ugarte-Ruiz, Palomo, Borge, Florez-Cuadrado, Vadillo,
Píriz, Domínguez, Campos and Quesada. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 2515186

https://doi.org/10.1089/mdr.2009.0128
https://doi.org/10.1089/mdr.2009.0128
https://doi.org/10.1128/AAC.31.7.1021
https://doi.org/10.1016/S0022-2836(03)00034-2
https://doi.org/10.1016/S0022-2836(03)00034-2
https://doi.org/10.1093/jac/dkt242
https://doi.org/10.1128/AAC.34.6.1294
https://doi.org/10.1128/AAC.00809-12
https://doi.org/10.1128/AAC.01570-07
https://doi.org/10.1128/AAC.01570-07
https://doi.org/10.1111/lam.12130
https://doi.org/10.1128/CMR.16.3.430-450.2003
https://doi.org/10.1128/CMR.16.3.430-450.2003
https://doi.org/10.1093/jac/dkl549
https://doi.org/10.1155/2013/340605
https://doi.org/10.1155/2013/340605
https://doi.org/10.1128/AEM.02873-15
https://doi.org/10.1128/AEM.02873-15
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


ORIGINAL RESEARCH
published: 30 October 2018

doi: 10.3389/fmicb.2018.02599

Frontiers in Microbiology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 2599

Edited by:

José Luis Capelo,

Universidade Nova de Lisboa,

Portugal

Reviewed by:

Abid Ali Khan,

Jamia Millia Islamia, India

Max Maurin,

Université Grenoble Alpes, France

*Correspondence:

Thomas Schwartz

thomas.schwartz@kit.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Antimicrobials, Resistance and

Chemotherapy,

a section of the journal

Frontiers in Microbiology

Received: 24 May 2018

Accepted: 11 October 2018

Published: 30 October 2018

Citation:

Jäger T, Hembach N, Elpers C,

Wieland A, Alexander J, Hiller C,

Krauter G and Schwartz T (2018)

Reduction of Antibiotic Resistant

Bacteria During Conventional and

Advanced Wastewater Treatment, and

the Disseminated Loads Released to

the Environment.

Front. Microbiol. 9:2599.

doi: 10.3389/fmicb.2018.02599

Reduction of Antibiotic Resistant
Bacteria During Conventional and
Advanced Wastewater Treatment,
and the Disseminated Loads
Released to the Environment
Thomas Jäger 1†, Norman Hembach 1†, Christian Elpers 2, Arne Wieland 3,

Johannes Alexander 1, Christian Hiller 4, Gerhard Krauter 2 and Thomas Schwartz 1*

1 Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany, 2 Aquantec,

Gesellschaft für Wasser und Umwelt GmbH, Karlsruhe, Germany, 3 Xylem Services GmbH, Herford, Germany,
4 Zweckverband Klärwerk Steinhäule, Neu-Ulm, Germany

The occurrence of new chemical and microbiological contaminants in the aquatic

environment has become an issue of increasing environmental concern. Thus,

wastewater treatment plants (WWTPs) play an important part in the distribution of

so-called new emerging pathogens and antibiotic resistances. Therefore, the daily loads

released by the WWTP were calculated including a model system for the distribution

of these loads within the receiving water body. UV-, as well as ozone-treatment in

separate or in combination for wastewater treatment were under investigation aiming

at the reduction of these loads. Here, the impact of these treatments on the DNA

integrity via antibody staining and PCR efficiencies experiments were included. All

three facultative pathogenic bacteria [enterococci (23S rRNA), Pseudomonas aeruginosa

(ecfX ), and Escherichia coli (yccT )] and seven clinically relevant antibiotic resistance

genes (ARGs) (mecA (methicillin resistance gene), ctx-M32 (β- lactame resistance

gene), ermB (erythromycine resistance gene), blaTEM (β- lactame resistance gene), sul1

(sulfonamide resistance gene), vanA (vancomycin resistance gene), and intI1 (Integrase1

gene) associated with mobile genetic elements were detected in wastewaters. Different

reduction efficiencies were analyzed during advanced wastewater treatments. ARGs

were still found to be present in the effluents under the parameters of 1.0 g ozone

per g dissolved organic carbon (DOC) and 400 J/m², like ctx-M32, ermB, blaTEM,

sul1, and intI1. Especially UV radiation induced thymidine dimerization which was

analyzed via antibody mediated detection in the metagenome of the natural wastewater

population. These specific DNA alterations were not observed during ozone treatment

and combinations of UV/ozone treatment. The dimerization or potential other DNA

alterations during UV treatment might be responsible for a decreased PCR efficiency of

the 16S rRNA amplicons (176, 490, and 880 bp fragments) from natural metagenomes

compared to the untreated sample. This impact on PCR efficiencies was also observed

for the combination of ozone and UV treatment.

Keywords: antibiotic resistance, wastewater treatment, ozonation, UV irradiation, DNA damage, qPCR, modeling,

daily discharge
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INTRODUCTION

Municipal wastewater treatment plants (WWTPs) are already
identified as sources of nutrients, inorganic and organic
pollutants as well as antibiotic resistant bacteria (ARB) and
resistance genes (ARGs) (Guo et al., 2013; Michael et al., 2013;
Rizzo et al., 2013; Hembach et al., 2017). Some ARB can be
removed through conventional wastewater treatment processes
(Guardabassi et al., 2002; Da Costa et al., 2006), but there are
still large numbers that survive in the effluent (Pruden et al.,
2006; Hembach et al., 2017). As a consequence ARB and ARGs
are released and widely distributed in the environment (Kim and
Carlson, 2007; Czekalski et al., 2012; Alexander et al., 2015). The
hygienic quality of receiving waters affected by WWTP effluents
are of high relevance, especially by water reuse. For example,
the European UrbanWastewater Treatment Directive (Directive,
1991) advised that “treated wastewater shall be reused whenever
appropriate” under the requirement of “minimizing the adverse
effect on the environment” which is defined as the protection
of the environment from the adverse effects of wastewater
discharges. It is important to determine the daily discharges of
WWTPs which are released into the receiving waters when it’s
reused for crop irrigation or used as raw water reservoir.With the
goal to interrupt dissemination pathways, advanced technologies
have to be identified which are able to reduce the bacterial load
and minimize the risk of WWTP effluents for subsequent water
reuse or human health.

Therefore, several wastewater treatment options are discussed
for their capability to reduce the ARB and ARG in the final
effluent of WWTPs to achieve an adequate water quality (Norrby
et al., 2009; WHO, 2014; Ventola, 2015). Still, a coherent
assessment concept is missing to prove the success of reduction
efficiency of microbial parameters. Since ozone is frequently used
to remove chemical micro-pollutants (Lee and von Gunten, 2010;
Ruel et al., 2011), and UV irradiation was reported to damage
nucleic acids in bacterial cells (McKinney and Pruden, 2012)
and reduce ARG abundances in wastewater (Munir et al., 2011;
Hu et al., 2016), this study tightly focuses on the reduction of
antibiotic resistant bacteria during conventional and advanced
wastewater treatment. Ozonation is described to be an efficient
process to remove organic micro-pollutants and also considered
adequate to inactivate bacteria via production of highly reactive
radicals (Hollender et al., 2009; Zimmermann et al., 2011; Dodd,
2012; Lüddeke et al., 2015; Zhuang et al., 2015). A previous
study reported a selection of a robust bacterial population via
ozonation, which is characterized by a high GC-content of their
genomes (Alexander et al., 2016). Here, pseudomonads including
P. aeruginosa containing GC-contents >60% (Lee et al., 2006;
Hyatt et al., 2010) were identified as ozone robust. The germicidal
effects of UV light is inducing alterations on DNA, RNA, and
proteins by absorbing irradiation at the respective wavelength
(absorption max. for DNA 260 nm, absorption min. 280 nm)
(Jungfer et al., 2007; Süß et al., 2009). UV radiation is also known
to accelerate horizontal gene transfer (HGT) (Aminov, 2011)
by mobile genetic elements (MGEs), which is considered as the
main factor driving resistome alteration in aquatic habitats (Chao
et al., 2013). This advanced wastewater treatment technologies

induce HRT due to the activation of different repair mechanisms
involved in dissemination of ARGs. The present study shows
the effect of ozone treatment (1 g ozone per g DOC), UV
treatment (400 J/m²), and the combination (400 J/m² + 1 g
ozone per g DOC) on facultative pathogenic bacteria and ARGs
present in the wastewater of a large scale WWTP, as well as
the impact of these advanced wastewater treatment technologies
on the bacterial DNA integrity. Furthermore, we calculate the
daily discharges of facultative pathogenic bacteria and antibiotic
resistance genes into the adjacent receiving river and simulate
different flow rate scenarios. Modeling approaches illustrate the
dispersion of the different targets along the receiving river sides,
which might be important for reuse approaches in downstream
areas.

MATERIALS AND METHODS

Sampling
At a large scale WWTP (440,000 population equivalents; average
sewage quantity 112,000 m3/day) the inflow, conventionally
treated wastewater and the final effluent, as well as advanced
technologies using either an UV system apparatus (Collimated
Beam Device) designed by the company with a mercury
low pressure lamp (254 nm) (NLR2036) (Xylem Services
GmbH, Herford, Germany), the ozone system type OCS-
GSO30 by WEDECO or a combination of both techniques
on conventionally treated wastewater were under investigation.
According to the turbidity of the water sample the UV intensity
was adjusted to 400 J/m². Ozone treatment was adjusted to
1 g ozone per 1 g DOC according to the dissolved organic
carbon and a retention time of ∼5min (flow rate ca. 7
m3/h). This ozone concentration was specified by the operation
company for further reduction of the organic trace substances
of treated wastewater. Grab water samples were taken from
the sampling points at four sampling campaigns (09/2016,
03/2017, 07/2017, and 10/2017). The wastewater samples were
filtered by vacuum filtration on polycarbonate membranes (Ø
47mm, pore size 0.2µm, Whatman Nucleopore Track-Etched
Membranes, Sigma-Aldrich, Munich, Germany) using 200 to
250mL of the water samples. By using propidium mono azid
(PMA, 25µM) prior to DNA extraction according to Jäger
et al. (2018), the evaluation of disinfection processes can be
limited to viable cells with intact cell membranes and an
overestimation by molecular biology methods can be avoided
(Nocker et al., 2007a,b). A recent study revealed that PMA
treatment in wastewater samples is a suitable tool to focus on
the viable part of the population. In this study, the authors
were focusing on the indicator bacteria E. coli and enterococci
and showed no significant differences between the cultivation-
based approaches and the PMA-qPCR experiments, but there
were significant differences between the culture-based method
and qPCR experiments without PMA treatment (Li et al.,
2014; Jäger et al., 2018). Possible wastewater matrix effects
on the PMA efficiencies should be controlled with internal
standard experiments and the PMA concentrations should
become adjusted to the wastewater characteristic of state. This
was done previously for this study.
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DNA Extraction for Quantitative PCR
Analysis
DNA was extracted using the FastDNATM Spin Kit for soil (MP
Biomedicals, Illkirch, France). The membranes of the filtered
wastewater samples were directly used for DNA extraction and
were placed in the Lysing Matrix E tube for mechanical cell
disruption. The further DNA extraction steps were performed
following the manufacturer’s protocol. The concentration of the
extracted DNA was measured by using the QubitTM 3.0 (Thermo
Fisher Scientific, Nidderau, Germany).

Quantitative PCR Analysis
SYBR Green qPCR experiments were performed on the Bio-
Rad Cycler CFX96 (CFX96 TouchTM Deep Well Real-Time
PCR Detection System, Bio-Rad, Munich, Germany) and the
analysis was done using the manufacturer’s software (Bio-Rad
CFX Manager Software). All samples were measured in technical
duplicates by qPCR. The reaction mixture consisted of 1 µL
template DNA, 1 µL Primer FW (10µM), 1 µL Primer Rev
(10µM), 10 µL Maxima SYBR Green/ROX qPCR Master Mix
(2X) (Thermo Fisher scientific, Nidderau, Germany). Nuclease-
free water (Ambion, Life technologies, Karlsbad, Germany) was
added to adjust a total volume of 20 µL. The used thermocycler
profile consisted of 1 cycle at 95◦C for 10min for DNA
polymerase activation, followed by 40 cycles consisting of 95◦C
for 10 s, and 60◦C for 30 s for primer annealing, and elongation. A
melting curve, ranging from 60 to 95◦C (0.5◦C/s), was performed
to confirm the specific amplicon.

Calibration curves were generated using extracted DNA
from the different reference bacteria, i.e., facultative pathogenic
bacteria carrying the respective resistance gene using the DNA
extraction kit for soil (MP Biomedical, Illkrich, France). A
regression line was made for each tested gene by using serial
dilutions of the extracted DNA of the corresponding reference
strain to calculate the gene specific cell equivalents (Hembach
et al., 2017; Rocha et al., in press). The primer systems and
the calculation of the cell equivalents were done based on the
already known genome sizes of the retference bacteria and
are listed in Supplementary Information Table 1. The PMA-
treatment was performed prior to DNA extraction to consider
the viable fraction of the wastewater sample (Jäger et al., 2018).
The Ct–values from the wastewater samples were adjusted to the
corresponding regression line and then normalized to 100mL of
filtered wastewater to show the different reduction efficiencies
of absolute abundance within the surviving population of the
wastewater samples.

Detection of DNA Damages via PCR
To analyze DNA damages, extracted DNA originating from
the different sampling points were used in PCR experiments
to distinguish the polymerase efficiency, as described by Süß
et al. (2009). Therefore, different 16S rRNA amplicons (176,
490, and 880 bp) were investigated and afterwards separated by
gel electrophoresis to distinguish the light units intensities via
a F1 Lumi-Imager workstation (Roche Diagnostics) using the
included Lumi-Imager software (LumiAnalyst 3.1). Afterwards
the light units were determined and normalized to the control.
Therefore, the amplicons were separated by a 2% w/v agarose

gel electrophoresis and the light units of each amplicon were
determined and normalized to their corresponding amplicon
of the untreated wastewater sample so that the control results
in a value of 1, and the other values represent the light units
of the corresponding band in the agarosegel according to the
control band. In each PCR reaction 2.5 µL Buffer (10x), 0.5
µL dNTPs (10µM), 0.25 µL of each Primer (40µM), 0.125 µL
TaqPolymerase and 1 ng/µL template were used and the volume
was adjusted to 25 µL by adding water. The thermoprofile
consists of 3min at 95◦C followed by 25-times 95◦C for 30 s,
56◦C for 1min, and 72◦C for 2min. The last step was an extended
elongation step with 72◦C for 7min. Afterwards the samples were
cooled down to 4◦C.

Detection of DNA Damages via
Immunological Assay
For the DNA damage analyses with antibodies samples were
directly mixed with RNA protect to stop any further degradation
of the DNA. As control sample untreated wastewater was used.
For further processing the samples were spotted on a positively
charged nylon membrane (Roche Diagnostics, Mannheim,
Germany) using a slot-blot apparatus (Slot-Blot RMicrofiltration
Apparatus, Bio-Rad, Munich, Germany) connected to a vacuum
pump. Triplicates of each sample were tested using 200 µL
per slot. Lysis of the bacterial cells was done directly on the nylon
membrane by adding 500 µL of lysing and denaturation solution
(1.5M NaCl, 0.5M NaOH, pH 13) and incubated for 20min.
This step was repeated three times. Afterwards the solution was
removed by vacuum filtration followed by two neutralization
steps with 500 µL neutralization solution [1.5M NaCl, 0.5M
Tris/HCl (pH 7.2), 1mM EDTA (pH 8.0)] Then a washing step
with 300 µL TBS (0.5M Tris/HCl, 1.5M NaCl, pH 7.5) was
performed. Afterwards the nylon membrane was removed from
the apparatus and dried for 15min on a clean filter paper. The
immunoreaction was done in a hybridization tube continuously
rotating starting with a blocking reaction with 5% non-fat milk
solution at room temperature (RT) for 1 h. This was followed by
the binding of the primary antibody (anti-CPD or anti-6–4 PP)
1:2,000 diluted in 5% non-fat milk solution for 30min at 37◦C.
The incubation of the secondary antibody was performed at 37◦C
for 1 h. Two washing steps with TTBS (TBS + 1/100 Tween 20)
were performed between the treatments. Afterwards two final
washing steps with TBS were performed. In addition to the in the
protocol mentioned antibodies anti-CPD or anti-6–4 PP (Cosmo
Bio Co., Tokyo, Japan), which is based on Kraft et al. (2011),
here, a different secondary antibody IgG-AP (Sigma-Aldrich,
Munich, Germany) was used. Before developing the blot with
the alkaline phosphatase reagent, the membrane was equilibrated
with a detection buffer (0.1M Tris-HCl, 0.1M NaCl, pH 9.5) for
5min at RT. The chemiluminescence detection (CSPD ready to
use, DIC High Prime DNA labeling and detection Starter Kit
II, Roche) was done at the F1 Lumi-Imager workstation (Roche
Diagnostics) using the Lumi-Imager software (LumiAnalyst 3.1).

Calculation of Daily Charges of ARB and
ARGs
For the calculation of the daily charges the annual mean
discharge of the WWTP was used (1.165 m3/s), according to
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TABLE 1 | Daily load situation of a municipal wastewater treatment plant effluent.

Bacterial concentration at the WWTP Bacterial concentration within the river at different water levels

Daily discharges

(24h)

Discharge

per second

Low water (Q22) Mean water (Q124) Flood water (HQ20)

(22 m3/s) (124 m3/s) (994 m3/s)

Gene [Cell

equivalents/24h]

[Cell

equivalents/m3]

[Cell

equivalents/m3]

[Cell

equivalents/m3]

[Cell

equivalents/m3]

Eubacteria 16S rRNA 1.49E+18 1.72E+13 7.84E+11 1.39E+11 1.73E+10

Enterococci 23S rRNA 1.40E+13 1.62E+08 7.36E+06 1.31E+06 1,63E+05

P. aeruginosa ecfX 6.19E+10 7.16E+05 3.26E+04 5.78E+03 7.21E+02

E. coli yccT 1.97E+13 2.28E+08 1.04E+07 1.84E+06 2.30E+05

Cefotaxime resistance gene ctx-M32 2.49E+13 2.88E+08 1.31E+07 2.32E+06 2.89E+05

Erythromycine resistance gene ermB 2.22E+14 2.57E+09 1.17E+08 2.08E+07 2.59E+06

β- Lactame resistance gene blaTEM 2.80E+14 3.24E+09 1.47E+08 2.61E+07 3.26E+06

Sulfonamide resistance gene sul1 4.97E+15 5.76E+10 2.62E+09 4.64E+08 5.79E+07

Integrase 1 gene intI1 1.54E+15 1.78E+10 8.10E+08 1.44E+08 1.79E+07

Shown are the calculated cell equivalents/24 h of the wastewater treatment effluent, as well as the calculated cell equivalents/m3 at different water levels for the measured parameters.

the information by the operator of the WWTP. The obtained
qPCR data given in cell equivalents per 100mL were transformed
to cell equivalents per m3 and multiplied with 86400 s (24 h)
(formula 1).

Formula 1: Calculation of the discharge of the WWTP within
24 h given in cell equivalents/ 24 h.

cell equivalents

m3 × annual mean discharge

[

m3

s

]

× 24 h [s]

=

cell equivalents

24 h
cell equivalents

m3 × 1.165
m3

s
× 86400 s

=

cell equivalents

24 h

For the calculation of the cell equivalents in the river regarding
the dilution factor of different water levels, the formula 2 was
used. For the river Danube low water is indicated by a flow rate
of 22 m3/s, mean water by 124 m3/s, and flood water by 994 m3/s.

Formula 2: Calculation of the concentration within the river
system at different water level scenarios (low water, mean water,
and flood water).

(

cell equivalents (effluent)

m3 × annual mean discharge

[

m3

s

])

÷ water level

[

m3

s

]

=

cell equivalents (river)

m3

(

cell equivalents (effluent)

m3 × 1.165
m3

s

)

÷ 22
m3

s

=

cell equivalents (river)

m3

Modeling of the Distribution Within the
Receiving Body (River Danube)
A steady state and transient hydraulic 2D-water flow model
(Hydrodynamic Wave Propagation Model HDWAM) originally

developed by the Aquantec GmbH to assess and manage
flood risks was used in this study. HDWAM is a one-
and two-dimensional hydraulic model. A finite-volume
discretization is applied to the diffusive wave equations and
an implicit scheme is used for time integration (Krauter,
2002).

HDWAM is extended by a water quality module (GQSM) in
order to simulate the dispersal of antibiotic resistance bacteria/
genes (ARB/G). The transport of quality parameters in 2D-
compartments in the GQSM is described by the following partial
differential equation (formula 3).

Formula 3: Partial differential equation describing the
transport of quality parameters in 2D-compartments in the
GQSM.

∂hCi

∂t
+

∂qxCi

∂x
−

∂

∂x

(

hDτ

∂Ci

∂x

)

+

∂qyCi

∂y
−

∂

∂y

(

hDτ

∂Ci

∂y

)

−

1

h

nzu
∑

j=1

qzu,jCzu,j,i +
Ci

h

nab
∑

j=1

qab,j = 0

h water depth [m]
qx specific flow rate in x-direction [m²/s]
qy specific flow rate in y-direction [m²/s]
Ci concentration of quality parameter i [mass/m3, C◦, . . . ]
Dτ turbulent dispersion coefficient [m²/s]
nzu number of external inflow by coupling
qzu,j external specific inflow j [m²/s]
Czu,j,i concentration of quality parameters i in external inflow
j [mass/m3, C◦, . . . ]
nab number of external outflow by coupling
qab external specific outflow [m²/s]

The turbulent viscosity can approximately be determined by the
depth-averaged parabolic model (formula 4).
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Formula 4: The depth-averaged parabolic model to determine
the turbulent viscosity.

µτ = cµ
√

ghIEh

g Gravitational constant [m/s²]
IE Energy gradient [-]
cµ Dimensionless coefficient for characterization of the

riverbed [Natural riverbeds are characterized by cµ between
0.3 (riverbed with low roughness) and 0.9 (riverbed with high
roughness)].
The required finite element mesh (FE-mesh of the 2D-hydraulic
model HydroAs-2D) for the part of the Danube River with
the WWTP is placed at disposal by courtesy of the water
authority Donauwörth (© Wasserwirtschaftsamt Donauwörth,
www.wwa-don.bayern.de accessed on March 2018). The FE-
mesh reaches from Danube-km 2,583 up to Danube-km 2,557.
The FE-mesh was revised by Aquantec in order to make the mesh
suitable for the program system HDWAM. A part of the FE-
mesh was cut out, from Danube-km 2,581.43 (downstream the
barrage Böfinger Halde) up to Danube-km 2,574.67 (downstream
the barrage Leibi). The revised FE-mesh includes the floodplain
which is flooded in case of a HQ20. The part of the FE-mesh used
for simulations with the program HDWAM consists of 20,039
knots and 29,742 elements.

The dispersal of different ARB and ARGs is simulated with
the 2D-hydraulic approach ofHDWAM for steady state scenarios
ranging from low water level (gauge Neu-Ulm 22 m3/s), medium
water level (124 m3/s) up to more or less an HQ20 (994 m3/s)
flood. Depending on the flow conditions the dispersal stays in the
riverbed itself or extends to the floodplain.

Statistical Evaluation
Box plot graphs were chosen to illustrate the distribution of
the measured values using the median values and the quartiles.
Therefore, the median values of each sampling campaign were
used, resulting in four median values. For the statistical analyses
these values were used to calculate the different p-values to
show significant differences between the treatments. In order
to decide which statistical test should be used for determining
the significance the data were first analyzed for their normal
distribution using the Shapiro-Wilk test. In most of the cases
the values for the different detected targets were normally
distributed. Therefore, the t-test was applied to demonstrate the
significance, which is also present with the illustrated figures.
In some cases the data were not normally distributed and
therefore the Mann-Whitney test was used to indicate significant
differences between the samples.

RESULTS AND DISCUSSION

Conventional Wastewater Treatment and
Its Impacts on Facultative Pathogenic
Bacteria and ARGs
To determine the occurrence of facultative pathogenic bacteria
and ARGs during the conventional wastewater treatment process
at the WWPT volume based qPCR data were analyzed at

three processing steps. Samples of the influent, activated
sludge treatment in combination with sedimentation (biological
treatment), and the final effluent were under investigation, firstly
(Figure 1A).

The abundances of specific marker genes representing
specifically facultative pathogenic bacteria and ARGs
within the population were normalized to 100mL
wastewater volumes. The used primer sequences are listed
in Supplementary Information Table 1. Quality controls
were performed as described previously. The selection of the
facultative pathogenic bacteria reflects their clinical relevance
and their association with wastewaters. There is no regulation
or guideline for the presence of such bacteria in municipal
wastewaters in Germany, but for other European countries. The
regulations of Spain, Cyprus, France, Greece, and Italy have
selected Escherichia coli as a surrogate for facultative pathogenic
bacteria, where also coliforms were studied previously in
contaminated waters (Ashbolt et al., 2001). Nevertheless, it
became obvious that some facultative pathogenic bacteria like
P. aeruginosa released by WWTPs did not behave like indicator
bacteria in susceptibility for oxidative treatment and regrowth
capacities in downstream aquatic environments (Lüddeke
et al., 2015; Alexander et al., 2016). Therefore, the following
taxonomic marker genes [16S rRNA (Eubacteria), 23S rRNA
(enterococci), ecfX (P. aeruginosa), and yccT (E. coli)] were
used for quantification via qPCR. In addition six ARGs (mecA
(methicillin resistance gene), ctx-M32 (β- lactame resistance
gene), ermB (erythromycine resistance gene), blaTEM (β- lactame
resistance gene), sul1 (sulfonamide resistance gene), vanA
(vancomycin resistance gene), and intI1 (Integrase1 gene) were
used to quantify the load factor at the mentioned sampling
points of the conventional WWTP. These antibiotic resistance
genes were chosen due to their different occurrence in WWTPs
(Hembach et al., 2017). The frequently found antibiotic genes
(e.g., blaTEM, ermB, sul1, and intI1) are suitable tools to show
the reduction efficiencies of the different treatment steps.
Furthermore, less frequently detected genes were included into
the analysis to see if these genes will be effectively reduced during
advanced treatments or if they will be still present after the
treatments. These used gene targets are considered as suitable
parameters for wastewater quality (Berendonk et al., 2015).

The results are illustrated in box plot graphics with
medians, standard deviations, and minimum/maximum values
of four sampling periods (Figure 2). Median values of the cell
equivalents were used for the calculations of the reduction
efficiencies. In all cases the measured cell equivalents per 100mL
were highest in the influent samples of the WWTP. A reduction
due to the conventional treatment ranging from 1.1 to 3.4 orders
of magnitudes (log units) can be observed for all of the tested
taxonomic and resistance genes. In case of the taxonomic marker
genes the highest reduction was measured for enterococci with
1.51 × 107 cell equivalents/100mL in the inflow to 6.27 × 103

cell equivalents/100mL after the conventional treatment (i.e., 3.4
log units reduction). The lowest reduction was observed for P.
aeruginosa. Here, a reduction of only 2.2 logs, from 1.70 × 104

cell equivalents/100mL to 9.89× 101 cell equivalents/100mLwas
analyzed. The abundance of E. coli was decreased from 1.88 ×
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FIGURE 1 | Schematic illustration of the WWTP processes performed at the WWTP under investigation. (A) Conventional treatment with biological treatment

(activated sludge and sedimentation tank) and (B) installation of semi-industrial advanced technologies.

FIGURE 2 | Box plot graphs of the qPCR analyses targeting taxonomic and antibiotic resistance gene markers in wastewater samples of a municipal WWTP. Data are

given for the influent, conventional (activated sludge with sedimentation), and effluent samples. Median values, standard deviations, and minimum/maximum values

from 4 sampling periods are given. Significance is given by t-test calculation and is shown by asterisks (t-test; **p < 0.05, *p < 0.1).

107 to 1.64 × 104 cell equivalents/100mL after the conventional
treatment, resulting in a reduction of 3.1 logs. No significant
differences occurred between the conventional treatment and the
final effluent.

In case of the ARGs, the highest reduction was determined
for ß-lactamase gene blaTEM (2.6 log units) and vancomycin
resistance gene vanA (2.9 log units; < LOD), which was not
detectable after conventional treatment. More specifically, the
β-lactame resistance gene (blaTEM) was reduced from 4.82 ×

107 cell equivalents/100mL in the influent to 1.22 × 105 cell
equivalents/100mL after the conventional treatment. The ctx-
M32 and sul1 resistance genes were reduced from 2.73 ×

106 to 1.50 × 104 and from 2.35 × 108 to 1.33 × 106 cell
equivalents/100mL after conventional treatment, respectively.
The lowest reduction showed ermB gene, coding for the
erythromycin resistance, with 1.1 log units. Here, the abundance
was decreased from 7.51 × 105 cell equivalents/100mL in
the influent to 5.37 × 104 cell equivalents/100mL after the
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conventional treatment. Significant differences between the
influent and the conventional treatment (t-test; ∗∗p < 0.05,
∗p < 0.1) could be calculated for these mentioned genes showing
no differences in their significance using the student’s t-test
or the Mann-Whitney test in case of not normally distributed
data. Also no significant differences were observed between
the conventional treatment and the final effluent. Furthermore,
it became obvious that the P. aeruginosa gene marker (ecfX)
and some antibiotic resistance genes mecA, and ermB were
not significantly reduced by the biological treatment using
the student’s t-test. Using the Mann-Whitney test ecfX and
mecA showed a significant reduction. The vancomycin resistance
gene, directed against an antibiotic of last choice, was only
detected in the influent samples. Nevertheless it became evident
that the activated sludge with sedimentation didn’t increases
the abundances of facultative pathogenic bacteria as well as
ARGs. Furthermore the abundances of the gene markers didn’t
changed significantly from the outflow of the biological treatment
to the effluent sampling point. Comparing our data with a
previous study of Czekalski et al. (2012), similar cell equivalents
per 100mL or gene copies were measured for the 16S rRNA
representing the total bacterial community and the sul1 gene
coding for the sulfonamide resistance. Other studies like Munir
et al. (2011), and Alexander et al. (2015) revealed some
differences in gene abundances. These differences may arise from
several points, like regional differences, influences of industries
and hospitals on the WWTP, as well as different wastewater
treatment processes at the WWTPs.

Based on the collected qPCR data showing the presence
of facultative pathogenic bacteria marker genes and ARGs in
the final effluent of the WWTP (Figure 2), the cell equivalents
per 100mL were converted into cell equivalents per m3. For
the calculations of the daily charges via the WWTP effluent,
these values were multiplied with the annual mean discharge of
1.165 m3/s resulting in the amount of released cell equivalents
per second and afterwards multiplied with 86400 s to obtain
the amount of cell equivalents released within 24 h (Table 1).
Furthermore, calculations regarding the dilution factor of
different water level scenarios of the receiving river Danube
were performed using the obtained cell equivalent per m3 data
and flow rates of the river for low, mean, and flood waters
(Table 1). Furthermore, the calculation of the distribution and
dilution within the receiving system allows estimating these risks
of dissemination of facultative pathogenic bacteria and antibiotic
resistances in downstream bulk water systems used for possible
water reuse processes including drinking water conditioning.
More specifically, the consideration of scenarios like flood water
events are important where facultative pathogenic bacteria and
ARGs may be discharged into floodplains and will be further
spread into the environment.

Table 1 describes the 24 h discharges with the highest
calculated values for Eubacteria as a marker gene for all bacteria
followed by E. coli and enterococci in a similar range of 1013

orders of magnitude present in theWWTP effluent. P. aeruginosa
was calculated with 2 orders of magnitudes less (1011 log units).
In case of the ARGs the daily loads range from 1010 order of
magnitudes for the methicillin resistance gene to 1015 log units

for the sulfonamide resistance gene. The class-1 specific integron
gene intI1 representing a mobile genetic element for resistance
genes was also found to be present in high abundances of 1015 log
units. The vancomycin resistance gene (vanA) was not detected
in the final effluent of the WWTP and is therefore not listed
in Table 1. Within the river system dilution effects could be
calculated. In case of low water events, a dilution effects up to
1.3 orders of magnitude could be calculated. For mean water, and
flood water these dilution effects reached values of 2.1 and 3.0 log
units, respectively.

With the help of the real quantification data from qPCR
analyses and the load calculation equations (see chapter 2.6)
the burden of one rivers system impacted by only one WWTP
became visible. This calculation did not reflect the already present
charges with facultative pathogenic bacteria and antibiotic
resistance genes from upstream scenarios, where other entries
from additional WWTPs or rain overflow basins at heavy
rain seasons impacts the microbial quality of the river system.
In consequences, the real burden with facultative pathogenic
bacteria and ARGs are expected to be higher even at flood
scenarios.

Impact of Advanced Wastewater Treatment
Technologies on Facultative Pathogenic
Bacteria and ARGs
Different advanced wastewater treatment technologies, i.e.,
UV irradiation, ozone treatment, and the combination of UV
with ozone treatment on conventionally treated wastewater
(after activated sludge with sedimentation) were under
investigation (Figure 1B). Here, the same taxonomic and
antibiotic resistance gene markers were used for qPCR analyses
(Supplementary Information Table 1). The vancomycin
resistance gene (vanA) was not analyzed because of its absence
after conventional treatment. The biological treated wastewater,
i.e., activated sludge treatment followed by sedimentation, was
used as reference value (control) for the different reduction
efficiencies during the advanced wastewater treatments. In
Table 2 the median values calculated for the box plot graph
(Figure 3) were used to determine the reduction efficiencies of
the different treatment technologies.

In case of the taxonomic marker genes all three facultative
pathogenic bacteria were detectable after conventional treated
wastewater. The abundance of the viable fraction after PMA
treatment ranged from 9.89× 101 cell equivalents per 100mL for
P. aeruginosa (ecfX) to 1.50× 104 cell equivalents per 100mL for
E. coli (yccT). The abundance of enterococci (enterococci specific
23S rRNA) and the overall bacterial load (16S rRNA) were
determined with 6.27× 103 cell equivalents per 100mL and 2.94
× 108 cell equivalents per 100mL, respectively (Figure 3). In case
of the antibiotic resistance genes, the measured cell equivalents
per 100mL ranged from 1.33 × 106 cell equivalents per 100mL
for sul1 to 1.50 × 104 cell equivalents per 100mL for ctx-M32.
The abundances of intI1, blaTEM and ermB showed values of 4.42
× 105, 1.22 × 105, and 5.37 × 104 cell equivalents per 100mL,
respectively. The abundance of the methicillin resistance gene
was determined with 4.70 × 101 cell equivalents per 100mL. As
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TABLE 2 | Reduction efficiencies of advanced wastewater treatment technologies on taxonomic and antibiotic resistance gene markers.

Target Control UV treatment Ozone treatment Combination

Absolute

abundance

Absolute

abundance

Reduction

(–)

Absolute

abundance

Reduction

(–)

Absolute

abundance

Reduction

(–)

Increase (+) Increase (+) Increase (+)

[Cell

equivalents/

100mL]

[Cell

equivalents/

100mL]

[%] [Cell

equivalents/

100mL]

[%] [Cell

equivalents/

100mL]

[%]

16S 2.94E+08 9.04E+07 −69.3% 4.65E+06 −98.4% 5.47E+06 −98.1%

23S 6.27E+03 3.61E+03 −42.4% 1.91E+01 −99.7% 9.92E+01 −98.4%

ecfx 9.89E+01 7.50E+01 −24.1% 0.00E+00 <LOD 0.00E+00 <LOD

yccT 1.50E+04 1.09E+04 −27.4% 1.14E+02 −99.2% 1.57E+02 −99.0%

mecA 4.70E+01 0.00E+00 <LOD 0.00E+00 <LOD 0.00E+00 <LOD

ctxM32 1.50E+04 5.05E+04 236.3% 2.17E+03 −85.5% 2.38E+03 −84.1%

ermB 5.37E+04 3.75E+04 −30.2% 1.01E+03 −98.1% 1.07E+03 −98.0%

blaTEM 1.22E+05 1.83E+05 50.1% 1.10E+04 −91.0% 1.12E+04 −90.8%

sul1 1.33E+06 9.33E+05 −29.9% 6.83E+04 −94.9% 5.53E+04 −95.8%

intl1 4.42E+05 2.43E+05 −44.9% 2.34E+04 −94.7% 4.61E+03 −99.0%

The abundances and reduction efficiencies of conventional treated wastewater (control), UV treated wastewater at 400 J/m² (UV treatment), ozone treated wastewater with 1 g ozone/g
DOC (ozone treatment) and the combination of UV and ozone treatment (combination) are illustrated.

FIGURE 3 | Box plot graphs of the qPCR analyses targeting taxonomic and antibiotic resistance gene markers in advanced treated wastewater samples of a

municipal WWTP. Data are given for the conventional treatment (activated sludge with sedimentation, influent), UV treated samples (400 J/m²), ozone treated samples

(1 g ozone/ g DOC), and the combined treatment of UV and ozone (combination). Median values, standard deviations, and minimum/maximum values from 4

sampling periods are given. Significance is given by t-test calculation and is shown by asterisks (t-test; **p < 0.05, *p < 0.1).

reference for the determination of the reduction efficiencies of
the different treatments the conventional treated wastewater was
taken into consideration.

UV treatment resulted in a reduction of the abundance of
all taxonomic marker genes ranging from 24.1, 27.4, 42.4, to
69.3% for P. aeruginosa, E. coli, enterococci, and 16S rRNA gene,
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respectively (Table 2, Figure 3). Similar reduction efficiencies
were detectable for sul1, ermB, and intI1 showing reduction
efficiencies of 29.9, 30.2, and 44.9%, respectively. The cell
equivalents per 100mL were reduced to 9.33 × 105, 3.75 ×

104, and 2.43 × 105, respectively. In contrast the antibiotic
resistance genes blaTEM and ctx-M32 showed an increase in their
abundance after the UV treatment. No significant differences
could be calculated neither with the student’s t-test nor with the
Mann-Whitney test between the influent samples and the UV
treated samples.

UV treatment referring to wastewater treatment technologies
seems not to be very effective. Also other studies report that
reduction efficiencies could vary between 0.5 and 3.0 log units
of gene copies/ 100mL depending on the used fluences, as well
as on the investigated resistance genes. It is reported that tetA
and ampC genes are more resistant to UV treatment compared
tomecA or vanA resistance genes (McKinney and Pruden, 2012).
Furthermore, the complex wastewater matrix could influence
the reduction efficiencies due to the high turbidity of the
wastewater samples so that the UV light cannot interpenetrate
the wastewater (Zhuang et al., 2015).

Ozone treatment resulted for all tested taxonomic marker
genes in reduction efficiencies between 98.4% in case of the 16S
rRNA gene to below the detection limit. E. coli and enterococci
showed reductions of their abundance of 99.2% to 1.14 ×

102 cell equivalents per 100mL and of 99.7% to 1.91 × 101

cell equivalents per 100mL. In case of P. aeruginosa with
a relative low burden at the reference point (after biological
treatment) qPCR measures were below the detection limit
(Table 2, Figure 3). The ozone treatment showed for all tested
antibiotic resistance genes reductions ranging from 85.5 to 98.1%.
Themethicillin resistance gene (mecA) wasn’t detectable after the
ozone treatment. The strongest reduction was measured for the
erythromycin resistance gene (ermB) by 98.1% to 1.01 × 103 cell
equivalents per 100mL. The sulfonamide resistance gene (sul1)
was reduced to 6.83 × 104 cell equivalents per 100mL resulting
in a reduction of 94.9% followed by the integrase 1 gene (intI1)
with a reduction in percentage of 94.7%. The abundance of the ß-
lactame resistance gene (blaTEM) was reduced to 1.10 × 104 cell
equivalents per 100mL (reduction of 91%). The abundance of the
cefotaxime resistance gene (ctx-M32) showed a reduction of its
abundance to 2.17 × 103 cell equivalents per 100mL (reduction
of 85.5%). Significant differences between the influent and the
ozone treated wastewater could be calculated with the student’s
t-test for all tested parameters except the enterococci specific
marker gene (23S rRNA) gene and the erythromycin resistance
gene (ermB). Here, the data were not normally distributed and
the Mann-Whitney test was applied for statistical analysis.

The ozone treatment was able to reduce all the investigated
antibiotic resistance genes. In contrast to the chemical micro-
pollutants, which are discussed to become reduced to 80% during
ozone treatment, microbiological hazardous contamination
should be reduced to percentages of at least 99% to avoid any
regrowth, afterwards. An advantage of the ozone treatment is it’s
applicability to microbiology reduction or elimination in parallel
with the reduction or transformation of micro-pollutants. It has
to be stated that the disinfection efficiency of ozone depends on

the ozone concentration, the contact time, and water quality.
Especially, dissolved organic carbon (DOC), suspended solids
(SS), and particulate matter from activated sludge should be
considered during ozonation (Lazarova, 2013; Czekalski et al.,
2016; Pak et al., 2016). The used hydraulic retention time of the
wastewater was arranged with 5min. Both, ozone concentration
and hydraulic retention time are parameters with could be
adapted to increased elimination impacts on bacteria carrying
antibiotic resistance genes. In this context unwanted chemical
by-products like bromide should not become transformed by
elevated ozone concentrations as previously mentioned (von
Gunten and Hoigne, 1994; von Gunten, 2003; Lee and von
Gunten, 2010).

In addition, the potential mutation of DNA after ozone
exposure and toxic transformation products (e.g., bromate and
nitrosamines) should be noted. Biological filtration with sand or
activated charcoal is frequently recommended after ozonation to
avoid the release of newly transformed unwanted compounds to
the downstream environments. But, these filter systems bear the
risk of microbial regrowth of facultative pathogenic bacteria or
ARGs. Hence the ozone treatment should become adjusted to
remove bacterial loads in sufficient high efficiencies.

The combination of UV and ozone treatment also revealed
high percentages of reduction for all tested bacteria. The relative
abundance of E. coli could be reduced from 1.50 × 104 cell
equivalents per 100mL to 1.57× 102 cell equivalents per 100mL
and enterococci were reduced from 6.27 × 103 to 9.92 ×

101 cell equivalents per 100mL, resulting in 99.0 and 98.4%
reduction of these bacteria within the surviving population. The
eubacterial fraction (16S rRNA gene) was reduced by 98.1%
and P. aeruginosa again was not detectable after the combined
treatment (Table 2, Figure 3). Also the combination of UV and
ozone treatment led to a reduction for all tested antibiotic
resistance genes from 84.1% up to 99.0%. Here, the abundance
of the integrase 1 gene (intI1) could be detected with 4.61 ×

103 cell equivalents per 100mL resulting in 99.0% reduction. The
erythromycin resistance gene (ermB) was reduced to 1.07 × 103

cell equivalents per 100mL (98.0% reduction) followed by the
sulfonamide resistance gene (sul1), which was detected with an
abundance of 5.53 × 104 cell equivalents per 100mL resulting in
95.6% reduction. The ß-lactame resistance gene (blaTEM) showed
a reduction of 90.8% with a detectable abundance of 1.12 × 104

cell equivalents per 100mL. The abundance of the cefotaxime
resistance gene (ctx-M32) was detected with 2.38 × 103 cell
equivalents per 100mL resulting in a reduction of 84.1%. The
methicillin resistance gene (mecA) wasn’t detectable after the
combined treatment.

Significant differences between the influent and the UV and
ozone treated wastewater could be calculated with the student’s
t-test for all tested parameters except for the erythromycin
resistance gene (ermB). Here, the data were not normally
distributed and the Mann-Whitney test was applied for statistical
analysis.

The combination of UV and ozone treatment under the given
conditions didn’t result in a more effective reduction compared
to ozone treatment. This might be due to the particulate material
which might be still present after the ozone treatment so that
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the UV light was not able to interpenetrate the ozone treated
wastewater. It would be possible that at further processing steps
(e.g., after particle removal via filtration steps) the UV treatment
might be a very suitable method to eliminate the residual
contaminations. In consequence, adjustments to ozone treatment
which achieve a high elimination rate of ARBs and ARGs should
have high priority for the application in WWTPs. As mentioned
before ozone contact times with an adapted hydraulic retention
time at the ozone facility might a possible way to increase the
elimination rates.

As previously described ozone treatment is based on radical
ion production. Hence, ozone could also induce oxidative stress
responses in surviving wastewater populations. It is known, that
the impact of ozone given to wastewaters depends onmany biotic
and abiotic factors like bacteria densities, chemical load, and
also suspended solids concentration. This implicates that sub-
lethal effects on bacteria can occur promoting stress responses,
population shifts, and bacterial selection processes. Dwyer et al.
(2009) described the formation of reactive oxygen species
(ROS) impacting the metabolism of bacteria. The triggered
SOS response contributed to resistance development and the
adaptation process would account for an increased robustness
toward ROS of affected bacteria. Furthermore, the presence of
anti-oxidative mechanisms in different species may lead also
to different dynamics in the reduction efficiency of oxidative
treatments (Dwyer et al., 2009; Alexander et al., 2016). The
efficiencies of the different advanced treatment processes might
also depend on the microorganisms carrying the mentioned
antibiotic resistance genes. The presence of the genes are not
limited to one specific bacterium, but can also be transferred
to other so far uncharacterized bacteria from the wastewater
population. Therefore, it’s difficult to estimate the accessibility
of disinfectants (ozone) or physical measurements (UV) on
mixed communities in natural habitats. Most of the analyzed
ARGs are located on mobile genetic elements described for
horizontal gene transfer (HGT). Other studies have shown, that
there is a secondary effect of bactericidal antibiotics besides
their drug target-specific interaction within bacteria (Kohanski
et al., 2007, 2010). There, sub-lethal concentrations of bactericidal
antibiotics were used to stimulate the formation of intra-
cellular, highly reactive hydroxyl radicals, which contribute to
the killing efficiency of bactericidal antibiotics. The induction
of oxidative stress by bactericidal antibiotics may induce
sub-lethal stress response mechanisms in bacteria that deal
not only with the adaptation to the original drug target
(antibiotic resistance development), and oxidative damage-
associated responses (e.g., recA response). Bacteria which
experienced these stress signals, responded, and survived.
Therefore, they have a considerable advantage in surviving
oxidative wastewater treatments (Alexander et al., 2016). In
consequence, higher ozone concentration as proposed to increase
the biocidal impacts during advanced wastewater treatment
might a good strategy to avoid sub-lethal or selective side
effects of ozone in certain bacteria of wastewater populations.
Here, we focused on the absolute abundance of bacteria
in 100mL of wastewater. For visualizing changes of the
relative abundance within the surviving population caused

by these advanced wastewater treatments a normalization to
100 ng DNA would be possible and was shown in previous
poplications of the group (Alexander et al., 2016; Jäger et al.,
2018).

Influence of Advanced Wastewater
Treatment Technologies on DNA Lesions
To investigate the occurrence of DNA lesions after the
advanced treatments, different assays were performed. Here,
antibody based detection systems against CPDs and 6-4 PPs
DNA alterations, as well as PCR elongation experiments were
performed (Süß et al., 2009; Kraft et al., 2011).

In case of the antibody based approach, the occurrence of
cyclobutane pyrimidine dimers, as well as 6-4 photoproducts in
the different treated wastewater samples was analyzed. Here, both
DNA lesions could be detected in samples, which were treated
with UV intensity of 400 J/m² but neither in the untreated, nor in
the samples which were treated with ozone (Figure 4). Increasing
the spotted volume of samples which were treated with ozone or a
combination of UV and ozone did not result in a detectable signal
(data not shown).

To complement the pyrimidine dimer analysis, PCR efficiency
experiments with different sized 16S rRNA amplicons were
performed according to Süß et al. (2009). In the first sampling
campaign the 176 bp amplicon of the 16S rRNA gene showed
a reduction of polymerase efficiency compared to the untreated
control after UV treatment, whereas for the ozone treatment
no PCR efficiency reduction was detectable (Table 3). The
combination of UV and ozone treatment showed a small decrease
in polymerase efficiency. In case of the 490 bp amplicon,
polymerase efficiencies were decreased for all different treatment
types. For the 880 bp amplicon the strongest reduction in
polymerase efficiency could be detected after the UV treatment
and after the combined treatment, whereas ozone didn’t lead
to a reduction in the PCR efficiency. These results underline
the strong impact of UV irradiation on the DNA integrity of
bacteria which might impact the mutation rates since 16S rDNA
amplicons are representatives of the total bacterial genome. In
consequence sub-lethal changes in the DNA integrity might
be responsible for newly introduced mutations and might be
responsible for bacteria evolution including antibiotic resistance.

The second sampling campaign resulted for the 176 bp
amplicon in reduced efficiencies of 0.21, 0.11, and 0.1 for UV,

FIGURE 4 | Detection of cyclobutane pyrimidine dimers (left) and 6-4

photoproducts (right) at 400 J/m² UV and/or 1 g ozone per g DOC with an

immunological slot-blot assay.
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ozone, and the combined treatment, respectively. For the 490
bp amplicon no reduction in efficiency was detectable after UV
treatment. After the ozonation and the combination of UV
and ozone treatment a reduction of the polymerase efficiency
was detectable (0.71 and 0.23). No effects could be seen for
the 880 bp amplicon after UV or ozone treatment. Only the
combination resulted in a weaker polymerase efficiency of 0.36
(Table 3). In consequence, these DNA lesions occur randomly
within different regions of the genome. Therefore, there is some
variability in the frequency of occurrence of these DNA lesions
within the different amplicons, which has different effects on PCR
efficiencies.

The PCR based experiments showed that DNA lesions are
present after the combined treatment of UV and ozone, but
there are no pyrimidine dimers detectable via the immunological
assay. Also in the ozone treated samples no pyrimidine
dimers were detected by the chemiluminescence measurements,
whereas, DNA alterations were detectable in the PCR efficiency
experiments. This might be an effect induced by the ozone
reaction with the DNA molecule, which results in other types
of DNA lesions compared to UV treatment. It is reported, that
the kinetics of ozone molecules are higher for thymine (rate
constant 3.4 × 104 L∗mol−1 s−1) than for guanine, cytosine,
or adenine (Alexander et al., 2016) and that the thymine reacts
with the ozone at the position of the methyl group at the
C(5)-C(6) double bond, which has a noticeable effect on the
rate of reaction (Flyunt, 2007). The oxidation at positions
C(5) and C(6) may inhibit the dimer formation and therefore
no CPDs and 6-4 PPs were detectable via the immunological
assay.

These different degrees of DNA changes induced by UV-
irradiation, as well as ozone-treatment especially at sub-lethal
levels are known to trigger repair mechanisms in bacteria like
recA gene expression (Jungfer et al., 2007), which is a key
regulator for recombination events and, therefore, can lead
to an increased mutation rate and uptake/incorporation of
extracellular DNA. This promotes the HGT, which is one of the
main factor in resistome evolution in aquatic habitats (Fall et al.,
2007; Aminov, 2011; Chao et al., 2013). Recombination events
can also promote adaptation processes as well as the evolution
of bacteria and ARGs. Again, elevated ozone concentration or
adapted hydraulic retention times might help to suppress these
unwanted side-effects in bacteria driving HGT or antibiotic
resistance evolution.

Hydraulic Simulations of Dispersal of
Several ARB and ARGs in the Danube
Downstream of WWTP
For three bacteria and three resistance genes listed in Table 4 2D-
hydraulic simulations with theHydrodynamicWave Propagation
Model (HDWAM) have been conducted in order to determine
the dispersal of the microbiological parameters. Simulations were
done with steady state runoff in the river Danube of 22, 124, and
994 m3/s.

As an example, the Figures 5, 6 show the concentration of
E. coli at several knots of a cross section of the river Danube
from 22m to about 3,000m downstream of the outlet of the
WWTP. The simulated input from theWWTP is 1.165 m3/s with
a concentration of E. coli in the WWTP outlet of 9.20 × 108 cell
equivalents/m3. The runoff of the river Danube is simulated with
steady state flow conditions of 22 m3/s (Figure 5) and 994 m3/s
(Figure 6).

The runoff of 22 m3/s stays in the riverbed itself. The
maximum concentration of E. coli with a cell equivalent of
∼2.21 × 108 is calculated at 22m downstream of the WWTP.
According to the results of the hydraulic model after about
3,000m downstream of the outlet ofWWTP the concentration of
E. coli is more or less evenly distributed across the river Danube
with an average concentration of E. coli of about 4.63 × 107 cell
equivalents/m3.

At a runoff of 994 m3/s the maximum concentration is about
5.22 × 106 cell equivalents/m3 near the inflow point of the
WWTP. The inflow point of the WWTP to the river is situated
several meters from the right riverbank toward the left riverbank

TABLE 4 | Concentration of bacteria and resistance genes in the outlet of WWTP

which were used as input for the simulation with the hydraulic program HDWAM.

Facultative pathogenic bacteria Outlet WWTP

[cell equival./m3]

Escherichia coli 9.20E+08

Enterococcus spp. 6.00E+07

Pseudomonas aeruginosa 6.43E+06

Antibiotic resistance genes

Sulfonamide resistance gene (sul1) 3.20E+10

β- Lactame resistance gene (blaTEM) 3.83E+09

Erythromycine resistance gene (ermB) 2.88E+09

TABLE 3 | Detection of DNA damages via PCR experiments.

Sampling campaign 1 Sampling campaign 2

176 bp amplicon 490 bp amplicon 880 bp amplicon 176 bp amplicon 490 bp amplicon 880 bp amplicon

Control 1.0 1.0 1.0 1.0 1.0 1.0

UV treatment 0.62 0.69 0.47 0.21 0.99 0.98

Ozone treatment 1.5 0.76 1.0 0.11 0.71 0.93

Combination 0.92 0.87 0.76 0.1 0.23 0.36

The quantified light units of the different treatments are normalized to the corresponding amplicon of the conventionally treated wastewater (control). The amplicons were separated by

agarose gel electrophoresis and the light units (LU) of each amplicon were determined and normalized to their corresponding amplicon of the untreated wastewater sample.
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FIGURE 5 | Distribution of calculated (2D-HDWAM) concentration of E. coli in the river Danube downstream of the WWTP for different cross sections, 9.20 × 108 cell

equivalents/m3 in outlet of WWTP, discharge of Danube at 22 m3/s (NQ).

FIGURE 6 | Distribution of calculated (2D-HDWAM) concentration of E. coli in the river Danube downstream of the WWTP for different cross sections, 9.20 × 108 cell

equivalents/m3 in outlet of WWTP, discharge of Danube at 994 m3/s (HQ20).
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TABLE 5 | Calculated (2D-HDWAM) concentration of cell equivalents of E. coli for cross sections of the river Danube from outlet of WWTP downstream to 3,000m.

Position of cross section across the Danube [m]; inflow point of WWTP situated at right riverbank

steady state runoff of Danube at 994 m3/s

0.00 Left

riverbank

7.71 15.42 23.12 30.83 38.53 46.24 53.94 61.65

Right riverbank

Downstream distance

from WWTP outlet [m]

22 6.956E+02 1.445E+03 6.064E+03 2.373E+04 9.622E+04 4.303E+05 1.681E+06 5.223E+06 2.879E+06

112 7.215E+03 1.601E+04 4.472E+04 1.272E+05 3.626E+05 9.348E+05 2.024E+06 3.369E+06 3.547E+06

134 1.310E+04 2.621E+04 6.593E+04 1.664E+05 4.313E+05 1.021E+06 2.005E+06 3.130E+06 3.379E+06

197 3.854E+04 7.090E+04 1.438E+05 3.102E+05 6.450E+05 1.219E+06 1.984E+06 2.703E+06 2.947E+06

281 1.087E+05 1.655E+05 2.837E+05 5.042E+05 8.450E+05 1.338E+06 1.913E+06 2.391E+06 2.582E+06

389 2.236E+05 2.720E+05 4.107E+05 6.418E+05 9.484E+05 1.356E+06 1.843E+06 2.184E+06 2.310E+06

479 2.936E+05 3.389E+05 4.685E+05 6.858E+05 9.638E+05 1.330E+06 1.756E+06 2.053E+06 2.155E+06

742 4.961E+05 5.535E+05 6.752E+05 8.265E+05 9.427E+05 1.168E+06 1.444E+06 1.649E+06 1.720E+06

991 6.701E+05 7.032E+05 7.819E+05 9.057E+05 1.071E+06 1.236E+06 1.362E+06 1.454E+06 1.487E+06

1,234 7.983E+05 8.189E+05 8.725E+05 9.582E+05 1.068E+06 1.185E+06 1.278E+06 1.335E+06 1.350E+06

1,476 8.873E+05 9.020E+05 9.404E+05 9.999E+05 1.078E+06 1.161E+06 1.227E+06 1.265E+06 1.275E+06

1,983 1.002E+06 1.006E+06 1.020E+06 1.044E+06 1.076E+06 1.108E+06 1.135E+06 1.153E+06 1.158E+06

2,488 1.044E+06 1.046E+06 1.052E+06 1.063E+06 1.078E+06 1.091E+06 1.101E+06 1.107E+06 1.108E+06

2,989 1.062E+06 1.062E+06 1.065E+06 1.071E+06 1.078E+06 1.085E+06 1.090E+06 1.093E+06 1.093E+06

FIGURE 7 | Distribution of calculated (2D-HDWAM) concentration of E. coli in the river Danube downstream of the WWTP, 9.20 × 108 cell equivalents/m3 in outlet of

WWTP, discharge of Danube at 994 m3/s (HQ20), interpolated results.

(Table 5, bold numbers), not directly at the riverbank. Therefore,
the concentration at the cross section 22m is the highest in the
point 53.94m (left riverbank is 0.00m). Further downstream
the cell equivalents mix and in the following cross sections the
concentration decreases from the right (61.65m) to the left river
bank (0.00m) (Table 5 and Figure 6). Similar to the simulation

with a runoff of 22 m3/s in the river Danube there is a more or
less evenly distribution of E. coli across the Danube after about
3,000m with an average concentration of about 1.08 × 106 cell
equivalents/m3.

The runoff of 994 m3/s in the Danube, and with it E. coli
with a concentration of about 1.08 × 106 cell equivalents/m3,
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spreads also to parts of the Danube floodplain. Figure 7 shows
the maximum extend of the flooding and the concentration of
E. coli at a steady state runoff in the Danube of 994 m3/s. The
stretch ranges from the outlet of the WWTP to about 3,500m
downstream. In consequence, the concentration of E. coli in the
flooded area of the river Danube floodplain is at about 1.08× 106

cell equivalents/m3.

CONCLUSION

It was shown that a large WWTP (400.000 p.e.) plays an
important part in the distribution of facultative pathogenic
bacteria and antibiotic resistances after conventional treatment.
The calculation of the daily loads of the WWTP and the
consideration of dilution factors of different water level scenarios
of the receiving river underline the high burden situations in the
adjacent aquatic environment.

Molecular biology analyses revealed that the overall bacterial
load and the majority of other clinically relevant bacterial targets
were reduced during ozone/UV treatment using semi-industrial
facilities, but not eliminated. Antibiotic resistance genes were still
found to be present in the effluents under the adjusted parameters
within the surviving population. In addition, the occurrence of
DNA alterations like CPDs and 6-4 PPs, which were shown to
be induced during UV treatment, as well as DNA lesions induced
by ozonationmight up-regulate specific DNA repair mechanisms
like recA activities, which are known to enhance horizontal
gene transfer, but also mutations rates. Both contribute also to
antibiotic resistance evolution and the risk potential in aquatic
environments.

Furthermore, the model of the distribution within the river
system, which based on data from a conventional working,
full-scaled WWTP, showed that a homogenous distribution
is achieved after just a few kilometers. The model systems
also showed the impacts on downstream river locations
used for indirect water reuse or raw water source for
drinking water conditioning. Especially at flood water events,
facultative pathogenic bacteria and ARGs may be discharged into
floodplains. Therefore, it is important to minimize the risk of
contamination for the environment and the public health by
using advanced treatment technologies to reduce the bacterial
load and ARGs at WWTPs.

Further advanced treatment options are also available which
may be suitable for reducing the bacterial load in WWTPs
like the ultrafiltration. But these technologies might not be
able to reduce other micro-pollutants. Therefore, a combination
of different methods may lead to an adequate reduction of
all types of pollution. Therefore, to the already available
guidelines for the removal of chemical pollutants at WWTPs
it is necessary to develop additional or adjusted strategies and
guidelines adapted for the removal of microbial contaminants
in wastewater, including facultative pathogenic bacteria and
ARGs.
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Typhimurium and
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Probiotics, particularly lactic acid bacteria, are biologic agents which limit the growth,
virulence, and survival/colonization of various enteric bacterial pathogens and serve
as potential alternatives to antibiotics. Mechanisms that contribute to this antimicrobial
effect include producing bioactive metabolites/acids, increasing nutrient and receptor-
mediated competition, and modulating gut microbiome ecology. However, these
functions of common probiotic strains are limited due to the finite quantity of metabolites
they produce and their total number in the gut ecosystem. Conjugated linoleic
acids (CLAs), critical metabolites of Lactobacillus, have multiple beneficial effects on
human health including anti-carcinogenesis, anti-inflammation, anti-oxidation, and anti-
pathogenicity. In this study, we aim to overexpress the myosin cross-reactive antigen
gene (mcra) in Lactobacillus casei (LC) to enhance the production of CLA and investigate
its effectiveness against enteric bacterial pathogens, specifically Salmonella enterica
serovar Typhimurium (ST) and enterohaemorrhagic Escherichia coli (EHEC). By inserting
mcra in L. casei, we generated LC-CLA and found the total linoleic acid production by
an individual bacterial cell was raised by 21-fold. The adherence ability of LC-CLA on
human epithelial cells increased significantly and LC-CLA competitively excluded both
ST and EHEC in a mixed-culture condition. Furthermore, LC-CLA significantly altered
the physicochemical properties, biofilm formation abilities, interactions with host cells
of both ST and EHEC, and triggered anti-inflammatory activities of host cells. These
findings offer insights on applying a genetically engineered probiotic to control gut
intestinal infections caused by ST and EHEC and prevent foodborne enteric illness in
human.

Keywords: lactic acid bacteria, foodborne enteric bacterial pathogens, conjugated linoleic acid, anti-
pathogenesis, anti-inflammation
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INTRODUCTION

Human enteric microbial infections are principally characterized
by diarrhea with or without other complications/consequences,
which causes approximately 4–6 million deaths annually and
possesses huge economic burden worldwide (Viswanathan et al.,
2009; Christou, 2011). The dominant causative agents of enteric
bacterial diseases include Salmonella, enterohaemorrhagic
Escherichia coli (EHEC), Campylobacter, Listeria monocytogenes,
and Shigella (Viswanathan et al., 2009; Mor-Mur and Yuste,
2010; Forsythe, 2016; Huang et al., 2016). These enteric
bacterial pathogens are typically acquired through contaminated
foods and water; therefore, risk is always associated with
these foodborne diseases for everyone living on this planet.
The Center for Disease Control and Prevention (CDC)
estimated that in the United States alone, 48 million illnesses
(approximately 1 in 6 Americans), more than 128 thousand
hospitalizations, and thousands of deaths are caused by
foodborne infections each year (Hoffmann et al., 2012; Adams
et al., 2015, 2016, 2017). The most predominant causative
foodborne infectious agents, including Salmonella enterica
serovar Typhimurium (ST) and EHEC, commonly colonize
in farm animals’ guts, and during normal food production
or processing, these pathogens often cross-contaminate meat
products (Peng et al., 2014, 2016, 2018b; Salaheen et al., 2016b,
2017).

Probiotics, as bio-agents, can be considered the priority
in prevention and control of foodborne bacterial pathogen-
induced enteric illness (Amalaradjou and Bhunia, 2012; Hayes
and Vargas, 2016; Peng and Biswas, 2017; Peng et al., 2018a).
Through colonizing the host’s gastrointestinal (GI) tract, these
beneficial bacteria ferment or metabolize undigested dietary
components; after reaching the small and large intestine, the
probiotics generate/release a tremendous treasury of secondary
metabolites (byproducts), most of which are associated with
multiple health benefits (Flint et al., 2012; Marcobal et al., 2013).
Functional metabolites from probiotics generally include bio-
active polypeptides, with antimicrobial and immune-modulatory
properties, as well as vitamin B, which is essential for
mammalian cells in metabolism and reproduction (Stanton
et al., 2005). The major byproducts of probiotics are lipid
molecules, like fatty acids especially short chain fatty acids
and poly-unsaturated fatty acids with various isomers (Serini
et al., 2009; Louis et al., 2014). The mixed concentration of
by-produced lipid molecules in human colon is approximately
50–150 mM, and these beneficial lipid molecules are active
and help modulate the host’s immune responses (Louis et al.,
2014).

Among these functional fatty acids, linoleic acid (LA) is
one of the most crucial beneficial metabolites produced from
microbial sources, including Bifidobacterium, Lactobacillus, and
Lactococcus (Rizos et al., 2012). The mixture of positional and
geometric isomers of LA (C18:2, c9, c12), as conjugated linoleic
acids (CLA), distinguishes it from other fatty acids because
of its wide range of benefits on host health, including anti-
carcinogenesis, anti-inflammation, and anti-pathogenicity (Lee
et al., 2006; Benjamin and Spener, 2009; O’Shea et al., 2012;

Yang et al., 2015). Bacteria that originate from dairy and
human/animal intestines, specifically lactobacillus, including LA,
L. acidophilus, L. plantarum, and L. rhamnosus, are known as
predominant CLA producing strains (Van Nieuwenhove et al.,
2011); however, their CLA productivity varies and is usually
limited by multiple factors, including temperature, oxygen
availability, substrate concentration, etc. (Pandit et al., 2012).
A number of researchers, including our lab, are focusing on
stimulating the productivities of LA and CLA from microbial
sources especially probiotics both at the level of the human
intestine and the industry production level (Peng and Biswas,
2017).

Through our previous research, we observed relatively intense
antimicrobial activities of LA against enteric bacterial pathogens
such as ST and EHEC (Peng et al., 2015c). However, the LA
productivity (conversion ratio) of LC remains relatively low as
4.8%. In contrast, although L. rhamnosus possesses the highest
CLA conversion rate among all active Lactobacillus species, it
has a relatively low anti-pathogen activity (Van Nieuwenhove
et al., 2011). In this study, we cloned and over-expressed the
mcra (myosin-cross-reactive antigen) gene, encoding linoleate
isomerase, from L. rhamnosus GG into LA, and aimed to examine
the role of this novel probiotic in limitation and control of enteric
pathogenic bacteria.

MATERIALS AND METHODS

Bacterial Strain and Their Growth
Conditions
Probiotic strains, Lactobacillus casei ATCC 334 (LC-WT)
and L. rhamnosus GG ATCC 53103, were purchased from
American Type Culture Collection (ATCC, VA, United States).
Lactobacillus strains were grown on De Man, Rogosa and Sharpe
(MRS) (EMD Chemicals Inc., Gibbstown, NJ, United States) agar
at 37◦C for 24 h in the presence of 5% CO2 (FormaTM Scientific
CO2 water jacketed incubator, Thermo Fisher Scientific,
Waltham, MA, United States). Enteric bacterial pathogens
Salmonella enterica serovar Typhimurium (ATCC 14028) (ST)
and enterohemorrhagic Escherichia coli EDL933 (ATCC 700927)
(EHEC) were grown on LB agar (EMD Chemicals Inc.,
Gibbstown, NJ, United States) for 18 h at 37◦C under
aerobic conditions (Thermo Scientific, Thermo Fisher Scientific,
Waltham, MA, United States).

Cell Lines and Culture Conditions
Human epithelium cells (INT407, ATCC CCL-6) were purchased
from ATCC and cultured at standard condition (37◦C, 5% CO2,
95% humidity) in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% FBS and 100 µg/mL gentamicin
(HyClone Laboratories Inc., Logan, UT, United States). The
cultured cells were seeded at approximately 2× 105 cells/mL/well
into 24-well tissue culture plates (BD Falcon, Franklin Lakes,
NJ, United States) to reach 80–90% confluence monolayer at
standard condition for cell adhesion assay. The post-confluent
INT-407 cell monolayers were rinsed with PBS and stabilized in
antibiotic-free DMEM for 1 h prior to the invasion assay.
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Human macrophage cell line (U937, ATCC CRL3253) was
purchased from ATCC and grown at standard condition
in RPMI-1640 Medium supplemented with 10% FBS and
100 µg/mL gentamicin. An aliquot of 6 mL cell suspension
containing 1 × 106 cells were transferred into 25 cm2 flask
(Greiner Bio-One, Monroe, NC, United States) and cultured at
standard condition for 24–30 h. After time, the cell monolayer
was washed for three times with RPMI for further bacterial
infection.

Over-Expression of
Myosin-Cross-Reactive Antigen Gene
(mcra) in L. casei and LC-CLA
Development
Plasmid pJET and E. coli DH5α were purchased from Thermo
Fisher Scientific (Waltham, MA, United States), pDS132 and
E. coli β2155 were donated by Dr. Fidelma Boyd (Delaware
University, Newark, DE, United States), and pMSP3535 were
purchased from Addgene (Cambridge, MA, United States). LC-
WT and L. rhamnosus GG (ATCC 53103) were harvested from
overnight culture in MRS broth, followed by three times sub-
culture on MRS agar plate at 37◦C for 24 h in the presence of
5% CO2 incubator.

The entire cloning design was summarized in Figure 1.
Briefly, the 1750 bp mcra from L. rhamnosus GG was PCR
amplified and ligated into pJET vector through blunt-end
cloning. Aliquot of 250 µL E. coli DH5α bacterial suspension
in cold 50 mM CaCl2 was mixed with 10 µL ligated product
(pJET-mcra) for 10 min incubation on ice, followed by 50 s
incubation at 42◦C in water bath. After further 2 min incubation
on ice, 250 µL LB broth was added into bacteria-plasmid
mixture for 10 min incubation at room temperature followed
by selection on LB agar with 100 µg/mL ampicillin for
transformation. The E. coli DH5α-expressed mcra was double-
excised from pJET-mcra with BamHI and XbaI and then ligated
into pMSP3535 vector at 16◦C overnight. Following the same
condition, pMSP3535-mcra was further transformed into E. coli
DH5α and mixed with LC-WT at ratios of 1:1, 1:5, and 1:10
(donor cells: recipient cells) for bacterial mating. The L. casei-
pMSP3535 was harvested through consecutive sub-culture and
selection on MRS agars containing 300 µg/mL erythromycin
at 37◦C under micro-aerophilic condition (Tabashsum et al.,
2018).

Removal of Antibiotic-Resistance Marker
and mcra Chromosomal Recombination
The pMSP3535-mcra was isolated using Plasmid Mini Kit
(Qiagen, Germantown, MD, United States). The gene sequence
of mcra linked with transcription promoter Pnis was amplified
by PCR using pMSP3535-mcra as the template. The upstream
homologous arm upp1 (208 bp) and downstream homologous
arm upp2 (211 bp) concatenated with Xba1 and Sac1 linkers
were also PCR amplified using LC-WT genomic DNA as
the template. Ligation of upp1-mcra-upp2 was performed by
PCR programmed for 40 cycles of 94◦C for 30 s, 60◦C
for 30 s, and 72◦C for 60 s. After pJET blunt-end cloning,

pJET-upp1-mcra-upp2 and pDS132 were double-digestion with
Xba1 and Sac1, followed by sticky-end ligation for overnight
at 16◦C. The pDS132-upp1-mcra-upp2 was then transformed
into E. coli β2155 following the same method described
above but with 0.3 mM DAP selection. The transformed E.
coli β2155 was mixed with overnight cultured LC-WT at
ratio of 1:1, 1:5, and 1:10 (donor cells: recipient cells) for
bacterial mating. Aliquot of 1 mL of the mixed bacterial
suspension was spread on MRS agar plate with 0.3 mM
DAP, followed by 5 h incubation at 37◦C under micro-
aerophilic condition. The L. casei-pDS132 was harvested through
sub-culture and selection on MRS agar with 30 µg/mL
chloramphenicol. Individual bacterial colony was consecutively
sub-cultured in fresh MRS broth and selected on MRS agar
containing 100 µg/mL 5-fluorouracil (5-FU) for upp1-mcra-upp2
chromosomal homologous recombination. Finally, the mcra
chromosomal recombinant L. casei mutant was harvested and
named it as LC-CLA.

Co-culturing of Lactobacillus Strains
With ST and EHEC
The survival and growth conditions of either ST or EHEC
in the mixed culture with wild-type L. casei (LC-WT) or
and mutant (LC-CLA) strains were investigated based on our
previously described approach (Peng et al., 2015b). Briefly,
bacterial cells from overnight agar plates were collected in
10 mL PBS using 10 µL sterile disposable loops. Each
concentrated bacterial suspension was adjusted using PBS
and measured by LAMBDA BIO/BIO+ spectrophotometer
(PerkinElmer, Beaconsfield, United Kingdom) for adjusting the
bacterial concentration to approximately 7 log CFU/mL. Aliquots
of 400 µL adjusted bacterial suspension were added to sterilized
test tubes containing 3.2 mL DMEM with 10% FBS and then
incubated at 37◦C for different time points (0, 2, 4, 8, 24, 48,
and 72 h). After incubation, serial dilutions were performed in
PBS, and then plated on agar plates (MRS agar for L. casei,
LB agar for S. Typhimurium and EHEC) in triplicate, followed
by incubation for 18 h at 37◦C for growth. Bacterial CFUs
were counted afterwards and results were expressed in unit of
bacterial log CFU/mL as the average number from triplicate
assays.

Evaluation of Physicochemical
Properties and Biofilm Formation of ST
and EHEC
Both ST and EHEC were cultured at 37◦C for 18 h and the
cell surface hydrophobicity of both pathogens was determined
following method previously described by Peng et al. (2015c).
The interactions between bacteria cell surfaces were determined
by the auto-aggregation assay according to Ahn et al. (2014)
in triplicate using Multiskan microplate reader (Thermo Fisher
Scientific, Waltham, MA, United States), and the enteric bacterial
cell injury induced by Lactobacillus strains was evaluated
according to the overlay method previously described by Ahn
et al. (2014) in triplicate using Trypticase soy (TSA) agar and
XLD- or MacConkey-overlaid TSA agar.
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FIGURE 1 | Over-expression of mcra in LC-WT and chromosomal recombination constructing LC-CLA.

The bacterial biofilm formation was determined according
to Salaheen et al., 2016a) with brief modifications. Both ST
and EHEC were inoculated at approximately 5 × 105 CFU/mL
in 6-well plates (Corning, NY, United States) containing
22 mm × 22 mm glass slides and LB broth at 37◦C without
shaking. At 24, 48, and 72 h point, the glass slides were rinsed
with PBS for five times, and bacterial cells were scrapped from
glass slides followed by serially diluted for plating on LB agar.

Scanning Electron Microscopic Analysis
of Bacterial Cell Morphology
The ST and EHEC bacteria cells were harvested from overnight
cultures and collected through 0.22 µm filter membranes.
The bacteria cells were then fixed by submersing in 0.25%
glutaraldehyde for 1 h (Kihm et al., 1994). The filter membranes
were washed three times in sterile DI water followed by
dehydration through sequential immersing the membranes in
10, 20, 50, 75, 90, and 100% (v/v) aqueous solutions of absolute
ethanol. Filter membranes were then stored under anhydrous
calcium sulfate overnight. To observe the morphology of the cells
under SEM, the bacterial cells were sputter-coated with gold for
Hitachi SU-70 FEG Scanning Electron Microscope (Hitachi Ltd.,
Japan) at an accelerating voltage of 5 kV.

Adhesion and Invasion Assay
The cultured mammalian cell adhesion and invasion assays
were carried out in triplicates following the method described
previously by Peng et al. (2015b) with some modification. We
used MOI = 1:100 of host cell and bacterial CFU for both ST and
EHEC on INT407 cells in triplicate wells ex vivo. The INT407 cells
grown in 24-well plate with 800 µL DMEM were pretreated with
100 µL DMEM (control), L. casei CFCSs, or 2× 108 CFUs L. casei
bacterial cells, separately for 1 h, with each treatment in triplicate.
A 100 µL aliquot of S. Typhimurium or EHEC PBS bacterial
suspension with MOI = 100 (2 × 108 CFUs) was inoculated into

triplicate wells. Afterwards, the infected cells were incubated at
standard condition for another 2 h, and then followed by three
times washing with DMEM. The cell monolayers were lysed with
0.1% Triton X-100 for 15 min, serial diluted, and plated on
agar plates (MRS agar for L. casei, LB agar for S. Typhimurium
and EHEC) to estimate the adhesive bacterial CFU. To measure
bacterial cell invasive activity, DMEM washed cell monolayers
after 2 h bacterial infection was incubated in DMEM containing
10% FBS supplemented with 250 µg/mL gentamicin for 1 h,
then followed by three times DMEM washing, Triton X-100 lysis,
serial dilution, and eventually plating on agar plates mentioned
above.

Simulation of Enteric Bacterial
Inflammation in Human Macrophage
Cells
Enteric bacterial pathogen ST that provoke inflammation in
human gut intestine was cultured on LB agar plate for
18 h and collected in PBS to be adjusted in approximately
1 × 109 CFU/mL. A 100 µL aliquot of bacterial suspension,
containing approximately 1 × 108 CFU was inoculated into
triplicate 25 cm2 flasks containing U937 cell monolayer
(approximately 106 host cells/flask). In the test flasks, 500 µL
overnight (18 h) cell-free cultural supernatants (CFCSs) from L.
casei (LC-WT and LC-CLA) strains in DMEM with 10% FBS were
added during ST infection period. The infected monolayers were
incubated for 24 h at standard condition, followed three times
washing with ice-cold PBS for RNA extraction.

Quantitative RT-PCR for Evaluation of
Gene Expressions
Extraction of RNA from bacterial cells and human macrophage
cell line, the cDNA synthesis, and the qRT-PCR were
performed in triplicate according to the method described
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TABLE 1 | Primers used for RT-qPCR analysis of EHEC and S. Typhimurium.

Bacteria Gene Primer Sequence (5′–3′) Function

gapA F: ACTTCGACAAATATGCTGGC Housekeeping gene

R: CGGGATGATGTTCTGGGAA

eaeA F: CCCGAATTCGGCACAAGCATAAGC Attaching and effacing

R: CCCGAATCCGTCTCGCCAGTATTCG

espA F: GTTTTTCAGGCTGCGATTCT Type III secretion protein

R: AGTTTGGCTTTCGCATTCTT

EHEC espB F: GCCGTTTTTGAGAGCCAGAA Type III secretion protein

R: AAAGAACCTAAGATCCCCA

espD F: AAAAAGCAGCTCGAAGAACA Type III secretion protein

R: CCAATGGCAACAACAGCCCA

ler F: ACTTCCAGCCTTCGTTCAGA Locus of Enterocyte

R: TTCTGGAACGCTTCTTTCGT Effacement regulator

tir F: GCTTGCAGTCCATTGATCCT Translocated intimin receptor

R: GGGCTTCCGTGATATCTGA

50S ribosomal protein L5 F: GTAGTACGATGGCGAAACTGC House keeping gene

R: CTTCTCGACCCGAGGGACTT

hilA F: TATCGCAGTATGCGCCCTTT Transcriptional regulator

R: CAAGAGAGAAGCGGGTTGGT

hilC F: AATGGTCACAGGCTGAGGTG Transcriptional regulator

R: ACATCGTCGCGACTTGTGAA

hilD F: CTCTGTGGGTACCGCCATTT Transcriptional regulator

R: TGCTTTCGGAGCGGTAAACT

invA F: CGCGCTTGATGAGCTTTACC Invasion protein

R: CTCGTAATTCGCCGCCATTG

invC F: GCTGACGCTTATCGCAACTG Type III secretion system ATPase

R: GGCGGTGCGACATCAATAAC

invF F: TCGCCAAACGTCACGTAGAA Transcriptional regulator

R: CATCCCGTGTATAACCCCCG

S. Typhimurium invG F: CGAATGACGCCAGCTGTTC Invasion protein

R: TGCGTCAGGCGTCGTAAA

invH F: GGTGCCCCTCCCTTCCT Invasion lipoprotein

R: TGCGTTGGCCAGTTGCT

orgA F: AGGCAGGGAGCCTTGCTT Oxygen- regulated invasion protein

R: CCCTGATGCATTGCCAAAA

orgB F: ACCATCCCGAAACGCTTTTA Oxygen- regulated invasion protein

R: TTGCCCCTCAGGCTTATCG

prgH F: TGAACGGCTGTGAGTTTCCA Type III secretion protein

R: GCGCATCACTCTGACCTACCA

prgl F: GGTCTATGGAAACGGACATTGTC Type III secretion protein

R: CGCCGAACCAGAAAAAGC

prgK F: GGGTGGAAATAGCGCAGATG Type III secretion lipoprotein

R: TCAGCTCGCGGAGACGATA

sipA F: CGTCTTCGCCTCAGGAGAAT Cell invasion protein

R: TGCCGGGCTCTTTCGTT

(Peng et al., 2017). The PCR reaction mixture containing 10 µL
PerfeCTa SYBR Green Fast Mix (Quanta Biosciences, Beverly,
MA, United States), 2 µL of each 100 nM primer (listed in
Tables 1, 2), 2 µL of cDNA (10 ng), and 4 µL of RNase-free
water was amplified using an Eco Real-Time PCR system with
30 s denaturation at 95◦C, followed by 40 cycles of 95◦C for 5 s,
55◦C for 15 s, and 72◦C for 10 s. All the relative transcription
levels of target genes were estimated by comparative fold

change. The CT values of genes were normalized to the
housekeeping/reference gene (listed in Tables 1, 2), and the
relative expression levels of target genes were compared between
control and treatment. The fold change in terms of expression of
each individual target gene was calculated as 11CT = [CT(target
mRNA)-CT(reference mRNA)]treatment − [CT(target mRNA)-
CT(reference mRNA)]control (Livak and Schmittgen, 2001).
Quantitative RT-PCR was carried out in triplicate.
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TABLE 2 | Primers used for RT-qPCR analysis of U937 cells cytokine genes.

Gene Primer Sequence (5′–3′) Function

18srRNA Forward ATCCCTGAAAAGTTCCAGCA Housekeeping gene

Reverse CCCTCTTGGTGAGGTCAATG

IL-1β Forward GCCATGGACAAGCTGAGGAAG Inflammatory cytokine gene

Reverse GTGCTGATGTACCAGTTGGG

IL-6 Forward GAACTCCTTCTCCACAAGCG Pro-/Anti-inflammatory cytokine gene

Reverse TTTTCTGCCAGTGCCTCTTT

IL-10 Forward AGCAGAGTGAAGACTTTCTTTC Anti-inflammatory cytokine gene

Reverse CATCTCAGACAAGGCTTGG

IL-12 Forward AATGTTCCCATGCCTTCACC Pro-inflammatory cytokine gene

Reverse CAATCTCTTCAGAAGTGCAAGGG

IL-23 Forward GACACATGGATCTAAGAGAAGAG Inflammatory cytokine gene

Reverse AACTGACTGTTGTCCCTGAG

TGF-β Forward CTTGCTGTCCTCCTCTGCAC Anti-inflammatory cytokine gene

Reverse TCACTGGGGTCAGCACAGAC

TNFα Forward CAGAGGGAAGAGTTCCCCAG Inflammatory cytokine gene

Reverse CCTTGGTCTGGTAGGAGACG

CXCL-8 Forward CTGCGCCAACACAGAAATTA Inflammatory chemokine gene

Reverse ATTGCATCTGGCAACCCTAC

Statistical Analysis
All the data were analyzed by the Statistical Analysis System
software. The one-way analysis of variance followed by Tukey’s
test was applied to determine the significant differences of
bacterial counts, physicochemical values, and virulent gene
expression levels among the control and treatments based on a
significant level of 0.05.

RESULTS

Phenotypical Characterization of
LC-CLA
In comparison with LC-WT, LC-CLA maintained their in vivo
growth/survival rate during exponential, stationary and death
phases up to 96 h (Figure 2A) and remarkably (p < 0.05)
improved their host cell adhesion ability onto human epithelial
(INT-407) cells ex vivo (Figure 2B). The INT-407 cell-attached
amount of LC-CLA was found to be significantly higher at 4
and 24 h of incubation comparing with LC-WT. In addition,
the genetically engineered probiotic strain LC-CLA induced
significant (p < 0.05) up-regulation on mcra (linoleate isomerase
gene) mRNA level expression identified by qPCR; with HPLC-
MS/MS analysis, we also detected fold increment in relative total
linoleic acids per 1 mL overnight cultural supernatant as well as
even higher fold boost in relative total linoleic acids per bacterial
cell (Table 3).

Competitive Exclusion of Enteric
Bacterial Pathogens, ST and EHEC
Probiotic Lactobacillus (LC-WT or LC-CLA) strains and enteric
bacterial pathogens (ST or EHEC) were grown in mixed-cultured
condition in vitro to investigate their competitive survival ability
through competition between them in both short (4 and 8 h)

FIGURE 2 | Phenotypic characterization of LC-CLA. The comparative growth
of 96 h (A) and ex vivo adherence on human epithelial cells at 4 and 24 h (B)
were examined in triplicate and compared between LC-WT and LC-CLA. Bars
indicate average ± standard deviation from parallel trials. Letters (‘a’ and ‘b’)
indicate significantly different between LC-WT and LC-CLA on host cell
adherence over three biological repetitions at p < 0.05.

and long (up to 72 h) period of time. The competitive inhibitory
abilities of both LC-WT and LC-CLA against ST or EHEC
were shown in Figure 3. Specifically, LC-CLA rapidly started
to phase out both enteric bacterial pathogens with significantly
(p < 0.01) higher loads of ST and EHEC reduction during the
first 8 h incubation comparing with LC-WT. Overall, LC-CLA
competitively exclude ST at 72 h and EHEC at 48 h.

Metabolites From LC-CLA in Combating
Against Enteric Bacterial Pathogens
Overnight CFCSs from both LC-WT (CFCS1) and LC-CLA
(CFCS2), in terms of initial inoculum of 106 CFU/mL

Frontiers in Microbiology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2663208

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02663 November 1, 2018 Time: 15:27 # 7

Peng et al. Lactobacillus Linoleic Acids Against Pathogens

TABLE 3 | Relative expression level of mcra and relative production rate of linoleic acids in fold-change∗.

Strain Genotype mcra mRNA RTLA2 per RTLA2 per

expression1 mL supernatant bacterial cell

LC-WT Wild type 1.00 1.00 1.00

LC-CLA mcra over-expressed 7.15 ± 1.76 4.48 ± 0.59 21.06 ± 1.33

∗Gene expression level and metabolite production rate is standardized with LC-WT.
1mcra expression fold change was calculated based on 16S rRNA as reference gene.
2Relative Total Linoleic Acids based on HPLC-MS/MS analysis.

FIGURE 3 | Competitive exclusion of enteric bacterial pathogens by either
LC-WT or LC-CLA. Comparative growth of ST (A) and EHEC (B) in
single-culture or mix-culture with LC-WT or LC-CLA over 72 h was evaluated
in triplicate. Bars indicate average ± standard deviation from parallel trials.
Different letters (‘a’ through ‘c’) at single time point are significantly different in
growth of ST or EHEC among control and treatments over three biological
repetitions at p < 0.05.

overnight probiotic culture, were collected for examination the
antimicrobial activities of their secreted byproducts. Comparing
with negative control (only medium), both CFCSs from LC-WT
and LC-CLA strains inhibited the growth of both pathogens,
ST and EHEC, however, CFCS2 from LC-CLA showed more
intensive effects (Figure 4). To be specific, CFCS2 reduced
notably (p < 0.01) higher loads of ST and EHEC in the early
stage at 4 and 8 h compared with CFCS1. The inhibitory activity
of CFCS1 was attenuated after 24 h, whereas metabolites from
LC-CLA exhibited a stable antimicrobial activity after 24 h, which
ruled out all survival ST at 72 h and EHEC at 48 h.

Alterations in Physicochemical and
Morphological Properties of ST and
EHEC
The produced metabolites from both LC-WT and LC-CLA
in CFCSs alter multiple physicochemical properties of both
pathogens, ST and EHEC (Table 4). For example, CFCS1
decreased bacterial surface hydrophobicity of ST and EHEC,
whereas CFCS2 exhibited more profound effectiveness in
significantly lowering hydrophobicity of both pathogens

(Table 4). Following the same trend, metabolites produced
by LC-CLA in CFCS2 significantly reduced bacterial auto-
aggregation activities of both ST and EHEC compared with
metabolites from LC-WT. Similarly, we found that CFCS2 could
intensify the effect of bacterial cell wall disruption of both ST and
EHEC.

The bacterial cell morphology of ST/EHEC treated with
CFCSs collected from LC-WT (CFCS1) or LC-CLA (CFCS2)
was examined by scanning electron microscopy (Figure 5).
Comparable ST and EHEC cells were observed for morphological
changes including elongation, shrinkage, and swelling during
the treatment with CFCS1 (Figures 5A2,A3,B2,B3). Much more
pronounced alterations in the bacterial cell morphology were also
observed when the cells were treated with CFCS2, for example,
enormous outer membrane disruption and immense bacterial
perforation (Figures 5A4,A5,B4,B5).

Effect on Biofilm Formation by ST and
EHEC
The biofilm formation abilities of ST and EHEC in absence or
presence of CFCSs from both LC-WT and LC-CLA are showed
in Figure 6. At 24, 48, and 72 h incubation under the inhibitory
pressure of LC-CLA secreted metabolites in CFCS2, the biofilm
formation of ST was significantly (p < 0.05) suppressed. Whereas
CFCS1 from LC-WT exhibited less inhibitory effects and failed to
decrease the ability of ST to form a biofilm significantly after 72 h
of incubation. The biofilm formation ability of EHEC was also
significantly (p < 0.05) restrained at 24 h treatment with CFCS2
from LC-CLA. At 48 and 72 h, both CFCS1 and CFCS2 exhibited
significant reduction on EHEC biofilm formation.

Disruption on Host Cells-ST/EHEC
Interactions
The host cell-ST or -EHEC interactions were evaluated based on
their adhesion to and invasion into human epithelial (INT-407)
cells (Figure 7). With pre-treated of LC-WT, the cell adhesive
and invasive abilities of ST were significantly (p < 0.05) reduced.
In the same investigation, host cells pretreated with LC-WT also
decreased the adherence abilities of EHEC, but more effective
performance was observed when INT-407 cells were allowed to
pre-colonize with LC-CLA. The adhesive and invasive activities
of ST were suppressed by 99.58 and 99.34% separately, by LC-
CLA. Similarly, the pre-colonized LC-CLA also reduced EHEC
host cell adhesion capabilities by 99.10.

Correspondingly, the pre-treatments of ST and EHEC with
CFCSs collected from both LC-WT and LC-CLA displayed
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FIGURE 4 | Antimicrobial activities of LC-WT and LC-CLA metabolites on EHEC and ST growth and survival abilities. Inhibitory effects of CFCSs from LC-WT
(CFCS1) or LC-CLA (CFCS2) were detected on growth of ST (A) and EHEC (B) over 72 h from triplicate biological experiments. Bars indicate average ± standard
deviation from parallel trials. Different letters (‘a’ through ‘c’) at single time point are significantly different in growth of ST or EHEC among control and treatments over
three biological repetitions at p < 0.05.

TABLE 4 | Physicochemical properties of ST and EHEC with CFCS treatments.

Treatment Hydrophobicity (%) Auto-aggregation (%) Injured bacterial cells (%)

ST EHEC ST EHEC ST EHEC

Control 18.01 ± 0.32a∗ 14.56 ± 0.83a 14.72 ± 0.41a 6.79 ± 0.91a 19.80 ± 1.79c 16.98 ± 4.18c

LC-WT 10.85 ± 0.35b 11.39 ± 0.77b 8.65 ± 0.32b 5.24 ± 0.29a 30.92 ± 5.55b 38.28 ± 2.74b

LC-CLA 6.32 ± 0.43c 4.35 ± 0.65c 5.11 ± 0.41c 3.02 ± 0.55b 42.84 ± 2.64a 50.64 ± 4.15a

∗Means with different letters (a–c) in individual column are significantly different at p < 0.05 between control and treatments.

significant effects on their interactions/infections with INT-407
cells. Specifically, metabolites in CFCS collected from LC-WT,
CFCS1 restricted the adherence activities of both ST and EHEC
as well as invasive activity of ST on INT-407 cells. Whereas,
CFCS2, collected from LC-CLA, altered the interaction between
INT-407 cells and ST/EHEC intensively (p < 0.01) by decreasing
99.66% ST and 98.53 EHEC adhesion, respectively. In the same
experiment, CFCS2 reduced the invasion ability of ST by 99.15%
into INT-407 cells, respectively.

Down-Regulation on Expression of
Bacterial Virulence Genes by CFCSs
The relative expression levels of multiple ST/EHEC virulence
genes were found to be significantly (p < 0.05) down-regulated
with CFCSs from both LC-WT and LC-CLA based on qPCR
analysis, among which, the suppressive effects from CFCS2
were detected to be more intensive than CFCS1 (Figure 8).
For ST, CFCS2 collected from LC-CLA notably (p < 0.01)

down-regulated the expression of transcriptional regulator genes
hilA, hilC, hilD, and invF by various fold. Similarly, the
expression levels of effector genes invA, invG, invH, and
prgK were also significantly (p < 0.01) suppressed by CFCS2.
Whereas, insignificant fold changes were detected in relative
expression levels of invC, prgH, prgI, and sipA when the
cells were treated with either CFCS1 or CFCS2. For EHEC,
eight virulence genes were investigated in this study, among
which only effector gene tir kept conservative under the
pressure of both CFCSs treatment. CFCS2 effectively (p < 0.01)
down-regulated the expression levels of regulator gene ler as
well as other effector genes including eaeA, espA, espB, and
espD.

Anti-inflammatory Effects of LC-CLA
Metabolites secreted by both Lactobacillus (LC-WT and LC-
CLA) strains managed to induce anti-inflammatory effects
on ST-induced human macrophage (U937) cells by down-
regulating pro-inflammatory cytokine genes and up-regulating
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FIGURE 5 | Scanning electron microscopy for bacterial cell morphology. Comparable ST (A) and EHEC (B) morphology was observed and compared between
control (A1,B1), CFCS1 treatment (A2,A3,B2,B3), and CFCS2 treatment (A4,A5,B4,B5).

FIGURE 6 | Reduction of EHEC and ST biofilm formation in the presence of either LC-WT or LC-CLA or CFCSs collected from LC-WT and LC-CLA. Comparative
biofilm formation of ST (A) and EHEC (B) under pressure of CFCS from either LC-WT (CFCS1) or LC-CLA (CFCS2) over 72 h was investigated in triplicate. Bars
indicate average ± standard deviation from parallel trials. Asterisks (∗) at single time point are significantly different in biofilm formation of ST or EHEC among control
and treatments over three biological repetitions at p < 0.05.

anti-inflammatory cytokine genes (Figure 9). In detail, CFCS1
collected from LC-WT suppressed the expression levels of IL-
1β, CXCL-8 (IL-8), IL-12, and TNF-α genes by 3.3-, 3.0-, 3.0-,
and 4.8-fold, respectively, and at the same experiment, it raised
the expression levels of IL-10 and TGF-β genes by 4.4- and 2.5-
fold, respectively. Whereas, negligible differences in fold change
were observed on IL-6 and IL-23 genes expression. On the
other side, CFCS2 containing metabolites released from LC-CLA
impressively amplified the anti-inflammatory activities, by which
relative expression levels of pro-inflammatory cytokine IL-1β, IL-
8, IL-12, IL-23, and TNF-α genes were all significantly (p < 0.01)
down-regulated by 7.7-, 5.2-, 6.0-, 1.6-, and 6.7-fold, respectively;

whereas relative expression levels of anti-inflammatory cytokine
IL-10 and TGF-β genes were significantly (p < 0.01) up-regulated
by 8.0- and 5.9-fold.

DISCUSSION

Probiotics, prebiotics, or a combination of the two, referred to
as synbiotics, have emerged as a promising alternative treatment
for enteric bacterial infections (Vyas and Ranganathan, 2012;
Hardy et al., 2013; Pandey et al., 2015; Peng et al., 2015c; Salaheen
et al., 2015). To improve and maintain the host’s gut health,
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FIGURE 7 | Effect of LC-CLA in interfering with enteric bacterial pathogen-cell interactions. Human epithelial cell adhesive and invasive activities of ST (A) and EHEC
(B) with pre-treatment of either L. casei or CFCSs from L. casei strains were examined in triplicate. A constant MOI = 100 was applied in each sub-figure. Bars
indicate average ± standard deviation from parallel trials. Different letters ‘A’–‘C’ and ‘a’–‘c’ within each bacterial pathogen are significantly different among control
and treatments for cell bacterial adhesion and invasion separately over three biological repetitions at p < 0.05.

the beneficial effects of probiotics depend largely upon the total
quantity and type of functional metabolites they can produce. In
our recent studies, we found several prebiotic-like components in
cocoa and peanuts facilitated L. casei in producing more linoleic
acids and outcompeting major foodborne bacterial pathogens,
including ST and EHEC (Salaheen et al., 2014; Peng et al.,
2015a,b). Based on these findings, we have overexpressed the
mcra encoding Linoleate isomerase in LC-WT to verify the ability
of the genetically modified strain, LC-CLA, in combating enteric
bacterial infection ex vivo based on the cell culture model.

As discussed in previous studies, the myosin-cross-reactive
antigens, which are present across a wide range of taxa, including
Lactobacillus, not only take responsibility in linoleic acid
construction and isomerization (Kishino et al., 2011; O’connell
et al., 2013; Yang et al., 2014), but also have been revealed to
contribute in bacterial stress-tolerance, blood-survival, and host
cell interactions (O’Flaherty and Klaenhammer, 2010; Volkov
et al., 2010; Chen et al., 2016). In this study, accordingly, in
comparison to LC-WT, the mcra overexpressed LC-CLA was
found with prominently higher production of total linoleic acids,
fitter growth patterns, though not statistically significant, and
remarkably improved epithelial adhesion ex vivo especially on
INT-407 cells.

Though they assist in the development of healthy gut
microbiota and the maintenance of cardiovascular health,
prebiotic or prebiotic-like components, contain functional
foods such as peanuts and cocoa. Therefore these symbiotic
combinations are not entirely ideal for antimicrobial use in
long term application or in specific populations due the cost

of these foods, their potential to induce allergic reactions, the
ability of beneficial and pathogenic microbes to use them as
an uncontrolled source of nutrients, and their limited bio-
availability (Hasler, 2002; Badrie et al., 2015; Feeney et al., 2016).
Therefore, the genetically engineered probiotic in our research,
being self-sufficient, stands out in supply of increased bio-active
byproducts devoid of any prebiotic.

As previously reported by Peng et al. (2015c), Lactobacillus, by
releasing antimicrobial components like organic acids, hydrogen
peroxide, and poly-peptides, outcompete pathogenic bacteria in
a time-dependent manner. In this study, LC-CLA exhibited even
stronger effects against ST and EHEC than by LC-WT in mix-
culture competitive exclusion, and the CFCS2 collected from LC-
CLA also showed an extensive growth inhibition effect on both
pathogens, through inducing bacterial cell membrane damage.
The outcomes are also supported by the previous findings
on anti-pathogenic activities in CLA (Hontecillas et al., 2002;
Bhattacharya et al., 2006; Meraz-Torres and Hernandez-Sanchez,
2012). Furthermore, we also surprisingly observed that due to
over-expression of mcra in LC, LC-CLA induced significant
alterations on several physiochemical properties of ST/EHEC,
including surface hydrophobicity, auto-aggregation, bacterial cell
morphology, and biofilm formation. The over-produced LA in
LC might have induced these changes since they were suggested
to interact with cytoplasmic membrane of bacterial pathogens
and further disrupt phospholipid or extracellular polysaccharides
(Peng and Biswas, 2017), both of which are crucial factors for
bacterial physicochemical properties as well as biofilm formation
(Vu et al., 2009; Renner and Weibel, 2011).
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FIGURE 8 | Role of LC-CLA in suppression of EHEC and ST virulence genes.
The relative expression of T3SS-related virulence genes from ST (A) and
EHEC (B) under pressure of CFCSs from L. casei strains was investigated in
triplicate. The relative transcription levels are in the form of comparative fold
change with control being 1.0. Bars indicate average ± standard deviation
from parallel trials. Asterisks ‘∗’ and ‘∗∗’ indicate the significant difference in
each individual virulence gene expression among control and treatments over
three biological repetitions at p < 0.05 and p < 0.01 separately.

Specific virulence genes of ST/EHEC involved in Type-3
secretion (T3SS) were significantly down-regulated in the
presence of the secreted metabolites in CFCS2 collected from LC-
CLA. These genes include invasion regulator genes and effector
genes, especially eaeA, that functions in EHEC A/E and invH
encoding ST invasion lipoprotein. In fact, several research groups
have also previously reported the dose-dependent activities of
poly-unsaturated fatty acids in regulation of Salmonella
and E. coli (Cardenal-Muñoz and Ramos-Morales, 2011;

FIGURE 9 | Anti-inflammatory effects of LC-CLA on human macrophage
cells. The relative expression of ST-induced macrophage (anti-)inflammatory
cytokine genes with treatment of CFCSs from L. casei strains was investigated
in triplicate. The relative transcription levels are in the form of comparative fold
change with control being 1.0. Bars indicate average ± standard deviation
from parallel trials. Asterisks ‘∗’ and ‘∗∗’ indicate the significant difference in
each individual cytokine gene expression among control and treatments over
three biological repetitions at p < 0.05 and p < 0.01 separately.

Nakamura et al., 2012); however, the conclusion remains to be
ambiguous and bears little correlation with bacterial infections
(Peng and Biswas, 2017). The repressed virulence genes and the
disrupted bacterial physicochemical properties of ST and EHEC
by LC-CLA served as identical indicators for the attachment
of pathogens on host cells. It further supported the ex vivo
reduction of ST/EHEC-host cell interactions excluding the
negligible toxic effect of gentamycin on bacteria (Peng et al.,
2015c). Through competitively occupying INT-407 cell surface
receptor-like molecules (Bernet et al., 1994; Matsuo et al., 2012;
Peng et al., 2015c) and enhancing the regulation of these two
bacterial pathogens via the increased production of linoleic
acids (Belury, 2002; Hontecillas et al., 2002; Yang et al., 2017),
LC-CLA stands out with strong inhibitory actions against enteric
bacterial pathogens. Though 1 h probiotic pre-occupation
and 2 h pathogenic infection was investigated in this study,
further research targeting up to 72 h ST/EHEC infections could
be favorable in revealing the long-term preventive effects of
LC-CLA.

Finally, extensive anti-inflammatory effects of LC-CLA were
presented ex vivo on human macrophage cells. In accordance
with previous studies on linoleic acids (Albers et al., 2003;
Akahoshi et al., 2004; Tricon et al., 2004), we also detected a
reduction in levels of pro-inflammatory cytokines/chemokines
including TNF-α, IL-1β, IL-6, CXCL-8, and IL-12 in this study.
Moreover, we identified the up-regulation of anti-inflammatory
cytokine IL-10 and TGF-β genes as well, the two cytokines
of which were believed to induce inhibition on Th cells
activation (Gorelik and Flavell, 2002; Gorelik et al., 2002;
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Hsieh et al., 2012). The activated macrophage cells bearing
bacterial pathogen challenges normally produce and release IL-12
for activation of Th1 cells and further induces INF-γ, TNF-
α, and IL-12 production (Romagnani, 1999; Dong and Flavell,
2001; Bassaganya-Riera et al., 2003; Kidd, 2003), which explained
the significantly elevated expressions of TNF-α and IL-12 genes
with ST infections. LC-CLA in secreting auxiliary amounts of
CLA, ameliorated the ST infection-induced gut inflammatory
responses by suppressing Th1 cells through reducing IL-12 and
pathogenic Th17 cells through reducing IL-1β (Acosta-Rodriguez
et al., 2007; Monteleone et al., 2009; Cosmi et al., 2014). Most
importantly, the anti-inflammatory activities of linoleic acids
have not been documented to impair any gut immunity against
enteric bacterial pathogen infections (Turnock et al., 2001; Peng
and Biswas, 2017).

CONCLUSION

Findings from this study herald a new era, wherein non-
traditional preventive strategies through using functional
probiotics could become applicable in defense against enteric
bacterial pathogens specifically Salmonella and pathogenic E. coli,
regardless of altering the normal gut microbiota. LC-CLA with
mcra gene over-expression managed to adhere efficiently on
human epithelial cells and secret larger amounts of linoleic acids.
By this pathway for combating ST and EHEC infections, the
effective probiotic strain competitively excluded their growth
in vitro, altered their physicochemical properties, as well as
biofilm formation abilities, reduced their interactions to host
cells ex vivo, and attenuated the host cell inflammatory process
induced by enteric bacterial pathogens. The development and

implementation of such novel, cost-effective, and simple-to-use
genetically engineered probiotics, independent of prebiotics or
prebiotic-like functional food ingredients, is promising to open
a new avenue in prevention and treatment of Salmonella and
pathogenic E. coli provoked GI infections and in improving gut
health where antibiotic therapy could be limited, and helpful in
avoiding negative consequences of antibiotic therapy.
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This study represents the first systematic attempt to evaluate antibiotic-resistant bacteria

(ARB) occurrence in treated greywater and the potential spread of these bacteria from

the greywater to greywater-irrigated soil. Treated greywater from three recirculating

vertical flow constructed wetlands, each located in a household in the central Negev

Desert, Israel, was surveyed. The presence of antibiotic-resistant bacteria in raw and

treated greywater was investigated with culture and molecular methods, as well as

their presence in the corresponding treated-greywater-irrigated soils. Additionally, the

effectiveness of chlorination to prevent the spread of ARB was tested. The total count of

tetracycline-resistant bacteria significantly increased in the treated greywater, likely due

to their concentration on the filter matrix of the treatment systems. Twenty-four strains of

tetracycline-resistant bacteria were isolated and identified at the genus level by 16Sr

RNA gene sequencing. All the tetracycline-resistant bacteria showed high resistance

traits, and some of them presented multiple antibiotic resistances. Six tetracycline

resistance genes (coding for efflux and ribosomal resistance mechanisms) and five

β-lactamase genes were detected. In 14 of the isolated strains, the gene tet39, which is

phylogenetically related to both environmental and clinical strains, was identified. All the

tet39 resistant bacteria were positive to at least one of the β-lactamase genes tested.

Chlorination was found to be an efficient method to reduce ARB in treated greywater.

We concluded that disinfection of treated greywater may reduce the risks not only from

the potential presence of pathogens but also from the presence of ARB and antibiotic

resistance genes.

Keywords: greywater, antibiotic resistance, tetracycline, irrigation, recirculating vertical flow constructed wetland

INTRODUCTION

The modern lifestyle requires a large quantity of potable water and generates large amounts of
wastewater (Eriksson et al., 2002; Schacht et al., 2016). This, in combination with dwindling water
resources worldwide, has led to increasing interest in wastewater reuse in many parts of the world,
including both industrialized and developing countries (Eriksson et al., 2002).

Onemethod of conserving water, on the local scale, is by recycling greywater (GW) for irrigation
(Gross et al., 2007). Greywater is defined as domestic wastewater that excludes wastewater from
toilets and typically includes water from baths, showers, hand basins, and washing machines
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(Jefferson et al., 2000; Gross et al., 2007; Ghaitidak and Yadav,
2015). Greywater constitutes 50–80% of the total household
wastewater, and its recycling can reduce potable water use by
up to 50% (Gross et al., 2007). In recent years, there has been
an increase in the use of GW for various purposes such as toilet
flushing, landscaping, and garden irrigation (Gross et al., 2015).

It has been well-established that raw GW is contaminated
with pathogens (although less than “full” domestic wastewater)
and other chemical contaminants and thus should be treated
before reuse (James et al., 2016). Potential health risks associated
with the spread of pathogenic organisms through the use of
treated GW are critical issues (Benami et al., 2016). In fact, a
number of pathogens are occasionally found in raw GW (RGW),
including fecal coliforms, fecal enterococci, fecal streptococci,
Klebsiella pneumoniae, and Pseudomonas aeruginosa, among
others (Benami et al., 2016). Interestingly contradicting results
regarding increasing levels of fecal coliforms in soils following
long term greywater irrigation were reported (Casanova et al.,
2001; Benami et al., 2016). While Casanova reported on
significant increase in fecal coliforms, Benami et al. (2013)
reported no such differences.

Another source of recent concern is the spread of antibiotic-
resistant bacteria from GW, as well as the evolution and
propagation of antibiotic-resistant microorganisms (Rizzo et al.,
2013; Berendonk et al., 2015). The intensive use of antibiotics
for human medical, veterinary, and agricultural purposes results
in their continuous release into the environment (Rizzo et al.,
2013), with the primary concern of the development of antibiotic
resistance genes (ARGs) and antibiotic-resistant bacteria (ARB),
which reduce the therapeutic potential against human and animal
pathogens (Kemper, 2008; Zhang X. X. et al., 2009).

The presence of ARB and ARGs, even at very low levels in
the household garden, may represent a high risk to human health
through the spread of antibiotic resistance, especially if humans
have high exposure to places where ARB are present (e.g., food
crops cultivated in GW-irrigated fields). ARGs may persist in
the environment, and even worse, they can be spread to other
bacteria including human commensals or pathogens of clinical
relevance, through the horizontal gene transfer (HGT) of mobile
genetic elements (Christou et al., 2017).

The dissemination of ARB and ARGs is an alarming
problem because it has been demonstrated that intrinsic
antibiotic resistance might have been selected in the course of
bacterial evolution, even without antibiotic selective pressure, for
covering functions other than antibiotic resistance (Alonso et al.,
2001). For example, it was shown that non-antibiotic biocidal
compounds such as triclosan in greywater increase the prevalence
of ARB in the soil microcosm (Harrow et al., 2011).

Nevertheless, recent studies demonstrated that irrigation with
treated municipal wastewater does not seem to impact antibiotic
resistance levels in the soil microbiome (Gatica and Cytryn,
2013). Thus, our initial hypothesis was that greywater doesn’t
harbor ARB and that treated GWwill not increase the abundance
of ARB in TGW irrigated soil. However, there is still a lack of
evidence about the potential efficacy of actual GW treatment
before reuse on ARB abundance and the potential contribution
of GW irrigation to the spread of ARB. Understanding the

dynamics of ARB and ARGs in the urban water cycle is an
increasingly important goal as antibiotic resistance is recognized
as one of the most significant human health challenges of the
Twenty-first century (WHO, 2012; Voolaid et al., 2018).

Therefore, the objectives of this work were to investigate the
prevalence of ARB and ARGs in raw and biologically treated
GW, as well as their presence in the corresponding treated-GW-
irrigated soils. We also tested the effect of chlorination on the
survival of ARB. Specifically, we focused on tetracycline-resistant
bacteria because tetracyclines were the first primary group to
which the term “broad spectrum”was applied. For their spectrum
of activity, their relative safety, and their low cost, tetracyclines
have been used widely across the globe for clinical and non-
clinical uses and, are the fifth most consumed antibiotics in
the world (Van Boeckel et al., 2014). Furthermore, tetracycline
resistance bacteria are widespread in treated wastewater from
Israel leading us to believe that they present also in greywater
(Gatica and Cytryn, 2013).

MATERIALS AND METHODS

Location and Sampling
Raw and treated GW from three different households in the
central Negev Desert, Israel (30◦51′05′′ N 34◦47′00′′ E) were
monitored. GW treatment was done by a recirculating vertical
flow constructed wetland (RVFCW) as described by Gross et al.
(2007) and the system layout and operation parameters are
presented in Figure S1. The three systems were selected since
they have been working now for over 7 years and the treated
greywater TGW is used continuously for irrigation at this time in
parallel to freshwater irrigated controls. All households contain
kids of different ages. TGW samples were collected routinely and
analyzed for physicochemical parameters by standard methods
(Table S1) as well as ARB and ARGs (as described below). From
each household, 100mL of water (raw and treated) were taken
and placed in two sterile 50-mL falcon plastic tubes. Ten tuff
gravel pieces with an average weight of 8 g were taken from
the upper surface layer of the RVFCW bed for ARB and ARG
biofilm analyses. Similarly, ARB and ARGs were monitored
in freshwater- and treated-GW-irrigated soils. Duplicate soil
samples from each location (15 g of soil at 5 cm depth) were
collected twice, in January and March 2017. All samples were
immediately transported to the laboratory and analyzed within
a few hours.

Isolation and Count of
Tetracycline-Resistant Bacteria From
Water, Filter Bed, and Soil
A modified PTYG broth (peptone, tryptone, yeast extract,
glucose) was used at 10% of the original strength and without
sodium thioglycollate (Atlas, 2010). The PTYG media were
solidified by using 15 g L−1 of bacteriological agar (Difco,
Franklin Lakes, NJ, USA). For bacterial extraction, 3 g of soil was
suspended in 10mL of the sterile PTYG broth and then shaken
for 5min on an orbital shaker at 200 RPM at 25◦C. The solids
settled for 5min, and 100 µL of the supernatant was used to
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prepare the dilutions. The dry weight of the soil and the tuff
gravel was obtained after drying for 24 h at 65◦C. The supernatant
from this slurry was used for dilutions, counting, and microbial
isolation.

For the isolation of tetracycline-resistant bacteria, 0.1mL
of the serial dilutions of the different samples [raw greywater
(RGW), biofilm (BF), treated greywater (TGW), greywater-
irrigated soil (TS) and freshwater-irrigated soil (US)] was spread
in duplicate with a sterile disposable Drigalski spreader on
the agar surface of two different types of plates: the control
containing only the medium PTYG and the second containing
PTYG + tetracycline (20mg L−1 Sigma Park Rabin, Rehovot,
Israel). The CLSI guidelines (2014) were used as a benchmark
for isolating tetracycline-resistant bacteria. Accordingly, isolates
with MIC values of Tetracycline at≥ 16µg mL−1 are regarded as
resistant, and thus we applied a concentration of 20 µg mL−1 in
our isolation plates.

For both the control and the treated samples of water, soil, and
biofilm, suitably diluted samples were inoculated in the respective
plates and were incubated at 25◦C for 48 h and at 37◦C for
24 h. After the incubation period, the colonies were counted.
The percentage of tetracycline-resistant bacteria was obtained
from the ratio between the colony count on the plates containing
tetracycline and the colony count on the control plates.

From the isolation plate containing tetracycline, colonies
with distinct morphologies were taken with a sterile loop and
streaked on a fresh plate of PTYG+ tetracycline (20mg L−1) and
cycloheximide (20mg L−1 Sigma Park Rabin, Rehovot, Israel).
After an incubation period of 48 h for the bacteria incubated at
25◦C and 24 h for the bacteria incubated at 37 ◦C, all strains were
purified by streaking them twice on a fresh sterile plate of PTYG
+ antibiotic. The isolates were stored at−80◦C in glycerol (25%),
PTYG, and tetracycline (20mg L−1).

Tap Water Analysis
To confirm that the tetracycline-resistant bacteria did not
originate from the tap water, 0.1-mL samples of tap water,
collected from the three different households, were spread on the
surface of the agar plate with or without tetracycline (20mg L−1).

Identification of Tetracycline-Resistant
Bacteria
The isolated tetracycline-resistant bacteria (n = 24) were
identified at the genus level by 16S rRNA gene sequencing by Hy
Laboratories Ltd. (Rehovot, Israel). Following DNA isolation, the
first∼800 bp region of the 16S rRNA gene was amplified by PCR,
and the resulting amplicon was sequenced using an ABI3730xl
genetic analyzer and BigDye V1.1 chemistry, according to
the manufacturer’s instructions. The obtained sequence was
analyzed using sequencing analysis software (Applied Biosystems
v5.4) and compared with archived NCBI sequences for gene
identification. Sequences of 16S rRNA genes were deposited
in Genbank with accession numbers from MH090940 to
MH090963. Nucleotide sequences were aligned and compared,
and were then used to infer a phylogenetic tree withMEGA7.0.14
(Kumar et al., 2016).

The Growth of Tetracycline-Resistant
Bacteria in the Presence of Chlorine
To evaluate the possible effect of chlorine on the viability of
tetracycline-resistant strains, the growth of Serratia spp. strains,
an opportunistic pathogen, isolated from SYS3, was examined
in the absence (control group) and the presence of 2mg L−1 of
free chlorine as NaClO. The initial culture was about 1 × 106

CFUmL−1 that was incubated in treated greywater at either 25◦C
or 37 ◦C. The suspension sampled was diluted hourly, and then
10 µL was spotted on the plate. The colonies in the spots were
counted after 24 h of incubation under a magnifying glass.

Multiple Resistances
The isolated tetracycline-resistant bacteria were also evaluated
for possible multiple resistances to three different antibiotics
(all from Sigma): amoxicillin (β-lactams), ciprofloxacin
(fluoroquinolones), and kanamycin (aminoglycosides). The
bacteria were streaked on PTYG agar plates containing 20mg
L−1 of each one of the three antibiotics. The plate was incubated
at 25◦C (for the bacteria isolated at 25◦C) and 37◦C (for the
bacteria isolated at 37 ◦C).

Minimum Inhibitory Concentration (MIC)
For all the isolated tetracycline-resistant bacteria, the MIC of
tetracycline was tested based on the broth microdilution protocol
(Wiegand et al., 2008). In addition, the isolates that were
shown to be also able to grow in the presence of 20mg L−1

of amoxicillin, ciprofloxacin and kanamycin were tested for
the MICs of these three antibiotics. Filtered (0.22µm) stock
solutions of antibiotics (0.5 mg/ml) were dissolved in distilled
water. Strains from glycerol stocks were inoculated in PTYG and
incubated overnight. After 12 h, the optical density (OD) of the
samples was measured, and the bacterial cultures were diluted to
an OD of 0.1 (corresponding to about 5.7× 107 CFUmL−1), and
then 50 µL was used for MIC determination.

The tetracycline MIC was tested at concentrations ranging
from 100 to 350 µg mL−1 for the bacteria isolated at 37◦C and
from 100 to 500 µg mL−1 ml for the bacteria isolated at 25 ◦C.
The other three antibiotics were tested at concentrations ranging
from 50 to 300 µg mL−1. For the experiment, multiple sterile 48-
well plates (Costar, Corning, NY, USA) were used. In each plate,
the wells of the first column were used as a negative control and
contained only 500 µl of the PTYG medium; the wells of the
second column were used as a positive control and contained
450 µL of PTYG and 50 µL of the tested strain; the remaining
wells were used as a test group and contained 450 µL of PTYG
to which was added six different antibiotic concentrations. The
test was performed in duplicate. The OD of 600 nm at time zero
and after 12 h was measured with a multi-plate reader (Infinite R©

200 PRO, TecanMännedorf, Switzerland). The % inhibition of all
samples was calculated, using the following formula:

% inhibition =

OD positive control− OD given concentration

OD positive control− OD negative cobtrol
× 100

To determine the MIC value (µg mL−1), the following criterion
was used: between wells with no bacterial growth, the one with
the lowest antibiotic concentration indicates the MIC value. The
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results were reported in the following way: the values preceded by
the sign≤ indicate that the microorganism growth was inhibited
by the lowest concentration of the antibiotic used for the test,
while values preceded by the sign≥ indicate that growth was not
inhibited by the higher concentrations of the antibiotic tested.

DNA and Plasmid Extraction
Nucleic acid extraction from an overnight culture of each
strain in PTYG plus tetracycline (20mg L−1) was performed
using a GenElute Bacterial Genomic DNA kit (Sigma) following
the manufacturer’s protocol. The concentration and quality
of the DNA were determined by spectrophotometric analysis
and agarose gel electrophoresis. For the spectrophotometric
analysis, the NanoDrop R© ND-1000 (NanoDrop Technologies,
Wilmington, DE, USA) was used. Electrophoresis visualization
of DNA was performed on 0.8% of agarose stained with Gel Red
(Biotium, Fremont, CA, USA).

Positive controls of β-lactamase genes were cloned in different
plasmids. The blaOXA2 and 10 were synthesized and cloned
by Syntezza Bioscience Ltd. (Jerusalem, Israel) on a vector
pUC57 (Rocha et al., 2018) provided by Dr. Eddie Cytryn
(The Institute of Soil, Water, and Environmental Science,
Volcani Center, Israel); the CTX- M32 and blaTEM genes were
cloned on a pNORM kindly provided by Christophe Merlin
(the University of Lorraine, Laboratory of Physical Chemistry
and Microbiology for the Environment, Nancy, France);
the blaSHV from the amoxicillin-resistant K. pneumoniae
strain G-A-TGW (MG982455.1) was cloned in a pJET
vector.

PCR Analyses
For the presence of β-lactamases, five genes were evaluated,
including blaTEM, blaCTXM-32, and blaSHV that belong to
the class A of β -lactamase, and blaOXA-2 and blaOXA-10 that
belong to the class D of β-lactamase. For tetracycline, six genes
were evaluated: tet39, tetA, and tetB (efflux), and tetM, tetQ, and
tetW (ribosomal).The primers and sizes of the PCR products
are presented in Table 1. The PCR conditions appear in the
Table S2.

All the positive tet39 PCR products were purified and
sequenced by Macrogen (Amsterdam, the Netherlands).
Sequences of tet39 were deposited in Genbank with the accession
numbers MH106412 to MH106425. Nucleotide sequences
were aligned and compared, and then were used to infer a
phylogenetic tree with MEGA7.0.14 (Kumar et al., 2016).

Statistical Analysis
The result of the bacterial count was plotted in histograms and
box plots demonstrating means and standard deviation. The
differences in the total bacterial count (TC) and the tetracycline-
resistant bacterial count (TRBC) were compared by an analysis of
variance (ANOVA) with p< 0.05 for significance, using Past 3.19
Software (Hammer et al., 2001).

RESULTS

Tetracycline-Resistant Bacteria
Quantification and Isolation
Tetracycline-resistant bacteria were not isolated in tap water in
any of the households. This study showed that the two isolation
temperatures did not cause a significant difference (p > 0.05)
in the total bacterial count in the different sampling locations
(water, biofilm, and soil), but they did play a significant role
(p < 0.05) in the tetracycline-resistant bacterial count (TRBC).
The total bacterial count and the TRBC in all three examined
systems in all sampling locations are presented in Figure 1. The
total bacterial count in the RGW level of SYS1 was about an
order of magnitude higher than in the other systems at both
incubation temperatures. By contrast, the TRBC was lower and
no significant differences (p > 0.05) were detected at the 25◦C
isolation temperature for the three households, while only for
the SYS3 system was a detectable level of tetracycline-resistant
bacteria found at 37◦C.

In the soil irrigated with freshwater and with treated
greywater, the total microbial counts at 25◦C and 37◦Cwere 5 Log
CFU g−1 (Figure 2). Detectable levels of tetracycline-resistant
bacteria were found only in the SYS2 (at 25◦C) and SYS3 (at both
incubation temperatures) systems.

The RVFCW systems were characterized by lower levels
of total bacteria on the filter bed biofilm (average 8.50 ×

104 CFU/g−1) and while for SYS2, no tetracycline-resistant
bacteria were detected, the SYS1 and SYS3 biofilm communities
were characterized by resident tetracycline-resistant populations
of between 2 and 4 Log CFU g−1. TGW still retained
a significant level of tetracycline-resistant bacteria, since in
all systems, about 1.12 × 104 CFU mL−1 was present.
Strongly significant differences (p < 0.01) were observed
in the TRBC in TGW between the three systems, and in
the SYS3 system, the highest level of tetracycline-resistant
bacteria was found at 25◦C (Figure 3A). Only in the SYS3
system were tetracycline-resistant bacteria isolated at both
temperatures in TGW. In particular, it is possible to observe
an increase in tetracycline-resistant bacteria at 25◦C in
treated greywater compared to raw greywater and biofilms
(Figure 3B).

Identification of Tetracycline-Resistant
Bacteria
Twenty-four species of tetracycline-resistant bacteria were
identified at the genus level by 16S rDNA sequencing by Hy
Laboratories Ltd. (Table 2). Even if the 16S rRNA gene was not
sufficient to precisely identify a bacterial strain at the species
level, we reported, in the results and the table, references to the
relative species sequences that are closest to our strain. Only four
of the tetracycline-resistant bacteria isolated were Gram-positive
(17%), while the others were all Gram-negative (Figure S2). The
isolated and characterized bacterial strains mainly belonged to
the genera of Serratia (29%) and Acinetobacter (25%), while
62.2% of the isolated tetracycline-resistant bacteria belong to the
class of Gamma-Proteobacteria.
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TABLE 1 | PCR primers that were used in the work for screening of isolated strains.

Target gene Primer name Sequence (5′-3′) Amplicon size (bp) References

blaSHV bla-SHV- F CGCTTTCCCATGATGAGCACCTTT 110 bp Xi et al., 2009

bla-SHV-R TCCTGCTGGCGATAGTGGATCTTT

blaTEM qblaTEM-F TTCCTGTTTTTGCTCACCCAG 113 bp Muyzer et al., 1993

qblaTEM-R CTCAAGGATCTTACCGCTGTTG

blaCTX-M32 CTXM-F CTATGGCACCACCAACGATA 156 bp Bibbal et al., 2007

CTXM-R ACGGCTTTCTGCCTTAGGTT

blaOXA-2 OXA-2 F AAGAAACGCTACTCGCCTGC 478 bp Bert et al., 2002

OXA-2 R CCACTCAACCCATCCTACCC

blaOXA-10 OXA-10 F TCAACAAATCGCCAGAGAAG 276 bp Bert et al., 2002

OXA-10 R TCCCACACCAGAAAAACCA

tetM TetM-F ACAGAAAGCTTATTATATAAC 171 bp Aminov and Mackie, 2001

TetM-R TGGCGTGTCTATGATGTTCAC

tetQ TetQ-F AGAATCTGCTGTTTGCCAGTG 169 bp Aminov and Mackie, 2001

TetQ-R CGGAGTGTCAATGATATTGCA

tetW TetW-F GAGAGCCTGCTATATGCCAGC 168 bp Aminov and Mackie, 2001

TetW-R GGGCGTATCCACAATGTTAAC

tetA Tet A-F GCGCGATCTGGTTCACTCG 164 bp Aminov et al., 2002

Tet A-R AGTCGACAGYRGCGCCGGC

tetB Tet B- F TTGGTTAGGGGCAAGTTTTG 659 bp Fan et al., 2007

TetB- R GTAATGGGCCAATAACACCG

tet39 tet(39)-F CTCCTTCTCTATTGTGGCTA 701 bp Adelowo and Fagade, 2009

tet(39)-R CACTAATACCTCTGGACATCA

FIGURE 1 | Total bacterial count (TBC) and tetracycline (tet)-resistant bacterial count (TRBC) in the three examined systems in all sampling locations. SYS1 , SYS 2

, SYS 3 . RGW (raw greywater); BF (biofilm); TGW (treated greywater). C25: total bacterial count (TC), incubation at 25◦C. Tet25, tetracycline-resistant bacterial

count (TRBC), incubation at 25◦C; C37, TC, incubation at 25◦C; Tet37, TRBC, incubation at 37◦C. Error bars represent standard deviation of duplicate plate counts

for each of the three examined systems in all sampling location. a, ab, b superscript letters indicate significant differences (P < 0.05) between the three systems.

Effect of Chlorination on ARB Survival
We selected two Serratia strains with high tetracycline resistance
as indicators for the chlorination effectiveness of the TGW.
The results show that the two strains of Serratia isolated from
RGW and BF (Figure 4) were able to survive despite having
been exposed to a high concentration of chlorine (2mg L−1). In
particular, the growth of the Serratia strain isolated from RGW at
37◦Cwas inhibited after the second hour, while the Serratia strain
isolated from the biofilm samples at 25◦C decreased only by 90%
(10% survival) after 4 h in comparison to the non-chlorinated
control.

Minimum Inhibition Concentration (MIC)
The MIC’s results were compared with the epidemiological
cut-off values for resistance (ECOFFs) established by EUCAST:
all the microorganism with acquired resistance showed higher
MIC values than the epidemiological cut-off value, so according
to EUCAST all the microorganism were very resistant to
antibiotics (http://www.eucast.org/mic_distributions_and_
ecoffs). To highlight the different resistance levels of isolated
microorganisms, according to the obtained MIC values (µg
mL-1), five different resistance levels were identified for the
isolated strains, as follows: sensitive (S): MIC values between
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FIGURE 2 | Total bacterial count (TBC) and tetracycline (tet)-resistant bacterial count (TRBC) in the in the soils of the three examined systems in all sampling locations.

SYS1 , SYS 2 , SYS 3 . TS (greywater irrigated soil); US (freshwater-irrigated soil). C25, total bacterial count (TC), incubation at 25◦C. Tet25,

tetracycline-resistant bacterial count (TRBC), incubation at 25◦C; C37, TC, incubation at 25◦C; Tet37, TRBC, incubation at 37◦C. Error bars represent standard

deviation of duplicate plate counts for each of the three examined systems in all sampling location. a, ab, b superscript letters indicate significant differences (P < 0.05)

between the three systems.

FIGURE 3 | Tetracycline-resistant bacterial count (TRBC) at 25◦C from treated greywater (TGW) from the three systems (A) and in RGW, biofilm and TGW samples

from the three systems (B). RGW, raw greywater; BF, biofilm; TGW, treated greywater; Log CFU mL−1, tetracycline-resistant bacterial count (TRBC). Error bars

indicate SD of duplicate plate counts from a single system (A) and from each sampling point (B).

0 and 50 µg mL−1; low resistance (L): MIC values between
50 and 100 µg mL−1; medium resistance (M): MIC values
between 150 and 350 µg mL−1; high resistance (H): MIC
values between 350 and 500 µg mL−1; and very high resistance
(VH): MIC values higher than 500 µg mL−1. Based on this
classification, most of the tetracycline-resistant bacteria isolated
were considered to have medium resistance (Table 3). Only one
Serratia strain (TW5) isolated from the TGWof SYS3 had a lower
resistance (L).

Five strains (SYS3-TW4, SYS3-RW9, SYS3-TS11, SYS3-US12,
and SYS3-BF15) were able to grow at higher tetracycline
concentrations than those tested (≥ 500µg/ml), so they have
a very high resistance (VH). Five strains (SYS3-TW5, SYS1-
RW7, SYS3-RW8, TWRW9, and SYS3-TS11) were also shown
to be resistant to the other three tested antibiotics. It has
been observed that tetracycline-resistant bacteria were more
sensitive to ciprofloxacin than to amoxicillin and kanamycin.
Nine tetracycline-resistant bacteria (SYS2-TW3, SYS1-RW6,

SYS3-RW8, SYS1-TS10, SYS3-S11, SYS2-BF13, SYS3-TW16,
SYS3-RW18, and SYS3-BF24) showed a medium resistance to
amoxicillin, and two (SYS3-RW8 and SYS3-TS11) of them were
also able to survive at higher concentrations of kanamycin
(higher than 300mg L−1).

Tetracycline Resistance Gene
Characterization
Based on the PCR analysis, none of the isolated resistant
strains were positive for the tetA or tetB (efflux) or for
the tetM, tetQ, or tetW (ribosomal) genes (Table 4). It was
found that 58% of the tetracycline-resistant isolates were
positive for tet39, all isolated at 25◦C. All the tetracycline-
resistant bacteria were also positive for at least one of the
β-lactamase genes tested. In particular, 79% were positive
for blaTEM, 58% were positive for blaCXTM-32, 67% were
positive for blaOXA-2, 12.5% for blaOXA-10 and only 8% for
blaSHV.
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TABLE 2 | Identification of isolated tetracycline-resistant strains by 16SrDNA sequencing.

Strain1 16s rDNA GenBank acc. num. Closest relative speciesb GenBank acc. Num.

SYS1-TW1 Acinetobacter sp. MH090940.1 Acinetobacter tjernbergiae NR117629.1

SYS1-TW2 Acinetobacter sp. MH090941.1 Acinetobacter tjernbergiae KM070562.1

SYS2-TW3 Acinetobacter sp. MH090942.1 Acinetobacter tjernbergiae KR094129.1

SYS3-TW4 Acinetobacter sp. MH090943.1 Acinetobacter junii AM184300.1

SYS3-TW5 Serratia sp. MH090946.1 Serratia marcescens CP018925.1

SYS1-RW6 Acinetobacter sp. MH090944.1 Acinetobacter junii AM184300.1

SYS1-RW7 Serratia sp. MH090947.1 Serratia marcescens CP018924.1

SYS3-RW8 Elizabethkingia sp. MH090953.1 Elizabethkingia meningoseptica MG982467.1

SYS3-RW9 Serratia sp. MH090948.1 Serratia marcescens HG738868.1

SYS1-TS10 Achromobacter sp. MH090954.1 Achromobacter insolitus CP026973.1

SYS3-TS11 Lysobacter sp. MH090955.1 Lysobacter enzymogenes AP014940.1

SYS3-US12 Acinetobacter sp. MH090945.1 Acinetobacter junii AM184300.1

SYS2-BF13 Chryseobacterium sp. MH090956.1 Chryseobacterium sp. JQ582957.1

SYS3-BF14 Serratia sp. MH090949.1 Serratia marcescens CP026702.1

SYS3-BF15 Stenotrophomonas sp. MH090958.1 Stenotrophomonas maltophilia MG982475.1

SYS3-TW16 Serratia sp. MH090950.1 Serratia marcescens MG982466.1

SYS3-RW17 Serratia sp. MH090951.1 Serratia marcescens EU048327.1

SYS3-RW18 Serratia sp. MH090952.1 Serratia marcescens CP026702.1

SYS1-TS19 Chryseobacterium sp. MH090957.1 Chryseobacterium lathyri KY933466.1

SYS1-US20 Rummeliibacillus sp. MH090960.1 Rummeliibacillus stabekisii CP014806.1

SYS2-BF21 Bacillus sp. MH090961.1 Bacillus cereus MF355368.1

SYS2-BF22 Bacillus sp. MH090962.1 Bacillus cereus MF355367.1

SYS2-BF23 Bacillus sp. MH090963.1 Bacillus cereus MF800922.1

SYS3-BF24 Stenotrophomonas sp. MH090959.1 Stenotrophomonas maltophilia MG982475.1

aThe strain ID represent the system number, the isolation location and isolate number. Raw greywater-RW, Treated grey water-TW, Biofilm on filter-BF, soil irrigated with treated grey

water TS, soil irrigated with freshwater- US.
bAll closest relative species showed 99% sequence homology.

FIGURE 4 | Effect of chlorination (2mg L−1 NaClO) of treated greywater on

the survival of two strains of isolated Serratia (SYS3-RW17 and SYS3-BF14).

T0 represents the initial contact time with the chlorine. After 2 h,

WRW17+chlorine counts were “0”.

Sequencing of the tet39 Gene
Because tet39 (conferring resistance via an active efflux pump)
was found to be the most abundant resistance gene determinant,
its PCR amplicons were sequenced for a better understanding.

The results revealed that two different genotypes belonging to
two clusters (cluster A and cluster B) were randomly observed
among tet39 resistance bacteria (Figure 5). In both clusters, the
tet39 sequences were very similar across different genera.

DISCUSSION

The need to treat greywater before reuse at a local scale led
to the development of a small on-site RVFCW bioreactor that
is effective in removing chemical and biological contaminants
(see Table S2) (Gross et al., 2007). However, the possible risk
of spreading opportunistic pathogens after the treatment was
also considered (Benami et al., 2016). Because of the proximity
between the treatment units and the point of greywater reuse,
it is also important to investigate other microbiological factors
such as antibiotic resistance in the treated greywater’s microbial
community.

The presence of antibiotic-resistant genes (ARGs), such as
tetracycline and beta-lactam resistance genes, have been reported
in wastewater (Szczepanowski et al., 2009; Karkman et al., 2017;
Voolaid et al., 2018), but the current study represents the first
investigation on ARB in greywater. Previous studies on ARB
in municipal wastewater (Huang et al., 2012; Harnisz et al.,
2015) reported tetracycline-resistant bacterial levels in the range
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TABLE 3 | Minimum inhibitory concentration (MIC) of the tested antibiotics on the tetracycline-resistant bacterial strain.

MIC (ug mL−1)

Strain Microrganisma Tet Amox Kana Cipro

SYS1-TW1 Acinetobacter tjembergiae 300 S S S

SYS1-TW2 Acinetobacter tjembergiae 250 S S S

SYS2-TW3 Acinetobacter tjembergiae 250 150 S S

SYS3-TW4 Acinetobacter junii ≥500 S S S

SYS3-TW5 Serratia marcescens 50 150 ≤50 100

SYS1-RW6 Acinetobacter junii 250 S ≤50 ≤50

SYS1-RW7 Serratia marcescens 400 ≤50 ≤50 ≤50

SYS3-RW8 Elizabethkingia endophytica 150 ≥300 ≥300 ≤50

SYS3-RW9 Serratia marcescens ≥500 80 100 ≤50

SYS1-TS10 Achromobacter insolitus 250 150 200 S

SYS3-TS11 Lysobacter enzymogenes ≥500 ≥300 200 ≤50

SYS3-US12 Acinetobacter junii ≥500 S S S

SYS2-BF13 Chryseobacterium sp. 300 ≥300 ≥300 S

SYS3-BF14 Serratia marcescens 300 S 150 ≤50

SYS3-BF15 Stenotrophomonas maltophilia ≥500 S 200 ≤50

SYS3-TW16 Serratia marcescens ≥350 150 S S

SYS3-RW17 Serratia marcescens ≥350 50 S S

SYS3-RW18 Serratia marcescens 350 150 <50 S

SYS1-TS19 Chryseobacterium lathyri ≥350 S 150 100

SYS1-US20 Rummeliibacillus stabekisii 300 S S S

SYS2-BF21 Bacillus cereus 300 S S S

SYS2-BF22 Bacillus cereus 350 S S S

SYS2-BF23 Bacillus cereus 300 S S S

SYS3-BF24 Stenotrophomonas maltophilia 300 150 S S

aThe names refer to the closest relative species identified by 16SrDNA sequencing (Table 2).

Tet, Tetracycline; Amox, Amoxicillin; Kana, Kanamycin; Cipro, Ciprofloxacin.

≤ = microorganism growth was inhibited by the lowest concentration of the antibiotic tested.

≥ = microorganism growth was not inhibited by the higher concentration of antibiotic tested.

Green, Sensitive; Yellow, Lower (< 50 to 100 µg mL-1 ); Orange, Medium (from 150 to 350 µg mL-1 ); Red, High (from 350 to 500 µg mL-1 ); Dark red, Very High (≥500 µg mL-1 ).

of 102-103 CFU mL−1, and their findings are consistent with
our present results for treated greywater (TGW) in the SYS1
and SYS2 systems at 25◦C. In SYS3 system, the tetracycline-
resistant bacterial count (TRBC) was higher than in SYS1 and
SYS2 systems (Figure 3A). These differences may be related to
many factors such as health status of inhabitants, age, number or
lifestyles. Our study, however, did not examine these parameters,
so the origin of the TRBC remains uncertain. Our study also
examined whether the irrigation caused a buildup of resistance
in the soil; it is worth noting that a significant difference in
the TRBC was not observed (p > 0.05) in the freshwater and
treated greywater irrigated soils (Figure 1). These findings are
in agreement with previous studies which demonstrated that
irrigation with wastewater does not seem to impact antibiotic
resistance levels in the soil microbiome (Gatica and Cytryn,
2013). However, we cannot exclude the greywater as a possible
source of the tetracycline-resistant bacteria even if the existence
of tetracycline-resistant strains in both treated and untreated soil
could prove that the greywater is not the only contamination
source. We also need to consider the possibility of a cross-
or direct contamination caused by humans or animals that

could contribute to the spread of ARB, bypassing the irrigation
water route. A recent publication regarding the contribution
of treated effluents to the soil resistome stated that while
antibiotic resistance levels in soil are increased temporally by
land application of wastes, their persistence is not guaranteed and
is, in fact, variable, and often contradictory, depending on the
application site (Pepper et al., 2018).

In all three systems, we observed a significant (p < 0.05)
increase in the TRBC at 25◦C in BF and in TGW compared
to RGW (Figure 3B). Bacteria retained inside the filters could
be the explanation for this observation. The RVFCW can be
considered as a biofilm-based wastewater treatment system
such as a trickling filter wastewater treatment. Balcázar et al.
(2015) proposed, based on many studies, that environmental
biofilms are true reservoirs of ARGs. Thus, a concentration effect
within the system is a possible explanation for the presence of
tetracycline-resistant bacteria in the treated water. In contrast,
however, a recent study that compared abundances of ARGs in
activated sludge and a trickling filter suggested that there is no
difference in the prevalence of ARG mobilization in the treated
effluents (Petrovich et al., 2018).
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TABLE 4 | Occurrence of tetracycline and β-lactamase resistance genes in the bacterial isolates, determined by PCR.

Beta-lactamase Tetracyclineb

Strain Microorganisma blaTEM BlaCTM_32 blaSHV blaOXA-2 blaOXA-10 Tet(39)

SYS1-TW1 Acinetobacter tjembergiae + – – – – +

SYS1-TW2 Acinetobacter tjembergiae + – – + – +

SYS2-TW3 Acinetobacter tjembergiae + + – – – +

SYS3-TW4 Acinetobacter junii + – – + – +

SYS3-TW5 Serratia marcescens + – – – – +

SYS1-RW6 Acinetobacter junii + + – + – +

SYS1-RW7 Serratia marcescens – – – – – +

SYS3-RW8 Elizabethkingia endophytica + + – + – +

SYS3-RW9 Serratia marcescens + – – + – +

SYS1-TS10 Achromobacter insolitus + + – + – +

SYS3-TS11 Lysobacter enzymogenes + + – + – –

SYS3-US12 Acinetobacter junii + – – + + +

SYS2-BF13 Chryseobacterium sp. + – + – – +

SYS3-BF14 Serratia marcescens + + + + – +

SYS3-BF15 Stenotrophomonas maltophilia + + – + – +

SYS3-TW16 Serratia marcescens – – – + – –

SYS3-RW17 Serratia marcescens + + – + – –

SYS3-RW18 Serratia marcescens + + – + – –

SYS1-TS19 Chryseobacterium lathyri – + – + – –

SYS1-US20 Rummeliibacillus stabekisii + + – + – –

SYS2-BF21 Bacillus cereus + + – + – –

SYS2-BF22 Bacillus cereus – – – – – –

SYS2-BF23 Bacillus cereus + + – – + –

SYS3-BF24 Stenotrophomonas maltophilia – + – – + –

aThe names refer to the closest relative species identified by 16SrDNA sequencing (Table 1).
bOnly tet39 is reported among the six tet genes examined, since the strains were all negative for the other five genes.

In our study, it was not possible to make a comparison at
37◦C between the TRBCs in the three systems, since at 37◦C, the
tetracycline-resistant bacteria were isolated only in the number
three system. We hypothesize that the resistant bacteria that
grow best at 37◦C represent enteric or fecal microorganisms.
The low detection of these bacteria agrees with the effective
removal of fecal coliform to the level of 2 CFU per 100ml in the
examined RVFCW after disinfection (Benami et al., 2016). Our
results suggest that these three systems were unable to prevent
ARB survival after greywater treatment, and to achieve this goal,
additional treatment methods need to be included, such as the
use of chlorine or UV disinfection. Our results showed that
chlorination was effective in immediately inactivating three out
of five tested isolated Serratia strains, so ARB removal could be
a possible solution, even if some strains can survive a longer
contact time (Figure 3). As reported in the literature, conflicting
results still exist concerning ARB removal by chlorination (Yuan
et al., 2015). Some researchers reported effective ARB reduction
using this method (Huang et al., 2011), whereas other results
indicated that chlorination did not significantly reduce ARB
(Munir et al., 2011).

The isolated and characterized bacterial strains belonged
mainly to the genera Serratia sp. (29%) and Acinetobacter

sp. (25%). As previously mentioned, Acinetobacter sp. is a
particularly suitable genus for monitoring antibiotic resistance
in the environment; in fact, until recently, bacterial screening of
WWTP influents and effluents usually focused on Acinetobacter
spp. (Zhang Y. et al., 2009; Voolaid et al., 2018). Similarly to
our case, in a previous study on treated wastewater, tetracycline-
resistant strains of Serratia marcescens and Acinetobacter spp.
were isolated (Harnisz et al., 2015). In that case, the simultaneous
presence of two resistance determinants, tet(A) and tet(B),
was documented, while in our experiment, all the tetracycline-
resistant strains were negative for these two genes. It must be
noted that a fecal indicator bacteria survey was not conducted
since other authors already tested the same systems for this
purpose (Benami et al., 2013).

According to our classification, 62.5% of the bacteria showed
at least a medium resistance to tetracycline. It should be
mentioned that according to EUCAST’s epidemiological cut-
off values for AR (ECOFFs) (The European Committee on
Antimicrobial Susceptibility Testing, 2018) MIC levels above
>100 g mL−1 are already considered a high resistance trait.
Thus, the possible spread of high dose antibiotic resistance
determinants in the environment in which greywater is used for
irrigation is worthy of concern.
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FIGURE 5 | Phylogenetic tree of tet39 genes sequenced from the positive strains (in box) was inferred using the Neighbor-Joining method. The percentage of

replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches (Kumar et al., 2016).

In this study, tetracycline-resistant bacteria were positive only
for tet39, and this confirmed the fact that even if tet39 remains
closely associated with Acinetobacter spp., its plasmid location
should enable dissemination to other species (Coyne et al., 2011).
Initially, it was thought that the tet39 gene was one of the efflux
genes unique to environmental bacteria (Roberts, 2011), but then
it was understood that this gene, associated withmobile elements,
could be transferred back and forth between environmental and
non-environmental bacteria.

We focused our work on six tetracycline resistance genes
from the 46 genes currently known. They were the tetA, tetB,
and tet39 (efflux), and tetM, tetQ and tetW (ribosomal) genes
that are the most common tetracycline resistance genes among
Gram-negatives (Zhang Y. et al., 2009; Roberts, 2011; Roberts
et al., 2015a). The search of all the genes that determine the
tetracycline resistance in the isolated bacteria falls beyond the
scope of the manuscript. Other surveys of tetracycline resistance
genes focused on covering the most common genes (Henriques

et al., 2008; Nikolakopoulou et al., 2008; Tao et al., 2010; Harnisz
et al., 2015).

We also need to consider that the Gram-negative efflux
genes are widely distributed and generally associated with large
plasmids, most of which are conjugative, which often carry other
antibiotic resistance genes. This phenomenon contributed to the
dramatic increase of the multiple-drug-resistant bacteria over the
last 40 years (Chopra and Roberts, 2001).Many of the tetracycline
efflux resistance genes are found mostly in environmental strains
but can also be found in bacteria associated with humans and
animals (Roberts, 2011).

It is noteworthy that the majority of the isolated strains shared
tet39, independent of the source (water, biofilm, and soil) and the
location (SYS1, 2, and 3), even if we cannot exclude the possibility
that isolated strains may harbor other tetracycline resistance
genes. It has been reported that both Gram-positives and more
than 10% of Gram-negatives could carry multiple tetracycline
resistance genes (Roberts, 2005); thus it is essential to specify that
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the different tetracycline genes can have either the same mode
of action (efflux or ribosomal protection) or different modes of
action (efflux and ribosomal protection), as do the pathogenic
and opportunistic species (Chopra and Roberts, 2001).

All the isolated tet39 resistance bacteria were positive for at
least one of the β-lactamase genes tested. In fact, the majority of
the 30 tetracycline resistance efflux genes are usually associated
with plasmids (Roberts, 2005) that often carry other antibiotic
resistance genes (such as those that confer aminoglycoside, β-
lactam resistance), heavy metal resistance genes, or pathogenic
factors such as toxins (Chopra and Roberts, 2001). Therefore, it
indicates the increasing possibility of multidrug resistance and
environmental dissemination.

Except for two isolates, beta-lactam resistance genes have
been found in all amoxicillin-susceptible bacteria, confirming
the fact that even low concentrations of antibiotics can result in
the selection of ARGs. This makes it very difficult to establish
a safe concentration of an antibiotic compound in wastewater
(Karkman et al., 2017).

The isolated strains showed tet39 sequences belonging to
two different genotypes separated in two distinct clusters (A
and B) by cluster analysis (Figure 4). It must be highlighted
that the genotype associated with cluster A in this study
has been identified in bacteria belonging to different genera
(Bacillus sp., Acinetobacter sp., Stenotrophomonas sp.) isolated
from environmental samples, mostly of aquatic origin (Agersø
and Guardabassi, 2005; Adelowo and Fagade, 2009; Roberts
and Schwarz, 2015b; Hamidian et al., 2016). Additionally,
the genotype associated with cluster B in this study has
been identified in bacteria isolated from clinical samples
such as blood or sputum Adelowo and Fagade, 2009;
Hamidian et al., 2016; Yoon et al., 2017). In our study, tet39
resistance bacteria harbored both genotypes (environmental
and clinical), independent of source and isolation temperature.
This observation demonstrates the possible transfer of the
tet39 gene between bacteria of clinical and environmental
origin.

It is interesting to note that the tet39 gene from bacteria of
clinical origin was not present among the samples isolated from
the SYS3, but given the limited number of samples, we cannot be
entirely confident of its absence.

Among the tet39 resistance bacteria belonging to the two
different clusters, there were no significant differences between
the tetracycline’s MIC values. This is most likely due to the fact
that other genes are involved in the resistance to tetracycline;
indeed, as previously noted, all Gram-positives and more than
10% of Gram-negatives could carry multiple tetracycline genes
(Roberts, 2005).

CONCLUSIONS

The ARB isolated in this study were not obligatory pathogens.
The fact that tet39 was the dominant resistance gene may arise
from its broad host range. Like other biological wastewater
treatment systems, the RVFCW system does not remove all of
the ARB present in the raw greywater. Most likely, the filter bed
biofilm of the system contributed to the ARB community in the
treated effluents. Thus, additional treatment methods such as
chlorination need to be included in this system to minimize the
ARB numbers in the effluent. Interestingly, the ARB abundance
in the TGW-irrigated soil and the freshwater-irrigated soil did
not alter, suggesting that ARB did not accumulate in the TGW-
irrigated soil.

To safely eliminate ARB from greywater, further studies
should be carried out to understand how the transfer of ARGs
occurs. Of particular importance is the determination of whether
specific compounds abundant in greywater (e.g., detergents) lead
to resistance evolution. This work dealt with the detection of
Tetracycline-resistant bacteria and Tetracycline resistant genes
on greywater, in the system and the soil also evaluating
the potential multiple resistance. Preliminary genetic relations
between the tet39 genes isolated showed a possible exchange
between clinical and environmental strains. However, further
study needs to be done to understand the clonal relations between
the isolates better understand the clonal relations between the
isolates and strengthen our results.
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Antimicrobial photodynamic therapy (aPDT) is gaining a special importance as an
effective approach against multidrug-resistant strains responsible of fatal infections. The
addition of potassium iodide (KI), a non-toxic salt, is recognized to increase the aPDT
efficiency of some photosensitizers (PSs) on a broad-spectrum of microorganisms.
As the reported cases only refer positive aPDT potentiation results, in this work we
selected a broad range of porphyrinic and non-porphyrinic PSs in order to gain a
more comprehensive knowledge about this aPDT potentiation by KI. For this evaluation
were selected a series of meso-tetraarylporphyrins positively charged at meso positions
or at β-pyrrolic positions and the non-porphyrinic dyes Methylene blue, Rose Bengal,
Toluidine Blue O, Malachite Green and Crystal Violet; the assays were performed using
a bioluminescent E. coli strain as a model. The results indicate that KI has also the ability
to potentiate the aPDT process mediated by some of the cationic PSs [Tri-Py(+)-Me,
Tetra-Py(+)-Me, Form, RB, MB, Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP, and
β-BrImiPyTPP] allowing a drastic reduction of the treatment time as well as of the PS
concentration. However, the efficacy of some porphyrinic and non-porphyrinic PSs [Di-
Py(+)-Me opp, Di-Py(+)-Me adj, Tetra-Py, TBO, CV, and MG] was not improved by
the presence of the coadjuvant. For the PSs tested in this study, the ones capable to
decompose the peroxyiodide into iodine (easily detectable by spectroscopy or by the
visual appearance of a blue color in the presence of amylose) were the most promising
ones to be used in combination with KI. Although these studies confirmed that the
generation of 1O2 is an important fact in this process, the PS structure (charge number
and charge position), aggregation behavior and affinity for the cell membrane are also
important features to be taken in account.

Keywords: antimicrobial photodynamic therapy, cationic porphyrins, phenothiazines, xanthenes, potassium
iodide, bioluminescent E. coli

INTRODUCTION

Antibiotics are among the most commonly prescribed drugs used in both human medicine and
in farm animals, resulting in the selection of multiple drugs resistant (MDR) bacteria (Economou
and Gousia, 2015; O’Neill, 2016). Infections with resistant bacteria are difficult to treat, causing
severe illness and requiring costly and sometimes toxic alternatives, such as antibiotics of last resort.
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Drugs of last resort, such as vancomycin against Gram-positive
bacteria and colistin against Gram-negative bacteria, have been
the most reliable therapeutic agents against MDR bacteria.
However, bacterial strains resistant to these antibiotics have
been isolated worldwide (Levine, 2006; Wang et al., 2018).
This resistance can result from a chromosomal gene mutation,
but comes mainly from horizontal transfer from external gene
sources (Chambers and DeLeo, 2009; DeLeo et al., 2010; Gardete
and Tomasz, 2014; Gao et al., 2016). The development of
novel antibiotics is not likely to solve the problem and it
is probably only a matter of time until they will be also
ineffective. Bacteria will inevitably find ways of resisting to the
conventional antibiotics, which is why alternative approaches are
urgent.

Antimicrobial photodynamic therapy (aPDT) can be a very
promising alternative to antibiotic treatment namely in localized
infections (Dai et al., 2010). aPDT involves the use of a
photosensitizer (PS) which in the presence of visible light and
oxygen produces reactive oxygen species (ROS), such as singlet
oxygen (1O2). These species are responsible for the oxidation of
several cellular components conducting to rapid cell inactivation.
This approach presents some advantages when compared with
the use of antibiotics, such as being efficient independently of
the microorganism antibiotic resistance profile (Jori et al., 2011),
does not induce the development of resistance, even after several
cycles of treatment (Giuliani et al., 2010; Tavares et al., 2010;
Costa et al., 2011) and can be applied with efficacy against
Gram-negative and Gram-positive bacteria. aPDT is considered
more effective against Gram-positive bacteria due to their highly
permeable cell walls allowing the easy diffusion of neutral,
positive and negative charged PS into the cell. However, the
impermeable external membrane of Gram-negative bacteria cell
wall limits the anionic or neutral-charge PSs entrance (Minnock
et al., 2000). This limitation is overcome by the use of cationic
PS. These PSs are able to bind and penetrate into the cell wall
by the “self-promoted uptake pathway” (Hancock et al., 1991;
Merchat et al., 1996). Nevertheless, neutral PSs or PSs with
low number of charges can be effective against this type of
bacteria by coupling or combining them with positively charged
entities such as poly-L-lysine, polyethylenimine and polymyxin
B nonapeptide that act as membrane disruptors (Nitzan et al.,
1992; Helander et al., 1997; Lounatmaa et al., 1998; Soukos
et al., 1998). Ethylenediaminetetraacetic acid (EDTA) is also
commonly used to destabilize the native organization of Gram-
negative wall (Yoshimura and Nikaido, 1985; Jori et al., 2006).
It has also been shown that different organic salts can improve
the efficiency of aPDT against Gram-negative bacteria (Huang
et al., 2012; Kasimova et al., 2014). Recently, some studies have
demonstrated that aPDT can be potentiated by addition of
several different inorganic salts, such as sodium bromide (Wu
et al., 2016) sodium azide (Huang et al., 2012; Kasimova et al.,
2014), sodium thiocyanate (St Denis et al., 2013) and potassium
iodide (Vecchio et al., 2015; Zhang et al., 2015; Freire et al.,
2016; Huang et al., 2016, 2017, 2018a,c; Hamblin, 2017; Reynoso
et al., 2017; Wen et al., 2017). In fact, the addition of iodide
has been shown to improve the efficiency of aPDT in several
animal models of localized infection. This salt is non-toxic and

is an approved drug for antifungal therapy (Hamblin, 2017).
The studies involving the use of KI demonstrate that the
combination of this salt with neutral porphyrins, fullerenes and
other dyes gives rise to higher microbial inactivation rates when
are compared to the use of the PSs alone. KI was firstly studied
as potentiator of aPDT mediated by a C60 fullerene bisadduct
(Zhang et al., 2015). The results showed that KI potentiated
the ultraviolet A (UVA) or the white light-mediated killing
of Gram-negative bacteria Acinetobacter baumannii, Gram-
positive methicillin-resistant Staphylococcus aureus and fungal
yeast Candida albicans, increasing the effect in 1–2 logs. This
extra killing effect was also observed in vitro and in vivo using a
mouse model with an infected skin abrasion (Zhang et al., 2015).
These promising results conducted to new studies concerning the
mechanism of action involved. The KI effect using Methylene
Blue (MB) as PS in the photoinactivation of Escherichia coli
and S. aureus was also evaluated (Vecchio et al., 2015). The
results showed that the addition of KI increased the bacterial
killing in 4 and 2 logs for S. aureus and E. coli, respectively, in
a dose-dependent manner. The authors also affirmed that the
KI potentiator effect in these aPDT studies mediated by MB
was probably due to the formation of reactive iodine species
that were quickly produced with a short lifetime (Vecchio et al.,
2015). Since then, some other examples of the potentiation of
aPDT effect using combinations of PSs and KI were reported.
For instance, MB and new methylene blue (NMB) were studied
in the photoinactivation of oral C. albicans infection in a mouse
model (Freire et al., 2016), Photofrin in the photoinactivation
of several Gram-negative bacteria (Huang et al., 2017), BODIPY
dyes in the photoinactivation of S. aureus, E. coli, and C. albicans
(Reynoso et al., 2017). This approach was also efficient in
aPDT of Gram-negative and Gram-positive bacteria mediated
by Rose Bengal (Wen et al., 2017) and fullerenes (Huang et al.,
2018b). Interestingly, an anionic porphyrin in the presence of
KI was able to photoinactivate E. coli (Huang et al., 2018a).
The combination of MB and KI was also efficient to treat an
urinary tract infection in a female rat model (Huang et al.,
2018c). All these reports helped to elucidate the mechanism
of action of KI potentiation. It was proposed that the extra
killing effect is caused by several parallel reactions initiated by
the reaction of 1O2 with KI producing peroxyiodide (Figure 1),
that can suffer further decomposition by two different pathways,
which are dependent on the degree of binding of the PS to the
microbial cells (Vecchio et al., 2015; Zhang et al., 2015; Freire
et al., 2016; Gsponer et al., 2016; Hamblin, 2017; Huang et al.,
2017, 2018a; Kashef et al., 2017; Reynoso et al., 2017; Wen
et al., 2017). One of the pathways involves the formation of
free iodine (I2/I−3 ) and hydrogen peroxide (H2O2). Free iodine
can kill microbial cells when generated in solution but needs
to reach a sufficient threshold concentration to be microbicidal.
The amount of free iodine produced depends on the amount
of 1O2 produced, but also on the concentration of iodide
anion present in solution (Figure 1). The other one involves
a homolytic cleavage process producing reactive iodine radicals
(I·−2 ), which are much more toxic if generated very close to
the target cells since these radicals have short diffusion distance
(Figure 1).
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FIGURE 1 | Schematic representation of the decomposition of peroxyiodide produced by the reaction of 1O2 and KI (elaborated according with the literature –
Vecchio et al., 2015; Zhang et al., 2015; Freire et al., 2016; Gsponer et al., 2016; Hamblin, 2017; Huang et al., 2017, 2018a; Kashef et al., 2017; Reynoso et al.,
2017; Wen et al., 2017).

The microbial killer role of the two species can be
distinguished by observing the killing microbial curve profile.
When the principal contribution for the killing is the free iodine,
the curves assumes an abrupt threshold value. On the other hand,
a gradual killing curve can be observed when the short-lived
reactive iodine species are the mainly killing species (Huang et al.,
2018a).

Until now, the literature survey only reported combinations
of PSs and KI with a positive aPDT potentiation. Additionally,
the possibility of extending the approach to cationic porphyrins
was not evaluated. Consequently, in this work, in order to gain a
more comprehensive knowledge about this type of potentiation,
we decided to assess the effect of KI in the presence of a broad
range of cationic porphyrinic and non-porphyrinic dyes as PSs
(Figure 2). To achieve this objective and considering the high
number of assays required to evaluate the different combinations
of PSs with KI, the assays were performed using a bioluminescent
E. coli strain as a bacterial model. It is well known that the
bioluminescence approach can provide a sensitive and innocuous
way to detect the viability state of microorganisms. Compared
to the conventional plating count methodology, the use of
bioluminescent strains in aPDT allows to monitor the process
in real-time and it is a sensitive and cost-effective methodology
to evaluate this effect. Moreover, the strong correlation between
CFU and bioluminescent signal of the bioluminescent E. coli used
in this work has already been proved and described (Alves et al.,
2008, 2011a,b).

The structures of the selected PSs summarized in
Figure 2 comprise: (i) the five structurally related meso-
tetraarylporphyrins with one [Mono-Py(+)-Me], two
[Di-Py(+)-Me opp and Di-Py(+)-Me adj], three [Tri-
Py(+)-Me], and four [Tetra-Py(+)-Me] positives charges
and a formulation (Form) based on these porphyrins; (ii) the
three β-substituted porphyrins β-ImiPhTPP, β-ImiPyTPP, and
β-BrImiPyTPP bearing positively charged imidazole units; and
(iii) the non-porphyrinic dyes – methylene blue (MB), Rose
Bengal (RB) and Toluidine Blue O (TBO), crystal violet (CV)
and malachite green (MG).

In the selection of these three series of PSs was considered
their different photoinactivation profile toward E. coli and their
mechanism of action (Type I and Type II).

For the meso-tetraarylporphyrins with positive charges at
the meso position the studies already performed demonstrated
that their photodynamic efficiency was dependent on charge
number, charge distribution, aggregation behavior and molecular
amphiphilicity and the order of their efficacy was: Mono-
Py(+)-Me < Di-Py(+)-Me opp < Di-Py(+)-Me adj < Tetra-
Py(+)-Me < Tri-Py(+)-Me. Additionally, a formulation (Form)
constituted by a non-separated mixture of Mono-Py(+)-Me
(19%), Di-Py(+)-Me opp and Di-Py(+)-Me adj (20%) Tri-
Py(+)-Me (44%) and Tetra-Py(+)-Me (17%) was also studied.
This mixture has already proved to be efficient in the
photoinactivation of S. aureus, E. coli and Pseudomonas syringae
pv. actinidiae and is considered an excellent alternative to the
highly efficient Tri-Py(+)-Me since the production costs and
also the production time was reduced significantly (Marciel
et al., 2018; Martins et al., 2018). The neutral 5,10,15,20-tetra-(4-
pyridyl)porphyrin (Tetra-Py) precursor of the positively charged
Tetra-Py(+)-Me was also included.

For the meso-tetraarylporphyrins with a positive charge
at the beta-pyrrolic position (β-ImiPhTPP, β-ImiPyTPP, and
β-BrImiPyTPP) a different efficacy profile in photoinactivation
of E. coli at concentrations of 20 µM was observed in previous
studies; however, at 5.0 µM none of the three PSs caused a
significant decrease in bacterial activity (Moura et al., 2019).

Although porphyrins and porphyrins analogs comprise most
of the PSs used in aPDT, several non-porphyrinic chromogens
exhibit photodynamic activity (Ormond and Freeman, 2013).
Thus, for this study were selected good 1O2 generators
with positive charges that already proved their photodynamic
efficiency in clinical trials such as the phenothiazinium salts MB
and TBO (Abrahamse and Hamblin, 2016). In this study were
also included two photoactive dyes that act mainly through type
I mechanism (with lower 1O2 production rates), the CV and
MG. In this evaluation the study was extended to the xanthene
derivative RB. Combinations of KI with RB and with MB were
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FIGURE 2 | Structures and acronyms/abbreviations of the PSs used in this study.
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already studied and were introduced in this work to corroborate
our results (Vecchio et al., 2015; Wen et al., 2017).

MATERIALS AND METHODS

Photosensitizers: Stock Solutions and
UV-Vis Spectra
Stock solutions of each porphyrin were prepared at 500 µM
in dimethyl sulfoxide (DMSO) and stored in the dark. Stock
solutions of non-porphyrinic dyes were prepared at 500 µM in
phosphate buffer solution (PBS) and stored in the dark.

The porphyrins 5-(1-methylpyridinium-4-yl)-10,15,20-
tris(pentafluorophenyl)-porphyrin mono-iodide [Mono-
Py(+)-Me], 5,15-bis(1-methylpyridinium-4-yl)-10,20-bis(pent
afluorophenyl)porphyrin di-iodide [Di-Py(+)-Me opp] 5,10-
bis(1-methylpyridinium-4-yl)-15,20-bis(pentafluorophenyl)-po
rphyrin di-iodide [Di-Py(+)-Me adj], 5,10,15-tris(1-methy
lpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide
[Tri-Py(+)-Me] and 5,10,15,20-tetrakis(1-methylpyridinium-
4-yl)porphyrin tetra-iodide [Tetra-Py(+)-Me], the formulation
(Form) of the non-separated porphyrins Mono-Py(+)-
Me (19%), Di-Py(+)-Me opp and Di-Py(+)-Me adj (20%)
Tri-Py(+)-Me (44%) and Tetra-Py(+)-Me (17%) and the
neutral 5,10,15,20-tetra-(4-pyridil)porphyrin (Tetra-Py) were
synthetized according with the literature (Simões et al., 2016;
Marciel et al., 2018; Martins et al., 2018). The preparation of
the mono-cationic porphyrins β-ImiPhTPP, β-ImiPyTPP, and
β-BrImiPyTPP bearing an imidazole ring at the β-pyrrolic
position were synthetized according with a procedure developed
in our laboratory (Moura et al., 2019), Crystal Violet (CV)
was purchased from Merck, Rose Bengal (RB) from Fluka AG,
Malachite Green (MG) from Riedel-de-HaënTM, Methylene
Blue (MB) and Toluidine Blue O (TBO) from Acros Organics.
The UV-Vis spectra of the PSs are presented in Supplementary
Figure S2 (see Supporting Information).

Light Sources
The potentiation of aPDT effect between the PS and KI was
evaluated by exposing the bacterial suspension in the presence
of each combination to a set of fluorescent PAR lamps which is
constituted by 13 fluorescent lamps OSRAM 21 of 18 W each,
PAR white radiation (380–700 nm) at an irradiance of 25 W m−2.
All the irradiances were measured with a Power Meter Coherent
FieldMaxII-Top combined with a Coherent PowerSens PS19Q
energy sensor.

Bacterial Strains and Growth Conditions
The genetically transformed bioluminescent E. coli Top10 (Alves
et al., 2011b) was grown on Tryptic Soy Agar (TSA, Merck)
supplemented with 50 mg mL−1 of ampicillin (Amp) and with
34 mg mL−1 of chloramphenicol (Cm). Before each assay, one
isolated colony was transferred to 10 mL of tryptic soy broth
medium (TSB, Merck) previously supplemented with Amp and
Cm and was grown overnight at 25◦C under stirring (120 rpm).
An aliquot was transferred into 10 mL TSB under the same

growth conditions till stationary growth phase was achieved. An
optical density at 600 nm (OD600) of 1.6 ± 0.1 corresponded to
≈108 colony forming units (CFU) mL−1.

The correlation between CFU mL−1 and the bioluminescent
signal (in RLUs) of bioluminescent E. coli strain was evaluated.
A fresh overnight bacterial culture was serially diluted (10−1

to 10−9) in PBS. Non-diluted and diluted aliquots were pour-
plated on TSA medium (0.5 mL) and, simultaneously, were
read on a luminometer (0.5 mL) (TD-20/20 Luminometer,
Turner Designs, Inc., Madison, WI, United States) to
determine the bioluminescence signal. The results obtained
are presented in Supplementary Figure S1 (see Supporting
Information).

Antimicrobial Photodynamic Therapy
(aPDT) Procedure
Bioluminescent E. coli culture was grown overnight and was
tenfold diluted in PBS (pH 7.49), to a final concentration of∼108

CFU mL−1, which corresponds approximately to 108 RLU. The
bacterial suspension was equally distributed in 50 mL sterilized
and acid-washed beakers.

Bioluminescence Monitoring
All the experiments were carried out under PAR white light
(380–700 nm) and the E. coli bioluminescence signal was
measured in the luminometer at different times of light exposure.
The assays were finished whenever the detection limit of the
luminometer was achieved (c.a 2.3 log). Light control (LC), dark
control (DC), and KI control, were also evaluated as described
below.

Evaluation of the Inorganic Salt Effect on
Tetra-Py(+)-Me Photodynamic Action
The first experiments were performed in order to assess the effect
of different inorganic salts in the inactivation of E. coli through
aPDT approach using the tetracationic porphyrin Tetra-Py(+)-
Me, extensively studied in bacterial photoinactivation processes
(Alves et al., 2008; Tavares et al., 2011; Simões et al., 2016). The
selected inorganic salts were KI, NaI, KCl, NaCl, and NaBr and
the assays were conducted with 50 mM of each salt and 5.0 µM
of Tetra-Py(+)-Me. All the inorganic salts were purchased from
Sigma-Aldrich (St. Louis, MO, United States) and stock solutions
were prepared at 500 mM in PBS immediately before each
experiment.

The assays were carried out by exposing the bioluminescent
E. coli suspension to Tetra-Py(+)-Me at 5.0 µM with each salt
added from the stock solution to achieve the final concentrations
of 50 mM. Simultaneously, the following different controls were
performed: one light control (LC) that contained a bacterial
suspension exposed to the same light conditions as the samples,
and dark controls (DC) that comprised a bacterial suspension
incubated with the PS at 5.0 µM and with the distinct salts
at 50 mM. DC were protected from light during all the
procedure. The samples and controls were protected from light
with aluminum foil and remained in the dark for 15 min to
promote the porphyrin binding to E. coli cells before irradiation.
Then, both samples and controls were exposed to the PAR
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white light at 25 W m−2 under stirring (120 rpm) and placed
on a tray; the beaker bottoms were covered with water to
maintain the samples at constant temperature (25◦C). Finally,
aliquots of 0.8 mL of samples and controls were collected
at different times of light exposure and the bioluminescence
signal was measured in the luminometer. Three independent
experiments with two replicates were performed and the results
were averaged.

Evaluation of the Antimicrobial Effect in the Presence
of Different PSs and KI
The assays were carried out by exposing a final volume of 10 mL
of a bioluminescent E. coli suspension to each PS at 5.0 µM
and combinations of each PS at 5.0 µM and KI concentrations
at 50 and 100 mM and for RB, CV, MG also at 25 mM.
The samples were protected from light with aluminum foil and
incubated in the dark for 15 min. Light and dark controls
were also carried out simultaneously with the aPDT procedure:
the light controls (LC) comprised a bacterial suspension and a
bacteria suspension with KI at 100 mM exposed to the same
light protocol; and the dark control (DC) comprised a bacterial
suspension incubated with the PSs at 5.0 µM and KI at the higher
concentration tested (100 mM) protected from light. The aPDT
treatment was performed as described above. Three independent
experiments with two replicates were performed and the results
were averaged.

Detection of Iodine Formation
In a 96 wells microplate, appropriate volumes of each PS at
5.0 µM (1 µL) and combinations of each PS at 5 µM (1 µL)
and KI at 100 mM (2 µL) were added to each well and irradiated
with PAR white light at 25 W m−2. The generation of iodine was
monitored by reading the absorbance at 340 nm at irradiation
times 0, 5, 10, 15, 30, 45, 60, 75, 90, 105, and 120 min. As positive
control it was used Lugol’s solution diluted to 1:1000.

Another simple assay to detect iodine was also performed,
for the different combinations of PS and KI, in the presence
of amylose due to the well-known formation of a strong blue
complex when these two species are present (Luallen, 2017). So,
to the beakers containing a starch solution at a concentration of
2 mg L−1, it was added each PS at 5 µM and KI at 100 mM. The
samples were incubated in the dark for 15 min and afterward
were exposed continuously and under stirring (120 rpm) to
the same light source used in the aPDT assays. The color
change was registered and photographed at different times of
irradiation for each sample. At the same time, the following
control assays were performed: PS + light; KI + light, PS + KI
under dark.

Statistical Analysis
Three independent experiments with two replicates per assay for
each condition were done. The statistical analysis was performed
with GraphPad Prism. Normal distributions were checked by
the Kolmogorov–Smirnov test and the homogeneity of variance
was verified with the Brown Forsythe test. ANOVA and Dunnet’s
multiple comparison tests were applied to assess the significance

of the differences between the tested conditions. A value of
p < 0.05 was considered significant.

RESULTS

The effect of KI for each series of PSs toward E. coli was
evaluated using the same concentration of PS (5.0 µM) and KI
concentrations of 50 and 100 mM (unless other concentrations
were mentioned) under PAR white light at an irradiance of
25 W m−2. These KI concentrations were selected considering
the ones referred in similar studies and knowing that higher
concentrations can limit the combined protocol application in
clinic area due to osmotic stress. The PS, TetraPy(+)-Me, was
selected to confirm the benefic effect of KI among other inorganic
salts (NaI, NaCl, KCl, and NaBr). This well-known tetracationic
porphyrin is extensively studied in bacterial photoinactivation
processes and is considered an excellent reference when the
efficacy of different cationic porphyrins are compared (Alves
et al., 2008; Tavares et al., 2011; Simões et al., 2016). Low light
doses ranging from 1.5 to 36 J/cm2 emitted by a fluorescent
lamp set (380–700 nm) were selected based on their efficacy to
inactivate a large range of microorganisms (Marciel et al., 2017;
Moura et al., 2019). Additionally, this light source was able to
accomplish the required overlap between PS absorption and light
setup emission spectrum (see Supplementary Figure S2; Costa
et al., 2010; Cieplik et al., 2015).

Evaluation of the Salt Effect on
Tetra-Py(+)-Me Photodynamic Efficiency
The results presented in Figure 3 show that the photoinactivation
pattern of E. coli in the presence of Tetra-Py(+)-Me is strongly
dependent on the anion used.

The results clearly indicate that when combinations of Tetra-
Py(+)-Me with KI and NaI were used, a reduction of the
bioluminescence signal of c.a. 4 log was observed after 30 min of
irradiation. In the case of NaBr, KCl and NaCl no potentiation on

FIGURE 3 | Survival of bioluminescent E. coli during aPDT with
Tetra-Py-(+)-Me at 5.0 µM and 50 mM of KI, NaI, KCl, NaCl, and NaBr after
irradiation with PAR white light (380–700 nm) at an irradiance of 25 W m−2 for
40 min. The values are expressed as the three independent experiments; error
bars indicate the SD and in some cases are collapsed with the symbols.
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the aPDT effect was detected. Light and dark controls showed no
significant variation in the bioluminescence produced by E. coli.

Evaluation of the KI Effect on the
Photodynamic Action of
Meso-Tetraarylporphyrins Bearing One
to Four Positive Charges
The effects of KI at 50 and 100 mM in the photodynamic action
of Mono-Py(+)-Me, Di-Py(+)-Me opp, Di-Py(+)-Me adj, Tri-
Py(+)-Me, and Tetra-Py(+)-Me toward E. coli are summarized
in Figure 4.

In the cases of the LCs (Bacteria and bacteria+ KI irradiated)
and DC (bacteria + PS + KI in the dark) no decrease in E. coli
bioluminescent signal was detected. These results indicate that
the viability of this recombinant bioluminescent bacterium was
not affected by irradiation, by the presence of the salt or by any of
the tested combinations of PS+ KI in the dark.

The results shown in Figure 4A for the monocationic
porphyrin [Mono-Py(+)-Me] demonstrated that its low efficacy
is strongly improved by the presence of KI; the poor activity
of this PS toward E. coli was previously related with its low
water solubility leading to aggregation and, consequently, to
low 1O2 generation. Under the conditions used in these assays
this porphyrin maintained its low efficacy causing a decrease
on E. coli bioluminescence signal of 0.9 log (p < 0.0001) after
240 min of irradiation. However, the addition of KI at 50 mM and
100 mM potentiated the effect of this mono-cationic porphyrin,
causing bioluminescent signal reductions of c.a. 3.5 and 5.5 log
(p < 0.0001) after 150 min of irradiation.

The dicationic porphyrins Di-Py(+)-Me opp and Di-Py(+)-
Me adj without the presence of the coadjuvant promoted
similar effects on the reduction (c.a. 6 log after, respectively,
150 and 120 min of irradiation) of E. coli bioluminescence
signal (Figures 4B,C). However, when these two isomers
were combined with KI the results obtained were significantly
different. The combination of Di-Py(+)-Me adj with KI at 50
and 100 mM produced similar results in the photoinactivation of
bioluminescent E. coli and no improvement in aPDT efficiency
was detected (Figure 4C). In fact, in the last irradiation
time, there were no significant differences in the E. coli
bioluminescence signal promoted by Di-Py(+)-Me adj and the
two combinations of Di-Py(+)-Me adj + KI. In the case of
Di-Py(+)-Me opp (Figure 4B) the presence of KI (at 50 and
100 mM) led to a significant reduction on its efficacy. The
maximum inactivation achieved for the combination of this PS
with 100 mM of KI was 1.7 log (p < 0.0001).

The Tetra-Py(+)-Me and Tri-Py(+)-Me were the most
efficient porphyrins in the photoinactivation of bioluminescent
E. coli, which is also in accordance with the literature (Simões
et al., 2016). These porphyrins, when acting by themselves,
showed to be potent PSs for the inactivation of bioluminescent
E. coli, demanding short irradiation times (c.a. 70 min) to
achieve total photoinactivation of this Gram-negative bacterium
(Figures 4D,E). The combination of these PSs with KI at 50 and
100 mM increased dramatically the effect of these PSs in the
photoinactivation of bioluminescent E. coli (Figures 4D,E). In

the case of Tri-Py(+)-Me, it was observed an abrupt decrease
in E. coli viability after 30 and 10 min of irradiation when
the combinations of this PS with 50 mM and 100 mM of KI
were used, respectively (Figure 4D). This sharp decrease was
also observed for the combination of Tetra-Py(+)-Me and KI;
after 30 and 10 min of irradiation no bioluminescent signal was
detected for combinations Tetra-Py(+)-Me +KI 50 mM and
Tetra-Py(+)-Me+KI 100 mM, respectively.

These results prompted us to study the effect of KI in the aPDT
efficiency of the porphyrinic formulation (Form) described as an
excellent alternative to the highly efficient Tri-Py(+)-Me, as it
was mentioned above. The results summarized in Figure 4F show
that this formulation at 5 µM in the absence of the coadjuvant
and after 60 min of irradiation, promoted a decrease in the
bioluminescence signal of E. coli of 4 log (p< 0.0001) (Figure 4F).
When the assays were repeated in the presence of KI at 50 mM
a more pronounced decrease in E. coli viability was detected
after 40 min of irradiation, reaching the detection limit of the
luminometer after 60 min. This rapid decrease in the viability
of this bacterium occurred even sooner, after only 20 min of
irradiation, when KI was used at 100 mM.

In order to check if the presence of positive charges
is a required feature for the combination of KI with this
series of porphyrins, the efficacy of the neutral 5,10,15,20-tetra
(4-pyridyl)porphyrin (Tetra-Py) was evaluated in the presence
of this salt at 50 and 100 mM. In Figure 4G are summarized
the results obtained and it was verified that the low efficacy of
this neutral porphyrin was not improved by the presence of the
salt, suggesting that when an increment effect was observed in the
presence of KI in this series of porphyrins, the presence of at least
one positive charge is mandatory.

Evaluation of the KI Effect on the
Photodynamic Action of Porphyrin
Derivatives Bearing Cationic Imidazole
Units at the β-Pyrrolic Position
The results obtained in the photoinactivation of bioluminescent
E. coli with the monocationic porphyrins β-ImiPhTPP,
β-ImiPyTPP, and β-BrImiPyTPP bearing an imidazole moiety
at the β-pyrrolic position, both in the absence and in the presence
of KI are presented in Figure 5. The low activity of these
porphyrins at 5.0 µM in the photoinactivation of bioluminescent
E. coli was improved in the presence of KI, although the
inactivation increment was different. The combination of
β-BrImiPyTPP and β-BrImiPhTPP with KI at 100 mM
promoted a significant positive effect in the photoinactivation of
E. coli with an increment on the bioluminescent reduction of 1.3
and 1.1 log for β-ImiPhTPP and β-BrImiPyTPP (p < 0.0001),
respectively, after 240 min of irradiation when compared with
the effect of these PSs in the absence of KI (Figures 5A,C).

A different profile was observed for porphyrin derivative
β-ImiPyTPP. The best results were obtained with the
combination of this PS with 100 mM of KI, promoting
a significant decrease in E. coli viability (Figure 5B). The
bioluminescence signal reduction reached the method detection
limit after 240 min; when compared with the effect of these PS in
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FIGURE 4 | Survival of bioluminescent E. coli during aPDT assays in the presence of Mono-Py(+)-Me (A), Di-Py(+)-Me opp (B), Di-Py(+)-Me adj (C),
Tetra-Py(+)-Me (D), Tri-Py(+)-Me (E), Form (F), and Tetra-Py (G) at 5.0 µM alone and combined with KI at 50 and 100 mM. The values are expressed as the
three independent experiments; error bars indicate the SD.

the absence of KI an increment on the bioluminescent reduction
of 5.3 log in cell viability was observed (p < 0.0001).

Evaluation of the KI Effect in the
Photodynamic Action of Non-porphyrinic
Dyes
In Figure 6 are summarized the effects of KI at 50 and 100 mM
in the photodynamic inactivation of E. coli when using RB (A),
TBO (B), MB (C), CV (D), and MG (F). Combinations of RB
(Figure 6A) and MB (Figure 6C) at 5.0 µM and KI showed to
have a potential effect in the photodynamic inactivation of E. coli,

causing marked reductions in the E. coli viability when compared
with the results obtained with these dyes alone. The PS RB, when
acting alone, promotes a decrease of 1.3 log (p< 0.0001) in E. coli
viability after 150 min of irradiation. When combined with KI, an
efficient decrease in bioluminescent signal of E. coli was observed,
even when KI at 25 mM was used. At this concentration, the
combination of RB 5.0 µM+ KI 25 mM, caused a sharp decrease
in the E. coli viability after 90 min of irradiation, reaching the
detection limit of the luminometer after 120 min. This marked
effect was also observed when RB was combined with 50 mM
of KI, but it was with the combination of RB 5.0 µM+ KI
100 mM that this effect became more noteworthy; after 20 min
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FIGURE 5 | Survival of bioluminescent E. coli during aPDT assays in the presence of mono-cationic porphyrins β-ImiPhTPP (A), β-ImiPyTPP (B), and
β-BrImiPyTPP (C) at 5.0 µM alone or combined with KI at 50 and 100 mM. The values are expressed as the three independent experiments; error bars indicate the
SD.

of irradiation it was observed a decrease of 6 log (p < 0.0001)
in E. coli viability and after 30 min no bioluminescent signal was
observed.

A similar profile was observed with combinations of MB at
5.0 µM and KI. In the absence of KI, MB caused a decrease in
the bioluminescence signal of E. coli of 5.5 log (p < 0.0001) after
180 min of irradiation, but when combinations of this PS with KI
were used, an efficient decrease in the viability of this bacterium
was also observed, after 30 and 60 min of irradiation, with KI at
100 and 50 mM, respectively.

In the cases of TBO, CV, and MG, a potentiation of their
photodynamic action mediated by the presence of KI was not
observed. In fact, TBO when acting alone at 5.0 µM revealed to
be an excellent PS for the inactivation on bioluminescent E. coli,
promoting a remarkable decrease in the bioluminescent signal of
6 log (p < 0.0001) after 60 min of irradiation. In the presence of
KI, this reduction was only observed after 90 min of irradiation.

CV when acting alone caused a decrease in the bioluminescent
signal of 3.2 log (p< 0.0001), however, in the presence of KI at 25,
50, and 100 mM the decrease did not go beyond 1.4, 2.2, and 2.7
log (p < 0.0001), respectively.

In the case of MG no significant effect was observed in the
E. coli viability either when this dye was used alone or combined
with KI.

Detection of Iodine Formation Mediated
by the PS
In order to clarify if the photodynamic improvement was related
with the iodine generation from KI by the PS, the different PSs

(5.0 µM) were irradiated both in the absence and in the presence
of that coadjuvant at 100 mM. To verify the generation of iodine,
the absorbance at 340 nm was read after 0, 5, 10, 15, 30, 45, 60,
75, 90, 105, and 120 min of irradiation. The results obtained are
summarized in Figure 7.

The results had shown that the combination of KI with
Tri-Py(+)-Me, Tetra-Py(+)-Me, and Form causes a higher
production of I2, leading to a sharp increase in absorbance at
340 nm in the first 20 min of irradiation. On the other hand,
the combination of KI with Mono-Py(+)-Me, Di-Py(+)-Me adj,
Di-Py(+)-Me opp only was able to induce a gradual increase of
the absorbance at 340 nm, thus indicating the lower ability to
produce I2. The combination of Tetra-Py + KI did not produce
I2.

The gradual increase in the absorbance at 340 nm was also
observed in the case of mono-cationic porphyrins β-ImiPhTPP,
β-ImiPyTPP, and β-BrImiPyTPP. However, in the case of
β-ImiPyTPP, the absolute value of absorbance at 340 nm after
40 min of irradiation was higher than the values observed for the
other PSs, indicating the formation of higher amounts of I2 in this
case.

In the case of the non-porphyrinic dyes, the combination of
KI with MB and RB demonstrated a higher ability to produce I2,
with a sharp increase in the absorbance at 340 nm, after 30 min
of irradiation. However, combinations of TBO+ KI and CV+ KI
only produced a gradual increase in the absorbance, indicating
the lower capability to produce I2. Combination of MG+ KI did
not promote the formation of I2.

The visual appearance of the starch solutions after
different irradiation periods are presented in Figure 8
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FIGURE 6 | Survival of bioluminescent E. coli during aPDT assays in the presence of non-porphyrinic PSs at 5.0 µM RB (A), TBO (B), MB (C), CV (D), and MG (E)
alone and combined with KI at 25, 50, and 100 mM. The values are expressed as the three independent experiments; error bars indicate the SD.

(Supplementary Tables S1–S3) and the results corroborated
that the time required for the formation of the complex between
amylose and iodine was dependent on the PS used. In the
presence of Tri-Py(+)-Me, Tetra-Py(+)-Me, and Form, the
formation of the dark color (Supplementary Table S1) appeared
just after 2–4 min of irradiation, while for Di-Py(+)-Me adj
the iodine-amylose complex was observed after 45 min of
irradiation. The formation of the colored complex was not
observed for the neutral Tetra-Py after 240 min of irradiation
and for Mono-Py(+)-Me and Di-Py(+)-Me opp after 75 min of
irradiation a slight darkening of the solution was observed.

For the mono-cationic porphyrins β-ImiPhTPP,
β-ImiPyTPP, and β-BrImiPyTPP the formation of the
deep colored complex was only observed in the presence of
β-ImiPyTPP after 60 min of irradiation (Supplementary
Table S2).

In the assays performed with the non-porphyrinic dyes the
combinations MB+KI and RB+KI promoted the formation
of the dark complex after 2–5 min of irradiation and
the combination TBO+KI after 30 min of irradiation. The

combinations of CV and MG with KI were not able to produce
the iodine-amylose complex even after 240 min of irradiation
(Supplementary Table S3).

DISCUSSION

Several studies have shown that aPDT combined with some
inorganic salts, namely potassium iodide (Vecchio et al., 2015;
Zhang et al., 2015; Huang et al., 2016, 2018a,b,c; Wen et al., 2017)
can be potentiated. However, there is not any evidence until now
that this potentiation can be observed for all types of PSs, namely
cationic porphyrins. In order to gain a more comprehensive
knowledge about the potentiation of aPDT by KI, a broad range
of PSs were tested in this study.

We started our study by selecting the most effective salt and
using as PS the widely studied tetracationic porphyrin 5,10,15,20-
tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-
Py+-Me), which is frequently used as standard in aPDT studies.
This can be considered a reference for all porphyrinic PSs,
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FIGURE 7 | Monitoring of the formation of iodine at 340 nm after different irradiation periods in the presence of each PS at 5.0 µM and combinations of each PS at
5.0 µM and KI at 100 mM.
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FIGURE 8 | Visual appearance of the starch solutions after different irradiation periods in the presence of each PS at 5.0 µM and KI at 100 mM.

since this PS is extensively studied in bacterial photoinactivation
processes (Alves et al., 2008; Tavares et al., 2011; Simões et al.,
2016). The efficacy of bacterial inactivation by the combination of
this PS and the salts KI and NaI was clearly higher than when the
PS was used alone, showing that these combinations promoted an
increase of the antimicrobial photodynamic efficiency of the PS.
On the other hand, no effect was observed with the combinations
of Tetra-Py(+)-Me with NaBr, KCl, and NaCl during the
irradiation time. The loss of efficiency of this porphyrin in these
cases could be explained by the fact that bromide and chloride
ions retarded the 1O2 generation, and consequently its action as
PS (Keum et al., 2003; Krumova and Cosa, 2016). Therefore, it
was obvious that for this PS and under the tested conditions, only
salts containing I− as counterion were capable of potentiate the
antimicrobial photodynamic inactivation. Similar results were
earlier observed when other PSs were tested (Hamblin, 2016).
As the combinations PS + KI and PS + NaI were both effective
to inactivate the E. coli, the potentiation of the others PSs was
performed in the presence of the most studied salt KI.

Besides the difficulty of explaining which of the two
proposed pathways of decomposition of peroxyiodide produced
by the reaction of 1O2 and I− (see Figure 1) are responsible for
the extra microbial killing when KI is present, it was assumed,
as proposed previously in other studies, that some information
can be taken by the profile of inactivation. If the inactivation
curve shows a sharp decrease, free iodine is the main killing
species, but if there is a more gradual increase in killing, then
there is a contribution from short-lived reactive iodine species
(Huang et al., 2018a). Considering the above, we tried to explain
the results obtained with the two series of cationic porphyrins,
including the neutral Tetra-Py, and with the non-porphyrinic
PSs. In Table 1 are summarized the results obtained concerning
the inactivation profile observed for each combination of KI and
PS at 5.0 µM in the photoinactivation of bioluminescent E. coli.

These results allow to classify the PSs studied as: (1) PSs in
which its efficiency was potentiated by KI and it was observed a
gradual decrease in the E. coli survival rate profile [Mono-Py(+)-
Me, β-ImiPhTPP, β-ImiPyTPP, and β-BrImiPyTPP]; (2) PSs in
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which its efficiency was potentiated by KI and it was observed
an abrupt decrease in the E. coli survival rate profile [Tri-Py(+)-
Me, Tetra-Py(+)-Me, Form, RB, and MB]; and (3) PSs in which
its efficiency was not potentiated by KI [Di-Py(+)-Me opp, Di-
Py(+)-Me adj, Tetra-Py, TBO, CV, and MG].

Based on the explanations given in previous works, we can
assume that the mechanism of action of the combinations of
KI and the PSs Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP,
and β-BrImiPyTPP is probably related to the preferential
decomposition of the peroxyiodide to the iodine radicals (I·−2 )
that, due to their short diffusion distance, cause a gradual
decrease in the photoinactivation profile. In the case of Tri-
Py(+)-Me, Tetra-Py(+)-Me, Form, MB and RB the preferential
decomposition of the peroxyiodide leads to the formation of
free iodine (I2/I−3 ), which contributes significantly for the abrupt
increase observed in the photoinactivation profile of the E. coli.
This fact was confirmed by the formation of iodine, visible by
spectroscopy (Figure 7) and by the color alteration during the
irradiation in the presence of starch (Figure 8): PSs that cause a
sharp decrease in the E. coli survival rate profile revealed higher
ability to produce I2. On the other hand, the belatedly detection
of I2 was observed for PSs that cause a gradual decrease in the
E. coli survival rate profile.

In the cases of PSs in which the efficiency was not potentiated
by KI, or was even reduced, we need also to look at other factors
that can likewise contribute to this behavior.

The different behavior observed with the dicationic PSs Di-
Py(+)-Me opp (the efficacy was lost in the presence of KI) and
Di-Py(+)-Me adj (no potentiation with KI) (Figures 4B,C) is
probably related with their structural features since both isomers
have similar capability to generate 1O2 with high efficiency, as it
was described by Simões et al. (2016). Consequently, it can be
assumed that both compounds are able to promote the formation
of peroxyiodide and its decomposition to iodine radical species
(I·−2 ). However, for Di-Py(+)-Me opp these radicals, with a short
diffusion distance, probably were not generated close to the
target cells and the depletion of 1O2 by the previous reaction
was responsible by losing its previous efficacy. On the other
hand, for Di-Py(+)-Me adj the formation of toxic radicals in
close proximity to the target cells can justify the maintenance
of its efficacy. However, the toxicity under these conditions was
comparable to the previous one in the absence of iodide. The
different charge distribution in the two di-cationic porphyrins
can explain the different behavior in the presence of KI. A study
of Alves et al. (2011a) showed the massive importance of the
charge distribution in these two PS efficacies. In this work, the
photodynamic inactivation of E. coli and Enterococcus faecalis
using the two isomeric di-cationic porphyrins with different
charge distribution showed that the porphyrin with adjacent
cationic groups was significantly more active (for both bacteria)
than the one with the cationic groups located in opposite
meso positions. This fact was justified by the distortion of the
macrocycle induced by the electrostatic repulsion between the
neighboring charged groups in the porphyrin with adjacent
cationic groups (Kessel et al., 2003). So, in the case of
porphyrinic PSs with cationic groups located in opposite meso
positions, accompanied by the preferential decomposition of the

Frontiers in Microbiology | www.frontiersin.org 13 November 2018 | Volume 9 | Article 2665242

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02665 November 15, 2018 Time: 18:34 # 14

Vieira et al. aPDT Potentiated by Potassium Iodide

peroxyiodide to the iodine radicals, as it was observed with
Di-Py(+)-Me opp, the addition of KI can even impair the
aPDT efficacy. With the porphyrin derivatives Di-Py(+)-Me adj,
Mono-Py(+)-Me, and β-ImiPyTPP the asymmetric distribution
of the charge allows the radicals to reach the bacterial cells more
effectively. However, the potentiation of the aPDT processes
mediated by Mono-Py(+)-Me and β-ImiPyTPP in the presence
of KI but not by Di-Py(+)-Me adj can also be due to the
higher production of free iodine by the two first porphyrins when
compared with porphyrin Di-Py(+)-Me adj.

Neutral Tetra-Py revealed to be inefficient to photoinactivate
E. coli, even when KI was used. This can be explained by the
fact that this is a neutral PS, and consequently, is not capable to
interact with the external membrane of the cell wall of this Gram-
negative bacterium. Thus, even when 1O2 is produced in great
amounts, the cytotoxic species will never be close enough to the
bacterial cells to cause damage. It is also important to refer that
this porphyrin tends to aggregate in aqueous media, making it
difficult to act as a PS.

CV is known to have an efficient non-radiative deactivation
route producing triplet species, such as 1O2, with low yield and
acting mainly through an electron-transfer mechanism (Type
I), which causes its bleaching (Docampo et al., 1983; Indig
et al., 2000). The results clearly indicate its low efficiency in
the photoinactivation of E. coli, either when acting alone or
combined with KI. These results are justified by its poor 1O2
production rates allied to its photodegradation when irradiated.
Such as in the case of CV, it was not surprising that MG did not
produced any effect in the photoinactivation of bioluminescent
E. coli, since this PS dye did not produce 1O2, acting only by
the Type I mechanism (Zhuo, 2016). These two PSs dyes show
the importance that 1O2 generation has in the potentiation of
aPDT processes mediated by KI. The TBO acts mainly by Type
II mechanism and, when acting alone inactivate efficiently the
bacteria, as MB and RB. However, when combined with KI,
no potentiation was observed. There is, however, a study in the
literature reporting the potentiation of the effect of TBO by
KI, but in this study the TBO was tested at 100 µM (Ghaffari
et al., 2018). In our case, the concentration of TBO was 20 times
lower (5.0 µM). These different experimental conditions can
justify the differences observed in these two studies. Nevertheless,
using NaN3 as potentiation agent, the aPDT effect of TBO
was more effective when compared with the result without the
NaN3 (Kasimova et al., 2014). MB used as the reference for
all non-porphyrin dyes, once is the most commonly studied
antimicrobial PS in the literature and has received regulatory
approval to mediate photodynamic therapy (PDT) of several
infectious diseases, acts mainly trough Type II mechanism
(Marotti et al., 2010; de Oliveira et al., 2014). Moreover, its
aPDT potentiation when combined with KI was already described
(Vecchio et al., 2015). Besides that, and according with our
results, MB can be designated as a PS reference for evaluate the
potentiation of these dyes by KI.

It remains unanswered which factor determines whether the
mechanism follows via formation of iodine radical species (I·−2 )
or via formation of free iodine (I2/I−3 ). To answer this question,
we cannot neglect other factors that can also contribute for

the efficiency of these PSs, such as 1O2 production, charge
number and distribution, aggregation behavior, affinity for the
cell membrane.

It is undeniable that the ability of KI to potentiate the aPDT
process mediated by some cationic PSs, allows a drastic reduction
of the aPDT treatment time as well as the reduction of the PS
concentration. However, this potentiation is limited to some PSs
and the addition of KI can even impair some PSs. This work
helped to elucidate that for the series of compounds studied,
the PSs capable to decompose the peroxyiodide into iodine
(easily detectable by monitoring the formation of I2 through
spectroscopy or by the visual appearance of a blue color in
the presence of starch) are the promising ones in terms of
complementing their efficacy with the action of iodine. Although
these studies confirm that the generation of 1O2 is an important
fact in this process, the PS structure, aggregation behavior and
affinity for the cell membrane are also important features to take
into account.
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Vera Manageiro1,2, Raquel Romão1, Inês Barata Moura1, Daniel A. Sampaio3,
Luís Vieira3, Eugénia Ferreira1,2, the Network EuSCAPE-Portugal and Manuela Caniça1,2*

1 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious
Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal, 2 Centre for the Studies of Animal Science,
Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal, 3 Innovation
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In Portugal, the epidemiological stage for the spread of carbapenemase-producing
Enterobacteriaceae (CPE) increased from sporadic isolates or single hospital
clones (2010–2013), to hospital outbreaks, later. Here we report data from a 6-
month study performed under the European Survey on Carbapenemase-Producing
Enterobacteriaceae (EuSCAPE). During the study period, 67 isolates (61 Klebsiella
pneumoniae and 6 Escherichia coli) non-susceptible to carbapenems were identified in
participant hospital laboratories. We detected 37 blaKPC−type (including one new variant:
blaKPC−21), 1 blaGES−5, and 1 blaGES−6 plus blaKPC−3, alone or in combination with
other bla genes. Bioinformatics analysis of the KPC-21-producing E. coli identified the
new variant blaKPC−21 in a 12,748 bp length plasmid. The blaKPC−21 gene was harbored
on a non-Tn4401 element, presenting upstream a partial ISKpn6 (1ISKpn6/1traN)
with the related left IR (IRL) and downstream a truncated Tn3 transposon. PFGE and
MLST analysis showed an important diversity, as isolates belonged to distinct PFGE
and STs profiles. In this study, we highlighted the presence of the high-risk clone E. coli
sequence-type (ST) 131 clade C/H30. This worldwide disseminated E. coli lineage was
already detected in Portugal among other antibiotic resistance reservoirs. This study
highlights the intra- and inter-hospital spread and possible intercontinental circulation of
CPE isolates.

Keywords: carbapenemase-producing Enterobacteriaceae, KPC-21, EuSCAPE, Portugal, Klebsiella pneumoniae,
Escherichia coli
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INTRODUCTION

Carbapenems, a class of β-lactam antibiotics with wide
activity, are often the antimicrobials of last resort to treat
infections associated to extended-spectrum β-lactamase
(ESBL)- or plasmid-mediated AmpC (PMAβ)-producing
Enterobacteriaceae isolates (Papp-Wallace et al., 2011;
Rodríguez-Baño et al., 2018). Unfortunately, carbapenem
non-susceptible Enterobacteriaceae (CNSE) have been reported
worldwide mainly because of the acquisition of carbapenemase-
encoding genes (Potter et al., 2016; Codjoe and Donkor, 2018).
Since the first description of a carbapenemase-producing
Enterobacteriaceae (CPE) in Europe in the 1990s, a large
variety of carbapenemases has been identified in each of the
four Ambler molecular classes, mainly the KPC-type (class
A), VIM-, IMP-, and NDM-types (class B), and OXA-48-type
(class D) (Grundmann et al., 2017; Logan and Weinstein,
2017). CPE isolates are usually resistant to many other β-lactam
and non-β-lactam antibiotics, leading to multi-resistant
isolates.

In Portugal, the epidemiological stage for the spread
of CPE increased from sporadic isolates or single
hospital clones, from April 2010 to February 2013, to
sporadic hospital outbreaks later (Albiger et al., 2015;
Manageiro et al., 2015b,c). Here we report data from a 6-
month prevalence study performed under the European
Survey on Carbapenemase-Producing Enterobacteriaceae
(EuSCAPE) with the collaboration of different Portuguese
Laboratories.

MATERIALS AND METHODS

Bacterial Isolation, Antibiotic
Susceptibility, and Molecular
Characterization
This study included a total of 104 clinical isolates (94
Klebsiella pneumoniae and 10 Escherichia coli) collected
from November 2013 to April 2014 in 10 Portuguese hospitals.
The first ten consecutive and non-replicated CNSE isolates
obtained during this period, in each hospital, from blood,
lower respiratory tract secretions, urine, puncture fluids,
and wound secretions, of single patients, were sent to
the National Reference Laboratory, in Lisbon, and were
considered. Successive carbapenem-susceptible isolates of
the same species were also preserved as controls whenever
possible, accordingly to EuSCAPE protocol (Grundmann
et al., 2017). Overall, 67 CNSE (61 K. pneumoniae and 6
E. coli) and 37 controls (33 K. pneumoniae and 4 E. coli) were
analyzed.

In the context of the EuSCAPE study, all data were
anonymized and collected in accordance with the European
Parliament and Council decisions on the epidemiological
surveillance and control of communicable disease in the
European Community (Eur-Lex-31998D2119, 1998; Eur-Lex-
32000D0096, 2000).

Antibiotic Susceptibility and Molecular
Characterization of Antimicrobial
Resistance
Antimicrobial susceptibility was performed by disk diffusion
method for 15 antibiotics (Table 1), and by broth microdilution
method for tigecycline and colistin, using EUCAST guidelines1.
Clinical isolates with resistance or with decreased susceptibility
to ertapenem were considered presumptively CPE. Isolates
were considered multidrug resistant when presenting
reduced susceptibility to three or more structurally unrelated
antibiotics.

PCR and sequencing were applied to detect and identify the
main CPE (blaKPC and blaGES from class A; blaIMP, blaVIM,
and blaNDM from class B; and blaOXA−48 from class D)-, ESBL
(blaTEM, blaSHV, blaOXA, blaCTX−M) – and PMAβ (blaCMY,
blaMOX, blaFOX, blaLAT, blaACT, blaMIR, blaDHA, blaMOR,
blaACC)-encoding genes, as previously described (Manageiro
et al., 2015b). Plasmid-mediated colistin resistance-encoding
genes (mcr-type) were also investigated (Manageiro et al.,
2017).

Transfer Experiments
Transferability of blaKPC−21 from E. coli UR19829 was
performed by broth mating out assays using sodium
azide-resistant E. coli J53 as a recipient strain, and by
transformation, as previously described (Manageiro et al.,
2015b, 2017).

Molecular Typing
Clonal relatedness of 67 CNSE isolates was investigated
by pulsed-field gel electrophoresis (PFGE) as previously
described (Manageiro et al., 2017). Genetic diversity of the
K. pneumoniae (n = 10, i.e., 1 representative of each PFGE
cluster) and E. coli (n = 10) isolates was investigated by
multilocus sequence typing (MLST) (Manageiro et al., 2015b).
E. coli sequence type (ST) subclones were also analyzed
on the basis of the E. coli fimH gene (Manageiro et al.,
2015a).

Genomic Characterization of
KPC-21-Producing E. coli
KPC-21-producing E. coli was genotypically characterized by
whole-genome sequencing (WGS) as previously described
(Manageiro et al., 2017). The assembled contigs were analyzed
and studied for the presence of antibiotic resistance- and
virulence-encoding genes, multi-locus sequence types, fim type,
serotype, plasmid replicon types, and insertion sequences (ISs)
using bioinformatics tools from the Center for Genomic
Epidemiology2 and ISsaga (Varani et al., 2011).

The pUR19829-KPC21 plasmid structure was constructed
based on the genetic organization of the closest plasmid

1http://www.eucast.org/clinical_breakpoints/
2https://cge.cbs.dtu.dk/services/
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sequences obtained by BLASTn, provided by NCBI3, followed by
contig neighbor’s prediction from assembly information.

Statistical Analysis
OpenEpi software, version 3.01 was used for statistical analysis
(Sullivan et al., 2009). Fisher exact test was used to assess
differences in clinical and epidemiological risk factors for control
and CNSE-carrying patients. One-tailed P values of ≤0.05
were considered to be statistically significant. Associations were
determined by calculation of odds ratios with 95% confidence
intervals.

Nucleotide Sequence Accession Number
The new blaKPC−21 nucleotide sequence was submitted to the
NCBI GenBank Database with accession number NG_049254
and the complete plasmid sequence of pUR19829-KPC21 with
accession number MH133192.

RESULTS AND DISCUSSION

During the study period, 67 isolates (61 K. pneumoniae and
6 E. coli) CNSE were identified in nine of the 10 Hospital
Laboratories, with a non-susceptibility rate for meropenem and
imipenem of 64 and 59%, respectively, for K. pneumoniae,

3http://blast.ncbi.nlm.nih.gov/Blast.cgi

and of 100% for E. coli. As expected, when compared with
the control isolates, CNSE presented higher level of non-
susceptibility to all antibiotic classes tested (Table 1). Colistin
and tigecycline MIC50 values for CNSE were similar than
those obtained for control isolates. Eleven out of the 104
(16.3%) isolates were colistin resistant, without the presence of
the plasmid-mediated mcr-1 or mcr-2 gene. However, MCR-
1 determinant was already identified in different reservoirs
in Portugal, such as vegetables, animals and humans (Jones-
Dias et al., 2016; Beyrouthy et al., 2017; Kieffer et al.,
2017).

Thirty-eight (56.7%) isolates (36 K. pneumoniae, 2 E. coli)
were confirmed to be CPE; we identified 36 blaKPC−type
(including one new variant: blaKPC−21), 1 blaGES−5, and 1
blaGES−6 plus blaKPC−3, alone or in combination with other
bla genes (Supplementary Figure S1). The remaining 29
isolates were non-susceptible to carbapenems possibly due to
porins deficiency with association of PMAβ (CMY-2 and DHA-
1) and/or ESBL (mainly CTX-M-15) production (Martínez-
Martínez, 2008).

The new blaKPC−21 gene differed from blaKPC−2 by one point
mutation that leads to the amino acid substitution Trp105Arg;
this position is involved in the binding and maintaining of
the KPC catalytic activity (Papp-Wallace et al., 2010). In silico
typing revealed an KPC-21-producing E. coli belonging to ST131
clade C/H30, associated with the fimbriae-encoding fimH allele
30, which become the most dominant lineage since the 2000s

TABLE 1 | Antimicrobial susceptibility of 67 (61 K. pneumoniae and 6 E. coli) CNSE and 37 (33 K. pneumoniae and 4 E. coli) control isolates.

Antibiotic K. pneumoniae E. coli

Control (n = 33) CNSE (n = 61) Control (n = 4) CNSE (n = 6)

IR (%) S (%) IR (%) S (%) IR (%) S (%) IR (%) S (%)

Ampicillin 100 0 100 0 100 0 100 0

Amoxicillin/Clavulanate 30 70 89 11 25 75 100 0

Piperacillin/Tazobactam 58 42 98 2 25 75 100 0

Cefotaxime 30 70 92 8 25 75 100 0

Ceftazidime 36 64 95 5 25 75 100 0

Cefepime 36 64 90 10 25 75 100 0

Aztreonam 30 70 92 8 25 75 100 0

Imipenem 0 100 59 41 0 100 100 0

Meropenem 0 100 64 36 0 100 100 0

Ertapenem 0 100 100 0 0 100 100 0

Ciprofloxacin 36 64 69 31 25 75 100 0

Gentamicin 21 79 64 36 50 50 83 17

Tobramycin 33 67 74 26 50 50 83 17

Amikacin 0 100 18 82 0 100 17 83

SXT 33 67 90 10 50 50 67 33

Colistin∗ 6 94 11 89 0 100 0 100

MIC50 1 1 1 1

MIC90 2 4 2 2

Tigecycline∗ 39 61 56 44 0 100 33 67

MIC50 1 2 0.5 0.5

MIC90 4 4 1 4

∗Microdilution method.
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FIGURE 1 | Schematic representation of KPC-21-harboring plasmid (pUR19829-KPC21). Genes are denoted by arrows. Blue, antibiotic resistance genes; Green,
mobile genetic elements; Yellow, plasmid mobilization genes and replication origin. Right and left inverted repeats (IRR and IRL) are indicated as red triangles. Gray
regions 1: 99.97% of identity with KX756453, and Gray region 2: >99.9% sequence identity to KT896499.

(Nicolas-Chanoine et al., 2014; Pitout and DeVinney, 2017).
Moreover, bioinformatics analysis of the KPC-21-producing
E. coli identified this variant in a 12,748 bp length plasmid,
with a mean coverage of 580-fold and GC content of 58.5%
(Figure 1).

Dissemination of blaKPC has been mainly supported by
the horizontal transfer of Tn4401-type transposon, which
harbors tnpA encoding a transposase, tnpR encoding resolvase,
and two insertion sequence elements (ISKpn7 and ISKpn6)
bracketing the blaKPC gene (Cuzon et al., 2011). In this
study, the blaKPC−21 gene was harbored on a non-Tn4401
element (Chen et al., 2014), presenting upstream a partial
ISKpn6 (1ISKpn6/1traN) with the related left IR (IRL)
and downstream truncated Tn3 transposon downstream
(Figure 1). This region has 99.97% of identity with pKP1194a,
a plasmid carried by a hospital-associated KPC-2-producing
K. pneumoniae isolated in Brazil (Accession number KX756453)
(Figure 1- gray region I); this suggest an intercontinental
circulation of isolates and mobile genetic elements (MGE),
and the consequent need of concerted actions against the
spreading of antibiotic resistance, at a worldwide level. The

pUR19829-KPC21 enclosed also an intact ISPsp7 element,
an insertion sequence from IS30 family, firstly described in
Pseudomonas spp. (Szuplewska et al., 2014). Furthermore,
the pUR19829-KPC21 backbone contained a region coding
for plasmid replication (IncQ2 repA, repC), and mobilization
(mobA, mobC), showing >99.9% sequence identity to the
corresponding regions of pKPSH169, a 7.7 Kbp qnrS2-
harboring IncQ plasmid identified in municipal wastewater
treatment facilities in Israel (Accession number KT896499)
(Figure 1- gray region II); this similarity highlights the high
level of promiscuity of isolates between clinical settings
and environment, where both reservoirs play a role in the
antibiotic resistance dissemination (Stokes and Gillings,
2011). However, the lack of conjugative elements or an
oriT region, associated with the presence of a truncated
oriV region (Figure 1) suggests that pUR19829-KPC21
plasmid is nonmobilizable (Smillie et al., 2010). This fact is
corroborated by the absence of a successful plasmid conjugation
or transformation.

The variables used in the evaluation of risk factors for
infection or colonization of patients with CNSE or control
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TABLE 2 | Evaluation of risk factors for patients with infections caused by carbapenem susceptible or CNSE bacteria.

Variables CNS isolates (no.) Control isolates (no.) OR 95% CI P value

Region of patient admission

North 20 13 0.7874 0.3094–2.038 0.3666(P)

Center 11 1 6.977 0.9398–312.7 0.03098

LVT 36 23 0.7092 0.2848–1.726 0.2670(P)

Patient age

≤18 years old 3 1 1.68 0.1294–91.01 0.5522

19–64 22 12 1.018 0.401–2.66 0.5727

≥65 37 18 1.299 0.5389–3.146 0.3305

Unknown 5 6 – – –

Patient gender

Female 31 18 0.9098 0.3769–2.197 0.4885(P)

Male 35 14 1.787 0.7359–4.453 0.1142

Unknown 1 5 – – –

Bacteria vs. host infection

Colonization 0 2 0 0.0–2.912 0.1243(P)

Infection 28 22 0.493 0.1989–1.194 0.06393(P)

Unknown 39 13 – – –

Type of infection

Community Onset 26 15 0.9307 0.3804–2.305 0.5127(P)

Hospital Acquisition 31 11 2.022 0.8072–5.311 0.07451

Unknown 10 11 – – –

Local of infection

Urinary tract infection 39 21 1.061 0.4334–2.574 0.5242

Blood infection 8 4 1.117 0.2737–5.463 0.5679

Pus production with bacteria 7 1 4.155 0.5004–194.5 0.1502

Lower respiratory tract infection 4 3 0.7219 0.1148–5.215 0.4825(P)

Other infections 8 2 2.356 0.4353–24 0.2365

Unknown 1 6 – – –

ESBL production

Positive 37 8 4.406 1.66–12.87 0.0007772

Negative 30 29 0.227 0.0777–0.6024 0.0007772 (P)

Total 67 76

OR, odds ratios; CI, 95% confidence intervals. (P) indicates a one-tail P-value for protective or negative association. One-tailed P values of ≤ 0.05 are underlined. LVT,
Lisbon and Tagus Valley.

isolates are present in Table 2. When compared to the 37
control strains, only ESBL-production and the patient admission
at a hospital in the center of Portugal were significantly
associated with CNSE isolates in the period of the study. In
the era of ESBL-producing Enterobacteriaceae, the antibiotic
regimens suggested for severe health-associated infections are
necessarily based on carbapenems (Rodríguez-Baño et al.,
2018). Unfortunately carbapenem use has being described as
a risk factor for CPE acquisition, only preceded by the use
of medical devices (van Loon et al., 2018). In addition, the
present study attests that Portugal, during the period of the
study, has a different CNSE geographical distribution with the
center of Portugal significantly associated with carbapenem
non-susceptibility. This fact corroborates previous studies
which indicated that in Portugal, in 2015, only sporadic
isolates or single hospital cases were described (Albiger et al.,
2015).

PFGE and MLST analysis showed an important
diversity, with isolates belonging to distinct PFGE and STs

(Supplementary Figure S1). With respect to K. pneumoniae
(Supplementary Figure S1A), a total of 10 clusters and 25
unique PFGE profiles were generated using XbaI, indicating the
that the circulating clones in that period were genetically diverse.
However, carbapenemase-producing K. pneumoniae isolates
were more clonal (six PFGE clusters including 69.4% of these
isolates) than non-carbapenemase-producing K. pneumoniae
(four PFGE clusters including 50.0% of these isolates). As
shown in Supplementary Figure S1, both CNSE species
showed intra- and inter-hospital spread (e.g., PFGE clusters
KpI and KpIX), with some hospital-specific clones (e.g., PFGE
clusters KpIV and KpVIII). However, as also showed in Spain
in other EuSCAPE study (Esteban-Cantos et al., 2017), the
carbapenem-non-susceptible K. pneumoniae population was
more clonal than the carbapenem-susceptible population
(data not shown). Ten different MLSTs were detected among
carbapenemase-producing (ST14, ST15, ST45, ST231, and
ST1513) and non-carbapenemase-producing (ST11, ST17,
ST348, and ST395) K. pneumoniae isolates. At our knowledge,
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this is the first description of ST17, ST395, and ST1513
K. pneumoniae in Portugal (Manageiro et al., 2015b; Rodrigues
et al., 2016; Vubil et al., 2017). Noteworthy, the GES-5
enzyme was detected in a ST231 K. pneumoniae isolate as
previously reported in Portugal, but in the same hospital,
which shows its capacity to maintain in clinical settings due to
the selection pressure of this environment (Manageiro et al.,
2015b). Furthermore, ST45 was recently the cause of a hospital-
based outbreak caused by multidrug-resistant, KPC-3- and
MCR-1-producing K. pneumoniae in Portugal (Mendes et al.,
2018).

The high-risk clone carbapenemase-positive K. pneumoniae
ST258 was not detected in this study or among clinical
carbapenemase-producing K. pneumoniae isolates in Portugal
(Manageiro et al., 2015b; Rodrigues et al., 2016; Vubil
et al., 2017). However, concerning carbapenem-non-susceptible
E. coli, besides the six different PFGE unique profiles, the
isolates belongs all but two (ST405-fimH27 and ST23-fimH35)
to the ST131 clade C/H30 high-risk clone disseminated
worldwide (Supplementary Figure S1B) (Woodford et al.,
2011; Pitout and DeVinney, 2017). Noteworthy, this clone
was already detected in Portugal among other antibiotic
resistance reservoirs, such as in an E. coli strain isolated
from a dolphin housed at a Zoo Park (Manageiro et al.,
2015a); in dogs and cats with urinary tract infection (Marques
et al., 2018); and in E. coli strains from wastewater and
gulls (Varela et al., 2015). Again, this shows that clinical
settings and different environmental compartments may be
considered communicating vessels through which bacteria
and resistance genes are able to flow (Stokes and Gillings,
2011).

Portugal was one of the EuSCAPE participating countries that
presented higher proportions of KPC-positive K. pneumoniae
(Grundmann et al., 2017). The percentage of carbapenem non-
susceptible K. pneumoniae was low in invasive infections
in the study period [2.4%, EARS-Net 2013]4. However,
although the consumption of carbapenems has declined by
13.3% between 2012 and 2016 (PPCIRA, 2017), Portugal
is reporting since 2013 a significant increasing trend of
carbapenem non-susceptible K. pneumoniae [6.4%, EARS-
Net 2016]4. The number of inter-institutional transmission
is also increasing (Glasner et al., 2013; Albiger et al., 2015),
being K. pneumoniae the principal cause of bacterial health-
associated infections in Portugal, as in other European
countries (ECDC, 2013). Of concern is the fact that KPC-
producing organisms cause infections with high morbidity
and mortality (Porreca et al., 2018; Rodríguez-Baño et al.,
2018). These results reinforces that reducing antibiotic
use alone is likely insufficient for reversing resistance
(Lopatkin et al., 2017). We strongly believe that the chain
of transmission of isolates and genes in clinical settings
will be reduced or broken, especially with containment
measures rigorously implemented and followed at local
level.

4https://ecdc.europa.eu/

MEMBERS OF THE NETWORK
EuSCAPE-PORTUGAL
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FIGURE S1 | Pulsed-field gel electrophoresis (PFGE) dendrogram and genetic
relatedness of 61 K. pneumoniae (A) and 6 E. coli (B) CNSE isolates. Isolate
number, hospital code, year of isolation, carbapenems antibiotic susceptibility,
detected carbapenemases, extended-spectrum β-lactamases (ESBL), inhibitor
resistant SHV (IRS), and plasmid-mediated AmpC (PMAβ), Multilocus sequence
typing (MLST) for selected isolates and PFGE profile types are shown. These
profiles, from 0001 to 0035, were defined as forming clusters KpI to KpX, for
K. pneumoniae, and from 0001 to 0006 for E. coli. For E. coli isolates, fim-type is
also shown.
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Combined Antibacterial Effects of
Goat Cathelicidins With Different
Mechanisms of Action
Pavel V. Panteleev1, Ilia A. Bolosov1, Alexander À. Kalashnikov1, Vladimir N. Kokryakov2,
Olga V. Shamova2, Anna A. Emelianova1, Sergey V. Balandin1 and
Tatiana V. Ovchinnikova1*

1 M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow,
Russia, 2 Institute of Experimental Medicine, Saint Petersburg, Russia

Being essential components of innate immune system, animal antimicrobial peptides
(AMPs) also known as host-defense peptides came into sharp focus as possible
alternatives to conventional antibiotics due to their high efficacy against a broad range
of MDR pathogens and low rate of resistance development. Mammalian species
can produce a set of co-localized AMPs with different structures and mechanisms
of actions. Here we examined the combined antibacterial effects of cathelicidins,
structurally diverse family of host-defense peptides found in vertebrate species. As a
model we have used structurally distinct cathelicidins expressed in the leukocytes of
goat Capra hircus. The recombinant analogs of natural peptides were obtained by
heterologous expression in bacterial system and biological activities as well as the
major mechanisms of antibacterial action of the peptides were investigated. As the
result, the marked synergistic effect against wide panel of bacterial strains including
extensively drug-resistant ones was observed for the pair of membranolytic α-helical
amphipathic peptide ChMAP-28 and Pro-rich peptide mini-ChBac7.5Nα targeting a
bacterial ribosome. ChMAP-28 was shown to damage the outer bacterial membrane
at sub-inhibitory concentrations that could facilitate Pro-rich peptide translocation into
the cell. Finally, resistance changes under a long-term continuous selective pressure of
each individual peptide and the synergistic combination of both peptides were tested
against Escherichia coli strains. The combination was shown to keep a high activity
after the 26-days selection experiment in contrast to mini-ChBac7.5Nα used alone
and the reference antibiotic polymyxin B. We identified the point mutation leading
to amino acid substitution V102E in the membrane transport protein SbmA of the
mini-ChBac7.5Nα-resistant strain obtained by selection. The experiments revealed that
the presence of sub-inhibitory concentrations of ChMAP-28 restored the activity of
mini-ChBac7.5Nα against this strain and clinical isolate with a weak sensitivity to
mini-ChBac7.5Nα. The obtained results suggest a potential medical application of
synergistic combinations of natural cathelicidins, which allows using a lower therapeutic
dose and minimizes the risk of resistance development.

Keywords: antimicrobial peptide, cathelicidin, goat, proline-rich peptide, synergy, extensively drug-resistant,
immune system

Frontiers in Microbiology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 2983254

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.02983
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.02983
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.02983&domain=pdf&date_stamp=2018-11-30
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02983/full
http://loop.frontiersin.org/people/586166/overview
http://loop.frontiersin.org/people/198773/overview
http://loop.frontiersin.org/people/609170/overview
http://loop.frontiersin.org/people/583736/overview
http://loop.frontiersin.org/people/511911/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02983 November 29, 2018 Time: 17:34 # 2

Panteleev et al. Combined Antibacterial Effects of Goat Cathelicidins

INTRODUCTION

Over recent years, a growing number of bacterial species
became resistant to clinically significant antibiotics. Host defense
antimicrobial peptides (AMPs) came into sharp focus as possible
alternatives to conventional antibiotics due to their high efficacy
against a broad range of multiple drug-resistant pathogens, a
rapid membranolytic mode of action and, as consequence, a low
risk of resistance development. Cathelicidins, one of the major
groups of animal AMPs, are known to be the key molecular
factors of innate immunity of most vertebrate species, from
hagfish to human (Kościuczuk et al., 2012). Along with direct
antimicrobial action, these peptides possess immunomodulatory
activities, such as inhibition of apoptosis, cytokine stimulating,
lipopolysaccharide (LPS) neutralizing, promotion of wound
healing, and regulation of adaptive immune responses. All
the above suggest that these compounds can be prototypes
for novel therapeutics with complex mechanism of action
(Steinstraesser et al., 2011). The precursors of cathelicidins
are produced in immune and epithelia cells and contain the
N-terminal part of 99–114 amino acid residues which is known
as the cathelin domain. This structure is highly conserved
among vertebrates, whereas the C-terminal domain, encoding the
mature peptide, shows substantial heterogeneity. Interestingly,
the cathelin domain does not exhibit a protease inhibitory
function regardless of its high structural similarity to cystatins
(Pazgier et al., 2013). Therefore, the question why the cathelin
domain is highly conserved among vertebrate cathelicidins is
still open. It is believed that the precursor proteins could play a
role in the secretion, intracellular trafficking as well as prevent
cytotoxicity of mature peptides and their proteolytic degradation.
The potential toxicity of cathelicidins is also controlled by their
compartmentalization in cytoplasmic granules of immune cells.
In case of contact with pathogens AMPs are activated by fusion of
procathelicidin-containing specific granules (or large granules of
ruminant neutrophils) with the elastase/proteinase 3-containing
azurophil granules and either the cytoplasmic membrane or
phagosome (Graf et al., 2017). Secondary structures of mature
cathelicidins include α-helices, β-hairpins, and extended linear
regions enriched with Trp or Pro residues. Interestingly,
neutrophils of some artiodactyls, including goats, do not contain
defensin-like AMPs (Zhao et al., 1999), suggesting a key role of
cathelicidins in the protection of these animals against pathogens.
Study of artiodactyl cathelicidins can provide new molecular
insight into their role in the host defense.

A number of studies on the synergy between AMPs and
conventional antibiotics have been performed over the last years
(Cassone and Otvos, 2010; Reffuveille et al., 2014; Simonetti
et al., 2014; Ribeiro et al., 2015; de la Fuente-Núñez et al.,
2016; Lázár et al., 2018). In contrast, the synergy between
AMPs is not well investigated although this phenomenon might
contribute to understanding of substantial peptide diversity
at any host anatomic site. In most cases the repertoire of
structurally diverse animal AMPs make possible both disturbing
the membrane integrity of pathogenic microorganisms and
inhibiting a number of metabolic processes via interaction
with intracellular targets. Such a complex mechanism of

action appears to prevent the development of resistance to
AMPs. The present work is aimed to examine combined
antibacterial effects of structurally distinct cathelicidins expressed
in leukocytes of the domestic goat Capra hircus. Previously,
we have isolated two novel AMPs mini-bactenecins, designated
as mini-ChBac7.5Nα and mini-ChBac7.5Nβ, from leukocytes
of the domestic goat (Shamova et al., 2016). These peptides
are N-terminal fragments (22 and 21 aa, respectively) of the
hypothetic ChBac7.5 peptide also classified as cathelicidin-3.
Being Pro-rich AMPs, mini-bactenecins are thought to target
intracellular structures such as the 70S ribosome and/or heat
shock protein DnaK (Graf et al., 2017). In the study, we
investigated a biological significance of the PRPRPR fragment
localized at the C-terminus of mini-ChBac7.5Nα. For this
purpose, a comparative testing of the wild-type peptide and its
short derivative termed as mini-ChBac7.5Nα(1–16) was carried
out. Earlier, bovine Bac7(1–16) was shown to be the minimal
fragment of the native 60-residue peptide Bac7 displaying both
antimicrobial activity in broth microdilution tests and ability to
inhibit protein synthesis in vitro (Benincasa et al., 2004; Seefeldt
et al., 2016). Along with mini-ChBac7.5Nα, the previously not
investigated C. hircus myeloid AMP cathelicidin-6, designated
as ChMAP-28, was chosen as the second component of the
model system. The peptide primary structure was deduced from
the deposited in GenBank mRNA sequence (AJ243126.1) coding
the appropriate precursor protein. The novel cathelicidin has
relatively high homology with the α-helical bovine cathelicidin
BMAP-27 (Figure 1). ChMAP-28 contains eleven basic amino
acid residues (Arg, Lys, His). As goat leukocytes were shown
to simultaneously express mRNA for both cathelicidin-3 and
-6 (Zhang et al., 2014), we supposed that the peptides were
co-localized in the cells and could act synergistically during
the immune response. The combined antibacterial effects of
the goat cathelicidins were studied by a checkerboard titration
method against a set of bacterial strains including the “ESKAPE”
pathogens. The role of each cathelicidin in the synergistic
cooperation and their predominant mechanisms of action
were elucidated. Finally, antibacterial activity changes under
a long-term continuous selective pressure of the individual
peptides and their combination were investigated against
Escherichia coli strains.

MATERIALS AND METHODS

All the bacterial strains used in this study are listed in
Table 1. The clinical isolates were collected and provided by
Sechenov First Moscow State Medical University hospital and
Solixant LLC (Moscow, Russia). The resistant to conventional
antibiotics strains were defined as extensively drug resistant
(XDR) according to (Magiorakos et al., 2012).

Expression and Purification of the
Antimicrobial Peptides
The recombinant plasmids for expression of the goat
cathelicidins were constructed with the use of pET-based vector
as described previously (Panteleev and Ovchinnikova, 2017).
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FIGURE 1 | Structure analysis of goat cathelicidins. (A) CD-spectra of ChMAP-28 in 10 mM sodium phosphate buffer (NAPB, pH 7.4), phosphate-buffered saline
(PBS, pH 7.4), 50% TFE, 30 mM SDS micelles, 30 mM DPC micelles. ∗The CONTINLL program (Provencher and Glöckner, 1981) was used for data analysis.
(B) Alignment of the mature ChMAP-28 with α-helical bovine, sheep, and hagfish cathelicidins. (C) Spatial structure of ChMAP-28 was simulated in the MODELLER
software (Sali and Blundell, 1993) by homology modeling on the basis of the NMR structure (D) of BMAP-27 (PDB 2KET) serving as a template. (E) Spatial structure
of the mini-ChBac7.5Nα(1–16) fragment was modeled and overlaid on the basis of the crystal structure of the Bac7(1–16) bound to bacterial 70S ribosome (PDB
5F8K). Varying residues are marked with red for goat cathelicidin and blue for bovine cathelicidin. The structures were visualized by the Chimera software (Pettersen
et al., 2004). (F) Amino acid frequency in mini-ChBac7.5Nα and its orthologs from mammalian species. The graph was plotted using the WebLogo server.

The target peptides were expressed in E. coli BL21 (DE3)
as chimeric proteins that included 8 × His tag, the E. coli
thioredoxin A with the M37L substitution (TrxL), methionine
residue, and a mature cathelicidin. The ChMAP-28 amino acid
sequence was translated from mRNA for the corresponding
precursor protein (GenBank: AJ243126.1) as a 27-residue
peptide without the C-terminal glycine, a common amidation
signal in cathelicidins. The transformed E. coli BL21 (DE3)
cells were grown up to OD600 1.0 at 37◦C in lysogeny broth
(LB) containing 20 mM glucose, 1 mM MgSO4, and 0.1 mM
CaCl2, 100 µg/ml of ampicillin and then were induced with
isopropyl β-D-1-thiogalactopyranoside (IPTG) at a final
concentration of 0.3 mM. The cells were cultivated for 5 h
at 30◦C with intense agitation. Then the cells were pelleted
by centrifugation and sonicated in immobilized metal affinity
chromatography (IMAC) loading buffer containing 6 M
guanidine hydrochloride. The clarified lysate was applied on
a column packed with Ni Sepharose (GE Healthcare). The
recombinant protein was eluted with the buffer containing
0.5 M imidazole. Then the eluate containing the fusion

protein was acidified (up to pH 1.0) and cleaved by 100-fold
molar excess of cyanogen bromide over methionine for
20 h at 25◦C in the dark. The reaction products were
lyophilized, dissolved in water, titrated to pH 5.0, and
loaded on a semi-preparative Reprosil-pur C18-AQ column
(10 mm × 250 mm, 5-µm particle size, Dr. Maisch GmbH).
Reversed-phase high-performance liquid chromatography
(RP-HPLC) was performed with a linear gradient of acetonitrile
in water containing 0.1% trifluoroacetic acid. The peaks were
monitored at 214 and 280 nm. The collected fractions were
analyzed by MALDI-TOF mass-spectrometry using Reflex III
instrument (Bruker Daltonics). The fractions containing the
target peptides were lyophilized and dissolved in water. The
synthetic melittin (>98% pure) was kindly provided by Dr.
Sergey V. Sychev (M.M. Shemyakin and Yu. A. Ovchinnikov
Institute of Bioorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russia). The recombinant tachyplesin-1 was
obtained as described previously (Panteleev and Ovchinnikova,
2017). The peptides concentrations were estimated using UV
absorbance.
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TABLE 1 | Bacterial strains used in this study.

Bacterial strain Characteristics (source, antibiotic
resistance)

Micrococcus luteus B-1314 Laboratory strain (VKM collection)

Bacillus subtilis B-886 Laboratory strain (VKM collection)

Enterococcus faecalis ATCC 29212 Laboratory strain (ATCC collection)

Staphylococcus aureus ATCC
29213

Laboratory strain (ATCC collection)

Staphylococcus aureus 209P Laboratory strain (ATCC collection)

Escherichia coli DH10B Cloning strain (Invitrogen)

Escherichia coli BL21 (DE3) Expression strain (Novagen)

Escherichia coli BL21 Star (DE3) Expression strain (Novagen)

Escherichia coli ML-35p Laboratory strain (ATCC collection)

Escherichia coli C600 Laboratory strain (ATCC collection)

Escherichia coli (XDR CI 1057) Extensively drug resistant clinical isolate
(urine, urinary tract infection; ESBL+)

Escherichia coli (CI 214) Clinical isolate (urine, acute
pyelonephritis)

Klebsiella pneumoniae (CI 287) Clinical isolate∗

Klebsiella pneumoniae (XDR CI
1056)

Extensively drug resistant clinical isolate
(urine, urinary tract infection; ESBL+)

Enterobacter cloacae (XDR CI
4172)

Extensively drug resistant clinical
isolate∗ (MBL+)

Acinetobacter baumannii (XDR CI
2675)

Extensively drug resistant clinical
isolate∗ (MBL+)

Pseudomonas aeruginosa PAO1 Laboratory strain (ATCC collection)

Pseudomonas aeruginosa (XDR CI
1049)

Extensively drug resistant clinical isolate
(urine, kidney stone disease; MBL+)

Proteus mirabilis (XDR CI 3423) Extensively drug resistant clinical
isolate∗ (MBL+)

CI, clinical isolate; ∗, no data available on strain source; XDR, extensively drug
resistant strain; ESBL+, extended spectrum beta-lactamase producing strain;
MBL+, metallo-beta-lactamase producing strain.

Circular Dichroism Spectroscopy and
Structure Analysis
Secondary structures of the cathelicidins were analyzed in
different environments by circular dichroism spectroscopy (CD)
with the use of Jasco J-810 instrument (Jasco) at 25◦C. The
experiment was performed in 10 mM sodium phosphate buffer
(NAPB, pH 7.4), phosphate-buffered saline (PBS, pH 7.4), 50%
TFE (Sigma), 30 mM DPC (Anatrace) micelles, and 30 mM SDS
(Sigma) micelles. Final concentrations of the peptides were of
300 µM. Four consecutive scans were performed and averaged,
followed by subtraction of the blank spectrum of the solvent.
The CONTINLL program was used for data analysis (Provencher
and Glöckner, 1981). Homology modeling was performed by
MODELLER software (Sali and Blundell, 1993). The spatial
structures were visualized by Chimera software (Pettersen et al.,
2004).

Hemolysis and Cytotoxicity Assay
Hemolytic activity of the peptides was tested against the
fresh suspension of human red blood cells (hRBC) using the
hemoglobin release assay as described previously (Panteleev et al.,
2016). Three experiments were performed with the hRBC from
blood samples obtained from independent donors. The obtained

data were represented as average means with standard deviations.
The cytotoxicity of the peptides against HEK293T (transformed
human embryonic kidney cells) and HEF (human embryonic
fibroblasts) cell lines was studied using the colorimetric 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
dye reduction assay according to (Panteleev and Ovchinnikova,
2017). Three independent experiments were performed for each
peptide. Half maximal inhibitory concentration (IC50) values
were estimated as described previously (Kuzmin et al., 2018).

Antimicrobial Assay
Antimicrobial assay was performed as described previously
(Panteleev et al., 2017b). Briefly, mid-log phase bacterial test
cultures were diluted with the 2× Mueller-Hinton broth (MH,
Sigma) supplemented with 1.8% NaCl or without it so that to
reach a final cell concentration of 106 CFU/ml. 50 µl aliquots
of the obtained bacterial suspension were added to 50 µl of the
peptide solutions serially diluted with 0.1% water solution of
bovine serum albumin (BSA) in 96-well flat-bottom polystyrene
microplates (Eppendorf #0030730011). After incubation at 37◦C
and 900 rpm for 24 h the minimum inhibitory concentrations
(MIC) were determined as the lowest peptide concentrations
that prevented growth of a test microorganism observed as
visible turbidity. The results were expressed as the median values
determined on the basis of at least three independent experiments
performed in triplicate.

Checkerboard Assay
The peptides were twofold serially diluted with 0.1% BSA in
96-well microplates (Eppendorf #0030730011). Then, the peptide
solutions were mixed in the new test plate crosswise in such a
way that the resulting checkerboard contained each combination
of the cathelicidins in eight doubly increasing concentrations,
with wells containing the highest concentration of each peptide at
opposite corners (Berditsch et al., 2015). Then, the antimicrobial
assay was performed as described in the previous section.
MICs were defined as the lowest concentrations of the peptides
(when used individually or in the mix with another peptide
at a sub-inhibitory concentration) that completely inhibited
bacterial growth. The results were expressed as the median
values determined on the basis of three independent experiments
performed in duplicate. Estimation of synergistic effects of
different cathelicidins was performed by calculating the fractional
inhibitory concentration index (FICI) according to the equation:
FICI = [À]/MICÀ + [B]/MICB, where MICÀ and MICB are the
MICs of the individual substances, while [A] and [B] are the MICs
of A and B when used together. A synergistic effect was defined at
a FICI ≤ 0.5.

Biofilm Assay
Biofilm formation assay was performed as described previously
(Panteleev et al., 2017a) with some modifications. Different E. coli
strains and cultivating conditions were preliminary tested to
achieve a strong biofilm formation (Supplementary Figure S2).
The E. coli CI 214 cells were incubated in the trypticase soy
broth (TSB) for 16 h at 37◦C and then were diluted 150-fold
with the 2×M9 minimal medium supplemented with 50 mM
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glucose, 10 µM thiamine, 2 mM MgSO4, 1 mM CaCl2, and the
trace metals mixture. 50 µl of the obtained bacterial suspension
were added to 50 µl aliquots of the peptide solutions serially
diluted with sterilized water in 96-well microplates (Eppendorf
#0030730011). The plates were incubated at 32◦C with gentle
agitation (120 rpm) for 24 h to allow biofilm formation. Then,
planktonic (unattached) cells were transferred into the new
96-well plate and OD620 of the cell culture was measured with
the use of a microplate reader. The wells of the former plate were
washed with PBS twice, and the formation of sessile biofilms was
analyzed by crystal violet (CV) staining. Briefly, 160 µl of 0.1%
crystal violet (CV, Sigma) solution was transferred to each well.
The plates were incubated at 25◦C for 40 min and rinsed with
distilled water to remove an excess of CV. Then the samples were
dried for 10 min, and 160 µl of 96% ethanol (v/v) was added to
the wells so that to dissolve the CV. 40 min later, the obtained
extracts were transferred to a new 96-well plate. The absorption
at 570 nm was measured with the use of a microplate reader. The
experimental data were obtained from at least three independent
experiments performed in triplicate. The results were reported
relative to untreated bacteria served as a control. The results were
analyzed using the GraphPad Prism 6.0 software.

Resistance Induction Experiments
Resistance induction experiments were performed using the
previously described method (Chernysh et al., 2015) with
some modifications. Briefly, on day 1, the overnight culture of
wild-type bacteria was diluted with the 2×MH broth containing
1.8% NaCl so that to reach a final cell concentration of 106

CFU/ml. 50 µl aliquots of the obtained bacterial suspension were
added to 50 µl of the peptide solutions serially diluted with
0.1% water solution of BSA in 96-well microplates (Eppendorf
#0030730011). After incubation at 37◦C and 900 rpm for
22 ± 2 h, MICs were determined as described above. For each
subsequent daily transfer, 5 µl of the inoculum taken from the
first well with a sub-inhibitory drug concentration were diluted
with 1 ml of the fresh 2× MH broth supplemented with 1.8%
NaCl. Then, 50 µl of this suspension were sub-cultured into
the next passage wells containing 50 µl aliquots of the peptide
at concentrations from 0.25× to 16× of the current MIC of
each agent. 26 repeated passages in the presence of antimicrobial
agents were made for each bacterial strain during the experiment.
Typically, the experiment was finished when the bacterial culture
became resistant to antibiotic polymyxin B (Applichem) used as a
control. Finally obtained cell cultures were passaged five times in
the absence of antimicrobial agent to confirm that the acquired
resistance is stable. Control serial passages in the absence of
the agent were also performed. The obtained cultures showed
unchanged MICs against antibacterial agents.

Bacterial Membranes Permeability Assay
To examine an ability of the peptides to affect the barrier
function of outer and inner membranes of Gram-negative
bacteria, we slightly modified the previously described procedure
(Shamova et al., 2016) with the use of the E. coli ML-35p
strain constitutively expressing cytoplasmic β-galactosidase and
lacking lactose permease, and also containing β-lactamase in the

periplasmic space. The state of the E. coli ML-35p outer and
cytoplasmic membranes was assessed based on their permeability
to chromogenic markers nitrocefin (Calbiochem-Novabiochem)
and o-nitrophenyl-β-D-galactopyranoside (ONPG, AppliChem)
which are the β-lactamase and β-galactosidase substrates,
respectively. The cells were incubated in the TSB medium at 37◦C
for 16 h, washed three times with 10 mM sodium phosphate
buffer (pH 7.4) to remove residual growth media, diluted to
the concentration of 2.5 × 108 CFU/ml. The experiments were
performed in 10 mM sodium phosphate buffer with or without
0.9% NaCl. The final concentration of E. coli ML-35p cells was of
2.5 × 107 CFU/ml. The concentrations of ONPG and nitrocefin
were of 2.5 mM and 20 µM, respectively. Peptide samples were
placed in the wells of a 96-well plate with non-binding surface
(NBS, Corning #3641), and the optical density (OD) of the
solution rising due to the appearance of the hydrolyzed nitrocefin
or ONPG was measured at 540 and 405 nm, respectively, using
the Multiskan EX microplate reader (Thermo Fisher Scientific).
The final volume in each well was 200 µl. The experiments
were performed at 37◦C under stirring at 300 rpm. Control
experiments were performed under the same conditions without
addition of a peptide. Three independent experiments were
performed, and the curve pattern was similar for all three series.

Flow Cytometry
The E. coli ML-35p cells were incubated in the TSB medium
for 16 h at 37◦C and washed as described above. Bacterial cell
suspensions were then incubated for 1 h at 37◦C with peptides at
different concentrations prepared by twofold serial dilution. The
assay was performed in the 96-well NBS microplates in 10 mM
sodium phosphate buffer with or without 0.9% NaCl (pH 7.4).
Then, SYTOX green (Life Technologies) was added to the treated
cells at a final concentration of 2.5 µM and incubated for 10 min
at room temperature in the dark. The SYTOX green does not
penetrate live cells, but once inside the cell it binds to nucleic
acids resulting in more than 500-fold enhancement of fluorescent
emission. The fluorescence of the bacterial suspensions diluted
5-fold with PBS was measured (λExc = 488 nm, λEm = 530 nm) by
NovoCyte flow cytometer (ACEA Biosciences). For each sample
105 events were recorded. Fluorescence signals were expressed as
a percentage of two distinct cell groups: (1) healthy and partially
damaged cells were deemed as totaling from 102 to 105 range of
detection at 530 nm; (2) completely permeabilized (dead) cells
were deemed as amounting ≥105 range of detection at 530 nm.
Two independent experiments were performed, and the similar
results were obtained.

Cell-Free Protein Expression Assay
The cell lysate used for translation inhibition assay was prepared
using the E. coli BL21 Star (DE3) cell culture grown at 30◦C in
the 2x YTPG liquid medium (1% yeast extract, 1.6% tryptone,
0.5% NaCl, 22 mM NaH2PO4, 40 mM Na2HPO4, 0.1 M glucose).
The chromosome of DE3 strains contains a gene encoding T7
RNA polymerase under control of the lacUV5 promoter. The
bacterial culture was grown to OD600 0.8–1.0, then T7 RNA
polymerase gene was induced by adding 0.2 mM IPTG. Bacteria
were harvested at OD600 5.0–6.0 by centrifugation (3000 g,
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30 min, 4◦C). The bacterial pellet was washed three times by
suspending it in four volumes of wash buffer (10 mM Tris-acetate
buffer, pH 8.2, 60 mM potassium glutamate, 14 mM magnesium
acetate, 1 mM DTT), then resuspended in one volume of the
same buffer (1 ml per 1 g of wet cell mass) and disrupted by
sonication at 5–15◦C. The total cell lysate was centrifuged at
15000 g (30 min, 4◦C). The supernatant was split into aliquots
and stored at−70◦C.

In order to investigate the effect of AMPs on the translation
process, the peptides were added to a cell-free protein synthesis
(CFPS) reaction mix with a plasmid encoding EGFP variant
(F64L, S65T, Q80R, F99S, M153T, and V163A) under a control
of the T7 promoter. The reaction mix consisted of the following
components: 1.2 mM ATP, 0.8 mM UTP, 0.8 mM GTP, 0.8 mM
CTP, 2 mM of each of 20 proteinogenic amino acids, 1.5 mM
spermidine, 1 mM putrescine dihydrochloride, 0.06647 mM
calcium folinate, 170 ng/ml tRNA from the E. coli MRE 600
strain, 0.33 mM NAD, 120 mM HEPES-KOH (pH 8.0), 10 mM
ammonium glutamate, 175 mM potassium glutamate, 60 mM
glucose, 15 mM magnesium glutamate, 2% PEG 8000, 25%
E. coli BL21 Star (DE3) cell lysate, 10 ng/µl plasmid DNA. The
reaction volume was 50 µl. The peptides were dissolved in PBS
with the addition of 0.1% BSA. Streptomycin and erythromycin
were used in the positive control reactions. Fluorescence of
the sample without inhibitor was set as the 100% value.
The reaction proceeded for 1.5 h in 96-well clear flat-bottom
black polystyrene microplates (Corning #3340) sealed with
Parafilm in a plate shaker (30◦C, 900 rpm). Fluorescence of
the synthesized EGFP was measured with the microplate reader
AF2200 (λExc = 488 nm, λEm = 510 nm). The experimental
data were obtained from at least three independent experiments.
IC50 values were determined by interpolation from non-linear
regression curves using the GraphPad Prism 6.0 software.

Electrophoretic Mobility Shift Assay
The peptides binding to DNA was examined by electrophoretic
mobility shift assay (EMSA) according to the previously
described protocol (Panteleev et al., 2016). Briefly, the plasmid
pUC19 was incubated with the tested peptides at increasing
concentrations in the binding buffer containing 10 mM Tris-HCl
(pH 8.0), 50 µg/ml BSA, 5% glycerol, 1 mM DTT, 150 mM NaCl,
20 mM KCl, and 1 mM EDTA, at 25◦C for 30 min. Then, the
samples were analyzed by electrophoresis in 0.8% agarose gel. The
DNA migration was detected by means of the ethidium bromide
fluorescence tracking. The DNA-peptide (w/w) ratios were of 1:0
(negative control), 4:1, 2:1, 1:1, 1:2, respectively.

Genetic Analysis of Bacterial Strains
The sbmA and yaiW genes encoding the E. coli inner or outer
membrane proteins, respectively, as well as a regulatory part
of their common operon were amplified by polymerase chain
reaction (PCR) using gene-specific primers (Supplementary
Figure S3). Individual bacterial colonies of the tested strain were
picked up from Petri dish and used as a template for PCR. The
following components were mixed for the PCR: 2 µl of 10×
Encyclo buffer (Evrogen), 0.4 µl of 50× Encyclo DNA polymerase
(Evrogen), 10 µM forward primer, 10 µM reverse primer, 0.2 mM

dNTPs, bacterial cells on inoculation loop, and water diluting
to the total volume of 20 µl. Amplification was carried out on
a thermocycler using: initial denaturation (95◦C, 10 min), 25
amplification cycles (94◦C, 30 s; 55◦C, 40 s; 72◦C, 90 s), and
final elongation (72◦C, 10 min). The products were separated
by electrophoresis on 1.5% agarose gel (4 V/cm) and visualized
on a UV trans-illuminator. The PCR products were purified
from agarose gel and inserted into pGEM-T vector (Promega).
The ligation products were transformed into the chemically
competent E. coli DH10B cells. Plasmid DNA was isolated
from overnight cultures of single white colonies on LB agar
plates supplemented with ampicillin (100 µg/ml), using Plasmid
Miniprep kit (Evrogen). The plasmids were sequenced on both
strands using the ABI PRISM 3100-Avant automatic sequencer
(Applied Biosystems). At least two independent experiments
were performed with each strain to prove the obtained results.

RESULTS

Expression and Purification of the
Recombinant Peptides
Natural goat cathelicidins do not undergo significant
post-translational modifications, therefore heterologous
expression in E. coli of the peptides fused with a carrier protein
seems to be a reasonable approach for their production. The goat
cathelicidins were produced using the same protocol. To facilitate
the purification process and improve final yield, the recombinant
peptides were obtained as fusion proteins with the N-terminal
8×His tag and thioredoxin A which was approved to be an
effective carrier protein for different peptide scaffolds having
antibacterial activity (Li, 2011). The peptides were purified
by a downstream process including IMAC of the clarified
total cell lysate, cleavage of the fusion protein with cyanogen
bromide, and fine purification by RP-HPLC (Supplementary
Figure S1). Final yields of ChMAP-28, mini-ChBac7.5Nα, and
mini-ChBac7.5Nα(1–16) were 3.4, 9.2, and 7.5 mg per 1 l of
the culture medium, respectively. The obtained recombinant
cathelicidins were analyzed by MALDI-TOF mass-spectrometry.
The measured m/z values of the cathelicidins matched the
corresponding calculated molecular masses (Supplementary
Table S1).

Secondary Structure of Goat
Cathelicidins
In this study, CD spectroscopy was used to analyze the secondary
structure of the goat cathelicidin ChMAP-28. As shown in
Figure 1A, the CD spectra of ChMAP-28 dissolved in phosphate
buffer or phosphate-buffered saline showed a negative peak at the
wavelength of 200 nm, which indicated that it mainly adopted
random coil conformation. Therefore, the above conditions do
not facilitate the peptide folding. In contrast, the CD spectra
of ChMAP-28 interacted with SDS or DPC micelles showed a
strong positive peak at 195 nm, and two negative peaks at 208
and 220 nm, which indicated that ChMAP-28 mainly adopted
α-helix secondary structures in hydrophobic environments.
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Indeed, the peptide has a relatively high homology to known
α-helical cathelicidins from Bos taurus: 61% sequence identity
with BMAP-27 and 42% – with BMAP-28 (Figure 1B). We
performed homology modeling based on the BMAP-27 structure
to visualize a probable spatial structure of ChMAP-28 in
membrane-mimicking environment (Figures 1C,D). Significant
homology between mini-ChBac7.5Nα and the N-terminal
fragment of Bac7 suggests their similar structure, thus
mini-ChBac7.5Nα was not analyzed by CD-spectroscopy. It
is assumed that mini-ChBac7.5Nα, alike the peptide Bac7(1–16),
adopts extended structures within the bacterial ribosomal
exit tunnel (Figure 1E). Generally, mini-ChBac7.5Nα and its
orthologs from mammalian species (artiodactyls and cetaceans)
recorded in the Genbank showed a relatively high homology,
especially between sequences at the N-terminal and central parts
of the peptides (Figure 1F). Interestingly, recent studies revealed
that the Bac7 homolog, isolated from the bottlenose dolphin
Tursiops truncatus and designated as Tur1B, was enriched with
Trp residues and displayed rather modest inhibitory effect on
bacterial translation (Mardirossian et al., 2018).

Cytotoxic Properties of Goat
Cathelicidins
To estimate cytotoxic effect of the cathelicidins, human red blood
cells (hRBC) as well as adhesive cell lines of human embryonic
fibroblasts (HEF) and human embryonic kidney cells (HEK293T)
were used. Melittin known as a potent cytolytic peptide was
used as a positive control. It is known that most Pro-rich AMPs
have no pronounced toxicity to mammalian cells. Earlier, we
showed that cytotoxicity of mini-bactenecins at concentrations
up to 30 µM against a set of mammalian cell lines after 24 h was
quite modest (Shamova et al., 2016). However, the peptides are
not completely non-toxic. The data analysis revealed that both
mini-ChBac7.5Nα and its shortened analog showed cytotoxic
activity against mammalian cell lines at concentrations >25 µM
(Figure 2). Mini-ChBac7.5Nα almost lacked hemolytic activity
and lysed only 2% of red blood cells at the concentration of
100 µM. In contrast, a half maximal hemolysis concentration
(HC50) of ChMAP-28 was of ∼100 µM, and the peptide had the
IC50 against HEK293T cells of∼3.5 µM. Interestingly, its bovine
ortholog BMAP-28 possessed the IC50 against murine 3T3 cells
and HC50 of <3.75 and ∼20 µM, respectively (Ahmad et al.,
2009). Melittin was proved to be significantly more toxic than
α-helical cathelicidins and completely damaged all the cells tested
at concentrations of <2.5 µM.

Antimicrobial Activity of Goat
Cathelicidins
Amphiphilic AMPs are known to be adsorbed on plastic
surfaces (Wiegand et al., 2008). For these reason, serial dilutions
of the peptides were performed in the presence of BSA
in the growth medium in order to minimize this effect.
MICs of goat cathelicidins and melittin against Gram-positive
and Gram-negative bacteria are presented in Table 2. It
was reported that Pro-rich AMPs have high antimicrobial
activity against Gram-negative bacteria and are less active or

FIGURE 2 | (A) Hemolytic activity of the goat cathelicidins and melittin after
1.5 h incubation (hemoglobin release assay). (B) Cytotoxicity of
mini-ChBac7.5Nα and its shortened analog toward HEK293T (transformed
human embryonic kidney cells) and HEF (human embryonic fibroblasts) cells
after 24 h incubation (MTT-assay). Three independent experiments were
performed with each peptide.

inactive against most Gram-positive bacteria. In whole, our
results confirmed this. It is noteworthy that the medium
formulation as well markedly affects the activity values of
Pro-rich AMPs. Antibacterial activities of some insect Pro-rich
AMPs was low when tested in the presence of a salt, which
might inhibit absorption of the peptides to the bacterial
surface (Gennaro et al., 2002). Therefore, the salt influence
on the antibacterial activity was investigated in this study.
Indeed, the presence of 0.9% NaCl resulted in several-fold
decrease in the activity of mini-bactenecins against all the
strains tested. The shortened analog mini-ChBac7.5Nα(1–16)
was shown to be less active and more salt-sensitive as
compared with the wild-type mini-ChBac7.5Nα. Interestingly,
antibacterial activities of the peptides were similar when
tested in a salt-free medium against Gram-negative bacteria
E. coli, Acinetobacter baumannii, Klebsiella pneumoniae, and
Enterobacter cloacae. In contrast to the other tested strains,
these bacteria have the ABC transport system based on the
homodimeric cytoplasmic membrane protein SbmA. In E. coli
the cytoplasmic membrane protein SbmA and outer membrane
lipoprotein YaiW participate in transport of some Pro-rich
AMPs and bacteriocins (Arnold et al., 2014). Mutation or
deletion of either SbmA or YaiW significantly decreased the
ability of the Bac7 to internalize, and significantly reduced
susceptibility to the peptide (Arnold et al., 2014). Our results
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TABLE 2 | Antibacterial activity of goat cathelicidins and melittin.

Strain sbmA/yaiW∗∗ Minimum inhibitory concentration (µM)∗

Melittin ChMAP-28 mini-ChBac7.5Nα mini-ChBac7.5Nα(1–16)

Without
NaCl

0.9%
NaCl

Without
NaCl

0.9%
NaCl

Without
NaCl

0.9%
NaCl

Without
NaCl

0.9%
NaCl

M. luteus B-1314 −/− 0.25 0.5 0.25 0.5 0.125 0.5 1 8

B. subtilis B-886 −/− 0.5 0.5 0.25 1 0.25 4 1 >32

E. faecalis ATCC 29212 −/− 1 1 4 >8 >32 >32 >32 >32

S. aureus ATCC 29213 −/− 1 1 1 2 8 >32 >32 >32

S. aureus 209P −/− 2 16 0.06 0.5 2 16 8 >32

E. coli C600 +/+ 4 8 0.06 0.125 2 4 2 16

E. coli ML-35p +/+ 2 8 0.06 0.06 0.5 4 0.5 8

P. aeruginosa PAO1 −/− 4 8 0.25 1 2 >32 16 >32

A. baumannii (XDR CI 2675) +/− 2 8 0.03 0.25 2 >32 4 >32

K. pneumoniae (CI 287) +/+ 4 16 0.125 0.5 4 16 4 >32

E. cloacae (XDR CI 4172) +/+ 2 8 0.125 0.25 1 4 1 >32

∗Antibacterial testing was performed in the Mueller-Hinton broth at 37◦C. ∗∗The presence of genes encoding the membrane transporters SbmA and YaiW that affect
sensitivity to proline-rich antimicrobial peptides (Arnold et al., 2014).

indicated that the presence of the C-terminal fragment PRPRPR
did not influence the efficiency of the peptide translocation
via SbmA transporter in a salt-free medium, but could play
a key role when acting against SbmA-deficient bacteria (e.g.,
Gram-positive bacteria) or applying in the presence of a salt.
Previous study of the Pro-rich pig cathelicidin PR-39 revealed
that an activity of the full length peptide was hardly affected
by 100 mM NaCl while the shortened peptide derivatives
lacked most of their antimicrobial properties under the same
conditions (Veldhuizen et al., 2014). It is likely that the observed
effect occurs due to electrostatic interactions between positively
charged peptides and negatively charged bacterial membranes.
Antimicrobial activity of mini-bactenecins seems to be a function
of a total charge of the peptide rather than of a charge density
and overall hydrophobicity, since mini-ChBac7.5Nα(1–16) has
both higher charge-to-length ratio and longer retention time
in reversed-phase HPLC (Supplementary Figure S1) than the
wild-type mini-ChBac7.5Nα. A total charge could be important
at initial stages of Pro-rich AMPs interaction with bacteria,
i.e., during the primary electrostatic attraction followed by
displacement of divalent cations cross-bridging LPS on the cell
surface, that destabilized the membrane and led to the peptide
self-promoted uptake.

Cathelicidin ChMAP-28 exhibited significantly more potent
antibacterial activity (≥16-fold higher) than melittin against
most strains tested. ChMAP-28 was shown to be less sensitive
to high ionic strength as compared with mini-bactenecins.
ChMAP-28 and last line antibiotics polymyxin B and
meropenem were tested against extensively drug resistant
clinical isolates of Gram-negative bacteria which belong to
“ESKAPE” pathogens: E. coli, K. pneumoniae, A. baumannii, P.
aeruginosa, E. cloacae, P. mirabilis (Supplementary Table S2).
Generally, ChMAP-28 exhibited a potent antimicrobial activity
comparable with that or even higher than that of the above
mentioned control antibiotics. The peptide was shown

to effectively kill all the bacteria including polymyxin-
and meropenem-resistant strains, thus arguing against
cross-resistance to the peptide.

Synergy Between Goat Cathelicidins
Antimicrobial activity of most Pro-rich AMPs including
mini-bactenecins is reduced at physiological salt concentrations.
In view of this, interaction with other co-localized
membrane-active molecules may enhance or restore the activity
of Pro-rich AMPs. To check the assumption, antibacterial effects
of the combination of the goat cathelicidins mini-ChBac7.5Nα

and ChMAP-28 were evaluated in the medium containing
a physiological concentration of NaCl (Table 3). A set of
Gram-negative bacterial species and one Gram-positive strain
S. aureus 209P sensitive to mini-bactenecins were used as
the test microorganisms. To reduce adsorption of AMPs on
plastic surfaces while testing antimicrobial activity in vitro,
we used 0.1% BSA for serial dilutions (Wiegand et al., 2008;
Bolosov et al., 2017). In combination with ChMAP-28 at
sub-inhibitory concentrations, mini-ChBac7.5Nα exhibited
antimicrobial activity with more than fourfold decreased MIC
values that led to FICI values of ≤0.375 against different E. coli
strains. The peptides showed a strong synergistic effect against
K. pneumoniae, E. cloacae, A. baumannii with at least an
eightfold decrease in MICs for both agents and FICI values of
0.25, 0.25, and 0.133, respectively. Interestingly, the presence of
ChMAP-28 either completely restored or slightly increased the
activity of mini-ChBac7.5Nα as compared with that evaluated
in a salt-free medium against these bacterial strains (Table 2),
including the clinical isolate of E. coli CI 214 with a weak
sensitivity to mini-ChBac7.5Nα (the MIC values were of 4 µM in
a salt-free medium and >64 µM in the presence of 0.9% NaCl).
As described above, all the mentioned strains normally have
the SbmA transport system. It suggests that ChMAP-28 acting
at sub-inhibitory concentrations may promote translocation of
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TABLE 3 | Synergy between goat cathelicidins ChMAP-28 and mini-ChBac7.5Nα.

Strain ChMAP-28 mini-ChBac7.5Nα FICI∗ Synergy

MICA [A] FICA MICB [B] FICB

E. coli BL21 (DE3) 0.06 0.015 0.25 8 1 0.125 0.375 Yes

E. coli ML-35p 0.06 0.008 0.125 4 1 0.25 0.375 Yes

E. coli C600 0.125 0.015-0.03 0.125-0.25 4 1 0.25 0.375-0.5 Yes

E. coli (XDR CI 1057) 0.125 0.008 0.063 8 2 0.25 0.313 Yes

E. coli (CI 214) 0.06 0.015 0.25 >64 4 0.031 0.281 Yes

E. cloacae (XDR CI 4172) 0.25 0.03 0.125 4 0.5 0.125 0.25 Yes

K. pneumoniae (CI 287) 0.5 0.06 0.125 16 2 0.125 0.25 Yes

A. baumannii (XDR CI 2675) 0.25 0.03 0.125 >32 0.5 0.008 0.133 Yes

P. aeruginosa PAO1 0.125 0.06 0.5 >32 8 0.125 0.625 No

S. aureus 209P 0.5 0.03 0.063 16 2 0.125 0.188 Yes

∗The estimation of synergistic effects between cathelicidins was performed by calculating the fractional inhibitory concentration index (FICI) according to the equation:
FICI = FICA + FICB = [À]/MICÀ + [B]/MICB, where MICÀ and MICB are the MICs of individual peptides, while [A] and [B] are the MICs of A and B when used together.
A synergistic effect was defined at a FICI ≤ 0.5.

mini-ChBac7.5Nα through the outer membrane, which is an
obstacle to Pro-rich AMPs when electrostatic interactions are
affected by increased ionic strength. Inside the periplasmic space
mini-ChBac7.5Nα can effectively use cytoplasmic membrane
transporters to get into the cell. At the same time, ChMAP-28
did not restore the activity of mini-ChBac7.5Nα against
P. aeruginosa, and no synergy was observed. These findings
are consistent with the previous study that revealed the lack
of synergy between Pro-rich AMPs and the membranolytic
peptide CRAMP while testing antimicrobial activity against
P. aeruginosa (Knappe et al., 2016). Surprisingly, a pronounced
synergistic effect was observed against S. aureus 209P with
MICs of both peptides almost identical to those measured
in a salt-free medium, thus resulting in FICI of 0.188. This
observation allowed us to speculate that some Gram-positive
bacterial strains might have transport systems for Pro-rich
AMPs. On the other hand, the presence of Pro-rich AMPs could
interact with the structures of cell wall teichoic acids, the anionic
glycopolymers, and thereby helped ChMAP-28 molecules to
reach lipid bilayer.

Analysis of Membrane-Permeabilizing
Activity
Antimicrobial peptides can realize their biological functions
by damaging membrane integrity and specifically inhibiting
intracellular processes. One of the most important objectives
in functional study of AMPs is to elucidate a mechanism of
their antimicrobial action. The effect of the goat cathelicidins
on E. coli ML-35p membrane integrity was characterized
by monitoring both the SYTOX Green uptake by flow
cytometry and permeability to chromogenic markers – ONPG
and nitrocefin. The membranolytic peptide melittin was used
as a positive control. The flow cytometry data show that
mini-ChBac7.5Nα does not influence the E. coli cytoplasmic
membrane integrity regardless of salt concentration (Figure 3A).
This is in agreement with our previous data (Shamova
et al., 2016). In contrast to the longer peptide Bac7(1–35)
(Podda et al., 2006), mini-ChBac7.5Nα did not significantly

damage membranes at higher concentrations than the MIC
values. The cathelicidin ChMAP-28 was shown to damage
bacterial membrane at nanomolar concentrations that led to
the appearance of bacterial subpopulations with increased
fluorescence intensity by one or two orders of magnitude vs.
a control (Figure 3B). These shifted peaks on the graph may
represent cells with qualitatively different grades of membrane
damage.

Synergy between two different AMPs could result from either
facilitation of translocation of one of them into the cell by another
peptide or cooperative augmentation of the membrane damage,
as was shown for cathelicidins and defensins (Nagaoka et al.,
2000). To decide between these scenarios, a comparative analysis
of the ability of the cathelicidins to disrupt the integrity of inner
and outer bacterial membranes was conducted in a wide range
of concentrations. Interestingly, mini-ChBac7.5Nα was shown to
effectively damage outer membrane in a salt-free environment
(Figure 4A). However, the addition of 0.9% NaCl reduced the
activity to a modest effect at 8–32 µM (Figure 4B), that could
explain a weak antibacterial activity of mini-bactenecins in the
presence of salt (Table 2). Translocation of mini-ChBac7.5Nα

into periplasmic space likely depends on ability to disrupt
the outer membrane, which becomes an impassable barrier
in the presence of NaCl. At the same time, ChMAP-28 was
proved to damage the outer membrane in a salt-containing
medium at concentration of 0.008 µM (Figure 4C) that was
equal to the fractional MIC of the synergy combination with
mini-ChBac7.5Nα (see Table 3). The data presented in Figure 4D
allowed us to rule out the effect of potentiating the cytoplasmic
membrane permeabilization: in most cases the presence of
mini-ChBac7.5Nα did not significantly affect or even decreased
the ability of ChMAP-28 to damage the membrane. The same
was true when we tested the peptide mixtures on the E. coli
ML-35p outer membrane (graphical data not shown). Taken
together, these results suggest that ChMAP-28 at sub-inhibitory
concentrations promotes translocation of mini-ChBac7.5Nα into
the periplasmic space rather than enhances its membrane
activity.
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FIGURE 3 | Flow cytometry analysis of the SYTOX Green uptake in E. coli
ML-35p cells after 60 min treatment with goat cathelicidins. (A) The graph
showing the effect of the peptides at different concentrations. The experiment
was performed in duplicate, with the plotted points representing the mean
value ± SD. (B) Analysis of bacterial cell populations after treatment in the
presence of 0.9% NaCl.

Inhibition of in vitro Protein Synthesis in
E. coli
Taking into account the reported data on the mechanism
of action of proline-rich AMPs and the inability of
mini-ChBac7.5Nα to disrupt cytoplasmic membrane integrity,
we tested an ability of this peptide and other antimicrobial
compounds to inhibit protein biosynthesis in vitro. The
experiment was carried out using the bacterial cell-free protein
synthesis system expressing the green fluorescent protein
(GFP). The results obtained for streptomycin with IC50 value
of 0.2 µM and a full inhibition of >1 µM correspond with
the published data (Krizsan et al., 2014) (Figure 5A). IC50 for
mini-ChBac7.5Nα was of ∼1 µM which is comparable to that of
conventional inhibitors of bacterial translation – streptomycin
and erythromycin. Apart from that, the values of IC50 for
mini-ChBac7.5Nα were similar to those of its homologs – the

Bac7 fragments (Seefeldt et al., 2016), and also to the previously
determined MICs against E. coli (see Table 2). It should be noted
that the mini-ChBac7.5Nα(1–16) fragment inhibits biosynthesis
twice less effectively than the wild-type mini-ChBac7.5Nα

that might account for the reduction of antibacterial activity.
Interestingly, the cathelicidin ChMAP-28 also affects protein
biosynthesis, but at much higher concentrations than its MIC.
It seems that ChMAP-28 ability to inhibit translation is due to a
non-specific interaction with nucleic acids. This assumption is
supported by the fact that tachyplesin-1, which is known to bind
DNA (Yonezawa et al., 1992), demonstrates a comparable level
of inhibition. For several cationic AMPs, e.g., for indolicidin
(bovine tryptophan-rich cathelicidin), binding to DNA is
considered to be one of the mechanisms of their antimicrobial
action. AMP-DNA binding induces aggregation and interferes
with the process of replication (Hsu et al., 2005). It was shown
that both goat cathelicidins bound plasmid DNA at a mass
ratio of 1:1 (Figures 5B,C). In addition, ribosome-binding is
supposed to be the main factor responsible for bacterial growth
inhibition by the Bos taurus cathelicidin Bac7. Comparing
our results with known data on Bac7 and bearing in mind
a high homology degree between mini-ChBac7.5Nα and the
N-terminal fragment of Bac7, we assume that the main target for
mini-ChBac7.5Nα is also the 70S ribosome. Data obtained allow
us to conclude that two goat cathelicidins – ChMAP-28 and
mini-ChBac7.5Nα possess essentially different mechanisms of
antimicrobial action: ChMAP-28 preferentially acts by increasing
cytoplasmic membrane permeability, while mini-ChBac7.5Nα

specifically inhibits bacterial translation.

Anti-biofilm Activity of Goat Cathelicidins
The biofilm formation raises difficulties for therapy of bacterial
infectious diseases due to the resistance to conventional
antibiotics. Notably, the biofilms can colonize abiotic objects
such as surfaces of medical devices and instruments and also be
localized in host-organism tissues. Development of compounds
that could prevent adhesion of microorganisms to the surfaces
and therefore block the formation of biofilms is one of the
key problems of modern medicine. In the present work, we
investigated whether the synergistic combination of different goat
cathelicidins prevent formation of biofilms. The strain E. coli
CI 214 isolated from urine in acute pyelonephritis was proved
to be a strong biofilm producer when cultivated in minimal
growth medium (Supplementary Figure S2). It is important
to notice that this strain has comparatively low sensitivity to
mini-ChBac7.5Nα (Table 2). All the compounds demonstrated
high activity, and at concentrations suppressing planktonic
bacterial growth (MIC) the biofilm formation was not observed
(Figure 6). Complete inhibition of both planktonic and biofilm
growth by ChMAP-28, mini-ChBac7.5Nα, and their combination
was achieved at concentrations of 1, 32, and (0.125 + 8) µM,
respectively. Therefore, the synergy effect consisting in the
complete inhibition of E. coli was shown with the FICI value of
0.375. The MIC values shown by antibiotic polymyxin B agreed
well with those reported earlier when tested against P. aeruginosa
PAO1 (Panteleev et al., 2017a). It is noteworthy that reduction
of biofilm formation with sub-inhibitory concentrations of
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FIGURE 4 | Kinetics of changes in E. coli ML-35p outer and cytoplasmic membrane permeability measured with the use of chromogenic markers – the products of
nitrocefin (OD540) and ONPG (OD405) hydrolysis, respectively. Outer membrane permeability resulting from incubation of bacteria with mini-ChBac7.5Nα at various
concentrations (from 0.125 to 32 µM, highlighted with colors) in the absence (A) or in the presence (B) of 0.9% NaCl. Melittin and ChMAP-28 at concentration of
1 µM were used as positive control samples. (C) Analysis of outer membrane permeability resulting from incubation with ChMAP-28 or melittin in the presence of
0.9% NaCl. (D) Comparative analysis of cytoplasmic membrane permeability resulting from incubation with the individual ChMAP-28 or with its combinations with
mini-ChBac7.5Nα. Melittin at concentration of 8 µM was used as a positive control. Three independent experiments were performed, and the curve pattern was
similar for the three series.

mini-ChBac7.5Nα was followed by a significant stimulation
(1.5–2-fold) of planktonic growth as compared with a control.
The effect of ChMAP-28 and the combination of the peptides
was less pronounced. At concentrations up to 1/16× MIC
the peptides inhibited biofilm growth by more than twofold.
Presumably, the peptides could prevent an adhesion of bacteria
to the plate surface.

Development of Resistance to Goat
Cathelicidins
Capacity of the synergistic combination of the goat cathelicidins
to prevent bacterial resistance was investigated. Natural
combinations of different AMPs from insects, in contrast to

individual peptides and small antibiotic molecules, were proved
to prevent resistance development in bacteria (Chernysh et al.,
2015). Such approach allows using a lower therapeutic dose
of AMPs showing synergy with each other. Two E. coli strains
(XDR CI 1057 and ML-35p) were subjected to the resistance
development test by subsequent culturing in the presence of
ChMAP-28, mini-ChBac7.5Nα, or the synergistic combination
of the peptides, as well as antibiotic polymyxin B at increasing
concentrations. The method used in this study allows to monitor
MIC values after each transfer. The 2048- and 128-fold increases
in MIC values were registered in the bacterial strains XDR CI
1057 and ML-35p, correspondingly, subjected to selection by
polymyxin B after 25 passages (Figure 7). The E. coli XDR CI

Frontiers in Microbiology | www.frontiersin.org 11 November 2018 | Volume 9 | Article 2983264

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02983 November 29, 2018 Time: 17:34 # 12

Panteleev et al. Combined Antibacterial Effects of Goat Cathelicidins

FIGURE 5 | Effects of goat cathelicidins, tachyplesin-1, and conventional antibiotics at different concentrations on the fluorescence resulting from the in vitro
translation of EGFP with the use of E. coli BL21 (DE3) Star cell extract (A). Data are the mean ± SD of at least three independent experiments performed in triplicate.
ChMAP-28 (B) and mini-ChBac7.5Nα (C) binding to DNA was examined by electrophoretic mobility shift assay (EMSA). Various amounts of the peptides were
incubated with 100 ng of the pUC19 plasmid DNA, and DNA binding was assessed by the peptide influence on the electrophoretic mobility of DNA. DNA-to-peptide
weight ratios are indicated on the horizontal axis. Lane M shows the DNA molecular size marker (500–10,000 bp).

1057 resistance was developed much earlier, resulting in the MIC
value of >256 µM. In both cases, an exponential increase of
MICs up to 16-fold was observed as the first step of resistance
formation. Susceptibility of E. coli ML-35p to mini-ChBac7.5Nα

decreased only 4-fold over the whole experiment, and no regular
MIC changes were observed. Interestingly, 64-fold increases in
MIC value (>256 µM) was registered just after eight passages
in the bacterial strain XDR CI 1057 subjected to selection
by mini-ChBac7.5Nα, and detectable MIC changes became
visible after two initial transfers. Considering that the highest
peptide concentration in the experiment was of 256 µM, we
cannot exclude that actual MIC was beyond this value. The
resistance to mini-ChBac7.5Nα was stable, as a serial passage
over five steps in the absence of the peptide did not change
the MICs. In contrast, the MICs of ChMAP-28 against both
strains increased only twofold after 26 passages. The same was
true for the mixture of cathelicidins. Then, resistant strains
were analyzed for cross-resistance to other agents tested. The
MICs of all the tested antimicrobial agents before and after
selection are presented in Table 4. No differences in MICs
before and after 26 passages without antimicrobial agents were
observed. Susceptibility of the strain to mini-ChBac7.5Nα

acquired after incubation with the synergy combination was
similar to that of the control strains, thus arguing the presence of
membrane active component prevented formation of resistance
against Pro-rich AMP. This also suggests that any resistance
mechanisms to mini-ChBac7.5Nα developed in our experiment
were associated with modification of membrane transporter
system but not with mutations of intracellular targets. Notably,

we did not observe any cross-resistance of the strains incubated
in the presence of cathelicidins to antibiotic polymyxin B
used as a control. In contrast, a considerable resistance to
mini-ChBac7.5Nα was detected in the polymyxin-resistant
strain obtained after selection. The resistance to polymyxins
in Gram-negative bacteria can be mediated by modifications
of LPS structure and cell surface charge (Soon et al., 2011).
It is very likely that such modifications may influence the
mini-ChBac7.5Nα activity due to its high dependence on
electrostatic interactions and a low hydrophobicity of the
peptide.

Analysis of Mini-ChBac7.5Nα-Resistant
Strain Obtained After Selection
Experiment
First, we analyzed an influence of NaCl at physiological
concentration on antimicrobial activities of the goat cathelicidins
against the E. coli XDR CI 1057 wild type strain cultivated without
an antimicrobial agent and served as a control and against the
strain resistant to mini-ChBac7.5Nα. Both mini-ChBac7.5Nα

and its analog mini-ChBac7.5Nα(1–16) were predictably inactive
against the resistant strain in the presence of 0.9% NaCl.
Surprisingly, mini-ChBac7.5Nα completely restored the activity
against the resistant strain with the MIC value of 1 µM
when tested in the absence of salt, while the activity of
mini-ChBac7.5Nα(1–16) was decreased by eightfold as compared
with the wild type strain (see Table 5). It is known that
the ABC-transporter SbmA is essential for the Pro-rich AMPs
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FIGURE 6 | Effect of individual goat cathelicidins ChMAP-28 or mini-ChBac7.5Nα, their synergistic combination, and polymyxin B at different concentrations
including sub-inhibitory MICs on planktonic cell growth and biofilm formation of E. coli clinical isolate. Biofilm formation was assessed by the colorimetric crystal
violet-based technique. The results are expressed as percentage of the planktonic growth or the formed biofilm by reference to an untreated control taken as 100%.
Data are the mean ± SD of at least three independent experiments performed in triplicate. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 significantly different compared to
the control.

uptake and thus is crucial for their activity (Schmidt et al.,
2016). Therefore, the SbmA transporter seems to be a resistance
factor. Notably, the antibacterial activity of the Bac7 N-terminal
fragments were also shown to be decreased by four–eightfold
when tested against the SbmA-deficient E. coli strain in the
MH medium without salt (Mattiuzzo et al., 2007; Guida et al.,
2015). The outer membrane lipoprotein YaiW cotranscribed
with SbmA was also shown to influence the activity of the
Bac7 N-terminal fragments suggesting involvement of this
protein in the SbmA-mediated uptake of the peptide (Arnold
et al., 2014). To check the functionality of both proteins,

analysis of the sbmA-yaiW gene regions of E. coli strains was
performed (Supplementary Figure S3A). PCR analysis revealed
that amplicon lengths for both sbmA and yaiW genes of the
mini-ChBac7.5Nα-resistant E. coli strain were identical to those
of the control strain (Supplementary Figure S3B). This proves
the absence of any notable insertions or deletions in the genes.
Earlier, a 600 bp insertion was identified in sbmA gene of the
E. coli strain resistant to Pro-rich AMP apidaecin 1b (Schmidt
et al., 2016). All the PCR-products were sequenced, and no
difference in a regulatory part of sbmA operon of the control
and resistant strains tested was found (data not shown). Also,
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FIGURE 7 | Minimum inhibitory concentrations (MIC) changes in bacterial strains E. coli XDR CI 1057 (A) and E. coli ML-35p (B) exposed to selection by individual
goat cathelicidins ChMAP-28 (MIC value at transfer “1” = 0.125 µM) or mini-ChBac7.5Nα (MIC value at transfer “1” = 8 µM), the synergistic combination of
ChMAP-28 + mini-ChBac7.5Nα (MIC value at transfer “1” = 0.03 + 2 µM, respectively), and the reference antibiotic polymyxin B (MIC value at transfer
“1” = 0.125 µM). The experiment was performed in the Mueller-Hinton broth supplemented with 0.9% NaCl at 37◦C. 26 repeated passages (transfer N) in the
presence of antimicrobial agents were made for each bacterial strain during the experiment.

there was no significant difference in the amino acid sequence
of YaiW lipoprotein of all the E. coli strains tested in this study.
The only difference was in the signal peptide mutation (V15A)
as compared with E. coli BL21 strain. It should be noted that this
mutation is quite common among other E. coli strains presented
in Genbank. Analysis of SbmA revealed the single point mutation
V102E in the mini-ChBac7.5Nα-resistant strain as compared
with the control one (Supplementary Figure S4). The SAR
analysis of SbmA demonstrated that the strains bearing the single
mutations (V102G, F219G, or E276G) had a null phenotype for
SbmA transport functions (Corbalan et al., 2013). In particular,
the E. coli V102G mutant strain was almost insensitive to the

Bac7(1–16) with the MIC of 156 µM. The residues V102 and
F219 are likely involved in the homodimer formation (Corbalan
et al., 2013). Apparently, the mutation V102E inactivates SbmA
in the strain obtained in this study.

DISCUSSION

First known Pro-rich AMPs (apidaecins, bactenecins) were
identified 30 years ago in insects and mammals, respectively
(Casteels et al., 1989; Gennaro et al., 1989). Mechanism of a
typical Pro-rich AMP action against Gram-negative bacteria
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TABLE 4 | Antibacterial activity of goat cathelicidins and polymyxin B against
E. coli strains obtained after selection experiment.

Strain Minimum inhibitory concentration (µM)

Polymyxin B ChMAP-28 mini-ChBac7.5Nα

E. coli XDR CI 1057 (0 days) 0.125 0.125 8

E. coli XDR CI 1057 (26 days
without antimicrobial agent)

0.125 0.125 8

E. coli XDR CI 1057 (26 days
with polymyxin B)

>128 0.25 64

E. coli XDR CI 1057 (26 days
with mini-ChBac7.5Nα)

0.125 0.125 >128

E. coli XDR CI 1057 (26 days
with synergy combination)

0.06 0.125 8

is accomplished via several steps: (1) electrostatic interaction
between negatively charged components of the outer membrane
a positively charged peptide; (2) crossing of the outer membrane
and getting into the periplasmic space by self-promoted uptake
or the membrane damage; (3) translocation by the transporter
proteins into the cytosol; (4) interaction with the 70S ribosome.
Being the C-terminal part of a large carrier protein, apidaecins
were proved to retain the ability to effectively inhibit the growth
of bacterial cells during heterologous expression in E. coli
(Taguchi et al., 1994). Unlike in apidaecins, it is the N-terminus
that important for manifestation of the activity of mammalian
Bac7-related peptides whereas the C-terminus appears to be
variable and less significant (Graf et al., 2017). Therefore, in
the present work the Pro-rich mini-bactenecins were expressed
as a C-terminal part of the modified thioredoxin A so that
to block the active N-terminus. Here, we showed that the
protein biosynthesis inhibition is a predominate mechanism
of the Capra hircus mini-bactenecins action. The membrane
activity of the peptides consists in a salt-dependent effect on
the outer membrane of Gram-negative bacteria. It should be
noted that goat Pro-rich cathelicidins are not completely devoid
of toxicity toward mammalian cells. Minor hemolytic activity
implies the absence of membranolytic effect on mammalian
membranes. However, a linear increase of cytotoxicity toward
both HEF and HEK293T cell lines at concentrations up to
100 µM suggests a non-lytic penetration into the cell followed
by interaction with an intracellular target. Indeed, the bovine
Bac7(1–35) was proved to inhibit eukaryotic translation with the
use of the rabbit reticulocyte lysate system (Seefeldt et al., 2016).

Pro-rich AMPs are able to interact with several targets within
bacterial cells, and therefore probability of the spontaneous
resistance emergence might be rather low. The advantage of
Pro-rich AMPs as compared with known conventional antibiotics
targeting ribosome is an ability to simultaneously occupy several
functional sites of the 50S subunit (Gagnon et al., 2016),
and the modifications in rRNA does not necessarily lead to
the resistance. Interestingly, mutations in the ribosome that
confer resistance to erythromycin result in cross-resistance to
insect Pro-rich AMPs, but not to mammalian Bac7 orthologs
(Gagnon et al., 2016; Mardirossian et al., 2018). Nevertheless,
the “Achilles’ heel” of most Pro-rich AMPs is the dependence
on specific transport systems when getting into the bacterial
cell. Moreover, an inactivation of the transport protein SbmA
can reduce activity of some Pro-rich AMPs without an obvious
fitness cost for the bacteria (Pränting et al., 2008). Therefore, it is
surprising that many organisms produce Pro-rich AMPs to fight
bacteria. The capacity for preventing resistance development
appears to be a feature of the panel of AMPs as a part of
whole immune system, but not of individual peptides (Chernysh
et al., 2015). In particular, it is likely that membranolytic agents,
e.g., α-helical amphipathic AMPs, can promote translocation of
Pro-rich peptides into bacterial cell. The α-helical mammalian
cathelicidins are known to have a wide spectrum of antimicrobial
activity and a comparatively high toxicity as the result of
moderate cell selectivity. Combined antibacterial effects between
AMPs should be thoroughly investigated, as the results may
explain a high efficacy of the AMP-based defense. Identification
of synergistic combinations of AMPs may help to decrease
effective concentrations of active molecules (Yan and Hancock,
2001), extend their spectrum of action (Lüders et al., 2003),
and prevent the resistance formation (Chernysh et al., 2015).
The last-mentioned could occur while using individual AMPs
(Anaya-López et al., 2013). To date, only a few studies on synergy
between co-localized AMPs have been performed (Singh et al.,
2000; Schmitt et al., 2012).

In this study, structurally distinct goat cathelicidins –
Pro-rich mini-ChBac7.5Nα and α-helical ChMAP-28 were used
as the model system of defense peptides with the same
localization, more specifically, in leucocytes. In contrast to
the non-lytic mini-ChBac7.5Nα, cathelicidin ChMAP-28 was
shown to be potent antibacterial agent with an extremely
fast membrane disruption kinetics. Mini-bactenecins possess
a moderate antibacterial activity which strongly depends on
the ionic composition of the test medium. Thus, the presence

TABLE 5 | Effect of salt on activity of goat cathelicidins against E. coli strain obtained after 26 days selection in the presence of mini-ChBac7.5Nα.

Strain Minimum inhibitory concentration (µM)

ChMAP-28 mini-ChBac7.5Nα mini-ChBac7.5Nα(1-16)

Without salt With 0.9% NaCl Without salt With 0.9% NaCl Without salt With 0.9% NaCl

E. coli XDR CI 1057 (26 days
without antimicrobial agent)

0.125 0.125 1 8 2 16

E. coli XDR CI 1057 (26 days
with mini-ChBac7.5Nα)

0.125 0.125 1 >256 16 >256
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of 0.9% NaCl results in at least several-fold decrease in the
activity of mini-bactenecins against all the tested bacterial
strains. The obtained data indicate a synergy between the
cathelicidins against a wide range of Gram-negative bacterial
species including XDR causative agents of hospital-acquired
infections. Importantly, the synergistic effect was shown against
Gram-negative bacteria which normally have the SbmA transport
system. Earlier, it was supposed that Pro-rich AMPs cross the
outer membrane of Gram-negative bacteria and then are actively
transported by SbmA into the cytoplasm (Krizsan et al., 2015).
Here, mini-ChBac7.5Nα was shown to effectively damage outer
membrane, while the addition of 0.9% NaCl minimized the
activity. Antibacterial activity of mini-bactenecins is inhibited
in the presence of salt, and the electrical double layer around
the cell seems to be a key barrier on the way into the cell of
highly charged and relatively hydrophilic mini-ChBac7.5Nα. At
the same time, ChMAP-28 can damage the outer membrane
acting at nanomolar concentrations, which corresponds to
fractional MICs at synergy combinations with mini-ChBac7.5Nα

(see Table 3). It is important to note that the presence of
mini-ChBac7.5Nα does not increase the permeability of both
inner and outer membrane of E. coli caused by ChMAP-28.
A similar effect was shown earlier when the synergy between
fish histone derivatives and the membranolytic AMP pleurocidin
was studied (Patrzykat et al., 2001). Taken together, the obtained
data suggest that ChMAP-28 at sub-inhibitory concentrations
appears to promote translocation of mini-ChBac7.5Nα into the
periplasmic space. Subsequently, the Pro-rich peptide crosses
the cytoplasmic membrane with the participation of specific
transporters and interacts with the bacterial ribosome.

Besides, AMPs are regarded as promising drug candidates
for treatment of biofilms. Complete inhibition of both
planktonic and biofilm growth of clinical isolates of E. coli
by the combination of the goat cathelicidins was indicated
with the FICI value of 0.375 which validates a notable
synergistic effect. According to the obtained data, synergy
combinations of mammalian cathelicidins might also be
perspective compounds for development of antibacterial
coatings for medical biomaterials and instruments.

It is known that bacteria can become resistant to individual
AMPs, that in turn could induce a cross-resistance to AMP
effectors of the host innate immune system, thus compromising
natural host defense against pathogens (Fleitas and Franco, 2016).
The resistance problem can be solved, in particular, by application
of combinations of natural AMP having a complex mechanism
of antibacterial action. In this paper, capacity of the synergistic
combination of the goat cathelicidins for preventing bacterial
resistance is reported. Selection experiments with Pro-rich AMPs
were performed earlier in low-salt media (Knappe et al., 2016;
Schmidt et al., 2016). Here, we used the medium containing
0.9% NaCl. As expected, the combination was shown to keep a
high activity after the 26-days selection experiment in contrast
to mini-ChBac7.5Nα and the reference antibiotic polymyxin
B. The 64-fold increase in the MIC value (>256 µM) was
registered in the XDR E. coli strain subjected to selection
by mini-ChBac7.5Nα just after eight initial passages. Genetic
analysis of the resistant strain obtained after selection revealed

the single point mutation V102E in the cytoplasmic transporter
SbmA as compared with the control one. In the salt-free
medium the activity of mini-ChBac7.5Nα(1–16) against this
strain was decreased by 8-fold as compared with the control
strain subcultured without selective pressure (see Table 5).
Earlier, it was shown that the V102G strain of E. coli had the
same lowered sensitivity to Pro-rich AMPs as the SbmA-deleted
strain (Corbalan et al., 2013). Interestingly, the activity of
mini-ChBac7.5Nα against the resistant strain is restored to the
wild-type level in a salt-free medium that suggests an important
role of the C-terminal PRPRPR fragment for translocation
across cytoplasmic membrane, together with an inhibition of
the bacterial translation. In E. coli, some Pro-rich AMPs seems
to rely exclusively on the SbmA transporter system, while
others, including oncocin and Bac7(1–35) were active also in
the SbmA-deficient strains, likely due to the presence of another
bacterial transport system coding by the yjiL-mdtM gene (Runti
et al., 2017). Taking into account that there is no significant
difference in ability of mini-ChBac7.5Nα and its shortened
analog to damage bacterial cytoplasmic membrane, the presence
of C-terminal hexapeptide PRPRPR could facilitate a non-lytic
translocation of mini-ChBac7.5Nα or promote an interaction
of the peptide with cytoplasmic transporters different from
SbmA. Nevertheless, the point mutation V102E in SbmA seems
to contribute but does not provide the complete resistance to
mini-bactenecins (MIC of >256 µM) in the presence of salt.
Moreover, the process of the resistance formation was shown
to be multistage that also suggests a complexity of the acquired
resistance.

Finally, the checkerboard assay was performed to
evaluate the combined effects of the cathelicidins the
mini-ChBac7.5Nα-resistant E. coli strain. The presence of
ChMAP-28 at sub-inhibitory concentrations lowered the
MIC of mini-ChBac7.5Nα(1–16) from >256 µM to 16 µM
while the MIC of mini-ChBac7.5Nα was reduced to 1 µM,
that corresponded to their individual MICs in a salt-free
medium (see Table 5). This proves that at nanomolar
concentrations ChMAP-28 influences outer membrane
permeability, rather than damages cytoplasmic membranes
of bacteria. Cell surface modifications could also prevent
interactions between mini-ChBac7.5Nα and bacteria in a
medium with a high ionic strength. Interestingly, the MIC values
of either mini-ChBac7.5Nα or mini-ChBac7.5Nα(1–16) against
the resistant E. coli strain are very similar to those measured
in the test against P. aeruginosa. Also, it should be noted that
we did not identify any mutations which may inactivate the
SbmA protein in the clinically isolated strain E. coli CI 214 with
a weak sensitivity to mini-ChBac7.5Nα (Supplementary Figure
S4). Hereafter, it would be necessary to gain a molecular insight
into the reasons of such an increase in the E. coli resistance
to mini-bactenecins, which could be elucidated by the use of
omics-based approaches.

The obtained results suggest a potential medical application
of combinations of natural cathelicidins in treating of extensively
drug-resistant bacterial infections. This approach will allow using
a lower therapeutic dose and minimize adverse cytotoxic effects.
At the same time, goat cathelicidins potentially could be used in
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medicine as individual agents. ChMAP-28 exhibits outstanding
antibacterial properties, but being an α-helical AMP, which are
known to be unstable to proteolysis, could be considered mainly
as a topical antibiotic. The Pro-rich peptide mini-ChBac7.5Nα

is also a perspective molecular scaffold for drug design.
The resistance to Pro-rich AMPs can be overcome when
administrated in a combination with a membrane active
agent, in particular, with an amphipathic cationic peptide.
Interestingly, the role of the antimicrobial agent in human
bloodstream can be played by the α-helical cathelicidin LL-37.
The murine ortholog of the peptide, designated as CRAMP,
was shown to act synergistically with insect Pro-rich AMPs
(Knappe et al., 2016). However, the absence of Pro-rich
AMPs in human immune system as well as their ability to
cross the blood–brain barrier (Stalmans et al., 2014) makes
it necessary to thoroughly analyze their immunomodulatory
and cytotoxic properties. Besides, a relatively low membrane
activity against mammalian cells and the ability to inhibit
protein biosynthesis make ribosome-targeting Pro-rich
AMPs promising candidates for the development of new
antitumor agents. Therefore, combined cytotoxic effects of goat
cathelicidins toward mammalian cells should be investigated as
well.
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Enterobacteriaceae, including Escherichia coli, has been shown to acquire the colistin
resistance gene mcr-1. A strain of E. coli, EC11, which is resistant to colistin, polymyxin
B and trimethoprim-sulfamethoxazole, was isolated in 2016 from the feces of a dairy
cow in Shanghai, China. Strain EC11 identifies with sequence type ST278 and is
susceptible to 19 frequently used antibiotics. Whole genome sequencing of strain
EC11 showed that this strain contains a 31-kb resistance plasmid, pEC11b, which
belongs to the IncX4 group. The mcr-1 gene was shown to be inserted into a 2.6-kb
mcr-1-pap2 cassette of pEC11b. Plasmid pEC11b also contained putative conjugal
transfer components, including an oriT-like region, relaxase, type IV coupling protein,
and type IV secretion system. We were successful in transferring pEC11b to E. coli C600
with an average transconjugation efficiency of 4.6 × 10−5. Additionally, a MLST-based
analysis comparing EC11 and other reported mcr-positive E. coli populations showed
high genotypic diversity. The discovery of the E. coli strain EC11 with resistance to
colistin in Shanghai emphasizes the importance of vigilance in detecting new threats
like mcr genes to public health. Detection of mcr genes helps in tracking, slowing, and
responding to the emergence of antibiotic resistance in Chinese livestock farming.

Keywords: colistin resistance, mcr-1, Escherichia coli, IncX4 plasmid, whole genome sequence

Abbreviations: CC, clonal complexes; CLSI, Clinical and Laboratory Standards Institute; CRE, carbapenem-resistant
Enterobacteriaceae; E. coli, Escherichia coli; ESBL, extended spectrum β-lactamase; EUCAST, European Committee on
Antimicrobial Susceptibility Testing; HGT, horizontal gene transfer; IRs, inverted repeats; IS, insertion sequences; MDR,
multidrug-resistant; MIC, Minimum Inhibitory Concentration; MLST, Multilocus Sequence Typing; NJ, Neighbor-joining;
ORFs, open reading frames; PCR, polymerase chain reaction; PEA, phosphoethanolamine; SEM, scanning electron
microscope; ST, sequence type; T4CP, type IV coupling protein; T4SS, type IV secretion system; TEM, transmission electron
microscope; WGS, whole-genome sequencing; XDR, extensively drug-resistant.
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INTRODUCTION

Antimicrobial resistance is becoming a great challenge to
public health worldwide (Laxminarayan et al., 2014). The rapid
evolution of MDR Gram-negative bacteria is pushing humankind
to the cusp of a post-antibiotic era. Colistin (polymyxins E) is a
family of cationic polypeptide antibiotics which acts as the last
line of defense in the treatment of severe bacterial infections by
MDR or XDR bacteria. In particular, colistin is used to treat
ESBL-producing and CRE infections (Li et al., 2006; Paterson and
Harris, 2016).

Colistin resistance was assumed to be chromosomally
mediated, non-transmissible and an intrinsic property of the
bacteria (Olaitan et al., 2014). However, the recent discovery of
the Escherichia coli harboring plasmid-borne colistin resistance
gene mcr-1 confirms transmission of colistin resistance by HGT
(Liu et al., 2016). The MCR-1 encodes a PEA transferase that
adds PEA to the lipid A of the lipopolysaccharide, leading to
Gram-negative bacteria resistant to colistin (Anandan et al.,
2017). This HGT mechanism of colistin resistance has alarmed
the medical, media, academic and public health communities.

The global spread of the mcr-1 gene is now evident and
being documented. Currently, researchers have discovered five
mcr-like genes, ranging from mcr-1 to mcr-5, with a series
of mcr genetic variants such as mcr-1.2, mcr-1.3 . . .mcr-1.12.
These mcr genes have spread to 40 countries across 5 of 7
continents in multiple ecosystems, including the environment,
food, animals (e.g., pig, poultry, and cattle) and humans, and
in over 11 species of Enterobacteriaceae (Schwarz and Johnson,
2016; Chen et al., 2017; Feng, 2018). Retrospective studies have
shown that an isolate harboring the mcr-1 gene had already
existed in three chicken E. coli isolates in China from the 1980s
(Shen et al., 2016). The presence of mcr-1 in livestock is indicative
of the route of mcr-1 dissemination through the food chain
and it is gravely concerning that animal-to-human transmission
of MCR-1 colistin resistance has already been found in many
countries.

Mobile genetic elements such as conjugative plasmids,
transposons, integrons and IS are important vehicles of HGT of
the mcr-1 gene (Frost et al., 2005; Sun et al., 2018). Conjugative
plasmids are the main driving force for the dissemination of
the mcr-1 gene, and the plasmids IncI2 and IncX4 are the two
leading plasmid types for facilitating the global dissemination
of colistin resistance (Matamoros et al., 2017; Wang et al.,
2018). The mcr-1 gene is part of an approximately 2.6-kb
mcr-1-pap2 element that contains the likely promoter regions
for mcr-1 transcription (Poirel et al., 2016; Wang et al., 2018).
There are also rare cases involving chromosomally integrated
mcr-1genes (Veldman et al., 2016; Tada et al., 2017), which
are indicative of non-lineage-specific vertical dissemination of
mcr-1.

Detection of mcr genes helps in the tracking, slowing, and
responding to the emergence of antibiotic resistance in Chinese
livestock farming. At the end of 2015, the mcr-1-harboring
E. coli strain SHP45 was isolated from pigs in Shanghai
(Liu et al., 2016). Also, in 2016, the colistin-resistant E. coli
EC11 strain was isolated from cow feces collected from a

commercial dairy farm. We will use WGS to outline the
mechanism for acquiring and transferring colistin resistance in
this strain.

MATERIALS AND METHODS

Bacterial Strains and Identification
In May 2016, we cultured E. coli strains from fecal samples
collected from a commercial dairy farm in Shanghai, China.
Samples (25 g) were dispensed in sterile plastic bags containing
225 ml of Mueller–Hinton broth and incubated at 37◦C for
24 h. All samples were seeded on MacConkey agar plates
with 2 µg/mL colistin and incubated at 37◦C for 18 h. One
putative positive E. coli colony per sample was selected on
the basis of morphology, size, and color (peachblow), then
inoculated overnight on eosin-methylene blue agar. Species
were further confirmed by the amplification and sequencing
of 16S rRNA, while SEM and TEM image analyses were
conducted. All bacterial isolates were stored in the Luria-Bertani
medium (Land Bridge, Beijing, China) with 30% glycerol at
−80◦C.

mcr-1 and β-Lactamase Gene Screening
Screening for the mcr-1 gene was performed using PCR
amplification and sequencing. The specific primers used to
produce the 309 bp amplicon were as previously described:
CLR5-F (5′-CGGTCAGTCCGTTTGTTC-3′) and CLR5-R (5′-
CTTGGTCGGTCTGTAGGG-3′) (Liu et al., 2016). Further
screening for the presence of the mcr-2, mcr-3 and the main
β-lactamase gene groups (blaTEM, blaSHV, blaCTX−M, blaKPC,
and blaNDM) was performed by previously reported primers.
In this study, all primers used are presented in Supplementary
Table S1. Each PCR reaction system was performed in 25 µL,
containing 12.5 µL of PCR Mix (Sangon Biotech, Shanghai,
China), 9.5 µL of dd H2O, 1 µL of forward and reverse
primers, and 1 µL of DNA template. Finally, one E. coli isolate
designated as E. coli EC11 was determined to harbor the mcr-1
gene, and this isolate was selected to perform the follow-up
experiments.

Antibiotic Susceptibility Testing
The MIC for 22 common antibiotics was determined for
the isolate of E. coli EC11 by the broth dilution method
on Mueller–Hinton broth (Oxoid, United Kingdom) following
incubation at 37◦C for 18–24 h. In this study, the 22 tested
antibiotics we used are categorized into seven groups as shown
in Table 1. The results were interpreted according to CLSI
document M100-S25 (2015)1 except for tigecycline and colistin,
which were interpreted by the EUCAST (version 6.0)2 guidelines.
The double disk test (ceftazidime + ceftazidime/clavulanic acid
and cefotaxime + cefotaxime/clavulanic acid) was performed to
confirm the ESBL phenotype, and E. coli ATCC 25922 was used
as a quality control.

1https://clsi.org/
2http://www.eucast.org/
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TABLE 1 | Minimum inhibitory concentration (µg/mL) for Escherichia coli EC11, transconjugant EC11-T and recipient E. coli C600.

Type of antibiotic Antibiotic MIC (µg/mL)∗

Donor Transconjugant Recipient

E. coli EC11 E11-T E. coli C600

β-lactams Amoxicillin-clavulanic 2(S) 2(S) 2(S)

Ampicillin 4(S) 8(S) 8(S)

Piperacillin 2(S) 4(S) 4(S)

Cefotaxime <0.125(S) 0.25(S) 0.25(S)

Ceftazidime 0.25(S) 0.5(S) 1(S)

Cefoxitin 8(S) 4(S) 4(S)

Cephazolin 2(S) 4(S) 4(S)

Cefepime <0.125(S) 0.25(S) <0.125(S)

Imipenem 0.5(S) 1(S) 0.5(S)

Meropenem <0.125(S) <0.125(S) <0.125(S)

Aminoglycoside Amikacin 4(S) 4(S) 8(S)

Gentamicin 2(S) 1(S) 1(S)

Kanamycin 4(S) 4(S) 4(S)

Tetracycline Tetracycline 1(S) 1(S) 1(S)

Tigecycline <0.125(S) <0.125(S) <0.125(S)

Quinolone Ciprofloxacin <0.125(S) 0.125(S) <0.125(S)

Levofloxacin <0.125(S) 0.25(S) 0.5(S)

Nalidixic acid 4(S) >128(R) >128(R)

Amino alcohol Chloramphenicol 16(S) 8(S) 8(S)

Sulfonamide Trimethoprim-sulfamethoxazole 8(R) 8(R) 8(R)

Cationic polypeptide Polymyxin B 4(R) 4(R) 1(S)

Colistin 8(R) 4(R) 1(S)

MIC, minimum inhibitory concentration; R, resistant; I, intermediate; S, susceptible. ∗ In vitro antimicrobial susceptibility was performed by broth microdilution method and
the MICs were interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria, except for tigecycline, colistin and polymyxin B, which interpretation
were performed according to the EUCAST guidelines.

Conjugation Assay
To determine whether the colistin resistance was carried on
a transferable plasmid, a conjugation experiment by filter
mating assay (Smith and Guild, 1980) was performed with
rifampicin-resistant E. coliC600 as the recipient strain. Overnight
cultures of the original isolates and recipient E. coli C600 in
LB broth were adjusted to a 0.5 McFarland standard. A 10 µl
aliquot of each culture was individually added to 2 ml of fresh
LB broth and then incubated at 37◦C for 6 h. The original strains
(20 µl) were then separately conjugated with E. coli C600 (60 µl)
on a microporous membrane. Transconjugants were selected on
MacConkey agar plates supplemented with colistin (2 µg/mL)
and rifampicin (40 µg/mL), and putative transconjugants were
confirmed by both PCR and an antimicrobial susceptibility test
(above 22 antibiotics). The mobilization efficiency was calculated
as the number of transconjugant colonies divided by the number
of donor colonies (Wang et al., 2011).

Multilocus Sequence Typing
The clonal lineage of the E. coli EC11 strain was studied using
MLST. MLST was performed as previously described (Tartof
et al., 2005). The seven conserved housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) were chosen as targets3

3http://mlst.warwick.ac.uk/mlst/dbs/Ecoli

and PCR fragments were sequenced. The alignments of these
sequences were determined using DNAMAN software. These
sequences were then analyzed using the facility provided by the
above-mentioned online tool to assign allele numbers and define
the ST and CC.

Furthermore, in order to explore possible genetic relationships
between E. coli EC11 and other E. coli isolates harboring mcr
reported worldwide, we performed a systematic review of the
literature on mcr published in the NCBI-Pubmed database
between November 2015 and March 2018. A phylogenetic tree
was constructed using a NJ method by MEGA5.0 software,
where the phylogenetic relationships among different strains
were analyzed based on nucleotide differences. In addition,
we conducted cluster analysis of these strains to understand
the relationship between the different ST groups. The eBURST
algorithm was used to group strains according to their
allelic profiles by employing a user-specified group definition
as well as drawing a rough sketch4 to show the genetic
relationship.

Whole Genome Sequencing
Genomic DNA of E. coli strain EC11 was extracted from
an overnight culture using the TIANamp Bacteria DNA

4http://eburst.mlst.net/v3/enter_data/single/
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FIGURE 1 | The eBURST cluster analysis of the genetic relationships of the mcr-positive Escherichia coli strains. The analysis is based on allelic profiles of MLST
data and displays clusters of linked and individual unrelated STs. The digital represents the ST type, each black node represents a sequence type, the blue nodes
represent clonal ancestors, the yellow nodes represent clonal subpopulation ancestors, and the red circle represents the sequence type of E. coli EC11 in this study.

Kit (Tiangen Biotech Beijing Co., Ltd., China) according to
manufacturer’s instructions. WGS data were generated using
short-read (Illumina, San Diego, CA, United States), producing
2× 251-bp paired-end reads, and long-read (Pacific Biosciences,
Menlo Park, CA, United States) technology. The raw data were
assembled using SPAdesv3.9.0 (Bankevich et al., 2012). Gene
prediction and annotation were done with Glimmer 3.02 and
BLAST. All sequences were deposited under the Bioproject
PRJNA436212. Serotypes, plasmid replicons, and E. coli
virulence genes were identified by using SerotypeFinder1.1,
PlasmidFinder1.3, and VirulenceFinder1.5, respectively,
available from the Center for Genomic Epidemiology5.
Insertion sequence (IS) elements were identified using
ISfinder6. Additional characterization of chromosomal
resistance determinants was performed using the CARD
Resistance Gene Identifier7, and ResFinder8 was used to
detect acquired resistance genes commonly located on
mobile genetic elements. The sequence comparison and
map generation were performed using BLAST9 and Easyfig
version 2.1 (Sullivan et al., 2011). Conjugal transfer components
of the plasmids were performed using oriTfinder (Li et al.,
2018).

5http://genomicepidemiology.org/
6https://www-is.biotoul.fr/search.php
7https://card.mcmaster.ca/analyze/rgi
8https://cge.cbs.dtu.dk/services/ResFinder/
9http://blast.ncbi.nlm.nih.gov

RESULTS

Identification of mcr-1-Positive E. coli
Isolates
In our study, out of 120 E. coli isolates collected from dairy cow
fecal samples in May 2016 in Shanghai, only the E. coli isolate
EC11 (Supplementary Figures S1, S2) carried the mcr-1gene,
and none of these isolates carried mcr-2/3 determinants or the
allelic variants.

Susceptibility to Antimicrobial and
Conjugative Compounds
According to EUCAST standards, the resistance cutoff of E. coli
to colistin is 2 mg/L and the E. coli EC11 strain exhibited
the lower level of colistin resistance (8 µg/mL) (Table 1).
E. coli EC11 also showed resistance to polymyxin B, and
trimethoprim-sulfamethoxazole; but it was susceptible to
other 19 common antibiotics, including amoxicillin-clavulanic,
ampicillin, piperacillin, cefotaxime, ceftazidime, cefoxitin,
cephazolin, cefepime, imipenem, meropenem, amikacin,
gentamicin, kanamycin, tetracycline, tigecycline, ciprofloxacin,
levofloxacin, nalidixic acid, chloramphenicol (Table 1). PCR
results showed that E. coli EC11 didn’t carry the β-lactamase
genes, including blaTEM, blaSHV, blaCTX−M, blaKPC, and
blaNDM. Furthermore, the double disk test suggested that E. coli
EC11 was a non-ESBL producing isolate (Supplementary
Figure S3).
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In addition, the filter mating assays indicated that the
mcr-1-carrying plasmid could be successfully transferred from
the donor (E. coli EC11) to the recipient (E. coli C600)
with an average efficiency of 4.6 × 10−5. The MIC value
of the transconjugant EC11-T to colistin was 8 µg/mL,
which showed an eightfold increase when compared with the
recipient E. coli C600 (1 µg/mL). The transconjugant E. coli
EC11-T was also found to have resistance to nalidixic acid,
trimethoprim-sulfamethoxazole and polymyxin B.

A Diversity of the mcr-1 Positive E. coli
Isolates
Multilocus sequence typing (MLST) showed that E. coli EC11
belonged to the ST278 lineage. Based on the literature review,
details of the E. coli strains harboring mcr genes, including the
source and year of isolation, the presence of the MDR phenotype,
ST, and allelic profile, are presented in Supplementary Table S2.
A total of 245 STs were identified among the 616 E. coli isolates,
indicating a high degree of genotypic diversity.

The application of eBURST resolved the 245 STs into 10
clonal complexes (CC10, CC206, CC46, CC1114, CC648, CC101,
CC642, CC6866, CC55, and CC23). CC10 remained the most
populated clonal complex and ST10 was defined as the ancestral
type of CC10 (Figure 1). The geographical distribution of the
different STs is shown in Supplementary Table S3. These ST
types were distributed in more than 35 cities across six continents.
ST10 was isolated on five continents and China was the country
where the most mcr-positive E. coli strains were found, with as
many as 162 different STs being discovered.

A NJ tree representing the concatenated sequences of the
seven housekeeping gene fragments in 245 mcr-positive E. coli
isolates of different ST types is shown in Figure 2. The
phylogenetic analyses revealed that E. coli isolates harboring mcr
genes were distributed in different lineages, and the isolated
E. coli EC11 was located on a single branch rather than belonging
to one of the ST10 branches.

Genome Features of E. coli EC11
Harboring mcr-1
Whole gene sequencing (WGS) revealed that the serotype of
the E. coli EC11 strain was H7. E. coli EC11 consisted of
a chromosome and four circular plasmids (pEC11a, pEC11b,
pEC11c, and pEC11d) (Table 2). The chromosome genome size
presented 4,933,784 bp, with a G+C content of 47.6%. With
an exception of the mcr-1, unexpectedly, any other resistance
genes were not defective in EC11. WGS results revealed the
mcr-1 gene, which showed 100% BLASTn identities to the known
mcr-1 gene of the reference plasmid pHNSHP45 of E. coli
SHP45 (Liu et al., 2016). The mcr-1 gene was only located on
plasmid pEC11b, which was 31,229 bp in length and had an
average G+C content of 41.40%, encoding 38 ORFs (Figure 3).
Using PlasmidFinder, the plasmid pEC11b had a typical IncX4
plasmid backbone encoding replication, conjugation apparatus
and stability functions, and was probably responsible for the
movement of the plasmid between different bacterial hosts. The
type II toxin–antitoxin module hicA/hicB was also identified

FIGURE 2 | Neighbor-joining tree of 245 concatenated sequences of E. coli
harboring mcr-1 from multiple sources in different countries. The numbers at
the nodes represent bootstrap values based on 500 replications. In bold and
red underline presented the E. coli EC11isolate. ST, sequence type.
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TABLE 2 | General features of E. coli EC11 genomes.

Replicons Accession
number

Size(bp) MLST Plasmid
typing

Antibiotic
resistance

GC (%) ORF
numbers

tRNA
genes

rRNA
genes

Chromosome CP027255 4,933,784 ST278 – – 50.77 4,648 85 22

pEC11a CP027256 103,336 – IncFIB – 48.08 119 0 0

pEC11b CP027257 31,229 – IncX4 mcr-1 41.74 38 0 0

pEC11c CP027258 31,467 – – – 48.41 46 0 0

pEC11d CP027259 6,812 – ColRNAI – 47.69 9 0 0

FIGURE 3 | Map of the mcr-1-containing plasmid pEC11b isolated. The mcr-1 gene is marked in red. Figure was created with by the software SnapGene Viewer.

in pEC11b. The putative virulence genes, such as gad (coding
for glutamate decarboxylase), lpfA (long polar fimbriae) and
iss (increased serum survival siderophore), were found in the
chromosome of E. coli EC11.

Genome Features of mcr-1-Carried
Plasmid
BLASTn analysis showed that the backbone of the plasmid
pEC11b (GenBank accession number CP027257.1) was strikingly
similar with (the query cover of 100% and the identities 99%)
other previously sequenced mcr-1-carrying IncX4 plasmids,
such as pICBEC72H of E. coli (isolated in Brazil; the
GenBank accession no. CP015977.1), pMCR1-IncX4 of Klebsiella
pneumoniae (China; KU761327.1), and pNG14043 of Salmonella
(China; KY120364) (Figure 4). In all, these IncX4 plasmids
bearing mcr-1 showed very high architectural conservation.

An approximately 2.6 kb mcr-1-pap2 element was identified
in the above-mentioned plasmids pEC11b, PICBEC72H,

pMCR1-IncX4, and PNG14043. In addition, an IS6 element
was identified in pEC11b, IS26 was identified in PICBEC72H
and PNG14043, and tnpA was identified in pMCR1-IncX4
(Figure 4). The promoter sequences of mcr-1 in all the
aforementioned sequences were similar to that of pAf23 and
pAf48 reported by Poirel et al (Poirel et al., 2016) as well as
pMCR1_IncI2 and BJ10 by Zhang et al (Zhang et al., 2017)
(Supplementary Figure S4).

The putative conjugal transfer components of pEC11b
were also detected by using oriTfinder. A tra gene cluster
encoding a T4SS belonging to Type P was predicted on
pEC11b. It encoded a relaxase (C6C13_26300) belonging to
the MOBP family. It also encoded a T4CP (C6C13_26225)
belonging to the VirD4 subfamily. The oriT-like region
(coordinate: 27,146-27,223 bp) contained a pair of 14-bp
IRs (GCAGGTGAGCAAAG. . .CTTTGTTCACCTGC). This
evidence confirms that the plasmid pEC11b is a conjugative
plasmid.
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FIGURE 4 | Linear comparison of complete plasmid sequences of plasmid pEC11b from E. coli EC11 (this study, accession no. CP027257), pICBEC72H from
E. coli ICBEC72H (CP015977), pMCR1-IncX4 from Klebsiella pneumoniae SZ04 (KU761327) and pNG14043 from Salmonella NG14043 (KY120364). The arrows
represent the position and transcriptional direction of the ORFs. Genes associated with the type IV secretion systems are indicated by blue arrows, resistance genes
are indicated by red arrows, replication initiation protein are indicated pink, while accessory genes are indicated by jacinth arrows. Insertion sequences are
highlighted in green arrows. The percentages of amino acid identity (above) and nucleic acid similarity (below) are shown between the homologous genes.

DISCUSSION

Colistin has been widely used as a veterinary drug for the
treatment of enterobacterial infections and as an in-feed additive
to promote healthy development in food-producing animals,
especially in swine and poultry production (Kempf et al.,
2013, 2016). Transfer of colistin resistance among bacteria in
the gastrointestinal tract of livestock animals is a probable
route for the dissemination of these bacteria (Fernandes
et al., 2016b; Guenther et al., 2017). These routes can be
via the food chain or direct human contact with animals
as well as through contamination of fresh and seawater
systems (Zhang et al., 2016; Zurfuh et al., 2016). In addition,
the persistence of mcr-1 in the human gastrointestinal tract
microflora provides another route for dissemination of these
bacteria (Chen et al., 2017). In this study, the mcr-1-carrying
plasmid could be conjugated into E. coli C600 isolates in vitro.
The mcr-1 gene, if present in gut microbiota, can therefore
be horizontally transmitted between different species in the
microbiota.

Self-transmissible IncX4-type plasmids are now accepted as
key vehicles responsible for the dissemination of the mcr-1
gene among Enterobacteriaceae worldwide (Fernandes et al.,
2016a; Sun J. et al., 2017; Wang et al., 2017). In this study, we
identified an IncX4-type plasmid carrying mcr-1 in E. coli EC11,
pEC11b, which was nearly identical to the other IncX4 plasmids
bearing mcr-1 in GenBank. IncX4 plasmid architecture is highly
conserved and studies have shown similar IncX4 plasmids
bearing mcr-1 from different species. These species were isolated
from different geographic locations and belonged to different STs
(Sun J. et al., 2017; Wang et al., 2017). Plasmid pEC11b has four
typical conjugal modules: an origin of transfer (oriT-like) region,
a T4CP gene, a relaxase gene, and a gene cluster for the bacterial

T4SS apparatus. The T4SS can act as a conjugative machine in
conjugative plasmids (Cascales and Christie, 2003). These gene
clusters are vital to the HGT of intra- and inter-species bacterial
resistance genes (Frost et al., 2005). Also, the plasmid pEC11b
contains the mcr-1-pap2 cassette which has proven that it could
be horizontally transferred into diverse plasmid replicon types (Li
et al., 2016).

Multilocus sequence typing (MLST) is a powerful genetic
fingerprinting technique for molecular epidemiology and
population genetic studies of bacterial pathogens (Maiden
et al., 1998; Urwin and Maiden, 2003; Maiden, 2006). In this
study, we reported the first recorded instance of an mcr-1
producing E. coli EC11 belonging to the ST278 lineage. We
performed a MLST-based analysis of the mcr-positive E. coli
population structure among 616 isolates collected in different
laboratories in over 35 countries since 2016. The 245 STs
among the 616 isolates indicate that the mcr-positive E. coli
population is extremely diverse. Applying eBURST and NJ
tree analyses simultaneously in this global dataset allows for
better resolution in discerning the epidemiology and genetic
population structure of mcr-positive isolates. Combined with
previous studies (Matamoros et al., 2017), we speculate that the
diversity in ST types of these E. coli strains may be related to
highly promiscuous plasmids disseminating mcr genes. It also
indicates that mcr-1 has a huge risk of vertical transmission and
may become more widespread and prevalent in the future. A ST
which is highly disseminated in food, environment, animals, and
human intestinal samples is ST10 (Matamoros et al., 2017; Sun
P. et al., 2017). The epidemic clone ST131 (Ortiz de la Tabla
et al., 2017), ST648 (Yang et al., 2016), and ST206 (Zheng et al.,
2018) were reported to be the most common STs associated with
various β-lactamases, including ESBLs, NDM, and KPCs, etc.
Many reports indicated that bacteria carrying mcr-1 were often
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associated with ESBLs (Sun et al., 2016). In this study, E. coli
EC11 only conferred resistance to polymyxin B, colistin, and
trimethoprim-sulfamethoxazole, which are antibiotics that are
extensively prescribed in veterinary medicine (Catry et al., 2015).

Currently, a number of countries have already restricted the
use of colistin in animal production. China has now stopped the
use of colistin as an antibiotic growth promoter (Walsh and Wu,
2016). South Africa has responded to the threat of losing colistin
as an antibiotic for human health through a program to advance
national stewardship of colistin across the ‘One Health’ platform
(Mendelson et al., 2018). The discovery of the E. coli strain EC11
with resistance to colistin in Shanghai emphasizes the importance
of vigilance in detecting new threats like mcr genes to public
health.

CONCLUSION

In this work, we report the first case of colistin-resistant mcr-1
gene in E. coli strain EC11 isolated from dairy cow feces in
Shanghai, China. We show that this E. coli strain carrying
the mcr-1 gene can transfer resistance through HGT. This
study confirms the need to monitor and survey the use of
colistin and other types of antibiotics to enable proactive and
effective strategies (e.g., risk assessment and risk management)
for preserving the efficacy of antibiotics in the future.

Nucleotide Sequence Accession Number
The genome sequences of the chromosome and four plasmids of
the E. coli strain EC11 were deposited as GenBank accession no.
CP027255-CP027259.
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Background: Clostridium difficile infection (CDI) is prevalent in healthcare settings. The
emergence of hypervirulent and antibiotic resistant strains has led to an increase in CDI
incidence and frequent outbreaks. While the main virulence factors are the TcdA and
TcdB toxins, antibiotic resistance is thought to play a key role in the infection by and
dissemination of C. difficile.

Methods: A CDI outbreak involving 12 patients was detected in a tertiary care hospital,
in Lisbon, which extended from January to July, with a peak in February, in 2016. The
C. difficile isolates, obtained from anaerobic culture of stool samples, were subjected to
antimicrobial susceptibility testing with Etest R©strips against 11 antibiotics, determination
of toxin genes profile, PCR-ribotyping, multilocus variable-number tandem-repeat
analysis (MLVA) and whole genome sequencing (WGS).

Results: Of the 12 CDI cases detected, 11 isolates from 11 patients were characterized.
All isolates were tcdA−/tcdB+ and belonged to ribotype 017, and showed high level
resistance to clindamycin, erythromycin, gentamicin, imipenem, moxifloxacin, rifampicin
and tetracycline. The isolates belonged to four genetically related MLVA types, with
six isolates forming a clonal cluster. Three outbreak isolates, each from a different
MLVA type, were selected for WGS. Bioinformatics analysis showed the presence of
several antibiotic resistance determinants, including the Thr82Ile substitution in gyrA,
conferring moxifloxacin resistance, the substitutions His502Asn and Arg505Lys in rpoB
for rifampicin resistance, the tetM gene, associated with tetracycline resistance, and
two genes encoding putative aminoglycoside-modifying enzymes, aadE and aac(6′)-
aph(2′′). Furthermore, a not previously described 61.3 kb putative mobile element was
identified, presenting a mosaic structure and containing the genes ermG, mefA/msrD
and vat, associated with macrolide, lincosamide and streptogramins resistance.
A substitution found in a class B penicillin-binding protein, Cys721Ser, is thought to
contribute to imipenem resistance.
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Conclusion: We describe an epidemic, tcdA−/tcdB+, multidrug resistant clone of
C. difficile from ribotype 017 associated with a hospital outbreak, providing further
evidence that the lack of TcdA does not impair the infectious potential of these strains.
We identified several determinants of antimicrobial resistance, including new ones
located in mobile elements, highlighting the importance of horizontal gene transfer in
the pathogenicity and epidemiological success of C. difficile.

Keywords: Clostridium difficile, multidrug resistant clone, outbreak, resistance determinants, genomic analysis

INTRODUCTION

Clostridium difficile, recently renamed as Clostridioides difficile
(Lawson et al., 2016), infection (CDI), is the main cause
of nosocomial antibiotic-associated diarrhea in developed
countries, and is prevalent in the healthcare setting. CDI
incidence as well as the occurrence of outbreaks has increased
dramatically in the last two decades due to the emergence of
antibiotic resistant and hypervirulent strains (Freeman et al.,
2010; Vindigni and Surawicz, 2015; Isidro et al., 2017). CDI
usually develops in hospitalized elderly individuals when the
protective colon microbiota is disrupted due to previous
antimicrobial therapy (reviewed by Rupnik et al., 2009; Smits
et al., 2016). Most C. difficile toxigenic strains produce two
main virulence factors, the toxins TcdA and TcdB, encoded by
genes located in the pathogenicity locus (PaLoc); some strains
additionally produce a binary toxin, CDT, while others produce
only TcdB (Hunt and Ballard, 2013; Chandrasekaran and Lacy,
2017).

Antibiotic resistance is frequently reported in prevalent
C. difficile strains and is thought to play a major role in
the infection and dissemination of this pathogen, as well as
in the emergence of new types of epidemic clones (Spigaglia,
2016; Isidro et al., 2017). Resistance may be due to different
mechanisms, such as the expression of genes located on mobile
elements or specific mutations in the genes coding for the
antibiotics targets (Brouwer et al., 2011; Isidro et al., 2017).

Here we describe a multidrug resistant clone from PCR
ribotype 017 C. difficile implicated in a CDI outbreak that
occurred between January and July 2016 in two surgery wards in a
hospital from the Lisbon Metropolitan Area. Multilocus variable-
number tandem repeat analysis (MLVA) was used to determine
the genetic relatedness of the strains and whole-genome
sequencing (WGS) to identify determinants of resistance.

MATERIALS AND METHODS

C. difficile Isolates
Following the CDI surveillance program, 11 stool samples
from 11 CDI-positive patients, diagnosed using the C. DIFF
QUIK CHEK COMPLETE R©kit, were collected between January
and July 2016, during an outbreak in a hospital from
the Lisbon Metropolitan Area, and sent to the National
Reference Laboratory for Gastrointestinal Infections, hosted in
the Portuguese National Institute of Health, for laboratory-based

epidemiological surveillance of CDI. As described previously,
stool samples were inoculated onto ChromID C. difficile agar
(bioMérieux, Marcy l’Etoile, France) after ethanol shock and
incubated under anaerobic conditions for 48 h at 37◦C (Santos
et al., 2016). Total DNA was extracted with the Isolate II
Genomic DNA kit (Bioline, London, United Kingdom), followed
by a multiplex PCR to detect the genes gluD, tcdA, tcdB, cdtA
and cdtB (Paltansing et al., 2007; Persson et al., 2008). An
additional PCR was carried out to detect mutations in tcdA
(Kato et al., 1999). Capillary gel-based electrophoresis PCR
ribotyping was performed using Bidet primers, as previously
described (Fawley et al., 2015). Patient’s demographic and clinical
data was collected by the infection control team of the affected
hospital.

Antimicrobial Susceptibility Testing
Minimum inhibitory concentrations (MICs) of chloramphenicol,
clindamycin, erythromycin, gentamicin, imipenem,
metronidazole, moxifloxacin, rifampicin, tetracycline,
tigecycline and vancomycin were determined with Etest
strips (bioMérieux), according to the manufacturer’s
instructions. Plates were incubated under anaerobic
conditions for 48 h at 37◦C. The European Committee
on Antimicrobial Susceptibility Testing (EUCAST)
breakpoints established for C. difficile were used when
available. For the remaining antibiotics, the Clinical and
Laboratory Standards Institute (CLSI) breakpoints were used
(Table 2).

Multilocus Variable-Number
Tandem-Repeat Analysis
Multilocus variable-number tandem-repeat analysis was carried
out following the method developed by van den Berg et al.
to amplify the loci A6, B7, C6, E7, G8, and CDR60 (Van
Den Berg et al., 2007), with an alternative reverse primer
to amplify the locus G8, as previously described (Tanner
et al., 2010). Each locus size was determined by capillary
gel electrophoresis and the corresponding number of repeats
was used to construct a minimum spanning tree using
the summed absolute distance as coefficient. Isolates with a
summed tandem-repeat difference (STRD)≤ 10 were considered
genetically related regardless the number of different loci.
Clonal complexes were defined by a STRD ≤ 2 between two
isolates that were either single or double locus variants of each
other.
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Whole Genome Sequencing and
Bioinformatics Analysis
Three strains (A, B, and K; Figure 1) were selected for WGS
in order to identify putative determinants of resistance and
assess clonal relationship. WGS was performed as previously
described (Isidro et al., 2018). Nextera XT libraries were subjected
to paired-end sequencing on an Illumina Miseq platform
(Illumina Inc., San Diego, CA, United States). After reads’ quality
analysis (FastQC v0.11.51) and improvement, (Trimmomatic
v0.36), draft genome sequences were de novo assembled using
SPAdes (version 3.10.1) (Bankevich et al., 2012) followed by
annotation using the RAST server2 (Aziz et al., 2008). The
PubMLST online platform3 was used for in silico Multilocus
Sequence Typing (MLST) and allele determination. Core-
genome single nucleotide polymorphism (SNP)-based analysis
was performed using Snippy v3.14. Only variant sites with
minimum mapping quality of 60, minimum of > 10 reads
covering the variant position and > 90% reads differing from
the reference genome were considered. Putative antimicrobial
resistance (AMR) genes were identified using both CARD5 and
ResFinder6 (Zankari et al., 2012; Jia et al., 2017). Prophage
sequences were identified using PHASTER7 (Arndt et al., 2016).
BLASTn searches8 against the non-redundant (nr) and wgs
databases were performed to identify the presence (and similarity
level) of determinants of resistance in other available genomes.
The genome of strain M68 from ribotype 017 (Acc. No.
NC_017175) was used as reference. Raw sequence reads of the
three C. difficile isolates subjected to WGS were deposited in
Sequence Read Archive under the Bioproject accession number
PRJNA478136.

Construction of an ermG Inducible Strain
for Heterologous Expression
To place the ermG gene under the control of the anhydro
tetracycline-inducible Ptet promoter, the ermG gene
with its ribosome-binding site (positions −12 to + 793
from the translational start codon) was PCR amplified
using primers ermG850D (5′ GGATTCGGAGAGGTTAT
AATGAACAAAG 3′) and ermG1660R (5′ ATAGTTTAGC
GGCCGCATTTTAACTTATGCTACCCTACC 3′) and genomic
DNA from strain A (Figure 1), isolated in January 2016, from
the first outbreak patient, as the template. The resulting
810 bp-long PCR product was cleaved with EcoRI and
NotI and inserted between the same sites of pAM25, to
yield pMS534. pAM25 is a derivative of pRPF185 from
which the gusA gene was removed (Fagan and Fairweather,
2011). Plasmids pRPF185 and pMS534 were introduced
into E. coli HB101 (RP4) and the resulting strains used to

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://rast.nmpdr.org/
3https://pubmlst.org/
4https://github.com/tseemann/snippy
5https://card.mcmaster.ca/
6https://cge.cbs.dtu.dk/services/ResFinder/
7http://www.phaster.ca/
8https://blast.ncbi.nlm.nih.gov/

transfer the plasmids, by conjugation, into C. difficile 6301erm
with selection for thiamphenicol resistance (15 µg/ml) as
described before (Serrano et al., 2016). For induction of
the Ptet promoter, cultures were grown in the presence of
250 µg/ml of anhydro tetracycline (Fagan and Fairweather,
2011).

RESULTS

C. difficile Isolates
A CDI outbreak occurred between January and July 2016 in two
surgery wards of a < 500-bed tertiary care hospital. In 2015,
the hospital registered a CDI incidence of 2 cases per 10,000
patient bed-days, while there were no cases in the two surgery
wards. Twelve cases of nosocomial CDI were detected during
this outbreak, 10 in the cardiothoracic surgery ward and two in
general surgery ward, with the following temporal distribution:
one case in January, seven in February, one in March, one in
April, one in June and one in July. The patients’ age ranged
from 50 to 84 years and 7/12 were male. According to patient’s
hospital medical records, 11 of the 12 patients had received
two or more classes of antibiotics in the 3 months prior to the
diagnosis. Patient’s demographic and clinical characteristics are
summarized in Table 1. The isolates were recovered from 11 of
the 12 cases and all belonged to ribotype 017. All were tcdA-
negative, carrying a previously described ∼1800 bp deletion in
tcdA (Kato et al., 1999), tcdB-positive and did not carry the cdtA
and cdtB genes coding for the binary toxin CDT.

Antimicrobial Susceptibility
All isolates showed high level resistance to clindamycin
(>256 mg/L), erythromycin (>256 mg/L), gentamicin
(>256 mg/L), imipenem (>32 mg/L), moxifloxacin (>32 mg/L),
rifampicin (>32 mg/L), and tetracycline (16 mg/L), being
susceptible to metronidazole, vancomycin, chloramphenicol and
tigecycline (Table 2).

TABLE 1 | Characteristics and clinical data of patients with Clostridium difficile
infection associated with an outbreak.

Patients (n = 12) characteristics Number (%)

%Males 7 (58.3%)

Mean age in years (interquartile range) 71 (64–81)

Ward

Cardiothoracic surgery 10 (83.3%)

General surgery 2 (16.7%)

Hospital admission during the 6 previous months 4 (20%)

Antimicrobial exposure within 3-months before CDI diagnosis 11 (91.7%)

Classes of antibiotics

Aminoglycosides 7 (58.3%)

Vancomycin 7 (58.3%)

Carbapenems 3 (25%)

Penicillins associated with clavulanic acid or tazobactam 3 (25%)

Fluoroquinolones 2 (16.7)

Cephalosporins 1 (8.3%)
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FIGURE 1 | MLVA profiles and minimum spanning tree for Clostridium difficile PCR ribotype 017 isolates. For the minimum spanning tree, unique MLVA types are
represented by circles, and the summed tandem-repeat differences (STRD) between isolates given by the numbers between the circles. Gray shading indicates a
clonal complex (isolates with a STRD of ≤2).

MLVA
Four MLVA types were identified among the studied isolates
(Figure 1), with only one type displaying two loci differences
from the remaining. Loci A6, B7, E7, and CDR60 were invariable;
C6 was the most variable locus while G8 only differed in the most
recent isolate (K). This isolate, from July, displayed the higher
distance from the others, with a 10 tandem-repeat difference
in loci C6 and G8 from the first isolate, dated from January.
All isolates were genetically related and six of them, which had
been collected between January 28th and March 1st, constituted
a clonal complex (Figure 1).

Whole-Genome Sequencing Results
The 11 isolates shared a high genetic proximity, as determined
by MLVA, and therefore only three, representing the outbreak
period and belonging to different MLVA types, isolates A (from
January), B (from February, the peak period) and K (from July),
were selected for WGS (Figure 1). Data analysis showed the three
strains belonged to the multilocus sequence type (MLST) clade 4,
ST37. The pathogenicity locus (PaLoc) showed a complete tcdB
gene (PubMLST allele 9), and a disrupted tcdA with a 1.8 kb
deletion at the 3′ end and an early stop codon at amino acid 47,
which is typical of ribotype 017. Regarding the accessory genes of
the PaLoc, no mutations were found in tcdE, coding a holin-like
protein necessary for toxin secretion, or in the putative negative
regulator of toxin production tcdC (PubMLST allele 7). The
transcriptional regulator tcdR, which has a frameshift mutation
in the reference strain M68 (locus CDM68_RS03600) due to a
deletion at nucleotide 165 that leads to an early stop codon, is
in frame, and predicted as functional, in our strains.

Core-genome SNP-based analysis, using the genome of strain
M68 as reference, identified a total of 35 single nucleotide variants

TABLE 2 | Antimicrobial susceptibility and determinants of resistance of the 11
Clostridium difficile ribotype 017 isolates characterized in this study.

Antibiotic R
breakpoint

(mg/L)

MIC
(mg/L)

Phenotype
(S/R)

Genetic
determinant

of
resistance

Clindamycin >4a >256 R ermG

Erythromycin ≥8a >256 R ermG

Chloramphenicol ≥32a 3–6 S –

Gentamicin ≥16b >256 R aac(6′)-
aph(2′ ′) and

aadEd

Imipenem ≥16a >32 R Cys721Ser in
PBP3e

Metronidazole >2c 0.125–1.5 S –

Moxifloxacin >4c >32 R Thr82Ile in
GyrA

Rifampicin >0.004c >32 R His502Asn
and

Arg505Lys in
RpoB

Tetracycline ≥16a 16 R tetM

Tigecycline >0.25c 0.023–
0.047

S –

Vancomycin >2c 0.5–0.75 S –

aBreakpoints according to the Clinical and Laboratory Standards Institute (CLSI)
interpretative values for anaerobes. bBreakpoints according to the Clinical and
Laboratory Standards Institute (CLSI) interpretative values for Staphylococcus
spp. cBreakpoints defined by the EUCAST guidelines (European Committee on
Antimicrobial Susceptibility Testing). dPutative mechanism of resistance in other
bacterial genera. ePutative mechanism of resistance.

(SNVs), of which 33 distinguished the strain M68 from the
outbreak strains, being that isolates A and B had no differences
between each other and isolate K had 2 SNPs distinguishing
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it from isolates A and B, which is consistent with nosocomial
transmission.

WGS data revealed the presence of several determinants
of resistance (Table 2). Two genes encoding putative
aminoglycoside-modifying enzymes, termed aadE
(aminoglycoside 6-adenylyltransferase) and aac(6′)-Ie-
aph(2′′)-Ia (bifunctional aminoglycoside N-acetyltransferase
AAC(6′)-Ie/aminoglycoside O-phosphotransferase APH(2′′)-
Ia), were found in the sequenced isolates. BLASTn search
against the nr database showed that aadE and aac(6′)-Ie-
aph(2′′)-Ia, which are homologous to the loci CDM68_RS08230
and CDM68_RS08245, respectively, in the reference strain
M68, are not frequent in C. difficile genomes. On the
other hand, they are common in other bacterial genera.
The gene aadE is found with 100% coverage and identity
in several Campylobacter coli genomes, as well as in
a few genomes of Campylobacter jejuni, Streptococcus
agalactiae and Enterococcus faecalis, among others. The
gene aac(6′)-Ie-aph(2′′)-Ia found in our isolates is present
with 100% coverage and identity in many Staphylococcus spp.
genomes, but also Enterococcus spp. and Campylobacter spp,
among others.

The tetracycline resistance determinant tetM (PubMLST allele
15), homologous to the locus CDM68_RS01945 in strain M68,
was also present in our isolates and was identified in the
conjugative transposon Tn916 (Acc. No. KC414929).

The substitution Thr82Ile in GyrA (PubMLST allele 35),
which is responsible for fluoroquinolones resistance, and two
mutations in rpoB, leading to the amino acid substitutions
His502Asn and Arg505Lys (PubMLST allele 20), both known to
be associated with rifampicin resistance, were present in the three
sequenced isolates.

Furthermore, we found the mutation 2162G > C in the
homolog of locus CDM68_RS05670, which codes for a penicillin-
binding protein (PBP), PBP3 (Isidro et al., 2018). This mutation,
which leads to the amino acid substitution Cys721Ser, occurs in
the PBP transpeptidase domain, the target of carbapenems action
(Papp-Wallace et al., 2011).

An ermG gene was identified in a cluster of genes associated
with macrolide, lincosamide and streptogramins (MLS)
resistance that also included the genes mefA and msrD, both
associated with macrolide efflux resistance, and vat, coding for a
Streptogramin A acetyltransferase (Figure 2). This cluster of MLS
resistance genes was found in a 61.3 kb element that interrupts
the 23S rRNA (uracil-C(5))-methyltransferase encoding gene
(homolog of locus CDM68_RS02190 in strain M68) and shows
multiple traits associated with mobile elements likely acquired
by horizontal gene transfer (HGT) (Figure 2). This region
exhibits a mosaic structure, composed of (i) a Type I restriction-
modification (RM) system, with genes coding for the subunits R
(restriction), S (specificity) and M (DNA methyltransferase), (ii)
an intact prophage of around 49 Kb, as detected by PHASTER,
and (iii) the aforementioned cluster of MLS resistance genes,
followed by a IS66 family transposase (Figure 2). Three other
C. difficile genomes deposited in Genbank present this putative
mobile element with >99.9% coverage and identity: the non-
toxinogenic strain Z31 (ribotype 009) and strains 7499-CF/ST37

and VL_0008, both belonging to ST37 (Acc. Nos. CP013196,
MPFV01000002, and CZWM01000001, respectively). Another
strain, VL_0387 (Acc. No. FALC01000010), also from ST37,
contains a highly similar element (also >99.9% sequence
coverage and identity) but in which the region containing the
ermG and the transposase is inverted, when comparing to the
isolates from this study. Seven other C. difficile draft genomes
(Acc. Nos. FANQ01000006, FAKJ01000001, FADL01000009,
FACQ01000001, CZZV01000006, CZYY01000001,
CZXE01000001) harbor a similar element (86% coverage
and 98.4% sequence identity) that does not contain the MLS
resistance portion, which points to the mosaic origin of this
element. Likewise, the genome of C. difficile strain M120
(ribotype 078) exhibits a ∼40 kb region (Acc. No. NC_017174,
genome position 426527–466056) with 62.8% coverage and
90.6% sequence identity with the element present in our strains,
while not containing the flanking RM system nor the MLS
resistance cluster.

The 61.3 kb putative mobile element has homology with
other non-C. difficile genomes. For instance, the genomic region
spanning the RM system and the prophage has a high homology
with two genomes of Thermoanaerobacter sp., covering 70% of
the element with 88% sequence identity (Acc. Nos. NC_014538
and NC_010320). The proteins coded by the RM system are
common in the class Clostridia and are also found in Enterococcus
cecorum. The prophage region is found with 89% sequence
identity, covering 62% of the element, in the genome of
Clostridium bornimense strain M2/40T (Acc. No. HG917868)
and the cluster of MLS resistance genes is found in three
genomes of Enterococcus cecorum with 98.5% sequence identity,
covering 9% of the element (Acc. Nos. CP010060, CP010061 and
CP010064).

The genes mefA and msrD present in this element are found
with >99% coverage and >95% sequence identity in many
bacterial species, most of which are Streptococcus spp., mainly
S. pneumoniae and S. pyogenes, but also in E. cecorum, Neisseria
gonorrhoeae and Acinetobacter junii, among other species. The
vat gene is present in a few C. difficile genomes and is also found
with >96% coverage and >91% sequence identity in several
E. cecorum, E. faecium and Streptococcus suis genomes.

The ermG gene present in this element is found in
multiple species with a sequence coverage and identity ≥99%,
including Lysinibacillus sphaericus (Acc. Nos. NG_047827 and
M15332), E. cecorum (mentioned above), E. faecium (Acc. No.
CP003351), Bacteroides spp. (Acc. Nos. NG_047828, L42817,
NG_047829.1 and AJ557257) and nine C. difficile genomes
(Acc. Nos. CP013196, MPFV01000002, FALC01000010,
CZWM01000001, FALZ01000014, FAIU01000023,
FAES01000003, FACO01000021, FACG01000010), among
which is the non-toxinogenic strain C. difficile Z31.

The 61.3 kb ermG-containing region is absent in reference
strain M68 (Figure 3). However, the conjugative transposon
Tn6194 harboring the ermB gene ( the gene most commonly
associated with MLS resistance in C. difficile), is present in strain
M68, while being absent in all the isolates from this study.

The primer pair ermG-F (5′ TCACATAGAAAAAATAAT
GAATTGCATAAG 3′) and ermG-R (5′ CGATACAAATTGT
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FIGURE 2 | Genetic organization of the novel Clostridium difficile putative mobile element harboring the ermG gene. Restriction-modification system genes are
shown in purple, prophage genes are shown in blue and the genes associated with macrolides, lincosamides and streptogramines resistance are indicated in
orange. The transposase is shown in green and the interrupted gene coding for a 23S rRNA (uracil-C(5))-methyltransferase is shown in black. Genes coding for
hypothetical proteins are shown in gray.

TCGAAACTAATATTGT 3′) was used to amplify a 652 bp
amplicon of ermG and confirmed its presence in the remaining
outbreak isolates.

The element containing the ermG is located in a region
showing evidence of other HGT events (Figure 3), such as
prophages and putative conjugative transposons (CTn). Overall,
PHASTER identified three complete, one questionable and four
incomplete prophages (data not shown). All, except for the
complete prophage harboring the ermG-element, are found
in strain M68. One of the incomplete prophages is located
72 kb downstream the homolog of locus CDM68_RS02190.
The 72 kb region between this incomplete prophage and the
ermG-containing element shows a high homology with the
43.5 kb CTn5 element present in C. difficile strain 630 (Acc.
No. AM180355, genome position 2137789–2181291). This 72 kb
region covers 90% of CTn5 with 99% sequence identity but
in the isolates of this study it is interrupted by two genetic
insertions of 8 and 22 kb (Figure 3). This 72 kb region is
present in the strain BJ08 (Acc. No. CP003939), but in M68
strain it is shorter, lacking the two aforementioned insertions
(42 kb; genome position 407967–449991), and more similar to
the CTn5 of C. difficile strain 630 (Figure 3). The 8 kb insertion
shows high homology to a Campylobacter coli plasmid (Acc. No.
CP017026; 88% coverage, 95% sequence identity), while ∼10 kb
of the 22 kb insertion has 99.9% sequence identity with regions of
three genomes, namely Flavonifractor sp., Enterococcus faecium
and C. difficile (Acc. Nos. NFHA01000028, LNMU01000054 and
MPDX01000112, respectively).

Confirmation of MLS Resistance
Mediated by ermG
The ermG-inducible C. difficile 6301erm strain was subjected
to antimicrobial susceptibility testing by diffusion gradient with
Etest strips against erythromycin and clindamycin. Confirming
that the expression of ermG confers resistance to MLS antibiotics,
the MICs of erythromycin and clindamycin were both of
>256 mg/L in the C. difficile 6301erm conjugant expressing the
ermG, when comparing with the MICs observed for C. difficile
6301erm ermG− strain (0.75 and 1 mg/L, respectively).

DISCUSSION

In the present work, we studied a multidrug resistant TcdA-
negative C. difficile clone from ribotype 017 implicated in a
CDI outbreak and identified several determinants of resistance

through WGS data analysis. Two novel mechanisms of resistance
were described here, namely, the ermG gene, which mediates the
resistance to MLS antibiotics and is carried by a putative mobile
element exhibiting a mosaic structure, and a mutation in a PBP
that is likely associated with imipenem resistance.

Ribotype 017 is the most prevalent TcdA-negative C. difficile
strain and has been considered a recently emerging type, being
associated with outbreaks in some European countries (Van Den
Berg et al., 2004; Drudy et al., 2007; Goorhuis et al., 2011; Cairns
et al., 2015). In a few countries, such as Poland, China or Korea,
ribotype 017 is the most common ribotype overall (Pituch et al.,
2011; Collins et al., 2013). As such, the lack of one of C. difficile
main pathogenicity factors (TcdA) does not seem to affect the
spreading or infectious potential of these strains.

The described ribotype 017 clone presented resistance
to seven classes of antibiotics (Table 2), among which
fluoroquinolones, MLS, tetracycline and rifampicin, for
which resistance has been described in ribotype 017 in several
studies (Barbut et al., 2007; Spigaglia et al., 2011; Dong
et al., 2013; Freeman et al., 2015). However, resistance to
carbapenems, and its underlying mechanism, is still poorly
studied in C. difficile. According to a pan-European study,
most clinical isolates in Europe are susceptible to imipenem,
although ribotype 027 showed elevated MICs compared
to other ribotypes (Freeman et al., 2015). Similarly to
another clone of ribotype 017 that we described recently
(Isidro et al., 2018), the clone characterized in the present
study also showed a high-level resistance to imipenem (MIC
>32 mg/L).

Resistance to carbapenems in gram-positive bacteria is
often associated with single-point mutations in the vicinity of
the active site of the PBPs transpeptidase domain, which is
carbapenems main target (Davies et al., 2008; Zapun et al.,
2008; Papp-Wallace et al., 2011). In this work, we found the
mutation Cys721Ser in the transpeptidase domain of PBP3,
which is one of the two mutations, along with Ala555Thr
in PBP1, that we had previously found in another ribotype
017 imipenem-resistant clone (Isidro et al., 2018). In this
previous work, we proposed that these mutations mediate
resistance by reducing the binding affinity of imipenem to
PBPs. Both the present clone and the one described in
the previous study presented a MIC of >32 mg/L but it
is possible that their levels of resistance differ at higher
concentrations of imipenem, depending on the presence of one
or the two mutations, respectively. More studies are therefore
needed to fully understand this mechanism of resistance and
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FIGURE 3 | Genetic context of the ermG-containing putative mobile element. Genetic context of the novel element containing the ermG gene in the strains from the
present study (A) and comparison of this region with the genome of the reference strain M68 (accession number NC_017175) (B). The darker region represents the
homology with the CTn5 element present in strain 630 (accession number AM180355); the light gray regions interrupting this CTn5-like element are not present in
strain 630. The two large insertions in the CTn5-like element and the novel ermG-containing element differ the strains in this study from strain M68.

determine the contribution of each mutation to the resistance
phenotype.

Antibiotic pressure can lead to the selection of resistance and
promotes the development and spread of resistant strains (Davies
and Davies, 2010). Moreover, CDI shows seasonal variation with
a higher incidence in winter months, when there is an increase
in both hospital occupancy rates and antibiotic consumption
due to respiratory infections (Polgreen et al., 2010; Gilca et al.,
2012; Brown et al., 2013). Interestingly, in the present study,
carbapenems were the most consumed antibiotics in the outbreak
ward, with the hospital also reporting a peak of carbapenems
consumption during the last trimester of 2015 (data not shown).
Altogether, these conditions might have led to the selection and
spread of this imipenem-resistant clone, and subsequently to the
outbreak, with the first case occurring in January 2016.

Resistance to MLS antibiotics in C. difficile is usually due
to ribosomal methylation mediated by the rRNA adenine
N-6-methyltransferase encoded by ermB, and also, but less
frequently, by the chloramphenicol-florfenicol resistance gene,
cfr, which encodes a 23S rRNA methyltransferase that confers
resistance to linezolid (Candela et al., 2017). Both these genes
are carried by mobile genetic elements such as conjugative
transposons (Spigaglia, 2016). The C. difficile isolates in the
present study were all highly resistant to clindamycin and
erythromycin but neither ermB nor cfr were found by WGS.
Instead, the ermG gene was found in the genome of all 11 isolates.
Additionally, the genes mefA, msrD and vat were also found
immediately upstream of ermG. The gene mefA, firstly identified
in Streptococcus pyogenes, mediates macrolides resistance by
efflux and is common in Streptococcus spp. and amongst Gram-
positive bacteria in general. The gene msrD is associated with
the genetic elements carrying mefA in Streptococcus spp., and can
confer the macrolides efflux phenotype in S. pneumoniae (Clancy
et al., 1996; Daly et al., 2004; Poole, 2005). However, neither mefA
nor msrD confer resistance to lincosamides or streptogramins.
Here, we demonstrated that ermG expression alone is sufficient
to confer a high level of resistance to clindamycin and to
erythromycin upon heterologous expression in the ribotype 012
strain 6301erm.

The ermG was located in a novel putative genetic mobile
element with a mosaic structure that is not present in the closest
reference strain M68 from ribotype 017. This element contained
a RM system, a prophage and a cluster of four MLS resistance
genes that showed high sequence identity with elements found
in other bacterial genus, which is consistent with transmission
to C. difficile by HGT. This new element is found in very few
C. difficile available genomes that, however, have no phenotype
data available. Although further investigation is warranted, the
fact that one of these genomes is from a non-toxigenic strain from
ribotype 009 (Pereira et al., 2016) provides strong evidence for the
transmission of this ermG-containing element between C. difficile
strains and highlights the importance of non-toxigenic strains as
carriers of resistance determinants.

Several studies have showed evidence of interspecies HGT
(Bloemendaal et al., 2010; Goren et al., 2010; Juhas, 2015;
von Wintersdorff et al., 2016) and C. difficile has also been
suggested as a reservoir of resistance genes that might be
transferred to other species in the human gut (Johanesen et al.,
2015). Consistently, our results show a high degree of sequence
identity between determinants of resistance found in C. difficile
and other relevant human pathogens, As an example, in this
work we found two genes encoding aminoglycoside-modifying
enzymes, aadE and aac(6′)-Ie-aph(2′′)-Ia, that seem to have a low
prevalence in C. difficile but are widespread in Enterococcus spp.,
Campylobacter spp., Staphylococcus spp. or Streptococcus spp.
Anaerobes, such as C. difficile, however, are naturally resistant
to aminoglycosides (which explains the high MICs generally
observed) (Khanafer et al., 2018) and hence the presence of these
genes may not directly correlate with the resistance phenotype.
Nonetheless, the potential transfer of these genes to other species
in which they might contribute to aminoglycoside resistance
cannot be disregarded. Overall, these results underline the
importance of HGT events in the evolution of C. difficile and also
point to its potential as a resistance reservoir in the human gut
(He et al., 2010; Johanesen et al., 2015). This particular multidrug
resistant clone of ribotype 017, harboring such a relevant number
of determinants of antimicrobial resistance in mobile elements,
may likely trigger the dissemination of these determinants in
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clinical settings as well as in the community and the environment,
and thus, it should be targeted by an active laboratory and
epidemiological surveillance.

In summary, in this study we described a C. difficile
multidrug resistant clone implicated in a hospital outbreak
presenting new resistant determinants that seemingly promoted
the spreading success of this clone. Our data show that
C. difficile is continually evolving through HGT and indicate
that antibiotic selective pressure continues to be a major driving
force in the development and emergence of new epidemic
strains.
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Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important
multidrug-resistant nosocomial pathogens worldwide with infections leading to high
rates of morbidity and mortality, a significant burden to human and veterinary clinical
practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces
contributes further to its high antimicrobial resistance (AMR) rates and persistence in
both host and non-host environments, adding a major ecological dimension to the
problem. While there is a lot of information on MRSA prevalence in humans, data
about MRSA in animal populations is scarce, incomplete and dispersed. This project
is an attempt to evaluate the current epidemiological status of MRSA in Portugal by
making a single case study from a One Health perspective. We aim to determine the
prevalence of MRSA in anthropogenic sources liable to contaminate different animal
habitats. The results obtained will be compiled with existing data on antibiotic resistant
staphylococci from Portugal in a user-friendly database, to generate a geographically
detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we
will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal
in hospital wastewaters, farms near hospitals, farm animals that contact with humans,
and wild animals. This will indicate the extent of the AMR problem in the context of local
and regional human-animal-environment interactions. MRSA strains will then be tested
for their ability to form biofilms. The proteomes of the strains will be compared to better
elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic
and transcriptomic data obtained. The vast amount of information expected from this
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omics approach will improve our understanding of AMR in MRSA biofilms, and help
us identify new vaccine candidates and biomarkers for early diagnosis and innovative
therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other
AMR superbugs.

Keywords: antimicrobial resistance, surveillance, MRSA, One Health, omics

INTRODUCTION

Staphylococcus aureus is a Gram-positive facultative anaerobe
frequently present in the natural human microbiota of the nose
and skin that can cause a range of illnesses from minor skin
infections and food poisoning to life-threatening diseases such
as pneumonia, toxic shock syndrome and sepsis (Sousa et al.,
2017). The first methicillin-resistant S. aureus (MRSA) was
reported only a year after the introduction of methicillin for
S. aureus treatment (Jevons, 1961). MRSA is resistant to almost
all beta-lactams and frequently carries other major classes of
antimicrobial resistance (AMR).

Most AMR research has been focused on bacteria growing in
planktonic cultures and antimicrobials were originally developed
to target individual bacterial cells. However, it is clear that
bacteria preferentially develop as complex communities called
biofilms (Seneviratne et al., 2012; Penesyan et al., 2015).
Recent advances in proteomics techniques have enabled a
more in-depth analysis of the possible mechanisms responsible
for biofilm AMR and the identification of new anti-biofilm
targets (Seneviratne et al., 2012; Azeredo et al., 2017). The
use of prefractionation techniques to extract subproteomes
significantly enhanced protein identification and coverage
of the biofilm proteome (Seneviratne et al., 2012). Also,
new shotgun proteomics workflows based on high-resolution
tandem mass spectrometry (MS/MS) directly coupled to
high performance liquid chromatography (LC) require less
protein than conventional two-dimensional gel electrophoresis
(2-DE) approaches, allowing a more exhaustive analysis of
proteomes or subproteomes and the performance of label-free
semi-quantitative comparisons (Azeredo et al., 2017).

Staphylococci have for many decades been recognized as the
most frequent cause of biofilm-associated infections (Cihalova
et al., 2015; McCarthy et al., 2015). Since the 1990s the
epidemiological profile of MRSA has been changing significantly.
Its emergence is no longer exclusive to hospitals, as the prevalence
of community-acquired infections is increasing (European
Centre for Disease Prevention and Control [ECDC], 2017a,b). In
fact, several cases of people having had no contact with hospital
environments have been diagnosed with MRSA despite having
no risk factors for contracting an infection by these organisms
(Sousa et al., 2017). In recent years, new genetic lineages of
MRSA have been found associated with companion (Leonard and
Markey, 2008; Coelho et al., 2011), livestock and food-producing
animals, and in various foods (Lee, 2003). However, there is little
information on how MRSA spreads and data about the strains
recovered from environmental sources, animals and human
communities is far from comprehensive. Convergences between
habitats can lead to frequent contact between wild animals,

other animals and humans, potentially increasing risks to human
and animal health. For example, human sources of AMR
determinants could contaminate surrounding areas used as food
sources for wild animals. More MRSA strains are expected to
emerge in the future. The implementation of measures to control
zoonotic pathogens and limit the global emergence of resistance
traits is required. Integration of human and veterinary systems
alone is insufficient as it does not address many structural and
environmental issues critical to health.

Biofilm-associated infections are a significant socio-economic
burden and have emerged as a major public health concern (Sun
et al., 2013; Penesyan et al., 2015). Nearly 80% of all human
infections are biofilm-related and one of their most critical
features is their considerably higher resistance to environmental
stresses, antimicrobials, disinfectants and host immune defenses
(Seneviratne et al., 2012; Sun et al., 2013). Despite major advances
in biofilm research, knowledge on biofilm formation, propagation
and resistance is still very limited and this poor understanding
has hampered the development of antimicrobial drugs that
specifically target biofilms (Penesyan et al., 2015; Venkatesan
et al., 2015).

Antimicrobial resistance acquisition and dissemination rates
are outpacing the drug development pipeline (Harbarth et al.,
2015; O’Neill, 2016). AMR has the potential to affect anyone of
any age in any country (World Health Organization, 2014). If not
adequately addressed, AMR could cause 10 million deaths and
cost 100 trillion dollars by 2050 (O’Neill, 2014, 2016; European
Commission [EC], 2017). Patients with drug-resistant infections
or diseases tend to consume more resources and are sick for
longer periods, increasing the risk of severe outcomes even if
they manage to overcome their main health issue. In addition,
the families and entourage of the ill person also end up suffering
on personal, practical and economic levels (Ellen et al., 2017).
The continuous quantification of the economic burden of these
diseases on the individual and on society in general will show the
direct consequences of AMR on health system budgets, and other
costs that might be associated with losses incurred by different
stakeholders (e.g., patients, carers, and governments) (Angelis
et al., 2015).

When making such estimates the perspective being taken
when considering such scenarios needs to be well defined
(Naylor et al., 2018). The payer/provider perspective juxtaposes
the patient’s perspective, which concerns itself with morbidity,
mortality and the clinical outcomes, and the payer’s perspective,
which focuses on healthcare costs attributable to medical
insurance and tax payers (Naylor et al., 2018). The healthcare
provider’s perspective also needs to be taken into account
to estimate the burden on some providers of healthcare like
hospitals and primary care practices. Finally, the economic or
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societal perspective generally includes the potential impact on the
labor force through decreases in productivity, but also the burden
on carers and patient out-of-pocket expenses (Naylor et al., 2018).
There may be secondary effects of AMR if certain healthcare
procedures involving antimicrobial usage are avoided. In a
systematic literature review, Naylor and Colleagues (2018) found
187 studies estimated the impact on patient health, 75 studies
estimated the payer/provider impact and 11 studies estimated
the economic burden. Overall 64% of the studies reviewed were
single-center studies. The great majority of studies estimating
patient or provider/payer impact used regression analyses. AMR
was found to have a significant impact in 48% of the studies
that estimated mortality burden. Excess healthcare system costs
ranged from non-significant to $1 billion per year, whereas
economic burden varied from $21,832 per case to over $3 trillion
in GDP loss. Median quality scores (interquartile range) for
patient, payer/provider and economic burden studies were 0.67
(0.56–0.67), 0.56 (0.46–0.67), and 0.53 (0.44–0.60), respectively.
AMR has therefore become a cause of international concern not
only due to the actual and future impact it may have on the
population’s health, but also on the costs to healthcare systems
and gross domestic product (GDP), mainly by the decrease in
treatment options.

This project will aim first to provide a better understanding
of MRSA prevalence, burden and dissemination in the One
Health context of human-animal-environment interactions and
then to investigate through proteomics the AMR mechanisms
occurring in MRSA biofilms. By characterizing AMR and genetic
lineages of MRSA circulating in anthropogenic sources in the
North of Portugal, this project will provide epidemiological
surveillance data, compiled and easily accessible to the scientific
community, public health officials, and the general public. The
further proteomic profiling of MRSA biofilms will increase our
knowledge of biofilm-specific AMR mechanisms and identify
potential vaccine candidates and biomarkers for early rapid
diagnosis and new therapeutic strategies.

MATERIALS AND METHODS

Samples
Samples from hospital effluents, and nearby habitats linked to
animal farms and wild animal territories will be collected in the
Portuguese north province of Trás-os-Montes and Alto Douro
annually. Specifically:

(a) Hospital samples will be obtained from the four public
hospitals responsible for the public health of the citizens
of this province – [Hospital Centre of Trás-os-Montes and
Alto Douro (CHTMAD)] – these are located in the cities
of Lamego, Peso da Régua, Chaves, and Vila Real. Ethical
approval and support has been granted by CHTMAD.

(b) Farm samples will be obtained from soils and farmers,
and from animals and their handlers from all the 31
municipalities of the province. The representativeness of
the sample of farms will be calculated after obtaining
the data referring to the type of farms existing by

municipality (e.g., cows, pigs, birds, etc.), and subsequent
randomization of the animal samples of each farm.

(c) Wild animal samples will be collected by groups of hunters
during the wild rabbit and wild boar hunts and by
the Wildlife Recovery Center (Centro de Recuperação
de Animais Selvagens, CRAS) at the University of
Trás-os-Montes and Alto Douro veterinary hospital.

This data will allow us to map, characterize, and monitor
AMR and genetic lineages of MRSA annually, by its presence or
absence in the area. It will also indicate the extent of the problem
of local and regional human-animal-environment interactions
in Trás-os-Montes e Alto Douro (One Health and Eco Health
Concepts).

Furthermore, questionnaires regarding the use of antibiotics
by the participating entities will be sent to them for annual
update – (e.g., hospitals: how many antibiotics have been
prescribed by this entity in the last year?; farms: how many of
your animals have been administrated antibiotics? How many
times has that occurred in the last year?).

MRSA Detection
Staphylococcus aureus and MRSA will be recovered on mannitol
salt agar and oxacillin resistance screening agar base (ORSAB),
respectively. Presumptive S. aureus and MRSA colonies will
be identified based on their morphology and re-isolated. Their
identity will be confirmed by genotyping using molecular
methods and VITEK technology, via PCR amplification of the
nuc and mecA genes. Phenotypic antimicrobial susceptibility
will be tested with the EUCAST disk diffusion and broth
microdilution methods and the presence of corresponding
resistance genes will be investigated by PCR and sequencing. The
clonal relationship of isolates will be assessed by pulsed-field gel
electrophoresis, spa-typing, agr-typing and multilocus-sequence-
typing (MLST).

Data Collection
All data will be compiled and added to a new web-based
application developed so that georeferenced AMR data can be
consulted and visualized by medical professionals, the scientific
community and others that require it. Existing data on antibiotic
resistant staphylococci in Portugal will also be compiled and
included in the database. Similar interfaces exist such as the
ECDC’s Surveillance Atlas of Infectious Diseases and the CDC’s
Antibiotic Resistance Patient Safety Atlas that allow users to
openly interact and manipulate AMR data to customize a variety
of maps and tables. However, finer granularity is intended with
the possibility to retrieve and filter data at the level of sample
collection and isolation details, AMR phenotypic and genotypic
profiles, genetic lineages, biofilm-forming ability, among others.
Additionally, this information should be traceable to available
proteomic, genomic and transcriptomic data of the individual
MRSA strains.

Importantly, as AMR prediction and surveillance spans
many scientific realms (public health, research, agriculture, drug
discovery, etc.), ease-of-use translational tools and data sharing
are increasingly needed, requiring a collective dedication to
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standardization. Although several global surveillance programs
exist that monitor AMR (McArthur and Tsang, 2017), genotypic
data is not found in their datasets and accessible databases that
combine genotypic and phenotypic AMR data for pathogens
in environmental, agricultural, and clinical settings are still not
available. Hence, the generation of these informatics resources
are of high priority considering their value for epidemiology,
antimicrobial stewardship, and drug discovery (McArthur and
Tsang, 2017).

Analysis of the Outcomes
All isolated MRSA strains will be tested for their ability to form
biofilms. The antimicrobial susceptibility of any biofilm-forming
strains will be re-assessed. The proteomes of a number of
biofilm-forming MRSA strains will then be characterized.
Different subproteomes of MRSA biofilms will be analyzed
and compared using both electrophoretic and direct mass
spectrophotometric approaches (2-DE-LC-MS/MS and shotgun
LC-MS/MS) to identify differentially expressed proteins induced
by antimicrobials. The strains selected for proteomic analyses will
also be characterized at the genomic and transcriptomic level
by whole genome sequencing and RNA sequencing. All omics
data will be analyzed and integrated using bioinformatics tools.
Several institutions including universities and laboratories will
cooperate in this data integration task and all the collaborating
international research groups will provide support for data
interpretation (Figure 1). Biosafety standards will be respected
at all stages of the work.

PRELIMINARY AND EXPECTED
RESULTS

One Health Focus on
Livestock-Associated MRSA in Portugal
and Europe
In the past decade, our research group has been surveying AMR
in bacteria from a great diversity of environments, collecting over
4,000 samples from more than 75 different sources (humans,
wastewaters, food-producing animals, pets, and wild animals),
amounting to over 5,000 bacterial isolates. High levels of AMR
to critically important drug classes and high rates of clinically

relevant multi-resistant strains in non-synanthropic animal
species have been found (Marinho et al., 2016). Portugal is one of
the countries with highest rates of MRSA and about 44% of the
Portuguese hospital S. aureus isolates are methicillin-resistant,
the second highest rate in Europe (European Centre for
Disease Prevention and Control [ECDC], 2017a,b). Our recently
published research reveals that MRSA are common in the
Portuguese animal communities (Coelho et al., 2011; Marinho
et al., 2016) and that the environment and wild animals can be a
reservoir or a vehicle of transport for MRSA (Sousa et al., 2017).
Currently our research group is one of the few in Portugal that
studies antibiotic resistance in wild animals (Oliveira et al., 2010;
Clemente et al., 2015; Dias et al., 2015; Jones-Dias et al., 2016;
Serrano et al., 2017). For example, we reported the first MRSA
isolate of the CC398 (spa-type t899) lineage from a wild animal in
this country, recovered from a wild boar (Sus scrofa). The isolate
is agr-type I and carries a multi-antibiotic-resistance phenotype,
including against beta-lactams (mecA gene), tetracycline and
ciprofloxacin (Sousa et al., 2017).

We do not know how AMR flows through the environment.
This proposal is the next step to investigate the flow of AMR
in MRSA and to establish a publicly available, user-friendly
database that compiles and integrates the new and existing
data on MRSA in Portugal. To illustrate the approach, we can
take the spread of the livestock-associated MRSA (LA-MRSA)
ST398 as an example. MRSA are indeed becoming frequent
in veterinary clinics, in farms, and in livestock animals. In
recent years, this particular MRSA clone associated with food
production has spread in Europe and is emerging worldwide.
Since its discovery, there has been a steady flow of reports of
LA-MRSA ST398 among livestock, especially pigs, in numerous
European countries (Loeffler et al., 2009). People exposed to
livestock are at greater risk of being colonized, and subsequently,
infected with LA-MRSA ST398, especially if they are working on
farms with a high prevalence. The occupational risk for people
exposed to livestock, and those in direct contact with them, has
been repeatedly shown. There is not enough data to compare
studies in Portugal alone, but if studies from other countries
are considered, we can say that LA-MRSA infections may occur
outside and independently of hospitals (Pomba et al., 2010).
LA-MRSA CC398 is able to cause the same kind of infections
that human-adapted MRSA (HA-MRSA) causes in humans.
Comparative genome analysis has shown that LA-MRSA has

FIGURE 1 | Timeline of case study based on the comparative assessment of antimicrobial resistance of MRSA isolates from Portugal.

Frontiers in Microbiology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2964294

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02964 December 5, 2018 Time: 12:38 # 5

Igrejas et al. MRSA and Its Burden in Portugal

evolved from HA-MRSA, and the jump from humans to livestock
has been clearly associated with several genetic changes (Price
et al., 2012). We will further analyze the proteome and the
transcriptome associated to this strain and compare it to the
online data on CC398 strains to confirm whether this is an
LA-MRSA or a genetically distinguishable strain with zoonotic
potential originating from wild animals. Whatever the result, the
evolution and re-adaptation of these bacteria to various animal
or human populations pose a potential health risk requiring close
surveillance.

Beyond surveillance studies, our research group has
investigated AMR mechanisms by characterizing a range of
resistant strains of interest through proteomic approaches in
MRSA (Monteiro et al., 2012, 2015) and other bacterial species
(Pinto et al., 2010; Radhouani et al., 2010, 2012; Correia et al.,
2014, 2016; Goncalves et al., 2014; Ramos et al., 2015, 2016;
Monteiro et al., 2016). However, these proteomic studies, and
most AMR research in general, have focused on bacteria growing
in planktonic cultures and hence overlooked biofilm-specific
AMR mechanisms. These are known to be distinct from the
well-characterized intrinsic mechanisms that occur at the
cellular level, operating additively to the latter, in a transient and
reversible manner, resulting in up to 1000-fold higher resistance
levels (Sun et al., 2013; Penesyan et al., 2015; Azeredo et al.,
2017). Hence, biofilm-specific mechanisms need to be considered
when developing new strategies to combat infectious diseases
(Sun et al., 2013; Penesyan et al., 2015).

The objective is to promote collaboration between several
public entities as well as different stakeholders from industry and
media. We aim to produce information by studying AMR in
bacteria from wild animals with zoonotic potential. The potential
impacts are both internal, by generating more precise knowledge
and collaboration, and external, by improving animal, human,
and environmental health in the long term (Figure 2). All the
MRSA data generated by studying isolates from wild animals
will be disseminated according to the principles of One Health
information sharing.

Scientific Tasks and Challenges
All S. aureus strains should be isolated and MRSA strains
identified. Phenotypic and genotypic AMR profiles of all strains
should be determined, and molecular typing of strains should
be completed. The database should be online and functional.
All data on methicillin-sensitive S. aureus and MRSA isolates
characterized in this project, together with existing data from
isolates from Portugal, should be compiled in the database.
Testing for biofilm formation and antimicrobial susceptibility
should be completed for all MRSA isolates. Strains for further
omics approaches should be chosen.

When considering the MRSA issue, we automatically think
about outbreaks in the clinical setting. The truth is that this
worrisome organism is everywhere, in human clinical isolates,
in healthy people who work in clinical or care facilities, in
livestock animals and their handlers, in food production and
slaughter lines, in wastewater, garbage, and as recently shown,
in wild animals. This situation is clearly not new and not
wholly unexpected, but in Portugal this environmental MRSA

FIGURE 2 | Graphical abstract of case study based on the comparative
assessment of antimicrobial resistance of MRSA isolates from Portugal.

flow is problematic. Our research team has been trying to
draw attention to this issue by centering our investigations
on the veterinary and environmental aspects. As well as the
knowledge and expertise we have accumulated within our
team, factors that contributed positively to this work were the
collaborations between laboratories and associations, and the
individual scholarships from the Portuguese Foundation for
Science and Technology (FCT) that made it possible for our
students to carry out field work and have access to specialized
laboratories. Many factors were challenging at the outset like
collecting the samples, often in bad weather conditions. However,
with the cooperation of six faculties, stakeholders from industry
and media, and Portuguese governmental initiatives we are
continuing our surveillance of AMR bacteria recovered from wild
animal populations.

Strategy for One Health Knowledge
Sharing
Two strategic axes have been established to reduce the risk
of AMR caused by the use of antibiotics in animals. The
aim of the public health protection axis is to reduce the
impact of administered veterinary antibiotics on AMR spread.
The therapeutic preservation axis is designed to promote
the sustainability and efficacy of antimicrobial use. Our plan
reflects EU policies because the opinions of a wide range of
stakeholders have been taken into account with input from
academia and industry, and from practitioners like veterinarians,
pharmacists and farmers. One Health learning is expected to
involve individual researchers and institutions by the creation
of long-term supportive interdisciplinary infrastructures and
professional networks.

Effective communication is essential to underpin such
a wide-ranging approach. Regular scientific meetings for
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consortium updates will complement international congresses to
disseminate and discuss findings. Engagement will extend into
the community through lectures to high school and university
students, and take advantage of social and traditional media
outlets. Partners in the countryside will be targeted by providing
educational workshops for hunters and cooperating with the
League for Nature Protection. Professional guidelines and good
practice will be observed, disseminated, promoted and reinforced
for all practitioners (distributors, veterinarians, and farmers).
For example, active participation in the National Action Plan
for Antibiotics Use Reduction in Animals will help to trace and
validate veterinary prescription and requisition and to harmonize
the register of all medicines administered at farms. With adequate
support and training of all professions dealing with animal health
and animal production, better selection and use of antibiotics will
be promoted, and innovations and alternatives can be explored.

The promotion of investigation, innovation and technological
exchanges to incentivize the development of alternative means
of treatment, whenever possible and a reinforced monitoring,
audits and controls are very important actions to fight against
AMR. Research outcomes will be of high quality as we will
find out which AMR bacterial variants are associated with
each focus of infection and each animal species in a particular
habitat. A galvanized network of specialists should more able
to prompt the authorities to take action to better regulate

antibiotic prescription in hospitals and care facilities (for humans
and animals) and on farms, and to take control over how
antimicrobials are disposed of, especially when there is a risk of
polluting the environment.

Antimicrobial resistance is estimated to cause 25,000 deaths
annually and cost over €1.5 billion in healthcare expenses
and productivity losses in Europe alone (O’Neill, 2014;
European Commission [EC], 2017). In general, higher resistance
frequencies are reported by countries in eastern and southern
Europe (European Centre for Disease Prevention and Control
[ECDC], 2017b). Given the severity of the consequences, MRSA
is now a public health priority in Europe and is also one of the
highest-priority pathogens in the WHO global priority list to
guide research, discovery and development of new antibiotics.
The high incidence of MRSA adds to the overall clinical
and economic burden in hospitals, causing prolonged hospital
stays and higher mortality, mainly due to delayed initiation
of appropriate therapy and less effective alternative treatment
regimens (O’Neill, 2016; European Centre for Disease Prevention
and Control [ECDC], 2017a,b). Given this, there is an impetus
to understand the Portuguese situation in more depth, and
precision. To facilitate uptake of results and meta-analysis we will
base our research on the recommendations of Naylor et al. (2018)
by clearly defining data collection and use wherever possible
from representative samples of the population studied. Potential

TABLE 1 | Proposed One Health activities, aims and monitoring to implement and integrate knowledge to evaluate the current methicillin resistant Staphylococcus
aureus situation and estimate its economic burden at the formulation stage of the policy cycle.

One Health initiative specific aims regarding five main activities Monitoring1 (transversal activity) One Health initiative main aim

Thinking • Stipulate the dimensions that need coverage, and
balance different areas of knowledge and multiple
perspectives.

• Reflect upon the initiative-to-environment match.
• Reflect upon the best integrated health approach.
• Consider all the system features and targets and,

sustainability and socio-ecological-economic impacts.
• Think and decide upon relevant performance indicators

for each One Health Initiative main activity.

Planning During all the initiative phases the following are
of extreme relevance to be under monitoring
and assessment for the need for change,
development and, innovation:

• Establish common aims that will lead to stakeholder and
actor engagement while monitoring, self-assessing and
updating each plan when needed.

• Research Problem and Design
• Team structures
• Social and leadership structure
• Social and leadership skills
• Competence/Skills
• Resource allocation
• Focus and innovation

Set guidelines that allow for Policy
Formulation. (This is possible through
the results obtained during the five
activities. These will allow evidence
which will point out solutions to the
AMR problem, and recommendations
on how to improve its situation.)

Working • Stimulate the inclusion and collaboration of each
stakeholder of the initiative, broadening its impact while
balancing its transdisciplinary (cultural, social, and
economic) – nature.

Sharing • Stimulate systematic general information/awareness
sharing, through data and information sharing and
development of methods and stimulation of results
sharing. These activities intend to develop institutional
memory and resilience ability.

Learning • Create a general and direct multilevel (individual level,
team level and organizational level) learning environment
supportive of adaptive and generative learning.

1 Implies monitoring and assessing the processes and results implied in each suggested dimension implied in each initiative activity. This is intended to stimulate the
initiatives reflexivity and adaptiveness ability. Adapted from Hitziger et al. (2018).
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confounding factors and biases will be carefully considered when
choosing the methodology. All steps of data collection and
processing will be clearly recorded. Wider impacts on healthcare
systems and economics will be estimated where possible with
explanation and justification of any models chosen (Table 1).

DISCUSSION

One Health Initiative to Address AMR in
Portugal
The One Health approach is the European Commission strategy
to tackle AMR, as it recognizes that the health of people, animals
and the environment are inextricably linked. This project intends
to answer several One Health evaluation questions. (i) How can
the spread of AMR be avoided in both human and veterinary
medicine? (ii) How can we define the role of wildlife in AMR
gene flow? (iii) What steps should we advocate to disseminate
our future results? And (iv) How should this issue be addressed
in terms of public health?

By involving different universities and stakeholders from
industry this project has a One Health attitude from the
outset. Different scientific work packages will address the
following topics: isolation and identification of strains; genomic
and genotypic studies; demographic and socioeconomic
characterization; sequencing studies; phenotypic studies;
proteomic and transcriptomic analysis; results verification and
homologation.

This project will consolidate knowhow in the isolation
and identification of MRSA strains from different ecosystems
in Portugal. Several collaborations will be maintained and
developed between different research groups through this and
other projects. This will allow the creation of a bacterial
collection with hundreds of strains comprehensively analyzed
with genomics and proteomics tools. Knowledge and expertise
in using these tools to characterize AMR bacteria will
be consolidated, particularly in genotyping techniques by
enterobacterial repetitive intergenic consensus PCR and MLST.
Purified bacteriocins will be characterized biochemically by
MALDI-TOF MS, N-terminal amino acid sequencing by Edman
degradation, and sequencing by MALDI TOF/TOF MS. The use
of these techniques and the associated equipment will allow us to
establish standard protocols for proteomics.

The results of this investigation may add to our knowledge
on the occurrence of MRSA strains and the genetic lineages
circulating in our surroundings. A more precise local estimate
of AMR due to the MRSA burden can inform policy and shape
the initiatives to monitor, prevent, treat and limit the spread of
resistant infections.

The potential impacts of this case study will lead to better
knowledge and collaboration in our interdisciplinary consortium
and extended network as well as improvements in animal, human
and environmental health.

This project builds on previous efforts of European
Commission programs and other programs worldwide and aims
to answer priority questions in research and innovation for
infectious diseases. First, AMR, genetic lineages and biofilm-
forming ability of MRSA strains circulating in anthropogenic
sources will be characterized, adding to the emerging picture of
the extent of the AMR problem in the context of human-animal-
environment interactions. Data will be made available in a free,
user-friendly online platform, providing a geoepidemiological
output. Further proteomic profiling of MRSA biofilms, integrated
with high-throughput genomics and transcriptomics, will
provide a large amount of data that will extend the currently
limited knowledge on biofilm-specific AMR mechanisms. If
this is successful, new molecular candidates for vaccines or
biomarkers will be identified that could be developed for
early rapid diagnosis and innovative therapeutic strategies
to tackle biofilm-associated infections in MRSA and other
superbugs with high burden impact. Such an investment
in research and innovation taking into consideration the
multi-layered burdens of MRSA will improve prevention and
treatment and will help us to remain active and vigilant, to
develop new, safer and more effective medical treatments, to
maintain health and to ensure the viability of health systems.
Hopefully this will stimulate more concerted action to reduce
the prevalence of MRSA and AMR in Portugal and further
afield.
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Resistance of Enterococcus spp. in
Dust From Farm Animal Houses: A
Retrospective Study
Mengda Liu, Nicole Kemper, Nina Volkmann and Jochen Schulz*

Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover,

Foundation, Hannover, Germany

In a retrospective study, the antimicrobial susceptibility of Enterococcus spp. isolated

from stored sedimentation dust samples from cattle, pig and poultry barns to 16

antibiotics was determined using a microdilution test. The resistance phenotypes of

70 isolates from different timespans (8 from the 1980s, 15 from the 1990s, 43 from

the 2000s and 4 from 2015) were determined. Resistant enterococci were detected

in samples from all time periods. Resistances to three or more antibiotics occurred in

69 percent of all isolates. The oldest multidrug resistant isolate was an Enterococcus

faecium obtained from a 35-year-old pig barn dust sample. No correlations (ρ = 0.16,

p = 0.187) were found between the age of isolates and the number of resistances.

Instead, the number of resistances was associated with the origin of the isolates. An

exact logistic conditional regression analysis showed significant differences in resistance

to ciprofloxacin, erythromycin, penicillin and tylosin between isolates from different animal

groups. Interestingly, we isolated ciprofloxacin-resistant E. faecium from pig barn dust

before fluoroquinolones were introduced into the market for use in animal husbandry. In

conclusion, dust from farm animal houses is a reservoir and carrier of multidrug-resistant

Enterococcus spp. People working in barns are unavoidably exposed to these bacteria.

Furthermore, it can be hypothesized that emissions from barns of intensive livestock

farming contaminate the environment with multidrug resistant enterococci.

Keywords: Enterococcus, survival, dust, livestock, resistance

INTRODUCTION

Enterococcus spp. can be found in the gut microbiota of mammals and birds and are opportunistic
pathogens (Byappanahalli et al., 2012). Enterococcus spp. can infect farm animals and cause
nosocomial infections in humans (Byappanahalli et al., 2012). Although Enterococcus spp. are
predominately adapted to their hosts, transmission between animals and humans has been
described and is a risk factor for the spread of these organisms (Lu et al., 2002; Kataoka et al.,
2014; Lebreton et al., 2014; Milton et al., 2015). Furthermore, the horizontal transfer of resistance
genes from animal strains to pathogenic human strains is considered a human hazard (Hammerum,
2012).

One pool of transmissible strains and resistance genes seems to be farm animals (Lu et al., 2002;
Donabedian et al., 2006). For instance, in a comprehensive study, Hershberger et al. (2005) showed
that farm animals were a reservoir of antibiotic-resistant enterococci and that resistance was more
common on farms using antimicrobials. Such strains from animals are potentially able to transfer
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resistance genes to pathogenic bacteria. This concern is one
of the reasons why trends of resistances in animal isolates are
monitored in member states of the European Union and other
areas (EFSA, 2015).

Isolates for monitoring programs are commonly obtained
from animals, meat, and fecal samples. Furthermore,
enterococci are suggested as useful indicator organisms for
fecal contaminations of the environment because of their
relatively high tenacity outside their hosts (Lukasova and
Sustackova, 2003). Since fecal particles are a component of dust
in animal housing they could be a source of fecal bacteria (Schulz
et al., 2016). This fact explains, for instance, the detection of
vancomycin-resistant enterococci (VRE) in dust samples from
turkey flocks (Sting et al., 2013). Evidence also suggests that dust
from farm animal houses might be a reservoir for multidrug-
resistant fecal enterococci, as shown for fecal Enterobacteriaceae
(Schulz et al., 2016).

Therefore, this retrospective study analyzed the occurrence
of enterococci in 125 dust samples from cattle, pig, and poultry
barns and the resistance profiles of these bacteria. The dust
samples originated from different investigations and studies
conducted between 1980 and 2015. During this time span,
fluoroquinolones were introduced in themarket for use in animal
husbandry (Guardabassi et al., 2008). In the same time span, the
use of antibiotics as growth promoters was forbidden (Wegener
et al., 1999). These events might have had an impact on the
resistances of isolates from animal husbandry. Antimicrobial
susceptibility testing to determine resistance profiles could be
a useful tool in assessing the impacts on the antimicrobial
resistances of isolates from farm animal houses (Wiedemann and
Heisig, 1999).

MATERIALS AND METHODS

Origins of Dust Samples
From 1980 to 2009, 125 dust samples were collected by
sedimentation in Northern Germany. The samples originate
from five pig houses, eight poultry barns, and one cattle barn. The
samples were taken as parts of various studies. The sedimentation
dust samples were collected and stored as described by Schulz
et al. (2016). Briefly, collected sedimentation dust samples
(between 5 and 50 g) were stored in sterile glass cylinders
subsequently sealed with sterile corks and stored in an air-
conditioned room at 4◦C in the dark.

Additionally, five pooled dust samples collected from a broiler
barn in 2015 were included in the study. Dust was transferred by
sterile brushes into sterile bags from different dusty surfaces in a
barn. After transport to the laboratory, the dust samples were also
transferred in sterile glass cylinders. However, a freezer was used
to store the samples at 4◦C in the dark.

Isolation and Identification of
Enterococcus spp.
Dust suspensions were prepared as described by Schulz et al.
(2016). Subsequently, aliquots (0.1ml and 0.1ml of a tenfold
dilution and 0.1ml of a hundred-fold dilution) were plated
in triplicate on Bile Aesculin Agar (BAA) (Oxoid Deutschland

GmbH, Wesel, Germany) and on BAA supplemented with
ciprofloxacin at 4 mg/L (BAACIP) (CIP: Sigma-Aldrich Chemie
GmbH, Steinheim, Germany). The detection limit was 1,000
cfu/g of dust. The buffer used to prepare the dust suspensions
was plated as a negative control. Enterococcus faecium (DSM
2918) and Enterococcus fecalis (DSM 20478) were streaked on
BAA as growth controls. The plates were incubated at 37◦C for
48 h. Presumed enterococci colonies appear with diameters of 1–
2mm and are usually larger than common streptococci, shiny
in appearance, and brown with brown or black halos on BAA
(Public Health England, 2014; Thermofisher.com, 2017).

At least two putative enterococci colonies of every cultivable
sample were randomly selected, streaked on Columbia Agar
with sheep blood (COLSB) (Oxoid Deutschland GmbH,
Wesel, Germany), and identified as described in the thesis
from Liu (2017). Briefly, presumed Enterococcus spp. isolates
were incubated on API R© 20 STREP biochemical test strips
in accordance with the manufacturer’s protocol (bioMérieux
SA, Marcy-l’Étoile, France). After 24 h of incubation, results
were analyzed using the apiwebTM–API 20 STREP V7.0
software (bioMérieux, DeutschlandGmbH, Germany).When the
probability of identification was more than 90%, the result was
seen as confirmed. However, the differentiation of species from
the E. faecium group by biochemical tests can fail (Devrise et al.,
2002). Therefore, a molecular biological method was used to
identify isolates to species level (Stepień-Pyśniak et al., 2017).
Stored isolates (at minus 80◦C) were analyzed by matrix-assisted
laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS). Isolates were incubated on CLOSB at
37◦C overnight, afterwards being analyzed by Bruker MALDI
Biotyper (Bruker Daltonics, Billerica, USA) in accordance with
the manufacturer’s protocol. Identified species are summarized
in Table 1. More detailed results (log(score) values) are shown in
the Supplementary Table 1.

Antimicrobial Susceptibility
An antimicrobial sensitivity test was performed by the
microdilution method for all confirmed enterococci isolates.
The code of the commercially prepared microdilution panels
is CMV3AGPF (Thermo Fisher Scientific Inc., Waltham,
USA). The 15 antibiotics tested were tigecycline (TGC),
tetracycline (TET), chloramphenicol (CHL), daptomycin (DAP),
streptomycin (STR), tylosin (TYLT), quinupristin/dalfopristin
(synercid) (SYN), linezolid (LZD), penicillin (PEN), kanamycin
(KAN), erythromycin (ERY), ciprofloxacin (CIP), vancomycin
(VAN), lincomycin (LIN), and gentamicin (GEN). The antibiotic
concentrations tested are shown in Tables 2, 3.

Due to the absence of trimethoprim-sulfamethoxazole
(TMP/SMX) in the prepared panel, sensitivity to these agents
was measured separately. Trimethoprim and sulfamethoxazole
(Sigma-Aldrich, co., St. Louis, USA) dissolved in methanol
were mixed in sterile broth (ratio 1:19). After dilution, the
trimethoprim-sulfamethoxazole suspension was added to blank
panels. The concentration ranges are also shown in Tables 2, 3.

Fresh Enterococci broth suspension was prepared, and all
panels were incubated at 37◦C for 24 hours (CLSI, 2016;
EUCAST, 2016). E. faecium (DSM 2918) was used as a quality
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TABLE 1 | Origin and number of isolated species.

Year of

sampling

Number of isolates (origin)

Enterococcus faecium

(n = 64)

Other

enterococcus

spp. (n = 6)

From BAA From BAACIP From BAA

1981 1 (pig barn)

1984 2 (pig barn)

1988 4 (pig barn)

1989 1 E. hirae (pig barn)

1992 1 (pig barn)

1993 1 (pig barn)

1994 1 (broiler barn) 6 (broiler barn) 1 E. hirae (pig barn)

1995 1 (pig barn)

1996 1 (pig barn)

1997 1 E. hirae (pig barn)

1998 1 E. hirae (pig barn)

1999 1 E. hirae (pig barn)

2003 1 (duck barn)

2004 3 (broiler barn);

1 (turkey barn)

2 (turkey barn)

2005 2 (pig barn); 3

(cattle barn)

6 (pig barn); 10

(broiler barn);

9 (laying hen

house)

2009 5 (pig barn) 1 (pig barn)

2015 3 (broiler barn) 1 E. casseliflavus

(broiler barn)

control. The results were read using the VIZION R© system
(TREK Diagnostik Systems Ltd., West Sussex, UK). According
to guidelines of the Clinical and Laboratory Standards Institute
(CLSI), tiny buttons of growth were ignored when reading the
minimum inhibitory concentration (MIC) of CHL, ERY, LZD,
and TET (CLSI, 2016).

Breakpoints were adopted from CLSI (2016) when
available. Three aminoglycosides (gentamicin, kanamycin,
and streptomycin) were only tested for high-level resistance, and
their breakpoints were obtained from the National Antimicrobial
Resistance Monitoring System Animal Isolates (NARMS) of
the United States Department of Agriculture (NARMS, 2016).
The breakpoints for LIN and TYLT were obtained from
NARMS as well (NARMS, 2016). The breakpoints for tigecycline
and trimethoprim-sulfamethoxazole were obtained from
the European Committee on Antimicrobial Susceptibility
Testing (EUCAST, 2016). These figures are also included in
Tables 2, 3.

Statistical Analyses
Statistical analyses were performed using SAS 9.4 (SAS
Institute Inc., Cary, NC, USA). For each antibiotic, significant
differences between the number of resistant isolates from
pigs, fattening poultry (broilers, turkeys, ducks), laying
hens, and cattle were analyzed by exact conditional logistic

regression using the GENMOD procedure. Exact score
tests and odds ratios were calculated to estimate significant
differences between the animal groups (Stokes et al., 2012).
P-values ≤ 0.05 were interpreted as statistically significant.
Isolates were collected from samples between 1980 and 2015.
The CORR procedure was used to test if the number of
resistances is associated with the age of isolated Enterococcus
spp. (Supplementary Table 1). Pearson’s and Spearman’s
correlation coefficients were calculated and considered as
significant when P-values were ≤ 0.05. Associations between
total isolates, isolates from BAA, and isolates from BAACIP were
tested.

RESULTS

Isolation and Identification of
Enterococcus spp.
The API R© 20 STREP tests identified 70 presumed isolates
to Enterococcus spp., including 36 from BAA agar and 34
from BAACIP agar. Further identification to species level by
MALDI-TOF MS resulted in 64 E. faecium isolates, five E.
hirae isolates and one E. casseliflavus isolate. Table 1 shows
the origin of isolates and the year of sampling. E. faecium
was detected in samples from as early as the early 1980s. E.
hirae was first cultivated from dust from 1989. Enterococci
growing on CIP-supplemented media appeared later in 1994.
E. faecium was detected in dusts from barns occupied with
different animal species, whereas E. hirae was isolated from only
pig barns.

Frequency of Antimicrobial Resistances in
Enterococcus spp. Isolates
Figure 1 shows that all isolates were resistant to one or more of
the tested antibiotics. Ninety-six percent (67/70) of all isolates
were resistant to three or more antimicrobial agents. Overall,
isolates from fattening poultry showed higher numbers of
resistances, although a single isolate from a pig barn exhibited
the highest number of phenotypic resistances (n = 11). Isolates
from laying hen houses were resistant to fewer antibiotics
compared to isolates from pig and fattening poultry barns. Only
three isolates from a cattle barn were included. However, the
results in Supplementary Table 1 show that these isolates were
resistant to a minimum of three antibiotics from different drug
classes.

Seven isolates obtained from dust in fattening poultry barns
collected before 2000 were resistant to TYLT. However, for the
dust samples collected since 2000, the percentage of resistant
isolates was 61.9% (13/21) among fattening poultry. In the
isolates from pig farms, the rate of resistant isolates before 2000
was 46.7% (7/15), and then it dropped to 26.7% (4/15) from 2000
onward.

The percentages of SYN-resistant isolates from samples
collected before 2000 were 100% (7/7) from fattening poultry
barns and 93.3% (14/15) from pig barns. For the younger
isolates, the percentages were 76.2% (16/21) and 53.3% (8/15),
respectively.
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FIGURE 1 | Frequencies of antimicrobial resistances in Enterococcus spp. isolates.

Correlations Between Age of Isolates and
Number of Resistances
Correlation analyses were carried out to investigate associations
between the number of phenotypic resistances (total isolates,
isolates from BAA, and isolates from BAACIP) and the age of the
isolates. No correlations were found for total isolates (Spearman
correlation coefficient, ρ = 0.16, p = 0.187) and isolates from
BAA (ρ = 0.05, p = 0.776). A moderate monotonic relationship
(ρ = 0.45, p = 0.008) was only obtained when the number of
resistances and the age of isolates from BAACIP media were
compared.

Antimicrobial Susceptibility
The minimal inhibition concentrations for 16 antimicrobial
agents of Enterococcus spp. are shown in Table 2 (isolates from
BAA) and Table 3 (isolates from BAACIP). All enterococci
were sensitive to GEN and VAN. Only a few isolates were
not susceptible to LZD and TGC. In contrast, relatively high
resistance rates of isolates from both media were calculated
for LIN, ERY, PEN, TET, SYN, and CIP. All isolates from
BAACIP were resistant to CIP (>4µg/ml, Table 3), whereas
15 out of 32 isolates from BAA were susceptible to this
antibiotic (Table 2). The association between resistant isolates
and growing on CIP-containing media was highly significant
(Fisher’s exact test, p < 0.0001). Interestingly, isolates from BAA
from the early and late 1980s were already resistant to CIP
(Supplementary Table 1).

A breakpoint for daptomycin was not available, but the
results indicate that most isolates were not susceptible. Obvious
differences appear between the resistance rates of different
animal groups in Tables 2, 3. However, the numbers of isolates
(pigs = 30, fattening poultry = 28, laying hens = 9, cattle = 3)

varied between the groups, which hampered the comparison.
Therefore, the significance of differences was calculated
by a model, and significant outcomes are summarized in
Tables 4, 5.

Significant Differences of Antibiotic
Resistance Rates Between Animal Groups
An exact conditional logistic regression was conducted to analyze
the significant differences between the resistances of isolates
from different animal groups. As shown in Table 4, the results
indicate that the resistances to four antibiotics (ERY, PEN,
CIP, and TYLT) were significantly different between isolates
from different animal groups. Calculations of the exact odds
ratios show significant differences in pairwise comparisons of
the animal groups (Table 5). The chances of finding resistant
isolates showed a general trend. Dust from fattening poultry
barns obviously more often contained isolates resistant to ERY,
PEN, CIP, and TYLT. Isolates from pig holdings had a higher
chance of being resistant to ERY than those from laying hen
houses.

DISCUSSION

Enterococcus spp. were isolated from dust samples using BAA.
The preparation of dust samples and the subsequent cultivation
had a detection limit of 1,000 cfu/g dust. The method enabled
the detection of Enterococcus spp. in even the oldest sample.
Considering that microbial growth in the samples was not
possible under storage conditions (Schulz et al., 2016), this
means that the oldest isolate (E. faecium) survived 35 years
in a stored environmental sample. Analyzing more presumed
isolates and using an enrichment method would have probably
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TABLE 4 | Significant differences (p ≤ 0.05) of the resistances between isolates from different animal groups.

Antibiotic CHL CIP ERY KAN LIN PEN SYN STR TET TGC TYLT

P-Value 0.3997 0.0002 0.0003 0.0515 0.0702 0.0297 0.1725 0.1152 0.1676 0.4720 0.0027

Results of the exact conditional logistic regression.

TABLE 5 | Significant differences in pairwise comparisons of animal groups.

Animal group Animal group Antibiotic Odds ratio 95% confidence limits P-Value

Laying hens Fattening poultry ERY 32.045 3.235–>999.999 0.0005

Laying hens Pigs ERY 23.729 2.518–>999.999 0.0015

Pigs Fattening poultry PEN 6.170 1.402–38.856 0.0113

Pigs Fattening poultry CIP 22.467 2.914–>999.999 0.0003

Laying hens Fattening poultry TYLT 18.290 1.954–930.221 0.0045

Pigs Fattening poultry TYLT 4.201 1.262–15.213 0.0161

enhanced the overall detection rate (Ieven et al., 1999). However,
isolating Enterococcus spp. from all time periods was possible,
and we suggest that Enterococcus spp. can be suitable indicator
bacteria for retrospective studies with contaminated dry
material.

The main species of presumed enterococci was E. faecium.
This species probably belongs to the typical microbiota in feces
from farm animals (Hershberger et al., 2005). Furthermore, E.
faecium tends to survive longer on dry material than other
enterococci (Neely and Maley, 2000). Both of these factors may
have influenced the predominant isolation of E. faecium. Other
species detected were E. hirae and E. casseliflavuss. Enterococcus
hirae may be part of the intestinal microbiota of pigs (Larsson
et al., 2014) and E. casseliflavus was detected also in broiler
flocks (Stępień-Pyśniak et al., 2016). The survival for more than
two decades in dust also indicates a high tenacity of these
species.

The number of phenotypic resistances varied between one
and 11. Most of the isolates (98.6%) were multidrug resistant
(MDR) according to a definition by Frye and Jackson (2013). The
number of antibiotic resistances may vary due to the different
treatment regimes in animal husbandry. The treatment status
of the sampled barns was unknown. For instance, other studies
on isolates of MDR E. faecium from food animals revealed
31.7% MDR isolates from cattle, 65.8% MDR isolates from
broiler chickens, and 84.6% MDR isolates from pigs (EFSA,
2015; Nowakiewicz et al., 2017). Although the studies are not
directly comparable, other sets of antibiotics were tested, so
the results of our study and the cited studies indicate that
MDR Enterococcus spp. is probably widespread in farm animal
husbandry.

It is noteworthy that the oldest isolate in the present study
(isolated in 1981) was resistant to seven different drug classes.
A significant association was not found between the age of the
isolates and the number of resistances. It is known that bacteria
of animal origin can accumulate antimicrobial drug resistances
over time (Tadesse et al., 2012). In the present study, younger
isolates showed not more resistances than older isolates. In this

context, it must be considered very likely that the heterogeneity
of the investigated samples, e.g., different numbers of samples
from different time periods and different origins, influenced the
results. As an example, isolates from laying hens (all sampled in
2005) showed fewer resistances than older isolates from pigs and
fattening poultry.

The susceptibility of isolates to different antimicrobial agents
varied greatly (Table 2, 3). Enterococci were completely sensitive
to VAN and high-level GEN. Only a few isolates were not
susceptible to LZD and TGC. There was a relatively high rate
of resistance to LIN, ERY, PEN, TET, SYN, and CIP. BAA
supplemented with CIP was used to isolate enterococci from
dust samples because fluoroquinolone-resistant enterococci were
of special interest. Ciprofloxacin was chosen as a representative
of fluoroquinolones because it is a common choice for human
bacterial diseases and it is closely related to enrofloxacin, which
has been was used extensively in animal husbandry (Guardabassi
et al., 2008).

Bacteria show cross-resistance to ciprofloxacin and
enrofloxacin (Van den Bogaard et al., 2001). Enrofloxacin
was first introduced in German animal husbandry in 1989
(Guardabassi et al., 2008). Thus, the results indicate that the
occurrence of CIP-resistant enterococci in the early 1980s
was not influenced by the treatment of animals. Resistance
to fluoroquinolones in bacteria is multifactorial (Redgrave
et al., 2014), and the reason for this early occurrence remains
unknown. Isolates from supplemented media were significantly
more resistant to ciprofloxacin. However, the resistance among
58% of the isolates from non-selective media and the detection
in pig and poultry barns and a cattle barn (Table 2) indicate a
spread of ciprofloxacin resistance in the farm animal facilities
investigated.

High-level resistance breakpoints were used for
aminoglycosides because enterococci can prevent
aminoglycosides from penetrating the bacterial cell membrane
and thus have low-level intrinsic resistance (Zimmermann
et al., 1971; EUCAST, 2016). Although high-level resistance
against gentamicin was not found, nearly one-third of isolates
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had high-level resistance to kanamycin and streptomycin.
Resistances to these antibiotics in farm animals might result
from the wide and long-term usage of aminoglycosides in Europe
(EMA, 2014).

Due to serious nosocomial infections, VRE invariably cause
concern among researchers. VRE have been isolated in Germany
as early as 1987 (Lütticken and Kunstmann, 1988). Vancomycin
resistant enterococci have been isolated from food animals in
Sweden, the Netherlands, and Germany (Stobberingh et al., 1999;
Nilsson et al., 2009; Sting et al., 2013). However, all enterococci
isolated in this study were sensitive to vancomycin.

There was a high percentage of LIN-resistant enterococci,
especially in isolates from poultry farm dust. Thirty-six isolates
(97.3%) of enterococci from dust in broiler, layer, and turkey
houses were resistant to LIN. These findings are consistent with
those from another study (Maasjost et al., 2015). Lincosamides
and macrolides are important therapeutic agents for the
treatment of infections in farm animals (Pyörälä et al., 2014).
The resistance to ERY was notable in this study. Except for
the isolates from laying hen barns, the percentages of ERY-
resistant enterococci were all over 60% (Tables 2, 3). Isolates
from pig barns and fattening poultry barns had a higher
chance of being resistant to ERY than those from laying
hen barns (Table 5). It can be assumed that laying hens are
generally treated less because of the problem with residues
in eggs.

There was a lower percentage of resistance to TYLT,
another macrolide, than to ERY (Tables 2, 3). Furthermore,
the percentage of TYLT resistant isolates from poultry and pig
barns decreased since 2000. It is uncertain whether this observed
decrease was influenced by the ban of TYLT as a growth promoter
at the end of 1998 in the European Unions (Wegener et al., 1999),
but the results show that resistance was still present in isolates
from 2015.

Quinupristin/dalfopristin was the first antibiotic for human
VRE infections with good clinical effect (Wegener et al.,
1999). Virginiamycin and SYN are streptogramins. Due to the
“Precautionary Principle,” virginiamycin was prohibited as an
antibiotic growth promoter at the same time as TYLT (Casewell
et al., 2003). A decrease in resistant isolates has been observed for
SYN. However, a more comprehensive study would be necessary
to confirm this downtrend.

Over 70% of Enterococcus spp. were resistant to PEN.
Resistance rates of the same magnitude were detected in E.
faecium isolates from poultry production environments in the
United States (Hayes et al., 2004). These high resistance rates may
be due to an induced, intrinsic, low-level resistance of E. faecium
to PEN (Maasjost et al., 2015). A correlation between penicillin
and ciprofloxacin resistance has also been observed (Adela et al.,
2004).

Although the rate of CHL resistance was <20%, it was
obviously higher than in other studies in Germany (Peters
et al., 2003; Maasjost et al., 2015). Chloramphenicol was
forbidden for use in farm animals in Europe in 1994
(Maasjost et al., 2015). However, in the present study resistant
isolates occurred sporadically in poultry and pig barns after
the ban.

Linezolid has been allowed for clinical use in humans in
Europe since 2001 (Seedat et al., 2006). Although LZD can
be used in pets, it should be prescribed only in rare cases
(Wijesekara et al., 2017). The first LZD-resistant VRE was found
in Germany in 2004 (Halle et al., 2004). In our study, no LZD-
resistant E. faecium was detected. Only one isolate of E. hirae was
resistance to LZD. Almost all MIC values for LZD were in the
intermediate range (Tables 2, 3). Resistance to TMP/SMX was
also scarce. In general, resistance to TMP/SMX seems to be rare
in Gram-positive bacteria isolated from German farm animals
(Schwarz et al., 2013).

All enterococci in this study were resistant to one or more
antimicrobials (Figure 1). Approximately 75.0% of isolates from
dust from fattening poultry farms were resistant to seven or
more antimicrobials compared with only 26.7% from pigs. The
resistances to ERY, PEN, CIP, and TYLT were significantly
different between isolates from different animal groups (Table 4).
In a second step, a statistical model revealed that Enterococcus
spp. isolated from fattening poultry barns were more often
resistant to these antibiotics compared to other animal groups
(Table 5). Furthermore, isolates from fattening poultry barns
showed the highest rate resistance to multiple antibiotics
(Figure 1). These results may be related to the different antibiotic
regimes in the environments investigated and suggest that more
antibiotics were used in poultry barns.

Metagenomic analyses of environmental samples revealed
that antibiotic resistance is an ancient, naturally occurring
phenomenon (D’Costa et al., 2011). Although such studies
can confirm that genes homologous to resistance genes
existed in ancient bacteria, DNA fragments cannot confirm
functional resistance against antibiotics (Perron et al., 2015). A
study from Perron et al. (2015) revealed functional antibiotic
resistance in at last 5,000 years old permafrost. However,
whether bacteria survived such a long time or were part
of subpopulations remained unknown. This study showed
that the long-term survival of enterococci in dust enabled a
retrospective view of the phenotypic antimicrobial resistances
in isolates from different barns of intensive livestock farming.
In comparison to a study from Schulz et al. (2016), the
present study detected fluoroquinolone resistant bacteria before
these antibiotics were used in farms. The resistance in the
absence of fluoroquinolone pressure is likely to be related to
the biology of resistance (Redgrave et al., 2014). However,
this demonstrates that farm animals can be a reservoir of
fluoroquinolone resistant bacteria, although animals came never
into contact with these antibiotics. Moreover, it was forbidden
to treat laying hens with fluoroquinolones in the European
Union (Anonymous, 2002) but all isolates from laying hens
in 2005 were resistant to CIP. An eradication of CIP resistant
enterococci will not be as simple as prohibiting the use of these
agents.

Farmers, animals, and the environment are exposed to dust-
bound MDR enterococci shed by carrying animals. Intervention
methods such as thoroughly cleaning of all contaminated surfaces
in barns are necessary to avoid transmissions. Whether animal
strains can be transmitted to humans remains controversial
(Donabedian et al., 2006). However, in terms of prevention,
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farmers might protect themselves by hygiene measures such as
changing clothes, appropriate hand hygiene, and wearing dust
masks.
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In this study, 30 samples of processed edible mealworms (Tenebrio molitor L.) and

30 samples of grasshoppers (Locusta migratoria migratorioides) were obtained from

producers located in Europe (Belgium and the Netherlands) and Asia (Thailand) and

subjected to PCR-DGGE analyses. The PCR-DGGE analyses showed that species in the

genus Staphylococcus were predominant in the samples of mealworms from Belgium

and grasshoppers from the Netherlands; species in the genus Bacillus were detected

in the samples of mealworms and grasshoppers from Thailand. Moreover, Weissella

cibaria/confusa/spp. was found in grasshoppers from Belgium. Since data concerning

the role of novel foods such as edible insects in the dissemination of carbapenem

resistance are currently lacking, the quantification of five carbapenemase encoding genes

(blaNDM−1, blaVIM, blaGES, blaOXA−48, and blaKPC) by qPCR was also carried out in all the

samples under study. The genes coding for GES and KPC were not detected in the

analyzed samples. A very low frequency of blaOXA−48 (3%) and blaNDM−1 (10%) genes

was detected among mealworms. In contrast, grasshoppers were characterized by a

high incidence of the genes for OXA-48 and NDM-1, accounting for 57 and 27% of the

overall grasshopper samples, respectively. The blaVIM gene was detected exclusively

in two grasshopper samples from Thailand, showing only 7% positivity. The analysis

of variance showed that all the effects (producers, species, and producers × species)

were statistically significant for blaNDM−1, whereas for blaOXA−48 and blaVIM, no significant

effects were detected for the same source of variation. Further studies are necessary to

assess the possible role of edible insects as reservoirs for the resistance to carbapenems

and to understand the correlation with the insect microbiota. Furthermore, an intensified

surveillance plan examining the occurrence of carbapenemase encoding genes in the

food chain and in environmental compartments is needed for a proper risk assessment.

In such a context, the appropriate use of antimicrobials represents the main preventive

action that should always be applied.

Keywords: edible insects, antibiotic resistance, PCR-DGGE, carbapenemase genes, qPCR

312

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.03036
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.03036&domain=pdf&date_stamp=2018-12-17
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:c.garofalo@univpm.it
https://doi.org/10.3389/fmicb.2018.03036
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03036/full
http://loop.frontiersin.org/people/367566/overview
http://loop.frontiersin.org/people/367167/overview
http://loop.frontiersin.org/people/622398/overview
http://loop.frontiersin.org/people/231897/overview
http://loop.frontiersin.org/people/367154/overview
http://loop.frontiersin.org/people/370198/overview
http://loop.frontiersin.org/people/377529/overview
http://loop.frontiersin.org/people/326539/overview
http://loop.frontiersin.org/people/23294/overview
http://loop.frontiersin.org/people/367166/overview
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INTRODUCTION

The use of insects for human consumption is a frequent practice
worldwide, mainly in Thailand and other Asian countries,
Africa, America, and Australia (van Huis et al., 2013; Schlüter
et al., 2017). In Europe, edible insects represent an innovative
and uncommon protein source, although in some European
countries, especially in the Netherlands and Belgium, the rearing
and the industrial production of edible insects is gradually
increasing (ANSES, 2014; Schlüter et al., 2017). Indeed, several
promising aspects are associated with insect consumption since
insects (i) are generally characterized by a positive nutrient profile
in terms of high-quality proteins and amino acids, good lipids,
vitamins, minerals, and fiber, (ii) are easy to breed, and (iii)
cause lower emissions of greenhouse gases and ammonia than
traditional livestock (Klunder et al., 2012; van Huis et al., 2013;
Schlüter et al., 2017). Due to these numerous nutritional, social,
and environmental benefits, edible insects are considered the
“food of the future” and categorized as novel foods by Regulation
(EU) No 2015/2283 of the European Parliament and of the
Council.

Among the edible insects, mealworms and grasshoppers are
included within those that are already commercialized as food in
EU countries (Schlüter et al., 2017) and that have been partially
investigated for the presence of relevant pathogens or potentially
pathogenic microorganisms (Ali et al., 2010; Klunder et al., 2012;
Stoops et al., 2016; Garofalo et al., 2017; Osimani et al., 2017a,
2018a) as well as for the presence of transferable resistances to
antibiotics (Milanović et al., 2016; Osimani et al., 2017b,c, 2018b).

Carbapenems are broad-spectrum β-lactam antibiotics,
currently considered the last-line antibiotics for the treatment of
severe human infections caused by multidrug-resistant Gram-
negative bacteria (EFSA BIOHAZ Panel, 2013; Guerra et al.,
2014;Woodford et al., 2014). The production of carbapenemases,
which are β-lactamases capable of hydrolyzing carbapenems
and almost all β-lactams, represents the main mechanism of
resistance to carbapenems (Tzouvelekis et al., 2012; Doi and
Paterson, 2015; Fischer et al., 2017). Among the carbapenemases,
the plasmid-acquired class A serine-β-lactamases KPC (Klebsiella
pneumoniae carbapenemase, 17 variants) and GES (Guiana
extended spectrum, 9 variants), class B metallo-β-lactamases
VIM (Verona integron-encoded metallo-beta-lactamase, 40
variants) and NDM (New Delhi metallo-beta-lactamase, 10
variants), and class D serine-β-lactamases including OXA
carbapenemases (Carbapenem-hydrolyzing oxacillinase) such
as OXA-48 are among the most common and important from
an epidemiological point of view and are thus the main clinical
concern (Queenan and Bush, 2007; Grundmann et al., 2010;
Miriagou et al., 2010; Walsh, 2010; Cantón et al., 2012; Monteiro
et al., 2012; Pfeifer et al., 2012; Guerra et al., 2014; Woodford
et al., 2014; Fischer et al., 2017). Carbapenemases are encoded by
genes that are easily transferable among bacteria by horizontal
gene transfer events since they are located on mobile genetic
elements, thus increasing their worldwide spread among bacteria
in different reservoirs (Tzouvelekis et al., 2012; Woodford et al.,
2014; Doi and Paterson, 2015; Fischer et al., 2017). Indeed,
during the last few years, the spread of carbapenem resistance

has increased, especially in the Enterobacteriaceae, as well as in
non-fermenters such as Pseudomonas spp. and Acinetobacter
spp. and in non-pathogenic bacteria such as Stenotrophomonas
spp. and Myroides spp. (Miriagou et al., 2003; Grundmann
et al., 2010; Nordmann et al., 2011, 2012; Cantón et al., 2012;
Tzouvelekis et al., 2012; Guerra et al., 2014; Doi and Paterson,
2015; Morrison and Rubin, 2015). In the last decade, the rapid
and global dissemination of infections caused by carbapenemase-
producing Enterobacteriaceae (CPE) in hospitals and healthcare
institutions is of great concern since these outbreaks are often
associated with high mortality rates due to the limited and
inadequate alternative treatments (Nordmann et al., 2011; Doi
and Paterson, 2015; Rossolini, 2015; Grundmann et al., 2017;
Zhang et al., 2017). From all of these data, the current opinion is
that the acquired carbapenemases are a primary pressing public
health threat related to antibiotic resistance (AR) (Tzouvelekis
et al., 2012; EFSA BIOHAZ Panel, 2013; Woodford et al., 2014;
Doi and Paterson, 2015).

Although the occurrence of carbapenemases was first
discovered and mainly investigated at hospitals and healthcare
facilities, scientific studies reporting carbapenemase-producers,
and carbapenemase-encoding genes (CEG) in animals, the
environment and food are increasingly frequent. Specifically,
carbapenem resistance has been detected in livestock and in
their environments in France, Germany, Switzerland, the USA,
and China (Guerra et al., 2014; Webb et al., 2016; Zurfluh
et al., 2016; Fischer et al., 2017); companion animals and
wildlife (Guerra et al., 2014; Woodford et al., 2014); aquatic
environments (Zurfluh et al., 2013; Guerra et al., 2014;Woodford
et al., 2014; Fernando et al., 2016); retail chicken meat from
Egypt (Abdallah et al., 2015); vegetables and seafood from Asia,
India and Brazil (Guerra et al., 2014; Morrison and Rubin,
2015; Zurfluh et al., 2015, 2016). This suggests that non-human
sources may be reservoirs of CPE and CEG. Since it is widely
recognized that the food chain is one of the main routes for the
introduction of antibiotic-resistant bacteria and their genes into
the human digestive tract, and for the diffusion and spread of
AR in human pathogens (Clementi and Aquilanti, 2011; Rolain,
2013; Milanović et al., 2017), there is a need for intensified
surveillance of the occurrence of CEG in the food chain and in
different environmental compartments. This is also underscored
by the European Food Safety Authority, which has recently
recognized the need to improve European legislation to ensure
the monitoring of carbapenem resistance in animals and food
(EFSA BIOHAZ Panel, 2013).

Based on all these premises, edible insects deserve great
attention in terms of safety, including the assessment of the
microbiota and of the incidence of AR genes, in particular CEG.

Therefore, in order to obtain an overview of the predominant
bacterial species in samples of processed edible mealworms
(Tenebrio molitor L.) and grasshoppers (Locusta migratoria
migratorioides) obtained from producers in Europe (Belgium and
the Netherlands) and Asia (Thailand), the total microbial DNA
was analyzed by culture-independent PCR-DGGE.

Concerning the AR issue, it is worth noting that currently,
only a few scientific studies are available on the occurrence of
transferable AR genes in edible insects (Milanović et al., 2016;
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Osimani et al., 2017b,c, 2018b; Vandeweyer et al., 2018), and
to the authors’ knowledge, none have been published on the
detection of CEG.

To address this gap, the edible insect samples under study
were subjected to screening by quantitative PCR (qPCR)
of five among the most common carbapenem resistance
genes (blaNDM−1, blaVIM, blaGES, blaOXA−48, and blaKPC)
(Monteiro et al., 2012). Statistical analyses were performed to
determine if edible insect species (mealworms and grasshoppers)
or geographical location correlated with the occurrence of
carbapenem resistance genes in this study.

MATERIALS AND METHODS

Sampling
Thirty samples of edible mealworms and 30 samples of
grasshoppers (boiled, dried, and salted) were purchased via
the internet from dealers located in Europe (Belgium and
the Netherlands) and Asia (Thailand). Ten mealworm and
ten grasshopper samples from each country were collected
and marked as follows: TN1-TN10 (mealworms from the
Netherlands, Producer 1), TB1-TB10 (mealworms from Belgium,
Producer 2), TT1-TT10 (mealworms from Thailand, Producer
3), GN1-GN10 (grasshoppers from the Netherlands, Producer
1), GB1-GB10 (grasshoppers from Belgium, Producer 2), and
GT1-GT10 (grasshoppers from Thailand, Producer 3). All
the samples were provided in sealed plastic containers and
delivered at ambient temperature via international shipping. No
information was available on the rearing and hygiene conditions
of processing, transport and storage applied to these edible
insects before marketing.

Bacterial DNA Extraction
Total microbial DNA was extracted directly from the insect
samples using PowerFood Microbial DNA Isolation Kit (Mo Bio
Laboratories, Carlsbad, CA, USA) as described by Osimani et al.
(2017a). The extracted DNA was quantified and checked for the
purity using a NanoDrop ND 1000 (Thermo Fisher Scientific,
Wilmington, DE, USA) and then standardized to 2 ng µL−1

for qPCR assays and to 25 ng µL−1 for PCR-DGGE analysis.
The effective extraction of bacterial DNA was confirmed by
conventional PCR amplification of 2 µL (50 ng) of extracted
DNA suspensions in a My Cycler Thermal Cycler (BioRad
Laboratories, Hercules, CA, USA) using universal prokaryotic
primers 27F and 1495R as described by Osimani et al. (2015).

PCR-DGGE Analysis
The equal portions of DNAs extracted from insects were mixed
together with the goal of obtaining six pooled samples (TB,
TN, TT, GB, GN, and GT), each representing an insect type
(mealworms and grasshoppers) and country of origin (Belgium,
the Netherlands, and Thailand). The amplification products
obtained from the 27F-1495R primer pair as described above
were purified using the Illustra GFX PCR DNA and Gel Band
Purification Kit (GE Healthcare Life Sciences, Buckinghamshire,
UK). Subsequently, 2 µL of the purified PCR products was
reamplified using the universal prokaryotic primers U968GC

(addedwith GC clamp) and L1401 (Muyzer et al., 1993; Randazzo
et al., 2002) following the PCR conditions previously described
by Aquilanti et al. (2013). Following amplification, 5 µL of
the PCR reaction was loaded on a 1.5% agarose gel together
with a 100 bp molecular weight marker (HyperLadderTM 100
bp) to check for the expected product size of 480 bp. Twenty
microliters of these PCR amplicons were analyzed by DGGE
(30–60% urea-formamide denaturing gradient; 4 h at 130V)
using DCode Universal Mutation Detection System (Bio-Rad
Laboratories) as described by Garofalo et al. (2015). All DGGE
bands visible under UV light were excised from the gel, and the
DNA was eluted overnight at 4◦C in 50 µL of molecular biology
grade water (Garofalo et al., 2008) and reamplified via PCR as
described above, but with the forward primer U968 lacking the
GC clamp. The PCR products were sent to Genewiz (Takeley,
UK) for purification and sequencing, and the obtained sequences
were identified at species level as described above by Osimani
et al. (2018c).

Reference Strains
DNA extracted from five reference strains (Table 1), each
carrying one of the carbapenem resistance genes under study,
was used as positive control in the qPCR reactions and for the
construction of qPCR standard curves.

qPCR
Absolute quantification of each carbapenemase gene (blaNDM−1,
blaVIM, blaGES, blaOXA−48, and blaKPC) in the insect samples
was performed by qPCR in a Mastercycler R© ep realplex machine
(Eppendorf, Hamburg, Germany) using the qPCR primers and
cycling conditions described by Monteiro et al. (2012). To check
for product specificity, all cycles were followed by a melt curve
step analysis with temperature gradually increasing from 65 to
95◦C by 0.2◦C/s. Each qPCR reaction consisted of 4 µL (8 ng) of
the extracted DNA; 5 µL of Type-it 2X HRM PCR Master Mix
(Qiagen, Hilden, Germany) containing HotStarTaq Plus DNA
Polymerase, EvaGreen Dye, an optimized concentration of Q-
solution, dNTPs and MgCl2; 0.2µM of forward and reverse
primers for each gene; and nuclease-free molecular biology grade
water to a final reaction volume of 10 µL. The exogenous
standards for each gene were prepared by qPCR amplification
of the DNA extracted from the reference strains (Table 1) as
described above but in a final reaction volume of 25 µL. The
correct melting temperatures (Tm) and sizes of the obtained
PCR products were checked by melting curve analysis and

TABLE 1 | Bacterial reference strains carrying carbapenems resistance genes,

used as positive controls in the qPCR reactions.

Bacterial strain Carbapenems resistance gene

BAA 2146_ Klebsiella pneumoniae blaNDM−1

LEMC_VIM-1_ Pseudomonas aeruginosa blaVIM

LEMC_GES-1_ Pseudomonas aeruginosa blaGES

LEMC_OXA-48_ Klebsiella pneumoniae blaOXA−48

ATCC 1705_ Klebsiella pneumoniae blaKPC
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electrophoresis on a 1.5% agarose gel, respectively. The Illustra
GFX PCR DNA and Gel Band Purification Kit (GE Healthcare
Life Sciences) was used for the purification of the amplicons
following the manufacturer’s instructions. The quantity and the
purity of the products were determined using the NanoDrop
ND 1000 (Thermo Fisher Scientific). The calculation of each
gene copy number was performed using an online calculator
(www.idtdna.com) based on the mass and size of the purified
qPCR products. The standard curves were created by qPCR
amplification of 10-fold serial dilutions of exogenous standards.
The amplification efficiencies were estimated from the slopes
of the standard curves, and the correlation coefficients (R2)
(Stolovitzky and Cecchi, 1996) were calculated automatically by
Mastercycler R© ep realplex software. To determine the qPCR
detection limit for each gene, the standard curves were generated
in the range from∼1 to 107 gene copies per reaction.

For the absolute quantification of CEG, the DNAs extracted
from mealworms and grasshoppers were run along with the
10-fold serial dilutions of the standards prepared as described
above. The gene copy number of each gene detected in the
analyzed insect samples was determined using the slope of
the corresponding standard curves. The baseline and threshold
calculations were performed automatically by the Mastercycler R©

ep realplex software. In addition to melting curve analysis, the
correct sizes of the amplification products were checked by
electrophoresis on 1.5% agarose gels using 100 bp DNA Ladder
(HyperLadderTM 100 bp, Bioline, UK) as a molecular weight
marker. Moreover, the accuracy of the amplification reactions
was validated by the sequencing (Genewiz) of randomly selected
positive samples (TB6, GT7, and GN1 for the blaOXA−48 gene;
GT2 and TT8 for the blaNDM−1 gene; GT7 and GT8 for the
blaVIM gene). The resulting sequences were compared with those
from the GenBank database (http://www.ncbi.nlm.nih.gov) using
Basic Local Alignment Search Tool (BLAST) (Altschul et al.,
1990). All qPCR reactions were performed in triplicate and the
results were expressed as the mean gene copy number per ng of
DNA± standard deviation for each gene.

Statistical Analysis
Descriptive statistics, calculated on 20 samples for each producer
and on 30 samples for each insect species were carried out for the
blaOXA−48, blaNDM−1, and blaVIM gene copies by computing the
means± standard deviation.

After first checking for conformance to a normal distribution
and identification of outliers, analysis of variance (ANOVA) was
carried out using JMP statistical software version 11.0.0 (SAS
Institute Inc., Cary, NC, USA) to test the following main effects:
producers (Belgium, Thailand, the Netherlands), insect species
(mealworm, grasshoppers) and producer× species.

Principal component analysis (PCA) was applied to
discriminate among mealworms and grasshoppers coming
from different producers (Belgium, the Netherlands, and
Thailand), and the presence of genes related to resistance
to carbapenems (blaNDM−1, blaVIM, blaGES, blaOXA−48, and
blaKPC). PCA was carried out using the Unscrambler 7.5
software (CAMO ASA, Oslo, Norway). The mean data were
normalized to neutralize any influence of hidden factors. PCA

provides a graphical representation of the overall differences in
terms of distribution of genes between the insects coming from
different producers.

RESULTS AND DISCUSSION

In the present study, the microbiota of commercialized read-to-
eat grasshoppers and mealworms from different countries was
investigated via PCR-DGGE, as well as the quantification and
distribution of five common CEG within the same matrices, in
order to have a more complete picture of some safety aspects
related to edible insects.

Determination of Microbial Diversity
To have an overview of the predominant bacterial species found
in the edible insects considered in this study, the total microbial
DNA was extracted from the samples, the DNAs were mixed
in order to obtain six pooled samples, each representing an
insect type (mealworms, grasshoppers) and country of origin
(Belgium, the Netherlands, Thailand) and then analyzed by a
culture-independent PCR-DGGE method. The results obtained
are reported in Table 2.

The dominant species found in mealworms from Belgium
and grasshoppers from the Netherlands belonged to the genus
Staphylococcus, and species in the genus Bacillus were found in
mealworms and grasshoppers from Thailand. Grasshoppers from
Belgium were positive for Weissella cibaria/confusa/spp., while
bacterial species with a percentage identity below 97%were found
in mealworms from the Netherlands. It is interesting to note that
the predominance of lactic acid bacteria (LAB), and in particular
the Weissella spp., has been reported for processed and fresh
grasshoppers from Belgium and the Netherlands (Stoops et al.,
2016; Garofalo et al., 2017; Osimani et al., 2017a), thus suggesting
that the specific rearing conditions may have selected for this
microbial group or that this bacterial species is intrinsically
associated with this edible insect.

The genera Staphylococcus and Bacillus identified among the
other pooled samples of mealworms and grasshoppers may
contain pathogenic species such as Staphylococcus aureus and
Bacillus cereus, and these data are in agreement with other
studies on the microbiota in fresh and processed mealworms
and grasshoppers (Stoops et al., 2016; Garofalo et al., 2017).
The presence of Staphylococcus members may be due to an
environmental contamination occurring during human handling
or processing. Indeed, these insects were boiled and salted,
and since Staphylococcus spp. is a halophile bacterium usually
predominating in environments with low microbial competition,
it could have found conditions suitable for growth.

The lack of detection of bacterial DNA belonging to the
Enterobacteriaceae has been already reported by Osimani et al.
(2018c), although it is generally reported that Enterobacteriaceae
represents a predominant bacterial group in the edible
insect gut microbiota (Stoops et al., 2016; Garofalo et al.,
2017; Osimani et al., 2017b). These data suggest that good
manufacturing practices were applied during rearing and
processing of the insects and/or that a degutting step may
have been applied. A further explanation is that members
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TABLE 2 | Sequencing results of the bands excised from the DGGE gel obtained

from the amplified fragments of pooled bacterial DNA extracted directly from

mealworms and grasshoppers.

Sample Closest relative % Identitya Acc.nob

TB Staphylococcus warneri 98 MH211317

Staphylococcus pasteuri 98 MH158278

Staphylococcus sp. 98 MH191108

Staphylococcus kloosii 99 CP027846

Staphylococcus cohnii 99 KY012323

Staphylococcus sp. 99 KY865752

TN Exiguobacterium sp. 82 MG859628

Eikenella corrodens 90 KU663108

Eikenella sp. 90 KU738863

Neisseria shayeganii 90 KM462144

TT Bacillus sp. 99 MG757948

Bacillus sp. 99 LT899995

GB Weissella cibaria 99 CP027427

Weissella confusa 99 MF327674

Weissella sp. 99 MG814036

GN Staphylococcus haemolyticus 99 MH179468

Staphylococcus argenteus 99 LC378381

Staphylococcus sp. 99 MH021651

Staphylococcus hominis 99 MF327701

Staphylococcus aureus 99 MG976640

GT Bacillus sonorensis 99 KY243955

Bacillus subtilis 99 KU172428

Bacillus amyloliquefaciens 99 KJ126909

Bacillus axarquiensis 99 KJ126897

Bacillus sp. 100 LT899995

TB- pool of 10 (TB1-TB10) mealworm samples from Belgium; TN- pool of 10 (TN1-

TN10) mealworm samples from the Netherlands; TT- pool of 10 (TT1-TT10) mealworm

samples from Thailand; GB- pool of 10 (GB1-GB10) grasshopper samples from Belgium;

GN- pool of 10 (GN1-GN10) grasshopper samples from the Netherlands; GT- pool of 10

(GT1-GT10) grasshopper samples from Thailand.
aPercentage of identical nucleotides in the sequence obtained from the DGGE bands and

the sequence of the closest relative found in the GenBank database.
bAccession number of the sequence of the closest relative found by a BLAST search.

of the Enterobacteriaceae family could be present within
the processed insect samples but with a lower abundance
in respect with other microbial groups. This latter hypotesis
is supported by the fact that these microorganisms had
previously found below the detection limit of microbial
counts (<1 Log cfu g−1) in the same samples (Osimani et al.,
2017b,c).

Additionally, the lack of detection of bacterial DNA belonging
to Pseudomonadaceae is unusual, but it is possible, as suggested
for Enterobacteriaceae, that PCR-DGGE was not able to detect
members of this microbial group if they were in the minority
relative to the others.

Quantification and Distribution of
carbapenem Resistance Genes
This study represents the first report on the screening of five
carbapenemase encoding genes (blaNDM−1, blaVIM, blaGES,

blaOXA−48, and blaKPC) in processed edible mealworms
(T. molitor L.) and edible grasshoppers (L. migratoria
migratorioides) from producers located in Europe (Belgium
and the Netherlands) and Asia (Thailand). The identification
of the genes coding for these carbapenemases in the samples
of edible insects under investigation was conducted by using
qPCR. As previously underlined by Monteiro et al. (2012),
molecular assays are considered the best solutions for the
rapid detection of carbapenem resistance genes and for the
identification of the resistance mechanism. The detection
limit, defined as the lowest concentration at which 95% of
the positive samples are detected was <10 gene copies per
reaction for all the genes. The efficiencies of the qPCR reactions
were 1.00 for the genes blaOXA−48, blaVIM, and blaGES; 1.01
for the gene blaKPC and 0.96 for the gene blaNDM−1. The
R2 was 1.000 for the genes blaOXA−48 and blaNDM−1; 0.999
for the gene blaGES, 0.996 for the gene blaKPC and 0.995 for
the gene blaVIM. Moreover, the specificity of the primers
used for the amplification of carbapenem resistance genes
was confirmed by the results of the sequencing of randomly
selected positive samples, which showed >97% similarity with
the corresponding gene sequences deposited in the GenBank
database. In more detail, the results of the BLAST analysis
for the blaOXA−48 gene showed 98% of the similarity with
the sequences deposited in GenBank such as K. pneumoniae
(CP031374), Citrobacter freundii (MG430338), Enterobacter
ludwigii (MG436907), Pantoea agglomerans (MG436898),
Escherichia coli (NG_055499), Shewanella sp. (NG_055475),
and Proteus mirabilis (KT175900); for the blaNDM−1 gene 99%
similarity with the Enterobacter hormaechei (AP018835), K.
pneumoniae (AP018834), Raoultella planticola (MH257689),
E. coli (CP021206), Pseudomonas aeruginosa (KT364224), and
Acinetobacter baumannii (KU180703); and for the blaVIM gene
98% similarity with the K. pneumoniae (MH071811), C. freundii
(NG_061412), Paenibacillus sp. (KR822172), E. coli (MF169879),
E. hormaechei (LT991955), Kluyvera cryocrescens (MG228427),
Alcaligenes faecalis (KY623659), Klebsiella oxytoca (NG_050362),
and Enterobacter cloacae (CP030081).

The results of the qPCR quantification of carbapenem
resistance genes in samples of ready-to-eat edible mealworms
and grasshoppers produced in the Netherlands, Belgium and
Thailand are reported in Tables 3, 4.

Regarding mealworms, none of the samples were positive for
the genes blaGES, blaKPC, and blaVIM, while only sample TB6
was found positive for blaOXA−48 (3% positivity) and samples
TN2, TN8, and TT8 were positive for blaNDM−1 (10% positivity)
(Table 3).

Regarding grasshoppers, the genes blaGES and blaKPC were
not detected in any of the analyzed samples while only
two samples from Thailand (GT7 and GT8) were positive
for the blaVIM gene (7% positivity). Interestingly, a high
prevalence of blaOXA−48 was noted (57% positivity), followed
by blaNDM−1 (27% positivity) (Table 4). Specifically, blaOXA−48

was prevalent in 80% of the samples from Belgium, in 50%
of the samples from the Netherlands and in 40% of the
samples from Thailand. The highest frequency of blaNDM−1

was found among samples from Thailand (40%), followed
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TABLE 3 | Results of qPCR quantification of carbapenemase genes in samples of ready-to-eat edible mealworms produced in the Netherlands (TN1-TN10), Belgium

(TB1-TB10) and Thailand (TT1-TT10).

Producer Samples Carbapenemase resistant genes (gene copies ng−1
± standard deviation)

blaGES blaKPC blaOXA-48 blaNDM-1 blaVIM

1 TN1 n.d. n.d. n.d. n.d. n.d.

TN2 n.d. n.d. n.d. 2.29 ± 0.31 n.d.

TN3 n.d. n.d. n.d. n.d. n.d.

TN4 n.d. n.d. n.d. n.d. n.d.

TN5 n.d. n.d. n.d. n.d. n.d.

TN6 n.d. n.d. n.d. n.d. n.d.

TN7 n.d. n.d. n.d. n.d. n.d.

TN8 n.d. n.d. n.d. 0.94 ± 0.13 n.d.

TN9 n.d. n.d. n.d. n.d. n.d.

TN10 n.d. n.d. n.d. n.d. n.d.

TN % of positivity for each determinant n.dr. n.dr. n.dr. 20.0 n.dr.

2 TB1 n.d. n.d. n.d. n.d. n.d.

TB2 n.d. n.d. n.d. n.d. n.d.

TB3 n.d. n.d. n.d. n.d. n.d.

TB4 n.d. n.d. n.d. n.d. n.d.

TB5 n.d. n.d. n.d. n.d. n.d.

TB6 n.d. n.d. 1.81 ± 0.01 n.d. n.d.

TB7 n.d. n.d. n.d. n.d. n.d.

TB8 n.d. n.d. n.d. n.d. n.d.

TB9 n.d. n.d. n.d. n.d. n.d.

TB10 n.d. n.d. n.d. n.d. n.d.

TB % of positivity for each determinant n.dr. n.dr. 10.0 n.dr. n.dr.

3 TT1 n.d. n.d. n.d. n.d. n.d.

TT2 n.d. n.d. n.d. n.d. n.d.

TT3 n.d. n.d. n.d. n.d. n.d.

TT4 n.d. n.d. n.d. n.d. n.d.

TT5 n.d. n.d. n.d. n.d. n.d.

TT6 n.d. n.d. n.d. n.d. n.d.

TT7 n.d. n.d. n.d. n.d. n.d.

TT8 n.d. n.d. n.d. 3.38 ± 0.18 n.d.

TT9 n.d. n.d. n.d. n.d. n.d.

TT10 n.d. n.d. n.d. n.d. n.d.

TT % of positivity for each determinant n.dr. n.dr. n.dr. 10.0 n.dr.

Overall % of positivity for each determinant n.dr. n.dr. 3.0 10.0 n.dr.

n.d., not detected. n.dr., not determined.

by samples from Belgium (30%) and the Netherlands (10%)
(Table 4).

All the insect samples analyzed in this study were previously
screened for the presence of 12 selected genes coding for
resistance to tetracyclines [tet(M), tet(O), tet(S), and tet(K)],
macrolide-lincosamide-streptogramin B (MLSB) [erm(A),
erm(B), erm(C)], vancomycin (vanA and vanB), beta-lactams
(blaZ and mecA) and aminoglycosides [aac(6′)-Ie aph(2′′)-Ia
referred as aac-aph] through PCR and nested PCR assays
(Osimani et al., 2017b,c). It is interesting to note that the
mealworms samples TN2 and TN8 from the Netherlands
were also found to be positive for the presence of genes
coding for resistance to tetracyclines [tet(M), tet(K), tet(S)]

and erythromycin [erm(B), erm(C)], while sample TB6 was
positive for genes coding for resistance to tetracyclines [tet(M),
tet(K)], and sample TT8 from Thailand was positive for genes
coding for resistance to tetracyclines [tet(K)], erythromycin
[erm(B)], and aminoglycosides (aac-aph) (Osimani et al., 2017b).
Moreover, among grasshoppers, almost all of the samples that
were found to be positive for blaOXA−48, blaNDM−1, and blaVIM
previously showed positivity for AR genes coding for resistance
to tetracyclines [tet(M), tet(S), tet(K)], erythromycin [erm(B),
erm(C)], aminoglycosides (aac-aph) and beta-lactams (blaZ)
(Osimani et al., 2017c).

The average levels of gene copies ng−1 in the 60 samples
of edible insects were as follows: 0.59 ± 2.39 with a
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TABLE 4 | Results of qPCR quantification of carbapenemase genes in samples of ready-to-eat edible grasshoppers produced in the Netherlands (GN1-GN10), Belgium

(GB1-GB10) and Thailand (GT1-GT10).

Producer Samples Carbapenemase resistant genes (gene copies ng−1
± standard deviation)

blaGES blaKPC blaOXA-48 blaNDM-1 blaVIM

1 GN1 n.d. n.d. 1.17 ± 0.19 n.d. n.d.

GN2 n.d. n.d. 0.24 ± 0.02 n.d. n.d.

GN3 n.d. n.d. n.d. n.d. n.d.

GN4 n.d. n.d. 0.86 ± 0.09 n.d. n.d.

GN5 n.d. n.d. n.d. n.d. n.d.

GN6 n.d. n.d. n.d. n.d. n.d.

GN7 n.d. n.d. 0.89 ± 0.01 n.d. n.d.

GN8 n.d. n.d. 0.30 ± 0.04 n.d. n.d.

GN9 n.d. n.d. n.d. 2.64 ± 0.19 n.d.

GN10 n.d. n.d. n.d. n.d. n.d.

GN % of positivity for each determinant n.dr. n.dr. 50.0 10.0 n.dr.

2 GB1 n.d. n.d. 0.57 ± 0.02 n.d. n.d.

GB2 n.d. n.d. 0.73 ± 0.01 1.85 ± 0.05 n.d.

GB3 n.d. n.d. 0.30 ± 0.08 2.25 ± 0.12 n.d.

GB4 n.d. n.d. 0.83 ± 0.01 n.d. n.d.

GB5 n.d. n.d. 0.35 ± 0.11 n.d. n.d.

GB6 n.d. n.d. 0.24 ± 0.01 n.d. n.d.

GB7 n.d. n.d. n.d. n.d. n.d.

GB8 n.d. n.d. n.d. n.d. n.d.

GB9 n.d. n.d. 0.58 ± 0.03 n.d. n.d.

GB10 n.d. n.d. 0.25 ± 0.05 6.37 ± 0.22 n.d.

GB % of positivity for each determinant n.dr. n.dr. 80.0 30.0 n.dr.

3 GT1 n.d. n.d. 0.30 ± 0.1 10.31 ± 0.52 n.d.

GT2 n.d. n.d. 8.65 ± 1.29 70.38 ± 3.01 n.d.

GT3 n.d. n.d. n.d. n.d. n.d.

GT4 n.d. n.d. n.d. 24.88 ± 0.71 n.d.

GT5 n.d. n.d. n.d. n.d. n.d.

GT6 n.d. n.d. n.d. n.d. n.d.

GT7 n.d. n.d. 16.56 ± 0.48 51.13 ± 1.59 392.25 ± 1.77

GT8 n.d. n.d. n.d. n.d. 42.83 ± 6.82

GT9 n.d. n.d. 0.59 ± 0.01 n.d. n.d.

GT10 n.d. n.d. n.d. n.d. n.d.

GT % of positivity for each determinant n.dr. n.dr. 40.0 40.0 20.0

Overall % of positivity for each determinant n.dr. n.dr. 57.0 27.0 7.0

n.d., not detected. n.dr., not determined.

minimum value of 0 and a maximum value of 16.56 for
blaOXA−48, 2.94 ± 11.53 with a minimum value of 0 and a
maximum value of 70.37 for blaNDM−1, 7.25 ± 50.85 with
a minimum value of 0 and a maximum value of 392.25 for
blaVIM.

Descriptive statistics on 20 samples from each producer are
shown in Table 5. In addition, descriptive statistics on 30 samples
from each insect species are reported in Table 6.

The analysis of variance (Table 7) showed that all the variables
(producers, species, and producers × species) had significant
effects (P < 0.05) on the frequency of blaNDM−1, whereas for
blaOXA−48 and blaVIM, no significant effects were detected for the
same source of variation.

Regarding the distribution of blaOXA−48 and blaVIM, multiple
comparisons between ACC Least Square Means (LSM) carried
out using the Tukey test showed no significant differences among
samples from different producers or insect species. Regarding
blaNDM−1, multiple comparisons (Tukey HSD) showed that
insect species, but not the origin of the sample, had a
significant correlation (P < 0.05) with the frequency of the
gene.

PCA did not discriminate between the presence of genes
encoding resistance to carbapenems among mealworms and
grasshoppers coming from different producers. In contrast, in
the previous studies on the occurrence of transferable ARs in
ready-to-eat edible insects, PCA showed a differentiation among
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producers, thus suggesting that different rearing and clinical
practices associated with different countries may have played a
role in the variability observed (Milanović et al., 2016; Osimani
et al., 2017b,c).

As reported by Schlüter et al. (2017), it is presumed that
the rearing and processing conditions applied to edible insects
will comply with the same food safety regulations as for
livestock farming. The use of carbapenems is prohibited in
food-producing animals in all countries (OIE, 2015; Webb
et al., 2016). Notwithstanding, scientific studies reporting CPE
and CEG in livestock and their environment are progressively
more frequent (Guerra et al., 2014; Webb et al., 2016; Zurfluh
et al., 2016; Fischer et al., 2017). Furthermore, in the last
EFSA report on antimicrobial resistance in zoonotic and
indicator bacteria from humans, animals and food in 2015,
the presumptive extended-spectrum beta-lactamase (ESBL)-
/AmpC-/carbapenemase-production in Salmonella and E. coli
was monitored in humans, meat (pork and beef), fattening
pigs and calves for the first time (EFSA and ECDC, 2017).
Varying occurrence/prevalence rates of ESBL-/AmpC-producers
were observed between countries, and carbapenemase-producing
E. coli were detected in single samples of pig meat and from

fattening pigs from two Member States (EFSA and ECDC,
2017). These data indicate that other antimicrobial classes
could indirectly select CPE outside the hospital setting and
that the rapid dissemination of CPE is also promoted by
CEG located on plasmids transmissible by horizontal gene
transfer events (Tzouvelekis et al., 2012; Woodford et al.,
2014). As reviewed by Caniça et al. (2015), AR comprises a
dynamic network that involves several environmental niches
(e.g., water, soil, and plants) and different reservoirs (e.g.,
husbandry, hospitals, wild animal, human settings, human
hand, food and global trade in foodstuffs) in which the
path of dissemination and dynamics of AR genes has to be
taken into consideration in order to understand and prevent
the AR transmission and spread. Therefore, it is possible
to hypothesize that, irrespective of the use of carbapenems
in the edible insect rearing, the CEG may derive from the
substrates used for feed or from surfaces and hands of
operators or from treatments applied for processing, in addition
to transport and storage. It is also interesting to note that
grasshoppers and mealworms have different dietary habits
since grasshoppers are grass-feeders whereas mealworms are
usually reared on cereal-based matrices; therefore, the differences

TABLE 5 | Descriptive statistics on 20 samples for each producer.

Belgium Thailand The Netherlands

blaOXA-48 blaNDM-1 blaVIM blaOXA-48 blaNDM-1 blaVIM blaOXA-48 blaNDM-1 blaVIM

Mean 0.28 0.52 0.00 1.31 8.00 21.75 0.17 0.29 0.00

SD 0.45 1.51 0.00 4.07 19.22 87.73 0.36 0.77 0.00

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1.81 6.37 0.00 16.56 70.37 392.25 1.17 2.64 0.00

SD, standard deviation. Values are expressed as gene copies ng−1.

TABLE 6 | Descriptive statistics on 30 samples for each insect species.

Mealworm Grasshoppers

blaOXA-48 blaNDM-1 blaVIM blaOXA-48 blaNDM-1 blaVIM

Mean 0.06 0.22 0 1.11 5.66 14.5

SD 0.33 0.74 0 3.31 15.96 71.77

Minimum 0 0.00 0 0 0 0

Maximum 1.81 3.37 0 16.56 70.37 392.25

SD, standard deviation. Values are expressed as gene copies ng−1.

TABLE 7 | ANOVA results for blaOXA−48, blaNDM−1, blaVIM.

Source of variation df blaOXA-48 blaNDM-1 blaVIM

SS MS P SS MS P SS MS P

Producer 2 15.60 7.80 0.24 769.50 384.75 0.04 6309.68 3154.84 0.30

Species 1 16.64 16.64 0.08 443.85 443.85 0.05 3154.84 3154.84 0.27

Producer × species 2 18.26 9.31 0.19 736.79 368.39 0.04 6309.68 3154.84 0.30

Df, degrees of freedom. Significant at P < 0.05. SS, sum of squares. MS, mean square. P-value.
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in terms of presence and distribution of CEG among these
insect species may derive from different rearing practices and
substrates.

CONCLUSION

Edible insects such as grasshoppers and mealworms represent a
novel food that deserves attention in terms of safety, including
the assessment of the incidence of AR genes. The investigation
of the microbiota of the mealworm and grasshopper samples
in this study revealed the presence of potential pathogenic and
non-pathogenic species.

Scientific studies reporting carbapenemase-producing
microorganisms and CEG in animals, the environment and food
are increasingly frequent. The data presented in this study is
the first attempt aimed at determining the incidence of CEG
among samples of commercialized ready-to-eat grasshoppers
and mealworms from Belgium, the Netherlands and Thailand.
Although further studies are necessary to understand the
correlation of CEG with the insect microbiota and to assess
the possible role of edible insects as reservoirs of resistance
to carbapenems, an intensified surveillance plan examining
the occurrence of CEG in the food chain and in different
environmental compartments, along with a prudent use of

carbapenems and antimicrobials in general, are primary
measures that should be applied.
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C. T., Andrasević A. T., et al. (2017). Occurrence of carbapenemase-
producing Klebsiella pneumoniae and Escherichia coli in the European
survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE):
a prospective, multinational study. Lancet Infect. Dis. 17, 153–163.
doi: 10.1016/S1473-3099(16)30257-2

Grundmann, H., Livermore, D. M., Giske, C. G., Canton, R., Rossolini, G.
M., Campos, J., et al. (2010). Carbapenem-nonsusceptible enterobacteriaceae
in Europe: conclusions from a meeting of national experts. Euro Surveill.
15:19711. doi: 10.2807/ese.15.46.19711-en

Frontiers in Microbiology | www.frontiersin.org 9 December 2018 | Volume 9 | Article 3036320

https://doi.org/10.1371/journal.pone.0136052
https://doi.org/10.3923/rjnasci.2010.108.111
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/j.idairyj.2012.11.001
https://doi.org/10.1016/j.resmic.2015.07.009
https://doi.org/10.1111/j.1469-0691.2012.03821.x
https://doi.org/10.1016/j.anaerobe.2011.03.021
https://doi.org/10.1055/s-0035-1544208
https://doi.org/10.2903/j.efsa.2013.3501
https://doi.org/10.2903/j.efsa.2017.4694
https://doi.org/10.1128/AEM.00798-16
https://doi.org/10.1016/j.vetmic.2016.04.026
https://doi.org/10.1016/j.fm.2015.01.017
https://doi.org/10.1016/j.fm.2016.09.012
https://doi.org/10.1111/j.1365-2672.2008.03768.x
https://doi.org/10.1016/S1473-3099(16)30257-2
https://doi.org/10.2807/ese.15.46.19711-en
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
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Antibiotic resistance has turned into a global public health issue. Enterococci are
intrinsically resistant to many antimicrobials groups. These bacteria colonize dairy and
meat products and integrate the autochthonous microbiota of mammal’s gastrointestinal
tract. Over the last decades, detection of vanA genotype in Enterococcus faecium
from animals and from food of animal origin has been reported. Vancomycin-resistant
E. faecium has become a prevalent nosocomial pathogen. Hospitalized patients are
frequently treated with broad-spectrum antimicrobials and this leads to an increase
in the presence of VanA or VanB vancomycin-resistant enterococci in patients’
gastrointestinal tract and the risk of invasive infections. In humans, E. faecium is the
main reservoir of VanA and VanB phenotypes. Acquisition of high-level aminoglycoside
resistance is a significant therapeutic problem for patients with severe infections
because it negates the synergistic effect between aminoglycosides and a cell-wall-
active agent. The aac(6′)-Ie-aph (2′′)-Ia gene is widely spread in E. faecalis and has been
detected in strains of human origin and in the food of animal origin. Enzyme AAC(6′)-
Ie-APH(2′′)-Ia confers resistance to available aminoglycosides, except to streptomycin.
Due to the fast dissemination of this genetic determinant, the impact of its horizontal
transferability among enterococcal species from different origin has been considered.
The extensive use of antibiotics in food-producing animals contributes to an increase in
drug-resistant animal bacteria that can be transmitted to humans. Innovation is needed
for the development of new antibacterial drugs and for the design of combination
therapies with conventional antibiotics. Nowadays, semi-purified bacteriocins and
probiotics are becoming an attractive alternative to the antibiotic in animal production.
Therefore, a better understanding of a complex and relevant issue for Public Health such
as high-level vancomycin and gentamicin resistance in enterococci and their impact is
needed. Hence, it is necessary to consider the spread of vanA E. faecium and high-level
gentamicin resistant E. faecalis strains of different origin in the environment, and also
highlight the potential horizontal transferability of these resistance determinants to other
bacteria.
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INTRODUCTION

Enterococci are resistant to diverse physicochemical conditions
and are widespread in nature. They are capable of growing and
surviving under harsh environmental conditions and have been
found in soil, plants, birds, and insects (Butler, 2006; Ghosh and
Zurek, 2015).

In the intestinal tract of humans and other animals, the genus
Enterococcus can be found among their flora. The microbiological
and ecological factors that contribute with intestinal colonization
are unknown, even though up to 108 CFU/g of enterococci
have been found in human feces. In addition, strains from this
genus have been isolated from fermented and dairy products.
Moreover, some enterococcal strains have been regarded as food
biopreservants and probiotics, although their safety remains
questioned (Beibei et al., 2015).

Traditionally, enterococci have not been considered as
community-acquired pathogens. Usually, these bacteria do not
cause infectious diseases in healthy people, except for occasional
urinary tract infections; however, Enterococcus faecium as well
as E. faecalis, are prevalent producers of health-care associated
opportunistic infections (Woodford and Livermore, 2009). The
genomic plasticity of enterococci has contributed with their
adaptation to the hospital environment. Their relevance as
nosocomial-infections’ agents is bolstered by their natural
resistance to multiple antimicrobials and an outstanding ability
for acquiring and transferring genetic resistance determinants
(Werner et al., 2013).

Enterococci express natural (intrinsic) resistance
to antibiotics, e.g., clindamycin and trimethoprim-
sulfamethoxazole. In addition, enterococci show a naturally
low-level resistance to gentamicin. Minimum inhibitory
concentration (MIC) values to gentamicin range from 6 to
48 µg/mL (Chow, 2000).

Antimicrobials consumption constitutes an important risk
factor for colonization with multi-drug resistant enterococci
because of the suppression of the competitive indigenous
microbiota in the gastrointestinal tract. The increased number
of gut enterococci, due to the decrease of competitive gut
indigenous flora, frequently precedes bloodstream infections
(Ubeda et al., 2010; Reyes et al., 2017).

Antimicrobials can be used in animal husbandry with
therapeutic, prophylactic/metaphylactic and growth promotion
purposes. Despite the use of antibiotics as growth promoters
has been forbidden in many countries, worldwide, foods
supplemented with antimicrobials are freely acquired in
several countries with no veterinarian control, including
in Argentina. This leads to bacterial exposure to sub-
therapeutic concentrations of antibiotics and, hence, it may
promote the expression of antibiotic resistance (Andersson
and Hughes, 2014). Antimicrobials employed for human
therapies and also used in animal production (in decreasing
order) are tetracyclines, penicillins, macrolides, sulfonamides,
aminoglycosides, lincosamides, and cephalosporins (Love
et al., 2011; Kuehn, 2014). Specifically, ceftiofur, sulfamides
and tetracyclines are used for prevention and treatment of
pneumonia in pigs; gentamicin and neomycin are employed

for the therapy of bacterial diarrhea (Dewey et al., 1999; EFSA,
2011).

The addition of antibiotics for growth promotion in animal
feed became a common practice without rigorous testing. The
mechanism of action in growth promotion induced by antibiotics
appears to be related to the reduction of pathogenic bacteria
in the intestines. The concentration of antimicrobials used
for growth promotion has often been lower than that used
for therapy and prophylaxis. These sub-therapeutic doses of
antibiotics often create an auspicious condition for selecting
antibiotic resistant bacteria (Van Immerseel et al., 2004; Dibner
and Richards, 2005). Previously, McDonald et al. (2001) reported
antimicrobial resistant enterococci in food produced with
animals fed with antibiotics in sub-therapeutic doses.

Extensive use of antimicrobials in animal husbandry has
exerted a considerable pressure for the genesis of antimicrobial-
resistant bacteria in the environment, such as vancomycin-
resistant enterococci (López et al., 2009; Ruzauskas et al., 2009;
Marshall and Levy, 2011; Nieto-Arribas et al., 2011; Ribeiro et al.,
2011; Sánchez Valenzuela et al., 2013).

Furthermore, enterococci, due to their characteristics of
gastrointestinal colonization, environmental persistence, natural
and acquired resistance to different antimicrobials and their
availability to transfer genes horizontally, can be used as
biomarkers of antimicrobial resistance in intensive husbandry.

TRANSFERABLE GENETIC
DETERMINANTS OF ANTIMICROBIAL
RESISTANCE

Intensive breeding of animals, especially poultry, pigs and cattle,
facilitates the selection, spread and resistance determinants
transfer of resistant bacteria. Increased antimicrobials resistance
in colonizing bacteria from animals and food of this origin was
documented (Normanno et al., 2007).

The extended and permanent use of antimicrobials for
therapy purposes and growth promotion purposes in husbandry
contributed with drug-resistant bacteria selection in humans.
When antimicrobials are used in low doses and in prolonged
cycles, a selective pressure is exerted that favors the propagation
of drug-resistant bacteria (Fey et al., 2000; Graveland et al.,
2010).

As a result, antimicrobial-resistant enterococci, as well as
other resistant gut bacteria, can be spread in the environment
by fecal residues. These bacteria can rapidly transfer their
resistance to other strains through genetic determinants carried
by mobile elements. Resistant enterococci are able to persist in
the animal intestine, contaminate the environment and food of
animal origin, and transfer determinants to human gut’s isolates
(Tasho and Cho, 2017). Moreover, community people can be
exposed to antimicrobial resistant enterococci through direct
contact.

Use of antimicrobials can enhance gene transfer between
bacteria (Malhotra-Kumar et al., 2007). Gene conjugative transfer
is frequent in the human gut, as well as in nature. Enterococci
acquire antibiotic resistance genes, e.g., for high-level gentamicin
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resistance and glycopeptides resistance determinants (Willems
et al., 2011; Sparo et al., 2012).

Further, enterococci can horizontally transfer resistance genes
to relevant bacteria in clinical settings, such as Escherichia
coli, Staphylococcus aureus, and Listeria spp. (Verraes et al.,
2013).

Generally, severe infections caused by enterococci are treated
with a cell-wall active agent-aminoglycoside (mostly gentamicin)
combination. The emergence of β-lactam and glycopeptide
resistance and high-level resistance to gentamicin in enterococci
has led to the employment of alternative antimicrobials (Arias
et al., 2010; Bartash and Nori, 2017).

Figure 1 shows a presumable bidirectional transfer of
resistance determinants and/or resistant enterococci between
different niches such as human and animal. This transfer
can occur through direct contact, foodborne contamination,
as well as in health-care settings and the environment
(community).

High-Level Vancomycin Resistant
Enterococci
In enterococci, vancomycin resistance is associated with different
van genotypes each corresponding with a typical Van phenotype.
These genes are chromosomal or extrachromosomal encoded
in transposons and/or plasmids. In human E. faecalis and
E. faecium, VanA and VanB (inducible resistance) are the
most relevant types. vanA gene cluster is most often found
on conjugative or non-conjugative plasmids (Cetinkaya et al.,
2000; Top et al., 2008). VanA is encoded by Tn1546, or
closely related transposons. vanA gene is linked with high-
level resistance to vancomycin and teicoplanin, while variable-
level resistance to vancomycin is associated with a VanB
phenotype. The vanB operon is found among large conjugative
plasmids or in the chromosome (Cetinkaya et al., 2000). The
most frequent vanB subtype, vanB2, is encoded by conjugative
transposons Tn1549-/Tn5382-like. It is interesting to note
that Tn1549-vanB has also been detected in anaerobes that
inhabit the human gut (Dahl et al., 2000; Launay et al.,
2006).

VanA is the most prevalent glycopeptide resistance phenotype
in Enterococcus linked with human infections, mainly expressed
by E. faecium (Freitas et al., 2016). Lester et al. (2006) have
proven, in volunteers, the existence of genetic transfer in the
human intestine between ingested chicken vanA-E. faecium
and non-resistant to vancomycin human E. faecium. It is
important to highlight that this research has been performed
in a human gut model with its complexity and its diverse
microbiota.

Furthermore, there is a global concern regarding plasmid-
mediated vanA transfer from E. faecalis to methicillin-resistant
S. aureus and their co-colonization, with the likelihood of
VanA-S. aureus isolation (Flannagan et al., 2003; Weigel et al.,
2003).

In the last decades, vanA-E. faecium were recovered from
animals and food of this origin. Initially, the European
Union stated that there was a link between Veterinarian

use of a glycopeptide (avoparcin) and the emergence of
vancomycin resistance (Werner et al., 2008). After avoparcin’s
ban, glycopeptide-resistance did not disappear. López et al.
(2009) reported high-level vancomycin resistant enterococci
(4%) from samples of animal origin 10 years after avoparcin
was forbidden. Continuous presence of vancomycin-resistant
enterococci in farms and in food of animal origin suggests
that is possible the co-transfer of resistance genes located in
the same conjugative plasmid, such as vanA and ermB, which
encodes for macrolides resistance, widely used in Veterinary
medicine. Also, the presence of ABC-type transporter genes
and the toxin-antitoxin system may favor the persistence
of vancomycin resistance determinants (Aarestrup, 2000). In
addition, deficient hygiene conditions in animal husbandry,
should not be underestimated (Garcia-Migura et al., 2007).
In the same period, a different situation was observed in the
United States, since food of animal origin glycopeptide-resistant
E. faecium were not detected but, nevertheless, they emerged in
health-care settings, turning into a pathogen almost as prevalent
as E. faecalis had been so far (Coque et al., 1996; Ramsey and
Zilberberg, 2009). However, in Michigan, United States, vanA-
E.faecium was detected in farm animals where avoparcin was
not used; which supports the existence of alternative ways for
spreading of van genes, their transfer or carrying isolates from
humans to animals (Johnsen et al., 2011; Gordoncillo et al.,
2013).

In Argentina, vanA-E. faecium from artisanal food of animal
origin was reported by Delpech et al. (2012). Previously,
it was observed that animal-origin vancomycin-resistant
E. faecium of animal origin were ingested in meats, proving
the risk of resistant bacteria colonization when meat products
carrying resistant bacteria were consumed (Heuer et al.,
2006).

In Argentina, since the late 1990′s vancomycin-resistant
E. faecium infections have been reported. In several Argentinean
hospitals, the prevalence of clonal complex (CC) 17 carrying
the vanA gene was detected. Most of these enterococci also
expressed high-level aminoglycoside resistance (Corso et al.,
2007).

Recently, during a year-period (2013), genetic relatedness
(PFGE studies) between vanA enterococci from humans,
food and the hospital environment in the District of Tandil
(Argentina) was investigated. vanA-E. faecium (n: 13) were
recovered from human, food and hospital environment samples.
vanA enterococci were distributed among seven clonal types;
esp gene was detected in clinical strains. However, the clonal
relationship between vanA-E. faecium of clinical and food
origin was not found. The clonal relationship was observed
among isolates from the hospital environment and from patients
(Pourcel et al., 2017).

Bacterial conjugation provides an efficient gene transfer
pathway and can be considered as the most relevant mechanism
for the increase of antimicrobial resistance (Hammerum, 2012).
It is possible that bacteria from food can constitute reservoirs of
antimicrobial resistance.

The horizontal gene transfer of vanA-resistance between food
strains and human gut microbiota becomes a possible mechanism
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FIGURE 1 | Bidirectional transfer of resistance determinants and/or resistant enterococci between different niches.

of resistance dissemination when enterococci do not fit in the
hospital settings (Hammerum et al., 2010).

High-Level Gentamicin Resistant
Enterococci
The most prevalent mechanism of high-level aminoglycoside
resistance in clinical bacteria is their enzymatic modification.
Three families of aminoglycoside modifying enzymes have been
recognized: phosphotransferases (APH), acetyltransferases
(AAC), and nucleotidyltransferases (ANT). Genes for
aminoglycoside modifying enzymes are often plasmidic,
with bacteria-bacteria aminoglycoside resistance dissemination
(Bassenden et al., 2016).

The following risk factors for the acquisition of infections
with high-level gentamicin resistant enterococci have been
identified: previous long-term antimicrobial treatment, number
of prescribed antimicrobials, previous surgeries, peri-operative
antimicrobial prophylaxis, hospitalization term/antimicrobial
treatment, urinary catheterization and renal failure. Infections
caused by E. faecalis with HLGR constitute a severe risk for
patients with invasive conditions and long-term hospitalization
(Miranda et al., 2001; Wendelbo et al., 2003; Ceci et al., 2015).

The most ubiquitous HLGR gene among human and food
enterococci is aac (6′)-Ie-aph (2′′)-Ia that encodes AAC(6′)-
APH(2′′)-Ia, with acetyltransferase and phosphotransferase
activities. Enterococci with this enzyme express resistance to

most of the available aminoglycosides (MIC > 2,000 µg/mL),
except for streptomycin (Leclercq et al., 1992). Generally,
aac(6′)-Ie-aph(2′′)-Ia gene is flanked by inverted repeats of
IS256, composing transposon Tn5281 in E. faecalis as part of a
conjugative plasmid (Rosvoll et al., 2012).

Other monofunctional genes encoding aminoglycoside-
modifying enzymes have been described, such as class APH
(2′′)-subclass I phosphotransferases, chromosomal [e.g., aph(2′′)-
Ib y aph(2′′)-Id] and plasmidic [e.g., aph(2′′)-Ic] genes. These
resistance determinants were originally found on Enterococcus
species different than E. faecalis and encode enzymes which
confer resistance to gentamicin and amikacin. aph(2′′)-Ic gene
is associated with MIC for gentamicin ranging between 128 to
512 µg/mL. Nevertheless, aph(2′′)-Id gene, initially described in
human E. casseliflavus, is linked to HLGR. This gene has been
detected in clinical vancomycin-resistant E. faecalis (Ramirez
and Tolmasky, 2010; Economou et al., 2017).

From 2000 to 2002, in Denmark, the proportion of high-level
gentamicin resistant E. faecalis isolates increased from 2 to 6%
in the pig population. Simultaneously, an emergence of HLGR
E. faecalis isolates among patients with infective endocarditis
was detected in the North Denmark Region (DANMAP, 2002).
Afterward, Larsen et al. (2010) demonstrated that all of these
isolates (human and pig origin) belonged to the same clonal
group, suggesting that pigs were a reservoir for high-level
gentamicin resistant E. faecalis associated with enterococcal
infections.
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Sparo et al. (2012) proved the spread of enterococci with
HLGR from animals to humans through the food chain, and also
that enterococci isolated from food of animal origin and humans
carried the same aminoglycosides resistant genes, as reported,
also, by other authors (Hammerum et al., 2007).

Resistance to ampicillin and vancomycin is infrequent,
although E. faecalis have been shown to acquire HLGR (Kuch
et al., 2012). Recently, over a 1 year period, the presence of
cytolysin and HLGR in E. faecalis from human (hospital), animal
(chicken feces from a farm) and food (minced meat from shops)
origin were studied. Clinical samples were obtained from patients
with invasive infections in Hospital Ramón Santamarina from
Tandil City, Buenos Aires Province (Argentina). In all enterococci
with HLGR, aac (6′) -Ie-aph (2′′)-Ia gene was amplified. aac
(6′)-Ie-aph (2′′)-Ia and cylA were detected in human, food and
animal E. faecalis, proving its environmental spread (Sparo et al.,
2013).

In patients presenting risk factors, a high-level intestinal
colonization of E. faecalis can become a frequent precursor
of human invasive infections by bacterial translocation. This
event is favored by the enhanced employment of broad-spectrum
antimicrobials that exert significant pressure over the intestinal
microbiota, hence, resulting in a likely emergency of multi-
resistant enterococci. The human gut is a considerable reservoir
for microorganisms potentially capable of transfer resistance to
conventional antimicrobials. Moreover, the fact that bacteria
isolated from food of animal origin can behave as a resistance
reservoir needs to be taken into consideration. In vitro studies
performed to prove genetic exchange between enterococcal
strains from humans and food of animal origin, are not
conclusive (Sparo et al., 2012). Therefore, in vivo models for
assessing genetic transfer are needed. Research carried out in
animal models with their own microbiota it will not be able
to reproduce the conditions of the human intestine. The use
of human colon microbiota in germ-free mice is proposed as a
model for reproducing the interaction between food strains and
human gastrointestinal microbiota (Hirayama, 1999). Recently,
HLGR determinants transfer from food to human bacteria
was proven in an animal model. Immunocompetent BALB-
C mice, colonized with human feces from an infant with
no previous antimicrobial treatment, were used. This study
showed evidence of the likelihood of high-level gentamicin
resistance horizontal transfer from food to human E. faecalis.
Therefore, a gene transfer model in non-sterile mice colonized
with human gastrointestinal microbiota was standardized (Sparo
et al., 2012).

It is needed to highlight that the rate of HLGR in vancomycin-
resistant enterococci is higher than in vancomycin-susceptible
enterococci strains. Mihajlović Ukropina et al. (2011) studied
the frequency of antimicrobial resistance in enterococci isolated
from blood cultures. HLGR was detected in vancomycin-resistant
strains (87.6%) as well as in vancomycin-susceptible strains
(9.9%). Hence, according to this study, HLGR in E. faecium is
higher than in E. faecalis.

In an Argentinean study, E. faecalis strains with HLRG (aac
(6′)-Ie-aph (2′′)-Ia gene) and without glycopeptide resistance
were recovered from human and food samples of animal origin.

PFGE patterns showed four clonal types, and also that there
was a clonal relationship between E. faecalis with HLGR isolated
from food and those isolated from humans (Pourcel et al.,
2017).

Clonal Complexes of High-Level
Vancomycin and Gentamicin Resistant
Enterococci
Worldwide, MLST E. faecium data established that the majority
of the clinical strains belong to the CC17, most of which are
resistant to ciprofloxacin and ampicillin, and contain virulence
genes. When new algorithms such as the Bayesian analysis
of population structure (BAPS) were applied, it showed that
CC17 consists of two large groups with different evolutionary
origin: BAPS 2-1, containing sequence-type (ST) 78 and BAPS3-
3 (ST17 and ST18). Most of the drug-resistant clinical isolates
of hospital origin belong to both groups. The majority of
community-origin isolates were grouped in the BAPS 2-1
group, genetically and evolutionarily different from hospital
isolates and those of hospital origin are evolutionarily closer
to those of farm animals. A similar trend was detected among
vancomycin-resistant E. faecium, investigated in broiler flocks
15 years after the avoparcin ban, diversity was observed
as well since they clustered in three BAPS populations
(Willems et al., 2012; Bortolaia et al., 2015; Raven et al.,
2016).

Several authors have highlighted the predominance of clonal
lineages −17, −18 and −78 in human clinical isolates of
E. faecium. It could be assumed that they have adapted to the
intestinal environment and integrate their microbiota (Baquero
and Coque, 2011; Faith et al., 2015; Tedim et al., 2015, 2017).

Nowadays, comparison of available genome sequences
allowed to support the existence of two clades for E. faecium;
one of the animal strains and hospital-associated enterococci
(clade A) and another one of community strains (clade B),
which includes human commensal isolates. Clade A has been
subdivided into A1, including most of the clinical isolates
(lineages ST17, ST18, and ST78) and A2, containing mainly
strains of animal origin. It has also been shown that the genome
of the strains included in the clade A1 has a larger size than
those ones of strains belonging to A2, which seems to support
the recent emergence of this clade and the importance of
its recombination (Galloway-Peña et al., 2012; Tedim et al.,
2015).

Unlike E. faecium, E. faecalis lack a clear structure in clades.
Some clones are more frequent in hospitalized patients or in the
community. Specifically, CC2 and CC9 both present high-level
vancomycin resistance and have been described as highly risky
due to their adaptation to the hospital environment and global
dissemination (Freitas et al., 2009; Kuch et al., 2012; Guzman
Prieto et al., 2016).

E. faecalis CC2, a high-risk CC, is frequently found
among health-care associated isolates and represents hospital
complexes linked with high-level aminoglycoside resistance
(Weng et al., 2013). In addition, E. faecalis CC87, similar to
CC2, expresses multi-drug resistance and can be associated with
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invasive infections (Ruiz-Garbajosa et al., 2006; Tedim et al.,
2015).

IMPACT IN HUMAN INFECTIONS AND
THERAPEUTIC OPTIONS FOR
RESISTANT ENTEROCOCCI

Among bloodstream infection (BSI) associated with the
healthcare environment, Enterococci is the third most common
one. Although vancomycin-resistant enterococci have been
clinically relevant pathogens for years, the majority of clinical
data is retrospective (Wisplinghoff et al., 2004). Nowadays,
vancomycin-resistant enterococci are the cause of one-third of
all health care associated infections in the United States and one
fifth in some European countries (Hidron et al., 2008; European
Centre for Disease Prevention and Control [ECDC], 2010).
Furthermore, mortality rates in patients with BSIs produced
by vancomycin-resistant enterococci range between 20 and
46% (Han et al., 2009; McKinnell et al., 2011; Twilla et al.,
2012).

Treatment of vancomycin-resistant enterococci’s BSI is
particularly challenging. The therapeutic options include
linezolid, daptomycin, quinupristin-dalfopristin, tigecycline,
and lipoglycopeptides, such as telavancin, dalbavancin and
oritavancin.

Due to limited clinical available data of lipoglycopeptides
together with resistance issues in VanA enterococci, the role
in systemic vancomycin-resistant enterococci infections for
telavancin and dalbavancin is irrelevant. Oritavancin (the
lipoglycopeptide with the broadest antibacterial coverage) has
shown bactericidal activity against VanA and VanB vancomycin-
resistant enterococci. This drug was approved for the treatment of
acute bacterial skin infections and is currently undergoing clinical
trials for the treatment of bacteremia (Zhanel et al., 2010; Messina
et al., 2015).

In Europe, Teicoplanin can be used for VanB phenotype
infections (Svetitsky et al., 2009).

Tigecycline has not been approved for the treatment
of bacteremia because it does not achieve high serum
concentrations. This tetracycline can be considered as one
of the first-line treatments for polymicrobial intra-abdominal
infections associated with vancomycin-resistant enterococci due
to its high penetration into the peritoneal space (Arias et al.,
2010).

Quinupristin-dalfopristin, effective only against E. faecium,
has a high molecular weight, which renders it unable to cross the
blood-brain barrier. This, added to the facts that it has frequent
side effects and that it easily interacts with other drugs, limits its
clinical use (Rubinstein et al., 1999).

Since approval, linezolid has been widely employed for
vancomycin-resistant enterococci infections. The clinical success
rate can vary based on the infection site and generally range
between 50 and 80%. Lower success rates are generally seen in
patients with bacteremia and infections without known focus
(Birmingham et al., 2003; Kraft et al., 2012; Da Silva et al., 2014;
Patel et al., 2016).

Linezolid has shown utility for treating infections
by vancomycin-resistant enterococci non-susceptible to
daptomycin. Surveillance analysis carried out in 2012 showed
99.5% susceptibility for linezolid against enterococci in the
United States health systems (Mendes et al., 2014). Prolonged
use of linezolid has been associated with resistance emergency
(Pogue et al., 2007; McGregor et al., 2012).

Tedizolid is a next-generation parenteral and oral
oxazolidinone with a broad spectrum bacteriostatic activity
against resistant Gram-positive bacteria including VanA and
VanB enterococci. It has been approved for the treatment of
acute bacterial skin and soft tissues infections, and, currently,
clinical trials for bacteremia and pneumonia treatment are being
undergone (Rybak et al., 2014).

Daptomycin has been successful for multidrug-resistant
enterococci and vancomycin-resistant enterococci infections’
treatment. Multiple analyses of the Cubicin Outcomes and
Registry Experience (CORE) have shown a higher clinical success
rate when used as first-line therapy for vancomycin-resistant
enterococci bacteremia, 87–93% (Sakoulas et al., 2007; Mohr
et al., 2009).

β-lactam antibiotics have been evaluated, in vitro, combined
with daptomycin against vancomycin-resistant enterococci,
including ampicillin, ceftaroline, ceftobiprole, and ceftriaxone,
all of which produced synergistic effects even when β–lactam
resistance was detected (Sakoulas et al., 2012, 2014; Hall Snyder
et al., 2014; Werth et al., 2015).

For infectious endocarditis due to ampicillin susceptible
and HLGR E. faecalis, ampicillin with ceftriaxone should be
considered as an alternative treatment option, since it showed
a similar efficacy to the observed ones for ampicillin with
gentamicin, in susceptible strains, but with less nephrotoxicity.
The saturation of several penicillin-binding proteins is the main
reason why this combination presents a desirable bactericidal
synergy (Mainardi et al., 1995; Murray, 2000; Fernández-Hidalgo
et al., 2013; Economou et al., 2017).

Alternatives/Complementary
Therapeutic Options
Available evidence about infection control and prevention
measures (ICP) to reduce vancomycin-resistant enterococci
spread in adult hospitalized patients is insufficient. A systematic
review published in 2014 (that included 9 studies with 30,949
participants) emphasized the importance of the implementation
of hand hygiene program. A decrease of 47% in the vancomycin-
resistant enterococci acquisition rate was observed when
this measure is applied. Further studies with appropriate
methodological design are urgently needed to define if ICP
measures have an impact in reducing the acquisition of
vancomycin-resistant enterococci among hospitalized patients
(De Angelis et al., 2014).

A proposal for controlling antimicrobial resistance
dissemination is to reduce antimicrobials employment in
animal husbandry and promoting research of novel therapeutic
alternatives. Probiotics are “living microorganisms which when
administered in adequate amount confer a health benefit on
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the host” (Food and Agriculture Organization/World Health
Organzation [FAO/WHO], 2001). These strains improve
intestinal microbial balance, provide protection against gut
pathogens and modulate the immune system. Probiotics are
supplemented into animal feed (cattle, ducks, broilers, and
chickens) and have beneficial effects on the food producing
animals by enhancing weight gain, increasing egg/milk
production, lowering the incidence of disease and mortality
rates (Crittenden et al., 2005). Use of probiotics against
pathogenic bacteria showed to be effective for reducing
food-borne illnesses in consumers, in view of the absence
of antibiotics in sub-therapeutic doses (Van Coillie et al.,
2007).

A different approach is the use of microbial cell extracts that
reduce the risks of bacterial translocation and infection (Sparo
et al., 2014; Lemme-Dumit et al., 2018).

Bacteriocins are ribosomally synthesized peptides, with
bacteriostatic/bactericidal activity, produced by various
bacteria (Gálvez et al., 2007). The use of Gram-positive
bacteriocins alone or in combination with antibiotics
was proposed as a novel strategy to develop in human
and veterinary medicines in order to help conventional
antimicrobials against many multi-drug resistant pathogens.
These combinations allow decreasing the MIC for achieving
a bactericidal effect and, also, reduce undesirable side-
effects of antibiotics (Lebel et al., 2013; Naghmouchi et al.,
2013; Delpech et al., 2017). Randomized controlled trials
are needed for obtaining scientific evidence about the

usefulness of these novel compounds against pathogenic
enterococci.

CONCLUSION

Worldwide, enterococcal infections are among the most
prevalent within those of nosocomial origin. Antimicrobial
multi-resistant enterococci and their drug-resistant determinants
spread by direct animal-human contact and/or through animal
origin food. As mentioned above, the evidence is based on
traditional microbiology and molecular tools, such as PFGE
and MLST. Therefore, future studies combining phylogeographic
methods with whole genomic sequence will provide reliable
information for inferring bacteria movement between host
populations.

Nowadays more countries are developing antibiotic-limiting
policies, and thus arises a need of searching for an alternative or
substitute for these drugs for sustainable food production, such
as probiotics and bacteriocins.
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Many antibiotics, either directly or indirectly, cause DNA damage thereby activating the
bacterial DNA damage (SOS) response. SOS activation results in expression of genes
involved in DNA repair and mutagenesis, and the regulation of the SOS response relies
on two key proteins, LexA and RecA. Genetic studies have indicated that inactivating
the regulatory proteins of this response sensitizes bacteria to antibiotics and slows
the appearance of resistance. However, advancement of small molecule inhibitors of
the SOS response has lagged, despite their clear promise in addressing the threat of
antibiotic resistance. Previously, we had addressed this deficit by performing a high
throughput screen of ∼1.8 million compounds that monitored for inhibition of RecA-
mediated auto-proteolysis of Escherichia coli LexA, the reaction that initiates the SOS
response. In this report, the refinement of the 5-amino-1-(carbamoylmethyl)-1H-1,2,3-
triazole-4-carboxamide scaffold identified in the screen is detailed. After development
of a modular synthesis, a survey of key activity determinants led to the identification of
an analog with improved potency and increased breadth, targeting auto-proteolysis of
LexA from both E. coli and Pseudomonas aeruginosa. Comparison of the structure of
this compound to those of others in the series suggests structural features that may
be required for activity and cross-species breadth. In addition, the feasibility of small
molecule modulation of the SOS response was demonstrated in vivo by the suppression
of the appearance of resistance. These structure activity relationships thus represent
an important step toward producing Drugs that Inhibit SOS Activation to Repress
Mechanisms Enabling Resistance (DISARMERs).

Keywords: SOS response, antibiotic resistance, structure activity analysis, Pseudomonas aeruginosa, DNA
damage

INTRODUCTION

Antibiotic resistant bacteria represent one of the most pressing issues in infectious disease
research today (Brown and Wright, 2016). An era is fast approaching when many currently
treatable infections may become incurable (Boucher et al., 2009). While important efforts are
underway to discover antimicrobials with different mechanisms of action (Clatworthy et al., 2007;
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Thaker et al., 2013; Ling et al., 2015), the most conventional
approach to overcoming resistance has involved the chemical
modification of existing antibiotic scaffolds (Fischbach and
Walsh, 2009). Although the resulting “next generation”
antibiotics offer a respite, bacteria are likely to rapidly adapt their
preexisting resistance mechanisms to counteract these gains. The
limitations of conventional approaches highlight the need to
pursue alternative strategies.

A promising alternative approach is to target pathways that
promote acquired resistance to antibiotics. One such pathway is
the bacterial DNA damage response pathway, known as the SOS
response (Figure 1). Many antibiotics induce the SOS response,
either by inducing DNA damage (e.g., fluoroquinolones) or by
indirectly promoting DNA damage via targeting essential cellular
and metabolic functions (Kohanski et al., 2007; Dwyer et al.,
2012; Mo et al., 2016). The SOS response is well conserved across
pathogens and involves numerous genes (e.g., >40 in Escherichia
coli). These proteins include translesion DNA polymerases that
promote mutagenesis, recombinases that mobilize antibiotic
resistance genes, and proteins that mediate persistence, biofilm
formation or directly promote antibiotic evasion (McKenzie et al.,
2000; Beaber et al., 2004; Schlacher et al., 2006; Galhardo et al.,
2007; Da Re et al., 2009; Dörr et al., 2009, 2010; Gotoh et al.,
2010). Thus, suppression of the SOS pathway would be predicted
to compromise the response of bacteria to antibiotics.

A means to suppress the SOS pathway is to maintain
repression of the SOS response. In the absence of genotoxic
stress all genes of the pathway are tightly repressed by the dual-
function repressor/protease, LexA (Figure 1). In the presence
of genotoxic stress the DNA damage sensor protein RecA
forms filaments along ssDNA generated by aborted replication.
The pathway is triggered when this filamentous RecA (RecA∗)
promotes a conformational change in LexA that brings one of its
protein loops into its own serine protease active site (Luo et al.,
2001). Subsequent auto-proteolysis destabilizes LexA, and leads
to transcriptional de-repression of SOS pathway genes (Culyba
et al., 2018).

Genetic studies targeting either RecA or LexA validate the
SOS response as a therapeutic target (Figure 1). In a murine
thigh infection model an E. coli strain harboring a non-cleavable
mutant of LexA abrogated resistance both to ciprofloxacin and
rifampicin compared to a strain with a cleavable LexA (Cirz
et al., 2005). In addition, deletion of RecA, or forced over
expression of non-cleavable LexA have been shown to hyper-
sensitize bacteria to traditional antibiotics (Lu and Collins, 2009;
Thi et al., 2011; Mo et al., 2016). Furthermore, SOS inactivation in
resistant bacteria resulted in re-sensitization to a fluoroquinolone
(Recacha et al., 2017). Together, these studies suggest that
targeting the SOS response could lead to both synergy with
DNA damaging antibiotics to lower MIC values and suppression
of acquired resistance (Cirz and Romesberg, 2007; Smith and
Romesberg, 2007; Culyba et al., 2015).

While specifically targeting RecA has produced some
important gains (Wigle et al., 2009; Alam et al., 2016; Bellio
et al., 2017), we aimed to inhibit the RecA∗-induced cleavage
of LexA as this represents the key initiating step in the SOS
response. To this end we developed a high throughput screen

(HTS) that allowed estimation of RecA∗-mediated LexA
cleavage. Using this screen some 1.8 million compounds were
evaluated for inhibition of RecA∗-mediated LexA cleavage (Mo
et al., 2018). The result of this screen was the identification
of several chemotypes with the potential to modulate the
SOS response (Mo et al., 2018). Herein is described the
advancement of one of the chemotypes, the 5-amino-1-
(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold
(Figure 2) via a modular synthesis that allowed for evaluation
of structure-activity relationships and lead improvement
to increase potency and expand the breadth of targetable
pathogens. This work underscores the feasibility of developing
DISARMERs (Drugs to Inhibit SOS Activation to Repress
Mechanisms Enabling Resistance) – molecules that can act
as adjuvants in standard antimicrobial therapies to both
sensitize bacteria to antibiotics and reduce the rise of acquired
resistance.

MATERIALS AND METHODS

Materials
All reagents used in chemical synthesis were purchased from
Aldrich Chemical Co., (Milwaukee, WI, United States), Alfa
Aesar (Ward Hill, MA, United States), or Thermo Fisher
Scientific (Pittsburgh, PA, United States) and were used without
further purification. Chemicals used in biochemical assays were
obtained from Sigma-Aldrich (St Louis, MO, United States).

Compound Synthesis
Compounds were synthesized using a method that proceeds via
a [3+2] cycloaddition, allowing facile, catalytic, non-moisture
sensitive, and non-air sensitive syntheses of a variety of 5-amino-
1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamides. For the
majority of analogs, catalysts employed were either sodium
ethoxide (synthesis A, Table 1) or cesium carbonate (synthesis B,
Table 1). The base-mediated cyclization is depicted in Figure 2.

For reactions catalyzed by sodium ethoxide (synthesis A), a
solution of sodium ethoxide (1.2 mmol) in anhydrous ethanol
(10 mL) was maintained under nitrogen and cooled to 0◦C
with stirring. Once cooled, the cyano component (1.1 mmol)
was added to the solution. The resulting solution was stirred
for 10 min at 0◦C before addition of the azido component
(1.0 mmol). The resulting solution was maintained at 0◦C
for a further 2 min before being allowed to warm to room
temperature. Upon reaching room temperature, the solution
was lightly sonicated for 20 s before the temperature was
raised to 40◦C. The solution was maintained at 40◦C for 4 h
before being allowed to cool to room temperature. Once the
solution reached room temperature the reaction was quenched
with deionized H2O (100 mL) and extracted with ethyl acetate
(3 × 50 mL). The combined organic fractions were washed
with deionized H2O (50 mL), dried over anhydrous Na2SO4,
filtered, and concentrated in vacuo to yield the crude product.
The crude product was dissolved in DMF, filtered through
a syringe filter and purified via reverse phase HPLC using
acetonitrile in deionized H2O (with 0.1% TFA in both solvents)
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FIGURE 1 | SOS pathway activation and inhibition. At left, under non-stressed conditions the intact LexA dimer binds to the SOS promoter region and tightly
represses SOS protein production. Upon DNA damage RecA binds to DNA fragments to form RecA∗ filaments that stimulate free LexA to undergo auto-proteolysis.
Auto-proteolysis of LexA renders it unable to bind to the SOS promoters leading to expression of the effectors of the SOS pathway. These effectors promote DNA
repair, accelerate gene transfer and mutagenesis, and contribute to virulence. At right, genetic inhibition of the SOS response has been shown to antagonize these
antibiotic-evasion associated phenotypes and small molecule inhibition of the pathway is therefore a viable pathway for improving the efficacy of antibiotics or
targeting virulence.

to yield, after evaporation and lyophilization, the desired
product.

For reactions catalyzed by cesium carbonate (synthesis
B), the azido component (1.1 mmol), the cyano component
(1.0 mmol) and cesium carbonate (0.25 mmol) were dissolved
in DMSO/deionized H2O (7:3, 4 mL) with stirring. The reaction
vial was capped and stirred for 24 h before being diluted
with deionized H2O, partially concentrated in vacuo, frozen,

FIGURE 2 | Lead compound and synthetic approach. (A) The lead 1 is shown
with the Areas A, B and C highlighted. These areas are the focus of
diversification in analog synthesis to explore structure-function relationships in
the lead series. (B) Retrosynthesis of the 5-amino-1-(carbamoylmethyl)-
1H-1,2,3-triazole-4-carboxamides is shown, with the core of Area B formed
via a cycloaddition of azide 15 and nitrile 16. In Area B the 5-amino group
derived from the nitrile is highlighted to help illustrate the cycloaddition
mechanism.

and lyophilized to remove water and DMSO. The resulting
crude material was purified via reverse phase HPLC using
acetonitrile in deionized H2O (with 0.1% TFA in both solvents)
to yield, after evaporation and lyophilization, the desired
product.

For compound 7 a variation of synthesis A (synthesis C)
was employed in which sodium methoxide was used instead
of sodium ethoxide. For this synthesis a mixture of the cyano
component (0.24 mmol), and sodium methoxide (0.26 mmol) in
methanol (1.07 mL) was stirred for 30 min before addition of
the azido component (0.21 mmol). The reaction was stirred for
16 h before treatment with methanol (0.25 mL) and stirring for
3 h. Methanol (1 mL) was added, and the reaction was heated
at 95◦C for 2 h. The mixture was treated with deionized water
(25 mL), concentrated HCl (1 drop), and ethyl acetate (10 mL).
The aqueous layer was treated with saturated aqueous NaHCO3
(5 mL) and extracted with ethyl acetate (10 mL). The combined
organic extracts were washed with saturated aqueous NaHCO3
(10 mL), brine (10 mL), and dried over anhydrous MgSO4 before
concentration. The crude material was purified via reverse phase
HPLC using acetonitrile in deionized H2O (with 0.1% TFA in
both solvents) to yield, after evaporation and lyophilization, the
desired product.

Some compounds in the Supplementary Information were
synthesized by alternative methods in which an acetylene
component replaced the cyano component. The alternate
syntheses are described in the Supplementary Methods. Analogs
which were not synthesized were obtained from commercial
vendors ChemDiv (San Diego, CA, United States) and Vitas-M
Laboratory (Champagne, IL).

All compounds were readily soluble in DMSO and were stored
as 10 mM frozen (−30◦C) stocks when not in use.
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TABLE 1 | Synthesis and inhibition by lead analogs.

Compound R1 R2 E. coli IC50/µM1 Synthesis2 Yield%

1 32 ± 6 A/B 25/25

2 >100 n/a commercial

3 44 ± 4 A 27

4 22 ± 3 B 34

5 17 ± 2 n/a commercial

6 >100 n/a commercial

7 18 ± 1 C 21

8 15 ± 2 B 31

9 >100 n/a commercial

10 33 ± 4 A 32

11 15 ± 2 n/a commercial

12 19 ± 3 B 12

(Continued)
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TABLE 1 | Continued

Compound R1 R2 E. coli IC50/µM1 Synthesis2 Yield%

13 40 ± 3 B 33

14 9 ± 1 B 39

1 IC50 values are the avearge of 4 determinations and the errors are ± 1 SD. 2A-NaOEt conditions. B-CS2CO3 conditions, C-NaOMe conditions.

FlAsH-LexA Cleavage Assay
IC50 values were routinely determined using the E. coli FlAsH-
LexA cleavage assay previously used to perform HTS (Mo et al.,
2018). In this assay RecA-promoted LexA cleavage is monitored
using fluorescence polarization. The E. coli FlAsH-LexA and
RecA were constructed, expressed and purified as previously
described (Mo et al., 2018). The conditions were 100 nM E. coli
FlAsH-LexA, 200 nM RecA, 5 µM ssDNA (SKBT25: GCG TGT
GTG GTG GTG TGC) (Tracy and Kowalczykowski, 1996), 5 µM
ATPγS in 100 mM Tris-HCl, pH 6.5, 150 mM NaCl, 5 mM
MgCl2, 0.1 mM TCEP, and 0.01% (w/v) Pluronic-F127. Reactions
were performed in 384-well plates and components were added
as 10 µL additions of ATPγS, ssDNA and RecA, in buffer and
10 µL of E. coli FlAsH-LexA in buffer using a Janus liquid handler
(Perkin-Elmer). Compound was added as a DMSO solution using
a pin tool, and the final concentration of DMSO in the reaction
was 1.2%. Once the reaction components were combined,
reactions were centrifuged for 1 min at 500 rpm and incubated
for 30 min at room temperature. Reactions were quenched with
a 10 µL addition of 50 mM EDTA and plates were read on a
Tecan Infinite F200 Pro plate reader (Tecan US, Inc., Morrisville,
NC, United States). The final assay conditions resulted in 100–
120 mP difference between the uncleaved and cleaved control
wells, representing an approximately 60% cleavage of the E. coli
FlAsH-LexA. On each plate 32 positive (-RecA) and 32 negative
controls (+RecA) in which DMSO without compound was added
were used to define the range of mP and calculate the fraction
inhibited.

IC50 values were estimated by non-linear least squares fitting
to the data using Equation 1.

FI =
[I]n

ICn
50+In (1)

where FI = Fraction inhibited, [I] = Concentration of compound
and n = Hill coefficient. Fitting was performed using Igor Pro
(WaveMetrics Inc., Lake Oswego, OR, United States).

In the FlAsH-LexA cleavage assay the highest compound
concentration was 111 µM and all of the compounds that
demonstrated activity (1, 3, 4, 5, 7, 8, 10–14, 22, and
23) elicited normal titration curves suggesting that aqueous
solubility was maintained up to 111 µM. Representative titrations
for the compounds can be found in the Supplementary
Figure 1.

Orthogonal 32P-LexA Cleavage Assay
Full-length E. coli and P. aeruginosa LexA were engineered
with a RRXS phosphorylation site on the N-terminus of the
full-length protein, allowing for 32P labeling by protein kinase
A to produce 32P-LexA, as described previously (Mo et al.,
2018). Reactions contained 100 nM 32P-LexA, 200 nM RecA
and 10 µM ATPγS and the buffer conditions were identical
to those in the HTS assay. Compounds were added in DMSO
and the final concentration was 2%. Reactions were incubated
for 30 min at room temperature after which 2 × Laemmli
buffer was added to stop the assay. The stopped reactions were
subjected to 15% SDS-PAGE and the gels were visualized via
phosphorimaging on a Typhoon imager (GE Healthcare Bio-
Sciences, Marlborough, MA, United States). The intact and
cleaved bands were quantified using Quantity One (Bio-Rad,
Hercules, CA, United States) and the fraction inhibited was
calculated. As for the HTS assay, controls contained DMSO
and the negative controls contained RecA while the positive
controls did not. Plots of fraction inhibited against compound
concentration were fitted to Equation 1.

Electrophoretic Mobility Shift Assay
For the electrophoretic mobility shift assay (EMSA) full-length,
catalytically inactive LexA-S119A was used (Mo et al., 2014).
Increasing concentrations (0–1 µM) of LexA-S119A were mixed
with 10 nM SOS operator DNA labeled with Cy5 in EMSA
running buffer (70 mM Tris-HCl pH 7.5, 10 mM MgCl2, 150 mM
NaCl, 5 mM DTT, 0.1 mg/ml BSA, 10 ng/µL ssDNA, 5% glycerol,
0.04% bromophenol blue) in the presence of 50 µM of compound
(or DMSO carrier). After incubation at room temperature for
30 min, 20 µL of each reaction was subjected to 6% native
PAGE. Gels were visualized on a Typhoon Imager using default
fluorescence filter settings for Cy5. Gel bands were quantified
using ImageJ (NIH, Bethesda, MD, United States) to determine
the fraction of bound DNA at each LexA concentration. Data
were fitted to a variable-slope sigmoidal dose-response curve.

Cell-Based SOS Reporter Assay
An E. coli MG1655 strain lacking sulA (1sulA) and the tolC
transporter (1tolC) (Mo et al., 2016) was transformed with a
reporter plasmid in which gfp expression was under the control
of the recA promoter (pMS201 pRecA GFP) (Zaslaver et al.,
2006). To perform assays overnight, cultures of the reporter strain
were diluted 100-fold in M9 minimal media and grown at 37◦C
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with agitation to an OD595 of ∼0.6. For each reaction sample
100 µL of culture were mixed with 100 µL of M9 minimal media
containing ciprofloxacin (256 ng/mL). Pre-diluted compounds
were added (5 µL) in DMSO and cultures were incubated at 37◦C
with agitation for 2 h after which the cells were fixed by adding
200 µL of phosphate buffered saline, pH 7.4 containing 1%
paraformaldehyde. After 1 h of fixing, the cells were spun down at
4,000 rpm and re-suspended in phosphate buffered saline, pH 7.4.
Fixed cells were analyzed using flow cytometry (BD FACSCalibur,
Ex/Em: 488 nm/530 nm) and the mean fluorescence of 20,000
cells in each condition was recorded.

Frequency of Resistance
A starter culture of 1tolC E. coli was cultured overnight at 37◦C
with shaking in LB broth. The next day the culture was diluted
3 × 107-fold in to LB broth. The dilution was used to produce
four sets of twelve cultures, each containing 1 mL. To one set
was added 10 µL of deionized H2O plus 10 µL of DMSO, to
the second set was added 10 µL of 125 ng/mL ciprofloxacin in
deionized H2O plus 10 µL of DMSO, to the third set was added
10 µL of deionized H2O plus 10 µL of a 10 mM solution of 14
in DMSO and to the fourth set was added 10 µL of 125 ng/mL
ciprofloxacin in deionized H2O plus 10 µL of 14 in DMSO. The
final concentration of ciprofloxacin (1.25 ng/mL) was below the
MIC for ciprofloxacin which was determined to be 5 ng/mL.

The 48 cultures were incubated at 37◦C with shaking for 48 h.
To determine the population size, spot plating was performed
starting with 1 µL of the cultures diluted 105-fold. A 100 µL
aliquot of each 105-fold dilution was transferred to a 96-well
plate and serially diluted (10-fold dilutions) into LB broth. The
dilutions (5 µL) were spotted on LB agar plates and the plates
were incubated overnight at 37◦C. To determine the rifampin
resistant population, 999 µL of each 1 mL culture was centrifuged
at 6000 rpm for 10 min to remove the cells from solution
and the cells were suspended in 100 µL of autoclaved 0.15 M
NaCl. The 100 µL solutions were plated on the LB plates
containing 100 µg/mL rifampin and incubated for 2 days at
37◦C. Following counting of the colonies the program bz-rates
(Gillet-Markowska et al., 2015) was used to estimate mutation
rates.

RESULTS

Among the leads isolated from the HTS performed for inhibitors
of RecA∗-mediated LexA cleavage, lead 1 was selected for
progression (Figure 2A). In the initial HTS, the parent 5-amino-
1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide, 1, had
an IC50 value of 32 µM (Table 1). This chemotype was well
behaved in the HTS, producing close to 100% inhibition,
and appeared to offer the most chemical tractability to allow
for the construction of structure activity relationships (SARs).
Furthermore, as LexA cleavage involves formation of a β-turn
at the site of self-cleavage (Lee et al., 2005; Whitby et al., 2011),
the structural similarity of 1 to β-turn mimetics also suggested
that structure-activity relationships could inform on the possible
mode of inhibitor action.

In order to better understand SARs, a modular synthesis
was devised that would permit generation of informative
analogs. While the construction of 5-amino-1,4-disubstituted-
1,2,3-triazoles has been extensively investigated (Tome, 2004)
no synthetic routes to 5-amino-1-(carbamoylmethyl)-1H-1,2,3-
triazole-4-carboxamides based on 1 have yet been reported.

Initial synthetic routes that proceeded via the generation of
two potential carboxylic acid intermediates followed by peptide
couplings to vary the left- and right-hand portions of the final
product were unsuccessful. These reactions were low yielding
and/or the precursors were prone to decomposition. A more
successful strategy proved to be to proceed via the simple
structural intermediates, azides (15) for the left-hand portion
and nitriles (16) for the right-hand portion (Figure 2B). These
intermediates were either synthesized in 1–2 steps (Hering et al.,
2005; Ju et al., 2006; Srinivasan et al., 2006; Ng et al., 2008;
Xia et al., 2014) or purchased directly and could be combined
via known base-mediated conditions to produce the desired
aminotriazoles via a [3+2] cycloaddition.

Three sets of reagents that have been previously reported to
facilitate such cyclizations were screened: stoichiometric sodium
methoxide (Alfred, 1970; L’abbé and and Beenaerts, 1989; Julino
and Stevens, 1998), stoichiometric sodium ethoxide (Hoover and
Day, 1956; Livi et al., 1979), and catalytic cesium carbonate
(Krishna et al., 2015). In most cases the choice of base between
stoichiometric sodium ethoxide and catalytic cesium carbonate
had little to no impact on the yield (e.g., 1, Table 1). Overall most
reactions were successful using the cesium carbonate conditions,
however, yields using this route were affected by the time and
temperature of the reaction. Using either the sodium ethoxide
or catalytic cesium carbonate routes readily permitted modular
access to a large variety of analogs, as demonstrated by the fact
that aromatic, heteroaromatic, and non-aromatic groups for R1
and R2 were tolerated (Table 1). This modular approach thus
allowed for systematic variation and investigation of structure
activity relationships.

Structure Activity Relationships
Initial medicinal chemistry efforts focused on developing an
understanding of the necessary features to improve potency.
The three areas (A, B, and C) in Figure 2A were systematically
investigated and the IC50 values for selected compounds are listed
in Table 1 with additional data shown in Supplementary Table 1.
Approaches used to probe the binding of compounds of this
class included amino group replacement, linker methylation and
N-methylation, methyl probing of the aryl rings, homologated
variations, and non-aromatic variations. IC50 values were
determined using the FlAsH-LexA cleavage assay.

In the linker connecting areas A and B, both mono- and
bis-methylated compounds (17 and 18) showed no measurable
activity, suggesting that substitution was not tolerated at the
methylene linker. Similarly, methylation of the amide of the
linker, 19, also abrogated activity. The inability to tolerate
substitution in the linker region suggested that it likely lies
in a narrow groove and that attempts to modify this area
could impact the conformations accessed by the lead. With
the linker area appearing not amenable to modification, the
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aromatic portion of area A was investigated. Replacement
of the para-ethoxy group substituted phenyl ring with an
unsubstituted phenyl, 2, benzyl, 20, or phenethyl group, 21,
led to loss of activity. However, replacement of the phenyl ring
with a cyclohexyl ring, 3, or a cycloheptyl ring, 4, returned
activity, suggesting that aromaticity was a larger restriction than
hydrophobicity. Systematic variation of methyl functionalization
on the phenyl ring revealed that substitution at the meta position,
6, was not tolerated whereas substitution on the ortho, 5, and
para, 7, positions were preferred. Beyond the single methyl
functionalization, mono-substitution at the ortho position on the
phenyl showed steric preferences with activities: Me (5) > Et
(22) > OMe (23) > OEt (24) = H (2). Bis-substitution on
the aryl ring was additionally investigated with for example,
8, showing that combination of ortho- and para-substitution
was tolerated but not significantly superior to ortho-substitution
alone, 5. In summary, probing of area A revealed interesting
substrate preferences but failed to produce a significant increase
in potency.

Additional investigations in area B also did not reveal a means
to increase potency. Replacement of the amine by hydrogen
(25), methyl (26), or ethyl (27) all rendered compounds inactive,
suggesting that the amine was making contacts essential for
activity. Supporting this conclusion was the finding that mono-
substitution on the amine by acetyl (28) was tolerated but with
reduced potency.

Probing of area C proved more fruitful. As with area A,
the amide linker appeared important as methylation was not
tolerated (29). Probing of the phenyl moiety indicated that its

presence and correct positioning are critical. The importance
of this ring was indicated by the intolerance to replacement
by cyclohexyl (30) or methyl (31) groups, and the need for
correct positioning was indicated by the intolerance to the
replacement of the phenyl ring by benzyl (32) or phenethyl
(33). The importance of substitution on the phenyl ring was
investigated by systematic methyl substitution around the
phenyl ring. Consistent with the meta- and para- substitution
pattern on area C of 1, this analysis indicated that ortho
substitution, 9, was not tolerated whereas individual meta, 10,
and para, 11, substitutions were allowed. Heteroatom inclusion
was also tolerated in Area C, as shown by ester-containing
variation 12, and pyridyl derivative 13. However, compound 14,
5-amino-1-{2-[(4-ethoxyphenyl)amino]-2-oxoethyl}-N-phenyl-
1H-1,2,3-triazole-4-carboxamide, with no substitution on the
phenyl ring proved to be the most potent compound tested in
this series with an IC50 of 9 µM.

Before proceeding to additional analysis, cytotoxicity testing
with HG2 cells was performed for select compounds, including
1 and 14. Both the initial lead 1 and the most potent
analog 14 showed no appreciable toxicity (CC50 of 277 µM
and > 500 µM, respectively). Due to the increased potency and
lack of cytotoxicity, the mechanism and activity of compound 14
was examined in more detail as described below.

Characteristics of Compound 14
A suite of assays was utilized to examine 14 in order to
confirm specific inhibition against LexA and demonstrate
SOS suppression in cells. To confirm the findings from the

N
u

m
b

e
r 

o
f 

ce
lls

GFP Fluorescence Intensity (106)
104 6 8 20

A B

1.0

0.8

0.6

0.4

0.2

0.0

In
hi

bi
tio

n 

2 4 6
10

20 40 60
100

100 µM
50 µM

25 µM 12.5 µM
6.3 µM

3.1 µM
1.6 µM

GFP assay IC50
 32  ± 2 µM

8 80

[14], µM

1.0

0.5

0.0

F
ra

ct
io

n 
In

hi
bi

te
d

1
2 4 6 8

10
20 40 60 80

100

32P-LexA assay IC50
 10 ± 2 µM

[14], µM

HTS assay IC50 
 9 ± 1 µM

32P-LexA

+ compounds

RecA*

FlAsH-
LexA

+ compounds

RecA*

HTS assay 32P-LexA assay

GFP
reporter plasmid

Ciprofloxacin-induced
DNA Damage

Analyze by
flow cytometry

Δ tolC + compounds

FIGURE 3 | Validation of in vitro and in vivo activity of 14. (A) The complete dose response curve for 14 performed using two orthogonal in vitro assays are shown.
The HTS assay employs RecA∗-induced changes in fluorescence polarization that can be tracked upon proteolysis of a fluorescent, truncated version of LexA. The
32P-LexA assay uses N-terminal 32P-labeled LexA and tracks formation of the N-terminal fragment upon RecA∗-induced cleavage. The calculated IC50 values are
shown with standard deviation from at least three replicates. (B) The SOS reporter assay employs a plasmid with GFP downstream of a recA promoter. Expression
of GFP can be tracked after initiating DNA damage with ciprofloxacin in a 1tolC MG1655 E. coli strain. At left, flow cytometry plots from a representative experiment
are shown as a density plot showing the level of GFP expression in the presence of serial dilutions of 14. At right, the mean GFP fluorescence was used to calculate
the level of inhibition relative to a negative control in the absence of 14 and a positive control in the absence of DNA damage.

Frontiers in Microbiology | www.frontiersin.org 7 December 2018 | Volume 9 | Article 2961339

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02961 December 14, 2018 Time: 14:34 # 8

Selwood et al. Disarming the Bacterial SOS Response

FlAsH-LexA cleavage assay, a fluorescence-independent assay
using a full-length version of E. coli LexA was employed.
The full-length LexA contained a PKA phosphorylation site
at the N-terminus that allowed 32P labeling, such that the
extent of auto-proteolysis can be visualized by phosphor-imaging
following SDS-PAGE. A plot of the titration curve of 14 obtained
using this methodology is shown along with a titration obtained
using the FlAsH-LexA assay in Figure 3A. The IC50 of 10± 1 µM
indicates that the IC50 obtained using the fluorescently labeled
truncated E. coli LexA in the HTS assay (9± 1 µM) was not due to
a fluorescence artifact, and that similar potency is observed with
full-length and truncated LexA. Interestingly, a similar IC50 value
was obtained when the slow cleavage in the absence of RecA∗
was monitored (Supplementary Figure 2A). This suggests that
14 binds specifically to LexA, which is further supported by the
observation of a thermal shift assay of LexA in the presence of 14
(Supplementary Figure 2B).

The dual activities of LexA, DNA binding and protease
activity, permit confirmation of specificity. If 14 inhibits RecA∗-
mediated LexA cleavage in the expected manner, it would be
predicted to inhibit the protease function of LexA, but not to
alter DNA binding. To examine LexA binding to DNA in the
presence of 14 an EMSA was employed. As with 1 (Mo et al.,
2018), LexA showed similar DNA binding affinity in the presence
or absence of 14 (Supplementary Figure 3). This observation
confirms that the effects in the HTS and 32P-LexA assays are
not due to non-specific aggregation of LexA or other artifacts.
Another important consideration is the permeability of 14 in to
the bacteria. Permeability was assessed using a 1tolC strain of
E. coli containing a plasmid that contained the GFP gene under
the control of the recA promotor (Mo et al., 2018). Compound
14 inhibited the appearance of GFP fluorescence in a dose-
dependent manner with an IC50 value of 32 ± 2 µM indicating
permeability into the 1tolC strain of E. coli (Figure 3B), without
impacting cell size (Supplementary Figure 4). The less potent
value compared to in vitro values suggests that even in the
efflux-compromised E. coli strain there still remain barriers to
entry.

Although the permeability remains in need of further
improvement, we also examined whether 14 could suppress
the downstream effects of the SOS response in vivo. With the
knowledge that the IC50 for permeability in the 1tolC strain of
E. coli was 32 ± 2 µM, a concentration of 100 µM 14 was used
to assess the ability of 14 to suppress the ciprofloxacin-induced
appearance of resistance to rifampicin. As can be seen from
Figure 4, the lead 14 was effective in reducing the appearance
of resistance to rifampicin. In the presence of 14 alone, the
mutation rates were comparable to DMSO alone controls.
Conversely, exposure to a sub-MIC concentration (1.25 ng/mL)
of ciprofloxacin produced an induction of mutagenesis. In the
presence of ciprofloxacin and 14 together, an approximately
threefold decrease in the per generation mutation rate was
observed relative to ciprofloxacin alone.

Cross-Species Reactivity
The HTS and medicinal chemistry efforts were directed at
the inhibition of E. coli LexA auto-proteolysis. To determine

FIGURE 4 | Suppression of ciprofloxacin-induced mutagenesis by 14. 1tolC
MG1655 E. coli cultures were grown in the presence or absence of 14
(100 µM) and/or a sub-MIC level of ciprofloxacin (1.25 ng/mL). The cultures
were plated without selection to determine total population size and on
selective rifampin-containing media (100 µg/mL) to quantify the frequency of
rifampin-resistance in the population. The mutational frequency was
converted to a per-generation mutation rate, with the rate and 95%
confidence interval shown. The rate data were calculated based on at least
twelve independent cultures under each condition.

FIGURE 5 | Improved cross-species activity of 14. The 32P-LexA assay,
examining RecA∗-mediated cleavage of full length LexA from P. aeruginosa,
was performed using serial dilutions of either 1 or 14. The percent inhibition
was calculated relative to DMSO controls. The mean value is shown with
standard deviation, calculated from at least two replicates.

the extent of cross-species reactivity, the effectiveness of 14 in
inhibiting the RecA-promoted auto-proteolysis of Pseudomonas
aeruginosa LexA was examined. As can be seen from Table 1
and Figure 5, compound 14 inhibited the RecA-mediated
auto-proteolysis of P. aeruginosa LexA with similar potency
(IC50 = 5.9 ± 0.4 µM) to that demonstrated with full-length
E. coli LexA (IC50 = 10 ± 1 µM). This behavior was not
observed with 1 (Figure 5) which was a less potent inhibitor
of RecA∗-induced auto-proteolysis of full-length P. aeruginosa
LexA (IC50 = 130 ± 28 µM). Thus, minor modifications
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to 14 compared to 1 had a significant effect on cross-
species reactivity and permits potentially expanded species
breadth.

DISCUSSION

While the HTS for inhibitors of RecA∗-mediated LexA
cleavage produced several chemotypes, the 5-amino-1-
(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold
appeared the most amenable for advancement. The low
cytotoxicity and the β-turn mimetic-like structure (see below)
were important considerations in the choice to advance
this chemotype. A particularly important consideration
was the chemical tractability of the lead compound, which
permitted the development of a highly modular synthesis that
allowed for an initial survey of structure-activity relationships.
Our synthetic approach is important because compounds
containing the privileged 5-amino-1-(carbamoylmethyl)-1H-
1,2,3-triazole-4-carboxamide scaffold have been used to target
broad categories of biological activity. Targets have included
C3d of the immune response (Morikis and Gorham, 2016),
Mycobacterium tuberculosis proteasome (Mehra et al., 2015,
2016), microRNA for the treatment of certain cancers (Calin
et al., 2002), and a wide range of other diseases (Tili et al., 2007;
Huang et al., 2010, 2012, 2013).

Inhibition of the SOS response can now be added to the list
of uses for the 5-amino-1-(carbamoylmethyl)-1H-1,2,3-triazole-
4-carboxamide scaffold. More specifically, the similar IC50 values
for 14 in the fluorescence-based LexA cleavage assay and an
orthogonal 32P-LexA ± RecA assay suggests on-target activity.
This effect appears specific for the self-cleavage activity of LexA,
because EMSA testing indicated that 14 does not interfere with
the DNA binding ability of LexA. The fact that one LexA function
is inhibited while the other is preserved further suggests that
14 is not a Pan-Assay Interference (PAINS) inhibitor (Aldrich
et al., 2017). While the data suggest 14 binds specifically, the
exact binding site is not clear. We have previously speculated
that a β-turn mimetic may prove a useful strategy for targeting
the LexA active site given that a β-turn formation plays a
role in self-cleavage (Mo et al., 2016). Indeed, speculation
that this scaffold could function as a β-turn mimetic was
one reason for advancing the 5-amino-1-(carbamoylmethyl)-
1H-1,2,3-triazole-4-carboxamide. The fact that substitutions
that likely perturb the conformational dynamics, such as
N-methylation of the amide bonds, is consistent with this
hypothesis. Nonetheless, the exact target of lead 1 or analog 14
awaits elucidation through structural or mutational studies and
allosteric inhibition may well be the mechanism of action due to
the inaccessibility of the active site to all but its natural substrate
(Culyba et al., 2015).

One likely driving force for the frequent use of this scaffold
in varied therapeutic applications is its low cytotoxicity, as
evidenced by the CC50 values of 277 µM and > 500 µM. Other
properties of 14 also indicate that it is a promising starting
point, although ongoing optimization is needed. The properties
of the molecule fall within Lipinski’s rules for drug-likeness

(Lipinski et al., 1997): it has a molecular weight of 380.4 (<500),
three hydrogen bond donors (≤5), six hydrogen bond acceptors
(≤10) and a cLogP of 1.63 (≤5). In comparison to oral drugs
for non-infectious diseases, antibacterial compounds tend to
have greater polarity (O’Shea and Moser, 2008; Brown et al.,
2014) which provides better solubility (useful for IV drugs) and
may enable improved permeability through the outer membrane
of Gram-negative bacteria (Nikaido, 2003; Brown et al., 2014).
Low lipophilicity is also preferred to avoid off-target activities
and cytotoxicity (Livi et al., 1979). Compound 14 has a polar
surface area of 124 Å2 which is below the value of 140 Å2

above which permeability is typically an issue. These properties
define 14 as a drug-like small molecule modulator of the SOS
response.

For small molecule SOS modulators to prove useful to address
therapeutic challenges, there are two important features of the
molecules which will be necessary. First, the molecules must
have sufficient breadth to allow for their use against multiple
potential pathogens. Although our initial lead 1 showed only
limited reactivity against LexA from P. aeruginosa (Figure 5),
our optimization around the scaffold encouragingly revealed 14
as an analog with similar potency against LexA from E. coli
and P. aeruginosa. This development is important because
pathogens such as P. aeruginosa are associated with chronic
infections. Frequent antibiotic exposure in patients with cystic
fibrosis or other immunocompromising conditions make the
risks of acquired resistance particularly high in these patients. In
addition to cross-species reactivity, small molecule modulators
must also show sufficient potency in vivo. The improved analog
14 shows SOS inhibition activity using the GFP reporter assay
in the efflux compromised 1tolC E. coli strain. Encouragingly, at
high concentrations, 14 also reduced the rate of ciprofloxacin-
induced mutation (Figure 4). Although these activities against
E. coli are promising, these results suggest that the potency of
the current leads requires additional improvement, especially
because genetic studies not only suggest that potent SOS
inhibition is necessary to fully potentiate antibiotic effects but
also reveal that mutation rates can be reduced even further
(Mo et al., 2016).

The trigger for the activation of the SOS response is
genotoxic stress which many antibiotics induce. Molecules
that attenuate the activation of the SOS response could
therefore reduce the ability of pathogens to adapt and
evolve under antimicrobial treatment. Evidence suggests
that such a therapeutic would be most effective when used
as an adjuvant to an antibiotic whose mechanism of action
involves directly damaging DNA, e.g., fluoroquinolones
(Mo et al., 2016). The improvements in potency and cross-
species activity with 14 suggest that although ongoing work
is needed to improve existing leads, discovery of such a
therapeutic DISARMER is a feasible pursuit. Combining
fluoroquinolones with a potent DISARMER could provide
advantages similar to those that β-lactamase inhibitors
have provided for β-lactam antibiotic therapy. These
possible advantages include extension of the useful lifetime
of an antibiotic, increased susceptibility of bacteria to
antibiotics, and slowed acquisition of resistance, all of which
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offer alternative strategies to address the challenges posed by
bacterial pathogens.
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Anthropogenic activities near urban rivers may have significantly increased the
acquisition and dissemination of antibiotic resistance. In this study, we investigated the
prevalence of colistin resistant strains in the Funan River in Chengdu, China. A total of
18 mcr-1-positive isolates (17 Escherichia coli and 1 Enterobacter cloacae) and 6 mcr-
3-positive isolates (2 Aeromonas veronii and 4 Aeromonas hydrophila) were detected,
while mcr-2, mcr-4 and mcr-5 genes were not detected in any isolates. To further explore
the overall antibiotic resistance in the Funan River, water samples were assayed for the
presence of 15 antibiotic resistance genes (ARGs) and class 1 integrons gene (intI1).
Nine genes, sul1, sul2, intI1, aac(6′)-Ib-cr, blaCTX−M, tetM, ermB, qnrS, and aph(3′)-IIIa
were found at high frequencies (70–100%) of the water samples. It is worth noting that
mcr-1, blaKPC, blaNDM and vanA genes were also found in water samples, the genes that
have been rarely reported in natural river systems. The absolute abundance of selected
antibiotic resistance genes [sul1, aac(6′)-Ib-cr, ermB, blaCTX−M, mcr-1, and tetM] ranged
from 0 to 6.0 (log10 GC/mL) in water samples, as determined by quantitative polymerase
chain reaction (qPCR). The sul1, aac(6′)-Ib-cr, and ermB genes exhibited the highest
absolute abundances, with 5.8, 5.8, and 6.0 log10 GC/mL, respectively. The absolute
abundances of six antibiotic resistance genes were highest near a residential sewage
outlet. The findings indicated that the discharge of resident sewage might contribute
to the dissemination of antibiotic resistant genes in this urban river. The observed high
levels of these genes reflect the serious degree of antibiotic resistant pollution in the
Funan River, which might present a threat to public health.

Keywords: colistin, antibiotic resistance, mcr-1, mcr-3, urban river, quantitative polymerase chain reaction

INTRODUCTION

Multi-drug resistant (MDR) Gram-negative pathogens are resistant to almost all antibiotics,
including cephalosporins, quinolones, aminoglycosides and carbapenems, making treatment
difficult. Colistin is considered the last line of defense against MDR Gram-negative pathogens,
playing an important role in the treatment of severe bacterial infections (Zavascki et al., 2007).
Unfortunately, the recent emergence of plasmid-mediated colistin resistance genes in carbapenem-
resistant Enterobacteriaceae presents a serious new threat to human health. The plasmid-mediated
colistin resistance gene mcr-1 was first discovered Liu et al. (2016). Soon afterward, another mobile
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phosphoethanolamine transferase gene, termed mcr-2, was
discovered in porcine and bovine Escherichia coli isolates in
Belgium (Xavier et al., 2016). Recently, Yin et al. (2017)
discovered a novel mcr subtype, mcr-3, encoded on an IncI2
plasmid in an E. coli isolated from a pig in China. The mcr-4
and mcr-5 genes were detected in Europe almost simultaneously
(Borowiak et al., 2017; Carattoli et al., 2017). Although there have
been numerous reports of colistin resistance genes in animals and
humans, fewer studies have focused on mcr-bearing isolates from
aquatic environments.

Due to the continual release of antibiotic residues and
antibiotic resistant bacteria (ARB) into the environment from
hospitals, livestock facilities, and sewage treatment plants (STP),
antibiotic resistant genes (ARGs) are regarded as environmental
contaminants (Pruden et al., 2006; Zurfluh et al., 2017).
The occurrence and dissemination of antibiotic resistance
in pathogenic and zoonotic bacteria pose a potential threat
to human health (Rosenberg Goldstein et al., 2012; Neyra
et al., 2014). Moreover, an increasing number of bacteria are
resistant to multiple antibiotics, and are able to transfer their
resistant determinants among different bacterial species and
genera in aquatic environments (Akinbowale et al., 2006).
Urban rivers may provide an ideal setting for the acquisition
and dissemination of antibiotic resistance because they are
frequently impacted by anthropogenic activities. Although
antibiotic resistance is a major and developing public health
concern, the surveillance of this phenomenon in urban rivers is
remarkably limited.

The Funan River, a major urban river in Chengdu used for
agricultural activities (e.g., irrigation and cultivation) as well as
recreational activities (e.g., swimming and fishing), was used as
the model in this study to analyze the magnitude of antibiotic
resistance in urban rivers.

The objectives of this study were: (1) to determine the
prevalence of colistin resistance strains in the Funan River; (2)
to investigate the MDR phenotypes and genotypes of isolated
colistin resistant strains; (3) to screen for resistance determinants,
including sul1, sul2, blaCTX−M, blaVIM, blaKPC, blaNDM, qnrS,
aac(6′)-Ib-cr, vanA, mecA, ermB, ermF, tetM, aph(3′)-IIIa, and
mcr-1, and the class 1 integron gene (intI1) in water samples from
the Funan River.

MATERIALS AND METHODS

Sampling of River Water
To investigate the prevalence of colistin resistant strains, 30 water
samples (2 L) were collected from the Funan River near densely
populated areas in September 2017. To further explore the
antibiotic resistance of bacteria throughout the Funan River, 10
water samples (2 L) were collected from representative locations
along the river (Figure 1). The representative locations included
river intersections, streams near parks, and sewage outlets near
residential areas, the hospital, and the municipal wastewater
treatment plant (WWTP). The site near the residential sewage
outlet is designated RWW and the sample near the municipal
wastewater treatment plant is designated WWTP. Sites P1, P2,

and P3 are close to various parks and HWW1 and HWW2 are
close to the hospital sewage outlet. Site RI is located adjacent to
the intersection of a tributary and the mainstream of the river.
Sites UWP and DWP are upstream and downstream of Wetland
Park, respectively. Water samples were collected from each site,
immediately placed on ice, and transported to the laboratory
within 4 h. The samples were then maintained at 4◦C until
investigation.

Bacterial Isolation
A total of 30 water samples were concentrated by vacuum
filtration through 0.22 µm filter membranes. The membranes
were washed and the collected material was suspended in
10 ml of sterile PBS. A volume of 1 ml thereof was added
to 9 ml of Brain Heart Infusion (BHI) broth with polymyxin
B at a final concentration of 4 µg/mL. After incubation
at 37◦C overnight, 100 µl culture samples were streaked
onto MacConkey agar plates. Fifty colonies were picked from
each MacConkey agar plates and subsequently grown in BHI
broth with 4 µg/mL polymyxin B for 18–24 h. Isolates were
screened for the presence of mcr-1, mcr-2, mcr-3, mcr-4, and
mcr-5 by PCR. Next, mcr-positive isolates were purified by
subculturing. The mcr-positive isolates were identified using 16S
rRNA gene sequencing and the BD Phoenix-100 Automated
Microbiology System (BD Diagnostic Systems, Sparks, NV,
United States).

Antimicrobial Resistance Testing and
Detection of mcr-Positive Strains
Genotype
The minimum inhibitory concentration (MIC) of colistin
was determined by broth microdilution. The antimicrobial
susceptibility was interpreted according to the guidelines of
the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) version 6.0 (EUCAST, 2017). Fourteen
antimicrobial agents were tested: ampicillin (AMP, 10 µg),
amoxicillin/clavulanic acid (AMC, 20/10 µg), cefotaxime
(CTX, 30 µg), ceftriaxone (CRO, 30 µg), ceftazidime
(CAZ, 30 µg), cefoxitin (FOX, 30 µg), imipenem (IPM,
10 µg), ertapenem (ETP, 10 µg), aztreonam (ATM,
30 µg), ciprofloxacin (CIP, 5 µg), fosfomycin (FOS,
50 µg), tetracycline (TE, 30 µg), amikacin (AK, 30 µg)
and trimethoprim/sulfamethoxazole (SXT, 1.25/23.75 µg).
Antimicrobial susceptibility was determined by the agar
disk diffusion method. Isolates were classified as susceptible,
intermediate, or resistant using the breakpoints specified by the
Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2016).
Escherichia coli ATCC 25922 was used as the quality control
strain.

After DNA extraction using the TIANamp bacteria DNA
kit (TIANGEN, China), the isolates were screened for the
presence of 21 antibiotic resistance genes (blaKPC, blaOXA−48,
blaNDM, blaVIM, blaIMP, blaSHV, blaTEM, blaCTX−M−1,
blaCTX−M−9, fosA3, qnrB, qnrS, floR, oqxAB, sul1, sul2,
tetM, tetA, aac(6′)-Ib-cr, rmtA, and rmtB) (Berendonk
et al., 2015; Zheng et al., 2015; Liu et al., 2016), and the
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FIGURE 1 | Study area with sampling sites to explore the antibiotic resistance of bacteria throughout the Funan River. Black dots indicate partial sampling sites for
the detection of colistin resistant bacteria and red stars indicate sampling sites for the ARG determination in river water. (RWW, Residential Wastewater; WWTP,
Municipal Wastewater Treatment Plant; P, Park; HWW, Hospital Wastewater; RI, River Intersection; UWP, Upstream of Wetland Park; DWP, Downstream of Wetland
Park).

primers and PCR conditions used are listed in Table 1.
Negative and positive controls for PCR of each gene were
utilized.

Total DNA Extraction and Detection of
ARGs
To further explore the extent of antibiotic resistance throughout
the Funan River, water samples were collected from 10
locations (Figure 1). Total DNA was extracted using the
Water DNA kit (OMEGA, United States) from the bacteria
sample trapped by 0.22 µm pore filter (2 L samples).
Standard PCR performed as listed in Table 1 was used
to detect 15 ARGs (sul1, sul2, blaCTX−M, blaVIM, blaKPC,
blaNDM, qnrS, aac(6′)-Ib-cr, vanA, mecA, ermB, ermF, tetM,
aph(3′)-IIIa and mcr-1) and the class 1 integron gene (intI1).
Negative and positive controls were used for each set of PCR
primers. PCR amplification reactions were conducted in 20 µl
volumes containing 1× PCR Master Mix (Tsingke, China),
1.0 µl template DNA, and 0.5 µM of each primer. After
amplification, 5 µl samples of the PCR products were loaded

on a 1.0% agarose gel containing GoldView, and separated
electrophoretically in 1 × TAE buffer at 120 V for 20 min and
visualized.

Quantitative Polymerase Chain Reaction
To compare the abundance of ARGs for different sampling
sites, the gene copy numbers of the sul1, aac(6′)-Ib-cr, ermB,
blaCTX−M, and tetM genes were quantified using qPCR assays.
These genes confer resistance to five major classes of antibiotics:
sulphonamides, aminoglycosides, macrolides, β-lactams, and
tetracyclines. The levels of mcr-1 and 16S rRNA genes were also
quantified. To quantitate the amounts of these genes, the levels
were compared to the levels in standard samples prepared from
plasmids containing these specific genes, as described previously
(Chen and Zhang, 2013). The standard samples were diluted to
yield a series of 10-fold concentrations and were subsequently
used to generate qPCR standard curves. The R2 values were
higher than 0.990 for all standard curves. The 20 µl qPCR
mixtures contained 10 µL of SYBR premix Ex TaqTM (TaKaRa,
Dalian, China), 0.5 µM of each forward and reverse primer,
and 1 µl of template DNA. The final volume was adjusted to
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TABLE 1 | Standard primer pairs used in this study.

Target genes Sequence (5′→3′) Amplicon size(bp) Reference

mcr-1 CGGTCAGTCCGTTTGTTC 350 Liu et al., 2016

CTTGGTCGGTCTGTA GGG

mcr-2 TGGTACAGCCCCTTTATT 1617 Xavier et al., 2016

GCTTGAGATTGGGTTATGA

mcr-3 TTGGCACTGTATTTTGCATTT 542 Yin et al., 2017

TTAACGAAATTGGCTGGAACA

mcr-4 ATTGGGATAGTCGCCTTTTT 487 Carattoli et al., 2017

TTACAGCCAGAATCATTATCA

mcr-5 ATGCGGTTGTCTGCATTTATC 1644 Borowiak et al., 2017

TCATTGTGGTTGTCCTTTTCTG

blaKPC ATGTCACTGTATCGCCGTC 902 Zheng et al., 2015

TTACTGCCCGTTGACGCC

blaOXA−48 TTGGTGGCATCGATTATCGG 744 Zheng et al., 2015

GAGCACTTCTTTTGTGATGGC

blaNDM ATGGAATTGCCCAATATTATGCAC 813 Zheng et al., 2015

TCAGCGCAGCTTGTCGGC

blaVIM TTTGGTCGCATATCGCAACG 500 Zheng et al., 2015

CCATTCAGCCAGATCGGCAT

blaIMP GTTTATGTTCATACWTCG 432 Zheng et al., 2015

GGTTTAAYAAAACAACCAC

blaSHV ATTTGTCGCTTCTTTACTCGC 861 Zheng et al., 2015

TTTATGGCGTTACCTTTGACC

blaTEM ATGAGTATTCAACATTTCCGTG 861 Zheng et al., 2015

TTACCAATGCTTAATCAGTGAG

blaCTX−M TTTGCGATGTGCAGTACCAGTAA 759 Zheng et al., 2015

CGATATCGTTGGTGGTGCCATA

blaCTX−M−1 AAAAATCACTGCGCCAGTTC 415 Zheng et al., 2015

AGCTTATTCATCGCCACGTT

blaCTX−M−9 CAAAGAGAGTGCAACGGATG 205 Zheng et al., 2015

ATTGGAAAGCGTTCATCACC

fosA3 GCGTCAAGCCTGGCATTT 282 Hou et al., 2012

GCCGTCAGGGTCGAGAAA

qnrB GATCGTGAAAGCCAGAAAGG 469 Wang et al., 2017

ACGATGCCTGGTAGTTGTCC

qnrS ACGACATTCGTCAACTGCAA 540 Wang et al., 2017

TAAATTGGCACCCTGTAGGC

oqxAB CCCTGGACCGCACATAAAG 1140 Wang et al., 2017

AAAGAACAAGATTCACCGCAAC

sul1 ATGGTGACGGTGTTCGGCATTCTG 840 Hur et al., 2011

CTAGGCATGATCTAACCCTCGGTC

sul2 GAATAAATCGCTCATCATTTTCGG 810 Hur et al., 2011

CGAATTCTTGCGGTTTCTTTCAGC

tetM AGTGGAGCGATTACAGAA 158 Adefisoye and Okoh, 2016

CATATGTCCTGGCGTGTCTA

tetA GCTACATCCTGCTTGCCTTC 210 Adefisoye and Okoh, 2016

CATAGATCGCCGTGAAGAGG

aac(6′)-Ib-cr TTGCGATGCTCTATGAGTGGCTA 482 Eftekhar and Seyedpour, 2015

CTCGAATGCCTGGCGTGTTT

rmtA CTAGCGTCCATCCTTTCCTC 635 Wang et al., 2017

TTGCTTCCATGCCCTTGCC

rmtB GCTTTCTGCGGGCGATGTAA 173 Wang et al., 2017

ATGCAATGCCGCGCTCGTAT

(Continued)
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TABLE 1 | Continued

Target genes Sequence (5′→3′) Amplicon size(bp) Reference

floR GTCGAGAAATCCCATGAGTTCA 1645 Cloeckaert et al., 2000

CAGACAGGATACCGACATTCAC

intI1 GGGTCAAGGATCTGGATTTCG 484 Mazel et al., 2000

ACATGCGTGTAAATCATCGTCG

vanA AATACTGTTTGGGGGTTGCTC 734 Kafil and Asgharzadeh, 2014

TTTTTCCGGCTCGACTTCCT

mecA TGGTATGTGGAAGTTAGATTGGGAT 155 Paterson et al., 2012

CTAATCTCATATGTGTTCCTGTATTGGC

ermB GATACCGTTTACGAAATTGG 364 Zhang et al., 2016

GAATCGAGACTTGAGTGTGC

ermF CGACACAGCTTTGGTTGAAC 309 Zhang et al., 2016

GGACCTACCTCATAGACAAG

aph(3′)-IIIa GCC GAT GTG GAT TGC GAA AA 269 Udo and Dashti, 2000

GCT TGA TCC CCA GTA AGT CA

20 µl by addition of DNase-free water. The IQTM5 real-time
PCR system was employed for amplification and quantification,
using the following protocol: 30 s at 95◦C, 40 cycles of 5 s
at 95◦C, 30 s at the annealing temperature, and extension for
another 30 s at 72◦C. For detection, simultaneous fluorescence
signal was scanned at 72◦C, followed by a melt curve stage with
temperature ramping from 65 to 95◦C. Details of the qPCR
primers of the target genes and the annealing temperatures are
given in Table 2. The method design was adopted from prior
research (Thornton and Basu, 2011). The copy numbers of the
selected ARGs were normalized against the 16S rRNA gene
copy number. Therefore, the copy number unit is described as
copies/16S.

Statistical Analysis
Statistical analysis was performed using SPSS 17.0 (IBM,
United States). One-Way ANOVA was employed to analyze

the results and values of P < 0.05 were considered statistically
significant.

RESULTS AND DISCUSSION

The Prevalence of mcr-Positive Isolates
in the Funan River
The screening of 1500 isolates for mcr yielded a total of 24 mcr-
positive isolates. They included 18 mcr-1 positive isolates (17
Escherichia coli and 1 Enterobacter cloacae) and 6 mcr-3 positive
isolates (2 Aeromonas veronii and 4 Aeromonas hydrophila).
mcr-2, mcr-4, or mcr-5 were not observed in any of the isolates.

Many reports have described the presence in mcr-1 in
animal- and human- derived Enterobacteriaceae isolates isolated
worldwide (Du et al., 2016; Liu et al., 2016; Malhotra-Kumar et al.,
2016; Shen et al., 2016), but only two previous studies identified
mcr-1 in waterborne Enterobacteriaceae. One study reported

TABLE 2 | Quantitative polymerase chain reaction primer pairs used in this study.

Target genes Sequence (5′→3′) Amplicon size(bp) Annealing temperatures (◦C) Reference

sul1 CACCGGAAACATCGCTGCA 158 60 Luo et al., 2010

AAGTTCCGCCGCAAGGCT

aac(6′)-Ib-cr GTTTCTTCTTCCCACCATCC 103 60 Yang et al., 2018

AGTCCGTCACTCCATACATTG

ermB CACCGAACACTAGGGTTGC 129 55 This study

TGTGGTATGGCGGGTAAGT

blaCTX−M CAGATTCGGTTCGCTTTCAC 103 55 Yang et al., 2018

GCAAATACTTTATCGTGCTGATG

mcr-1 CATCGCGGACAATCTCGG 116 56 Yang et al., 2017

AAATCAACACAGGCTTTAGCAC

tetM TTCAGGTTTACTCGGTTCA 106 55 This study

GAAGTTAAATAGTGTTCTTGGAG

16S rRNA CGGTGAATACGTTCYCGG 128 55 Suzuki et al., 2000

GGWTACCTTGTTACGACTT
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detection of the mcr-1 gene in 1 out of 74 Enterobacteriaceae
isolated from 21 rivers and lakes in Switzerland that produced
extended spectrum β-lactamases (ESBLs) (Zurfuh et al., 2016). In
a separate study, similar to our results, Zhou et al. (2017) isolated
23 mcr-1-positive isolates from environmental water sources
in Hangzhou, indicating that mcr-1-carrying Enterobacteriaceae
may be common in lakes and rivers in China. Data addressing
the prevalence of mcr-3 is limited. Recently, a novel mcr variant,
mcr-3, was first discovered on an IncI2 plasmid from a strain
of E. coli isolated from a pig in China (Yin et al., 2017). Since
then, mcr-3-positive strains have been identified in humans and
food (Ling et al., 2017; Liu L. et al., 2017). Worryingly, mcr-3
has been detected on the chromosome of Aeromonas veronii, and
these chromosomally encoded mcr-3 determinants can become
plasmid-bound and transferable (Cabello et al., 2017; Ling et al.,
2017). Recently, Shen et al. (2018a) presented evidence that mcr
determinants originated from aquatic environments, including
mcr-3 harboring Aeromonas spp. Because Aeromonas species are
prevalent in aquatic environments, the occurrence of colistin
resistant isolates in urban rivers is of great concern as these

strains may contribute to the potential dissemination of mcr
determinants.

Antimicrobial Resistance Phenotypes
and Genotypes of mcr-1 and
mcr-3-Positive Strains
As shown in Table 3, we next analyzed the antimicrobial
resistance phenotypes and genotypes of the isolated mcr-1 and
mcr-3 positive strains, and found 21 (87.5%) multidrug resistance
isolates. The antimicrobial resistance testing showed that all
isolates were resistant to colistin (MIC ≥ 4 µg/mL). Of the other
antimicrobials tested, the most frequent resistance was to CTX
(75%, 18 isolates), followed by CAZ (50%, 12 isolates), AMP
(50%, 12 isolates), CRO (45.8%, 11 isolates), ATM (45.8%, 11
isolates), SXT (41.7%, 10 isolates), FOS (29.2%, 7 isolates), TE
(25%, 6 isolates), AK (20.8%, 5 isolates), CIP (20.8%, 5 isolates),
IPM (16.7%, 4 isolates), FOX (12.5%, 3 isolates), AMC (12.5%, 3
isolates), and ETP (4.2%, 1 isolate). The high occurrence of ESBL
producers is worrisome, and corresponds to Zurfluh et al. (2013)

TABLE 3 | The antimicrobial resistance genotypes, phenotypes and MIC values of colistin of mcr-1 and mcr-3 positive strains.

Isolates Species Antibiotic resistant genes Antimicrobial resistance
phenotypesa

MIC values of colistin (µg/mL)

E22 Escherichia coli mcr-1 CTX, CAZ, AMP, ATM 16

E23 Escherichia coli mcr-1 CTX, CAZ 16

E24 Escherichia coli mcr-1 CTX, CAZ 16

E25 Escherichia coli mcr-1 CTX, CAZ, ATM 16

E26 Escherichia coli mcr-1 CTX, CAZ, ATM, AK 16

E27 Escherichia coli mcr-1, sul2 CRO, ATM, SXT 16

E28 Escherichia coli mcr-1 CTX, CRO, CAZ, ATM, AK 16

E29 Escherichia coli mcr-1, blaCTX−M−9, fosA3, qnrS, floR,
oqxAB, sul1, sul2, tetA, aac(6′)-Ib-cr

CTX, CRO, AMP, SXT, CIP 16

E30 Escherichia coli mcr-1, sul1, tetA CRO, FOX, ATM, SXT, FOS, TE 16

E31 Escherichia coli mcr-1, floR, sul2, tetM CTX, CRO, CAZ, SXT 16

E32 Escherichia coli mcr-1, floR, sul2, tetM CTX, CRO, CAZ, SXT 16

E33 Escherichia coli mcr-1, floR, sul2, tetM CTX, CRO, CAZ, SXT 16

E34 Escherichia coli mcr-1, blaTEM, blaCTX−M−9 CTX, CRO, CAZ, AMP 16

E35 Escherichia coli mcr-1, blaTEM, blaCTX−M−9, floR,
oqxAB, sul1, sul2, tetM, tetA,
aac(6′)-Ib-cr, rmtB

CTX, CRO, FOX, AMP, ATM, SXT,
TE, AK, CIP

16

E36 Escherichia coli mcr-1, blaTEM, blaCTX−M−9, fosA3,
oqxAB, sul1, sul2

CTX, CRO, AMP, ATM, SXT, FOS,
CIP

16

E38 Escherichia coli mcr-1, tetM, tetA CTX, CAZ, AMP, ATM, TE 16

E39 Escherichia coli mcr-1, qnrS, tetA CTX, ATM, AMC, TE, FOS, CIP 8

E37 Enterobacter cloacae mcr-1, floR, sul2, rmtA, rmtB CTX, FOX, AMP, AMC, SXT, AK,
IPM

16

A4 Aeromonas veronii mcr-3, blaSHV, sul1 CTX, IPM 4

A19 Aeromonas hydrophila mcr-3, blaTEM, blaCTX−M−9, qnrB, sul1,
sul2, tetA

CTX, CRO, CAZ, AMP, ATM, AMC,
FOS, TE, IPM

16

A48 Aeromonas hydrophila mcr-3, sul1, rmtA, rmtB AMP, FOS 8

A49 Aeromonas hydrophila mcr-3, sul1, sul2, rmtA, rmtB AMP, FOS, AK 8

A52 Aeromonas hydrophila mcr-3, qnrS, floR, sul1, tetA AMP, FOS, TE CIP 4

A54 Aeromonas veronii mcr-3, sul1 AMP, SXT, IPM, ETP 4

aCTX, cefotaxime; CRO, ceftriaxone; CAZ, ceftazidime; FOX, cefoxitin; AMP, ampicillin; ATM, aztreonam; AMC: amoxicillin-clavulanic acid; SXT, trimethoprim-
sulfamethoxazole; FOS, fosfomycin; TE, tetracycline; AK, amikacin; CIP, ciprofloxacin; IPM, imipenem; ETP, ertapenem.
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who found 74 ESBL-producing isolates from 21 (36.2%) of
58 rivers and lakes, and all showed the multidrug resistance
phenotype. In another study, 70% of fluoroquinolone resistant
E. coli isolated from an urban river showed resistance to three or
more classes of antibiotics (Zurfluh et al., 2014). The widespread
distribution of MDR bacteria suggested serious drug-resistant
pollution in river water. In this study, cephalosporin resistant
strains were found most frequently, which may be related to
the extensive use of cephalosporins for clinical and veterinary
purposes. Overall, high usage has led to increased occurrence and
wide distribution of ESBLs in bacteria (Bradford, 2001; Bonnet,
2004).

The mcr-1 and mcr-3 positive isolates were next assayed
for the presence of other ARGs. The blaSHV, blaTEM and
blaCTX−M−9 genes were detected in 1 (4.2%), 4 (16.7%), and 5
(20.8%) isolates, respectively. None of the isolates were positive
for blaKPC, blaOXA−48, blaNDM, blaVIM, blaIMP or blaCTX−M−1.
Fifteen (62.5%) of isolates contain sulphonamide resistance genes
(sul1 in 5 isolates, sul2 in 5 isolates, and sul1/sul2 combined in
5 isolates). Some isolates contained genes encoding tetracycline
resistance, with 20.8% and 29.2% positive for tetM and tetA
genes, respectively. Some isolates contained genes encoding
fluoroquinolone resistance genes, qnrB, qnrS, and oqxAB, which
were detected in 1(4.2%), 3(12.5%), and 3(12.5%) isolates,
respectively. Genes associated with aminoglycoside resistance,
aac(6′)-Ib-cr, rmtA, and rmtB, were amplified in 2 (8.3%), 3
(12.5%), and 4 (16.7%) isolates, respectively. The floR gene
was detected in 7 (29.2%) isolates and the fosA3 gene was
identified in 2 (8.3%) isolates. According to a recent report,
77.3% of mcr-1-positive E. coli (34/44) carried at least 1 ESBL
gene, and several isolates carried 3 or more ESBL genes (Wu
et al., 2018). Furthermore, blaCTX−M−9 was one of the most

prevalent genes among the identified ESBL genes in China (Liu
et al., 2015). Consistent with previous reports, sulphonamides
and tetracycline resistance genes are the most abundant ARGs
in rivers (Yang et al., 2018). We identified two strains (E29 and
E36) that carried mcr-1, fosA3, and blaCTX−M−9 genes from river
samples (Table 3). The mcr-1, fosA3, and ESBLs genes were
previously identified in E. coli isolated from animal and food
samples (Liu X. et al., 2017; Lupo et al., 2018), and the presence
of these multidrug-resistant strains in urban river may present a
serious threat to public health.

Prevalence of Antibiotic Resistance
Genes in the Funan River
In this study, the prevalence of ARGs in water samples was
investigated by sampling various sites along the Funan River.
The sul1, qnrS, tetM, and intI1 genes were detected in samples
from all 10 sampling sites (100%). Additionally, aac(6′)-Ib-cr,
sul2, aph(3′)-IIIa, ermB, and blaCTX−M were detected at high rates
of 90%, 90%, 90%, 80% and 70%, respectively. Many studies have
reported the presence of these genes in aquatic environments
(Hu et al., 2008; D’Costa et al., 2011; van Hoek et al., 2011; Lin
et al., 2015; Makowska et al., 2016). Interestingly, the aph(3′)-
IIIa gene has rarely been reported in river water microorganisms,
but has been reported in clinical specimens (Tuhina et al., 2016).
The detection of the aph(3′)-IIIa gene was high in this study,
suggesting contamination of the Funan River with resistant
bacteria carrying the aph(3′)-IIIa gene.

Genes conferring resistance to the last line of antibiotics,
including mcr-1, blaNDM, blaKPC and vanA genes, were detected
at rates of 30%, 20%, 10%, and 10%, respectively. blaVIM was
not detected at any site. The mcr-1 gene was detected in 30%

FIGURE 2 | Absolute (bars) and 16S rRNA gene-normalized (symbols) levels of ARGs (A: aac(6′)-Ib-cr; B: blaCTX−M; C: ermB; D: mcr-1; E: sul1; F: tetM) in water
samples collected at various sites (1, RWW, Residential wastewater; 2, P1, Park1; 3, P2, Park2; 4, HWW1, Hospital Wastewater1; 5, HWW2, Hospital Wastewater2;
6, P3, Park3; 7, RI, River Intersection; 8, WWTP, Municipal Wastewater Treatment Plant; 9, UWP, Upstream of Wetland Park; 10, DWP, Downstream of Wetland
Park) along the Funan River.
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of samples, suggesting the Funan River could act as a reservoir
for the mcr-1 gene. The blaNDM, blaKPC and vanA genes were
detected near the WWTP (Figure 1). Although mcr-1 is found
frequently in human and animal settings, there is only limited
data for urban rivers (Marathe et al., 2017; Ovejero et al., 2017;
Yang et al., 2017). Similarly, Marathe et al. detected blaNDM and
blaKPC genes in the sediments of an Indian river (Marathe et al.,
2017). Although a blaVIM positive carbapenem-resistant strain
was isolated from a river in Switzerland (Zurfluh et al., 2013),
here is a lack of data on blaVIM in the non-clinical environment.
The vanA gene is associated with vancomycin resistance and
has been found in wastewater biofilms and in drinking water
biofilms in Mainz (Schwartz et al., 2003). Although these genes
have rarely been identified in natural aquatic environments, given
the dangerous infections that can arise from ARB (and which
subsequently create intractable challenges for clinical treatment),
further observation of the prevalence of these genes in aquatic
environments is required.

Abundance of ARGs
Concerning the absolute abundance of ARGs in the Funan River,
ARGs were detected at levels that ranged from 0 to 6.0 log10
GC/mL (Figure 2). The sul1, aac(6′)-Ib-cr, and ermB genes were
the dominant ARGs in the Funan River with mean absolute
abundances of 4.8, 4.1, and 3.4 log10 GC/mL, respectively. The
sul1 gene exhibited the most prominent average abundance in
water samples. Previous studies reported that sul1 is abundant in
numerous water areas, including the Tordera River Basin (Proia
et al., 2016) and the Haihe River (Luo et al., 2010). Although
the mcr-1 gene was not detected in water samples at some sites,
three sites (RWW, HWW1, and HWW2) displayed 2.0-2.7 log10
GC/mL. Notably, the highest detected level of mcr-1 (2.7 log10
GC/mL) was higher than that in previous reports about the Haihe
river (2.6 log10 GC/mL) (Yang et al., 2017). The absence of mcr
in some samples may indicate that no mcr-1 positive strains were
present in the water samples or that the levels of mcr-1 were below
the detection limit. Site RWW is located near the residential
sewage outlet, suggesting the presence of mcr-1 was related to
human activity. Consistently, mcr-1 was detected at HWW1 and
HWW2, adjacent to the hospital sewage outlets, suggesting the
spread of mcr-1 from hospitals to urban river, although colistin
is not used widely in human medicine. The mcr-1 abundance at
RWW (2.7 log10 GC/mL) was slightly higher than that at HWW1
(2.6 log10 GC/mL) and at HWW2 (2.3 log10 GC/mL). Similarly,
the prevalence of mcr-1-positve E. coli from healthy individuals
(0.7–6.2%) is higher than the prevalence for inpatients (0.4–2.9%)
(Shen et al., 2018b). It is striking that mcr is the only gene that
was absent from sites other than RWW and HWW. The reasons
for high rate of fecal carriage of mcr in humans in China may
reflect the rapid emergence of plasmid-encoded mcr-1 within
many MDR E. coli carried by humans and also be related to the
significant diversity and genetic flexibility of MGEs harboring
mcr-1 (Zhong et al., 2018).

At RWW, RI, and WWTP, the absolute abundances of certain
ARGs (sul1, aac(6′)-Ib-cr, and ermB) were significantly higher
than those at other sampling sites (P < 0.05). At P3 and
DWP, the absolute abundances of most ARGs were significantly

lower than the levels detected at the other sites (P < 0.05).
RWW was associated with the highest absolute abundance of
the six ARGs (mcr-1, sul1, aac(6′)-Ib-cr, ermB, blaCTX−M, and
tetM) (Figure 2). Samples near the wastewater treatment plant
(WWTP) and densely populated areas exhibited a relatively
greater content of resistant genes. Wastewater discharge may
contribute to the spread of ARGs into the environment, thereby
affecting the bacterial communities of the receiving river (Marti
et al., 2013; Xu et al., 2015). Our results indicate that human
activities influence the dissemination of resistance genes in the
Funan River. Remarkably, the absolute abundances of most ARGs
were low at the DWP sampling point, located downstream of the
wetland park. This is consistent with a decrease in the ARGs levels
of the effluents from a constructed wetland with a free surface
flow (Liu et al., 2014).

As shown in Figure 2, the relative abundances of each ARG
are only partly correlated with their absolute abundance. That
is, although the absolute abundances of most ARGs at RWW,
RI and WWTP were relatively high, their relative abundances
were comparatively low. These differences may be related to the
differences in the proportion of resistant bacteria to total bacteria
at each site (Tao et al., 2014).

CONCLUSION

This study describes 18 mcr-1-positive strains and 6 mcr-3-
positive strains isolated from the Funan River, of which 87.5%
were found to be MDR. The sul1, sul2, intI1, aac(6′)-Ib-
cr, blaCTX−M, tetM, ermB, qnrS and aph(3′)-IIIa genes were
abundant in the Funan River. Interestingly, the mcr-1, blaKPC,
blaNDM, and vanA genes were detected, although these four
resistance genes have rarely been found in natural river systems.
Notably, the mcr-1 gene was detected at a rate of 30%. Our results
suggest urban activities may increase the prevalence of antibiotic
resistance genes and demonstrate the current presence of drug-
resistance pollution in the Funan River. The processes by which
the dissemination of ARGs occurs in urban rivers should be the
focus of future studies.
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Pathogenic Escherichia coli found in humans and poultry carcasses harbor similar

virulence and resistance genes. The present study aimed to analyze the distribution

of extraintestinal pathogenic E. coli (ExPEC) virulence factors (VF), blaCTX−M groups,

fosA3, and mcr-1 genes in E. coli isolated from commercialized chicken carcasses in

southern Brazil and to evaluate their pathogenic risk. A total of 409 E. coli strains were

isolated and characterized for genes encoding virulence factors described in ExPEC.

Results of antimicrobial susceptibility testing confirmed that the strains were resistant to

β-lactams, fosfomycin, colistin, and others resistance groups. The highest prevalence of

VFs was observed in isolates belonging to the CTX-M groups, especially the CTX-M-2

group, when compared to those in other susceptible strains or strains with different

mechanisms of resistance. Furthermore, ESBL strains were found to be 1.40 times

more likely to contain three to five ExPEC virulence genes than non-ESBL strains. Our

findings revealed the successful conjugation between ESBL-producing E. coli isolated

from chicken carcass and the E. coli recipient strain J53, which suggested that genetic

determinants encoding CTX-M enzymes may have originated from animals and could be

transmitted to humans via food chain. In summary, chicken meat is a potential reservoir

of MDR E. coli strains harboring resistance and virulence genes that could pose serious

risks to human public health.

Keywords: ESBL, multidrug-resistance, phylogenetic groups, CTX-M, fosfomycin

INTRODUCTION

Humans and warm-blooded animals naturally harbor bacteria in their intestines, such as
Escherichia coli, which is usually a non-pathogenic commensal bacterium. However, E. coli could
cause extraintestinal diseases, including urinary tract infection, septicemia and meningitis in
humans or even colibacillosis in poultry, which is attributed to the acquisition of virulence factors
(VFs) (Müller et al., 2016).
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Extraintestinal pathogenic E. coli (ExPEC) strains are
characterized by several VF, including adhesins, invasins,
protectins, and toxins, as well as several uptake systems for
essential nutrients, such as iron (iron-uptake systems) (Johnson
et al., 2008b). Commensal and pathogenic E. coli can be classified
under different phylogenetic groups, since the VF found in each
of the varieties are distributed differently (Clermont et al., 2000).
Most commensal strains belong to phylogenetic group A or B1,
and ExPEC strains, which harbor more VFs than commensal
strains, are assigned to phylogenetic group B2 or D (Tenaillon
et al., 2010; Cyoia et al., 2015).

In addition to VFs, the spread of resistance elements among
human pathogens may be related to the Enterobacteriaceae
family, in which E. coli belongs. Among the Gram-negative
bacteria that are resistant to antibiotics, those that produce
CTX-M-type ESBLs represent a serious public health concern
worldwide (Xie et al., 2016). In particular, most commonly
detected CTX-M groups include CTX-M-1, CTX-M-2, CTX-M-
8, CTX-M-9, and CTXM-25 (Saravanan et al., 2018).

The detection of plasmidial genes that are mainly related to
antimicrobial resistance to fosfomycin and colistin represents
another major health concern (Sato et al., 2013; McGann et al.,
2016). Fosfomycin is used to treat urinary tract infections
(UTI) that are mostly caused by Gram-negative and Gram-
positive bacteria, which are highly prevalent in North America
(Giancola et al., 2017), and have recently received research
attention because of the rapid spread of multidrug-resistance.
This resistance is related to a novel gene called fosA3, which has
been reported in E. coli and Klebsiella pneumonia and is often
detected in blaCTX−M -producing and multidrug-resistant E. coli
both in animals and in clinical isolates (Ho et al., 2013). Colistin
is prescribed for the treatment of UTI and has been associated
with many cases of resistance worldwide. Furthermore, renewed
attention has been paid to the mcr-1 gene because it has been
detected not only in clinical isolates but also in animal, food, and
environmental samples (Fernandes et al., 2016; McGann et al.,
2016; Rapoport et al., 2016; Skov and Monnet, 2016; Zeng et al.,
2016).

Pathogenic E. coli found in humans and poultry carcass
were found to harbor similar virulence and resistance genes
in the plasmids (Stromberg et al., 2017). These findings raise
the possibility that E. coli present in the intestinal tract of
healthy individuals could acquire those genes from E. coli
derived from chicken meat, which could act as a reservoir for
bacteria harboring resistance genes (Manges and Johnson, 2012).
Therefore, present study aimed to analyze the distribution of
ExPEC VFs, blaCTX−M groups, and the fosA3 and mcr-1 genes
in E. coli isolated from chicken carcasses commercialized in
southern Brazil (States of Paraná-PR, Santa Catarina-SC, and Rio
Grande do Sul-RS).

MATERIALS AND METHODS

Bacterial Isolates
Escherichia coli strains were isolated in the Basic and Applied
Bacteriology Laboratory at Londrina State University (Biosafety
level 2) from 98 commercial refrigerated chicken carcass (35

chicken carcasses from PR, 23 chicken carcasses from SC,
and 40 chicken carcasses from RS), sold in southern Brazil
from 2013 to 2014. Each chicken carcass was rinsed into the
sterile packaging with 100mL of Brain Heart Infusion (Himedia
Laboratories Pvt. Ltd., Mumbai, India). After homogenization,
0.1mL of the mixture was smeared onto MacConkey agar
(Neogen Corporation Lansing, Michigan) and Violet Red Bile
Lactose agar (Oxoid Ltd., Basingstoke, Hants, UK) by the pour
plate method. Colonies suspected to be E. coli were confirmed
by biochemical testing using EPM-MILi and Simmons Citrate
agar (PROBAC, Brazil). After biochemical confirmation, one
to five strains were collected from each chicken carcass and
subsequently analyzed for the genotypic characteristics of ExPEC
virulence factors and phenotypic resistance. Only strains that
showed difference in those characteristics were selected for
further analysis.

Antimicrobial Susceptibility Test
Antimicrobial susceptibility testing was performed using
the standard disk diffusion method recommended by the
Clinical and Laboratory Standards Institute (CLSI, 2015). The
following antimicrobial agents were used in the study: 5 µ

g of ciprofloxacin; 10 µg of each of ampicillin, gentamicin,
norfloxacin, and enrofloxacin; 30 µg of each of cefazolin,
cefotaxime, cefoxitin, ceftazidime, tetracycline, nalidixic acid,
and chloramphenicol; 300 µg of nitrofurantoin; 1.25/23.75µg
of trimethoprim-sulfamethoxazole; 200 µg of fosfomycin;
and 20/10 µg of amoxicillin-clavulanic acid (Oxoid Ltd.,
Basingstoke, Hants, UK). Strains resistant to third-generation
cephalosporins were confirmed for ESBL production by
double-disk diffusion testing between amoxicillin/clavulanate
and cefotaxime or ceftazidime (Jacoby and Han, 1996) or by
conducting a combination disc test using cefotaxime, cefotaxime
+ clavulanic acid (Becton Dickinson, Sparks, MD), ceftazidime,
and ceftazidime + clavulanic acid (Becton Dickinson, Sparks,
MD), following the CLSI recommendations. The positive
strains in the phenotypic tests to ESBL production were
screened for ESBL genes, and the strains resistant to fosfomycin
were screened for the fosA3 gene. The E. coli isolate ATCC
25922 was used as a quality control during antimicrobial
susceptibility testing. Results were interpreted based on the CLSI
criteria.

Detection of Antimicrobial Resistance
Genes
ESBL-producing E. coli was characterized for ESBL genes
encoding CTX-M (groups 1, 2, 8, 9, and 25), TEM, and SHV
by Polymerase Chain Reaction (PCR) (Arlet and Philippon,
1991; Bedenić et al., 2001; Woodford et al., 2006). The presence
of acquired fosfomycin resistance genes such as fosA3 was
determined by PCR using specific primer sets (Sato et al.,
2013). The strains were additionally tested for the presence of
colistin resistance gene mcr-1 by PCR (Liu et al., 2016). PCR
amplicons were visualized on 2.0% agarose gels stained with
GelRed (Biotium, Hayward, CA, USA). After gel electrophoresis,
the images were captured using Image Capture Systems
(LPixImageHE).
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Conjugation Experiments
To verify whether the plasmid harboring blaCTX−M resistance
genes could be transferred between E. coli strains, the horizontal-
transfer efficiencies of the blaCTX−M genes were assessed by
performing conjugation experiments between three selected
strains harboring blaCTX−M resistance genes. Volumes of
cultures of each donor (ESBL-producing E. coli isolated from
chicken carcass) and azide-resistant E. coli J53, recipient
strain grown in Luria-Bertani broth (Difco Laboratories,
Detroit, Mich) were mixed and incubated for 18–24 h at
37◦C. Transconjugants were then selected on MacConkey agar
containing 2 µg/mL cefotaxime (Sigma Chemical Co., St. Louis,
MO) and 100 µg/mL sodium azide (Sigma Chemical Co., St.
Louis, MO) and subsequently used for phylogenetic analysis
and testing for the presence of blaCTX−M genes (Xie et al.,
2016).

Phylogenetic Classification
E. coli strains were assigned to phylogenetic groups (A,
B1, B2, or D) by PCR (Clermont et al., 2000). Each
PCR reaction contained 1.25U of Taq DNA polymerase
(Life technologies, Rockville, MD) in 1× PCR buffer
(Life Technologies, Rockville, MD), 0.2mM each dNTP,
2.5mM MgCl2, and 1 µM each primer. PCR amplicons
were visualized on 2.0% agarose gels stained with GelRed
(Biotium, Hayward, CA, USA). After gel electrophoresis,
the images were captured using Image Capture Systems
(LPixImageHE).

Virulence Genes
We surveyed five VF genes that are normally studied in
ExPEC strains. The selected genes included: iutA (aerobactin
siderophore receptor gene), hlyF (putative avian hemolysin),
iss (episomal increased serum survival gene), iroN (salmochelin
siderophore receptor gene), and ompT (episomal outer
membrane protease gene) (Johnson et al., 2008a). Each
PCR reaction contained 1.25U of Taq DNA polymerase
(Life Technologies, Rockville, MD) in 1× PCR buffer
(Life Technologies, Rockville, MD), 0.2mM each dNTP,
2.5mM MgCl2, and 1 µM each primer. PCR amplicons
were visualized on 2.0% agarose gels stained with GelRed
(Biotium, Hayward, CA, USA). After gel electrophoresis,
the images were captured using Image Capture Systems
(LPixImageHE).

Statistical Analysis
Frequencies of ExPEC virulence genes in ESBL-producing
and non-ESBL-producing strains were compared by Fisher’s
exact test and Pearson’s Chi-square test. The risk of ESBL-
producing E. coli harboring more ExPEC genes than non-
ESBL-producing E. coli at 95% confidence interval (95%
CI) was determined by calculating the relative risk (RR).
Statistically significant differences were considered at p <

0.05. The test was performed using the statistical software R
version 3.5.1.

RESULTS

Antimicrobial Resistance of E. coli From
Poultry Carcasses
A total of 409 E. coli isolates from chicken carcasses from
southern Brazil were tested. Among these, 121, 135, and 153 were
isolated from carcasses from the PR, SC, and RS states. Results
of the antimicrobial susceptibility test indicated that strains from
chicken carcasses showed a high frequency of antimicrobial
resistance, in total 66% of the isolates were resistant to antibiotics.
We identified multidrug-resistant E. coli strains from chicken
carcasses from PR, SC and RS (82, 53, and 80%, respectively).
The most common antimicrobial agents for which strains were
found to be resistant included tetracycline (68.77%), nalidixic
acid (67.61%), and ampicillin (68.77%). The ESBL phenotype
was confirmed for 119 isolates (∼32% of PR, 31% of SC,
and 35% of RS) of the 409 strains isolated from commercial
refrigerated chicken carcasses, which represents 29.1% of all
isolates. Furthermore, ESBL-producing E. coli were found to
be more resistant to a higher number of antimicrobials (p <

0.05) compared to non-ESBL-producing E. coli (Figure 1). Of the
409 E. coli strains tested, 99.3% were classified as susceptible to
fosfomycin, whereas none showed intermediate resistance and
three strains (0.70%) showed resistance to fosfomycin.

Detection of Antimicrobial Resistance
Genes
The majority of ESBL-producing E. coli isolates (32.23%) were
collected from the PR state, while the RS state showed the lowest
number of ESBL-producing E. coli isolates (27.45%). Out of the
119 ESBL strains, 97 harbored the blaCTX−M gene, six harbored
CTX-M-1 group, 61 harbored CTX-M-2 group, and 30 harbored
CTX-M-8 group (Table 1 and Figure 2). The CTX-M-9 group
and CTX-M-25 group were not detected in the strains (Figure 2).
The remaining E. coli strains harbored the blaSHV (7.56%) and
blaTEM (10.08%) genes (Figure 2).

Fosfomycin resistance was identified based on phenotypic
tests and subsequently confirmed by PCR. The three fosfomycin-
resistant strains that harbored the fosA3 gene were found to
be blaCTX−M positive (3.33%). PCR analysis of the 119 ESBL-
producing E. coli isolates revealed that 2.50% of the isolates
harbored genes encoding resistance to colistin, corresponding
to one resistant strain from each state (PR, SC, and RS).
Furthermore, these strains were ESBL-producing E. coli, and two
of these strains harbored five ExPEC virulence genes tested in the
present study (iss, iroN, iutA, hlyF, and ompT) (Table 1) and were
assigned to different phylogenetic groups (A, B2, and B1).

Conjugation Experiments
Among the blaCTX−M positive E. coli isolates tested that belonged
to phylogenetic group B1, all strains successfully transferred their
cefotaxime resistance phenotypes to the E. coli recipient strain J53
via conjugation.

Phylogenetic Classification
Phylogenetic analysis revealed that most of the E. coli strains
belonged to group B1 (36.6%), followed by groups A (31.7%), D
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FIGURE 1 | Percentage resistance exhibited by ESBL-producing E. coli strains and non-ESBL-producing E. coli strains isolated from commercial chicken carcasses

in southern Brazil from 2013 to 2014. *p < 0.05 by Pearson’s Chi-square test.

(28.1%), and B2 (3.40%) (Table 2). The determination of E. coli
phylogenetic groups showed that the majority of the 119 ESBL-
producing E. coli belonged to phylogenetic group D (36.06%),
followed by a nearly even distribution of the remaining three
phylogenetic groups, namely, B1 (31.97%), A (27.63%), and B2
(4.22%) (Table 2).

Virulence Genes
ExPEC VFs were identified in the various E. coli strains.
Among the 409 E. coli strains analyzed, the prevalence of
individual ExPEC VF genes ranged from 33.3% (iss, an episomal
increased serum survival gene) to 51.6% (iutA, an aerobactin
siderophore receptor gene). Results indicated that 58% of ESBL-
producing E. coli harbored three to five ExPEC virulence genes
(Table 1).

The highest prevalence of ExPEC VFs was observed in
strains harboring CTX-M resistance relative to other susceptible
strains or even strains with different mechanisms of resistance
(p < 0.01). The relative risk for ESBL strains that did not
contain any ExPEC genes was 0.35 (95 % CI, 0.21–0.57; p <

0.01). On the other hand, the RR for ESBL strains harboring
three or more ExPEC genes was 1.40 (95 % CI, 1.13–1.73; p
< 0.01) (Table 3). For each non-ESBL strain harboring three
or more ExPEC virulence genes (Supplementary Material),
there are 1.40 ESBL strains harboring three or more ExPEC
virulence genes (RR>1). For example, in the PR state, the iutA
gene was present in 54% of the E. coli isolates, and present
in 80% of the blaCTX−M producing E. coli. Similar results
were observed in the other two states for all five virulence
genes.

DISCUSSION

In the present study, we analyzed a total of 409 E. coli strains
from commercial chicken carcasses in Brazil isolated from 2013
to 2014. About 71% of isolates were MDR (Magiorakos et al.,
2012), which demonstrate the high antimicrobial resistance. Our
current findings are consistent with reports from other countries,
which detected MDR in Gram negative bacteria from chicken
meat in Italy (66.9% resistant) and India (79.6% resistant)
(Ghodousi et al., 2015; Shrestha et al., 2017). In the states of
PR and RS, approximately 80% of carcasses were found to be
contaminated with E. coli that were resistant to three or more
antimicrobial groups, whereas the rates of resistance in the state
of SC were slightly lower (53%). The higher rates of antimicrobial
resistance and MDR in strains could be due to environmental
contamination with antibiotic residues in aviculture industries
and/or selective pressure caused by the indiscriminate use of
antimicrobial compounds as a result of poor monitoring by
regulatory bodies (Koga et al., 2015). Importantly, some growth
promoters, such as poultry feeds, have been prohibited in animal
production in several countries, like in Brazil since 1998 (Brasil
Ministério da Agricultura, 2003, 2009).

Almost 30% of the isolates analyzed in the present study were
found to be resistant to β-lactams and thus represent a potential
health concern. The resistant E. coli harbored genes encoding
ESBL enzymes that hydrolyze penicillins, cephalosporins, and
monobactams and were inhibited by treatment with “classical”
β-lactamase inhibitors such as clavulanic acid, sulbactam,
and tazobactam (Bevan et al., 2017; Saravanan et al., 2018).
Notably, ESBL-producing E. coli showed stronger resistance to
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TABLE 1 | Distribution of resistance and virulence genes among 119

ESBL-producing E. coli strains isolated from chicken carcasses commercialized in

Brazil.

β-lactamases, fosA3,

mcr-1 genes

Virulence genes Number of

isolates

Group 1 CTX-M hlyF, ompT, iss, iroN, iutA 1 PR

Group 1 CTX-M iutA 1 RS

Group 1 CTX-M, Group 2

CTX-M

hlyF, ompT, iss, iroN, iutA 1 PR

Group 1 CTX-M, Group 2

CTX-M

hlyF, ompT, iss, iutA 1 SC

Group 1 CTX-M, Group 8

CTX-M, TEM

iutA 1 SC

Group 1 CTX-M, TEM hlyF, ompT, iss, iroN, iutA 1 SC

Group 2 CTX-M hlyF, ompT, iss, iroN, iutA 7 PR 2 SC 3 RS

Group 2 CTX-M ompT, iss, iroN, iutA 1 RS

Group 2 CTX-M hlyF, ompT, iroN, iutA 1 RS

Group 2 CTX-M hlyF, ompT, iss, iroN 2 RS

Group 2 CTX-M hlyF, ompT, iutA 6 PR 2 SC 6 RS

Group 2 CTX-M iss, iutA 1 RS

Group 2 CTX-M hlyF, ompT 1 RS

Group 2 CTX-M iroN 1 RS

Group 2 CTX-M iutA 8 PR 1 SC 3 RS

Group 2 CTX-M None 2 SC 6 RS

Group 2 CTX-M, Group 8

CTX-M

None 1 PR

Group 2 CTX-M, Group 8

CTX-M, SHV, fosA3

hlyF, ompT, iss, iroN, iutA 1 PR

Group 2 CTX-M, mcr-1 hlyF, ompT, iss, iroN, iutA 1 PR

Group 2 CTX-M, TEM hlyF, ompT, iroN, iutA 1 SC

Group 2 CTX-M, TEM hlyF, ompT, iutA 1 SC

Group 2 CTX-M, TEM iutA 1 SC

Group 8 CTX-M hlyF, ompT, iss, iroN, iutA 3 PR 1 SC 3 RS

Group 8 CTX-M hlyF, ompT, iss, iroN 2 SC 3 RS

Group 8 CTX-M hlyF, ompT, iroN, iutA 1 RS

Group 8 CTX-M hlyF, ompT 3 PR

Group 8 CTX-M hlyF 1 RS

Group 8 CTX-M ompT 4 PR

Group 8 CTX-M None 2 RS

Group 8 CTX-M, SHV hlyF, ompT, iss, iroN, iutA 2 PR

Group 8 CTX-M, TEM hlyF, ompT, iss, iroN, iutA 1 SC

Group 8 CTX-M, TEM iutA 1 SC

SHV hlyF, ompT, iss, iroN, iutA 3 RS

SHV ompT, iss, iroN, iutA 1 RS

SHV, fosA3 hlyF, ompT, iss, iroN, iutA 1 PR

SHV, mcr-1 hlyF, ompT, iss, iroN, iutA 1 RS

TEM hlyF, ompT, iss, iutA 1 SC

TEM hlyF, iutA 1 SC

TEM iroN, iutA 1 SC

TEM iutA 1 SC

TEM None 1 SC

NDa, fosA3 None 1 SC

NDa, mcr-1 None 1 SC

NDa hlyF, ompT, iss, iroN, iutA 3 SC

(Continued)

TABLE 1 | Continued

β-lactamases, fosA3,

mcr-1 genes

Virulence genes Number of

isolates

NDa ompT, iss, iroN, iutA 1 SC

NDa hlyF, ompT, iss, iroN 1 SC

NDa iss, iroN, iutA 1 SC

NDa hlyF, ompT, iutA 1 RS

NDa iroN, iutA 1 SC

NDa iutA 5 SC

NDa None 2 SC

NDa, not detected.

others antimicrobials, such as aminoglycosides, quinolones, and
tetracyclines, when compared to non-ESBL-producing E. coli (p
< 0.05), further promoting the health risks due to consumption
of undercookedmeat or the handling or preparation of uncooked
poultry products contaminated with resistant strains (Shrestha
et al., 2017; Saravanan et al., 2018). CTX-M ß-lactamases are
the most widespread type of ESBL and have been identified
since the mid-2000s and were specifically detected in clinical
isolates of E. coli (Bush, 2018). ESBL-producing bacteria have
been increasingly detected in meat from food-producing animals
such as, poultry (Ghodousi et al., 2015; Shrestha et al., 2017;
Poirel et al., 2018). Our findings have raised significant concerns,
since the 30% prevalence of ESBL-producing samples in chicken
carcasses in southern Brazil was higher than those reported
in other regions, as in USA (27%), in India (21%) and in
other samples from Brazil (7%) (Freeman et al., 2009; Datta
et al., 2014; Gonçalves et al., 2016). Among all ESBL strains, we
found 97% classified as blaCTX−M and the majority belonged to
CTX-M-2 group, although the rates varied depending on the
region worldwide. Recent studies reported the presence of the
CTX-M-1 resistance genes in E. coli strains from poultry meat
from Sweden (54–58%), Belgium (62%), Canada (66.2%), Italy
(8.9%), and Japan (34%) (Smet et al., 2010; Denisuik et al., 2013;
Brolund et al., 2014; Ghodousi et al., 2015; Nahar et al., 2018).
However, CTX-M-9 represented the most prevalent group in
reports of ESBL E. coli from Spain (Garrido et al., 2014), Portugal
(Fernandes et al., 2014), Japan (Nahar et al., 2018), and Italy
(Ghodousi et al., 2015).

One important finding from the current study is the successful
conjugation between ESBL-producing E. coli isolated from
chicken carcass to the E. coli recipient strain J53, which suggest
that genetic determinants encoding CTX-M enzymes could be
conjugative. According to Xie et al. (2016), commensal B1 strains
isolated from food-producing animals could act as reservoirs of
ESBL genes, which could be disseminated to human bacteria
via the food chain, thereby raising a significant public health
concern (Leverstein-van Hall et al., 2011; Xie et al., 2016; Poirel
et al., 2018). Furthermore, resistance conferred by ESBLs is
often associated with resistance to other classes of antibiotics,
such as trimethoprim-sulfamethoxazole, aminoglycosides, and
fluoroquinolone (Coque et al., 2008; Zeng and Lin, 2017).
Therefore, the transfer of CTX-M mobile plasmids are likely to
be accompanied by acquisition of other resistance genes. Some
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studies reported that plasmid-mediated fosfomycin resistance is
frequently detected among CTX-M-producing E. coli isolated
from food-producing animals (Sato et al., 2013; Xie et al., 2016).
During sample collection in 2013, fosfomycin was not commonly
used in animal production because of its high cost; nevertheless,
3% of the strains tested positive for the presence of the fosA3 gene.

The use of polymyxins (colistin) in food-producing animals,
especially in feed additives, represents another health concern.
One colistin-resistant E. coli strain harboring five ExPEC
virulence genes was detected in each of the southern Brazilian
states. Several recent studies have also suggested the possibility
of transfer of the mcr-1 gene to humans via the food chain
(Carnevali et al., 2016; Wang et al., 2017). Although the current
results indicated a very low presence of the mcr-1 gene, other
studies indicated that the higher prevalence of colistin resistance
could be attributed to the widespread use of colistin in food
production in recent years (Huang et al., 2017). Thus, the
use of fosfomycin and colistin in food production, such as in
poultry, could lead to a public health concern, considering that
these antimicrobials are used for the treatment of extraintestinal
infections in humans. Therefore, similar to colistin, fosfomycin
should also be banned from animal production in many
countries.

Current evidence indicates that E. coli isolated from chickens
and human ExPECs, harbor highly similar virulence genes,
thereby suggesting a potential risk to cause diseases in humans

FIGURE 2 | Distribution of ESBL genes encoding CTX-Ms, TEM, and SHV

detected in E. coli strains isolated from commercial chicken carcasses in

southern Brazil from 2013 to 2014.

(Manges and Johnson, 2012). A higher number of virulence
factors present in ExPEC indicates a link to pathogenicity
(Pitout, 2012). Furthermore, studies demonstrated an association
between ExPEC virulence factors and phylogenetic groups.
Intestinal E. coli isolates belonging to groups A and B1 harbor
fewer ExPEC virulence genes, and ExPECs strains belonging to
groups B2 and D contain a higher number of virulence genes
(Koga et al., 2015; Müller et al., 2016; Pavlickova et al., 2017).
Consistent with previous studies, most E. coli strains isolated
from chicken carcasses harbor three to five ExPEC virulence
genes (33–51%, varying between the five genes) and belonged
to phylogenetic group B1 (36%), which represents a group of
moremulti-resistant commensal strains (Koga et al., 2015;Müller
et al., 2016). Among these strains, 58% of ESBL-producing E.
coli harbored three to five ExPEC virulence genes. Most of these
strains were associated with phylogenetic group D, unlike non-
ESBL-producing E. coli, which were associated with group B1.
These rates are high compared to 28% of ExPEC isolated from
patients mostly with UTIs in southern Brazil (Cyoia et al., 2015)
or very similar to those reported in APEC strains (Mohamed
et al., 2018), thereby indicating that some ESBL-producing E. coli
strains from poultry meat are potentially pathogenic.

Importantly, blaCTX−M ESBL-producing E. coli strains were
found to harbor a higher number of ExPEC virulence genes
relative to other susceptible strains or even strains that were
resistant to other groups of antimicrobials (p< 0.01). In addition,
ESBL strains are 1.40 times more likely to contain three to five
ExPEC virulence genes than non-ESBL strains, which in turn
increases their risk for pathogenic potential (RR = 1.40, 95%
CI, 1.13–1.73; p < 0.01). The above findings suggest that E. coli

TABLE 3 | Risk factor analysis indicating that ESBL-producing E. coli harbor more

virulence genes than non-ESBL-producing E. coli.

ExPEC virulence

genes

ESBL

n = 119

Non-ESBL

n = 290

Relative risk

(95% CI)

ap-value

None 15 105 0.35 (0.21–0.57) <0.01

1 gene 28 52 1.31 (0.87–1.97) 0.195

2 genes 8 15 1.29 (0.57–2.98) 0.537

3–5 genes 68 118 1.40 (1.13–1.73) <0.01

ap < 0.05 by Fisher’s exact test and Pearson’s Chi-square test.

TABLE 2 | Phylogenetic distribution of 290 non-ESBL-producing E. coli strains and 119 ESBL-producing E. coli strains isolated from chicken carcasses from different

southern Brazilian states.

Phylogenetic groups Southern Brazilian states—N◦ of strains (%)

PR SC RS

(N◦ of strains) Non-ESBL ESBL Total Non-ESBL ESBL Total Non-ESBL ESBL Total

A (130) 24 (29.3) 11 (28.2) 35 (28.9) 39 (40.2) 11 (28.9) 50 (37.0) 34 (30.6) 11 (26.2) 45 (29.4)

B1 (150) 33 (40.2) 12 (30.8) 45 (37.2) 33 (34.0) 13 (34.2) 46 (34.1) 46 (41.4) 13 (30.9) 59 (38.6)

B2 (14) 4 (4.9) 1 (2.6) 5 (4.1) 1 (1.0) 2 (5.3) 3 (2.2) 4 (3.6) 2 (4.8) 6 (3.9)

D (115) 21 (25.6) 15 (38.5) 36 (29.8) 24 (24.7) 12 (31.6) 36 (26.7) 27 (24.3) 16 (38.1) 43 (28.1)

82 (100) 39 (100) 121 (100) 97 (100) 38 (100) 135 (100) 111 (100) 42 (100) 153 (100)
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present in chicken meat, which could act as a reservoir for these
antimicrobial resistance and virulence genes could be a potential
risk for colonization and/or transfer of this resistance to bacteria
in the intestinal tracts of humans.

Despite the importance of identifying ESBL-producing E.
coli belonging to phylogenetic group D, which is commonly
associated with strains found in hospitals and ambulatory
patients (Pietsch et al., 2017), the detection of commensal strains
from group B1 is also notable. Although transferable isolates
belonging to phylogenetic group B1 do not comprise the most
virulent phylogenetic group (such as B2 or D), these strains still
harbor both virulence and resistance genes. Therefore, chicken
meat could serve as an important reservoir for resistance genes
and could be responsible for the spread of MDR bacteria via the
food chain.

CONCLUSION

Our results highlight the high prevalence of ExPEC virulence
genes and antimicrobial resistance genes associated with chicken
meat. Brazil is the largest exporter of chicken meat and the
second largest producer of chicken meat worldwide. These
findings further represent a public health concern, considering
that chicken meat could serve as a reservoir for the spread
of plasmids harboring resistance and virulence genes through
the food chain. Future studies should investigate whether both,
resistance and virulence genes are transferred together to other

bacteria and determine whether they are present in the same
plasmid.
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Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes
nosocomial infections and contributes to substantial morbidity and mortality. We sought
to investigate the antibiotic resistance profile, pathogenic potential and the clonal
relationships between K. pneumoniae (n = 25) isolated from patients and sources at
a tertiary care hospital’s intensive care units (ICUs) in the northern region of Brazil. Most
of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR)
with high-level resistance to β-lactams, aminoglycosides, quinolones, tigecycline, and
colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing
(ESBL), including carbapenemase producers, and carried the blaKPC (100%), blaTEM

(100%), blaSHV variants (n = 24, 96%), blaOXA−1 group (n = 21, 84%) and blaCTX−M−1

group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates,
and the K1 was not detected. The virulence-associated genes found among the 25
isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10,
40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane
porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35
(n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine
the clonal relationship between the different isolated strains. The obtained ERIC-PCR
patterns revealed that the similarity between isolates was above 70%. To determine
the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The
results indicated the presence of high-risk international clones among the isolates. In our
study, the wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes
strongly suggest a necessity for the implementation of effective strategies to prevent
and control the spread of antibiotic resistant infections.
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INTRODUCTION

Klebsiella pneumoniae is a Gram-negative opportunistic
bacterium that causes infections in hospitalized or otherwise
immunocompromised individuals (Gorrie et al., 2017).
Currently, K. pneumoniae is showing a high resistance to a
broad spectrum of drugs including beta-lactam antibiotics,
fluoroquinolones, and aminoglycosides (Fair and Tor, 2014;
Dsouza et al., 2017). This resistance is resulting in a growing
worldwide problem regarding the choice of effective antibiotic
treatment for hospital-acquired infections (Davies and Davies,
2010).

Antibiotics of the β-lactam group are commonly prescribed
worldwide and include penicillins, cephalosporins, monobactams,
and carbapenems (Samaha-Kfoury and Araj, 2003; Ur Rahman
et al., 2018). The production of β-lactamase enzymes by
the presence of β-lactam-insensitive cell wall transpeptidases,
or the active expulsion of β-lactam molecules from Gram-
negative bacteria represent the main indications of β-lactam
antibiotic resistance (Wilke et al., 2005). Carbapenems are the
β-lactams of choice for the treatment of infections caused by
extended-spectrum beta-lactamase (ESBL)-producing bacteria
(Karuniawati et al., 2013; Okoche et al., 2015), such as
K. pneumoniae. These antibiotics are also considered the last resort
for the management of life-threatening health-care-associated
infections (Amjad et al., 2011). Unfortunately, bacterial resistance
to carbapenems has been increased and is well documented
(Paterson and Bonomo, 2005; World Health Organization
[WHO], 2014), and has also been further complicated by the
production ofβ-lactamases, efflux pumps, and mutations that alter
the expression and/or function of porins and penicillin-binding
proteins (PBPs) (Papp-Wallace et al., 2011).

Antimicrobial resistance is commonly related to the spread
of transmissible plasmids and the acquisition of resistance genes
that normally occur by horizontal gene transfer, which may
also carry virulence determinants (Derakhshan et al., 2016). For
pathogen survival, the acquisition of resistance and virulent
traits is necessary (Da Silva and Mendonça, 2012), and some
reports suggest that such may have an essential role in the
pathogenesis of K. pneumoniae infections (Vila et al., 2011).
Capsule, lipopolysaccharide (LPS), fimbriae (types 1 and 3),
and siderophores are virulence factors that contribute to the
pathogenicity of K. pneumoniae. K. pneumoniae strains can
synthesize capsules of any of the serotypes K1 to K78; however,
K1 and K2 can also be associated with increased pathogenicity
(Paczosa and Mecsas, 2016).

Here, we show the antibiotic resistance profile, pathogenic
potential, and clonal relationships among K. pneumoniae isolated
from patients and sources at a tertiary care hospital’s intensive
care units (ICUs) in the northern region of Brazil.

MATERIALS AND METHODS

Bacterial Strains
Twenty-five K. pneumoniae clinical isolates were collected from
patients and devices at a tertiary care hospital’s ICUs in the state

of Tocantins, located in the northern region of Brazil, between
January 2014 and May 2015. All K. pneumoniae were collected
at the bed-side, and then transported to the microbiology
laboratory immediately for inoculation on proper culture media
and preliminary analysis. Thereafter, the bacterial cultures were
sent to the Central Laboratory of Public Health of Tocantins
(LACEN/TO), a reference unit from the Brazilian Ministry of
Health that receives samples for surveillance of antimicrobial
resistance and which is usually located in the capital city of
each federal state of Brazil. Strains were isolated from the
following sources: tracheal aspirate, rectal swab, surgical drain,
wound, catheter tip, cerebrospinal fluid, abscess, urine, and
sputum.

Ethics Statement
In this work, all K. pneumoniae and the anonymous archival
data related patient age, gender, and sample type were obtained
from LACEN/TO (data’s owner). The study was approved by
the Committee of Ethics in Human Research of the Federal
University of São Carlos (no. 1.088.936). Permission to conduct
the present study was obtained from the Health Department
of the State of Tocantins (Secretaria da Sauìde do Estado do
Tocantins – SESAU) and LACEN/TO. Patient consent was not
required, since the data presented in this study do not relate to
any specific person or persons.

Phenotypic Detection of Antibiotic
Resistance and Carbapenemase
Productions
The identification of K. pneumoniae and the evaluation
of their susceptibility profiles were performed using the
VITEK 2 system (bioMérieux, Inc., Hazelwood, MO,
United States) following the Clinical and Laboratory
Standards Institute guidelines (Clinical and Laboratory
Standards Institute [CLSI], 2017). All K. pneumoniae was
tested for their resistance against the following 15 antibiotics:
ampicillin/sulbactam (SAM), piperacillin/tazobactam
(TZP), cefuroxime (CXM), cefoxitin (FOX), ceftazidime
(CAZ), ceftriaxone (CRO), cefepime (FEP), ertapenem
(ERP), imipenem (IMP), meropenem (MEM), amikacin
(AMK), gentamicin (GEN), ciprofloxacin (CIP), tigecycline
(TGC), and colistin (CST). Susceptibility to TGC was
interpreted using breakpoints proposed by the European
Committee on Antimicrobial Susceptibilities Testing
(EUCAST)1.

Determination of the production of carbapenemase was
carried out by modified Hodge test, synergy test, and the
ethylenediaminetetraacetic acid (EDTA) test under the CLSI
guidelines (Clinical and Laboratory Standards Institute [CLSI],
2017) and as described elsewhere (Miriagou et al., 2010;
Nordmann et al., 2011; Okoche et al., 2015).

Multidrug-resistant (MDR) K. pneumoniae isolates were
defined by non-susceptibility to at least one agent in three or
more antibiotic categories (Magiorakos et al., 2012).

1http://www.eucast.org/clinical_breakpoints/
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Genomic DNA Extraction
Genomic DNA was extracted from an overnight culture
using the Wizard R© Genomic DNA Purification Kit (Promega,
Madison, WI, United States). The concentration of the DNA
extract and purity was determined by measuring absorbance
at wavelengths of 260 nm and 280 nm (NanoVue Plus; GE
Healthcare Life Sciences, Marlborough, MA, United States).
The integrity of genomic DNA was tested by way of
electrophoresis.

Detection of Multidrug Resistance Genes
The detection of resistance genes was performed by polymerase
chain reaction (PCR) and their identities confirmed by
sequencing. Isolates were screened by PCR amplification
using specific primers for the detection of ESBL-encoding
genes (blaTEM; blaSHV; blaCTX−M; and blaOXA1,4,and30),
carbapenemases genes (blaKPC, blaVIM, blaIMP, blaNDM , and
blaOXA48), a tetracycline resistance gene (tetB), and a CST
resistance gene (mcr-1). Moreover, efflux pump (AcrAB, mdtK,
and ToIC), and porin-coding (OmpK35 and OmpK36) genes
were also investigated. The specific primers (Exxtend, São Paulo,
Brazil) and the length of expected PCR products are presented in
Table 1. Amplicons were analyzed by gel electrophoresis in 1.5%
agarose and visualized under ultraviolet (UV) light. The forward
primers were used for DNA sequencing.

Serotypes and Virulence-Associated
Genes Detection
Polymerase chain reaction was used to detect the presence
of capsule serotypes (K1 and K2), and virulence-associated
genes. These virulence-associated genes included those encoding
for regulators of mucoid phenotype A (rmpA), type 1 and
type 3 adhesins (fimH-1 and mrkD), enterobactin (entB),
yersiniabactin (YbtS), and aerobactin siderophore system (iutA).
Isolated DNA samples were screened using specific primers
(Exxtend, São Paulo, Brazil) for the detection of virulence
genes (Table 2). The forward primers were used for DNA
sequencing.

Sequence Analysis of Resistance and
Virulence Genes
The PCR products were extracted from agarose gels, using
the Illustra GFX PCR DNA and Gel Band Purification Kit
(GE Healthcare, Chicago, IL, United States), and some of
them were randomly selected for DNA Sanger sequencing
(Macrogen Inc., Korea). The nucleotide sequences of the
corresponding genes of the isolates were submitted to the
GenBank database with accession numbers MK106173 to
MK106187. The sequences were edited with Ugene v1.18.0
(Okonechnikov et al., 2012). Each sequence was compared using
BlastN tools2 with the K. pneumoniae genome as the reference.
Access to genetic heritage was approved by the National
System for the Management of Genetic Heritage (SisGen) (no.
AFF27ED).

2https://blast.ncbi.nlm.nih.gov/

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR)
analysis was performed to evaluate the genetic similarity among
the bacterial isolates used in this study. ERIC-PCR reactions were
executed as previously described by Versalovic et al. (1994), using
the primers ERIC1R (5′-ATGTAAGCTCCTGGGGATTCAC-
3′) and ERIC2 (5′-AAGTAAGTGACTGGGGTGAGCG-3′). All
amplifications were carried out in a total volume of 50
µL, using the enzyme TaKaRa Ex Taq R© DNA Polymerase
(Takara Bio, Kusatsu, Japan), while standardizing the amount
of 100 ng of DNA template for each isolate. The amplified
products were separated by 1.5% agarose gel electrophoresis
and stained with ethidium bromide using UV radiation for
visualization of the bands. The band profile analysis was
performed using the BioNumerics program version 5.1 (Applied
Maths, Keistraat, Belgium) for construction of the similarity
dendrogram by the unweighted pair group mean method, Dice’s
similarity coefficient, and 1% band position tolerance. Only
bands representing amplicons between 300 bp and 3,000 bp
were considered for this analysis. The ERIC-PCR assays were
performed in triplicate.

MLST
Ten isolates belonging to the main clusters of the dendrogram
obtained by ERIC-PCR were selected for multilocus sequence
typing (MLST). Information on the methodology used, including
the primers and PCR reaction conditions, is available in the
MLST database for K. pneumoniae3. The alleles and sequence
types (STs) of each isolate studied by MLST were determined
using the MLST database platform for K. pneumoniae.

The determination of the clonal and epidemiological
relationships and the formation of clonal complexes (CCs), were
completed by analyzing a genetic similarity diagram constructed
with the aid of the eBURSTv3 program (eBURSTv3 has been
developed and is hosted at The Department of Infectious Disease
Epidemiology Imperial College London) (Feil et al., 2004).

Statistical Analysis
The statistical analysis was performed using Fisher’s exact test
(p ≤ 0.05).

RESULTS

Antibiotic Resistance Patterns
In the present study, a total of 25 K. pneumoniae strains were
isolated from samples collected from ICUs patients and devices
of a tertiary hospital located in the northern region of Brazil.
Most K. pneumoniae isolates were obtained from a rectal swab
(56%; n = 14), followed by tracheal aspirate (16%, n = 4), urine
(4%, n = 1), cerebrospinal fluid (4%, n = 1), wound (4%, n = 1),
sputum (4%, n = 1), abscess (4%, n = 1), surgical drain (4%, n = 1),
and catheter tip (4%, n = 1). A statistical difference was found

3http://www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html
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TABLE 1 | Sequences of primes used for detection of resistance genes and outer membrane porins.

Resistance targeted Sequence (5’–3’), F/R Tm (◦C) Amplicon size (bp) Reference

blaKPC CGTCTAGTTCTGCTGTCTTG
CTTGTCATCCTTGTTAGGCG

61,3 797 Poirel et al., 2011

blaTEM TGCGGTATTATCCCGTGTTG
TCGTCGTTTGGTATGGCTTC

63 296 Xiong et al., 2007

blaCTX−M−1group, (including
blaCTX−M−1,3, 10, 11and12)

ACAGCGATAACGTGGCGATG
TCGCCCAATGCTTTACCCAG

64 216 Xiong et al., 2004

blaSHVvariants AGCCGCTTGAGCAAATTAAAC
ATCCCGCAGATAAATCACCAC

55,6 712 Dallenne et al., 2010

blaOXA−1,4and30 GGCACCAGATTCAACTTTCAAG
GACCCCAAGTTTCCTGTAAGTG

63 563 Dallenne et al., 2010

blaOXA−48 GCGTGGTTAAGGATGAACAC
CATCAAGTTCAACCCAACCG

55 438 Poirel et al., 2011

blaIMP CTACCGCAGCAGAGTCTTTGC
ACAACCAGTTTTGCCTTACC

55 587 Martins et al., 2007

blaVIM AAAGTTATGCCGCACTCACC
TGCAACTTCATGTTATGCCG

55 865 Yan et al., 2001

blaNDM GCAGCTTGTCGGCCATGCGGGC
GGTCGCGAAGCTGAGCACCGCAT

60 782 Doyle et al., 2012

gyrA TACCGTCATAGTTATCCACGA
GTACTTTACGCCATGAACGT

61,3 387 Wiuff et al., 2000

tetB CAGTGCTGTTGTTGTCATTAA
GCTTGGAATACTGAGTGTAA

59,7 571 Call et al., 2003

mcr-1 CGGTCAGTCCGTTTGTTC
CTTGGTCGGTCTGTAGGG

51,6 309 Liu et al., 2015

AcrAB ATCAGCGGCCGGATTGGTAAA
CGGGTTCGGGAAAATAGCGCG

58 312 Wasfi et al., 2016

TolC ATCAGCAACCCCGATCTGCGT
CCGGTGACTTGACGCAGTCCT

61 525 Wasfi et al., 2016

mdtK GCGCTTAACTTCAGCTCA
GATGATAAATCCACACCAGAA

52 453 Wasfi et al., 2016

OmpK35 CTCCAGCTCTAACCGTAGCG
GGTCTGTACGTAGCCGATGG

58 241 Wasfi et al., 2016

OmpK36 GAAATTTATAACAAAGACGGC
GACGTTACGTCGTATACTACG

48 305 Wasfi et al., 2016

TABLE 2 | Sequences of primers used for detection of virulence genes.

Gene Primer sequence (5’–3’), F/R Amplicon size (bp) Tm (◦C) Reference

rmpA ACTGGGCTACCTCTGCTTCA
CTTGCATGAGCCATCTTTCA

535 54 Siu et al., 2011

fimH-1 TGCTGCTGGGCTGGTCGATG
GGGAGGGTGACGGTGACATC

550 61 Schembri et al., 2005

mrkD CCACCAACTATTCCCTCGAA
ATGGAACCCACATCGACATT

226 54 El Fertas-Aissani et al., 2013

iutA GGGAAAGGCTTCTCTGCCAT
TTATTCGCCACCACGCTCTT

920 56 Compain et al., 2014

entB CTGCTGGGAAAAGCGATTGTC
AAGGCGACTCAGGAGTGGCTT

385 57 Wasfi et al., 2016

ybtS GACGGAAACAGCACGGTAAA
GAGCATAATAAGGCGAAAGA

242 52 Compain et al., 2014

K1 GGTGCTCTTTACATCATTGC
GCAATGGCCATTTGCGTTAG

1283 47 Fang et al., 2007

K2 GGATTATGACAGCCTCTCCT
CGACTTGGTCCCAACAGTTT

908 45 Fang et al., 2007
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only between the rectal swab and tracheal aspirate for isolates
with resistance to the antibiotic TGC (Supplementary Table S1).
Patients ages ranged from 1 day to 75 years (median age: 39 years
old), and no significant differences were found regarding age
group or gender and anti-microbial resistance. K. pneumoniae
strains tested were resistant to all β-lactams (SAM, TZP, CXM-
S, CXM, FOX, CAZ, CRO, FEP, ETP, IPM, MEM). These isolates
also showed different degrees of resistance to other antibiotics
like GEN (80%, n = 20), CIP (64%, n = 16), TGC (52%,
n = 13) CST (36%, n = 9), and AMK (4%, n = 1). Demographic
characteristics of the patients and antibiotic resistance profiles of
the K. pneumoniae isolates to the 16 antibiotics tested are shown
in Table 3.

Detection of Genes Coding for Outer
Membrane Porins and
Multidrug-Resistant Efflux Pumps and
Antimicrobial Susceptibility
The majority of isolates (84%, 21/25) were classified as MDR
with high-level resistance to at least one agent in three or
more antibiotic categories. Among the MDR K. pneumoniae, all
(100%, 21/21) isolates contained both ArcAB and TolC efflux
pumps genes; 86% (18/21) had AcrAB, mdtK, and ToIC genes,
simultaneously; and only 14% (3/21) of isolates did not present
with the mdtK multidrug efflux gene. PCR results showed that
33% (7/21) of isolates lacked both OmpK35 and OmpK36 porin
genes, while 38% (8/21) of isolates lacked the OmpK36 gene.

Of the four isolates (Kp2, Kp67, Kp74, and Kp75) that
did not show MDR profiles, three (Kp2, Kp74, and Kp75)

had the AcrAB, mdtK and ToIC genes but not the OmpK35
and OmpK36 porin genes and one isolate (Kp67) carried both
the AcrAB, and mdtK efflux pumps genes and the OmpK35
and OmpK36 porin genes. The antibiotic resistance profiles
of the K. pneumoniae isolates are presented in Table 4. PCR
amplification results for these genes are shown in Supplementary
Figure S1.

Antibiotic Resistance and
Virulence-Associated Genes Detection
The distributions of the antibiotic resistance gene and virulence
factors are shown in Table 5. All the 25 isolates were positive
for the blaKPC gene. In addition, the K. pneumoniae isolates
carried the blaTEM (100%, n = 25), blaSHV group (96%,
n = 24), blaOXA−1 group (84%, n = 21), and blaCTX−M−1
group (72%, n = 18) ESBL-encoding genes. The blaIMP,
blaOXA−48, blaNDM , blaVIM, mcr-1 and tet(B) genes were
not detected. It was found that a high number of blaSHV
in this study that may be associated with the presence of
blaSHV−1, which it is reported to be universal in K. pneumoniae
infection (Babini and Livermore, 2000). Additional
PCR amplification results are shown in Supplementary
Figures S2, S3.

Polymerase chain reaction analysis demonstrated that
the fimH-1 and mrkD genes, encoding type 1 and type
3 fimbrial adhesins, were present in 88% (22/25) and
96% (24/25) of isolates, respectively. Additionally, the
enterobactin (entB) gene was found in 100% (25/25), the
yersiniabactin (ybtS) gene in 60% (15/25) and the aerobactin
siderophore system (iutA) gene in 40% (10/25) of isolates.

TABLE 3 | Characteristics of the patients and antibiotic resistance profile of the K. pneumoniae.

Characteristic % (n) Antibiotics % (n) profile

Sex Beta lactams

Female 44.0 (11) (SAM, TZP, CXM-S, CXM, FOX, CAZ, 100.0 (25) R

Male 56.0 (14) CRO, FEP, ETP, IPM, MEM)

Age (years)

0–18 28.0 (7) Gentamycin 80.0 (20) R

19–59 36.0 (9) (GEN) 20.0 (5) S

60 or more 36.0 (9)

Sample type Amikacin 4.0 (1) R

Tracheal aspirate 16.0 (4) (AMK) 96.0 (24) S

Rectal swab 56.0 (14)

Drain 4.0 (1) Ciprofloxacin 64.0 (16) R

Wound 4.0 (1) (CIP) 36.0 (9) S

Catheter tip 4.0 (1)

Cerebrospinal fluid 4.0 (1) 52.0 (13) 48.0 (12)

Abscess 4.0 (1) Tigecycline R

Urine 4.0 (1) (TGC) S

Sputum 4.0 (1)

Colistin 36.0 (9) R

(CST) 64.0 (16) S

Antibiotics: SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam), CXM-S (cefuroxime sodium), CXM (cefuroxime axetil), FOX (cefoxitin), CAZ (ceftazidime), CRO
(ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem), GEN (gentamicin), AMK (amikacin), CIP (ciprofloxacin), TGC (tigecycline), CST
(colistin). Profile: R, resistance rate; S, sensitivity rate; n, number.
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TABLE 4 | Antimicrobial resistance of Klebsiella pneumoniae isolates and presence of genes coding for outer membrane porins and efflux pumps.

Isolate no. Antimicrobial resistance MDR Genes coding for porins and efflux pumps

OmpK35 OmpK36 TolC AcrAB mdtK

Kp1 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp2∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp3 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, amk, gen, cip, tgc, cst

+ + − + + +

Kp4 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp6 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + − + + +

Kp7 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp8 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + − + + +

Kp16 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp17 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp21 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + + + + −

Kp25 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc, cst

+ − − + + +

Kp27 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc, cst

+ + − + + +

Kp39 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + − + + +

Kp53 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc, cst

+ − − + + +

Kp60 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp62 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ − − + + +

Kp66 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + − + + −

Kp67∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem

− + + − + +

Kp68 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + + + + +

Kp69 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp70 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + + + + +

Kp73 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ + − + + +

Kp74∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp75∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp77 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + − + + −

Antibiotics. β-lactams: SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam), CXM-S (cefuroxime sodium), CXM (cefuroxime axetil), FOX (cefoxitin), CAZ (ceftazidime),
CRO (ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem); aminoglycosides: GEN (gentamicin) and AMK (amikacin); quinolones: CIP.
(ciprofloxacin); glycylcycline: TGC (tigecycline) and polymyxin E: CST (colistin). MDR (multidrug-resistant) = resistance to at least one agent in three or more antibiotic
categories. ∗ Isolates that did not susceptible to at least three categories of antimicrobials.
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The regulators of the mucoid phenotype A (rmpA) gene
were not detected. Only one isolate (4%), recovered from
swab rectal, presented the capsular serotype K2, and the
capsular K1 was not found (Table 5 and Supplementary
Figure S1).

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Genetic similarity among isolates was evaluated via ERIC-
PCR, and the results indicated the vast majority of the isolates
presented a rate of genetic similarity above 70%, separated into
two main clusters (A and B) (Figure 1). Three isolates (Kp53,
Kp60, and Kp62) showed 100% genetic similarity. Only four
isolates (Kp4, Kp7, Kp17, and Kp67) were genetically more
distant and did not cluster with the other isolates.

MLST
Multilocus sequence typing analysis demonstrated five different
STs among 10 selected isolates (Figure 1). Four isolates (Kp4,
Kp17, Kp60, and Kp65) belonged to ST29, which was the most
predominant group. Furthermore, two isolates (Kp7 and Kp66)
belonged to ST392, one isolate (Kp27) belonged to ST25, and
another one (Kp3) belonged to ST11. The isolate Kp68 presented
a novel ST by way of a new allele combination, which was named
ST3373. It was not possible to analyze the isolate Kp67 by MLST
because it did not show amplification for the tonB gene, even after
several attempts and adjustments in the reaction.

The eBurst analysis showed that most of the STs (STs 11,
25, 29, and 3373) found were distributed in a more massive
clonal complex called CC258 (also called CC258/11). Only the
ST392 group, including isolates Kp7 and Kp66, was present into
a smaller clonal complex, called CC147 (Figure 2).

DISCUSSION

Although K. pneumoniae is considered to be an important
opportunistic pathogen and a frequent cause of hospital-
acquired infections (Struve and Krogfelt, 2004), it is also found
in non-clinical habitats, which include the mucosal surfaces
of humans and animals, and environmental sources such as
water, soil, sewage, and vegetation (Bagley, 1985; Podschun
et al., 2001). Previous studies have shown that K. pneumoniae
strains of environmental origin are similar to those strains of
clinical origin in terms of biochemical patterns, virulence, and
pathogenicity (Podschun et al., 2001; Struve and Krogfelt, 2004);
however, clinical K. pneumoniae are significantly more resistant
to antibiotics as compared with environmental K. pneumoniae
(Matsen et al., 1974).

In our study, the vast majority (84%, 21/25) of K. pneumoniae
isolates showed MDR patterns including a high resistance
rate to the common antibiotics used either alone or in
association with one another to treat K. pneumoniae infections,
such as β-lactams (including carbapenems), aminoglycosides,
quinolones, glycylcycline, and polymyxin E. Although the high
prevalence of MDR K. pneumoniae patterns was similar to other
results in previous studies (Pereira et al., 2013; Paneru, 2015;

Wasfi et al., 2016), this is the first report of a high incidence of
MDR K. pneumoniae in the state of Tocantins, Brazil. There are
many possible contributing factors to the emergence, rise, and
spread of antibiotic resistance, including the new acquisition of
resistance genes; transfer of antibiotic resistance genes; healthcare
exposure; use of indwelling medical devices; limited diagnostic
facilities; lack of effective and reliable surveillance systems;
immunosuppressed states; travel to areas with a high endemicity
of MDR bacteria; lack of new antimicrobial therapeutics; and
inappropriate and excessive antibiotic use in health care, food-
producing animals, and agriculture (Fletcher, 2015; Vila, 2015;
Ayukekbong et al., 2017; Martin and Bachman, 2018; Patolia
et al., 2018). Therefore, many of these risk factors may have
contributed to the high rates of antibiotic resistance found in our
study.

The high rates of resistance to polymyxin E (i.e., CST) and
glycylcycline (i.e., TGC) found in our study deserves particular
attention because these antibiotic categories have typically been
used as the drugs of last resort for the treatment of severe
infections caused by Klebsiella pneumoniae carbapenemase
(KPC)-producing organisms (Pereira et al., 2013). Previous
studies have reported that high levels of CST are frequently
administered in Brazilian ICUs, mainly after bacteria isolates have
become resistant to almost all other available antibiotics (Furtado
et al., 2007; Rossi, 2011). Therefore, the overuse and misuse of
antibiotics can be associated with an increase of the occurrence
of CST resistance found in the current study. The TGC resistance
might be due to the presence of the AcrAB gene, which encodes
the efflux pump AcrAB and is considered to be one of the main
contributors to a reduced susceptibility to TGC in K. pneumoniae
clinical isolates (Bialek-Davenet et al., 2015; Wang et al., 2015;
Elgendy et al., 2018). In this study, we also found that several
TGC-resistant bacteria were isolated from rectal swabs, showing
an important association between pathogen-specific and local
antibiotic resistance patterns.

K. pneumoniae produces two classics trimeric porins, OmpK35
and OmpK36, which allow the passage of small hydrophilic
molecules such as iron, nutrients, and antibiotics through the
outer cell membrane (Tsai et al., 2011). In our study, 28% of all
K. pneumoniae isolates lacked the OmpK36 gene. Our findings
are in agreement with those of other authors who reported
that the absence of OmpK35 or OmpK36 can be responsible
for resistance to carbapenems in K. pneumoniae that produced
ESBL (Hernandez-Alles et al., 1999; Wang et al., 2009; Skurnik
et al., 2010). The loss of both porins OmpK35 and OmpK36
produces an increase in carbapenem, CIP, and chloramphenicol
resistance (Kaczmarek et al., 2006). However, some of our
results are not in complete agreement with the literature, as
the presence of OmpK35 and OmpK36 genes were correlated
with both carbapenem and CIP resistance, in 28% of MDR
K. pneumoniae isolates. In contrast, other studies have suggested
that the presence of both porins (OmpK35 and OmpK36) in MDR
isolates can be associated with the presence of point mutations,
disruption in the protein coding sequence, or promoter region
mutations (Doumith et al., 2009; Wasfi et al., 2016). Further
investigations should be performed to evaluate the presence of
the mutations in bacteria strains isolated in this study.
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FIGURE 1 | Dendrogram representing the genetic relationship among the 25 Klebsiella pneumoniae studied. Clusters were determined using the Unweighted Pair
Group Mean (UPGMA) method and the Dice similarity coefficient. Similarity (%) among patterns is represented by the numbers beside the nodes. For each isolate
typed by MLST, their respective sequence types (STs) are represented. ∗NT, not typed by MLST.

Efflux pump systems have been reported as essential
mechanisms of resistance and cause of MDR in K. pneumoniae
(Mahamoud et al., 2007; Meletis et al., 2012). In K. pneumoniae,
the AcrAB and mdtK complexes are the best-characterized
efflux pumps (Wasfi et al., 2016). Notably, in our research,
the presence of AcrAB-TolC and mdtK genes were strongly
associated with MDR K. pneumoniae patterns. These results are
consistent with other previous studies, that demonstrated that the
multidrug efflux pump system (AcrAB-TolC) in K. pneumoniae
was responsible for resistance to quinolones, tetracyclines, TGC,
and beta-lactams in various MDR isolates (Padilla et al., 2010;
Yuhan et al., 2016).

In K. pneumoniae, the genes fimH and mrkD encode adhesins
of type 1 and type 3 fimbriae, which mediate binding to the
extracellular matrix; promote biofilm development (Hornick
et al., 1992; Struve et al., 2008; Alcántar-Curiel et al., 2013;

Fu et al., 2018); and may play a key role in colonization, invasion
and pathogenicity (Shah et al., 2017). In the current study, the
majority of the MRD K. pneumoniae isolates carried both fimH-1
and mrkD virulence genes. Although studies have reported that
many clinical K. pneumoniae isolates normally express both type
1 and type 3 fimbrial adhesins (Sahly et al., 2008; Struve et al.,
2009; Wasfi et al., 2016), one of the most important steps in the
progression to K. pneumoniae infection is related to its ability to
adhere to host surfaces and demonstrate persistent colonization.
MrkD specifically mediates binding to the extracellular matrix,
facilitating the adherence of K. pneumoniae to damaged tissue
and coating indwelling devices (François et al., 1998; Paczosa
and Mecsas, 2016), such as urinary catheters (Schroll et al.,
2010; Stahlhut et al., 2012) and endotracheal tubes (François
et al., 1998). Type 3 fimbriae were found to play an essential
role in K. pneumoniae biofilm formation (Langstraat et al., 2001;
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FIGURE 2 | eBURST diagram generated with the MLST data, representing the five different sequence types (STs) obtained in this study (indicated by arrows),
distributed in two clonal complexes: CC258, with the STs 11, 29, 25 and the novel ST3373 and CC147, with the ST392. The remaining STs were omitted from the
diagram to facilitate visualization. Each dot represents an ST.

Di Martino et al., 2003; Jagnow and Clegg, 2003; Schroll et al.,
2010) and they can also mediate the binding of K. pneumoniae
to endothelial cells and to epithelial cells of the respiratory
and urinary tracts (Würker et al., 1990; Hornick et al., 1992;
Tarkkanen et al., 1997). Type 1 fimbriae are expressed in 90% of
both clinical and environmental K. pneumoniae isolates (Stahlhut
et al., 2009); however, their precise role in the production of
biofilms remains unclear (Paczosa and Mecsas, 2016). Type 1
fimbriae expressed by K. pneumoniae in particular cause urinary
tract infections (Struve et al., 2008), and may play an important
role in colonization of the intestine and in the delivery, entry, and
persistence of K. pneumoniae in ventilator-associated pneumonia
(Kollef, 2004; Struve et al., 2008; Kalanuria et al., 2014).
Additionally, the presence of mrkD and fimH-1 has previously
been associated with KPC-positive K. pneumoniae (De Cássia
et al., 2014), which is in accordance with our findings. Although
little is known regarding the potential virulence characteristics
of KPC-producing K. pneumonia (Andrade et al., 2014; Liu Y.
et al., 2014), studies have reported that ESBL-producing isolates
of K. pneumoniae are able to produce more fimbrial adhesins,
are more invasive, and are more resistant to the normal human
serum bactericidal effect (Sahly et al., 2004). Therefore, the high
frequency of fimH-1 (88%) and mrkD gene (96%) found in our
results, illustrates the importance of evaluating these virulence
factors.

The capsule is one of the most important virulence factors
(Martin and Bachman, 2018) that protects K. pneumoniae from
lethal serum factors and phagocytosis (Hsu et al., 2011). In K
pneumoniae, capsular serotypes K1 and K2 have been considered
as predominant virulent strains (Fung et al., 2002; Chuang
et al., 2006). Studies using clinical samples have proposed that
virulence factors such as K1, K2, K5, rmpA and the aerobactin
gene, are absent in KPC-producing isolates (Siu et al., 2012).

In agreement with these previous studies, our results showed that
K1 and rmpA were not detected, K2 was present in only one
isolate, K5 was not investigated, and all isolates were identified
as KPC-producing K. pneumoniae. It is important to note that
genes encoding rmpA, K1, or K2 were highly associated with
the hypervirulent (hypermucoviscous) variant of K. pneumoniae
(hvKP) (Fang et al., 2004; Yeh et al., 2007; Arena et al., 2017;
Martin and Bachman, 2018), which causes serious community-
acquired infection, and has emerged as a carbapenem-resistant
hypervirulent K. pneumoniae (CR-HvKP) that can be found in
clinical settings (Shon et al., 2013; Liu Y.M. et al., 2014; Zhang
et al., 2015; Zhang Y. et al., 2016; Zhang R. et al., 2016). Therefore,
this observation suggests that the K. pneumoniae in this study
did not present molecular characteristics of the hypervirulent
(hypermucoviscous) K. pneumoniae.

Siderophores are high-affinity, iron-chelating molecules that
are critical for bacterial growth, replication, and virulence
(Lawlor et al., 2007; Bachman et al., 2015; Holden and Bachman,
2015). The repertoire of siderophores differs among different
strains (Behnsen and Raffatellu, 2016); thus, the role of each
siderophore in virulence potential can vary (Paczosa and
Mecsas, 2016; Lam et al., 2018). Siderophore-associated genes,
such as entB, ybtS and iutA are widely disseminated among
K. pneumonia strains (Compain et al., 2014). However, entB is
only characterized for virulence when it occurs in association
with iutA, ybtS, or kfu (Daehre et al., 2018). In agreement
with previous studies, all K. pneumoniae carried the entB gene
(Lavigne et al., 2013; Fu et al., 2018); however, the presence of
the genes encoding entB in combination with iutA and ybtS was
found in only 40%, while entB with ybtS were found in 60%
of all the strains, respectively. Although K. pneumoniae secretes
a specific combination of siderophores, which can affect tissue
localization, systemic spreading, and host survival, the effect of
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these molecules on the host during infection is not clear (Holden
et al., 2016).

Carbapenems are the antibiotic class of choice for the
treatment of severe infections caused by Enterobacteriaceae-
producing ESBLs (Jacoby and Munoz-Price, 2005). The primary
determinant of carbapenem resistance in K. pneumoniae is
KPC-type carbapenemases (Nordmann et al., 2011), which are
encoded by the gene blaKPC and located mainly on a Tn3-
based transposon, Tn4401 (Bina et al., 2015), demonstrating
exceptional potential to spread throughout the world. In our
findings, the presence of blaKPC in all K. pneumoniae isolates
is in agreement with previous investigations, that suggest the
wide dissemination of KPC-producing isolates in various regions
of Brazil (Castanheira et al., 2012; Pereira et al., 2013; Biberg
et al., 2015; Gonçalves et al., 2017). Besides, PCR analysis
demonstrated that most bacteria (84%) coproduced the blaKPC
and blaOXA−1 group resistance genes. In Brazil, several studies
have reported the co-occurrence of blaKPC with the blaOXA−1
group in K. pneumoniae (Fehlberg et al., 2012; Flores et al., 2016).
Furthermore, blaIMP, blaVIM, blaOXA48, and blaNDM are also
genes that produce carbapenemases in K. pneumoniae (Lascols
et al., 2012; Seibert et al., 2014); however, these genes were not
found in our study.

Some reports have suggested that TEM (Temoniera), SHV
(sulfhydryl variable), and CTX-M (cefotaxime-beta lactamases)
are the primary genetic groups of ESBLs among clinically
critical Gram-negative bacteria (Bradford, 2001; Paterson and
Bonomo, 2005). Additional studies have indicated the presence
of blaCTX−M, blaTEM, and blaSHV genes in K. pneumoniae
(Monteiro et al., 2009; Peirano et al., 2009; Seki et al., 2011;
Fehlberg et al., 2012), which is in accordance with our results.
Globally, the CTX-M type has appeared as the most common
type of ESBL, and its incidence is easily surpassing those of SHV
and TEM ESBLs in most locales (Jorgensen et al., 2010; Bora
et al., 2014). Although our PCR analysis revealed that blaTEM
(100%) was the most frequent gene, followed by blaSHV (96%),
the presence of the blaCTX−M (72%) group was also high, and can
be related to the fluoroquinolone and aminoglycoside resistance
(Pitout et al., 2005) found in this study. The co-production of
blaKPC with blaTEM was detected in all isolates, while blaKPC,
blaOXA, blaTEM, blaSHV, and blaCTX−M were observed in 72%
and blaKPC, blaTEM, blaSHV, and blaCTX−M were found in 68% of
the K. pneumoniae isolates, respectively. Our results suggest that
the high antimicrobial resistance found in this study can also be
associated with the presence of these β-lactams genes.

Our ERIC-PCR results indicated that, although bacteria were
isolated from different patients, the circulating K. pneumoniae
in this hospital have a high genetic relationship to each other.
Ten isolates belonging to the main ERIC-PCR clusters were
analyzed by MLST, and four of them (Kp4, Kp17, Kp60, and
Kp65) belonged to ST29. ST29 has previously been reported in
K. pneumoniae strains from various parts of the world, such
as Europe, Asia, Oceania, and also in Brazil. Uz Zaman et al.
(1994) found ST29 in MDR K. pneumoniae carrying the OXA-
48 gene that showed variations in outer membrane protein 36,
causing an outbreak in a tertiary care hospital in Saudi Arabia.
However, the isolates from our study with ST29 were negative

for OmpK36 and OXA-48 (Tables 4, 5). The ST25 has been
described as being associated with virulent clones, especially
belonging to the capsular serotypes K1 and K2 (McCulloh and
Opal, 2018). In our study, the only isolate that presented the
K2 antigen (Kp27) and various virulence genes also presented
the ST25; thus, our findings corroborate with the prior research
(Table 5). ST11, found in the isolate Kp3, has been described as
widespread in Brazil and is considered an international high-risk
clone (Gonçalves et al., 2017).

eBURST analysis showed that, except for ST392, all other
STs belong to the large clonal complex CC258. Commonly,
K. pneumoniae isolates grouped into CC258 are associated with
the production of carbapenemases and harbor many virulence
genes (Gonçalves et al., 2017), which corroborates with our
results (Table 5). Moreover, the ST392, found in the Kp66 isolate,
is part of CC147, which is a small internationally successful
clonal complex and has been shown to be an important epidemic
clone. Hasan et al. (2014) described a clonal expansion of CC147
by Verone integron-encoded metallo-beta-lactamase (VIM)-
producing K. pneumoniae strains isolated from Greece. ST392
has been reported worldwide as an emergent clone associated
with the spreading KPC-producing K. pneumoniae (Yang et al.,
2013; Di Mento et al., 2018; Garza-Ramos et al., 2018). In
Brazil, ST392 was previously reported in a KPC-2-producing
K. pneumoniae harboring the mcr-1 gene.

CONCLUSION

Our results revealed a worrying situation concerning
K. pneumoniae that is resistant to the drugs commonly
used to treat infections and as well as those used as a last
resort for life-threatening infections in patients admitted to the
ICU. Additionally, our findings demonstrated the presence of
high-risk international clones among isolates. Therefore, our
data should be interpreted as an alert for need for prevention and
control of the MDR K. pneumoniae in hospital settings. A careful
and continued surveillance system that provides epidemiological
and molecular information is important to limit the risk of
infection and the spread of these strains.
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Ying Yang, Mingjing Luo, Haokui Zhou, Carmen Li, Alison Luk, GuoPing Zhao, Kitty Fung
and Margaret Ip*

Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong

Group B Streptococcus (GBS; Streptococcus agalactiae) is a leading cause of sepsis
in neonates and pregnant mothers worldwide. Whereas the hyper-virulent serogroup III
clonal cluster 17 has been associated with neonatal disease and meningitis, serogroup
III ST283 was recently implicated in invasive disease among non-pregnant adults in
Asia. Here, through comparative genome analyses of invasive and non-invasive ST283
strains, we identified a truncated DNA-binding regulator of a two-component system
in a non-invasive strain that was homologous to Bacillus subtilis bceR, encoding the
bceRSAB response regulator, which was conserved among GBS strains. Using isogenic
knockout and complementation mutants of the ST283 strain, we demonstrated that
resistance to bacitracin and the human antimicrobial peptide cathelicidin LL-37 was
reduced in the 1bceR strain with MICs changing from 64 and 256 µg/ml to 0.25 and
64 µg/ml, respectively. Further, the ATP-binding cassette transporter was upregulated
by sub-inhibitory concentrations of bacitracin in the wild-type strain. Upregulation of
dltA in the wild-type strain was also observed and thought to explain the increased
resistance to antimicrobial peptides. DltA, an enzyme involved in D-alanylation during the
synthesis of wall teichoic acids, which mediates reduced antimicrobial susceptibility, was
previously shown to be regulated by the bceR-type regulator in Staphylococcus aureus.
In a murine infection model, we found that the 1bceR mutation significantly reduced
the mortality rate compared to that with the wild-type strain (p < 0.01). Moreover,
this mutant was more susceptible to oxidative stress compared to the wild-type strain
(p < 0.001) and was associated with reduced biofilm formation (p < 0.0001). Based on
2-DGE and mass spectrometry, we showed that downregulation of alkyl hydroperoxide
reductase (AhpC), a Gls24 family stress protein, and alcohol dehydrogenase (Adh) in the
1bceR strain might explain the attenuated virulence and compromised stress response.
Together, we showed for the first time that the bceR regulator in GBS plays an important
role in bacitracin and antimicrobial peptide resistance, virulence, survival under oxidative
stress, and biofilm formation.

Keywords: Group B Streptococcus, infection, two component system, bceR, antimicrobial peptide resistance,
virulence, stress response
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INTRODUCTION

Group B Streptococcus (GBS) is the leading cause of sepsis in
neonates and pregnant mothers worldwide (Russell et al., 2017;
Seale et al., 2017). In particular, serogroup III sequence type
(ST) 17 has been strongly associated with hyper-virulence as
it causes neonatal sepsis and meningitis (D’Urzo et al., 2014;
Seale et al., 2016). Further, life-threatening conditions associated
with toxic shock syndrome and meningitis due to GBS are
being increasingly reported in non-pregnant adults (Ballard et al.,
2016). As in other regions, serotypes I, III, and V are predominant
in invasive diseases of adults caused by GBS in Hong Kong (Skoff
et al., 2009).

Group B Streptococcus serotype III-4/ST283 strains have
been implicated in invasive diseases in non-pregnant adults
in Asia (Wilder et al., 2000; Chan et al., 2002; Ip et al.,
2006, 2016; Kalimuddin et al., 2017). Moreover, this ST283
type has been recently associated with an outbreak of invasive
disease in adults in Singapore, which was suspected to be
caused by the foodborne ingestion of contaminated freshwater
fish as sushi (Kalimuddin et al., 2017). Compared to other
serotypes identified in non-pregnant adults, GBS serotype III-
4 has a significantly higher propensity to cause meningitis
and septicemia, accounting for greater than 50% of all GBS
meningitis cases in non-pregnant adults due to serotype III
during 1993–2012 in Hong Kong (Ip et al., 2016). In Singapore,
an outbreak of this strain type led to invasive diseases associated
with spinal infection and septic arthritis in hundreds of
young adults (Kalimuddin et al., 2017). Further, over the last
15 years, GBS serotype III-4 strains have remained a single
clone of ST283, possessing distinct surface protein genes and
mobile genetic elements and exhibiting indistinguishable PFGE
fingerprints (Ip et al., 2006), suggesting that GBS III-4 strains
might be hyper-virulent and possess special genetic virulent
determinants.

Complete GBS genomes available in a public database
(Genbank1) previously revealed that GBS possesses many
pathogenic islands encoding virulence genes and transcriptional
regulators, upon comparison with other streptococcal species
(Glaser et al., 2002). Moreover, novel regulators involving two
component systems (TCSs) associated with GBS pathogenesis
have also been identified based on genome analyses (Samen et al.,
2006, 2011; Lembo et al., 2010).

Two component systems are key bacterial regulatory systems
involved in the detection and response to environmental
challenges. Multiple TCSs have been reported in GBS, including
covRS (Cumley et al., 2012; Sullivan et al., 2017), CsrRS (Park
et al., 2012), RgfA (Al Safadi et al., 2011), and LtdR (Deng
et al., 2018). These systems have been shown to play specific
roles in colonization, pH tolerance during biofilm formation,
and pathogenesis. In Gram-positive bacteria, many bceR-like
systems have been characterized and comprise part of the
antimicrobial peptide detoxification modules (Cui et al., 2005;
Dintner et al., 2011). The best studied example of a bceR-
like system is the bacitracin resistance module (bceRSAB) of

1https://www.ncbi.nlm.nih.gov/genome/genomes/186; accessed Mar2018

Bacillus subtilis (Ohki et al., 2003; Cui et al., 2005). In B. subtilis,
this system is linked to the ABC transporter, comprising
the BceA ATPase and BceB permease, which serves as a
detoxification pump for the removal of antimicrobial peptides
(AMPs) (Ohki et al., 2003; Cui et al., 2005; Bernard et al.,
2007). AMPs such as cathelicidins have an important role
in mammalian innate immune defense and are produced
by neutrophils, macrophages, and epithelial cells. However,
Gram-positive bacteria have evolved resistance to these AMPs.
Specifically, Staphylococcus aureus was reported to have two
complete TCS/ABC transporter modules termed graRS-vraFG
and braRSAB that either sense the same type of AMP or
different AMPs and interact to mediate resistance (Cui et al.,
2005; Li et al., 2007a; Meehl et al., 2007). In addition, bceRS-
like systems such as apsRS in S. epidermidis and graRS in
S. aureus not only enhance the expression of ABC transporters,
but also lower the overall net negative charge of the cell
envelope (Li et al., 2007b). This aps system decreases the
anionic charge of the bacterial surface, which is specifically
targeted by cationic AMPs (CAMPs), by upregulating the dlt
operon and mprF (Li et al., 2007b). The dlt operon encodes
proteins necessary for the D-alanylation of cell wall teichoic
acid (TA), which through the repulsion of cations, confers
resistance to AMPs (Peschel et al., 1999; Li et al., 2007b). In
addition to AMP resistance, graRS of S. aureus was shown
to play an important role in virulence, resistance to oxidative
stress, and biofilm formation (Shanks et al., 2008; Falord et al.,
2011).

In this work, we identified a key role for the response
regulatory gene bceR in the determination of pathogenic traits in
the clinically invasive GBS ST283 strain, including antimicrobial
and oxidative stress resistance, biofilm formation, and virulence
using a mouse infection model.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Five GBS III-4 clinical strains were originally obtained from
the Prince of Wales Hospital. The GBS strains selected for
the current study were based on an archived collection of
isolates from the Department of Microbiology, Chinese
University of Hong Kong, Prince of Wales Hospital, and
were previously characterized by molecular typing. The
approval of clinical ethics for the laboratory typing of
GBS strains with clinical demographics was obtained as a
retrospective study (CRE-2012.054 from the Joint Chinese
University of Hong Kong-New Territories East Cluster Clinical
Research Ethics Committee) which was published (Ip et al.,
2016).

The GBS strains were grown in Todd–Hewitt broth (THB)
or THY broth (THB supplemented with 5 g/l yeast extract) or
on THY blood agar plates (all from Difco Laboratories, Franklin
Lakes, NJ, United States). Recombinant DNA manipulations were
performed in Escherichia coli strain XL-Blue, grown at 37◦C in
Luria–Bertani (LB) broth (Difco Laboratories, Franklin Lakes, NJ,
United States) or on LB agar plates.
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Whole Genome Sequencing and
Comparative Genomics of Five GBS
Serotype III-4 Strains
Five GBS strains of serotype III subtype 4 and sequence type
ST283 were selected for genome sequencing (CU_GBS_00,
CU_GBS_10, CU_GBS_12, CU_GBS_98, and CU_GBS_08).
These strains were isolated in Hong Kong between 1998 and
2012, from both invasive and non-invasive sites in adult patients.
Genomic DNA from the GBS strains was extracted using
the Wizard R© Genomic DNA Purification Kit according to the
manufacturer’s protocol for Gram-positive bacteria (Qiagen,
Limburg, Netherlands). Genomes were assembled using the
metAMOS pipeline (version 1.5rc3) (Koren et al., 2014). The
draft genomes of CU_GBS_00, CU_GBS_10, and CU_GBS_12
were deposited in the NCBI database under GenBank accession
numbers JYCT00000000, JYCU00000000, and JYCV00000000,
respectively.

The genomes of CU_GBS_98 and CU_GBS_08 were
completed (GenBank Accession numbers: CP010875 and
CP010874, respectively). Draft genome scaffolds were built using
the CONTIGuator software (version 2.7.4) (Galardini et al.,
2011), with reference to a GBS complete genome (NEM316,
accession number: NC_004368). Gaps between adjacent contigs
were defined using Geneious (version R6.1.52) and Mauve
software (using progressive Mauve aligner, version 2.3.1; Darling
et al., 2010). All gaps were successfully closed by PCR, and
the complete genomes of CU_GBS_98 and CU_GBS_08 were
deposited in the NCBI database.

We used MUMmer software (version 3.23; Kurtz et al., 2004)
to align the GBS genomes to the complete reference genome of
CU_GBS_08, to confirm the identified indels and SNPs. We used
a cut-off value (breaklen = 500, distance to extend the genome
alignment for poor scoring regions) to control for aligned regions
considered by MUMmer for SNP and indel identification. The
resulting genome alignments were also manually examined to
identify gains or losses (and truncations) of genes that differed
among GBS strains. Functional effects of the identified indels
(in-frame or frame-shift indels) and SNPs (synonymous/non-
synonymous/stop-codon mutations) were determined according
to gene annotations based on the reference genome.

Generation of 1bceR Strain Using Allelic
Replacement
The PCR products containing (a)∼900 bp of sequence upstream
from the bceR gene and (b) the last 58 bp of the bceR gene to
approximately 900 bp downstream of the gene were amplified
by PCR (Supplementary Table S1). The fragments were digested
by the restriction enzyme EcoRI and ligated with T4 DNA
ligase according to the manufacturer’s protocol (NEB, MA,
United States). The ligated products were amplified by crossover
PCR. The PCR product and the thermosensitive plasmid pJRS233
(Ashbaugh et al., 1998) were digested with restriction enzymes
KpnI and BamHI, ligated, and then transformed into XL1-
Blue competent cells (Agilent, CA, United States). The resulting

2http://www.geneious.com

plasmid was extracted with the Plasmid Maxi Kit (Qiagen,
Limburg, Netherlands) and transformed by electroporation into
CU_GBS_08 (Framson et al., 1997). Transformants were selected
at 30◦C with 1 µg/ml erythromycin on Todd Hewitt agar with
0.5% yeast extract and 5% defibrinated horse blood. Cells with the
plasmid integrated into the chromosome were selected at 37◦C
under erythromycin pressure, and subsequently passaged at the
same temperature in the absence of erythromycin for plasmid
excision.

Construction of Complementation
Plasmid to Rescue 1bceR Phenotypes
A plasmid was constructed to express full-length bceR, and a 500-
bp fragment of the upstream region of this gene was amplified
with primers containing BamHI and Xbal sites and cloned into
the BamHI and Xbal sites of pDL289 (Soualhine et al., 2005)
to create the bceR expression vector pDL289-bceR. Inserts and
reading frames were confirmed by sequencing. pDL289-bceR was
introduced into the 1bceR strain by electroporation.

Minimum Inhibitory Concentration (MIC)
Determination
The MIC of antimicrobial agents was determined by the
microbroth dilution method, according to the Clinical and
Laboratory Standards Institute (CLSI, 2011).

RNA Extraction and Real Time-PCR
The GBS was plated on blood agar plates and incubated at 35◦C
in 5% CO2. Sub-inhibitory bacitracin concentration values were
determined by monitoring cell growth in THB with or without
a range of bacitracin concentrations in 96-well plates. In brief,
overnight cultures of cells were resuspended and adjusted to an
OD600 of 0.8. A 1% bacterial suspension was prepared to obtain
a final inoculum of 1 × 106 to 5 × 106 CFU per well in 200 µl of
THB with or without bacitracin at 1/2, 1/4, and 1/8× the MICs.
The bacterial cells were then incubated at 37◦C, and the OD595
was measured every 30 min using a DTX 880 microplate reader
(Molecular Devices, San Jose, CA, United States) over 24 h. The
minimum concentration that did not alter the bacterial growth
curve was considered the sub-inhibitory concentration for the
described experiment. Experiments were repeated in triplicate.

Briefly, 2 ml of cultures was harvested at mid-log phase and
cells were pelleted by centrifugation at 6000 × g at 4◦C for
10 min. The pellets were resuspended in TE buffer containing
RNA protect (Qiagen, Hilden, Germany) at a ratio of 1:2
TE:RNA protect for RNA stabilization. The bacterial suspension
was then incubated with 400 µl of lysozyme (prepared in TE
buffer) (Sigma, MO, United States) at 37◦C for 30 min. The
lysate was treated with 30 µl of 3 M sodium acetate (Sigma,
MO, United States), 90 µl of 10% SDS (Merck, Gernsheim,
Germany), and 1 ml of Trizol (Life Technologies, Camarillo,
CA, United States). This was followed by a 5-min incubation
at RT before adding 200 µl of chloroform (Merck, Gernsheim,
Germany) for 2 min. All samples were centrifuged at 12,000 × g
at 4◦C for 15 min. The supernatant was transferred to a new
tube with 1 ml of isopropanol (Merck, Gernsheim, Germany)
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for RNA precipitation. After 2 h of incubation at −20◦C, the
tubes were centrifuged at 12,000 × g at 4◦C for 15 min and the
supernatant discarded. An equal volume of cold absolute ethanol
(Merck, Gernsheim Germany) was then added to the tube, which
was centrifuged at 12,000× g at 4◦C for 5 min to obtain the RNA
pellet. The pellet was resuspended in 100 µl of DNase-free and
RNase-free water. Additionally, the sample was treated with 2 U
of DNase I (Promega, Fitchburg, WI, United States) followed by
a 20-min incubation at 37◦C. The RNA quality and quantity were
determine using a Nanodrop 1000 (Life Technologies, Camarillo,
CA, United States), and the sample was then stored in 20-µl
aliquots at−80◦C.

Total RNA was extracted with Trizol (Chomczynski and
Sacchi, 2006) for three independent experiments. Briefly,
200 ng of total RNA for each sample was subjected to
cDNA synthesis using a TURBO DNA-free Kit (Thermo
Fisher, MA, United States) according to the manufacturer’s
protocol. The DNase inactivation reagent was removed by
centrifugation at 10,000 × g for 1.5 min and the supernatant
was aliquoted into fresh tubes for the reverse transcription step
using SuperScript III Reverse Transcriptase (Invitrogen, CA,
United States) according to the manufacturer’s protocol. Real-
time PCR was performed using SYBR Green PCR Master Mix
(Invitrogen, CA, United States) based on the manufacturer’s
instructions, with an ABi 7500 Real-Time PCR Detection System
(Applied Biosystems, MA, United States). Each sample was
run in triplicate with 300 nM of each primer (Supplementary
Table S2) with the following conditions: 95◦C for 10 min, 40
cycles of 95◦C for 30 s, and then 60◦C for 1 min. Melting
curves were generated by a cycle of 95◦C for 1 min and
60◦C for 1 min. The relative quantitation of mRNA expression
was normalized to the constitutive expression of the 16S
rRNA housekeeping gene and calculated by the comparative
11CT method (Livak and Schmittgen, 2001; Wang et al.,
2014).

Mitogenicity and Cytokine Release in
Human Lymphocytes
Bacteria were grown in THB (Oxoid) with 0.2% yeast extract
overnight at 37◦C. The overnight cultures were then diluted
1:100 in fresh THB, grown to mid-log phase, harvested by
centrifugation at 3000 × g for 10 min, and then washed three
times with phosphate-buffered saline (PBS). Pelleted cells were
resuspended in PBS, heat-killed (100◦C, 30 min), and subjected
to centrifugation at 11,000 × g for 20 min at 4◦C to remove
cell debris. The supernatant (GBS cell extract) was aliquoted
and stored at −80◦C until required. Protein concentrations were
determined using protein assay dye reagent concentrate (Bio-
Rad) with bovine serum albumin (Sigma) as a standard.

Peripheral blood mononuclear cells (PBMCs) were isolated
from the whole blood of healthy individuals (obtained from the
Hong Kong Red Cross Blood Transfusion Service) by density
gradient centrifugation using Ficoll-Paque (GE Healthcare). The
human mononuclear cells were washed with PBS, resuspended
in medium (RPMI 1640 with 10% FBS), and seeded at 2 × 105

per ml in a 96-well View Plate (Perkin Elmer). Twenty-four

hours later, GBS cell extract (prepared as described in the
bacterial strains and growth conditions sections) was added at
a final concentration of 25 µg/ml. Phytohemagglutinin (PHA,
10 µg/ml) and culture medium alone were included as controls.
After incubation for 24 h, the proliferation of lymphocytes was
detected using alamarBlue (Life Technologies) according to the
manufacturer’s protocol. Fluorescence emission was measured
using an EnSpire Multimode Plate Reader (Perkin Elmer) at
585 nm with an excitation wavelength of 570 nm. Experiments
were performed in triplicate.

Cytokine Measurements
After stimulating PBMCs, the supernatant from cell cultures was
collected after incubation for 3, 6, 12, and 24 h to measure
cytokine release. Interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and
tumor necrosis factor alpha (TNF-α) were evaluated by ELISA
according to the manufacturer’s instructions (BD Biosciences).
Measurements were performed at an OD of 450 nm (EnSpire
Multimode Plate Readers, PerkinElmer).

Mouse Infection Model
Animal experiments were performed with permission of the
Animal Experimentation Ethics Committee (AEEC) of the
Chinese University of Hong Kong.

The virulence of 1bceR GBS III-4 mutant strains was
compared to that of the wild-type strain CU_GBS_08, the
CU_GBS_12 strain with a natural truncation of bceR, and the
ATCC 12403 Type strain as a control using a mouse model. The
ATCC strain belongs to serogroup III and originated from a case
of fatal septicemia3. The GBS inoculum was prepared by diluting
overnight cultures 1:100 into THB. Cultures were incubated at
35◦C, and then bacteria were harvested by centrifugation at
1200× g for 10 min at 4◦C. The pellet was then washed twice and
resuspended in 5 ml of PBS. GBS was then prepared by diluting
the PBS suspension to 107 CFU/ml. Dilutions were confirmed
by colony counts on blood agar. Six-week-old CD1 mice were
purchased from The Laboratory Animal Services Centre (The
Chinese University of Hong Kong, Hong Kong) and infected
via intraperitoneal injection with 0.1 ml of the GBS inoculum at
107 CFU/ml. The control group was injected with an equivalent
volume of sterile PBS. Each group contained 30 mice. The mice
were monitored for 10 days and those surviving at this time were
sacrificed under anesthesia. The health condition of the mice was
monitored daily and animals showing signs of excess weight loss,
severe pain, and distress were euthanized before the end of study.
The LD50 was calculated, and the Kaplan–Meier survival curve
for infection and control groups with an endpoint of 10 days
was prepared. The study was approved by the University Animal
Experimentation Ethics Committee (AEEC; Reference no.:13-
063-MIS) and conducted at The Laboratory Animal Services
Centre in compliance with International Guiding Principles for
Biomedical Research Involving Animals and The Hong Kong
Code of Practice for Care and Use of Animals for Experimental
Purposes.

3https://www.atcc.org/products/all/12403.aspx
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H2O2 Stress Assay
The GBS strains were plated on blood agar plates and incubated
at 35◦C in 5% CO2. Bacterial cells were suspended in pre-warmed
THB with shaking at 200 rpm overnight. The overnight cultured
bacterial cells were then diluted 1:100 in THB and incubated
at 37◦C with shaking at 200 rpm to achieve an OD600 of 0.8–
1.0. The bacteria were resuspended in THB at a concentration
of 4 × 107 CFU/ml, and then 40 mM H2O2 was added at RT
for 15 min. After treatment, fresh THY broth was added to stop
the reaction and the bacteria were harvested by centrifugation at
4000× g for 15 min. Bacterial viability after H2O2 treatment was
then examined through the culture and enumeration of bacterial
colonies. Serial dilutions of medium were used for CFU counting.
Each experiment was conducted in triplicate.

Determination of Biofilm Biomass by
Crystal Violet Staining and CFU Counting
The GBS strains were plated on blood agar plates and incubated
at 35◦C in 5% CO2. Overnight bacterial cultures were then
suspended in pre-warmed THB overnight and 24-well flat bottom
plates (Costar, Boston, MA, United States) were used to support
biofilm growth. Then, the overnight bacterial cultures were
diluted 1:100 in THB and incubated at 37◦C with shaking at
200 rpm to achieve an OD600 of 0.8–1.0. The bacteria were
harvested by centrifugation at 4000× g for 15 min. After washing
with PBS, the cells were diluted 1:10 with pre-warmed THB, and
500 µl of cells was added to each well of a 24-well plate and
incubated at 37◦C with 5% CO2 overnight without shaking. All
samples were run in triplicate.

Biofilm biomass was quantified by measuring the absorbance
of crystal violet (Olson et al., 2002). After removing the culture
medium, the plates were gently washed with PBS twice to remove
the floating cells. Biofilms were stained with 300 µl of 0.5% crystal
violet (Sigma, MO, United States) (prepared in 10% ethanol) for
15 min at RT. After staining, the plates were gently washed with
PBS three times and dried at RT. Then, 500 µl of 95% ethanol
was added to each well and incubated for 15 min to dissolve the
biofilms. OD595 values were measured using a DTX 880 plate
reader (Molecular Devices, San Jose, CA, United States).

Bacterial viability in biofilms was also examined by
enumerating bacterial colonies. After removing the culture
medium, the plates were gently washed with PBS twice to remove
floating cells, which was followed by the addition of 500 µl of
fresh THB to each well. The cells were collected by scraping the
bottom of each well with a sterile cell scraper. Serial dilutions
of the medium were used for CFU enumeration, and each
experiment was performed in triplicate.

Two-Dimensional Gel Electrophoresis
(2DE) and Mass Spectrometry
The GBS strains were plated on blood agar plates and incubated
at 35◦C in 5% CO2. Bacterial cells were suspended in pre-warmed
THB with shaking at 200 rpm overnight. Then, the overnight
bacterial cultures were diluted1:100 in THB and incubated at
35◦C with shaking at 200 rpm to mid-log phase, after which,
the bacterial cells were harvested by centrifuging at 4000 × g

for 20 min at 4◦C. For whole protein extraction, the instructions
of the total protein extraction kit (Bio-Rad, United States) were
followed, and protein quantitation was performed using RC DC
Protein Assay reagent (Bio-Rad, United States). Then, 2DE was
conducted following the protocol of a previous study (Jones et al.,
2004).

The gel photos were normalized and compared using software
PDQuest (Version8.0.1, Bio-Rad, United States). The Boolean
method was chosen to compare the intensity of the protein spots
to determine both fold-changes and statistically significantly
differences between GBS III-4 wild-type and 1bceR strains. From
the results, we found that the expression of three proteins was
significantly decreased in the 1bceR strain (>2-fold reduction
in expression), and these three protein spots were cut from the
original 2-DE gel and sent to the proteomic core laboratory
of The University of Hong Kong for mass spectrometry-based
identification.

Statistical Analysis
Data are expressed as the mean ± SD. Statistical comparisons
between different treatment groups were performed using
a one-way analysis of variance (ANOVA), followed by a
post hoc Dunnett’s test using GraphPad Prism 6.05 for Windows
(GraphPad Software, San Diego CA, United States). Differences
were considered as significant at p < 0.05, and were denoted as
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.

RESULTS

Whole Genome Sequencing and
Comparative Genomics Analysis of GBS
Serotype III-4 Strains
The genomes of three invasive and two non-invasive GBS
serotype III-4 strains were sequenced using a Roche 454
and Illumina Solexa Genome Analyzer, according to the
manufacturer’s instructions, and have been submitted to
GenBank as either draft or complete genomes (Table 1).
The genomes of the meningitis/septicemia strains were
compared to those of the non-invasive strains. All single
nucleotide polymorphisms (SNPs) from the ORFs were
called using Mauve (version 2.3.1) software (Darling et al.,
2010). Sequence alignment was performed to compare gene
sequence variations among these strains. Genes that encode
hypothetical proteins and those related to bacteriophages
were not analyzed further. From this, we narrowed down
our list to four truncated genes of interest as indicated in
Supplementary Table S3. These genes showed 100% nucleotide
identity to those of other GBS strains in GenBank. SNPs
were confirmed by PCR-based Sanger sequencing to filter out
false positive SNPs, which can occur with next generation
sequencing.

Comparative genome analysis revealed a non-synonymous
substitution (truncation) of a DNA binding regulator (Accession
no: CU_GBS08_01010) in the non-invasive GBS strain, and the
truncation of bceR at c.288delG was determined to generate a
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TABLE 1 | List of strains in this study.

GBS strain GenBank accession
number

Isolation site Clinical
details

Patient age group Sequence
type

Molecular
serotyping group

ATCC12403 (NEM316) NC_004368 Blood Septicaemia Infant 23 III

CU_GBS_00 JYCT00000000 Wound Non-invasive Non-pregnant adult 283 III-4

CU_GBS_08 CP010874 Blood Toxic shock
syndrome

Non-pregnant adult 283 III-4

CU_GBS_10 JYCU00000000 Blood Septic arthritis Non-pregnant adult 283 III-4

CU_GBS_12 JYCV00000000 Vaginal-rectal swab Non-invasive Pregnant adult 283 III-4

CU_GBS_98 CP010875 Cerebrospinal fluid Meningitis Non-pregnant adult 283 III-4

CU_GBS_08_1bceR bceR deletion mutant of CU_GBS_08

CU_GBS_08_1bceR+pbceR bceR complementation of CU_GBS_08_1bceR

FIGURE 1 | Proposed organization structure of BceRS system and working model in GBS. AMPs that usually function by pore formation in the membrane
(bacitracin was used in this figure), bacitracin bind to the anionic loop of BceS and cause the phosphorylation of BceR, which result in the activation of BceR
regulated AMPs resistance in GBS. (1) up-regulated the expression of the transporter BceAB to facilitate the resistance by expelling the bacitracin (left). (2)
D-alanylation of teichoic acids by the dlt system, which in turn decreased negative charge of the bacterial membrane and ensure the resistance (right).

stop codon, abrogating expression of a region of the mRNA
encoding the last 20 aa of the receiver domain and the DNA-
binding domain. BLAST analyses revealed that this regulator was
most closely related to the TCS response regulator protein BceR
of S. gallolyticus, with 69% protein sequence homology (GenBank
no: CDO17747.1). Although this gene was present in all GBS
strains examined, the sequences harbored ∼30% differences
compared to the bceR genes of other bacteria, suggesting that
this gene might have specific functions in GBS. Based on the
location of the truncation of the response gene, we predicted
that the bceR-like response would be aborted in the non-invasive
strain. The present study therefore focused on the role of this
response regulator gene in this TCS of GBS. We thus knocked
down this gene in the wild-type invasive strain CU_GBS_08
to elucidate its role in antimicrobial peptide resistance, stress
response, and virulence in this invasive GBS strain. Our working
model is depicted in Figure 1. Together with evidence that
the transporter-encoding bceAB gene is activated by bacitracin,
we have re-named this regulator bceR of the two-component

system bceRS in this complete genome (GenBank genome:
CP010874).

The 1bceR Strain Is More Sensitive to
Bacitracin and Antimicrobial Peptides
It is known that bceR-like systems comprise components of
antimicrobial peptide detoxification modules, such as the graRS
system of S. aureus, as the MIC values of some AMPs were
decreased in strains with mutations in this system (Cui et al.,
2005; Meehl et al., 2007). Here, the MICs of selected AMPs and
antibiotics were measured for the 1bceR, complementation, and
wild-type strains (Table 2). MICs for the mutant strain were
256- and 4-fold lower for bacitracin and LL-37, respectively,
compared to those for the wild-type strain. However, 1bceR
complementation with the pDL289-bceR plasmid restored
resistance to both bacitracin and LL-37 (Table 2). No difference
in resistance was observed between the wild-type strain and the
isogenic 1bceR strain for other antibiotics.
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TABLE 2 | Minimal inhibitory concentrations (MIC) of antimicrobial peptides and other antibiotics in GBS strains.

MICs (µg/ml)a

Antibiotics CU_GBS_08 CU_GBS_08_1bceR CU_GBS_08_1bceR+pbceR CU_GBS_12 ATCC49619

Bacitracin 64 0.25 64 0.25 8

LL-37 256 64 256 128 2

Polymyxin B 128 128 128 64 128

Ampicillin ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06

Cefotaxime ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06

Penicillin ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06

Vancomycin 0.5 0.5 0.5 0.5 0.5

Erythromycin ≤0.06 ≤0.06 ≤ 0.06 ≤0.06 ≤0.06

Ciprofloxacin 0.5 0.5 0.5 0.5 0.5

aMinimum inhibitory concentration, obtained according to CLSI protocol (CLSI, 2011).

FIGURE 2 | Relative expression of bceA, bceB, dltA, and mprF (A–D) in GBS strains with addition of bacitracin. Genes expression of bceA, bceB, dltA, and mprF in
wild type GBS III-4 strain, CU_GBS_08 (bacitracin MIC 64 µg/ml), isogenic mutant (CU_GBS_08_1bceR, bacitracin MIC 0.25 µg/ml), and non-invasive GBS III-4
strain CU_GBS_12 (bacitracin MIC 0.25 µg/ml) were shown. GBS strains without treatment were normalized to 1. Error bars represent the standard deviation of the
mean values from three independent experiments. Significance was determined by one-way ANOVA (∗p < 0.05, ∗∗∗∗p < 0.0001).

Expression of bceA, bceB, and dltA Is
Reduced in the 1bceR GBS Strain
graRS, a bceRS-like system of S. aureus, was reported to induce
AMP resistance not only by pumping AMPs out via an ABC
transporter, but also by lowering the overall negative net charge
of the cell envelope by upregulating expression of the dlt operon
and mprF (Li et al., 2007; Meehl et al., 2007). Thus, the expression
of bceA, bceB, dltA, and mprF was evaluated in the presence
of a sub-inhibitory concentration of bacitracin in wild-type
and 1bceR strains and normalized to 16s rRNA expression.
Expression levels in GBS strains grown in THB only were used
as controls and adjusted to 1. As shown in Figure 2, levels of
bceA, bceB, and dltA were higher when respective strains were
grown in THB containing bacitracin at 1/8 the MIC value for

CU_GBS_08 (bacitracin: MIC, 64 µg/ml) compared to those
when bacteria were grown in the presence of bacitracin at 1/8
the MIC value for CU_GBS_1bceR (bacitracin: MIC, 0.25 µg/ml;
p < 0.0001) and for CU_GBS_12 (bacitracin: MIC, 0.25 µg/ml;
p < 0.0001; Figures 2A–C). However, no significant difference
of mprF expression was found between the wild-type strain and
1bceR strain (Figure 2D).

Mitogenicity and Pro-inflammatory
Response Induced by GBS in Human
PBMCs
The proliferation of PBMCs was evaluated after 24 h of
stimulation with GBS or 10 µg/ml PHA to evaluate mitogenicity
and the ability of GBS to induce the proliferation of these
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cells. As shown in Figure 3, although all bacteria induced
the proliferation of PBMCs, the 1bceR strain demonstrated a
significantly reduced immunogenicity (p < 0.0001). Similarly,
levels of the cytokines TNF-α, IL-6, IL-8, IL-1β, IL-10, and IL-12
were determined, as shown in Figures 4A–F. The isogenic mutant

FIGURE 3 | Effect of bceR deletion on proliferation of PBMCs. PBMCs were
cultured in 25 µg/ml heat-killed GBS strains for 24 h, with
phytohaemagglutinin (PHA) (10 µg/ml) only. Cell proliferation was determined
by fluorescence intensity. Three independent experiments were performed
and the mean ± SD was illustrated with the error bar. Statistical significance at
∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001 were reached when GBS wild type
strain was compared to the mutant (CU_GBS_08_1bceR). The mitogenicity
effect between the wild type and 1bceR strain was most significant at 72 h
(p < 0.001).

strain 1bceR induced a significant decrease in the expression
of pro-inflammatory cytokines when compared to that with the
wild-type strain. The decreased release of TNF-α was the most
obvious (p < 0.0001) and was approximately fourfold decreased
compared to that with the wild-type strain. This was followed by
IL-6, IL-1β, and IL-10, which were decreased by approximately
twofold with the 1bceR strain (p < 0.001 for IL-6 and IL-10 and
p< 0.01 for IL-1β). Peak IL-6 expression was delayed to 24 h with
the 1bceR strain, and the release of IL-8 was approximately 1.4-
fold lower for this strain (p < 0.0001). The release of IL-12 could
not be detected in the presence of both wild-type and mutant
strains. Further, the complementation of 1bceR using pDL289
reversed the change in cytokine release.

The Deletion of bceR Attenuates
Virulence in a Mouse Infection Model
The virulence of the wild-type and 1bceR strains was studied
using a mouse infection model via intraperitoneal inoculation.
The lethal concentration (LD50) at which 50% of the mice died in
the tested group at the specified time point was then calculated.
The LD50 values of the 1bceR and wild-type strains were 1× 107

and 3 × 106 CFU, respectively (Supplementary Table S4).
Moreover, the survival rates of mice infected intraperitoneally
with GBS at 107 CFU after 10 days of inoculation are shown
in Figure 5. As observed, the virulence of the 1bceR strain was
attenuated compared to that of the wild-type strain, as revealed by
the increased survival rate of 23.3% versus 0% with the wild-type
strain (p < 0.01).

Bacterial Survival in Response to H2O2
Stress Is Decreased in the 1bceR Strain
Next, the response of the 1bceR, wild-type, and
complementation strains to H2O2 stress was assessed (Figure 6).

FIGURE 4 | Release of TNF-α, IL-6, IL-8, IL-1β, IL-10, and IL-12 (A–F) from human lymphocytes as induced by wild type GBS and 1bceR strain. Heat-killed GBS
extract (5 µg/ml) (invasive strain CU_GBS_08; CU_GBS_08_1bceR; CU_GBS_08_1bceR+pbceR, bceR complementation strain) was incubated with human
lymphocytes. Cytokine release was measured at 3, 6, 12, and 24 h. LPS represents the lipopolysaccharide control. Data are expressed as mean ± SD (∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001).
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FIGURE 5 | Kaplan–Meier survival curve. Survival rate was calculated at 10 days post-intraperitoneal injection. The difference in survival rate between CU_GBS_08
strain (wild type) and CU_GBS_08_1bceR strain is statistically significant with P < 0.01 by Fisher’s exact test.

FIGURE 6 | Effect of H2O2 stress on GBS. The 1bceR was significantly more
susceptibility to H2O2 (40 mM) exposure than wild type (∗p < 0.05,
∗∗∗p < 0.001).

The mutant strain was significantly more susceptible to H2O2
than the wild-type strain. Specifically, the survival rate of the
mutant strain was reduced by 20% compared to that of the
wild-type strain (p < 0.001); however, no significant difference in
susceptibility was observed between wild-type and non-invasive
CU_GBS_12 strains.

Biofilm Formation Is Impaired in the
1bceR Strain
The ability of the wild-type, 1bceR, 1bceR complementation,
and CU_GBS_12 (non-invasive) strains to form biofilms was
assessed by crystal violet staining and CFU enumeration
(Figures 7A,B). One-way ANOVA analysis showed that biofilm
formation was impaired significantly in the 1bceR strain when
compared to that in the wild-type strain (p< 0.05 and p< 0.0001,
for crystal violet staining and CFU numbers, respectively),
which was reversed by complementation. The biofilms were
also evaluated by confocal microscopy (CLSM), wherein the cell
density (xy images) and thickness (xz images) of biofilms were
assessed. As shown in Supplementary Figures S1A–C, most cells
in the biofilms were stained green, indicating that more live cells
were present. However, a decreased signal was detected, based
on the xy and xz images, for the bceR strain when compared to
that with the wild-type strain, which indicated that fewer living
or dead cells were present with the 1bceR strain. Thus, CLSM
images revealed that loss of the bceR-like regulator inhibited

Frontiers in Microbiology | www.frontiersin.org 9 January 2019 | Volume 10 | Article 10386

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00010 January 22, 2019 Time: 17:43 # 10

Yang et al. The Role of bceR in GBS

FIGURE 7 | Evaluation the role of two-component regulator bceR on biofilm formation in GBS using crystal violet staining (A) and bacterial counting (B). Bacteria
stained with crystal violet were measured at OD595. Significance was determined by one-way ANOVA (∗p < 0.05, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001).

TABLE 3 | Results of proteins identification by mass spectrometry.

Spot Protein name Protein score Database Accession number Reference

1 Alkyl hydroperoxide reductase (AhpC) 391 NCBInr gi| 403643060 Cosgrove et al., 2007

2 Gls24 family stress protein (Gls24) 291 NCBInr gi| 446353446 Teng et al., 2005

3 Zinc-dependent alcohol dehydrogenase (Adh) 409 NCBInr gi| 446571849 Suvarna et al., 2000; Mukherjee et al., 2006

biofilm formation, resulting in a lower cell density and reduced
thickness.

Deletion of bceR Alters Protein
Expression in the GBS Strain
Proteomic analysis of bacteria harvested at mid-log phase was
performed using 2-DE and mass spectrometry. This revealed
three proteins that were reduced by greater than twofold in the
1bceR strain; the Boolean operation of the PDQuest software
(version 8.0.1, Bio-Rad, United States) was then used to compare
the intensities of the protein spots (Table 3 and Figure 8). This
analysis indicated that alkyl hydroperoxide reductase (AhpC), the
Gls24 family stress protein (Gls24), and alcohol dehydrogenase
(Adh) were decreased by 2.72-, 2.79-, and 2.59-fold, respectively.
Real-time PCR was conducted to confirm the results of 2DE-mass
spectrometry at the RNA level, and these three markers were
reduced by 6.73-, 3.56-, and 6.7-fold, respectively, in the 1bceR
strain (Figure 9).

DISCUSSION

In this study, the bceR-like gene, belonging to the bceRS-like
TCS family was described in GBS, and was found to mediate
AMP and environmental stress resistance. The bceR-like system
is associated with resistance to cell wall-targeting antimicrobial
peptides in B. subtilis (Bernard et al., 2007; Dintner et al., 2014).

Moreover, the bceR-like system (graR) of S. aureus was previously
found to respond to vancomycin and polymyxin B, and the
homologous proteins encoded by these genes were determined
to mediate resistance to bacitracin and nisin in S. mutans and
Lactococcus lactis, respectively (Tsuda et al., 2002; Kramer et al.,
2006). In GBS, we found that the deletion of bceR resulted in
an increased sensitivity to bacitracin and human cathelicidin
LL-37. The regulatory effect of bceR on the ABC transporter
bceAB, which encodes a protein that can pump out AMPs from
the bacterial cells, is possibly the major mechanism of AMP
resistance conferred by the bceR-like system of GBS. However,
the loss of bceR in GBS did not alter sensitivity to erythromycin
and beta-lactam antibiotics; these results demonstrate that the
structurally homologous bceRS system might play a specific
role in GBS, which highlights the importance of determining
the individual roles of bceR-like systems in the pathogenesis of
different Gram-positive species.

In S. epidermidis, the TA alanylation system, dltAB, and mprF,
which encodes a lipid modification enzyme, were also found
to be controlled by the bceR-like system (Li et al., 2007b; Sass
et al., 2008). In GBS, the D-alanylation of TA was found to
confer resistance to cationic peptides, and the lack of DltA was
related to increased sensitivity to phagocytic cells and attenuated
bacterial virulence (Poyart et al., 2003; Saar et al., 2012). DltA is a
cytoplasmic carrier protein ligase that catalyzes the D-alanylation
of the D-alanyl carrier protein DltC. DltB is a transmembrane
protein that was reported to be involved in the efflux of activated
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FIGURE 8 | Photographs of 2-DE gel in wild type (A) and 1bceR strain (B) GBS strain. Red circles showed the proteins that found to have significantly decreased
expression in 1bceR strain. They were identified as alkyl hydroperoxide reductase (AhpC), The Gls24 family stress protein (Gls24), and alcohol dehydrogenase (Adh),
respectively, by mass spectrometry. The gel photos were normalized and compared using software PDQuest (Version8.0.1, Bio-Rad, United States), Boolean
method was chosen for detecting the proteins with statistic significantly difference in expression between GBS III-4 wild type and mutant strains.

D-alanine to the site of acylation (Joseph et al., 2004; Mandin
et al., 2005). In GBS, we found that the expression of dltA was
downregulated in the 1bceR strain in the presence of bacitracin,
suggesting that it might be regulated by the bceR-like system.
Suppressing the D-alanylation of lipoteichoic acids through the
repression of dltA would increase the negative charge of the GBS
envelope, resulting in susceptibility of the 1bceR strain to AMPs.
In addition to the negative charge of bacteria, the density of the
cell wall was shown to be altered in dltA mutants of Streptococcus
pyogenes and the deletion of this gene was found to suppress
the production of virulence-related proteins (Cox et al., 2009;
Grubaugh et al., 2018; Luo et al., 2018). Moreover, the bceR-
like system (virRS) was identified to regulate bacterial adhesion
and entry into eukaryotic cells in Listeria monocytogenes, and
the dlt operon, mprF, and bceAB were all found to be controlled
by the regulator virR (Abachin et al., 2002; Camejo et al., 2009),

suggesting that dltA might contribute to virulence in GBS,
which requires further investigation. mprF was not differentially
expressed in the presence or absence of bacitracin, indicating that
this gene might respond to other inducers.

In addition to resistance to AMPs, GBS bceR was found to
mediate environmental stress resistance and biofilm formation.
Accordingly, the 1bceR strain displayed increased sensitivity
to H2O2 stress when compared to the invasive CU_GBS_08
strain, which was similar to results reported for the TCS graRS
of S. aureus, which was found to be involved in resistance
to superoxide radicals (Falord et al., 2011). The underlying
mechanism is still unclear, but we found that the 1bceR
strain exhibited reduced expression of the alkyl hydroperoxide
reductase AhpC, the zinc-dependent alcohol dehydrogenase Adh,
and a Gls24 family protein. These proteins have been reported to
be involved in oxidative stress resistance and biofilm formation
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FIGURE 9 | Application of the 2−11CT method. The experiment was conducted to validate the effect of bceR gene knockout on the expression of candidate genes.
ahpC, alkyl hydroperoxide reductase; gls24, gls24 family general stress protein; adh, zinc-dependent alcohol dehydrogenase. Error bars represent the standard
deviation of the mean values from at least three replicate.

(Becker et al., 2001; Teng et al., 2005; Cosgrove et al., 2007),
implying the contribution of the bceR-like regulator to these
processes in GBS. Experiments demonstrating the effects of other
environmental factors on the survival of the wild-type/mutant
strains, such as different pH, temperature, and osmotic pressure,
were also consistent with results from previous studies on
GBS (Yang et al., 2012). However, significant differences in pH
tolerance, temperature tolerance, and osmotic stress resistance
between wild-type and 1bceR strains were not detected (data not
shown). Bacterial cells within biofilms are difficult to eradicate,
as they are highly resistant to antibiotics and the host immune
system. The difference in biofilm-forming ability between GBS
isolates from asymptomatic pregnant women (carriers) and those
isolated from clinical infections was previously found to be
statistically significant (Olson et al., 2002). The protein Adh
was previously reported to catalyze the reversible conversion
of acetaldehyde to ethanol, which is known to enhance the
production of Staphylococcus biofilms; moreover, Adh expression
was found to be upregulated in Staphylococcus biofilms (Becker
et al., 2001; Finelli et al., 2003). In our study, all strains were
able to form biofilms, but the biofilm biomass of the wild-type
strain was significantly greater than that of the 1bceR strain.
This is consistent with a previous report suggesting that the TCS
graRS is involved in biofilm formation in S. aureus (Shanks et al.,
2008).

The invasive CU_GBS_08 strain used in this study was isolated
from a non-pregnant adult with toxic shock syndrome, indicating
the virulence of this invasive clinical strain. Therefore, the role
of the bceR-like system in virulence was assessed by using both
in vitro cytokine release assays and an in vivo mouse infection
model. Our results demonstrated the mitogenic nature of this
regulator and its ability to induce a significant pro-inflammatory
cytokine response, which is a characteristic of the development

of sepsis and septic shock. Cytokines are soluble proteins that
play a significant role in inflammation and the regulation of
immune responses (von Hunolstein et al., 1997). Significantly
increased production of TNF-α, IL-6, and IL-1β was detected
after infection with the wild-type strain compared to that with the
1bceR strain. These three cytokines were reported to be positively
related to disease severity (De Bont et al., 1993; Cusumano et al.,
1996; von Hunolstein et al., 1997). It was previously reported
that S. epidermidis and S. aureus mutant strains devoid of the
bceR-like system are more susceptible to neutrophil-mediated
killing (Cheung et al., 2010). Moreover, the expression of IL-8,
a major activator of neutrophils and lymphocytes (Cusumano
et al., 1996; Vallejo et al., 1996; von Hunolstein et al., 1997)
was found to be reduced in 1bceR strains. However, the
deletion of bceR did not completely abrogate the proliferation
of mononuclear cells and cytokine release, suggesting that other
factors are also involved in the virulence and pathogenicity of this
strain.

In our mouse infection model, ATCC12403, which originated
from a case of fatal septicemia, was used as a control. Our wild-
type invasive strain resulted in lethality that was decreased by
two orders of magnitude compared to that with the ATCC strain,
thus indicating its hyper-virulence. Further the attenuation of
virulence in the 1bceR strain was demonstrated; moreover, the
Gls24 family protein was previously found to be related to
bacterial virulence (Teng et al., 2005). The bceR-like system
was previously found regulate numerous virulence factors in
S. aureus and L. monocytogenes (Joseph et al., 2004; Falord et al.,
2011), which in turn indicates that bceR might be involved
in cross-talk with other regulator(s) in GBS. The non-invasive
GBS strain was the least virulent among the stains tested, and
harbors mutations in addition to the bceR truncation; this
indicates that other gene(s) involved in bacterial virulence need
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to be characterized. TCSs are widely used as signal transduction
systems by bacteria to respond to changing growth conditions.
The ability of GBS to efficiently adapt to different host niches
during the infectious cycle is important for the pathogenicity
of these strains. bceRS-like TCSs are widespread in Gram-
positive bacteria and are associated with a range of bacterial
activities. Further, their contributions to these activities in GBS
have not been sufficiently recognized. Our results indicated
that bceR is involved in environmental stress resistance,
antimicrobial peptide resistance, and virulence, processes that
are crucial for the survival of GBS in response to different
microenvironments that are encountered during infection. Thus,
bceR could be a potential target to modulate and attenuate
virulence.
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Bacterial biofilms play an important role in urinary tract infections (UTIs), being
responsible for persistent infections that lead to recurrences and relapses.
Staphylococcus saprophyticus is one of the main etiological agents of UTIs, however,
little is known about biofilm production in this species and especially about its response
to the antimicrobial agents used to treat UTIs when a biofilm is present. For this reason,
the aim of this work was to evaluate the response of S. saprophyticus biofilms to five
antimicrobial agents. Staphylococcus saprophyticus was evaluated for antimicrobial
susceptibility in its planktonic form by means of minimum inhibitory concentration
(MIC) and in biofilms by means of minimum inhibitory concentration in biofilm (MICB)
against the following antimicrobial agents by the microdilution technique: vancomycin,
oxacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and norfloxacin. Of the 169
S. saprophyticus studied, 119 produced a biofilm as demonstrated by the polystyrene
plate adherence method. Biofilm cells of S. saprophyticus exhibited a considerable
increase in MICB when compared to the planktonic forms, with an increase of more
than 32 times in the MICB of some drugs. Some isolates switched from the category of
susceptible in the planktonic condition to resistant in the biofilm state. Statistical analysis
of the results showed a significant increase in MICB (p < 0.0001) for all five drugs tested
in the biofilm state compared to the planktonic form. Regarding determination of the
minimum bactericidal concentration in biofilm (MBCB), there were isolates for which the
minimum bactericidal concentration of all drugs was equal to or higher than the highest
concentration tested.
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INTRODUCTION

In order to survive in hostile environments such as in host tissues
(antibodies, phagocytes, etc.,) or on an inert surface where they
are exposed to inhospitable conditions (UV light, desiccation,
heat, cold), bacteria adapt by forming adherent populations
(sessile bacteria) organized in a structure called biofilm (Mah and
O’Toole, 2001).

Li et al. (2005) demonstrated that biofilm formation in
Staphylococcus spp. depends on Polysaccharide Intercellular
Adhesin (PIA), whose biosynthesis is mediated by the ica operon.
This operon contains the icaADBC genes and the regulatory
icaR gene, which is transcribed in the direction opposite to
the ica operon. In the case of the icaR gene, some studies
have suggested that its product is a transcription repressor that
plays an adaptive role in the regulation of the expression of
the ica operon according to environmental conditions. Some
factors such as anaerobic growth, the presence of antibiotics at
subinhibitory concentrations, and environmental stress such as
high osmolarity may increase expression of the ica operon. In
addition to PIA, the existence of ica-independent mechanisms
for biofilm formation in Staphylococcus spp., such as proteins and
DNA, has been highlighted (Mendoza-Olazarán et al., 2015).

Once formed, these biofilms render the cells less accessible
to the defense system of the organism, impairing the action
of antibiotics. Biofilms thus represent basic survival strategies
of these microorganisms, a fact that explains why biofilms
are considered to be of major public health importance.
Furthermore, the proximity of cells inside microcolonies or
between microcolonies provides an excellent environment for
the exchange of genetic material. The mechanism of conjugation,
i.e., the transfer of plasmids between bacteria, occurs at a higher
proportion between bacterial cells in biofilms than between
planktonic cells (Águila-Arcos et al., 2017).

In the laboratory, the effectiveness of an antibiotic is
evaluated with the microorganism in its planktonic form (free
cells). However, these assays only reveal the concentration
of the chemotherapeutic agent that is necessary to inhibit
growth or kill planktonic bacteria (Jorgensen and Ferraro,
2009). Maximum resistance to antibiotics is achieved once
microorganisms complete the formation of the mature biofilm
(Høiby et al., 2010). For some antibiotics, the concentration
required to kill sessile bacteria can be up to a thousand times
greater than the concentration required to kill exactly the
same strain in its planktonic form (Nickel et al., 1985; Aslam,
2008). Therefore, in some circumstances, the use of planktonic
bacteria for the selection of chemotherapeutic agents may be
inappropriate.

Biofilm formation can be considered a virulence determinant
that is responsible for the long-term persistence of bacteria in
the genitourinary tract (Costerton et al., 1999). Urinary catheters
and other prosthetic devices predispose to urinary tract infections
(UTIs) by destroying natural barriers (urethral sphincter) and
providing a nidus for infection that serves as a substrate for
biofilm formation. Bacterial biofilms play an important role in
UTIs, being responsible for persistent infections that lead to
recurrences and relapses (Delcaru et al., 2016).

The most commonly prescribed antibiotics for the
treatment of UTIs are trimethoprim/sulfamethoxazole,
fluoroquinolones, first- and second-generation cephalosporins,
amoxicillin + clavulanate, and nitrofurantoin (Lee et al., 2008).
According to the CLSI M100-S26 document (2016), routine
susceptibility testing of urinary S. saprophyticus isolates is not
recommended since this microorganism is normally susceptible
to the antimicrobial agents used to treat acute uncomplicated
UTIs (nitrofurantoin, sulfamethoxazole/trimethoprim, or a
fluoroquinolone). However, 17.6% of the S. saprophyticus
isolated from UTIs tested by Ferreira et al. (2012) were resistant
to sulfamethoxazole/trimethoprim, a fact that may lead to
therapeutic failure when UTIs are treated empirically. Antibiotic
resistance seems to have emerged also among S. saprophyticus
strains and antimicrobial susceptibility testing of these strains is
therefore necessary.

Staphylococcus saprophyticus is one of the main etiological
agents of UTIs, however, little is known about biofilm production
in this species and especially about its response to the
antimicrobial agents used to treat UTIs when a biofilm is present.
For this reason, the aim of this work was to evaluate the response
of S. saprophyticus biofilms to five antimicrobial agents.

MATERIALS AND METHODS

Samples
Staphylococcus saprophyticus isolated from the urine of different
patients were used in the study. The strains were obtained
in a prospective study through isolation in the Laboratory of
Microbiology, University Hospital of the Botucatu School of
Medicine (HC-FMB), SP, Brazil, in 2013 and 2014 or were
obtained from a culture collection established in 2008. The
samples were collected from patients originating from wards,
outpatient clinics, emergency rooms, and basic health units of
Botucatu and region. The present study was approved by the
institutional Ethics Committee (Protocol 16269813.1.0000.5411)
and was exempt from the requirement of free informed consent
of the participants in this study since we did not use clinical data
of the patients and had no contact with the patients. Bacteria had
previously been isolated from the patients and were stored at the
Laboratory of Microbiology (HC-FMB).

Individuals of both genders and all ages with S. saprophyticus-
positive urine cultures compatible with UTI, with a colony
count equal to or greater than 100,000 colony forming units per
milliliter of urine ( ≥ 105 CFU/mL) according to the criteria of
Kass (1956), were included. Samples were collected according to
the urine collection protocol of the service.

The isolates were seeded on blood agar with 5% sheep
blood (secondary isolation) and stained by the Gram staining
method for the assessment of purity and observation of their
specific morphology and staining. After confirmation of these
characteristics, the strains were submitted to the catalase,
DNAse, and tube coagulase (gold standard) tests to distinguish
Staphylococcus aureus and coagulase-negative staphylococci
(CoNS) as recommended by Koneman et al. (1997).
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DNA Extraction and Identification of
S. saprophyticus
DNA was extracted from isolates identified as CoNS with
the Illustra R©Kit (GE Healthcare) according to manufacturer’s
instructions.

Isolates identified as CoNS were genotyped using primers
targeting conserved sequences adjacent to the 16S and
23S genes by the internal transcribed spacer-PCR (ITS-
PCR) technique described by Couto et al. (2001). The G1
“GAAGTCGTAACAAGG” 16S and L1 “CAAGGCATCCA
CCGT” 23S primers were used. The efficiency of the
amplifications was monitored by electrophoresis on 3%
MetaPhor agarose prepared in 1X TBE buffer and stained with
SYBR Safe. The following international reference strains were
used as controls: S. epidermidis (ATCC 12228), S. epidermidis
(ATCC 35983), S. haemolyticus (ATCC 29970), S. hominis
(ATCC 27844), S. hominis subsp. novobiosepticus (ATCC
700237), S. lugdunensis (ATCC 700328), S. saprophyticus (ATCC
15305), and S. warneri (ATCC 10209).

Detection of mecA Gene for Oxacillin
Resistance
For detection of the mecA gene, PCR was performed using the
mecA1 (AAA ATC GAT GGT AAA GGT TGG) and mecA2
(AGT TCT GCA GTA CCG GAT TTG) – 533 (bp) primers
according to the parameters described by Murakami et al. (1991).
International reference strains were included in all reactions:
S. aureus ATCC 33591 (positive) and S. aureus ATCC 25923
(negative).

Agarose gels were prepared at a concentration of 2% in 1X
TBE, stained with SYBR Safe DNA Gel Stain R© (Invitrogen), and
visualized under a UV transilluminator.

Detection of Biofilm Production by the
Polystyrene Plate Adherence Method
(Christensen et al., 1985) Modified by
Oliveira and Cunha (2010)
The method of detecting biofilm production in culture
plates proposed by Christensen et al. (1985) was used, with
modifications proposed by Oliveira and Cunha (2010). This
method is based on the spectrophotometric reading of optical
density of the adherent material produced by the bacteria.
International reference strains used as positive (S. aureus
ATCC 29213, S. epidermidis ATCC 35983) and negative
controls (S. aureus ATCC 33591, S. epidermidis ATCC12228)
and sterile TSB were included in all tests. Optical density
reading was carried out in an ELISA reader (Labsystems,
model Multiskan EX) using a 540-nm filter. Samples were
classified as negative when the cut-off value corresponded to the
classification of non-adherent ( ≤ 0.111) and as positive when
the cut-off value corresponded to the classification of weakly
adherent (>0.111 or ≤0.222) or strongly adherent (>0.222).
These cut-offs values were established by Oliveira and Cunha
(2010).

Evaluation of Biofilm Formation With
Visualization by Scanning Electron
Microscopy (SEM) in an Isolate of
Biofilm-Producing S. saprophyticus
A biofilm-producing S. saprophyticus isolate in the polystyrene
plate adherence test was selected for confirmation of biofilm
production by SEM. The biofilm-producing strain was first
isolated in BHI broth and 108 CFU of bacteria were transferred to
a conical tube (Falcon-CORNING) containing 2 mL TSB culture
medium prepared with 2% glucose and a 0.5-cm segment of
VYGON umbilical catheter (reference 1270.04, 0.8 mm× 1.5 mm
diameter). The tube was incubated under constant stirring for
48 h at 100 rpm/37◦C for bacterial growth and biofilm formation.
After this period, the catheter segment was removed, washed
with PBS, immersed in 2.5% glutaraldehyde solution, fixed in
an increasing alcohol series (15, 30, 50, 70, 90, and 100%) for
15 min each, dried in a vacuum centrifuge for 5 min, metallized
with gold, and visualized under a scanning electron microscope
to evidence biofilm production.

Determination of MIC of Vancomycin,
Oxacillin, Norfloxacin, Ciprofloxacin, and
Trimethoprim/Sulfamethoxazole for
Planktonic Cells of S. saprophyticus by
the Broth Microdilution Method
The broth microdilution method was used for determination
of the (MIC) for planktonic cells of S. saprophyticus. Sterile
microtiterplates with Müller-Hinton broth adjusted with cations
(Oxoid, United Kingdom) as recommended by the CLSI (2016)
were used. A stock solution of each drug was prepared
in 3,200 µg/mL distilled water. Serial dilutions were made
in a microtiter plate containing Müller-Hinton broth at
concentrations on a logarithmic scale of two, comprising the
breakpoints (CLSI, 2016), in a final volume of 100 µL. For
preparation of the inoculum, the isolates were first seeded
on blood agar. After incubation for 24 h, isolated colonies
were seeded in BHI broth and the bacterial suspensions were
adjusted to a turbidity of 0.5 McFarland standard (1 × 108

CFU/mL), diluted at 1:1000, and added to the wells in a
final volume of 200 µL and final bacterial concentration of
5× 104 CFU/well. The plates were incubated in an oven at
35◦C and the MIC was read after 24 and 48 h of incubation.
A positive control containing the broth and bacterial suspension
and a negative control containing only the Müller-Hinton broth
were used. In addition, Enterococcus faecalis ATCC 29212 and
S. aureus ATCC 29213 (susceptible to vancomycin) were used
as negative controls, and E. faecalis ATCC 51299 (resistant to
vancomycin) and S. aureus ATCC 33591 (resistant to oxacillin)
were used as positive controls. The MIC was defined as the
lowest concentration of antimicrobial that completely inhibited
the growth of the microorganism as detected by the naked eye.
Wells with turbidity and/or the presence of bacteria at the bottom
of the well were classified as positive growth. The susceptibility
and resistance cut-offs recommended by the CLSI (2016) were
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used to determine the MIC for planktonic cells. The same cut-
offs were used to evaluate the biofilm antimicrobial susceptibility
of the isolates since no standards exist for biofilm tests.

Determination of (MICB) and (MBCB) of
Vancomycin, Oxacillin, Norfloxacin,
Ciprofloxacin, and
Trimethoprim/Sulfamethoxazole for
S. saprophyticus Biofilm by the Broth
Microdilution Method
Bactericidal concentrations for biofilms (MBCB) were
determined by adapting the test method described by Frank
et al. (2007). The isolates cultured for 22 h in TSB with 2%
glucose were adjusted to a turbidity of 1.0 McFarland standard
(corresponding to 1 × 108 to 2 × 108 CFU/mL) and diluted
at 1:50 in TSB with 2% glucose. Aliquots (200 µL) were plated
in 96-well flat bottom plates (Nuclon Delta, Nunc, Denmark),
covered with a 96-pin cap (Nunc-TSP; Nunc), and incubated
for 24 h to allow biofilm formation on the pins. To remove
non-adherent cells, the biofilms formed on the pins were washed
by immersion in a series of three 96-well plates filled with 200 µL
of sterile saline phosphate-buffered saline (PBS). The cap with
the pins was placed on a flat bottom plate prepared for broth
microdilution susceptibility testing. The wells contained 200 µL
of antimicrobial agent diluted in CAMHB (Müller-Hinton broth
supplemented with cations, 100 mg/mL calcium, and 50 mg/mL
magnesium) or 200 µL of CAMHB without drugs as positive
growth control. The biofilms were exposed to the antimicrobials
for 24 h. The cap with the pins was removed, washed three
times in PBS as described above, and transferred to 96-well
plates containing 200 µL TSB plus 2% glucose. On that occasion,
prior to discarding the plate with the antibiotics, a “naked eye”
reading was performed to determine the MIC of the antibiotics
for biofilm cells (MICB). Subsequently, the biofilm cells formed
on the cap pins were dislodged by sonication for 5 min at 40 kHz
(Hielscher, Ultrasonic Technology, UIP250MTP) in 96-well
plates containing fresh culture medium for cell recovery. The
cap with the pins was discarded and replaced with a normal cap
and optical density was measured in a plate reader equipped
with a 600-nm filter. Wells containing TSB plus 2% pure glucose
(without inoculation) were used as spectrophotometric sterility
controls. The plate was incubated for 24 h and a second optical
density measurement at 600 nm was taken. The MBCB was
defined as the lowest concentration of the drug that exhibited
a change in optical density at 600 nm of 10% of the reading
obtained for the positive growth control between the readings
performed before incubation and after 24 h. For better control
of the efficacy of the test, we used the biofilm-producing strain
S. epidermidis ATCC 35983 and the non-producing strain
S. epidermidis ATCC 12228 as controls.

Statistical Analysis
Correlation analysis between antimicrobial susceptibility and the
inhibitory concentration of the drugs for planktonic and biofilm
bacteria was performed using the Chi-squared test or Fisher’s

exact test (SPSS R© 13.0 software), adopting a level of significance
<0.05.

RESULTS

Detection of Biofilm Production by the
Polystyrene Plate Adherence Method
A total of 169 samples of S. saprophyticus isolated from patients
with UTI were used. Of these, 119 (70.4%) produced a biofilm and
88 (52.1%) were classified as strongly adherent and 31 (18.3%) as
weakly adherent.

Evaluation of Biofilm Formation With
Visualization by SEM
An S. saprophyticus isolate classified as strongly adherent in
the evaluation of biofilm production on polystyrene plates was
selected for SEM analysis of biofilm production. Figure 1 shows
the biofilm structure produced by S. saprophyticus isolated from
a case of UTI.

Evaluation of Antimicrobial Susceptibility
of Planktonic and Biofilm Cells of
S. saprophyticus
Biofilm antimicrobial susceptibility was evaluated in the 119
isolates producing biofilms on polystyrene plates. The same drugs
as those employed to evaluate antimicrobial susceptibility in
planktonic isolates for determination of MIC were used to test the
biofilm antimicrobial susceptibility by establishing the (MICB;
Table 1).

The determination of MIC in planktonic cells against the five
antimicrobials revealed that 117 (98.3%) isolates were resistant
to oxacillin, with MIC50 of 1 µg/mL and MIC90 of 2 µg/mL,
but only three isolates (2.5%) were positive for the mecA gene.
These three isolates exhibited the highest MIC (256 µg/mL),
while the other 116 showed MIC ranging from ≤ 0.25 to
2 µg/mL. In addition, 21 (17.7%) isolates were resistant to
trimethoprim/sulfamethoxazole, with MIC50 of 0.25/2.38 µg/mL
and MIC90 of 4/76 µg/mL. All isolates were susceptible to
vancomycin with MIC50 of 1 µg/mL and MIC90 of 2 µg/mL,
to norfloxacin with MIC50 of 2 µg/mL and MIC90 of 4 µg/mL,
and to ciprofloxacin with MIC50 and MIC90 of 0.25 µg/mL
(Figure 2).

Using the criteria for interpretation of susceptibility tests
recommended by the CLSI (2016) for determination of MIC in
planktonic CoNS as a guideline to evaluate the antimicrobial
susceptibility of the biofilm isolates, none of the drugs was
found to be totally effective against the biofilm isolates. Statistical
analysis of the results showed a significant increase in MICB
(p< 0.0001) for all five drugs tested in the biofilm state compared
to the planktonic forms (Figure 2).

There was a considerable increase in susceptible planktonic
isolates that became resistant in the biofilm state (Table 1). Of the
119 biofilm isolates analyzed, 28 (23.5%) exhibited intermediate
resistance or resistance to vancomycin (MICB 1 to 64 µg/mL).
All isolates were resistant to oxacillin (MICB 0.5 to 2048),
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FIGURE 1 | Scanning electron micrograph showing the biofilm structure in Staphylococcus saprophyticus. Magnification: (A) 20,000×; (B) 5,000×.

41 (34.4%) exhibited intermediate resistance or resistance to
norfloxacin (MICB 2 to 64 µg/mL), 30 (25.2%) demonstrated
intermediate resistance or resistance to ciprofloxacin (MICB
0.125 to 64 µg/mL), and 58 (48.7%) were resistant to
trimethoprim/sulfamethoxazole (MICB 0.06/1.18 µg/mL to
64/1,216 µg/mL), considering the CLSI (2016) cut-off point for
resistance in planktonic cells (Table 1 and Figure 2). Regarding
resistance to trimethoprim/sulfamethoxazole, it is important to
note that 21 (17.7%) of the 58 (48.7%) isolates resistant to MICB
were already resistant in the MIC evaluation of this drug; thus,
37 (31.1%) of the isolates changed from susceptible to resistant in
the biofilm state.

The biofilm isolates exhibited a considerable increase in MICB
when compared to the planktonic forms, with an increase of more
than 32 times in the values of some drugs. Some isolates switched
from the category of susceptible in the planktonic condition to
resistant in the biofilm state (Figure 2 and Table 2).

Regarding determination of the MBCB, there were
isolates for which the minimum bactericidal concentration
of all drugs was equal to or higher than the highest
concentration tested (Figure 3), with emphasis on norfloxacin
with 33 (27.7%) samples with MBCB > 128 µg/mL and

TABLE 1 | Comparison of drug resistance profile between planktonic and biofilm
cells of Staphylococcus saprophyticus.

Planktonic bacteria Bacteria in biofilm

Drug R (%) IR (%) R (%) IR (%)

Vancomycin 0 (0) 0 (0) 9 (7.6) 19 (16.0)

Oxacillin 117 (98.3) • 119 (100.0) •

Norfloxacin 0 (0) 0 (0) 26 (21.8) 15 (12.6)

Ciprofloxacin 0 (0) 0 (0) 24 (20.2) 6 (5.0)

Trim/Sut 21 (17.7) • 58 (48.7) •

•, Drugs without intermediate resistance MIC; R, resistant; IR, intermediate
resistance; Trim/Sut, trimethoprim/sulfamethoxazole.

trimethoprim/sulfamethoxazole with 36 (30.2%) samples with
MBCB > 128/2,432 µg/mL.

DISCUSSION

The formation of bacterial biofilms is the basis of many persistent
infectious diseases. This persistence is attributed mainly to the
increased antibiotic resistance of biofilm cells (Mah, 2012).

The MIC has been used as a gold standard to determine
the antimicrobial susceptibility of pathogenic bacteria (Costerton
et al., 1995). When MIC determination reveals that the drug is
not effective in inhibiting the growth of a given organism, the
drug in question will not be used for the treatment of infection
because it will be clinically ineffective (Potera, 1999). However,
if a microorganism is considered susceptible in vitro, it does
not necessarily mean that the drug will have the same effect
in vivo (Pratt and Kolter, 1999; Mendoza-Olazarán et al., 2015;
Algburi et al., 2017). In routine clinical laboratories, antimicrobial
susceptibility testing for antibiotic selection continues to be
performed using planktonic cells, a fact that impairs evaluation
of the efficacy of the antimicrobial tested since these bacteria are
protected by the biofilm in the patient and the response will not
be the same as obtained in the tests.

The determination of MIC to evaluate the susceptibility of
planktonic S. saprophyticus cells revealed that most samples
were susceptible to the antibiotics tested. Regarding oxacillin
resistance, 98.3% of the planktonic cells were resistant in the
microdilution test, but only three isolates were positive for the
mecA gene. The three samples that were positive for the mecA
gene showed the highest MIC (256 µg/mL) and the remaining
116 had MIC ranging from ≤ 0.25 to 2 µg/mL. Similar results
have been reported in other studies and might be due to the
fact that the breakpoint recommended by the CLSI overestimates
resistance in this species (Ferreira et al., 2012).

In general, the antibiotics tested proved to be ineffective in
S. saprophyticus biofilms as resistant isolates were found for all
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FIGURE 2 | Minimum inhibitory concentration (MIC) in planktonic cells of
Staphylococcus saprophyticus, minimum inhibitory concentration in biofilm
(MICB), and minimum bactericidal concentration in biofilm (MBCB). (A) MIC
50 (µg/mL); (B) MIC 90 (µg/mL); (C) MBCB.

drugs tested. This is a matter of concern because high doses of
antibiotics would be necessary to eliminate these microorganisms
organized in biofilms, which is clinically impractical. Biofilm

cells may be more resistant to antibiotics because the bacteria
are protected against the action of the drugs, with the biofilm
impairing the entry of molecules by acting as a physical barrier for
diffusion. In addition, biofilm cells have reduced metabolic and
growth rates and the biofilm matrix can adsorb or react with the
antibiotics, thereby reducing the amount of antibiotics available
to interact with cells in the biofilm. Another possibility is that the
biofilm cells are tolerant to antibiotics. Hence, treatment may lead
to the eradication of most part of the biofilm population, but a
fraction of persistent cells is not affected and thus acts as a nucleus
for reinfection after therapy discontinuation (Lewis, 2012).

The microorganisms inside a biofilm express different
phenotypic characteristics when compared to their free-living
homologs. In a study investigating whether the antibiotic
resistance genes aac6-aph2a, ermC, and tetK, which confer
resistance to gentamicin, erythromycin and tetracycline, are
likely to be disseminated via conjugative transfer, Águila-Arcos
et al. (2017) searched for horizontal transfer genes from two
common staphylococcal plasmids, (i) conjugative pSK41 and
(ii) mobilizable pT181, in 25 staphylococcal biofilm-forming
clinical isolates belonging to the species S. aureus, S. epidermidis,
S. hominis, and S. capitis. Both horizontal transfer and antibiotic
resistance genes were detected in these staphylococcal isolates.
Therefore, biofilms represent a hot spot for horizontal gene
transfer by bacterial conjugation. This horizontal gene transfer
is important for the genetic diversity of microbial communities
and favors the exchange of genes that can contribute to the
chronic nature of infections (Vuotto et al., 2014). The detection
of horizontal transfer and antibiotic resistance genes in these
clinical staphylococcal strains isolated from biofilms points to
the potential risk of the development and dissemination of
multidrug-resistant bacteria.

The most commonly prescribed antibiotics for the treatment
of UTIs are trimethoprim/sulfamethoxazole, fluoroquinolones
(ciprofloxacin or norfloxacin), first and second generations of
cephalosporins, amoxicillin + clavulanate, and nitrofurantoin
(Lee et al., 2008). In the present study, 17.7% of the samples
were already resistant to trimethoprim/sulfamethoxazole in the
evaluation of planktonic MIC, while 48.7% of the biofilm samples
were resistant. In addition, 31.1% of the samples changed
from susceptible to resistant in the biofilm state, an alarming
finding considering that the trimethoprim/sulfamethoxazole
combination is considered the first-line drug for the treatment
of uncomplicated UTIs (Drekonja and Johnson, 2008). Thus,
the frequent use of the drug in empirical therapy is associated
with an increase in the clinical failure rate, especially if the
microorganism grows in biofilms, as observed in the present
study.

The administration of fluoroquinolones is recommended
for uncomplicated UTIs in areas where the incidence of
trimethoprim/sulfamethoxazole resistance is higher than 10%,
as well as for the treatment of complicated UTIs and acute
pyelonephritis (Blondeau, 2004). Fluoroquinolones have been
successfully used to treat a wide range of community-acquired
and hospital-acquired infections, and rates of resistance to
fluoroquinolones remain low (Oliveira et al., 2016). In fact,
in the present study, all planktonic samples were susceptible
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TABLE 2 | Variation of the increase in MIC and change of the category from susceptible to resistant in relation to planktonic cells and in biofilm.

2X (%) 4X(%) 8X(%) 16X(%) 32X(%) 64X(%) 128X(%) 256X (%) S-I(%) S-R(%)

Vancomycin 59 (49.5) 32 (26.9) 10 (8.4) 9 (7.6) 7 (5.9) 2 (1.7) – – 19 (16.0) 9 (7.6)

Oxacillin 71 (59.7) 21 (17.6) 9 (7.6) 8 (6.7) 7 (5.9) 2 (1.7) 1 (0.8) – • 2 (1.7)

Norfloxacin 83 (69.7) 10 (8.4) 7 (5.9) 10 (8.4) 9 (7.6) – – – 15 (12.6) 26 (21.8)

Ciprofloxacin 57 (47.9) 27 (22.7) 11 (9.3) 3 (2.5) 5 (4.2) 6 (5.0) 5 (4.2) 5 (4.2) 6 (5.0) 24 (20.2)

Trim/Sut 28 (23.5) 28 (23.5) 14 (11.8) 14 (11.8) 13 (10.9) 7 (5.9) 7 (5.9) 8 (6.7) • 37 (31.1)

•, Drugs without intermediate resistance MIC; X, Number of times MIC increased in biofilm samples; S-I, susceptible-intermediate: percentage of isolates with intermediate
resistance only in the presence of the biofilm; S-R, susceptible-resistant: percentage of isolates that were resistant only in the presence of the biofilm; Trim/Sut,
trimethoprim/sulfamethoxazole.

FIGURE 3 | Profile of (MBCB) of Staphylococcus saprophyticus.

to norfloxacin and ciprofloxacin, however, the same was not
observed for the biofilm samples, with 34.4% of the isolates
exhibiting intermediate resistance or resistance to norfloxacin
and 25.2% exhibiting intermediate resistance or resistance to
ciprofloxacin. The presence of the biofilm increased the MIC
by two, four, eight and up to 32 times the values obtained for
some drugs, with some samples switching from the category of
susceptible in the planktonic condition to resistant in the biofilm
state. This phenomenon was more frequently observed for
norfloxacin, ciprofloxacin, and trimethoprim/sulfamethoxazole.

Oliveira et al. (2016) evaluated the MIC for planktonic and
biofilm cells of Staphylococcus spp. comparing six drugs, and
observed a two-, four-, eight-, and up to 16-fold increase of
MIC in the presence of the biofilm compared to planktonic
cells, mainly for the drugs vancomycin and erythromycin. In
that study, among the 20 S. saprophyticus isolates studied, no
planktonic samples were resistant to vancomycin and linezolid.
However, regarding the MICB, the percentage of samples that
moved from susceptible to resistant or intermediate resistant was
53.8% for vancomycin and 30.8% for erythromycin. The authors
also observed that S. haemolyticus, S. hominis, S. warneri, and

S. lugdunensis isolates did not exhibit much variation of MIC in
the presence of the biofilm, probably because these species are
poor biofilm producers.

Regarding determination of MBCB in the present study, there
were isolates for which the MBCM of all drugs was equal to
or higher than the highest concentration tested. The results
corroborate the observation that microorganisms susceptible
to certain antimicrobials in conventional laboratory tests may
be highly resistant to the same antimicrobials when grown in
biofilms. Consequently, infectious diseases involving biofilms are
generally difficult to treat. Bacterial biofilms play an important
role in UTIs, being responsible for persistent infections that lead
to recurrences and relapses (Delcaru et al., 2016).

Studies have demonstrated the importance of bacterial biofilm
formation in UTIs, particularly chronic cystitis and catheter-
associated infections (Hancock et al., 2007). Urinary catheters
and other prosthetic devices predispose to UTIs by serving as
a substrate for biofilm formation, carrying a higher bacterial
burden and increasing the risk of epithelial adhesion.

The finding that S. saprophyticus isolates can produce biofilms,
in addition to the observation of resistance to the antimicrobial
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agents when these microorganisms were grown in biofilms,
suggests that biofilm formation is a very important virulence
factor for S. saprophyticus, which permits this species to establish
persistent UTIs. This study demonstrated that the severity of
UTIs depends not only on the susceptibility of the microorganism
to the antibiotics commonly used for treatment, but also on the
virulence of the bacteria. Biofilm production by S. saprophyticus
and its role in UTIs remain poorly studied. Treatment of this
infection is usually simple and rapid, however, if not treated
correctly with efficient antimicrobials, progression to much more
severe infection of the kidneys (pyelonephritis) may occur that
can lead to generalized infection, renal abscesses, and loss of
kidney function. No data are available correlating the inefficacy
of antibiotics in the treatment of UTIs with the biofilm formation
by S. saprophyticus or any other species. However, the results of
the present study show that more attention should be given to
this virulence factor in S. saprophyticus and to the antimicrobial
treatments used since in vitro biofilm formation decreases the
susceptibility of the microorganisms to the antibiotics tested. The
results of conventional antimicrobial susceptibility tests (MIC)
cannot be applied to microorganisms grown in biofilms as the
antimicrobials tested were unable to eradicate biofilm-bound
bacteria. This was clearly demonstrated in the present study.

CONCLUSION

The present study shows that biofilm production is a successful
strategy for the microbial survival of S. saprophyticus and

should be taken into account in the treatment of UTIs that do
not consistently respond to therapeutic concentrations, as the
response to antimicrobials may be impaired in bacterial biofilms.
This virulence factor may increase the survival capacity of the
pathogen during the treatment of infection with antimicrobial
agents.
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Acinetobacter baumannii is a notorious pathogen in health care settings around the

world, primarily due to high resistance to antibiotics. A. baumannii also shows an

impressive capability to adapt to harsh conditions in clinical settings, which contributes

to its persistence in such conditions. Following their traditional role, the Two Component

Systems (TCSs) present in A. baumannii play a crucial role in sensing and adapting to the

changing environmental conditions. This provides A. baumannii with a greater chance

of survival even in unfavorable conditions. Since all the TCSs characterized to date in

A. baumannii play a role in its antibiotic resistance and virulence, understanding the

underlying molecular mechanisms behind TCSs can help with a better understanding

of the pathways that regulate these phenotypes. This can also guide efforts to target

TCSs as novel drug targets. In this review, we discuss the roles of TCSs in A. baumannii,

their molecular mechanisms, and most importantly, the potential of using small molecule

inhibitors of TCSs as potential novel drug targets.

Keywords: two-component systems, PmrAB, AdeRS, BfmRS, stress

INTRODUCTION

Acinetobacter baumannii is a Gram-negative coccobacillus, which is an important opportunistic
human pathogen that causes hospital-acquired infections (Peleg et al., 2008a, 2012; Visca
et al., 2011; Wong et al., 2017). Clinical importance of A. baumannii is emphasized
by the fact that it is listed by the WHO as the “top priority” pathogen that urgently
need novel and effective therapeutic options (http://www.who.int/medicines/publications/WHO-
PPL-Short_Summary_25Feb-ET_NM_WHO.pdf). The success of A. baumannii in hospital
environments can be mainly attributed to its ability to display multi-drug resistant phenotypes
due to the rather robust acquisition of antibiotic resistance mechanisms (Dijkshoorn et al., 2007;
Antunes et al., 2014). These include antibiotic modifying enzymes, decreased permeability to
antibiotic molecules, and efflux pumps that extrude the antibiotic molecules out to the periplasm
and beyond (Gordon and Wareham, 2010; Lee et al., 2017).
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Multi- and pan-drug resistance in A. baumannii is an
alarming development for healthcare facilities around the world
(Rodriguez-Bano et al., 2004; Agodi et al., 2010; Sievert et al.,
2013; Labarca et al., 2016). As a result, some infections caused
by multi-drug resistant A. baumannii have become virtually
untreatable with our current arsenal of antibiotics (Maragakis
and Perl, 2008). Further, without any new antibiotics for Gram-
negative bacteria, such as A. baumannii in the developmental
pipeline, we are on the verge of a post-antibiotic era where even
a minor infection could have lethal consequences for the patient
(Xie et al., 2018).

Apart from its multidrug resistance, the success of A.
baumannii can also be attributed to its ability to survive
and persist in the harsh conditions found within hospital
environmental niches (Jawad et al., 1998; Rajamohan et al., 2010).
Constant and prolonged exposure to antiseptics and desiccating
agents, endurance of less than optimal temperatures, and sudden
changes of the environmental and nutritional conditions when
transferred into the human body from an abiotic surface are
some of the challenges that A. baumannii faces in its role as
an opportunistic human pathogen. Therefore, in order to be a
successful pathogen, A. baumannii needs to sense and adapt to
these changes in an efficient and timely manner.

Signal transduction mechanisms in bacteria play a crucial role
in adapting to environmental changes. TCSs are one of the most
ubiquitous signal transduction systems present in bacteria that
help them sense and adapt to the environmental conditions (Alm
et al., 2006; Wood et al., 2018). TCSs therefore play a role in
bacterial adaptive responses which can lead to the modulation
of their antibiotic susceptibility and virulence. Consequently,
these systems are vital to study in order to understand the
mechanisms of antibiotic resistance and virulence in bacteria
(Poole, 2012; Kroger et al., 2016; Schaefers et al., 2017; Kenney,
2018; Lingzhi et al., 2018). Further, TCSs can also serve as
an attractive target when developing anti-virulence therapeutics
(Gotoh et al., 2010b). In this review, we describe the roles of
TCSs in the resistance and virulence of A. baumannii and their
potential to be used as novel therapeutic targets.

TWO COMPONENT SYSTEMS (TCSs)

TCSs are the most widespread signal transduction system present
in bacteria and archaea (Stock et al., 2000). Typically, a TCS
consists of two components, a histidine kinase (HK) and a
response regulator (RR) (Figure 1). A high level of specificity
with the HK and the RR is observed within the TCSs of a bacterial
cell (Szurmant et al., 2007). However, there are instances where a
single HK protein can have multiple cognate RR proteins (Lopez-
Redondo et al., 2010) or when a single RR protein can be activated
by multiple HK proteins (Laub and Goulian, 2007). Since their
first description in 1986 (Nixon et al., 1986), an enormous
amount of both HK and RR proteins have been discovered
and characterized in a wide variety of bacteria (Whitworth and
Cock, 2009). It is estimated that an average bacterial genome
can contain up to 50–60 TCS-encoding genes (Whitworth, 2008;
Whitworth and Cock, 2008; Wuichet et al., 2010). Given the

advancement in bioinformatics and next generation sequencing
techniques, specific databases dedicated to TCSs have become
available that provide valuable information about these proteins
(Ulrich and Zhulin, 2007; Barakat et al., 2011).

The TCSs in bacterial systems have implications for a wide
variety of regulatory functions relating to sensing and adapting to
their environment. In pathogenic bacteria, these functions often
include but are not limited to antibiotic susceptibility modulation
and virulence-related phenotypes, such as biofilm formation and
motility (Tiwari et al., 2017).

TCSs IN Acinetobacter baumannii

An overview of various genomes of well-characterized A.
baumannii clinical isolates show the presence of close to 20
different genes/operons that encode for TCSs (Table 1). Most
of these genes and operons have a high degree of conservation
at nucleotide level, indicating that they may be involved in the
important functions. However, as mentioned above, the effector
domains of A. baumannii RR proteins can be quite diverse
which is shown in Figure 2. Below we describe the TCSs in A.
baumannii that have been characterized to date.

AdeRS
AdeRS is the first characterized and also the most studied TCS
in A. baumannii. It was first described in a clinical strain A.
baumannii BM4454, when the inactivation of adeS resulted
in an increased susceptibility to aminoglycosides due to the
downregulation of the RND efflux pump AdeABC (Marchand
et al., 2004) (Figure 3). Since it was first identified, a number
of mutations in either adeR, adeS, or both have been shown to
be directly responsible for the overexpression of the AdeABC
pump (Ruzin et al., 2007; Yoon et al., 2013; Sun et al., 2016).
Considering AdeRS system’s role in the expression of AdeABC,
it can be said that it plays a role in the susceptibility of A.
baumannii to antibiotics that are substrates of the AdeABC
pump. Further, the overexpression of AdeABC efflux pump has
been associated with the decreased susceptibility to tigecycline
observed in some clinical isolates of A. baumannii (Sun et al.,
2014; Yuhan et al., 2016) thus implicating an indirect role of
AdeRS in the susceptibility toward tigecycline. This is important
since tigecycline is one of the last resort antibiotics for the
treatment of multidrug resistant A. baumannii infections (Ni
et al., 2016). However, there needs to be further investigations
into this due to the possibility of involvement of other factors for
the observed tigecycline susceptibility (Yoon et al., 2013).

Recent transcriptomics data suggest that the role of AdeRS
extends well-beyond the expression of AdeABC efflux pump. A
study in A. baumannii AYE showed that AdeRS controls the
expression of almost 600 different genes (Richmond et al., 2016).
Products of a number of these genes are believed to play a role
in virulence, biofilm formation and multi drug efflux activity.
However, deletion of adeB in the same strain resulted in similar
phenotypes as deletion of adeRS. This suggests that at least some
phenotypic changes observed upon the adeRS deletion may be a
result of the decreased expression of the AdeABC efflux pump
(Richmond et al., 2016).
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FIGURE 1 | Schematic diagram showing the cellular architecture of a typical two-component regulatory system as well the mechanism of phosphotransfer between

two components (modified with permission from Springer Nature Du et al., 2018. A prototypical TCS, comprised of a membrane-bound sensory histidine kinase (HK)

and a cytosolic response regulator (RR) protein, is shown. The basic mechanism of a TCS involves the HK sensing the environmental changes and relaying the

message to the RR effectively through phosphorelays to initiate the necessary response. HK proteins, usually dimers, possess several conserved domains that are

essential for their function, such as dimerization and histidine phosphotransfer (DHp) domain and catalytic ATP binding (CA) domain which make up the catalytic core

of the HK (Bhate et al., 2015). The H-box containing the conserved histidine residue, that gets phosphorylated, is located in the DHp domain (Casino et al., 2009,

2010). The CA domain binds ATP and phosphorylates the histidine residue, thus initiating the HK autophosphorylation (Zschiedrich et al., 2016). The DHp and CA

domains are conserved among all HK proteins and the sensory domains are variable conferring specificity of signal recognition. The phosphoryl group from the H-box

of the HK is ultimately transferred to a conserved aspartate residue of the receiver (REC) domain of the cognate RR thus activating the RR (Yamamoto et al., 2005).

While the REC domain is highly conserved, the effector domains of RR display variability conferring specificity to the protein (Zschiedrich et al., 2016). Following its

activation, dephosphorylation of the RR is critical to maintain the efficient regulatory capacity of the TCSs (Kenney, 2010). This is achieved through the phosphatase

activity of the HK (Hsing and Silhavy, 1997).

The multifaceted regulon of AdeRS remains to be explored
further, especially in clinically relevant phenotypes of A.
baumannii. Further, environmental signals that activate the
sensor kinase, AdeS, remain mostly unknown. However,
we recently uncovered evidence that AdeRS system maybe
responding to the NaCl concentrations in the growth medium
(De Silva and Kumar, 2017). This work links adaption to
environmental conditions, such as NaCl concentration to
antibiotic susceptibility (as a result of expression of the AdeABC
pump) as well as virulence factors, such as biofilm formation and
surface-associated motility. It is therefore obvious that AdeRS
plays a role in the antibiotic susceptibility of A. baumannii but
also possibly in its virulence. However, it’s role in antibiotic
susceptibility and virulence is likely to be more strain-specific,
as it is not uncommon to find disrupted copies of adeRS genes
in clinical isolates of A. baumannii, such as LAC-4 and AB031
(Table 1).

BaeSR
BaeSR, named such because of its homology with an E. coli
TCS (Leblanc et al., 2011), mediates a possible “cross–talk” with
other TCSs. It has been shown to regulate overlapping regulons
with other TCSs in A. baumannii. BaeSR was initially thought
to be associated with the regulation of AdeABC RND efflux
pump expression (Lin et al., 2014) (Figure 3). This is indicative
of a possible cross–talk between BaeSR and AdeRS. Further
investigations into the BaeSR revealed that it may also modulate
the expression of AdeIJK and MacAB-TolC efflux pumps (Henry
et al., 2012). However, efforts to determine the DNA binding
sites in the promoters corresponding to the observed target
genes remain unsuccessful, leaving room for further explorations
(Lin et al., 2015). A phenotypic microarray screen revealed
that the deletion of baeR resulted in reduced tolerance of A.
baumannii to tannic acid (Lin et al., 2015), a diverse group of
natural antibacterial compound (Henis et al., 1964). Tannic acids
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has been used as a topical agent in burn patients (Hupkens
et al., 1995) as they display effective antibacterial activity
against various bacteria, including E. coli, Staphylococcus aureus,
Staphylococcus epidermidis, Salmonella spp. etc (Kim et al., 2016).
Tannic acid has also been shown to inhibit biofilm formation
in Staphylococcus aureus (Payne et al., 2013). In A. baumannii,
Tannic acids are being explored as adjuvants for antimicrobial
therapy. They were shown to synergize the activity of novobiocin,
rifampicin, and fusidic acid against MDR A. baumannii (Chusri
et al., 2009). However, the role of BaeSR TCS in tannic acid as
well as the expression of efflux pumps controlled by BaeSR will
have to be considered to in order to explore the clinical usage of
tannic acid as an adjuvant therapy options against A. baumannii.

Studies on the environmental signals that BaeSR responds
to remain limited. However, expression of baeR and baeS in
A. baumannii is induced by sucrose (20% w/v) (Lin et al.,
2014), suggesting that BaeSR may be involved in A. baumannii’s
response to osmotic stress.

PmrAB
A. baumannii’s resistance to commonly used antibiotics has led
to an increased use of “last resort” antibiotics, such as colistin
(Karaiskos et al., 2017; Jiménez-Guerra et al., 2018). As a result,
emergence of colistin resistance is becoming more common in A.
baumannii (Cai et al., 2012; Lean et al., 2015). Investigations into
the mechanisms of resistance to colistin in A. baumannii have
revealed the involvement of PmrAB resistance (Park et al., 2011;
Rolain et al., 2013), named so for its role in polymixin (Figure 3).
PmrAB has been described in various Gram-negative pathogens
including E. coli (Quesada et al., 2015), Salmonella enterica
(Gunn, 2008), Klebsiella pneumoniae (Cheng et al., 2010), and
Pseudomonas aeruginosa (Lee and Ko, 2014) and has been
shown to have a similar function colistin resistance. Observations
of mutations in both pmrA (RR) and pmrB (HK) leading
to decreased susceptibility to colistin presented preliminary
evidence of the connection between PmrAB and colistin
susceptibility in A. baumannii (Adams et al., 2009). Further,
both colistin-resistant clinical isolates as well as laboratory
generated spontaneous mutants showed phosphoethanolamine
modification of lipid A of lipopolysaccharide (LPS) within the
outer membrane (Arroyo et al., 2011; Beceiro et al., 2011). The
modification of lipid A is mediated by PmrC which is generally
part of the same operon as pmrAB (Raetz et al., 2007). PmrC can
add phosphoethanolamine to either 4

′

or 1
′

phosphate of lipid
A (Da Silva and Domingues, 2017). This modification of LPS
results in a positively charged phosphate groups and prevents
the binding of the cationic colistin (Tamayo et al., 2005a,b;
Arroyo et al., 2011). Mutations in both pmrA and pmrB cause
the overexpression of the pmrCAB operon.

Observations that low pH or supplementation of Fe3+ in the
growth medium (Adams et al., 2009) lead to colistin resistance
may suggest that PmrB could be responding to those signals
(Gunn, 2008). However, growth of A. baumannii under low
pH or in iron supplemented growth media failed to alter
the expression of pmrA (Adams et al., 2009). Therefore, the
environmental signals to which PmrAB responds to in A.
baumannii remain elusive.
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FIGURE 2 | Schematic diagram of the conserved domains of all the response regulators of A. baumannii ATCC17978 as determined by a ScanProsite (de Castro

et al., 2006). The figure depicts the receiver domain (orange) and the different effector domains identified by ScanProsite (Lux_R type HTH domain in green, LytTR

type HTH domain in red, OmpR_PhoB type DNA binding domain in violet, Sigma-54 interaction domain in purple, and ANTAR domain in yellow). Most abundant

effector domain was the OmpR_PhoB type DNA binding domain which was present in seven response regulators followed by the Lux_R type HTH domain which was

present in three response regulators. The other three types of effector domains were exclusive to single response regulators. The numbers in parenthesis refer to the

PROSITE accession numbers of the respective domains. The hybrid sensor kinase A1S_2811 was not included in the figure due to the lack of a distinct response

regulator protein.

GacSA
GacSA is a TCS that is well-characterized in Pseudomonas
sp. (Gooderham and Hancock, 2009). GacSA in A. baumannii
ATCC19606 was identified when the transposon insertions in
the gacS sensor kinase gene rendered the mutants incapable of
utilizing citrate as the sole carbon source (Dorsey et al., 2002).
This suggests that GacSA is involved in citrate metabolism.

Since the initial characterization of GacSA in A. baumannii
ATCC19606, a number of subsequent studies have carried out
the functional characterization of GacSA TCS in A. baumannii
ATCC17978. Interestingly, in A. baumannii ATCC17978, the
gacS gene is not linked to the response regulator-encoding
gene. Rather, it has both a HisKA domain and a REC domain
suggesting that it could function as a hybrid sensor kinase.
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FIGURE 3 | Summary of the characterized TCSs in A. baumannii. Functions of each of the characterized TCSs in A. baumannii (AdeRS, BaeSR, PmrAB, GacSA,

BfmRS, and A1S_2811) as well as their known stimuli are depicted.

Although, there is also a possibility that in A. baumannii
ATCC17978, the response regulator for GacS is encoded
elsewhere in the genome. This indicates that the organization of
the gacSA genes may vary from strain to strain in A. baumannii.

In addition to the initially observed metabolic role of gacS,
a transposon mutant with a disrupted gacS gene displayed
significantly reduced A. baumannii’s ability to inhibit Candida
albicans (Peleg et al., 2008b). gacS deletion mutant also displayed
attenuated virulence in a mouse infection model (Cerqueira
et al., 2014). Deletion of gacS also led to the revelation of its
involvement in a number of other virulence related functions.
These include control of pili synthesis, motility, and biofilm
formation, resistance against human serum, and metabolism
of aromatic compounds (Cerqueira et al., 2014) (Figure 3).
GacSA is involved in the regulation of the aromatic compound
catabolism through the paa operon that encodes the components
of the phenylacetic acid catabolic pathway. The paa gene cluster
is significantly downregulated in the gacSA deletion mutants
which may explain their attenuated virulence in a mouse
septicaemia model (Cerqueira et al., 2014). The attenuated
virulence of gacSA deletion mutants was observed in a later
study involving a zebra fish virulence model as well (Bhuiyan
et al., 2016) adding to the repertoire of studies that suggest
that GacSA may function as a global virulence regulator in A.
baumannii.

BfmRS
Biofilm formation is an important virulence factor of pathogens,
such as A. baumannii that helps them survive harsh conditions
present in hospital environments. The ability of A. baumannii
to form biofilms starts with its attachment to surfaces that is
mediated by the expression of pili. The expression of pili is

mediated by the csu operon in A. baumannii and is under the
regulatory control of BfmRS (Tomaras et al., 2008). Deletion
of the response regulator bfmR in A. baumannii ATCC19606
resulted in the complete abolishment of biofilm formation
(Tomaras et al., 2008) (Figure 3). While of the role of csu operon
in the attachment of A. baumannii on abiotic surfaces is well-
established (Tomaras et al., 2003; Moon et al., 2017; Pakharukova
et al., 2018), its role in the adherence of A. baumannii to
human epithelial cells remains ambiguous. It was observed that
A. baumannii ATCC19606 strain lacking csuE in fact adhered
to bronchial epithelial cells better than the wild-type parent
making the role pili in adherence to epithelial cells unclear
(de Breij et al., 2009). It is possible that this was a strain
specific outcome and further investigations are required to draw
definitive conclusions.

In addition to regulating biofilm formation, BfmRS also plays
a role in regulating the exopolysaccharide production (Geisinger
et al., 2018). Exopolysaccharides play an important role in
virulence ofA. baumannii as they are a component of the capsule,
which protectsA. baumannii against serum killing and increasing
the virulence in animal models. Further, antibiotic exposure leads
to an increase in capsule production in A. baumannii mediated
by increased expression of genes in K-locus, which in turn is
regulated by the BfmRS system (Geisinger and Isberg, 2015).

Crystal structure of BfmR shows that it binds to its own
promoter with higher affinity in an inactive (dephosphorylated)
state compared to the active (phosphorylated) state (Draughn
et al., 2018). This is unusual behavior highlights a unique self-
regulation strategy of BfmRS system Therefore, BfmRS system
is an excellent candidate to study not only the mechanisms
that regulate virulence factors in A. baumannii but also the
functioning of the TCSs systems in general.
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A1S_2811
A1S_2811 is a recently characterized hybrid sensor kinase
possessing four histidine–containing phosphotransfer domains
as well as a regulatory CheA-like domain and a CheY-
like receiver domain (Chen et al., 2017). CheA and CheY
homologs in E. coli and P. aeruginosa are associated with
regulatory roles in controlling motility via regulating either
pili or flagella (Li et al., 1995; Alon et al., 1998; Bertrand
et al., 2010). Interestingly, in A. baumannii, this hybrid
sensor kinase is expressed in an operon composed of five
genes where the four other genes upstream are pilJ, pilI,
pilH, and pilG. Phenotypic analysis of the deletion mutant
of A1S_2811 revealed a significant reduction in surface
motility and biofilm formation at the gas-liquid interface.
More intriguingly, abaI, which encodes a N-acylhomoserine
lactone involved in quorum sensing, was also significantly
downregulated. Supplementation with synthetic homoserine
lactone complemented the biofilm and motility phenotypes
(Figure 3). This suggests that A1S_2811 regulates biofilm
formation and surface motility through an AbaI-associated
quorum sensing pathway rather than the conventional pili
associated pathway (Chen et al., 2017). This is in contrast to
the BfmRS mediated regulon controlling biofilm formation in
A. baumannii. Association of both BfmRS and A1S_2811 with
biofilm formation is also an example of one phenotype being
under the control of multiple regulatory networks formed by
different TCSs.

TCSs AS POTENTIAL NOVEL DRUG
TARGETS IN BACTERIAL PATHOGENS

Given the important role that TCSs play in regulating
the clinically-relevant phenotypes (virulence and/or antibiotic
resistance) of bacterial pathogens, it has been proposed that
targeting them therapeutically can offer an alternate treatment
strategy againstmultidrug resistant pathogens (Barrett andHoch,
1998; Stephenson and Hoch, 2002a,b, 2004; Gotoh et al., 2010b;
Cardona et al., 2018). TCSs in A. baumannii as well as other
organisms offer promise as novel drug targets because of a
number of reasons; (i) their conserved nature among bacteria,
(ii) their involvement in modulating antibiotic resistance and

virulence phenotypes, (iii) their absence in mammalian cells thus
reducing off–target toxicity, (iv) lesser potential of resistance
development, as the focus of the approach is to supress
virulence and/or antibiotic susceptibility rather than killing the
cells. It is therefore not all that surprising that TCSs from
different organisms have been studied as potential therapeutic
targets. Table 2 summarizes a few examples of the use of
TCSs inhibitors used in bacterial pathogens other than A.
baumannii.

POTENTIAL OF TCSs AS NOVEL DRUG
TARGETS IN A. baumannii

In A. baumannii, small molecule inhibitors, such as 2-
aminoimidazole compounds have shown great promise
in inhibiting the action of both PmrA and BfmR. The 2-
aminoimidazole-based adjuvants used in combination with
colistin were able to reverse colistin resistance in A. baumannii
clinical isolates through inhibiting PmrAB and thereby
abolishing the lipid A modification (Brackett et al., 2016).
A promising feature of this strategy was that no resistance
toward the PmrAB inhibitor was observed during the testing
period of 7-days (Harris et al., 2014). Yet another example
is the use of small molecule 2-aminoimidazole derivatives to
inhibit the functions of BfmR (Thompson et al., 2012), such
as biofilm formation (Milton et al., 2018). However, as with
any other small molecule inhibitor, the cytotoxicity of the
compounds used against PmrAB and BfmRS remains to be
determined before the inhibitors could be deployed in a clinical
setting.

Preliminary findings on the inhibition of BfmRS and PmrAB
system are encouraging. In addition, AdeRS, A1S_2811, or
GacSA can potentially be explored as therapeutic targets because
of the important role they have been shown to play in the
antibiotic resistance and virulence of A. baumannii.

CHALLENGES IN TARGETING TCSs FOR
THERAPUTICS

Despite the fact that the investigations of the TCSs show an
increasing amount of information being uncovered during the

TABLE 2 | A brief summary of the examples of using TCS inhibitors as a therapeutic option in bacterial pathogens other than A. baumannii.

TCS Organism(s) Inhibitor Inhibitory action References

AlgR1/AlgR2 Pseudomonas aeruginosa Thiazole derivatives Inhibition of AlgR1 phosphorylation and AlgR2

kinase activity

Roychoudhury et al., 1993

WalKR Staphylococcus aureus

Bacillus subtilis

Walkmycin B

Waldiomycin

Inhibition of autophosphorylation of WalK Okada et al., 2010; Igarashi et al., 2013

Walrycin A

Walrycin B

Inhibition of phosphotransfer from WalR Gotoh et al., 2010a

QseCB Enterohemorrhagic E. coli

(EHEC)

LED209 Inhibition of autophosphorylation of QseC Rasko et al., 2008

PhoPQ Salmonella sp. Radicicol Activity against PhoQ Guarnieri et al., 2008

VanSR Enterococcus faecium Thiazole derivatives Inhibition of phosphotransfer to VanR Ulijasz and Weisblum, 1999
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recent years, the majority of these efforts have focused on the
cellular functions carried out by TCSs. This has left a void of
information about the environmental signals that act as a trigger
for the histidine kinase stimulation. The proposed stimuli for
the already characterized TCSs are limited to osmotic stress for
BaeSR (Lin et al., 2014), monovalent cations for AdeRS (De Silva
and Kumar, 2017); and possibly low pH and Fe3+ for PmrAB
(Gunn, 2008; Adams et al., 2009). Uncovering the environmental
stimuli that activate a TCS response is critical in understanding
the molecular pathways that are used for gene regulation by a
particular TCS. These pathways can then be better exploited to
render A. baumannii non-virulent and/or antibiotic susceptible.
However, it is often difficult to determine these signals due
to an array of practical reasons including, but not limited to,
the potential ability of sensor kinases to detect multiple stimuli
and difficulty in expressing, purifying, and experimenting with
histidine kinase proteins in vitro in their natural conformations.

CONCLUSIONS AND FUTURE
PERSPECTIVES

It is evident that the characterized TCSs present in A. baumannii
are responsible for controlling a number of antibiotic resistance
and virulence associated phenotypes, which contribute to the
success of this organism as a human pathogen. Research on

TCSs in A. baumannii has extended our knowledge on virulence
and resistance mechanisms in this organism over the last few
years. However, there is still a considerable knowledge gap in
comprehensive understanding of the complete TCS regulatory
networks. Nonetheless, TCSs present themselves as potential
targets for drug design and the use of 2-aminoimidazole
compounds is are encouraging. A better characterization of these
systems both genetically and functionally is key for the potential
use of TCS as therapeutic targets.
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Objectives: Understanding how phenotypic traits vary has been a longstanding goal of
evolutionary biologists. When examining antibiotic-resistance in bacteria, it is generally
understood that the minimum inhibitory concentration (MIC) has minimal variation
specific to each bacterial strain-antibiotic combination. However, there is a less studied
resistance trait, the mutant prevention concentration (MPC), which measures the MIC
of the most resistant sub-population. Whether and how MPC varies has been poorly
understood. Here, we ask a simple, yet important question: How much does the
MPC vary, within a single strain-antibiotic association? Using a Staphylococcus species
and five antibiotics from five different antibiotic classes—ciprofloxacin, doxycycline,
gentamicin, nitrofurantoin, and oxacillin—we examined the frequency of resistance for a
wide range of concentrations per antibiotic, and measured the repeatability of the MPC,
the lowest amount of antibiotic that would ensure no surviving cells in a 1010 population
of bacteria.

Results: We found a wide variation within the MPC and distributions that were rarely
normal. When antibiotic resistance evolved, the distribution of the MPC changed, with
all distributions becoming wider and some multi-modal.

Conclusion: Unlike the MIC, there is high variability in the MPC for a given bacterial
strain-antibiotic combination.

Keywords: antibiotic resistance, selection, Staphylococcus epidermidis, repeatability, replication

INTRODUCTION

The increase in antibiotic-resistant bacteria is globally an urgent public health issue (Dijkshoorn
et al., 2007; Nordmann et al., 2007; Davies and Davies, 2010; Brusselaers et al., 2011; Bush et al.,
2011; Morehead and Scarbrough, 2018). The minimum inhibitory concentration (MIC), defined as
the lowest concentration of an antimicrobial agent that inhibits growth of the wild type population,
assuming no mutations, by 99% (Haight and Finland, 1952; Sanders et al., 1984; Sanders, 2001;
Obolski et al., 2015) has been used extensively to classify bacteria as resistant to an antibiotic (Dong
et al., 1999; Drlica, 2003; Epstein et al., 2004). Yet the MIC is a single measurement of resistance; it
captures one parameter of resistance, but not all.

As antibiotic concentrations increase, the first steep decline in colony numbers, representing
an ∼1% recovery, corresponds to the MIC. After exposing cells to antibiotics at MIC levels, there
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will often still exist a population of resistant mutants due to
spontaneous mutations, considered to be single-step resistant
mutants. As concentrations increase beyond the MIC, these
single step mutants will remain until a concentration that reduces
colony recovery to 0% is achieved. Above this concentration,
no single-step mutants can exist. This concentration is the
second metric of resistance, the mutant prevention concentration
(MPC). The MPC is defined as the MIC of the least-susceptible,
single-step mutant (Dong et al., 1999; Firsov et al., 2003; Allen
et al., 2004; Drlica et al., 2006; Hansen et al., 2006; Drlica and
Zhao, 2007; Firsov et al., 2008). This is experimentally measured
by determining the lowest antibiotic concentration that can kill
all single-step resistant mutants within a population size of 1010

cells (Feldman, 1976; König et al., 1998; Zhao and Drlica, 2001;
Gould and MacKenzie, 2002). This concentration of cells is
similar to the numbers of cells found in some infectious cases in
clinical situations (Zhao and Drlica, 2001; Gould and MacKenzie,
2002). The concentrations between MIC and MPC, defined
as the mutant selection window (MSW), signify the antibiotic
concentration range for which evolution of resistance can occur
by selecting for the non-susceptible portion of the population
(Figure 1; Drlica, 2003; Drlica and Zhao, 2007).

While the MIC for each bacterial antibiotic-strain pair is
typically considered a single value with high repeatability (Dong
et al., 1999; Zhao and Drlica, 2001; Li et al., 2002; Firsov et al.,
2003; Zinner et al., 2003; Allen et al., 2004; Li et al., 2004;
Metzler et al., 2004a,b; Marcusson et al., 2005; Hansen et al., 2006;
Olofsson et al., 2006; Drlica and Zhao, 2007; Firsov et al., 2008;
Liu et al., 2013; Oshima et al., 2017; Zhang et al., 2017), it is
unclear if this is true for the MPC. Because the MPC is dependent
on the probability and timing of mutations that confer resistance,
it seems likely that the MPC would have a greater variance than
MICs, but the variation in the MPC has not been well studied.

Previous work typically has examined MPCs using
fluoroquinolone antibiotics. Studies using Staphylococcus aureus
(Dong et al., 1999; Drlica, 2003; Firsov et al., 2003; Allen et al.,
2004; Metzler et al., 2004a; Firsov et al., 2008), Mycobacterium
tuberculosis (Rodriguez et al., 2004; Drlica and Zhao, 2007),
and the poultry pathogen Mycoplasma gallisepcticum (Zhang
et al., 2017) have obtained values for the MPC, and the MSW,
by examining the presence of resistant mutants at sub-MPC and
MPC antibiotic concentrations in vitro. Their results confirm
that resistant mutants are enriched when bacteria were exposed
to concentrations that fall within the MSW. While the MPC and
MSW have been widely described in M. tuberculosis in adults
as defined values (Rodriguez et al., 2004), in one review of the
antibiotic dosing used in child tuberculosis, it was found that the
heterogeneity of MICs could result in a range of MPCs (Jaganath
et al., 2017). Multiple studies using Streptococcus pneumonia (Li
et al., 2002; Drlica, 2003; Zinner et al., 2003) and Haemophilus
influenzae (Li et al., 2004; Metzler et al., 2004b) emphasize the
variability in mutation accumulation and observe increasing
MSWs with successive mutations. Many studies on the MPC
also consider the pharmacokinetics/pharmacodynamics of the
antibiotics (Drlica, 2003; Marcusson et al., 2005; Olofsson et al.,
2006). Interestingly, one such study found the MIC to be weakly
correlated to the MPC using E. coli (Marcusson et al., 2005),

also suggesting that the MPC may be a more unpredictable
resistance parameter. In all of the studies mentioned, it is
important to note that there were less than five replicates of the
MPC obtained.

Our study focuses on a strain of Staphylococcus epidermidis,
a gram positive bacterium that colonizes the skin and mucus
membranes of the human body, and represents a large part of the
normal microflora (Widerström et al., 2012). An opportunistic
pathogen, S. epidermidis is also the leading cause of infections due
to intravenous medical devices, resulting in significant healthcare
costs (Uckay et al., 2009). There has been little work done to
determine MPC variation using S. epidermidis, with one study
showing stability in MPC values using two replicate experiments
(Liu et al., 2013). Our study uses 20 replicate experiments per
bacteria-antibiotic strain to investigate the variability of MPCs.
Specifically, we address the following questions: Are the MPCs
replicable in highly controlled laboratory conditions? What
is the variation in MPCs? Does the variation differ between
antibiotics and/or strains? Here we show that the MPC can
vary significantly, and the ranges differ between antibiotics and
through the evolution of resistance. Our results indicate a large
role for stochasticity in determining the MPC of a bacterial strain
with a specific antibiotic.

MATERIALS AND METHODS

Culture Conditions
A master tube of S. epidermidis (ATCC 14990), was our ancestral
strain and grown overnight in Luria Broth (LB) media (10 g
tryptone, 5 g yeast extract, and 10 g NaCl), and then frozen
with 25% glycerol at −80◦C. Several hundred aliquots were
made from the master tube and also kept frozen with 25%
glycerol at −80◦C. S. epidermidis (ATCC 14990) was evolved to
each of five antibiotics: ciprofloxacin, doxycycline, gentamicin,
nitrofurantoin, and oxacillin. We obtained and purified one
independent spontaneously resistant mutant for each antibiotic,
resulting in five resistant strains. For all resistant strains collected,
we confirmed resistance by streak-purifying colonies onto agar
plates containing antibiotic concentrations above the known
MIC. For all experiments described here, we used freshly thawed
aliquots of the ancestral strain and the resistant strains. Each
replicate experiment required one aliquot. Strains were grown
(aerated) in LB media for approximately 8 h at 37◦C to a
density of roughly 109 cells per ml and serially diluted to
approximately 105 cells per mL for MIC determination on
agar plates.

Antibiotics
We used five antibiotics: Ciprofloxacin hydrochloride (CPR)
(MP Biochemicals 199020), Doxycycline hyclate (DOX)
(Sigma-Aldrich D9891), Gentamycin sulfate salt (GEN)
(Sigma-Aldrich G1264), Nitrofurantoin (NTR) (Sigma-Aldrich
N7878), and Oxacillin sodium salt (OX) (Sigma-Aldrich 28221).
Ciprofloxacin, a synthetic second-generation fluoroquinolone,
inhibits DNA synthesis by inhibiting bacterial enzymes DNA
gyrase and topoisomerase, which are involved in the unwinding
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FIGURE 1 | Schematic of the Mutant Selection Window. As antibiotic concentrations increase, the percentage of colonies recovered decreases with two sharp
declines demarcating the boundaries of the mutant selection window (MSW), in red. The shaded region selects for single-step resistant mutants. The first decline,
which results in a 99% decrease in colonies recovered is determined to be the minimum inhibitory concentration (MIC). The second decline, where there is a 100%
decrease in colonies recovered is determined to be the mutation prevention concentration (MPC).

and supercoiling of DNA during DNA replication (Hooper
et al., 1987). Doxycycline, a broad-spectrum tetracycline, inhibits
bacterial protein synthesis by binding to the 30S ribosomal
subunit and preventing aminoacyl tRNA from binding
(Roberts, 1996; Chopra and Roberts, 2001). Gentamicin, an
aminoglycoside, inhibits bacterial protein synthesis by targeting
the ribosomal A site (Hahn and Sarre, 1969; Yoshizawa et al.,
1998). Nitrofurantoin, a multiple-mechanism nitrofuran, inhibits
a variety of bacterial enzymes, including those involved in DNA
and RNA synthesis as well as carbohydrate synthesis (Shah
and Wade, 1989; McOsker and Fitzpatrick, 1994). Oxacillin, a
beta-lactam penicillin, inhibits bacterial cell wall synthesis (Park
and Strominger, 1957). These antibiotics were chosen because
of their clinical importance, widespread use, and different
mechanisms of action.

Determination of Liquid Minimum
Inhibitory Concentration (MIC) Estimates
MIC estimates in liquid culture were determined using microtiter
plates with serial and equidistant dilutions of antibiotics.
Approximately 103–104 cells were inoculated in each well with
100 µl LB and allowed to grow for 22 h, shaken at 220 revolutions
per minute (rpm) and incubated at 37◦C (Tecan Infinite M200
PRO Multimode Microplate Reader). The liquid MIC estimate
was determined by the lowest antibiotic concentration observed
to inhibit growth by at least 95%, compared to the positive
control. We also included negative controls on each 96 well-plate
to validate no contamination of media.

Determination of Agar MIC
Liquid MIC levels were used as a starting point to determine
agar MIC levels. Agar tests tend to yield very similar MIC levels,
but on occasion there may be minor differences. We plated two
100 mm agar plates for antibiotic concentrations ranging from
0.2 × liquid MIC and ending at 1.7 × liquid MIC estimate in
increments of 0.1 × liquid MIC. Viable cells were quantified as
colony forming units (CFUs). We inoculated each plate using 105

cells, resulting in a CFU population that has a limited probability
of spontaneous mutation (Martinez and Baquero, 2000; O’neill
et al., 2001). These cells were spread via the Copacabana method
(Worthington et al., 2001; Mills et al., 2005), which involves
the equal distribution of bacteria via sterile glass beads. We
conducted the agar MIC assays in duplicate and recorded the
median and range for each MIC for each bacterial strain. We
prepared agar plates using 1000 mL of MilliQ water, 15 g agar
powder, and one 25 g LB tablet (10 g tryptone, 5 g yeast extract,
10 g NaCl, and 1.5 g/L Tris/Tris HCl).

Determination of Mutant Prevention
Concentration (MPC)
MPC was determined as the antibiotic concentration that
prevents the growth of any resistant mutants following an
inoculum of 1010 cells on LB plates containing dilutions of
antibiotic (Dong et al., 1999; Drlica, 2003). A population of
1010, allows for the consideration of single-step mutants, which
is imperative in defining the MPC (Martinez and Baquero,
2000; O’neill et al., 2001). From a frozen aliquot, we grew a
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bacterial culture overnight for 18 h at 37◦C and then inoculated
this culture in LB until the inoculum reached an OD600
between 0.45 and 0.7. We then centrifuged the bacterial culture
(4000 rpm × 4 min, 4◦C). We resuspended and combined all
bacterial pellets in 7.5 mL of the original supernatant to give
1010 cells. We used liquid MIC estimates to plan the incremental
concentrations used in MPC experiments. We performed two
preliminary MPC experiments with concentrations ranging from
1 × liquid MIC estimate to 64 × liquid MIC estimate, increasing
by a factor of two. We repeated MPC experiments 20 times, with
three replicates per antibiotic concentration. To measure MPC,
we plated at least 1010 bacterial cells on agar plates and spread the
inoculum via the Copacabana method (Worthington et al., 2001;
Mills et al., 2005). Plates were then incubated at 37◦C for 72 h.
We determined MPC to be the lowest concentration of antibiotic
where all three agar plates for a single concentration showed zero
colonies. We prepared agar plates using 1000 mL of MilliQ water,
15 g agar powder, and one 25 g LB tablet (10 g tryptone, 5 g yeast
extract, 10 g NaCl, and 1.5 g/L Tris/Tris HCl).

Mutant Selection Window (MSW)
Using MICs and MPCs, we determined the MSWs of ancestral
and resistant strains in terms of the MIC of the ancestral strain.
Using the MIC of the ancestral strain allowed us to directly
compare the MSWs between the two strains.

RESULTS

We found that MPC estimates varied widely within a single
antibiotic, indicating low repeatability of MPC. This was true of
most antibiotics tested (Table 1 and Figure 2). The inter-quartile
range (IQR) varied among the antibiotics used and whether the
strain was the resistant or ancestral strain. The ancestral strain
had a more robust signal for a single MPC value where the
resistant strain was much more variable (Figure 2).

The distribution of most MPCs do not appear normal
(Figure 2). All of the resistant strains did not meet the
requirements of a normal distribution (Shapiro-Wilk test
(p < 0.05) and Kolmogorov-Smirnov test (p < 0.001)). The

TABLE 1 | Mean, standard deviation, median, and IQR of MPCs for both strains of
Staphylococcus epidermidis (ancestral and resistant) for all antibiotics tested. All
values reported in micrograms per milliliter.

Antibiotic Strain Mean Standard Deviation Median IQR

Ciprofloxacin Ancestral 1.2 0.22 1.2 0.25

Resistant 4.8 0.68 4.6 0.65

Doxycycline Ancestral 12.2 1.27 12 2

Resistant 20.8 3.59 20 3.56

Gentamycin Ancestral 11 1.54 11.7 2.34

Resistant 107.3 15.91 110 22

Nitrofurantoin Ancestral 1 0.25 1.1 0.19

Resistant 3.2 0.57 3.3 0.35

Oxacillin Ancestral 24.8 3.81 24 5

Resistant 47 5.72 46.2 8.4

ancestral strains did have a mix of distributions; doxycycline
and nitrofurantoin both failed to reject the null hypothesis of a
Shapiro-Wilk test (p > 0.05). We also demonstrate using a two-
sample Kolmogorov–Smirnov test, that the MPC distributions
change as resistance evolves. In all direct comparisons of ancestral
and resistant strains (with the same antibiotic) the distributions
of the MPC values are different (p < 0.001).

We also found that the MSW changed when resistance is
evolved (Figure 3). There is less variation in the MIC values than
there is in the MPC values. The MSW not only shifts but also
widens as resistance evolves.

DISCUSSION

Our results show a range of MPCs in replicate experiments,
indicating a large role for stochasticity and limited repeatability
for this trait. In this study, the MPC trait is not easily
predictable. This variation in MPCs is in contrast to MICs,
which are generally predictable for each bacterial strain-antibiotic
combination within a particular laboratory setting. For example,
although variation in the MIC among different labs has been
shown as a result of variations in strains as well as assay
variations, individual studies within labs show consistency in the
determination of the MIC (Mouton et al., 2017). Thus, while one
trait (MIC) is more predictable and repeatable given a certain
selection pressure, another (MPC) varies greatly due to stochastic
processes. While previous studies indicate that MPCs can be fairly
stable (Blondeau et al., 2001; Li et al., 2004; Marcusson et al.,
2005; Olofsson et al., 2006), the number of replicates in these
studies (two or three), would be insufficient to examine effects
of stochasticity on the appearance of mutants.

The change in the MPC is large enough to account for the
change of distribution and variation within the resistant strain as
there is little to no overlap in the inter-quartile range (IQR). This
supports the idea that although the MPC distribution is large and
somewhat unpredictable, we can be confident that the MPC of a
resistant strain is higher than an ancestral strain.

Our results here suggest two potentially relevant clinical
notes. First, it has been proposed that if clinicians target MPCs,
there can be no resistant bacteria left in a population within
an individual patient (Dong et al., 1999). While this has not
proven practical in most cases given the high concentrations of
antibiotics needed, there has been work towards determining
antibiotic combinations that lower the MPC (Michel et al.,
2008). If used clinically (which is entirely hypothetical, since
it is not currently used in the clinic), there should be care
to understand that MPCs can vary with each bacteria and
antibiotic combination and that failure to recognize variation
in the MPC could result in inaccurate dosing. Therefore, this
study suggests that MPCs should be understood as a range
with confidence intervals, rather than as a single number. This
study also reveals a significant change in the distribution of the
MPC between ancestral and resistant strains, emphasizing the
unpredictability of this trait when a bacterial strain acquires a
spontaneous mutation conferring antibiotic resistance. Not only
do distributions of the MPC in resistant strains increase, but
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FIGURE 2 | The distribution of Mutant Prevention Concentrations. The MPC distribution of both the ancestral strain (blue) and antibiotic resistant strain (red) for each
antibiotic tested. Both the histograms of the data along with the kernel-density estimation is shown. The dashed line represents the median of each sample,
respectively. A Shapiro-Wilk test (p < 0.05) and Kolmogorov-Smirnov test (p < 0.001) both show that all resistant strains distributions cannot be considered normal.
Most ancestral strains are also not considered to be a normal distribution (p < 0.05), the distribution of the MPCs of the ancestral strain when exposed to either DOX
or NTR fail to reject the null hypothesis of a Shapiro-Wilk test (p > 0.05). Furthermore, when comparing the MPC distributions between the ancestral strain and the
resistant strain for each antibiotic the distributions are not the same (2-sample Kolmogorov-Smirnov test, p < 0.001).

the shapes of the distributions also change considerably. With
nitrofurantoin and oxacillin, the distribution of the MPC changes
from unimodal distributions in the ancestral strains to bimodal
distributions in the resistant strains (See Figure 2). In either
case, any intermediate steps taken to move a population off
its trajectory towards maximal resistance—for example, using a
different antibiotic against a population of bacteria—needs to
consider the fact that there may not be a deterministic response
of the pathogen population to the new stressor.

There has been some contention as to the utility of MPCs
when the resistance mechanisms evaluated in vitro do not
match the resistance mechanisms that would be found in a
clinical setting (Smith et al., 2003). In this study, the acquisition
of spontaneous chromosomal mutations was the primary
mechanism of resistance when isolating and purifying resistant
strains. However, horizontal transfer is typically required for
resistance to aminoglycosides like oxacillin, β-lactams like
gentamicin, and tetracyclines like doxycycline (Roberts, 1996;
Smith et al., 2003). The distributions found in this study offer

a first look at the unpredictability of MPC variation in resistant
strains. Moreover, ciprofloxacin is a fluoroquinolone in which
the mechanism of resistance is largely spontaneous chromosomal
mutations (Pantosti et al., 2007).

It is known that the MIC fluctuates with inoculum size, with
smaller inocula leading to lower MIC estimates (Granier et al.,
2002; Egervärn et al., 2007; Wiegand et al., 2008). Even when
testing the MIC values between liquid and agar media, slight
differences are found. It would be worthwhile to investigate
whether similar fluctuations exist for MPC testing. To elucidate
evolutionary potentials in variation, this study used 1010 cells, an
inoculum size similar to the number of bacterial cells found in
naturally-occurring bacterial infections (Feldman, 1976; König
et al., 1998; Zhao and Drlica, 2001; Gould and MacKenzie,
2002). Testing a range of large inoculum concentrations may
provide further information about how MPCs depend upon cell
concentrations present at the time of antibiotic administration.
Our findings are particularly relevant to understanding variation
in bacterial responses to antibiotics at high cell densities.
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FIGURE 3 | The Mutant Selection Windows of the Ancestral and Resistant Strains. The mutant selection window windows are shown for both resistant (red) and
ancestral (blue) strains for each of the five drugs tested. The MIC and MPC shown here are the median value with error bars (IQR) represented in gray. The mutant
selection windows for the resist stain are all shifted to higher values and are wider in size. The MPC appears to vary more in the resistant strain than in the ancestral
strain.

Toprak et al. (2012) showed that resistance to different
antibiotics involved different types of pathways: some antibiotics
had a very stereotyped pathway with similar mutations evolved
in the same order, whereas other antibiotics had much more
variation in timing and type of mutation (Toprak et al., 2012).
With regards to the MPC, it could be illuminating to quantify
and examine the specific genetic mutations underlying resistant
strains of bacteria at similar and dissimilar MPCs. This would
give more information regarding which specific mutations are
needed, and how many unique mutations or combinations of
mutations exist, to yield high antibiotic resistance. A better
understanding of the amount of variation by bacteria and
antibiotic could provide a more complete story regarding
the variation underlying MPCs. This current study provides
a first step, which shows high variability in this important
resistance trait.

Luria-Delbruck fluctuations, defined as fluctuations in the
frequency of spontaneous mutations in microbial populations
(Luria and Delbrück, 1943), may affect the evolutionary trajectory
of populations. If a mutation occurs early on in the growth of
the population there would be more cells with mutations because

of the exponential characteristic of cell division in bacteria
(Sarkar, 1991). Conversely, if a mutation arises later, there will
be fewer cells exhibiting that mutation. Thus, a low probability
event, which occurs early on, may have drastic and amplified
results (Skipper, 1983; Rosche and Foster, 2000). Luria-Delbruck
fluctuations can, but do not necessarily, have a large impact on
the number of resistant mutants in a given population of bacteria
(Ford et al., 2013). If a spontaneous mutant arises early in the
population growth phase and happens to confer resistance to a
given antibiotic, then in the presence of the antibiotic, the ending
population will be comprised largely of this resistant mutant and
daughter cells. Depending on the exact timing of the appearance
of the mutation, a population may exhibit many resistant cells, or
very few. Understanding, therefore, the mutations and patterns
below the MPC would also be a very useful future study in
elucidating fluctuations in the MPC and MSW.

In summary, we find that even in highly controlled laboratory
environments, MPCs vary widely, not only from differences
in strain and antibiotic, but from replicates with the same
strain and same antibiotic. Several other factors may also affect
MPC variation, such as CFU concentrations, mutation type, and
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inocula size and in the future, these factors should be investigated.
Understanding how and why the MPC varies can allow us to
lay the foundations for more comprehensive dosing strategies
that take into consideration the presence and elimination
of single-step resistant mutants. From a clinical perspective,
caution should be taken when determining how reliable
certain therapeutic treatments will be in terms of completely
eliminating resistant mutants. From an evolutionary perspective,
we show the significant role of stochasticity in bacteria evolving
antibiotic resistance.
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The Enterobacter cloacae complex (ECC) includes common nosocomial pathogens
capable of producing a wide variety of infections. Broad-spectrum antibiotic resistance,
including the recent emergence of resistance to last-resort carbapenems, has led to
increased interest in this group of organisms and carbapenem-resistant E. cloacae
complex (CREC) in particular. Molecular typing methods based on heat-shock protein
sequence, pulsed-field gel electrophoresis, comparative genomic hybridization, and,
most recently, multilocus sequence typing have led to the identification of over 1069
ECC sequence types in 18 phylogenetic clusters across the globe. Whole-genome
sequencing and comparative genomics, moreover, have facilitated global analyses of
clonal composition of ECC and specifically of CREC. Epidemiological and genomic
studies have revealed diverse multidrug-resistant ECC clones including several potential
epidemic lineages. Together with intrinsic β-lactam resistance, members of the ECC
exhibit a unique ability to acquire genes encoding resistance to multiple classes of
antibiotics, including a variety of carbapenemase genes. In this review, we address
recent advances in the molecular epidemiology of multidrug-resistant E. cloacae
complex, focusing on the global expansion of CREC.

Keywords: carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Enterobacter cloacae complex,
carbapenemase, multidrug-resistance, bacterial genomics

INTRODUCTION

Enterobacter spp., the second most common carbapenem-resistant Enterobacteriaceae (CRE) in
the United States, increasingly contribute to the spread of carbapenem-resistant infections (Wilson
et al., 2017). In particular, Enterobacter cloacae complex (ECC) are common nosocomial pathogens
capable of producing a wide variety of infections, such as pneumonia, urinary tract infections,
and septicemia (Sanders et al., 1997; Wisplinghoff et al., 2004). The emergence of multidrug
resistance (MDR), including resistance to the last-resort carbapenems meropenem, imipenem, and
ertapenem, has led to an increased interest in these organisms.

Molecular analyses based on multilocus sequence typing (MLST) and heat-shock protein (hsp)
typing have led to the re-definition of members within this complex (Hoffmann and Roggenkamp,
2003; Paauw et al., 2008; Miyoshi-Akiyama et al., 2013). Whole-genome sequencing (WGS),
moreover, has allowed for reproducible population-level analyses to determine clonal structure and
diversity in ECC and CREC collections ranging from localized, regional outbreaks to global studies
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(Chavda et al., 2016; Gomez-Simmonds et al., 2018). These
methods have facilitated analyses of phylogenetic structure and
evolutionary history on a global scale.

Importantly, clinical and genomic studies have revealed
a striking facility for ECC to acquire genes encoding
broad-spectrum antibiotic resistance, including a variety of
carbapenemase genes, superimposed on intrinsic β-lactam
resistance conferred by chromosomal ampC genes. Here,
we address recent advances in the molecular epidemiology,
resistance mechanisms, global spread, and genomics of MDR
ECC, focusing on CREC.

MOLECULAR EPIDEMIOLOGY OF
E. cloacae COMPLEX

The E. cloacae complex is polyphyletic based on the traditionally
employed 16S rRNA gene typing (Mezzatesta et al., 2012).
Phenotypic methods and antibiotic susceptibility patterns were
insufficient to resolve this genetically diverse species cluster.
Molecular and genomic advances have enabled more refined
species designations of ECC based on single amplicon (hsp60
or rpoB) genotyping, multilocus sequence analysis (MLSA),
comparative genomic hybridization (CGH), pulsed-field gel
electrophoresis (PFGE), and more recently, MLST and WGS.
Based on hsp60 allelic variation, ECC was previously classified
into thirteen genovars (clusters I-XIII). These encompass
Enterobacter asburiae (cluster I), Enterobacter kobei (cluster II),
Enterobacter ludwigii (cluster V), Enterobacter hormaechei subsp.
oharae (cluster VI), subsp. hormaechei (cluster VII), and subsp.
steigerwaltii (cluster VIII), Enterobacter nimipressuralis (cluster
X), E. cloacae subsp. cloacae (cluster XI) and subsp. dissolvens
(cluster XII), unnamed E. cloacae Hoffmann clusters III, IV,
and IX, and an unstable E. cloacae sequence crowd (cluster
XIII) (Brenner et al., 1986; Kosako et al., 1996; Hoffmann
and Roggenkamp, 2003; Hoffmann et al., 2005a,b,c). However,
using hsp60 or rpoB alone led to significant discrepancies in
identification of subspecies (Paauw et al., 2008).

Multilocus sequence analysis based on 6 housekeeping
genes (rpoB, fusA, gyrB, leuS, pyrG, and rplB) suggested
the emergence of two distinct ECC clades: a recent clade
including the three E. hormaechei subspecies and a heterogeneous
older clade including multiple ECC clusters. The observed
recombination:mutation ratio of 1.04 (95% confidence interval
0.72–1.45) across ancestral clades also indicates potential
recombination events in the early evolution of ECC, likely
accounting for discrepancies between single amplicon methods
(Paauw et al., 2008). Based on MLSA, Enterobacter mori (Zhu
et al., 2011), Enterobacter xiangfangensis (cluster VI), and
Enterobacter cancerogenus were recently classified (Schonheyder
et al., 1994). The remarkable genomic heterogeneity within ECC
has even been used to suggest broad re-classification of the
complex into five distinct genera based on MLSA (Brady et al.,
2013). Despite ongoing debate regarding nomenclature within
ECC, E. cloacae and E. hormaechei and related subspecies remain
the most clinically relevant. In 2013, dnaA was added to the six
genes of MLSA to develop an MLST scheme, which has emerged

as a more robust tool for identifying closely related ECC isolates
(Miyoshi-Akiyama et al., 2013). To date, 1069 sequence types
(STs) have been reported.1

Comparison of the entire genome through WGS provides
the opportunity to explore the genetic relationships between
genomes at even higher resolution (Kluytmans-van den Bergh
et al., 2016), and has further refined ECC classification into
18 clusters (A-R). These encompass the 12 Hoffmann clusters,
E. mori, and five novel clusters (K, L, N, O, and P) (Chavda
et al., 2016 and Supplementary Figure S1). Thus, the advent
of WGS has greatly improved the ability to identify, investigate,
and compare the emergence of ECC in diverse settings with high
resolution, despite its polyphyletic and genomic diversity.

MULTIDRUG- AND
CARBAPENEM-RESISTANCE IN ECC

A variety of intrinsic and acquired antimicrobial resistance
mechanisms have diminished the arsenal of effective therapeutics
for treatment of ECC infections. ECC is intrinsically resistant
to penicillins and first- and second-generation cephalosporins
due to low-level expression of chromosomal ampC genes
encoding an inducible AmpC-type Bush group 1 (class C)
cephalosporinase. Resistance to third-generation cephalosporins
and aztreonam can result from mutations, usually in ampD,
leading to constitutive hyperproduction (derepression) of AmpC
(Seeberg et al., 1983; Kaneko et al., 2005; Cheng et al., 2017).

Extended-spectrum β-lactamase (ESBL) genes confer
resistance to most β-lactam antibiotics, including extended
spectrum (i.e., second and third-generation) cephalosporins
(ESCs) and monobactams (i.e., aztreonam). These genes are
typically plasmid-encoded and were first identified in ECC in
1989 (De Champs et al., 1989). Since then, ESBL-encoding
ECC have increased in prevalence, particularly in nosocomial
settings and among patients with previous antibiotic exposure
(Kluytmans-van den Bergh et al., 2016; Jean and Hsueh, 2017;
Peirano et al., 2018). ESBL- and AmpC-mediated resistance now
commonly coincide, leading to near-pan-resistance to β-lactams
(Pitout et al., 1997).

Carbapenem-resistance in ECC is conferred through either
constitutive overexpression of AmpC combined with disrupted
membrane permeability, or more commonly through the
acquisition of plasmid-encoded carbapenemase genes. Two
major categories of carbapenemases have been identified in
CREC, carbapenem-hydrolyzing serine β-lactamases (Ambler
class A and D) and metallo-β-lactamases (MBLs; Ambler
class B) (Supplementary Table S1). The Klebsiella pneumoniae
carbapenemase (KPC), a class A β-lactamase which predominates
in the United States, and the New Delhi metallo-β-lactamase-1
(NDM-1) have been most frequently described in ECC (Chavda
et al., 2016), although substantial regional variation has been
reported (Peirano et al., 2018). Rarely, ECC may also harbor
chromosomally encoded carbapenemase genes (Boyd et al.,
2017).

1http://pubmlst.org/ecloacae/
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In addition to β-lactam resistance, ECC harbor a variety
of multi-class antibiotic resistance genes. This includes
aminoglycoside resistance primarily due to the acquisition
of plasmids or mobile genetic cassettes encoding aminoglycoside
6’-N-acetyltransferase type I [AAC(6’)-I] (Neonakis et al., 2003).
Mutations in DNA gyrase, DNA topoisomerase, or efflux pump
genes have been associated with resistance to fluoroquinolones
(Ruiz, 2003; Baucheron et al., 2004). Notably, ESBL and
carbapenemase genes are often collocated with aminoglycoside-
resistance genes on plasmids, engendering multi-class antibiotic
resistance phenotypes (Chen et al., 2014; Chavda et al., 2016;
Gomez-Simmonds et al., 2018).

An AAC(6′)-I variant produced by aac(6′)-Ib-cr, or the
presence of plasmid-borne qnr or qep genes, can confer low-level
quinolone resistance in ECC (Park et al., 2007; Périchon et al.,
2007; Xiong et al., 2008; Cano et al., 2009; Kim et al., 2009). In
addition, specific substitutions in chromosomal fluoroquinolone
resistance-determining regions (QRDRs), such as the previously
characterized double-serine/threonine substitutions in gyrA and
parC (Hiramatsu et al., 2012), have been associated with
improved fitness in major STs of other Enterobacteriaceae,
including ESBL-producing Escherichia coli (Johnson et al., 2015)
and K. pneumoniae (Tóth et al., 2014). This fitness advantage
has been hypothesized to contribute to the spread of high-risk
international STs while selecting against minor STs (Fuzi et al.,
2017). QRDR mutations have been detected in ECC and appear
to be widespread in CREC (Cano et al., 2009; Gomez-Simmonds
et al., 2018; Guillard et al., 2015). However, their contribution
to the spread of specific ECC and CREC clones has yet to be
determined.

GLOBAL EMERGENCE OF CREC

E. cloacae complex was one of the first KPC-producing organisms
identified (Bratu et al., 2005), and has recently demonstrated
an increase in prevalence and regional distribution (Park et al.,
2016; Wilson et al., 2017). Current literature indicates that the
emergence and spread of CREC is due to high diversity of
clonal lineages and carbapenemases. A recent study leveraging
two global surveillance programs demonstrated the remarkable
dissemination and variety of carbapenemase genes in ECC
(Peirano et al., 2018).

We found 61 publicly available English-language
publications identifying carbapenemase alleles in ECC
with a corresponding geographic location (Supplementary
Table S2). These encompassed 36 carbapenemase alleles
(IMP-1,4,8,11,13,14,26,34; IMI-1,2,3,4,5,6,7,9; KPC-2,3,4,5,18;
NDM-1,5,6,7; NMC-A; OXA-48; VIM-1,2,4,5,11,23,31; FRI-1,2;
GES-7) in ECC from 44 countries, including single isolates and
single or multi-institutional outbreak collections (Figure 1 and
Supplementary Table S2). In the United States and Canada,
blaKPC-positive ECC have been mostly encountered, with rare
reports of IMI- and NMC-A-encoding organisms. Isolates
harboring blaKPC have also been detected in Europe and South
America. While blaNDM−1 is endemic in the Indian subcontinent,
multiple blaNDM alleles were detected in hospitals throughout

Eastern China (Jin et al., 2018; Wang et al., 2018). IMP-encoding
genes have been reported widely in Southeast Asia, including
China, Japan, Korea, the Philippines, Taiwan, and Australia,
and are thought to be endemic to this area. On the other hand,
VIM variants are more prevalent across Europe with rare
reports from South America and Southeast Asia. OXA-48-like
carbapenemases, thought to originate in Turkey, have spread
into the Middle East, North Africa, and Europe (Poirel et al.,
2011).

Previous multinational surveillance studies employing MLST
found substantial clonal diversity of both ESBL-producing ECC
and CREC, with evidence for several potential high-risk clones.
The most widespread ESBL-producing ECC were ST66, ST78,
ST108, and ST114, each having at least 10 isolates from three
to five countries (Izdebski et al., 2015). Several epidemic clonal
complexes (CC), such as CC74 (including ST78) or CC114
(including ST66) were identified, including specific ST66, ST78,
and ST114 pulsotypes associated with carriage of CTX-M-15
β-lactamase. Likewise, ST114, (E. xiangfangensis), ST93 and ST90
(E. hormaechei subsp. steigerwaltii), and ST78 (E. cloacae cluster
III) were widespread among global CREC isolates from 37
countries (Peirano et al., 2018), while ST105 (E. xiangfangensis)
and ST108 were also identified in multiple countries.

GENOMIC INSIGHTS INTO THE SPREAD
OF CREC WITHIN THE UNITED STATES

While carbapenem-resistant K. pneumoniae (CRKP) appears to
be declining in high-prevalence areas such as the Northeastern
United States, multiple sites across the United States have
reported increasing prevalence of CREC (Frieden et al.,
2018). By 2015, over 4% of ECC clinical isolates collected
in the United States Veteran’s Health Administration (VHA)
nationwide were carbapenem non-susceptible, with especially
high rates along the West Coast and Southwestern United States
(Wilson et al., 2017). Most recently, New York City, Boston,
Western Pennsylvania, North Carolina, and Minnesota/North
Dakota have reported significant increases in CREC infections
(Ahn et al., 2014; Hargreaves et al., 2015; Pecora et al., 2015;
Gomez-Simmonds et al., 2016; Kanamori et al., 2017).

Limited information is available regarding specific genomic
features of ECC potentiating its transmission and recent
epidemiological success. However, the few available genomic
studies suggest that establishment of successful clones as well as
acquisition of MDR phenotypes by diverse lineages may have
been substantial contributors.

ST171 has been identified as a major CREC clone with
epidemic potential in the United States (Hargreaves et al.,
2015; Chavda et al., 2016; Gomez-Simmonds et al., 2018). We
previously found phylogenomic evidence that all ST171 with
publicly available sequences formed two major clades which
diverged and spread in parallel from the Northeastern to the
Mid-Atlantic and Midwestern United States (Gomez-Simmonds
et al., 2018). Our analysis estimated that these clades diverged
prior to 1962, roughly two decades before the widespread
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FIGURE 1 | Global distribution of carbapenem-resistant Enterobacter cloacae complex (CREC). Literature review identified 61 English-language publications
identifying carbapenemase subtypes in CREC with a specified geographic location of isolation. The regional emergence of carbapenemases is evident, with KPC
and IMI predominant in North America, OXA-48 and VIM predominant in Europe and the Middle East, and NDM and IMP predominant in China and Southeast Asia.
Underlying data and referenced publications can be found in Supplementary Table S2. Abbreviations: FRI, French imipenemase; GES, Guiana extended-spectrum
β-lactamase; IMI, imipenem-hydrolyzing carbapenemase; IMP, active-on-imipenem carbapenemase; KPC, K. pneumoniae carbapenemase; NDM, New Delhi
metallo-β-lactamase; NMC, non-metallo carbapenemase; OXA, oxacillinase; VIM, Verona integron-encoded metallo-β-lactamase.

use of carbapenems and fluoroquinolones, suggesting antibiotic
pressure as a key factor in the proliferation of ST171.

ST171 is primarily associated with blaKPC−3, although a
handful of blaKPC−2- and blaKPC−4-containing isolates have
been identified. In the Northeast, CREC ST171 primarily
contained a blaKPC−3 gene located on IncFIA plasmids (e.g.,
p34978, pNR3024) (Gomez-Simmonds et al., 2018). These
plasmids were nearly identical to pBK30683, a ∼70 kb
IncFIA plasmid which was widespread among blaKPC-producing
K. pneumoniae in New York and New Jersey hospitals (Chen
et al., 2014). Interestingly, a different study reported ST171
isolates from Minnesota and North Dakota which contained
blaKPC−3 on a truncated (∼120 kb) IncFIA plasmid pMNCRE44
(Hargreaves et al., 2015). The truncated pMNCRE44 shared
key regions with other ST171 IncFIA plasmids, but lacked
genes encoding conjugation machinery. A small cluster of
ST171 isolates from Boston instead contained blaKPC−4 on an
unrelated IncHI2 plasmid (Pecora et al., 2015). A duodenoscope-
mediated outbreak of CREC in a Michigan hospital also found
likely patient-to-patient transmission of blaKPC-positive ST171
(KPC allele unreported) (Hawken et al., 2018). However, the
hospital collection included diverse clones in which carbapenem-
resistance was driven primarily by chromosomal mutations
rather than carbapenemase genes. ST171 was rare in global
surveys of both primarily carbapenem-susceptible (Girlich et al.,
2015; Izdebski et al., 2015) and carbapenemase-producing ECC
(Peirano et al., 2018), harboring three different carbapenemase
genes presumably on different plasmid backbones. This suggests

that stable uptake of the IncFIA plasmid by ST171 largely
enabled its successful proliferation throughout the Northeastern
United States, while isolates lacking this plasmid remain
uncommon.

In contrast, ST78 was identified as a high-risk clone
among both ESBL-producing ECC and CREC. CREC ST78
has largely been isolated in the Northeastern United States,
with multiple sporadic uptake events of blaKPC-containing
plasmids (Gomez-Simmonds et al., 2018), and has not exhibited
the same rapid clonal proliferation as ST171. ST78 has been
associated with various KPC-types on IncN plasmids, even
within the New York City area (Gomez-Simmonds et al., 2018).
Global carbapenemase-producing ST78 isolates have also been
associated with a variety of plasmid backbones, highlighting its
unique ability to acquire MDR plasmids. Peirano et al. (2018)
demonstrated 4 different carbapenemases (blaVIM−1, blaIMP−4,
blaIMP−8, blaOXA−48) on multiple different genetic backbones
in ST78, although the carbapenemase-harboring plasmid could
not be determined using short-read sequencing. In Japan, ST78
isolates harbored blaIMP−1 on class 1 integrons encoded on
multiple different plasmids including IncHI2, IncW, and IncFIB
(Aoki et al., 2018).

Other CREC STs have been associated with diverse KPC
subtypes on IncN, IncX7, IncL/M, IncA/C, pKpQIL, and
pKPC_UVA01-like plasmids, and plasmids with unknown
replicon types (Chavda et al., 2016). However, few molecular
studies include complete plasmid analyses, particularly for
non-blaKPC carbapenemases. Notably, although region-specific
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FIGURE 2 | Emergence and spread of CREC. The first reports of KPC were in the mid-1990s. Carbapenem-resistant K. pneumoniae (CRKP) subsequently
flourished due to a stable association between CRKP ST258 and blaKPC, although rare detection of CREC was reported. More recently, the apparent diversification
of both KPC and plasmid backbones harboring blaKPC may have enabled both (1) the emergence of epidemic CREC clones stably associated with blaKPC

-containing plasmids (i.e., ST171, red); (2) sporadic uptake of diverse blaKPC -containing plasmids by heterogenous E. cloacae complex clones; and (3) emergence
of epidemic clones capable of harboring diverse blaKPC-containing plasmids (i.e., ST78, purple).

associations between carbapenemase genes and specific genetic
backbones have been reported, shuffling of these genetic
structures among different ECC clones appears to occur
commonly including in geographically diverse areas (Peirano
et al., 2018).

Since the mid-1990s, when KPC was first described, the spread
of CRKP has largely been attributed to the stable association
between blaKPC and the successful CRKP clone ST258 (Kitchel
et al., 2009; Figure 2). Although isolated instances of CREC
were reported around the same time, the diversification of both
blaKPC and plasmid backbones harboring these genes may have
enabled uptake into diverse ECC. In contrast to CRKP, the
spread of CREC can be attributed to not only stable blaKPC-
clone associations, as in the case of ST171 and blaKPC−3-encoding
IncFIA plasmids, but also the sporadic uptake of diverse plasmids
by heterogeneous clones. This includes clones with epidemic
potential capable of harboring diverse blaKPC-containing plasmid
backbones, such as ST78.

OTHER GENOMIC AND VIRULENCE
FACTORS POTENTIATING THE SPREAD
OF CREC

In addition to the presence of blaKPC genes, other genomic factors
linked to carbapenem- or other MDR may have aided in the

rapid proliferation of CREC. Several lineage-specific genomic
islands in both ST171 and ST78, encode for toxin-antitoxin and
cell stress response systems (Gomez-Simmonds et al., 2018).
Genes for toxin-antitoxin systems and heavy metal resistance
have been found on MDR plasmids in CREC isolates (Aoki
et al., 2018). These factors may further contribute to the success
of this organism, particularly in nosocomial settings, although
their specific impact on virulence and fitness has yet to be
determined.

Virulence of CREC compared to carbapenem-susceptible
ECC has not been extensively assessed. However, murine
macrophage cytotoxicity assays did reveal significantly reduced
cell killing of CREC vs. ESBL isolates and, more specifically,
reduced toxicity of CREC ST171 vs. ESBL ST78 isolates
(Gomez-Simmonds et al., 2018). Of note, no significant
differences in cytotoxicity by site of collection or KPC-
subtype were observed. Although previous studies reported
detection of Shiga-like toxins in ECC (Paton et al., 1996;
Probert et al., 2014), candidate genes were not detected
in genomic analysis of these clones (Gomez-Simmonds
et al., 2018). Thus, CREC may be a low-virulence pathogen
with specific adaptations that enable success in nosocomial
environments. In particular, cross-class antibiotic resistance and
the acquisition of carbapenem- and fluoroquinolone-resistance
determinants prior to the widespread use of these drugs point
to the role of antibiotic pressure in hospital settings, rather
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than increased virulence, in the spread of CREC ST171 in
the United States (Gomez-Simmonds et al., 2018). However, as
previously suggested, potential fitness advantages conferred by
QRDR mutations may play a role in the spread of major CREC
STs, including ST171 and ST78, and should be evaluated further.

Analogous to the pan-genome, the concept of a “pan-
metabolome” has also been applied to ECC (Rees et al., 2018).
Several metabolite targets were identified, which discriminated
between CREC and carbapenem-susceptible ECC, indicating
a distinct metabolomic signature for each phenotype, beyond
the presence of a single carbapenemase gene. The use of
metabolomics and transcriptomics in future studies will be
important to fully understand the complex relationships between
genomic background, acquired carbapenemase resistance and
virulence factors, and variable resistance phenotypes.

FUTURE DIRECTIONS

Several gaps remain in our understanding of CREC. The
notable diversity of CREC clones, carbapenemase genes, and
plasmid backbones harboring MDR genes have thus far led
to uncertainty regarding a clear timeline and evolutionary
history of these organisms. Virulence, fitness, or other genomic
factors potentiating the spread of CREC have not been
completely defined or assessed in vitro. Moreover, despite recent
advancements potentiated by WGS and comparative genomics,
transcriptomics and/or metabolomics approaches may be useful
in future studies to define the metabolic activity of CREC
under different conditions. Lastly, the underreporting of CREC
remains a possibility, and may influence findings regarding
both population-level diversity and genomic mechanisms of
resistance.

Regardless, the unique diversity of CREC, even compared
to other CRE such as CRKP, necessitates a tailored approach
to preventing its transmission and further diversification. The
establishment of high-risk global CREC clones, coupled with the
apparent high frequency of plasmid uptake into diverse ECC,

suggests that vigilant tracking of both localized outbreaks and the
potential for horizontal plasmid transfer is required.
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FIGURE S1 | Phylogenetic tree of representative E. cloacae complex (ECC)
isolates showing relationships between Hoffmann clusters I-XII, genomic groups
A-R, and selected sequence types (STs). At least one isolate with publicly available
short-read sequences was selected from each ST previously reported in two
recent genomic studies of CREC (Chavda et al., 2016; Gomez-Simmonds et al.,
2018). NCBI Sequencing Read Archive (SRA) accession numbers are shown for
each isolate in Supplementary Table S3. A public ST171 genome (GenBank
CP012165) was used as the reference sequence for calling of concatenated core
genome SNPs with snippy (https://github.com/tseemann/snippy) after removing
mobile genetic elements and phage regions. The maximum likelihood tree was
generated using RaxML with 100 bootstraps and visualized in iTOL
(https://itol.embl.de/).

TABLE S1 | Carbapenemase classes identified in carbapenem-resistant
Enterobacter cloacae complex.

TABLE S2 | Carbapenemase alleles by reported location.

TABLE S3 | Metadata for selected isolates with publicly available whole-genome
short-read data for phylogenetic analysis (Supplementary Figure S1).

REFERENCES
Ahn, C., Syed, A., Hu, F., O’Hara, J. A., Rivera, J. I., and Doi, Y. (2014).

Microbiological features of KPC-producing Enterobacter isolates identified in
a U.S. hospital system. Diagn. Microbiol. Infect. Dis. 80, 154–158. doi: 10.1016/
J.DIAGMICROBIO.2014.06.010

Aoki, K., Harada, S., Yahara, K., Ishii, Y., Motooka, D., Nakamura, S., et al. (2018).
Molecular characterization of IMP-1-producing Enterobacter cloacae complex
isolates in Tokyo. Antimicrob. Agents Chemother. 62:e2091-17. doi: 10.1128/
AAC.02091-17

Baucheron, S., Tyler, S., Boyd, D., Mulvey, M. R., Chaslus-Dancla, E.,
and Cloeckaert, A. (2004). AcrAB-TolC directs efflux-mediated multidrug
resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob.
Agents Chemother. 48, 3729–3735. doi: 10.1128/AAC.48.10.3729-3735.2004

Boyd, D. A., Mataseje, L. F., Davidson, R., Delport, J. A., Fuller, J., Hoang, L., et al.
(2017). Enterobacter cloacae complex isolates harboring blaNMC-A or blaIMI-
type class A carbapenemase Genes on novel chromosomal integrative elements
and plasmids. Antimicrob. Agents Chemother. 61:e2578-16. doi: 10.1128/AAC.
02578-16

Brady, C., Cleenwerck, I., Venter, S., Coutinho, T., and De Vos, P. (2013).
Taxonomic evaluation of the genus Enterobacter based on multilocus sequence
analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus
into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia
amnigena comb. nov. Syst. Appl. Microbiol. 36, 309–319. doi: 10.1016/J.SYAPM.
2013.03.005

Bratu, S., Mooty, M., Nichani, S., Landman, D., Gullans, C., Pettinato, B., et al.
(2005). Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn,
New York: epidemiology and recommendations for detection. Antimicrob.
Agents Chemother. 49, 3018–3020. doi: 10.1128/AAC.49.7.3018-3020.2005

Brenner, D. J., McWhorter, A. C., Kai, A., Steigerwalt, A. G., and Farmer, J. J. (1986).
Enterobacter asburiae sp. nov., a new species found in clinical specimens,
and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the
genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter
nimipressuralis comb. nov. J. Clin. Microbiol. 23, 1114–1120.

Cano, M. E., Rodríguez-Martínez, J. M., Agüero, J., Pascual, A., Calvo, J., García-
Lobo, J. M., et al. (2009). Detection of plasmid-mediated quinolone resistance
genes in clinical isolates of Enterobacter spp. in Spain. J. Clin. Microbiol. 47,
2033–2039. doi: 10.1128/JCM.02229-08

Frontiers in Microbiology | www.frontiersin.org 6 January 2019 | Volume 10 | Article 44428

https://www.frontiersin.org/articles/10.3389/fmicb.2019.00044/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00044/full#supplementary-material
https://github.com/tseemann/snippy
https://itol.embl.de/
https://doi.org/10.1016/J.DIAGMICROBIO.2014.06.010
https://doi.org/10.1016/J.DIAGMICROBIO.2014.06.010
https://doi.org/10.1128/AAC.02091-17
https://doi.org/10.1128/AAC.02091-17
https://doi.org/10.1128/AAC.48.10.3729-3735.2004
https://doi.org/10.1128/AAC.02578-16
https://doi.org/10.1128/AAC.02578-16
https://doi.org/10.1016/J.SYAPM.2013.03.005
https://doi.org/10.1016/J.SYAPM.2013.03.005
https://doi.org/10.1128/AAC.49.7.3018-3020.2005
https://doi.org/10.1128/JCM.02229-08
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00044 January 29, 2019 Time: 16:58 # 7

Annavajhala et al. MDR E. cloacae

Chavda, K. D., Chen, L., Fouts, D. E., Sutton, G., Brinkac, L., Jenkins, S. G.,
et al. (2016). Comprehensive genome analysis of carbapenemase-producing
Enterobacter spp.: new insights into phylogeny, population structure, and
resistance mechanisms. mBio 7:e2093-16. doi: 10.1128/mBio.02093-16

Chen, L., Chavda, K. D., Melano, R. G., Hong, T., Rojtman, A. D., Jacobs, M. R.,
et al. (2014). Molecular survey of the dissemination of two blaKPC-harboring
IncFIA plasmids in New Jersey and New York hospitals. Antimicrob. Agents
Chemother. 58, 2289–2294. doi: 10.1128/AAC.02749-13

Cheng, L., Nelson, B. C., Mehta, M., Seval, N., Park, S., Giddins, M. J.,
et al. (2017). Piperacillin-Tazobactam versus other antibacterial agents for
treatment of bloodstream infections due to AmpC β-Lactamase-producing
Enterobacteriaceae. Antimicrob. Agents Chemother. 61:e00276-17. doi: 10.1128/
AAC.00276-17

De Champs, C., Sauvant, M. P., Chanal, C., Sirot, D., Gazuy, N., Malhuret, R., et al.
(1989). Prospective survey of colonization and infection caused by expanded-
spectrum-beta-lactamase-producing members of the family Enterobacteriaceae
in an intensive care unit. J. Clin. Microbiol. 27, 2887–2890.

Frieden, T. R., Harold Jaffe, D. W., Cardo, D. M., Moolenaar, R. L., Leahy, M. A.,
and Martinroe, J. C. (2018). Morbidity and Mortality Weekly Report (MMWR).
Atlanta: Centers for Disease Control and Prevention.

Fuzi, M., Szabo, D., and Csercsik, R. (2017). Double-serine fluoroquinolone
resistance mutations advance major international clones and lineages of various
multi-drug resistant bacteria. Front. Microbiol. 8:2261. doi: 10.3389/fmicb.2017.
02261

Girlich, D., Poirel, L., and Nordmann, P. (2015). Clonal distribution of multidrug-
resistant Enterobacter cloacae. Diagn. Microbiol. Infect. Dis. 81, 264–268.
doi: 10.1016/J.DIAGMICROBIO.2015.01.003

Gomez-Simmonds, A., Annavajhala, M. K., Wang, Z., Macesic, N., Hu, Y., Giddins,
M. J., et al. (2018). Genomic and geographic context for the evolution of
high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and
ST78. mBio 9:e00542-18. doi: 10.1128/mBio.00542-18

Gomez-Simmonds, A., Hu, Y., Sullivan, S. B., Wang, Z., Whittier, S., and
Uhlemann, A. C. (2016). Evidence from a New York City hospital of rising
incidence of genetically diverse carbapenem-resistant Enterobacter cloacae
and dominance of ST171, 2007-14. J. Antimicrob. Chemother. 71, 2351–2353.
doi: 10.1093/jac/dkw132

Guillard, T., Cholley, P., Limelette, A., Hocquet, D., Matton, L., Guyeux, C., et al.
(2015). Fluoroquinolone resistance mechanisms and population structure of
Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France.
Front. Microbiol. 6:1186. doi: 10.3389/fmicb.2015.01186

Hargreaves, M. L., Shaw, K. M., Dobbins, G., Snippes Vagnone, P. M., Harper,
J. E., Boxrud, D., et al. (2015). Clonal dissemination of Enterobacter cloacae
harboring blaKPC-3 in the Upper Midwestern United States. Antimicrob.
Agents Chemother. 59, 7723–7734. doi: 10.1128/AAC.01291-15

Hawken, S. E., Washer, L. L., Williams, C. L., Newton, D. W., and Snitkin, E. S.
(2018). Genomic investigation of a putative endoscope-associated carbapenem-
resistant Enterobacter cloacae outbreak reveals a wide diversity of circulating
strains and resistance mutations. Clin. Infect. Dis. 66, 460–463. doi: 10.1093/
cid/cix934

Hiramatsu, K., Igarashi, M., Morimoto, Y., Baba, T., Umekita, M., and
Akamatsu, Y. (2012). Curing bacteria of antibiotic resistance: reverse
antibiotics, a novel class of antibiotics in nature. Int. J. Antimicrob. Agents 39,
478–485. doi: 10.1016/J.IJANTIMICAG.2012.02.007

Hoffmann, H., and Roggenkamp, A. (2003). Population genetics of the
nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 69, 5306–5318.
doi: 10.1128/AEM.69.9.5306-5318.2003

Hoffmann, H., Stindl, S., Ludwig, W., Stumpf, A., Mehlen, A., Heesemann, J.,
et al. (2005a). Reassignment of Enterobacter dissolvens to Enterobacter cloacae
as E. cloacae subspecies dissolvens comb. nov. and emended description of
Enterobacter asburiae and Enterobacter kobei. Syst. Appl. Microbiol. 28, 196–
205. doi: 10.1016/J.SYAPM.2004.12.010

Hoffmann, H., Stindl, S., Ludwig, W., Stumpf, A., Mehlen, A., Monget, D., et al.
(2005b). Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei
subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp.
nov., three new subspecies of clinical importance. J. Clin. Microbiol. 43, 3297–
3303. doi: 10.1128/JCM.43.7.3297-3303.2005

Hoffmann, H., Stindl, S., Stumpf, A., Mehlen, A., Monget, D., Heesemann, J., et al.
(2005c). Description of Enterobacter ludwigii sp. nov., a novel Enterobacter

species of clinical relevance. Syst. Appl. Microbiol. 28, 206–212. doi: 10.1016/
J.SYAPM.2004.12.009

Izdebski, R., Baraniak, A., Herda, M., Fiett, J., Bonten, M. J. M., Carmeli, Y., et al.
(2015). MLST reveals potentially high-risk international clones of Enterobacter
cloacae. J. Antimicrob. Chemother. 70, 48–56. doi: 10.1093/jac/dku359

Jean, S.-S., and Hsueh, P.-R. (2017). Distribution of ESBLs, AmpC β-lactamases and
carbapenemases among Enterobacteriaceae isolates causing intra-abdominal
and urinary tract infections in the Asia-Pacific region during 2008–14: results
from the Study for Monitoring Antimicrobial Resistance Trends (SMART).
J. Antimicrob. Chemother. 72, 166–171. doi: 10.1093/jac/dkw398

Jin, C., Zhang, J., Wang, Q., Chen, H., Wang, X., Zhang, Y., et al. (2018). Molecular
characterization of carbapenem-resistant Enterobacter cloacae in 11 Chinese
cities. Front. Microbiol. 9:1597. doi: 10.3389/fmicb.2018.01597

Johnson, J. R., Johnston, B., Kuskowski, M. A., Sokurenko, E. V., and
Tchesnokova, V. (2015). Intensity and mechanisms of Fluoroquinolone
resistance within the H30 and H30Rx subclones of Escherichia coli sequence
type 131 compared with other fluoroquinolone-resistant E. coli. Antimicrob.
Agents Chemother. 59, 4471–4480. doi: 10.1128/AAC.00673-15

Kanamori, H., Parobek, C. M., Juliano, J. J., van Duin, D., Cairns, B. A., Weber,
D. J., et al. (2017). A prolonged outbreak of KPC-3-producing Enterobacter
cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance
transmission at a large academic burn center. Antimicrob. Agents Chemother.
61:e01516-16. doi: 10.1128/AAC.01516-16

Kaneko, K., Okamoto, R., Nakano, R., Kawakami, S., and Inoue, M. (2005).
Gene mutations responsible for overexpression of AmpC beta-lactamase in
some clinical isolates of Enterobacter cloacae. J. Clin. Microbiol. 43, 2955–2958.
doi: 10.1128/JCM.43.6.2955-2958.2005

Kim, S.-Y., Park, Y.-J., Yu, J. K., Kim, Y. S., and Han, K. (2009). Prevalence
and characteristics of aac(6′)-Ib-cr in AmpC-producing Enterobacter cloacae,
Citrobacter freundii, and Serratia marcescens: a multicenter study from Korea.
Diagn. Microbiol. Infect. Dis. 63, 314–318. doi: 10.1016/J.DIAGMICROBIO.
2008.11.016

Kitchel, B., Rasheed, J. K., Patel, J. B., Srinivasan, A., Navon-Venezia, S.,
Carmeli, Y., et al. (2009). Molecular epidemiology of KPC-producing Klebsiella
pneumoniae isolates in the United States: clonal expansion of multilocus
sequence type 258. Antimicrob. Agents Chemother. 53, 3365–3370. doi: 10.1128/
AAC.00126-09

Kluytmans-van den Bergh, M. F. Q., Rossen, J. W. A., Bruijning-Verhagen, P. C. J.,
Bonten, M. J. M., Friedrich, A. W., Vandenbroucke-Grauls, C. M. J. E., et al.
(2016). Whole-genome multilocus sequence typing of extended-spectrum-
beta-lactamase-producing Enterobacteriaceae. J. Clin. Microbiol. 54, 2919–2927.
doi: 10.1128/JCM.01648-16

Kosako, Y., Tamura, K., Sakazaki, R., and Miki, K. (1996). Enterobacter kobei sp.
nov., a new species of the family Enterobacteriaceae resembling Enterobacter
cloacae. Curr. Microbiol. 33, 261–265. doi: 10.1007/s002849900110

Mezzatesta, M. L., Gona, F., and Stefani, S. (2012). Enterobacter cloacae complex:
clinical impact and emerging antibiotic resistance. FutureMicrobiol. 7, 887–902.
doi: 10.2217/fmb.12.61

Miyoshi-Akiyama, T., Hayakawa, K., Ohmagari, N., Shimojima, M., and
Kirikae, T. (2013). Multilocus Sequence Typing (MLST) for characterization
of Enterobacter cloacae. PLoS One 8:e66358. doi: 10.1371/journal.pone.006
6358

Neonakis, I., Gikas, A., Scoulica, E., Manios, A., Georgiladakis, A., and Tselentis, Y.
(2003). Evolution of aminoglycoside resistance phenotypes of four Gram-
negative bacteria: an 8-year survey in a University Hospital in Greece. Int. J.
Antimicrob. Agents 22, 526–531. doi: 10.1016/S0924-8579(03)00152-3

Paauw, A., Caspers, M. P. M., Schuren, F. H. J., Leverstein-van Hall, M. A.,
Delétoile, A., Montijn, R. C., et al. (2008). Genomic diversity within the
Enterobacter cloacae complex. PLoS One 3:e3018. doi: 10.1371/journal.pone.
0003018

Park, S. O., Liu, J., Furuya, E. Y., and Larson, E. L. (2016). Carbapenem-resistant
Klebsiella pneumoniae Infection in three New York City hospitals trended
downwards from 2006 to 2014. Open Forum Infect. Dis. 3:ofw222. doi: 10.1093/
ofid/ofw222

Park, Y.-J., Yu, J. K., Lee, S., Oh, E.-J., and Woo, G.-J. (2007). Prevalence and
diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter
aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study
from Korea. J. Antimicrob. Chemother. 60, 868–871. doi: 10.1093/jac/dkm266

Frontiers in Microbiology | www.frontiersin.org 7 January 2019 | Volume 10 | Article 44429

https://doi.org/10.1128/mBio.02093-16
https://doi.org/10.1128/AAC.02749-13
https://doi.org/10.1128/AAC.00276-17
https://doi.org/10.1128/AAC.00276-17
https://doi.org/10.3389/fmicb.2017.02261
https://doi.org/10.3389/fmicb.2017.02261
https://doi.org/10.1016/J.DIAGMICROBIO.2015.01.003
https://doi.org/10.1128/mBio.00542-18
https://doi.org/10.1093/jac/dkw132
https://doi.org/10.3389/fmicb.2015.01186
https://doi.org/10.1128/AAC.01291-15
https://doi.org/10.1093/cid/cix934
https://doi.org/10.1093/cid/cix934
https://doi.org/10.1016/J.IJANTIMICAG.2012.02.007
https://doi.org/10.1128/AEM.69.9.5306-5318.2003
https://doi.org/10.1016/J.SYAPM.2004.12.010
https://doi.org/10.1128/JCM.43.7.3297-3303.2005
https://doi.org/10.1016/J.SYAPM.2004.12.009
https://doi.org/10.1016/J.SYAPM.2004.12.009
https://doi.org/10.1093/jac/dku359
https://doi.org/10.1093/jac/dkw398
https://doi.org/10.3389/fmicb.2018.01597
https://doi.org/10.1128/AAC.00673-15
https://doi.org/10.1128/AAC.01516-16
https://doi.org/10.1128/JCM.43.6.2955-2958.2005
https://doi.org/10.1016/J.DIAGMICROBIO.2008.11.016
https://doi.org/10.1016/J.DIAGMICROBIO.2008.11.016
https://doi.org/10.1128/AAC.00126-09
https://doi.org/10.1128/AAC.00126-09
https://doi.org/10.1128/JCM.01648-16
https://doi.org/10.1007/s002849900110
https://doi.org/10.2217/fmb.12.61
https://doi.org/10.1371/journal.pone.0066358
https://doi.org/10.1371/journal.pone.0066358
https://doi.org/10.1016/S0924-8579(03)00152-3
https://doi.org/10.1371/journal.pone.0003018
https://doi.org/10.1371/journal.pone.0003018
https://doi.org/10.1093/ofid/ofw222
https://doi.org/10.1093/ofid/ofw222
https://doi.org/10.1093/jac/dkm266
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00044 January 29, 2019 Time: 16:58 # 8

Annavajhala et al. MDR E. cloacae

Paton, A. W., Ratcliff, R. M., Doyle, R. M., Seymour-Murray, J., Davos, D., Lanser,
J. A., et al. (1996). Molecular microbiological investigation of an outbreak of
hemolytic-uremic syndrome caused by dry fermented sausage contaminated
with Shiga-like toxin-producing Escherichia coli. J. Clin. Microbiol. 34, 1622–
1627

Pecora, N. D., Li, N., Allard, M., Li, C., Albano, E., Delaney, M., et al.
(2015). Genomically informed surveillance for carbapenem-resistant
Enterobacteriaceae in a health care system. mBio 6:e01030. doi: 10.1128/mBio.
01030-15

Peirano, G., Matsumura, Y., Adams, M. D., Bradford, P., Motyl, M., Chen, L.,
et al. (2018). Genomic epidemiology of global carbapenemase-producing
Enterobacter spp., 2008–2014. Emerg. Infect. Dis. 24, 1010–1019. doi: 10.3201/
eid2406.171648

Périchon, B., Courvalin, P., and Galimand, M. (2007). Transferable resistance to
aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic
fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob.
Agents Chemother. 51, 2464–2469. doi: 10.1128/AAC.00143-07

Pitout, J. D. D., Sanders, C. C., and Sanders, W. E. (1997). Antimicrobial resistance
with Focus on β-lactam resistance in gram-negative Bacilli. Am. J. Med. 103,
51–59. doi: 10.1016/S0002-9343(97)00044-2

Poirel, L., Ros, A., Carrer, A., Fortineau, N., Carricajo, A., Berthelot, P., et al. (2011).
Cross-border transmission of OXA-48-producing Enterobacter cloacae from
Morocco to France. J. Antimicrob. Chemother. 66, 1181–1182. doi: 10.1093/jac/
dkr023

Probert, W. S., McQuaid, C., and Schrader, K. (2014). Isolation and identification
of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type
1. J. Clin. Microbiol. 52, 2346–2351. doi: 10.1128/JCM.00338-14

Rees, C. A., Nasir, M., Smolinska, A., Lewis, A. E., Kane, K. R., Kossmann, S. E., et al.
(2018). Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and
Enterobacter cloacae isolates using volatile molecular profiles. Sci. Rep. 8:13297.
doi: 10.1038/s41598-018-31543-x

Ruiz, J. (2003). Mechanisms of resistance to quinolones: target alterations,
decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother.
51, 1109–1117. doi: 10.1093/jac/dkg222

Sanders, W. E., Sanders, C. C., and Sanders, C. C. (1997). Enterobacter spp.:
pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev.
10, 220–241. doi: 10.1128/CMR.10.2.220

Schonheyder, H. C., Jensen, K. T., and Frederiksen, W. (1994). Taxonomic notes:
synonymy of Enterobacter cancerogenus (Urosevic 1966) Dickey and Zumoff
1988 and Enterobacter taylorae Farmer et al. 1985 and resolution of an
ambiguity in the biochemical profile. Int. J. Syst. Bacteriol. 44, 586–587. doi:
10.1099/00207713-44-3-586

Seeberg, A. H., Tolxdorff-Neutzling, R. M., and Wiedemann, B. (1983).
Chromosomal beta-lactamases of Enterobacter cloacae are responsible for
resistance to third-generation cephalosporins. Antimicrob. Agents Chemother.
23, 918–925. doi: 10.1128/AAC.23.6.918

Tóth, Á, Kocsis, B., Damjanova, I., Kristóf, K., Jánvári, L., Pászti, J., et al.
(2014). Fitness cost associated with resistance to fluoroquinolones is diverse
across clones of Klebsiella pneumoniae and may select for CTX-M-15 type
extended-spectrum β-lactamase. Eur. J. Clin. Microbiol. Infect. Dis. 33, 837–843.
doi: 10.1007/s10096-013-2022-6

Wang, Q., Wang, X., Wang, J., Ouyang, P., Jin, C., Wang, R., et al. (2018).
OUP accepted manuscript. Clin. Infect. Dis. 67, S196–S205. doi: 10.1093/cid/
ciy660

Wilson, B. M., El Chakhtoura, N. G., Patel, S., Saade, E., Donskey, C. J., Bonomo,
R. A., et al. (2017). Carbapenem-resistant Enterobacter cloacae in patients from
the US Veterans Health Administration, 2006-2015. Emerg. Infect. Dis. 23,
878–880. doi: 10.3201/eid2305.162034

Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P., and Edmond,
M. B. (2004). Nosocomial bloodstream infections in US Hospitals: analysis of
24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect.
Dis. 39, 309–317. doi: 10.1086/421946

Xiong, Z., Wang, P., Wei, Y., Wang, H., Cao, H., Huang, H., et al. (2008).
Investigation of qnr and aac(6′)-Ib-cr in Enterobacter cloacae isolates from
Anhui Province, China. Diagn. Microbiol. Infect. Dis. 62, 457–459. doi: 10.1016/
J.DIAGMICROBIO.2008.07.010

Zhu, B., Lou, M.-M., Xie, G.-L., Wang, G.-F., Zhou, Q., Wang, F., et al. (2011).
Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int.
J. Syst. Evol. Microbiol. 61, 2769–2774. doi: 10.1099/ijs.0.028613-0

Conflict of Interest Statement: A-CU has received research funding from Merck,
GSK and Allergan, unrelated to the current study.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Annavajhala, Gomez-Simmonds and Uhlemann. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 January 2019 | Volume 10 | Article 44430

https://doi.org/10.1128/mBio.01030-15
https://doi.org/10.1128/mBio.01030-15
https://doi.org/10.3201/eid2406.171648
https://doi.org/10.3201/eid2406.171648
https://doi.org/10.1128/AAC.00143-07
https://doi.org/10.1016/S0002-9343(97)00044-2
https://doi.org/10.1093/jac/dkr023
https://doi.org/10.1093/jac/dkr023
https://doi.org/10.1128/JCM.00338-14
https://doi.org/10.1038/s41598-018-31543-x
https://doi.org/10.1093/jac/dkg222
https://doi.org/10.1128/CMR.10.2.220
https://doi.org/10.1099/00207713-44-3-586
https://doi.org/10.1099/00207713-44-3-586
https://doi.org/10.1128/AAC.23.6.918
https://doi.org/10.1007/s10096-013-2022-6
https://doi.org/10.1093/cid/ciy660
https://doi.org/10.1093/cid/ciy660
https://doi.org/10.3201/eid2305.162034
https://doi.org/10.1086/421946
https://doi.org/10.1016/J.DIAGMICROBIO.2008.07.010
https://doi.org/10.1016/J.DIAGMICROBIO.2008.07.010
https://doi.org/10.1099/ijs.0.028613-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00157 February 8, 2019 Time: 19:36 # 1

ORIGINAL RESEARCH
published: 12 February 2019

doi: 10.3389/fmicb.2019.00157

Edited by:
Gilberto Igrejas,

University of Trás-os-Montes and Alto
Douro, Portugal

Reviewed by:
Max Maurin,

Université Grenoble Alpes, France
Zhi Ruan,

Zhejiang University, China

*Correspondence:
Bela Kocsis

kocsis.bela@
med.semmelweis-univ.hu

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 15 December 2017
Accepted: 22 January 2019

Published: 12 February 2019

Citation:
Domokos J, Damjanova I,

Kristof K, Ligeti B, Kocsis B and
Szabo D (2019) Multiple Benefits
of Plasmid-Mediated Quinolone

Resistance Determinants in Klebsiella
pneumoniae ST11 High-Risk Clone

and Recently Emerging ST307 Clone.
Front. Microbiol. 10:157.

doi: 10.3389/fmicb.2019.00157

Multiple Benefits of
Plasmid-Mediated Quinolone
Resistance Determinants in
Klebsiella pneumoniae ST11
High-Risk Clone and Recently
Emerging ST307 Clone
Judit Domokos1, Ivelina Damjanova2, Katalin Kristof3, Balazs Ligeti1,4, Bela Kocsis1* and
Dora Szabo1

1 Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary, 2 National Public Health Institute, Budapest,
Hungary, 3 Institute of Laboratory Medicine, Clinical Microbiology Laboratory, Semmelweis University, Budapest, Hungary,
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International high-risk clones of Klebsiella pneumoniae are among the most common
nosocomial pathogens. Increased diversity of plasmid-encoded antimicrobial resistance
genes facilitates spread of these clones causing significant therapeutic difficulties.
The purpose of our study was to investigate fluoroquinolone resistance in extended-
spectrum beta-lactamase (ESBL)-producing strains, including four K. pneumoniae and
a single K. oxytoca, isolated from blood cultures in Hungary. Whole-genome sequencing
and molecular typing including multilocus sequence typing (MLST) and pulsed-field
gel electrophoresis (PFGE) were performed in selected strains. Gene expression of
plasmid-mediated quinolone resistance determinants (PMQR) was investigated by
quantitative-PCR. MLST revealed that three K. pneumoniae strains belonged to ST11
and one to ST307 whereas K. oxytoca belonged to ST52. The isolates harbored
different β-lactamase genes, however, all K. pneumoniae uniformly carried blaCTX−M−15.
The K. pneumoniae isolates exhibited resistance to fluoroquinolones and carried
various PMQR genes namely, two ST11 strains harbored qnrB4, the ST307 strain
harbored qnrB1 and all K. pneumoniae harbored oqxAB efflux pump. Levofloxacin
and moxifloxacin MIC values of K. pneumoniae ST11 and ST307 clones correlated
with qnr and oqxAB expression levels. The qnrA1 carrying K. oxytoca ST52 exhibited
reduced susceptibility to fluoroquinolones. The maintained expression of qnr genes
in parallel with chromosomal mutations indicate an additional protective role of Qnr
proteins that can support dissemination of high-risk clones. During development of high-
level fluoroquinolone resistance, high-risk clones retain fitness thus, enabling them for
dissemination in hospital environment. Based on our knowledge this is the first report of
ST307 clone in Hungary, that is emerging as a potential high-risk clone worldwide. High-
level fluoroquinolone resistance in parallel with upregulated PMQR gene expression are
linked to high-risk K. pneumoniae clones.

Keywords: international clones, multi-drug resistance, whole genome sequence analysis, gene expression,
plasmid-mediated quinolone resistance

Frontiers in Microbiology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 157431

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.00157
http://creativecommons.org/licenses/by/4.0/
mailto:kocsis.bela@med.semmelweis-univ.hu
mailto:kocsis.bela@med.semmelweis-univ.hu
https://doi.org/10.3389/fmicb.2019.00157
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.00157&domain=pdf&date_stamp=2019-02-12
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00157/full
http://loop.frontiersin.org/people/464702/overview
http://loop.frontiersin.org/people/562837/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00157 February 8, 2019 Time: 19:36 # 2

Domokos et al. Fluoroquinolone Resistance in Klebsiella pneumoniae International Clones

INTRODUCTION

International high-risk clones of Klebsiella pneumoniae are
among the most common Gram- negative pathogens. In addition
to community-acquired infections, it has been known for decades
that due to their ability to spread rapidly in hospital environment,
these bacteria can cause several outbreaks. Multi-drug resistant
(MDR) K. pneumoniae emerged and dramatically increased
prevalence of nosocomial infections while K. oxytoca has been
isolated in hospital infections with less frequency (Podschun and
Ullmann, 1998; Kang et al., 2006; Zhou et al., 2016).

Multi-drug resistant K. pneumoniae acquires various
resistance mechanisms that confer antibiotic resistance
to commonly used antibiotics. Among the most frequent
resistance mechanisms are extended-spectrum β-lactamases
(ESBLs), plasmid-mediated AmpC enzyme (pAmpCs),
carbapenemases, plasmid-mediated quinolone resistance
(PMQR) genes, aminoglycoside-modifying enzymes (AMEs),
as well as exogenously acquired 16S rRNA methyltransferase
that have been detected in clinical isolates (Yan et al., 2002;
Ko et al., 2010; Cao et al., 2014; Bi et al., 2017). Presence
of PMQR genes including qnr determinants, aac(6′)-Ib-cr,
qepA and oqxAB efflux pumps confer reduced susceptibility
to fluoroquinolones and facilitate selection of fluoroquinolone
resistance in Enterobacterales (Rodríguez-Martínez et al., 2011;
Carattoli, 2013). High-risk K. pneumoniae clones have acquired
these antibiotic resistance determinants, that enabled them to
increase their pathogenicity and survival skills. These clones have
tenacity and flexibility to accumulate resistance determinants and
they have contributed to disseminate global multi-drug resistance
(Woodford et al., 2011). Consequently, increased diversity of
plasmid-encoded antimicrobial resistance genes facilitates spread
of these clones, causing significant therapeutic difficulties.

Multi-drug resistant K. pneumoniae strains mainly belong
to certain sequence types (ST) namely, ST11, ST14, ST15,
ST37, ST101, ST147, ST258, ST336, ST340, and ST874. These
represent high-risk international clones that played major role
in dissemination in hospital settings and increased frequency
in nosocomial infections (Damjanova et al., 2008; Hrabák
et al., 2009; Baquero et al., 2013; Munoz-Price et al., 2013;
Rodrigues et al., 2014; Gonçalves et al., 2017). Among these
clones ST258 has been reported as a hybrid clone that was
created by a large recombination event between ST11 and ST442
(Mathers et al., 2015).

International high-risk K. pneumoniae ST11 has been
frequently detected worldwide as a successful pathogen
being associated with important co-resistance and virulence
factors (Damjanova et al., 2008; Andrade et al., 2014).
However, in recent years, new drug-resistant lineages have
emerged internationally and among them, KPC-producing
K. pneumoniae ST307 has been recognized in the United States
which was initially associated with production of CTX-
M-15 (Castanheira et al., 2013). Later on, this clone
has been reported in several countries including Italy,
United Kingdom, Columbia, Pakistan, Morocco, Korea,
Tunisia, China, Serbia (Habeeb et al., 2013; Girlich et al.,
2014; Gona et al., 2014; Park et al., 2015; Ocampo et al.,

2016; Mansour et al., 2017; Novović, 2017; Villa et al., 2017;
Xie et al., 2017).

Recent studies related to dissemination and antibiotic
resistance of K. pneumoniae clones clearly showed that
“fitness cost advantage” associated with high-level resistance
to fluoroquinolones contributed to emergence of international
high-risk K. pneumoniae clones. In hospital settings where
fluoroquinolones are extensively used, international clones are
selected out, allowing dominance over other clones (Tóth et al.,
2014; Fuzi, 2016; Fuzi et al., 2017). This capacity will provide
these clones increased opportunities to spread as well as allow
time to acquire antimicrobial drug resistance determinants from
other bacteria (Mathers et al., 2015). Whole-genome sequence
analysis contributes to detect markers of pathogens, therefore in
our study the aim was to investigate high-level fluoroquinolone
resistance in K. pneumoniae high-risk clone ST11 and currently
emerging ST307.

MATERIALS AND METHODS

Bacterial Strains
In our preliminary examination, a total of 54 Klebsiella strains
(53 K. pneumoniae and a single K. oxytoca) isolated from
bloodstream infections of patients treated at intensive care
units of Semmelweis University between 2010 and 2014 were
collected. Species identification was done by MALDI-TOF/MS
(Bruker Daltonics, Bremen, Germany). Minimum inhibitory
concentration determination was performed by microdilution
method based on EUCAST recommendation.1 All Klebsiella
strains were resistant to third-generation cephalosporins and
showed reduced susceptibility or resistance to fluoroquinolones.
All strains were tested for presence of PMQR genes and all of
them were ESBL producers by phenotypic test. In this study,
selection of strains was done based on the following criteria:
(1) presence of qnr gene and non-wild type fluoroquinolone
MIC values: Kox37 (isolated in 2010); (2) presence of qnr gene
and high fluoroquinolone MIC values: Kpn33 (isolated in 2010),
Kpn47 (isolated in 2014), Kpn125 (isolated in 2013); (3) multiple
PMQR gene carriage together with high fluoroquinolone MIC
values: Kpn115 (isolated in 2013) (Domokos et al., 2016).

Multilocus Sequence Typing (MLST)
Genotype of each strain was determined by MLST. The sequences
of seven housekeeping genes namely, gapA, infB, mdh, pgi, phoE,
rpoB, and tonB were amplified and directly sequenced. Alleles
and sequence types were assigned by using the MLST database2

(Diancourt et al., 2005). The distance based relationship between
the strains was investigated by BacWGST (Ruan and Feng, 2016)
using both the whole-genome MLST and SNP (sequenced based)
strategies. Multiple genome analysis was carried out using all the
draft genomes of this study and the HS11286_CP003200_ST11 as
a reference genome (Figure 1).

1www.eucast.org
2http://www.pasteur.fr/mlst/Kpneumoniae.html
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FIGURE 1 | Distance based tree of K. pneumoniae ST11, ST307 and K. oxytoca ST52 after genome based single nucleotide polymorphism (SNP) analysis.
BacWGST, Multiple genome analysis http://bacdb.org/BacWGSTdb/Tools.php.

Pulsed Field Gel Electrophoresis (PFGE)
Typing
Clonal relatedness of the fourK. pneumoniae strains was analyzed
by PFGE according to CDC (2000) protocol. Prepared genomic
DNA of each strain was digested byXbaI restriction endonuclease
(Fermentas, ABI, Germany), and DNA fragments were separated
in a PFGE CHEF-DR II system (Bio-Rad Laboratories, Hercules,
CA, United States). Banding patterns were analyzed by
Fingerprinting II Informatix Software (Bio-Rad). Salmonella
enterica serotype Braenderup H9812 was used as a size
marker (Hunter et al., 2005).

Whole-Genome Sequencing (WGS)
DNA of each strain was extracted by UltraClean Microbial
DNA Isolation Kit (Qiagen GmbH, Hilden, Germany).
Libraries were prepared using SureSelect QXT Library Prep
Kit (Agilent Technologies, Santa Clara, United States).
Sequencing was performed on an Illumina MiSeq system

using the MiSeq reagent kit v2 generating 250-bp paired-
end reads. Trimmomatic (Bolger et al., 2014) was used
for preprocessing the WGS data. If the average quality
score was below 20 in a sliding window of 4 the adapter
sequences and the leading and trailing bases were removed
as well as the first 18 bases. Only the reads longer than
50 nucleotides were used for subsequent analysis. De novo
genome assembly was performed with SPAdes Genome
Assembler 3.13.0 (Bankevich et al., 2012). Each assembled
genome was accepted for further analysis if it met all of the
following quality criteria: (i) average coverage > 30 times, (ii)
N50 > 15,000 bases, (iii) maximum contig length > 50,000
bases, and (iv) assembled genome size between 5,000,000 and
6,500,000 bases. Assembled genomes were uploaded to the
online bioinformatics tools ResFinder (Zankari et al., 2012),
PlasmidFinder (Carattoli et al., 2014) (Center for Genomic
Epidemiology, Technical University of Denmark, Lyngby,
Denmark) to analyse resistome and plasmid replicon types
of the isolates.
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Quantitative PCR (qPCR)
Total RNA of tested strains was isolated by RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. The qPCR
was carried out in a Step One Real-Time PCR System (Applied
BioSystems, Thermo Fisher Scientific). Separate expression of
qnrA1, qnrB1 qnrB4, oqxA, and oqxB genes were investigated
whereas chromosomal rpoB was chosen as housekeeping gene.
Set of primers and 6-FAM or VIC labeled probes were designed
by Primer Express 3.0 software. All oligonucleotide primers and
probes for qPCR are listed in Table 1. Each RNA sample was
tested in triplicate. The qPCR was applied in default setting 60◦C
30 s; 50◦C 5 min; 95◦C 10 min; 40 cycles of [95◦C 15 s and
60◦C 1 min] 60◦C 30 s. The CT values of genes of interest were
normalized (1CT) to the CT values of housekeeping gene rpoB
and the relative expression of each gene of interest was calculated
as 2−1C

T = CT (geneofinterest) – CT (rpoB).

RESULTS

In our study, four K. pneumoniae and a single K. oxytoca
were investigated by MLST and PFGE. Three different STs were
identified, including ST11 (Kpn33, Kpn115, Kpn125), ST307
(Kpn47), and ST52 (Kox37).

Pulsed-field gel electrophoresis analysis detected three
pulsotypes (PT) among K. pneumoniae strains, namely, KP053,
S and KP197. Two isolates belonged to KP053 (Kpn33 and
Kpn125) and one was detected as S PT (Kpn115). These strains
belonged to the ST11 international high-risk clone. By contrast,
Kpn47 was classified as KP197 PT (Figure 2).

The initial assembled draft genome sequences were
5611026 bp (Kpn33); 6370417 bp (Kox37); 5451744 bp,
(Kpn47); 5450412 bp (Kpn115), and 5593358 bp (Kpn125).
Seventeen antibiotic resistance genes were found in two ST11

TABLE 1 | Primers used for qPCR (F, forward; R, reverse; P, probe).

Gene Primer sequence

qnrA1-F 5′-TTGAGTGACAGCCGTTTTCG-3′

qnrA1-R 5′-GCAGCTGACAGTGGCTGAAG-3′

qnrA1-P 6-FAM-CTGCCGCTTTTATC-MGB

qnrB1-F 5′-GTGCGCTGGGCATTGAA-3′

qnrB1-R 5′-CGGAAATCTGCGCCTTGT-3′

qnrB1-P 6-FAM-TTCGCCACTGCCGC-MGB

qnrB4-F 5′-TGCGCTGGGAATCGAAA-3′

qnrB4-R 5′-CGCGAAAATCTGACCCTTGT-3′

qnrB4-P 6-FAM-TCGCCACTGCCGGG-MGB

oqxA-F 5′-GTCGACGGCTTACAAAAAGTGTT-3′

oqxA-R 5′-GCAACGGTTTTGGCGTTAA-3′

oqxA-P 6-FAM-ATGCCGGGTATGCC-MGB

oqxB-F 5′-CTGGATTTTCCGTCCGTTTAAC-3′

oqxB-R 5′-TTGCCTACCAGTCCCTGATAGC-3′

oqxB-P 6-FAM-CTGCGCAGCTCGAA-MGB

rpoB-F 5′-GTCGCGGCTGAACAAGCT-3′

rpoB-R 5′-AACGGCCACTTCGTAGAAGATC-3′

rpoB-P VIC-CTACGGCAGGTAACC-MGB

K. pneumoniae strains (Kpn33 and Kpn125), twelve were in
the third ST11 strain (Kpn115), sixteen resistant genes were in
ST307 strain (Kpn47) and ten resistance genes were detected
in Kox37. Sequence analysis revealed that the isolates harbored
different β-lactamase genes, including blaDHA−1, blaOXA−1,
blaOXA−2, blaOXA−9, blaHV−11, blaHV−28, and blaTEM−1A,
blaTEM−1B, blaOXY−1−3, blaTLA−1; and all K. pneumoniae strains
carried blaCTX−M−15. Among aminoglycoside resistance genes
all isolates were positive for aac(3)-IIa. Only Kpn47 carried a
tetracycline resistance (tetA) gene. Except for Kox37, all strains
were identified positive for fosA gene nevertheless, sul1 or sul2
and trimethoprim resistance (dfrA12, dfrA14, dfrA29) genes
were detected in four strains. PMQR genes were found in
each tested strain namely, in Kpn33 qnrB4, in Kox37 qnrA1,
in Kpn47 qnrB1, in Kpn125 qnrB4. All K. pneumoniae strains
harbored oqxAB efflux pump and aac(6′)-Ib-cr, but one of
the ST11 strains (Kpn115) carried no qnr gene. Presence of
phenicol resistance gene (catA1 or catB3) was observed in all
strains. Chromosomal mutations conferring fluoroquinolone
resistance in K. pneumoniae strains were also detected, Ser83Phe
and Asp87Ala substitutions were in DNA gyrase subunit A of
Kpn115 (ST11), but all other K. pneumoniae strains had only
Ser83Ile in gyrase while on the other hand all K. pneumoniae
had a Ser80Ile substitution in DNA topoisomerase IV. Based on
the sequencing data, IncFIB, IncFII, and IncR replicons were
uniformly present in all ST11 strains. In the case of ST307 IncFIB,
IncL/M, IncHI1B were detected. The detected resistance genes
and plasmid replicons are listed in Table 2 and Figure 3.

Among qnr genes, qnrB4 of two ST11 strains (Kpn33 and
Kpn125) showed 9.74 and 3.55 fold expression, respectively.
Interestingly, Kpn33 (ST11) was characterized approximately
3-fold higher expression, compared to the genetically similar
Kpn125 (ST11). The lowest expression level (1.64) among
qnr genes was detected in K. oxytoca, that exhibited reduced
susceptibility to ciprofloxacin. In the case of qnrB1 in Kpn47
(ST307), it showed 2.39 fold expression.

Expression of oqxA ranged between 1.47 and 3.92 and
that of oqxB from 3.09 to 8.53. The highest oqxA and oqxB
expressions were observed in Kpn33 (ST11) and Kpn47 (ST307).
These were followed by Kpn125 (ST11) and Kpn115 (ST11).
Interestingly, Kpn115 a strain of ST11 high-risk clone carried
no qnr gene moreover, it showed the lowest oqxAB expression.
It is conspicuous that in every K. pneumoniae strain the oqxB is
expressed 2–3 fold higher than oqxA.

DISCUSSION

International high-risk K. pneumoniae ST11 clone has been
frequently detected worldwide as a successful pathogen being
associated with important virulence (Damjanova et al., 2008;
Andrade et al., 2014), and resistance determinants including
VIM, NDM and KPC-production (Yan et al., 2002; Kristóf
et al., 2010; Qi et al., 2011; Yu et al., 2016; Campana et al.,
2017). In our study, all strains of ST11 international high-
risk clone carried blaSCTX−M−15 ESBL that correlates well with
earlier studies as the most common global ESBLs are the
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FIGURE 2 | PFGE of K. pneumoniae ST11 and ST307.

TABLE 2 | Distribution of the different resistance genes and plasmid replicons of
tested strains.

CTX-M type beta-lactamases in Enterobacterales (Nordmann
and Poirel, 2014). Recently, in a Bulgarian study among 82
ESBL-producing K. pneumoniae and four K. oxytoca CTX-M-15
(87%) was predominant (Markovska et al., 2017). K. pneumoniae
ST11 has been already reported in Hungary, as a widely

disseminated clone in all over the country (Damjanova et al.,
2008). In Poland, an inter-regional outbreak was reported
that was dominated by NDM-1 and CTX-M-15 coproducing
K. pneumoniae ST11 clone (Baraniak et al., 2016). A high
prevalence (30.2%) of CTX-M-15-producing K. pneumoniae was
detected in raw bovine milk too. This finding highlights the
spread of CTX-M-15-producing K. pneumoniae also in the food
chain (Diab et al., 2017).

In recent years, new drug-resistant international lineages have
emerged, among them, KPC-producing K. pneumoniae ST307
has been recognized in several countries (Castanheira et al., 2013;
Villa et al., 2017). To the best of our knowledge, our study is the
first description of ST307 in Hungary that is has been reported as
a potential high-risk clone. High similarity has been found in our
ST307 isolate compared to that of detected by Villa et al. (2017).

Three pulsotypes were identified among the investigated
K. pneumoniae strains: KP053, S PT, and KP197. Two ST11
isolates belonged to KP053 (Kpn33 and Kpn125) and the third
ST11 was detected as S PT (Kpn115) that was earlier reported
in Hungary (Damjanova et al., 2008). In a Hungarian study,
PFGE typing revealed 12 pulsotypes; of these, KP053 (262/312)
and KP070 (38/312) belonged to sequence type ST11 (Kis et al.,
2016); these data also prove the spread of KP053/ST11 clone
in our country. K. pneumoniae ST307 (Kpn47) was classified as
KP197 pulsotype, however, this type was not registered until 2014
by the National Public Health Institute. Since 2015, altogether
30 strains have been identified with this pulsotype in Hungary
(unpublished data).

In this study, mutations in gyrase and topoisomerase coding
genes and various PMQRs were detected in K. pneumoniae
and K. oxytoca. Of the detected PMQRs in this study oqxAB
was present in all K. pneumoniae clinical isolates but not in
K. oxytoca. This result can be explained by the fact that the oqxAB
is a chromosomally-encoded gene in K. pneumoniae (Yuan
et al., 2012). The qnrB genes were observed in K. pneumoniae
ST11 correlating with the international data (Hidalgo et al.,
2013; Jaidane et al., 2018). However, this is the first report of
the qnr gene in K. oxytoca ST52. Regarding plasmid replicon
types, the most common replicon was IncFIB, that was present
in all ST11, ST52, and ST307, which confirms earlier studies
(Anes et al., 2017).

Acquisition of qnr determinants can have multiple advantages.
In the case of K. oxytoca, the presence and expression of
qnrA1 caused reduced susceptibility to quinolones. Levofloxacin
and moxifloxacin MIC values of K. pneumoniae ST11 and
ST307 clones correlated with qnr and oqxAB expression
levels (Figure 3).
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FIGURE 3 | Level of qnrB4 (Kpn33 and Kpn125), qnrA1 (Kox37), and qnrB1, oqxA, and oqxB relative gene expression. QRDRs: quinolone resistance determining
regions. All MIC values are in mg/L.
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Further beneficial effect of Qnr proteins can be explained by
the toxin-antitoxin effect. Qnr proteins are considered antitoxins,
that protect gyrase and topoisomerase IV enzymes from naturally
occuring toxins. This theory was described by Ellington and
Woodford (2006) and it can be valid also in internationally
disseminated high-risk clones (Ellington and Woodford, 2006).
During development of fluoroquinolone resistance PMQR
determinants play a role in reduced susceptibility, and they
maintain low-level fluoroquinolone resistance (Garoff et al.,
2018). Later, by chromosomal mutations in QRDRs high-level
fluoroquinolone resistance develops, but PMQR expression is
maintained thus, indicating further role of PMQRs such as
protection of gyrase and topoisomerase IV enzymes (Tran et al.,
2005a,b; Redgrave et al., 2014).

It has been also established that the development of
fluoroquinolone resistance is diverse among different clones
and in the case of international high-risk K. pneumoniae
clones the fluoroquinolone resistant strains retain fitness that
facilitates their dissemination in hospital environment (Fuzi,
2016). Moreover, Redgrave et al. indicated that fluoroquinolone
resistance played a key role in evolutionary success of
K. pneumoniae clones (Redgrave et al., 2014).

Emergence and possible dissemination of K. pneumoniae
ST307 in hospital settings raises also public health concerns,
therefore continous monitoring of high-risk and potential high-
risk clones is necessary.
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Recently, a novel mobile colistin resistance gene, mcr-8, was identified in Klebsiella
pneumoniae. Here, we report the identification of mcr-8 and its variant, mcr-8.4, in
Raoultella ornithinolytica isolates which also belong to Enterobacteriaceae family. The
mcr-8 gene was located on transferrable plasmids with difference sizes. Notably,
the transferability of mcr-8-carrying plasmids was enhanced once they entered into
Escherichia coli hosts and multiple β-lactamase genes could co-transfer with mcr-8.
These findings expand our knowledge of mcr-8-carrying bacterial species.

Keywords: colistin resistance, mcr-8, mcr-8.4, β-lactamase, Raoultella ornithinolytica

INTRODUCTION

Colistin (polymyxin E), a polypeptide antibiotic, was originally isolated from the soil bacterium
Paenibacillus polymyxa subsp. colistin (Poirel et al., 2017). Colistin is effective against most Gram-
negative bacteria and was considered as one of the last-resort antibiotics for the treatment of human
infections caused by multidrug resistant Gram-negative bacteria, especially, carbapenem-resistant
Enterobacteriaceae (CRE) (Li et al., 2006). However, in 2016, the first plasmid mediated colistin
resistance gene mcr-1 was identified in Escherichia coli, Klebsiella pneumoniae and Pseudomonas
aeruginosa (Liu et al., 2016). To date, the mcr-1 gene has been detected in Enterobacteriaceae
isolated from food, animals, human and environment in over 50 countries across five different
continents (Hembach et al., 2017; Huang et al., 2017). Subsequently, plasmid-mediated colistin
resistance genes mcr-2, mcr-3, mcr-4, mcr-5, mcr-6, and mcr-7 have been identified in various
bacterial species from humans and animals (Partridge et al., 2018). Recently, we reported the
identification of mcr-8 located on an InFII-type conjugative plasmid in Klebsiella pneumoniae
isolated from chickens and pigs in China (Wang et al., 2018).

Raoultella ornithinolytica is closely related to Klebsiella and belongs to Enterobacteriaceae
family (Beye et al., 2018; Hajjar et al., 2018). R. ornithinolytica is usually found in animals, soil,
and botanical environment. This organism caused human infections, initially rare, are increasing
according to several reports (Sun et al., 2015; Ponce-Alonso et al., 2016; Beye et al., 2018). So far,
multi-drug resistance has been detected in R. ornithinolytica (Walckenaer et al., 2004; Castanheira
et al., 2009; Khajuria et al., 2013), including mcr-1 positive isolates (Luo et al., 2017). Here, we report
the emergence of mcr-8 in R. ornithinolytica.
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MATERIALS AND METHODS

Bacterial Isolation and Identification
A total of 300 cloaca samples were collected from chicken in
commercial poultry farms of Shandong Province, China, in 2016.
All the samples were screened on the CHROMAgar Orientation
agar plate (bioMérieux, Lyon, France) containing 2 µg/ml
colistin. The identification of bacterial species was performed
using MALDI-TOF MS (BruKer Daltonik, Bremen, Germany),
and then confirmed by 16S rDNA sequence analysis as described
previously (Zhang et al., 2015; Luo et al., 2017). The presence of
mcr (mcr-1 to mcr-8) in R. ornithinolytica was determined by PCR
amplification and followed by Sanger sequencing as described
previously (Wang et al., 2018).

Before collection the study samples, we have drafted an
application “Detection of plasmid mediated colistin resistance
genes of Enterobacteriaceae in Shandong, China,” within which
chicken are designed to be used as research object in this
antimicrobial resistance study. Those experiments are guaranteed
to conduct in accordance with the principles of the Beijing
Municipality Review of Welfare and Ethics of Laboratory
Animals, as well as rules and regulations from China Agricultural
University’s committee on animal welfare and ethics. Finally, this
application was approved by committee on Animal Welfare and
Ethics in China Agricultural University.

S1-PFGE and Southern Blotting
S1 nuclease-PFGE and Southern blotting were performed to
locate the mcr-8 gene in both donor and recipient strains as
described previously (Zheng et al., 2017). Briefly, agarose gel
plugs embedded strains were digested with S1 nuclease (TakaRa,
Dalian, China), and Southern blotting was performed using
the DIG-High Prime DNA Labeling and Detection Starter Kit
II (Roche Diagnostics). The genomic DNA of the Salmonella
enterica serovar Braenderup H9812 strain restricted with XbaI
was used as the DNA marker. The mcr-8 probe was the one, which
we previously reported (Wang et al., 2018).

Conjugation Assay
The horizontal transferability of mcr-8 was examined using
conjugation assay with E. coli J53 (azide-resistant) or E. coli
EC600 (rifampicin-resistant) as the recipient strain. Considering
colistin resistance spontaneous mutants might be confused with
colistin transconjugants, the conjugation assay with E. coli J53
were performed twice, first was selected on LB agar plates
containing 4 µg/ml colistin and 100 µg/ml azide, second was
selected on 16 µg/ml amoxicillin and 100 µg/ml azide LB
agar plates. In parallel, QDRO1 and QDRO2, and recipient
strains J53 were plated on conjugation plates as control.
Transconjugants were confirmed by PCR targeting the mcr-8
and β-lactamase genes, blaTEM−1B and blaOXA−1 in QDRO1 and
QDRO2 transconjugants, respectively, as well as XbaI enzyme
digested pulsed field gel electrophoresis (PFGE). For analysis
of the transfer ability of mcr-8 in the same genus, we further
performed conjugation assay using the above identified QDRO1
and QDRO2 transconjugants (T-QDRO1 and T-QDRO2) as

donor strains and E. coli EC600 as recipient strain. The transfer
frequency was calculated as the number of transconjugants per
recipient as previous reported (Zhao et al., 2017).

Antimicrobial Susceptibility Test
The MICs of wild strains and transconjugants to antimicrobial
agents (listed in Table 1) were determined by broth microdilution
method, and the results were interpreted according to CLSI and
European Committee on Antimicrobial Susceptibility Testing
(EUCAST). The E. coli ATCC 25922 was used as a quality
control strain.

Genome Sequencing and Analysis of
Antibiotic Resistance Genes
Genomic DNA of the isolates were extracted using the Wizard
Genomic DNA Purification kit (Promega), then subjected to
WGS on the Illumina HiSeq 2500 platform according to
the manufacturer’s protocols, which produced 150-bp paired-
end reads. For each isolate analyzed by WGS, at least
100-fold coverage of raw reads was collected. The draft
genomes were assembled using CLC Genomics Workbench
9.0 (CLC Bio, Aarhus, Denmark). Reference sequences of
antibiotic resistance genes were from database ARG-ANNOT
(de Man and Limbago, 2016).

RESULTS AND DISCUSSION

Presence and Location of mcr-8 in
Raoultella spp
A total of 15 Raoultella spp strains obtained from 300
chicken cloaca samples, among which 12 R. ornithinolytica, 2
R. planticola, and 1 R. terrigena. PCR assays showed that two
R. ornithinolytica strains, named QDRO1 and QDRO2, were
positive for mcr-8, but no other mcr genes were identified in
this 15 Raoultella spp strains. S1-PFGE and Southern blotting
assay indicated that mcr-8 were located on ∼90-kb and ∼200-
kb plasmids in QDRO1 and QDRO2, respectively (Figure 1).
These two mcr-8-carrying plasmids were named as pQDRO1 and
pQDRO2, respectively.

Transferability of mcr-8 Gene
Conjugation assays showed that the pQDRO1 and pQDRO2
plasmids were transferable from R. ornithinolytica to recipient
E. coli strains. The transfer frequencies of the pQDRO1 and
pQDRO2 plasmids to E. coli J53 were 2.28 ± 1.64 × 10−8 and
1.71 ± 1.01 × 10−8, respectively. Meanwhile, transconjugants
from amoxicillin and azide plates were resistant to colistin and
mcr-8 positive. These suggested that mcr-8 was co-transferred
with β-lactamase genes. As expected, donor strains QDRO1 and
QDRO2, and recipient J53 did not grow on colistin and azide
plates, or amoxicillin and azide plates. To determine whether
the adaptation of mcr-8-carrying plasmids in E. coli could affect
their transfer frequencies, we further performed the conjugation
assays using the transconjugants as donor strains and E. coli
EC600 as recipient strain. We found that the transfer frequencies
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TABLE 1 | The minimum inhibitory concentrations of tested antimicrobial agents for the studied bacterial isolates.

Bacterial isolate1 MICs (µg/ml)2

CST PB AMC AZT CAZ GEN TET FFC CHL CIP

R. ornithinolytica QDRO1 16 8 128/64 2 64 >512 >256 >256 >256 128

T-QDRO1 16 4 32/16 2 16 0.25 0.5 4 4 0.004

R. ornithinolytica QDRO2 8 4 128/64 8 32 >512 >256 >256 >256 128

T-QDRO2 8 4 32/16 4 16 0.25 0.5 4 4 0.004

R. ornithinolytica QDRO3 4 4 128/64 2 64 >512 >256 >256 >256 16

R. ornithinolytica QDRO4 8 8 64/32 2 32 >512 >256 >256 >256 128

R. ornithinolytica QDRO5 16 8 128/64 4 32 >512 >256 >256 >256 64

R. ornithinolytica QDRO6 8 8 64/32 4 32 >512 >256 >256 >256 32

R. ornithinolytica QDRO7 8 8 64/32 4 16 >512 >256 >256 >256 0.008

R. ornithinolytica QDRO8 16 16 128/64 4 32 >512 >256 >256 >256 64

R. ornithinolytica QDRO9 32 16 128/64 4 32 >512 >256 >256 >256 64

R. ornithinolytica QDRO10 64 32 128/64 4 64 >512 >256 >256 >256 128

R. ornithinolytica QDRO11 4 4 64/32 2 32 >512 >256 >256 >256 64

R. ornithinolytica QDRO12 8 8 128/64 4 32 >512 >256 >256 >256 128

R. planticola QDRP1 8 8 64/32 4 8 >512 >256 >256 >256 16

R. planticola QDRP2 4 4 64/32 4 16 >512 >256 >256 >256 8

R. terrigena QDRT1 2 2 32/16 4 8 >512 >256 >256 >256 0.016

1T-QDRO1 and T-QDRO2 represent the transconjugations of R.ornithinolytica QDRO1 and R.ornithinolytica QDRO2. 2Antimicrobial agents are abbreviated as follows: CST,
colistin; PB, polymyxin B; AMC, amoxicillin-clavulanate; AZT, aztreonam; CAZ, ceftazidime; GEN, gentamycin; TET, tetracycline; FFC, florfenicol; CHL, chloramphenicol;
CIP, ciprofloxacin. The bold numbers mean the isolates are resistant to the tested antimicrobial agent.

FIGURE 1 | The location of mcr-8 in Raoultella ornithinolytica QDRO1 and QDRO2 isolates and their transconjugants. (A) XbaI-digested PFGE of the
R. ornithinolytica QDRO1 and QDRO2 isolates, transconjugants, and recipient Escherichia coli J53. (B) S1-PFGE and (C) the corresponding Southern hybridization
using the mcr-8-specific probe. Lane M, marker H9812; Lane 1, R. ornithinolytica QDRO1; Lane 2, transconjugant T-QDRO1; Lane 3, recipient E. coli J53; Lane 4,
R. ornithinolytica QDRO2; Lane 5, transconjugant T-QDRO2.
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of the pQDRO1 and pQDRO2 plasmids increased 103 and 104

folds, respectively, compared with the transfer frequencies of
plasmids from R. ornithinolytica QDRO1 and QDRO2 to E. coli,
respectively. To determine if the transfer frequencies of plasmids
could be affected by the recipient bacteria, we performed the
conjugation assays using the parental strains R. ornithinolytica
QDRO1 and QDRO2 as donors and E. coli EC600 as recipients.
The transfer frequencies of the pQDRO1 and pQDRO2 plasmids
from R. ornithinolytica to E. coli EC600 were 4.17 ± 1.35× 10−7

and 3.09 ± 1.29 × 10−7, respectively. We further performed
the conjugation assays using the obtained transconjugants as
donor strains and E. coli J53 as recipient strain. The transfer
frequencies of pQDRO1 and pQDRO2 were 2.74 ± 1.31 × 10−4

and 3.71 ± 1.98 × 10−4, respectively. Similar to the previous
results, increased transfer frequencies were observed for the
pQDRO1 and pQDRO2 plasmids once they adapted to the E. coli
host. These findings demonstrated that mcr-8 gene is able to
transfer between different bacterial species, which may further
promote the dissemination of drug resistance.

Antimicrobial Susceptibility
Antimicrobial susceptibility test showed that this 15 Raoultella
spp strains were all resistant to colistin, polymyxin B, amoxicillin-
clavulanate, aztreonam, ceftazidime, tetracycline, florfenicol,
chloramphenicol, and only R. ornithinolytica QDRO7 and
R. terrigena QDRT1 were sensitivity to ciprofloxacin (Table 1).
Both transconjugants were not only resistant to colistin
and polymyxin B, but also resistant to β-lactam antibiotics,
such as amoxicillin-clavulanate, aztreonam and ceftazidime,
which implied that β-lactamase producing genes might be co-
transferred with mcr-8.

Whole Genome Sequencing Analysis
WGS analysis showed that a 16.5-kb contig (GenBank:
QWIX00000000) of R. ornithinolytica QDRO1 carrying
mcr-8 showed 100% query coverage and 99% identity to the
corresponding segment of the mcr-8-carrying plasmid pKP91
from K. pneumoniae (Genbank number: MG736312) by
Blastin in the NCBI database. A mcr-8 variant, termed mcr-8.4
(Genbank number: MH791448), was found in this 16.5-kb
contig. Compared with mcr-8, mcr-8.4 gene carried an A1209C
transversion, which resulted in Serine to Arginine substitution.
Similarly, the 25.5-kb mcr-8-carrying contig (Genbank number:
MK097469) of R. ornithinolytica QDRO2 showed 83% query
coverage and 99% identity to the corresponding segment of the
mcr-8-carrying plasmid pKP91 from K. pneumoniae. Genetic
structure analysis of the two mcr-8-carrying contigs showed that
two copies of 1IS903B located upstream and downstream of
mcr-8.4 in R. ornithinolytica QDRO1, while, only one copy of
1IS903B located upstream of mcr-8 in R. ornithinolytica QDRO2
(Supplementary Figure S1). Plasmid replicon type was carried
out using the Center for Genomic Epidemiology1, and showed
that R. ornithinolytica QDRO1 contained IncHI2, IncA/C2,
IncX3, and IncFII-type plasmids, and R. ornithinolytica QDRO2
contained IncHI2, IncFIB, IncHI1B, and IncFII-type plasmids.

1http://genomicepidemiology.org/

To further identify the replicon type of plasmids pQDRO1 and
pQDRO2, we detected the replicon genes, which found in wild
strains, in transconjugants of R. ornithinolytica QDRO1 and
QDRO2 using primers listed in Supplementary Table S1. Results
showed that the plasmids pQDRO1 and pQDRO2 both belong
to IncFII-type, which is same with plasmid pKP91.

Analysis of the whole genome sequences of QDRO1 and
QDRO2 isolates showed that these two strains contained
multiple resistance genes (Table 1). As shown, except mcr-8.4,
R. ornithinolytica QDRO1 also contained aadA1, aph(3′)-Ia,
strA, strB, aac(6′)-Ib, and armA, fosA, mph(E), floR, cml, qnrB4,
sul, tet(B), tet(34), blaTEM−1B, blaOXA−1, blaDHA−1. Similarly,
except mcr-8, R. ornithinolytica QDRO2 contained aac(3)-IVa,
aph(4)-Ia, aadA2, fosA, mph(A), mph(E), cat, floR, cml, QnrS4,
oqxAB, QnrB52, sul1, sul2 and sul3, tet(A), tet(34), tet(O), tet(B),
blaTEM−1B, blaOXA−1, blaSHV−73.

Our above antimicrobial susceptibility assay suggests that
β-lactamase genes might be co-transferred with mcr-8. In order
to determine the co-transfer of these genes, PCR amplification
was performed to detect the presence of β-lactamase genes
in transconjugants using primers listed in Supplementary
Table S1. blaTEM−1B and blaDHA−1 were detected in QDRO1
transconjugant, while blaOXA−1 and blaSHV−73 were present
in QDRO2 transconjugant. These findings indicated that
blaTEM−1B, blaDHA−1, blaOXA−1, and blaSHV−73 could co-transfer
with mcr-8.

CONCLUSION

This study identified colistin resistance genes mcr-8 and
its variant, mcr-8.4, in R. ornithinolytica. The two mcr-8-
carrying IncFII-type plasmids could be transferred to E. coli by
conjugation. In addition, the transferability of the two plasmids
were enhanced once they entered into E. coli hosts, which
might further accelerate the dissemination of mcr-8 among
Enterobacteriaceae. It is worth noting that the co-transferability
of mcr-8 with several β-lactamase genes may further facilitate the
dissemination of mcr-8 among Enterobacteriaceae.
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Federal University of Pará, Belém, Brazil, 2 Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal,
3 Federal Rural University of Amazon, Capanema, Brazil

Aquatic systems have been described as antibiotic resistance reservoirs, where water
may act as a vehicle for the spread of resistant bacteria and resistance genes. We
evaluated the occurrence and diversity of third generation cephalosporin-resistant
gram-negative bacteria in a lake in the Amazonia region. This water is used for human
activities, including consumption after appropriate treatment. Eighteen samples were
obtained from six sites in October 2014. Water quality parameters were generally
within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia
(n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas
(n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1
isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams,
except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least
three different classes. Among the beta-lactamase genes inspected, the blaCTX−M was
the most prevalent (n = 12 positive isolates), followed by blaTEM (n = 5) and blaSHV

(n = 4). blaCTX−M−15 (n = 5), blaCTX−M−14 (n = 1) and blaCTX−M−2 (n = 1) variants were
detected in conserved genomic contexts: blaCTX−M−15 flanked by ISEcp1 and Orf477;
blaCTX−M−14 flanked by ISEcp1 and IS903; and blaCTX−M−2 associated to an ISCR
element. For 4 strains the transfer of blaCTX−M was confirmed by conjugation assays.
Compared with the recipient, the transconjugants showed more than 500-fold increases
in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two
isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected
for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk
clone ST471 and serotype O154:H18. blaCTX−M−15 as well as determinants related
to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was
susceptible to carbapenems and antibiotic resistance genes detected in its genome
were intrinsic determinants (e.g., blaOXA−208 and blaADC−like). The strain was not
predicted as a human pathogen and belongs to a new sequence type. Operons related
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to metal resistance were predicted in both genomes as well as pathogenicity and
resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in
Lake Água Preta which, although not presenting characteristics of a strongly impacted
environment, contains multi-drug resistant pathogenic strains.

Keywords: antibiotic resistance, Escherichia coli, Acinetobacter baumannii, blaCTX−M, whole genome analysis

INTRODUCTION

Bacterial resistance to antibiotics is currently one of the
most serious public health concerns. The environment and
particularly aquatic systems have been pointed as important
reservoirs of resistance (Baquero et al., 2008; Taylor et al., 2011;
Marti et al., 2014). These settings bring together indigenous
bacterial communities and bacteria resulting from anthropogenic
contamination, creating a milieu that may promote horizontal
gene transfer (Pei and Gunsch, 2009; Jiao et al., 2017).
Furthermore, significant quantities of contaminants accumulate
in polluted aquatic systems and some of these contaminants
were implicated in the selection of resistant bacteria (e.g.,
antibiotics, metals, disinfectants) (Henriques et al., 2016; Jiao
et al., 2017). The environment was also confirmed as the origin
of some of the most successfully widespread antibiotic resistance
genes (e.g., blaCTX−M and blaOXA−48; Poirel et al., 2002; Tacão
et al., 2018). These evidences urgently ask to better understand
the ecology of antibiotic resistance and the factors involved
in resistance selection in aquatic systems. Dissemination of
antibiotic resistance in these systems is particularly relevant
when water is used for purposes that facilitate the transmission
of bacteria to humans, namely for consumption, irrigation,
recreational activities and fishing. Increasing our understanding
of antibiotic resistance in specific aquatic systems is essential to
suggest and implement mitigation strategies.

Nowadays, the spread of resistance to third generation
cephalosporins in gram-negative bacteria is one of the major
concerns in terms of antibiotic resistance. These antibiotics have
great human health importance being often the first choice for
the treatment of infectious diseases caused by gram-negative
bacteria. Nevertheless, the levels of resistance to third generation
cephalosporins have been increasing, and in several countries
have reached levels that threaten their usefulness (WHO, 2014;
ECDC, 2017). The most common and successful mechanism
of resistance is the production of extended-spectrum beta-
lactamases. According to a recent World Health Organization
report, ESBL-producing Enterobacteriaceae are a critical human
health concern (WHO, 2014). ESBLs can be classified into
Ambler’s classes A (e.g., TEM, SHV, CTX-M, PER, VEB, GES)
and D (OXA) (Ambler, 1980). Among these, enzymes of the
CTX-M family are currently globally disseminated, often found
in pathogenic bacteria of the family Enterobacteriaceae, and
associated with mobile genetic elements (Bevan et al., 2017). In
Brazil, CTX-M-producing bacteria have been frequently reported
in hospital settings, with the most common variants being
CTX-M-15 and CTX-M-2 (Rocha et al., 2016).

The problematic summarized above demands from the
authorities measures to contain the spread of resistance to

antibiotics. Aquatic environments may be one of the most
important intervention areas. The occurrence of ESBL genes,
including blaCTX−M, in different aquatic systems has been
reported in several countries (Tacão et al., 2012; Zurfluh et al.,
2013; Alves et al., 2014; Nascimento et al., 2017). In Brazilian
aquatic systems, clinically relevant bacteria producing CTX-M
enzymes have been recently described, e.g., in lakes (Nascimento
et al., 2017), rivers (de Oliveira et al., 2017), wastewater (Dropa
et al., 2016) and coastal water (Sellera et al., 2017). For the
measures to be effective further studies are required to reveal
which bacteria and which resistance and transfer mechanisms
are present in these settings. There is a need to address
different geographic areas, particularly ecologically relevant
aquatic systems whose water is used for human activities.

In this work, we collected samples in an Amazonian lake.
Water from this lake is used for water supply, irrigation
and recreational activities (Santos et al., 2015). Gram-negative
bacteria resistant to antibiotics were selected and mechanisms
of resistance were characterized. The occurrence of genetic
platforms that may contribute to multi-drug resistance in
these bacteria (i.e., integrons) was also assessed. Two isolates
belonging to species of public health interest (i.e., Escherichia
coli and Acinetobacter baumanii) were selected for whole genome
sequencing and analysis.

MATERIALS AND METHODS

Sampling and Sample Analysis
Lake Água Preta (1◦25′7.849′′S, 48◦26′19.02′′W) is an
Amazonian mesotrophic lake located in the Utinga State
Park, Pará, Brazil. It is located near a densely populated area
that includes the city of Belém (population of approximately
1.5 million). This lake was chosen considering its importance
in water supply, irrigation and recreational activities. It has
great ecological relevance in the Amazonian area (Santos et al.,
2015). The lake has a surface area of approximately 7 km2 and a
maximum depth of 8.5 m. There are no relevant agricultural or
livestock activities on the banks of the lake. There is, however,
a record of untreated wastewater discharges resulting from a
large number of illegal homes in the vicinity of the lake. Six
sampling points were selected (Figure 1). One liter of water was
collected in triplicate at each sampling point in October 2014.
Samples were collected in 1 L polypropylene flasks, packed in
an isothermal box with ice, and sent to the Faculty of Sanitary
and Environmental Engineering laboratory, Federal University
of Pará, Brazil. Water samples collected for microbiological
analysis were stored in previously sterilized polypropylene flasks
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FIGURE 1 | Map of the Utinga State Park (dark gray area). Sampling points are identified as S1, S2, S3, S4, S5, and S6. The urban area of Belém is represented by
the gray area in the upper left half of the map. Therefore, the city is closer to the sampling points S1, S2, S5, and S6.

of 250 mL. Sampling and analytical methods were performed
according to the procedures and recommendations described
in Standards Methods for the Examination of Water and
Wastewater (Rice et al., 2012). Physico-chemical parameters such
as pH, conductivity, temperature, dissolved oxygen and salinity
were analyzed at the sampling points by potentiometry using
a multi-parametric probe (556 MPS; YSI, United States). The
following parameters were determined by UV spectrophotometry
(UV DR 2800; HACH, Germany): turbidity, total solids, true
color, apparent color, total phosphorous, total nitrogen, total
iron, chemical oxygen demand (COD), and the concentration
of the ions nitrite, nitrate, ammonia, chloride, aluminum,
manganese, nickel, cadmium, copper, zinc and sulfate.
Biochemical oxygen demand (BOD) was determined using
a manometric respirometric test in the equipment BODTrack
II (HACH, United States). The Most Probable Number (MPN)
of total coliforms and E. coli was determined using the
chromogenic substrate Colilert 18/QUANTI-TRAY (IDEXX
Laboratories, United States) according to the manufacturers’
protocol. Odor intensity was measured using sensorial panel,
while alkalinity and acidity were determined by titrimetry.

Results were evaluated according to the resolution no.
357/2005 of the Environment National Council of Brazil
(CONAMA, 2005).

Bacteria Growth Conditions and Isolation
Water samples (1, 10, and 50 mL) were filtered through
0.45-µm-pore-size cellulose ester filters (Millipore). Membranes
were placed onto MacConkey agar medium supplemented with
cefotaxime (8 µg mL−1) (Sigma-Aldrich) and incubated at 37◦C
for 16 h. Individual colonies were purified in the same medium
and stored in 20% glycerol at –80◦C.

DNA Extraction and Identification of the
Isolates
For DNA extraction, the bacterial isolates were inoculated
in Tryptic Soy Broth medium (Himedia) supplemented with
cefotaxime (8 µg mL−1) and cultivated at 37◦C overnight with
aeration. An aliquot of 5 ml of the culture was centrifuged at
6,000 g at 4◦C for 10 min. The cell pellet was subjected to
DNA extraction using the DNeasy Blood and Tissue kit (Qiagen),
according to the manufacturer’s protocol. The integrity of the
DNA was visualized on 1% agarose gel. DNA was stored in TE
buffer (Tris 10 mM, EDTA 1mM, pH 8.0) at –20◦C.

To determine the phylogenetic affiliation of the isolates, the
16S rRNA gene was amplified using the universal primers
8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R
(5′-TACGGYTACCTTGTTACGACTT-3′). PCR was carried
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out in 50 µL reaction mixtures containing buffer 1×, 1.5 mM
of MgCl2, 0.2 mM of dNTP, 0.2 pmol of each primer, 1 U of
Taq DNA polymerase (Invitrogen) and 50–100 ng of DNA.
Cycling conditions were as follows: an initial denaturation at
95◦C for 5 min, followed by 35 cycles of 95◦C for 1 min, 55◦C
for 1 min and 72◦C for 1 min, and a final extension step of
72◦C for 10 min. Amplicons were sequenced using the ABI 3730
DNA Analyzer platform (Thermo Fisher Scientific). Reverse and
forward sequences were assembled with BioEdit v. 7.2.6.1 (Hall,
1999) and the consensus sequences (∼1.5 kb) were compared to
the GenBank database using BLASTn1.

Antibiotic Susceptibility Testing
To estimate the level of resistance of the isolates, the
disk-diffusion method was used (Bauer et al., 1966). E. coli
ATCC 25922 was used as quality control strain. Sixteen
antibiotics were tested including amoxicillin (10 µg),
amoxicillin + clavulanic acid (20–10 µg), ampicillin (10 µg),
cephalotin (30 µg), cefotaxime (30 µg), ceftazidime (30 µg),
cefepime (30 µg), imipenem (10 µg), aztreonam (30 µg),
kanamycin (30 µg), gentamicin (10 µg), nalidixic acid
(30 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg),
tetracycline (30 µg) and the combination of sulfamethoxazole
+ trimethoprim (25 µg). CLSI (2017) breakpoints were used
to classify strains as susceptible, intermediate or resistant.
Antibiotics were selected based on the CLSI guidelines,
which specify the antibiotics that should be considered when
characterizing Gram-negative non-fastidious organisms (e.g.,
Enterobacteriaceae, Acinetobacter spp. and Pseudomonas
aeruginosa). Minimal inhibitory concentrations (MIC)
were determined for cefotaxime and ceftazidime, following
CLSI guidelines.

PCR Amplification of Resistance Genes
and Mobile Genetic Elements
Isolates were screened by PCR to determine the presence of
genes conferring resistance to beta-lactams (blaTEM, blaSHV,
blaCTX−M, blaIMP, blaVIM, blaKPC). We also analyzed the
isolates for the presence of genes encoding integrases of class
1 (intI1) and 2 (intI2). The PCR reactions were performed
in a GeneAmp PCR System 9700 (Applied Biosystem) using
DNA purified as described above. PCR was carried out using
buffer 1×, 1.5 mM of MgCl2, 0.2 mM of dNTP, 0.2 pmol of
each primer and 1 U of Taq DNA polymerase (Invitrogen)
with sufficient water for 25 µl of reaction. Primers used and
PCR conditions were as previously described (Dallenne et al.,
2010; Alves et al., 2014). The genomic context of blaCTX−M
was characterized by PCR-targeting ISEcp1, IS26, orf477 and
IS903, as previously described (Tacão et al., 2012). A negative
and a positive control were included in each PCR experiment.
The negative control differed from the reaction mixture by
substituting DNA for the same volume of sterile dH2O. The
amplicons were visualized on 1% agarose gels using the 1 kb
Plus DNA ladder (Invitrogen) to assist in the identification of
the PCR products.

1http://www.ncbi.nlm.nih.gov/

Mating Assays
Mating assays were performed for blaCTX−M-positive strains,
as previously described (Moura et al., 2012). In short, donor
strains and the rifampicin-resistant E. coli CV601 (recipient
strain) were grown overnight in Luria–Bertani broth (LB) at
37◦C, 180 rpm. Donor and recipient strains were mixed at a 1:1
ratio and centrifuged (5 min, 7,000 g) to precipitate cells. After
discarding the supernatant, 1 mL of fresh LB was added and left
overnight at 37◦C, without shaking. Then, cells were centrifuged
(5 min, 7,000 g) and resuspended in a 0.9% NaCl solution.
Putative transconjugants were selected by plating 100 µL of
this suspension in plate count agar (PCA) supplemented with
rifampicin (100 µg/mL), and cefotaxime (8 µg/mL). To confirm
the identity of the transconjugants we used BOX-PCR typing
(Versalovic et al., 1994) and blaCTX−M PCR amplification as
described above.

Genome Sequencing, Assembly and
Analysis
Two multi-drug resistant isolates were selected randomly to
represent phylogenetic groups with high clinical relevance
(i.e., Acinetobacter baumanii and E. coli) and their genome
was sequenced. Genomic DNA, extracted as described in
Section “DNA Extraction and Identification of the Isolates,”
and sequenced in the Ion Torrent Personal Genome Machine
(Thermo Fisher Scientific) using chip 318 v.2 according to
the manufacturer’s protocol. The quality of the reads was
visualized using FastQC2. The reads were trimmed, discarding
bases with Phred values below 20, and filtered, discarding reads
with less than 100 nucleotides. The reads were assembled in
contigs using the software MIRA 4 (Chevreux et al., 2004).
Redundant contigs were removed using the SeqMan Pro tool
of the Lasergene software (DNASTAR). The sequenced genomes
were submitted to the GenBank database under the accession
numbers PKCA01000000 (E. coli APC43A) and PYSX01000000
(A. baumannii APC25).

The contigs were ordered in scaffolds with MAUVE (Darling
et al., 2004). Automatic genome annotation was performed
in RAST (Rapid Annotation using System Technology)
(Aziz et al., 2008). The RAST SEED subsystems (Overbeek
et al., 2014), CARD (Comprehensive Antibiotic Resistance
Database) (McArthur et al., 2013) and Resfinder v.2.1 (Zankari
et al., 2012) were used to search for resistance genes in
the sequenced genomes.

An in silico analysis of Plasmid Multilocus Sequence Typing
(MLST) was performed using the web tool pMLST v.1.8
(Larsen et al., 2012) available at the site of the Center
for Genomic Epidemiology3. PlasmidFinder v.1.3 (Carattoli
et al., 2014) was used for detection of plasmid sequences,
PathogenFinder v.1.1 (Cosentino et al., 2013) was used
to determine the strains’ pathogenicity level, SerotypeFinder
v.1.1 (Joensen et al., 2015) was used for serotyping, and
VirulenceFinder v.1.5 (Joensen et al., 2014) was used to detect
virulence determinants.
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://www.genomicepidemiology.org/
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Pathogenicity Islands (PAIs) and Resistance Islands (RIs)
were predicted using the software GIPSy v.1.1.2 (Soares
et al., 2016). E. coli K-12 substr. MG1655 (NC_000913.3) and
Acinetobacter calcoaceticus CA16 (NZ_CP020000.1) were used
as reference strains. The nucleotide sequence of each PAI
and RI were recovered using the genome browser Artemis
v.14.0.0 (Rutherford et al., 2000). In order to determine
the location of PAIs and RIs, we designed a circular map
using BLASTn in the software BRIG (Blast Ring Image
Generator) (Alikhan et al., 2011).

A phylogenomic approach was used to determine the isolates
species affiliation. Genomes used for comparison were obtained
from GenBank. Four phylogenetic markers: 16S rRNA, rpoB,
gyrB, and dnaJ were used to calculate a distance matrix based
on a BLASTn comparison all-against-all in the software Gegenees
v.2.2.1 (Ågren et al., 2012).

RESULTS AND DISCUSSION

Water Quality and Characterization of
Cultivable Antibiotic-Resistant Bacteria
The majority of physical, chemical and microbiological
parameters were within the limits established by the Brazilian law
for freshwater environments intended for human consumption
after appropriate treatment (Supplementary Table S1).
However, BOD in sampling points 1, 4, 5, and 6 was above
the recommended values. Additionally, dissolved oxygen (DO)
concentration was below the limit in all sampling points
analyzed. These two results suggest high oxygen consumption
by the microbial community in Lake Água Preta during the
sampling period.

For this study, sampling was performed only in October,
and seasonal variation was not assessed. The temperature in
this geographic region, immediately below the equator, is high
throughout the year, though there are significant differences in
terms of rainfall. The decision to sample in the dry season (July
to November) was due to logistics issues related to lake access.
However, in future studies it would be interesting to evaluate
seasonal factors that may affect water quality and antibiotic
resistance in Lake Água Preta.

Thirty-three isolates were obtained in this study (Table 1).
Isolates affiliated mostly to genus Escherichia (7 isolates),
followed by genera Acinetobacter, Enterobacter, and Klebsiella
(5 isolates each), Pseudomonas (4 isolates), Shigella (3 isolates),
and Chromobacterium, Citrobacter, Leclercia and Phytobacter
(1 isolate each).

Most isolates were classified as multi-drug resistant
(29/33–88%), meaning resistant to at least three classes of
antibiotics. All isolates showed resistance to penicillins such as
amoxicillin, ampicillin or both (Table 1), and 79% were also
resistant when the penicillin (amoxicillin) was combined with a
beta-lactamase inhibitor (clavulanic acid). Twenty-one of the 33
isolates showed resistance to cefotaxime (63.6%) and six showed
intermediate resistance (18.2%). Resistance to carbapenems was
detected only in the Chromobacterium isolate (Table 1). This
genus has been commonly isolated from aquatic ecosystems and

presents intrinsic resistance to these last-resort antibiotics (Lima-
Bittencourt et al., 2011). The importance of Chromobacterium
as progenitor of KPC carbapenemases has been recently
discussed (Gudeta et al., 2016). For non-beta-lactam antibiotics,
high levels of resistance or intermediate resistance were
observed against aminoglycosides (76% of resistant isolates),
tetracycline (64%), ciprofloxacin (58%) and the combination
trimethoprim/sulfamethoxazole (55%). These results are in
accordance with previous studies, which reported high levels of
multi-drug resistance among strains resistant to third generation
cephalosporins (Tacão et al., 2014). The presence of multi-drug
resistant bacteria in natural aquatic systems may result from
several anthropogenic pressures (Taylor et al., 2011; Tacão et al.,
2012). The values of BOD and DO within Lake Água Preta
are consistent with an impacted environment. An important
cause may be the disposal of untreated sewage, resulting from
an increasing number of illegal houses constructed along the
margins. As in other geographic locations (e.g., Alves et al.,
2014), wild life may also contribute to antibiotic resistance
spread in this region. Finally, the presence of sub-lethal
concentrations of antibiotics in aquatic systems has been
reported to select for antibiotic resistant bacteria. In Brazil,
until recently, antibiotics were among the most consumed
medical drugs, and sold without medical prescription (Mattos
et al., 2017). This situation might have contributed to the
contamination of aquatic systems. These systems have been
reported to act as reservoirs and to promote the transfer of
antibiotic resistance genes among bacteria, thus contributing to
multi-drug resistance spread.

The most frequently detected beta-lactamase gene was
blaCTX−M (n = 12 positive isolates), followed by blaTEM
(n = 5) and blaSHV (n = 4) (Table 1). As in our study,
CTX-M is the most frequently reported ESBL worldwide (Tacão
et al., 2012; Bevan et al., 2017). Carbapenemase genes blaIMP,
blaVIM, and blaKPC were not detected among the isolates. Of
the 22 isolates resistant to third generation cephalosporins,
the gene blaCTX−M was not detected in 10. These isolates
affiliated to the genera Acinetobacter (n = 3), Pseudomonas
(n = 2), Citrobacter (n = 1), Enterobacter n = 1), Phytobacter
(n = 1), Chromobacterium (n = 1) and Klebsiella (n = 1).
The blaSHV is known to be intrinsic to Klebsiella pneumoniae
(Babini and Livermore, 2000). Although we have used two
sets of primers targeting this gene, under the conditions tested
it was not detected in two of the isolates that affiliated
with this species, including isolate API34 which showed
resistance to cefotaxime. This result may be related to primer-
template mismatches or to the affiliation of these isolates
to a different Klebsiella species. Resistance to cefotaxime in
Klebsiella spp. may be related with overproduction of other
chromosomal beta-lactamases (e.g., blaOXY, blaLEN, blaOKP) due
to mutations in the gene promoter regions (Hæggman et al.,
2004). Overexpression of chromosomal beta-lactamases may
also be the mechanism responsible for resistance to third-
generation cephalosporins in isolates affiliated to other bacterial
genera such as Enterobacter, Citrobacter, Chromobacterium, and
Pseudomonas (intrinsic blaAmpC; Jacoby, 2009), or Acinetobacter
(e.g., blaADC genes; Zhong et al., 2008). The blaCTX−M−15
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TABLE 1 | Characteristics of isolates obtained from Lake Água Preta.

Isolate 16S rRNA gene Affiliation Resistance (and intermediate) phenotype Resistance
genotype

Integrase
genes

APC43A Escherichia coli NBRC 102203 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, NAL
(KAN)b

blaCTX−M−15
a –

APC25 Acinetobacter baumannii DSM 30007 (97%) AML, AMC, AMP, CEF, CAZ, CTX, ATM, CIP, NAL (KAN) –a –

APC4 Citrobacter werkmanii CDC 0876-58 (99%) AML, AMC, AMP, CEF, CAZ, CTX, ATM, CIP, NAL, SXT, TET
(KAN)

– –

APC6 Enterobacter sp. A2 (99%) AML, AMC, AMP, CEF, CAZ, ATM, CTX, CIP, GEN, KAN,
NAL, TET

blaTEM−blaSHV –

APC11 Pseudomonas putida F1 (99%) AML, AMC, AMP, CEF, CAZ, CTX, ATM, CHL, NAL, SXT blaCTX−M –

APC13 Acinetobacter baumannii DSM 30007 (97%) AML, AMP, CEF, CAZ, FEP, ATM (CTX, NAL) – –

APC14 Pseudomonas mosselii CFML 90-83 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, TET (NAL) – –

APC15 Chromobacterium haemolyticum MDA0585 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, IPM, ATM, KAN,
NAL

– –

APC19 Escherichia coli O157:H7 Sakai (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, GEN,
KAN, NAL, SXT, TET

blaCTX−M intI2

APC20 Pseudomonas mosselii CFML 90-83 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM (NAL) – –

APC22 Shigella sonnei Ss046 (99%) AML, AMP, CEF, CTX, FEP, ATM, CIP, GEN, KAN, NAL, SXT
(AMC)

blaCTX−M−2 intI2

APC24B Escherichia fergusonii ATCC 35469 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, KAN,
NAL, SXT, TET

blaCTX−M IntI1

APC28 Klebsiella pneumoniae DSM 30104 (96%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, KAN,
NAL, SXT, TET (C)

blaTEM−

blaSHV-
blaCTX−M−15

intI1

APC32 Escherichia fergusonii ATCC 35469 (97%) AML, AMP, CEF, CAZ, CTX, FEP, ATM, SXT (AMC, CIP,
KAN)

blaTEM-
blaCTX−M−15

–

APC33 Shigella sonnei Ss046 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, NAL blaCTX−M−15 –

APC34 Escherichia coli NBRC 102203 (98%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, KAN,
NAL, SXT, TET

blaCTX−M IntI2

APC38 Escherichia fergusonii ATCC 35469 (98%) AML, AMC, AMP, CEF, CTX, FEP, ATM, CIP, GEN, CHL,
KAN, NAL, SXT, TET

blaCTX−M IntI2

APC39 Acinetobacter nosocomialis RUH2376 (99%) AML, AMC, AMP, CEF, CAZ, CTX, ATM, CIP, KAN, NAL,
SXT, TET

– –

APC40A Escherichia fergusonii ATCC 35469 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, GEN,
CHL, NAL, SXT (KAN)

blaCTX−M−14 intI1-intI2

APC42 Acinetobacter baumanii DSM 30007 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, KAN,
NAL, SXT, TET (CHL)

–

APC43B Shigella sonnei Ss046 (99%) AML, AMC, AMP, CEF, CAZ, CTX, FEP, ATM, CIP, GEN,
KAN, NAL, SXT, TET (CHL)

blaCTX−M−15 –

API2 Klebsiella pneumoniae R-70 (99%) AML, ATM, C, KAN, SXT, TET (AMP, CIP) – IntI1

API3 Enterobacter asburiae JCM6051 (94%) AML, AMC, AMP, CEF, CAZ, ATM, CHL, KAN, NAL, TET – –

API4 Klebsiella pneumoniae 07A044 (99%) AML, AMC, AMP, CEF, ATM, SXT, TET (CTX, NAL) blaSHV –

API6 Leclercia adecarboxylata CIP 82.92 (99%) AML, AMC, AMP, CEF, ATM, CHL, KAN, NAL, TET (CTX) – –

API7 Enterobacter cloacae LMG 2683 (99%) AML, AMC, AMP, CEF (CTX, ATM) – –

API10 Enterobacter tabaci YIM Hb-3 (99%) AML, AMC, AMP, CEF, ATM, CHL, KAN, NAL (SXT, TET) – –

API12 Pseudomonas otitidis MCC10330 (99%) AML, AMC, AMP, CEF, ATM, KAN, TET (NAL) – –

API16 Enterobacter tabaci YIM Hb-3 (100%) AML, AMC, AMP, CEF, ATM, GEN, CHL, NAL, SXT, TET
(CTX)

– –

API20 Acinetobacter seifertii LUH 1472 (99%) AML, AMC, AMP, CEF, ATM, CIP, KAN, TET (CAZ, CTX,
GEN, CHL)

– –

API24 Phytobacter diazotrophicus Ls8 (98%) AMP, CAZ, CTX, ATM, KAN, NAL (AML, FEP, TET) blaTEM –

API29 Klebsiella pneumoniae DSM 30104 (99%) AML, AMP, CEF blaTEM− blaSHV –

API34 Klebsiella pneumoniae DSM 30104 (98%) AML, AMP, CEF, CTX, FEP, ATM, CIP, GEN, CHL, NAL,
SXT, TET

– –

The BLASTn identity result for each isolate is presented within parentheses after the 16S rRNA affiliation. The abbreviation of antibiotics is as follows: amoxicillin (AML);
amoxicillin+ clavulanic acid (AMC); ampicillin (AMP); cephalotin (CEF); ceftazidime (CAZ); cefotaxime (CTX); aztreonam (ATM); cefepime (FEP); imipenem (IPM); kanamycin
(KAN); gentamicin (GEN); nalidixic acid (NAL); ciprofloxacin (CIP); chloramphenicol (CHL); tetracycline (TET); sulfamethoxazole + trimethoprim (SXT). a Isolates selected
for whole genome analysis. The complete analysis of its resistance genotype is presented in main text and in Table 2. bParentheses indicate intermediate susceptibility to
the antibiotic.
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gene was found in 5 isolates (affiliated with genera Klebsiella,
Escherichia and Shigella), the blaCTX−M−14 gene was found
in 1 isolate (affiliated with Escherichia), and the blaCTX−M−2
gene was detected in only 1 isolate (affiliated with Shigella).
These variants have previously been reported in Brazil in
both clinics and environmental settings (Dropa et al., 2016;
Rocha et al., 2016; Nascimento et al., 2017; Sellera et al.,
2017). For the remaining blaCTX−M-positive isolates, it was
only possible to sequence a portion of the gene, insufficient
to accurately determine its variant. For these isolates, PCR
products were not obtained with the primers used to characterize
the genomic context of blaCTX−M. ISEcp1 was found in the
upstream region of all blaCTX−M−15 and blaCTX−M−14 genes.
Downstream, all blaCTX−M−15 genes presented Orf477 and
blaCTX−M−14 presented the insertion sequence IS903. The
same contexts were previously reported for these genes in
clinical and environmental isolates worldwide (Eckert et al.,
2006; Tacão et al., 2012). Particularly, the association of
ISEcp1 element with ESBL genes seems to be one of the
reasons for the successful spread of these genes, being a
major concern in clinical settings (Tian et al., 2011). The
genetic context of blaCTX−M−2 carried by Shigella sp. APC22
was identical to that previously described (Eckert et al.,
2006): an upstream region with a sul1 gene (encoding
resistance to sulfonamides) followed by an ISCR1 element; and

downstream an open reading frame designated Orf3, followed
by qacEdelta1 (encoding for a quaternary ammonium compound
resistance protein) and a sul1 gene. These CR-like elements
are usually associated to complex class 1 integrons, usually
identified between duplications of 3’conserved sequence (CS)
regions, along with antibiotic resistance genes like blaCTX−M−2
(Toleman et al., 2006).

Conjugations assays were performed for nine out of
twelve blaCTX−M-positive isolates. Three isolates were
able to grow on rifampicin and were excluded from these
experiments. Under the used conjugation conditions, 4
out of 9 donor strains generated transconjugants carrying
blaCTX−M. In contrast with the recipient strain E. coli CV601,
all transconjugants showed MIC for cefotaxime from 32 to
>256 µg/mL, while for ceftazidime MICs varied from 2 to
8 µg/mL (Supplementary Table S2). Overall, the association of
blaCTX−M genes to conjugative plasmids in these isolates was
confirmed indicating that their mobilization to different hosts
may be facilitated.

Previous studies highlighted the important contribution
of integrons to multi-drug resistance profiles among
ESBL-producers (Tacão et al., 2014). In this study, the integrase
genes intI1 and intI2 were detected in 4 and 5 isolates,
respectively (Table 1). All but one of these isolates were positive
for the blaCTX−M gene.

TABLE 2 | Major genomic features of two isolates from Lake Água Preta and resistance genes annotated by CARD and/or ResFinder.

E. coli APC43A %GC CDS contigs N50 RIs PAIs Size (bp) MLST Serotype Plasmids

50.5 5923 195 3283348 5 25 5,035,455 ST471 O154:H18 IncX4 e IncFIA

Resistance Genes ARO category Genes Contig localization

Antibiotic inactivation enzyme; beta-lactam resistance proteins blaCTX−M−15 22_18911

intrinsic blaAmpC

Efflux pump conferring antibiotic resistance acrE 15_8461

emrB 10_26638

mdtB 5_4183

mdtL 8_54031

msbA 11_125192

tolC 7_57761

Efflux pump conferring antibiotic resistance; antibiotic
resistance gene cluster, cassette, or operon

mdtE 37_5848

Efflux pump conferring antibiotic resistance; gene modulating
antibiotic efflux

acrS 15_10016

cpxR 19_63902

emrR 10_24793

H-NS 20_22613

A. baumanii APC25 %GC CDS contigs N50 RIs PAIs Size (bp) MLST Serotype Plasmids

39.0 5063 121 244684 10 11 4,860,843 –a –a –b

Resistance Genes ARO category Genes Contig localization

Efflux pump complex or subunit conferring antibiotic resistance adeK 11_73107

Antibiotic inactivation enzyme; beta-lactam resistance protein blaOXA−208 23_160179

blaADC−like 6_85724

apMLST and SeroTypeFinder do not have support for this taxon. bPlasmidFinder did not detected any plasmid sequence.
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FIGURE 2 | Synteny analysis of ISEcp1 element carrying blaCTX−M−15 gene in Escherichia coli APC43A. Conserved genes are connected by lines. The pink arrow
represents the ISEcp1 element that is described in detail at the bottom of the figure. E. coli APC43A contains two CDSs identified as MATE efflux family proteins
flanking the IS element. These CDSs are complementary and probably are part of the same gene that was fragmented during the insertion of the IS element.

Genomic Analysis of Two Multi-Drug
Resistant Isolates
To obtain an in-depth characterization of the resistome of
selected isolates, as well as insights into their mobilome
and virulence potential, two isolates (i.e., E. coli APC43A
and Acinetobacter baumannii APC25) were selected for whole
genome sequencing. These isolates were randomly selected
among isolates that: (1) belong to bacterial groups of public
health concern, (2) presented multi-drug resistance profiles.

Identification at species level was confirmed using a
phylogenomic approach as described in Material and Methods.
Both strains were resistant to all beta-lactams except to imipenem
(APC43A) or to imipenem and cefepime (APC25). Additionally,
strains showed resistance to ciprofloxacin, nalidixic acid, and
an intermediate susceptibility to kanamycin. Summary of both
strains genomic features is presented in Table 2.

Escherichia coli APC43A Genomic Analysis
For E. coli APC43A the RAST server classified 162 CDSs in
the subsystem of Virulence, Disease and Defense (3.2% of
total genes) (Supplementary Table S3). Among them, 122 were
genes related to antibiotic resistance and toxic compounds.
Two beta-lactamase genes were predicted in the genome. As
described above, blaCTX−M−15 gene was located between ISEcp1
and orf477. Genomic analysis revealed that a transposase gene
followed orf477 and that two fragments of a truncated gene
encoding a MATE efflux family protein flanked this entire
region (Figure 2). This region showed identity values higher
than 99% and coverage higher than 93% with the genomes of

K. pneumoniae AR 0138 (CP021757.1) and E. coli K-15KW01
(CP016358.1) (Zurfluh et al., 2016). In E. coli K-15KW01 the
blaCTX−M−15 gene was embedded at the right-hand extremity of
an ISEcp1 element (Figure 2). In our strain APC43A, the inverted
repeat sequence (IRR) (ACGTGGAATTTAGG), and the –35
(TTGAAA) and –10 (TACAAT) sites of the ISEcp1 element were
conserved 48 base pairs upstream of the ATG start codon of
blaCTX−M−15 (Figure 2). The annotation of the other identified
beta-lactamase gene was evaluated by comparing its nucleotide
sequence to the Uniprot database through BLASTn. The gene
showed high identity with an intrinsic AmpC beta-lactamase
encoding gene (above 99%), emphasizing its correct annotation.
Mutations previously related to enzyme overexpression (Jacoby,
2009) were not detected in the blaAmpC gene promoter. Besides
beta-lactamase genes, genes encoding resistance to other classes
of antibiotics were detected in the genome of strain APC43A,
mostly related with efflux pumps (Table 2).

Sequences representing two plasmids, assigned to the
incompatibility groups IncX4 and IncFIA, were detected in the
genome of E. coli APC43A (Table 2). The contig corresponding
to replicon IncX4 has a size of 30,306 bp, which is very similar to
the size of E. coli IncX4 plasmids in the GenBank database (e.g.,
accession number JX981514.1). This plasmid was detected in the
porcine enterotoxigenic strain E. coli UMNF18 carrying genes for
type II secretion system (Shepard et al., 2012). IncFIA is a fertility
plasmid of E. coli and part of this plasmid was detected in a
9,933 bp contig. No resistance genes were found within plasmids.

PathogenFinder analysis showed that E. coli APC43A is a
human pathogen and the SerotypeFinder tool classified this
strain in the O154:H18 serotype. Six virulence factors (gad,
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FIGURE 3 | Comparative genomic ring designed in Gegenees program. The innermost ring to the outermost is presented in this figure, as follows: GC skew and the
GC content of E. coli APC43A; the genome sequence of E. coli APC43A and E. coli K-12; the Resistance Islands (RIs) detected by GIPSy; the Pathogenicity Islands
(PAIs) detected by GIPSy; CDSs identified in the genome of E. coli APC43A. The location of the resistance genes detected by CARD and ResFinder are shown and
identified by their respective names in red.

lpfA, ltcA, astA, cba e cma) normally found in pathogenic
E. coli were detected in the genome of E. coli APC43A. These
virulence genes are involved in host-pathogen interaction during
gastrointestinal infections caused by ingestion of contaminated
food or water (Joensen et al., 2014). The strain was assigned to
ST471, a high-risk clone previously reported in clinical settings
and commonly associated with ESBL genes and genes encoding
carbapenemases (Kapmaz et al., 2016; Yi et al., 2017). In Brazil,
this sequence type was described in clinical isolates from Rio de
Janeiro (Peirano et al., 2011).

Acinetobacter baumannii APC25 Genomic Analysis
High levels of intrinsic resistance to a number of antibiotics have
been reported for A. baumanii, seriously compromising
the treatment of patients infected with this pathogen.
Intrinsic resistance mechanisms in members of this species
include the production of chromosomal beta-lactamases and
aminoglycoside-modifying enzymes, expression of efflux
pumps and permeability defects. Nevertheless, A. baumanii
is also known for its ability to acquire genes encoding
resistance determinants.
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FIGURE 4 | Comparative genomic ring designed in Gegenees program. The innermost ring to the outermost is presented in this figure, as follows: GC skew and the
GC content of Acinetobacter baumannii APC25; the genome sequence of A. baumannii APC25 and A. calcoacetius CA16; the Resistance Islands (RIs) detected by
GIPSy; the Pathogenicity Islands (PAIs) detected by GIPSy; CDSs identified in the genome of A. baumannii APC25. The location of the resistance genes detected by
CARD and ResFinder are shown and identified by their respective names in red.

For the genome of A. baumannii APC25 the RAST server
classified 109 CDSs in the subsystem of Virulence, Disease
and Defense (2.6% of total genes) (Supplementary Table S4).
Eighty-three of these 109 CDSs are related to resistance to
antibiotics and toxic compounds. The beta-lactamase genes
blaOXA−208 and blaADC−like (98% similar to blaADC−25) were
detected (Table 2). Both genes were previously reported
as intrinsic genetic determinants in the chromosome of
A. baumannii (Zhao and Hu, 2012). blaOXA−208 encodes an
OXA-51-like chromosomally encoded beta-lactamase (Evans
and Amyes, 2014). Clinically relevant oxacillinases have been
reported in clinical isolates from sixteen states in Brazil, mostly
OXA-23 and OXA-143 (Medeiros and Lincopan, 2013). The
blaADC−25 encodes a cephalosporinase recently described to
confer resistance to second and third generation cephalosporins
(Zhong et al., 2008; Lee et al., 2012), a result that is in line with
the antibiotic susceptibility profile of strain APC25.

Plasmids were not detected in A. baumannii APC25 and
the isolate was not predicted as a human pathogen by

the PathogenFinder tool (Supplementary Table S5). MLST
sequences were uploaded to the Acinetobacter-MLST Pasteur
database and since an unreported allele combination was
observed, a new sequence type (ST1278) was assigned.

Resistance to Metals and Genomic Islands Prediction
Operons related to resistance to metals were determined in
the sequenced strains. E. coli APC43A possesses incomplete
mercury resistance operons (Supplementary Figure S1). In
addition, the two-component system cusR-cusS and the efflux
pump cusCFBA, described as responsible for copper and silver
resistance in other strains of E. coli (Gudipaty and McEvoy,
2014), were annotated in the genome. In A. baumannii APC25,
the zinc, cadmium, and cobalt resistance may be mediated
by the operon czcABC, which was found duplicated in its
genome (Supplementary Figure S1). Both genomes showed
operons for resistance to arsenic. A. baumannii APC25 has an
operon composed by an arsenical resistance-3 (ACR3) family
protein, while E. coli APC43A has an arsRBC type operon
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(Supplementary Figure S1). Several studies have showed that
some pollutants such as metals could co-select for antibiotic
resistance (Wright et al., 2008; Rosewarne et al., 2010; Henriques
et al., 2016). However, the level of aluminum, manganese,
nickel, cadmium, copper and zinc in Lake Água Preta was
in accordance to the standard values for mesotrophic lakes
(Supplementary Table S1).

Twenty-five PAIs and five RIs were identified in the genome
of E. coli APC43A (Figure 3). The location of the islands is
shown in the comparative ring of Figure 4. It is worth noting that
these islands are almost completely absent in the genome of the
non-pathogenic E. coli K-12 (Figure 3). Interestingly, among the
detected resistance genes only the gene mdtB was within a GEI
(EcPAI16), suggesting that these resistance islands may encode
resistance to other classes of compounds. In some cases, the
program identified PAIs and RIs in the same genome region, e.g.,
EcPAI5 and EcRI1, which means that these regions may encode
both resistance and virulence factors.

The genome of A. baumannii APC25 has 11 PAIs and 10
RIs (Figure 4). The low number of PAIs is in accordance with
the prediction of PathogenFinder that classified the isolate as a
non-pathogenic strain. The majority of PAIs and RIs were found
in the same location of the genome similar to that observed for
E. coli (Figure 4). No resistance genes predicted by CARD or
ResFinder were located within GEI.

CONCLUSION

Lake Água Preta is an Amazonian mesotrophic lake located
near a densely populated area that presented physical, chemical
and microbiological parameters in accordance to the Brazilian
environmental laws, with some exceptions. The majority of
bacterial strains (29 out of 31; 88%) isolated from the lake,
in media supplemented with cefotaxime, were multi-drug
resistant, classified in the Enterobacteriaceae family, and carried
ESBL genes, primarily blaCTX−M. In some cases the transfer
potential of these genes were confirmed in conjugation assays.

These results suggest a high dissemination of ESBL genes in
Gram-negative bacteria of Lake Água Preta, which although
not presenting characteristics of a highly impacted environment,
contains multi-drug resistant pathogenic strains such as E. coli
APC43A (ST471).
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Streptococcus pneumoniae is a major cause of community-acquired pneumonia and
meningitis, and it is also found as a commensal, colonizing the human upper respiratory
tract of a portion of the human population. Its polysaccharide capsule allows the
recognition of more than 90 capsular types and represents the target of the currently
available pneumococcal conjugate vaccines (PCVs), such as the 10-valent (PCV10)
and the 13-valent (PCV13). Penicillin non-susceptible pneumococci (PNSP) have been
listed as one of the current major antimicrobial-resistant pathogen threats. In Brazil, the
emergence of PNSP was initially detected in the mid 1990s and PCV10 has been part
of the National Immunization Program since 2010. Here, we investigated the distribution
of capsular types and penicillin susceptibility profiles of 783 pneumococcal strains
isolated in Brazil between 1990 and 2014 to assess the evolution of penicillin non-
susceptibility among pneumococci associated with asymptomatic carriage and invasive
pneumococcal disease (IPD). The most common serotypes among carriage isolates
were 19F, 6B, 6C, 23F, and 14. Among IPD isolates, the most frequent types were 14,
3, 6B, 5, 19F, and 4. We detected 21 types exclusively associated with IPD isolates,
whereas non-typeable (NT) isolates were only detected in carriage. Nearly half of the
isolates belonged to PCV10 serotypes, which remarkably decreased in occurrence
(by nearly 50%) after PCV10 introduction (2011–2014), while non-PCV10 serotypes
increased. PNSP frequency and levels were much higher among carriage isolates, but
PNSP belonging to PCV10 serotypes were more common in IPD. While the occurrence
of PNSP has decreased significantly among IPD isolates since 2011, it kept increasing
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among carriage strains. Such a difference can be attributed to the serotypes that
emerged in each clinical source after PCV10 usage. PNSP with multidrug resistance
profiles that emerged within carriage isolates comprised mostly serotypes 6C and 35B,
as well as NT isolates. In turn, penicillin-susceptible capsular types 3, 20, and 8 have
risen among IPD. Overall, our results reinforce the relevance of PNSP surveillance over
a long period of time to better understand the dynamics of antimicrobial resistance in
response to PCV introduction and may also contribute to improve control measures
toward drug-resistant pneumococci.

Keywords: Streptococcus pneumoniae, penicillin non-susceptibility, asymptomatic carriage, invasive
pneumococcal disease, capsular type

INTRODUCTION

Streptococcus pneumoniae, or pneumococcus, is a leading cause
of infections, such as pneumonia and meningitis, among
children > 5 years old. In addition, this microorganism is also
commonly found colonizing the human upper respiratory tract,
a niche considered as its major reservoir and the main entry for
the establishment of invasive pneumococcal disease (IPD) (Lynch
and Zhanel, 2009; Weiser, 2010; Tan, 2012; Donkor, 2013).

This pathogen presents a polysaccharide capsule as the
most important virulence factor (Bogaert et al., 2004; Kadioglu
et al., 2008; Hyams et al., 2010). The pneumococcal capsule is
antigenically diverse allowing the recognition of more than 90
serotypes (Bentley et al., 2006; Mostowy et al., 2017). In addition,
the polysaccharide capsule is the basis of licensed vaccine
formulations against pneumococcal disease, including the 7-
valent pneumococcal conjugate vaccine (PCV7), the 10-valent
PCV (PCV10), and the 13-valent PCV (PCV13) (WHO, 2012).

Penicillin non-susceptible pneumococci (PNSP) were recently
listed as one of the most important antimicrobial-resistant threats
worldwide (CDC, 2013; WHO, 2017). Increasing occurrence of
PNSP has been detected since the first report in 1967 in Australia
(Hansmann and Bullen, 1967; Castañeda et al., 1998; Appelbaum,
2002; Sadowy et al., 2010; Hackel et al., 2013; Kim et al., 2016).
This characteristic seems to be more commonly associated with
certain serotypes, such as serotype 14 and those included in
serogroups 6, 19, and 23 (McGee et al., 2001; Lee et al., 2014).
In Brazil, the emergence of PNSP was initially documented in the
mid 1990s and it was initially attributed to the introduction of
an internationally disseminated clone (namely ST156) expressing
the capsular type 14 (Brandileone et al., 2006; Pinto et al., 2016).

Different measures can affect the epidemiology and evolution
of PNSP isolates, including antibiotic therapy policies and the
implementation of vaccines. However, such interventions may
vary according to the geographical region (Guillemot et al., 1998;
McCormick et al., 2003; Kim et al., 2016). Brazil is one of
the 32 countries that have introduced PCV10 into the national
immunization program, starting in 2010 (Brazil Ministry of
Health, 2010). In turn, PCV13 has simultaneously replaced PCV7
in private immunization clinics. Thus, the aim of the present
study was to investigate the distribution of capsular types and
penicillin susceptibility profiles among pneumococcal isolates
recovered from asymptomatic carriage and IPD over a period

of 25 years in Brazil, comprising the periods before and after
PCV introduction.

MATERIALS AND METHODS

Bacterial Strains
A total of 783 peumococcal isolates were included in the study,
comprising 355 isolates recovered from asymptomatic carriers
(nasopharynx or oropharynx specimens) and 428 strains derived
from IPD (blood or cerebrospinal fluid specimens). They were
isolated from children and adults between 1990 and 2014 in five
different cities (Campos dos Goytacazes, Niterói, Ribeirão Preto,
Rio de Janeiro, and São Paulo) of Southeastern Brazil.

Isolates were recovered during surveillance studies or received
from health institutions. Isolates obtained from cases of infection
were recovered from clinical specimens taken as part of the
standard patient care procedures and did not require ethical
approval for their use. Carriage isolates were recovered from
specimens collected during surveillance studies approved by
ethics committees.

The isolates were previously subjected to phenotypic
identification tests according to standard procedures (Spellerberg
and Brandt, 2011), including observation of colony morphology
and hemolysis on blood agar plates, cellular characteristics as
observed after Gram stain, and catalase production, optochin
susceptibility and bile-solubility testing.

Determination of Capsular Types
The capsular types were determined by either multiplex PCR
(Dias et al., 2007) or the standard Quellung reaction (Sørensen,
1993) with antisera provided by the Streptococcus Laboratory at
the Centers for Disease Control and Prevention (CDC, Atlanta,
GA, United States).

Evaluation of Penicillin Susceptibility
Profiles
Susceptibility to penicillin was evaluated according to the
CLSI recommendations and interpretative criteria (CLSI, 2016).
Minimal inhibitory concentrations (MICs) of penicillin were
determined by either using the broth microdilution method
or E-test R© strips (Oxoid, bioMérieux). All isolates showing
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penicillin MICs ≥ 0.12 µg/ml were classified as PNSP. In
addition, isolates showing penicillin MICs ≥ 0.12 < 2 µg/ml
were classified as pneumococci with reduced susceptibility to
penicillin (PRSP), those with MICs ≥ 2 < 4 µg/ml were
classified as penicillin-resistant pneumococci (PRP) and those
with MICs ≥ 4 µg/ml were classified as high-level penicillin
resistant pneumococci (HLPRP).

Statistical Analyses
Distribution of pneumococcal capsular types and penicillin
resistance rates and levels were analyzed by the Chi-square or
Fisher’s exact tests using the software GraphPad Prism v5.0.
p-Values< 0.05 were considered significant.

RESULTS

Distribution of Capsular Types
Sixty capsular types, as well as 13 non-typeable (NT) isolates,
were detected among 783 pneumococcal isolates. Thirty-nine
serotypes and NT isolates were identified among the 355 carriage
isolates, and 59 serotypes were detected among the 428 IPD
isolates. Twenty-one capsular types were exclusively observed
in IPD derived strains, while only one serotype (7B) as well
as NT isolates were exclusively identified in carriage strains.
Supplementary Table S1 shows the distribution of capsular
types among all 783 pneumococcal strains according to the
clinical source.

Overall, the most common serotypes were 14 (n = 86; 11%),
6B (n = 63; 8%), 19F (n = 62; 7.9%), 23F (n = 51; 6.5%), 3 and
6C (n = 40; 5.1% each), 6A (n = 26; 3.3%), and 5 (n = 25; 3.2%).

These eight capsular types accounted for nearly half of the 783
strains. The most frequent serotypes among carriage strains were
19F (11.8%), 6B (9.6%), 6C (9%), 23F (8.7%), and 14 (8.2%);
accounting for 47.3% of the isolates. In turn, the most common
serotypes among IPD were 14 (13.3%), 3 (7.2%), 6B (6.5%), 5
(5.1%), 19F (5.1%) and 4 (4.7%), making up 41.9%. Distribution
of serotypes fluctuated over time and a higher diversity of
capsular types was detected in the late study period (Figure 1).

Nearly half of the 783 pneumococcal isolates belonged to PCV
serotypes (Table 1 and Supplementary Table S1). Occurrence of
PCV10 serotypes remarkably decreased during 2011–2014, while
non-PCV10 serotypes, including non-vaccine (NV) serotypes
and those exclusively covered by PCV13, increased in this same
period (Figure 2). This trend was noted regardless of clinical
source (p < 0.01). Of note, although detected in low numbers
until 2010, all newly emerging non-PCV10 serotypes in the
period 2011–2014 have been circulating in our setting since the
early period of isolation included in the present study (1990s).

Penicillin Susceptibility Profiles
Around 20% (176) of the 783 isolates were PNSP, showing
penicillin MICs ranging from 0.12 to 8 µg/ml. Differences were
noted regarding distribution of PRSP, PRP, and HLPRP between
carriage and IPD, with significantly higher numbers and levels of
penicillin resistance among carriage strains (Table 2; p< 0.05).

Overall, PNSP were associated with 24 serotypes and NT
isolates (Supplementary Table S1); eight serotypes (6A, 6B,
6C, 14, 19A, 19F, 23F, and 35B) and NT isolates were mostly
associated with penicillin resistance (Table 3). These serotypes
included six (6A, 6B, 6C, 14, 19F, and 23F) of the most frequently

FIGURE 1 | The most common pneumococcal capsular types (comprising 50 to 60% of the pneumococcal isolates) according to the clinical source and period of
time. Carriage isolates (represented in the upper lines) included strains recovered from nasopharynx or oropharynx specimens while IPD (invasive pneumococcal
disease) isolates (represented in the bottom lines) included strains recovered from blood or cerebrospinal fluid. Serotypes colored in green are included in the
10-valent pneumococcal conjugate vaccine (PCV); those colored in yellow are only included in the 13-valent PCV; and those colored in black are not included in any
PCV currently available.
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TABLE 1 | Distribution of capsular types included in pneumococcal conjugate
vaccines currently available among 783 Streptococcus pneumoniae isolates
according to the clinical source.

Clinical sourcea % (n) strains belonging to

(n) capsular types included inb

10-Valent PCV 13-Valent PCV

Carriage (355) 44.5 (158) 55.5 (197)

IPD (428) 50.5 (216) 61.9 (265)

All (783) 45.1 (353) 56.3 (441)

aCarriage isolates included strains recovered from nasopharynx or oropharynx
specimens while IPD (invasive pneumococcal disease) isolates included those
recovered from blood or cerebrospinal fluid.
bPCV, pneumococcal conjugate vaccine; 10-valent PCV includes serotypes 1, 4,
5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; 13-valent PCV also includes 3, 6A, and 19A.

found among the 783 isolates investigated. In addition, four (6B,
14, 19F, and 23F) of them were PCV10 serotypes. Nevertheless,
the most common PNSP serotypes varied according to the
clinical source (Table 3). Of note, a much higher proportion of
PNSP strains belonging to PCV10 serotypes was isolated from
IPD (Table 4; p< 0.01).

PRSP, PRP and HLPRP showed an increasing trend during
the study period among carriage strains (Figure 3A and Table 5;
p< 0.01). Regarding IPD, this increasing trend was observed only
until 2010; between 2011 and 2014, PNSP numbers and levels
significantly decreased (Figure 3B and Table 5; p< 0.01).

Distribution of PNSP serotypes also varied according to the
study period. Overall, PNSP belonging to PCV10 serotypes
showed a decreasing trend, while PNSP associated with non-
PCV10 serotypes showed an increasing trend (Figure 4;
p < 0.01). However, the most frequent serotypes in each period
varied according to the clinical source. In addition, a higher
diversity of serotypes was associated with PNSP isolated in the
late period (Figure 5).

DISCUSSION

Differences in the distribution of pneumococcal serotypes
between carriage and IPD isolates were observed. Some serotypes,
including 3, 4, and 5, were exclusively detected among IPD cases.
Previous studies have shown that certain capsular types are more
prone to cause IPD while others are well-adapted to nasopharynx
colonization (Bender et al., 2008; Weiser, 2010; Weinberger et al.,

FIGURE 2 | Distribution over time of capsular types included in the 10-valent pneumococcal conjugate vaccine (PCV10; in green), of those included only in the
13-valent pneumococcal conjugate vaccine (PCV13; in yellow) and of those not included in any PCV currently available [non-vaccine (NV), in black]. (A) Distribution
among 355 Streptococcus pneumoniae isolates recovered from asymptomatic carriers. (B) Distribution among 428 S. pneumoniae isolates recovered from patients
with IPD. 10-valent PCV includes serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; 13-valent PCV also includes 3, 6A, and 19A.

TABLE 2 | Distribution of Streptococcus pneumoniae isolates with reduced susceptibility to penicillin (PRSP), resistant to penicillin (PRP), and high-level resistant to
penicillin (HLPRP) according to the clinical source.

Clinical PRSP% PRP% HLPRP% MIC50 MIC90

sourcea (N) (N) (N) (µg/ml) (µg/ml)

Carriage 23.9 (85) 3.7 (13) 5.6 (20) 0.06 1.5

IPD 11.4 (49) 0.5 (2) 1.6 (7) 0.03 0.12

All 17.1 (134) 1.9 (15) 3.4 (27) 0.03 0.5

aCarriage isolates included those recovered from nasopharynx or oropharynx specimens while IPD (invasive pneumococcal disease) isolates included those recovered
from blood or cerebrospinal fluid. Isolates showing penicillin MICs ≥ 0.12 < 2 µg/ml were classified as pneumococci with reduced susceptibility to penicillin (PRSP),
those with MICs ≥ 2 < 4 µg/ml were classified as penicillin-resistant pneumococci (PRP) and those with MICs ≥ 4 µg/ml were classified as high-level penicillin resistant
pneumococci (HLPRP).
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TABLE 3 | Distribution of Streptococcus pneumoniae isolates non-susceptible to penicillin (PNSP) among nine capsular types mostly associated with penicillin
resistance, according to the clinical source.

Capsular type % PNSP Carriagea IPDa

(n) (n)
% PNSP MIC50b MIC90b % PNSP MIC50b MIC90b

6A (26) 26.9 (7) 36.8 0.06 2 0 0.01 0.03

6B (63) 38.1 (24) 31.4 0.06 0.25 46.4 0.06 0.32

6C (40) 40 (16) 50 0.06 0.75 0 0.01 0.06

14 (86) 52.3 (45) 82.7 2 4 36.8 0.06 1.5

19A (22) 36.4 (8) 45.4 0.06 8 27.3 0.05 8

19F (62) 17.7 (11) 17.5 0.06 0.12 18.2 0.06 0.25

23F (51) 49 (25) 61.3 0.12 0.25 30 0.06 0.25

35B (7) 57.1 (4) 66.7 1 4 0 0.01 0.01

NT (13) 61.5 (8) 61.5 0.19 4 0 NA NA

aCarriage isolates included strains recovered from nasopharynx or oropharynx specimens while IPD (invasive pneumococcal disease) isolates included those recovered
from blood or cerebrospinal fluid.
bµg/ml. NA, not applicable since no strain belonging to such serotype was detected. Strains showing penicillin MICs ≥ 0.12 µg/ml were classified as penicillin non-
susceptible pneumococci (PNSP). Serotypes comprised by PCV10 are highlighted in green, those included only in PCV13 are highlighted in yellow, those not included in
any PCV currently available are not colored.

TABLE 4 | Distribution of capsular types included in pneumococcal conjugate
vaccines currently available among 176 Streptococcus pneumoniae isolates
non-susceptible to penicillin (PNSP) according to the clinical source.

Clinical sourcea % (n) of isolates belonging to

(n) capsular types included inb

10-Valent PCV 13-Valent PCV

Carriage (118) 53.4 (63) 63.5 (75)

IPD (58) 87.9 (51) 93.1 (54)

All (176) 45.1 (353) 56.3 (441)

aCarriage isolates included strains recovered from nasopharynx or oropharynx
specimens while IPD (invasive pneumococcal disease) isolates included those
recovered from blood or cerebrospinal fluid.
bPCV, pneumococcal conjugate vaccine; 10-valent PCV includes serotypes 1, 4,
5, 6B, 7F, 9V, 14, 18C, 19F, and 23F; 13-valent PCV also includes 3, 6A, and 19A.

2011). Pneumococcal strains lacking the polysaccharide capsule
(NT isolates), for example, are believed to be less virulent (Sharma
et al., 2013). Accordingly, NT isolates were only identified among
pneumococcal isolates recovered from asymptomatic carriage.
On the other hand, a group of serotypes seems to be highly
versatile, being frequently found in both carriage and IPD. In this
study, three capsular types were frequently found regardless of
clinical source, including 6B, 14, and 19F. Indeed, these serotypes
are known to be common among carriage and IPD worldwide
before PCV introduction (Hausdorff, 2007; Weinberger et al.,
2011; Song et al., 2013).

Nearly 20% of all the isolates were PNSP, which is in
accordance with previous data from Brazilian studies (Neves
et al., 2013; Mott et al., 2014; dos Santos et al., 2015). However,
differences on the distribution of penicillin resistance were also
noted when carriage and IPD isolates were compared. PNSP
occurrence, as well as penicillin MIC levels, were higher among
carriage isolates. Indeed, certain serotypes almost exclusively
found in IPD, such as serotype 3, were fully susceptible
to penicillin. Several studies have shown that pneumococcal

serotypes commonly found in carriage are more frequently
associated with antimicrobial resistance than those exclusively
found in IPD isolates (Weiser, 2010; Song et al., 2013; Zhou et al.,
2015; Kim et al., 2016; Neves et al., 2017). This observation may
be due, at least in part, to the fact that the human nasopharynx,
in contrast to blood or cerebrospinal fluid, is a highly populated
niche where genetic exchange among bacteria occurs and, thus,
emergence of antimicrobial resistance traits can be favored
(Andam and Hanage, 2015; Kim et al., 2016).

Although fluctuations on the occurrence of serotypes over
time can happen naturally and should be carefully evaluated,
our results suggest that the introduction of PCV7 and PCV13
in 2001 and 2010, respectively, did not seem to have affected
pneumococcal epidemiology regarding serotype and PNSP
distribution in our setting. This might be due, at least in
part, to the fact that these PCVs were made available only in
private clinics in Brazil. Indeed, usage of PCV7 and PCV13
in Brazil is very low due to their high cost (Brazil Ministry
of Health, 2006; Medeiros et al., 2017; Neves et al., 2017). On
the other hand, according to previous studies conducted in
Brazil (dos Santos et al., 2013; Medeiros et al., 2017; Neves
et al., 2018), our results suggest an important impact on
serotype replacement after the implementation of PCV10. PCV10
serotypes showed a decreasing trend over time, especially in the
late study period (2011–2014). In parallel, occurrence of non-
PCV10 serotypes increased over time, surpassing the numbers
of PCV10 serotypes in both carriage and IPD between 2011 and
2014. Similar observations have been made in other countries
where PCV10 was routinely adopted, such as the Netherlands,
Mozambique and Finland (Knol et al., 2015; Nhantumbo et al.,
2017; Sihvonen et al., 2017).

Among the non-PCV10 serotypes emerging after PCV10
introduction, serotype 19A was an important serotype associated
with both carriage and IPD. Although emergence of this serotype
after PCV7 introduction in certain high-income countries is a
well-established fact (Isaacman et al., 2010; Isturiz et al., 2017),
serotype 19A emergence after PCV10 introduction in Brazil
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FIGURE 3 | Distribution over time of pneumococci with reduced susceptibility to penicillin (PRSP), penicillin-resistant pneumococci (PRP), and high-level penicillin
resistant pneumococci (HLPRP). (A) Distribution among 355 S. pneumoniae isolates recovered from asymptomatic carriers. (B) Distribution among 428
S. pneumoniae isolates recovered from patients with IPD. Isolates showing penicillin MICs ≥ 0.12 < 2 µg/ml were classified as PRSP, those with
MICs ≥ 2 < 4 µg/ml were classified as PRP and those with MIC ≥ 4 µg/ml were classified as HLPRP.

still seems to be a contradictory issue. While certain studies
reveal that occurrence of this serotype has not significantly
changed (Medeiros et al., 2017; Neves et al., 2018), others
report an increasing rate (Cassiolato et al., 2018; Christophe
et al., 2018). We also observed that serotypes 3, 8, 20, and
23A emerged among isolates from IPD cases, whereas serotypes
6C, 35B, and NT isolates were more commonly associated with
asymptomatic carriage. Emergence of serotype 6C in carriage
and of serotypes 3 and 8 in IPD after PCV10 implementation
in Brazil has been recently described (Medeiros et al., 2017;
Christophe et al., 2018; Neves et al., 2018). Of note, all these
emerging non-PCV10 serotypes have been circulating in our
setting since the 1990s, reinforcing the possibility of serotype
replacement phenomenon.

Moreover, while PNSP numbers and levels decreased
significantly in the late period of the present study (2011–
2014) among IPD isolates, they kept increasing among isolates
from carriage. Accordingly, many studies have reported lower
frequencies and levels of PNSP among IPD isolates after
PCV10 introduction in Brazil (dos Santos et al., 2013; Medeiros
et al., 2017). In turn, antimicrobial resistance levels among
pneumococcal isolates from asymptomatic carriage have been
increasing despite of vaccination. Recently, Neves et al. (2018)
have suggested that this is probably due to the emergence of

multidrug resistant lineages belonging to non-PCV10 serotypes,
such as the serotype 6C-CC386, among carriage isolates. On
the other hand, serotypes emerging among IPD isolates after
PCV10 introduction, such as 3, 8 and 20, were shown to be fully
susceptible to penicillin. These observations suggest that the
PCV10 impact on the reduction of PNSP occurrence and level
might be more relevant for IPD than for carriage. This suggestion
can also be supported by the observation that, before PCV10
introduction, PNSP isolates recovered from IPD were almost
completely represented by PCV10 serotypes (nearly 90%), while
only half of PNSP strains recovered from asymptomatic carriage
comprised PCV10 serotypes.

Penicillin non-susceptible pneumococci have been listed as
one of the major antimicrobial resistance threats among bacterial
pathogens (CDC, 2013; WHO, 2017). Although they represent
a global public health threat, occurrence and epidemiology of
PNSP vary according to the geographic region. Taken our results
into consideration, from the mid 1990s until 2010, serotype
14 played a major role in the dispersion of penicillin non-
susceptibility, especially among IPD isolates. Indeed, it was
previously shown that an internationally disseminated clone
belonging to this serotype (namely ST156), which was also
frequently associated with IPD worldwide, was the main reason
for PNSP emergence in Brazil in the pre-vaccination era (Barroso

TABLE 5 | Distribution of penicillin minimum inhibitory concentration (MIC) levels among Streptococcus pneumoniae, according to the period of time and clinical source.

Clinical sourcea MIC50 (µg/ml) MIC90 (µg/ml)

1990–1995 1996–2002 2003–2010 2011–2014 1990–1995 1996–2002 2003–2010 2011–2014

Carriage 0.03 0.06 0.03 0.50 0.25 0.12 2 4

IPD 0.03 0.06 0.09 0.01 0.12 0.12 4 0.12

aCarriage isolates included strains recovered from nasopharynx or oropharynx specimens while IPD (invasive pneumococcal disease) isolates included those recovered
from blood or cerebrospinal fluid.
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FIGURE 4 | Distribution over time of capsular types included in the 10-valent pneumococcal conjugate vaccine (PCV10; in green), of those included only in the
13-valent pneumococcal conjugate vaccine (PCV13; in yellow) and of those not included in any PCV currently available (in black) among penicillin non-susceptible
pneumococci (PNSP).

FIGURE 5 | Sets of the most common pneumococcal capsular types associated with penicillin non-susceptibility (comprising 50 to 60% of the pneumococcal
isolates) according to the clinical source and period of time. Carriage isolates included those recovered from nasopharynx or oropharynx specimens while IPD
isolates included those recovered from blood or cerebrospinal fluid. Serotypes colored in green are included in the 10-valent pneumococcal conjugate vaccine (PCV);
those colored in yellow are only included in the 13-valent PCV; and those colored in black are not included in any PCV currently available.

et al., 2012; Pinto et al., 2016). After 2010, however, this scenario
has changed and a more diversified panel of serotypes has
been associated with penicillin non-susceptibility, regardless of

clinical source. Among IPD isolates specifically, serotype 19A
PNSP emerged significantly, surpassing the previous number of
serotype 14 PNSP isolates.
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Major limitations of this study are related to the characteristics
of the population included. It is known that age of individuals
is an important feature and may have an influence on serotype
distribution. However, we were not able to assess this issue in
detail since information was not available for a large proportion
of the isolates analyzed, although we estimate from available data
that most of strains were recovered from children. In addition,
although Brazil is a country with continental dimensions
and, thus, might present discrepancies between regions, the
Southeastern region, represented here by five different cities,
is the most populated one. According to the last official
demographic survey conducted in Brazil (Instituto Brasileiro
de Geografia e Estatística [IBGE], 2010), population living in
the Southeastern region accounted for nearly half of the whole
Brazilian population. Moreover, this region can be considered
as representative of the ethnic, social, and economic diversity
of the Brazilian population due to the historic high flow of
domestic in-migration.

Penicillin non-susceptible pneumococci evolution can be
driven by different interventions such as antibiotic therapy
policies and vaccine implementation (Guillemot et al., 1998;
McCormick et al., 2003; Kim et al., 2016). These aspects usually
differ by country; for example, Brazil is one of the 32 countries
that have adopted PCV10 in the national immunization program
instead of PCV7/PCV13, adopted by other 98 countries (Brazil
Ministry of Health, 2010). Therefore, gathering information on
PNSP epidemiology over a long period of time can contribute
to a better understanding of their evolution and the impact
of different vaccination strategies. Overall, our results show
the emergence of non-PCV10 serotypes after 2010 in Brazil
and the emergence and spread of PNSP associated with
carriage. On the other hand, PCV10 has been effective in
decreasing PNSP rates and levels among IPD isolates, but it
has not avoided serotype replacement. These results reinforce
the need of continuous surveillance of PNSP in the post-
vaccine introduction era and may contribute to the development

of more effective measures to control the spread of drug-
resistant pneumococci.
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We studied a commensal colistin-resistant Escherichia coli isolated from a swine cecum
sample collected at a slaughter, in Portugal. Antimicrobial susceptibility phenotype of
E. coli LV23529 showed resistance to colistin at a minimum inhibitory concentration
of 4 mg/L. Whole genome of E. coli LV23529 was sequenced using a MiSeq system
and the assembled contigs were analyzed for the presence of antibiotic resistance
and plasmid replicon types using bioinformatics tools. We report a novel mcr-1 gene
variant (mcr-1.9), carried by an IncX4 plasmid, where one-point mutation at nucleotide
T1238C leads to Val413Ala substitution. The mcr-1.9 genetic context was characterized
by an IS26 element upstream of the mcr-pap2 element and by the absence of
ISApl1. Bioinformatic analysis also revealed genes conferring resistance to β-lactams,
sulphamethoxazole, trimethoprim, chloramphenicol and colistin, corresponding to the
phenotype noticed. Moreover, we highlight the presence of mcr-1.9 plus blaCTX-M-8,
a blaESBL gene rarely detected in Europe in isolates of animal origin; these two
genes were located on different plasmids with 33,303 and 89,458 bp, respectively.
MCR-1.9-harboring plasmid showed high identity to other X4-type mcr-1-harboring
plasmids characterized worldwide, which strongly suggests that the presence of PMCR-
encoding genes in food-producing animals, such as MCR-1.9, represent a potential
threat to humans, as it is located in mobile genetic elements that have the potential to
spread horizontally.

Keywords: MCR-1.9, plasmid-mediated colistin resistance, IncX4, CTX-M-8, Portugal

INTRODUCTION

Since the report of a plasmid-mediated colistin resistance (PMCR) mechanism, designated MCR-1,
in Escherichia coli and Klebsiella pneumoniae isolated from animals, food and humans in China,
further reports exposed the global dissemination of mcr-type gene in various bacterial species
isolated from a wide range of different sources (Caniaux et al., 2017). In Portugal, PMCR has also
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been detected in a wide range of different sources and species,
including humans, food-producing animals and meat, and in
the environment (Campos et al., 2016; Figueiredo et al., 2016;
Jones-Dias et al., 2016; Kieffer et al., 2017; Manageiro et al.,
2017; Tacão et al., 2017; Mendes et al., 2018). Noteworthy,
are the recent report of two cases presumably associated with
the travel of patients from Portugal, one involving animals: a
patient repatriated to France after hospitalization for 2 months in
Portugal, in 2015 (Beyrouthy et al., 2017), and a New York state
patient returning from Portugal in 2016 after staying on a farm
with chickens and pigs (Gilrane et al., 2017).

More worrisome is the presence of mcr genes in
Enterobacteriaceae carrying other resistance determinants
namely, extended-spectrum β-lactamases (ESBL)- and/or
carbapenemase-encoding genes. Since the first report of co-
localization of mcr-1 and ESBL- in 2016 in bovines in France,
an increase encoding genes in the proportion of mcr-1 genes
among ESBL-producing E. coli in animals has been noticed,
suggesting that the use of extended-spectrum cephalosporins
may have simultaneously favored the spread of mcr-1 (Haenni
et al., 2016). Here we describe the first detection of a novel mcr
variant, hereafter-named mcr-1.9, identified in a commensal
E. coli LV23529 isolated from a swine cecum sample collected at
a slaughter, in Portugal.

MATERIALS AND METHODS

Bacterial Isolate
Escherichia coli LV23529 was isolated in 2015 from a swine cecum
sample collected at a Portuguese slaughter, during an evaluation
study of commensal E. coli recovered from swine samples for
antimicrobial susceptibility testing.

Antimicrobial Susceptibility Testing
Minimum inhibitory concentrations (MICs) were determined
by microdilution method as previously described (Manageiro
et al., 2017). In order to assess decreased susceptibility of the
strain, interpretation of the results was done according to the
epidemiological cut-off values recommended by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST1).

Screening and Characterization of
PMCR- and ESBL-Resistance
Mechanisms
Molecular Detection of mcr-1 and blaESBL-Encoding
Genes
Following phenotypic characteristics, PMCR- and ESBL-
resistance mechanisms were searched and identified by molecular
methods, as previously described (Manageiro et al., 2017).

Transfer Experiments
Conjugation experiments were performed using sodium azide-
resistant E. coli J53 as a recipient strain. Transconjugants

1http://mic.eucast.org/Eucast2/

were selected on McConkey agar supplemented with sodium
azide (150 mg/L) and either cefotaxime (2 mg/L) or colistin
(2 mg/L). Plasmid DNA was extracted from E. coli LV23529
using a NucleoBond Xtra Plus kit (Macherey-Nagel), and
transformed into E. coli TOP10 OneShot chemically competent
cells (Invitrogen), accordingly to manufacture’s protocol. E. coli
transformants were selected on MacConkey agar supplemented
with 2 mg/L of colistin. PCR for blaCTX-M-8 or mcr-1-type
and MICs of recipients and transformants were determined as
mentioned above.

Genetic Context of mcr-1.9 Gene
Colistin-resistant E. coli LV23529 was genotypically characterized
by whole-genome sequencing (WGS), as previously described
(Manageiro et al., 2017). Sequence reads were trimmed and
filtered according to quality criteria, and de novo assembled
into contigs by means of CLC Genomics Workbench 10.0
(Qiagen). The assembled contigs were analyzed and studied
for the presence of antibiotic resistance, virulence genes and
plasmid replicon types, serotype, multi-locus sequence type
(ST) and fim-type, using bioinformatics tools2. The NCBI
prokaryotic genome automatic annotation pipeline (PGAAP)
was used for annotation.

Plasmid sequencing was also performed on a MiSeq Illumina
platform using 150 bp paired-end reads, after plasmid DNA
extraction from TLV23529 (mcr-1.9) using a NucleoBond Xtra
Plus kit (Macherey-Nagel), and quantification using Qubit 1.0
Fluorometer (Invitrogen), as previously described (Manageiro
et al., 2017). Sequence reads were trimmed and filtered
according to quality criteria, and mapped against E. coli ATCC
25922 genome (NZ_CP009073). Unmapped reads (80.2%/total
reads) were then used for plasmids structure construction
by mapping assembly based on the genetic organization of
the closest plasmid sequences obtained by BLASTn; this
was followed by contig neighbor’s prediction from assembly
information using CLC Genomics Workbench 10.0 (Qiagen).
NCBI Microbial genomes BLAST analysis tool3 was used
to search for plasmid sequences. Plasmid alignments and
ORF representations were also done using EasyFig v. 2.2.3
(Sullivan et al., 2011).

Genomic Epidemiological Analysis
BacWGSTdb database was used for genotyping and source
tracking bacterial pathogen (Ruan and Feng, 2016).

Nucleotide Sequence Accession Number
The pLV23529-MCR-1.9 and pLV23529-CTX-M-8 nucleotide
sequences from this study were submitted to the NCBI GenBank
Database with accession numbers KY964067 and KY964068,
respectively. The new mcr-1.9 nucleotide sequence was submitted
with accession number KY780959.

This Whole Genome Shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession SBIH00000000. The
version described in this paper is version SBIH01000000.

2https://cge.cbs.dtu.dk/services/
3https://www.ncbi.nlm.nih.gov/genome/microbes/
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RESULTS AND DISCUSSION

MIC results showed that LV23529 was non-wild-type to
third- and fourth-generation cephalosporins (ceftazidime
2 mg/L, cefotaxime 32 mg/L, cefepime 8 mg/L) with synergy
with clavulanic acid; this isolate was also non-wild-type
to chloramphenicol (>128 mg/L), sulphamethoxazole
(>1024 mg/L), trimethoprim (>32 mg/L), tetracycline
(>64 mg/L), and colistin (4 mg/L). LV23529 remained wild-
type to carbapenems, fluoroquinolones, aminoglycosides and
tigecycline (Table 1).

Molecular characterization of the E. coli LV23529 isolate
allowed the detection of blaCTX-M-8 and mcr-1-type genes.

Only the transferability of the blaCTX-M-8 gene was achieved
by conjugation, with TcLV23529 (blaCTX-M-8) exhibiting the
ESBL phenotype from LV23529 isolate (cefotaxime 2 mg/L,
cefepime 2 mg/L) with synergy with clavulanic acid, and wild-
type to colistin (≤1 mg/L) (Table 1). Although conjugation
assays for mcr-1-type were negative, the colistin resistance
determinant could be transferred to E. coli TOP10 competent
cells; transformant TLV23529 (mcr-1-type) showed the respective
resistance to colistin (4 mg/L) (Table 1).

The WGS assembly of E. coli LV23529 yielded 193
contigs (average 143.7-fold coverage), which together comprised
5,122,415bp, showing a GC content of 50.7%. The largest
contig was 320,931 bp long; the N50 statistic, which stands
for the minimum contig length of at least 50% of the contigs,
was 113,197 bp. The average length of the obtained contigs
was 26,541 bp. Overall, the genome sequence comprised
5,124 putative genes, among which 5,037 consisted of protein
encoding sequences.

The WGS analysis showed that E. coli LV23529 belongs
to serotype O8:H19, usually associated with porcine stx2e-
producing E. coli (Zweifel et al., 2006; Bai et al., 2015),
and to MLST (Achtman scheme) ST201 [clonal complex 469
(CC469)] and to the FimH-type determinant fimH32. This
ST201 was encountered worldwide mainly in isolates collected
from livestock samples (Escherichia/Shigella Enterobase database,
Alikhan et al., 2018). Three virulence factors were detected:
astA (heat-stable enterotoxin 1), lpfA (long polar fimbriae), and
gad-type (glutamate decarboxylase).

Further bioinformatics analysis of E. coli LV23529 isolate
revealed acquired-genes conferring resistance to β-lactams
(blaCTX-M-8 and blaTEM-1), aminoglycosides (aadA1 and aadA2),

TABLE 1 | Phenotypic and genotypic context of CTX-M-8 and MCR-1.9 producing E. coli clinical isolate, transformant, transconjugant, and the respective recipient
strains.

Antibiotic LV23529b Transformation Conjugation

(blaCTX-M-8, mcr-1.9,
cmlA1, sul3, tetA,

tetM, dfrA12, aadA1,
aadA2)

E. coli TOP10c TLV23529d

(mcr-1.9)
ECJ53AZNae TcLV2352f

(blaCTX-M-8)

Ampicillin >64 4 8 2 >64

Cefoxitine 4 4 4 4 8

Ceftazidime 2 0.5 0.5 ≤0.5 1

Ceftazidime plus clavulanatea
≤0.125/4 0.5 0.5 ≤0.125/4 ≤0.25/4

Cefotaxime 32 ≤0.25 ≤0.25 ≤0.25 2

Cefotaxime plus clavulanatea
≤0.06/4 0.125 0.125 ≤0.06/4 ≤0.06/4

Cefepime 8 0.125 0.125 ≤0.06 2

Imipenem 0.25 0.5 0.5 0.25 0.25

Meropenem ≤0.03 0.06 0.06 ≤0.03 ≤0.03

Ertapenem ≤0.015 ≤0.015 ≤0.015 ≤0.015 ≤ 0.015

Nalidixic acid ≤4 ≤4 ≤4 ≤4 ≤4

Ciprofloxacin ≤0.015 ≤0.015 ≤0.015 ≤0.015 ≤0.015

Chloramphenicol >128 ≤8 ≤8 ≤8 ≤8

Sulphamethoxazole >1024 ≤8 ≤8 ≤8 ≤8

Tetracycline >64 ≤2 ≤2 ≤2 ≤2

Trimethoprim >32 ≤0.25 ≤0.25 ≤0.25 ≤0.25

Gentamicin ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5

Colistin 4 ≤1 2 ≤1 ≤1

Tigecycline ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25

MICs in mg/L.
aClavulanate 4 mg/L.
bE. coli LV23529 was the clinical isolate harboring the acquired antibiotic resistance genes blaCTX-M-8, mcr-1.9, cmlA1, sul3, tetA, tetM, dfrA12, aadA1, and aadA2.
cE. coli TOP10 was the recipient strain in the transformation experiment.
dTLV23529 is a transformant of LV23529 (harboring mcr-1.9).
eE. coli J53AZNa was the recipient strain in the conjugation experiment.
fTcLV23529 is a transconjugant of LV23529 (harboring blaCTX-M-8).
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FIGURE 1 | Linear comparison of IncX4-pLV23529-MCR-1.9 with the top six mcr-1-harboring plasmids showing the highest identities (>99.9%, E-value 0.0), in
different E. coli isolates. Boxed arrows represent the position and transcriptional direction of ORFs. Gray vertical blocks indicate the shared similarity regions
according to TBLASTX identity. Genes associated with pilus and plasmid transfer are colored yellow, antibiotic resistance genes are colored red, mobile genetic
elements are colored pink, and other genes are colored gray (hypothetical proteins) or blue (other).

FIGURE 2 | Schematic representation of the genetic environment of mcr-1.9 in comparison with other mcr-1-type representative environments. Boxed arrows
represent the position and transcriptional direction of ORFs. Genes are not drawn to scale. Genes associated with pilus and plasmid transfer are colored yellow,
antibiotic resistance genes are in red, mobile genetic elements in pink, plasmid maintenance and stability genes in violet, plasmid replication associated genes are in
light blue, and other genes are colored gray (hypothetical proteins) or blue (other).
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FIGURE 3 | Schematic maps of pLV23529-MCR-1.9 (A) and pLV23529-CTX-M-8 (B). Genes are denoted by arrows and colored based on gene function
classification.

TABLE 2 | Comparison of IncX4-pLV23529-MCR-1.9 with the top six mcr-1-harboring plasmids showing the highest identities (>99.9%, E-value 0.0), in different E. coli
isolates.

IncX4-type Plasmid
(bp)

E. coli strain (MLSTa) Source/Country/Year Identity
(%)

Mismatches/
gap opens

(No. of
nucleotides)

Query
alignment

overlap
(%)

pLV23529-
MCR-1.9

Alignment
overlap

(%)

Plasmid
GenBank
Acc. No.

pMCRpoa (33,511) 3431F (ST744) Human patient/Brazil/2014 99.98 15/1 99.4 100.0 CM007714

pl4EC007a (35,098) 14Ec007 (ST301) Human patient/China/2014 99.98 15/1 94.9 100.0 CP024132

pMCR-1-NY (33,304) MDR56 (ST117) Human patient /United States/2015 99.97 19/1 100.0 100.0 CP019908

pICBEC72Hmcr
(33,304)

ICBEC72H (ST101) Human patient/Brazil/2016 99.95 17/0 100.0 100.0 CP015977

pl4EC033b (33,301) 14EC033 (ST2064) Human patient/China/2014 99.92 16/3 100.0 100.0 CP024149

pICBEC7Pmcr
(34,992)

ICBEC7P (ST10) Magellanic penguins/Brazil/2013 99.92 16/3 95.2 100.0 CPO17246

aMLST accordingly with Warwick scheme (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).

phenicol (cmlA1-type and floR-type), sulphamethoxazole
(sul3), tetracycline [tet(A)-type and tet(M)-type], trimethoprim
(dfrA12), and colistin (mcr-1-type), justifying the phenotype
noticed. Additionally, several unknown mutations in the
ampC (promoter region), parC, 16S rrsB, 16S rrsC, 23S and
pmrB chromosomal genes were detected, the last gene being
described as the primary mechanism for the development
of chromosomally encoded resistance to polymyxins
(Phan et al., 2017).

The named mcr-1.9, differed from mcr-1 by one-point
mutation (T1238C), leading to Val413Ala substitution. The

MCR-1 protein contains a transmembrane domain and a
phosphoethanolamine (PEA) transferase domain with 8α, 12β,
and 12η units (Gao et al., 2016). The amino acid substitution
of MCR-1.9 occurred in the region between η7 e η8 of the PEA
transferase domain, which have been found not to influence the
function of MCR-1 (Gao et al., 2016).

The mcr-1.9 genetic context was characterized by an IS26
element upstream of the mcr-pap2 element and by the absence
of ISApl1 (Figure 1), which is in accordance with other studies
about mcr-1 gene (Veldman et al., 2016; Sun et al., 2017).
The mcr-1.9 gene can be mobilized within an ISApl1-flanked
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composite transposon (Tn6330), although many sequences have
been identified without ISApl1 or with just a single copy (Snesrud
et al., 2018). Indeed, it has been described that initially ISApl1 was
presumably involved in the transposition of the mcr-1 cassette
and then was lost, contributing for the stability of mcr gene on
IncX4 plasmids (Sun et al., 2017; Snesrud et al., 2018).

The PMCR-encoding gene was found in an IncX4 plasmid
(pLV23529-MCR-1.9), showing highest identities (>99.9%) with
six IncX4-type mcr-1-harboring plasmids identified worldwide,
in unrelated E. coli isolates, mainly collected from human patients
(Figure 2 and Table 2). Indeed, all belonged to different MLST,
which might suggest a resistance plasmid dissemination across
strains (plasmid outbreak) rather than clonal transmission of
MCR-1-type-producing strains. Furthermore, no E. coli LV23529
closely related isolates were detected among those currently
deposited in the public database BacWGSTdb (Ruan and Feng,
2016), which reinforce the importance of the horizontal gene
transfer in this study.

Like pLV23529-MCR-1.9, the six plasmids (Table 2) doesn’t
have the ISApl1 element. Hence, similarities may suggest that
the one-point mutation (T1238C) in mcr-1.9 occurred on the X4
plasmid, since mobilization of mcr-1 occurs as part of a composite
transposon (Tn6330) and that structures lacking the downstream
ISApl1 are not capable of mobilization (Snesrud et al., 2018).
The IS26 upstream of the mcr-pap2 element is flanked by
an 8bp direct repeat (Figure 3A), indicating that its insertion
wouldn’t seems to be related to the mcr-1.9 context, justifying the
differences found with other IncX4 mcr-1-harboring plasmids.
IncX4 plasmid has been widely implicated in the spread of
MCR-1 gene in Europe (Caniaux et al., 2017). In Portugal, this
plasmid type is circulating among diverse hosts (humans, pigs,
poultry), being responsible for hospital-based outbreak caused
by MCR-1 plus KPC-3-producing K. pneumoniae (Mendes et al.,
2018), as well as for the diffusion of this PMCR at the farm
level (Kieffer et al., 2017). Indeed, IncX4 plasmids seem to be
efficiently transferred at different temperatures and different lack-
of-fitness burdens among bacterial hosts, which may facilitate
the transfer of mcr-type among Enterobacteriaceae (Lo et al.,
2014; Wu R. et al., 2018). The pLV23529-MCR-1.9 plasmid
backbone contains all the core genes common to IncX plasmids
involved in segregation, stability, replication, and conjugative
transfer of the plasmid (Figure 3A), namely the IncX-type pilus
synthesis operon (pilX1-pilX11). However, pLV23529-MCR-1.9
was mobilizable, but not self-transmissible. Of note, we found a

one-point mutation (G64T), leading to Asp22Tyr substitution,
in the PilX1, a peptidoglycan hydrolase involved in T-DNA
plasmid transfer. This mutation might explain why the attempts
to conjugate mcr-1.9 from E. coli LV23529 were unsuccessful
(Chen et al., 2009).

Further plasmid analysis revealed the presence of two
other plasmids: IncF [F2:A-:B-], IncR and the colicinogenic
IncI1-ST113-carrying the blaCTX-M-8 (pLV23529-CTX-M-8,
Figure 3B). Of note, the mcr-1.9-positive isolate, co-harboring
blaCTX-M-8 and blaTEM-1 genes, is here reported for the first
time in an E. coli isolate of animal origin. In fact, blaCTX-M-8
gene is rarely detected in Europe in isolates of animal origin
(Börjesson et al., 2016), but in humans seems to be emerging
(Eller et al., 2014). Indeed, a recent phylogenetic study suggested
an increasing trend of co-existence and transmission of blaCTX-M
and mcr-1 in both clinical medicine and veterinary medicine
(Wu C. et al., 2018).

In conclusion, the presence of PMCR-encoding genes, such as
MCR-1.9, in food-producing animals represents a potential threat
to humans, as it is located in mobile genetic elements that have
the potential to spread horizontally. As mentioned, in Portugal,
PMCR is an emerging problem and its international spread is a
worrying reality (Beyrouthy et al., 2017; Gilrane et al., 2017).
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The International Space Station (ISS) is a closed habitat in a uniquely extreme and

hostile environment. Due to these special conditions, the human microflora can undergo

unusual changes and may represent health risks for the crew. To address this problem,

we investigated the antimicrobial activity of AGXX®, a novel surface coating consisting

of micro-galvanic elements of silver and ruthenium along with examining the activity

of a conventional silver coating. The antimicrobial materials were exposed on the ISS

for 6, 12, and 19 months each at a place frequently visited by the crew. Bacteria

that survived on the antimicrobial coatings [AGXX® and silver (Ag)] or the uncoated

stainless steel carrier (V2A, control material) were recovered, phylogenetically affiliated

and characterized in terms of antibiotic resistance (phenotype and genotype), plasmid

content, biofilm formation capacity and antibiotic resistance transferability. On all three

materials, surviving bacteria were dominated by Gram-positive bacteria and among those

by Staphylococcus, Bacillus and Enterococcus spp. The novel antimicrobial surface

coating proved to be highly effective. The conventional Ag coating showed only little

antimicrobial activity. Microbial diversity increased with increasing exposure time on all

three materials. The number of recovered bacteria decreased significantly from V2A to

V2A-Ag to AGXX®. After 6 months exposure on the ISS no bacteria were recovered

from AGXX®, after 12 months nine and after 19 months three isolates were obtained.

Most Gram-positive pathogenic isolates were multidrug resistant (resistant to more than

three antibiotics). Sulfamethoxazole, erythromycin and ampicillin resistance were most

prevalent. An Enterococcus faecalis strain recovered from V2A steel after 12 months

exposure exhibited the highest number of resistances (n = 9). The most prevalent

resistance genes were ermC (erythromycin resistance) and tetK (tetracycline resistance).

Average transfer frequency of erythromycin, tetracycline and gentamicin resistance

from selected ISS isolates was 10−5 transconjugants/recipient. Most importantly, no

serious human pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or
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vancomycin-resistant Enterococci (VRE) were found on any surface. Thus, the infection

risk for the crew is low, especially when antimicrobial surfaces such as AGXX® are applied

to surfaces prone to microbial contamination.

Keywords: antimicrobial surface, gram-positive human-pathogenic bacteria, antibiotic resistance, biofilm,

conjugative transfer, International Space Station, hostile environment

INTRODUCTION

The International Space Station is an isolated habitat in a
hostile environment. Microgravity, solar and cosmic radiation
alter the immune-regulatory responses of the crew rendering
them more susceptible to bacterial infections (Sonnenfeld, 2005;
Crucian et al., 2008; Guéguinou et al., 2009). Themicroorganisms
in the spaceship are human-derived; they originate from the crew
and helpers who prepare the mission. The spaceship provides a
special environmental niche for microorganisms, which directly
or indirectly affect the health, safety or performance of the crew
(Taylor, 2015). Microgravity can affect the virulence (Nickerson
et al., 2004; Wilson et al., 2007; Rosenzweig et al., 2010;
Crabbé et al., 2011), growth kinetics (Klaus et al., 1997; Kacena
et al., 1999; Nickerson et al., 2004) and biofilm formation
of microorganisms (Mauclaire and Egli, 2010). To assess
the risk microorganisms pose to astronauts, the composition
and properties of microbial communities in spaceships were
analyzed. Two hundred and thirty-four bacterial and fungal
species were found on theMIR space station, among those strong
biofilm formers. Staphylococcus spp., followed by Bacillus spp.
and Corynebacterium spp. were abundant in air as well as in
surface samples (Novikova, 2004; Novikova et al., 2006). Schiwon
et al. (2013) analyzed ISS samples from air and crewmembers
in-flight and post-flight. Bacillus spp., Staphylococcus spp. and
Enterococcus spp. were the most prevalent. 75.8% of the isolates
exhibited resistance to one or more antibiotics. Corresponding
resistance genes were found in 86% of the antibiotic-resistant
bacteria. In 86.2% of the isolates horizontal transfer genes were
detected. Eighty-three percent of the isolates were able to form
biofilms (Schiwon et al., 2013).

Under spaceflight conditions, bacteria were shown to exhibit
enhanced secondary metabolite and extracellular polysaccharide
production as well as enhanced biofilm formation (Mauclaire
and Egli, 2010; Vukanti et al., 2012). In space, the cell wall of S.
aureus was significantly thicker than in the same strain grown
on Earth (Novikova et al., 2006; Taylor, 2015). Various bacteria
exhibited enhanced virulence, increased antibiotic resistance and
differential gene expression under space conditions (Horneck
et al., 2010; Yamaguchi et al., 2014; Taylor, 2015). Thus, these
bacteria could spread their virulence and/or antibiotic resistance
genes through horizontal gene transfer (HGT) and turn harmless
bacteria into potential pathogens.

HGT is mediated by mobile genetic elements (MGEs), such as
conjugative plasmids, conjugative transposons, integron-specific
gene cassettes, or phages that are able to facilitate their own
transfer. Plasmid-mediated HGT plays a primordial role in
the emergence of new pathogens (Frost et al., 2005; Garbisu
et al., 2018). Schiwon et al. (2013) found conjugative plasmids

in bacterial isolates from the ISS and could demonstrate that
some of these strains were able to transfer their antibiotic
resistance genes to other bacteria. The HGT rate was shown
to be higher in microbial biofilms than in planktonic cultures
(Holmes et al., 2015). Biofilms represent a protected mode of
microbial growth and confer significant survival advantages in
hostile environments (Li et al., 2007; Thallinger et al., 2013).
Thus, biofilm forming organisms show increased resistance to
antibiotics, either due to decreased penetration of the antibiotic
through the biofilmmatrix or due to expression of more complex
biofilm-specific resistance mechanisms.

Multiple antibiotic resistant and strong biofilm forming
Staphylococcus and Enterococcus isolates detected on the ISS
could pose an increased health risk on the crew (Schiwon et al.,
2013). Several studies report, that bacteria from astronauts in-
flight were more resistant to antibiotics due to enhanced biofilm
formation or changes in cell morphology, e.g., thicker cell walls
than isolates obtained from the same individuals either pre-
or post-flight. As medical aid on the ISS is restricted, there
is an urgent need for new antimicrobial materials, which can
be used there to prevent infections by multi-resistant biofilm
forming bacteria.

Heavy metals, e.g., copper and silver, have been known for a
long time to possess antimicrobial activity. Silver was officially
approved as an antimicrobial agent in the twentieth century
(Chopra, 2007; Schäberle and Hack, 2014; Guridi et al., 2015;
Vaishampayan et al., 2018). However, after the discovery of
antibiotics the use of metals to combat bacterial infections has
declined (Chopra, 2007; Grass et al., 2011). Later on, due to
the increased occurrence of antibiotic resistant pathogens, silver
and copper have again found widespread use, both in medicine
and in everyday life (Maillard and Hartemann, 2012; Warnes
and Keevil, 2013; Schäberle and Hack, 2014). These metals are
easy to use as coatings on a variety of substrates and have
a lethal effect on bacteria and fungi via the so-called contact
killing (Grass et al., 2011). Silver is one of the best-studied
bactericidal agents in water supplies (Russell and Hugo, 1994;
Rohr et al., 1999; Vonberg et al., 2008; Vaishampayan et al.,
2018). However, as occurred with antibiotics, bacteria have also
developed resistance mechanisms against silver (Gupta et al.,
1999). Like the excessive use of antibiotics, the extended use of
silver is questioned due to its toxicity to the environment as well
as to the human body (Landsdown, 2010). Plain ruthenium is not
applied as antibacterial agent, but antibacterial activity has been
demonstrated for ruthenium(II) polypyridyl complexes (Bolhuis
et al., 2011; Li et al., 2011, 2015).

Due to the increasing resistance of bacteria to both antibiotics
and commonly used antimicrobial metals, there is an urgent need
to develop new approaches to combat bacterial infections. A new
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antimicrobial surface coating is AGXX R© consisting of micro-
galvanic elements of the two noble metals, silver and ruthenium,
surface-conditioned with ascorbic acid (Vaishampayan et al.,
2018). Both metals can be galvanically applied to diverse surfaces
such as stainless steel, plastics, or cellulose fibers. The coating
proved to be active against both Gram-positive and Gram-
negative bacteria, but also against filamentous fungi, yeasts
and some viruses (Guridi et al., 2015; Landau et al., 2017a,b;
Vaishampayan et al., 2018). Recently, we demonstrated that it
efficiently inhibits the growth of MRSA (Vaishampayan et al.,
2018). The postulated mode of action is based on the formation
of reactive oxygen species, particularly superoxide anions (Meyer,
C., personal communication), which affect biomolecules, such as
nucleic acids, proteins, and lipids. AGXX R© has self-regenerating
activity based on two coupled redox reactions taking place on the
micro-galvanic silver and ruthenium elements on the surface of
the material. They result in effective regeneration of the coating
(Clauss-Lendzian et al., 2018).

In this study, we investigated the long-term antimicrobial
effect of two different antimicrobial coatings. Three sets of
V2A steel samples (uncoated, silver-coated, AGXX R©-coated)
were exposed and analyzed after six, 12, and 19 months
on the ISS. Seventy-eight human pathogenic bacteria, which
survived on the antimicrobial coatings or on the uncoated
steel carrier (control) were phylogenetically affiliated and
further characterized. The number of human pathogenic isolates
decreased from V2A steel (n = 39) to V2A-Ag (n = 31)
to V2A-AGXX R© (n = 8). After 6 months of exposure, no
bacteria survived on AGXX R©, whereas six human pathogens
were obtained after 12 and two after 19 months. From all
materials, predominantly staphylococci and bacilli were isolated.
Multi-antibiotic resistant, plasmid harboring staphylococcal and
enterococcal ISS isolates transferred erythromycin, gentamicin
and tetracycline resistance with average transfer frequencies of
10−5 transconjugants/recipient.

MATERIALS AND METHODS

Preparation of Antimicrobial Metal Sheets
The material was provided by Largentec GmbH, Berlin,
Germany. V2A (DIN ISO 1.4301) stainless steel sheets were used
as reference material and as base material for Ag and AGXX R©

coatings. The coatings were prepared as described in detail in
Clauss-Lendzian et al. (2018). Prior to use in the experiments,
the metal sheets (coated and uncoated) were autoclaved at 121◦C
for 20min. The metal sheets had a size of 4 cm2 each and were
placed on the door to the bathroom of the ISS. Three sets of test
sheets, one for each time point, - time points 12 and 19 months
thus representing a cumulative bacterial load—were exposed on
the ISS.

Reference Strains
Bacterial strains used as reference in biofilm formation assays
and PCRs or as recipients in mating experiments are listed in
Table 1. Staphylococcus and Enterococcus strains were grown in
Tryptic Soy Broth (TSB, Sigma-Aldrich Chemie GmbH, Munich,
Germany) or BrainHeart Infusion broth (Carl Roth GmbH&Co.

KG, Karlsruhe, Germany) at 37◦C with shaking. Bacillus strains
were grown in Lysogeny Broth (LB, Carl Roth GmbH & Co. KG,
Karlsruhe, Germany) at 30◦C with shaking.

Bacteria Isolation and
Phylogenetic Affiliation
Bacteria were isolated from V2A steel surfaces (uncoated,
Ag-coated, AGXX R©-coated) exposed on the ISS for 6, 12 and
19 months, respectively. The bacteria were detached from
the surfaces by rinsing with Phosphate Buffered Saline (PBS)
followed by cultivation in Reasoner’s 2A broth (R2A, Lab M
Limited, Heywood, England) at 25◦ and 37◦C under shaking.
Appropriate dilutions of the cultures were passaged several times
onto R2A agar until pure isolates were obtained. Isolates were
phylogenetically affiliated by matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF MS,
Bruker Daltonics MALDI Biotyper system) according to the
manufacturer’s instructions (Bruker Daltonics). Mass spectra
were compared with the MALDI-BDAL Database (Version
3.1, 7311rntries). If identification with MALDI-TOF MS failed,
the isolate was sent for 16S rRNA gene sequencing (SMB
Ruedersdorf, Germany). Analysis of the 16S rDNA sequences
was performed with BLAST (http://blast.ncbi.nlm.nih.gov/Blast.
cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_
LOC=blasthome) and ChromasPro (Version 2.1.8). The isolates
are denominated according to following scheme (i) the material
they were isolated from, (ii) the exposure time on the ISS in
months, and (iii) the order of isolation, e.g., E. faecalis V2A-
12-03 was isolated from uncoated V2A steel after 12 months
exposure, and it is the third isolate obtained from this material at
this time-point.

Biofilm Screening Assay
Biofilm formation test was carried out according to
Vaishampayan et al. (2018). E. faecalis T9 and S. aureus 04-
02981, both strong biofilm formers, were used as positive
controls (Schiwon et al., 2013; Vaishampayan et al., 2018). For
Staphylococcus spp., TSB, for E. faecalis, BHI medium was used
as negative control (Schiwon et al., 2013). Biofilm formation
was measured in EnSpire Multimode Plate Reader 2300-0000
(Perkin Elmer, Turku, Finland) at 570 nm (OD570). The assays
were performed in triplicates. Normalized biofilm formation
was calculated by dividing the biofilm measure at OD570 by the
bacterial growth at OD600. Biofilm classification criteria were
applied according to Nyenje et al. (2013).

Antibiotic Disc Diffusion Method
Antibiotic resistance of the isolates toward 15 different antibiotics
was analyzed with the disc diffusion method (discs from Oxoid,
Wesel, Germany) on Mueller Hinton agar (Sifin diagnostic
GmbH, Berlin, Germany) according to the guidelines of the
Clinical and Laboratory Standards Institute, (CLSI, 2013). Details
are given in Table 2. Each test was performed in triplicates.
For sulfamethoxazole (RL25), no comparable data were found
for Staphylococci, Enterococci and Bacilli. Thus, isolates lacking
an inhibition zone were classified as resistant, those without
inhibition zone were classified as susceptible.
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TABLE 1 | Bacterial species used as references for AB-R-screening, biofilm formation, plasmid isolation, and in biparental mating.

Species Genotype/Characteristics References

Bacillus subtilis

BD662 pBD90 [ermD]; trpC2, thr-5 Schiwon et al., 2013

BD1156 pBD370 [ermG]; leu, mer, hisH Schiwon et al., 2013

Enterobacter cloacae DSM46348 ampC Schiwon et al., 2013

Enterococcus casseliflavus UC73 aph(2)-Id, vanC Schiwon et al., 2013

Enterococcus gallinarum SF9117 aph(2)-Ic, vanC, ermB Schiwon et al., 2013

Enterococcus faecalis

DS16 tetM; pAD1, pAD2 Schiwon et al., 2013

RE25 pRE25 [ermB, catpIP501, aph(3)-III, sat4, ant(6)-Ia, tra
+], tetM Schiwon et al., 2013

JH2-2 pIP501 [catpIP501, ermB, tra
+] Schiwon et al., 2013

T9 clinical isolate, TetR, strong biofilm former Creti et al., 2006

OG1X StrepR, GentR, protease-negative Schiwon et al., 2013

MISSEX 78 prepSK41, aph3-III, ermB, ermD, tetM, catpIP501

TU-79 aph3-III, ermB, tetM, tetO, catpIP501, prepSK41 Schiwon et al., 2013

Enterococcus faecium

SF11770 aac(6)-Im, aph(2)-Ib, aac(6)-Ii, ant(4)-Ia, ant(6)-Ia, aph(3)-III, ermB, sat4, tetL, tetM, vanA, vanZ Schiwon et al., 2013

Escherichia coli

PS84 qnrS, sul2 Broszat et al., 2014

Hm06-20 qnrA, sul1 Broszat et al., 2014

Lactococcus lactis K214 pK214 [tetS, catLM, mdt(A), str, mob+] DSMZ

Klebsiella pneumoniae

K2-78 qnrB Broszat et al., 2014

DSM 16609 blaSHV-5 Broszat et al., 2014

Staphylococcus aureus

SK5428 pSK41 [ant(4)-Ia (synonym: aadD), aac(6)-Ie-aph(2)-Ia, ble, qacC, tra+] Schiwon et al., 2013

DSM13661 mecA Schiwon et al., 2013

04-02981 strong biofilm former, methicillin resistant, ermA Nuebel et al., 2010

Staphylococcus epidermidis MISSEX 66 prepSK41, aph3-III Schiwon et al., 2013

Staphylococcus haemolyticus VPS617 tetK, mph(C), ermC, msr, blaZ, mecA, dfrA, aph(3)-III, aph(2)-Ia, aac(6)-Ie, ant(6)-IaInorA, sat4 Schiwon et al., 2013

DSMZ, German collection of microorganisms and cell cultures, Braunschweig. AB-R, antibiotic resistance; StrepR, streptomycin resistance; TetR, tetracycline resistance; GentR,

gentamicin resistance; AB-R genes for resistance against ampicillin, ampC (E. cloacae DSM46348), ciprofloxacin, qnrA (E. coli Hm06-20), qnrB (K. pneumoniae K2-78), qnrS (E. coli

PS84); erythromycin, ermA (S. aureus 04-02981), ermB (E. faecium SF11770), ermC (S. haemolyticus VPS617), ermD (B. subtilis BD662), ermG (B. subtilis BD1156); gentamicin, aac(6
′

)-

Ie-aph(2
′

)-Ia (E. faecium SF11770), aph(2
′

)-ib (E. faecium SF11770), aph(2
′

)-ic (E. gallinarum SF9117), aph(2
′

)-id (E. casseliflavus UC73); kanamycin, aadD [S. aureus SK5428 (pSK41)],

aph(3
′

)-III (E. faecalis RE25) against oxacillin, mecA (S. aureus DSM13661); ß-lactams, blaSHV-5 (K. pneumoniae DSM13661), blaZ (S. haemolyticus VPS617); sulfamethoxazole, sul1 (E.

coli Hm06-20), sul2 (E. coli PS84), and tetracycline, tetK (S. haemolyticus VPS617), tetL (E. faecium SF11770), tetM (E. faecium SF11770), tetO (E. faecalis TU-79), tetS (L. lactis K214).

PCR Assays
For the PCR assays, cell lysates prepared from 100 µL overnight
cultures were used. Cell pellets were re-suspended in 20 µL
lysis buffer (50mM NaOH, 0.25% sodium dodecyl sulfate) and
incubated at 95◦C for 20min. Prior to use in PCR, they were
diluted 1:10 with distilled water. Twenty-five microliter PCR
reactions contained 0.125 µL Taq-Polymerase (5 U/µL), 2.5
µL 1x PCR buffer, 0.2µM of each primer (Table 3), 0.5 µL
of deoxynucleoside triphosphates (200µM) and 1 µL template
DNA (lysate). DNA amplifications were carried out in a Biometra
T3 Thermocycler (Analytik Jena AG, Jena, Germany). The
temperature profiles are given in Supplementary Table 1.

Plasmid DNA Isolation
Plasmid DNA from Staphylococci was extracted as described
in Schiwon et al. (2013) with some minor modifications. After
washing the plasmid DNA with 70% ethanol, 1 µL of RNase A

(10µg/mL; Merck KGaA, Darmstadt) and 3 µL of Proteinase
K (20 mg/mL; Merck KGaA, Darmstadt) were added, followed
by 1 h incubation at room temperature. Plasmid DNA extraction
from Enterococci was performed as described in (Schiwon et al.,
2013).

Mating Assays
On basis of multiple antibiotic resistance and occurrence of
plasmids >20 kbp, ISS isolates were selected as donors for
biparental matings. As recipients, themethicillin resistant clinical
isolate, S. aureus 04-02981 and the E. faecalis lab strain OG1X
were selected. Details on all of the matings are given in Table 4.
Overnight cultures of Staphylococci were diluted 1:5 in TSB
medium, overnight cultures of Enterococci 1:5 in BHI medium
containing the appropriate antibiotics (Table 4) and grown
until OD600 = 0.5. Donors and recipients were washed with
PBS prior to mixing in 1:10 ratio, spotted onto a TSA plate
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TABLE 2 | Antibiotic disc diffusion method.

References

Antibiotic Abbreviation Concentration µg/mL Staphylococcus spp. Enterococcus spp. Bacillus spp.

Ampicillin AMP 10 CLSI, 2013 EUCAST, 2013 Mohammadou et al., 2014

Chloramphenicol C 30 EUCAST, 2013 Liofilchem®, 2017a Mohammadou et al., 2014

Ciprofloxacin CIP 5 EUCAST, 2013 EUCAST, 2013 Banerjee et al., 2011

Gentamicin CN 10 EUCAST, 2013 Oliveira et al., 2010 Banerjee et al., 2011

Clindamycin DA 10 Liofilchem®, 2017a Liofilchem®, 2017a Liofilchem®, 2017a

Doxycycline DO 30 Liofilchem®, 2017a Liofilchem®, 2017a Liofilchem®, 2017a

Erythromycin E 15 Liofilchem®, 2017a Liofilchem®, 2017a Mohammadou et al., 2014

Kanamycin K 4 Liofilchem®, 2017a Liofilchem®, 2017a Liofilchem®, 2017a

Cephalothin KF 30 Liofilchem®, 2017a Liofilchem®, 2017a Liofilchem®, 2017a

Meropenem MEM 10 Liofilchem®, 2017a Andrews, 2007 Liofilchem®, 2017a

Oxacillin OX 5 Liofilchem®, 2017a Liofilchem®, 2017a Liofilchem®, 2017a

Tigecycline TCG 5 EUCAST, 2013 EUCAST, 2013 EUCAST, 2013

Tetracycline TE 10 EUCAST, 2013 Andrews, 2007 EUCAST, 2013

Vancomycin VA 30 EUCAST, 2013 Tamanna et al., 2014 EUCAST, 2013

For Enterococcus spp., inhibition zones from DA10, E5, K5, KF30, OX5 and for Bacillus spp., inhibition zones from DA10, DO30, K5, KF30, MEM10, OX5, TCG15, TE10 were evaluated

as for Staphylococcus spp.
a http://www.liofilchem.net/antibioticdisc/.

for Staphylococcus recipients, on a BHI plate for Enterococcus
recipients and incubated for 16 h at 37◦C. Cells were recovered in
1mL PBS, serial dilutions were incubated at 37◦C on TSA/BHI
plates for 16 h to enumerate transconjugants. The number of
recipients was also determined after 16 h at 37◦C. Transfer
frequencies are given as number of transconjugants/recipient.

RESULTS

Bacterial Isolates From V2A, V2A-Ag and
V2A-AGXX® Surfaces
A total number of 112 bacterial isolates were recovered from
the different materials after the three time intervals (6, 12,
and 19 months). 73.6% of the isolates are human pathogens.
All isolates were identified to species level by MALDI-TOF
biotyping or 16S rRNA gene sequencing. In total, 49 isolates
were obtained after 6 months, 51 after 12 months and 22
after 19 months exposure of the antimicrobial materials on
the ISS. The non-human pathogenic bacteria include Bacillus
spp. (n = 20; B. astrophaeus, B. infantis, B. korlensis, B.
licheniformis, B. megaterium, B. niacini, B. pumilus, B. tequilensis,
and B. thuringiensis), Enhydrobacter aerosaccus (n = 2),
Micrococcus yunannensis (n = 1), Paenibacillus polymyxa (n =

1), Pseudomonas psychrotolerans (n = 1), and Staphylococcus
capitis (n = 9). To assess the infection risk for the crew, only
the human-pathogenic bacteria (n = 78) were characterized
in terms of biofilm formation and antibiotic resistance profile.
Three Moraxella osloensis strains obtained from V2A (n = 1)
and V2A-Ag (n = 2) after 19 months were the only Gram-
negative human-pathogenic bacteria. Seventy-five Gram-positive
human pathogenic bacteria were selected for the study: 32
from 6 months, 21 from 12 months, and 22 isolates from 19
months exposure.

The longer the exposure time of the three materials, the
higher was the bacterial diversity on the materials (Figure 1
and Table 5). All pathogenic isolates recovered from V2A and
V2A-Ag after six months belonged to the genus Staphylococcus.
No bacteria were recovered from AGXX R© after 6 months. In
total, 17 Staphylococci and three E. faecalis were detected after
12 months: Seven Staphylococci and one E. faecalis strain from
V2A, six Staphylococci fromV2A-Ag and four Staphylococci and
two E. faecalis strains from AGXX R©. After 19 months, seven
Staphylococci and seven B. cereus strains were recovered from
V2A and three Staphylococci and three B. cereus strains from
V2A-Ag. Only one B. cereus and one S. epidermidis strain were
isolated from AGXX R© after 19 months exposure. In summary, a
considerably lower bacterial number survived on AGXX R© than
on the other two surfaces. Nevertheless, the silver coating also
showed a slight antimicrobial effect.

Biofilm Formation of
Pathogenic ISS-Isolates
Biofilm formation of pathogenic isolates was determined by
crystal violet staining, biofilms were classified according to
Nyenje et al. (2013). The data are summarized in Table 5.
Twenty-six V2A-isolates showed strong (66.7% of all pathogenic
isolates from V2A-steel), ten moderate (25.5%) and three weak
(7.8%) biofilm formation. Twenty-one isolates from V2A-Ag
were strong biofilm formers (91.3% of all pathogenic isolates
from V2-Ag), one isolate showed moderate (4.3%), one isolate
weak (4.3%) biofilm formation. Of the eight AGXX R©-isolates, six
had strong (75.0% of all pathogenic isolates from V2A-AGXX R©)
and two (25%) weak biofilm formation ability. Interestingly,
43 Staphylococci (52 pathogenic Staphylococci in total) formed
strong biofilms (82.7%), eight Staphylococci (15.4%) were
moderate biofilm formers and one Staphylococcus isolate (1.9%)

Frontiers in Microbiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 543479

http://www.liofilchem.net/antibioticdisc/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Sobisch et al. Resistant Biofilm Forming ISS-Pathogens

T
A
B
L
E
3
|
O
lig
o
n
u
c
le
o
tid

e
s
u
se
d
fo
r
th
e
d
e
te
c
tio

n
o
f
a
n
tib

io
tic

re
si
st
a
n
c
e
g
e
n
e
s.

P
ri
m
e
r

A
n
ti
b
io
ti
c

S
e
q
u
e
n
c
e
(5

′
→

3
′
)

G
e
n
B
a
n
k

A
m
p
li
c
o
n
s
iz
e
[b
p
]

A
n
n
e
a
li
n
g

R
e
fe
re
n
c
e
s

A
c
c
.
N
o
.

te
m
p
e
ra
tu
re

[◦
C
]

a
a
c
6
-a
p
h
2
a
fw

g
e
n
ta
m
ic
in

G
C
C
A
G
A
A
C
A
T
G
A
A
T
TA

C
A
C
G
A
G

N
C
_0

0
5
0
2
4

6
1
0

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
a
c
6
-a
p
h
2
a
re
v

C
T
G
T
T
G
T
T
G
C
A
T
T
TA

G
T
C
T
T
T
C
C

a
a
d
D
_p

S
K
4
1
fw

ka
n
a
m
yc
in

T
G
T
C
G
T
T
C
T
G
T
C
C
A
C
T
C
C
T
G

A
F
0
5
1
9
1
7

5
2
5

6
2

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
a
d
D
_p

S
K
4
1
re
v

A
T
G
A
A
T
G
G
A
C
A
A
C
C
G
G
T
G
A
G

a
m
p
C
fw

a
m
p
ic
ill
in

G
T
G
A
C
C
A
G
A
TA

C
T
G
G
C
C
A
C
A

A
J0

0
5
6
3
3

8
2
1

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
m
p
C
re
v

T
TA

C
T
G
TA

G
C
G
C
C
T
C
G
A
G
G
A

a
p
h
(2
)-
Ib

fw
g
e
n
ta
m
ic
in

A
G
G
A
T
G
C
C
C
T
T
G
C
A
TA

T
G
A
T
G
A
A
G
C
G
A
C
G
T

A
F
2
0
7
8
4
0

4
4
9

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
p
h
(2
)-
Ib

re
v

A
T
C
A
G
C
A
TA

A
G
G
C
G
C
C
G
G
A
A
G
TA

G
C
A
G
A
A
A

a
p
h
(2
)-
Ic

fw
g
e
n
ta
m
ic
in

A
G
C
A
TA

C
A
A
T
C
C
G
T
C
G
A
G
T
C
G
C
T
T
G
G
T
G
A
G

U
5
1
4
7
9

6
4
1

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
p
h
(2
)-
Ic

re
v

C
T
G
G
C
G
C
T
G
C
A
A
C
T
T
G
C
T
G
A
G
T
T
C
A
T
G
A
A
T

a
p
h
(2
)-
Id

fw
g
e
n
ta
m
ic
in

G
T
G
G
T
T
T
T
TA

C
A
G
G
A
A
T
G
C
C
A
T
C

A
F
0
1
6
4
8
3

1
3
4

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
p
h
(2
)-
Id

re
v

C
C
C
T
C
T
T
C
A
TA

C
C
A
A
T
C
C
A
TA

TA
A
C
C

a
p
h
3
-I
II
fw

ka
n
a
m
yc
in

C
C
G
C
T
G
C
G
TA

A
A
A
G
A
TA

C
X
9
2
9
4
5

5
9
2

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

a
p
h
3
-I
II
re
v

G
T
C
A
TA

C
C
A
C
T
T
G
T
C
C
G
C

b
la
S
H
V
-5

fw
ß
-l
a
c
ta
m
s

T
G
T
TA

G
C
C
A
C
C
C
T
G
C
C
G
C
T

8
2
5

6
0

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

b
la
S
H
V
-5

re
v

G
T
T
G
C
C
A
G
T
G
C
T
C
G
A
T
C
A
G

b
la
Z
fw

ß
-l
a
c
ta
m
s

T
TA

A
A
G
T
C
T
TA

C
C
G
A
A
A
G
C
A
G

A
B
2
4
5
4
6
8

7
7
7

6
0

S
id
h
u
e
t
a
l.,

2
0
0
2

b
la
Z
re
v

TA
A
G
A
G
A
T
T
T
G
C
C
TA

T
G
C
T
T

e
rm

A
fw

e
ry
th
ro
m
yc
in

A
C
G
A
TA

T
T
C
A
C
G
G
T
T
TA

C
C
C
A
C
T
TA

W
P
_0

0
1
0
7
2
2
0
1

5
8
4

5
8

K
h
a
n
e
t
a
l.,

1
9
9
9

e
rm

A
re
v

A
A
C
C
A
G
A
A
A
A
A
C
C
C
TA

A
A
G
A
C
A
C
G

e
rm

B
fw

e
ry
th
ro
m
yc
in

G
C
A
T
T
TA

A
C
G
A
C
G
A
A
A
C
T
G
G
C
T

U
0
0
4
5
3

5
7
2

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

e
rm

B
re
v

G
A
C
A
A
TA

C
T
T
G
C
T
C
A
TA

A
G
TA

A
T
G
G
T

e
rm

C
fw

e
ry
th
ro
m
yc
in

C
G
TA

A
C
T
G
C
C
A
T
T
G
A
A
A
TA

G
A
C
C

V
0
1
2
7
8

5
1
9

5
8

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

e
rm

C
re
v

T
C
C
T
G
C
A
T
G
T
T
T
TA

A
G
G
A
A
T
T
G

e
rm

D
fw

e
ry
th
ro
m
yc
in

C
G
G
G
C
A
A
A
TA

T
TA

G
C
A
TA

G
A
C
G

M
2
9
8
3
2

4
6
3

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

e
rm

D
re
v

A
T
T
C
T
G
A
C
C
A
T
T
G
C
C
G
A
G
T
C

e
rm

G
fw

e
ry
th
ro
m
yc
in

T
G
C
A
G
G
G
A
A
A
G
G
T
C
A
T
T
T
TA

C
M
1
5
3
3
2

4
8
3

5
6

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

e
rm

G
re
v

A
A
C
C
C
A
T
T
T
C
A
T
TA

C
A
A
A
A
G
T
T
T
C

m
e
c
A
fw

m
e
th
ic
ill
in

TA
A
TA

G
T
T
G
TA

G
T
T
G
T
C
G
G
G
T
T
T
G

X
5
2
5
9
3

7
0
7

6
0

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

m
e
c
A
re
v

TA
A
C
C
TA

A
TA

G
A
T
G
T
G
A
A
G
T
C
G
C
T

q
n
rB

(B
1
,
B
7
)
fw

flu
o
ro
q
u
in
o
lo
n
e

A
G
C
G
G
C
A
C
T
G
A
A
T
T
TA

T
4
9
7

5
6

B
ro
sz
a
t,
2
0
1
4

q
n
rB

(B
1
,
B
7
)
re
v

G
T
T
T
G
C
T
G
C
T
C
G
C
C
A
G
T
C

q
n
rS
1
fw

flu
o
ro
q
u
in
o
lo
n
e

G
G
A
A
A
C
C
TA

C
A
A
T
C
A
TA

C
A
TA

6
0
0

5
6

B
ro
sz
a
t,
2
0
1
4

q
n
rS
1
re
v

G
T
C
A
G
G
A
TA

A
A
C
A
A
TA

C
C

su
l1

fw
su

lfa
m
e
th
o
xa
zo

le
C
A
C
C
G
G
A
A
A
C
A
T
C
G
C
T
G
C
A

1
5
8

6
0

B
ro
sz
a
t,
2
0
1
4

su
l1

re
v

A
A
G
T
T
C
C
G
C
C
G
C
A
A
G
G
C
T

(C
o
n
ti
n
u
e
d
)

Frontiers in Microbiology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 543480

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Sobisch et al. Resistant Biofilm Forming ISS-Pathogens

T
A
B
L
E
3
|
C
o
n
tin

u
e
d

P
ri
m
e
r

A
n
ti
b
io
ti
c

S
e
q
u
e
n
c
e
(5

′
→

3
′
)

G
e
n
B
a
n
k

A
m
p
li
c
o
n
s
iz
e
[b
p
]

A
n
n
e
a
li
n
g

R
e
fe
re
n
c
e

A
c
c
.
N
o
.

te
m
p
e
ra
tu
re

[◦
C
]

su
l2

fw
su

lfa
m
e
th
o
xa
zo

le
C
T
C
C
G
A
T
G
G
A
G
G
C
C
G
G
TA

T
1
9
0

6
0

B
ro
sz
a
t,
2
0
1
4

su
l2

re
v

G
G
G
A
A
T
G
C
C
A
T
C
T
G
C
C
T
T
G
A

te
tK
_p

T
1
8
1
fw

te
tr
a
c
yc
lin
e

T
T
T
G
A
G
C
T
G
T
C
T
T
G
G
T
T
C
A
T
T
G

C
P
0
0
0
0
4
5

5
3
9

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

te
tK
_p

T
1
8
1
re
v

A
G
C
C
C
A
C
C
A
G
A
A
A
A
C
A
A
A
C
C

te
tL

te
tr
a
c
yc
lin
e

C
A
T
T
T
G
G
T
C
T
TA

T
T
G
G
A
T
C
G

A
Y
0
8
1
9
1
0

4
7
5

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

te
tL

A
T
TA

C
A
C
T
T
C
C
G
A
T
T
T
C
G
G

te
tM

fw
te
tr
a
c
yc
lin
e

G
A
A
C
T
C
G
A
A
C
A
A
G
A
G
G
A
A
A
G
C

M
8
5
2
2
5

7
2
9

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

te
tM

re
v

A
T
G
G
A
A
G
C
C
C
A
G
A
A
A
G
G
A
T

te
tO

fw
te
tr
a
c
yc
lin
e

G
G
A
T
G
G
C
A
TA

C
A
G
G
C
A
C
A
G
A

M
1
8
8
9
6

7
3
7

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

te
tO

re
v

G
T
T
T
G
G
A
T
C
A
TA

G
G
G
A
G
A
G
G
A
T

te
tS

fw
te
tr
a
c
yc
lin
e

T
G
G
T
C
A
A
C
G
G
C
T
T
G
T
C
TA

T
G

X
9
2
9
4
6

5
4
6

5
5

S
c
h
iw
o
n
e
t
a
l.,

2
0
1
3

te
tS

re
v

A
G
C
C
C
A
G
A
A
A
G
G
A
T
T
T
G
G
A
G

R
e
fe
re
n
c
e
s
tr
a
in
fo
r
b
la
-S
H
V
-5
,
K
.
p
n
e
u
m
o
n
ia
e
D
S
M
1
3
6
6
1
;
s
u
l1
,
E
.
c
o
li
H
m
0
6
-2
0
;
s
u
l2
,
E
.
c
o
li
P
S
8
4
.

formed only weak biofilms. Of the B. cereus isolates (11 in
total), one showed strong (9.1%), three moderate (27.3%), and
seven (63.6%) showed only weak biofilm formation capacity. In
contrast, all three E. faecalis isolates were classified as strong
biofilm formers.

Prevalence of Antibiotic Resistances in the
Pathogenic Isolates
Antibiotic sensitivity testing of the isolates showed that 32.0%
of the pathogenic isolates were resistant to <3 of the tested
antibiotics (15 antibiotics in total were tested), 68.0% were
resistant to three or more antibiotics. Eighteen isolates had three
antibiotic resistances (24.0% of the isolates), 23 isolates were
resistant to four antibiotics (30.7% of the isolates), six isolates
were resistant to five antibiotics (8.0%) and three isolates had
six different antibiotic resistances (4.0%). E. faecalis V2A-12-03
(from V2A steel after 12 months) had the highest number
of resistances. It was resistant to nine different antibiotics,
chloramphenicol, gentamicin, clindamycin, doxycycline,
erythromycin, kanamycin, meropenem, sulfamethoxazole,
and tetracycline.

In total, 97.3% of the pathogenic Gram-positive isolates
were resistant to 25 µg sulfamethoxazole, 74.7% were resistant
to 15 µg erythromycin and 61.3% were resistant to 10 µg
ampicillin. Interestingly, these resistances were found with
similar prevalence on all three surfaces, irrespective of the
exposure time. No oxacillin resistant Staphylococcuswas detected,
whereas all B. cereus isolates (all of the 11 isolates after 19months)
were resistant to oxacillin. One B. cereus (V2A-AG-19-10) isolate
showed resistances against six different antibiotics (AMP10, C30,
E15, K5, OX5, RL25).

None of the isolates was resistant to vancomycin or
cephalothin. Two E. faecalis (V2A-AGXX-12-02,-03) isolates
were resistant to six antibiotics (CN10, DA10, E15, K5, RL25,
TE10) and one E. faecalis isolate (V2A-12-03) was resistant to
nine antibiotics (C30, CN10, DA10, DO30, E15, K5, MEM10,
RL25, TE10). Meropenem resistance was detected in three
strains, E. faecalis V2A-12-03, S. hominis V2A-12-04, and S.
hominis V2A-AG-12-05.

To identify the resistance genes in the isolates resistant to
three or more antibiotics (68.0% of the pathogenic isolates),
gene-specific PCRs were performed. Gentamicin [aac6-aph2a
(n = 1), aph(2)-ic (n = 2)], kanamycin [aadD (n = 4), aph3-
III (n = 5)], erythromycin [ermC (n = 19), ermB (n = 1)],
and tetracycline [tetK (n = 9), tetL (n = 1), tetM (n = 1)]
resistance genes were detected in the number of isolates indicated
in parentheses (Table 5). ermC and tetK were the most prevalent
resistance genes. No sulfamethoxazole (sul1, sul2) resistance gene
was found in any of the isolates.

Plasmid Profiles of ISS-Isolates
Exemplarily, plasmid DNA profiles of 20 out of total 45
staphylococcal isolates resistant to three or more antibiotics
forming moderate or strong biofilms were obtained (Table 5).
All isolates contained plasmids <20 kbp, the number of plasmid
bands varied from one to seven. Interestingly, 17 isolates
harbored plasmids >20 kbp likely able to self-transfer. Plasmid
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TABLE 4 | Efficiency of gentamicin, erythromycin, and tetracycline resistance transfer from ISS-isolates to S. aureus 04-02981 and E. faecalis OG1X.

Donor Selection Recipient Selection Transconjugant selection Transfer efficiency per recipient

E. faecalis V2A-12-03 CN10 S. aureus 04-02981 CIP5 CN10, CIP5 8.3 × 10−4

E. faecalis V2A-AGXX-12-02 CN10 CIP5 CN10, CIP5 -

E. faecalis V2A-AGXX-12-03 CN10 CIP5 CN10, CIP5 9.2 × 10−7

S. hominis V2A-6-05 TE10 CIP5 TE10, CIP5 2.7 × 10−5

S. hominis V2A-6-06 TE10 CIP5 TE10, CIP5 3.3 × 10−8

S. haemolyticus V2A-12-08 TE10 CIP5 TE10, CIP5 6.6 × 10−7

S. hominis V2A-AG-12-06 TE10 CIP5 TE10, CIP5 4.2 × 10−4

S. hominis V2A-AGXX-12-01 TE10 CIP5 TE10, CIP5 6.8 × 10−4

S. hominis V2A-AGXX-12-03 TE10 CIP5 TE10, CIP5 -

S. haemolyticus V2A-AGXX-12-05 TE10 CIP5 TE10, CIP5 1.2 × 10−7

S. hominis V2A-6-03 E15 E. faecalis OG1X SM1000 E15, SM1000 1.6 × 10−4

S. hominis V2A-6-11 E15 SM1000 E15, SM1000 4.2 × 10−4

S. aureus V2A-6-13 E15 SM1000 E15, SM1000 9.1 × 10−5

S. aureus V2A-6-14 E15 SM1000 E15, SM1000 2.5 × 10−4

E. faecalis V2A-12-03 E15 SM1000 E15, SM1000 -

S. haemolyticus V2A-AGXX-12-05 E15 SM1000 E15, SM1000 -

S. hominis V2A-6-05 E15 CN10 E15, CN10 -

S. hominis V2A-6-06 E15 CN10 E15, CN10 7.9 × 10−6

S. hominis V2A-6-09 E15 CN10 E15, CN10 -

S. hominis V2A-6-10 E15 CN10 E15, CN10 -

S. hominis V2A-6-12 E15 CN10 E15, CN10 -

S. hominis V2A-12-04 E15 CN10 E15, CN10 1.6 × 10−6

S. haemolyticus V2A-12-08 E15 CN10 E15, CN10 1.1 × 10−6

S. hominis V2A-AG-12-05 E15 CN10 E15, CN10 -

S. hominis V2A-AG-12-06 E15 CN10 E15, CN10 5.1 × 10−6

S. hominis V2A-AG-12-08 E15 CN10 E15, CN10 -

E. faecalis V2A-AGXX-12-03 E15 CN10 E15, CN10 -

S. hominis V2A-AGXX-12-06 E15 CN10 E15, CN10 1.1 × 10−5

CIP, Ciprofloxacin; CN, gentamicin; E, erythromycin; SM, streptomycin; TE, tetracycline. (-) no transconjugants were obtained. The concentrations of the antibiotics are given in µg/mL.

FIGURE 1 | Number of Gram-positive pathogenic bacteria recovered from the different materials (V2A, V2A-Ag, V2A-AGXX®), after 6 months (A), 12 months (B), and

19 months (C) exposure on the ISS. In black, Staphylococcus spp.; gray, E. faecalis; white, B. cereus.

Frontiers in Microbiology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 543482

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Sobisch et al. Resistant Biofilm Forming ISS-Pathogens

TABLE 5 | Characteristics of all isolates from V2A, V2A-Ag, V2A-AGXX® after 6, 12, and 19 months.

No. Name Species Biofilm

formation

AB-R Number of

plasmid-bands >20 kbp
Phenotype Genotype

1 V2A-6-01 S. hominis +++ AMP10, DA10, E15, RL25 n.d. n.d.

2 V2A-6-02 S. hominis ++ DA10, E15, RL25 ermC n.d.

3 V2A-6-03 S. hominis +++ AMP10, DA10, E15, RL25 ermC 1

4 V2A-6-04 S. hominis +++ DA10, E15, RL25 n.d. n.d.

5 V2A-6-05 S. hominis +++ AMP10, E15, RL25, TE10 tetK, ermC 2

6 V2A-6-06 S. hominis ++ AMP10, E15, RL25, TE10 tetK, tetO, ermC 2

7 V2A-6-07 S. hominis ++ AMP10, E15, RL25, TE10 tetK, ermC 1

8 V2A-6-08 S. hominis ++ DA10, E15, RL25 n.d. n.d.

9 V2A-6-09 S. hominis +++ AMP10, DA10, E15, RL25 tetK 2

10 V2A-6-10 S. hominis +++ AMP10, E15, RL25, TE10 n.d. 0

11 V2A-6-11 S. hominis +++ AMP10, E15, RL25, TE10 ermC 1

12 V2A-6-12 S. hominis +++ AMP10, E15, RL25, TE10 ermC 1

13 V2A-6-13 S. aureus +++ AMP10, E15, K5, RL25 ermC 1

14 V2A-6-14 S. aureus +++ AMP10, DA10, E15, K5, RL25 tetK 0

15 V2A-6-15 S. hominis +++ AMP10, E15, RL25, TE10 ermC 1

16 V2A-6-16 S. aureus ++ AMP10, E15, K5, RL25, TE10 ermC n.d.

17 V2A-AG-6-01 S. epidermidis +++ E15, RL25 ermC n.d.

18 V2A-AG-6-02 S. epidermidis +++ E15, RL25 n.d. n.d.

19 V2A-AG-6-03 S. aureus +++ AMP10, E15, RL25 ermC n.d.

20 V2A-AG-6-04 S. aureus +++ AMP10, E15, RL25 ermC n.d.

21 V2A-AG-6-05 S. aureus +++ AMP10, E15, K5, RL25 n.d. n.d.

22 V2A-AG-6-06 S. epidermidis +++ E15, RL25 n.d. n.d.

23 V2A-AG-6-07 S. aureus ++ AMP10, E15, RL25 n.d. n.d.

24 V2A-AG-6-09 S. epidermidis +++ E15, RL25 n.d. n.d.

25 V2A-AG-6-11 S. aureus +++ AMP10, E15, RL25 n.d. n.d.

26 V2A-AG-6-14 S. aureus +++ AMP10, E15, RL25 n.d. n.d.

27 V2A-AG-6-15 S. epidermidis +++ AMP10, E15, RL25 n.d. n.d.

28 V2A-AG-6-16 S. epidermidis +++ E15, RL25 ermC n.d.

29 V2A-AG-6-21 S. epidermidis +++ E15, RL25 n.d. n.d.

30 V2A-AG-6-22 S. epidermidis +++ E15, RL25 n.d. n.d.

31 V2A-AG-6-23 S. epidermidis +++ AMP10, E15, RL25 n.d. n.d.

32 V2A-AG-6-24 S. epidermidis +++ E15, RL25 n.d. n.d.

33 V2A-12-02 S. hominis ++ AMP10, E15, MEM10, RL25 n.d. n.d.

34 V2A-12-03 E. faecalis +++ C30, CN10, DA10, DO30, E15,

K5, MEM10, RL25, TE10

aac6-aph2a,

aph3-III, ermC

1

35 V2A-12-04 S. hominis +++ AMP10, E15, K5, RL25, TE10 aph3-III, tetO 1

36 V2A-AGXX-12-01 S. hominis +++ AMP10, E15, RL25, TE10 tetK, tetL 1

37 V2A-AG-12-03 S. hominis +++ AMP10, K5, RL25 aadD, aph3-III 1

38 V2A-AG-12-04 S. hominis +++ AMP10 n.d. n.d.

39 V2A-AG-12-05 S. hominis +++ AMP10, E15, K5, MEM10, RL25 aph3-III, aadD,

ermC

0

40 V2A-AGXX-12-02 E. faecalis +++ CN10, DO30, K5, RL25 aph(2)-ic, aph3-III,

aadD

1

41 V2A-AGXX-12-03 E. faecalis +++ CN10, DA10, E15, K5, RL25,

TE10

aph(2)-ic, aadD,

aph3-III, ermB,

tetK, tetM, tetO

1

42 V2A-AG-12-06 S. hominis +++ AMP10, DO30, E15, RL25,

TCG15, TE10

tetK 1

43 V2A-12-07 S. epidermidis +++ AMP10, DO30, RL25 n.d. n.d.

44 V2A-AGXX-12-05 S. haemolyticus +++ C30, DO30, E15, RL25, TE10 tetO 3

(Continued)
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TABLE 5 | Continued

No. Name Species Biofilm

formation

AB-R Number of

plasmid-bands >20 kbp
Phenotype Genotype

45 V2A-AG-12-08 S. hominis +++ AMP10, DA10, E15, RL25 ermC 2

46 V2A-12-08 S. haemolyticus +++ C30, DO30, E15, RL25, TE10 tetK 1

47 V2A-AG-12-10 S. hominis +++ RL25 n.d. n.d.

48 V2A-12-09 S. lugdunensis +++ RL25 n.d. n.d.

49 V2A-AGXX-12-06 S. hominis +++ AMP10, DA10, E15, RL25 ermC 1

50 V2A-AGXX-12-09 S. hominis +++ AMP10, RL25 n.d. n.d.

51 V2A-12-10 S. caprae +++ AMP10, C30, E15, RL25 ermC n.d.

52 V2A-12-12 S. lugdunensis +++ RL25 0 0

53 V2A-12-13 S. hominis +++ AMP10, DA10, RL25 n.d. n.d.

54 V2A-19-02 S. hominis ++ AMP10, E15, RL25 n.d. n.d.

55 V2A-AGXX-19-01 S. epidermidis + E15, RL25 n.d. n.d.

56 V2A-19-03 S. hominis +++ E15, RL25 n.d. n.d.

60 V2A-19-05 S. hominis +++ E15, RL25 n.d. n.d.

61 V2A-19-06 S. hominis +++ E15, RL25 n.d. n.d.

62 V2A-19-07 S. hominis +++ E15, RL25 n.d. n.d.

63 V2A-AG-19-06 S. hominis +++ RL25 n.d. n.d.

64 V2A-19-09 S. hominis +++ E15, RL25 n.d. n.d.

65 V2A-19-10 S. hominis +++ E15, RL25 n.d. n.d.

66 V2A-AG-19-07 S. hominis +++ E15, RL25 n.d. n.d.

67 V2A-AG-19-08 S. hominis +++ E15, RL25 n.d. n.d.

68 V2A-19-14 B. cereus +++ AMP10, K5, OX5, RL25 n.d. n.d.

69 V2A-19-15 B. cereus + AMP10, K5, OX5, RL25 n.d. n.d.

70 V2A-AG-19-10 B. cereus + AMP10, C30, E15, K5, OX5,

RL25

n.d. n.d.

71 V2A-19-16 B. cereus + AMP10, OX5, RL25, TCG15 n.d. n.d.

72 V2A-19-17 B. cereus ++ AMP10, K5, OX5, RL25 n.d. n.d.

73 V2A-19-18 B. cereus + AMP10, OX5 n.d. n.d.

74 V2A-AG-19-12 B. cereus + AMP10, OX5, RL25 n.d. n.d.

75 V2A-19-19 B. cereus ++ AMP10, OX5, RL25 n.d. n.d.

76 V2A-19-20 B. cereus ++ AMP10, OX5, RL25 n.d. n.d.

77 V2A-AG-19-14 B. cereus + AMP10, E15, OX5, RL25 n.d. n.d.

78 V2A-AGXX-19-03 B. cereus + AMP10, OX5, RL25 n.d. n.d.

AB-R, antibiotic resistance; + + +, strong biofilm formation; ++, moderate biofilm formation; +, weak biofilm formation; AMP, ampicillin; C, chloramphenicol; CN, gentamicin; DA,

clindamycin; DO, doxycycline; E, erythromycin; K, kanamycin; MEM, meropenem; OX, oxacillin; RL, sulfamethoxazole; TCG, tigecycline; TE, tetracycline. The concentration of the

antibiotics is given in µg/mL. ermC, ermB, erythromycin resistance genes; aac6-aph2a, aph(2)-ic, gentamicin resistance genes; blaSHV-5, ß-lactam antibiotic resistance gene; aadD,

aph3-III, kanamycin resistance genes; tetK, tetM, tetL, tetO, tetracycline resistance genes. n.d., not determined.

DNA profiles were also obtained from the three E. faecalis
isolates; all of them were multi-drug resistant and strong biofilm
formers. All, E. faecalis V2A 12-03, E. faecalis V2A-AGXX-12-02
and E. faecalis V2A-AGXX-12-03 harbored putative conjugative
plasmids >20 kbp. Interestingly, E. faecalis V2A 12-03 showed
additionally three small plasmid bands in the size range between
3 and 1.5 kbp.

Mating Experiments
Antibiotic resistance transfer of selected ISS-isolates was studied
in biparental matings (Laverde et al., 2017). Isolates resistant
to tetracycline, gentamicin or erythromycin and harboring a
plasmid >20 kbp were selected as donors, plasmid-free S.
aureus 04-02981 and E. faecalis OG1X were used as recipients.

The results of all of the matings are summarized in Table 4.
Gentamicin resistance transfer to S. aureus 04-02981 was
successful from E. faecalis V2A-12-03 (aac6-aph2a-encoded
gentamicin resistance) with a transfer frequency of 8.3 × 10−4

transconjugants/recipient and from E. faecalis V2A-AGXX-12-
03 (aph(2)-ic-encoded gentamicin resistance) with a transfer
frequency of 9.2× 10−7 transconjugants/recipient.

Erythromycin resistance transfer of six Staphylococcus donors
harboring the ermC resistance gene and of three Staphylococcus
donors harboring an unknown erythromycin resistance gene to
E. faecalis OG1X was successful with transfer frequencies in the
range of 1.1 × 10−6 to 4.2 × 10−4 transconjugants/recipient.
Tetracycline resistance transfer from four S. hominis strains and
two S. haemolyticus strains to S. aureus 04-02981 was successful.
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Three of the staphylococci harbored only the tetK resistance
gene, one only tetO. One S. hominis strain harbored tetK and
tetO, while another harbored the resistance genes tetK and tetL.
Tetracycline resistance transfer frequencies varied considerably
ranging from 3.3× 10−8 to 6.8× 10−4 transconjugants/recipient.

Ten out of the 17 successful matings were randomly chosen for
plasmid DNA isolation of the transconjugants. In nine of the ten
matings large plasmid bands comparable in size to those of the
donors were detected in the transconjugants (data not shown).

DISCUSSION

Weproved that the novel antimicrobial coating AGXX R© strongly
reduced the bacterial load on surfaces on the ISS particularly
prone to microbial contamination. However, over time—
with exposure times >6 months—some nosocomial pathogens
survived even on the novel antimicrobial coating. Moreover, an
interesting shift in the composition of the microbial communities
was observed over time.

Bacterial Survivors Isolated From V2A,
V2A-Ag and V2A-AGXX® Surfaces
The bacterial community isolated from the surfaces was always
dominated by Staphylococcus spp. (63.4% of 112 isolates) and
Bacillus spp. (24.1%) irrespective of the exposure time. 46.4%
of the Staphylococci are affiliated to the coagulase-negative
Staphylococci, including pathogens such as S. epidermidis,
S. lugdunensis, S. haemolyticus, S. hominis, and S. caprae.
Coagulase-positive Staphylococci such as S. aureus (8.9% of all
isolates) were only found on V2A and V2A-Ag surfaces after
6 months exposure. B. cereus (9.8% of all isolates) was the
only pathogenic Bacillus. Only three E. faecalis (2.7% of all
isolates) were recovered from V2A and V2A-AGXX R© surfaces
after 12 months. Schiwon et al. reported that predominantly S.
hominis, S. aureus, and S. epidermidis were detected on crew-
members and in air-filters on the ISS (Schiwon et al., 2013). S.
hominis and S. epidermidiswere themost prevalent Staphylococci
associated with debris collected from the crew’s quarters on the
ISS (Venkateswaran et al. (2014). In addition, 13 E. faecalis and
eight B. cereus strains were isolated from the crew and air-filters
on the ISS (Schiwon et al., 2013). Taking the data of this study
and others together (Van Houdt et al., 2012; Schiwon et al., 2013;
Venkateswaran et al., 2014;Mayer et al., 2016) it can be concluded
that the bacteria that survived on the different surfaces were
predominantly human-associated.

Microbial diversity on the test materials increased over time.
After 6 months only Staphylococci and Bacilli were found, after
12 months Staphylococci, Bacilli, E. faecalis and one P. polymyxa
strain were isolated while after 19 months, Staphylococci,
Bacilli, E. aerosaccus, M. osloensis, M. yunnanensis, and P.
psychrotolerans were recovered. Novikova (2004) reported a
similar diversity on surfaces on the MIR station including
Staphylococci, Bacilli,Micrococcus,Moraxella, and Pseudomonas.

A decline of the number of Gram-positive human-pathogens
recovered from V2A (n = 39) to V2A-Ag (n = 28) to V2A-
AGXX R© (n = 8) was observed. In total, only 12 bacteria were

recovered from AGXX R©-coated surfaces after 12 and 19 months
exposure. AGXX R© showed a pronounced antimicrobial effect,
it reduced the microbial load by 79.5%. Silver also had a slight
antimicrobial effect, it reduced the microbial load by 28.2%.

The antimicrobial test-materials are static surfaces, where
dead cells, dust particles and cell debris can deposit. These
deposits might interfere with the direct contact between the
antimicrobial surface and the bacteria, which is required for
effective antimicrobial activity of contact catalysts, such as Ag
and AGXX R©. Over time the deposits might have grown in
size and thickness resulting in increasing interference with the
antimicrobial activity. Possibly, this effect could explain that
after 6 months no bacteria were recovered from AGXX R©,
whereas with prolonged exposure time a few bacteria escaped the
antimicrobial action.

Strong Biofilm Forming ISS Isolates
Biofilms provide microbes shelter from antimicrobials and the
host immune system (Foulquié Moreno et al., 2006; Chen
and Wen, 2011; Rafii, 2015; Qi et al., 2016; Hall and Mah,
2017). Bacterial biofilms have been associated with diseases
such as cystic fibrosis, periodontitis, and nosocomial infections
on catheters and prosthetic heart valves (Storti et al., 2005;
Delle Bovi et al., 2011). Eradication of biofilms is difficult
due to impaired penetration of antibiotics and the decreased
host immune response. Thus, they can pose a health risk to
immunosuppressed people, such as the crew on the ISS.

Most Staphylococcus and all Enterococcus isolates from this
study formed strong biofilms. B. cereus isolates were more diverse
in terms of biofilm formation: Seven isolates produced a weak,
three a moderate and only one produced a strong biofilm. The
fact that all bacterial isolates were able to form biofilms could be
due to the long exposure to adverse space conditions.

Prevalence of Antibiotic Resistances in
Human Pathogenic Isolates
Astronauts have a suppressed immune response in-flight and as
a consequence they are more susceptible to bacterial infections
(Van Houdt et al., 2012; Taylor, 2015). The potential infection
by pathogenic Staphylococci and Enterococci increases with
duration of the mission (Schiwon et al., 2013). Therefore,
treatability of bacterial infections on the ISS and on even longer
space missions with limited amounts of antimicrobial drugs
available is a health concern which has to be tackled.

In this study, all Gram-positive pathogenic isolates were
resistant to at least one antibiotic. 68.0%, mostly Staphylococci,
were multidrug resistant (resistant to more than three
antibiotics). After 12 months exposure, also multi-resistant
Enterococci occurred, one E. faecalis strain from V2A steel and
two E. faecalis strains from V2A-AGXX R©. E. faecalis V2A-12-03
had with nine resistances the largest number of resistances.

In total, the isolates were tested against 15 different antibiotics.
Seven different antibiotic resistances were found after 6 months,
13 after 12 months and after 19 months, the number of
resistances equalled the number after 6 months. This could be
partly due to the fact, that the number of resistances in the
Staphylococci declined after 19 months (most isolates had only
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one or two resistances), while Bacillus strains with more than
three resistances came up.

All Staphylococci had similar antibiotic resistance profiles.
The B. cereus isolates after 19 months exposure also showed
similar resistance profiles. Most Bacilli and Staphylococci
were resistant to ampicillin and erythromycin. Gentamicin
resistance only occurred in E. faecalis isolates. Interestingly,
all of them were also resistant to kanamycin. E. faecalis
strains are known to be intrinsically resistant to low-level
aminoglycosides (gentamicin, kanamycin) or have acquired
high-level aminoglycoside resistance e.g., by uptake of aac6-
aph2a or aph(2)-ic (Chow, 2000;Wendelbo et al., 2003; Dadfarma
et al., 2013). As E. faecalis V2A-12-03 encodes aac6-aph2a and
E. faecalis V2A-AGXX-12-02 and−03 encode aph(2)-ic, they are
likely high level gentamicin resistant. aac6-aph2a was found on
plasmids pSK41, pGO1, pLW1043, pSK1, pTEF1, on Tn4001-like
transposons and on the chromosome (Schiwon, 2011). aph(2)-
ic was found on conjugative plasmid pYN134 (Hollenbeck and
Rice, 2012) in E. gallinarum but was shown to readily transfer
to E. faecalis (Chow et al., 1997). Therefore, it is likely that
gentamicin resistance spreads via these conjugative plasmids
(Chow et al., 1997).

Most ISS-isolates were resistant to sulfamethoxazole, which
interferes with bacterial synthesis of folic acid. It could be
speculated that changes in the thickness of the cell wall due to
exposure to space conditions might be involved in resistance to
sulfamethoxazole by inhibiting the uptake of the antibiotic.

Most abundant resistance genes in the ISS-isolates were ermC
and tetK coding for erythromycin and tetracycline resistance,
respectively. Both genes are plasmid-borne and have been
detected in Staphylococci of human origin (Schiwon et al., 2013).
ermC was found on pSK41-like conjugative plasmid pUSA03
isolated from the community-acquired MRSA strain USA300
(Grohmann et al., 2003; Smillie et al., 2010; Schiwon et al.,
2013). A pSK41-like plasmid could have spread ermC among the
S. aureus strains V2A-6-13 and V2A-6-16, and between V2A-
AG-6-03 and V2A-AG-6-04 isolated from the same material.
Indeed, from S. aureusV2A-6-16 a plasmid>20 kbp was isolated.
ermB is another plasmid-encoded erythromycin resistance gene.
It is one of the 33 erythromycin resistance genes found in
Staphylococci (Schiwon et al., 2013). However, ermB is not
abundant in Staphylococci. No ISS-isolate from crew and air-
filters harbored ermB (Zmantar et al., 2011; Schiwon et al., 2013).
Also in this study, only E. faecalis V2A-AGXX-12-03 encoded
ermB. De Leener et al. (2005) reported that ermB is present
on Tn1545-like elements and that is likely associated with the
occurrence of the tetracycline-resistance gene tetM. Interestingly,
E. faecalis V2A-AGXX-12-03 harbored tetM along with ermB.

tetK is found on small mobilizable plasmids, which can be
integrated into the Staphylococcus chromosome or into larger
staphylococcal plasmids (Gillespie et al., 1987; Needham et al.,
1994; Roberts, 2005). tetO and tetK can be found on pT181-
like small mobilizable plasmids (Khan and Novick, 1983; Chopra
and Roberts, 2001). S. hominis V2A-AGXX-12-01 (tetK, tetO)
and S. haemolyticusV2A-AGXX-12-05 (tetK) likely carry pT181-
like plasmids as small plasmid bands in the range of 2000–6000
bp were observed on the gel (data not shown). Both strains

were isolated from the same material after the same time-period.
Thus, the resistance genes might have spread via HGT among
them. Along with tetK, pT181-like plasmids can carry tetL as
well (Chopra and Roberts, 2001). Both genes were found in S.
hominis V2A-AGXX-12-01.

Kanamycin resistance occurred both in Staphylococci and
Enterococci. The kanamycin-resistance gene aph3-III was
found in S. hominis V2A-12-04, S. hominis V2A-AG-12-
05 and E. faecalis V2A-12-03, E. faecalis V2A-AGXX-12-02,
and E. faecalis V2A-AGXX-12-03, all isolated from V2A and
the two antimicrobial surfaces after 12 months. aph3-III is
located on transposons of the Tn916-Tn1545 type encoding a
broad spectrum of resistances, toward tetracycline, macrolides,
lincosamides, streptogramins, and kanamycin (Fons et al., 1997;
Soge et al., 2008; Roberts and Mullany, 2011). The kanamycin-
resistance gene aadD was detected in S. hominis V2A-AG-12-03,
V2A-AG-12-05 and in E. faecalis V2A-AGXX-12-02 and V2A-
AGXX-12-03. aadD is encoded on S. aureus plasmid pUB110
(4548 bp) (McKenzie et al., 1986; Allignet et al., 1998). As the
two S. hominis and two E. faecalis strains were isolated from the
samematerials, V2A-Ag andV2A-AGXX R©, respectively, transfer
of the aadD gene might have taken place. S. hominis V2A-AG-
12-05 showed plasmid-bands in the range of 2000-3000 bp and
around 7000 bp likely indicating the presence of pUB110-like
plasmids (data not shown). Occurrence of aph3-III and aadD
genes in Staphylococcus and Enterococcus isolates from the ISS
has already been reported (Schiwon et al., 2013).

Antibiotic Resistance Transfer of
the ISS-Isolates
Plasmids are the key players in HGT of antibiotic resistances
(Kohler et al., 2018). Twenty multidrug-resistant, biofilm
forming human-pathogenic staphylococcal isolates obtained
from the three different materials after 6, 12, and 19 months
were applied to plasmid DNA isolation. All isolates harbored
plasmids <20 kbp and 17 of them also harbored plasmids >20
kbp. Commonly, S. aureus strains contain one or more plasmids
ranging in size from <2000 bp to >60 kbp (Kwong et al., 2008).

Fourteen of the 17 Staphylococcus isolates with large plasmids
were applied as donors to biparental matings to test the
transferability of tetracycline and erythromycin resistance. In
total, six out of seven tetracycline resistance transfer experiments
(S. hominis V2A-6-05, S. hominis V2A-6-06, S. haemolyticus
V2A-12-08, S. hominis V2A-AG-12-06, S. hominis V2A-AGXX-
12-01, and S. haemolyticus V2A-AGXX-12-05) were successful
whereas nine out of 18 erythromycin resistance transfer
experiments (S. hominis V2A-6-03, S. hominis V2A-6-06, S.
hominis V2A-6-11, S. aureus V2A-6-13, S. aureus V2A-6-14, S.
hominisV2A-12-04, S. haemolyticusV2A-12-08, S. hominisV2A-
AG-12-06, and S. hominis V2A-AGXX-12-06) were successful.
Thus, these nine isolates likely harbor conjugative elements
encoding erythromycin resistance. Indeed, in E. faecalis OG1X
transconjugants of four of these matings large plasmids similar
in size to those of the donors were found. pSK41 (46.4 kbp)
and pUSA03 (37 kbp) are well known staphylococcal conjugative
plasmids. Both carry ermC (Berg et al., 1998; Kennedy et al.,
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2010; Smillie et al., 2010) which was also detected in five of the
successful donors.

Tetracycline resistance transfer frequencies from S.
hominis V2A-6-05 (tetK), S. hominis V2A-6-06 (tetK, tetO),
S. haemolyticus V2A-12-08 (tetK), S. hominis V2A-AG-12-06
(tetK), S. hominis V2A-AGXX-12-01 (tetK, tetL), S. haemolyticus
V2A-AGXX-12-05 (tetO) to S. aureus 04-02891 ranged from
1.2 × 10−7 to 6.8 × 10−4 transconjugants/recipient. tetK is
only rarely found on large staphylococcal plasmids. It is rather
encoded on small mobilizable staphylococcal plasmids in
the size range of 4.4 to 4.7 kbp, such as pT181 (Chopra and
Roberts, 2001). Thus, in the successful matings with donors
harboring tetO or tetK mobilizable pT181-like plasmids might
have played a role in the transmission of the resistance to S.
aureus 04-02981. As pT181 is non self-transmissible another
conjugative element has participated in the transfer of the
tetracycline resistance. All donors that were successful in
the tetracycline resistance matings contained in addition to
plasmid-bands <20 kbp at least one plasmid-band >20 kbp,
which could represent the conjugative plasmid. Thus, it is
likely that the successful donors harbor a pT181-like plasmid
which was transferred by the help of a conjugative plasmid.
Indeed, in S. aureus 04-02981 transconjugants from all of those
matings large plasmids similar in size to those of the donors
were detected. In addition, small plasmids in the size range of
pT181-like plasmids were found in transconjugants of three of
these matings.

Transfer frequency of gentamicin resistance (8.3 × 10−4

transconjugants/recipient) from E. faecalis V2A-12-03 (aac6-
aph2a) to S. aureus 04-02891 was higher than from E. faecalis
V2A-AGXX-12-03 (aph(2)-ic) to the same recipient (9.2 ×

10−7 transconjugants/recipient). aac6-aph2a can be found on
conjugative plasmids, such as pSK41, pGO1, pLW1043, pSK1,
pTEF1, Tn4001-like transposons but also on the chromosome
(Schiwon, 2011). The uptake of aac6-aph2a by S. aureus 04-02891
indicates that E. faecalis V2A-12-03 likely harbors one of these
conjugative elements. Indeed, this observation was corroborated
by isolation of a plasmid >20 kbp from E. faecalis V2A-12-
03. aph(2)-ic was found on the 34-kbp conjugative plasmid
pYN134 (Chow et al., 1997; Hollenbeck and Rice, 2012). The
uptake of aph(2)-ic by S. aureus 04-02891 suggests that E. faecalis
V2A-AGXX-12-03 likely harbors a pYN134-like plasmid. This
argument was corroborated by the observation of a plasmid band
>20 kbp for E. faecalis V2A-AGXX-12-03.

The data of this study confirm erythromycin and tetracycline
resistance transfer in ISS-isolates from air-filters and the
crew as reported by Schiwon et al. (2013). Further transfer
studies between ISS-isolates could deepen our knowledge in the
transmissibility of antibiotic resistances. However, no methicillin
resistant Staphylococci and no vancomycin resistant enterococci

were found. Thus, the generation of serious multi-resistant
pathogens by horizontal transfer is unlikely.

Further Applications of the
Antimicrobial Surface
AGXX R© proved to be a long-term efficient antimicrobial, even
under the harsh conditions on the ISS. The antimicrobial coating
has been also successfully applied against other Gram-positive
and Gram-negative pathogens. It also strongly reduced the
bacterial load of Legionella and the highly pathogenic Shiga
toxin-producing E. coli O104:H4 strain (Guridi et al., 2015). It
is available in diverse application forms, such as powders, thin
sheets, as coating on diverse plastic materials and on cellulose
fleece and will be recently tested in the 4 months SIRIUS isolation
study for future lunar flights.
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Sixty-eight owners and 66 pets, from 43 unrelated pet-owning households were
screened for methicillin-resistant coagulase negative staphylococci (MRCoNS), potential
cases of MRCoNS interspecies transmission (IT), and persistence. MRCoNS isolates
were identified by microbiological and molecular tests. MLST-based phylogenetic
analysis was performed in Staphylococcus epidermidis isolates. Antimicrobial
susceptibility was evaluated using phenotypic and molecular methods. SCCmec type
and the presence of biofilm-related ica locus was PCR-tested. Isolates suspected for
MRCoNS IT cases were subjected to SmaI-PFGE analysis and individuals from positive
households were followed-up for 1 year for carriage dynamics (every 3 months, T0–
T4). Nineteen MRCoNS isolates from owners (27.9%) and 12 from pets (16.7%) were
detected, coming from 20 households (46.5%). S. epidermidis was predominant (90
and 67% of human and animal strains, respectively), showing high phylogenetic diversity
(16 STs among 24 strains). Methicillin-resistant S. epidermidis (MRSE) strains belonged
to CC5 (75%), CC11 (12.5%), singleton S556 (8.3%), and S560 (4.17%). Significant
host-associated differences were observed for resistance to aminoglycosides, co-
trimoxazole, chloramphenicol (higher in animal isolates) and tetracycline (higher among
human strains). Multidrug resistance (MDR) was common (68.4%) and associated with
human strains. Great diversity of ccr and mec complexes were detected, most strains
being non-typeable, followed by SCCmecIV and V. Over one third of isolates (most from
owners), carried the ica locus, all MRSE CC5. Two sporadic IT cases (T0) were identified
in owners and dogs from two households (4.7%), with diverse interspecies-exchanged
clones detected along the sampling year, especially in dogs. A comparative analysis
of all MRCoNS, with all nasal coagulase positive staphylococci (CoPS) recovered from
the same individuals at T0, revealed that CoPS alone was predominant in owners and
pets, followed by co-carriage of CoPS and MRCoNS in owners but single MRCoNS
in pets. Statistical analyses revealed that owners are more prone to co-carriage and
that co-existence of IT cases and co-carriage are positively interrelated. MRCoNS from
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healthy owners and their pets are genetically heterogeneous MDR strains that are spread
in the community. Therefore, pets also contribute to the dissemination of successful
human clones. Owner-pet inhabitancy increases the risk for staphylococcal temporal
concomitance with its subsequent risk for bacterial infection and genetic exchange.

Keywords: methicillin-resistant coagulase negative staphylococci, Staphylococcus epidermidis, multidrug
resistance, interspecies transmission, carriage dynamics, co-carriage, owner, pet

INTRODUCTION

Staphylococci are normal commensal bacteria of the skin
and mucous membranes of humans and other animals. They
can be differentiated by their ability to produce coagulase.
Coagulase positive staphylococci (CoPS), with Staphylococcus
aureus as major representative in humans and Staphylococcus
pseudintermedius in dogs, pose, in general, higher pathogenic
potential than coagulase negative staphylococcal (CoNS) species
(Becker et al., 2014). CoNS are less often involved in community-
associated diseases, but represent one of the major nosocomial
pathogens, and have a substantial impact on human life and
health (Becker et al., 2014; May et al., 2014). In humans,
Staphylococcus epidermidis is the most common species among
CoNS infections (24–80%), and the most frequent cause of
medical device-associated infections (Miragaia et al., 2009;
Becker et al., 2014). Regardless of the sparse data available, CoNS
have occasionally been confirmed as causative agents for different
site infections in dogs (Malik et al., 2006; Kern and Perreten,
2013; LoPinto et al., 2015; Couto et al., 2016). Yet, their zoonotic
potential and importance in veterinary medicine is unclear.

Staphylococci, especially CoNS, are notorious for their ability
to accrue antimicrobial resistance (AMR) determinants and to
produce a biofilm, which makes associated infections particularly
difficult to treat (Miragaia et al., 2009; Becker et al., 2014). Further,
methicillin resistance is normally associated with additional
resistances, which may pose a risk for the AMR gene transfer
between staphylococci with higher pathogenic properties, such
as S. aureus (Bloemendaal et al., 2010). On top of this, multidrug
resistant (MDR) strains drastically limit the therapeutic options
available and represent a human and animal health problem.

Nasal S. aureus and S. pseudintermedius can be exchanged
between owners and cohabitant pets, and such acquisition can
persist over time (Gomez-Sanz et al., 2013a,b). However, no
data are available on the incidence and diversity of MRCoNS in
healthy owners and their companion animals at the household,
on potential cases of interspecies transmission (IT) and on its
persistence over time.

The potential association between owner-pet companionship
and the concomitant carriage of more than one staphylococcal
type (CoPS and MRCoNS), as well as the potential host
tropism for these subpopulations is unknown, but is essential
to appraise potential owner-pet cohabitation as a risk factor
for staphylococcal acquisition, infection and transmission. In
addition, simultaneous carriage of CoPS and MRCoNS represents
a potential risk for AMR transfer, which is barely considered in
AMR surveillance studies.

The goal of this study is to determine the nasal occurrence,
diversity, clonal distribution, and molecular characterization of
MRCoNS in healthy owners and their pets, residing in common
households, as well as to address potential IT cases and their
carriage dynamics. We subsequently analyzed the MRCoNS and
concomitant CoPS nasal patterns to determine whether there was
any bacterial species- and/or host-associated tropism.

MATERIALS AND METHODS

Study Population and Sampling Criteria
Individuals from 43 unrelated pet-owning households were
sampled in La Rioja region (Northern Spain) for the nasal
carriage of MRCoNS and for IT potential cases. IT was defined
as the presence of the same MRCoNS clone in owner and
cohabitant pet. Samples were taken from March 2009 to February
2011. Individuals tested were, in parallel, sampled for the nasal
occurrence of CoPS (Gomez-Sanz et al., 2013b). Only MRCoNS
were further characterized in this study. Inclusion criteria for
households tested included healthy humans whose profession did
not involve any direct animal contact. None of the individuals
tested had received antimicrobial treatment within the 4 months
prior sampling. Household recruitment was on a voluntary
basis. Sixty-eight humans and 66 animals (54 dogs, 12 cats)
were included (Gomez-Sanz et al., 2013a,b). All individuals gave
written informed consent to participate in this study, as well as
for the sampling of their animals. This study was included in a
project approved by the Ethical Committee of Clinical Research
of La Rioja (reference: METC 09-399/C). One to five owners
and one to five pets were tested from each household, showing
10 different combinations. In most cases (19, 44.2%), only one
person and one animal were sampled per household. Nine and
11 of the 43 household units included more than one pet (20.9%)
and more than one owner (25.6%), respectively. Four households
included both more than one animal and more than one owner
(9.3%). In total, 36 of 66 pets lived with other sampled animals
(dog/cat) (54.5%), while 40 of 68 owners lived with other sampled
humans (58.8%). Of note, all cohabitant pets within a sampled
household were included in the study whereas owners were not
always all sampled. Swabs were transported to the lab within 5 h
after sampling and were either immediately analyzed or stored at
-20◦C until further analysis.

Isolation and Identification of MRCoNS
Sampled nasal swabs were inoculated into Brain-Heart-Infusion
broth (BHI, Difco) supplemented with 6.5% NaCl and incubated
at 37◦C for 24 h. One-hundred microliters were inoculated
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on Oxacillin-Resistant-Staphylococcal-Agar-Base (ORSAB;
OXOID) plates supplemented with 2 mg/L of oxacillin. Plates
were incubated at 35◦C for 24–48 h. All blueish to white
(potential MRCoNS) colonies with different morphologies were
sub-cultured on BHI agar and further studied. Preliminary
identification of MRCoNS isolates was based on colony
morphology, Gram staining, and catalase and DNase activities.
Presence of the mecA gene was investigated by PCR in all
isolates (Gomez-Sanz et al., 2013a). Identification of MRCoNS
was performed by amplification and sequencing of the sodA
gene in all mecA positive CoNS isolates (Poyart et al., 2001).
In addition, isolates that were difficult to type by Multi Locus
Sequence Typing (MLST) were also identified by amplification
and sequencing of the 16S rRNA (Hogg and Lehane, 1999), and
by matrix assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS). When different isolates from
the same individual were recovered, which belonged to the same
bacterial species and shared the same AMR phenotype, only one
isolate was further characterized. Individual nomenclature was
as follows: household number (1–43) – isolate host [Human
(H); dog (D); cat (C)]. – number of individuals when more
than one (1–5).

Multi-locus Sequence Typing (MLST) of
Methicillin Resistant S. epidermidis
(MRSE) Isolates
All 25 MRSE isolates were subjected to MLST as recommended
by Thomas et al. (2007). Two novel sets of primers for aroE
(aroE-fw2: 5′-TTCATTATCGCATTGATGC-3′, aroE-rv2: 5′-
TCAGCACCTTGATGAACGAA-3′) and tpi (tpi-fw2: 5′-TAGCC
GGAAACTGGAAAATG-3′, tpi-rv2: 5′-GCACCTTCTAACAAT
TGTACG-3′) alleles were employed for isolates that could not be
amplified with the standard primers. Allele and ST identification
was used following the S. epidermidis MLST database1. The
MLST data were analyzed using the goeBURST algorithm2 for ST
clustering within clonal complexes (CC) (as of November 2017).
For this, Phyloviz2 grouping was generated by Hierarchical
Clustering (Hamming Method, UPGMA) using allelic profiles
(Nascimento et al., 2017). In addition, a phylogenetic relationship
of concatenated sequences was investigated by the construction
of a distance tree including metadata on isolates characteristics
for each of the different MLST profiles obtained (CLC Genomics
Workbench 10.0.1, Qiagen Bioinformatics).

Staphylococcal Cassette Chromosome
mec (SCCmec) Classification
The SCCmec type was determined based on the chromosomal
cassette recombinase ccr gene/s and on the type of mec complex as
described by Kondo et al. (2007), while confirmation of SCCmec
type was tested using SCCmec primers described by Zhang et al.
(2005). In addition, allele ccrAB4, present in SCCmec types VI
and VIII (Oliveira et al., 2006) was included. Following this
approach, cassettes I–IX could be identified.

1https://pubmlst.org/sepidermidis/
2http://goeBURST.phyloviz.net

Typeability of the SCCmec cassettes was defined as follows:
(i) Typeable (T) SCCmec cassettes were considered those for
which ccr, type of mec complex (Kondo et al., 2007) and/or
SCCmec (Zhang et al., 2005) were identified; (ii) Non-Ascribed
(NA) SCCmec types were those with a novel combination of
ccr, mec complex, and/or SCCmec, and (iii) Non-Typeable (NT)
were considered those that did not yield positive results with the
primer sets used, per scheme. New SCCmec were defined as those
enclosed within NA and NT categories.

Characterization of Antimicrobial
Resistance Profile
Susceptibility to 17 antimicrobial agents was performed using an
agar disk-diffusion method (CLSI, 2013). Antimicrobial agents
tested were as follows (class of agent/s): penicillin, oxacillin
[+ 2% NaCl], cefoxitin (β-lactams); gentamicin, kanamycin,
tobramycin, streptomycin (aminoglycosides); co-trimoxazole
(aminopyrimidine/sulfonamide); erythromycin (macrolides);
clindamycin (lincosamides); tetracycline (tetracyclines);
chloramphenicol (amphenicols); vancomycin (glycopeptides);
ciprofloxacin (fluoroquinolones); mupirocin (pseudomonic
acid); fusidic acid (steroids); and linezolid (oxazolidinones).
Procedures and breakpoints were those proposed for CoNS
in CLSI document M100-S23 (CLSI, 2013). For streptomycin
and fusidic acid, the methods and breakpoints employed were
those recommended by the Société Française de Microbiologie3.
The double-disk diffusion test (D-test) was performed on all
isolates to detect inducible clindamycin resistance (CLSI, 2013).
Multidrug resistance (MDR) was considered when a resistance
to > 3 antimicrobial classes was observed.

The presence of 33 AMR genes, in addition to the mecA gene,
was investigated by PCR: blaZ, tet(K), tet(M), tet(L), erm(A),
erm(B), erm(C), erm(T), erm(F), mph(C), msr(A)/msr(B), lnu(A),
vga(A), vga(C), aacA-aphD, aphA3, aadE, aadD, aadA, str, dfr(A),
dfr(D), dfr(G), dfr(K), mupA, fexA, cfr, catpC194, catpC221, catpC223,

fusB, and fusC (Gomez-Sanz et al., 2013a,b). Positive controls
from the collection of the University of La Rioja were included
in each reaction.

Mutations within the quinolone resistance determining region
(QRDR) of gyrA and gyrB genes (DNA gyrase subunits),
and within parC and parE genes (DNA topoisomerase IV
subunits) were investigated in ciprofloxacin resistant isolates
(Yamada et al., 2008). The corresponding genes of the quinolone
susceptible S. epidermidis strain ATCC 12228 (GenBank ac. no
NZ_CP022247.1) were used as a reference for mutation detection
and positioning within the gene.

Presence of Virulence Genes Involved in
Biofilm Formation
PCR based determination of several genes involved in
biofilm formation was implemented. Genes tested were the
S. aureus biofilm matrix protein bap (Cucarella et al., 2001);
the Staphylococcal intercellular adhesin (icaADBC) operon-
containing genes icaA, icaB, icaC, and icaD, responsible for

3http://www.sfm-microbiologie.org/
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the synthesis of the biofilm matrix polysaccharide intercellular
adhesion (PIA) (Ziebuhr et al., 1999; Arciola et al., 2006); the
transcriptional repressor of the ica locus, the icaR gene (Conlon
et al., 2002); as well as the insertion sequence IS256, which has
been observed to play a role in phase variation of virulence by ica
locus in S. epidermidis (Ziebuhr et al., 1999).

Determination of Cases of Interspecies
Transmission (IT)
The genetic relatedness of MRCoNS isolates suspected for cases
of direct IT – i.e., those isolates of the same species recovered
from cohabiting individuals that exhibited identical AMR profile,
MLST for S. epidermidis, and SCCmec type – was addressed
by Pulsed Field Gel Electrophoresis (PFGE) of the total DNA
digested with a SmaI macro-restriction enzyme following the
HARMONY protocol (Murchan et al., 2003).

Longitudinal Approach: Carriage Status
Definition and IT Dynamics
All individuals from households with cases of direct IT were
followed-up with for a year. For this, nasal samples from the
anterior nares of owners and pets were studied once every
3 months (five sampling times in total, T0–T4) with a total of
24 additional samples analyzed (T0–T4). Studied subjects positive
for MRCoNS in at least four of the five samplings (including
T0) were considered persistent carriers; those positive in two or
three samplings were defined as intermittent carriers; individuals
positive in a single sampling were reported sporadic carriers;
and those negative throughout the study were defined as non-
carriers. Dynamics of the IT cases over time was defined likewise
(persistent, intermittent, and sporadic).

MRCoNS and Coagulase Positive
Staphylococci (CoPS) Individual and
Household Concomitance
In a former study Gomez-Sanz et al. (2013a,b), all coagulase
positive staphylococcal (CoPS) isolates recovered from the same
individuals at the same sampling (T0) were characterized (36
S. aureus and 18 S. pseudintermedius). At this stage, we aimed at
making a summative and comparative analysis of the MRCoNS
and CoPS concomitant carriage of individuals tested in T0 and,
subsequently, of respective households. Such concomitance was
also analyzed along the longitudinal study with the individuals
from households with cases of IT (Supplementary File S1).
Potential association of concomitant carriage, host, and/or being
involved in an IT case was evaluated.

Statistical Analysis
The characteristics of the owner and pet isolates were compared
for consistent differences. Statistical analysis tests were performed
in R (R Development Core Team, 2018). SCCmec, AMR, and ica
locus profiles between owners and dogs were compared using the
Fisher’s Exact test. Potential significant differences in MRCoNS
carriage and MRCoNS/CoPS co-carriage between owners and
pets at individual and household level were likewise evaluated.
Correlations between presence of ica locus and (i) bacterial

species, (ii) CC, (iii) host, and (iv) household of origin were
analyzed by dependence measure of variables using multivariable
Logistic Regression test. Correlations between owner and pet
cohabitation and bacterial nasal carriage, as well as between
involvement in IT cases and bacterial simultaneous carriage
(MRCoNS; CoPS), at individual and household level, were
likewise evaluated [variables: (i) host, (ii) presence of more
than one pet per household, (iii) involvement in IT case, (iv)
bacterial concomitance]. Correlation analyses were performed
using the Corrplot R package. All analyses were performed at
a 95% confidence interval (CIs). The degree of genetic diversity
for ST and SCCmec types was assessed by Simpon’s Index of
Diversity (SID). SID represents the probability (0 = low diversity,
1 = high diversity) that any two randomly selected species
from the sample will be different. In this analysis, each ST or
SCCmec element (ccr, mec complex combination) was considered
a “type” or “species.”

RESULTS

Occurrence of MRCoNS in Individuals
and Households
Thirty-one MRCoNS isolates, 19 isolates from 19 owners (27.9%)
and 12 isolates from 11 pets (16.7%) (14.81% dogs, 25% cats) were
detected. MRCoNS species distribution in owners and pets is
shown in Figure 1. S. epidermidis and Staphylococcus lentus were
detected in both owners and pets. Staphylococcus haemolyticus
was detected in one owner only and Staphylococcus cohnii and
Staphylococcus vitulinus in dogs (the latter in two cohabitant
dogs). One dog (1-D1, from household no. 1) carried one S. lentus
and one S. epidermidis isolate (Table 1). For both, owners and
pets, S. epidermidis was the predominant species, accounting for
89.5 and 66.0% of strains, respectively. In total, 25% of owners
and 12.1% of pets (9.3% among dogs, 25% in cats) carried MRSE.

In 20 of the 43 (46.5%) tested households there was at least
one individual (either owner and/or pet) positive for MRCoNS.
In two households (4.6%) (numbered 1–2) there was concurrent
MRCoNS carriage of at least one owner-pet pair (Table 1).
Instead, in 11 residences (25.6%) (no. 3–13) only owners were
positive for MRCoNS whereas in seven households (16.3%) (no.
14–20) only pets carried MRCoNS (Table 1).

Pet

S. epidermidis

S. lentus

S. vitulinus

S. cohnii

Owner

S. haemolyticus

FIGURE 1 | Distribution (%) of MRCoNS species recovered from the 19
positive owners (19 strains), and the 11 positive pets (12 strains). One pet
(1-D1) carried one S. lentus and one S. epidermidis strain.
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Not significant differences were observed in MRCoNS carriage
among owners or pets where more than one pet was in the house
(p = 0.7946 versus 0.4321, respectively).

Clonal Lineages of MRCoNS Isolates
Molecular characterization of the 31 MRCoNS isolates recovered
is displayed in Table 1. In total, 24 of the 25 MRSE isolates
were typed by MLST, with 16 different STs detected. One human
MRSE isolate (C3938) could not be typed due to reiterate lack
of amplification of several of the MLST-schemed alleles (gtr,
pyr, yqil, and mutS), regardless MALDI-TOF confirmed that it
was S. epidermidis. In addition, four isolates were not typeable
using the standard aroE and tpi primers4,5, but did amplify
with in-house designed primers (ST290 and the novel ST558,
ST559, and ST560).

Nine of 24 (37.5%) MRSE strains revealed novel STs (seven
different ones), with either novel allele (ST553, ST554, ST555,
ST556) or novel allele combination (ST558, ST559, ST560)
(Supplementary Table S1). Fifteen MRSE strains (62.5%)
belonged to already known STs (nine different STs). ST5 (primary
ST founder of CC5) was predominant, being present in two
MRSE from unrelated owners and two from related dogs. Most
MRSE belonged to CC5 (75%), which is the major group within
the S. epidermidis MLST scheme, three strains belonged to CC11
(12.5%) and three strains were singletons [S556 (8.3%) and S560
(4.2%)] (Figure 2A). All previously known STs (ST2, ST35, ST22,
ST60, ST20, ST130, ST83, and ST290) represented subgroup
founders (by default settings, i.e., an ST with at least three links to
other STs, including the link to its assumed progenitor), with ST2
as the biggest subgroup founder within CC5 (formerly compiling
CC2) (Figure 2A).

The distance tree of the 16 concatenate ST sequences detected
among the 24 MRSE strains revealed high profile diversity. All
cases were concordant with the CC and STs subgroup clusters
(based on allelic profile) represented by Phyloviz2 clustering
using the goeBURST algorithm, except for ST35, which formed
an independent branch from the closest variants (ST2, ST22, and
ST553). Remarkably, all four STs that could not be amplified
using the standard primers (all 3 CC11 and S560) clustered
together in a distant branch from the rest of STs (Figure 2B).

All canine MRSE strains exhibiting STs were also detected in
owners (1 ST155, 2 ST5, 2 ST130, all CC5), while all feline (ST60-
CC5, ST560-S560, ST558-CC11) and some human MRSE strains
were unique (Figure 2B).

The Simpon’s Index of Diversity (SID) was remarkably high
(0.96), reflecting a 95.6% chance of randomly picking two strains
from the sample cohort that are different.

ccr and mec Complex Diversity Among
MRCoNS Isolates (SCCmec Profile)
Based on a scheme by Kondo et al. (2007), high diversity of
ccr types, mec complexes and ccr-mec complex combinations
were detected among the 31 studied isolates (Table 1). ccrAB2
(n = 21) and mec complex A (n = 13) were predominant within

4https://pubmlst.org/sepidermidis/
5http://sepidermidis.mlst.net

their respective category (see Supplementary Table S2). All eight
SCCmec cassettes carrying ccrC presented additional ccr genes
(ccrAB2, n = 5; ccrAB1, n = 2; or ccrAB1+ccrAB2, n = 1)
(Supplementary Table S2). More than one ccr type was detected
in 11 isolates (35.5%). A total of 21 SCCmec cassettes were either
NT or NA (67.7%), nine were SCCmec IV (29%), and one was
SCCmec V (3.2%).

According to scheme by Zhang et al. (2005), 20 strains were
either SCCmec NT or NA (64.5%), seven were SCCmec V
(22.6%), three were SCCmec IV (9.7%), and one was SCCmec
III (3.2%). Four strains were positive for more than one
SCCmec cassette.

Eight of 31 strains (25.8%) were concordantly typed with
both typing schemes (Table 1 and Supplementary Table S2).
Among them, SCCmec NT was predominant (n = 4), followed by
SCCmec IV (n = 2) and SCCmec V and SCCmec NA (one each),
respectively. Both schemes categorized seven additional cassettes
in different strains, with a SID of 0.89 by Kondo et al. (2007)
and SID 0.71 by Zhang et al. (2005). In total, as a consensus
of both schemes, 18 strains of SCCmec were NT (58.1%), 10
NA (32.3%), two SCCmec IV (6.5%), and one SCCmec V (3.2%)
(Supplementary Table S2).

Comparing owner versus pet MRCoNS isolates by Kondo
et al. (2007), SCCmec NT or NA were predominant among
both human and animal strains (combined 63.2% for owners
versus 91.7% for pets) (p = 0.02203). SCCmec IV was the most
commonly known SCCmec cassette among both host isolates (six
from humans, 31.6%; three from dogs, 25%), while SCCmec V
was only detected in two owners (10.5%).

According to both schemes performed, one MRSH from
an owner and one MRSE from her pet (1-H2 and 1-D1,
household 1) shared the same SCCmec cassette (Table 1 and
Supplementary Table S2).

Antimicrobial Resistance (AMR) Pattern
Prevalence of resistance to non β-lactams among human and
animal isolates, as well as the detected resistance genes, is
shown in Figure 3. Erythromycin resistance [erm(A), erm(C)]
was the most common pattern (51.6% of isolates), followed
by mupirocin (mupA) (29%) and clindamycin [vga(A), lnu(A)]
(29%) resistance. Subsequently, MLS was the antimicrobial class
to which most strains exhibited resistance. Mupirocin resistance
was only present in MRSE strains (36% of MRSE). Inducible
clindamycin resistance was only observed in the three isolates
carrying the erm(C) gene (see Table 1).

Mutations identified in the QRDR of the gyrA, parC and
parE genes of the five MRSE ciprofloxacin resistant strains are
summarized in Table 2. All detected substitutions are displayed
in Supplementary Table S3. No mutation was observed in any
strain within the gyrB gene sequence region. The most common
mutation was Ser84Phe (5/5) and Ser84Tyr (3/5) in GyrA and
ParC, respectively.

Resistance to aminoglycosides (p = 0.008–0.016), co-
trimoxazole (p = 0.016) and chloramphenicol (p = 0.007) was
significantly higher in animal isolates (with the latter being
exclusively detected in pets), whereas resistance to tetracycline
was only present and abundant in owner isolates (p = 2.95E-07).

Frontiers in Microbiology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 485496

https://pubmlst.org/sepidermidis/
http://sepidermidis.mlst.net
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00485 March 22, 2019 Time: 17:57 # 7

Gómez-Sanz et al. MRCoNS in Owners and Pets

NT
NT

A

B

FIGURE 2 | (A) Clustering analysis of the S. epidermidis STs detected in this study by goeBURST algorithm using Phyloviz 2 software (Nascimento et al., 2017). The
most restricted level [level 1 – Single Locus Variant (SLV)] was used, requiring six of seven alleles shared to the linked ST. Cyan STs indicate probable ancestors
(group founders) and green STs constitute subgroup founders. Blue STs correspond to STs that share the same background (CC). Circles in red indicate the STs
detected in this study. Specific location of ST5 (CC5 ST primary founder) and ST2 (major subgroup founder of the cluster) within CC5 are indicated. (B) Distance tree
of the 16 concatenate ST sequences detected among the 24 S. epidermidis isolates constructed using CLC Genomics Workbench 10.0.1
(https://www.qiagenbioinformatics.com/). Sequences were aligned using internal parameters, and the tree was built with a Neighbor Joining method using
Jukes-Cantor as Nucleotide Distance measure, with a bootstrap analysis of 500 replicates. The bar length indicates the number of substitutions per site. STs in black
color are those with new ST, either by the presence of a new allele or new allele combination.
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p-value 0.777 0.079 0.016 0.008 0.016 0.059 0.016 2.95E-07 0.347 0.007 1 0.059

FIGURE 3 | Percentage of resistance to non β-lactams and antimicrobial resistance genes detected among the 31 MRCoNS isolates investigated in T0. FUS, fusidic
acid; CHL, chloramphenicol; TET, tetracycline; CIP, ciprofloxacin; SXT, co-trimoxazole; GEN/TOB/KAN/STR, gentamicin/tobramycin/kanamycin/streptomycin; MUP,
mupirocin; ERY/CLI, erythromycin/clindamycin. All isolates were susceptible to vancomycin and linezolid. Individual P-value (Fisher’s Exact Test for count data) to
account for significant difference at 95% confidence interval is indicated at the bottom of the histogram. Asterisks (blue or red) above the bars represent those agents
for which statistical differences were detected, with the asterisk color remaking the host (owner or pet, respectively) of the bacteria involved in the significance.

TABLE 2 | Mutations in the quinolone resistance determining regions (QRDR) of GyrA (DNA Gyrase), ParC, and ParE (DNA topoisomerase IV) of the quinolone
resistant strains.

Strain GyrA ParC ParE

Synonymous
substitution

Non-synonymous
substitution

Synonymous
substitution

Non-synonymous
substitution

Synonymous
substitution

Non-synonymous
substitution

C3044, C3046 S84F P34P, V74V S80F, D84G V70V, Q73Q, G104G – L411L, L430L,
L442L, V458V

C3910 S84F, E88K P34P, V74V S80Y, D84Y V70V, Q73Q, G104G – L411L, L430L,
L442L, V458V

C3922 S84F, E88K P34P, V74V S80Y, D84Y V70V, Q73Q, G104G – L411L, L430L,
L442L, V458V

C5110 S84F P34P, V74V S80Y V70V, Q73Q, G104G – L411L, L430L,
L442L, V458V

GyrB is not represented given that no mutations were observed. Synonymous substitutions are marked in bold.

Resistance to fusidic acid and streptomycin were only detected
in human isolates at low rates, but no significant differences were
observed with the Fisher’s Exact test.

Remarkably, one methicillin-resistant S. lentus (MRSL) clone
(isolates C3030 and C3031, from owner 1-H1 and cohabitant
dog 1-D1) showed intermediate resistance to trimethoprim and
co-trimoxazole but did not harbor any of the trimethoprim
resistance genes so far described in staphylococci. The human
MRSE-S556 strain (C5112) also showed hetero-resistance to
clindamycin but was negative for the corresponding genes tested.
This strain was also resistant to fusidic acid and lacked the
acquired fusB and fusC genes.

Significant differences were observed between the rate of
owners and pets carrying MDR MRCoNS isolates (68% versus
33%) (p = 1.205E-06). In total, 54.84% of isolates were MDR.

Presence of Determinants for Biofilm
Formation
A total of 32.3% of isolates were positive for the genes enclosed
within the ica locus (icaADBC) as well as for the icaADBC
transcriptional regulator icaR (Table 1); all of which were
MRSE of the CC5 lineage (see Figure 2B). If divided by the
bacterial host, 47.4% of human isolates and a single MRSE
canine strain (C3029) (8.3%) were positive (p = 4.49e-10).
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Subsequently, the presence of the ica locus gene cluster in human
MRSA-CC5 isolates was strongly positively correlated. Through
logistic regression analysis, positive association was observed
between presence of the ica locus and owners, only when the
variable household of origin was not considered in the equation
(association was observed at 0.1 significance code otherwise).

The IS256 was detected in four icaADBC-negative isolates
(12.9%). These isolates also contained the bifunctional
aminoglycoside resistance aacA-aphD gene, which is normally
enclosed within Tn4001 (IS256_aacA-aphD_IS256).

Owner/Pet MRCoNS IT Cases and
Longitudinal Overview
Based on all molecular techniques performed, two cases of IT
were identified in the owner and cohabitant dog in two unrelated
households (4.7% of tested residences; 10% of households
with MRCoNS-carrying individuals): (i) a MDR MRSL clone
(1-H1 and 1-D1), resistant to erythromycin/clindamycin and
gentamicin/tobramycin/kanamycin; and (ii) a MRSE-ST130-
CC5 clone (2-H1 and 2-D1) resistant to tobramycin/kanamycin
(Table 1 and Figure 4).

According to the 1 year longitudinal study, in case 1,
sporadic carriage by the involved MRSL clone was observed
in both individuals (1-H1, 1-D1). Instead, the involved
dog (1-D1) also carried a MRSE ST155-CC5-SCCmecV
strain (resistant to erythromycin) in T0 which was also
present when sampling T3 in the same animal (intermittent
carrier of such clone) as well as in the other cohabitant
owner (1-H2), representing an additional S. epidermidis
sporadic IT case (Figure 4). In total, three different MRCoNS
species (S. lentus, S. epidermidis, S. haemolyticus) and one
clone of each were detected along the sampling year.
Dog 1-D1 carried two of these clones while the owners
carried one clone each.

In case 2, sporadic carriage by the involved MRSE ST130-
CC5 clone was also observed. Notably, the same owner and dog
(2-H1, 2-D1) carried an identical non-concurrent MRSE clone
(only resistant to β-lactams) in different samplings: T2 for the
owner and T3 for the dog (Figure 4), indicating transient carriage
and suggesting that such a clone might be circulating within the
household. Along the sampling year, these two subjects revealed
to be intermittent carriers of different S. epidermidis clones with
different resistance patterns (Figure 4). In total, a single MRCoNS
species (S. epidermidis) was detected throughout the sampling
year, however, five different MRSE clones were observed, three
of them found in dog 2-D1, three in owner 2-H1 and a single
clone in owner 2-H2.

None of the individuals, from both cases, were persistent
carriers by any of the recovered MRCoNS strains. None of the IT-
involved isolates in T0 exhibited any of the genes of the ica locus.
However, the MRSE C3029 clone (from case 1), which carried
the ica-locus, was detected again in this animal and one owner
in T3 (IT case).

The dynamics of all CoPS staphylococci detected in the same
samplings (T0–T4) are described in the Supplementary File S1
as well as in Supplementary Figure S1.

Individual and Household MRCoNS
and/or CoPS Concomitance
Eighty-five staphylococcal strains [MRCoNS (n = 31) and CoPS
(n = 54)] (Gomez-Sanz et al., 2013b) from the 68 positive
individuals recovered at the same sampling point were compared
here (Supplementary Table S4). This comprehensive picture
revealed a total of nine cases of IT (two MRCoNS, 7 CoPS) at
sampling T0 (11.9% of subjects coming from 18.6% of tested
households) (Gomez-Sanz et al., 2013a,b). Altogether, 55.9% of
owners and 45.5% of pets were positive for MRCoNS and/or
CoPS (Supplementary Table S5).

Single presence of CoPS was the most common pattern,
with owners and pets predominantly carrying only S. aureus
(26.5%) or S. pseudintermedius (22.7%), respectively (Figure 5A).
The carriage rate of MRCoNS as the single species recovered
was similar in owners and pets tested (ca. 10.5%) (Figure 5A).
Alternatively, 17.7% of owners and 6.1% of pets simultaneous
carried both bacterial types (p = 0.015) (Table 3). Concomitant
carriage of MRCoNS and S. aureus was significantly higher
among owners than pets (14.7% versus 1.5%), while no
significant differences were detected for co-carriage of MRCoNS
and S. pseudintermedius (2.9% versus 4.6%) (Figure 5A and
Supplementary Table S5).

Eleven of the 17 MRCoNS (64.7%) strains involved in the
simultaneous carriage were MDR and six of 17 (35.3%) contained
the ica-locus genes, involved in biofilm formation (Table 3). IT
cases were more common among individuals with concomitant
carriage (6/16, 37.5%) (p = 0.004).

At the household level, based on the strains recovered
from individuals tested, 32 households were positive for any
of the tested bacterial species (74.4%; 34.9% positive for
one bacterial type, 39.5% positive for both MRCoNS and
CoPS) (Figure 5B). Co-presence of S. aureus and MRCoNS
was the most predominant pattern (18.6%), followed by
S. aureus alone (16.3%), and co-presence of S. aureus,
S. pseudintermedius and MRCoNS (14%). Considering the 32
positive residences, S. aureus was the predominant species
among households with a single bacterial type (21.9%), and
half (50%) presented both MRCoNS and CoPS bacterial
types (Figure 5B).

In total, 23.3% of households contained individuals
simultaneously harboring both bacterial types (Table 3).
Half (5/10) of these households enclosed subjects directly
involved in IT cases (p = 0.011). Further, all four pets and seven
of the 12 owners who tested positive for concomitant MRCoNS
and CoPS (11/16, 68.8%) originated from households where IT
cases occurred, even if they were not the individuals directly
involved in the case (Table 3).

Association Between MRCoNS and
CoPS Concomitance, IT Cases, and Host
Logistic regression analysis confirmed a strong positive
correlation between individual staphylococcal concomitance
and involvement in IT case (0.001 significance code). A positive
association (0.05 significance code) was observed between
concomitance and owners, only when the household of origin
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FIGURE 4 | (A) Schematic representation of the methicillin resistant coagulase negative staphylococcal carriage dynamics of both households investigated along 1
year. IT, bacterial species responsible for interspecies transmission. T0–T4 indicate the different sampling times along the sampling year. Individuals are named H (for
human) or D (dog) followed by the case number (1 or 2) and a lower-case letter to differentiate subjects per household. (B) Pulsed-field Gel Electrophoresis
(PFGE) profile of genomic DNA digested with SmaI restriction enzyme of isolates recovered from individuals involved in both cases of possible direct interspecies
transmission. Upper lane in PFGE per case corresponds to MidRange PFGE Marker (New England Biolabs). Antimicrobial resistance (AMR) genes detected in each
strain are also indicated.

*
*

*

A

B

FIGURE 5 | (A) Left panel, bar chart showing the percentage of owners and pets that carried Coagulase Positive Staphylococci (CoPS), i.e., S. aureus (SA) and/or
S. pseudintermedius (SP); MRCoNS; or CoPS + MRCoNS in sampling T0 (Gomez-Sanz et al., 2013b). Right panel, graphical view of the distribution of CoPS and/or
MRCoNS detected among the individuals positive for such bacterial species. (B) Left panel, bar chart displaying the percentage of households with individuals
positive for CoPS (SA, SP), MRCoNS or CoPS + MRCoNS in sampling T0. Right panel, graphical representation of the distribution of CoPS and/or MRCoNS
detected among the households with individuals positive for such bacterial species. Colored stars indicate values with significant differences between human and
animal strains.
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was not considered in the equation (association was observed at
0.1 significance code otherwise).

No significant differences were observed between the presence
of more than one animal in the house (animal cohabitation) and
(i) staphylococcal carriage (p = 0.3145 for pets, p = 0.1644 for
owners), or (ii) MRCoNS and CoPS individual co-carriage (p = 1
for pets, p = 0.7781 for owners).

DISCUSSION

The present study provides novel information on frequency,
population structure, genetic diversity, AMR and virulence
potential among MRCoNS from companion animals and their
owners within the household, as well as on staphylococcal
human-pet interaction and persistence. The MRCoNS carriage
rate detected among healthy owners (28%) is remarkably higher
than those detected in former studies among healthy individuals
in non-healthcare settings, with rates ranging between 7 and
17% (Barbier et al., 2010; Rolo et al., 2012; Du et al., 2013;
Abadi et al., 2015; Xu et al., 2018). Higher nasal MRCoNS
rates (30, 47–51%) were detected in Japanese children in day-
care centers and kindergartens (Jamaluddin et al., 2008) and
among a remote population in French Guiana (Lebeaux et al.,
2012). On the other hand, a recent international study on
nasal staphylococcal colonization among healthcare workers
from 75 different countries revealed a nasal MRCoNS carriage
rate of 21.4% (Morgenstern et al., 2016). All these data reflect
that nasal distribution of MRCoNS markedly depend on the
cohort studied. Remarkably, scarce data are available on the
nasal MRCoNS colonization rate among pet owners, and or
the animal-owner contact as a possible contributor in increased
MRCoNS carriage. Only a couple of recent studies analyzed
the risk factors of MRS carriage among individuals in contact
with companion animals (Han et al., 2016; Rodrigues et al.,
2018). Rodrigues et al. (2018) reported an overall prevalence
of MRCoNS of 54.2% among healthy humans in professional
daily contact with companion animals in Portugal. In this
report, being a veterinary professional was identified as a risk
factor for methicillin-resistant staphylococcal carriage (both
CoNS and CoPS) colonization (Rodrigues et al., 2018). The
relatively high MRCoNS rate detected here might therefore
be due, at least partially, to direct pet-human contact, and
might be considered as a risk factor for colonization. However,
the lack of a “control” population in the current study forces
us to interpret these data with caution. Among pets, very
sparse data are available on the specific nasal MRCoNS rates.
Lower rates (1–15%) than those detected here (17%) have
been observed among healthy dogs from several body sites
(nasal, rectal, oral, anal, belly) (Vengust et al., 2006; Bagcigil
et al., 2007; Aslantas et al., 2013; Gandolfi-Decristophoris
et al., 2013; Garbacz et al., 2013; Chah et al., 2014; Davis
et al., 2014; Wedley et al., 2014; Siugzdaite and Gabinaitiene,
2017). Interestingly, MRCoNS was isolated from 42% of
healthy non-vet visiting and non-antimicrobial treated Labrador
retrievers in the United Kingdom (Schmidt et al., 2014). In the
latter study, both nasal and perineal samples were collected,

suggesting that different sampling methodologies may affect
observed prevalence.

In humans, S. epidermidis is the most frequently recovered
staphylococcal species, colonizing the body surface (Becker et al.,
2014; Schmidt et al., 2014). Moreover, the S. epidermidis group
(predominantly S. epidermidis and S. haemolyticus) is the most
significant species within CoNS representing one of the major
nosocomial pathogens (Becker et al., 2014). As such, MRSE
was the MRCoNS predominant species detected (25%, 99% of
human strains). S. epidermidis was also the predominant species
among tested animals, with an overall prevalence of 12.1% (9.3%
among dogs versus 25% in cats), corresponding to 66% of strains.
A diverse range of MRCoNS species have been detected among
dogs, such as Staphylococcus sciuri, Staphylococcus warneri, S.
lentus, S. vitulinus, or Staphylococcus fleurettii (Bagcigil et al.,
2007; Becker et al., 2014; Chah et al., 2014; Davis et al.,
2014; Schmidt et al., 2014; Siugzdaite and Gabinaitiene, 2017).
Regardless S. epidermidis has a more defined role in humans; it
may also form part of the normal microbiota of animals and,
although at lower rates, has been detected as the predominant
CoNS species among healthy dogs (Aslantas et al., 2013; Schmidt
et al., 2014; Han et al., 2016). Nevertheless, S. epidermidis is a
predominantly human associated bacterium and the observed
distribution here may be influenced by the human-pet direct or
indirect contact within the household.

S. epidermidis is the most studied species within CoNS and
it is characterized by pronounced genomic diversity (Becker
et al., 2014). This agrees with the high diversity of MRSE STs
detected (SID of 0.96). In spite of the scattered data available
on MRSE lineages from healthy individuals, former reports have
also reported high rates of novel STs among S. epidermidis
isolates (Xu et al., 2018), evidencing high intra-species diversity.
MRSE CC5 was predominant, clustering 75% of MRSE isolates
from owners. This clonal lineage (with ST5 as primary founder)
represents the biggest group within the MLST scheme for this
species. MRSE ST2 and ST22, among others, currently enclosed
within CC5 but traditionally constituting its own CC (CC2), have
been shown to be predominant among hospital environments
(Miragaia et al., 2007; Rolo et al., 2012; Cherifi et al., 2013;
Becker et al., 2014; Widerstrom et al., 2016; Gordeev et al., 2017).
In the community, a high diversity of STs have been identified
among healthy individuals (Miragaia et al., 2007; Rolo et al., 2012;
Cherifi et al., 2013; Becker et al., 2014; Widerstrom et al., 2016;
Gordeev et al., 2017). In contrast, recent studies have revealed a
high diversity of lineages among MRSE from both clinical and
healthy individuals, with either no increased abundance of CC5
strains among clinical isolates (Jena et al., 2017) or with CC5
predominance in both settings (Rolo et al., 2012; Du et al., 2013).
This may be due to the fact that most STs already cluster into CC5
by eBURST/goeBURST analyses, which may hamper attempts to
identify lineages that might be associated with different regimes
(Thomas et al., 2014). For this reason, a couple of recent studies
implemented a Bayesian clustering approach to appraise the real
species-wide population structure and ecology of S. epidermidis,
detecting six genetic cluster (GCs) based on their adaptation to
nosocomial or commensal lifestyles (Thomas et al., 2014; Tolo
et al., 2016). Following this classification for the already known
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STs, (i) ST2 and ST22 were more suited to a nosocomial lifestyle
(GC5); (ii) ST290 to a more commensal lifestyle (GC4), (iii)
ST5, ST83, and ST130 were adapted to a more generalist-to-non-
hospital sources (GC1); and (iv) ST20, ST35, and ST60 were better
suited for generalist-to-infection-associated lifestyles (GC6).

Very scarce data are available on MRSE lineages among
pets. A few studies among clinical samples detected ST5
and/or ST2 (both CC5) as predominant, in line with data
from humans (Kern and Perreten, 2013; Weiss et al., 2013;
Couto et al., 2016). However, data on the circulating MRSE
lineages in the community and whether they reflect the human
circulating lineages within a target system, are lacking. Here,
clear clustering of human and canine strains was observed, as
all STs detected among dogs were also detected among different
owners from different households. This lack of host tropism
of specific lineages suggests the adaptability potential of MRSE
to different hosts within a shared habitat and/or the easiness
of host sporadic acquisition of circulating lineages. In contrast,
the three STs detected among MRSE from feline isolates were
unique. This might indicate that, while dogs tend to share
the same clonal lineages as owners, cats might pose feline-
associated lineages. Further studies with a bigger sample size are
needed on the ecology of MRCoNS and MRSE among different
inhabitant species, and how cohabitation may influence host
staphylococcal profiles.

High diversity of SCCmec types was detected, most being
either NT or NA (90.3%, 28/31). These values are notably
higher than those detected among both clinical and community
MRCoNS human isolates (Barbier et al., 2010; Lebeaux et al.,
2012; Aslantas et al., 2013; Abadi et al., 2015; McManus et al.,
2015). This high rate may be partially due to the higher
discriminatory power of using two schemes. Remarkably, slightly
similar values (83%) were recently detected among MRSE from
the nares of neonates at hospital admission (Salgueiro et al.,
2017). It is challenging to define whether the NTs cassettes
identified here are identical to those previously described as NTs,
due to variances in typing methods and the lack of full analysis of
the genetic organization and composition of these elements. For
this, further in-depth analyses, such as whole genome sequencing
(WGS), are definitively needed.

Lack of robust concordance was observed between results
obtained by both schemes, with guidelines from Kondo et al.
(2007) showing a remarkable high diversity index (SID 0.89
versus 0.71), and reflecting the high intergenic diversity within
MRCoNS cassettes. SCCmec IV was the predominant typeable
cassette for both owner and pets, and despite, additional cassettes
have been sporadically detected, it is also the most prevalent
cassette among humans and companion animals (Ruppe et al.,
2009; Barbier et al., 2010; Lebeaux et al., 2012; Aslantas et al.,
2013; Kern and Perreten, 2013; Park et al., 2013; Weiss et al.,
2013; Becker et al., 2014; Abadi et al., 2015; McManus et al., 2015;
Couto et al., 2016).

Several ccr genes were detected in 35.5% of strains, showing
a high variety of site-specific recombinases among MRCoNS.
The possibility that primers are not specific enough for potential
new ccr cannot be discarded. Further, ccr2 and ccrC were co-
present in all but one detected cases, suggesting that clustering

of both ccr genes might imply and adaptive advantage. Further
analyses should be performed to unveil the real presence and
functionality of redundant ccr genes, and whether this implies an
adaptive advantage under specific conditions. The high SCCmec
variability, lack of typeability and presence of novel ccr and
mec complex combinations reflect an ever-increasing complexity
among SCCmec cassettes among CoNS from healthy individuals.
Such mobile elements may represent a source for the potential
transfer to concurrent staphylococci sharing the same niche.
In this study, however, transmission of β-lactams resistance
between MRCoNS and CoPS appears negligible among the
population tested.

Macrolides-Lincosamides-Streptogramins (MLS), especially
erythromycin, was the antimicrobial class for which most
strains exhibited resistance among owners and pets (64.5%).
MLS are important antibiotics for treatment of staphylococcal
infections in both humans and animals (Guardabassi et al.,
2004; Bagcigil et al., 2007). Subsequently, it is not surprising
that MLS resistance is common among staphylococci in the
community (Aslantas et al., 2013; Gandolfi-Decristophoris et al.,
2013; Garbacz et al., 2013; Wedley et al., 2014; Couto et al., 2016;
Han et al., 2016). Of note, combined resistance to erythromycin
and clindamycin is the most common MLS pattern among CoPS
isolates (Gomez-Sanz et al., 2013a,b), however, most MRCoNS
isolates here were either resistant only to erythromycin or
to clindamycin. This pattern reflects the potential differential
ability to acquire different resistance genes between CoPS and
MRCoNS populations.

Resistance to Aminoglycosides, co-trimoxazole and
chloramphenicol was significantly higher among pet isolates.
Resistance to these agents, especially to aminoglycosides
and trimethoprim, has been reported as common among
staphylococci of healthy dogs, and these agents are used
extensively in hospital and veterinary settings (Guardabassi et al.,
2004; Penna et al., 2010; Chah et al., 2014; Wedley et al., 2014;
McManus et al., 2015; Han et al., 2016; Conner et al., 2018).
Interestingly, Tetracycline was only detected among human
strains, while this antibiotic is widely used in both human and
animal medicine (Guardabassi et al., 2004). The lack of resistance
among animal strains differs from former studies among both
healthy and clinical canine isolates, with rates ranging between
40 and 81% (Aslantas et al., 2013; Kern and Perreten, 2013; Chah
et al., 2014; Wedley et al., 2014; Couto et al., 2016; Siugzdaite
and Gabinaitiene, 2017). Such differences are most likely due to
the groups studied and the geographical area of the sampling.
Further research is therefore needed to ponder these profiles as
common trends among MRCoNS from healthy pets in Spain.

Interestingly, mupirocin and ciprofloxacin resistance were
associated to MRSE and only detected in this species (36 and
20%, respectively). This association is relevant and may reflect a
higher exposure of MRSE strains to these agents, which might
be partially due to the higher pathogenic potential of this CoNS
species. Little is known about the real prevalence of mupirocin
resistance (MR) among the CoNS population (Becker et al.,
2014), and even less among staphylococci from pets. A couple
of studies have detected lower resistance levels, even among
clinical samples (8-20%) (Aslantas et al., 2013; Kern and Perreten,
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2013; Wedley et al., 2014; Couto et al., 2016). The high rate of
mupirocin resistance detected among MRSE (both in owners and
pets) is alarming as it is the key antibiotic used for decolonization
of methicillin-resistant S. aureus (Becker et al., 2014).

MDR was high (54.8%) and significantly higher among human
isolates (68.4% versus 33.3%). This difference may again reflect
higher exposure of humans to antimicrobial therapy or the
clinical settings, or to the coexistence of resistance strains within
the same ecological niche, which may favor the horizontal
transfer of their mobile elements. Diverse MDR values have
been observed among staphylococci from healthy dog owners
and pets (17–93%), with most studies reporting very high MDR
values (Gandolfi-Decristophoris et al., 2013; Garbacz et al., 2013;
Wedley et al., 2014; Han et al., 2016; Siugzdaite and Gabinaitiene,
2017; Conner et al., 2018). Therefore, MRCoNS from healthy
owners and pets represent a reservoir for AMR gene transfer
in the community and may hamper successful treatment of
staphylococcal infections in both animals and humans.

A relatively high rate of isolates (32%) was positive for
ica locus, which is one of the key elements involved in
the early stages of biofilm formation (intercellular adherence
and cell agglutination) (Becker et al., 2014). Several studies
have shown that S. epidermidis from healthy individuals or
community environments less frequently carry icaADBC-cluster
genes, in comparison to clinical samples or hospital-associated
environments (Fey and Olson, 2010; Becker et al., 2014;
Szczuka et al., 2016; Seng et al., 2017). The rates detected
here are therefore outstanding and reflect that MRCoNS strains
spread in the community pose notable virulence properties.
Interestingly, in the current study, icaADBC was positively
correlated with human MRSE CC5 isolates (47.7%). Harris
et al. (2016) recently identified S. epidermidis of this lineage
as icaADBC-containing biofilm producers. However, they could
not establish lineage-biofilm formation associations, as the genes
involved were present in divergent lineages, showing evidence
for horizontal gene transfer. Alternatively, although most cases of
biofilm-forming CoNS isolates and biofilm-associated infections
containing the ica-locus are from S. epidermidis, other CoNS
species have occasionally been detected to form biofilms and to
contain this operon (Szczuka et al., 2016; Seng et al., 2017).

To the best of our knowledge, this is the first study addressing
the occurrence and persistence of MRCoNS transmission
between owners and their pets. Two cases of IT were detected
in T0 (4.7%). Diverse sequential MRCoNS clones were observed
on the longitudinal approach among tested individuals, revealing
a MRCoNS existent flow in the household setting and the vector-
role of dogs for human staphylococcal acquisition, and vice verse.
In addition, dog 1-D1, involved in the MRSL IT case in T0, was
also positive for a MRSE ica-locus positive strain (C3029 MRSE-
ST155-CC5-SCCmecV), which was responsible for an additional
case of IT in T3 (9 months after first sampling). S. epidermidis is
a human related species, whereas S. lentus is considered animal-
associated (Becker et al., 2014). Subsequently, the MRSE-involved
IT cases here are suggested to have an anthropozoonotic origin,
whereas the MRSL case may be regarded as of zoonotic origin.
These data provide evidence that MDR and virulent MRCoNS
strains can be exchanged and at least temporarily persist between

owners and in-contact pets, contributing to the dissemination of
resistant staphylococci, with the subsequent risk of infection. To
this end, the household environment could also play a role as
source for MRCoNS and persistence in the sampled population,
as recently reported from community environments (20.5%)
(Seng et al., 2017).

To our knowledge, this is also the first study addressing
simultaneous nasal carriage of CoPS and MRCoNS in owners
and their pets. A single study, focused on the occurrence of CoPS
and MRCoNS in dogs, observed slightly higher carriage rates to
the ones detected here (45.5%), with 55% of animals positive for
CoPS and/or MRCoNS (Wedley et al., 2014). However, CoPS
and MRCoNS co-carriage was as low as 2.2%, in comparison
to the 6.1 and 16.2% detected among our animal and human
population, respectively. Alternatively, although owners and pets
differed in the CoPS predominant species when occurring alone
or in concomitance with MRCoNS, no significant differences
were observed when addressing the single presence of MRCoNS.
Again, this might indicate a less prone host-tropism among
MRCoNS than among S. aureus or S. pseudintermedius, or the
capacity to adapt or temporarily coexists in different hosts. In
addition, owners tend to simultaneously carry both bacterial
types. Based on the strong association between involvement
in an IT case and CoPS-MRCoNS simultaneous carriage,
we reveal that owner-pet inhabitance favors the coincident
coexistence of the staphylococcal species with high virulence
potential and/or MDR pattern. This scenario does not only
disclose an exchange of relevant bacteria between owners
and pets, but also paves the way for the exchange of AMR
and virulence factors between concomitant strains. Whether
these owner-pet exchanged microbes have a true niche on
these pairs, versus transient detection after direct or indirect
contact, is unknown. However, these results suggest that owner-
pet inhabitance may significantly shape the staphylococcal
population composition of one another.

CONCLUSION

MRCoNS, especially MRSE, are common colonizers of healthy
owners and pets. They show high clonal diversity, represent a
reservoir of AMR genes and pose IT potential. The detection
of MRSE clonal lineages that circulate in human hospitals
and the community suggests that companion animals can
contribute to the dissemination of highly successful human
clones. Due to the sequential MRCoNS clones detected in
owners and pets over time, more longitudinal studies are
required to distinguish between persistent colonization, transient
carriage or mere contamination, as well the implication
of what the different statuses can imply for public health.
Individuals involved in cases of IT revealed to be prone
to simultaneous CoPS-MRCoNS co-carriage. These data
highlight the importance of companion animals as reservoirs
of important MDR opportunistic pathogens, which can be
transferred to in-contact individuals. Further epidemiological
studies including samples from environmental sites are
needed to elucidate the conditions by which MRCoNS
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are propagated within household settings, as well as to confirm
owner and pet cohabitation as a risk factor for the acquisition and
subsequent infection by MDR staphylococci.
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The aim of this work was to assess a novel pseudo-staphylococcal cassette chromosome 
mec (ΨSCCmec) element in methicillin-resistant Staphylococcus aureus (MRSA) blood 
isolates. Community-associated MRSA E16SA093 and healthcare-associated MRSA 
F17SA003 isolates were recovered from the blood specimens of patients with S. aureus 
bacteremia in 2016 and in 2017, respectively. Antimicrobial susceptibility was determined 
via the disk diffusion method, and SCCmec typing was conducted by multiplex polymerase 
chain reaction. Whole genome sequencing was carried out by single molecule real-time 
long-read sequencing. Both isolates belonged to sequence type 72 and agr-type I, and 
they were negative for Panton-Valentine leukocidin and toxic shock syndrome toxin. The 
spa-types of E16SA093 and F17SA003 were t324 and t2460, respectively. They had a 
SCCmec IV-like element devoid of the cassette chromosome recombinase (ccr) gene 
complex, designated as ΨSCCmecE16SA093. The element was manufactured from SCCmec 
type IV and the deletion of the ccr gene complex and a 7.0- and 31.9-kb portion of each 
chromosome. The deficiency of the ccr gene complex in the SCCmec unit is likely resulting 
in mobility loss, which would be an adaptive evolutionary mechanism. The dissemination 
of this clone should be monitored closely.

Keywords: methicillin-resistant Staphylococcus aureus, sequence type 72, pseudo-SCCmec, ccr gene, blood isolates

INTRODUCTION

Methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates were first identified in the 
early 1960s, immediately after the introduction of penicillinase-stable penicillins in the clinical 
setting (Jevons et  al., 1963). Now, the spread of MRSA strains represents a global concern 
with a recognizable healthcare burden. The mecA and mecC genes encoding penicillin-binding 
protein (PBP) 2a of low beta-lactam binding affinity confer beta-lactam resistance to the 
bacterial host by composing a mobile genetic element, namely, the staphylococcal cassette 
chromosome mec (SCCmec) (Ito et  al., 1999).
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The SCCmec element harbors two fundamental components: 
a mec gene complex and a cassette chromosome recombinase 
(ccr) gene complex. A unique combination of the mec gene 
complex class and the ccr gene complex allotype determines 
the type of the SCCmec element, and its variation within the 
joining- (J-) regions determine the subtypes of each SCCmec 
type. To date, 13 SCCmec types have been deposited together 
with numerous subtypes (International Working Group on the 
Classification of Staphylococcal Cassette Chromosome, 2009; 
Baig et  al., 2018). The mec gene complex includes the mecA 
or mecC gene, along with the regulatory mecR1 and mecI 
genes. The ccr gene complex comprises one or more ccr genes 
(Deurenberg and Stobberingh, 2008) accounting for the 
integration/excision of the SCCmec element into and out of 
the orfX gene in the staphylococcal chromosome (Katayama 
et  al., 2000). The SCCmec-like elements devoid of the mecA 
gene are denominated as an SCC as long as they share the 
following characteristics with SCCmec: carriage of the ccr 
gene(s), integration at integrated site sequences in the 
chromosome, and the presence of flanking direct repeat 
sequences. And those without the ccr genes are termed as the 
pseudo-(Ψ) SCCmec element.

Through a nationwide antimicrobial resistance surveillance 
in South Korea (Lee et  al., 2018), two mecA-positive MRSA 
blood isolates were identified as those carrying a non-typeable 
SCCmec element. To assess the non-typeable SCCmec, both 
genomes were entirely sequenced, and a novel ΨSCCmecE16SA093 
element was identified.

MATERIALS AND METHODS

Bacterial Isolates
A total of 586  S. aureus blood isolates collected between May 
2016 and April 2017 from six general hospitals in South Korea 
(Lee et  al., 2018) were screened. Among the 319 cefoxitin-
resistant isolates, E16SA093 and F17SA003, whose SCCmec 
elements could not be  typified, were selected for further study.

Antimicrobial Susceptibility Testing and 
the Determination of SCCmec Types
Antimicrobial susceptibility to antimicrobials used for 
staphylococci infection was determined by disk diffusion tests 
on Mueller-Hinton agar (Difco Laboratories, Detroit, MI, USA), 
following the CLSI guidelines (CLSI, 2018). S. aureus ATCC 
25923 was simultaneously tested in each batch for quality 
control. MRSA isolates were subjected to polymerase chain 
reaction (PCR) for mecA gene and SCCmec typing, as previously 
described (Oliveira and de Lencastre, 2002).

Multilocus Sequence Typing, agr  
Typing, and spa Typing
Multilocus sequence typing (MLST) was carried out by PCR 
and sequencing of the seven housekeeping genes, arcC, aroE, 
glpF, gmk, pta, tpi, and yqiL. Allelic numbers and sequence 

types (STs) were determined by comparing the obtained sequences 
to the database for S. aureus1. The agr type was determined 
by multiplex PCR (Gilot et  al., 2002), and spa typing was 
conducted by comparing the PCR-amplified nucleotide sequence 
of the variable repeat region of the spa gene against the 
Ridom  SpaServer2.

Whole Genome Sequencing
Bacterial whole genomes were sequenced with single-molecule 
real-time (SMRT) sequencing on a PacBio RSII instrument 
(Pacific Biosciences, Menlo Park, CA, USA) using genomic 
DNA from the S. aureus isolates extracted by a Wizard Genomic 
DNA Purification kit (Promega, Madison, WI, USA). SMRTbell 
template libraries were prepared, and adapter ligation was 
performed. Acquired sequencing data were de novo assembled 
by PacBio SMRT, read with the PacBio SMRT analysis software 
suite (version 2.3.0). Coding sequences (CDS), including tRNA 
and rRNA, were annotated using the NCBI Prokaryotic Genome 
Annotation Pipeline3. Nucleic acid sequences were compared 
using Basic Local Alignment Search Tool,4 and resistance and 
virulence determinants were searched for using ResFinder5 and 
VirulenceFinder6, respectively. Prophages were searched for 
using the PHAge Search Tool Enhanced Release7. For any 
putative ccr gene, the site-specific serine recombinase motif 
(Wang and Archer, 2010) and a modified motif by the consensus 
pattern (Perreten et  al., 2013) were searched for against the 
coding sequences of both genomes.

Nucleotide Accession Numbers
The nucleotide sequences of the entire genomes of S. aureus 
E16SA093 and F17SA003 were deposited in GenBank under 
accession numbers CP031130 and CP031131 for F17SA003 and 
E16SA093, respectively.

RESULTS AND DISCUSSION

Epidemiological Features of MRSA ST72
Following the one-year collection of the 586  S. aureus blood 
isolates, a total of 319 isolates (54.4%) were MRSA conferred 
by the mecA gene. A total of 176 (30.0%) isolates belonged 
to ST72; 112 of those isolates (63.6%) were MRSA, 65 were 
healthcare-associated (HA) MRSA, and 47 were community-
associated MRSA (CA-MRSA). All but three MRSA ST72 
isolates (97.3%, 109/112) carried SCCmec type IV, while one 
possessed SCCmec type II and the remaining two isolates 
(E16SA093 and F17SA003) had non-typeable elements.

1 http://pubmlst.org/saureus
2 http://www.spaserver.ridom.de
3 http://www.ncbi.nlm.nih.gov/books/NBK174280
4 http://blast.ncbi.nlm.nih.gov
5 https://cge.cbs.dtu.dk/services/ResFinder
6 https://cge.cbs.dtu.dk/services/VirulenceFinder
7 http://phaster.ca
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The MRSA ST72 harboring SCCmec IV (ST72-MRSA-IV) was 
one of the top three CA-MRSA clones in the USA until 2002 
as a pulse-field type USA700; however, the clone was suddenly 
eliminated from the country in 2004 (Tenover et  al., 2008). In 
South Korea, the ST72-MRSA-IV acceded a major CA-MRSA 
clone by 2005 (Kim et  al., 2007), and the ST72-MRSA-IV 
subsequently grew to be  a major HA-MRSA clone. This finding 
supports the idea that the ST72-MRSA-IV clone was disseminating 
from communities to hospitals (Song et  al., 2011).

Two mecA-Positive MRSA ST72 Blood 
Isolates Carrying a Non-typeable  
SCCmec Element
The CA-MRSA E16SA093 was recovered in September 2016 
from an 86-year-old female patient with acute infective 
endocarditis and infective spondylopathy. The patient was 
transferred from an acute care hospital to a general hospital 
located in Gwangju city, and blood cultures were carried 
straightaway. The bacteremia originated from a bone infection, 
and empirical treatment was started with cefazoline. Definitive 
treatment was followed with teicoplanin within 72  h after 
the initial blood culture, and the patient was cured. The 
HA-MRSA 17SA003 was recovered in January 2017 from a 
63-year-old male patient with diabetes mellitus and stage 4 
chronic kidney disease hospitalized in a general hospital in 
Busan city. An initial blood culture was performed on the 
13th day of hospitalization, and the origin of S. aureus 
bacteremia was unidentified. Empirical treatment with cefazoline 
was replaced to vancomycin within 72  h, and the patient 
was cured.

Both MRSA isolates belonged to ST72 and agr-type I. They 
were negative for both Panton-Valentine leukocidin and toxic 
shock syndrome toxin (Table 1). The spa-types of E16SA093 
and F17SA003 were t324 and t2460, respectively. Among the 
10 antimicrobials tested, the E16SA093 isolate was resistant 
only to cefoxitin, while F17SA003 was resistant not only to 
cefoxitin but also to erythromycin and clindamycin.

Genome Sequencing and Identification of 
the Novel ΨSCCmecE16SA093
The de novo assembly of the genome resulted in a 
2,767,631,390-bp circularized chromosome, including 2,564 
assigned CDSs, 60 tRNAs, and 19 rRNAs for E16SA093, and 
a 2,849,947,596-bp circularized chromosome, including 2,546 
CDSs, 60 tRNAs, and 19 rRNAs for F17SA003. The overall 
GC contents were 32.9% for both. No plasmid was identified. 
Acquired genetic elements by both chromosomes were alike, 
including two intact Staphylococcus prophages (44.1-kb ϕNM3 
and 41.2-kb Sap26), 17 virulence factors, and three antimicrobial 
resistance genes, with an extra copy of blaZ for F17SA003. 
No known heavy metal resistance genes were identified for either.

For the SCCmec element, a class B mec gene complex lacking 
the ΨIS1272 upstream from the mecA gene was identified, 
and neither the ccr gene nor any putative site-specific serine 
recombinase gene was identified elsewhere in the chromosome 
(Figure 1). The ΨSCCmec, designated as ΨSCCmecE16SA093, 
resembled a SCCmec type IV, which is common in MRSA 
ST72. When compared with the genome of HL1 that is a CA 
ST72-MRSA-IV recovered in South Korea before 2010 (Chen 
et  al., 2013), a 12.6-kb region was deleted from the SCCmec 
type IV element, and 7.0- and 31.9-kb chromosomal DNA 
region was deleted in the E16SA093 and F17SA003, respectively. 
The Ccr recombinase involves the site-specific integration/
excision of SCCmec elements (International Working Group 
on the Classification of Staphylococcal Cassette Chromosome, 
2009), and the CcrA2/CcrB2  in the SCCmec IV is targeting 
the attB site at the orfX gene (Wang and Archer, 2010). The 
ΨSCCmecE16SA093 was indeed integrated exactly at attB, suggesting 
the subsequent elimination of the ccrA2/ccrB2 genes from the 
SCCmec IV element after the integration event. As the ΨIS1272 
was absent, IS-associated recombination was suspected. However, 
no palindromic sequences were observed in either end of the 
deleted 19.7- and 44.5-kb DNA fragments targetable by IS1272, 
with an insertion sequence involved in the structure-dependent 
transposition or stem-loop replacement (Wan et  al., 2017).

TABLE 1 | ST72 MRSA isolates harboring the ΨSCCmecE16SA093 element.

Isolate Year of 
isolation

Infection 
type

Clinical details/sex Antimicrobial 
resistance patterna

Antimicrobial 
resistance geneb

Virulence-associated 
genec

spad pvle TSST-1e agr

E16SA093 2016 CA
Bloodstream infection 
originated from bone 
infection/female

FOX mecA, aadD, blaZ

seo, sem, sei, seu, sen, 
seg, lukE, lukD, aur, 
splA, splB, hlgB, hlgC, 
hlgA, hlb, sak, scn

t324 ND ND I

F17SA003 2017 HA
Bloodstream infection 
of unspecified origin 
of infection/male

FOX, EM, CLN
mecA, aadD

blaZ f

seo, sem, sei, seu, sen, 
seg, lukE, lukD, aur, 
splA, splB, hlgB, hlgC, 
hlgA, hlb, sak, scn

t2460 ND ND I

CA, community-associated; HA, healthcare-associated; spa, staphylococcal protein A; pvl, Panton-Valentine leukocidin; TSST-1, toxic shock syndrome toxin; agr, accessory gene 
regulator. aThe antimicrobial resistance was determined against a panel of 10 antistaphylococcal agents, including cefoxitin (FOX), erythromycin (EM), clindamycin (CLN), 
quinupristin/dalfopristin, cotrimoxazole, mupirocin, vancomycin, teicoplanin, linezolid, and tigecycline.
bThe acquired antimicrobial resistance gene was searched for against the database of ResFinder.
cThe virulence-associated gene was searched for against the database of VirulenceFinder.
dThe spa type t324 was 07-23-12-12-17-20-17-12-12-17, and the spa type t2460 was 26-17-34-34-17-20-17-17-17-16.
eND, Not detected.
fTwo copies of the blaZ gene were identified in the F17SA003 chromosome.
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Epidemiology of ΨSCCmec
The fitness benefit of the ccr-gene-loss from SCCmec, resulting 
in an inherent mecA in the chromosome, has never been 
assessed, while spontaneous mecA-gene-loss in the absence of 
selective pressure, driven by the huge biological cost of gene 
expression, has been demonstrated (Noto et  al., 2008). The 
furnished mecA gene could provide advantages to MRSA in 
the beta-lactam-abundant habitat, such as the clinical settings, 
suggesting a course of adaptive evolution for MRSA. While 
ΨSCCmec is occasionally identified in MRSA (Chen et  al., 
2010), methicillin-resistant coagulase-negative staphylococci 
(MRCNS) carrying the element is much more common (Perreten 
et  al., 2013; Shore and Coleman, 2013). The speculation of 
MRCNS to be a reservoir of SCCmec (Archer et  al., 1994), 
in the MRSA is inspiring.

In this study, we  evaluated MRSA ST72 isolates carrying 
ΨSCCmecE16SA093, which was likely being fabricated from the 
SCCmec type IV. Excised portions of the chromosomes differed 
in size, and the event likely occurred independently, indicating 
that the clonal dissemination of ST72-MRSA-ΨSCCmecE16SA093 
has not yet been occurred. The immobile mecA gene could 
make the MRSA fit the antimicrobial-abundant habitat, even 
though the mecA gene expression is known to be  costly. 
Further study of the molecular mechanisms driving ccr gene 
loss is needed, and dissemination of the clone should 
be  surveilled.
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Third generation cephalosporins (3GC) are one of the main choices for treatment of
infections caused by multidrug-resistant (MDR) Gram-negative bacteria. Due to their
overuse, an increasing trend of resistance to 3GC has been observed in developing
countries. Here, we describe fecal colonization of 3GC-resistant (3GCr) Escherichia
coli in healthy infants (1–12 months old) living in rural areas of Bangladesh. We found
that stool samples of 82% of infants (n = 100) were positive for 3GCr E. coli with a
mean ± standard deviation of 6.21 ± 1.32 log10 CFU/g wet weight of stool. 3GCr
E. coli encompasses an average one third (33%) of the total E. coli of stool. Almost 77%
(n = 63) of these 3GCr E. coli were MDR (or resistant to ≥3 classes of antibiotics). Around
90% (n = 74) of 3GCr E. coli were extended spectrum beta-lactamase (ESBL)-producing
in which blaCTX−M−group−1 was the predominant (96%, n = 71) ESBL-gene followed by
blaTEM (41%, n = 30) and blaOXA−1 (11%, n = 8). A significant proportion (26.5%, n = 22)
of 3GCr E. coli was pathogenic, comprising two types, enteroaggregative (EAEC, n = 19)
and enteropathogenic (EPEC, n = 3). Colonization of 3GCr E. coli in infant guts was
not associated with demographic characteristics such as age, sex, mode of delivery,
maternal and infant antibiotic use, disease morbidity, and feeding practices. The high
rate of colonization of 3GCr E. coli in infants’ guts is a serious public health concern
which needs immediate attention and warrants further studies to explore the cause.

Keywords: colonization, multidrug-resistant, E. coli, ESBL, third generation cephalosporins

INTRODUCTION

The rapid rise of multidrug-resistant (MDR) bacterial infections is a major public health concern
and a growing threat to the global health security. Unregulated use of broad spectrum antibiotics
and widespread reservoirs of these pathogens are main contributors to this problem (Hilty et al.,
2012). Broad spectrum antibiotics, in particular third generation cephalosporins (3GC), are among
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the most frequently prescribed drugs for the treatment of
infections caused by Enterobacteriaceae (Pereira et al., 2004;
World Health Organization [WHO], 2017). Failure of treatment
with these antibiotics has increasingly been reported due to
the emergence of extended spectrum beta-lactamases (ESBLs)
during the last two decades (Pitout and Laupland, 2008). Several
studies have suggested that children are more likely to be
exposed to antibiotics both directly (Alexander et al., 2011;
Saari et al., 2015) and indirectly, through exposure to antibiotics
taken by their mothers (Verani et al., 2010; Macones et al.,
2012; Ledger and Blaser, 2013; de Tejada, 2014). This direct
and/or indirect consumption of antibiotics might thus affect
infants’ intestinal microflora, including Escherichia coli, which
is one of the first bacterial species that colonizes the infant gut
(Hewitt and Rigby, 1976).

Antimicrobial resistance in commensal bacteria is worrisome
due to its ability to spread to pathogens (Munk et al., 2018).
Recent studies have showed that school children and children
up to 2 years of age were colonized by E. coli resistant to broad
spectrum antibiotics and ciprofloxacin, respectively (Gurnee
et al., 2015; Ferjani et al., 2017). However, there is no information
on the carriage rate and abundance of this antibiotic-resistant
E. coli in relation to the total number of E. coli present in the
gut. In addition, there is no data available on the carriage rate
of MDR E. coli, including ESBL-producing E. coli, among infants
under 1 year old. Therefore, this study evaluated the prevalence
and rate of colonization of this organism during the early life of
infants. We determined the prevalence, abundance, and carriage
rate of 3GC-resistant (3GCr) E. coli, including pathogenic E. coli,
by analyzing culturable E. coli in infant’s stool samples.

MATERIALS AND METHODS

Ethics Statement
The research and the ethical review committees of icddr,b
approved and monitored the progress of the study. Informed
written consent was obtained from mothers of all infants either
by signature or, for those who were not literate, by thumbprint
after verbal communication. Samples were identified with codes
to preserve anonymity. A witness also signed each informed-
consent form. All authors vouch for the completeness and
accuracy of the data and analyses presented.

Study Design, Site, and Enrollment of
Participants
We conducted a cross-sectional study of children <1 year of
age living in five rural villages of Matlab and Hajiganj, sub-
districts of Chandpur district of Bangladesh, between March
and October 2017. Hajigonj has a total area of 189 km2 with
327,367 people living in 64,257 households at 11 unions, whereas
Matlab Uttar has a total area of 279 km2 with 382,195 people
in 62,418 households at 15 unions (DGHS Health Bulletin,
2014). According to the The World Bank (2016) the crude birth
rate for Bangladesh is 18.95 per 1000 people as of 2016, so
an approximation for the number of infants in Hajigonj and
Matlab Uttar is 6,200 and 7,250, respectively, or less than 13,500

total infants (2016). For study sites we included one union
from each sub-district. A total of 100 households (50 from each
union) containing one infant (age ≤1 year) in each household
were enrolled in the study after obtaining written informed
consent from the mothers of enrolled infants. A pre-tested survey
questionnaire was used to collect information on age, sex, mode
of delivery, maternal and child antibiotic consumption, disease
morbidity, and feeding practices.

Sample Collection
A total of 100 stool samples were collected from 100 infants
located in the selected households using sterile stool containers
provided earlier to all the mothers on the date of the interview.
Assuming an infant population in Hajigong and Matlab Uttar of
13,500, the sample size of 100 stool samples would imply a margin
of error of approximately 10% with 95% confidence interval for
prevalence rates of 3GCr E. coli (Dhand and Khatkar, 2014).
The field staff collected the samples on the following day and
transported it to icddr,b laboratory (Dhaka, Bangladesh) on ice
for microbiological analyses within 4 h.

Enumeration and Isolation of E. coli
Both total and 3GCr E. coli were enumerated using the drop
plate method as described previously (Herigstad et al., 2001). In
brief, MacConkey agar plates (Becton Dickson, MD) with and
without fixed concentrations of cefotaxime (1.0 µg/mL) were
used to enumerate 3GCr E. coli and total E. coli, respectively.
A total of four 10-fold serial dilutions (10−1 to 10−4) of each stool
sample were made and 50 µl from each dilution was inoculated
onto MacConkey agar plates with and without antibiotic added
to the culture media. All plates were incubated at 37◦C for
18 h and the number of colony forming units (CFUs) per gram
wet weight of stool sample were counted from the dilution of
readable range. Proportion of 3GC-sensitive (3GCs) E. coli CFUs
per gram feces (CFU/g) count was calculated by subtracting
3GCr CFU/g count from corresponding total E. coli CFU/g.
Further, proportion of 3GCr E. coli count was measured in
respect to the total E. coli count obtained on MacConkey agar
plate. At least three colonies from each sample were confirmed as
E. coli by API-20E (bioMerieux, France) and stored at −80◦C for
further characterization.

Antibiotics Susceptibility Test
Antibiotic susceptibility of E. coli (one isolate per sample) was
determined by standard disk diffusion technique following the
Clinical and Laboratory Standards Institute (CLSI) guidelines
(Patel, 2017). The antibiotics used in this study were ampicillin
(10 µg), gentamycin (10 µg), tetracycline (30 µg), meropenem
(10 µg), imipenem (10 µg), ceftriaxone (30 µg), cefotaxime
(30 µg), ceftazidime (30 µg), cefepime (30 µg), colistin (10 µg),
ciprofloxacin (5 µg), nalidixic acid (30 µg), azithromycin
(15 µg), trimethoprim/sulfamethoxazole (25 µg), nitrofurantoin
(30 µg), and chloramphenicol (30 µg) (Oxoid, United Kingdom).
The zone of inhibition was measured and the isolates were
classified as resistant, intermediate, or sensitive according to
the interpretation guideline provided by the CLSI (Patel, 2017).
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An isolate was considered MDR if resistant to three or more
classes of antibiotics.

Test for Extended Spectrum
Beta-Lactamase (ESBL)
Extended spectrum beta-lactamase was tested by combination
disk test (CDT) as described by CLSI (Patel, 2017). Disks
containing a 3GC, including cefotaxime, CTX (30 µg)
or ceftazidime, CAZ (30 µg) alone and in combination
with clavulanic acid (CLA, 10 µg) were applied (Oxoid,
United Kingdom). The zone of inhibition around the CTX or
CAZ disk combined with CLA was compared with the inhibition
zone around CTX or CAZ disks alone. The test was considered
positive for ESBL-production if the inhibition zone diameter was
≥5 mm larger with CLA than without (Patel, 2017).

PCR for ESBL Genes and
E. coli Pathotypes
All 3GCr E. coli were tested for ESBL genes considered priorities
due to their clinical relevance, specifically: blaCTX−M−group−1,
blaSHV , blaTEM, and blaOXA−1. These genes were tested by
PCR using primer sequences and PCR conditions as described
previously (Islam et al., 2017). The pathotypes of E. coli (EPEC,
ETEC, EAEC, EIEC, and STEC) were identified by multiplex
PCR of different pathogenic genes according to the procedure
described earlier (Talukdar et al., 2013).

Statistical Data Analysis
Data were entered in SPSS 20.0 (IBM Inc., Chicago, IL,
United States). Data cleaning, statistical analysis and graphical
presentation were done in Stata 13.0 (College Station, TX,
United States) and R-3.4.2 (R Core Team, 2014). E. coli
concentrations were log10 transformed in order to assess
the association between demographic variables with 3GCr
E. coli carriage using chi-square test and non-parametric
Mann–Whitney U-test. Population counts of the susceptible
and resistant isolates from the same infant were compared
using Wilcoxon Rank-Sum test on the paired data. Statistical
significance was determined using alpha = 0.05 for all tests except
for the Wilcoxon Rank-Sum test which stratified analyses by age
(1–3, 4–6, 7–9, and 10–12 months). For this, the conservative
Bonferroni correction was applied to adjust alpha to 0.0125
(0.5/4) to correct for multiple comparisons.

RESULTS

Carriage of 3GCr E. coli in Infant’s Fecal
Sample
Of the 100 stool samples from infants, 82% were positive for 3GCr
E. coli. Mean count ± standard deviation for total E. coli was
6.86 ± 1.56 log10 E. coli CFU/g of stool while the mean count
of 3GCr E. coli was 6.21 ± 1.32 log10 CFU/g. On average, 3GCr
E. coli encompasses approximately one third of (33%) of the total
E. coli present/g wet weight of stool.

Antibiotic Susceptibility of 3GCr E. coli
All the 3GCr (n = 82) E. coli isolates were tested for susceptibility
against a panel of 13 antibiotics. Resistance to multiple antibiotics
other than 3GCr was very common, with 77% (n = 63) of isolates
classified as MDR. None of the isolates were resistant to colistin
or carbapenem (Figure 1).

Prevalence of ESBLs Among 3GCr
E. coli Isolates
CDT of all 3GCr E. coli (n = 82) isolates revealed that more than
90% (n = 74) were ESBL-producing. Among ESBL-producing
isolates, 96% (n = 71) were positive for blaCTX−M−group−1, 41%
(n = 30) for blaTEM, and 11% (n = 8) for blaOXA−1. Of the
8 CDT negative isolates, 4 were positive for blaCTX−M−group−1
indicating that these isolates might have co-produced ESBL and
AmpC enzymes. Given the high rates of positivity for detection
of blaCTX−M−group−1, further molecular characterization for
resistance genes was not conducted; carriage of multiple
mechanisms of resistance is possible but was not explored.

Prevalence of E. coli Pathotypes Among
3GCr E. coli Isolates
Analysis of virulence genes among 3GCr isolates revealed that
23% (n = 19) of the isolates were positive for genes specific for
EAEC (aatA, aaiC) and 3.6% (n = 3) of the isolates were positive
for genes specific for EPEC (bfp, eae). No other virulence genes
were detected (lt, st, ipaH, and ial).

Determinants of 3GCr E. coli Carriage
Among Infants
Statistical analysis of results did not reveal any significant
association between the presence of 3GCr E. coli in infant stool
and characteristics of the infant, including gender, religion, age,

FIGURE 1 | Prevalence of 3GCr E. coli resistant to different classes of
antibiotics in infants aged from 1 to 12 months (n = 82). AMP, ampicillin; AZM,
azithromycin; FEP, cefepime; NA, nalidixic acid; CIP, ciprofloxacin; SXT,
sulfamethoxazole; TE, tetracycline; CN, gentamycin; F, nitrofurantoin; C,
chloramphenicol; MEM, meropenem; CT, colistin; IMP, imipenem; 3GCr, third
generation cephalosporins resistant.
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mode of delivery, feeding practice of child, diarrheal history, and
maternal and child antibiotic consumption (Table 1). Moreover,
association between the rate of colonization of 3GCr E. coli in
the child’s gut and demographic characteristics of infant (age,
p = 0.5; delivery mode, p = 0.8; infant and mother antibiotic
consumption, p = 0.2, p = 0.4; and infant diarrhea, p = 0.2) were
not statistically significant in non-parametric Mann–Whitney
U-test (Table 2). Therefore, the presence or abundance of 3GCr
E. coli in infant stools in this study could not be explained
by some of the most common risk factors, including prior
exposures to antibiotics.

Age-Wise Distribution of Fecal Carriage
of 3GCr E. coli in Respect to 3GCs E. coli
We calculated the mean count of 3GCr E. coli among infants of
the same age groups and plotted the distribution with 1 month
intervals in order to determine if the CFU count of resistant
microflora changes with infant age. Analysis of mean count of
3GCr up to 12 months showed that log10 CFU mean count of
3GCr even at 3 months of age was high (6.43 log10) and consistent
in subsequent months (Figure 2), indicating early appearance
of 3GCr E. coli in infants. However, the percentage of infants
infected with resistant E. coli population (3GCr and MDR) was
progressively increased as infant age grown by months (Figure 3).

We compared the differences between 3GCr and 3GCs E. coli
counts among infants of the same age groups at 1–3, 4–6, 7–9,
and 10–12 months of age to examine whether 3GCr E. coli
co-exist with the 3GCs favorably without selective pressure of

TABLE 1 | Demographic characteristics of infants with and without fecal carriage
of third generation cephalosporins resistant (3GCr) E. coli.

Characteristics 3GCr E. coli p-Value

Positive,
n = 82 (%)

Negative,
n = 8 (%)

Sex (Male) 44 (54) 3 (38) 0.472

Religion (Muslim/Hindu) 72 (88) 5 (63) 0.087

Age ≤6 months 33 (40) 5 (63) 0.275

Mode of delivery (CS)∗ 27 (32) 3 (38) 1.000

Mode of delivery (NVD)∗ 27 (32) 3 (38) 1.000

Exclusively breast
feeding

1 (1) 0 1.000

Exclusively formula
feeding

1 (1) 0 1.000

Complementary
feeding

80 (98) 7 (88) 1.000

Diarrhea (Yes) 9 (11) 0 0.593

Antibiotic consumption
(6 months before)

53 (65) 3 (38) 0.149

Other complication
(Cold)

47 (57) 2 (25) 0.135

Maternal antibiotic
consumption

12 (15) 1 (13) 1.000

∗NVD, normal vaginal delivery; CS, cesarean section. ∗Mode of Delivery (CS and
NVD) was obtained for 64 cases, and information from the remaining 36 cases was
not available. Number in the parentheses indicates percentage.

TABLE 2 | Association between demographic variables and third generation
cephalosporins resistant (3GCr) E. coli colonization in infants’ gut.

Factors Characteristics Frequency (n) 3GCr E. coli
mean count
(CFU/g wet

weight of stool)

p-Value

Infant age Age <= 6 33 3.2 × 106 0.630

Age > 6 49 2.1 × 106

Mode of
delivery

NVD 27 3.3 × 106 0.665

CS 27 2.4 × 106

Child
antibiotics

Yes 53 3.2 × 106 0.259

No 29 1.6 × 106

Child
diarrhea

Yes 9 1.3 × 106 0.632

No 70 2.2 × 106

Maternal
antibiotics

Yes 12 4.2 × 106 0.758

No 70 2.3 × 106

NVD, normal vaginal delivery; CS, cesarean section.

antibiotics. There was no significant difference in the population
of 3GCr and 3GCs E. coli using Wilcoxon Rank-Sum test
at any age group except for the oldest one, 10–12 months
(p = 0.011) (Figure 4), suggesting that 3GCr E. coli can
stably persist like 3GCs E. coli from early months of life.
Notably, statistical significance in the difference in 3GCr and
3GCs E. coli amongst infants 10–12 months old is borderline
significant compared to the Bonferroni adjusted significance
level of alpha = 0.0125 for the age-stratified Wilcoxon Rank-
Sum test.

DISCUSSION

We found an extremely high prevalence of both 3GCr E. coli
(82%) and ESBL-producing E. coli (74%) in stool samples of
healthy infants living in rural areas of Bangladesh. Despite the
relatively small sample size (n = 100) chosen based on logistic
constraints, the high prevalence rates are likely representative of
Bangladeshi infants under 1 year old in the study area within a
margin of error of 10% (with 95% confidence interval). Even with
the associated uncertainty, this is the highest prevalence of ESBL-
producing E. coli in healthy human guts observed to date. For
example, in a study in Tunisia, the prevalence of MDR E. coli
was 6.6% in children aged between 6 and 12 years (Ferjani et al.,
2017). The rates of 3GCr E. coli in healthy children at various ages
was reported as 2.9% in Sweden, 2.7% in Portugal, and 10% in
Senegal (Guimaraes et al., 2009; Kaarme et al., 2013). The fecal
carriage rate of ESBL-producing Enterobacteriaceae in healthy
children (0–59 months) was much higher (59%) in central Africa
(Farra et al., 2016). None of these studies have reported the data
on culturable 3GCr E. coli as a proportion of total culturable
E. coli in stool samples. In our study we found that around one
third of the total E. coli colonies obtained in culture were 3GCr,
which is alarming.
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FIGURE 2 | Variations in carriage rates of 3GCr E. coli in infants at different ages from 3 to 12 months. The log10 mean count of 3GCr CFU from infant at 1 and
2 month of age was excluded because only one infant of each month was obtained for these time periods. Error bars are the standard errors of the results for each
age group. 3GCr, third generation cephalosporins resistant.

FIGURE 3 | Age wise distribution of prevalence of 3GCr, MDR, and ESBL-P
E. coli in infant stool samples. 3GCr, third generation cephalosporins resistant;
ESBL-P, ESBL-producing; MDR, multidrug-resistant.

The difference between 3GCr and 3GCs E. coli gives an
indication of fitness costs for the maintenance of resistance
within the gut microbial community. The proportion of 3GCr
amongst the total E. coli (sum of 3GCr and 3GCs E. coli)
was not significant in infants at different age groups, indicating
that the competitiveness of resistant bacteria with normal
residential flora within the gut is not influenced by age. There

may be a low fitness cost associated with persistence and
dissemination of resistance. Indeed, Cottell et al. (2012) suggest
a low fitness cost associated with plasmid (pCT) carrying
the resistance gene blaCTX−M−14 for E. coli, as the E. coli
were able to persist and disseminate readily even in the
absence of selective pressure from antibiotics (Cottell et al.,
2012). Our findings also displayed congruence with previous
reports demonstrating that tetracycline- and ampicillin-resistant
isolates persist continuously without any selective pressure
of antibiotics in the gut of different age groups of children
(Karami et al., 2006, 2008).

The implication of this high load of 3GCr E. coli is substantial
in the context of child health safety. Antibiotic resistant E. coli
and other common commensals of the gut including Klebsiella
spp. and Acinetobacter spp. are amongst the leading causes of
community-acquired serious infection in Southeast Asia. In a
cross sectional study at five sites across Southeast Asia, Saha
et al. (2018) found that only 17% of possible serious bacterial
infections (pSBI) identified in young children were resistant
to first line antibiotics. Resistant infections, as compared to
susceptible infections, are linked with worse outcomes. For
example, in Tanzania, children with septicemia caused by bacteria
producing extended-spectrum beta-lactamases were almost twice
as likely to die compared to non-ESBL infections (71% mortality
rate vs. 39%) (Blomberg et al., 2007). In the present study,
the observed high carriage rate and high relative proportion
of culturable 3GCr E. coli may harbinger higher rates of 3GCr
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FIGURE 4 | Comparative analysis of carriage rates (in CFU/g wet weight of stool) of 3GCr and 3GCs E. coli within similar age group of infants. (A) 1–3 months of
age, (B) 4–6 months of age, (C) 7–9 months of age, and (D) 10–12 months of age. 3GCr, third generation cephalosporins resistant; 3GCs, third generation
cephalosporins sensitive; CFU, colony forming unit.

E. coli as a proportion of pSBI infections. Further research
linking fecal carriage of resistant bacteria to risks of resistant
infections is warranted.

Apart from increasing the risk of resistant infections, high
carriage of 3GCr Enterobacteriaceae in the gut results in
shedding through infant stool and thus contributes to an elevated
risk of exposure to nearby people and animals. There is a
common belief among illiterate or less literate mothers in the
community that infant stool is not a health hazard or harmful,
especially in comparison to adult stool (Yeager et al., 1999;
Gil et al., 2004). According to a national survey during the
period from 2012 to 2013 in Bangladesh, feces of about 61%
children of age 0–2 years were disposed unsafely where the
percentage was much higher in rural areas (67%) compared
to urban areas (40%) (Bangladesh Bureau of Statistics [BBS]
and United Nations Children’s Fund [UNICEF], 2014). Thus
household members including mothers or caregivers are exposed
to fecal MDR bacteria through unsafe disposal of infant feces.
Similarly, improper disposal of infant’s stool in front yards
or nearby ditches may contribute to transmission of these

resistant bacteria to domestic and wild birds and/or other animals
(Hasan et al., 2012).

The 3GCr E. coli isolates in this study were predominantly
resistant to azithromycin and ciprofloxacin, among other
antibiotics (Figure 1). Azithromycin is the first line of choice for
treatment of shigellosis in children (Centers for Disease Control
and Prevention [CDC], 2006) and a second line of choice for
treatment of shigellosis in adults (World Health Organization
[WHO], 2005). Although no infants were reported to be
suffering from shigellosis during the study period, shigellosis
has been identified as a major contributor to moderate-to-
severe diarrheal disease in neighboring Mirzapur (Kotloff et al.,
2013). Management of this infection might be complicated due
to the high prevalence of azithromycin resistance in the study
community. Among other antibiotics, ciprofloxacin resistance
was found among 37% of 3GCr isolates, which is even higher than
a previous report that showed resistance in 19% of E. coli obtained
from healthy children (Gurnee et al., 2015). Interestingly, only
29% of E. coli isolates in this study were resistant to tetracycline,
a first generation antibiotic which is less commonly used for the
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treatment of E. coli infections in the community (Calva et al.,
1996; Domínguez et al., 2002). Tetracycline is not prescribed
in children due to its effect on the growth of bones and teeth
(Sánchez et al., 2004). It suggests that by reducing the use
of antibiotics in humans and animals, it is possible to reduce
the burden of resistant microorganisms and this can eventually
restore the efficacy of the existing antibiotics even in a setting
like Bangladesh where overuse of antibiotics and burden of AMR,
both are way too high.

Our study demonstrated that infant’s guts serve as a
reservoir of E. coli resistant to multiple antibiotics including
3GCr and fluoroquinolones, which are critical for the
treatment of many infectious diseases in humans (World
Health Organization [WHO], 2017). High rates of ESBL-
producers among 3GCr isolates in the present study is alarming
because patients with community acquired infections as
well as their household members carrying ESBL-producing
Enterobacteriaceae may spread resistance to other people
in their community (Valverde et al., 2008). This can be
explained by the overall high prevalence of ESBL E. coli
infections in the community. A recent study in Bangladesh
has reported that 34% of all clinical isolates of E. coli from
patients with extra-intestinal infections were ESBL-producing
(Khan et al., 2018).

The probable cause of colonization with ESBL-producing
Enterobacteriaceae among pre-school children in Laos was
reported due to misuse of antibiotics (Stoesser et al., 2015). In our
study, we did not observe this: there was no significant association
between colonization and reported previous use of antibiotic
treatment among infants. Previous studies have suggested that
acquisition of antimicrobial resistant bacteria or antimicrobial
resistant genes in the infant gut might occur during and/or
after the delivery (Zhang et al., 2011). Specifically, mothers’ flora
during normal vaginal delivery or environmental flora during
caesarian (C-section) delivery colonize the infant gut (Zhang
et al., 2011). Therefore, AMR bacteria from the mother or
hospital environment may contribute to infant carriage. For
example, a study carried out in Tunisia showed that 20% of
patients acquired 3GCr E. coli in their gut due to nosocomial
infection (Maamar et al., 2016). In our study, we did not find
any significant differences in the level of colonization with
3GCr E. coli between infants with normal vaginal delivery
and infants delivered through C-section (Tables 1, 2). In
Bangladesh, a recent study showed that delivery by C-section
increased from 3.5 to 23% between 2004 and 2014 (Khan
et al., 2017) and it is a common practice that prophylactic
antibiotics are used before and after the surgery. During
post-operative care mothers start to breastfeed the newborn
while still on antibiotic treatment. This leads to transfer of
antibiotics in its active form to infants and thus their gut
microbiota may shift to survive in an antibiotic selective
environment (Mathew, 2004). Further in Dhaka, Bangladesh,
a significant proportion of newborns (98%) receive antibiotics
(sulfonamides, fluoroquinolones, metronidazole, penicillins, etc)
before 6 months of age (Rogawski et al., 2017), which renders
the selective environment for antibiotic-resistant bacteria. Even
in a very low concentration of antibiotics, fitness cost for

microorganisms to become resistant is lower than becoming
antibiotic susceptible (Sandegren, 2014). Surprisingly, in our
study neither history of antibiotic use or previous record of
hospitalization was associated with 3GCr colonization nor were
gender, religion and feeding practices. The lack of association
may be due to the high rate of colonization combined with
relatively small sample size (n = 100). The low proportion of
infants without 3GCr limits statistical analyses. Therefore, further
studies, particularly focused on larger sample sizes, are needed to
identify the causes of the high rate of antibiotic resistance carriage
among infants under 1 year old in this setting.

CONCLUSION

The high rate of intestinal carriage with MDR microorganisms
among infants in rural Bangladesh is a serious concern that
can jeopardize the management of infectious diseases. In
addition, shedding of high number of MDR microorganisms
through infant feces increases the risk of widespread
transmission of these microorganisms in the community
and environment. This study raises important questions
about how the acquisition of resistant microorganisms
takes place in infants’ guts within the first 3 months
of life, what are the major drivers of acquisition, and
what are the implications on infant health and well-being.
Future studies should explore the source of acquisition of
resistance in infants, to understand whether such resistance
is primarily acquired from the environment, vertically from
the child’s mother, or through selective pressure from
pediatric antibiotic use.
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We compared the diversity of extended-spectrum β-lactamases (ESBLs) producing
Escherichia coli (E. coli) in wastewater of a municipal wastewater treatment plant.
This was done by analyzing multiple antibiotic resistant phenotypes and genotypes.
Also, we investigated the antibiotic resistance transfer mechanism of the plasmid by
comparing the antibiotic resistance gene linked transfer using a conjugative test, and
by analyzing the full-length DNA sequence of one plasmid. The results showed that
50 ESBLs-producing E. coli isolates were isolated from 80 wastewater samples at the
rate of 62.5% (50/80), out of which 35 transconjugants were obtained with the multiple
antibiotic resistant transfer rate as high as 70.0% (35/50). Multiple antibiotic resistance
was shown in all transconjugants and donor bacteria, which were capable of resistance
to 11 out of 15 kinds of antibiotics. Both transconjugants and donors were capable
of resistance to the Ampicillin and Cefalotin at a rate of 100.00% (35/35), while the
total antibiotic resistant spectrum of transconjugants narrowed at the rate of 94.29%
(33/35) and broadened at the rate of 5.71% (2/35) after conjugate to the donor bacteria.
PCR showed that the resistant genotypes decreased or remained unchanged when
compared to donor bacteria with transconjugants while the blaTEM and blaCTX-M genes
were transferred and linked at a rate of 100.00% (35/35) and the blaSHV gene was at
the rate as high as 94.29% (33/35). However, the qnrS gene was transferred at a low
rate of 4.17% (1/24). In addition, the major resistance gene subtypes were blaTEM-1,
blaSHV-11, and blaCTX-M-15 according to sequencing and Blast comparison. Plasmid
wwA8 is a closed-loop DNA molecule with 83157 bp, and contains 45 predicted genes,
including three antibiotic resistant resistance genes, blaCTX-M-15, blaTEM-1 and qnrS1,
which can be transferred with E. coli in vitro. This study shows that E. coli isolated

Frontiers in Microbiology | www.frontiersin.org 1 April 2019 | Volume 10 | Article 633522

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.00633
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.00633
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.00633&domain=pdf&date_stamp=2019-04-03
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00633/full
http://loop.frontiersin.org/people/708732/overview
http://loop.frontiersin.org/people/708729/overview
http://loop.frontiersin.org/people/537161/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00633 April 2, 2019 Time: 17:35 # 2

Li et al. Antibiotic Resistance Transfer in E. coli

from wastewater was capable of transferring resistance genes and producing antibiotic
resistant phenotypes. The plasmids containing different resistance genes in E. coli play
an important role in the multiple antibiotic resistant transfer. Most importantly, antibiotic
resistant resistance genes have different transfer efficiencies, the blaTEM and blaCTX-M

genes transferred at a rate of 100.00% and linked transfer in all 35 transconjugants.

Keywords: Escherichia coli, ESBLs, multiple antibiotic resistant, transconjugants, plasmid

INTRODUCTION

Enterobacteriaceae, particularly Escherichia coli (E. coli), are
among the most important zoonotic pathogens. They are widely
distributed in aquatic environments and can cause infectious
disease in most animals and humans, such as urinary tract
infections, diarrhoea, enteritis, and septicaemia (Lewis et al.,
2007; Ang et al., 2016). Abuse and overuse of antibiotics in
the clinic has resulted in the emergence of multiple antibiotic
resistant bacteria strains (Goldman, 2004). In addition, an
increase in the prevalence of multiple antibiotic resistant E. coli
isolates has been reported worldwide. In recent decades, beta-
lactams, as well as fluoroquinolones have been used as important
therapeutic choices against bacterial infection. Therefore, the
selective pressure resulting from their use and sometimes
misuse contributes to antibiotic resistance (Ben Said et al.,
2016; Correia et al., 2016). One of the most important
mechanisms is the plasmid-mediated production of extended-
spectrum β-lactamases (ESBLs), which can hydrolyze β-lactams
(Ramos et al., 2013). ESBLs is a group of enzymes that can
hydrolyze penicillin and also can hydrolyze the first, second,
and third generations of antibiotics, such as Cephalosporins
and Aztreonam. ESBLs can be inhibited by enzyme inhibitors,
which are sensitive to antibiotics, such as Cephamycin and
Carbapenem. Bacteria that carry this enzyme can hydrolyze
the corresponding antibiotics, leading to the failure of some
treatments. Over the past several years, the dissemination of
E. coli isolates produces ESBLs and pAmpC, which has been
reported in different settings, including in food, food-producing
animals, and different types of aquatic environments, especially
wastewater (Diwan et al., 2012; Divesh et al., 2014; Warjri
et al., 2015). In addition, wastewater can also provide favorable
conditions for the growth of a diverse bacterial community,
which constitutes a basis for the further selection and spread of
antibiotic resistance (Ben Said et al., 2016).

Wastewater treatment plants (WTPs) are important reservoirs
of human and animal micro-organisms that can enter into the
environment again through the plant outlet, such as with water
and food, and are likely to infect humans and animals. “The main
transport pathways of antibiotics into the ambient environment
are via WTPs, where they may be only partially eliminated”
(Xu et al., 2007). So in this ecosystem, antibiotics in wastewater
may exert a selective pressure that promotes the spread of
the resistant microorganisms to other environments (Schlüter
et al., 2007; Amos et al., 2014). In addition, WTPs’ wastewater
contains a large number of bacteria, which is conducive to
the bonding between bacteria, and this promotes transfer of
multiple antibiotic resistance genes carried by movable elements.

The discovery of R plasmid confirms that not only do the bacteria
contain natural resistance genes, but also that they can acquire
resistance to defend against survival pressures. This resistance is
not only vertically transmitted, but it is also transmitted between
species (i.e., horizontal transmission). The major factor in the
spread of resistance is thought to be the ability of bacteria to
acquire and transmit foreign genes through movable elements,
such as plasmids and transposons (Mokracka et al., 2012).

The purpose of this study was to analyze the distribution of
ESBLs-producing E. coli in municipal WTPs, to isolate ESBLs-
producing E. coli strains, and then to elucidate the multiple
antibiotic resistance linked transfer using a conjugative test. The
resistant phenotypes and multiple antibiotic resistant genotypes
were compared in transconjugants, donor and recipient strains.
At last, we investigated the role of plasmids in the multiple
antibiotic resistance transfer mechanism in E. coli by analyzing
its full-length sequence.

MATERIALS AND METHODS

WTPs and Sample Collection
The wastewater samples were taken from a municipal WTPs,
located in Tai’an county, China, in September 2016. The WTPs
employed an activated sludge process. The wastewater was taken
from a hospital and a multi-species slaughterhouse. The samples
used for research were taken from (i) raw wastewater in the
primary sedimentation tank (intake), (ii) treated water (aeration
tank), and (iii) final treated wastewater (outlet). In each sampling
event, the samples were taken simultaneously from the three sites.
The samples were collected in sterile containers at the depth of
0.3 m and the distance of 1 m from the side of the respective
sampling sites as previously described (Mokracka et al., 2012).
Each sample was refrigerated and then transported to the lab and
analyzed within 12 h.

Isolation and Identification of
ESBLs-Producing E. coli
The isolation and the identification of E. coli were done following
previously described methods (Mokracka et al., 2012). Briefly,
the samples were diluted serially in 0.9% NaCl, inoculated
onto Brilliance TM E. coli/Coliform Selective Agar (Oxoid)
and incubated at 37◦C for 24 h. Then the single colony was
passaged three times for the further experiments. Identification
of bacteria was done with API 20E kit (bioMerieux), dedicated
to identifying E. coli and other Gram-negative bacteria using
biochemical tests.
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The suspected ESBLs-producing E. coli isolates were
confirmed by phenotypic confirmatory tests using cefotaxime
(30 ug), cefotaxime/clavulanic acid (30 ug/10 ug), ceftazidime
(30 ug), and ceftazidime/clavulanic acid (30 ug/10 ug) (Kim et al.,
2017; Zhang et al., 2017).

Conjugation and Identification of
Transconjugants
In order to prove the antibiotic resistance gene in E. coli has
the ability to transfer in vitro, 50 ESBLs-producing E. coli
strains were isolated from the WTPs, which were resistant to
cefotaxime and sensitive to sodium azide. E. coli J53 was resistant
to sodium azide and sensitive to most antibiotics, which was
donated by Professor Yu-Song Yu from Zhejiang University
School of Medicine. Conjugative testing was performed using the
filter mating method (Wei et al., 2014; Knudsen et al., 2018).
The suspected colonies were identified and the positive strains
were passaged three times from the culture plates to a new
antibiotics selective medium plate by scribing. They were then
preserved in glycerol for subsequent experiments (Zhang, 2006;
Knudsen et al., 2018).

Detection of Antibiotic Susceptibility and
Antibiotic Resistant Genotypes
Susceptibility analysis to 16 antibiotics Florfenicol (FFC),
Sulfamethoxazole (SXT), Ampicillin (AMP), Aztreonam (AZT),
Kanamycin (KAN), Cefalotin (KF), Cefepime (FEP), Norfloxacin
(NOR), Streptomycin (STR), Ciprofloxacin (CIP), Imine
imipenem (IPM), Chloramphenicol (C), Erythromycin (E) and
Gentamycin (CN), Tetracycline (TE) was carried out by disk-
diffusion method (Clinical and Laboratory Standards Institute
[CLSI], 2013). E. coli ATCC 25922 was used as a reference strain
(Silva et al., 2010). All screen-positive ESBLs-producing strains
and transconjugants were from plasmids and genomic DNA
extraction. They were then examined for the presence of CTX-M,
OXA, SHV, TEM, qnrA, qnrB, and qnrS genes by multiplex
PCR with the same method and primers as our earlier research,

TABLE 1 | Sequences of primers used for PCR.

Gene Primer sequence (5′–3′) Product length/bp

blaSHV F: GGGTTATTCTTATTTGTCGCT 913

R: GGGTTAGCGTTGCCAGTG

blaTEM F: GAGACAATAACCCTGGTAAATG 886

R: AATGATTAATCAGTGAGGC

blaCTX−M F: AAGAAAAGTGAAAGCGAA 548

R: GTGAAGTAAGTGACCAGAATC

qnrA F: TCAGCAAGAGGATTTCTCA 627

R: GGCAGCACTATTACTCCCA

qnrB F: ATGACGCCATTACTGTATAA 562

R: GATCGCAATGTGTGAAGTTT

qnrS F: ACCTTCACCGCTTGCACATT 576

R: CCAGTGCTTCGAGAATCAGT

OXA F: CTGTTGTTTGGGTTTCGCAAG 591

R: CTTGGCTTTTATGCTTGATC

TABLE 2 | Antibiotic resistance phenotypes of donor strains and transconjugants.

Transconjugant Donor strains

AMP-KF-STR AMP-KF-STR-C-FFC-CN-TE-KAN

AMP-AZT-KF-FEP-STR-E-TE SXT-AMP-AZT-KF-FEP-STR-C-AZT-CIP-
CN-TE-NOR

SXT-AMP-KF-FEP-STR-C-TE AMP-KF-STR-C-CN-TE-KAN-FFC-IPM

SXT-AMP-AZT-KF-STR AMP-AZT-KF-NOR-FEP-E-CIP-IPM

SXT-AMP-AZT-KAN-KF-STR-CIP-C SXT-AMP-AZT-KAN-KF-CN-TE-FEP-E-IPM

SXT-AMP-AZT-KAN-KF-STR-E SXT-AMP-AZT-KF-E-TE

SXT-AMP-AZT-KF-STR-C-TE AMP-AZT-KF-TE-CN-NOR

SXT-AMP-AZT-KF-STR SXT-AMP-AZT-KF-CN-TE-NOR-KAN-
C-FFC

SXT-AMP-AZT-KF-STR SXT-AMP-AZT-KF-STR-CN-TE-KAN-C-E-
CIP-FFC

AMP-AZT-KF-STR SXT-AMP-AZT-KAN-KF-STR-CN-TE-NOR-
C-E-CIP-FFC

SXT-AMP-AZT-KF-STR SXT-AMP-AZT-KF-CN-TE-FEP-C-E-IPM

SXT-AMP-AZT-KAN-KF-STR SXT-AMP-AZT-KF-STR-TE-FEP

AMP-AZT-KF-STR-E SXT-AMP-AZT-KF-STR-E-TE

SXT-AMP-AZT-KF-STR SXT-AMP-AZT-KF-CN-TE-IPM

AMP-AZT-KAN-KF-STR SXT-AMP-AZT-KAN-KF-STR-CN-TE

AMP-AZT-KF-FEP-STR AMP-AZT-KF-STR-NOR-IPM-KAN

AMP-AZT-KF-STR SXT-AMP-AZT-KF-STR-CN-NOR-CIP-IPM

SXT-AMP-AZT-KF-STR SXT-AMP-AZT-KF-STR-CN-FEP

AMP-AZT–KF-STR SXT-AMP-AZT-KF-STR-TE

AMP-AZT-KF-STR SXT-AMP-AZT-KF-STR-CN-TE-NOR-C-
CIP-FFC

AMP-KF-FEP–STR SXT-AMP-AZT-KF-FEP-TE

AMP-AZT-KF-STR SXT-AMP-AZT-KF-CN-TE

AMP-AZT-KF-FEP–STR SXT-AMP-AZT-KF-FEP-STR-TE-E

AMP-AZT–KF-FEP-STR SXT-AMP-AZT-KF-FEP-STR-IPM-TE

AMP-KF-FEP-STR AMP-KF-STR-AZT-IPM

AMP-AZT-KF-STR SXT-AMP-AZT-KF-FEP-E-IPM

AMP-AZT-KF-STR SXT-AMP-AZT-KF-STR-TE-E-IPM

AMP-AZT-KF-FEP-STR SXT-AMP-AZT-KF-FEP-STR-CN-TE-E-IPM

AMP–KF-STR SXT-AMP-KF-AZT-STR-CN-TE-NOR-KAN-
C-CIP-FFC-IPM

SXT-AMP-AZT-KF-FEP-STR SXT-AMP-AZT-KF-STR-TE-IPM

SXT-AMP-AZT-KF-FEP SXT-AMP-AZT-KF-FEP-IPM-TE

AMP-AZT-KF SXT-AMP-AZT-KF-CIP-IPM-TE

AMP-AZT-KF SXT-AMP-AZT-KF-E-IPM-TE-STR

AMP-AZT-KF SXT-AMP-AZT-KF-FEP-TE-IPM

AMP-AZT-KF SXT-AMP-AZT-KF-TE-STR-IPM

NAL, nalidixic acid; E, erythromycin; CIP, ciprofloxacin; FFC, florfenicol; IPM,
imipenem; AML, amoxicillin; SXT, cotrimoxazole; AMP, ampicillin; CN, gentamicin;
TE, tetracycline; STR, streptomycin; NOR, norfloxacin; KAN, kanamycin; FEP,
cefepime; KF, cefalotin; AZT, aztreonam; C, chloramphenicol; CTX, cefotaxime;
CAZ, ceftazidime.

and the primers described in Table 1 (Li et al., 2017). DNA
sequencing using purified PCR products was provided by ABI
PRISM 3730XL Analyzer (Applied Biosystems, Foster City, CA,
United States) in Shanghai Sangon Biotech, Co., Ltd., China. The
database similarity searches for nucleotide sequences performed
using the BLAST tool at the National Center for Biotechnology
Information (NCBI) website1.

1http://www.ncbi.nlm.nih.gov/BLAST
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Analysis of the Ligated Plasmids
After plasmid electrophoresis analysis, all plasmids were
successfully extracted from all CTX-M and TEM gene-positive
binders. Strains showed great variation in banding numbers and
distance, containing 1 to 6 plasmids (∼2 to >120 kb). E. coli
A8 showed only one about 83 kb plasmid carrying CTX-M-15,
TEM-1 and qnrS and therefore was used as an analysis target.
Plasmid wwA8 was extracted with TIAGEN company plasmid
extraction kit by following the instructions and was sent to
Sangon company for analysis of the whole DNA sequence.
After sequencing was completed, the open reading frame of the
plasmid sequence was predicted using the Bacterial Annotation
System and the result was confirmed with DNAMAN 5.2.10
software (BASys2; Van et al., 2005). Each predicted protein
was compared to all protein databases using BlastP3. The gene
sequence was further aligned with the GenBank database by
BLAST, and the sequence homology plasmid resembled the
reference plasmid3. E. coli strain PGR46 plasmid pPGRT46
(GenBank Accession No. KM023153.1) was used as a reference
plasmid for WWA8 annotation. Plasmid maps were drawn using
SnapGene Viewer 3.2.1.

RESULTS

Distribution of ESBLs-Producing E. coli
Seventy E. coli strains were isolated from 80 wastewater samples
with a separation rate of 87.5%. Among them, 25 out of 25
(100%) strains were isolated from intake, 30 out of 30 (100%)
strains from aeration tank, and 15 out of 25 (60%) strains from
outlet. ESBLs-producing strains could be identified according
to the CLSI2009 standard, the ESBLs-producing strains were
confirmed by phenotypic confirmation. A total of 50 ESBLs-
producing isolates were obtained from 70 isolates of E. coli, with
the isolation rate as high as 71.4%, of which 22 out of 25 (88%)
were from water intakes, 20 out of 30 (66.7%) from aeration tanks
and 8 out of 15 (53.3%) from water outlets.

Identification of Conjugation
After the conjugative test using the filter mating method, the
ERIC-PCR, and the selective plate assay, it was judged according
to the conjugative screening test (Zhang, 2006). Fifty strains of
ESBLs-producing resistance to Cefotaxime were used as donor
bacteria, and 35 transconjugants were obtained successfully with
the transfer rate as high as 70%.

Resistant Phenotype of Donor Bacteria
and Transconjugants
The resistant phenotypes of 35 transconjugants for 15 kinds
of antibiotics compared to the donor strains were shown in
Table 2. The results showed that all transconjugants and donor
strains were capable of multiple antibiotic resistance for three
or more antibiotics compared to recipient strain E. coli J53,

2http://wishart.biology.ualberta.ca/basys/cgi/submit.pl
3http://blast.ncbi.nlm.nih.gov/Blast.cgi

which is sensitive to the above-mentioned 15 antibiotics. Both
transconjugants and donors were capable of resistance to the
AMP and KF at a rate of 100.00% (35/35). Among them,
transconjugants had transferred STR, SXT, E, and KAN resistance
compared to donors at a rate of 90.91% (20/22), 34.48%
(10/29), 16.67% (2/12), and 22.22% (2/9). However, the capability
of resistance to STR, SXT, E, and KAN in transconjugants
broadened at a rate of 76.92% (10/13), 50.00% (3/6), 4.35% (1/23),
and 7.69% (2/26). So transconjugants which had a narrowed
antibiotic resistance spectrum, lost one or several antibiotic
resistances which were present in the donor bacteria, or had
a broadened antibiotic resistance spectrum and gained one or
several antibiotic resistances which were not present in the
donor bacteria. In a word, the antibiotic resistant spectrum of

TABLE 3 | The multiple antibiotic resistant genotypes of 35 strains of donors and
transconjugants.

Transconjugant Donor strain

blaTEM-135–blaSHV-11–blaCTX-M-15 blaTEM-135–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-135–blaSHV-11–blaCTX-M-15 blaTEM-135–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaCTX-M-15–qnrS blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-40–blaCTX-M-15 blaTEM-1–blaSHV-40–blaCTX-M-15–qnrS

blaTEM-181–blaSHV-11–blaCTX-M-15 blaTEM-181–blaSHV-11–blaCTX-M-15

blaTEM-181–blaSHV-11–blaCTX-M-55 blaTEM-181–blaSHV-11–blaCTX-M-55

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-56–blaCTX-M-15 blaTEM-1–blaSHV-6–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrB

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15

blaTEM-181–blaSHV-40–blaCTX-M-55 blaTEM-181–blaSHV-40–blaCTX-M-55–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-56–blaCTX-M-15 blaTEM-1–blaSHV-56–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15

blaTEM-1–blaSHV-11–blaCTX-M-55 blaTEM-1–blaSHV-11–blaCTX-M-55

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-55 blaTEM-1–blaSHV-11–blaCTX-M-55

blaTEM-116–blaSHV-11–blaCTX-M-15 blaTEM-116–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-79–blaCTX-M-15 blaTEM-1–blaSHV-79–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-55 blaTEM-1–blaSHV-11–blaCTX-M-55–qnrB

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15–qnrS

blaTEM-1–blaSHV-11–blaCTX-M-15 blaTEM-1–blaSHV-11–blaCTX-M-15
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FIGURE 1 | Genetic map of the plasmid wwA8.

transconjugants narrowed after exposure to the donor bacteria
at the rate of 94.29% (33/35) and broadened at the rate
of 5.71% (2/35).

Antibiotic Resistant Genotypes of Donor
Bacteria and Transconjugants
The resistant gene phenotypes of 35 transconjugants compared
to its donor strains by PCR were shown in Table 3. The results
showed that the blaTEM and blaCTX-M genes were all transferred
successfully at the rate 100.00% (35/35). The blaSHV gene was
transferred successfully at the rate 94.29% (33/35). However, only
one strain of the qnrS gene was transferred at the rate of 4.17%
(1/24). Blast comparison results showed that the gene subtype
of the major resistance was blaTEM-1, blaSHV-11 and blaCTX-M-15,
and at the rate of 82.86% (29/35), 85.71% (30/35), and 85.71
(30/35), respectively.

Analysis of the Transferred Plasmid
A plasmid harbored in E. coli A8 was named wwA8 (GenBank
MG773378), and its pattern map drawing with the whole
DNA sequence was displayed in Figure 1. Plasmid wwA8 is a
closed-loop DNA molecule with 83157 bp and GC content at
the rate of 52.74%. The plasmid wwA8 contains 45 predicted
genes (Table 4), carries three known antibiotic resistance
genes, blaCTX-M-15, blaTEM-1, qnrS1, which can be transferred
in E. coli in vitro. The sequence analyzing results of the
plasmid showed that E. coli isolated from wastewater had the
proficiency of resistance genes transferring. The basic structure

of plasmid wwA8 is very homologous to plasmid IpPGRT46
(GenBank KM023153.1).

DISCUSSION

Escherichia coli are important opportunistic pathogens that cause
urinary tract infections and sepsis in animals and humans (Lewis
et al., 2007). The prevalence of multiple antibiotic resistant
Enterobacteriaceae in the world has been increasing in recent
decades. β-lactams and fluoroquinolones have been selected as
important therapeutic agents. The selective pressure created
by the abuse of these agents has led to the development of
multiple antibiotic resistant bacteria. One of the mechanisms
by which multiple antibiotic resistant bacteria are produced
is the production of plasmid-mediated ESBLs which hydrolyze
β-lactam (Cantón et al., 2008). ESBLs can hydrolyze β-lactam and
propagate through bacteria in a plasmid-mediated manner, which
is one of the main reasons for Gram-negative bacilli resistance.
The gene coding for ESBLs is located on the plasmid, which
has many genotypes such as blaCTX-M, blaSHV, blaTEM and OXA
types. Bacterial genes encoding ESBLs are often located on the
same plasmid with other antibiotic resistance genes, leading to
multiple bacterial resistances, causing great difficulties in clinical
treatment of infectious diseases (Ben-Shahar et al., 2012).

The genes encoding ESBLs are located on the plasmids. There
is diversity in genotypes of ESBLs including blaCTX-M, blaSHV,
blaTEM,OXA, etc. Due to the different geographical and antibiotic
habits, the prevalence of genotypes in different countries, regions,
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TABLE 4 | Open reading frames identified in wwA8.

Gene name Nucleotide
position

Function encoded

repA 72–487 IncN replicase gene distrupted by
insertion of IS26

TnpA 539–1255 Transposase IS26

TnpA 1720–2940 Transposase for transposon Tn1721

TetR 3272–3949 Tetracycline repressor protein

TetA 3953–5227 Tetracycline efflux protein

Int2 8775–9752 Integrase/recombinase

VirB1 16090–16752 Type IV secretory pathway VirB1
component

VirB4 17072–19822 Type IV secretion system protein virB4

Virb5 19841–20557 P-type DNA transfer protein VirB5

Virb6 20871–21878 VirB6 plasmid conjugal transfer protein

Virb8 22088–22774 Type IV secretion system protein virB8

Virb9 22767–23660 P-type conjugative transfer protein VirB9

Virb10 23657–24853 Type IV secretion system protein virB10

Virb11 24857–25906 P-type DNA transfer ATPase VirB11

DNA topoiso-
merase III

27345–29546 DNA topoisomerase III family protein

TraM 30755–32551 Mobilization protein

SeSB 32566–33312 Mobilization protein

Hypothetical
protein

34775–35740 Antirestriction protein

TnpA 36357–37415 Transposase of ISL3

UmuC 37941–39212 UV protection

SopB 40935–41906 Plasmid-partitioning protein

SopA 41906–43081 Plasmid partition protein SopA

RepB 43813–44823 Initiator replicase protein FIB-like replicon

Blc 45614–45973 Outer membrane lipoprotein precursor

MerR 46076–46801 Transcriptional regulator MerR

YedX 46901–47311 Hydroxyisourate hydrolase

TnpA 49670–50386 Transposase of IS26

Omp 54416–55708 Putative membrane protein

YdaA 59566–59925 Resolvase-like protein, YdaA

QnrS1 62133–62789 Quinolone resistance gene

TnpA 64242–66791 Transposase for transposon Tn3

blaCTX-M-15 67430–68305 Beta-lactamase enzyme family

TnpA 68561–69823 ISEcp1 transposase

tnpA 70005–70382 Fragment

blaTEM1 71127–71987 Beta lactamase TEM-1

TnpA 72197–72736 Transposase of ISVsa3

StrB 72708–73544 Streptomycin resistance protein B

StrA 73544–74035 Aminoglycoside phosphotransferase

sul2 74408–75223 Dihydropteroate synthase

TnpA 76994–78700 Tn3 family transposase

TnpA 78812–79528 Transposase of IS26

DfrA14 79842–80324 Dihydrofolate reductase DfrA14

IntI1 80471–81484 Class 1 integron integrase

TnpM 81423–81737 Transposon Tn21 modulator protein

Uvp1 81877–82446 Resolvase of the R46 plasmid

and environments varies (Fabre et al., 2009). Animal-derived
ESBLs-producing E. coli has been reported (Alexy et al., 2006),
but less ESBLs-producing E. coli is reported in wastewater. In this

paper, ESBLs-producing E. coli were isolated from WTPs, and
then E. coli J53 was as recipient bacteria performed plasmid
conjugation, the multiple antibiotic resistance phenotype and
the multiple antibiotic resistant genotypes test were carried
out. One of the plasmids in transconjugants was sequenced
to detect the transfer of the plasmids in the bacteria. In this
experiment, 50 isolates of ESBLs-producing E. coli were isolated
from 80 wastewater samples and the isolation rate was very high.
Therefore, ESBLs-producing E. coli has been widespread in the
environment. Among them, the outlet ESBLs-producing E. coli
separation rate is 32%, and at the intake the separation rate
is 88%. Although WTPs can significantly reduce the microbial
load in water, it cannot completely eliminate antibiotic resistance
bacteria. On the contrary, these selective pressures increase the
resistance of certain bacteria. The ESBLs-producing E. coli in the
outlet water cannot be completely eliminated. It will enter the
local environment, resulting in the spread of resistant bacteria.
On the other hand, untreated wastewater overflow into the
surface during rainstorms may be one of the sources of ESBLs-
producing E. coli (Diallo et al., 2013).

In this experiment, 50 ESBLs-producing E. coli strains
were isolated from municipal WTPs in Tai’an City, 35
strains were successfully transferred. The detection of antibiotic
resistant ESBLs-producing genes showed that three genotypes
of blaCTX-M, blaSHV and blaTEM were detected, which was
consistent with the previous study (Cohen Stuart et al., 2010;
Sima et al., 2016). No OXA genotype was detected in this
study and a small amount of the fluoroquinolone resistance
gene was detected. The blaTEM and blaCTX-M genes were
transferred successfully in all strains, except for the blaSHV
only in which only one strain transferred successfully. With
the increasing use of β-lactam antibiotics, especially the third-
generation cephalosporins, it is important to monitor the
production of blaCTX-M, blaSHV, and blaTEM strains. In particular,
it is important to monitor the surveillance of blaCTX-M, blaSHV,
blaTEM genotype transmission in order to provide a reliable basis
for clinical use of antibiotics.

The mechanism of bacterial resistance is quite complex.
However, great progress has been made in the research of this
topic. In particular, research of the R plasmid confirms that the
genetic material contains the natural resistance gene in bacteria.
Acquired antibacterial resistance is gained via selective stress.
Conjugation is the most common way genetic information is
transferred and plays a very important role in the spread of
multiple antibiotic resistance genes. 35 conjugations of E. coli
J53 were finally obtained, and the success rate of conjugation
was as high as 70%. The results show that under certain selective
pressures, the plasmid is very easily transferred between E. coli,
leading to the spread of antibiotic resistance, which is very
harmful to clinical treatment (Cavaco et al., 2007).

The antibiotic resistant spectrum of transconjugants narrowed
compared to the donor bacteria at the rate of 94.29% (33/35).
This could mean that the antibiotic resistance gene may be
located in the movable elements such as plasmids rather than
the genomes (Park et al., 2017), or that different strains carry
different plasmids, some of which are not compatible. However,
the antibiotic resistance spectrum of transconjugants broadened
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compared to donor bacteria at the rate of 5.71% (2/35).
In addition, transconjugants which lost one or more antibiotic
resistances also added one or more antibiotic resistances at the
rate of 48.6%. These are why antibiotics should be used with
caution so as not to cause an increase in antibiotic resistance. At
the same time, there was a significant increase in the resistance to
STR, which may be caused by the enhanced expression of aadA1
and aadA2 gene cassettes located on the transferred plasmid,
showing resistances that are not in donor bacteria (Zhao et al.,
2011). The transfer rate of AMP and KF in ESBLs-producing
E. coli was 100%. This proved that the plasmids in E. coli play
an important role in the multiple antibiotic resistant transfer.

CONCLUSION

This study shows that E. coli isolated from wastewater was capable
of resistance gene transfer and of producing antibiotic resistance
phenotypes. The resistance genes are located on plasmids which
have the ability to transfer in vitro, and the plasmids in E. coli
play an important role in the multiple antibiotic resistance
linked transfer.
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Piperacillin-Tazobactam (TZP)
Resistance in Escherichia coli Due to
Hyperproduction of TEM-1
β-Lactamase Mediated by the
Promoter Pa/Pb
Kaixin Zhou†, Ying Tao†, Lizhong Han, Yuxing Ni and Jingyong Sun*

Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

TEM-1, mediated by plasmid and transposon, is the most commonly encountered
β-lactamase in Gram-negative bacteria. Four different promoters upstream of blaTEM-
related genes have been identified: the weak P3 promoter, and the strong
promoters Pa/Pb, P4, and P5. In this study, we investigated the genetic basis of
a clinical strain of Escherichia coli (RJ904), which was found to be resistant to
BLBLIs (β-lactam/β-lactamase inhibitors), including amoxicillin-clavulanate, ticarcillin-
clavulanate (TCC), and piperacillin-tazobactam (TZP) but sensitive to third-generation
cephalosporins. The conjugation test and S1-nuclease pulsed-field gel electrophoresis
(S1-PFGE) demonstrated that transfer of this resistance was mediated by a ca.
100 kb plasmid. The transformant with TZP resistance was screened out with the
shortgun cloning. Sequence analysis revealed that the recombinant plasmid contained a
blaTEM−1b gene with the strong promoter Pa/Pb. Different plasmids were cloned based
on the clone vector pACYC184 with the insertion of the blaTEM−1b gene with promoters
Pa/Pb or P3. Susceptibility to TZP was determined by the E-test, agar dilution, and
broth microdilution. The level of blaTEM−1b-specific transcription was determined by
quantitative real-time PCR. Substitution of Pa/Pb for P3 resulted in a 128-fold decline
of the MIC value of TZP, from >1024 mg/L to 8 mg/L, and a significantly lower
blaTEM−1b expression level. Hyperproduction of TEM-1 β-lactamase mediated by the
promoter Pa/Pb was responsible for high resistance to TZP in E. coli. Our data show
possible risks of resistance development in association with the clinical use of TZP. The
blaTEM promoter modifications should be considered for whole genome whole-genome
sequencing-inferred bacterial antimicrobial susceptibility testing.

Keywords: TZP resistance, Escherichia coli, Pa/Pb, β-lactamase, antimicobial

INTRODUCTION

The production of β-lactamases is the predominant cause of resistance to β-lactam antibiotics in
Gram-negative bacteria (Bonnet, 2004), including the hyperproduction of plasmid-mediated TEM-
1 β-lactamases, production of extended-spectrum beta-lactamases (ESBLs), plasmid-mediated
AmpC enzymes (Caroff et al., 1999) and carbapenem-hydrolyzing β-lactamases (carbapenemases)
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(Wu et al., 1994; Jacoby and Munoz-Price, 2005). Combining
β-lactam and a β-lactamase inhibitor (BLBLIs) was a common
strategy to overcome resistance (Chaibi et al., 1999; Perez-
Llarena and Bou, 2009). However, resistance to BLBLIs has
also been regularly observed (Pérez-Moreno et al., 2010;
Waltner-Toews et al., 2011).

TEM-1 was described in the early 1960s as the first plasmid-
mediated β-lactamase in Gram-negative bacteria (Datta and
Kontomichalou, 1965). Being plasmid and transposon-mediated
has facilitated its spread to other species of bacteria and it is
now the most commonly encountered β-lactamase in Gram-
negative bacteria (Bradford, 2001). The subgroups were defined
and designated a, b, and c for a given blaTEM gene derivative,
because of their relation to a certain number of nucleotide
differences in their structural gene sequence (Leflon-Guibout
et al., 2000). The corresponding blaTEM−1b gene derives from
blaTEM−1a by three base pair changes: C226T, C436T, and
G604T, silent base pair change. blaTEM−1c gene differs from
blaTEM−1a by the nucleotide substitution C436T, which is also
silent. blaTEM−2 differs from blaTEM−1a at position 317, where a
A-to-C substitution leads to Gln39Lys (Goussard and Goussard,
1991). Previous studies identified four blaTEM promoters: the
weak P3 promoter, and the strong promoters Pa/Pb, P4, and
P5 (Lartigue et al., 2002). P3 corresponds to the promoter of
the blaTEM gene located in a Tn2 or Tn3 transposon (Sutcliffe,
1978; Lartigue et al., 2002; Partridge and Hall, 2005). A single-
base pair mutation (C32T) results in the stronger overlapping
promoters Pa/Pb, first found upstream of the gene blaTEM−2,
and produces larger amounts of the enzyme compared with the
promoter P3 (Chen and Clowes, 1987a,b). Thus, an updated
blaTEM gene nomenclature was proposed on the basis of the
sequences of structural blaTEM genes and their promoters
(Goussard and Courvalin, 1999).

Lartigue et al. (2002) assessed and compared the respective
impact of the four promoters on β-lactam resistance. Among
the recombinant plasmids, one with a blaTEM−1b gene driven
by a Pa/Pb promoter resulted in resistance to AMC and
ticarcillin-clavulanate (TCC), but susceptibility to piperacillin-
tazobactam (TZP) with a MIC value of 2 mg/L. In this study,
the mechanism of TZP resistance was investigated in Escherichia
coli RJ904, a clinical isolate containing the blaTEM−1b gene with
a Pa/Pb promoter. Experimental and genomic data support
a role for Pa/Pb promoter regulation, leading to blaTEM−1b
hyperproduction, as the primary basis for TZP resistance
in this isolate.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the ethics committee of Ruijin
Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai, China and the Review Board exempted the
requirement for written informed consent because this
retrospective study only focused on bacteria and did not
affect the patients.

Bacterial Strains and Growth Condition
The clinical strain E. coli RJ904 was obtained from the
blood specimen of a hospitalized patient in Shanghai, China
(Ruijin Hospital, School of Medicine, Shanghai Jiao Tong
University) in 2005. Ceftazidime was used for the medication.
The patient’s condition improved after the treatment and the
patient was discharged. The isolate was identified using VITEK2
automated systems (BioMérieux, France). All of the plasmids
used in this study are listed in Supplementary Table S1. All
cloning procedures were carried out in E. coli (DH5α), and
antibiotics were used with suitable concentrations for plasmid
selection when necessary. All the E. coli strains were routinely
grown in Luria-Bertani (LB) broth (Oxoid) and incubated
overnight at 35◦C.

Antimicrobial Susceptibility Testing
Susceptibility testing of all the antibiotics for the clinical
strain RJ904, transconjugant RJ904C, and recombinant vectors
RJ904-PA/PB was determined using the E-test (bioMérieux,
France). The antibiotic susceptibility of the strains to piperacillin
with a fixed concentration of tazobactam (TZP, 4 mg/L) was
determined using three methods: E-test, agar dilution, and broth
microdilution method. The results were interpreted based on the
guidelines of the CLSI (2014).

Conjugal Transfer Experiments and
S1-Nuclease Pulsed-Field Gel
Electrophoresis (S1-PFGE)
Conjugal transfer experiments were performed in broth culture
using the strain RJ904 as the donor and the sodium azide-
resistant strain E. coli J53Azir as the recipient. Selection was
performed with piperacillin (100 mg/L), tazobactam (4 mg/L),
and sodium azide (100 mg/L). The plasmid DNA of RJ904
and its transconjugant RJ904C was examined using S1-PFGE as
previously described (Barton et al., 1995).

Plasmid Construction
The principle features of all plasmids are listed in
Supplementary Table S1.

First, the fragment of blaTEM−1b gene was screened by
the shortgun cloning. In brief, plasmid DNAs of pRJ904
were extracted with the Plasmid DNA Mini Kit (Omega).
pRJ904 and the clone vector pACYC184 were digested with
restriction enzymes BamHI and HindIII (Thermo Fisher
Scientific) and ligated to construct a DNA library, which was
used to transform the competent cells. Selection was then
performed with piperacillin (100 mg/L), tazobactam (4 mg/L),
and chloramphenicol (50 mg/L). The new cloned plasmid was
named pRJ904-PA/PB.

The recombinant vector was cloned as described by Lartigue
et al. (2002) using the same primers (BamHI-P-F and
BamHI-P-R), clone vector, and restriction enzyme digestion
site. pRJ904-PA/PB and p749 (MH491004) served as templates,
respectively. p749 was a plasmid from E. coli retained by our
laboratory that contained the blaTEM−1b gene and promoter
region with 99% base pair identity to pRJ904, except a point
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mutation (T32C) in the promoter region of blaTEM−1b, resulting
in substitution of the promoter Pa/Pb for P3. The PCR
products were purified and digested with BamHI (Thermo Fisher
Scientific) and cloned into pACYC184 to construct plasmids
pRJ904-PA/PB-P and pRJ904-P3-P. Both plasmids were cloned
based on pACYC184, and the blaTEM−1b gene was inserted;
however, pRJ904-PA/PB-P contained the Pa/Pb promoter while
pRJ904-P3-P contained the P3 promoter.

After cloning, all of the plasmids were transformed into
E. coli DH5α cells by using standard techniques (Denman,
1983). Selection was performed on an LB agar plate containing
ampicillin (100 mg/L) and chloramphenicol (50 mg/L).
Proper integration of all the constructs were verified by PCR
amplification with the primers 184-F and 184-R binding on
pACYC184, followed by sequencing of the PCR product. The
direction of the blaTEM−1b fragments in all the constructs were
opposite to the tetR gene of pACYC184 in order to rule out the
possible expression of the tetR gene.

Transcriptional Analysis of blaTEM−1b
For real-time PCR, the indicated E. coli strains were grown
in LB broth and harvested at an OD600 of 1. The RNA was
extracted using RNeasy Mini Kit (Qiagen), and then used to
generate cDNA with PrimeScriptTM RT Master Mix (TaKaRa).
RT-PCR was performed using SYBR green PCR master mix
(Applied Biosystems) with the primer pair TEM-F and TEM-R
(Supplementary Table S2) on a cobas z480 R© system (Roche)
(Her and Schutzbank, 2018). Amplification of the 16S rRNA
gene (as an endogenous control) was performed to standardize
the amount of sample RNA or DNA added to a reaction.
Relative quantification was determined by the 2−11CT method.
Each assay was performed in triplicate with three independent
cultures. Statistical comparisons were performed by one-way
analysis of variance (ANOVA) followed by Holm-Sidak tests to
compare selected data pairs. Values of P < 0.05 were considered
statistically significant.

Nucleotide Sequence Accession Number
The nucleotide sequence containing a blaTEM−1b gene with
the promoter Pa/Pb from the clinical strain RJ904 has been
deposited in the GenBank sequence database under accession
number MH357372.

RESULTS

Plasmid-Mediated Transfer of the
Resistance to β-Lactam and
β-Lactamase Inhibitor Combinations
The clinical isolate RJ904 was determined by E-test and found
to be highly resistant to BLBLIs, including AMC, TCC, and
TZP (MICs>256 mg/L), but was susceptible to third-generation
(Table 1). Resistance to TZP was transferable using the broth
mate conjugation assay. Although the transconjugant RJ904C
showed a decreased MIC to third-generation cephalosporins,
the MIC values of BLs and BLBLIs were all significantly higher

TABLE 1 | Antibiotic susceptibilities of E. coli strains RJ904, RJ904C,
RJ904-PA/PB, RJ904-P3.

Antibiotics MIC (mg/L)

J53 DH5α RJ904 RJ904C RJ904-PA/PB

Amoxicillin 4 4 > 256 > 256 > 256

Piperacillin 2 2 > 256 > 256 > 256

Amoxicillin-clavulanate 4 2 > 256 > 256 > 256

Ticarcillin-clavulanate 2 1 > 256 > 256 > 256

Piperacillin-tazobactam 1 0.5 > 256 > 256 > 256

Cefazolin 4 4 > 256 > 256 > 256

Cefuroxime 4 4 32 4 8

Cefoperazone 0.125 0.064 > 256 32 256

Cefotaxime 0.032 0.032 0.5 0.064 0.25

Ceftazidime 0.125 0.125 2 0.5 2

Cefoxitin 4 4 64 4 4

than that of the recipient strain E. coli J53Azir. The results of
S1-PFGE confirmed the presence of a ca. 100 kb plasmid in
both the donor strain RJ904 and the transconjugant RJ904C
(Supplementary Figure S1).

Hyperproduction of TEM-1b
β-Lactamase Mediated by the
Promoter Pa/Pb
The shortgun cloning and sequence analysis revealed that the
recombinant vector pRJ904-PA/PB contained a DNA insertion
of approximately 3.9 kb containing the blaTEM−1b gene, located
on the resolvase gene (tnpR) of Tn2, and the promoter upstream
the blaTEM−1b gene was Pa/Pb (Figure 1). The MIC value of BLs
and BLBLIs of E. coli RJ904-PA/PB was similar to that of the
transconjugant RJ904C (Table 1).

The level of blaTEM−1b-specific transcription was determined
by quantitative RT-PCR. As shown in Figure 2, RJ904-PA/PB
demonstrated a significantly higher relative blaTEM−1b expression
level than RJ904-P3-P (P < 0.01).

Expression of TEM-1b for
pRJ904-PA/PB-P and pRJ904-P3-P
To further confirm that the resistance to TZP is caused by the
promoter Pa/Pb and for comparison with the results of Lartigue
et al. (2002), the plasmids pRJ904-PA/PB-P and pRJ904-P3-P
were constructed.

The MIC value of TZP for all strains was determined by
three different methods (Table 2). The MIC values of RJ904-
PA/PB and RJ904-PA/PB-P were >256 mg/L in the E-test and
were ≥024 mg/L in agar dilution and broth microdilution
tests, indicating no difference from the susceptibility profile
of the original strain RJ904 and the transconjugant RJ904C.
However, RJ904-P3-P demonstrated significantly declined MIC
values of 8 mg/L (agar dilution and E-test) or 16 mg/L (broth
microdilution test), and 4 mg/L (agar dilution and E-test) or
8 mg/L (broth microdilution test), respectively. Consistently,
RJ904-PA/PB-P demonstrated a significantly higher blaTEM−1b
expression level than RJ904-P3-P.
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FIGURE 1 | Schematic representation of the 3.9-kb BamHI and HindIII-digested embedded TEM-1b fragment (black arrow) and the promoter Pa/Pb (white
rectangle). Truncated tnpA of Tn2 was placed on both sides of the resistance gene (gray). The sites for primers BamHI-P-F and BamHI-P-R for PCR clone are
also indicated.

DISCUSSION

The conjugation experiment demonstrated that resistance to TZP
can be transferred from RJ904 to J53Azir. The short gun method
was used to screen out a strain that was highly resistant to TZP,
and sequence analysis revealed that the plasmid harbored a 3.9-
kb insertion embedded in the blaTEM−1b gene with the strong
promoter Pa/Pb. The mutant strain RJ904-P3-P with the weak
promoter P3 demonstrated substantially declining MIC values to
TZP. Moreover, RJ904-PA/PB and RJ904-PA/PB-P demonstrated
a higher blaTEM−1b expression level than RJ904-P3-P. Altogether,
these data provide strong functional evidence that the acquisition

FIGURE 2 | Relative blaTEM−1b expression levels of all the strains. ∗p < 0.01.
RJ904-P3-P served as a reference. RJ904-PA/PB and RJ904-PA/PB-P also
demonstrated a significantly higher blaTEM−1b expression level
than RJ904-P3-P.

TABLE 2 | Susceptibility testing results of E. coli strains to piperacillin with 4 mg/L
of tazobactam (TZP).

Strain E-test (mg/L)a Agar dilution
(mg/L)

Broth
microdilution

(mg/L)

ATCC25922 2 2 1

J53 1 1 1

DH5α 0.5 1 2

RJ904 > 256 ≥ 1024 ≥ 1024

RJ904C > 256 ≥ 1024 ≥ 1024

RJ904-PA/PB > 256 ≥ 1024 ≥ 1024

RJ904-PA/PB-P > 256 ≥ 1024 ≥ 1024

RJ904-P3-P 4 4 8

aMIC breakpoint (mg/L): S ≤ 16/4; I: 32/4–64/4; R ≥ 128/4 (CLSI).

of TZP resistance was due to the hyperproduction of TEM-1b
β-lactamases mediated by the strong promoter Pa/Pb.

Lartigue et al. (2002) suggested that the blaTEM−1b gene
with a Pa/Pb promoter could contribute to the resistance to
AMC and TCC but not to TZP with a MIC value of 2 mg/L,
suggesting the potential importance of this promoter for β-lactam
resistance. However, we found that strain RJ904-PA/PB, which
also contained the blaTEM−1b gene with a Pa/Pb promoter,
was highly resistant to TZP with a MIC value >256 mg/L.
To identify possible causes of the difference, we replicated
the experiment of Lartigue et al. (2002) using the exact same
primers, clone vector, and restriction enzyme digestion site to
clone the plasmid with the blaTEM−1b gene and Pa/Pb promoter
(pRJ904-PA/PB-P), which was compared to a plasmid with the
P3 promoter (pRJ904-P3-P). We next determined the MIC
value of TZP of all strains. Since several authors have claimed
that the MIC determination of TZP can be method-dependent
and strains exhibited discordant behavior and heterogeneous
resistance in different methods (Creely et al., 2013; Shubert
et al., 2014), we used three methods for susceptibility testing
to avoid the methodological impact: broth microdilution, agar
dilution, and E-test. Several studies have compared the results
of TZP susceptibility testing with broth microdilution and
agar dilution methods for isolates of various species,(Thomson
et al., 2008; Creely et al., 2013; Steensels et al., 2013; Shubert
et al., 2014) and broth microdilution showed a tendency toward
higher MIC values than agar dilution (Steensels et al., 2013).
In the present study, there was no difference in the MIC
values of RJ904-PA/PB-P to those of strains RJ904, RJ904C, and
RJ904-PA/PB regardless of the method used. All these strains
with a promoter Pa/Pb demonstrated high resistance to TZP
unlike Lartigue’s transformants, while strains with a promoter
P3 (RJ904-P3 and RJ904-P3-P) demonstrated a significantly
declined MIC value ultimately becoming susceptible to TZP,
which is consistent with the findings of Lartigue’s transformants
with a P3 promoter. E. coli DH5α was used as the recipient
rather than E. coli NM554. However, RJ904, the transconjugant
RJ904C (E. coli J53), and RJ904-PA/PB-P (E. coli DH5α) all
demonstrated high resistance to TZP. These results indicate that
the recipient will not have a great impact on the expression of
drug-resistant genes.

Nevertheless, when we repeated the experiment, we reached
a different conclusion. The strains with promoter Pa/Pb in
our study demonstrated high resistance to TZP while Lartigue’s
transformants was susceptible to TZP. Although the reason
for this discrepancy is not yet clear, our results from several
independent assessments all indicate that the resistance to TZP
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was due to hyperproduction of TEM-1b β-lactamases mediated
by the strong promoter Pa/Pb. However, overexpression of
blaTEM-1 can lead to resistance, including clavulanate and
sulbactam (Stapleton et al., 1995; Waltner-Toews et al., 2011).
blaTEM−1 hyperproduction resulting from an increase in
blaTEM−1 gene dosage has also been documented (Wu et al.,
1995; Waltner-Toews et al., 2011). Schechter et al. (2018) claimed
that tandem blaTEM−1 gene amplification, leading to blaTEM−1
hyperproduction, as the primary basis for TZP resistance in
E. coli. These results indicated that blaTEM−1 hyperproduction
can lead to BLBLIs resistance, including TZP.

Whole-genome sequencing (WGS) can help to infer
antimicrobial susceptibility accurately using a single assay
(Ellington et al., 2017). However, most existing databases
focus only on the commonly known resistance loci while
neglecting the role of promoters. Our finding should be
considered for the acquisition of more accurate WGS-inferred
bacterial antimicrobial susceptibility testing. Importantly, these
data add to the growing body of evidence that the same
resistance gene with different promoters will result in completely
different susceptibility testing results. Thus, when performing
WGS-inferred AST, we should not only assess the resistance
genes but should also analyze their promoter sequences

simultaneously. Our finding also shed light on the possibility
of a fast identification using a simple PCR and sequencing to
identify strong promoters and weak promoters and to infer
antimicrobial susceptibility.
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The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs)
between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in
bacteria from animals, thus creating a foodborne risk to human health. To investigate
MDR and its association with plasmids in Salmonella enterica, whole genome sequence
(WGS) analysis was performed on 193 S. enterica isolated from sources associated
with United States food animals between 1998 and 2011; 119 were resistant to at
least one antibiotic tested. Isolates represented 86 serotypes and variants, as well
as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids
were identified among the 193 strains. Every isolate contained at least one AR gene.
At least one plasmid was detected in 157 isolates. Genes were identified for resistance
to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides
(n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48),
and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32),
ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7),
and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4%
of cases. Most AR genes were located on plasmids, with many plasmids harboring
multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-
cassette were identified. ARCs contained between one and five resistance genes (ARC1:
sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6:
tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates
and on plasmids of multiple replicon types. To determine the current distribution and
frequency of these ARCs, the public NCBI database was analyzed, including WGS data
on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014
to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates,
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while ARC6 was significantly associated with chicken isolates. This study revealed that
a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic
resistance seen in Salmonella isolated from United States food animals. It was also
determined that many plasmids carry similar ARCs.

Keywords: Salmonella, plasmids, antimicrobial resistance, agriculture, integrons

INTRODUCTION

Non-typhoidal Salmonella enterica is one of the most common
causes of foodborne illnesses globally, with an estimated
1.2 million cases each year in the United States alone (CDC,
2013). Symptoms range from self-limiting gastrointestinal illness
to sepsis. These infections can lead to death unless treated with
antibiotics (Crump et al., 2015). Unfortunately, antimicrobial
resistance (AR) has been increasing since the 1980s (Crump
et al., 2015). The Center for Disease Control and Prevention
(CDC) considers drug-resistant non-typhoidal Salmonella to be
a serious level threat to human health, and currently reports
that 8% of Salmonella infections are either multidrug resistant
(resistant to three or more classes of antimicrobials), or resistant
to an antibiotic used for treatment, such as ceftriaxone and
ciprofloxacin (CDC, 2013).

Up to 94% of United States Salmonella infections are estimated
to be foodborne, demonstrating the importance of investigating
Salmonella isolated from food animals (Scallan et al., 2011). The
National Antimicrobial Resistance Monitoring System (NARMS)
tracks antimicrobial susceptibility of bacteria associated with
animals, retail meat, and foodborne illness in humans. In 2015,
21.3% of animals tested by NARMS were positive for Salmonella
with individual sources as low as 8% in beef cattle and as high as
50% in sows, based on cecal sampling. Retail meat isolates in 2015
were positive for Salmonella at a lower percentage in all sources
(4.3%). Individual sources ranged from 0.4% (ground beef) to
6.2% (ground chicken). Of the Salmonella isolated by NARMS,
35.3% of the animal samples, and 57.7% of the retail meat
samples, were resistant to at least one antibiotic (FDA, 2015).

For many Salmonella, AR genes are carried on a mobile
genetic element (MGE) (Carattoli, 2003). MGEs, like plasmids,
have been shown to be extremely important in the expansion
of AR genes in Salmonella and other Enterobacteriaceae, such
as Klebsiella pneumoniae and Escherichia coli (Carattoli, 2013;
Gillings, 2014). Plasmids specifically have been identified carrying
AR genes in hospital-acquired infections, community-acquired
outbreaks, and have also been associated with AR genes in isolates
from animals raised for consumption (Conlan et al., 2016; Folster
et al., 2017; Tate et al., 2017).

Salmonella are capable of harboring multiple, large,
conjugative plasmids that can carry AR genes encoding
resistance to several classes of antibiotics, including β-lactams,
tetracyclines, aminoglycosides, and quinolones (Johnson et al.,
2010; Glenn et al., 2011; Jain et al., 2018). However, while one
cell can harbor multiple plasmids, they must be of different
incompatibility groups. Plasmids of the same incompatibility
group are unlikely to persist in the same isolate, while plasmids of
different groups can usually coexist without issue (Novick, 1987).

Incompatibility can be predicted by typing plasmids based on
the replicon-associated genes they contain (Carattoli et al.,
2005). Plasmids of several different incompatibility groups
have been associated with multiple AR genes in Salmonella
and other bacteria (Carattoli, 2009). For example, IncA/C
plasmids isolated from Salmonella have been associated with
genes conferring resistance to aminoglycosides, β-lactams,
chloramphenicol, sulfisoxazole, tetracyclines, and trimethoprim
(Hoffmann et al., 2017). Recently analyzed human infection
isolates from the 1960s implicate F, I1, X1, and N type plasmids
as early carriers of β-lactam resistance genes in Salmonella
(Tran-Dien et al., 2018).

Integrons have also been shown to be important to the
spread of AR in both clinical and agricultural isolates of
Salmonella (Kaushik et al., 2018). Integrons have a well-defined
structure consisting of: an integrase gene, which catalyzes the
integration of new genes, the attI recombination site where the
new genes integrate, and a promoter to express incorporated
genes. The incorporated genes are called gene cassettes and
are often AR genes (Gillings, 2014). The arrangement of
these genes is used to assign them numbers based on the
Integrall database of known integron sequences (Moura et al.,
2009). While not independently mobile, integrons can be
mobilized by other elements, like plasmids or transposons
(Partridge et al., 2018).

Despite the established link between plasmids and AR genes,
there is less known about the prevalence and characteristics of
plasmids containing AR genes in isolates from food animals
(Carattoli, 2003). Considering the high incidence of foodborne
infection in the United States, and increasing AR, understanding
the complete picture of AR in Salmonella is crucial. To investigate
this relationship, 193 animal-associated S. enterica isolates of
diverse serotypes and phenotypic resistance profiles, collected
by NARMS from 1998 to 2011, were selected for this study.
Whole genome sequence analysis (WGS) identified plasmids,
AR genes, integrons, and AR cassettes (ARCs) present in
these isolates. To determine the current relevance of these
ARCs, publicly available genomic data of S. enterica from food
animals collected by the USDA Food Safety and Inspection
Service (FSIS) from 2014 to 2018 (n = 6681), were analyzed
for the presence of the ARCs. Their association with plasmid
replicons was determined. This is the first WGS analysis of
isolates from the NARMS animal collection, which represent
the first 15 years of this United States program. Combined
with analysis of WGS data from the most recent 5 years
of HAACP FSIS isolates, this is the most comprehensive
nationwide study of AR in Salmonella associated with food
animals. The associations of ARCs and MGEs identified in this
study improve our understanding of AR in United States food
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animals, and may help us predict and prevent further spread
of AR in Salmonella.

MATERIALS AND METHODS

Isolates
One hundred and eighty nine S. enterica isolates, with collection
dates ranging from 1998 to 2011, were selected from the
NARMS animal isolate collection for the retrospective part
of this study (Gupta et al., 2016a,b,c,d,e,f,g,h; Karp et al.,
2017). In addition, four serotype Heidelberg isolates from a
2011 outbreak in humans were selected from the California
Department of Health (Hoffmann et al., 2012). To maximize
the AR gene diversity of the Salmonella in the retrospective
study, isolates were selected based on differences in phenotypic
AR profile, serotype, and the uncommon nature of their
Pulsed-Field Gel Electrophoresis (PFGE) patterns within the
PulseNet database. Eighty-six different serotypes and serotype
variants were represented in this isolate set. These bacteria
were isolated from various animal and animal associated
sources, such as carcass rinses and swabs, ground product, the
processing environment, sick animals, and infected humans.
Animal associated sources included poultry, swine, cattle,
horses, wild reptiles, wild mammals, companion animals, and
associated processing environments (Supplementary Table S1).
All patient information was blinded for the human isolates to
insure confidentiality.

Additionally, WGS data of S. enterica isolates recently
collected for Hazard Analysis and Critical Control Points
(HACCP) verification testing by USDA-FSIS from chicken,
turkey, pork, or beef products, were evaluated. Isolation
procedures are described in the USDA-FSIS Microbiology
Laboratory Guidebook (MLG) Chapter 4 (Dey and Lattuada,
1998). Only WGS data was used from these isolates as phenotypic
data was not available. Isolates were selected based on publicly
available data in NCBI’s Pathogen Detection Isolate Browser1.

Phenotypic Antimicrobial
Susceptibility Testing
For the 193 retrospective isolates collected from 1998 to
2011, phenotypic susceptibility to 14 different antibiotics
(Supplementary Table S1) was determined by broth-
microdilution. The Sensititre semi-automated antimicrobial
susceptibility system (TREK Diagnostic Systems Inc., Cleveland,
OH, United States) was used to inoculate the Sensititre custom
NARMS plate CMV3AGNF per manufacturer’s instruction. The
minimum inhibitory concentration (MIC) and classification
as resistant, susceptible, or intermediate for each of the
14 antibiotics were assigned using breakpoints set by the
Clinical and Laboratory Standards Institute (CLSI, 2016). For
antibiotics without CLSI established breakpoints, NARMS
breakpoints were used2.

1https://www.ncbi.nlm.nih.gov/pathogens/isolates#/search/
2https://www.cdc.gov/narms/antibiotics-tested.html

Genome Sequencing, Assembly, AR
Gene, and Integron Identification
Total DNA was extracted using a Sigma GenElute kit (Sigma
Life Sciences, St. Louis, MO, United States). Libraries were
prepared according to the Illumina protocol using the Nextera
XT DNA sample preparation kit. Isolates were sequenced using
an Illumina HiSeq2500 (Illumina, San Diego, CA, United States)
at The Genome Institute at Washington University in St. Louis,
MO, United States. Reads were assembled into draft sequences
using A5 with default settings, including quality trimming (Tritt
et al., 2012). Draft genomes were annotated with Prokka using
default settings (Seemann, 2014). All sequences had greater than
40× coverage, an average N50 of greater than 350,000, and an
average of 116 contigs (median of 97 contigs) (Supplementary
Table S2). AR genes were identified using ARG-ANNOT V3
(Gupta et al., 2014). Integrons were identified using Integrall
(Moura et al., 2009).

Regulatory isolates collected and sequenced by the USDA-FSIS
from 10/31/2014 to 4/16/2018 were also included for analysis.
WGS data was generated from MiSeq libraries prepared using
the Nextera XT library prep kit (Illumina, San Diego, CA,
United States) and sequenced on the Illumina MiSeq platform
using either 300 Cycle or 500 Cycle Version 2 chemistries.
The raw files were assembled using either CLC Genomics
Workbench v8 or v11 (Qiagen) or SPAdes version 3.7.03

(St. Petersburg, Russia).

Plasmid Identification
Plasmid replicon-associated genes were detected using BLASTN
to identify the target sequence in the genomes of each isolate
(Camacho et al., 2009). Target sequences were selected based
on plasmid replicon typing as well as relaxase typing schemes
(Carattoli et al., 2005; Villa et al., 2010; Compain et al.,
2014). Additional contigs belonging to plasmids not identified
in the replicon and relaxase BLAST were identified using
BLASTN against a custom plasmid BLAST database. The custom
database was created by extracting all plasmids from NCBI
that were associated with Enterobacteriaceae as of March 2015
(Coordinators, 2017). The additional plasmid contigs were
confirmed using the following criteria: First, contigs that were
identified in the replicon/relaxase BLAST were used to identify
the primary reference plasmid, meaning, the plasmid in the
custom database that aligned to the initial BLAST identified
contig with the greatest coverage and percent identity. Second,
large contigs (>10,000 bp) not identified in the initial BLAST
that aligned with high identity (>70%) and coverage (>40%) to
the primary reference plasmid for a specific replicon and did not
have substantial homology with another replicon were binned as
part of the same plasmid. For these large contigs, a 70% cut-off for
identity was chosen based on the range of percent identities of the
primary reference plasmids to the contigs containing the replicon
or relaxase genes. A 40% cut-off for coverage was chosen to allow
for contigs that were continuous where the reference sequence
was not, i.e., for cases where the reference plasmid and the contig

3http://cab.spbu.ru/software/spades/
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TABLE 1 | Resistance genes identified and associated with plasmids in the retrospective isolates (n = 193).

Antibiotic resistance
gene

Antibiotic Class to
which resistance

is conferred

Number of genes
identified in n = 193

isolates

Predicted resistance
conferred∗

Number of genes
associated with

plasmids

aac(6′)-I Aminoglycosides 189 Gen 0

strB Aminoglycosides 67 Str 57

strA Aminoglycosides 65 Str 56

aadA (ant(3′ ′)Ia) Aminoglycosides 54 Str 38

aac3-Via Aminoglycosides 22 Gen 20

aph(3′)Ib Aminoglycosides 22 Kan 16

aphA (aph(3′)IIa) Aminoglycosides 13 Kan 13

sph (aph(6)Ic) Aminoglycosides 13 Str 13

aac3-Iid Aminoglycosides 11 Gen 11

aadB (ant(2′ ′)Ia) Aminoglycosides 7 Gen 5

aac-IVa Aminoglycosides 4 Gen 2

aph(4)Ia Aminoglycosides 4 (Hygromycin) 1

ant(3′ ′)Ia Aminoglycosides 1 Str 0

blaCMY−2 β-lactams 44 Amp, Fox, Axo Amo, Tio 44

blaTEM−1 β-lactams 37 Amp 27

blaCARB−3 β-lactams 3 Amp 0

tetA Tetracyclines 61 Tet 49

tetR∗∗ Tetracyclines 64 Tet 50

tetB Tetracyclines 35 Tet 30

tetC Tetracyclines 7 Tet 7

tetG Tetracyclines 2 Tet 7

tetM Tetracyclines 2 Tet 0

sul1 Sulfonamides 48 Sul 41

sul2 Sulfonamides 41 Sul 36

sul3 Sulfonamides 2 Sul 0

floR Phenicols 27 Chl 24

cmlA Phenicols 11 Chl 8

catA Phenicols 4 Chl 0

fosA2 Fosfomycin 48 (Fosfomycin) 0

mphA Macrolides 2 Azi 2

ereA Macrolides 2 (Erythromycin) 0

mefB Macrolides 1 Azi 0

dfrA Trimethoprim 8 Trimethoprim 5

arr2 Rifampicin 2 (Rifampicin) 0

∗For drugs which phenotypic testing was available, only tested drugs are listed. Resistance to other drugs are possible. Drug names in parentheses were not tested.
Antibiotic abbreviations are as follows: Gen, gentamicin; Kan, kanamycin; Str, streptomycin; Amp, ampicillin; Fox, cefoxitin; Axo, ceftriaxone; Amo, amoxicillin; Tio, ceftiofur;
Tet, tetracycline; Sul, sulfonamide; Chl, chloramphenicol; Azi, azithromycin. ∗∗ Indicates regulatory gene usually associated with resistance.

being queried began in different places and there was a large gap
between homologous sequences resulting in two different BLAST
hits for the identified contig. Third, smaller contigs (3,000–
10,000 bp), that aligned to reference plasmids, different than the
primary, but of the same replicon type, and those with lower
identity were also binned if they matched the reference plasmid
or a plasmid of the same replicon type. Contigs binned together
were extracted and used to create a plasmid draft. Contigs
were included in drafts only if they could not be associated
with another plasmid of a different replicon type. Single contigs
that aligned with an entire plasmid in the BLAST analysis,
but were not identified in the initial BLAST, were considered
separate plasmids. ColE replicons were not processed into draft
sequences due to the short length of contigs and difficulty in
assembly. However, contigs that contained both a ColE replicon

and an AR gene were analyzed. Drafts were annotated with
RAST (Overbeek et al., 2014). Replicon types with an established
Plasmid Multi Locus Sequence Type (pMLST) scheme were typed
by querying the pMLST database4 (Garcia-Fernandez et al., 2008,
2011; Garcia-Fernandez and Carattoli, 2010; Jolley and Maiden,
2010; Hancock et al., 2017). Contig coverage was also analyzed
for each sequence using Bowtie2 and Qualimap (Garcia-Alcalde
et al., 2012; Langmead and Salzberg, 2012).

Antibiotic Resistance Cassette
Identification
For AR genes that were identified in multiple retrospective
isolates, the contig containing the gene was aligned with

4https://pubmlst.org/plasmid/
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the contigs containing the gene from other isolates using
SnapGene5. Homologous sequence among these isolates
immediately adjacent to the resistance gene was considered
an Antibiotic Resistance Cassette (ARC). ARC sequences were
defined as the sequence including an identical AR gene with
identical flanking sequence, allowing for up to five base pair
mismatches, in multiple unrelated isolates. ARC sequences
were compared to retrospective isolates containing the AR
gene, but not the entire ARC, using BLASTN to identify
additional isolates containing the ARC sequence split onto
multiple contigs (Camacho et al., 2009). ARC sequences were
compared to the NCBI non-redundant (nr) database using
BLASTN to identify matching sequences, and to identify
the species and prevalence of sequenced isolates containing
these ARC sequences.

Antibiotic resistance cassette sequences were also compared to
the USDA-FSIS Salmonella isolates, using BLASTN. Isolates were
only included in the comparison if they were predicted to contain
the ARC. Predictions were based on the presence of the ARC
AR genes in each isolate as presented by the Pathogen Detection
Isolate Browser. Isolates were considered to contain the ARC
if the whole ARC sequence was present or if the sequence was
overlapping on multiple contigs.

Statistics
Ratio of FSIS isolates containing ARCs (animal source and
serotype) were compared using 95% confidence intervals
(95% CI) calculated in R. Conditional probabilities were
calculated in Excel for isolates containing multiple ARCs using
the following formulas:

P (A|B) =
P

(
A and B

)
P (A)

P (A|B|C) =
P

(
A and B and C

)
P

(
A and B

)
∗ P (A)

RESULTS

Phenotypic and Genotypic
Antimicrobial Resistance
The retrospective study utilized WGS to analyze 193 isolates
collected from 1998 to 2011. Phenotypic AR was known prior
to sequencing and was used to help select the isolates for this
study. Selected isolates (n = 119) exhibited phenotypic resistance
to at least one antimicrobial tested and 67 of those were multi-
drug resistant (resistant to three or more classes of antimicrobial).
Resistance was observed for 13 of 14 antimicrobials tested in
at least one isolate, with no resistance seen to ciprofloxacin.
The most common ARs in the data set were to tetracycline,
streptomycin, ampicillin, and sulfamethoxazole or sulfisoxazole
(Supplementary Table S1).

A total of 923 AR genes were identified from the sequences
(Table 1). All 193 retrospective isolates contained at least one

5http://www.snapgene.com/

AR gene (Supplementary Table S1). The most frequently
identified AR gene was aac(6′)-I, an aminoglycoside
acetyltransferase gene, variants aac(6′)-I-y (n = 159) and
aac(6′)-I-aa (n = 30) that was present in almost every
isolate. Setting aside aac(6′)-I, other genes for resistance to
aminoglycosides were still the most numerous followed by
genes for resistance to tetracyclines and β-lactams (Table 1).
AR gene presence corresponded with phenotypic AR for
95.4% (618/648) of genes for which phenotypic testing was
completed (Supplementary Table 1). One hundred and
twenty six isolates were considered MDR as they contained
multiple AR genes for multiple classes of antimicrobials
(Supplementary Table S1).

Integrons
Sixty-one isolates contained a complete integron (In).
Fourteen different complete previously named integrons
were identified, and six novel integrons were identified. Novel
integrons were defined as an arrangement not previously
sequenced and assigned a new number. In2, containing
aadA1, was the most numerous (n = 21). Two isolates
also contained In0, which contains no gene cassettes, but
an otherwise complete integron structure. Forty-eight
integrons were determined to be associated with plasmid
sequences (Table 2).

TABLE 2 | Number of integrons identified and integron gene cassette content in
retrospective isolates (n = 193).

Integron Number of
isolates

containing
integron

Number
located on
plasmids

Integron gene cassettes
arranged 5′–3′

In2 21 19 aadA1a

In740 9 9 aadA1bs

In571 5 5 aadB gcuE2 gcu8 cmlA1g

In363 4 4 dfrA1 gcuC

In27 2 1 dfrA12 gcuF aadA2

In0 2 0

In142 2 2 aadA7

In167 2 0 blaCARB−2

In287 2 2 aadA6D2

In839 2 1 aadA1bx

In45 1 1 aadA12

In127 1 0 aadA2

In191 1 0 dfrA14b

In862 1 1 estX-3 aadA1a

In1581∗ 1 0 aadA7g

In1582∗ 1 0 dfrA16c blaCARB−3 aadA2 ereA1c

In1583∗ 1 1 aadA31

In1584∗ 1 1 estX-6 gcu116

In1585∗ 1 0 aadA2 cmlA1g aadA1a qacH2

In1586∗ 1 1 aadA1D13

Integron gene cassettes are listed in order of arrangement within the DNA. gcu
indicates gene cassette of unknown function (hypothetical protein). (∗) indicates a
new integron number.
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TABLE 3 | Genotypic profiles and metadata of A/C plasmids.

Isolate pMLST type Serotype Source Plasmid genotypic

80 U Copenhagen∗ C strAB, blaCMY−2, sul2, floR

169 ST1 IIIa N/A

106 ST1 IIIa18:z4,z32:- T N/A

15 ST2 Copenhagen∗ CH tetAR, sul1

19 ST3 Agona S strAB, blaCMY−2, tetAR, sul1, sul2, floR, dfrA1

158 ST3 Agona C aph3-Ia, strAB, blaCMY−2, tetAR, sul1, sul2, floR, dfrA1

99 ST3 Bardo C strAB, blaCMY−2, tetAR, sul2, floR

75 ST3 Bredeney T strAB, blaCMY−2, tetAR, sul2

27 ST3 Dublin C aph3-Ia, strAB, aadB, blaCMY−2, tetAR, sul2, floR, cmlA

140 ST3 Dublin C strAB, blaCMY−2, tetAR, sul2, floR

150 ST3 Dublin C aph3-Ia, strAB, blaCMY−2, blaTEM−1, tetAR, floR

72 ST3 Give C aac3-VIa, strAB, aadA, blaCMY−2, tetR, sul1, sul2, floR

3 ST3 Heidelberg C aph3-Ia, strAB, aadB, blaCMY−2, tetAR, sul1, sul2, floR, cmlA, dfrA1

43 ST3 Heidelberg strAB, aadB, blaCMY−2, blaTEM−1, tetAR, floR, cmlA

86 ST3 Heidelberg CH strAB, aadB, blaCMY−2, blaTEM−1, tetAR, sul2, floR, cmlA

103 ST3 Heidelberg T strAB, blaCMY−2, tetAR, sul2, floR

126, 175, 185, 187 ST3 Heidelberg T strAB, blaCMY−2, tetAR, sul2

62 ST3 IIIa 18:z4,z23:- T aph3-Ia, strAB, blaCMY−2, tetAR, sul1, sul2, floR, dfrA1

111 ST3 Kinshasa∗∗ C strAB, blaCMY−2, tetAR, sul1, sul2, floR

14 ST3 Newport strAB, blaCMY−2, tetAR, sul2, floR

83 ST3 Newport H aac3-VIa, strAB, aadA, blaCMY−2, tetAR, sul1, sul2, floR

139 ST3 Newport C strAB, blaCMY−2, tetAR, sul2, floR

161 ST3 Ohio strAB, blaCMY−2, tetAR, sul1, sul2, floR, dfrA1

40 ST3 Reading C aac3-Via, strAB, aadA, blaCMY−2, blaTEM−1, tetA, sul1, sul2, floR

17 ST3 Typhimurium T aadB, blaCMY−2, tetAR, floR, cmlA

125 ST3 Typhimurium C strAB, tetAR, sul2, floR

132 ST3 Typhimurium C strAB, aadA, blaCMY−2, tetAR, sul1, sul2, floR

39 ST3 Uganda C strAB, blaCMY−2, tetAR, sul1, sul2, floR

50 ST3 Uganda strAB, blaCMY−2, tetAR, sul1, sul2, floR

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. Blank indicates source is unknown. U indicates unknown pMLST type due to inability to calculate.
Animal source abbreviations are as follows, C, cattle; Ch, chicken; T, turkey; S, swine; H, horse. N/A indicates the plasmid contained no resistance genes. ∗Typhimurium
variant. ∗∗Uganda variant.

Plasmid Replicons Detected
and Linkage to AR Genes
At least one plasmid replicon-associated gene was detected
in 157 of the 193 isolates; multiple replicons were detected
in 91 isolates (Supplementary Table S1). The most common
types of replicon-associated genes detected were ColE followed
by I1, F, X, and A/C. Additionally, HI1, HI2, Q1, and N
were also detected at lower levels. A total of 212 draft
plasmid sequences were created; 124 of them contained at
least one AR gene and 102 contained multiple AR genes
with 57 containing five or more AR genes (Tables 3–10). In
total, 81.5% of AR genes were associated with a plasmid
replicon (Table 1).

With the exception of ColE plasmids, detection of a replicon
associated gene correlated with the presence of additional
plasmid sequence in 100% of cases. ColE plasmids were not
further characterized because the plasmids were too small to be
reliably assembled. However, AR genes were detected in a few
cases on the same contig with the ColE replicon, including four
ColE plasmids homologous to pSC101 that contained the tetC
gene (Supplementary Table S3).

A/C Replicons
A/C replicon-associated genes were detected in 32 isolates,
30 of which were associated with AR genes. Eighteen different
combinations of AR genes were present among these plasmids
and five of the AR gene profiles were located on multiple A/C
plasmids. According to the A/C pMLST scheme 27 plasmids were
type ST3; the remaining four included two ST1, one ST2, and
one untypable plasmid. Plasmids were present in 16 different
serotypes and isolated from five different host sources. However,
14/32 plasmids were isolated from cattle sources and 9/32
were isolated from turkey sources (Table 3). These sources
represented 21% and 15% of the total isolates, respectively,
(Supplementary Table S1).

F Replicons
Forty-three isolates contained at least one F type replicon-
associated gene (Table 4). Because F-type plasmids can contain
multiple replicon-associated genes of different types, all contigs
identified as belonging to an F-replicon plasmid were considered
to belong to the same plasmid. F, FII, FIIs, FIA, FIB,
FIBs, FIC, and FV replicons were identified. Fourteen of
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TABLE 4 | Genotypic profiles and metadata of F plasmids.

Replicons

Isolate present Serotype Source Plasmid genotype

46 F, FII Braenderup CH strAB, tetAR

94 F, FII Orion CH aph3′′-Ia

17 F, FII, FIA, FIB Typhimurium T aph3′′-Ia, strAB, tetB,
sul2

1, 53, F, FII, FIB Kentucky PE strAB, tetB

77, 109, 116 F, FII, FIB Kentucky CH strAB, tetB

79 F, FII, FIB Minnesota T aph3′′-Ia, strAB, tetB,
sul2

80 FIB, FIIs Copenhagen∗ C aph3′′-Ia, blaTEM−1,
tetAR

52 FIBs, FIIs Choleraesuis S N/A

16 FIBs, FIIs Copenhagen∗ C aph3′′-Ia, aadA,
blaTEM−1, tetAR, sul1

5 FIBs, FIIs Enteritidis PE N/A

6, 7, 8, 9, 11,
12, 13, 129,
130

FIBs, FIIs Enteritidis CH N/A

10 FIBs, FIIs Enteritidis RTE N/A

56 FIBs, FIIs Enteritidis R N/A

131, 171 FIBs, FIIs Enteritidis WA N/A

137 FIBs, FIIs Enteritidis N/A

29 FIBs, FIIs I 4,[5],12:i:- T N/A

148 FIBs, FIIs Kunzendorf∗∗∗ S N/A

18, 96 FIBs, FIIs Typhimurium CH N/A

51 FIBs, FIIs Typhimurium S N/A

35 FIC Mbandaka aadA, tetAR, sul1,
dfrA

169 FIIs IIIa N/A

155 FIIs Pullorum∗∗∗∗ AV N/A

125 FIIs Typhimurium C aadA, blaTEM−1, sul1

28 FIIs, X1 Dublin CH N/A

140, 150 FIIs, X1 Dublin C N/A

149 FIIs, X1 Dublin C blaTEM−1

164 FV Binza∗∗∗∗∗ T N/A

115 FV II 48:d:z6∗∗ E N/A

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. Animal
source abbreviations are as follows, C, cattle; Ch, chicken; T, turkey; S, swine;
PE, poultry environment; E, environmental food contact surface; RTE, ready to
eat product; AV, avian; WA, wild animal; R, wild reptile. Blank source indicates
unknown. N/A indicates no resistance genes were present. ∗Typhimurium variant.
∗∗Hagenbeck. ∗∗∗Cholersuis variant. ∗∗∗∗Gallinarum variant. ∗∗∗∗∗Orion.

these 43 draft plasmids contained AR genes. Eight different
combinations of AR genes were present among these 14
isolates; five of these plasmids that contained strAB and tetB,
were found in Salmonella Kentucky isolates from poultry.
A total of eight different combinations of replicons were
identified (Table 4).

HI Replicons
Four isolates contained a HI1 plasmid and 20 isolates contained
a HI2 plasmid, all of which contained AR genes. All four HI1
plasmids were from different sources, but all carried the tetB
resistance gene. Six HI2 plasmids belonged to one resistance gene

TABLE 5 | Genotypic profiles and metadata of HI plasmids.

Isolate HI Type Serotype Source Plasmid genotype

28 HI1 Dublin CH strAB, blaTEM−1, tetB

149 HI1 Dublin C tetB

154 HI1 Krefeld S tetB

152 HI1 Rubislaw E aph3Ia, strAB, tetB,
sul1, sul2, cmlA, mphA

164 HI2 Binza∗ T tetB

70 HI2 Bovismorbificans S aac-Iva, aph4-Ia

63 HI2 Brandenburg C aac3-Via, aph3Ia, aadA,
tetB, sul1

75 HI2 Bredeney T aadA, aadB, tetC, sul1

126 HI2 Heidelberg T aphA, sph, aph3′′ Ia, tetB

128 HI2 Heidelberg H aphA, sph, strAB, tetB

145 HI2 Heidelberg S aphA, sph, strAB, tetB

174, 184 HI2 Heidelberg CH aphA, sph, strAB, tetB

175 HI2 Heidelberg T aphA, sph, aph3′′ Ia, tetB

180, 181 HI2 Heidelberg T aph, sph, strB, tetB

185, 187 HI2 Heidelberg T aphA, sph, tetB

186, 194 HI2 Heidelberg T aphA, sph, strAB, tetB

81 HI2 Livingstone E strAB

156 HI2 Ouakam CH tetB

110 HI2 Putten S aac3-Iid, aac-Iva,strAB,
aadA, tetB, sul1

159 HI2 Putten aadA, tetB, sul1

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. Animal
source abbreviations are as follows, C, cattle; Ch, chicken; T, turkey; S, swine;
H, horse; E, environmental food contact surface. ∗Orion variant.

profile containing aph, sph, strA, strB, and tetB, while six other
HI2 plasmids had unique AR gene profiles. Based on the HI1
pMLST typing scheme, two HI1 plasmids were ST2, one was
ST7, and one was untypable (due to a missing allele). By the
HI2 pMLST scheme, three plasmids were ST1, four ST2, and
the rest untypable due to a mutation in one of the alleles used
for typing (Table 5).

I1 Replicons
Sixty-two isolates contained an I1 replicon-associated gene,
yielding 62 draft plasmid sequences. Fifty of those plasmids
contained AR genes. Sixteen plasmids contained only blaCMY−2
and 15 plasmids contained only three AR genes, aadA, aac3,
and sul1 (Table 6). On 14 of those 15 plasmids; the resistance
genes were associated with the integron In2; on the remaining
plasmid, the genes were associated with a novel integron, In1586.
Nine different I1 pMLST types were present, with ST12 (n = 13)
and ST26 (n = 20) being the most represented (Tables 6, 7).
Fourteen plasmids could not be typed by pMLST, due to missing
alleles. Twenty-one plasmids were isolated from turkey sources
and thirteen from chicken (Table 6).

N Replicons
Four isolates contained N replicon-associated genes leading to
four draft plasmids. Three plasmids contained AR genes. IncN
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TABLE 6 | Genotypic profiles and metadata of I1 plasmids containing
resistance genes.

Isolate pMLST Type Serotype Source Plasmid genotype

15 ST12 Copenhagen∗ CH blaCMY−2

74 ST12 Havana S blaCMY−2

102 ST12 Heidelberg cat blaCMY−2

178 ST12 Heidelberg T blaCMY−2

182 ST12 Heidelberg CH blaCMY−2

30 ST12 Infantis CH blaCMY−2

44 ST12 Johannesburg S blaCMY−2

154 ST12 Krefeld S blaCMY−2

78 ST12 Minnesota S blaCMY−2

37 ST12 Saintpaul T blaCMY−2

120 ST12 Thompson CH blaCMY−2

116, 109 ST12, U Kentucky CH blaCMY−2

141 ST155 Worthington S tetB

152 ST20 Rubislaw E blaCMY−2

53 ST201 Kentucky PE tetAR

142 ST222 Albany T aac3VIa, aadA, sul1

187 ST222 Heidelberg T aac3VIa, aadA, sul1

33 ST222 Schwarzengrund aac3VIa, aadA, sul1

41 ST23 Cerro C blaCMY−2

143 ST25 Manhattan S aadA, sul1

23 ST26 Hadar E aadA, sul1

134 ST26 Hadar T aac3VIa, aadA, sul1

174, 175, 179,
180, 183, 185

ST26 Heidelberg CH aac3VIa, aadA, sul1

192 ST26 Heidelberg T aac3IId, strAB, aadA,
blaTEM−1, tetAR

194 ST26 Heidelberg T aac3IId, aadA, tetAR

188, 189, 190,
193, 195

ST26 Heidelberg HU aac3IId, aadA,
blaTEM−1, tetAR

191 ST26 Heidelberg T aac3IId, strA, aadA,
blaTEM−1, tetAR

29 ST26 I 4,[5],12:i:- T aac3VIa, aadA, sul1

59 ST26 IIIa 18:z4,z23:- aac3VIa, aadA, sul1

87 ST26 Litchfield CH aac3VIa, aadA, sul1

126, 103 ST26, U Heidelberg T aac3VIa, aadA, sul1

40 ST4 Reading C tetCR

85 ST4 Hartford H tetC

113 U Anatum T aac3VIa, aadA,
blaTEM−1, tetB, sul1

45 U Berta T tem

22 U Derby T tetAR

105 U Minneapolis∗∗ T aac3IId, aadA,
blaTEM−1, tetAR

94 U Orion CH blaCMY−2

124 U Senftenberg C aphA, sph, sul1

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. U indicates
unknown ST type due to inability to calculate. Animal source abbreviations are as
follows, C, cattle; Ch, chicken; T, turkey; S, swine; PE, poultry environmental; E,
environmental food contact surface; H, horse; HU, human. ∗Typhimurium variant.
∗∗Anatum variant.

pMLST results identified two plasmids that were ST1, one was
ST3, and one was untypable. Isolates were four different serotypes
and sources (Table 8).

TABLE 7 | Genotypic profiles and metadata of I1 plasmids containing no
resistance genes.

Isolate pMLST Serotype Source

20 ST12 Agona RTE

21 U Montevideo CH

31 U Infantis S

52 U Choleraesuis S

57, 77, 127 U Kentucky CH

75 ST80 Bredeney T

117 U Fresno R

118 U Sandiego R

128 U Heidelberg H

139 U Newport C

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. U indicates
unknown ST type due to inability to calculate. Animal source abbreviations are as
follows, C, cattle; Ch, chicken; T, turkey; S, swine; RTE, ready to eat product; H,
horse; R, wild reptile.

TABLE 8 | Genotypic profiles and metadata of IncN plasmids.

Isolate pMLST Serotype Source Plasmid genotype

89 N/A Tennessee S N/A

133 ST1 Montevideo C tetAR

110 ST1 Putten S blaTEM−1

82 ST3 Javiana strAB, blaTEM−1,
sul1, sul2, cmlA,
mphA

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. Animal
source abbreviations are as follows, C, cattle; S, swine; blank, unknown.

TABLE 9 | Genotypic profiles and metadata of IncQ1 plasmids.

Isolate Serotype Source Plasmid genotype

91 Alachua S strAB, tetAR, sul2

177 Derby S strAB, tetAR, sul2

148 Kunzendorf∗ S strAB, sul2

65 London S aph3-Id, strAB, tetAR, sul2

143 Manhattan S strAB, sul2

48 Meleagridis C strAB, tetAR, sul2

42 Muenchen T strAB, tetAR, sul2

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. ∗Cholersuis
variant. Animal source abbreviations are as follows, C, cattle; T, turkey; S, swine.

Q1 Replicons
Q1 replicon associated genes were identified in seven isolates
yielding seven draft plasmids containing AR genes. All
Q1 plasmids contained AR genes for aminoglycosides and
sulfonamides and three also contained tetAR genes for resistance
to tetracycline. In addition to these five genes, one Q1 plasmid
contained an additional aminoglycoside resistance gene, aph3-Id.
Plasmids were found in isolates of seven different serotypes, and
five plasmids were from swine sources (Table 9).
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TABLE 10 | Genotypic profiles and metadata of IncX plasmids.

Isolate Serotype Source X type Genotype

3 Heidelberg C X4 blaTEM−1

24 Hadar C X1 blaTEM−1

27 Dublin C X1 blaTEM−1

129 Enteritidis CH X1 blaTEM−1

134 Hadar T X1 blaTEM−1

186 Heidelberg T X1 blaTEM−1

139 Newport C X2 aph3′′ Ia

8, 13 Enteritidis CH X1

25, 43 Heidelberg X1

37 Saintpaul T X1

40 Reading C X1

45 Berta T X1

65 London S X1

86, 95, 176 Heidelberg CH X1

98 IIIb 38:(k):z35 R X1

102 Heidelberg cat X1

103, 191, 192, 194 Heidelberg T X1

104 Minneapolis∗ S X1

165, 166 IIIb 61:–:1,5,7 C X1

188, 190, 193, 195 Heidelberg HU X1

Isolate numbers correspond to isolate numbers with CRJJGF prefixes. Animal
source abbreviations are as follows, C, cattle; Ch, chicken; T, turkey; S, swine;
HU, human; R, wild reptile. Blank indicates unknown source. ∗Anatum variant.

TABLE 11 | The co-occurrence of replicons with additional replicons within the
same isolate from the retrospective isolates set (n = 193).

AC F HI1 HI2 I1 N Q1 X pSC101 ColE

AC 32 6 0 5 9 0 0 9 0 14

F 6 43 2 2 7 0 1 7 0 8

HI1 0 2 4 0 2 0 0 2 0 0

HI2 5 2 0 21 9 1 0 2 0 16

I1 9 7 2 9 62 0 1 14 1 34

N 0 0 0 1 0 4 0 0 0 1

Q1 0 1 0 0 1 0 7 1 0 3

X 9 7 2 2 14 0 1 35 0 17

pSC101 0 0 0 0 1 0 0 0 4 2

ColE 14 8 0 16 34 1 3 17 2 76

Gray boxes indicate the total number of replicons identified.

X Replicons
Thirty-three isolates contained an X1 replicon-associated
gene, one contained an X2 replicon-associated gene, and
one contained an X4 replicon-associated gene, yielding
29 draft X plasmid sequences (Table 10). The other four
isolates with X1 replicons were serotype Dublin, which can
contain a virulence plasmid with two replicons, FIIs and X1;
therefore, those plasmids were counted as F type (Table 4)
(Mohammed et al., 2017). Five of the X1 plasmids and
the one X4 plasmid contained blaTEM−1. The X2 plasmid
contained aph3′′-Ia.

Co-occurrence
Multiple replicon-associated genes of different types
were detected in 92 of 155 isolates containing plasmids
(Supplementary Table S1). Incidence of co-occurrence varied
by replicon type, but more than half of all plasmids were present
with additional replicons in the same isolate. Replicons with
the highest frequencies of co-occurrence were X1 (94.2%), HI1
(100%) and HI2 (85%), I1 (75.8%), and Q1 (85.7%) (Table 11).
There were three cases of two different replicons present not only
in the same isolate but on the same contig, all of which were FIIs
replicons with an X1 replicon in S. Dublin isolates.

Antibiotic Resistance Cassettes (ARCs)
Six ARCs and one pseudo-ARC, as defined in materials and
methods, were identified (Figures 1, 2 and Table 12). ARC1
(5627 bp), consisting of tetA, tetR, strA, strB, sul2, was found
in 27 isolates on A/C plasmids and five isolates on Q1 plasmids.
ARC2 (5868 bp), consisting of aac3-IId and tmrB, was present
in 11 isolates and located on ColE (1), HI2 (1), and I1 (9)
plasmids. ARC3 (1902 bp), consisting of aph and sph, and was
found on eleven HI2 plasmids and two I1 plasmids while ARC4
(3911 bp), containing blaCMY, hyp, and sugE, was found on
16 I1 and 28 A/C plasmids. ARC5 (4173 bp), consisting of
floR and genes of unknown function, was present on 24 A/C
plasmids. ARC6 (4462 bp), containing tetB, was located on six
F plasmids, 17 HI2, and two HI1 plasmids. ARC6 was also
found in two additional isolates but could not be confirmed as
associated with a plasmid. The final ARC, designated pseudo-
ARC, was an integron (In2 In237, In839, In1581, and In1583),
containing aac3-Via, aadA, and sul1 (Figure 2). This ARC was
designated pseudo because there was no consensus sequence due
to variation in sequence. However, the ARC was still included in
the characterization because the genes were identified together on
the same contig, all within an integron structure, and in the same
order in 22 isolates.

Antibiotic resistance cassettes sequences were identified in
Salmonella, isolated from 2014 to 2018, sequenced by USDA-FSIS
(n = 6681) (Figure 3, Table 13, and Supplementary Table S4).
ARC1 was found in 242 isolates, 79.8% of which were from cattle.
Thirteen different serotypes were represented among the 242
isolates, and the ARC was identified on a contig also containing
a plasmid replicon in 43 isolates. ARC2 was found in 11 isolates
that were from five serotypes and three different sources. Only
one was on a contig with an F plasmid replicon, a serotype
Kentucky isolate from chicken. ARC3 was found in 20 isolates.
All isolates were serotype Heidelberg except one isolate from
swine that was serotype Mbandaka. Two were associated with
a plasmid sequence, both HI2 from serotype Heidelberg. ARC4
was found in 259 isolates of 19 different serotypes. Sixty-three
were associated with plasmids, types: A/C, F, K, and I1. ARC5
was identified in 142 isolates, of 15 different serotypes, and was
associated with a plasmid in 17 isolates. ARC6 was identified
in 355 isolates of 23 different serotypes, 78% of which were
serotype Kentucky. ARC6 was present on a plasmid in 274
isolates (Table 13). Two hundred and five USDA-FSIS isolates
contained multiple ARCs (Figure 3).
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FIGURE 1 | Sequences of antibiotic resistance cassettes (ARCs) identified. Length of sequences are proportional. Arrow color indicates gene classification. Red, AR
gene; Yellow, mobile element gene; Gray, metal resistance gene; Orange, relaxase gene; Purple, other gene. Gene abbreviations as follows: tnp, transposase; hp,
hypothetical protein.

Among these FSIS isolates, animal sources and serotypes
were significantly more likely to contain certain ARCs than
others. Isolates from cattle sources were significantly more likely
to contain ARC1 than any other source (95% CI: 0.18–0.23).
Isolates from turkey sources were more likely to contain ARC1
than isolates from chicken and swine (95% CI: 0.06–0.11,
Supplementary Data). Isolates from cattle were also significantly

more likely to contain ARC4 and ARC5 than any other source
(95% CI: 0.1–0.14, 0.12–0.15), while isolates from chicken were
significantly more likely to contain ARC6 than other sources
(95% CI: 0.06–0.08, Figure 4). Serotype Dublin isolates, which
were only identified from cattle sources, and serotype Newport
isolates were significantly more likely to contain ARC1 (95% CI:
0.78–0.91, 0.53–0.69) and ARC5 (95% CI: 0.41–0.59, 0.3–0.46)
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FIGURE 2 | Example sequence of one of the pseudo-ARC variant sequences. Red arrows are AR genes, purple arrows are other genes.

than isolates of other serotypes identified (Supplementary Data).
Isolates of serotype Reading were also significantly more likely to
contain ARC1 than other serotypes identified, except for Newport
and Dublin (95% CI: 0.23–0.44, Supplementary Data). Serotype
Newport isolates were also significantly more likely to contain
ARC4 than all other serotypes (95% CI: 0.49–0.65, Figure 5).

Antibiotic resistance cassettes were also associated with each
other in certain animal sources. Isolates from cattle containing
ARC4 had a 90% probability of also containing ARC1, while
isolates from chicken only had a 1.8% probability. Isolates
from cattle containing ARC5 had a 94% probability of also
containing ARC1; however, isolates from cattle that were positive
for ARC1 only had a 52 and 58% probability of containing ARC4
and ARC5, respectively. Probabilities of ARC co-occurrence are
shown in Supplementary Data.

Antibiotic resistance cassettes sequences were also compared
with the NCBI non-redundant database to identify other isolates
containing the ARC sequences. ARC1 was found in 88 isolates
of 12 different species, 17 types of sources, 14 different countries,
and present on A/C, I1, F, HI2, and Q1 plasmids, as well as on
the chromosome and on integrative conjugative elements (ICE).
ARC2 was identified in 16 different species from 15 countries and
in 12 different source types. ARC2 was associated with the highest
number of different replicon types including A/C, F, I1, HI1, HI2,
L/M, and N. ARC3 was identified in 3 different species, 4 different
countries, and from 2 sources, but associated with four different
replicon types, F, I1, HI2, and N. ARC4 was identified in 12
different species, 20 different countries, and from 11 sources, but
in only three identifiable plasmid types, A/C, I1, and K. ARC5 was
identified in 13 different species, 17 different countries, and from

TABLE 12 | AR genes contained in each antibiotic resistance cassette (ARC) and
their associated replicons from the retrospective isolate set (n = 193).

ARC Associated replicons

ARC1: tetAR, strAB, sul2 A/C(27), Q1(5)

ARC2: aac3-IId ColE(1), I1(9), HI2(1)

ARC3: aph, sph HI2(11), I1(2)

ARC4: blaCMY−2, A/C(28), I1(16)

ARC5: floR A/C(24)

ARC6: tetB F(7), HI1(2), HI2(15)

Pseudo-ARC: aac3-Via, aadA, sul1 A/C(4), HI2(1), I1(16)

Genes listed are not the only genes contained within the AR ARCs.

17 sources. Unlike in the retrospective dataset, ARC5 was found
in four different replicon types, A/C, F, I1, and HI2, as well as ICEs
(n = 14). ARC6 was identified in 26 different species, 21 different
countries, from 10 sources, associated with four different replicon
types F, HI1, HI2, and K (Supplementary Tables S5–S10).

DISCUSSION

With a goal of investigating the relationship between AR genes
and plasmids in S. enterica isolates associated with food animals,
193 isolates were sequenced to identify their AR genes and
plasmids. The isolates for this retrospective study were selected
to represent a great level of diversity, therefore, prevalence of
plasmids, ARCs, AR genes, etc. in these retrospective isolates
cannot be used to imply their overall prevalence in Salmonella
associated with animals. Nevertheless, many conclusions can be
made with this fact in mind.

More than 80% of AR genes identified were located within
a plasmid sequence. The number and diversity of plasmids
identified in the set of retrospective isolates indicated that many
different plasmids were involved in AR in Salmonella among food
animals. At least one plasmid of every replicon type identified
contained an AR gene. Although certain replicon types were
more prevalent than others, no single type was responsible for
encoding the majority of the AR genes.

Although aac6-I was the most frequently identified gene, these
genes are commonly chromosomal genes in Salmonella rendered
silent by a deletion in the promoter. However, expression can be
increased by a fusion of genes upstream (Magnet et al., 1999).
No isolates from the retrospective study contained this fusion,
despite three isolates showing resistance to gentamicin that
lacked any other genes for gentamicin resistance. It is possible
that these isolates contain an unknown gene or mutation that
confers gentamicin resistance.

A/C plasmids, as a whole, contained more AR genes per
plasmid than any other replicon type. Approximately 25% of
the total AR genes identified were located on an A/C plasmid
despite A/C plasmids only representing 15% of the total number
of plasmids identified. Conversely, I1 was the most prevalent
replicon type (aside from ColE), accounting for 29% of the total
plasmids identified, but only contained 13% of the total AR genes.
These findings are consistent with previous studies that isolated
A/C and I1 plasmids (Cao et al., 2018). A/C plasmids containing

Frontiers in Microbiology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 832546

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00832 April 16, 2019 Time: 15:38 # 12

McMillan et al. Antimicrobial Resistance Cassettes in Salmonella

FIGURE 3 | Number of FSIS isolates containing the six ARCs or combination thereof. Total isolates containing each ARC are as follows: ARC1 = 242, ARC2 = 11,
ARC3 = 20, ARC4 = 258, ARC5 = 142, ARC6 = 355.

TABLE 13 | Isolates from FSIS containing the six antibiotic resistance cassette (ARCs) described.

Total Animal

ARC isolates source Serotypes Plasmid types

1 242 C: 193 Dublin, Heidelberg, Newport, Ohio, Reading, Typhimurium A/C: 17 I1: 1 Q1: 25

Ch: 2 Heidelberg, Infantis

T: 31 Agona, Heidelberg, I,4,[5],12:i:-, Infantis, Reading, Senftenberg Agona, Derby,
Heidelberg, I,4,[5],12:i:-,

S: 15 Infantis, London, Muenchen, Ohio, Reading, Typhimurium

P: 1 Dublin

2 11 Ch: 5 Kentucky, Schwarzengrund F: 1

T: 5 I,4,[5],12:i:-, London, Schwarzengrund

S: 1 Senftenberg

3 20 C: 1 Heidelberg HI2: 2

Ch: 16 Heidelberg

T: 1 Heidelberg

S: 2 Heidelberg, Mbandaka

4 259 C: 112 Dublin, Heidelberg, I,4,[5],12:i:-, Newport, Ohio, Reading, Typhimurium A/C: 16 F: 1 I1: 44 K: 2

Ch: 113 Cerro, Heidelberg, I,4,[5],12:i:-, Infantis

T: 14 Kentucky, Litchfield, Typhimurium Agona, Heidelberg, I,4,[5],12:i:-, Infantis,
Litchfield, Liverpool, Montevideo

S: 19 Agona, Anatum, Derby, Heidelberg, I,4,[5],12:i:-, Infantis, London

E:1 Typhimurium, Uganda, Worthington Typhimurium

5 142 C: 120 Anatum, Dublin, Meleagridis, Muenster, Newport, Ohio, Reading, Typhimurium A/C: 16 I1: 1

Ch: 7 Heidelberg, Infantis, Rough O:r:1,5

T: 6 Agona, Heidelberg, Infantis, Senftenberg

S: 9 Agona, Derby, I,4,[5],12:i:-, Infantis, Typhimurium

6 355 C: 11 Anatum, Cerro, Heidelberg, Kentucky, Montevideo F: 245 I1: 25 HI2: 4

Ch: 295 8,20:-:z6, Heidelberg, Kentucky, Mbandaka, Oranienburg, Schwarzengrund

T: 13 4,[5],12:d:-, 4,[5],12:r:-, Agona, Albany, Berta, 1,4,[5],12:i:-

S: 35 Agona, Bovismorbificans, Braenderup, Brandenburg, Derby, Heidelberg,
I,4,[5],12:i:-, Infantis, Johannesburg, Kentucky, London, Mbandaka, Uganda

RTE: 1 Derby

Animal source abbreviations are as follows, C, cattle; Ch, chicken; T, turkey; S, swine; P, unidentified poultry; E, environmental food contact surface; RTE, ready to eat
product. The number of isolates containing an ARC associated with a plasmid are total for the isolate set, not per commodity.

Frontiers in Microbiology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 832547

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00832 April 16, 2019 Time: 15:38 # 13

McMillan et al. Antimicrobial Resistance Cassettes in Salmonella

FIGURE 4 | Frequency of animal sources containing each cassette compared to other animal sources. Error bars reflect 95% Confidence intervals (95% CI). Only
graphs for ARCs with significant (∗) associations are shown. (A) Frequency of isolates containing ARC1. (B) Frequency of isolates containing ARC4. (C) Frequency of
isolates containing ARC5. (D) Frequency of isolates containing ARC6.

up to 13 AR genes have been identified in isolates from animals in
other studies (Hoffmann et al., 2017). I1 plasmids have been seen
with similar gene profiles to the profiles detected in this study as
well, especially the profile containing the single blaCMY−2 gene
(Folster et al., 2012; Kaldhone et al., 2018). The single pMLST
ST2 A/C plasmid found in this study was similar to a previously
described ST2 A/C plasmid in that it contained approximately
22,500 base pairs of the Yersinia pestis chromosome (Hoffman
et al., 2013). These genes from Y. pestis encoded a siderophore,
methyltransferase, adenylase, as well as other virulence associated
functions. The isolate identified in this study was serotype
Typhimurium var 5 – from a chicken-associated source, isolated
in 2004. It has been recently suggested that IncA/C plasmids
are actually two separate incompatibility groups: IncA and IncC
(Ambrose et al., 2018). By that classification, all A/C plasmids
from the retrospective study would be considered IncC.

Interestingly, many A/C containing isolates also harbored an
additional replicon, which could increase the transferability of
AR genes from these isolates to others (Han et al., 2018). A/C
plasmids occurred with additional replicons 23/32 times and did
not occur with HI2 plasmids unless an I1 and a ColE replicon
was also present. Those five isolates were the only isolates to
have more than two large plasmids in the same isolate. All
five of those isolates were from a turkey source and four were

of serotype Heidelberg with the fifth being serotype Bredeney.
Fourteen of the 23 isolates contained both an A/C and an
additional plasmid of a different replicon. The additional plasmid
contained AR genes different and in addition to those on the
A/C plasmid. As suggested in Han et al. (2018), carriage of
multiple plasmids may positively affect transfer of AR genes.
It may also affect the transferability of A/C plasmids, including
those without the genes required for transfer. While the study
by Han et al. (2018) was only conducted in A/C positive isolates,
it is possible this effect is present among isolates containing other
combinations of replicons.

Although F type plasmids had one of the lower percentages
of plasmids containing AR genes, these are of particular
interest because several virulence plasmids belong to the
F incompatibility group. Certain Salmonella serotypes, like
Typhimurium and Enteritidis, usually contain an F replicon
characterized by the spv genes for enhanced virulence as seen in
the pSLT plasmid of S. enterica serovar Typhimurium strain LT2
(Boyd and Hartl, 1998; Silva et al., 2017). Of the 14 F plasmids
identified with AR genes, four of those are variants of Salmonella
virulence plasmids. In five isolates containing F-type plasmids,
the plasmid was a variant of an avian pathogenic E. coli (APEC)
plasmid that has been seen previously in Salmonella serotype
Kentucky (Fricke et al., 2009; Johnson et al., 2010). Predictably,
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FIGURE 5 | Frequency of serotypes containing each cassette compared to other serotypes for each cassette. Error bars reflect 95% Confidence intervals (95% CI).
Only graphs for ARCs with significant (∗) associations are shown. (A) Frequency of isolates containing ARC1. (B) Frequency of isolates containing ARC4.
(C) Frequency of isolates containing ARC5.
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these five isolates were also serotype Kentucky and came from
poultry sources. Additionally, one plasmid appears to be similar
to a virulence plasmid of the fish pathogen, Edwardsiella tarda
(Yu et al., 2012).

All HI type plasmids identified contained AR genes. HI1 and
HI2 plasmids both contained tetB associated with ARC6, which is
a portion of Tn10. This is also consistent with previous findings
indicating an association between Tn10 and HI type plasmids
(Cain and Hall, 2012a,b). However, HI2 plasmids identified in
this study were largely untypable by pMLST despite containing
every gene used in the scheme, due to a mutation in one of the
alleles. This predicts that these plasmids belong to a new sequence
type and may indicate a new lineage of HI2 plasmids, different
from the sequenced plasmids used to develop the pMLST scheme
(Garcia-Fernandez and Carattoli, 2010).

The seven Q1 plasmids identified were consistent with
previously reported plasmids with the exception of additional
AR genes found on the Q1 plasmids in this study. Q1 plasmids
generally have a well-conserved structure with the differences
being confined primarily to the AR genes (Loftie-Eaton and
Rawlings, 2012). Five of the plasmids contained tetAR genes
for tetracycline resistance, which are rare in Q1 plasmids,
but have been seen in Europe and the United States (Oliva
et al., 2017). The plasmids isolated were mostly from swine
sources, but were also found in ground beef as well as one
unknown source. Five of the Q1 plasmids isolated contained
ARC1, which was also present on A/C plasmids. Interestingly,
only three Q1 plasmids co-occurred in isolates with potentially
conjugative plasmids. Since Q1 plasmids cannot transfer unless
another conjugative plasmid is present, this likely indicates that
four of the seven Q1 plasmids would be unable to transfer to
other bacteria without the acquisition of a conjugative plasmid
(Frey et al., 1992).

With the exception of ARC5 which was found only on
IncA/C plasmids, all ARCs were present on multiple replicon
types, indicating that the prevalence of these ARCs is not
due to the expansion of a single clonal plasmid. In the
NCBI databases, ARC5 was associated with multiple replicon
types and therefore cannot be considered exclusive to the
A/C replicon. In the retrospective isolate set, every plasmid-
associated floR gene was a part of ARC5. Two additional isolates
contained the floR gene but as part of Salmonella Genomic
Island One (SGI-1) which did not share the ARC structure.
ARC1 was the only ARC not associated with a transposase
gene, possibly indicating that the MGE structure originally
associated with ARC1 has been lost or that the MGE was
lost in assembly.

In contrast to the retrospective isolates, the isolates collected
by USDA-FSIS can be used to predict the frequency of
the ARCs in the Salmonella population found currently
among food animals over the past 4 years. More than
75% of the isolates containing ARC1 and more than 80%
of isolates containing ARC5 were isolated from cattle
associated sources. However, only around 40% of the
isolates containing ARC4 were associated with cattle despite
many of the isolates containing both ARC1 and ARC4 or
all three ARCs. A higher percentage of chicken-associated

isolates containing ARC4 was responsible for that reduction
in percentage, with 37% of ARC4 isolates coming from
chicken-associated sources as compared to 2% and almost 4%
for ARC 1 and ARC5.

Cattle isolates from USDA-FSIS had a significantly higher
chance of containing ARC1, ARC4, and ARC5 than all other
sources. This is to be expected, as these three ARCs were
associated with A/C plasmids when identified together in the
retrospective isolate set. In the USDA-FSIS samples, 12 isolates
had ARC1, ARC4, and ARC5 associated with an A/C plasmid.
A/C plasmids carrying multiple AR genes have been frequently
shown to be associated with isolates from cattle (Carattoli, 2009;
Lindsey et al., 2009).

Chicken sources, however, had a significantly higher chance
of containing ARC6 than other sources. This could be due to
an association with serotype Kentucky, which was the most
commonly isolated serotype from the FSIS isolate set. While
not significantly more likely to contain the ARC than all the
other serotypes, serotype Kentucky did have the third highest
frequency of isolates containing the ARC, but was also the
most frequently isolated serotype in the isolate set. Salmonella
Kentucky isolates containing an APEC colV plasmid have been
identified that contain ARC6 on that plasmid (Fricke et al., 2009;
Johnson et al., 2010).

ARC2 and ARC3 were both detected infrequently in the FSIS
isolate set. ARC2 was not found in any isolates from cattle but
the 11 isolates were from five different serotypes. In contrast,
the 20 isolates containing ARC3 were only comprised of two
serotypes, Heidelberg and Mbandaka. Similarly, the majority of
isolates in the retrospective isolate set that contained ARC3 were
serotype Heidelberg.

The plasmids associated with each ARC in the FSIS sequences
were also consistent with those identified in the retrospective
isolate set; however, additional plasmid replicon types were
associated with the ARCs. ARC1 was associated with A/C and
Q1 as in the retrospective isolate set, but was also associated
with one I1 plasmid. ARC4 was found on A/C, I1, K, and F
plasmids, whereas ARC4 was seen only on A/C and I1 in the
retrospective isolates. While only a fraction of the identified
ARCs could be associated with a plasmid sequence, this does
not mean that the ARCs identified in other isolates were
not associated with plasmids. Further characterization of those
isolates including assembly of plasmid sequences would be
necessary to determine the location of all ARCs. However, the
ARCs that were associated with plasmids indicated similarity
between the retrospective isolates and the isolates recently
collected by FSIS. Whether serotype or source is the correlating
factor for plasmids identified cannot be determined without
further investigation.

Every ARC identified in this study was also found in
other bacteria when compared to the NCBI NR database.
While the species represented are limited by what has been
sequenced by others, the presence of the ARCs in these
organisms indicates that these ARCs are not limited to
Salmonella and have the ability to persist and confer AR to
a diverse group of bacteria belonging to at least two orders,
enterobacteriales and vibrionales. ARC1, ARC4, and ARC5 in
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particular were identified in A/C plasmids from E. coli isolates
in a 2011 study by Fernandez-Alarcon et al. (2011). This
study also suggested that in A/C plasmids, ARC1 and ARC5
may be adjacent.

In contrast to the retrospective isolate set, some of the ARCs
in isolates from NCBI were not plasmid associated, but instead
associated with ICEs or incorporated into the chromosome.
ARCs were also present in other isolates with varying frequencies.
ARC4, ARC5, and ARC6 were found in over 100 isolates, while
ARC2 was found in less than 10. While this is similar to what
was identified in both the retrospective and FSIS isolates, this
may reflect sequencing bias rather than infrequent presence
of ARC2 and ARC3.

Overall, the plasmids identified in this study showed diversity,
but also showed similarities among replicon types. While the
plasmids shared homologous sequence with previously sequen-
ced plasmids, there were also novel sequences. Additional
investigation is needed into individual plasmids to further
characterize each replicon type. It still remains to be determined
why some AR genes were found on some replicon types, but
not others, as well as if the plasmids that did not contain AR
genes harbored other genes beneficial to the host bacterium.
Answering these questions will further advance the knowledge
of how AR genes are spreading in Salmonella as well as in
agricultural environments.
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Objective: To describe the polymorphisms of gene cassette promoters of the class 1
integron in clinical Proteus isolates and their relationship with antibiotic resistance.

Methods: Polymorphisms of the gene cassette promoter in 153 strains of
Proteus were analyzed by PCR and nucleotide sequencing. Variable regions
of atypical class 1 integrons were detected by inverse PCR and nucleotide
sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was
used to analyze the phylogenetic relationships of class 1 integron-positive
clinical Proteus isolates. Representative beta-lactamase genes (bla), including
blaTEM,blaSHV,blaCTX-M-1,blaCTX-M-2,blaCTX-M-8,blaCTX-M-9,blaCTX-M-25 and blaOXA-1, and
plasmid-mediated quinolone resistance (PMQR) genes including qnrA, qnrB, qnrC,
qnrD, qnrS, oqxA, oqxB, qepA, and aac(6′)-Ib were also screened using PCR and
sequence analysis.

Results: Fifteen different gene cassette arrays and 20 different gene cassettes were
detected in integron-positive strains. Of them, aadB-aadA2 (37/96) was the most
common gene cassette array. Two of these gene cassette arrays (estX-psp-aadA2-
cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3) have not previously been
reported. Three different Pc-P2 variants (PcS, PcWTGN-10, PcH1) were detected among
the 96 Proteus strains, with PcH1 being the most common (49/96). Strains carrying the
promoters PcS or PcWTGN-10 were more resistant to sulfamethoxazole, gentamicin and
tobramycin than those carrying PcH1. Strains with weak promoter (PcH1) harbored
significantly more intra- and extra-integron antibiotic resistance genes than isolates
with strong promoter (PcWTGN-10). Further, among 153 isolates, representative beta-
lactamase genes were detected in 70 isolates (blaTEM-1, 54; blaOXA-1, 40; blaCTX-M-3,
12; blaCTX-M-14, 12; blaCTX-M-65, 5; blaCTX-M-15, 2) and representative PMQR genes were
detected in 87 isolates (qnrA, 6; qnrB, 3; qnrC, 5; qnrD, 46; qnrS, 5; oqxA, 7; aac(6′)-Ib,
13; aac(6′)-Ib-cr, 32).

Conclusion: To the best of our knowledge, this study provides the first evidence for
polymorphisms of the class 1 integron variable promoter in clinical Proteus isolates,
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which generally contain relatively strong promoters. Resistance genotypes showed
a higher coincidence rate with the drug-resistant phenotype in strong-promoter-
containing strains, resulting in an ability to confer strong resistance to antibiotics among
host bacteria and a relatively limited ability to capture gene cassettes. Moreover, strains
with relatively weak integron promoters can “afford” a heavier “extra-integron antibiotic
resistance gene load”. Furthermore, the gene cassettes estX, psp and the gene cassette
arrays estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3 have
been confirmed for the first time in clinical Proteus isolates. Beta-lactamase genes and
PMQR were investigated, and blaTEM-1 and blaOXA-1 were the most common, with qnrD
and aac (6′)-Ib-cr also being dominant.

Keywords: integron, gene cassettes, promoter, beta-lactamase genes, PMQR

INTRODUCTION

P. mirabilis is an important causative pathogen of various
community and healthcare-associated infections, such as wound
infections, primary bacteremia, pneumonia and urinary tract
infections, particularly among patients with anatomical or
functional urinary tract abnormalities or indwelling urinary
catheters (Ahn et al., 2017). The incidence of antimicrobial
resistance to P. mirabilis has increased, and the prevalence of
P. mirabilis strains producing extended-spectrum β-lactamases
(ESBLs), AmpC β-lactamases, carbapenemases or integrons
has increased worldwide (Rzeczkowska et al., 2012). However,
the impact of these elements in P. mirabilis infections on
antimicrobial resistance is unclear. The extensive use of
antibiotics leads to increased selection pressures, resulting in
the emergence of antibiotic-resistant bacterial strains. Integration
of exogenous antibiotic resistance genes (Guerin et al., 2009;
Grieb et al., 2017) via site-specific recombination is an important
pathway in the development of clinical antibiotic-resistant
strains. Class 1 integrons are highly mobile and repetitive
bacterial elements that integrate foreign gene cassettes and
promote the expression of genes in the gene cassettes (Frumerie
et al., 2010; Loot et al., 2012; Nivina et al., 2016). In addition,
class 1 integrons can be integrated into chromosomes, plasmids,
or transposons, carrying resistance genes with them, therefore
play an important role in the formation and dissemination
of drug-resistant bacterial strains (Collis et al., 2002; Ghazi
et al., 2015; Makena et al., 2015; Moyo et al., 2015). The
classical structure of class 1 integrons includes an integrase gene
intI1, a recombination site attI1, an integrase gene transcription
promoter, a lexA-binding site that regulates integrase gene
expression, and a variable region gene cassette promoter (Collis
et al., 1998, 2002; Collis and Hall, 2004; Demarre et al., 2007).

Gene cassettes in the class 1 integron usually do not include
their own promoter, and their transcription depends on the
common promoters Pc and P2 (Subedi et al., 2018). Several kinds
of Pc variants have been defined in class 1 integrons based on their
−35 and −10 hexamer sequences, and the relative strengths of
these Pc variant promoters have been verified experimentally. In
addition to the Pc promoter, some class 1 integrons also contain
a second co-promoter P2, located about 90 bp downstream of Pc,
which inserts three G residues between the−35 and−10 hexamer

sequences, thus increasing the number of spaced bases to 17 bp,
representing an active P2 promoter (Lévesque et al., 1994; Brizio
et al., 2006; Papagiannitsis et al., 2009; Vinue et al., 2011; Moura
et al., 2012). A recent study reported a new P2 promoter variant,
P2m3, with a similar strength to the PcWTGN-10 variant (Lin et al.,
2017). Jove et al. (2010) described variants of various types of Pc
promoters, and noted that promoter polymorphisms could result
in changes in the amino acid species in the IntI1 sequence, with
the magnitude of the change in the excision activity of the mutant
integrase being greater than the magnitude of the change in its
integration activity. In addition, given identical Pc promoters, the
integration efficiency is significantly reduced if the P2 promoter
is located before the attI1 site (Guerin et al., 2011). Guerin
et al. (2011) carried out a detailed study of the transcriptional
interference relationship between the intI1 promoter PintI1 and
the Pc or Pc-P2 combination and showed that higher gene
cassette transcription levels inhibited expression of the integrase
in class 1 integrons. The Pc and P2 co-promoter of class 1
integrons therefore not only play an important role in driving
the transcription of downstream gene cassettes or gene cassette
arrays, but also have a close relationship with the resection
and integration phenomena that occur during the capture of
exogenous gene cassettes. However, no promoter-related studies
of class 1 integrons in clinical isolates of Proteus have yet been
reported. In this study, we investigated the polymorphisms of the
co-promoter of class 1 integrons and their association with the
antibiotic resistance phenotype in clinical isolates of Proteus.

MATERIALS AND METHODS

Bacterial Strains and Susceptibility
Testing
We previously obtained 153 strains of Proteus from patient
samples from Zhejiang Province (Wei et al., 2014). These
clinical isolates included 140 P. mirabilis isolates, 12 Proteus
vulgaris isolates and 1 Proteus penneri isolate. Among these,
96 class 1 integron positive strains were studied further.
Escherichia coli ATCC25922 and E. coli DH5α were also
maintained in our laboratory. Antibiotic susceptibility was
determined by disk diffusion and broth dilution. E. coli
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ATCC25922 was used as a control strain. The tested antibiotics
included: amikacin, gentamicin, tobramycin, sulfamethoxazole,
chloramphenicol, Meropenem, Imipenem, Ciprofloxacin,
Levofloxacin, Aztreonam, Cefepime, Ceftriaxone, Ceftazidime,
Cefotetan, and Cefazolin. The results were interpreted in
accordance with the guidelines of the Clinical and Laboratory
Standards Institute.

Structural Analysis of Atypical
Class 1 Integrons
Bacterial DNA preparation and class 1 integron analysis were
conducted and reported as previously (Wei et al., 2014). Variable
regions of atypical class 1 integrons that could not be amplified
conventionally were detected by inverse PCR analysis of genomic
DNA using the primer pairs INTRR and INTRF, followed by
verification by electrophoresis and sequencing (Table 1 and
Figure 1). For aac(6′)-Ib gene positive isolates, the variable
regions were also amplified through overlap PCR using the
primer pairs intF and aacR, aacF and 3CS. PCR products were
analyzed by sequencing. All sequencing results were aligned using
the BLAST program1.

Characterization of Pc and P2 Promoters
of Class 1 Integrons
For typical class 1 integrons, the type of promoter upstream
of the variable region was identified by direct sequencing. For
atypical class 1 integrons, Pc and P2 promoters were identified
by sequencing the PCR products amplified using the primer
intF combined with specific primers for the downstream gene
cassettes. For strains that cannot be successfully amplified using
intF and specific primers for the downstream gene cassette, the
class 1 integron-mixed common promoter was amplified only by
intF and P2R2 primer pairs (some strains may contain multiple
integrons). All of them were sequenced using the primer intF
after electrophoresis validation, and the variable region promoter
type was interpreted based on the sequence.

Polymerase Chain Reaction Detection
and Sequencing of
Beta-Lactamase Genes
To determine the genotype of beta-lactamase, we performed
PCR amplification with blaTEM,blaSHV,blaCTX-M-1,blaCTX-M-2,
blaCTX-M-8,blaCTX-M-9,blaCTX-M-25, and blaOXA-1. Specific
primers that were designed to detect beta-lactamase gene
markers (Table 1) were used to screen for beta-lactamase
antibiotic resistance gene in bacterial isolate template DNA. The
total volume of the PCR mixture was 20 µl, containing 1 µl of
genomic DNA template, 0.4 µl of each primer (10 pmol), 10 µl of
Premix-rTaq PCR solution (TaKaRa, Japan), and 7 µl of distilled
water. PCR was carried out using an ABI Veriti Thermal Cycler
(Applied Biosystems, Singapore). The template was initially
denatured at 94◦C for 4 min, followed by 35 cycles of 94◦C for
40 s, 55◦C for 40 s, and 72◦C for 40 s, with a final extension at
72◦C for 5 min. PCR products were verified by electrophoresis

1http://www.ncbi.nlm.nih.gov/BLAST

TABLE 1 | Primers used for PCR amplification.

Primer Primer sequence(5′–3′) References

intF CCAAGCTCTCGGGTAACATC Wei et al., 2011

P2R2 CCCGAGGCATAGACTGTA Sunde, 2005

ERIC2 AAGTAAGTGACTGGGGTGAGCG Tsai et al., 2018

3CS AAGCAGACTTGACCTGA Sunde, 2005

INTRF TCGGCCATTCCGACGTCTCTAC Sunde, 2005

INTRR TGCAAGTAGCGTATGCGCTC Sunde, 2005

CMLF AAACGCGCTTGGTACGACAGC This study

CMLR ATTACTTTCCTCGCGACCTGC This study

AADA2F CGATGAGCGAAATGTAGTG This study

AADA2R AAGACGGGCTGATACTGG This study

ESTXF AGGTCAGGCTCCATATTCC This study

ESTXR TGAATGTTGTCAGGATATTC This study

QACF TTGGTGAGGTCGTCGCAAC This study

QACR TGCGCTGACCTTGGATAGC This study

SUL3F GAGCAAGATTTTTGGAATCG This study

PSPF TCGATGGCACAATTACCAC This study

QD14R1 CCTGAGCGGGTAACGAC This study

IS26R TTGCGTAGTGCACGCATCACC This study

CMLF2 TAGGTTTGGGCATGATC This study

TEMF TCGGGGAAATGTGCG Velasova et al., 2019

TEMR TGCTTAATCAGTGAGGCACC Velasova et al., 2019

SHVF GCCTTTATCGGCCTTCACTCAAG Velasova et al., 2019

SHVR TTAGCGTTGCCAGTGCTCGATCA Velasova et al., 2019

CTX-M-1F CAGAGATTTTGCCGTCTAAG Velasova et al., 2019

CTX-M-1R GGCCCATGGTTAAAAAATCACTGC Velasova et al., 2019

CTX-M-2F CTCAGAGCATTCGCCGCTCA Velasova et al., 2019

CTX-M-2R CCGCCGCAGCCAGAATATCC Velasova et al., 2019

CTX-M-8F ACTTCAGCCACACGGATTCA Velasova et al., 2019

CTX-M-8R CGAGTACGTCACGACGACTT Velasova et al., 2019

CTX-M-9F GTTACAGCCCTTCGGCGATGATTC Velasova et al., 2019

CTX-M-9R GCGCATGGTGACAAAGAGAGTGCAA Velasova et al., 2019

CTX-M-25F GCACGATGACATTCGGG Velasova et al., 2019

CTX-M-25R AACCCACGATGTGGGTAGC Velasova et al., 2019

OXA-1-F GGCACCAGATTCAACTTTCAAG Che et al., 2014

OXA-1-R GACCCCAAGTTTCCTGTAAGTG Che et al., 2014

qnrAF AGAGGATTTCTCACGCCAGG Kim et al., 2016

qnrAR GCAGCACTATKACTCCCAAGG Kim et al., 2016

qnrBF GGMATHGAAATTCGCCACTG Kim et al., 2016

qnrBR TTTGCYGYYCGCCAGTCGAA Kim et al., 2016

qnrCF GGGTTGTACATTTATTGAATC Kim et al., 2016

qnrCR TCCACTTTACGAGGTTCT Kim et al., 2016

qnrDF CGAGATCAATTTACGGGGAATA Kim et al., 2016

qnrDR AACAAGCTGAAGCGCCTG Kim et al., 2016

qnrSF GCAAGTTCATTGAACAGGCT Kim et al., 2016

qnrSR TCTAAACCGTCGAGTTCGGCG Kim et al., 2016

oqxAF GACAGCGTCGCACAGAATG Wong et al., 2014

oqxAR GGAGACGAGGTTGGTATGGA Wong et al., 2014

oqxBF CGAAGAAAGACCTCCCTACCC Kim et al., 2016

oqxBR CGCCGCCAATGAGATACA Kim et al., 2016

qepAF CTGCAGGTACTGCGTCATG Wong et al., 2014

qepAR CGTGTTGCTGGAGTTCTTC Wong et al., 2014

aacF ATCTCATATCGTCGAGTGG This study

aacR TGCGTGTTCGCTCGAATGC This study
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FIGURE 1 | PCR scheme (thin black arrows indicate the position of primer; thick blue arrows represent different genes).

and sequencing (Table 1). All sequencing results were aligned
using the BLAST program.

Multiplex PCR Detection of
Plasmid-Mediated Quinolone
Resistance Genes
To determine the genotype of plasmid-mediated fluoroquinolone
resistance genes, we performed PCR amplification with the qnrA
(length = 619 bp), qnrB (length = 264 bp), qnrC (length = 447 bp),
qnrD (length = 582 bp), qnrS (length = 428 bp), oqxA
(length = 339bp), oqxB (length = 240 bp), qepA (length = 403 bp),
and aac(6′)-Ib, qnrA/qnrB/qnrC as the first multiplex PCR
amplification system, and qnrD/qnrS/oqxA/oqxB as the second
multiplex PCR amplification system. qepA and aac(6′)-Ib were
separately amplified. Specific primers which were designed for
fluoroquinolone resistance maker (Table 1) were used to screen
for antibiotic resistance genes in bacterial isolate template DNA.
PCR amplification components and cycling conditions were
identical to those used for the detection of BLA antibiotic

resistance genes described above, followed by verification by
electrophoresis. All aac(6′)-Ib positive products were then
sequenced (Table 1). All sequencing results were aligned using
the Vector NTI Advance 11 (Invitrogen, United States).

Determination of Phylogenetic Groups
of Proteus
We analyzed the phylogenetic population of the 96 integron-
positive Proteus strains based on the Enterobacterial repetitive
intergenic consensus (ERIC)-PCR method (Wilson and Sharp,
2006). Phylogenetic groups of Proteus strains were determined
according to the electrophoresis patterns of the PCR product by
NTSYSpc 2.1e software (clustering program).

Statistical Analysis
All statistical analyses were performed using SPSS software,
version 22.0. To compare the two groups, the Student’s t-test or
Mann-Whitney u-test, depending on the validity of the normality
assumption, was used for continuous variables. The chi-squared
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test or Fisher’s exact test was used to assess categorical variables.
Values of p < 0.01 were considered to indicate significance.

RESULTS

Antimicrobial Susceptibility
In this study, 153 strains of Proteus were isolated mainly
from patients in the Internal Medicine surgery ward [53.6%
(82/153)], the ICU [37.3% (57/153)] and the Outpatient clinic
[9.1% (14/153)]. The cohort of 153 patients had a mean age of
67.2 years, which a range of 5–91. 104 (68.0%) patients were
over 60 years old. The main sources of Proteus were from
genital secretions [17.6% (27/153)], urine [41.2% (63/153)], sputa
[32.7% (50/153)], hydrothorax and ascite [5.9% (9/153)], and
blood [2.6% (4/153)].

The in vitro antimicrobial susceptibilities of the Proteus
isolates showed that most isolates were susceptible to
Imipenem (60%), Meropenem (55.6%), Ciprofloxacin
(40.5%), Levofloxacin (52.3%), Cefepime (63.4%), Ceftriaxone
(58.8%), Ceftazidime (58.2%), Cefazolin (41.8%), Aztreonam
(79.1%), Amikacin (81.7%), Gentamicin (47.1%), Tobramycin
(45.6%), Sulfamethoxazole (43.1%), and Chloramphenicol
(61.4%). Moreover, all of the isolates were susceptible to
Piperacillin/Tazobactam and Cefotetan.

Characterization of Gene Cassettes and
Arrays
Of 96 class 1 integrin-positive strains, 70 variable regions of
typical integrons were previously detected in Proteus strains (Wei
et al., 2013). Variable regions in 26 atypical class 1 integrons were
analyzed using inverse PCR. For aac(6′)-Ib gene positive isolates,
the variable regions were amplified through overlap PCR. A total
of 15 different types of variable region gene cassette arrays and 20
different gene cassettes were detected. These gene cassette arrays
were divided into types A–K, of which type K included K1 and K2
(Figure 2). The most common antibiotic resistance gene cassettes
were aadA2 (72/96), aadB (38/96), and aadA1a (22/96), all of
which conferred resistance to aminoglycoside antibiotics. Five
trimethoprim-resistance gene cassettes [dfrA17 (17/96), dfrA12
(6/96), dfrA32 (4/96), dfrA1 (2/96), dfrA14 (1/96)] conferred
resistance to trimethoprim antibiotics; in addition, we also found
aac(6′)-Ib gene cassettes (16/96) in the integron variable region,
and a chloramphenicol-resistance gene cassette cmlA1 (2/96).
The gene cassette arrays were partly detected in strain NO.47685
(IS26) and strain NO.50772 (dfrA14), but variable regions were
not detected in strain NO.45016 (Table 2). The most common
gene cassette arrays were aadB-aadA2, estX-psp-aadA2-cmlA1-
aadA1a-qacI-tnpA-sul3, and dfrA17-aadA5, which were detected
in 37, 22, and 17 isolates, respectively.

Class 1 Integron Promoter Variants
We analyzed the promoters of class 1 integrons. All bacterial
strains are shown in Table 2. Three common types of promoters
were detected among the 96 clinical isolates of integron-positive
Proteus strains. The most common promoter was PcH1, which

was a relatively weak promoter occurring in 51% (49/96) of
class 1 integron-positive strains (Wei et al., 2011), while PcS was
the second most prevalent promoter, present in 41.6% (40/96),
and the PcWTGN-10 was detected in only 7.3% (7/96) of class
1 integron-positive strains. An inactive P2 promoter unable to
drive the expression of downstream gene cassettes was detected
in all class 1 integron-positive strains.

Regarding the relationship between gene cassettes or gene
cassette arrays and specific common promoters, PcH1 could drive
the expression of estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3,
dfrA17-aadA5, dfrA32-ereA-aadA2, and estX-psp-aadA2-cmlA1
gene cassette arrays, PcS could drive aadB-aadA2, aadB, and
aadA2 gene cassette arrays, and PcWTGN-10 could drive the
expression of dfrA1-orfC and aacA4-cmlA1 gene cassette arrays.
In addition, all three types of promoters (PcS, PcH1, and
PcWTGN-10) could drive the expression of the gene cassette array
dfrA12-orfF-aadA2.

Associations Between Common
Promoter Variants and Phylogenetic
Groups of Proteus
We analyzed the phylogenetic relationships between clinical
isolates of Proteus. We divided the 96 clinical isolates of class 1
integron-positive Proteus into seven groups (a1, a2, b, c1, c2, d1,
and d2) according to the ERIC-PCR results. Among these, two
strains belonged to group a1 [PcWTGN-10 (2/2)], 39 to group a2
[PcS (39/39)], 24 to group b [PcH1 (20/24), PcWTGN-10 (3/24),
PcS (1/24)], six to group c1 [PcH1 (4/6), PcWTGN-10 (2/6)], one to
group c2 (PcH1), 23 to group d1 [PcH1 (23/23)], and one to group
d2 (PcH1) (Figure 3). The a1, a2, and d1 groups each included a
single promoter type. The c2 (strain NO.45016) and d2 groups
(strain NO.47685) each included only one strain, among which
the integron variable region of 45016 could not be detected and
the integron variable region of 47685 was an insertion sequence
(IS26), which was different from that of other strains.

Relationships Between Proteus Pc and
Pc-P2 Promoters and Resistance
Phenotype
We tested the 96 class 1 integron-positive Proteus strains for
antibiotic susceptibility, to clarify the relationship between
the integron variable region promoter and the antibiotic-
resistance phenotype in clinical isolates. Integron-positive
strains containing relatively strong promoters had higher
resistance rates to amikacin, gentamicin, and tobramycin,
but low resistance to chloramphenicol (Table 3). There
was no significant difference in sulfamethoxazole and
chloramphenicol resistance rates between strains with
relatively strong and weak promoters. However, strains
with strong promoters still had higher MIC50 values for
chloramphenicol than strains with weak promoters. We
performed a more detailed analysis of the promoters
and antibiotic-resistance phenotypes in the seven strains
of bacteria with strong promoters (PcWTGN-10) and
showed that resistance phenotype was associated with
the presence of a strong promoter (PcWTGN-10), while
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FIGURE 2 | Schematic representation of different types of gene cassette arrays (aac equal to aac(6′)-Ib or aac(6′)-Ib-cr). ∗Accession numbers in Genbank. aAmong
the 37 isolates, 25 of the integron variable regions were aadB-aadA2, and the other 12 were aadB-aadA2 and aac(6′)-Ib-aar3. bAmong the 2 isolates, 1 of the
integron variable regions were dfrA1-orfC, and the other 1 was dfrA1-orfC and dfrA1- aac(6′)-Ib -catB3-aar3. cAmong the 6 isolates, 5 of the integron variable
regions were dfrA12-orfF-aacA2, and the other 1 was dfrA12-orfF-aacA2 and aac(6′)-Ib -cmlA1, the second array (aac(6′)-Ib -cmlA1) is the same as C(aac(6′)-Ib
-cmlA1). dAmong the 4 isolates, 3 of the integron variable regions were dfrA32-ereA-aacA2, and the other 1 was dfrA32-ereA-aacA2 and aac(6′)-Ib
-bla-OXA-1-catB3-aar3. (Sequences of PCR products were analyzed with BLAST to identify target homologous sequences and their GenBank accession numbers.
https://blast.ncbi.nlm.nih.gov/Blast.cgi).

this phenomenon was not observed in other promoter
types (Figure 4).

Genotypes of Beta-Lactamase Genes
Among the beta-lactamase producing strains, we found 55
isolates that were positive for blaTEM, 15 isolates positive for
the blaCTX-M-1 group, 17 isolates positive for the blaCTX-M-9
group and 40 isolates positive for the blaOXA-1 group. Using
nucleotide sequence analysis, we found that 55 blaTEM positive
isolates carried blaTEM-1. Of 15 blaCTX-M-1 group positive isolates,
12 had blaCTX-M-3 and 3 carried blaCTX-M-15. Meanwhile, of 17
blaCTX-M-9 group positive isolates, 12 had blaCTX-M-14 and 5
had blaCTX-M-65. All 40 blaOXA-1 group positive isolates were
found to carry blaOXA-1. Meanwhile, all 153 isolates were negative

for blaSHV, blaCTX-M-2 group, blaCTX-M-8 group and blaCTX-M-25
group. Statistical analysis of the drug-sensitive phenotypes of
the beta-lactamase positive and negative-positive groups revealed
that the beta-lactamase positive group was significantly less
sensitive to Ceftriaxone (35.7% vs. 77.1%, p < 0.01), Ceftazidime
(31.4% vs. 80.7%, p< 0.01), Cefazolin (38.6% vs. 84.3%, p< 0.01),
Imipenem (37.1% vs. 79.51%, p < 0.01), and Meropenem
(35.71% vs. 72.3%, p < 0.01) than the beta-lactamase negative
group (Table 4).

Plasmid-Mediated Quinolone
Resistance Gene
Among 153 Proteus samples, we found 6 isolates positive
for qnrA, 3 isolates positive for qnrB, 5 isolates positive for
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TABLE 2 | Gene cassette arrays and their common promoters in 96(class 1
integrons)Proteus strains.

Gene cassette array Type promoter Total

PcH1 PcWTGN−10 PcS

aadA2∗ 2 2

aadB∗ 1 1

aac(6′)-Ib -cmlA1∗ 1 1

aadB-aadA2∗ 37 37

IS26a 1 1

dfrA14a 1 1

dfrA17-aadA5∗ 17 17

dfrA1-orfC∗ 2 2

dfrA12-orfF-aadA2∗ 2 3 1 6

dfrA32-ereA-aadA2∗ 4 4

estX-psp-aadA2-cmlA1 1 1

estX-psp-aadA2-
cmlA1-aadA1a-qacI-
tnpA-sul3

22 22

Unknownb 1 1

aac(6′)-Ib -aar3 12 12

aac(6′)-Ib
-blaOXA−1-catB3-aar3

1 1

dfrA1- aac(6′)-Ib
-catB3-aar3

1 1

Total 50 8 52 110c

aClass 1 integrons for which only partial sequences of gene cassette arrays were
amplified (IS26 detected in NO.47685 strain, dfrA14 detected in NO.45016 strain).
bClass 1 integrons for which PCR failed to amplify the gene cassette array. cA
total of 110 integrants were detected from 96 integron positive strains. ∗The gene
cassette combination that our research group has previously reported.

qnrC, 46 isolates positive for qnrD, 5 isolates positive for
qnrS, 7 isolates positive for oqxA and 45 isolates positive
for aac (6′)-Ib, while all 153 isolates were negative for oqxB
and qepA. All aac (6′)-Ib positive products were detected
using nucleotide sequence analysis, and we found two types
of the aac (6′)-Ib gene, which were aac (6′)-Ib (13/45)
and aac (6′)-Ib-cr (32/45). Statistical analysis of the drug-
sensitive phenotypes of the PMQR positive and negative groups
showed that the PMQR positive group was significantly less
sensitive to Ciprofloxacin (21.8% vs. 65.2%, p < 0.01) and
Levofloxacin (33.3% vs. 77.3%, p< 0.01) than the PMQR negative
group (Table 4).

Relationships Between Various
Promoters and Antibiotic Resistance
Gene Load
We compared the antibiotic resistance gene load of
different promoters of 96 integron positive strains. We
found that the relatively weak promoter (PcH1) strains
carried 6.88 resistance genes on average, of which 5.35
resistance genes were located in the integrons, and there
were 1.53 resistance genes not located on the integrons
(including: 1.12 beta-lactamase genes, 0.41 PMQR).
The relatively strong promoter (PcWTGN-10 and PcS)
strains carried 3.57 and 3.88 resistance genes on average,

respectively. Simultaneously, on average, 2.57 and 2.55
antibiotic resistant genes were located on integrons, while
1 (including: 0.85 beta-lactamase genes, 0.15 PMQR)
and 1.3 (including: 0.9 beta-lactamase genes, 0.4 PMQR)
antibiotic-resistant genes were not located on integrons,
respectively (Table 5).

DISCUSSION

Integrons are genetic elements with a specific functional
configuration that have evolved in bacteria and which
can capture and express exogenous gene cassettes via
site-specific recombination. In this study, 96 strains
containing class 1 integrons were detected among 153
clinical isolates of Proteus, indicating that this evolutionary
platform is common among clinical strains. Additionally,
we detected 20 different gene cassettes, most of which
conferred resistance to antibiotics. Antibiotics such as
trimethoprim, chloramphenicol, and erythromycin were
discovered in the early and mid-20th century and are now
used extensively in clinical applications. However, during
the process of bacterial evolution, antibiotic resistance gene
cassettes have spread throughout clinical strains due to
integration subsystems and high selection pressure imposed
by the combined action of a large number of antibiotics,
allowing the survival of bacteria carrying the appropriate
antibiotic-resistance genes.

In contrast to previous research on Pc promoter
polymorphisms in E. coli (Wei et al., 2013), the three promoters
identified in the current study were relatively strong promoters
(PcS, PcWTGN-10, and PcH1), with the stronger promoters
(PcS, PcWTGN-10) accounting for 49% of all integron-positive
strains. The variety of integron variable region gene cassettes
was also shown to be more complicated, with estX and psp
being detected for the first time in clinical isolates of Proteus.
Integrons usually spread between strains with the help of
plasmids or transposons. Additionally, we detected the same
array of gene cassettes in different phylogenetic groups of
clinical isolates of Proteus, and the upstream promoters also
remained stable. This may be due to the class 1 integrons
being embedded in larger transposons or plasmids, or may
be recombined in a conserved region of the class 1 integron
5CS, such that the gene cassette array is combined with
the same promoter.

This article reveals that strains with strong promoters
have higher rates of antibiotic resistance than strains with
weaker promoters, especially in amikacin, gentamicin, and
tobramycin. This may be explained by the presence of
a strong promoter in the variable region of the class 1
integron causing high expression of the relevant antibiotic-
resistant genes. Interestingly, the antibiotic-resistant genotypes
and phenotypes were highly matched among the seven
strains with the strong promoter PcWTGN-10, while strains
containing other types of promoters do not show this
phenomenon. In the phylogenetic analysis (Figure 3), we
found that these 7 strains clearly belong to different colony
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FIGURE 3 | Cluster analysis of 96 strains of Proteus based on ERIC-PCR. (50% homology gathers as a main class, and 75% homology gathers into a subclass,
FClass 1 integrons for which PCR failed to amplify the gene cassette array).

groups. In summary, antibiotic genes are located close to
the promoter, making it relatively easy for the promoter to
regulate their expression. However, the current results were

only relevant to the individual strains studied, and clinical
strains with different genetic backgrounds may present more
complex phenomena.
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TABLE 3 | Associations of promoter variants with antibiotic-resistance phenotypes.

Promoter Total no. of isolates No. (%) of isolates with resistance toa

AMK GEN TOB SXT CHL

Total 96 12 (12.5) 51 (53.1) 39 (40.6) 69 (71.9) 39 (40.6)

Strong promoter 47 12 (25.5) 38 (82.8) 37 (78.7) 37 (78.7) 17 (36.2)

PcWTGN−10 7 1 (14.3) 5 (71.4) 5 (71.4) 6 (85.7) 1 (14.3)

PcS 40 11 (27.5) 33 (85.2) 32 (80) 31 (77.5) 16 (40)

MIC50 (µg/ml) ≤ 2 ≥ 16 ≥16 ≥ 16 ≥64

Weak promoter 49 0 (0) 13 (26.5) 2 (4.1) 32 (65.3) 22 (44.9)

PcH1 49 0 (0) 13 (26.5) 2 (4.1) 32 (65.3) 22 (44.9)

MIC50 (µg/ml) – ≤ 4 ≤4 ≥ 16 16

p-valueb 0.000 0.000 0.000 0.144 0.384

aAMK amikacin, GEN gentamicin, TOB tobramycin, SXT Trimethoprim/Sulfamethoxazole, CHL chloramphenicol bThe chi-squared test was used to assess strong
promoter and weak promoters.

FIGURE 4 | Relationships between resistance gene and resistance phenotype in Proteus strains with strong promoters. (On the left side of this image is a
phylogenetic tree based on the DNA sequence of each strain promoter using Vector NTI Advance 11 software, while the right side of this image shows the
relationship between the variable region genotype and the resistant phenotype of each strain.) 1Strain number. 2Promoter type. 3 Integron variable region genotype
(aminoglycoside resistance gene shown in orange, chloramphenicol resistance gene shown in blue and trimethoprim resistance gene shown in yellow).
4and5Phenotype (sensitive shown in green, resistance shown in red). 6 Indicates whether the genotype matches the resistant phenotype (at least one genotype
corresponds to a resistant phenotype and is considered to be a “Match”).

In this article, we elucidated the relationship between beta-
lactamase genes and integrons that were carried in strains.
Therefore, we screened the beta-lactamase resistance gene of
153 Proteus isolates, and found that the positive rate reached
45.8%, which was significantly higher than previous reports
(Ahn et al., 2017). A crucial argument shown by the statistical
results is that there is a significant difference (p < 0.01) in
the difference in drug resistance gene carrying between beta-
lactamase genes and integrons in Proteus strains (Table 6).

As a result, we studied their impact on antibiotic resistance
and attempted to explain the association between the antibiotic
resistance genes carried by these strains and the integron
promoter. Moreover, we found that beta-lactamase genes were
significantly more detectable in ICUs and surgical wards than in
other wards, as most ICU patients had severe disease, reduced
immunity, and long-term use of antibiotics, all of which helped
improve detection rate. For patients undergoing urologic surgery,
the higher detection rate is related to its own physiological
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TABLE 4 | In vitro antimicrobial susceptibility of bla and PMQR.

Antimicrobial agent No. (%) of susceptible No. (%) of susceptible

bla positive bla negative p-value PMQR positive PMQR negative p-value

N = 70 N = 83 N = 87 N = 66

Imipenem 26 (37.1) 66 (79.5) 0.000 52 (59.8) 40 (60.6) 0.917

Meropenem 25 (35.7) 60 (72.3) 0.000 55 (63.2) 40 (60.6) 0.742

Ciprofloxacin 22 (31.4) 40 (48.2) 0.035 19 (21.8) 43 (65.2) 0.000

Levofloxacin 33 (47.1) 47 (56.6) 0.242 29 (33.3) 51 (77.3) 0.000

Cefepime 27 (38.6) 70 (84.3) 0.000 57 (65.5) 40 (60.6) 0.532

Ceftriaxone 25 (35.7) 64 (77.1) 0.000 57 (65.5) 32 (48.5) 0.034

Ceftazidime 22 (31.4) 67 (80.7) 0.000 60 (68.9) 29 (43.9) 0.002

Cefazolin 20 (28.5) 44 (53.0) 0.002 36 (41.4) 28 (42.4) 0.897

Aztreonam 51 (72.8) 70 (84.3) 0.082 73 (83.9) 48 (72.7) 0.092

Amikacin 54 (77.1) 71 (85.5) 0.181 78 (89.7) 47 (71.2) 0.003

Gentamicin 28 (40.0) 44 (53.0) 0.108 39 (44.8) 33 (50.0) 0.526

Tobramycin 28 (40.0) 42 (50.6) 0.190 39 (44.8) 31 (47.0) 0.792

Sulfamethoxazole 18 (25.7) 48 (57.8) 0.000 30 (34.5) 36 (54.5) 0.013

Chloramphenicol 41 (58.6) 53 (63.9) 0.504 47 (54.0) 47 (71.2) 0.031

Piperacillin/Tazobactam 70 (100) 83 (100) – 87 (100) 66 (100) –

Cefotetan 70 (100) 83 (100) – 87 (100) 66 (100) –

TABLE 5 | Associations of promoter variants with gene load.

Promoter Total no. of isolates No. of antibiotic resistance genes

No. of genes Located on integrons Not located on integrons bla PMQR

“Strong” promoter PcWTGN-10 7 3.57a 2.57a 1a 0.85a 0.15a

PcS 40 3.85a 2.55a 1.3a 0.9a 0.4a

“Weak” promoter PcH1 49 6.88a 5.35a 1.53a 1.12a 0.41a

aAverage value.

TABLE 6 | The relationship between carriage of integron and bla, PMQR.

Genotypes No.(%) of carried p-value

Integron positive Integron negative

N = 96 N = 57

bla 57 13 0.000

PMQR 48 39 0.026

structural characteristics, one of which is mainly urinary tract
obstruction, which is conducive to bacterial reproduction, in
addition to urinary catheterization, further increasing the chance
of infection. Furthermore, we found that most beta-lactamase
producing strains occur in the elderly or women. Among the
strains studied, we did not find other significant differences
in gene carriers. This may be due to the low immunity of
the elderly and the vulnerability of the female urethra to
infection, so that some strains or resistance genes can be
transmitted horizontally.

TEM is the main type of β-lactamases, and the TEM-1
group is the most common. The CTX-M enzyme is a new
group of plasmid-mediated beta-lactamase genes that have

dominated in Europe, and have increased dramatically in
many countries over the past decade (Mohd et al., 2019).
Antibiotic consumption and different risk factors may also
contribute to the current epidemiology of CTX-M enzymes in
different geographic regions. In recent years, China has also
presented an increasing trend, and there are few reports of
beta-lactamase genes in Proteus isolated from Chinese hospitals.
Interestingly, our research found that blaTEM-1, blaOXA-1, and
blaCTX-M-14 were carried in the same strains, and they are
resistant to third-generation cephalosporin, which may be
synergy between them, increasing the ability of bacteria to
hydrolyze cephalosporin. Drug susceptibility test data showed
that Proteus producing beta-lactamase genes was significantly
less sensitive to most third-generation cephalosporins (Table 4).
If the patient is infected by a beta-lactamase producer,
Cefotetan, Cefmetazole or Imipenem may be preferred prior
to the results of the antibiotic susceptibility test, but if the
patient is in a critical state, we should choose carbapenem
antibiotics. These findings lead us to conclude that we
should pay attention to the use of antibiotics in outpatient,
inpatient and community hospitals, and reduce the chance
of dissemination of β-lactamase gene levels due to antibiotic
selection pressure.
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The PMQR genes discovered in recent years, such as qnrA,
qnrB, qnrC, qnrD, qnrS, aac (6′)-Ib-cr, and qepA resistance genes,
are an important mechanism for bacteria to resist quinolone.
In this study, we explored the relationship between quinolone
resistance genes and integrons in Proteus, and we also screened
quinolone resistance genes in 153 Proteus isolates, with a positive
rate of up to 56.9%, mainly carrying qnrD and aac(6′)-Ib.
Notably, aac(6′)-Ib is not resistant to quinolones, only variant
aac(6′)-Ib-cr is resistant to quinolone. Among them, we studied
aac(6′)-Ib in depth. The nucleic acid sequence of aac(6′)-Ib
was found to contain Asp181Tyr (G541T) and Trp104Arg
(T310C or T310A) in 32 strains of aac(6′)-Ib (Hidalgo-Grass
and Strahilevitz, 2010). The variant aac(6′)-Ib-cr can confer
bacterial resistance to Ciprofloxacin or Levofloxacin. In general,
aac(6′)-Ib is mainly located in integrons and spreads horizontally
with the spread of integrons. In this study, only 16 strains of
aac(6′)-Ib were located in integrons (aac(6′)-Ib-aar3,12; aac(6′)-
Ib-blaOXA-1-catB3-aar3,1; aac(6′)-Ib-cmlA1,1; dfrA1-aac(6′)-Ib-
catB3-aar3,1; aac(6′)-Ib -cmlA1,1), and all aac(6′)-Ib-cr variants
were located on the integrons. However, aac(6′)-Ib, which cannot
confer PMQR, was carried by another 29 strains and may
be located on other mobile elements, such as transposons or
insertion sequences, although its specific mechanism of action
needs further study. In the end, the experimental results were
contrary to our hypothesis. There was no statistically significant
difference in the quinolone resistance gene and integron carrying
in the Proteus strains (p > 0.01) (Table 6).

In this study, multiple resistance genes were detected
in isolates, and we also compared the antibiotic resistance
“gene load” of strains with different promoters. As such, it
further explains the fitness of the clinical bacteria. These
results demonstrate that strains with relatively weak integron
promoters can “afford” a heavier intra- and extra-integron
antibiotic resistance gene load. Although many antibiotic
resistance genes are not in the integrons, such as bla
and PMQR, and are not directly related to the integron
promoter, only a few representative bla and PMQR genes
were investigated in this study, which have certain limitations.
However, the drug resistance genes detected in this experiment
also illustrates the principle of “gene load.” Some studies
have shown that the “super-integration antibiotic resistance
gene load” may affect the fitness of pathogens, which is
consistent with our research conclusions (Guo et al., 2012;
Darmency et al., 2015).

CONCLUSION

In conclusion, to the best of our knowledge, this study provides
the first evidence for polymorphisms within the variable region
promoter of class 1 integrons in clinical Proteus isolates. The
results indicated that the gene cassette in the integron in
Proteus strains confers antibiotic resistance to aminoglycosides,
trimethoprim, and chloramphenicol. Class 1 integron-positive
Proteus strains generally have strong promoters, and strains with
strong promoters are more resistant to amikacin, gentamicin,
and tobramycin than strains with weaker promoters, strains with
relatively weak integron promoters can “afford” a heavier intra-
and extra-integron antibiotic resistance gene load. Importantly,
this study also provides the first evidence for the gene cassettes
estX and psp in clinical isolates of Proteus. In addition, beta-
lactamase genes and PMQR are widely prevalent in clinical
isolates of Proteus, mainly blaTEM-1, blaOXA-1 and qnrD and
aac (6′)-Ib-cr. Interestingly, it was also found that in Proteus
aac(6′)-Ib-cr may be located on transposons, insertion sequences
or other mobile genetic elements rather than on integrons,
suggesting multiple pathways in its dissemination.
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Soil is one of the biggest reservoirs of microbial diversity, yet the processes that
define the community dynamics are not fully understood. Apart from soil management
being vital for agricultural purposes, it is also considered a favorable environment for
the evolution and development of antimicrobial resistance, which is due to its high
complexity and ongoing competition between the microorganisms. Different approaches
to agricultural production might have specific outcomes for soil microbial community
composition and antibiotic resistance phenotype. Therefore in this study we aimed
to compare the soil microbiota and its resistome in conventional and organic farming
systems that are continually influenced by the different treatment (inorganic fertilizers and
pesticides vs. organic manure and no chemical pest management). The comparison of
the soil microbial communities revealed no major differences among the main phyla
of bacteria between the two farming styles with similar soil structure and pH. Only
small differences between the lower taxa could be observed indicating that the soil
community is stable, with minor shifts in composition being able to handle the different
styles of treatment and fertilization. It is still unclear what level of intensity can change
microbial composition but current conventional farming in Central Europe demonstrates
acceptable level of intensity for soil bacterial communities. When the resistome of the
soils was assessed by screening the total soil DNA for clinically relevant and soil-derived
antibiotic resistance genes, a low variety of resistance determinants was detected
(resistance to β-lactams, aminoglycosides, tetracycline, erythromycin, and rifampicin)
with no clear preference for the soil farming type. The same soil samples were also
used to isolate antibiotic resistant cultivable bacteria, which were predominated by
highly resistant isolates of Pseudomonas, Stenotrophomonas, Sphingobacterium and
Chryseobacterium genera. The resistance of these isolates was largely dependent
on the efflux mechanisms, the soil Pseudomonas spp. relying mostly on RND, while
Stenotrophomonas spp. and Chryseobacterium spp. on RND and ABC transporters.

Keywords: organic and conventional farming, soil microbiota, antibiotic susceptibility, resistance genes,
efflux pumps
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INTRODUCTION

Microbiota of the soil is greatly important for life on our
planet, including its role in the cycling of carbon, nitrogen and
other nutrients (Jansson and Hofmockel, 2018). Bacteria and
other soil microorganisms are the agents of biotransformation
of soil organic matter and nutrients and of most key soil
processes. Their activities are influenced by both soil physico-
chemical processes and ecological interactions (Powlson et al.,
2001). As a habitat for microorganisms, soil is a very diverse
and complex substrate on the planet. Conventional approaches
based on isolation of the cultivable microbes and techniques
based on the analysis of the total DNA in the soil show an
enormous diversity in the microorganism composition (Torsvik
et al., 1990). Culture-based methods suggest that a gram of
soil contains for about one hundred species of microorganisms
(Dunbar et al., 1999), but such data are underestimated because
multiple lines of evidence indicate that fewer than 1% of the
species in soil are presently cultivable (Amann et al., 1995). DNA
based methods revealed that soils typically contain 109 to 1010

microorganisms per gram, which may represent thousands of
bacterial species (Gans et al., 2005). Therefore, metagenomic and
other next-generation sequencing based studies might be very
useful for the studying the soil microbiome for understanding soil
microbial functioning (Baveye, 2009; Raynaud and Nunan, 2014;
Mandal et al., 2015).

Soil serves a range of different functions and it is the
basis for forestry and agriculture and the importance of this
role to be expected to increase (Fischer and Heilig, 1997).
Although it is important to keep the soil microbiome stable,
agricultural intensification carries dangers including the
possibility of damaging soil functions. Latest studies have
shown that anthropogenic activities, such as intensification
of agriculture and land use change, reduce bacterial
numbers and the overall diversity of soil microorganisms.
During the past years studies had largely focused on the
effects of specific microbial groups, such as fungi, soil
bacteria and soil fauna. However, interactions of soil
organisms are very complex and therefore changes in
diversity within one trophic group or functional guild may
alter the diversity, prevalence and functioning of another
(Wagg et al., 2014).

Antimicrobial resistance is one of the biggest problems in
human and animal medicine at present. Since a high percentage
of antibiotics are discharged from the human or animal body
without degradation, this means that different habitats, from
the human body to river water or soils, are polluted with
antibiotics (Martínez, 2017). Antibiotics from treatment of farm
animals can accumulate in the farm sludge, which is afterward
spread as a fertilizer on the farmland (Larsson, 2014), however,
there is limited knowledge of antimicrobial concentrations that
might exert selection for resistant bacteria in the environment
(Bengtsson-Palme and Larsson, 2016). The concentrations of
antibiotics in soils usually are low in most ecosystems, but even
low concentrations may trigger specific bacterial responses, and
analysis of such responses is a topic of interest (Martínez, 2017).
Even though the usage of antibiotics is considered one of the most

important risk for the development of antimicrobial resistance,
the emergence of the resistance in clinical environment can also
be based on the theory about a pre-existing pool of antibiotic
resistance genes in natural environmental reservoirs and a
transferability of these genes (Nesme and Simonet, 2015).

The aims of this study were twofold: (1) to investigate and
compare microbiomes in soils of organic and conventional
farming systems and (2) to analyze antimicrobial resistance
profiles in soil microbiota.

MATERIALS AND METHODS

Soil Selection and Sampling
The soil samples were collected from six farming fields in
Lithuania (located at the borderline of the zones Dfb and
Cfb according to the Köppen climatic zones (Peel et al.,
2007) during the year 2016. The six collection points of the
soil represented two different types of farming, organic and
conventional (intensive), and three agrocultures grown in the
field during the year of collection (winter wheat, rapeseed, maize).
The organic farming sites were known not to use inorganic
fertilizers or pesticides for the time period of over 20 years and
were fertilized only with organic fertilizers (farmyard manure
and slurry). The conventional farming fields were fertilized with
inorganic NPK fertilizers (3–4 times a year) and the cultures were
regularly sprayed with herbicides, insecticides and fungicides.
The pairs (organic and conventional) of farming soil samples
were collected from two winter wheat fields, located 1.8 km apart
(coordinates: 54.925416, 24.464575 and 54.933504, 24.488816)
in October 2016; two rapeseed fields, located 17 km apart
(54.921779, 24.463984 and 54.807963, 24.640339) and two maize
fields, located 2.3 km apart (55.423267, 24.166897 and 55.41869,
24.202844) in December 2016. The type of the soil in the winter
wheat and rapeseed fields was sandy loam whereas in the maize
fields – sandy clay loam. In each field, samples were collected
from 10 places all over the plot area from the depth of 20 cm
using tubular soil sampler. Samples then were placed into sterile
plastic bags and delivered to the laboratory during the time of
2 h, where the material was pooled and mixed. The samples were
kept at +2◦C until the next day for the cultivation of bacteria or
aliquoted and frozen at−80◦C for the DNA extraction.

DNA Extraction
For microbial community analysis total DNA was extracted
using Quick-DNA Fecal/Soil Microbe kit (Zymo Research,
United States) according to the manufacturer’s instructions. For
resistance gene detection by PCR total soil DNA was extracted by
FastDNATM SPIN Kit for Soil (MP Biomedicals, United States),
which was then additionally purified as described elsewhere
(Young et al., 1993). DNA material for identification of species
of cultivable soil bacteria and determination of antimicrobial
resistance genes was obtained after bacterial lysis according to the
extraction protocol prepared by the EU Community Reference
Laboratory for Antimicrobial Resistance with modifications as
described previously (Ruzauskas et al., 2014).
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Soil Microbial Community and
Data Analysis
Metagenomic sequencing of 16S rRNA and microbial profiling
analysis was performed as described previously (Merkeviciene
et al., 2017). Alpha diversity indexes were calculated with
EstimateS (v. 8.2). The prevalence of separate taxonomic units
of bacteria in soils of organic and conventional farming was
given as the percentage from the total number of DNA reads.
The differences among the prevalence of bacteria of the most
abundant taxonomic units in organic and conventional soils were
compared using Fisher’s Exact Test for Count Data. Comparison
of the taxonomic distribution of resistant isolates from organic
and conventional farming was assessed using Fisher’s Exact Test
for Count Data. Statistical analysis was performed using IBM
SPSS Statistics 20 package. Results were considered statistically
significant if p < 0.05.

Selection of Resistant Isolates
For the isolation of antibiotic resistant bacteria the soil samples
were suspended in water (1:2) and inoculated onto solid media
Tryptone Soy Agar (Thermo Scientific, United Kingdom)
supplemented with the following antimicrobial agents:
ciprofloxacin, gentamicin, imipenem, trimethoprim, ceftazidime,
and chloramphenicol. Only a single antibiotic was used per plate.
As there are no clinical breakpoints set for most of the soil
bacteria, the concentrations of antimicrobials in media were
used as clinical breakpoints set by EUCAST for Pseudomonas,
Acinetobacter, and Enterobacteriaceae for isolation and selection
of Gram-negative bacteria as well as for Enterococcus in case of
Gram-positive microbiota. The concentrations of antibiotics in
media for resistance screening were as follows: ciprofloxacin –
2 µg/mL for gram-negatives and 8 µg/mL for gram-positives;
gentamicin – 8 µg/mL; imipenem – 16 µg/mL; trimethoprim –
8 µg/mL; ceftazidime – 16 µg/mL and chloramphenicol, which
breakpoint was taken from CLSI standard – 32 µg/mL. Plates
were incubated for 72 h at + 22◦C. After incubation, separate
predominant colonies were selected for further purification
to obtain pure cultures of different bacterial species from
each soil sample.

Antibiotic Susceptibility Testing
Antimicrobial susceptibility testing was performed on selected
isolates by broth micro-dilution method suing Sensititre R©plates
and the ARIS 2X automated system (Thermo Scientific,
United States). Interpretation of results was carried-out using
manufacturers software (SWIN R©). The minimum inhibitory
concentrations (MIC) of tested antibiotics are presented in
Supplementary Table S1.

Identification of the Isolated
Soil Bacteria
Identification of bacteria isolates was based on 16S rRNA
fragment sequencing. For this purpose PCR using universal
primers 27F and 515R (Supplementary Table S2) was performed
as described previously (Kim et al., 2012) using DNA extracted
from bacteria isolates. PCR products then were purified using

DNA Clean and Concentrator-5 Kit (D4010, Zymo Research,
United States) and identification of the isolates was performed
after sequencing and analysis using Molecular Evolutionary
Genetic Analysis software (MEGA, version 6). Basic local
alignment search tool (BLAST) was used for comparison of
obtained sequences with sequences in the database of National
Center for Biotechnology Information (NCBI, United States).
Species were identified by matching obtained sequences with a
sequence showing the highest maximum identity score from the
GenBank database. If the identity of the best match was < 99%
and query cover < 96% only genus was assigned.

Antibiotic Resistance Gene Detection
The presence of genes encoding antibiotic resistance
determinants was assessed by PCR at the same conditions as
described earlier (Seputiene et al., 2012). Two sets of genes were
screened in this study: the first set included clinically relevant
ARGs, that have been previously shown to be important in the
antibiotic resistance of pathogenic bacteria (the genes tested and
specific primers used are described in Supplementary Table S2).

The other set comprised ARGs, naturally occurring in soil
bacteria and chosen for analysis (Supplementary Table S2)
based on their reported occurrence in metagenomes of soil
samples obtained from different geographical locations (Allen
et al., 2009; Torres-Cortés et al., 2011; McGarvey et al., 2012;
Wichmann et al., 2014) and on the abundance in different species
(presence in minimum three different species, non-identical
hits) according to the BLAST (NCBI BLASTN, Bacteria domain,
Nucleotide collection (nr/nt)) search. Of 149 ARGs analyzed
bioinformatically, 10 mostly widespread genes were selected for
further analysis (Figure 2). Primers for amplification of their
DNA were designed by the alignment of homologous sequences
of different species using Clustal Omega and identification of
the conservative regions. To expand the sensitivity of detection,
degenerative primers were designed (Supplementary Table S2).

A PCR amplifying 16S rDNA fragment (primers Frrs/Rrrs)
was used in parallel as amplification control.

The Efflux Pump Activity Detection
To elucidate the contribution of multidrug resistance efflux
pumps to bacteria antibiotic resistance, synergistic assays with
antibiotics and specific efflux pump inhibitors were performed.
First, the MICs of antibiotics and inhibitors was accessed by
Broth microdilution method (Wiegand et al., 2008) for each
isolate tested. Then MIC of the antibiotic was evaluated with
1/2 of inhibitor MIC present in the mix. Microtiter plates were
incubated at 28◦C for 19 h.

RESULTS

Composition of Bacterial Community in
Organic and Conventional Farming Soil
The organic and conventional winter wheat fields, located 1.8 km
apart, were chosen for the analysis. Both soils had neutral pH
(7.08 and 6.58 for organic and conventional farming), humus
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Armalytė et al. Organic/Conventional Farming Soil Microbiota

content of 2.8 and 1.5%, and amounts of phosphorus (P2O5)
of 320 mg/kg and 130 mg/kg in organic conventional farming
soils, respectively. Total DNA was extracted from both soils and
used for 16S rRNA gene sequencing in order to analyze the
microbial community composition. In total 93,212 and 192,939
sequences were obtained, with Good’s coverage indexes of 0.995
and 0.998, indicating that sufficient number of reads was obtained
to evaluate the bacterial diversity for the both respective soils.
Alpha diversity of the samples was: Shannon index 5.87 and
6.07, and Chao1 2364.04 and 2735.3 for organic and conventional
wheat field soil, respectively.

The 97 and 98 % of sequences were identified as DNA
belonging to kingdom Bacteria in both samples, respectively. The
relative abundance of the main bacterial phyla (comprising > 1%
of reads) is presented in Figure 1 (all the species detected
are presented in Supplementary Data Sheets S1, S2). The
predominant phylum in the soil samples from of organic and
conventional wheat field was Proteobacteria (30–33%), followed
by Actinobacteria (22–17%), Acidobacteria (11–9%), Firmicutes
(8–10%) and Bacteroidetes (7–10%), respectively. No obvious
differences could be detected among the main phyla.

Distributions of the most prevalent genera (with prevalence
above 0.5 % from the total bacteria) in the soils of organic
and conventional farming sites are presented in Supplementary
Table S3. Although Acidobacterium and Bacillus statistically
significantly were the most predominant genera (p < 0.001),
their prevalence in general was under 5 % from a total
population of microbiota in both soils. As could be seen from
the Supplementary Table S3, the same genera were most
prevalent in both soils and had only limited amount of difference
in organic and conventional soils. The highest statistically
reliable differences were among Bacillus, Gemmatimonas which
prevalence was higher in the conventional soil as well as between
Holophaga, Acidobacteriaceae, Hyphomicrobium, Flavobacterium
and Nocardioides which were more abundant in the organic
soil (p < 0.05).

As an increase in the relative abundance of phylum
Actinobacteria could be observed in the organic wheat soil,

FIGURE 1 | Relative abundance of bacterial phyla in organic and conventional
wheat farming soils. Bacterial community composition determined using 16S
rRNA sequencing-based analysis. Only the phyla that were present in relative
abundance of > 1% are indicated.

we therefore checked which of the lower taxa were contributing
most to the change. The more abundant (over 1% relative
abundance) orders of Actinobacteria, Rubrobacterales (with
the most abundant family Gaiellaceae), Acidimicrobiales
(family Acidimicrobiaceae) and Solirubrobacterales (family
Conexibacteraceae) constituted 5.83% in organic farming
soil, which was two-fold higher than in conventional soil.
The more abundant genera (Supplementary Table S3)
in the organic farming soil that were overrepresented
comparing to conventional farming soil were also mostly
of phylum Actinobacteria (genera Gaiella, Ilumatobacter,
Iamia), but also Holophaga of phylum Acidobacteria was
also abundant. In conventional farming soil an increase in
the abundance of order Sphingobacteriales (with the most
abundant family Sphingobacteriaceae) was observed. Several
genera were also more abundant, Rhodanobacter was only
detected in conventional soil, while genera Rhizobium,
Agrobacterium, Devosia (phylum Alphaproteobacteria) and
genus Paenibacillus (phylum Firmicutes) were more abundant in
the conventional farming soil.

Detection of Antibiotic Resistance Genes
(ARGs) in the Soil DNA
The differences in the microbial community composition of the
two farming type soils were observed only between the smaller
taxa. The overall composition was comparable between the tested
soils, as well as similar to the composition of various soils around
the world (Fierer et al., 2009). However, we were interested if
the prevalence of ARGs in the soils of different farming systems
differed. Genes, commonly found in the clinically important
bacteria and conferring resistance to the different classes of
antibiotics used in the human and veterinary medicine, were
included in the study. In addition, ARGs, naturally found
in the soil bacteria and conferring resistance to β-lactams,
aminoglycosides, tetracycline and rifampicin were screened.

The total DNA was purified from the six soils of organic
and conventional farming type, as described in “Materials and
Methods.” Winter wheat soils, described previously, were used
and in addition organic and conventional pairs of rapeseed and
maize soils were selected. The measured pH of the soils was
7.16 and 7.95 for rapeseed, and 8.15 and 7.81 for respective
farming types of maize. The purified DNA was used for PCR
with the gene-specific primers listed in the Supplementary
Table S2. Primers targeting soil bacteria-specific resistance genes
were designed as described in “Materials and Methods.” The
gene screen identified the extended spectrum β-lactamase (ESBL)
coding gene shv in the organic farming rapeseed field soil
(Figure 2). No other clinically relevant β-lactamase coding genes
were observed. From the genes of known clinical relevance,
only those coding for aminoglycoside modifying enzymes were
found. The ant(6)I, ant(3′′)Ia and ant(3′′)Ib, genes, coding for
streptomycin modifying nucleotidyltransferases and conferring
streptomycin resistance (Vakulenko et al., 2003) were detected
in the organic farming wheat field soil. The ant(3′′)Ib gene
was also found in a soil DNA from conventional farming
field, together with the ermC gene coding for rRNA methylase
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FIGURE 2 | The resistance genes in the total DNA and in bacterial isolates
obtained from organic and conventional farming soils. The names of genes
tested are listed on the right in groups regarding their mediated resistance to
specific antibiotic class. Total DNA from soils of organic (Org) and
conventional (Conv) farming sites and cultivable bacterial isolates (shown in a
single column) were screened. Orange panel denotes gene present; blue
panel – gene not detected. Resistance genes identified in soil bacteria were
found as follows: blaL1–in a single S. maltophilia isolate from the soil of
conventional rapeseed farming; blaL2–in four S. maltophilia isolates from the
same field; ant(2′ ′)Ia – in four Pseudomonas spp. (one organic wheat and
organic rapeseed soil and two from conventional maize soil) and one
Sphingobacter sp. isolate (conventional rapeseed soil); aac(3)Iab – in five
Pseudomonas spp. from organic maize field.

conferring erythromycin resistance. Tetracycline resistance gene
tetM encoding ribosome protection protein (Burdett et al., 1982)
was more common and found in the soil of four fields out of six
tested (Figure 2).

In the next series of the soil resistance gene screen, we
targeted the genes, which were previously detected by screening
the metagenomic libraries constructed using DNA from a
broad range of geographic locations and several types of

environmental sources (soil and manure). The 10 selected
genes (Figure 2) coded for the proteins of five families,
including aminoglycoside acetyltransferases, β-lactamases,
rifampin ADP-ribosyltransferases, transporters of tetracyclines
and chloramphenicol. Aminoglycoside 3-N-acetyltransferase
coding gene aac3 (resistance to gentamicin), β-lactamase gene
bla (resistance to ampicillin) and bcr/cfl gene coding efflux
pump (resistance to chloramphenicol), were obtained from
metagenomics libraries from agricultural soils from Spain
(Torres-Cortés et al., 2011). Two arr-like genes (named here arr-
like 1 and arr-like 2) coding for rifampin ADP-ribosyltransferase
variants(rifampin resistance) showing highest similarity to the
homologs from Oscillatoria sp. isolate and tet4gene (tetracycline
resistance), coding for ABC transporter with the highest
similarity to a homolog from Paenibacillus curdlanolyticus
were identified in metagenomic libraries of soil from urban
environment in Seattle, United States (McGarvey et al., 2012).
Screening of the metagenomic libraries from a dairy cow manure
(United States) (Wichmann et al., 2014) revealed bla2 gene
(resistance to carbenicillin) showing high sequence identity to
a β-lactamase previously found only in Firmicutes. Ribosome
modifying tetW gene demonstrated resistance to tetracycline and
had homologs in both Firmicutes and Actinobacteria. And finally,
functional metagenominc library from DNA extracted from the
remote Alaskan soil (Allen et al., 2009) discovered blaLRA−10
and blaLRA−13 genes, which demonstrated highest homology
to a class C β-lactamases from Mycobacterium smegmatis and
Shewanella baltica, respectively.

Our PCR screening of this gene set in DNA from all soils
identified arr-like gene variant 1, coding for rifampin-modifying
ADP-ribosyltransferase and conferring resistance to rifampicin.
Other above listed genes were not detected with the exception
of another arr-like gene variant 2 and tetW gene in single
soil (Figure 2).

The Abundance of Antibiotic Resistant
Species in the Soils
To further access the prevalence of the antibiotic resistance
in bacteria from soils of organic and conventional farming,
we have isolated cultivable resistant bacteria as described in
section “Materials and Methods.” In total 151 isolates were
recovered from the six soils. The majority of the isolates in all
the soils belonged to the genus Pseudomonas (n = 79). Other
more abundant genera included Stenotrophomonas (n = 13),
Bacillus (n = 13), Sphingobacterium (n = 9) and Cryseobacterium
(n = 8) (Figure 3A).

The MIC values were calculated as described in section
“Materials and Methods.” The isolate was designated as resistant
if MIC value matched EUCAST clinical breakpoints (v. 7.0, 2017)
for the bacteria belonging to Pseudomonas, Acinetobacter genera
and Enterobacteriaceae. If the breakpoints were not available,
the PK/PD (non-species related) breakpoints were assigned.
The majority of the strains showed resistance to more than
one antibiotic tested or even to several antibiotic classes. We
calculated the average number of antibiotics, to which isolates
recovered from the each soil, were resistant (Figure 3B). The
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FIGURE 3 | Cultivable antibiotic resistant soil bacteria isolated from six soils under different farming styles. (A) The abundance of resistant bacterial genera isolated
from soils under different farming styles. (B) The abundance of antibiotic resistant bacteria isolated from various soils. Bacteria were designated resistant if the MIC
values met with EUCAST clinical breakpoints. Boxes indicate upper and lower quartiles, whiskers indicate minimum and maximum values excluding outliers, circles
depict outliers and crosses indicate mean values. ∗ Indicates statistical significance calculated as non-parametric Mann-Whitney test for two independent samples
(p < 0.05; one-tailed).

bacteria from the conventional farming wheat field soil were
more antibiotic resistant compared with those recovered from
the organic farming site and the difference was significant. On
the contrary, the bacteria isolated from the rapeseed field soil of
organic farming were more antibiotic resistant compared with
those recovered from the soil of conventional farming site. The
differences between the soils where maize was cultivated were
not significant.

Detection of Clinically Relevant ARGs in
Cultivable Bacteria
The resistant isolates were screened by PCR for the presence
of clinically relevant ARGs. The results in Figure 2 show
that only genes responsible for aminoglycoside resistance
were found. Interestingly, aac(3)Iab gene, coding for the

member of N-acethyltransferase superfamily, was found in
five Pseudomonas sp. isolates, all derived from ecological
maize field soil. Different MIC profiles indicated they are not
the same strain. The other aminoglycoside resistance gene
ant(2”)Ia, coding for aminoglycoside O-nucleotidyltransferase,
commonly encoded in transposons and plasmids (Vakulenko
and Mobashery, 2003), was found in four Pseudomonas sp.
and one Sphingobacterium isolate from soils of various origins
(Figure 2). The aminoglycoside resistance genes observed in
isolated bacteria differed from the ones found in total soil
DNA. We also checked for species specific Stenotrophomonas
maltophilia gene blaL1 coding for metallo-β-lactamase and
the gene blaL2, coding for serine-β-lactamase (Flores-Treviño
et al., 2014) in isolates identified as the latter species (n = 6)
(Supplementary Table S1). The blaL2 gene was present in
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four S. maltophilia isolates, all recovered from intensive wheat
farming soil; one of the four also had blaL1 gene. None
of cultivable bacterial isolates contained naturally occurring
antibiotic resistance-related genes (Figure 2).

Resistance Due to Efflux Pumps
Our observation, that most abundant groups of soil bacterial
isolates, exhibiting a high antibiotic resistance, carried rather a
limited number of genes coding for modifying enzyme-based
resistance mechanisms, prompted as to test the impact of efflux
pumps (EPs) on the resistance displayed by these isolate groups.
Most research has been focused upon P. aeruginosa and resistance
nodulation-cell division (RND) superfamily exporters, which
play the major role in the drug expulsion (Li X.Z. et al., 2015).
As the majority of cultivable antibiotic resistant isolates from
the soil in this study were of the genus Pseudomonas, we firstly
investigated the impact of RND EPs.

Twenty four Pseudomonas spp. isolates from wheat farming
soils were examined for the resistance to chloramphenicol,
which is known as a substrate of RND EP (Li X.Z. et al.,
2015). To access the influence of EPs we have used specific
inhibitors and examined their impact on the antibiotic MIC value
as described in “Materials and Methods.” The phenylalanine-
arginine-β-naphthylamide (PAβN) it is most active and best
studied inhibitor of RND EPs (Rampioni et al., 2017).

The initial chloramphenicol MIC varied between 0.5 and
32 µg/ml, and the difference of MIC values between the
Pseudomonas spp. isolates of different soil origin was not
statistically significant (data not shown). However, all the isolates
tested showed drastic reduction of resistance to chloramphenicol
after addition of PAβN, the average MIC reduction being 89 %
(the least reduction of MIC was 50%, while the highest −99%),
indicating the major role of RND EPs (Figure 4A). We then
checked how the initial resistance is related to the RND activity
and observed that isolates with high initial chloramphenicol
MIC were more RND-EPs-dependent compared with those
with low initial resistance level and this difference was
significant (Figure 4B).

Investigation of the impact of EPs on Pseudomonas spp.
resistance to ampicillin, again, showed a considerable reduction
of antibiotic MIC levels in the presence of PAβN in all bacterial
isolates, clearly demonstrating an important role of RND
pumps. However, as the resistance of the isolates to ampicillin
was often very high (unmeasurable under the protocol used),
therefore it was impossible to calculate MIC reduction accurately
(data not shown).

Next, we accessed the role of other prominent efflux
system, ABC transporters, in the bacterial susceptibility to
chloramphenicol by using an inhibitor of ABC EPs verapamil
(Li et al., 2016). The decrease of chloramphenicol MIC after
addition of verapamil was low to absent (data not shown),
indicating that ABC efflux transporters are not the main cause
of antibiotic resistance in Pseudomonas spp. recovered from soil.
However, a substantial synergistic effect of combined action of
PAβN and verapamil on antibiotic MIC was observed, suggesting
that operation of low-efficient ABC pumps may be masked in the
background of active RND pumps (data not shown).

Other clinically relevant bacteria of the soil origin
(Stenotrophomonas spp. and Chryseobacterium spp.) which
showed resistance to a high number of antimicrobials
(Supplementary Table S1) were checked for the activity of
RND and ABC types of EPs by using pump-specific inhibitors.
Stenotrophomonas spp. were affected by inhibition of RND
pumps (average reduction being 62%), especially when initial
chloramphenicol MIC values for isolates were high (Figure 5A).
However, some isolates exhibited MIC reduction comparable
to the Pseudomonas spp. (up to 94 %), while one did not
show any chloramphenicol MIC changes after EP inhibitor
addition. Similar tendency of greater importance of RND
efflux pumps could be observed for the more initially resistant
isolates. Inhibition of ABC EP also substantially affected the
resistance to chloramphenicol (average MIC reduction being
59 %, and maximum reduction of 87%) (Figure 5A). Two
strains did not show a change in chloramphenicol MIC after
addition of verapamil, one of them was the same strain that
exhibited the trait with PAβN. Similar effect was also observed
for Chryseobacterium spp. (Figure 5B). Therefore, we show that
antimicrobial resistance in the most prevalent cultivable soil
bacteria is largely mediated by the efflux pumps.

DISCUSSION

Soil is a very complex structure which includes organic particles
as well as thousands of living organisms from different taxa
including worms, arthropods, fungi, bacteria and some other
eukaryotic and prokaryotic organisms. Bacteria are one of the
most important living parts of the soil ecosystem (Fierer, 2017;
Sun et al., 2017). Many of them are decomposers, the other helps
to assimilated nitrogen for plants as well as they serve as a food
for protists. Recent study demonstrates that high abundances of
beneficial bacteria are related with soil quality, which is indicated
by better plant growth, lower outbreaks of diseases, higher soil
pH and better nutrient activities (Wang et al., 2017). The findings
also suggest that soil pH is the primary determinant and it is
more important factor than addition of nutrients for bacterial
community (Wu et al., 2017; Zhang et al., 2017). We have
investigated near-neutral soils (pH 6.58–7.08) and found a wide
variety but similar microbial composition in soils of different
farming types. The relative abundance of most bacterial phyla is
higher in near-neutral than in acidic or alkaline soils (Zhang et al.,
2017). Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes
and Bacteroidetes were the most abundant phyla in our study.
The recent data demonstrates that those bacteria are more
prevalent in near-neutral pH except Acidobacteria which are
diverse and specific acidobacterial subgroups are adapted to
distinct pH conditions (Lauber et al., 2009; Bartram et al.,
2014; Zhang et al., 2017). The chemical soil composition,
particularly the amount of phosphorus is also important factor
for microbial load (Liu et al., 2013) but it is unclear the
relation between amount of phosphorus and microbial variety.
In our experiments we did not detect any significant changes in
microbial composition at the genera level when different amount
of phosphorus (130 mg/kg vs. 320 mg/kg) was presented in
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FIGURE 4 | MIC reduction of Pseudomonas spp. of different soil origin after addition of RND EP inhibitor PAβN. Pseudomonas spp. isolates were grown with or
without RND EP inhibitor PAβN and their MIC of chloramphenicol was assessed. Blue boxes indicate upper and lower quartiles, whiskers indicate minimum and
maximum values excluding outliers, circles depict outliers and crosses indicate mean values. ∗ Indicates statistical significance calculated as non-parametric
Mann-Whitney test for two independent samples (p < 0.05; one-tailed). (A) Pseudomonas spp. isolates from two farming sites of different style did not show
significant differences in MIC reduction after addition of RND EP inhibitor. (B) Pseudomonas spp. with the higher initial resistance to chloramphenicol were more
dependent on EP than the isolates with low initial resistance.

FIGURE 5 | MIC reduction of Stenotrophomonas spp. and Chryseobacterium spp. after addition of RND or ABC efflux pump inhibitors. (A) Stenotrophomonas spp.
or (B) Chryseobacterium spp. isolates were grown with or without RND EP inhibitor PAβNor ABC inhibitor verapamil and their MIC of chloramphenicol was
assessed. Each value is indicated as a circle, crosses indicate mean values.∗ Indicates statistical significance calculated as non-parametric Mann-Whitney test for
two independent samples (p < 0.05; two-tailed).

a soil of different farming. Within the most prevalent genera
the highest difference was among the prevalence of the genus
Holophaga which number was almost two times higher in the
soil of organic crops. Holophaga are homoacetogenic bacteria that
degrades methoxylated aromatic compounds which are natural
products of plants, animals and microorganisms (Liesack et al.,
1994), however, more investigations are necessary to determine
the reason of such difference. The stability of soil microbiome
composition is very important for N and S cycles but certain
pesticides and other chemicals may affect the composition of
bacteria therefore, making serious ecological disturbances in
living ecosystems (García-Delgado et al., 2018; Karas et al., 2018).

At the same time there are some data that application of different
herbicides including glyphosate, glufosinate, paraquat, paraquat-
diquat and triasulfuron had no effect on the diversity and
structure of soil bacteria and archaea (Pose-Juan et al., 2017;
Dennis et al., 2018).

In this study we aimed to analyze the soils from two farming
systems: conventional and organic (which were certified as
organic farming for at least 20 years). Both conventional and to
a lesser extent organic farming depend on pesticides, though the
systems are subjected to different regulations. Organic farming
exclusively allows the use of pesticides which are of natural
origin, whereas synthetically produced products may be applied
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in conventional farming systems (Lori et al., 2017). Analysis of
the bacterial diversity in soils from different farming systems
showed only slight differences among the main taxonomical
units of microorganisms. The main prevalent phyla included
Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and
Bacteroidetes in the soils from both farming systems. Both soils
had a similar composition to the soil detected all around the globe
(Fierer et al., 2009).

Only rarely detected lower taxons were different between the
soils. From the genera that were present in significantly different
quantities (higher in conventional farming), Sphingomonas and
Gemmatimonas were observed previously to be increased in
farming with mineral fertilizers (Ma et al., 2018). We also
found Rhodanobacter genus, which was previously connected
with denitrification of soil (Green et al., 2012), present only in
conventional farming soil (0.37% relative abundance) and absent
from organic farming soil.

Acidobacteria are related to nutrient-wise poor soil (Chaudhry
et al., 2012), and therefore their abundance would be an indicator
of poor quality of soil. The relative abundance of Acidobacteria
was not high in both soils we have investigated, indicating
both farming systems are able to retain soil quality. A relative
abundance of Firmicutes has been previously connected with
manure application to the soil (Hartmann et al., 2015; Wepking
et al., 2017). Yet in our analysis we have also found higher relative
abundance of Firmicutes in the conventional farming soil.

We also observed that the continuous pesticide use on the
field did not affect the soil community composition, confirming
a similar observation made previously (Hartmann et al., 2015).
Increased diversity and richness of the microbial community
has been previously observed in the organic farming, which is
mostly due to the fertilization using manure, while continuous
fertilization using mineral fertilizers decreases the diversity (Li
et al., 2012; Hartmann et al., 2015; Lupatini et al., 2016). In our
case, we did not observe significant differences between the two
types of farming soils.

High variety and similarities of microorganisms in the soils
from different farming systems indicates the stability of microbial
populations that might be associated with the evolutionary
ability of soil microorganisms to adapt the different environment
and to survive among other organisms and different chemical
substances which usually are originated from microorganisms
like fungi, themselves.

This study also indicates the high diversity of microorganisms
in soil as the highest number of the most predominant genus
distribution was less than 5%. The presence of multiple genera
and high diversity of the species within the soil could be one of
the reasons for high soil sustainability as an external or internal
influence, for instance, suppression of one or few bacterial genera
probably will not affect the whole microbiome itself.

Soil is one of the most favorable settings for acquisition and
selection of antimicrobial resistance, due to the abundance of
antibiotics-producing microorganisms. Chemicals that are used
in conventional farming have potential to induce resistance
development (Kleiner et al., 2007). On the other hand, during
organic farming manure as a fertilizer is used, therefore
antimicrobial resistant bacteria originated from gut of the

animals may spread into soil ecosystems and increase resistance
(Li B. et al., 2015; McKinney et al., 2018). Different animal
pathogens as well as commensal microbiota have potential for
horizontal transmission of the resistance genes (von Wintersdorff
et al., 2016) therefore, resistance transfer of antimicrobial
resistant bacteria may occur in both directions – from animals
to soil and vice versa – from soil to animals because soils also
contain an autochtonous bacterial microbiota which harbors
resistance genes (Rizzo et al., 2013; Marti et al., 2014).
Once bacteria have acquired ARGs, they may exist in the
environment for a long time, even after the selection pressure
(Tamminen et al., 2012).

In this study we have detected only single genes encoding
antimicrobial resistance from the DNA of soil microbiomes
in all tested samples regardless of the farming system. They
conferred resistance mechanisms to β-lactams, aminoglycosides,
tetracycline and erythromycin. All these antimicrobials are used
in human and veterinary medicine and our previous studies
demonstrated that animal microbiota contain a wide variety
of clinically important genes encoding antimicrobial resistance
(Seputiene et al., 2012; Klimiene et al., 2016). There was no
recorded history about the origin of the manure in the organic
farming fields, therefore we could expect the variety of resistance
genes to differ between the various animal farms depending on
the treatment of animals, which could be reflected in the amount
of resistance genes reaching the fields with manure.

The recent data from functional metagenomics reveals novel
genetic determinants that could be potentially foreseen as
indicators of soil resistome and its dynamics (Torres-Cortés et al.,
2011; McGarvey et al., 2012; Wichmann et al., 2014). We have
shown in our study that arr-like 1 gene conferring rifampin
resistance was present in all soils, whereas other determinants
were sporadic or absent. Moreover, all soil samples except two
contained tetM gene, which has been reported to be abundantly
present in the microbiomes of various origin and the gene was
proposed to be an indicator for the co-occurrence of other
antibiotic resistance genes (Li B. et al., 2015).

Recent soil metagenome studies show the relative dominance
of determinants encoding bacterial efflux systems among ARGs
compared to other resistance mechanisms such as enzyme-
mediated drug modification or drug target binding (Li B. et al.,
2015; Van Goethem et al., 2018). We therefore analyzed the
EP activity of cultivable isolates of three genera (Pseudomonas,
Stenotrophomonas and Chryseobacterium). The genera were
chosen as they are increasingly associated with infections and
raise a threat due to their high intrinsic resistance (Ho et al., 2010;
Brooke, 2012; Mukerji et al., 2016). Pseudomonas aeruginosa
has been continuously shown to use RND EPs to counteract
antibiotics, the presence of the same mechanisms are also
shown for environmental Pseudomonas strains (Poole, 2001).
Our research confirms that resistant isolates of soil origin also
efficiently use RND EP. Stenotrophomonas spp. environmental
strains have been demonstrated to possess similar ARGs as
clinical strains (Youenou et al., 2015; Wang et al., 2018). In
our EP inibition test we have observed similar action of EP in
S. maltophilia and Stenotrophomonas of other species, indicating
the EP that are present (the RND and ABC in our study) are
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able to cause resistance. Interestingly, we have found that efflux is
also used by Chryseobacterium spp. of soil origin, thought these
bacteria were mostly know to be resistant by drug modification
mechanisms (Lin et al., 2012).

Hence, our resistance mechanisms studies of the most
prevalent groups of soil cultivable bacteria from soils of different
farming systems support the significant role of RND and
ABC EPs in mediating resistance. The efficient efflux-mediated
mechanisms in soil bacteria, therefore, might present a source
for multidrug resistance spread including horizontal transfer
(Dolejska et al., 2013; Walsh and Duffy, 2013).

According to this study it may be outlined that soil microbiota
is a stable component as it were detected similar composition of
microorganisms in soil both in organic as well as in conventional
farming systems with similar soil structure and pH. The different
amount of phosphorus in soils had no influence on bacterial
variety at a genera level although more investigations would be
useful to investigate changes among separate species. During
evolution microorganisms adapted to survive in ecosystems
independently of certain changes and probably serve as a
buffer for ecological niches. It is unclear, however, what level
of intensity can change microbial composition but current
conventional farming in Central Europe demonstrates acceptable
level of intensity for one of the most important ecological
component of soils. Analysis of antimicrobial resistance in soils
demonstrates that microorganisms did not acquire a plethora
of genetic determinants encoding resistance mechanisms to
the antimicrobials used in human and animal medicine as
only a small number and low variety of clinically important
genes encoding resistance to those antimicrobials were detected.

However, the antibiotic resistance of the cultivable agricultural
soil bacteria, including clinically relevant species, is largely
mediated by the drug efflux mechanisms.
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Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strain C999 was
isolated of a Spanish patient with urinary tract infection. Previous genotyping indicated
that this strain presented a multidrug-resistance phenotype and carried beta-lactamase
genes encoding CTX-M-15, TEM-1, and OXA-1 enzymes. The whole-cell proteome,
and the membrane, cytoplasmic, periplasmic and extracellular sub-proteomes of C999
were obtained in this work by two-dimensional gel electrophoresis (2DE) followed by
fingerprint sequencing through matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF/MS). A total of 602 proteins were identified in the
different cell fractions, several of which are related to stress response systems, cellular
responses, and antibiotic and drug responses, consistent with the multidrug-resistance
phenotype. In parallel, whole genome sequencing (WGS) and RNA sequencing (RNA-
Seq) was done to identify and quantify the genes present and expressing. The in silico
prediction following WGS confirmed our strain as being serotype O25:H4 and sequence
type ST131. The presence of proteins related to antibiotic resistance and virulence
in an O25:H4-ST131 E. coli clone are serious indicators of the continued threat of
antibiotic resistance spread amongst healthcare institutions. On a positive note, a
multiomics approach can facilitate surveillance and more detailed characterization of
virulent bacterial clones from hospital environments.

Keywords: bacteria, antimicrobial resistance, public health, genomics, transcriptomics, proteomics

Abbreviations: 2DE, two-dimensional gel electrophoresis; ACN, acetonitrile; DTT, dithiothreitol; ESBL, extended-spectrum
β-lactamase producing; FPKM, fragments per kilo base per million mapped reads; IPG, ImmobilineTM pH Gradient;
MALDI-TOF/MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; PAGE, polyacrylamide gel;
RNA-Seq, RNA sequencing; SDS, sodium dodecyl sulfate; TCA, trichloroacetic acid; WGS, whole genome sequencing.
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INTRODUCTION

Rates of Gram-negative healthcare-associated infections have
been increasing since 1998, mostly caused by antimicrobial
resistant Enterobacteriaceae. A strikethrough recent worldwide
survey revealed the prevalence of extended-spectrum beta-
lactamase (ESBL)-producing Enterobacteriaceae in 14% of
healthy individuals, a rate predicted to increase by 5.38%
year on year overall (Karanika et al., 2016; Bassetti et al.,
2017). Patients hospitalized in intensive care units and in long-
term care facilities, or those who are immunocompromised
have a higher risk of acquiring multidrug-resistant Gram-
negative infections (Kunz and Brook, 2010). ESBLs are enzymes
encoded by plasmid-borne genes, typically from the TEM,
SHV, CTX-M families, that mediate resistance to oxyimino-
beta-lactam antibiotics, third-generation cephalosporins and
aztreonam (Rice, 2009; Drawz and Bonomo, 2010). For years,
Escherichia coli producing the CTX-M-15 variant have been
frequently implicated in human infection (Ewers et al., 2010).
It has also been noted that the blaCTX−M−15 gene is located
49 bp downstream of insertion sequence ISEcp1, a well-known
highly efficient mobile element playing a major role in the
expression and spread of CTX-M beta-lactamases, the most
common in Europe (Peirano and Pitout, 2010; Guiral et al.,
2011). Throughout the years, the ciprofloxacin-resistant CTX-
M-15-producing O25:H4-ST131 E. coli clonal group is known
to have caused major outbreaks worldwide (Nicolas-Chanoine
et al., 2008; Ewers et al., 2010; Johnson et al., 2017). Classed
as a member of the virulent phylogenetic group B2 and having
the multidrug-resistant profile of the sequence type (ST) 131
clonal group, the O25:H4-ST131 clone represents a major public
health problem as it makes it more complicated to select
an appropriate therapy to administer, with a higher risk of
increased costs and use of “last resort” antibiotics (Vimont
et al., 2012). ST131 is therefore seen as being at the leading
edge of a deeply concerning set of increasingly challenging
infection agents (Vimont et al., 2012; Johnson et al., 2017).
In the present work, we studied an ESBL-producing E. coli
strain of human clinical origin, designated C999, that was
previously studied and characterized by Ruiz et al. (2012).
C999 was resistant to fluoroquinolones and third generation
cephalosporins because of CTX-M-15 ESBL and belonged to
phylogenetic group B2 and ST131. According to the genomic
profile of E. coli C999 we assumed that this strain is related to the
hazardous intercontinental O25:H4-ST131 clone. In our research,
we took a multiomics approach to more deeply characterize
this significant clinical strain. Whole-genome sequencing (WGS)
and RNA sequencing (RNA-Seq) analysis were conducted to
confirm if the E. coli C999 strain belongs to the O25:H4
serotype and identify/quantify the genes expressed. In parallel,
proteomic maps of C999 were produced by two-dimensional
gel electrophoresis (2DE) of whole-cell and fractionated extracts
followed by matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF/MS) of peptides
(Vlaanderen et al., 2010). This allowed us to monitor how
resistance mechanisms affect the proteomes of the membrane and
cytoplasmic compartments.

MATERIALS AND METHODS

Whole-Genome Sequencing
Total DNA was extracted from E. coli C999 using a silica-based
automatic DNA extractor EasyMag (BioMérieux Inc., Durham,
United States). A sequencing library was generated using the
Nextera XT DNA library preparation kit (Illumina Inc., San
Diego, CA, United States) and sequenced on a MiSeq (Illumina
Inc., San Diego, CA, United States) using paired-end reads
(2 × 150 bp), according to the manufacturer’s instructions.
FastQC1 and Trimmomatic2 software tools were used for read
quality analysis and improvement, respectively (D’Antonio et al.,
2015; Williams et al., 2016). Genome assembly and annotation
were done using SPAdes3 and RAST annotation4, respectively.
Finally, putative antimicrobial resistance genes were predicted
using Comprehensive Antibiotic Resistance Database (CARD5)
(Jia et al., 2017). WGS raw reads were submitted to the European
Nucleotide Archive under the accession numbers ERR3013427.

RNA Library Preparation and Sequencing
Total RNA was extracted using the RNeasy Mini Kit (Qiagen,
Venlo, Netherlands) with RNase-free DNase treatment on the
column (Qiagen), followed by bacterial rRNA depletion using
a Ribo-Zero rRNA Removal Kit (Illumina Inc., San Diego, CA,
United States). The 2100 Bioanalyzer (Agilent, Santa Clara, CA,
United States) was used to evaluate the concentration and quality
of RNA samples pre- and post-depletion. For RNA-Seq analysis,
a library was prepared with rRNA-depleted samples using the
TruSeq Stranded mRNA LT Sample Prep Kit (Illumina). RNA
was sequenced on a MiSeq using paired-end (2 × 75 bp) reads
(Illumina), according to the manufacturer’s instructions.

Transcriptomic Data Analysis
The quality of raw RNA-Seq data was evaluated using FastQC
analysis. The sequence reads were then mapped against the
obtained whole-genome sequence of strain C999 using the
Bowtie2 algorithm6 (Version 2.1.0). The expression level of each
transcript was calculated using the Cufflinks software7 (Version
2.1.1) by normalizing data as fragments per kilobase of coding
sequence per million mapped reads (FPKM).

Whole-Cell Protein Extraction
Cells were grown in brain heart infusion agar for 24 h and
afterward cultivated in brain heart infusion broth (15 ml) for
4 h (Goncalves et al., 2014). Exponentially growing cells were
then harvested by centrifugation (3 min, 10,000 g, 4◦C) and
resuspended in 4 ml of phosphate-buffered saline at room
temperature, centrifuged again, then resuspended in 0.2 ml of
10% (w/v) sodium dodecyl sulfate (SDS), 12% (w/v) Tris (Celis

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://www.usadellab.org/cms/?page=trimmomatic
3http://bioinf.spbau.ru/spades
4http://rast.nmpdr.org/
5https://card.mcmaster.ca/
6http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
7http://cufflinks.cbcb.umd.edu/
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and Gromov, 1999). Cells were disrupted by sonication with
an ultrasonic homogenizer (Vibra-CellTM VCX130, Sonics &
Materials Inc., Newtown, United States) in three 10 s bursts at
40% of full power, then cell debris was removed by centrifugation
(14,000 g, 30 min, 4◦C). The clear supernatant was collected then
mixed with an equal volume of cold 20% (w/v) trichloroacetic
acid (TCA; Merck, Darmstadt, Germany) in acetone (Sigma-
Aldrich, St. Louis, MO, United States) and was kept at−20◦C for
1 h. The precipitate was collected by centrifugation at 13,000 g for
30 min at 4◦C. The precipitated protein was washed thrice with
acetone to remove traces of TCA. Residual acetone was removed
by air-drying. Protein pellets were solubilized in thiourea/urea
lysis buffer. The resulting solutions were stored at −80◦C for
further analysis.

Extracellular Protein Extraction
Extracellular proteins were prepared as previously described with
some modifications (Nandakumar et al., 2006; Xia et al., 2008;
Goncalves et al., 2014). Cells were removed from brain heart
infusion broth culture by centrifugation at 5500 g for 10 min
at 4◦C. The clear supernatant was collected, passed through a
0.22 µm filter, mixed with an equal volume of cold 20% (w/v)
TCA in acetone, and kept at −20◦C for 1 h. The precipitate
formed after centrifugation at 13,000 g for 30 min at 4◦C was
washed thrice with acetone to remove traces of TCA, and residual
acetone was removed by air-drying. Dried protein pellets were
solubilized in thiourea/urea lysis buffer [2 M thiourea, 7 M
urea, 4% (w/v) CHAPS, 1% (w/v) dithiothreitol (DTT), 2% (v/v)
carrier ampholytes (pH 3–10) and 10 mM Pefabloc R© proteinase
inhibitor], then stored at−80◦C for further analysis.

Periplasmic and Cytoplasmic Protein
Extraction
To extract periplasmic and cytoplasmic protein from bacterial
cultures, the Epicentre PeriprepsTM Periplasting kit (Epicentre,
WI, United States) was used with a few modifications to the kit
protocol. The bacterial cell culture was centrifuged at 5500 g
for 10 min and the supernatant discarded. The pellet was
resuspended by pipetting in 2 ml of PeriPrepsTM Periplasting
buffer (200 mM Tris-HCl pH 7.5, 20% sucrose, 1 mM EDTA,
and 30 U/µl Ready-Lyse lysozyme) for each gram of cell pellet.
The sample was incubated for 5 min at room temperature.
Osmotic shock was induced by rapidly adding 3 ml of ice-cold
water for each gram of original cell pellet, mixing the sample
by inverting the centrifuge tubes. The sample was kept on ice
for 10 min then centrifuged at 12,000 g for 2 min to separate
the pellet (spheroplasts and intact cells) from the supernatant,
the periplasmic fraction. Spheroplasts in the pellet were lysed
by adding a detergent lysis buffer (10 mM KCl, 1 mM EDTA,
and 0.1% deoxycholate) and the pellet was resuspended in 5 ml
of PeriPreps lysis buffer for each gram of original cell pellet
and incubated for 5 min at room temperature. The sample was
sonicated with 2 s bursts at 40% of full power for a total of
1 min. Cell debris was removed by centrifugation at 12,000 g for
15 min at 4◦C. The supernatant was removed and centrifuged as
before. The supernatant recovered was the cytoplasmic fraction.

Equal volumes of cold 20% (w/v) TCA in acetone were mixed
with both periplasmic and cytoplasmic fractions that were then
kept at −20◦C Tris-HCl pH 7.5, 50 for 1 h. The precipitates
collected after centrifugation at 13,000 g for 30 min at 4◦C
were washed thrice with acetone to remove traces of TCA.
Residual acetone was removed by air-drying. Protein pellets were
solubilized in thiourea/urea lysis buffer and stored at −80◦C for
further analysis.

Membrane Protein Extraction
Membrane proteins were isolated by a previously described
method with some modifications (Taddei et al., 2011). Bacterial
cells were recovered from liquid culture by centrifugation at
10,000 g for 3 min at 4◦C and the pellet was resuspended
in phosphate-buffered saline pH 7.4 (Gorg et al., 2004).
After a second similar centrifugation step, the pellet was
resuspended in 25 ml of 10 mM Tris buffer pH 8.8 with
1 mM phenylmethylsulfonylfluoride (Sigma-Aldrich). Cells were
disrupted with 3 cycles of 20 s bursts of sonication at 40% of
full power and the cell debris was removed by centrifugation at
12,000 g for 2 min at room temperature. The supernatant was
centrifuged at 49,500 g for 60 min at 4◦C (in a 3–30KS centrifuge
with rotor no.12158, Sigma GmbH, Osterode am Harz, Germany)
and the pellet was treated with 1.67% N-lauroylsarcosine sodium
salt (Sigma-Aldrich) for 20 min at room temperature. The
membrane proteins were recovered by centrifugation at 23,000 g
for 90 min at 4◦C and the pellet was solubilized in thiourea/urea
lysis buffer. Samples were stored at−80◦C for further analysis.

Protein Quantification
Protein concentration was determined using the 2-D Quant kit
(GE Healthcare, Buckinghamshire, United Kingdom) following
the manufacturer’s instructions. In this procedure proteins are
quantitatively precipitated leaving other substances in solution.
The precipitated proteins are then resuspended in a copper-
containing solution with the unbound copper being measured
with a colorimetric agent. Color density (absorbance at 480 nm) is
thus inversely related to the protein concentration and accurately
reflects the protein concentration of the sample.

One-Dimensional and Two-Dimensional
Electrophoresis
One-dimensional electrophoresis was done with SDS-
polyacrylamide (SDS-PAGE) gels (T = 12.52%, C = 0.97%)
in a HoeferTM SE 600 Ruby R© unit (GE Healthcare, Chicago,
United States) as described by Laemmli (1970) with some
modifications (Igrejas, 2000). Whole-cell protein extract (15 µg)
was resuspended in an equal volume of buffer containing 0.5
M Tris HCl pH 8.0, glycerol, SDS and bromophenol blue. After
protein separation at 30 mA, gels were stained for 24 h in
Coomassie Brilliant Blue R-250 and washed in water overnight.
Gels were then fixed in 6% TCA for 4 h and in 5% glycerol for
2 h (Gorg et al., 2009). Two-dimensional electrophoresis (2DE)
was performed according to the principles of O’Farrell but with
ImmobilineTM pH Gradient (IPG) technology (O’Farrell, 1975;
Gorg et al., 2009). For the first dimension of isoelectric focusing,
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precast 13 cm IPG strips with linear gradients of pH 3–10 (GE
Healthcare) were passively rehydrated for 12–16 h in a reswelling
tray with 250 µl of rehydration buffer (8M urea, 1% CHAPS,
0.4% DTT, and 0.5% carrier ampholyte IPG buffer pH 3–10) at
room temperature. IPG strips were covered with Drystrip Cover
Fluid (Plus One, GE Healthcare). Lysis buffer [9.5 M urea, 1%
(w/v) DTT, 2% (w/v) CHAPS, 2% (v/v) carrier ampholytes (pH
3–10), and 10 mM Pefabloc R© proteinase inhibitor] was added to
E. coli protein extracts to achieve a concentration of 1 µg/µl of
protein. Samples containing a total of 100 µg of protein were
cup-loaded onto the rehydrated 13-cm IPG strips (Gorg et al.,
2009). To optimize running conditions, isoelectric focusing
replicate runs were performed according to Gorg et al. (2009)
and the GE Healthcare protocol for 13 cm IPG strips pH 3–10
on an EttanTMIPGPhor IITM (GE Healthcare). The optimized
13 h run was as follows: sample proteins were focused at 500 V
for 1 h, followed by a gradient up to 1000 V for 8 h, then a
gradient up to 8000 V for 3 h, finally remaining at 8000 V for
1 h. Focused IPG strips were then stored at −80◦C in plastic
bags. Before running the second dimension of electrophoresis,
strips were equilibrated twice for 15 min in equilibration buffer
[6M urea, 30% (w/v) glycerol, 2% (w/v) SDS in 0.05M Tris-HCl
buffer (pH 8.8) with bromophenol blue] with 1% DTT included
in the first equilibration and 4% iodoacetamide in the second
one. The equilibrated IPG strips were briefly rinsed with SDS
electrophoresis buffer, blotted to remove any excessive buffer,
and then loaded onto 12.52% polyacrylamide gels in a HoeferTM

SE 600 Ruby R© unit (GE Healthcare). The SDS-PAGE technique
previously reported by Laemmli (1970) was modified to increase
the resolution with the proper insertion of the IPG strips in
the stacking gel (Laemmli, 1970; Igrejas, 2000). SDS-PAGE was
run at 440 V for 3 h. Gels were fixed in 40% methanol, 10%
acetic acid for 1 h, then stained overnight in Coomassie Brilliant
Blue G-250 (Gorg et al., 2009). Coomassie-stained gels were
scanned on a flatbed scanner (UmaxPowerLook 1100, Freemont,
CA, United States) and the digitized images were analyzed
using Lab Scanner Image Master 5.0 software (GE Healthcare).
Protein molecular weights were estimated by comparison with
an internal calibration marker.

Protein Identification by MALDI-TOF/MS
For each extraction method, gels were analyzed and compared
with each other. Spots that were expressed in all gels were
manually excised from the gels and analyzed using MALDI-
TOF/MS. Gel pieces were rehydrated twice in 200 µl Milli-Q
water and washed twice with 25 mM ammonium bicarbonate,
50% acetonitrile (ACN), once with 50 µl ACN, then dried
in a SpeedVac (Thermo Fisher Scientific, Waltham, MA,
United States). To digest the proteins, 15 µl of trypsin solution
[0.02 µg/µl trypsin (Promega, Madison, WI, United States),
12.5 mM ammonium bicarbonate, 2% (v/v) can] was added to the
dried gel pieces, which were then kept on ice for 1 h before adding
30 µl of 12.5 mM ammonium bicarbonate and incubating them
overnight at 37◦C. Tryptic peptides were extracted by adding
20 µl of 5% formic acid, 50% ACN and then 25 µl of 50% ACN,
0.1% trifluoroacetic acid followed by threefold lyophilization in
a SpeedVac (Thermo Fisher Scientific). Tryptic peptides were

resuspended in 10 µl of 0.3% formic acid. Samples were mixed
(1:2, v/v) with 1 µl of a saturated matrix solution of 5 mg/ml
α-cyano-4-hydroxycinnamic acid in 0.1% (v/v) trifluoroacetic
acid, 50% (v/v) ACN, 8 mM ammonium phosphate). Aliquots
of samples (0.5 µl) were spotted onto the MALDI sample target
plate (384-spot ground-steel plate). Peptide mass spectra were
obtained from a MALDI-TOF/MS Ultraflex mass spectrometer
(Bruker Daltonics, Bremen, Germany) operating in positive
ion reflectron-mode. Spectra were acquired in the m/z range
of 600–3500 Da at a laser frequency of 50 Hz. For each spot
analyzed, a data-dependent acquisition method was created
to select the six most intense peaks, excluding those from the
matrix, trypsin autolysis, or acrylamide, for subsequent MS/MS
data acquisition. Mass spectra were internally calibrated with
self-digested trypsin peaks (MH+: 842.5, 2211.42 Da) allowing
a mass accuracy of better than 25 ppm. External calibration was
performed with the [M+H]+monoisotopic peaks of bradykinin
1–7 (m/z 757.3992), angiotensin II (m/z 1046.5418), angiotensin
I (m/z 1296.6848), substance P (m/z 1758.9326), ACTH clip 1–17
(m/z 2093.0862), ACTH18–39 (m/z 2465.1983), and
somatostatin 28 (m/z 3147.4710).

Bioinformatics Analysis for Proteomics
Spectra were processed and analyzed using the Global Protein
Server Workstation (Applied Biosystems), which uses internal
MASCOT software (v 2.1.04, Matrix Science, London,
United Kingdom) to search for peptide mass fingerprints
within MS/MS data. The Swiss-Prot non-redundant protein
sequence database (Release 10 of October 2014, 546790 entries)
and NCBI Reference Sequence Database (RefSeq release 68 of
November 2014, 46968574 protein entries) were used to search
E. coli protein sequences. The database search parameters were
as follows: carbamidomethylation and propionamide of cysteine
(+71 Da) and oxidation of methionine (+16 Da) as variable
modifications, allowance for up to two missed tryptic cleavages,
peptide mass tolerance of 50 ppm, and fragment ion mass
tolerance of 0.3 Da. Positive identifications were accepted above
95% of confidence level. Protein identifications were considered
as reliable when the MASCOT score was >70% calculated
as –10 × log P, where P is the probability that the observed
match is a random event. This is the lowest score indicated by
the program as being significant (P < 0.05) below which proteins
are likely to be incorrectly identified.

RESULTS AND DISCUSSION

E. coli C999 Strain Profile
Genomics and Transcriptomics
ESBL-producing E. coli strain C999, implicated in a urinary
infection of a Spanish patient was collected in 2007 and used
in this study, thus characterized in relation to the phenotype
and genotype of antimicrobial resistance and to molecular
typing (Ruiz et al., 2012). This strain was resistant to ampicillin,
amoxicillin/clavulanic acid, cefotaxime, ceftazidime, naladixic
acid, ciprofloxacin, tobramycin, kanamycin, streptomycin,
tetracycline, sulfamides and trimethoprim-sulfametoxazole, and
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carried the blaCTX−M−15, blaOXA−1, and blaTEM−1b β-lactamase
genes. Other resistance genes observed in strain C999 were
aac(6’)-Ib-cr (ciprofloxacin resistance), tet(A) (tetracycline
resistance) and sul1 (sulfametoxazole resistance). The gene
cassette array dfrA17 + aadA5 was observed in strain C999 and
mutations were also found in genes encoding GyrA (Ser83Leu +
Asp87Asn) and ParC proteins (Ser80Ile + Glu84Val) (Ruiz et al.,
2002). C999 was classified in the phylogenetic group B2, mostly
implicated in extraintestinal infections (Clermont et al., 2000),
and it belongs to sequence type ST131, as previously detected
(Ruiz et al., 2012). To better understand the nature of the C999
strain we produced a comprehensive survey of its genome,
transcriptome and proteome. WGS allowed comprehensive
characterization of the genetic makeup of the bacterial strain,
including the identification of antibiotic resistance genes,
consistent with the known pathological nature of this strain
previously determined by Ruiz and colleagues (Ruiz et al.,
2012). In fact, in silico prediction was applied to the WGS assay
using SerotypeFinder 2.0, thus confirming the O25:H4 serotype
which can lead us to acknowledge our strain as a member of
the O25:H4-ST131 E. coli clonal group (Joensen et al., 2015).
Supplementary Table S1 display all the identified genes related
to antibiotic resistance such as aac(6’)-Ib-cr, tet(A), sul1, aadA5
gene cassette and genes related to toxin-antitoxin addiction
systems of plasmids pemK, ccdA/ccdB, vagC/vagD, and sok, as
well as β-lactamase genes blaTEM−1, blaOXA−1, and blaCTX−M−15.
It is important to also highlight the presence of several stress
response and oxidoreductase genes. This perspective of the C999
transcriptome gives an overview of all its cellular mechanisms
(Supplementary Table S2).

Proteomics
The 2DE gels of the whole-cell proteome and four sub-proteomes
of E. coli strain C999 were compared (Figures 1, 2). From all
the gels, a total of 564 protein spots were collected for analysis
using MALDI-TOF/MS and identified by correlating the output
with bioinformatics databases8. A total of 602 different proteins
were identified from 471 different spots, which corresponds to
83.51% of the total spots collected (Supplementary Tables S5–
S9). The proteins identified were related to different functions
within bacterial cell metabolism, the most frequent being enzyme
activity, transport and molecule/protein biosynthesis, followed by
the stress response, the SOS response and antibiotic resistance
(Figures 3–5). Proteins related to glycolysis and molecule
biosynthesis were indeed well represented in all proteomes
(Figure 6). In fact, 282 different proteins were identified as
involved in biological processes of regular cell functioning and 42
proteins were found to be related to stress response mechanisms,
as has been previously described (Micevski and Dougan, 2013;
Delmar et al., 2014).

Comparison of RNA and Proteins
Expressed in E. coli C999
With the use of RNA-Seq the abundance of all transcripts
was quantified, thus allowing to compare the gene expression

8http://www.ncbi.nlm.nih.gov/

levels to the proteomic data (Supplementary Table S3; Han
et al., 2015; Salipante et al., 2015). Supplementary Table S4
summarizes the relevant genes identified with their lengths
and abundance in FPKMs, juxtaposed with the proteomic data
obtained and corresponding protein score. Taking an overview
of all the data obtained, it is interesting to see that among
the top-100 most highly expressed genes only 25 corresponded
to detected proteins, whereas only 80 detected proteins were
among the top-500 expressed genes. In fact, gene blaCTX−M−15
was identified with an expression level of 355 FPKM being
placed in the top-1000 although not being detected at the
proteome level. The lack of correlation between mRNA and
protein expression was already referred in previous studies,
where different possibilities were advanced to explain this matter
(Haider and Pal, 2013; Koussounadis et al., 2015; Liu et al.,
2016). Considering the most highly expressed genes which
did correlate well with the proteomic data in our survey,
we can highlight the antibiotic resistance-related gene blaTEM
and also elongation factor tufA, as well as stress response
genes dps, clpB, dnaK, and groEL (Supplementary Table S3).
According to the genomic and transcript sequences, various
expressed genes are related to multidrug resistance mechanisms.
One example is the efflux pump AcrA-AcrB-TolC located
in the intermembrane structure of Gram-negative bacteria,
which ejects antibiotics and other compounds from the cell,
thus playing an important part in the survival of pathogenic
microorganisms (Supplementary Table S2; Tikhonova and
Zgurskaya, 2004; Wang et al., 2009; Du et al., 2014). Adaptor
protein (AcrA) and outer membrane channel (TolC) transcripts
were both detected in RNA-Seq, and the AcrA homolog
AcrE, the transcriptional repressor AcrR, and the potential
AcrA-repressor AcrS were all expressed but at different levels
(Supplementary Table S3). AcrE is very similar to AcrA and
can substitute for AcrA function in multidrug transport, while
AcrR can repress acrAB operon expression (Hirakawa et al.,
2008; Hayashi et al., 2016). The acrS gene is upstream of acrE,
and the protein binds to the same sequence on the AcrA
promoter that is recognized by AcrR, thus potentially acting as
an AcrA repressor negatively regulating kanamycin resistance
(Hirakawa et al., 2008). As expected, the TolC protein was
identified in the membrane sub-proteome, expressed at low
levels (Supplementary Table S4). Outer membrane channel
TolC is involved in various efflux and drug transportation
systems like the tripartite systems EmrAB–TolC and MdtABC-
TolC/MdtEF-TolC, and other resistance efflux systems that
confer the capability to resist and expel a wide range of
antibiotics, detergents and chemical solvents (Tanabe et al., 2009;
Lennen et al., 2013; Anes et al., 2015). Genes emrA, emrB,
emrD, emrE, emrK, and emrR were identified in our RNA-
Seq survey at low expression levels (Supplementary Table 3,
below 124 FPKMs), while genes mdtA, mdtB, mdtC, mdtD,
mdtE, mdtG, mdtI, mdtJ, mdtK, mdtL, mdtM, mdtN, mdtO,
and mdtP showed slightly higher expression levels (above 274
FPKMs). Except for TolC, the above efflux system components
were not detected in the proteome. The lipid A-Ara4N
pathway is involved in polymyxin resistance because Ara4N (4-
amino-4-deoxy-L-arabinose) is added to phosphate groups of
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FIGURE 1 | Whole-cell proteome of E. coli C999. One-dimensional SDS-PAGE gel profile stained with Coomassie R-250 (left) with schematic profile showing
molecular weights. Two-dimensional gel stained with Coomassie G-250 with spots marked (right). Protein spot color key: dark red, stress response; orange, SOS
response; dark green, antibiotic resistance.

lipid A. Genes encoding lipid A-Ara4N pathway components
are well represented among the RNA-Seq data with arnC,
arnE, arnF, and arnT expressed between 64 and 45 FPKMs
(Supplementary Tables S3, S4; Gatzeva-Topalova et al., 2005b).
Even though the expression levels of the latter transcripts were
similar, only bifunctional polymyxin resistance protein ArnA
was expressing at low level in the membrane sub-proteome.
Polymyxin resistance is also triggered by the up-regulation of
operon arnBCADTEF, which is directly involved in the activation
of the two-component system PmrA/PmrB that is represented
in the RNA-Seq readout (Olaitan et al., 2014). Genes pmrA,
pmrB, pmrD, pmrG, pmrJ, pmrL, and pmrM were expressed at
under 178 FPKMs whilst the respective peptides they encode
were not detected. The presence of these resistance mechanisms
in clinical isolates with increased virulence raises concern
for the spontaneous polymyxin resistance phenomena thus
indicating why such bacteria reveal high pathogenic potential.
Some other abundant transcripts did not have corresponding
proteins in the proteomic data, which may be due to a number
of factors like post-translational mechanisms of regulation
and differential protein stability that can be influenced by a
protein’s location and/or interaction with other proteins, or

even due to limitations within the proteomic techniques (Yoon
et al., 2003; Hack, 2004; Kumar et al., 2016). In fact, the
correlation between transcript and protein levels may vary
according to specific patterns (Yoon et al., 2003). Immobilized
pH gradient 2DE is widely used for protein separation and
identification but have shown some limitations in resolving
highly charged, long chain and insoluble proteins (Hack, 2004).
Such proteins may therefore remain undetected with 2DE
and MS techniques or displaying levels of expression below
the define threshold, even when the corresponding genes
and transcripts are identified through WGS and RNA-Seq,
respectively. This reinforces the need to compare proteomic
and transcriptomic results in order to fully characterize a given
bacterial strain.

Proteins Related to Bacterial Resistance
Mechanisms
Antibiotic Resistance
Following several reports of the identification and expression
of antibiotic resistance genes around the world (Lavigne et al.,
2007; Mitsou et al., 2010; Barguigua et al., 2011; Kim et al.,
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FIGURE 2 | Two-dimensional gel of E. coli C999 of extracellular (A), periplasmic (B), membrane (C), and cytoplasmic (D) proteome fractions stained with
Coomassie G-250 with spots marked (right). Protein spot color key: dark red, stress response; orange, SOS response; dark green, antibiotic resistance.

2011), the dynamics of the proteome and the mechanism(s)
of bacterial antibiotic resistance need to be considered in the
context of the spread of bacterial pathogens (Cash, 2011).
Elongation factor Tu, encoded by tufA, was identified in
spot 46 [molecular weight (MW) 41636, isoelectric point (pI)
5.00] of the cytoplasm fraction (Figure 2). Present in most
enterobacterial genomes, TufA is responsible for binding and
transporting an appropriate codon-specified aminoacyl-tRNA to
the ribosome aminoacyl site, and it also influences the assembly
and stability of cytoskeletal polymers and is implicated in
protein folding and protection from stress (Caldas et al., 1998;
Isabel et al., 2008). Levels of TufA protein and transcripts were
found to be elevated in C999 which is relevant and consistent
with previous reports of tufA upregulated expression in the
presence of antibacterial peptide polymyxin B, regulated by the
pmrA/pmrB two-component system (Supplementary Table S2;
Isabel et al., 2008; Ribeiro et al., 2013). Another one of the
most expressed genes is β-lactamase TEM-1, which was present
in the periplasmic sub-proteome [MW 31666, pI 5.60] (see
Figure 6 and Supplementary Tables S3, S9). Plasmid-encoded
β-lactamases are among the most critical acquired resistance
determinants emerging in members of Enterobacteriaceae such
as E. coli (Hooff et al., 2012). The detection of this protein is
noteworthy, even though the level of expression was low and

poorly correlated with the mRNA levels determined by RNA-
Seq. It is also relevant to note that not any other β-lactamase
protein was found expressing, unlike the corresponding gene
blaCTX−M−15 frequently found carried in ST131 E. coli clones
accompanied by quinolone resistance gene aac(6’)-Ib-cr (Chong
et al., 2018). Similar uncorrelated levels of RNA and protein
expression were found for outer membrane protein TolC [spot
351], a component of the efflux pump system which rids the
cell of antibiotics like tetracycline (to which E. coli C999 is
resistant) and chloramphenicol (Weatherspoon-Griffin et al.,
2014). The antibiotic resistance related FabI protein, an enoyl-
[acyl-carrier-protein] reductase [NADH], was detected in spot
129 [MW 28074, pI 5.58] of the whole-cell proteome and in
spots 88, 89, and 146 of the cytoplasmic sub-proteome. The
detection of FabI in various spots, although it occurs at low
levels of protein expression, suggests the existence of post-
translational modification affecting protein stability (Maier et al.,
2009). FabI is a homo-tetrameric enzyme responsible for the
catalysis of the last reductive step of fatty acid biosynthesis,
and it is a critical target for antibacterials commonly used
mediating resistance to E. coli enterohemorrhagic serotypes
(see Supplementary Table S1). In Staphylococcus aureus, FabI
is known to be inhibited by triclosan, a broad-spectrum
antibacterial additive and hexachlorophene, which results in
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FIGURE 3 | Distribution of E. coli strain C999 proteins according to their predicted function in biological processes.

FabI being less effective toward Gram-negative bacteria (Heath
et al., 2000; Schiebel et al., 2014). The previously cited
bifunctional polymyxin resistance protein ArnA [spot 275] is a
pathway-specific enzyme possessing a C-terminal domain which
catalyzes the NAD+-dependent oxidative decarboxylation of
UDP-GlcA to UDP-β-(L-threopentapyranosyl-4′′-ulose) (UDP-
4-keto-pentose) (Gatzeva-Topalova et al., 2005b). This pathway
is implicated in the pathophysiological effects associated with
Gram-negative bacterial infections (Gatzeva-Topalova et al.,
2005a). Aminoglycoside 3′-phosphotransferase AphA [spot 73]
is reported to be involved in resistance to kanamycin and
structurally-related aminoglycosides like tobramycin (Shi et al.,
2013). Knowing that kanamycin and tobramycin were tested
when phenotyping C999, the detection of the AphA protein
confirms that the corresponding resistance is expressed at the
proteome level. It is interesting that while ArnA transcript levels
were consistently low, the AphA transcripts were not detected,
which suggests that some regulatory mechanisms remain to be
discovered. In the periplasmic fraction was detected the presence
of two hits of Ferrous iron transport protein A, a known virulent
factor, but under a very low protein score so that its identification
is not validated (Supplementary Table S9).

Stress Response, Oxidoreductase, and SOS
Response
The environmental stress response is a defense mechanism found
in all bacteria in which many different factors regulate gene and
protein expression according to the specific stress encountered
(Calabrese et al., 2012). The analysis of both the transcriptome
and proteomes of C999 revealed the presence of several genes

related to stress response mechanisms that increase the survival
rate of bacteria, a relevant factor when considering non-
commensal bacteria that will therefore endure. Stress response
associated Dps (DNA protection during starvation) protein
[spots 1, 6, and 157; MW 18684 and pI 5.70], another factor
contributing to the bacteria’s survival, was highly expressed in
both the whole-cell proteome and transcriptome (Figures 1, 2
and Supplementary Table S2). Very similar to ferritins, Dps
has a compact and stable shell-like structure assembled from
twelve identical subunits, with the lysine-rich N-termini of
each monomer conferring flexibility. When present in stationary
phase cells, Dps can bind DNA to form a highly stable DNA-
Dps complex, which protects bacteria from oxidative stress
or nutritional deprivation caused by harmful environmental
stimuli (Stephani et al., 2003; Calhoun and Kwon, 2011). The
highly stable protein conformation is also known to influence
E. coli attachment to abiotic surfaces (Goulter-Thorsen et al.,
2011). Expression of chaperone proteins ClpB [MW 95697,
pI 5.37], DnaK (HSP70) [MW 69130, pI 4.83], and 60 kDa
chaperonin GroEL1 [MW 57464, pI 4.85] is associated with the
stress response. DnaK (HSP70) is an ATP-dependent molecular
chaperone operating in thermal resistance in bacteria (Miot et al.,
2011). In conjunction with ClpB, the DnaK/HSP70 chaperone
system, is able to dissolve protein aggregates to protect bacterial
cells from the effects of protein inactivation and aggregation
caused by great heat stress (Doyle et al., 2007). ClpB is an
ATP-dependent molecular chaperone from the AAA+ ATPase
superfamily essential for bacterial thermotolerance that was
found in the C999 proteomes (see Supplementary Tables S5,
S6, S9; del Castillo et al., 2010; Miot et al., 2011). Another
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FIGURE 4 | Distribution of E. coli strain C999 proteins from cytoplasm and membrane fractions according to their predicted function in biological processes.

major E. coli chaperone, GroEL1, was found in whole-cell [spot
19] and also in the cytoplasm [spot 3], periplasm [spot 6] and
membrane fraction [spots 18, 19, and 20] (Richter et al., 2010).
GroEL belongs to the HSP60 class and plays an important
role in protein folding and heat stress resistance. In fact, all
three types of chaperones have similar biochemical structures
and are involved in protecting cells by resisting heat stress at
different stages of the bacterial chemical response (Kyratsous

and Panagiotidis, 2012). In terms of oxidative stress defense,
oxidoreductase function related proteins SodA [MW 23083, pI
6.44], AhpC [MW 20862, pI 5.03], and thiol peroxidase protein
(Tpx) [MW 17995, pI 4.75] were identified in the C999 whole-cell
proteome and AhpC was also identified in the C999 membrane
fraction (see Figure 1 and Supplementary Tables S5, S8).
Superoxide dismutase (SodA) removes superoxide leading to the
generation of hydrogen peroxide (H2O2) which is then removed
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FIGURE 5 | Distribution of E. coli strain C999 proteins from extracellular and periplasm fractions according to their predicted function in biological processes.

by catalases like KatE and peroxidases like AhpC, the latter being
a very extensively studied bacterial peroxiredoxin system (Jung
and Kim, 2003; Seib et al., 2006; Dubbs and Mongkolsuk, 2007).
Tpx is involved in the formation of biofilms alongside superoxide

dismutase (SodC) in Shiga toxin E. coli O157:H7 where these
periplasmic oxidative defense proteins are more highly expressed
under biofilm-inducing conditions (Kim et al., 2006). Peroxidases
Tpx and AhpC were also found to be expressed in Salmonella
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FIGURE 6 | Comparison of protein distribution among the different cellular fractions and whole-cell extract.

enterica where a tpx mutant is more susceptible to exogenous
H2O2 and is less able to degrade it than the wild type. Tpx
therefore contributes to the defense system of this pathogen
enabling it to survive oxidative stress (Horst et al., 2010).
Another bacterial stress response mechanism involves RNA
polymerase sigma factor RpoH, previously described as the
main regulator of the heat stress response. RpoH is induced
by protein unfolding and cytoplasmic stress in response to
heat, DNA damage or antibiotic exposure (see Supplementary
Table S8; Narberhaus and Balsiger, 2003; Foster, 2007). In our
survey, RpoH mRNA was expressed at a high level, but protein
expression was low, which might be expected as most heat
induced mechanisms are post-trancriptional (Narberhaus and
Balsiger, 2003). Also related to the general stress response is the
two-component system connector protein sensor-associating-
factor A (SafA), a 65-amino-acid membrane protein in whole
cells [spots 125 and 153] and in the periplasm [spot 13] that
is involved in the acid response network of two-component
signal transduction systems. In E. coli there are 14 gene products
and at least 15 regulators implicated in acid response (AR)
biochemistry, where GadE is the main activator protein of
resistance genes like gadA and gadE. Regulation of GadE in
turn involves several regulators like EvgA and PhoP (Masuda
and Church, 2003). EvgS/EvgA is the major system for acid
resistance in exponentially-proliferating cells, inducing SafA and
thus interacting and activating another connected regulating
system, the PhoQ/PhoP system (Eguchi et al., 2011). Also
relevant are the chaperone-related curved DNA-binding protein
and the Mdh oxidoreductase identified in whole-cell [spot 76],

cytoplasm [spot 73], and membrane [spot 305] fractions, and
ATP-dependent protease ATP-ase subunit HslU, characteristic of
E. coli O139:H28 (enterohemorrhagic strain E24377A), found
in the whole-cell [spot 164] and cytoplasm [spot 24] (Marzan
and Shimizu, 2011). SOS response components figured among
our results. The LexA repressor [spot 147; MW 22344, pI 9.64],
one of the main proteins regulating the SOS response, was
expressed at a low level even though its mRNA levels were high
(Figure 3 and Supplementary Tables S2, S5). LexA represses
the transcription of several genes involved in DNA damage
repair to a basal level when a bacterial cell is exposed to UV
or to widely used antibiotics, like β-lactams, fluoroquinolones
and trimethoprim (Guerin et al., 2011; Yaguchi et al., 2011).
Genes lexA-regulated have been shown to exhibit phenotypic
heterogeneity with different levels of expression detected in
different cell subpopulations. The heterogeneous expression is
related to differential binding affinity of LexA to SOS boxes when
DNA is damaged by external factors invoking the SOS response
(Kamensek et al., 2010). On the subject of DNA UV damage,
DNA replication and repair protein RecF [spot 169; MW 40717,
pI 6.78] was also found. The functional recF gene is implicated in
several forms of replication such as stable DNA replication and
linear plasmid multimer replication, as well as in the recovery of
replication in UV-irradiated E. coli cells. The RecF protein binds
preferentially to single-stranded or linear DNA that arises during
DNA metabolism such as replication and normal SOS induction,
and repairs DNA breaks and gaps resulting from UV or other
stresses. Cells lacking RecF pathway are thus hypersensitive to
UV-induced damage (Handa et al., 2009; Ona et al., 2009).
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CONCLUSION

In order to find a solution to the concern multidrug-resistance
in humans it is vital that researchers possess precise knowledge
of the gene and protein expression of the clinical bacterial
strains and whether they are related to pandemic strains such as
O25:H4-ST131, allowing to understand the dynamic framework
surrounding the expansion and endurance of such organisms.
In our study, we followed a previous genomic profile of clinical
strain E. coli C999 revealing characteristics of the extraintestinal
pathogenic CTX-M-15 producing E. coli clonal group O25:H4-
ST131 and exhibiting fluoroquinolone resistance as other
plasmid-mediated resistances. Through transcriptomics tools we
were able to confirm our strain to be O25:H4-ST131 and also
identify several genes related to antibiotic resistance and survival-
related processes like stress and SOS response. Proteomics
allowed the identification and quantification of several proteins
regarding also antibiotic resistance and stress response, within
some degree of correlation to the RNA expression. While
the proteomics data is very valuable, transcriptomics using
RNA-Seq provide precise transcript quantification so mRNA
and protein levels can be compared. However, the lack of
correlation between mRNA and protein expression (or the
difficulty in detecting it) indicates there is much to discover about
cellular mechanisms of gene regulation that could advance our
understanding of antibiotic resistance. It will be necessary to
investigate such relationships, particularly in terms of specific
stimuli, by increasing sampling frequency in a metaomics
approach, for example. In summary, omics-based studies of the
metabolic pathways of antibiotic resistance should continue to be
done if answers and sustainable solutions are to be found.
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Antimicrobials are the most commonly prescribed drugs in the swine industry. While

antimicrobials are an effective treatment for serious bacterial infections, their use

has been associated with major adverse effects on health. It has been shown that

antimicrobials have substantial direct and indirect impacts on the swine gastrointestinal

(GI) microbiota and their accompanying antimicrobial resistome. Antimicrobials have also

been associated with a significant public health concern through selection of resistant

opportunistic pathogens and increased emergence of antimicrobial resistance genes

(ARGs). Since the mutualistic microbiota play a crucial role in host immune regulation

and in providing colonization resistance against potential pathogens, the detrimental

impacts of antimicrobial treatment on the microbiota structure and its metabolic activity

may lead to further health complications later in life. In this review, we present an overview

of antimicrobial use in the swine industry and their role in the emergence of antimicrobial

resistance. Additionally, we review our current understanding of GI microbiota and their

role in swine health. Finally, we investigate the effects of antimicrobial administration on

the swine GI microbiota and their accompanying antibiotic resistome. The presented data

is crucial for the development of robust non-antibiotic alternative strategies to restore the

GI microbiota functionality and guarantee effective continued use of antimicrobials in the

livestock production system.

Keywords: antimicrobial, gastrointestinal, microbiota, swine, resistome

INTRODUCTION

Recently, the swine industry has focused on sustainable pork production which maximizes value
over production costs and represents a shift away from antimicrobial usage. There is an urgent
need not only for higher production efficiency to meet consumer expectations, but also for the
development of new phenotypes related to host vitality and robustness (Merks et al., 2012).
Phenotypic development in swine is a complex multistage process, starting from conception stage
and continuing throughout the entire production cycle (Pluske, 2016). There are four major
criteria that drive the phenotypic development and ultimately impact swine health, including host
factors, management inputs, stable microbial ecosystem, and surrounding physical environment
(Figure 1). Some human data and animal experiments have revealed that the crosstalk and
interaction betweenmicrobial environment and other phenotypic drivers are the key distinguishers
of host health (Blaut and Clavel, 2007; Metzler and Mosenthin, 2008). The swine microbial
ecosystem is composed of rich and diverse populations that harbor thousands of different microbial
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species (aerobic, facultative anaerobic, and strictly anaerobic),
dwelling in different anatomical biogeographic locations
(Metzler and Mosenthin, 2008; Holman et al., 2017). These
mutualist populations have a wide range of functions, including
providing colonization resistance against potential pathogens,
absorbing different kind of nutrients, modulation of the host’s
immune system, metabolizing indigestible polysaccharides,
and regulating the host’s metabolism (Bischoff, 2011; Venable
et al., 2016). Therefore, alteration of the swine microbial
environment may detrimentally influence the host’s health status
and inhibit the pathogens colonization (Marchesi et al., 2016).
Understanding the mechanistic pathways and abundance of
these alternations are required to discover new and different
management practices to promote growth rate, increase
efficiency of feed utilization, and improve overall swine health.

With recent advances in our understanding of swine
microbial ecosystem structures and functions, we are becoming
increasingly aware of the impacts of antimicrobial on mucosal
microbiota and how its use negatively impacts the host’s health
(Zeineldin et al., 2018b). Equally important is the potential
enrichment of antimicrobial resistome between the commensal
microbiota as a result of antimicrobial use, which is one of
the most vital public health issues that we currently face
(Wright, 2007). The detrimental impacts of antimicrobial on
the GI microbiota and host health are summarized in Figure 2.
Traditionally, the impacts of antimicrobial administration on
GI microbiota structures and development of antimicrobial
resistance were largely characterized by culture-based techniques
and/or a PCR-based approach, both of which underestimate the
presence of novel ARGs (Zhu et al., 2013). Consequently, culture
independent platforms (real-time PCR quantification, next
generation sequencing, and functional metagenomics) have been
used to efficiently quantify and assess the resistant opportunistic
pathogens and emergence of antimicrobial resistome (Gerzova
et al., 2015). While antimicrobial intervention disrupts GI
microbiota structures and function, we are just beginning to
estimate the relative contribution of its use on emergence of the
antimicrobial resistome.

In this review, we present an overview of antimicrobial use
in the swine industry and its association with the emergence of
antibiotic resistance genes (ARGs). Additionally, we review our
current understanding of GI microbiota and its role in swine
health. Finally, we explore the effects of antimicrobial use on
the swine GI microbiota and their accompanying antimicrobial
resistome. The presented data is vital for the development of
robust non-antibiotic alternative strategies to restore the GI
microbiota functionality and guarantee effective continued use of
antimicrobial in the livestock production system.

ANTIMICROBIAL USE IN SWINE
MANAGEMENT SYSTEM

In the swine industry, antimicrobial has four potential uses: (1)
disease treatment, (2) disease control, (3) disease prevention,
and (4) increased the growth performance (O’Neill, 2014). It is
therefore unsurprising that antimicrobial is the most commonly

FIGURE 1 | The drivers and main components of phenotype development in

swine production systems. Phenotype development is made up of four

separate but often blended sets of factors and overlapping components.

These components are host factors, management inputs, microbial

environment, and physical environment. The dashed arrows represent

interactions between drivers and can occur between any drivers. This diagram

also shows the stages of phenotype development, starting from conception

and moving toward rearing.

prescribed drug in the swine industry (Dumas et al., 2016). It
is estimated that all food-producing animals consume more
than 70% of antimicrobial produced worldwide. The pigs are
usually raised in groups, in close proximity to one another.
Many production systems use all-in, all-out management to
control and prevent infectious disease outbreaks (Dewey et al.,
1999). However, high contact rates provide optimal conditions
for the spread of infectious diseases, many of which require the
use of antimicrobials to minimize economic losses and welfare
concerns. Estimates range from 62% of nursery production units
and 44% of grower/finisher units (McEwen and Fedorka-Cray,
2002) to 33% of nursery units and 30% of grower/finisher
units use of antimicrobial for growth promotion (Holman and
Chénier, 2015). Data collected in 2001 by the USDA for US
herds found that 70% used antimicrobials in starter feeds, 59%
used them in grower/finisher feeds, and 46% used them in sow
feeds (Cromwell, 2002), which were higher than the estimates
of McEwen and Fedorka-Cray in similar populations (McEwen
and Fedorka-Cray, 2002). According to the Food and Drug
Administration (FDA), the available antimicrobial classes and
chemotherapeutic agents (chemically synthesized agents with
antimicrobial activity) for use in swine are listed in Table 1

(FDA, 2017). Certain classes of these antimicrobial are approved
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FIGURE 2 | Antimicrobial effects on swine gastrointestinal microbiota and associated health consequences.

and validated for their ability to be successfully combined
with other antimicrobials (e.g., chlortetracycline, penicillin,
and sulfamethazine), whereas others cannot be combined with
other antimicrobials.

The antimicrobial spectrum, administration dosage,
pharmacokinetics and pharmacodynamics vary greatly according
to different antimicrobial classes and their chemical structures
(Cromwell, 2002). Some antimicrobials are easily absorbed
after both therapeutic and subtherapeutic administration
(e.g., oxytetracyclines and sulfonamides), whereas other
antimicrobials are poorly absorbed after administration (e.g.,
bacitracin). In swine industry, the duration of antimicrobial
administration typically ranges from 20 to 40 days for disease
prevention and control (Stone et al., 2009). Alternatively,
for growth promotion, antimicrobials are generally used
for a long period of time at relatively low concentrations.
While the mode of action of antimicrobial growth promotion
remains poorly characterized, several potential mechanisms
have been proposed. These mechanisms include decreased
production of harmful metabolites (metabolic effect), increased
absorption of available dietary nutrients (nutritional effect),
and reduction of endemic subclinical diseases (disease control
effect; Dibner and Richards, 2005). It is remarkable that
antimicrobial use as a growth promoter in younger pigs is
consistently efficacious while little to no response is seen
in older animals (Cromwell, 2002; Skinner et al., 2014).
In growing piglets, the average duration of antimicrobial
use for growth promotion ranges from 22.7 to 76.8 days
(Dewey et al., 1997). This prolonged exposure to sub-
therapeutic antimicrobial concentrations provides ample
opportunity for antimicrobial resistance to develop, particularly
when compared to therapeutic use (Aarestrup et al., 2008).
Consequently, there is increasing consumer desire to make

sub-therapeutic antimicrobial use less frequent in livestock
production (Sommer et al., 2017).

Several published studies have addressed the safety of
antimicrobials, all of which could not identify a direct link
between antimicrobial use in livestock and human health
(Phillips et al., 2004; Chang et al., 2015). In contrast, a
systematic review about restricting antibiotic use in animals
and its association with antibiotic resistance in human beings
concluded that antimicrobial use in food-producing animals is
recognized as one of the major contributors to development
of resistant organisms that result in life-threatening human
infections (Landers et al., 2013). But, in general, it seems
inevitable that antimicrobial administration in animals and its
relationship to human health remain unquantified.

ASSOCIATION BETWEEN ANTIMICROBIAL
USE AND ANTIMICROBIAL RESISTANCE

Since the discovery of antimicrobials, the main goal of its use in
the swine industry has been to eliminate pathogenic microbes,
thereby facilitating growth and restoration of beneficial microbial
communities (Holman and Chénier, 2015). However, these goals
are routinely complicated by presence and dissemination of
ARGs among microbes (McEwen and Fedorka-Cray, 2002).
Resistance to antimicrobials is a natural occurrence, developed
by the microbes to help in their survival against other antibiotic-
producing microorganisms in the surrounding environment
(Phillips et al., 2004). In many cases, detection of clinical signs
for a disease in an individual animal provokes prophylactic
treatment for the whole herd (Founou et al., 2016). This approach
can increase abundance of resistant bacterial strains and elevate
the expression of ARGs (Langdon et al., 2016).
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TABLE 1 | Available antimicrobial classes and chemotherapeutics agents for use in swine.

Antimicrobial

class

Antimicrobial drug Spectrum and mode of action Importance to

human

Aminocoumarins - Novobiocin Narrow-spectrum antimicrobial that may be bacteriostatic or bactericidal at higher

concentrations, that act by inhibiting bacterial DNA gyrase and work by targeting the

GyrB subunit of the enzyme involved in energy transduction

Not medically

important

Aminoglycosides - Dihydrostreptomycin

- Gentamicin

- Neomycin

- Spectinomycin

Broad-spectrum and potent bactericidal antimicrobials that act by inhibiting bacterial

protein synthesis

Medically

important

Amphenicols - Florfenicol Broad spectrum, bacteriostatic antimicrobial that acts by binding to the 50S

ribosomal subunit of susceptible bacteria, preventing bacterial protein synthesis. It

may be bactericidal against some very susceptible organisms

Medically

important

Cephalosporins - Ceftiofur

hydrochloride

- Cephapirin

- Ceftiofur crystalline

free acid

Broad-spectrum, bactericidal antimicrobials that act by disrupting the synthesis of the

peptidoglycan layer forming the bacterial cell wall

Medically

important

Diaminopyrimidines - Ormetoprim Broad-spectrum, bacteriostatic antimicrobial that acts by mimicking the substrate of

respective enzymes and inhibiting the enzyme by blocking the active site of the

enzyme

Medically

important

Fluoroquinolones - Danofloxacin

- Enrofloxacin

Broad-spectrum, bactericidal antimicrobials that act by inhibiting DNA synthesis Medically

important

Ionophores - Lasalocid

- Monensin

- Narasin

- Salinomycin

Broad-spectrum biologically active molecules produced by microorganisms (mainly

spore-forming bacteria) that act by specifically increasing the ion permeability of the

cell membrane

Not medically

important

Lincosamide - Lincomycin

- Pirlimycin

Broad-spectrum and bacteriostatic antimicrobials that act by interfering with the

synthesis of proteins

Medically

important

Macrolides - Erythromycin

- Gamithromycin

- Tilmicosin

- Tulathromycin

- Tylosin

Broad-spectrum antimicrobials, dependent on concentration and bacterial species,

that are either bactericidal or bacteriostatic; which act by inhibiting protein synthesis

Medically

important

Penicillins - Amoxicillin

- Ampicillin

- Cloxacillin

- Penicillin

Narrow-spectrum bactericidal antimicrobials that act by specifically inhibiting the

transpeptidase enzyme that catalyzes the final step in cell wall biosynthesis, the

cross-linking of peptidoglycan.

Medically

important

Polymyxins - Polymyxin B (colistin) Narrow-spectrum bactericidal antimicrobial that acts by disruption of both the outer

and inner membranes of bacteria.

Medically

important

Polypeptides - Bacitracin Narrow-spectrum, bacteriostatic antimicrobial; may be bactericidal, depending on the

antimicrobial concentration and the susceptibility of the specific organism.

Bacitracin acts by inhibition of the incorporation of amino acids and nucleotides into

the cell wall

Not medically

important

Quinoxalines - Carbadox Bactericidal synthetic antimicrobial that is primarily effective against gram-positive

bacteria, with little efficacy against some gram-negative bacteria. The mechanism of

carbadox action is not known

Not medically

important

Streptogramins - Virginiamycin Bacteriostatic antimicrobial that acts by inhibition of cell growth of gram-positive

bacteria and by inhibition of protein synthesis in gram-negative bacteria

Medically

important

Sulfonamides - Sulfadimethoxine

- Sulfamethazine

Broad-spectrum, bacteriostatic antimicrobials that act by interfering with folic acid

synthesis by preventing addition of para-aminobenzoic acid into the folic acid

molecule through competing for the enzyme dihydropteroate synthase

Medically

important

Tetracyclines - Oxytetracycline

- Chlortetracycline

Broad-spectrum, bacteriostatic antimicrobials that act by inhibition of bacterial protein

synthesis

Medically

important

Traditionally, the impacts of antimicrobial treatment on
emergence of antimicrobial-resistant bacteria have focused
only on pathogenic bacteria (e.g., Salmonella, E. coli, Shigella,
and Enterobacter; Founou et al., 2016). Many researches
have investigated the association between antimicrobial use
in livestock and development of antimicrobial resistance
across the resident microbiota (Everaert et al., 2017; Johnson
et al., 2017). When an antimicrobial is administered, it
eliminates the susceptible microbial populations, leaving behind

resistant strains that continue to evolve and multiply in
its number (Founou et al., 2016). Selective pressure from
antimicrobial exposure is exploited by antimicrobial-resistant
microbes, providing them with an evolutionary advantage
(Brandl et al., 2008). The resistant microbes, in presence
of antimicrobials, also have a competitive advantage which
facilitates its spread among other microbial populations in the
surrounding ecosystem (Holmes et al., 2016). The dissemination
of ARGs requires acquisition or transfer of genetic elements
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encoding antimicrobial resistance between the bacterial strains.
The resistant bacterial populations transmit their genetic
resistance pools to their progeny through vertical evolution
or to other adherent bacterial species through horizontal
transmission (D’Costa et al., 2007). Vertical gene transfer
occurs during cell division, where resistant genes either on
chromosomes or plasmids transfer to the progeny cells, leading
to bacterial resistance (Lawrence, 2004). Alternately, horizontal
gene transfer involves genetic pool exchange within and between
the microbial populations, where genetic density and complexity
of the commensal microbial community stimulate the spread
of ARGs among microbes (Founou et al., 2016). The resistant
genetic material is usually acquired by microbes either through
conjugation, transformation, and/or transduction (Holmes et al.,
2016). It is then possible for new mobile genetic element-
associated transmission of antimicrobial resistance determinants
to be incorporated into the bacterial chromosome or replicate
independently (Sommer and Dantas, 2011). The presence
of mobile genetic elements (plasmids, integrative conjugated
elements, transposons, and integrons) are therefore important
in transmission of antimicrobial resistance among microbes
(D’Costa et al., 2007). The reservoirs of antimicrobial-resistant
bacteria are ubiquitous and can merge with the GI resident
microbiota through two different mechanisms (Holman and
Chénier, 2015). First, the resistant bacteria can be acquired
directly by the host and colonize the GI mucosal epithelium;
secondly, a previously susceptible bacterial species can become
resistant through induction of antibiotic-resistant mutants or
through resistant gene transfer events (Crofts et al., 2017). While
there is a clear association between the use of antimicrobial
and emergence of antimicrobial resistance, this relationship is
complex and influenced by multiple confounding factors (e.g.,
pathogen-host interactions, pathogen–drug interactions, rate of
mutation, rate of transmission, cross-resistance, and co-selection
of resistance to unrelated drugs; Holmes et al., 2016).

EFFECT OF ANTIMICROBIAL
INTERVENTION ON SWINE
GASTROINTESTINAL MICROBIOTA

The term microbiome is widely used to describe the resident
populations of different organisms (bacteria, viruses, fungi,
archaea, and protists) that live and/or colonize the body
of multicellular host and their genetic material (Turnbaugh
et al., 2007). Swine GI microbiota is not uniform and differs
drastically between individuals, even individuals raised in the
same management system. Additionally, the relative abundance
of specific bacteria differ according to different GI biogeographic
locations (Leser et al., 2002; Maradiaga et al., 2018; Yeoman
et al., 2018), with richer and more diverse communities in
the colon compared to the ileum and stomach (Holman and
Chénier, 2015). Understanding howGImicrobiome composition
affects swine health is an emerging area of research (Isaacson
and Kim, 2012; Zeineldin et al., 2017a). However, the exact
mechanisms of how GI microbiota contributes to swine health
are still unclear. There are new studies endeavoring to increase
our understanding about this mechanism (Pluske et al., 2018).

GI mutualistic microbiota play an important function in bile
salt recycling, volatile fatty acid production, cellulose digestion,
metabolism of undigested carbohydrates, and nutrient recovery
(Bischoff, 2011). Additionally, GI microbiota contribute to
resistance against colonization of pathogenic microbes through
competition for binding sites, nutrient utilization at mucosal
epithelium, and modification of local environment (Mach
et al., 2015). Therefore, understanding different factors that
shape swine GI microbiota and their composition, particularly
in early life, are required to discover new targets and/or
develop novel management practices to promote optimal GI
microbiota development.

With the advancement of methodologies to assess microbiota
composition (Zeineldin et al., 2017b), several considerations have
been raised regarding the impact of antimicrobial administration
on the resident microbial populations in swine (Bokulich et al.,
2016). There are several reports and longitudinal studies that
attempt to understand the impacts of antimicrobial intervention
on swine GI microbiota (Gerzova et al., 2015; Holman and
Chénier, 2015; Oultram et al., 2015; Bokulich et al., 2016; Founou
et al., 2016; Holman et al., 2018; Zeineldin et al., 2018a). Table 2
lists a summary of the existing metagenomic studies on the
impacts of antimicrobial administration on swine GI microbial
communities. Commonly, antimicrobial is given to wipe out
pathogenic microbes during acute infection (Dewey et al., 1999).
However, several antimicrobial classes are not specific, and
consequently wipe out a wide range of resident GI microbiota
that are beneficial and pivotal for health (Neuman et al., 2018).
Recently, a comprehensive review by Langdon et al. revealed
that short and long term antimicrobial intervention in humans
drastically changes both adult and neonatal microbiota structure
(Leibovitz et al., 2003; Langdon et al., 2016). This shift has
been associated with an increased chance of subsequent GI
disease (Pettigrew et al., 2012). Although the shifts in microbiota
composition occurred after antimicrobial administration, some
populations have returned to a pretreatment state within 4 weeks
following a single-dose treatment. Other taxa, meanwhile, failed
to return to pretreatment levels even after 6 months following
treatment (Jernberg et al., 2010). Similarly, shifts in the GI
microbiota in other animals after antimicrobial administration
(a combination of metronidazole, amoxicillin and bismuth)
dissipated after cessation of treatment (Schmidt et al., 2009). The
precise components responsible for GI microbiota recovery after
antimicrobial administration are still undefined. Recognition
of different factors that promote microbiota recovery after
antimicrobial administration open up new opportunities for
development of novel therapies that promote the GI health.

It is important, when quantifying the impacts of antimicrobial
intervention on swine GI microbiota structure, to consider the
ages of the studied populations, route of administration and
the class of the administered antimicrobial (Neuman et al.,
2018). While there are some similarities between the effects
of antimicrobial administration on GI microbiota structure
in growing and neonatal piglets, there are also significant
dissimilarities due to distinct characteristics of the neonatal
microbial composition. A recent study of 16 42-day-old
ileal-cannulated pigs demonstrated that oral administration of
ampicillin, gentamicin, and metronidazole treatment modified
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GI microbial population structure and function (Gao et al.,
2018b). More precisely, use of ampicillin, gentamicin, and
metronidazole decreased the Lactobacillus and Bifidobacterium
abundance and increased the abundance of Shigella species
by 256-fold compared to the control pigs (Gao et al.,
2018b). Similarly, early life amoxicillin administration in
neonatal piglets during the first 14 days of life exerted
transient impacts on developing gut microbiota and decreased
the genes involved in short-chain fatty acid signaling and
pancreatic development (Li J. et al., 2017). In neonatal
piglets, early life antimicrobial administration also resulted in
differential dysbiosis of GI microbiota, with major alteration
between different geographical locations. For instance, a
mixture of olaquindox, kitasamycin, and oxytetracycline calcium
administration decreased the relative abundance of beneficial
Lactobacillus species and increased the relative abundance
of potentially pathogenic Streptococcus suis in both the
small intestine and stomach lumen (Mu et al., 2017). In
growing piglets, antimicrobial administration also induced
microbiota compositional changes in both abundant and less
abundant GI microbiota. For example, tylosin-treated piglets
showed higher relative abundance of Lactobacillus, Eggerthella,
Acetanaerobacterium, and Sporacetigenium genera compared to
control piglets (Kim et al., 2012). A mixture of amoxicillin
and colistin sulfate treatment in post-weaning piglets also
resulted in different digestive microbiota profiles along the
entire gastrointestinal tract (Soler et al., 2018). Similarly, in-feed
administration of colistin sulfate and bacitracin zinc in weaned
piglets caused a significant shift in GI microbiota composition
along different biogeographic gut locations (Li K. et al., 2017).

Published data also suggested that different classes of
antimicrobial disrupt GI microbiota in different ways.
This should be included in the decision-making process
for antimicrobial prescription in livestock management
systems. When assessing the impacts of in-feed sub-therapeutic
concentrations of two common antimicrobials (tylosin and
chlortetracycline) on swine GI microbiota composition, tylosin
administration resulted in a major shift in the relative abundance
of several taxa, while chlortetracycline administration only
resulted in minor alterations (Holman and Chénier, 2014).
Similarly, oral vancomycin and metronidazole have different
effects on Clostridium difficile, where only vancomycin had an
obvious impact on microbial community structure (Lewis et al.,
2015). The simplest mechanistic explanation for variation in
the swine GI microbiota response to antimicrobial intervention
is due to differences in antimicrobial spectrum, route of
administration, and degree of antimicrobial resistance (Kim
et al., 2012; Looft et al., 2014a,b; Schokker et al., 2015; Mu et al.,
2017; Soler et al., 2018).

GASTROINTESTINAL MICROBIOTA AS A
RESERVOIR OF ANTIMICROBIAL
RESISTOME

The concept of the antimicrobial resistome was proposed by
Gerard Wright in 2007 as a means of describing the collection

of all known ARGs in the microbial ecosystem and their
precursors at multiple levels (e.g., environment, pathogenic,
and non-pathogenic microbes; Wright, 2007). Historically,
determination of ARGs have primarily relied on conventional
culture-based methods, with a focus on major pathogens
that are readily cultured (Isaacson and Kim, 2012). While
beneficial, these protocols do not provide information on
the total amount of ARGs in the bacterial community as
most species in that community cannot be cultivated, likely
underestimating the complexity of the antimicrobial resistome
(Henriksson et al., 1995). Although the antimicrobial resistome
is theoretically accessible to all bacteria, the GI microbiota
harbor a distinct antimicrobial resistome (Sundin and Wang,
2018). The known ARGs are likely to represent just a
small portion of actual antimicrobial resistome populations.
It is reasonable to assume that with the explosion of
bacterial genome sequencing and functional metagenomics,
many novel ARGs that were previously of unknown function
and unrecognizable by sequence alone will be identified (D’Costa
et al., 2007). The generation of more information about ARGs
will be helpful in understanding the relationship between
the resident microbial communities and their accompanying
resistome (Boolchandani et al., 2019).

In parallel with the consecutive development of GI
microbiota, the antimicrobial resistome is established during
first few days of life or perhaps during prenatal phase even
without prior exposure to antimicrobial treatment (Wright,
2007; Zeineldin et al., 2019). This concept endorses the theory
that resistant bacteria and their antimicrobial resistome are
established shortly after birth and are acquired either directly
from the mother or through direct contact with resistant
bacteria in surrounding environment (Gonzales-Marin et al.,
2012). The GI microbiota has a large and diverse genetic
pool that facilitates transmission of resistance between and
within the resident commensal species (Sengupta et al.,
2013). The effects of different antimicrobial intervention
on emergence of the antimicrobial resistome has been
extensively demonstrated (Wright, 2007; Enwemeka, 2013).
In people, when the infants received antimicrobial treatment
in the first 3 years of life, the GI microbiota expressed high
levels of antimicrobial resistance compared to the control
(Yassour et al., 2016). Similarly, the abundance of 149 ARGs
conferring resistance to different classes of antimicrobials
were detected in the swine feces from production units that
used different antimicrobials either orally or via intramuscular
injection (Zhu et al., 2013). Emergence of antimicrobial
resistance determinants in pigs without prior antimicrobial
administration has been also demonstrated previously
(Pakpour et al., 2012; Agga et al., 2015), with the largest
resistance category being against tetracycline antibiotic
(Chambers et al., 2015). For instance, several tetracycline
resistance genes (e.g., tetO, tetW, tetM, tetX, and tetQ), and
macrolide resistance genes (e.g., ermG, ermF, and ermB) were
frequently identified in the swine facilities in the absence
of antimicrobial exposure (Looft et al., 2012). Similarly, our
recent study showed that the neonatal piglets displayed a
high frequency of ARGs without prior exposure of antibiotics
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TABLE 3 | Currently available alternatives to antimicrobials in swine industry.

Antimicrobial

alternative

Advantages Possible disadvantages Mechanism of

action

References

Phage

therapy

- Phages are self-replicating

- Lack of cross-resistance

- Potential for modification

- Low inherent toxicity

- Biofilm clearance

- Single and low dose potential

- Relatively low cost

- Can be discovered by the host’s immune system

as a potential invader and may therefore rapidly

be eliminated from the systemic circulation

- Pharmacokinetic characteristics of phages are

barely known

- Phage therapy is time-sensitive

- Bacteria can develop resistance to phages

by mutation

Targets bacteria Pires et al., 2017

Lysins - Can quickly kill susceptible strains with a

wider antibacterial spectrum

- Selective toward specific strains of bacteria

- Not prone to resistance development

- High cost

- Easily degraded and lose activities during use and

storage

- Poor efficacy against gram-negative bacteria

Targets bacteria Love et al., 2018

Antibacterial

vaccine

- Inexpensive in production

- Stable in storage

- Lack of relevant protective antigens

- Lack of safety due to potentially harmful

components

- Killed vaccines require the use of adjuvants, which

limits the delivery options for the vaccines

Primes host’s

immune response

Hoelzer et al.,

2018

Antimicrobial

peptides

- Not prone to resistance development

- Broad-spectrum and bactericidal activity

- High production cost

- Potentially toxic to cells

- Unstable during transportation

- Easily hydrolyzed by proteases in the gut

Targets bacteria Wang et al., 2016

Phytobiotics - Nutritional effect

- Easy availability

- High variability

- Pharmacokinetic characteristics of most of plants

are not well-known

- High risk of toxicity

Targets bacteria

and improves gut

health

Mohammadi

Gheisar and Kim,

2018

Inhibitors for

bacterial

quorum

sensing

- Not prone to resistance development - The majority of QSIs cannot be widely applied

because of their toxicity to eukaryotic cells

- Only narrow-spectrum activity

- High chance of degradation

Targets bacteria Cheng et al. et al.,

2014

Probiotics - Easy availability

- Relatively cheap

- Not prone to resistance development

- Lack of standards

- Causes several potential problems (animal

poisoning, allergies, and diarrhea)

- Cannot withstand low pH and bile acids in

gastrointestinal tract

- Difficult to reach high sufficient number of viable

cells to colonize in the intestine

Improves gut

health

Collins and

Gibson, 1999

Prebiotics - Promote immune functions

- Show anti-viral activity

- Have no residue

- Not prone to resistance development

- Cannot inhibit and kill pathogens

- Feeding large quantity of prebiotics may cause

bloating, diarrhea, and other adverse reactions

Improves gut

health

Collins and

Gibson, 1999

(Zeineldin et al., 2019). Emergence of these ARGs without
direct exposure to a known antibiotic also reveals that the
swine GI antimicrobial resistome may not be affected by
a reduction in antimicrobial administration in the swine
industry (Holman and Chénier, 2015).

ANTIMICROBIAL ALTERNATIVES IN SWINE
INDUSTRY

The current efforts to define the complex composition of GI
microbiota and how that community responds to antimicrobial
intervention would improve our ability to develop novel non-
antibiotic strategies to prevent GI infection in food-producing
animals, subsequently increasing animal productivity (Marchesi

et al., 2016). Considering this information, different management
strategies are required to reduce the deleterious consequences
of antimicrobials, particularly when its administration is needed
to control bacterial infections. Broad discussions of possible
antimicrobial alternatives have been summarized in Table 3 and
were mentioned elsewhere (Potter et al., 2008; Allen et al., 2013,
2014; Papatsiros, 2013; Czaplewski et al., 2016). In this section,
we will only focus on bacteriophage therapy as an important and
promising example of available antimicrobial alternatives in the
swine industry.

Bacteriophage (phage) therapy involves the use of bacterial
viruses (phages) to attack specific bacterial species, or a narrow
group of microbes, without harming the resident autochthonous
microbial communities (Kutateladze andAdamia, 2010). Because
of their ubiquity in all natural environments and commercial
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swine facilities, as well as their specific action against pathogens,
phages have been suggested as a promising antimicrobial
alternative for use in swine (Zhang et al., 2015). Recent
studies based on high throughput next-generation sequencing
approaches highlighted the importance of phages in microbial
evolution and bacterial community control (Pratama and van
Elsas, 2018). In addition to GI microbiota inhabitants, the
GI tract harbors diverse phage communities that have a
synergistic effect along with the resident microbial communities
to maintain GI health (Allen et al., 2013). Subsequent research
studies demonstrated that bacteriophages attacks bacteria by
attaching to the cell wall and injecting their genetic material
into bacterial cytoplasm with subsequent integration into the
bacterial genome. Phage populations are extensively diverse and
generally grouped according to their morphological properties
and life cycle into temperate (lysogenic) or virulent (lytic)
phages. Virulent bacteriophages are natural predators of their
bacterial hosts, they replicate using the host machinery, and
complete their lifecycle by lysis of the host cell (Calero-Cáceres
et al., 2019). In contrast, temperate bacteriophages integrate
into the host’s chromosome and produce a stable genetic
relationship with the host during the process of lysogeny without
creating new phage particles (Zhang et al., 2015). Despite the
growing evidence that supports the medical importance of
virulent bacteriophages, their functional potential in swine is not
yet well-defined.

In the swine industry, bacteriophage intervention strategies
have been extensively used to control various Salmonella
serovars, E. coli O157:H7, enterotoxigenic E. coli-induced
diarrhea and Campylobacter species (Lee and Harris, 2001;
Nisbet et al., 2010; Harvey et al., 2011; Hooton et al., 2011;
Cha et al., 2012). These studies have shown that phages can
be effectively utilized against these pathogens. Most recently,
a phage cocktail was used to reduce Salmonella typhimurium
in artificially-infected market-weight swine (Wall et al., 2010;
Hooton et al., 2011). Similarly, phage treatment in weaned
piglets challenged with S. typhimurium via oral gavage reduced
fecal and cecal Salmonella populations in phage-treated piglets
compared to control piglets (Nisbet et al., 2010). Several
other experiments have evaluated the antimicrobial ability
of phages against E. coli infections. Oral administration of a
phage cocktail was capable of reducing morbidity and mortality
in enterotoxigenic E. coli-challenged pigs, even when used
at the onset of clinical signs (Atterbury, 2009). Smith and
Huggins also investigated the efficacy of a mixture of two
phages against an enteropathogenic strain of E. coli in neonatal
pigs. The results of this work indicated that phages which
targeted adherence pili were more effective in controlling
porcine E. coli than phages that target other pili (Smith
and Huggins, 2009). Phage therapy was also associated with
increased prevalence of beneficial microbes (e.g., Bifidobacterium
and Lactobacillus) and decreased relative abundance of
coliforms and Clostridium species in post-weaning piglets
(Hosseindoust et al., 2017).

Since their discovery in 1915, phages have been proven
to be harmless to humans, animals and plants. Compared
to antimicrobial, phages are highly effective in killing their

target bacteria without harming the rest of the microbiota in
the ecosystem. Additionally, phages are relatively cheap, self-
replicating, easy to isolate, and have low inherent toxicity
(Sillankorva et al., 2012). Despite these advantages, there are
many technical limitations in the implementation of phage
therapy for treatment of infectious diseases in human and
animals (Allen et al., 2014). Commercially available phages have
a limited microbial range, are unstable, sensitive to temperature,
have a narrow range of hosts, require rapid administration after
infection, and could be neutralized by the host’s immune system
(Papatsiros, 2013; Zhang et al., 2015). Similarly to antimicrobial
resistance, recent studies suggest that bacteriophages play a
crucial role in the acquisition and emergence of the antimicrobial
resistome (Calero-Cáceres et al., 2019). Phage genomes can
harbor several antimicrobial resistomes belonging to different
antimicrobial classes. Phage-resistant strains are believed to be
generally less virulent than the phage susceptible wild types,
but the use of a number of different phages in combination
(phage cocktails) against many serotypes will likely alleviate this
problem (Kutateladze and Adamia, 2010; Harvey et al., 2011).
Therefore, high-throughput next-generation sequencing and
genetic engineering will be necessary to create a more reasonable
phage to optimize impact and create the best alternative to
antimicrobial treatment.

CONCLUSION

The application of both high-throughput next-generation
sequencing and functional metagenomics have clarified
the effects of antimicrobial administration on commensal
populations as well as on emergence of ARGs. There is,
therefore, a great interest in understanding the origins, evolution
and totality of antimicrobial resistance, not just in pathogenic
microbes but also in whole resident microbial environment. The
evidence that the commensal population harbors a previously
underappreciated antimicrobial resistome should shift the
paradigm of what judicious use of antimicrobials in livestock
means. In addition, it raises exciting questions about the
acquisition and transfer of antimicrobial resistance cross GI
microbiota. A better understanding of the impacts of specific
antimicrobial intervention strategies on GI microbiota and their
accompanying antimicrobial resistome could open the door
to the development of a novel therapeutic approach in swine
production systems.
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Information on the dissemination of antibiotic resistance mechanisms in the environment
as well as wild life is needed in North America. A constructed wetland (where ∼15,000
American crows roost) was sampled on the University of Washington Bothell Campus
for the presence of antibiotic resistant E. coli (ARE). Crow droppings from individual
birds and grab samples of water were collected in 2014–2015. E. coli were isolated by
selective agar plating. The most frequent antibiotic resistance (AR) of the fecal isolates
was to ampicillin (AMP) (53%), followed by amoxicillin-clavulanic acid (AMC) (45%),
streptomycin (S) (40%), and nalidixic acid (NA) (33%). Water isolates had similar AR
pattern and ∼40% were multidrug resistant. Isolates from water samples collected
during storm events showed higher resistance than isolates from no rain days to
tetracycline, AMP, AMC, NA, and gentamycin. Extended spectrum beta lactamase
(ESBL) containing E. coli with the blactx−M was found in three water and nine fecal
isolates while blacmy−2 in 19 water and 16 fecal isolates. Multilocus Sequence Typing
analysis (MLST) yielded 13 and 12 different sequence types (STs) amongst fecal and
water isolates, many of which could be correlated to livestock, bird, and humans. MLST
identified ESBL E. coli belonging to the clinically relevant ST131 clone in six fecal and
one water isolate. Three STs found in feces could be found in water on the same dates
of collection but not subsequently. Thus, the strains do not appear to survive for long
in the wetland. Phylogenetic analysis revealed similar distribution of the water and fecal
isolates among the different phylo-groups, with the majority belonging to the commensal
B1 phylo-group, followed by the pathogenic B2 phylo-group. This study demonstrates
that corvids can be reservoirs and vectors of ARE and pathogenic E. coli, posing a
significant environmental threat.
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INTRODUCTION

The spread of antimicrobial resistance has reached proportions
of global magnitude and poses a threat to the effective treatment
of several infectious diseases (Centers for Disease Control and
Prevention [CDC], 2013; WHO, 2014). The environment is
increasingly being recognized as a reservoir of antibiotic resistant
(AR) bacteria as well as antibiotic resistant genes (ARG). Such
resistance may arise by the release of fecal bacteria from
humans and animals including birds, which then allows antibiotic
resistance genes to be transferred to non-resistant indigenous
microorganisms in the environment (Aminov, 2011; Guenther
et al., 2011). Antibiotics or other chemicals and contaminants
present in environmental matrices, contribute to this further
by offering selective pressure, thus allowing for their survival
and expansion (Martinez, 2009). Fecal contamination of surface
water, river water, wetlands, and even drinking water have been
implicated in the spread of such resistance (Baquero et al., 2008;
Coleman et al., 2013; Li et al., 2014; Rodriguez-Mozaz et al., 2015;
Vivant et al., 2016). On the other hand, constructed wetlands have
also been shown to remove such bacteria (Ibekwe et al., 2016;
Vivant et al., 2016).

Free living birds can be a significant contributor to the
pollution of water bodies. Although they may not be directly
exposed to antibiotics like humans or farm animals, they can
acquire antibiotic resistance by being in close contact to humans,
their farm animals and pets, and subsequently be vectors for
their spread (Verbeek and Caffrey, 2002; Guenther et al., 2011;
Jamborova et al., 2015). In addition, crows can acquire AR
bacteria by foraging on a variety of wastes such as garbage dumps,
hospital and animal wastes, and animal feed lots (Verbeek and
Caffrey, 2002; Guenther et al., 2011). Several recent studies have
reported crows and rooks shedding bacteria that were resistant
to one or more antibiotics (Literak et al., 2007; Hasan et al.,
2015; Jamborova et al., 2015, 2018). E. coli, which lives as a
harmless commensal in the gut of all animal and birds, has
proved to be not only an indicator of fecal coliform but also
of antibiotic resistance present in the environment (van Den
Bogaard et al., 2000; Dolejská et al., 2009; Guenther et al.,
2011; Jamborova et al., 2015, 2018). From the United States,
only one study investigating antibiotic resistance in E. coli in
crows has been reported (Jamborova et al., 2017). In this study,
which was a survey from four different states, 13% (n = 590) of
E. coli from American crows (Corvus brachyrhyncos) possessed
AmpC and ESBL phenotypes, while 15% (n = 590) were resistant
to Ciprofloxacin (Jamborova et al., 2017). Two other studies
reported on vancomycin resistant enterococci shed by crows in
United States (Oravcova et al., 2014; Roberts et al., 2016). These
studies specifically selected for cefotaxime or ciprofloxacin or
vancomycin resistant bacteria. The overall antibiotic resistance
pattern of the crow isolates was not reported.

In this study, samples collected within the University
of Washington Bothell/Cascadia College (UWB/CC) campus
(where more than 15,000 crows roost in the autumn and winter
months) were tested for the resistance of E. coli isolates to thirteen
antibiotics represented three classes of antibiotics. Extended
Spectrum beta lactamase (ESBL) and AmpC beta lactamase

containing E. coli were additionally targeted because the presence
of these genes continue to hinder the efficacy of beta lactams
(Pitout et al., 2007). The spread of ESBL resistance by crows
has been documented in other parts of the United States, but
not in Washington State (Jamborova et al., 2017). Multi Locus
Sequence Typing (MLST) and phylogenetic characterization of
the isolates was performed in order to have an idea of the source
and pathogenicity of the isolates.

MATERIALS AND METHODS

Sample Collections
All samples were collected within the 58-acre wetland restoration
area of the UWB/CC campus. Begun in 1997 with the const-
ruction of campus, this restoration project converted pastureland
and a straightened and deepened reach of North Creek into a
more natural, meandering stream channel and a fully functioning
forested floodplain ecosystem. It serves as a natural filter for
campus stormwater runoff that is discharged in various locations
to the wetland prior to flowing into North Creek (see Figure 1).
The campus runoff contributes to the wetness of the wetland, as
do a high water table, plentiful rain between October and June,
and occasional flood events when North Creek spills over its
banks (∼2–4 times a year).

Crow fecal samples were collected between August 2014
and April 2015 from the crow roost areas within the wetland.
Samples were collected by spreading plastic sheets on the ground
underneath the trees where the crows roosted in the evening.
Fresh fecal samples from free flying crows were collected the
following morning with sterile swabs and placed in sterile vials
kept on ice as described previously (Sen et al., 2018). Sixty one
samples were collected in five rounds of sampling. On the days
that fecal samples were collected, surface water samples were also
collected within the wetland at four different sites. Two sites,
NC5 and SW2 were within the roost area while RP3 and NC6
were located in areas bordering the roost (Figure 1). Twenty
water samples were collected altogether during this period. Water
samples were collected again from June, 2016–April, 2017 from
the sites designated as SW8, SW2, NC6, RS1, and RS2 to compare
E. coli collected during “no rain” versus “rainy” days. The
NC prefix of sampling sites indicates North Creek water. SW
indicates a surface water tributary to North Creek. RS indicates
discharge of campus runoff into a runoff bioswale. To qualify as a
rainy day, more than 0.05 inches of cumulative rain for that day
had to be recorded at the 21 Acres weather station approximately
1.5 miles away1. No rain days not only had no rain that day, but
were also preceded by 72 h without rain.

Isolation and Enumeration of E. coli
Approximately 100 mg of fecal sample was diluted in 500 ml
Phosphate Buffered Saline until a fluid suspension was obtained.
Ten to twenty microliters were directly plated onto Eosin
Methylene Blue (EMB) Agar and incubated at 37◦C for 24 h.
Colonies with metallic green sheen were isolated as putative

1http://weather.wsu.edu/index.php?page=station_details&UNIT_ID=330026
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FIGURE 1 | Sampling site map showing North Creek, the UW Bothell/Cascadia College campus, and the 58 acre restored floodplain wetland. Red dots indicate
locations of surface water sampling sites. Blue arrows indicate direction of water flow. Water sampled at RS1, RS7, and RP3 flows to these locations in a series of
catch basins and pipes from the upland (western) portion of the campus. The crow roost boundary fluctuates year to year, though the southern part by the sampling
sites is relatively stable. Aerial photograph from Google.

E. coli. They were further verified by the presence of the malate
dehydrogenase (mdh) gene as described below. From the 61
samples, 49 samples were positive for E. coli. Four isolates
from each sample were stored at −70◦C in Tryptic Soy Broth
containing 16–20% glycerol until ready for use.

Water samples were collected in 120 ml IDEXX polyethylene
terephthalate vessels and subsequently filtered through
0.45 micron Millipore S-Pak filters. E. coli and other coliform
bacteria colonies were allowed to grow on the filters by placing

them on m-ColiBlue24 broth following US EPA method 10029
(Hach Company 2018)2. Triplicate samples were collected at
each site. Most of the water samples required dilution in order to
generate countable filters.

Blue Colonies were counted for determination of total number
of E.coli in colony forming units (CFU)/100 ml of sample. The
E. coli isolated by this method were verified on EMB agar and

2https://www.hach.com/asset-get.download-en.jsa?id=7639984023
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further by the presence of the mdh gene. Four E. coli isolates were
stored at −70◦C from each sample until ready for use. For ESBL
isolation one set of filters from each site was extracted with PBS
as described below.

Antibiotic Susceptibility Testing
Colonies grown on Mueller Hinton (MH) agar were used in
antibiotic susceptibility testing by the Disk Diffusion method
according to Clinical and Laboratory Standards Institute
guidelines (CLSI) (ClSI, 2012). The CLSI clinical breakpoints
for an antibiotic toward enterobactericiae were used to assign
isolates sensitive or resistant status. Altogether 98 isolates from
the fecal samples and 184 isolates from the water samples
were analyzed. Thirteen antibiotics were tested: ampicillin
(AMP or A) 10 µg, amoxicillin-clavulanic acid (AMC) 20 µg,
ceftazidime (CAZ) 30 µg, ceftiofur (XNL) 30 µg, tetracycline
(T or TE) 30 µg, ciprofloxacin (CIP) 5 µg, enrofloxacin (ENO)
5 µg, chloramphenicol (C) 30 µg, streptomycin (S) 10 µg,
spectinomycin (SPT), sulfamethaoxazole/trimethoprim (SXT)
25 µg, nalidixic acid (NA) 30 µg, and neomycin (N) 5 µg. For
some of the isolates (pre and post rain) gentamycin (G) 10 µg
and kanamycin (K) 30 µg were also evaluated.

ESBL Selection
Filters obtained from water samples were washed with 300 µl
of PBS and the washings were plated onto three MacConkey
agar (MCA) plates supplemented with 4 µg/ml Cefotaxime and
incubated overnight at 37◦C (Durso et al., 2016). Pink colonies
obtained were further verified on EMB agar for confirmation
as E. coli, as described above. Initially CTX was added at a
concentration of 1 µg/ ml on the plates, but most of the isolates
turned out to be false positives since they failed to regrow on these
plates. In addition, all E. coli isolates from mColiBlue filters that
tested resistant to AMP and CAZ but were susceptible to AMC
in disk diffusion assays were further evaluated for ESBL presence
by the double disc method (DDST) originally described by Jarlier
et al. (1988), with slight modifications. Briefly, a disk containing
amoxicillin/Clavulanic acid (AMC) was placed in the center of a
MH agar plate spread with the test isolate. At 20 mm apart (center
to center) from the AMC disk ceftriaxone (CRO), cefotaxime
or ceftazidime were placed on three sides. For several of the
isolates Cefoxitin (FOX) was included on a 4th side. The test was
considered positive if, after 24-h incubation at 37◦C, the zone of
inhibition between one or more of the disks was enhanced.

Fecal samples were plated directly on MCA + Cefotaxime
plates and pink colonies were saved as putative ESBL containing
E. coli. They were further tested and confirmed as above.
In addition isolates obtained on EMB agar that tested resistant to
AMP and CAZ but were susceptible to AMC, were further tested
for ESBL phenotype. We also tested for the presence of blactx−M
gene in all water and fecal isolates that were resistant to AMP,
CAZ/CTX as well as AMC, as described below.

All procedures were conducted under strict biosafety
guidelines laid out by University of Washington Environmental
Health and Safety office3.

3https://www.ehs.washington.edu/

DNA Isolation and PCR
A 1–2 mm size colony from an overnight culture plate was
suspended in 10 µL of Prepman Ultra Sample Preparation
Reagent (Life Technologies, Foster City, CA, United States).
Alternatively, 1 mL of an overnight culture broth of an isolate was
centrifuged at 10,000 g for 5 min. The supernatant was removed,
and the pellet was re-suspended in 200 µL of Prepman Ultra
Sample buffer. In either case, the suspensions were heated at 95◦C
for 10 min, cooled, and centrifuged at 10,000 g for 2 min. Two
microliters of the supernatant was directly used in a 20 µL PCR
reaction. The supernatants were stored at 4◦C if they were to
be used within the week otherwise at −20◦C. Extracts stored at
−20◦C performed as well as a fresh preparation in a qPCR or
PCR reaction, 20 months later (data not shown).

Antibiotic Resistance Gene Detection
All isolates that showed antibiotic resistance by phenotypic
methods were tested for the respective genetic determinant.
Strains that showed ESBL phenotype by the double disc method
were tested for blactx−M blashv and blatem by a qPCR method
(Birkett et al., 2007; Angeletti et al., 2013) cefotaxime and/or
ceftazidime resistant isolates that were also resistant to AMC
were tested for the blacmy−2 gene (Alali et al., 2009) as well
as blactx−M. The later was tested to eliminate the possibility
of an ESBL carrying isolate being missed, by the phenotypic
method. For sequencing we used 453–510 bp PCR products
obtained by primers Cottell CTX M- F 5′-CCG CTG CCG
GTY TTA TC-3′ and Cottell CTX-M R-5′-ATG TGC AGY ACC
AGT AA-3′ described earlier (Cottell et al., 2013). We also
used another PCR product of 554 bp obtained with forward
primer 5′ATG TGC AGY ACC AGT AAR GTK ATG GC-3′
and reverse primer 5′TGG GTR AAR TAR GTS ACC AGA
AYS AGC GG-3′ (Hedman et al., 2019). The last set of primers
allowed us to distinguish between blactx−M27 and blactx−M14.
Tetracycline resistance genes were measured by the method of
Ng et al for tet (A), tet (B), tet (C), tet (D), tet (E ),tet (G), tet
(j), tet (k), tet (L), tet (M), tet (O), tet (Q), tet(S), tet (X) (Ng
et al., 2001). Additionally qPCR assays were also used for rapid
detection of tet (M) and tet (W) as described earlier (Walsh
et al., 2011) Streptomycin resistance was measured by testing for
strA, strB, and aadA (Walsh et al., 2011). All qPCR reactions
were performed in a Mini-opticon icycler (BioRad). For SYBR
green PCR, iTaqTM Universal SYBR green mastermix and for
TaqManTM PCR, iTaqTM Universal Probes Supermix (Bio-rad,
Hercules, CA, United States) was used. The cycling parameters
for Taqman qPCR was as follows: 1 cycle at 95◦C for 10 min,
followed by 40 cycles of 15 s at 95◦C, 30 s at 58◦C, and 30 s
at 72◦C, with a final cycle of 5 min at 72◦C. For tetracycline
resistance genes controls were obtained from Dr. Lisa Durso,
USDA, NE, United States (Durso et al., 2016) and Dr. Marilyn
Roberts (University of Washington). A D-block synthesized by
IDT (IDT Inc.) that contained the sequences of the blactx−M1,
blactx−M2, and blactx−M9 PCR products as described in Birkett
et al. (2007) was used as control for blactx−M in the initial
TaqManTM PCR. blactx−M isolates identified thus were then
used as positive controls for the other regular PCR reactions.
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blashv, blatem, strA, strB, and aadA controls were developed in
house from strains that tested positive by PCR and subsequent
sequencing. The sequences obtained for blactx−M gene from the
different isolates have been deposited in the GenBank and their
accession numbers are: MK78174 to MK781784.

Grouping Isolates Based on mdh Gene
Sequence and MLST Studies
A 825 bp region of the mdh gene was amplified and sequenced
for several feces and water isolates using the published primers:
mdhF: 5′TGAAAGTCGCAGTCCTCGG-3′ and mdhR 5′-TCC
ACGCCGTTTTTACCC-3′ as described before (Ivanetich et al.,
2006). A 282 bp region from this was trimmed, aligned and
a phylogenetic tree obtained using the Maximum Likelihood
method. Epidemiological relatedness of the isolates was tested
using seven E. coli housekeeping genes, utilizing MLST.
MLST was performed according to the methods specified
at the MLST website http://enterobase.warwick.ac.uk/species/
index/ecol. The PCR products from the seven housekeeping
genes were sequenced using the same primers used to generate
the fragments. Sanger sequencing was performed by Eurofins
Genomics (Louisville, KY, United States). E. coli STs were
assigned using the above databases as well as that developed by
Keith Jolley [33], at University of Oxford Site: https://pubmlst.
org/bigsdb?db=pubmlst_mlst_seqdef&page=profiles.

Phylogenetic Studies
The quadruplex PCR method of Clermont et al. (2013) was used
to assign the E. coli isolates to one of the eight phylo groups.
After initial placement into groups, based on the results of the
quadruplex, strains belonging to phylo-groups A and C or D and
E were further identified by using C and E specific primer sets, as
per Clermont et al. (2013).

Statistical Analysis
One sided proportional Z test was used to identify significant
differences between count data which is represented as
percentages, such as percent antibiotic resistant and percent
presence of a phylo-group. The P values corresponding to the
differences are reported in the tables below the graphs.

RESULTS

E. coli Loading in the Wetland Roost Area
Total number of E. coli in CFU/100 ml was determined at RS2
site where runoff water from the campus enters the wetland
roost area and at the SW8 site where the water exits the roost
area, flowing into North Creek (Figures 1, 2). Thus, the number
of isolates collected at the RS2 site indicate collection from an
area not directly influenced by the crow roost, while SW8 is
an area under the direct influence of crows. (Figure 1) The
apparent impact of the short journey through the roost zone
on the runoff as it flowed from the RS2 site to the SW8 site
was an order of magnitude increase in the average E. coli
count (Figure 2).

Antibiotic Susceptibility of
Crow and Water Isolates
The fecal E. coli isolated in 2014–2015, were compared with
E. coliwater isolates from the same period for their susceptibilities
against 13 antibiotics. 65 and 70% of the isolates from water
and crow fecal samples, respectively, were resistant to one or
more antibiotics. Ampicillin resistance was the most prevalent,
followed by Amoxicillin Clavulanic acid (Figure 3). Multiple
drug resistance (three or more of different classes) was found
in 40% of the water isolates as well as the crow fecal isolates.
Resistance to four antibiotics was most common in water isolates
(20%), while among fecal isolates resistance to 4–5 antibiotics
was more common (12%). Six fecal isolates showed resistance
to seven antibiotics (Table 1). Overall the wetland water isolates
showed a similar pattern of susceptibility as that of the fecal
isolates for 12 of the 13 antibiotics tested at p value 5% or
less (Figure 2). Neomycin was the only antibiotic against which
the resistance was significantly different between the water and
fecal isolates (p ≤ 0.0019), with that in fecal being higher.
Among the tet and str genes tested, tet (A), tet (B), or tet (M)
were the genes responsible for >95% of isolates to show the
resistance phenotype, while strA and/or strB was responsible
for streptomycin resistance phenotype. aadA was detected in a
couple of isolates together with strB. tet (C) along with tet (D)
was present in one fecal isolate. tet (M) was usually present
with tet (A) (15 isolates). Two isolates had tet (A), tet(B) and
tet (M) while tet (A) and tet(B) co-occurred in six isolates. For
sulfamethaoxazole/trimethoprim (SXT) resistance the sul1 gene
was tested and it was present in 100% of the isolates that showed
the phenotype.

Antibiotic Susceptibility of E. coli Isolates
Before (No Rain) and After Rainfall (Rain)
Altogether 65 isolates from no rain and 67 from rain days were
tested for their susceptibility to 11 antibiotics (Figure 4). There
was a significant difference in resistance to TE, AMP, AMC,
NA, and gentamycin with rain days demonstrating a higher level
of resistance to these antibiotics. No resistance was observed
to Ciprofloxacin, and only one isolate each were resistant to
gentamycin and kanamycin post rain. For the remaining three
antibiotics the difference was not as significant at p < 0.05.

ESBL and Beta Lactamase
(ampC) Containing Isolates
Only two ESBL containing E. coli were isolated from the water
samples collected between 9/17/14 and 4/05/2015, and one more
from collections made between 2016–2017 (Table 2). These
isolates were obtained initially on m-ColiBlue24 broth and based
on their antibiotic profile were plated on MCA+ Cefotaxime.
Among the fecal isolates, 7 of the 98 (7.1%) isolates carried ESBL.
Except for one, all the fecal isolates were obtained non-selectively
on EMB agar for E. coli. Since they were ampicillin resistant
but AMC susceptible, they were further tested and purified on
MCA+ CTX and subjected to ESBL verification. Two additional
isolates had blacmy−2 and blactx−m and thus 9 of 98 (8.9%) can
be considered as ESBL E. coli. All ESBL isolates were multi drug
resistant with resistance to at least Amp, Caz/Ctx, S, SXT, TE.
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FIGURE 2 | Comparison of mean E. coli counts in runoff as it enters (RS2) and leaves the wetland roost zone (SW8). The mean of counts in CFUs, determined 25
times between 2014–2017 at RS2 and 17 times at SW8, is shown. Triplicate samples were collected at each site each time. The error bars represent one standard
deviation around the mean for the respective data sets.

FIGURE 3 | Percentage of E. coli in water (n = 49) and fecal (n = 98) isolates showing non-susceptibility to 13 selected antimicrobials. AMC, amoxicillin/clavulanic
acid; AMP, ampicillin; XNL, ceftiofur; C, chloramphenicol; CAZ, Ceftazidime; CIP, ciprofloxacin; ENO, Enrofloxacin; NA, Nalidixic acid; N, Neomycin; STR,
streptomycin; SPT, spectinomycin; TE, tetracycline; SXT, trimethoprim/sulfamethoxazole. Table indicates significant difference in antibiotic resistance between water
and fecal isolates for 10 antibiotics according to Z-test.

The blacmy−2 gene was present in 16 of 98 (16.3%) fecal isolates
and 9 of 49 (18.36%) water isolates in the collections from
2014 and 2015. All of these isolates were first non-selectively
isolated for E. coli on EMB agar. AMP, AMC, and ceftifuor
resistance indicated testing for blacmy−2. Seven of the 16 blacmy−2
containing isolates were MDR in the fecal isolates. blashv co-
occurred with blacmy−2 in one instance and with blatem in two
instances. For blatem a 189 bp sequence was obtained that had
100% homology with classA ESBL – TEM1, while for blashv,

a 193 bp sequence was obtained that had 100% homology to
ESBLs – SHV12, SHV-61, SHV-5.

E. coli Sequence Types in
Water and Fecal Samples
A total of 39 isolates, 23 fecal and 16 water, were selected
for MLST. This was based on presence of blactx−M, blacmy−2,
blatem, or blashv gene. Care was taken to see that there were
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TABLE 1 | Percentage of water (n = 49) and fecal (n = 98) isolates resistant to one
or more antibiotics.

No. of Antibiotics Water (%) Fecal (%)

0 17 (34) 29 (29.6)

1 8 (16.3) 17 (17.3)

2 3 (6.12) 8 (8.16)

3 2 (4.08) 5 (5.1)

4 10 (20.4) 12 (12.2)

5 5 (10.2) 12 (12.2)

6 4 (8.16) 9 (9.18)

7 0 (0) 6 (6.12)

Multidrug resistant 19 (39.58) 39 (39.8)

(≥3 classes)

representative isolates from different collection dates, both from
water and fecal. A phylogenetic tree based on presence of 282 bp
of the mdh gene alone was obtained for 30 crow fecal and
29 water isolates from 2014–2015, Supplementary Figure S1
as described earlier (Ivanetich et al., 2006). The isolates were
randomly chosen, however, isolates from each collection were
included for determination of mdh presence. Eight clusters (a
cluster was formed if three isolates had identical 282 bp region)
were obtained. Where water and fecal isolates clustered together,
a bigger region of the mdh gene that encompassed the 452 bp
region, that is used for MLST analysis, was aligned and if the

same allele was obtained then sequencing of the remaining six
housekeeping genes was undertaken. For example, F35.1 hadmdh
gene corresponding to allele 16, while the ESBL isolates in this
cluster had an mdh gene with allele 36, and thus F35.1 was not
subjected to MLST. In this manner F14.1 and NC6.2 (R2) were
selected and identified as ST58 and F32.1 and NC6.7 (R2) as ST10.
Two isolates from the fecal samples F11 and F13 were analyzed
because their antibiotic resistance phenotype was a little different
although they both had the blactx−M−27 gene.

Multilocus Sequence Typing analysis showed high diversity
in the sequence types obtained from the different collection
dates. 13 different STs were obtained for the fecal isolates
and 10 for the water isolates. STs of 4 of the 39 isolates
could not be determined (Table 2). Within one collection date,
although there was genetic diversity, several identical STs were
obtained within the fecal isolates. Thus 6 of 16 isolates from
the 9/15/14 collection belonged to ST131, while 2 of 12 from
11/10/14 collection belonged to ST68. All ST131 isolates had
the blactx−M gene and sequencing of the gene showed them to
be blactx−M−27.

When STs from water and fecal isolates were compared, in
three instances a common ST was found in the water and fecal.
Thus one ST131 isolate, NC 5.1 ctx, found in a water sample
from NC5 site (Figure 1) on 9/14/15, was found in several (six)
fecal isolates from the same date (Table 2). Fecal isolate F32.1
from 1/12/15 had ST10, a ST which was also found in a water
sample NC 6.7 from site NC6 on the same date. Similarly, ST58

FIGURE 4 | Percentage of E. coli isolates in water on no rain days (n = 62) and post-rain days (n = 63) showing non-susceptibility to 11 selected antimicrobials.
AMC, amoxicillin/clavulanic acid; AMP, ampicillin; C, chloramphenicol; CAZ, Ceftazidime; CIP, ciprofloxacin; GM, Gentamycin; K, Kanamycin; NA, Nalidixic acid; STR,
streptomycin; TE, tetracycline; SXT, trimethoprim/sulfamethoxazole. Table indicates significant difference in antibiotic resistance between no rain and rain days by Z
test of proportionality.
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FIGURE 5 | Phylo-grouping of the Isolates. Percentage of E. coli isolates from water (n = 46) and feces (n = 92) belonging to each phylo-group. Different groups are
represented by different colors. Among the water isolates there were no unknowns. Table indicates significant difference in presence of each phylo-group, between
water and fecal samples.

was found in a fecal isolate F47.2 as well as water isolate RP3.2,
both isolated on 2/27/15.

The fecal and water isolates were phylo-typed by the method
of Clermont et al. (2013). The largest percentage of E. coli isolates
from both crow fecal (n = 91) and surface water (n = 46) samples
belonged to the non-pathogenic, commensal phylo-group B1,
followed by the pathogenic B2 group (Figure 5). Statistical
analysis revealed no significant difference in the presence of any
of the phylo-groups across the water and fecal isolates (p > 0.05).
Although the B2 and D phylo-groups, the two groups where
most of the ExPEC strains are expected to belong, have a slightly
more representation among the fecal isolates, the numbers are
not statistically significant.

DISCUSSION

Several studies have reported that the environment imposes
its own selection on the population of E.coli following fecal
deposition from its primary habitat within the intestine of
animals (Gordon et al., 2002; Bergholz et al., 2011; Jang et al.,
2017). As a result a new genomic diversity may develop with
species that are stress tolerant and are able to adapt locally to
that particular matrix being amplified and over represented. To
what extent this will happen is a subject of much debate and
study, nonetheless, it is generally agreed that fecal deposition is
the major predictor of the population structure of the matrix
(Bergholz et al., 2011; Jang et al., 2017). Thus, while there were
differences in the genetic diversity of the E. coli isolated from

the crow fecal isolates in our wetland, from the limited sequence
typing we performed, the finding of similar antibiotic resistance
pattern between the water and crow isolates is not unexpected.

The fecal population showed no significant difference in
the overall resistance to twelve of the 13 antibiotics tested,
when compared to that of the water population. Some of the
drug resistance genetic determinants may be on mobile genetic
elements, e.g., plasmids were isolated from F20.3, F46.1, and
RP3.5 ctx, F15.2 (results not shown) and these have the ability
to be transmitted to the indigenous bacteria in the wetland
(Aminov, 2011; Wellington et al., 2013). The number of isolates
resistant to at least one antibiotic in the crows (70%) and water
(65%) was high in our study. In 97% of our isolates we were able
to find the corresponding genetic determinant of the phenotypic
antibiotic resistance displayed by an isolate. The distribution of
isolates based on their phylo-group, proved to be similar between
the fecal and water samples, providing additional support that
crow fecal deposition drives the distribution of the strains in
water. The high proportion of B1 phylo-group (37% in fecal
and 39% in water) in our isolates agrees well with one other
recent study which found high percentages of the commensal
E. coli phylo-group B1 in the fecal (38%) and soil (40%) samples
collected in a recreational meadow (Bergholz et al., 2011). They
correlated phylo-group B1 E. coli with the presence of feces from
wild and domestic animals. In our study, however, presence of
the B2 phylo-group cannot be ignored because of their potential
to cause disease. 21 and 13% of the fecal and water isolates,
respectively, belonged to the B2 phylo-group, which is expected
to contain the majority of the extra intestinal pathogenic E. coli
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(ExPEC) strains and may come from a human source (Picard
et al., 1999; Tenaillon et al., 2010). The D group which contains
some ExPEC strains was also represented in the fecal and water
samples. Further characterization of the virulence genes from
these isolates are in progress.

We found a predominance of blacmy−2 gene in the AmpC
phenotype in the crow (16.8%) and water (18.36%) isolates.
blacmy−2 has been shown to be the most common plasmid borne
beta lactamase in human, animal, and environmental bacterial
isolates, and that includes large corvids in United States and
Canada (Pitout et al., 2007; Mataseje et al., 2010; Folster et al.,
2011; Martin et al., 2012; Jamborova et al., 2017, 2018). In a recent
report 18.7% of Corvids from Canada were shown to carry the
blacmy−2, which was substantially more than that reported from
Corvids from European countries (4.4%). The authors suggested
a difference in population dynamics of antimicrobial resistance
in E. coli between the two continents. While our sample size and
survey is small, this may be true for the United States as well,
especially since another report on E. coli isolated from different
cities of the United States from the same species of corvid as ours,
viz., C. brachyrhynchos, described 15–19% presence of blacmy−2
(Jamborova et al., 2017). blacmy−2 is not very commonly isolated
among clinical isolates in the United States (Castanheira et al.,
2013). The blacmy−2 isolates in this study could have come from
any number of sources. MLST analysis revealed a genetic diversity
within and between the fecal and water E. coli isolates possessing
the blacmy−2. Sequence types frequently isolated from companion
animals as well as livestock and farm animals, besides humans,
were found in these isolates. Thus, ST7207, ST5914, ST2721,
ST2541, ST1204 found in our study were shown to have been
isolated from livestock and water sources4. Agricultural and rural
lands are abundant in the nearby Snohomish County, WA and it
is possible that the crows acquired some of these strains from the
farm animals that live there. Other blacmy−2 possessing sequence
types found in this study, viz., ST58, ST 83, ST357, which have
been shown to belong to Avian Pathogenic E. coli (APEC) group,
have been reported to be found in birds including crows, poultry,
companion animals, as well as humans (Dissanayake et al.,
2014; Jamborova et al., 2017). In humans they been described
as ExPEC strains capable of causing urinary tract infections
among other infections, but can be present as non-pathogens
as well. Two ST58 strains in our study had no virulence genes
or antibiotic resistance genes. Two other fecal isolates, ST8371
and ST2614, have previously been reported to be isolated only
from humans4.

The most unexpected finding was the presence of an isolate
(NC5.3 ctx) belonging to ST131 from the North Creek site within
the roosting area of the wetland. ST131, a pandemic clone, has
been shown to be responsible for severe extra intestinal infections
in animals and humans, besides being MDR (Johnson et al.,
2010). In the United States it was first reported in 2007 (Johnson
et al., 2010). The wetland is situated within the UWB/CC
campus which has a maximum population of 6000 students and
thus is not crowded. The campus septic wastewater is entirely
piped offsite for treatment and there are no septic systems or

4http://enterobase.warwick.ac.uk/species/ecoli/search_strains

porta-potties on campus. However, North Creek originates in the
highly urbanized City of Everett flowing 12.6 miles southward
through suburban areas of the cities of Mill Creek and Bothell
before reaching the UWB/CC campus, passing the roost area, and
draining into the Sammamish River. There are many houses with
septic systems in the North Creek drainage basin (City of Bothell
2019) and the creek has received raw sewage discharges multiple
times between 2012 and 2018 during peak rainfall events (King
County, 2014). Overbank flooding from North Creek did not
occur during sampling, so North Creek water did not impact any
of the wetland water samples. Nor were water samples collected
during or shortly after the sewage overflow events (eight between
11/24/16 and 3/18/17) from upstream manhole 54 of the North
Creek Interceptor sewer line. Isolate NC5.3 ctx had an antibiotic
resistance phenotype that matched with the fecal isolate F11.1
which also was ST131. It is tempting to speculate that the water
ST131 came from one of the crows. The omnivorous feeding
habit of the crows, together with their synanthropic behavior may
very well allow them to be colonized by MDR bacteria. This has
been shown in other studies as well (Jamborova et al., 2017). In
addition, these North American crows can fly as far as 40 miles
per day away from their roosting site in non-breeding seasons
(Link, 2005) to acquire food, and these may include agricultural
and rural areas as well (Roberts et al., 2016). All of the ST 131
isolates belonged to the phylo-group B2, indicating the isolates
may be virulent strains.

By grouping the isolates based on the mdh gene
(Supplementary Figure S1) and performing MLST on selected
isolates within a cluster, we were able to find two more sequence
types from the water that matched with those of crows and
both were collected on the same respective dates as the fecal
isolates. The phylo-group and antibiotic resistance phenotype
matched in both cases. Both STs have been reported to be found
from crows as well as humans. Analysis by techniques such as
Pulsed-field gel electrophoresis or repetitive sequence-based
PCR or Whole Genome sequencing can further firmly establish
the clonal relationship of these isolates. Interestingly, the ST131
strain found in both fecal and water samples in September, 2014
was not found again in subsequent isolations from 2014, 2015,
2016, or 2017. This was also true for the other two isolates with
matching STs. Only one ST58 (F14.1) found in September, 2014,
was seen in water collection of February, 2015 (RP3.2). Their
AR phenotype matched, but the exact clonal relationship needs
to be confirmed. Thus, it appears that most of these strains
may not be able to survive for long in the environment. E. coli
abundance is known to decline over months in water and soil
matrices, although persistent strains may remain (Avery et al.,
2004; Vivant et al., 2016). It can be speculated that the isolates are
not able to survive in the crow gut either for any length of time,
since the crows are known to roost in the same area repeatedly
(Link, 2005) and the STs were not recovered in the following
months. Further studies are needed to understand how long they
persist in the gastrointestinal tracts of the birds. We continued
to monitor for ESBL E. coli in water through 2016, 2017 and
spring 2018 at the roosting sites. We were able to find only two
more ESBL containing isolates, one of which belonged to ST297,
and for the other we were not able to find a ST, even though we
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found a matching allele for each of the seven genes in both of the
MLST data bases that we used.

Increase in antibiotic resistant E. coli in storm water runoff
has been reported by Salmore et al. (2006) and increase in ARGs
due to storm water loading was recently reported by Garner
et al. (2017). Our study also detected additional ARE following
rainfall, with tetracycline resistance increasing the most. While
the crows deposit the bulk of their feces in the roost area,
they gather for short periods each dusk and dawn all over the
campus leading to widespread deposition of feces. During dry
periods, the crow feces and the bacteria contained within them
accumulate on campus. During rain events, these bacteria are
mobilized, flowing in the storm water system. It is also possible
septic systems within the North Creek watershed overflow during
a storm event, contributing additional bacteria. An increase in
overall E. coli count was also observed at the sampling sites,
both within and outside the roost area in response to rain events
(Supplementary Figure S2).

CONCLUSION

In conclusion, although most of the crow deposited strains may
not be able to survive for long in the wetland, there appears to be
a constant addition of AR bacteria, and most of them appear to be
coming from the crows because the overall pathogenicity and AR
pattern of the wetland water isolates were very similar to that of
the birds’ fecal isolates over the course of 9 months that they were
tested. Regardless, the crows do drink this water and ingest the
E. coli during their daily visitation to the wetland. They are thus
potential vectors for transmission of the multiple drug resistant
strains (as well as non-virulent and non-AR ones) to various
places during their daytime scavenging activities. They are also
partially migratory, with populations moving to more southern
latitudes of North America during the winter and thus these
strains may be carried even further during the winter months
(Verbeek and Caffrey, 2002), posing an overall public health risk.
This first report from one of the largest crow roost areas within
the state of Washington, highlights the risks that the crows may
pose for the spread of antibiotic resistance and the need for
remedial measures.
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FIGURE S1 | Molecular Phylogenetic analysis of the crow and water isolates
based on mdh 282 bp region. A 825 bp region of the mdh gene was amplified
and sequenced for 32 fecal and 29 water isolates. For Fecal samples 11 and 13,
named F11 and F13, respectively, two isolates were sampled. A 282 bp region
from this was trimmed, aligned, and a phylogenetic tree was obtained using the
Maximum Likelihood method based on the Tamur-Nei model. Eight clusters (at
least three isolates with the same sequence) were obtained as marked. The
different rounds of collection are denoted as: 8-20-14 (R1) 9-5-15 (R2), 1-21-15
(R3), 2-27-15, (R4), 4-5-15(R5). Accession numbers of the mdh sequences
deposited in GenBank are: MK564267 to MK564325.

FIGURE S2 | Impact of Rain events on total counts of E. coli. Total number of
E. coli in CFUs was determined at three of the sites, RS1, RS2, and SW8 before
and after a rainfall event. The number of times (N) this was determined at each site
is indicated in the figure.
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Antimicrobials, and particularly antimicrobial peptides (AMPs), have been thoroughly
studied due to their therapeutic potential. The research on their exact mode of action
on bacterial cells, especially at under sublethal concentrations, has resulted in a better
understanding of the unpredictable nature of bacterial behavior under stress conditions.
In this review, we were aiming to gather the wide yet still under-investigated knowledge
about various AMPs and their subinhibition effects on cellular and molecular levels.
We describe how AMP action is non-linear and unpredictable, also showing that
exposure to AMP can lead to antimicrobial resistance via triggering various regulatory
systems. Being one of the most known types of antimicrobials, bacteriocins have dual
action and can also be utilized by microorganisms as signaling molecules at naturally
achievable sub-inhibitory concentrations. The unpredictable nature of AMP action and
the pathogenic response triggered by them remains an area of knowledge that requires
further investigation.

Keywords: antimicrobial peptides, AMP, sub-inhibitory effects, virulence, factor of pathogenicity

INTRODUCTION

Antimicrobial peptides (AMPs) are protective molecules of innate immunity in living organisms
(Zasloff, 2002).

In general definition, antimicrobial peptides are a diverse group of naturally derived or
synthetically obtained molecules, which have antimicrobial properties because of their specific
physical properties (antivirus and/or antitumor properties, in several cases). Attempts to classify
antimicrobial peptides interfere with the structural diversity of existing substances. In a general,
there are two ways in which peptides are synthesized; this fact underlies their structural and
functional diversity. Natural-derived AMPs can be formed by ribosomal synthesis and can be
produced from non-ribosomal peptide synthesis. Ribosomally synthesized peptides are produced
by almost all organisms, their classification is based on the secondary structure formed in aqueous
solutions. Thus, distinguish α-helical, β-sheet, peptides with extended/random-coil structure
(Hancock and Chapple, 1999; Bahar and Ren, 2013; Mahlapuu et al., 2016).

In turn, the greatest diversity is inherent in microbial antimicrobial peptides, since
microorganisms are capable not only of non-ribosomally synthesis (Hancock and Chapple, 1999),
but also of post-translational/co-translational modifications (Arnison et al., 2013). Extensive
post-translational modifications give peptides additional properties, for example, better recognition
of targets and increased stability, which expands their functionality as compared to ribosomally
synthesized peptides of animals (Arnison et al., 2013). These peptides have been classified within
the bacteriocins, the most recent classification of which is given in review (Acedo et al., 2018).
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As of now, the nature of antimicrobial peptides has been
thoroughly investigated. All data accumulated to date can be
summarized in simple statistics. For instance, upon a query, an
antimicrobial peptide database (October 2018) returns extracted
data on three thousand peptides with annotated structures
(Wang et al., 2016).

In addition, the number of articles dedicated to the
study of antimicrobial peptides exceeds 350,0001. Such a
heightened interest in this topic does not seem unreasonable,
since antimicrobial peptides remain an attractive alternative
to conventional antibiotics. AMPs have a unique ability to
overcoming pathogenic virulence and defense, primarily by
targeting highly conserved structures of the microbial cell
(Brogden, 2005; Omardien et al., 2016). Due to the unique
properties of AMPs, they can and should be used for the
benefit of humanity in the face of the antibiotic resistance
catastrophe (Ventola, 2015). Existing efforts of scientific research
are directed toward searching for more effective bactericides
and studying of their mode of action (Cytryńska and Zdybicka-
Barabas, 2015). Even though such investigations are necessary,
there are some aspects of this problem that are poorly addressed
by research. This includes the under-investigated effects of
sub-inhibitory concentrations (sub-MIC) of AMPs on the
physiology of the bacterial cells. Often, produced peptides dilute
in the environment medium. Thus, it appears that the peptide
concentration necessary for bactericidal of fungicidal effect is not
always achievable in natural conditions.

Regarding conventional antibiotics, their effects at
sub-inhibitory concentrations have been studied for a
substantially long period of time (Lorian, 1975; Andersson
and Hughes, 2014). It has been shown that sub-inhibitory
concentrations of antibiotics can trigger unexpected reactions
from the bacterial population. For example, fluoroquinolones
can stimulate bacterial adaptation to different stresses, including
effects of antibiotics (López and Blázquez, 2009).

By the way the AMP’s action on eukaryotic cells also have
concentration dependent features (Baindara et al., 2017).

Generally, the antimicrobial action of peptides is exhibited
via compromising the integrity of the microbial cell’s barrier
structures. However, other intracellular targets for peptides
are known (Hale and Hancock, 2007), which leads to the
conclusion about peptide’s multifunctional nature (Le et al.,
2017). In this review, we are summarizing the currently
available data on the sub-inhibitory concentrations effects
(sub-MIC effects) of antimicrobial peptides on bacteria. Our
main interest is directed toward peptides’ ability to trigger
various effects on subcellular (expression of virulence genes)
and cellular (phenotypic manifestation of the response) levels.
It is important to note that the response of a bacterial
population to AMP’s treatment can be both positive and
negative for humans. Positive effects include changes in
the morphofunctional properties of bacteria that, lead to a
decrease in their pathogenicity. Negative effects are comprised
of increased bacterial aggression after being exposed to
antimicrobial peptides.

1www.pubmed.gov

The remaining questions are as follows:

1. What are the triggering mechanisms behind
sub-MIC effects?

2. Is it possible to predict the nature of the bacterial response
to sub-MIC action of an AMPs?

3. How exactly does AMP structure determine its
sub-MIC action?

Given the therapeutic potential of antimicrobial peptides
in addition to the known data on the sub-MIC effects of
conventional antibiotics, this review aims to encourage the
investigation on the non-killing effects of antimicrobial peptides.

SUB-INHIBITION CONCENTRATION
EFFECTS OF AMPs AT SUBCELLULAR
LEVEL

The Molecular Mechanisms of Peptide
Reception and Response to
Sub-Inhibitory Action
Antimicrobial peptides have physical and chemical properties
necessary to be able to interact with bacterial membranes
(Datta et al., 2015). Interaction of cationic peptides is
promoted through electrostatic interaction, while interaction
of anionic peptides is driven by hydrophobicity (Phoenix
et al., 2013; Travkova et al., 2017). Membrane damage is
the main cause of cell death, since it disrupts the work of
many subsystems, associated with the membrane’s integrity. If
membrane damage is not fatal, the cell is able to respond to
external stress.

Bacterial genomic machinery responds with the expression
of various genes within several minutes after the moment
of exposure to stress factors. One of the first works on
sub-MIC effects of AMPs was dedicated to cecropin A and
E. coli cells (Table 1). It was found that cecropin A caused
a significant change in the transcript levels for 26 bacterial
genes (Hong et al., 2003); the sub-MIC of colistin altered
expression of 30 genes of P. aeruginosa (Cummins et al., 2009);
LL-37 affected expression of several 100 genes of P. aeruginosa
(Overhage et al., 2008).

Thus, antimicrobial peptides in the non-killing concentration
has a strong restructuring effect on of a genome’s functionality.

Can the Direct Peptide-DNA Interaction
Affect Bacterial Transcriptome?
What is the mechanism of signal reception and transmission?
It may be a direct interaction of the peptide molecule with
bacterial DNA. It is known that many AMPs have a dual
mode of action (Table 2). At high peptide concentrations
they cause damage to cell membranes, eventually breaking
it down, but at lower concentrations, peptides translocate
to the cytoplasm and electrostatically interact with DNA or
ribosome (Gottschalk et al., 2015; Polikanov et al., 2018).
For example, a number of synthetic peptides can interact
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TABLE 1 | The physico-chemical properties of antimicrobial peptides described in the review.

Peptide Mol. weight,
Da1

Type of structure Charge2 µHrel2 GRAVY1 The sources of the
structural data

LL-37 4490.6 Alpha-helix conformation +6 0.499 −0.72 www.anaspec.com

Cecropin A 4004.82 Alpha-helix conformation +6 0.202 −0.07 www.anaspec.com

Indolicidin 1700 Random coil +4 0.190 −1.07 www.anaspec.com

Fallaxin analog FL9 2717 Alpha-helix +2 0.275 0.51 Nielsen et al., 2007

C18G 2043 Alpha-helix +7 0.604 −0.19 Kohn et al., 2018

α-defensin HNP-1 3448 β-strand, β-turn +3 0.028 0.30 www.anaspec.com

β-defensin hBD-1 3934 Alpha-helix and triple-stranded
antiparallel β-sheet

+4 0.348 −0.27 www.anaspec.com

β-defensin hBD-2 3885.9 Alpha-helix and triple-stranded
antiparallel β-sheet

+6 0.246 −0.10 http://bpsbioscience.
com/bd-2-90107-b

Bovicin HC5 3525 +2 0.163 0.28 http://bactibase.
hammamilab.org

Subtilosin A 3425 Cysteine sulfur to α-carbon
bridges

−2.2 0.08 0.69 Acedo et al., 2018,
http://bactibase.
hammamilab.org

Plantaricin A 2683 Alpha-helix conformation +5 0.321 −0.24 http://bactibase.
hammamilab.org

Subtilin 3465 Fivefold-stranded antiparallel
β-sheet and alpha-helices

+2 0.151 0.19 http://bactibase.
hammamilab.org

Nisin Z 3475 Alpha-helices and β-turn +3 0.084 0.41 http://bactibase.
hammamilab.org

Polymyxin B 1203.50 Cyclic +5 ND ND Fernández et al., 2012

Colistin 1156.0 Cyclic +5 ND ND Fernández et al., 2012

Hemoglobin-derived Hbg-1 2495 Random coil +1 0.053 −0.56 Merriman et al., 2014

Hemoglobin-derived Hbg-2 2495 Random coil +1 0.220 −0.56 Merriman et al., 2014

Dipeptides cyclo(L-Phe-L-Pro) 245.35 ND ND ND ND Li et al., 2011

1The properties were calculated using the web-tool, which is available at https://www.thermofisher.com/ru/ru/home/life-science/protein-biology/peptides-proteins/
custom-peptide-synthesis-services/peptide-analyzing-tool.html. The grand average of hydropathicity (GRAVY) of a peptide is the sum of the hydropathy values of all
the amino acids divided by the number of residues in the peptide or protein sequence. 2The properties were calculated using the web-tool, which is available at
http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py. The relative hydrophobic moment (µHrel) is the hydrophobic moment of a peptide relative to that of a perfectly
amphipathic peptide.

with DNA and induce a SOS-response. During this process,
peptide’s action increases the expression of the α-haemolysin
(Gottschalk et al., 2015). A similar effect was shown for
indolicidin, which disturbed a membrane at MIC and induced
the SOS-response at sub-MIC (Vasilchenko et al., 2017). The
direct mutagenic effect of the cationic peptide is known (Limoli
et al., 2014). However, it should be noted that mutagenesis
and SOS-response are observed only at concentrations
close to MIC, whereas a change in the transcriptome
is usually observed at doses that are many times smaller
(Farris et al., 2010).

Thus, changes in gene expression caused by the DNA-peptide
interaction should be considered exceptional and not
as a general rule.

Recently a novel approach for precisely prevention of
pathogenicity of Gram-negative bacteria was described,
which is based on blocking a specific gene transcription
by cationic peptide. The authors designed and synthesized
cationic hydrocarbon stapled alpha-helical peptides based
on a DNA-interacting a helix of σ54. The treatment of
bacteria with synthesized peptides blocked the interaction
between endogenous σ 54 and its target DNA sequence
(Payne et al., 2018).

Thus, deciphering the molecular mechanisms of interaction
of peptides with intracellular targets is a bridge between
the fundamental knowledge and the practical use of the
knowledge gained.

Peptide Sensing?
In addition to nucleic acids, there are other intracellular
targets for antimicrobial peptides. In particular, the bacterial
cell envelope contains a variety of sensory regulatory systems,
which sense environmental signals and regulate a genes
expression accordingly.

Two-component systems (TCS) are widely distributed
among bacteria and are diverse in structure and function.
The presence of about one hundred thousand identified
and classified TCS allows bacterial cells to recognize
many different stressors and respond to them (Tiwari
et al., 2017). In general, a TCS is comprised of a sensor
protein (histidine kinase) and its corresponding response
regulator. The sensor kinase attaches to the bacterial
cytoplasmic membrane that has a sensing domain on its
extracellular side.

Antimicrobial peptides can have an effect on bacterial
genomes both indirectly and directly. Indirect action
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TABLE 2 | The mode of action and sub-inhibitory effects of peptides described in the review.

Peptide The cell’s targets Negative sub-MIC effects∗ Positive sub-MIC effects∗ References

LL-37 Membranes
permeabilization;
direct DNA binding

Promote mucoidy phenotype in
Gr-bacteria; overproduction of
virulence factors; promote
resistance to antimicrobials

Inhibites biofilm formation
P. aeruginosa and S. aureus

Fernández et al., 2010; Dean
et al., 2011; de la
Fuente-Núñez et al., 2012;
Strempel et al., 2013; Limoli
et al., 2014

Cecropin A Membranes
permeabilization

Unknown Unknown Silvestro et al., 2000; Hong
et al., 2003; Rangarajan et al.,
2013

Indolicidin Membranes
permeabilization;
direct DNA binding

Promote resistance to
antimicrobials

Prevent biofilm development of
MRSA S. aureus

Fernández et al., 2010, 2012;
Mataraci and Dosler, 2012

Fallaxin analog FL9 Membranes
permeabilization;
direct DNA binding

Increase production of
α-haemolysin

Unknown Gottschalk et al., 2015

C18G Membranes
permeabilization

Increased expression of the
virulence factor of
S. typhimurium

Unknown Yu and Guo, 2011

α-defensin HNP-1 Membranes
permeabilization; lipid II
binding; target the
ExPortal of
S. pyogenes

Unknown inhibition of secretion of SpeB
cysteine protease and the
streptolysin O

Vega and Caparon, 2012

β-defensin hBD-2 Membranes
permeabilization

Unknown Regulatory of gut homeostasis Marzani et al., 2012; Dicks
et al., 2018

Bovicin HC5 Membranes
permeabilization

Unknown Prevents biofilm formation of
S. aureus

Mantovani et al., 2002;
Pimentel-Filho Nde et al., 2014

Subtilosin Membranes
permeabilization

Unknown Prevents biofilm formation of
Gram-negative bacteria

Algburi et al., 2017

Plantaricin A Membranes
permeabilization at high
(in vitro) concentration
and pheromone at low
(in natural)
concentration

Unknown Involved in the formation of a
sustainable animal microbiome

Anderssen et al., 1998; Hauge
et al., 1998; Kristiansen et al.,
2005; Sturme et al., 2007;
Calasso et al., 2013

Nisin Membranes
permeabilization;
inhibites peptidoglycan
sintesis; pheromone

Unknown Inhibites bacterial biofilm
formation

Mahdavi et al., 2007; Shin
et al., 2015

Polymyxin B Membranes
permeabilization

Promote resistance to
antimicrobials

Inhibites of secretion of SpeB
cysteine protease and the
streptolysin O

Fernández et al., 2012; Vega
and Caparon, 2012

Colistin Membranes
permeabilization

Resistance; promote biofilm
formation; pyocyanin
production

Cummins et al., 2009;
Fernández et al., 2012

Hemoglobin-derived
peptides (Hbg-1, 2 and
other)

Membranes
permeabilization

Promote S. aureus surface
colonization

Inhibites production of TSS
toxin-1, enterotoxin C, α, δ

hemolysin of S. aureus

Schlievert et al., 2007;
Pynnonen et al., 2011

Dipeptides
cyclo(L-Phe-L-Pro)

Unknown Unknown Inhibites production of TSS
toxin-1

Li et al., 2011

∗ Is meant the reactions of the bacterial population, which has a final positive or negative effect on macroorganism (animal, plant, etc.).

occurs in response to a violation of the structural integrity
of cell barriers (Table 2). For example, Rcs regulon
controls the expression of many specific virulence factors
in bacteria belonging to the Enterobacteriaceae family.
According to a model proposed by Farris et al. (2010),
the sensory molecule RcsF is anchored to the outer
membrane, sequestered from its signaling partners in the
“off state.” During the cellular envelope disorganization,

conformational or spatial change promote direct non-
covalent interaction of RcsF with periplasmic domains of
signaling constituents, leading to Rcs activation. A more
detailed molecular mechanism is described in the review
(Guo and Sun, 2017; Figure 1).

Interaction of antimicrobial peptides with bacterial
membranes in some cases led to an indirect activation of several
genes regulated through “Quorum Sensing” (QS). It is known that
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FIGURE 1 | Diagram showing the main receptors of antimicrobial peptides and the relationship between them. The mechanisms of signal transmission from the
activated receptor to the corresponding genes are shown. Antimicrobial peptides is capable to direct (PhoQ, PmrAB, and other) or indirect (RcsF) activation of the
histidine kinase sensors, which led to regulation of activity of appropriated genes. At the same time, the expression of some genes can simultaneously be under the
positive and/or negative regulation of different TCS. For example, the effect of polymyxin B on the bacterial outer membrane can activates the RcsF sensors, what
leads to inhibition of expression of virulence genes in srfABC operon. Interestingly, the same operon is activated by another TSC PmrAB, for which “Peptide Sensing”
was revealed (for example, for LL-37).

some hydrophobic QS-autoinducers such as PQS are trafficked
between cells via membrane vesicles (Mashburn-Warren et al.,
2008). In this case, the peptide’s membrane-permeabilizing
action releases accumulated PQS molecules, which can triggers
the expression of the virulence genes associated with quorum
sensing (Cummins et al., 2009; Figure 1).

Another example of TCS being indirectly activated by AMPs
is the PhoQP two-component system, which controls the
development of resistance to AMPs. The periplasmic domain of
the PhoQ sensor is in conjunction with Mg2+ cations. Reducing
the available amount of magnesium leads to electrostatic
repulsion between PhoQ and the inner membrane domain (Cho
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et al., 2006). The resistance of Salmonella to polymyxin B is
formed through this mechanism, since this AMP is able to
displace Mg2+ cations from their binding site in the PhoQ sensor
(Santos et al., 2017; Figure 1).

The majority of antimicrobial peptides have cationic
properties that allow them to interact directly with the
extracellular loop of sensors activating them (Li et al., 2007b;
Gryllos et al., 2008). The possibility of such direct interaction
was convincingly demonstrated in the study examining the
ability of the LL-37 to activate the expression of streptococcal
virulence factors, which are under control of the CsRS (CovRS)
two-component system (Gryllos et al., 2008). Streptococci have
cell surface-associated histidine kinases CsrS that can directly
sense peptide molecules (Tran-Winkler et al., 2011). It turned
out that a 10-amino acid residue fragment of the LL-37 did not
exhibit any antimicrobial activity, but it determined the direct
interaction of the LL-37 molecule with the sensory part of CsrS,
according to the principle of ligand-receptor interaction (Velarde
et al., 2014). Presumably, such interactions are determined by
electrostatic forces, since the sensor domain of a two-component
system has periplasmic loops which are usually negatively
charged (Fernández et al., 2010).

Thus, there is strong evidence for the fact that bacteria have
some kind of “Peptide Sensing.” It is only left to find out how
sensitive is the “Peptide Sensing.” Does the “Peptide Sensing”
recognize the specific structure of a peptide or does it responds
to peptides as stress agents in the whole? These questions are not
easy to answer, and more research is still needed. However, it is
already clear that bacteria have sensory systems and mechanisms,
which respond specifically to positively charged amphiphilic
molecules with a certain amino acid composition.

Qualitative and Quantitative Response of
Sensory Regulatory Systems on
Antimicrobial Peptides
Sensory systems can be categorized depending on their ability
to recognize peptide structural features. The sensory systems are
triggered by molecules with cationic and amphiphilic properties
and constitute the first level of defense, since the primary result
of their activation is the development of resistance to AMPs.
For example, Rcs phosphorelay systems are activated through
outer membrane disturbance only by hydrophobic substances
like most antimicrobial peptides (Farris et al., 2010). In turn, the
sensory part of the aps three-component system of staphylococci
can recognize a variety of cationic, but not anionic AMPs
(Li et al., 2007a).

The second level consists of sensory systems, which are
possibly activated with a wide range of different peptides.
Their quantitative properties are crucial. For example, the
PhoQP TCS is activated by peptides with various structures,
but the more charged and hydrophobic the peptide is,
the greater activation is achieved by the exposure to it
(Shprung et al., 2012). Thus, it was shown that LL-37, but
not polymyxin B, activates the expression of virulent genes,
which are under the control of PhoQP/PmrAB (Shprung
et al., 2012). The used peptide’s sub-MIC concentrations are

also important for the final result. For example, sub-MIC
effect of LL-37 on Pseudomonas aeruginosa PAO1 at
4 µg/mL was down-regulation of QS-gene (pqsE) and
other (production of rhamnosyltransferase, phenazine, etc.)
(Overhage et al., 2008), but increase its expression at 20 µg/mL
(Strempel et al., 2013).

It would be an interesting attempt to circumvent the
undesirable sub-inhibitory effects by tuning of physic-chemical
properties of designed synthetic peptides. Unfortunately, today
there is no complete understanding to predict which of TCS
will be activated. Various TCS have a different susceptibility
to AMPs. Thus, using a bioluminescent reporter strain,
it was shown that ParRS TSC was activated after being
treated with colistin/polymyxin B and indolicidin, while
other cationic peptides (including LL-37) did not activate it
(Fernández et al., 2012). Additional experiments with 19 peptides,
different in charge and hydrophobicity, did not reveal a clear
correlation between peptides’ properties and their activation
ability (Fernández et al., 2012). New targeted researches aimed to
study the sub-inhibitory effects of AMPs in the structure-function
aspect, with appropriate mathematical processing, would allow
answering many questions.

Thus, these facts allow us to conclude that different sensory
systems have different levels of sensitivity and the ability
to recognize specific stressors. Ultimately, this determines
the various responses of bacterial cells to different AMPs.
However, it can be assumed that the main reaction of bacterial
genome and its metabolic apparatus is developing resistance,
while all other effects may be secondary. Probably, in stress
conditions, this is the most adequate response of bacteria to
the antimicrobial action of peptides, which, however, can be
followed by others.

Bacterial Defense Network Is Activated
by AMPs
Numerous different genes that are directed toward following
a forming network and regulate a comprehensive strategy
of protection and response to external influences are under
the control of one master regulator. The GraSR TCS of
S. aureus, which are involved in AMPs resistance, and
are indirectly associated with pathogenesis, control pathways
through connections with Agr signal transduction network
(Kraus et al., 2008; Falord et al., 2011). Bacterial Rcs phosphorelay
is a well-known signaling system that regulates virulence and
persistence of Enterobacteriaceae (Erickson and Detweiler, 2006).
The Rcs, simultaneously with PhoQP and PmrAB TCS, is
involved in regulation of several genes, whose expression
maintained integrated resistance of bacteria to polymyxin B
(Llobet et al., 2011; Figure 1).

There is a large number of similar examples, which shows
a close interweaving of different ways of signal transmission
and responding. Often, stress activates a variety of regulatory
systems that overlap closely. Thus, while being surrounded by
antimicrobial peptides, bacterial cells experience stress, the first
response to which will be self-protection.

Concerning the peptides themselves, there is no doubt
that their exclusive physicochemical properties are important.
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However, a more detailed investigation of structure-function
relationships still needs to be conducted.

EFFECTS OF SUB-INHIBITORY
CONCENTRATIONS OF ANTIMICROBIAL
PEPTIDES AT CELLULAR LEVEL

When used in their non-lethal concentration, antimicrobial
peptides have a powerful effect on the functioning of a bacterial
genome, which ultimately leads to a change in the entire behavior
of the bacterial population, provoking negative or positive effects
for interrelated living organisms.

The bacterial envelope is the first protective structure on
the pathway of antimicrobial peptides. AMP’s interaction with
bacterial shells changes their surface architecture provoking
undesirable effects. Thus, Shigella flexneri can use cationic
proteins produced by neutrophils to increase self-adhesion and
promote invasion inside epithelial cells (Eilers et al., 2010; Ni
et al., 2015). LL-37 at sub-inhibitory concentration was proven
to change Streptococcus pyogenes surface architecture, provoking
the formation of extracellular vesicles, which contain numerous
factors of streptococcal virulence (Uhlmann et al., 2016).

In Gram-positive bacteria, some virulence factors are
assembled and attached to the cell wall by sortase enzymes,
which are localized on one or two sides in the cell membrane.
Several antimicrobial peptides can interact with focal sites and
disrupt the localization of some proteins necessary for secretion
and virulence factor assembly (Kandaswamy et al., 2013). For
example, polymyxin B and HNP-1 at sub-MIC concentrations
can bind to the anionic lipids of so-called ExPortal. It leads to
structural disorder and effects cysteine protease and cytolysin
secretion (Vega and Caparon, 2012).

The process of a microorganism’s conquest of a new habitat is
accompanied by an appropriate reorganization of its metabolic
processes. The presence of antimicrobial peptides at this point
can either trigger the secretion of virulence factors that enhance
the aggressiveness of the pathogenic microorganism, or decrease
the metabolic activity and the appearance of persisters aimed
surviving under the stress.

AMP-dependent sequential activation of PhoQP >
PmrAB > ArnC leads to modification of lipid A (development
of AMP-resistance) and at the same time, increased expression
of the virulence factor PagC, necessary for bacterial persistence
within macrophages (Yu and Guo, 2011; Tsai et al., 2016).
The presence of LL-37 at sub-MIC led to the diversification
of the P. aeruginosa population to the mucoid type, which
increased their persistence and subsequently promoted chronic
infection (Limoli et al., 2014). A similar result was revealed for
P. aeruginosa population, growing in sputum of cystic fibrosis
under sub-inhibitory concentrations of colistin (Wright et al.,
2013). Another example of bacterial persistence is the induction
of protective substances the function of which is inactivation of
host defense antimicrobial proteins. For example, the human
serum has numerous antimicrobial peptides and proteins,
including lysozyme. The inhibition of lysozyme activity is one of
the main causes of bacterial persistence (Bukharin et al., 1987).

It was proven that the ability for induction of the main lysozyme
inhibitor proteins Ivy and MliC is widespread in bacterial
world and is under control of Rcs-regulon (Callewaert et al.,
2009; Figure 1).

In addition, a good illustration of non-linearity and
unpredictability of AMPs’ effects is the inhibition of toxin
production in bacteria. S. aureus is one of the main pathogens
of nosocomial infections, and methicillin-resistant strains are
a serious problem in antimicrobial therapy. S. aureus is able
to secrete a set of different virulence factors that allow it to
colonize a different habitat. However, it has been observed
that staphylococci growing on a blood-containing medium
did not produce any toxins (Schlievert et al., 2007). It was
hypothesized that human blood contains a factor that suppresses
toxin-production. Today, it is known that animals’ blood is
a source of various peptides including hemocidins, which
are the cationic peptide fragments derived from hemoglobin
(Mak et al., 2000; Arroume et al., 2008; Vasilchenko et al.,
2016). Further studies of the antitoxic effects of hemoglobin
showed the ability of globin chains to inhibit all known types
of Agr-quorum sensing systems of S. aureus. Surprisingly,
downregulation of agr-genes allows S. aureus to colonize nasal
passages (Liu et al., 2013). It turned out that S. aureus cells reduce
production of some Agr-regulated proteases to avoid generation
of hemoglobin-derived antimicrobial peptides.

Finally, it is worth noting cases when the change in gene
expression does not lead to the expected phenotypic changes.
For example colicin M induces an envelope stress response of
E. coli which upregulated numerous biofilm-associated genes.
Nevertheless, the induction of neither biofilm formation nor
of colonic acid production was observed (Kamenšek and Žgur-
Bertok, 2013). Inducing the expression of virulence genes, did
not cause any expected phenotypic changes indicating that
several cellular targets were affected. So, colicin M induced the
up-regulation of numerous biofilm-associated genes of E. coli.
At the same time, it promoted the hydrolysis of lipid II,
which limited its availability for exopolysaccharide biosynthesis,
including colanic acid (Liu et al., 2013).

ANTIMICROBIAL PEPTIDES AS
SIGNALING MOLECULES

Dual Function of Small Oligopeptides:
Antimicrobial QS-Autoinductors
A shift in AMP’s function from antibiotic to signaling is one
of the side-effects of diluting to sub-inhibitory concentrations.
It is known that β-lactam antibiotics in sub-MIC have
quorum-inducing activities, which triggers the synthesis of
quorum sensing-dependent pathogenicity factors (Liu et al.,
2013; Deryabin and Inchagova, 2017). However, the reverse
scenario is also possible, when the autoinducer exhibits
bactericidal properties (Qazi et al., 2006).

The quorum sensing-dependent process of regulation of gene
expression usually takes place in four stages, one of which receives
the signal molecule, which provide a possibility to interference
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between cognate and non-cognate autoinducers (Ji et al., 1997).
It makes sense, since autoinducers work not only within a
single population, but are also involved in interspecies signal
transduction (Lowery et al., 2008).

Among the various existing autoinducers, within the
framework of this review, the most interesting group are
small autoinducing peptides molecules (AIP). The chemical
structure of AIPs is diversified into several types, such as
small oligopeptides and cyclic lactone/thiolactone peptides
(Singh et al., 2016). Thus, cyclic oligopeptides often combine
an antimicrobial and a signal activity (Prasad, 1995). Some
Lactobacilli produce a variety of antimicrobial small dipeptides,
which inhibit the viability of bacteria, fungi and viruses, while
also suppressing the production of bacterial exotoxins (Kwak
et al., 2017). In particular, the culture filtrate of Lactobacillus
contained numerous dipeptides including cyclo (L-Phe-L-Pro)
having antifungal activity (Kwak et al., 2014). The ability of
such molecules to suppress exotoxin production is related to
their interference with cognate QS-autoinducers. It was shown
that cyclo (L-Phe-L-Pro) dipeptide suppress the production of
staphylococcal exotoxins (TSST-1) by interfering with the agr
QS-system (Li et al., 2011).

This class of substances is relatively poorly studied, and
aggregated information concerning they biological activity can
be found in remarkable reviews devoted to precisely these
substances (Prasad, 1995).

Dual Function of High-Molecular-Weight
Peptides: Antimicrobial Pheromones
As for ribosomally synthesized antimicrobial peptides,
considering their role in signal transduction, it is first of
all worth considering bacteriocins. Many bacteriocins are
synthesized in a quorum-dependent manner (Kleerebezem and
Quadri, 2001; Quadri, 2002). It is also known that co-incubation
of several different strains significantly enhances production of
bacteriocins (Maldonado et al., 2004). Apparently, the induction
of bacteriocin synthesis in a mixed culture is widespread in
nature, however, the role of inducers is usually taken by proteins
or peptides that do not themselves have antimicrobial properties
(Chanos and Mygind, 2016).

Can bacteriocins affect production of defense peptides in
other species? To date, several bacteriocins that combine both
antimicrobial and signaling properties are known, since their own
biosynthesis is a quorum-dependent bacteriocin (Kuipers et al.,
1995; Kleerebezem et al., 2004). The most studied one in this
respect is plantaricin A (Hauge et al., 1998). The mechanisms
of plantaricin A’s function as a pheromone and antimicrobial
are different. The pheromone action of plantaricin A is initiated
by electrostatic interaction with membrane lipids. Subsequent
events include the spatial arrangement of the plantaricin A
molecule in the lipid/aqueous phase interface, which allows
the N-terminal residues to engage in a chiral interaction
with its histidine kinase receptor (Kristiansen et al., 2005).
Bactericidal activity of plantaricin A is realized when plantaricin’s
concentration is increasing, which leads to a rearrangement into
a alpha-helical conformation and penetration of a bacterial cell

wall (Di Cagno et al., 2010). Nevertheless, the main function
of plantaricin A is signaling, because concentrations, which are
exhibited required for antimicrobial action are not achieved in
nature (Dicks et al., 2018).

As expected, the spectrum of processes which are activated
by bacteriocin’ autoinducers includes only synthesis pathways.
However, proteomic studies of bacteria co-incubated with
bacteriocin (plantaricin A, nisin) revealed a change in the
production of proteins and peptides, which are involved in
increasing the adaptive capacity of the strain in a multi-species
community (Calasso et al., 2013; Mukherjee and Ramesh,
2015) and overcome a bacteriocin-containing environment
(Miyamoto et al., 2015).

In addition, bacteriocin production stimulates the synthesis
of human-defensin-2 (HBD-2) by the cells of the host intestine
(Marzani et al., 2012), which also increases the colonization
potential of certain species and provides ability for intra- and
interspecies competition (Anderssen et al., 1998; Dicks et al.,
2018; Figure 2). Thus, bacteriocins of one species can initiate
the production of their own bacteriocins in another similar
species. However, it seems that this induction of synthesis is
caused by indirect action, since even insignificant structural
differences between bacteriocins are critical for ligand/receptor
interaction. Thus, subtilin does not interact with the histidine
kinase NisK, which normally senses nisin, due to the differences
between these bacteriocins in the structure of their N-terminal
part (Spieß et al., 2015).

Describing the role of bacteriocins in microbial communities,
it is necessary to mention the ability of bacteria to form biofilms.
Biofilm is one of the characteristic forms of the existence of
the multimicrobial community in nature (Sutherland, 2001). In
nature, microbial cells exist in the attached state more often
than in a free-floating planktonic state. Biofilms are structured
by masses of microorganisms embedded in the matrix of
polysaccharides, proteins, extracellular DNA and other molecules
(Gillor, 2007). The development of bacterial biofilm is a quorum
dependent phenomenon that ensures the viability of a bacterial
population under adverse conditions.

It is known that bacteriocins have an important role in biofilm
development. Bacteriocins inhibit the fixing of bacterial cells and
the development of biofilms of competitive species when high
local concentration is achieved (Gillor, 2007). At sub-inhibitory
bacteriocin concentration a similar goal is also achieved, but in a
slightly different way. For example, biofilm formation of S. aureus
was abolished at sub-inhibitory concentrations of bovicin HC5
and nisin, because normal expression of genes associated with
quorum sensing was affected (Pimentel-Filho Nde et al., 2014).
Taken at sub-inhibitory concentration, subtilosin reduced biofilm
formation of a conditionally pathogenic species C. violaceum. It
was shown that subtilosin acts as a proton pump inhibitor in
Gram-negative bacteria, which prevents efflux of a synthetized
QS-autoinducer (Algburi et al., 2017). For more information
about anti-biofilm properties of bacteriocins, the readers can be
addressed to the recent review (Mathur et al., 2018).

There is an interesting point related to the fact that
the action of bacteriocins, unlike most eukaryotic AMPs, is
mediated through interaction with the corresponding receptors
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FIGURE 2 | Demonstration of the signaling role of bacteriocins in the formation of a sustainable mammalian gut microbiome. The Lactobacillus strain producing
plantaricin A triggers the expression of genes and the production of metabolites that enhance the colonizing ability (adhesion and biofilm formation) of another
Lactobacillus strain. The occupied econish is no longer available for pathogenic and conditionally pathogenic microorganisms (S. aureus and S. typhimurium). In
addition, certain (PlnC) activators of bacteriocin production (Plantaricin EF, for example) and some component of the agr QS-system (AgrB) are launched in
susceptible to PlnA Lactobacilli cells, which has a certain antagonistic effect on the competitor species. Also plantaricin A triggers the production of human
β-defensin 2 of the intestinal epithelium, which potentially has an antagonistic effect on a number of pathogenic and conditionally pathogenic microorganisms.

(Cotter, 2014). Numerous receptors, such as lipid II, are universal
for a wide range of bacteriocins. In turn, certain molecules are
receptors only for certain bacteriocins. Thus, lasso bacteriocin
streptomonomicin interacts with WalR, a response regulator
involved in cell wall metabolism and cell division (Acedo
et al., 2018). Some thiopeptides interfere with protein synthesis
either by binding to the 50S ribosomal subunit or elongation
factors (Acedo et al., 2018). It is not yet clear what reactions
can be triggered at the genome or secretome level when
exposed to sub-inhibitory concentrations of such bacteriocins.
Although it is known some antibiotics that inhibit protein
biosynthesis in sub-inhibitory concentrations induce biofilm
formation (Hoffman et al., 2005). There is also evidence
that sub-inhibitory concentrations of glycopeptide vancomycin
[cellular target is lipid II (De Moura et al., 2015)] change the
expression of a several genes associated with virulence E. faecalis
(Breukink and de Kruijff, 2006).

Thus, the main conclusions are:

1. Only cognate bacteriocins-pheromones can interact with
appropriated receptors of regulatory systems.

2. The main function of such pheromones is the initial
production of its own bacteriocins, and their antimicrobial
properties is an additional feature.

3. However, it is possible that the range of biological effects
initiated by bacteriocin-pheromones can be significantly
wider than the production of its own bacteriocins (Xu
et al., 2014). This presents a productive possibility for
future research.

CONCLUSION

In view of the above, the basic mechanisms for regulation of
bacterial virulence factors have become more understandable.
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However, it is not yet possible to say exactly what happens with
bacterial cells when sub-inhibitory doses of AMPs are exposed.
Bacterial reaction on sub-MIC of AMPs can be non-linear. Yes,
peptides are able to inhibit the production of any toxins, but
it turns out that, subsequently, this ability is either restored, or
one toxin is replaced by the production of another. Hemocidins
reduce intracellular amounts of TSST-1, hemolysins, and lipase
for S. aureus cells. However, the production of the virulence factor
protein A is increased (Schlievert et al., 2007).

The presence of a multitude of sensory systems that are
intertwined with each other allows bacteria to adapt to any stress.
Thus, the reaction of bacterial pathogens to protective peptides
consists of two parts: on one hand, the initial presence of a certain
amount of AMP reduces the production of aggression factors and
various exotoxins. On the other hand, a decrease in the microbe’s
enzymatic activity provokes their persistence.

Throughout their evolutionary pathway bacteria have
demonstrated a highly adaptive potential compared to other
living organisms. In part, this has been the cause behind the
current problem of antibiotic resistance, against which the
efforts of many scientific groups are directed. Previously, it was
believed that bacteria are significantly less resistant to the action
of antimicrobial peptides than to conventional antibiotics, but
today it is known to be not entirely true. Bacterial populations
often respond to stressful effects unpredictably, and peptide
action can both weaken the virulent potential of microbes
as well as substantially increase it. The specific scenario will

depend on the peptide’s properties and its local concentration.
These factors are very poorly studied. For the realization of
antimicrobial peptides’ potential as therapeutic agents, it is
necessary to study their non-lethal effects on the physiology and
behavior of microorganisms in the same way as the mechanisms
of lethal action.
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Campylobacter jejuni is one of the most common causes of human foodborne bacterial
infections worldwide. The objective of this study was to assess the molecular diversity,
using flaA sequencing, of 602 C. jejuni isolated from chicken food chain, i.e., chicken
feces (n = 151), chicken carcasses (n = 150), chicken meat (n = 150), and from
humans (n = 151) and to determine antimicrobial multiresistant profiles of the isolates
as well as to analyze the relationship of the isolate genotypes with their antimicrobial
resistance profiles and source of isolation. Multidrug resistant patterns were identified
in 110 (18.3%) C. jejuni isolates recovered from all sources and most isolates were
resistant to ciprofloxacin (CIP), nalidixic acid (NAL), streptomycin (STR), and tetracycline
(TET) (92; 15.3%) or ciprofloxacin, streptomycin, and tetracycline (13; 2.2%). Only a few
isolates were multiresistant to ciprofloxacin, nalidixic acid, tetracycline, and erythromycin
(3; 0.5%) or ciprofloxacin, nalidixic acid, streptomycin, tetracycline, and erythromycin (2;
0.3%). A total of 79 flaA-SVR subtypes were identified, including 40 (50.6%) unique to
the isolates’ origins, with the most common sequence types 16, 54, 36, 34, and 287
which covered 56 (9.3%), 50 (8.3%), 48 (8.0%), 35 (5.8%), and 32 (5.3%) of C. jejuni
isolates, respectively. It was found that 13 isolates had the novel flaA-SVR subtypes
which were not present in the pubMLST database. These isolates were recovered from
chicken feces (6 isolates), carcasses (2 isolates), meat (one isolate) and from humans
(4 isolates). Multiresistant C. jejuni were classified into 26 different sequence subtypes.
Among the most numerous multidrug resistant profile CIP+NAL+STR+TET 21 different
flaA-SVR subtypes, with total of 92 isolates, were identified. Most of them were classified
to 287 (18; 19.6% isolates), 100 (13; 14.1%), 34 (9; 9.8%), 208 (8; 8.7%), and 781 (8;
8.7%) molecular variants. Isolates resistant to CIP, STR and TET (13 isolates) were mainly
from chicken feces (12 isolates) and classified into 5 flaA-SVR sequence types, with the
most common 36 (8 isolates). The obtained results show a broad molecular diversity
of multiresistant C. jejuni isolates and suggest chickens as a possible source of human
Campylobacter infections in Poland.

Keywords: Campylobacter jejuni, chicken food chain, humans, antimicrobial resistance, flaA-SVR sequencing
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INTRODUCTION

Campylobacter, especially Campylobacter jejuni, is one of
the most common causes of foodborne bacterial infections
worldwide (Allos, 2001; Bolton, 2015; Kaakoush et al., 2015;
Tresse et al., 2017). Campylobacteriosis is also the most
commonly reported zoonosis in the European Union with
246,158 confirmed cases and a notification rate of 64.8 per
100,000 population in 2017 (European Food Safety Authority
[EFSA] and European Centre for Disease Prevention and Control
[ECDC], 2018). However, it has been estimated that the real
number of Campylobacter infections occurring yearly may be
several millions and the annual cost of the disease is almost one
billion of United States dollars (Havelaar et al., 2009; Silva et al.,
2011; Kaakoush et al., 2015). Several studies showed that one of
the most important transmission routes of C. jejuni to humans is
handling, preparation and consumption of contaminated food of
poultry origin (Allos, 2001; Park, 2002; Humphrey et al., 2007).
C. jejuni colonizes chicken intestines at the number of 108 cells
per gram of cecal contents or greater without causing disease
(Beery et al., 1988; Sahin et al., 2002). After colonization of the
first birds in a flock, the bacteria rapidly spread throughout the
flock and remain present until slaughtering (Wagenaar et al.,
2006). C. jejuni colonizes the mucus mainly of the cecal epithelial
cells and the small intestine but may also be found in other
parts of the gut (Newell and Fearnley, 2003). Transmission
from chickens to humans most commonly occurs through
consumption and handling of chicken meat and meat products
contaminated with these bacteria during slaughter and carcass
processing (Kaakoush et al., 2015). It has been estimated that
the chicken reservoir as a whole is estimated to be responsible
for up to 80% of human campylobacteriosis cases (European
Food Safety Authority [EFSA] and European Centre for Disease
Prevention and Control [ECDC], 2018).

Most campylobacteriosis cases are usually self-limiting and do
not require antimicrobial treatment. However, severe infections
occasionally require antimicrobial therapy often with macrolides
(erythromycin or azithromycin) and, to a lesser extent, with
fluoroquinolones, tetracyclines, or gentamicin when infection
becomes systemic (Iovine, 2013). A major concern with regard
to treating campylobacteriosis in humans is antimicrobial
resistance, particularly resistance of C. jejuni to fluoroquinolones
and macrolides, which has increased significantly over the past
two decades (Melero et al., 2012; Piccirillo et al., 2013; Wieczorek
et al., 2013; Han et al., 2016; Mäesaar et al., 2016; Olkkola
et al., 2016; Post et al., 2017; Woźniak-Biel et al., 2018). It has
been suggested that food of animal origin, especially poultry
meat, may represent a vehicle of transmission of resistant
Campylobacter to humans (Aarestrup et al., 2008). Ciprofloxacin
and erythromycin are the antimicrobials of choice for treatment
of human campylobacteriosis (Ge et al., 2013; Iovine, 2013).
The intensive use of antimicrobials in animals and in humans
has led to an increase in the antibiotic-resistant Campylobacter
population (Humphrey et al., 2007; Ge et al., 2013). Thus,
monitoring of resistance of C. jejuni derived from infected
patients and food of animal (poultry) origin is highly relevant
to public health.

Molecular typing is an important tool for evaluation
of diversity and transmission routes of Campylobacter
isolates contaminating the food chain and isolated from
patients with diarrhea.

Several studies of C. jejuni demonstrated that this
microorganism is genetically diverse, predominantly as a result of
frequent intra- and interspecies genetic recombination, within a
weakly clonal population structure (Dingle et al., 2001; Suerbaum
et al., 2001; Manning et al., 2003). In order to investigate the
epidemiology of C. jejuni, molecular subtyping methods with
enhanced discriminatory power are used (Wassenaar and
Newell, 2000; Wieczorek et al., 2017). One of them is direct
sequencing of PCR-amplified short variable regions (SVRs)
products of the flagellin-encoding A (flaA) gene (Wassenaar
et al., 1995; Harrington et al., 1997). It was shown that the SVR
region is located between 450 and 600 base positions in the
C. jejuni flaA encoding gene (Meinersmann et al., 1997). Several
studies have demonstrated that direct sequencing of PCR-
amplified short variable regions (SVRs) of the A gene is a useful
tool for Campylobacter genotyping, offering similar or higher
discriminatory power than multilocus sequence typing (MLST)
and pulsed-field gel electrophoresis (PFGE) (Meinersmann et al.,
1997; Wassenaar et al., 2009; Wirz et al., 2010; Magnússon et al.,
2011; Gomes et al., 2016). Additionally, sequences of flaA-SVR
nucleotide alleles are stored in the pubMLST database1, and
allow open access to the flaA-SVR types of Campylobacter strains
isolated around the world. Furthermore, it has been shown that
flaA-typing provides sufficient discrimination for its use as a
subtyping method for C. jejuni (Suerbaum et al., 2001; Manning
et al., 2003). Despite the observation that recombination rates in
C. jejuni may potentially have an adverse impact on the reliable
interpretation of flaA-typing (Wassenaar et al., 1995; Harrington
et al., 1997), several studies showed that in the majority of
C. jejuni isolates some regions of the flagellin-encoding A gene
are genetically stable over long periods and may be used for
molecular typing and differentiation of the isolates (Burnens
et al., 1995; Owen et al., 1995).

The objectives of the present study were: (i) to determine
antimicrobial multiresistant profiles of a collection of C. jejuni
isolates recovered from chicken food chain and from humans
with diarrhea, (ii) to assess the genetic relatedness of these isolates
using flaA sequencing, and (iii) to examine the relationship of the
isolate genotypes with their antimicrobial resistance profiles and
source of isolation.

MATERIALS AND METHODS

Isolation of C. jejuni
Sampling and isolation of C. jejuni from the poultry food chain
and from humans with diarrhea were performed as described
previously (Wieczorek et al., 2018). The detailed information
on all 602 isolates are included in the Supplementary Material
(Supplementary Table S1). In case of chicken C. jejuni (a
total of 451 isolates), the samples were collected during years

1http://pubmlst.org/campylobacter/
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2010–2016 according to the monitoring plan prepared in the
Polish National Reference Laboratory for Campylobacter. Intact
ceca from 10 birds were taken after evisceration, the content
was pooled and one loop-full (10 µl) of the material was
streaked directly onto Karmali agar (Campylobacter Agar Base
+ Campylobacter Supplement; Oxoid, United Kingdom) and
Campylobacter blood-free agar (Oxoid) with CCDA selective
supplement (Oxoid) and incubated at 41.5◦C ± 1◦C for at least
48 h ± 2 h in a microaerobic atmosphere generated using a
CampyGen kit (Oxoid). From each fecal sample one presumptive
Campylobacter isolate was then confirmed by PCR as described
previously (Wieczorek et al., 2013). Briefly, one bacterial colony
was suspended in 1 ml of redistilled water and centrifuged at
13,000 × g for 1 min. The pellet was resuspended in 100 µl of
10 mM Tris buffer (A&A Biotechnology, Gdańsk, Poland) and
DNA was isolated with the Genomic – Mini kit according to
the manufacturer’s instruction (A&A Biotechnology). The PCR
was performed using the following program: 94◦C for 5 min
(initial denaturation) followed by 30 cycles: 94◦C for 1 min, 58◦C
2 min, 72◦C for 1 min. The final extension step was performed
at 72◦C for 5 min. The used PCR primers amplified fragments
of the mapA (specific for C. jejuni) and the ceuE (characteristic
for C. coli) Campylobacter genes. The amplification of the 16S
rRNA gene fragment, presents in both C. jejuni and C. coli, which
allowed to evaluate the PCR reaction and the bacterial DNA, was
also performed. A total of 151 C. jejuni isolates from chicken
feces were used in the present study. The detailed information on
the chicken samples are included in the Supplementary Material
(Supplementary Table S1).

The swab samples from the neck skin and the skin surface
under the wings of chicken carcasses were collected directly after
immersion chilling (0–4◦C) but before further processing and
immediately transported to the laboratory in Amies transport
medium with charcoal (Medlab, Poland). Campylobacter bacteria
were isolated as described (Wieczorek et al., 2013). Briefly, the
swabs were placed in 5 ml of Bolton enrichment broth (Oxoid)
supplemented with vancomycin, cefoperazone, trimethoprim,
and amphotericin B and incubated as described for fecal samples.
The cultures were then plated onto Karmali agar (Oxoid) and
Campylobacter blood-free agar with CCDA selective supplement
(Oxoid) and incubated under the same conditions. From each
sample one presumptive Campylobacter isolate was confirmed
using PCR as described previously (Wieczorek et al., 2013).
A total of 150 C. jejuni from chicken carcasses were collected for
the current investigation.

The Campylobacter isolates from chicken meat (n = 150)
were recovered using the ISO 10272-1 standard and C. jejuni
were confirmed with the PCR method as described for the
chicken carcasses.

A total of 151 C. jejuni isolates were obtained from patients
with diarrhea using standard culturing techniques. Rectal swabs
were directly streaked onto mCCDA agar (Oxoid) and incubated
at 41.5◦C ± 1◦C for 48 h ± 2 h under microaerobic conditions.
Then, typical Campylobacter colonies were selected for further
investigation using standard biochemical tests. C. jejuni was
identified with PCR as described previously (Vandamme et al.,
1997). All C. jejuni identified in patients with diarrhea were

isolated by regional diagnostic laboratories located in five
voivodeships (administrative regions of Poland) during years
2011–2016 and confirmed by PCR at the National Veterinary
Research Institute in Pulawy. The detailed information on the
human samples are included in the Supplementary Material
(Supplementary Table S1). The authors declare that the study
did not need any recommendation or approval of an ethics
committee nor written consent from the people from whom
C. jejuni were isolated.

Altogether, 602 C. jejuni were isolated and stored at −80◦C
until further analysis.

Antimicrobial Resistance
A microbroth dilution method was used to establish the
minimum inhibitory concentrations (MICs) of six antimicrobials
(gentamicin [GEN], streptomycin [STR], erythromycin [ERY],
ciprofloxacin [CIP], nalidixic acid [NAL], and tetracycline
[TET]) to C. jejuni isolates using EUCAMP2 Sensititre R©

custom susceptibility plates (Trek Diagnostics, United Kingdom).
The dilution ranges and cut-off values are presented in
Supplementary Table S2 (Wieczorek et al., 2018). The isolates
were sub-cultured twice on Columbia agar (Oxoid) at 41.5◦C for
48 h under microaerobic conditions. The minimum inhibitory
concentration of the antimicrobial agents was determined using
Mueller-Hinton broth (Oxoid) supplemented with 2–2.5% horse
blood (Trek). The plates were incubated at 37◦C for 48 h
under microaerophilic conditions and read using the Vision R©

system (Trek). The antimicrobials and cut off values used
for the interpretation of the MIC results were in accordance
with EUCAST (Sifré et al., 2015) and the European Union
Reference Laboratory for Antimicrobial Resistance. Multidrug
resistance of the isolated C. jejuni was defined as resistance
to at least three classes of antimicrobials used in the study
(Magiorakos et al., 2012).

DNA Extraction and flaA-SVR
Sequencing
One bacterial colony was suspended in 1 ml of sterile,
DNase- and RNase-free water and centrifuged at 13,000 g for
1 min, and DNA was extracted using the Genomic-Mini kit
(A&A Biotechnology, Poland) according to the manufacturer’s
instruction. DNA was then utilized as a template in PCR with
the forward 5′-ATGGGATTTCGTATTAACAC-3′ and reverse
5′-CTGTAGTAATCTTAAAACATTTTG-3′ primers (Wassenaar
and Newell, 2000), using the following amplification conditions:
initial DNA denaturation at 94◦C for 2 min followed by 35 cycles
of 94◦C for 1 min, 50◦C for 1 min and 72◦C for 1 min. The final
extension step was performed at 72◦C for 1 min. Purification
and sequencing of the amplified products was performed by
an external company (Genomed, Warsaw, Poland) using the
BigDye Terminator v. 3.1 kit (Applied Biosystems, United States).
The sequencing products were separated in a 3730 × l DNA
Analyzer capillary sequencer (Applied Biosystems) and the
DNA sequences were then imported and checked for quality
using the BioNumerics v. 7.6 software (Applied Maths, Sint-
Martens-Latem, Belgium). The sequences were then assigned
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allelic numbers based on the data present in the Campylobacter
flaA-nucleotide database using sequence query Campylobacter
locus/sequence definitions (see text footnote 1). If exact match
was identified the number was assigned to the isolates. When any
mismatches of DNA sequences to those present in the database
were found, which suggested possible new flaA-SVR alleles, the
isolates were sequenced once again and then submitted to the
database administrator for confirmation. The sequences of all
C. jejuni isolates examined in the present study are now present
in the mentioned above database and could be identified by the
number of flaA-SVR sequence type.

Statistical Analysis
The chi-squared test with Yates’ correction was used to examine
differences in the prevalence of flaA-SVR subtypes among
C. jejuni isolated from different sources and P < 0.05 was
considered significant. The genetic diversity of C. jejuni within
the populations of isolates recovered from different sources was
assessed by Simpson’s diversity index (ID) as described previously
(Hunter and Gaston, 1988) using the online tool “Comparing
Partitions” from the website http://www.comparingpartitions.
info (Carriço et al., 2006). The data was directly transfer from
the excel file to the online tool (Supplementary Table S3).
The column corresponding to a different partition assignment
and each value to a cluster identifier. The first row contains
the columns titles. The proportional similarity index (PSI) was
applied to compare sequence types distribution among C. jejuni
isolates from various sources (Hunter and Gaston, 1988; Garrett
et al., 2007). The frequency distributions of the different sources
were estimated by calculating their similarity using the following
equation: PSI = 1–0.56i |pi – qi| = 6i min (pi, qi), where pi and
qi are the proportion of isolates from group p and q, respectively,
belonging to type i. PSI ranges from zero to one, where one
indicates that two groups are identical and zero means they share
no types. Around 95% confidence intervals (CI) were computed
using bias-corrected and accelerated non-parametric bootstrap.
Calculations were performed using R, ver. 3.1.3 and @RISK for
Excel, ver. 6.0.1 (Palisade Co., Ithaca, NY, United States). An
index greater than 0.90 is considered desirable if the typing results
are to be interpreted with confidence (Hunter and Gaston, 1988).

RESULTS

flaA-SVR Sequence Types
A total of 79 flaA-SVR subtypes were identified, including
40 (50.6%) sequences unique to the isolates’ origin, with 15
sequences found only in C. jejuni from chicken feces, 12 subtypes
in isolates from chicken carcasses, 7 sequences in chicken meat,
and 6 subtypes detected only in isolates recovered from humans.
Additionally, 24 different flaA-SVR subtypes were found in
C. jejuni from all sources which cover 76.2% (459 out of 602)
isolates (Supplementary Table S1). The most common sequence
types identified among all 602 isolates tested were 16, 54, 36,
34, and 287 which included 56 (9.3%), 50 (8.3%), 48 (8.0%), 35
(5.8%), and 32 (5.3%) of C. jejuni isolates, respectively (Table 1).
Among isolates from the chicken food chain (n = 451), 50

sequence types were identified in C. jejuni from feces, 47 variants
from carcasses, and 39 types from meat, respectively. Most
of them were classified to 16, 54, and 36 variants (total 103
out of 451 isolates; 22.8%). In the human bacterial population
(n = 151) 37 different flaA-SVR sequence alleles were detected,
mainly belonging to subtypes 16, 54, and 14 (total 55; 36.4%
isolates) (Table 1).

Distribution of the most prevalent flaA-SVR genotypes in
relation to the sources of the isolates is shown in Table 2.
Among C. jejuni from the chicken food chain, the most numerous
subtypes were classified into sequence variants 36 (41; 9.1%
isolates), 16 (33; 7.3% isolates), and 54 (29; 6.4% isolates), whereas
human isolates mainly belonged to genotypes 16 (23; 15.2%
isolates) and 54 (21 (13.9% isolates).

It was also found that 13 isolates had an flaA-SVR subtype
which was not present in the pubMLST database. These isolates
were recovered from chicken feces (6 isolates with the new
sequences 1662, 1663, 1666, 1667, 1669, and 1673), chicken
carcasses (2 isolates with the sequences 1670 and 1672), chicken
meat (1 isolate with the sequence 1674), and humans origin (4
strains with the sequences 1664, 1665, 1668, and 1671). All these
novel alleles were submitted to pubMLST database.

Overall, the flaA-SVR typing method was highly
discriminative for all C. jejuni used in the study since the
Simpson’s diversity index (D) achieved value 0.968, indicating
considerable diversity in the bacterial population tested, although
isolates collected from the chicken food chain displayed a higher
genetic diversity than isolates from humans (Table 3). Taking into
account the number of the flaA-SVR sequences, no significant
difference of diversity was observed between isolates recovered
from chicken feces, carcasses, and meat. The lowest genetic
diversity was identified among C. jejuni isolates with multidrug
resistance profiles, although the number of such isolates was
lower than the total number of campylobacters identified in
each tested group.

The PSIs were calculated to assess the similarity of flaA-
SVR sequences distributions between different C. jejuni sources,
i.e., humans and three stages of chicken food chain, i.e., feces,
carcasses, and meat (Table 3). The flaA-SVR subtypes identified
in the chicken samples were highly similar (PSIs above 0.8)
and the similarity of the chicken and human isolates was also
calculated at the comparable levels.

Antimicrobial Resistance
The results of antimicrobial resistance of the C. jejuni showed
that most of the isolates were resistant to ciprofloxacin (total 556;
92.4% isolates), nalidixic acid (538; 89.4%) and, to a lesser extent,
tetracycline (412; 68.4%). Isolates from the chicken food chain
were more often resistant to CIP than those from human patients.
A similar relationship was observed for TET where the isolates
from chicken feces were more often resistant than C. jejuni of
carcasses and meat origin. A low number of isolates, irrespective
of the origin, were resistant to STR (111; 18.4%). It was also found
that only 5 of 624 isolates (0.8%) displayed resistance to ERY and
all of them were recovered from the chicken food chain.

Multiresistance patterns were identified among 110 out of
602 (18.3%) C. jejuni isolated from all sources (Table 4). The
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vast majority of such isolates were resistant to CIP, NAL, STR,
and TET (92 out of 110 isolates; 83.6%) and they were mainly
recovered from the chicken food chain (80; 72.7% isolates).
Detailed information on antimicrobial resistance of each C. jejuni
isolate tested in the study, including the minimum inhibitory
concentrations (MICs), is shown in Supplementary Table S1.

Multidrug Resistance and flaA-SVR
Subtypes
All 110 multiresistant isolates were classified into 26 different
flaA-SVR sequence subtypes, mainly 287 (18; 16.4% isolates), 100
(13; 11.8%), and 34 (9; 8.2%) (Table 4). Among 13 C. jejuni
resistant to CIP, STR and TET two new allele types (1662 and
1663) found in the isolates from chicken feces were identified for
the first time and submitted to the pubMLST database.

DISCUSSION

During the present study a significant flaA-SVR diversity among
602 C. jejuni isolated from the chicken food chain and from
humans with diarrhea was identified. The isolates were collected
during a broad range of time (2011–2017) and were obtained
in 15 and 5 of 16 voivodeships (administrative regions) of
Poland in case of chicken and human C. jejuni, respectively.
Such representative material may reflect the prevalence and
characteristics of the C. jejuni isolates all over the whole country.
The large numbers of sequence profiles generated may be due to
the high variability of the Campylobacter genome caused by its
instability (Wittwer et al., 2005). It has been previously shown
that the flaA flagellar gene undergoes spontaneous mutations
during the host infection that may play an important role
in molecular variation (Guerry, 2007). Among the total of 79
flaA-SVR variants, several identical sequences were identified
among both human and chicken isolates suggesting a possible
chicken source for human infection. Furthermore, on overlap
of several genotypes found between chicken isolates recovered
from different stages of the food chain may suggest that C. jejuni
isolates with such allele types are circulating along the chicken
meat production chain and may result in transmission of the
bacteria to man.

The high genetic diversity of C. jejuni tested by the flaA-
SVR method was previously demonstrated by several authors
(Meinersmann et al., 1997; Corcoran et al., 2006; Djordjevic et al.,
2007; Wassenaar et al., 2009; Magnússon et al., 2011; Giacomelli
et al., 2012; Sing and Kwon, 2013; Gomes et al., 2016). Wassenaar
et al. (2009) identified 92 different alleles among 293 C. jejuni
isolated from three different geographical regions and found that
sequence types 36, 32, 34, 15, and 239 were predominant (38.1%
of 293 strains tested). Most of these allelic variants (i.e., 36, 34,
15, and 239 were also identified in the present study. Some of
these flaA-SVR types (e.g., 34 and 36) were previously found in
poultry and human C. jejuni isolates in Ireland, Italy and Iceland
(Corcoran et al., 2006; Magnússon et al., 2011; Giacomelli et al.,
2012). It seems that these molecular variants are predominant in
Europe and are rarely or never detected in other geographical
regions (Sing and Kwon, 2013; Gomes et al., 2016).

Several isolates of chicken and human origins tested
in the present study were multiresistant, especially to
quinolones, streptomycin and tetracycline. The high potential
for resistance to fluoroquinolones in the Campylobacter
isolates of chicken origin may be associated with the use
of these antimicrobials in poultry treatments, although
information about antimicrobial usage in the flocks we
examined was not available. However, the exceptionally high
percentage of C. jejuni resistant to quinolones in Poland
identified in the present and in previous studies may be due
to broad use of these antimicrobials in animal husbandry
(Wieczorek et al., 2013, 2015; Woźniak-Biel et al., 2018).
According to the recent European Medicines Agency report
on fluoroquinolone supply for veterinary medical use, in
Poland in 2016 the sales this antimicrobial group (in mg
for population correction unit, PCU) were 9.7 mg/PCU,
while the average for 30 European countries described in
the report in that year was 2.7 mg/PCU (EMA, 2018).
Such frequent administration of these drugs may have an
influence on the spread of fluoroquinolone-resistant gene
determinants in population of these bacteria identified in
humans (Aarestrup et al., 2008).

A correlation between specific flaA-SVR genotypes and
antimicrobial multiresistance among C. jejuni tested was not
clear and distinct. Isolates with the same resistance pattern
were classified into different molecular subtypes whereas the
C. jejuni with an identical flaA-SVR profile were resistant
to different antimicrobials. Similarly, other authors likewise
found no correlation between genotype and antibiotic resistance
(Wittwer et al., 2005; Corcoran et al., 2006). Such difference
can be explained by a frequent intra- and interspecies genetic
mutation among C. jejuni which results with many different
molecular variants as determined by the flaA-SVR typing. On
the other hand, circulation of genetic determinants encoding
resistance to more than one antimicrobial may be slower than
molecular mutations resulted that such multiresistant isolates
are less frequently identified among different C. jejuni genotypes
(Aarestrup et al., 2008; Iovine, 2013).

In the present study, only a few C. jejuni of poultry
origin possessed the same multidrug resistance patterns and
genotypes as the isolates recovered from humans. This limited
correlation may be due to the small number of multiresistant
isolates recovered from patients (only 11 isolates) as compared
to 99 chicken isolates. Furthermore, it has been shown
that such multidrug resistant C. jejuni were recovered from
patients in only two voivodeships (malopolskie and slaskie)
whereas chicken isolates were identified in all over Poland.
Therefore, it is difficult to drawn a clear conclusion whether
the chicken meat was the source of human multidrug resistant
C. jejuni infection.

CONCLUSION

An important step in control of campylobacteriosis in humans
is identification and extensive investigation of C. jejuni isolated
from the chicken food chain as well as acquisition of full
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knowledge of their molecular makeup and determination of their
resistance to antimicrobials used in treatment of the infection.
In the present study a total of 79 different genetic flaA-SVR
subtypes among 602 isolates were identified which. The obtained
results highlighted the lower genetic diversity of human isolates
compared with chicken C. jejuni. A total of 13 isolates had novel
alleles which were not present in the pubMLST database. Some
C. jejuni tested displayed a multiresistant pattern, mainly to CIP,
NAL, STR, and TET and the vast majority of such resistant
isolates were of the chicken food chain origin. These C. jejuni
belonged to 21 different flaA-SVR types which shows their broad
molecular diversity. Such campylobacters were recovered from
the chicken food chain and from patients which may suggest the
possible source of human infection.
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Stenotrophomonas maltophilia is an environmental Gram-negative bacterium that has 
rapidly emerged as an important nosocomial pathogen in hospitalized patients. Treatment 
of S. maltophilia infections is difficult due to increasing resistance to multiple antibacterial 
agents. The purpose of this study was to determine the phenotypic and genotypic 
characterization of S. maltophilia isolates recovered from patients referred to several 
hospitals. A total of 164 clinical isolates of S. maltophilia were collected from hospitals in 
various regions in Iran between 2016 and 2017. Antibiotic susceptibility testing was 
performed by disc diffusion method and E-test assay according to the Clinical and 
Laboratory Standards Institute (CLSI) guideline. The ability of biofilm formation was 
assessed with crystal violet staining and then, biofilm-associated genes were investigated 
by PCR-sequencing method. The presence of L1 (a metallo-β-lactamase), L2 (a clavulanic 
acid-sensitive cephalosporinase), sul1 and sul2 (resistance to Trimethoprim/
Sulfamethoxazole), Smqnr (intrinsic resistance to quinolones), and dfrA genes (dihydrofolate 
reductase enzyme that contributes to trimethoprim resistance) was also examined by 
PCR-sequencing. Relative gene expression of smeDEF efflux pump was assessed by 
real-time PCR. Genotyping was performed using the multi-locus sequencing typing (MLST) 
and repetitive extragenic palindromic-PCR (Rep-PCR). Isolates were resistant to imipenem 
(100%), meropenem (96%), doripenem (96%), and ceftazidime (36.58%). Notably, 5 
(3.04%) isolates showed resistant to trimethoprim-sulfamethoxazole (TMP-SMX), an 
alarming trend of decreased susceptibility to TMP-SMX in Iran. Minocycline and levofloxacin 
exhibited the highest susceptibility of 91.46 and 99.39%, respectively. Using the crystal 
violet staining, 157 (95.73%) isolates had biofilm phenotype: 49 (29.87%), 63 (38.41%), 
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INTRODUCTION

The genus Stenotrophomonas, together with Xanthomonas, belongs 
to the γ-β subclass of proteobacteria (Anzai et  al., 2000). 
S. maltophilia isolated in 1943 from pleural effusion of patients 
was first named as Bacterium bookeri. Later, it was reclassified 
as a member of the genera Pseudomonas and Xanthomonas in 
1961 and 1983, respectively, until it was classified as a new 
genus, Stenotrophomonas, in 1993 (Al-Anazi and Al-Jasser, 2014).

S. maltophilia is a Gram-negative, non-fermentative, aerobic, 
motile bacillus that is abundant in the ubiquitous environment 
with a broad geographical distribution. This organism has emerged 
as an important opportunistic pathogen in humans worldwide. 
Although it is considered to have limited pathogenicity (Di 
Bonaventura et  al., 2010), S. maltophilia causes various types 
of hospital- and community-acquired infections, especially in 
debilitated or immunocompromised patients, with the mortality 
rate of 37.5% (Falagas et  al., 2009). The bacterium has been 
increasingly recognized as responsible for a number of clinical 
syndromes, such as pneumonia, sepsis, bacteremia, endocarditis, 
septic arthritis, meningitis, endophthalmitis, and urinary infections 
(Looney et  al., 2009; Sumida et  al., 2015; Hu et  al., 2016).

During the last decade, S. maltophilia has been considered 
as one of the leading multi-drug resistant (MDR) organisms 
in hospital settings due to exhibiting high levels of intrinsic 
and acquired resistance to a broad array of antibacterial agents, 
including fluoroquinolones, aminoglycosides, and the most 
common of β-lactam antibiotics (Brooke, 2014). Different types 
of antimicrobial resistance mechanisms, such as expression of 
antibiotic hydrolyzing or modifying enzymes, membrane 
permeability alteration (Hu et  al., 2008), and multi-drug efflux 
systems (Huang et al., 2014) have been identified in S. maltophilia.

This bacterium produces two chromosomal-mediated 
inducible β-lactamases, known as L1 and L2. The L1 belongs 
to molecular class B Zn2+-dependent metallo-β-lactamase (MBL), 
is resistant to clavulanic acid and hydrolyses carbapenems, 

cephalosporins, and penicillins (Brooke, 2012; Chang et  al., 
2015). The L2 serine-β-lactamase, an Ambler class A enzyme, 
is an inducible cephalosporinase that hydrolyses cephalosporins, 
penicillins, and aztreonam (Flores-Trevino et  al., 2014; Mojica 
et  al., 2016). Two mechanisms are associated with resistance 
to quinolones among S. maltophilia strains, including smeDEF, 
smeIJK, smeABC, and smeVWX efflux pumps and a novel 
chromosomal quinolone resistance gene, Smqnr, encoding the 
pentapeptide repeat protein that protects both topoisomerase 
IV and gyrase from the quinolones (Sanchez et  al., 2009; 
Chang et  al., 2015; Kanamori et  al., 2015).

Trimethoprim-sulfamethoxazole (TMP-SMX) is recommended 
as the first choice for S. maltophilia infections (Abbott et al., 2011; 
Chong et  al., 2017). However, the increasing reports of resistance 
to TMP-SMX are a matter of concern and have complicated the 
treatment strategies (Brooke, 2014; Hu et  al., 2016; Madi et  al., 
2016). Resistance to this antibiotic has been recognized due to 
the presence of sul1 and sul2 genes that are found in class 1 
integrons and insertion sequence common region (ISCR) elements, 
respectively. dfrA gene cassettes are observed in class 1 integrons 
and encode for the dihydrofolate reductase enzyme, and TolCsm, 
smeDEF, smeYZ efflux pumps (Hu et  al., 2011, 2016; Huang 
et  al., 2013; Lin et  al., 2015; Sánchez and Martínez, 2015).

Biofilms are multicellular communities usually held together 
by extracellular matrix molecules. These extracellular polysaccharides 
(EPS) produced by the bacteria usually function as highly 
organized multicellular communities of microorganisms (Bjarnsholt 
et  al., 2009; Irie et  al., 2017), appear to be  preferred survival 
strategy of microbes, and confer tolerance to high doses of 
antimicrobial agents than non-biofilm forming bacteria 
(Bjarnsholt et  al., 2009). In addition, they are increasingly 
recognized as a contributing factor in the pathogenesis of 
disease in respiratory diseases often caused by chronic bacterial 
infections. S. maltophilia strains are well-known biofilm-
producing organisms with ability to adhere to biotic and 
abiotic surfaces (Pompilio et  al., 2008). Few genes associated 

and 45 (27.43%) isolates were categorized as strong-, moderate- and weak-biofilm 
producer while 7 isolates (4.26%) were identified a non-biofilm producer. Biofilm genes 
had an overall prevalence of 145 (88.41%), 137 (83.53%), and 164 (100%) of rmlA, rpfF, 
and spgM, respectively. L1, L2, Smqnr, sul1, and sul2 resistance genes were detected 
in 145 (88.41%), 156 (96.12%), 103 (62.80%), 89 (54.26%), and 92 (56.09%) isolates, 
respectively. None of the S. maltophilia isolates were positive for dfrA12, dfrA17, and 
dfrA27 genes. Gene expression analysis showed that smeD efflux system was 
overexpressed in two out of the five clinical isolates (40%) that showed resistance to 
TMP-SMX. Most of the isolates were genetically unrelated. Two new sequence types 
(ST139 and ST259) were determined. Our results showed that TMP-SMX was still an 
effective antibiotic against S. maltophilia. The findings of the current study revealed an 
increasing prevalence of antibiotic resistance and biofilm genes in clinical S. maltophilia 
isolates in Iran.

Keywords: antibiotic resistance genes, biofilm, efflux pump, sequence type, Stenotrophomonas maltophilia, 
trimethoprim-sulfamethoxazole
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with biofilm formation in S. maltophilia have been experimentally 
studied (Liu et al., 2017). More recently, the correlation between 
mutations in rpfF and rmlA genes, encoding enoyl-CoA 
hydratase and glucose-1-phosphate thymidyltransferase, respectively, 
and the less extensive biofilm formation have been reported 
(Huang et  al., 2006; Fouhy et  al., 2007). In addition, the 
spgM gene, responsible for the production of phosphoglucomutase 
(PGM) and phosphomannomutase, could be  involved in 
biofilm-forming ability (McKay et al., 2003; Zhuo et al., 2014).

High genetic diversity was identified among S. maltophilia 
strains through the use of a variety of molecular biology 
techniques. Several genotypic profile methods have been used 
to compare and link clinical isolates to environmental sources, 
including whole genome sequencing analyses, amplified fragment 
length polymorphism (AFLP) fingerprinting, PCR-restriction 
fragment length polymorphism (PCR-RFLP), analysis of the 
gyrase B gene, PCR-based fingerprinting methods, such as BOX 
and repetitive extragenic palindromic (rep)-PCR, enterobacterial 
repetitive intergenic consensus (ERIC)-PCR, pulsed-field gel 
electrophoresis (PFGE) analysis of XbaI genomic digests, and 
multi-locus sequence typing (MLST) (Gherardi et  al., 2015). 
Rep-PCR technique is based on the fact that microbial genomes 
contain a variety of repetitive sequences. Although their function 
has mostly not been elucidated so far, most rep-PCR-based 
DNA fingerprinting studies have used short polytrinucleotides, 
such as (GTG)5 35–40  bp repetitive sequences, and 154  bp 
BOX element as priming sites for PCR, resulting in amplification 
of DNA sequences between the repetitive parts (Ishii and 
Sadowsky, 2009). MLST technique was developed for tracking 
the source of infections and the distribution of pathogens 
isolated from hospitalized patients, providing reliable 
epidemiological data. In addition, because of its accessible 
related international databases, the results from different 
laboratories by MLST can be  compared (Cho et  al., 2012).

The main purpose of this study was to evaluate the 
antimicrobial resistance patterns and different resistance 
mechanisms of the clinical S. maltophilia isolated from 
different regions of Iran. In addition, the ability of biofilm 
production as well as clonal and genetic diversity of isolates 
were examined.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of Shahid 
Beheshti University of Medical Sciences “IR.SBMU. MSP.
REC.1397.579.” In order to maintain patients confidentiality 
participants were anonymous and no personal information was 
collected or included in the study.

Bacterial Isolation and Species 
Identification
S. maltophilia isolates were collected from different hospitalized 
patients in selected hospitals in Iran over a 12-months period 
from May 2016 to May 2017. Laboratory identification of isolates 
was carried out using the standard biochemical methods, such 

as oxidase and catalase tests, and reactions in media, including 
deoxyribonuclease test agar (Merck Cat. No.1.10449.0500), triple 
sugar iron agar (Merck Cat. No 1.03915.0500), and SIM (Merck 
Cat. No1.05470.0500). Consequently, isolates were confirmed 
as S. maltophilia by using the 16S rRNA sequencing with 
specific primers (Table 1; Kettleson et  al., 2013). All isolates 
were stored in LB with 20% glycerol at −70°C. Escherichia 
coli ATCC 35218, Pseudomonas aeruginosa ATCC 27853,  
E. coli ATCC 25922, and S. maltophilia ATCC 13637 were 
used as the quality control strains.

Antimicrobial Susceptibility Testing
Susceptibility of isolates to different antibiotics was evaluated 
according to the criteria of the Clinical and Laboratory Standard 
Institute (Clinical and Laboratory Standards Institute (CLSI) 
(2016)). Kirby-Bauer disc diffusion method was used for 
susceptibility testing to imipenem (10 μg), meropenem (10 μg), 
doripenem (10  μg), levofloxacin (5  μg), minocycline (30  μg), 
trimethoprim-sulfamethoxazole (1.25/23.75  μg), ceftazidime 
(30  μg), and tetracycline (30  μg) (Mast, Company). Minimal 
inhibitory concentration (MIC) was determined by MIC-Test 
Strip (Liofilchem; Roseto degli Abruzzi, Italy) for four 
selected  antibiotics, including trimethoprim-sulfamethoxazole, 
chloramphenicol, ceftazidime, and ticarcillin-clavulanate. Quality 
control was performed using E. coli ATCC 35218 and E. coli 
ATCC 25922.

DNA Extraction
S. maltophilia isolates were grown on LB for 24  h at 37°C, 
and genomic DNA was extracted using the high pure PCR 
Template Preparation Kit (Roche, Germany, and Lot.
No.10362400) according to the manufacturer’s guidelines. The 
total DNA concentration was determined using the Nanodrop 
instrument (WPA Biowave II Nanospectrophotometer, USA).

PCR-Sequencing Technique
The presence of β-lactamase genes L1 and L2 as well as dfrA12, 
dfrA17, dfrA27, sul1, sul2, and Smqnr genes were examined 
using the primers shown in Table 1 (Levesque et  al., 1995; 
Hu et  al., 2011, 2016; Liu et  al., 2012; Kanamori et  al., 2015). 
As described previously (Hu et  al., 2011), PCR was conducted 
in a final volume of 25  μl containing 1  μl (20  ng) of DNA 
template and 12.5  μl of 2× Master Mix (SinaClon-Iran, CAT. 
No., PR901638), including 1× PCR buffer, 0.4  mmol/L dNTPs, 
3  mmol/L MgCl2, and 0.08  IU Taq DNA polymerase, 1  μl of 
10  pmol of each primer and 9.5  μl of sterile distilled water. 
Amplification reactions were performed on a thermal cycler 
(Eppendorf, Master Cycler Gradient, Germany). PCR was 
initiated by denaturation for 5 min 94°C, followed by 36 cycles 
of 45 s at 94°C, annealing at 50–59°C, according to the primers 
for each gene for 45  s, and extension at 72°C for 45  s. PCR 
products were electrophoresed by 1–1.5% agarose gel, visualized 
by DNA Safe staining and photographed under UV light. The 
PCR products were purified using a PCR purification Kit 
(Bioneer Co., Korea) and then, nucleotide sequencing of 
amplicons was performed by an ABI PRISM 3700 sequencer 
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(Macrogen Co., Korea). The sequenced data obtained was viewed 
in Chromas version 1.45 software. In addition, sequence 
alignment was conducted using the Nucleotide BLAST program1.

Phenotypic and Genotypic Detection of 
Biofilm Formation
Biofilm formation was examined by crystal violet staining as 
previously described by Stepanović et al. (2007). All experiments 
were performed in triplicate. An overnight culture of S. 
maltophilia was adjusted to match the turbidity of a 1.0 
McFarland standard. The cultures were then diluted 1:100  in 
200  ml tryptic soy broth (TSB) and were transferred into the 
wells of a flat-bottom polystyrene plate (SPL, Korea). After 
24  h incubation at 37°C, plates were washed three times with 
sterile phosphate buffered saline (PBS with pH 7.3). Adherent 
biofilms were fixed for 60  min at 65°C, stained for 10  min 
at room temperature with 250  ml modified crystal violet and 
then, rinsed with water and allowed to dry. Biofilm samples 
were destained by treatment with 250  ml 33% glacial acetic 
acid for 20  min and the optical density (OD) was read  
at 492  nm (OD492). Grouping of isolates was carried out 
according to the following criteria: strong-biofilm producer 

1 http://www.ncbi.nlm.nih.gov/nucleotide/

(4 × ODc < OD), moderate-biofilm producer (2 × ODc < OD 
_ 4 × ODc), weak-biofilm producer (ODc  <  OD _2 × ODc), 
and non-biofilm producer (OD _ ODc). In addition, the 
presence of rpfF, spgM, and rmlA genes was investigated by 
PCR with specific primers described in Table 1 (Pompilio 
et  al., 2011). Amplicons representing each studied gene was 
confirmed by sequencing analysis (Macrogen Korea). Obtained 
sequences were aligned in the NCBI database using BLAST 
program2.

RNA Preparation and qRT-PCR
TMP-SMX-resistant isolates were assessed for expression of 
SmeDEF efflux pump. Cell suspensions were prepared and 
inoculated on LB broth (Cho et  al., 2012). After an overnight 
growth, total RNA was extracted from the cell suspensions by 
using the RNX-Plus Kit (Cat. No., RN7713C, Sinaclon, Iran) 
according to the manufacturer’s instructions. The contaminating 
DNA was removed by RNase-free DNase I  (Fermentas, USA). 
The total RNA concentration was determined using the Nanodrop 
(WPA Biowave II Nanospectrophotometer, USA). DNase-treated 
RNA was reverse-transcribed into cDNA using the Takara Kit 
(Japan). The primers used for real-time PCR are shown in Table 2. 

2 http://www.ncbi.nlm.nih.gov/nucleotide/

TABLE 1 | Oligonucleotide primers used in this study.

Primers Sequences(5′_3′) Target References

16srRNA-F

16srRNA-R

AGTTCGCATCGTTTAGGG

ACGGCAGCACAGAAGAGC

16 s RNA (Di Bonaventura et al., 2010)

L1-F

L1-R

AGCCGTTAAAATTAAGCCC

CTTGATTGAAGGGTTGGGCG

L1 (Flores-Trevino et al., 2014)

L2-F

L2-R

CGACAATGCCGCAGCTAACC

CAGAAGCAATTAATAACGCCC

L2 (Flores-Trevino et al., 2014)

Smqnr-F

Smqnr-R

ACACAGAACGGCTGGACTGC

TTCAACGACGTGGAGCTGT

Smqnr (Kanamori et al., 2015)

sul1-F

sul1-R

ATGGTGACGGTGTTCGGCATTCTGA

CTAGGCATGATCTAACCCTCGGTC

sul1 (Hu et al., 2008)

sul2-F

sul2-R

GAAGCGCAGCCGCAATTCAT

CCTGTTTCGTCCGACACAGA

sul2 (Hu et al., 2008)

spgM-F

spgM-R

ATACCGGGGTGCGTTGAC

CATCTGCATGTGGATCTCGT

spgM (Madi et al., 2016)

rpfF-F

rpfF-R

CACGACAGTACAGGGGACC

GGCAGGAATGCGTTGG

rpfF (Madi et al., 2016)

rmlA-F

rmlA-R

CGGAAAAGCAGAACATCG

GCAACTTGGTTTCAATCACTT

rmlA (Madi et al., 2016)

dfrA12-F

dfrA12-R

TTAGCCGTTTCGACGCGCAT

ATGAACTCGGAATCAGTACGC

dfrA12 (Hu et al., 2008)

dfrA17-F

dfrA17-R

GTTAGCCTTTTTTCCAAATCTGGTATG

TTGAAAATATTATTGATTTCTGCAGTG

dfrA17 (Hu et al., 2008)

DfrA27-F

DfrA27-R

AAGAGTCTGATCGCCCATGCCG

TAAAGCAATAACTTACAATC

dfrA27 (Hu et al., 2008)

SmeD-F

SmeD-R

CGGTCAGCATCCTGATGGA

TCAACGCTGACTTCGGAGAACT

smeDEF (Cho et al., 2012)

rDNA-F

rDNA-R

TGACACTGAGGCACGAAAGC

CATCGTTTAGGGCGTGGACTA

smeDEF (Cho et al., 2012)
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Real-time PCR assay was performed on synthesized cDNA 
using the Power SYBR Green PCR Master Mix (Bioneer, Korea) 
on a Corbett Rotor-Gene 6000 real-time rotary analyzer (Corbett 
Life Science, Australia). Each amplification protocol included 
a first denaturation step of 10 min at 94°C, followed by 40 cycles 
of 20 s at 94°C and 45 s at 59°C. Samples were run in triplicate. 
Controls run without reverse transcriptase confirmed the absence 
of contaminating cDNA in any of the samples. The expression 
level of smeD gene was normalized using the rDNA housekeeping 
gene, and was calculated based on 2−ΔΔCT method. Results were 
obtained as the relative expression of the mRNA compared 
to that of S. maltophilia ATCC 13637. The parameter Ct was 
defined as the threshold cycle number at which the first 
detectable fluorescence generated by the binding of SYBR Green 
I  dye to the minor groove of double-stranded DNA began to 
increase exponentially. Final results, expressed as n-fold 
differences in expression of smeD genes, were determined 
as follows:

n
smeD

rDNA
- =fold differences in gene expression

Ct sample

Ct sammple
Ct calibrator

calibrator

/

smeD

Ct rDNA

Values of n  <  1 were considered to indicate overexpression 
of the Sme efflux system.

Molecular Typing by Multi-Locus 
Sequence Typing
Multi-Locus Sequence Typing (MLST) technique was performed 
as the same as described by Kaiser et  al. (2009). Briefly, PCR 
for seven housekeeping genes, including atpD, guaA, gapA, 
nuoD, ppsA, mutM, and recA was carried out. Amplicons were 
sequenced according to the PubMLST website recommendations3. 
Unique sequence (allele) number for each gene was assigned 
on the basis of the information in the S. maltophilia MLST 
database4 to determine specific sequence type (ST). A combination 

3 http://pubmlst.org/smaltophilia/
4 http://pubmlst.org/smaltophilia/

of the allelic sequences of the seven genes yielded the allelic 
profile for each isolate.

Molecular Typing by Repetitive Extragenic 
Palindromic-Pcr
Rep-PCR analyses were conducted with the single primer 
BoxA1R (5′-CTA CGG CAA GGC GAC GCT GAC G-3′) 
according to Versalovic et  al. (1994). The PCR reaction mix 
consisted of 25  μl total volume with 12.5  μl of 2× Master 
Mix (Genet Bio Cat.No:G-5000) containing 1 unit of Taq 
polymerase in 2× reaction buffer, 10% dimethyl sulfoxide 
(DMSO), enzyme stabilizer, sediment, loading dye, 4  mM 
MgCl2, pH 9.0 and 0.5  mM of each dNTP, 5  μM of primer, 
and 1  μl of cell extract. Thermal cycling was conducted with 
an initial denaturation at 94°C for 10  min, followed by 
25  cycles of 94°C for 45  s, 50°C for 1.5  min, 65°C for 
8  min each, and concluded by a final extension of 65°C for 
16  min. To determine phylogenetic relationships, rep-PCR 
profiles were analyzed by GelCompar II software (Applied 
Maths, Belgium) using the Pearson’s correlation coefficient 
with unweighted paired group method using arithmetic 
averages  (UPGMA) as well as at the 80% similarity level 
(Adamek  et  al.,  2011).

Statistical Analysis
Chi-squared test was performed on the association of TMP-SMX 
resistance phenotype and resistance genes using SPSS software, 
20.0 (SPSS Inc., Chicago, IL, USA). The Pearson’s correlation 
coefficient was calculated to determine the association between 
two variables. A significant level of p = 0.05 was considered 
statistically significant.

RESULTS

Patients and Bacterial Isolates
During 1-year period of study, 164  S. maltophilia isolates were 
collected from several hospitals in different regions of Iran 
(Figure 1).

Among the 164 isolates obtained, 88 were from males  
and 76 were from females (male:female ratio  =  1.15).  

TABLE 2 | Antibiotic susceptibility of the S. maltophilia clinical isolates (n = 164).

Antimicrobial agents
MIC (μg/ml) Disc diffusion Number (%)

Range MIC50 MIC90 Susceptible Intermediate Resistant

Imipenem – – – – – 164 (100%)
Meropenem – – – 6 (3/65%) – 158 (96%)
Doripenem – – – 6 (3/65%) – 158 (96%)
Ceftazidime 0.5–64 16 32 34 (20/73%) 16 (9/75%) 114 (69/51%)
Tetracycline – – – 131 (79%) – 33 (20%)
Minocycline – – – 150 (91/46%) 14 (8/53%) 0 (0%)
Levofloxacin – – – 163 (99/39%) 1 (0/6%) 0 (0%)
TMP/SMX 0.64– ≥ 32 0.5 ≤2.38 155 (94/51%) 4 (2/43%) 5 (3/04%)
Chloramphenicol 0.5–128 16 ≥32 – – –
Ticarcillin-clavulanate 0.5–128 16 64 – – –
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The age range of patients was from 1  month to 85  years. The 
majority of the isolates were originated from blood (83.53%), 
followed by nose/throat secretions (5.48%), cough swabs (9.75%), 
sputum (0.6%), and CSF (0.6%).

Antibiotic Susceptibility Profile
Based on CLSI interpretive criteria (Clinical and Laboratory 
Standards Institute (CLSI) (2016)), isolates were resistant to 

imipenem (100%), meropenem (96%), doripenem (96%), and 
ceftazidime (36.58%). Interestingly, 5 (3.04%) isolates showed 
resistance to TMP-SMX. Minocycline and levofloxacin exhibited 
the highest susceptibility of 91.46 and 99.39%, respectively. 
The MIC ranges, MIC50, MIC90, and the percentages of isolates 
resistant, intermediate, or susceptible isolates to the six 
antimicrobial agents are shown in Table 2.

Biofilm Phenotypes and Genotypes
Biofilm phenotypes accounted for 157 out of 164 isolates (95.73%): 
49 isolates (29.87%) produced strong biofilm, 63 isolates (38.41%) 
produced moderate biofilm, and 45 isolates (27.43%) produced 
weak biofilm; whereas, 7 isolates (4.26%) did not form biofilm 
(Figure 2). PCR-based typing of biofilm-related genes revealed 
an overall prevalence of 145 (88.41%), 137 (83.53%), and 164 
(100%) of rmlA, rpfF, and spgM, respectively. In addition, the 
presence of rmlA, rpfF, and spgM had a close relationship with 
biofilm formation but did not significantly affect the mean amount 
of biofilm (p  ≤  0.05). Some strong- and weak biofilm-producer 
phenotypes had mutations within the sequence of each rpfF, 
spgM, and rmlA genes.

Prevalence of Resistance Genes
Prevalence of resistance genes among 164 S. maltophilia isolates 
are shown in Table 3.

Of the 145 isolates that were positive for L1, all 145(100%) 
and 139(92.3%) showed resistance to imipenem and meropenem, 
respectively. Amongst 156 isolates carrying the L2 gene, all 
(100%) were imipenem resistant and 150 (91.1%) were 

FIGURE 1 | S. maltophilia strains isolated from Iran.  4 isolates from Birjand.  87 isolates from Tehran: Capital of Iran.  32 isolates from Ahwaz.  20 isolates from 
Shiraz.  14 isolates from Bandar Abbas.  4 isolates from Zahedan.  1 isolate from Kerman.  1 isolate from Gorgan.  1 isolate from Qom.

FIGURE 2 | Distribution of S. maltophilia isolates based on the biofilm 
formation in crystal violet staining assay.
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meropenem-resistant (p ≤ 0.001). In addition, 54.19% (89/155) 
and 58.70% (91/155) TMP-SMX-susceptible isolates and 100% 
(5/5) and 20% (1/5) TMP-SMX-resistant isolates were detected 
to contain the sul1, and sul2 genes, respectively.

Gene Expression Analysis of smeDEF
Real-time PCR analysis was used to assess the expression of 
SmeDEF efflux system in TMP-SMX-resistant S. maltophilia 
isolates (MIC > 4/76  μg/ml). Results showed that smeD gene 
was overexpressed (5.47–7.87 fold) in two out of five isolates 
(40%) in comparison to the S. maltophilia ATCC 13637 
standard strain.

MLST Analysis
As shown in Table 4, five TMP-SMX-resistant S. maltophilia 
isolates belonged to two different STs, ST139 and ST259. 
This is the first report on the detection of ST139 and ST259 
from Iran. In addition, ST259 (n  =  2) with allelic profile 
(26, 14, 140, 103, 3, 8, 11) was not previously reported. New 
allele sequences were deposited at the MLST Database hosted 
by  the Shahid Beheshti University of Medical Science, 
Tehran,  Iran5.

Rep-PCR Fingerprinting
To evaluate the genetic diversity, all 164  S. maltophilia isolates 
were subjected to rep-PCR fingerprinting. As shown in Figure 3, 
isolates were divided into 16 common types (CT) containing 
2–5 isolates and 114 single types (ST). Among these numerous 
clones, a dominant one was isolated from Ahwaz and from 
blood samples. The genotypic pattern of the dominant clone 
revealed that all isolates harbored sul1 gene.

Nucleotide Sequence Accession Numbers
The nucleotide sequence data reported in this study were 
submitted to the GenBank sequence database and assigned 
under the accession numbers: MF458984, MF497329, MG601517, 
MG640120, MG648332, MG597493, MF805867, MG640120, 
MG560825, MG597494, MG640119, and MG601518 for the 

5 http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_smaltophilia_isolates&page= 
query

L1, L2, sul1, sul2, smqnR, atpD, gapA, guaA, mutM, nuoD, 
ppsA, and recA genes, respectively.

DISCUSSION

The emergence of S. maltophilia as a nosocomial pathogen in 
hospitals with intrinsic resistance to multiple antibacterial agents, 
including carbapenems, aminoglycosides, β-lactams, and 
quinolones have caused great concern (Farrell et  al., 2010). 
Additionally, some strains have acquired resistance, leading to 
limited antimicrobial options (Wang et  al., 2013; 
Gholipourmalekabadi et  al., 2016). In Iran, decades of misuse 
of antibiotics resulted in high prevalence of antibiotic resistance 
in bacteria (Habibzadeh, 2013; Saniee et  al., 2018).

Global infectious disease surveillance stipulated that resistance 
rates for trimethoprim–sulfamethoxazole, ticarcillin-clavulanic 
acid, levofloxacin, and minocycline in S. maltophilia isolates 
are less than 4.7, 16.1, 6.5 and 5%, respectively (Sader and 
Jones, 2005). Among the 164 clinical isolates of S. maltophilia 
studied in the present study, a significant percentage was 
resistant to carbapenems (p ≤ 0.001). Resistance to carbapenems 
in S. maltophilia occurs through several mechanisms, including 
intrinsic β-lactamase expression. In this study, 145 (88.41%) 
and 156 (96.12%) isolates harbored L1-and L2- β-lactamase 
genes, respectively. Also, the results indicate that the susceptibility 
rate of S. maltophilia isolates against ceftazidime was 20.73%, 
with the MIC50 and MIC90 of 8 and 32  μg/ml, a figure that 
was in agreement with previous findings (Nicodemo and Paez, 
2007). A study by Jamali et  al. showed that susceptibility of 
S. maltophilia against ceftazidime was 82% with the MIC50 
and MIC90 values of 2 and 32 μg/ml, respectively (Jamali et al., 
2011). Shahla et  al. indicated that among 11 isolate of S. 
maltophilia, 91.4% were susceptible to ceftazidime (Shahla et al., 
2012). In a study by Pfaller, the susceptibility in Canada, United 
States, and Latin America was respectively 27, 64.7, and 93.3% 
and Tatmanin Turkey showed the susceptibility of 67% for 
this drug (Pfaller et  al., 1999; Tatman-Otkun et  al., 2005). A 
study by Farrell et  al. conducted in North America, Latin 
America, Europe, and Asian-Pacific reported a susceptibility 
rate of 27.0–46.1% to ticarcillin-clavulanate among S. maltophilia 
isolates (Farrell et  al., 2010). The present study showed 

TABLE 3 | Prevalence of resistance genes among 164 S. maltophilia strains isolated from Iran.

Resistance Genes, No. (%)

L1 L2 Smqnr sul1 sul2 dfrA12 dfrA17 dfrA27

145 (88.41%) 156 (96.12%) 103 (62.80%) 89 (54.26%) 92 (56.09%) 0 (0%) 0 (0%) 0 (0%)

TABLE 4 | Sequence type (ST) of TMP-SMX-resistant S. maltophilia clinical isolates recovered in the present study.

Number of 
isolates

atpD gapA guaA mutM nuoD ppsA recA ST

3 allele 3 allele 4 allele 110 allele 46 allele 6 allele 38 allele 58 139
2 allele 26 allele 14 allele 140 allele 103 allele 3 allele 8 allele 11 259
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FIGURE 3 | Continued
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susceptibility rate of 57.92% to ticarcillin-clavulanate. MIC50 
and MIC90 for ticarcillin-clavulanate was 12 and 128  μg/ml. 
A study in a Brazilian hospital showed the susceptibility pattern 
of S. maltophilia against chloramphenicol differs from 11.5 to 
81.4% (Nicodemo and Paez, 2007). In our study, 7.31% of 
isolates were found to be  susceptible to this antibiotic with 
MIC50 and MIC90 of 24 and 64  μg/ml. This variety in results 
designate that the susceptibility of S. maltophilia is variable 
in different countries and even in different hospitals. Other 
therapeutic alternatives, such as levofloxacin and minocycline, 
which have been reported as effective agents for treatment of 
invasive S. maltophilia infections (Wu et  al., 2012, 2013; Cho 
et  al., 2014), showed susceptibility rates of 99.39 and 96.41% 
in our study. Although the prevalence of minocycline and 
levofloxacin-resistant S. maltophilia is low worldwide, continued 
surveillance of resistance to such antimicrobials ensures 
their activity.

Historically, TMP-SMX is considered the first line of defense 
in S. maltophilia infections (Chung et  al., 2015; Kaur et  al., 
2015). Results from the SENTRY Antimicrobial Surveillance 
Program in 2004 indicated that 3.8% of S. maltophilia isolates 
were resistant to TMP-SMX (Fedler et  al., 2006). Moreover, 
the resistance rate reported for Latin America, Argentina, and 
Malaysia were approximately less than 4.5 and 1% (Barbolla 
et  al., 2004; Farrell et  al., 2010; Neela et  al., 2012). Resistance 
rates vary geographically but are commonly less than 10% 
reported in several studies (Kaur et  al., 2015). However, high 
and different rates of resistance have been reported in patients 
with cancer and cystic fibrosis (Valenza et al., 2008). In different 
studies by Shahla et al. (2012), Hu et al. (2016), Tatman-Otkun 
et  al. (2005), Wang et  al. (2004), Nicodemo et  al. (2004), and 
Kaur et  al. (2015), the susceptibility rates were reported 47.3, 
61.3, 95.8, 60, 98.6, and 22.6%, respectively. Jamali et al. showed 
about 60% susceptibility rate for TMP-SMX and the MIC50 
and MIC90 values were 0.5 and 2  μg/ml (Jamali et  al., 2011). 
In our study, based on the CLSI recommended dose of TMP-SMX, 
the resistance rate of 3.04% and the MIC50% and MIC90% values 
of 2.38 and 4.76 were found, respectively. We  believe that this 
resistance rate for TMP-SMX, as the treatment of choice for 
S. maltophilia infection, is sustainable, making necessary the 
future successive reevaluation of susceptibility to this antibiotic 
in Iranian hospitals.

The well-known mechanism responsible for TMP-SMX 
resistance is harboring the sul1, sul2, and/ordfrA resistance 
genes located either on a chromosome or plasmid (Hu et  al., 
2011). In this study, sul1 and sul2 genes were detected  
in both TMP-SMX-resistant and TMP-SMX-susceptible 
S. maltophilia clinical isolates. Additionally, antimicrobial efflux 
pump mechanisms have been increasingly recognized as sources 
of intrinsic and acquired resistance (Song et  al., 2010; Hu 
et al., 2011; Gholami et al., 2015). As reported in other studies, 
the frequency of sul2 gene in S. maltophilia strains is less 
than that of sul1 gene (Song et  al., 2010; Hu et  al., 2011). 

These reports are contrary to the results of our study, where 
a higher percentage of sul2 and sul1 (56.9 and 54.26%, 
respectively) was observed. Furthermore, both sul1 and sul2 
genes were found in TMP-SMX -susceptible and –resistant 
isolates. Similar to our study, Kaur et  al. indicated that the 
percentage of sul1 and sul2 were 50 and 58.3%, respectively 
(Kaur et  al., 2015). In addition, none of the isolates tested 
were positive for dfrA12, dfrA17, and dfrA27. In contrast, a 
study showed that 49.1% of TMP-SMX-resistant isolates and 
10.3% of TMP-SMX-susceptible isolates were positive for dfrA 
genes, among them dfrA12 and dfrA17 genes were more 
prevalent (Hu et  al., 2016). Previous reports indicated that 
overexpression of the SmeDEF efflux system in S. maltophilia 
plays a significant role in resistance to several antibacterials, 
including aminoglycosides, β-lactams, and quinolones (Chang 
et al., 2004; Cho et al., 2012). The results showed overexpression 
of smeD in 2 (40%) of the 5 TMP-SMX-resistant clinical 
isolates. Sanchez et  al. showed that overexpression of the 
SmeDEF efflux pump decreases the susceptibility to TMP-SMX 
(Sánchez and Martínez, 2015).

An important feature of S. maltophilia is its ability to form 
biofilms on hospital surfaces as well as on human tissues; 
biofilms have been related to 65% of hospital-acquired infections 
(Zhuo et  al., 2014). In this study, the majority of isolates 
were biofilm-producer as well as biofilm-related gene (rpfF, 
rmlA and spgM) carrier. In a study by Flores-Trevino et  al., 
they showed that all S. maltophilia isolates were able to form 
biofilm and 47.9, 38.7, and 13.4% of the isolates were weak-, 
moderate-, and strong-biofilm producers, respectively (Flores-
Trevino et  al., 2014). Zhou et  al. showed that the results of 
a biofilm formation assay on polystyrene was strong in 49 
(29.87%) strains, moderate in 63 strains (38.41%), and weak 
in 45 (27.43%) strains, while nine strains (4.26%) were 
non-biofilm former. Furthermore, the presence of rpfF and 
spgM was significantly correlated to biofilm formation. Pompilio 
et  al. reported that spgM gene played a significant role in 
formation of strong biofilm among S. maltophilia isolates (Zhuo 
et  al., 2014). Similarly, the presence of rmlA, rpfF, and spgM 
genes in the present study improved significantly biofilm 
formation by S. maltophilia isolates tested (p  ≤  0.05). Indeed, 
the isolates with rpfF+/spgM+/rmlA+ genotype were associated 
with production of moderate or strong biofilm. In addition, 
amino acid substitution in genes encoding SpgM, RpfF and 
RmlA were found among some strains (Corlouer et  al., 2017). 
However, it is still unclear which gene mutation results to 
change in biofilm formation.

High genetic diversity among S. maltophilia isolates has been 
described worldwide. Although occurrences of outbreaks within 
hospital settings have also been reported (Flores-Trevino et  al., 
2014). Recently, molecular epidemiologic studies, like MLST is 
developed for S. maltophilia strain-typing that focuses on conserved 
housekeeping genes (Corlouer et al., 2017). In the present study, 
MLST analysis was performed for determining genetic diversity 

FIGURE 3 | Dendrogram based on Dice’s coefficient of similarity using UPGMA method applied by the GelComparII program showing relationships between  
S. maltophilia strains according to BOX-PCR genotyping.
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of five TMP-SMX-resistant isolates. The results revealed two 
STs (ST139 and ST259), of which ST259 was identified for the 
first time in this study. Similarly, studies in Spain in 2004, and 
Korea in 2010, a high rate of genetic diversity among S. maltophilia 
isolates despite their source in a single hospital (Valdezate et al., 
2004; Cho et  al., 2012; Corlouer et  al., 2017). These findings 
indicate that S. maltophilia has a high potential for environmental 
distribution, although database analysis shows that there are 
noticeably fewer STs for S. maltophilia isolates than other bacterial 
isolates. Rep-PCR fingerprinting is a method with lower cost 
and the best time efficiency. According to the cluster analysis 
of S. maltophilia strains, this study detected high clonal diversity 
among the isolates. The only exception is the dominant common 
type including strains isolated from blood culture of patients 
hospitalized in Ahwaz. In addition, all these isolates harbored 
sul1 gene. As a result, the presence and spread of these strains 
with resistance gene could be  a significant threat.

CONCLUSIONS

This multi-institutional study revealed that S. maltophilia is an 
emerging MDR opportunistic pathogen in hospital settings, 
especially among immunocompromised patients. TMP-SMX 
remains the most effective antibacterial agent against S. maltophilia. 
So, a significant effort is required to maintain antibacterial 
properties of this antibiotic. Due to the low prevalence of resistance 
to two antibiotics levofloxacin and minocycline, clinical usage 
of these agents can be  continued. The findings of this study 

showed an increasing presence of antibacterial resistance-and 
biofilm genes among the clinical isolates of S. maltophilia strains 
in Iran. Clinicians must consider that S. maltophilia as a co-pathogen 
or co-colonizer in polymicrobial infections can have negative 
effect on the success rate of antibacterial treatment and clinical 
outcome. In our opinion, this is significant medical problem, 
which should be  of great concern.
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Gastrointestinal illnesses continue to be a global public health risk. Exposure to

foodborne Salmonella directly or indirectly through consumption of ready-to-eat seafood

can be an important route of infection to humans. This study was designed to

estimate the population cell density, prevalence, virulence gene signatures, and antibiotic

resistance of Salmonella serovars from ready-to-eat shrimps. Ready-to-eat (RTE) shrimp

samples were obtained from different open markets in Delta and Edo States, Nigeria

from November 2016 to October 2017. We employed classical and polymerase chain

reaction (PCR) approaches. The mean Salmonella species enumerated from the RTE

shrimps ranged from −0.301 to 5.434 log10 cfu/g with 210/1440 (14.58%) of the RTE

shrimp samples harbored Salmonella species. After biochemical and PCR approach,

the identified isolates were Salmonella Enteritidis 11(24.4%), Salmonella Typhimurium 14

(31.1%) and other Salmonella spp. 20 (44.4%). All Salmonella species recovered were

resistant to penicillin and erythromycin with 100% sensitivity to cefotaxime, cephalothin,

colistin, and polymyxin B. Findings on the multidrug-resistant (MDR) profile showed that a

total of 9/14 (64.3%) ofSalmonella Enteritidis were resistant to 5 antibiotics which belongs

to 3 different groups of antimicrobials with a multiple antibiotic-resistant (MAR) index of

0.21; while 3/11 (27.3%) ofSalmonella Typhimuriumwere resistant to 11 antibiotics which

belongs to 7 different groups of antimicrobials with a MAR index of 0.46. Virulence genes

(spiA, sipB, invA, sifA, fljB, and sefA) and resistance genes (class 1 and II integrase,

sul2, catB3, flor, tmp, blaTEM, strB, dfr1, and tetC) were also detected in some of

the Salmonella species with variable percentage. This study indicates that ready-to-eat

shrimps are probable reservoirs harboring Salmonella strains. The identified Salmonella

isolates which exhibited virulence determinants and antibiotic-resistant coupled with high

MAR index constitute a consumer health risk to the communities.

Keywords: multidrug resistant, salmonellosis, virulence determinants, seafood, health risk
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INTRODUCTION

Shrimps constitute a large proportion of crustaceans which varies
in sizes (Orji et al., 2016) and have been described as the most
significant seafood traded on a global scale (Oosterveer, 2006).
The world shrimp production for both farmed and captured
shrimp is ∼6 million tons with 60% entering the world market.
Shrimp has been reported to be themost essentially traded fishery
product internationally as it translates to value. Yearly shrimp
exports presently value above US$10 billion, or 16% of total fish
product exports (Food Agriculture Organization of the United
Nations, 2008). Shrimp makes up 20% value of exported fishery
products for more than 20 years (CAC, 2002). Imports of shrimps
into developed nations are responsible for about 40% trade
of intra-developed countries, while approximately 60% comes
from developing nations. From developing nation exports, 80%
goes to developed nation with only 20% left behind (Josupeit,
2005). Shrimps are one of the important exported aquaculture
products from the tropics. The interaction of microbial diversity
that comes in connection with shrimps during harvesting and
processing is a prospective public health threats as a consequence
of disease and spoilage transmission.

The main disease causing serovars of Salmonella enterica
subspecies enterica which are pathogenic to humans as a result
of diverse seafood and non-seafood products include Salmonella
Typhimurium and Salmonella Enteritidis (Ed-dra et al., 2017).
Salmonellosis which is an infection of the intestinal epithelium
is instigated by the Salmonella genus (Igbinosa and Beshiru,
2017; Beshiru et al., 2018). Within the United States more than
40,000 cases of salmonellosis are recounted yearly with seafood
considered as one of the most significant source of Salmonella
(Brands et al., 2005; Duran and Marshall, 2005). Contamination
results when the salmonellae enter RTE food and replicate within
the food, as a result of inadequate food preparation, poor storage
temperatures, or cross-contamination (Skyberg et al., 2006).
Hence, the occurrence of Salmonella in RTE seafood from open
market is an important food safety risk.

Antimicrobial-resistant Salmonella serovars may result
from the continuous usage of antimicrobials in food animal
production, where these antimicrobial resistant Salmonella are
therefore disseminated to humans, usually through contaminated
food. The application of antimicrobials in aquaculture systems
has led to the accumulation of antibiotic-resistance genes
and antibiotic-resistant bacteria (Yano et al., 2011; Igbinosa,
2016). Antibiotics commonly used in agricultural/aquaculture
systems in Nigeria are gentamycin, ivermectin, oxytetracycline,
tylosin, septinomycin, and cephalosporin. Food and Drug
Administration (FDA) has permitted the use of five different
drugs (sulfamerazine, chorionic gonadotropin, florfenicol,
oxytetracycline hydrochloride, oxytetracycline dihydrate, as
well as combination of sulfadimethoxine and ormetoprim)
in aquaculture so long as the seafood harbors less than the
required maximum residue limit (Serrano, 2005). FDA has also
approved two drugs: hydrogen peroxide and formalinwith no
tolerance level set a (Serrano, 2005). Multidrug resistance (MDR)
in Salmonella is of significant concern as treatment regimens
may be challenging, thus making management of these disease

difficult. Salmonella Typhimurium is one of the most widespread
MDR Salmonella serovars recovered from humans and animals
in the United States (Brunelle et al., 2013). The continuous
rise and dissemination of antibiotic resistance phenotypes and
determinants among Salmonella serovars has metamorphosed
into a public health space. Notably, strains of Salmonella
which have clinically phenotypic and genotypic resistance to
antibiotic agents such as extended spectrum cephalosporins
and fluoroquinolones, have been recovered from food animals
(Li et al., 2013; Igbinosa, 2015). Within developing countries,
overuse and misuse of antibiotics has led to the upsurge of MDR
in Salmonella strains (Ed-dra et al., 2017).

Antibiotic-resistant Salmonella connected with cultivated
Litopenaeus vannamei have been reported in Malaysia where
Salmonella enterica serovar Corvallis recovered from shrimp
revealed multiple and individual antibiotic resistance profiles
(Banerjee et al., 2012). In Nigeria there are some reports that have
revealed the occurrence of Salmonella species from numerous
food types, with no study on the surveillance of Salmonella
Typhimurium, Salmonella Enteritidis and other Salmonella spp.
from RTE shrimps. Hence, the objective of this research was
to determine the prevalence, multiple antibiotic resistance,
virulence and antibiotic resistance genes of Salmonella serovars
recovered from retail RTE-shrimps in Nigeria.

MATERIALS AND METHODS

Study Area
The RTE shrimp were obtained from major open markets
in Delta and Edo States, Nigeria. There are 3 Senatorial
Districts in each of Edo and Delta State. Six different markets
were assessed from each state which makes it a total of 12
markets with 2 markets from each Senatorial District. In Delta
State, markets include Ughelli main market, Sapele market
(Delta Central Senatorial District), Ogbegonogo market, Ashafor
market Aniocha Asaba market (Delta North Senatorial District),
main market Oleh Isoko, and Igbudu market Warri (Delta
South Senatorial District). For Edo State, markets include New
Benin market, Oba market (Edo South Senatorial District),
Igarra market, Jattu market (Edo North Senatorial District),
Uromi main market and Ekpomamarket (Edo Central Senatorial
District). The respective markets were chosen based on the
strategic locations in their respective communities and are highly
dense due to the population of individuals that patronizes these
markets. The RTE shrimp that were collected from these markets
were mainly tiger shrimps (Penaeus monodon) and pink shrimp
(Penaeus notialis) and included smoked shrimps, dried shrimps,
fried shrimps, sauced shrimps, and boiled shrimps.

Sample Collection
One thousand four hundred and forty RTE shrimp samples
were obtained between November 2016 and October, 2017.
Ten samples each were obtained from each of the respective
12 selected open markets (6 each from Delta and Edo States)
culminating in the 1440 RTE samples. Samples were obtained
based on the type of RTE shrimps available with respect to the
sampling location. The RTE shrimp samples were obtained from
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the selected open markets with the aid of a sterile polythene bag.
The polythene bags were immediately placed on ice pack and
conveyed to the laboratory where microbiological analyses were
carried out within 24 h after collection.

Enrichment, Enumeration and Isolation of
Salmonella Species
This was carried out in line with the International Organization
for Standardization (2017). Twenty-five grams of individual RTE
shrimp samples was weighed and placed in a sterile homogenizer
bag containing 225mL of tryptone soy broth (TSB) (Merck,
Darmstadt, Germany), as pre-enrichment and incubated at 37◦C
for 18–24 h. Before incubation, the stock suspension was serially
diluted using sterile distilled water from 10−1 to 10−9. Dilution
with 100 µL of each diluent aseptically platted in triplicates
into xylose lysine deoxycholate (XLD) agar (Lab M, Lancashire,
United Kingdom) and hektoen enteric agar (HEA) (Lab M,
Lancashire, United Kingdom). This was followed with incubated
at 37◦C for 24–48 h where presumptive Salmonella species which
appear as distinct green colonies with or without black centers
were enumerated and expressed in log10 colony forming units
per gram (log10 cfu/g). After incubation with the pre-enrichment
broth with TSB, 100 µL were inoculated into 9.0mL of selenite
cysteine F Broth (Lab M, Lancashire, United Kingdom) and
incubated at 37◦C for 18–24 h. After incubation, 100 µL of
the turbid suspension was inoculated into XLD and HEA
and incubated at 37◦C for 18–24 h where a maximum of 2
presumptive Salmonella colonies were selected and sub-cultured
on a fresh XLD and HEA and incubated at 37◦C for 18–24 h.
Distinct colonies were further purified on tryptone soy agar
(TSA) (Merck, Darmstadt, Germany) incubated at 37◦C for 18–
24 h. Isolates were transferred into a 1mL TSA in an Eppendorf
tube and incubated at 37◦C for 24 h and stored in the refrigerator
at 4◦C until ready for further use.

Presumptive Identification of Salmonella

Species
All Salmonella species were screened via biochemical (oxidase,
catalase, indole, and sugar fermentation test, citrate),
morphological (Gram reaction with 3% KOH test), and
cultural (colony) characterization. Analytical Profile Index 20E
(API 20E) was also used for the Salmonella species respectively
according to the manufacturer’s instructions (BioMerieux,
Marcy-l’Étoile, France) using API lab plus software (bioMerieux,
Marcy l’Etoile, France).

Genomic Deoxyribonucleic Acid (gDNA)
Extraction Procedure
Genomic DNA from Salmonella species were extracted via
boiling method described by Igbinosa et al. (2017). The
Salmonella isolates were inoculated in 5.0mL TSB incubated at
37◦C for 18–24 h (Beshiru et al., 2018). A 100 µL of the turbid
suspension was combined with 100µL of sterilized distilled water
in a 2.0mL Eppendorf tube and subjected to a dry bath (MK200-
2, Shanghai, China) for 15min at 100◦C for cell lyses. The lysed
cell mixture was then centrifuged with a mini centrifuge (Mini

14k, Zhuhai, Guangdong, China) at 14 500 r/min for 15min. The
cell fragments were carefully separated from the supernatant. The
supernatant was stored at−20◦C as the template gDNA.

Polymerase Chain Reaction Amplification
Procedure
All reactions were carried out in 25.0 µL volume of reaction
(10 × Buffer 2.5 µL; MgCl2 1.0 µL; dNTP-Mix 3.0 µL; Taq
polymerase 0.2 µL; Reverse primer 1.25 µL; Forward primer
1.25 µL; sterile double distilled H20 10.8 µL and gDNA 5.0
µL). Primers used for the detection of Salmonella species are
shown in Table S1. The reaction was performed via a Peltier-
based Thermal Cycler (BioSeparation System, Shanxi, China)
with an initial denaturation at 95◦C for 10min; 35 cycles of
denaturation at 94◦C for 60 s, primer annealing as indicated in
Table S1 and extension at 72◦C for 90 s; final extension at 72◦C
for 10min. Salmonella enterica serovar Typhymurium ATCC
14028, Salmonella Enteritidis ATCC 13076, were used as positive
controls while deionized water was used as a negative control for
each test procedure. Thermal cyclic conditions for the detection
of antibiotic-resistance genes for Salmonella species were as
follows; initial denaturation at 94◦C for 2min followed by 35
cycles of 94◦C for 1min, annealing condition as in Table S2

and extension at 72◦C for 1min with a final extension at
72◦C for 10min and cooling to 4◦C. The PCR conditions for
amplification of the virulence genes were as follows: 5min of
initial denaturation at 95◦C, followed by 30 cycles of denaturation
at 94◦C for 30 s, annealing as described in Table S3, and
extension at 72◦C for 60 s, ending with a final extension period
of 72◦C for 2min. Electrophoresis of the amplified PCR products
were loaded on 1.2% agarose gel (CLS-AG100, Warwickshire,
United Kingdom) in 0.5× TAE buffer (pH 8.5, 20mMNa acetate,
40mM Tris-HCl, 1mM EDTA) and allowed to run for 1 h at
100V. The gels were viewed via a UV transilluminator (EBOX
VX5, Vilber Lourmat, France).

Antimicrobial Susceptibility Profile of the
Salmonella Isolates
Antimicrobial susceptibility profile of the Salmonella species
was carried out using Kirby-Bauer disc diffusion method.
Briefly, the purified isolates were inoculated in 5.0mL Mueller-
Hinton Broth (MHB) (Lab M, Lancashire, United Kingdom)
and incubated overnight. The optical density (OD) of the
turbidity of the broth was adjusted to McFarland standard
0.5 equivalent to 108 cfu/mL. Using a sterile swab sticks,
respective broth cultures were aseptically swabbed on Mueller
Hinton Agar (Lab M, Lancashire, United Kingdom). A
total of 24 antibiotic discs (Mast Diagnostics, Merseyside,
United Kingdom) which included kanamycin (30 µg),
gentamycin (10 µg), streptomycin (25 µg), erythromycin
(15 µg), tobramycin (10 µg), ampicillin (10 µg), amoxicillin
(25 µg), imipenem (10 µg), ampicillin/sulbactam (30 µg),
meropenem (10 µg), cefotaxime (30 µg), sulfamethoxazole (30
µg), cephalothin (30 µg), trimethoprim (25 µg), erythromycin
(15 µg), amoxicillin/clavulanate (30 µg), colistin (20 µg),
chloramphenicol (30 µg), penicillin G (10 µnits), polymyxin
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B (300 units), oxytetracycline (30 µg), doxycycline (30 µg),
tetracycline (30 µg), ofloxacin (5 µg), and ciprofloxacin (10
µg) were used for the susceptibility testing. The respective discs
were also aseptically impregnated on the agar plates using a
sterile forceps equidistant apart. Plates were allowed to stand at
room temperature for 5min and incubated at 37◦C for 18–24 h.
Resistance, intermediate or susceptibility profile of the isolates
were elucidated by determining zone of inhibition and matched
with the interpretative chart of Clinical Laboratory Standards
Institute (2017) to determine the sensitivity, intermediate and
resistance profiles of the isolates to the antibiotics used.

Statistical Analysis
All data were analyzed using the statistical package SPSS (Version
21.0) andMicrosoft Excel 2013. Descriptive statistics were carried
out to determine the mean population density and expressed in
Log10 CFU/g. One Way Analysis of Variance was applied to the
densities from open markets while Duncan Multiple Range test
was used to show significant difference between mean variables.
The p < 0.05 were considered statistically significant.

RESULTS

Population Cell Density of Salmonella

Species From the RTE Shrimps
The mean Salmonella species counts from RTE shrimps
obtained from open markets are presented in Table S4. The
mean Salmonella species counts from the RTE shrimps are
all expressed in log10 cfu/g. The values ranged from 0.079
to 3.516 (November), 0.613–3.817 (December), 0.255–4.492
(January), 0.602–4.841 (February), 0.959–4.822 (March), 1.562–
5.118 (April), 1.573–5.434 (May), 2.003–5.274 (June), 2.001–
5.356 (July), 1.782–4.555 (August), 0.944–4.754 (September),
and −0.301 −3.748 (October) during the 12 month sampling
regimen. Significant differences were observed across the
respective markets as p < 0.01. For the respective markets,
values ranged from 0.977 to 2.391 (Oba Market), 0.944–3.283
(New Benin Market), 0.613–3.231 (Jattu Market), 0.079–2.075
(Igarra Market), −0.301 −3.318 (Ekpoma Market), 1.272–
3.484 (Uromi Market), 2.572–4.428 (Sapele Market), 3.053–4.481
(Ughele Market), 3.083–5.434 (Ogbegonogo Market), 3.185–
5.205 (Ashafor Market), 3.161–4.435 (Igbudu Market), and
3.236–5.356 (Main Market, Oleh). Significant differences were
observed across the respective months as p < 0.01.

Prevalence of Positive Salmonella Samples
The distribution of positive Salmonella samples from respective
markets include, 14/120 (11.7%) for Oba market, 10/120 (8.33%)
for New Benin market, 8/120 (8.33%) for Jattu market, 9/120
(7.5%) for Igarra market, 7/120 (5.83%) for Ekpoma market,
10/120 (8.33%) for Uromi market, 23/120 (19.17%) for Sapele
market, 27/120 (22.5%) for Ughele market, 26/120 (21.67%)
for Ogbegonogo market, 25/120 (20.83%) for Ashafor market,
27/120 (22.5%) for Igbudu market, 24/120 (20%) for main
Market Oleh. Overall, 210/1440 (14.58%) were positive for
Salmonella species.

Salmonella Detection From RTE Shrimps
This study revealed, 210/1440 (14.58 %) of the RTE shrimp
samples were positive for Salmonella species. All the tentatively
210 Salmonella isolates were characterized via culture-based and
biochemical procedures using Gram-reaction with 3% KOH
test, oxidase, urease reactions, indole and motility tests. The
Salmonella isolates that appear negative for urease, oxidase,
indole and Gram-negative rods were selected as presumptive
Salmonella. Only 67 Salmonella isolates were positive using this
culture-based approach. Analytical profile index (API 20E) were
further employed to confirmed the identity of 49 Salmonella
isolates. From the 49 Salmonella isolates positive from the
API test, Salmonella genus-specific primer was only positive
for 45 isolates. This was further identified using the species-
specific primer that target Salmonella Enteritidis 11 (24.4%),
Salmonella Typhimurium 14 (31.1%) and other Salmonella
spp. 20 (44.4%). In Oba Market, 1/4 (25%) were confirmed
to be Salmonella Enteritidis, 1/4 (25%) were confirmed to be
Salmonella Typhimurium, 2/4 (50%) were confirmed to be other
Salmonella species (Table S5).

Antimicrobial Susceptibility Profiles of the
Salmonella Species From RTE Shrimps
The distribution of antimicrobial susceptibility profile of
Salmonella species is presented in Table 1. For Salmonella

Enteritidis, 100% (14/14) were resistant to erythromycin and
penicillin, 85.7% (12/14) were resistant to amoxicillin/clavulanate
and ampicillin, 92.9% (13/14) were resistant to amoxicillin,
71.4% (10/14) were resistant to ampicillin/sulbactam. For
Salmonella Typhimurium, 100% (11/11) were resistant to
erythromycin and penicillin, 90.9% (10/11) were resistant
to ampicillin and amoxicillin, 72.7% (8/11) were resistant
to amoxicillin/clavulanate, 63.6% (7/11) were resistant to
doxycycline. For other Salmonella species, 100% (20/20) were
resistant to erythromycin and penicillin, 80% (16/20) were
resistant to amoxicillin, 75% (15/20) were resistant to ampicillin,
70% (14/20) were resistant to amoxicillin/clavulanate, 65%
(13/20) were resistant to streptomycin. Number of resistant +
intermediate Salmonella species as shown in Table 1 include
0/45 (cefotaxime, cephalothin, polymycin B and colistin),
45/45 (ampicillin, amoxicillin, erythromycin, penicillin, and
amoxicillin/clavulanate), 38/45 (ampicillin/sulbactam), 37/45
(streptomycin), 36/45 (doxycline), 33/45 (tetracycline), 30/45
(oxytetracycline and ciprofloxacin), 26/45 (ofloxacin).

Distribution of Multiple
Antibiotic-Resistance Characteristics of
the Salmonella Species
The MDR and MAR index distribution of Salmonella species
is presented in Table 2. A total of 9/14 (64.3%) of Salmonella
Enteritidis were resistant to 5 antibiotics (AMPR, AMXR,
AMCR, ERYR, PENR) which belonged to 3 different groups of
antimicrobials with a MAR index of 0.21. Furthermore, 4/14
(28.6%) of Salmonella Enteritidis were resistant to 11 antibiotics
(AMPR, AMXR, AMCR, STRR, SAMR, CIPR, OXYR, TETR,
OFXR, ERYR, PENR) which belonged to 8 different groups of
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TABLE 1 | Antimicrobial susceptibility profiles of the Salmonella species.

Antimicrobial class Antibiotics Salmonella species

Salmonella Enteritidis (n = 14) Salmonella Typhimurium (n = 11) Other Salmonella spp. (n = 20)

R I S R I S R I S

Aminoglycosides GEN 7.1 42.9 50 0 27.27 72.72 10 15 75

KAN 0 21.4 78.6 0 9.09 90.9 0 5 95

STR 50 28.6 21.4 54.5 27.27 18.18 65 20 15

TOB 7.1 42.9 50 0 54.54 45.45 5 25 70

Aminopenicillins AMP 85.7 14.3 0 90.9 9.09 0 75 25 0

AMX 92.9 7.1 0 90.9 9.09 0 80 20 0

B-lactam/Beta-lactamase Inhibitors SAM 71.4 14.3 14.3 45.45 54.54 0 50 25 25

Carbapenems IPM 7.1 14.3 78.6 18.18 9.09 72.72 5 5 90

MEM 0 7.1 92.9 0 9.09 90.9 0 10 90

Cephalosporins CTX 0 0 100 0 0 100 0 0 100

CEF 0 0 100 0 0 100 0 0 100

Folate pathway inhibitors SUL 0 21.4 78.6 0 54.54 45.45 0 35 65

TMP 0 7.1 92.9 0 27.27 72.72 0 10 90

Macrolides ERY 100 0 0 100 0 0 100 0 0

Penicillins PEN 100 0 0 100 0 0 100 0 0

AMC 85.7 14.3 0 72.72 27.27 0 70 30 0

Phenicols CHL 7.1 28.6 64.3 9.09 9.09 81.81 0 50 50

Ploymyxins CST 0 0 100 0 0 100 0 0 100

PMB 0 0 100 0 0 100 0 0 100

Tetracyclines DOX 35.7 50 14.3 63.64 9.09 27.27 45 35 20

OXY 42.9 21.4 35.7 27.27 45.45 27.27 35 30 35

TET 50 28.6 21.4 36.36 18.18 45.45 50 30 20

Quinolone CIP 50 35.7 14.3 36.36 18.18 45.45 25 35 40

OFX 42.9 21.4 35.7 45.45 9.09 45.45 35 20 45

GEN, Gentamycin (10 µg); KAN, Kanamycin (30 µg); STR, Streptomycin (25 µg); TOB, Tobramycin (10 µg); AMP, Ampicillin (10 µg); AMX, Amoxicillin (25 µg); SAM, Ampicillin/Sulbactam

(30 µg); MEM, Meropenem (10µg); IPM, Imipenem (10 µg); CTX, Cefotaxime (30 µg); CEF, Cephalothin (30 µg); SUL, Sulfamethoxazole (30 µg); TMP, Trimethoprim (25 µg); ERY,

Erythromycin (15 µg); PEN, Penicillin G (10 µunits); AMC, Amoxicillin/clavulanate (30 µg); CHL, Chloramphenicol (30 µg); CST, Colistin (20 µg); PMB, Polymyxin B (300 units); DOX,

Doxycycline (30 µg); OXY, Oxytetracycline (30 µg); TET, Tetracycline (30 µg); CIP, Ciprofloxacin (10 µg); OFX, Ofloxacin (5 µg); R, Resistant; I, Intermediate; S, Sensitive.

antimicrobials with a MAR index of 0.46. A total of 9/11 (81.8%)
of Salmonella Typhimurium were resistant to 4 antibiotics
(AMPR, AMXR, ERYR, PENR) which belonged to 3 different
groups of antimicrobials with aMAR index of 0.17. Furthermore,
3/11 (27.3%) of Salmonella Typhimurium were resistant to 11
antibiotics (AMPR, AMXR, ERYR, PENR, STRR, AMCR, DOXR,
SAMR, TETR, CIPR, OFXR) which belonged to 7 different groups
of antimicrobials with a MAR index of 0.46. A total of 9/20
(45%) of other Salmonella spp. were resistant to 6 antibiotics
(STRR, AMPR, AMXR, ERYR, PENR, AMCR) which belonged to
4 different groups of antimicrobials with a MAR index of 0.25.
Furthermore, 3/20 (15%) of other Salmonella spp. were resistant
to 12 antibiotics (STRR, AMPR, AMXR, ERYR, PENR, AMCR,
SAMR, DOXR, TETR, OXYR, OFXR, CIPR) which belonged to
7 different groups of antimicrobials with a MAR index of 0.50.

Distribution and Proportion of Virulence
Gene Elements Among the Salmonella

Species
The distribution of virulence genes among Salmonella species
is presented in Table 3. For Salmonella Enteritidis 10/14

(71.4%) harbored spiA (involved in both biofilm formation and
virulence), 11/14 (78.6%) revealed sipB (allows easy entering
of non-phagocytic cells and lysing of macrophages), 14/14
(100%) harbored invA (Salmonella invasion gene), 12/14 (85.7%)
revealed sifA (for the development of filamentous assemblies)
and fljB (flagellin gene), 13/14 (92.9%) harbored sefA (fimbrial
subunit of Salmonella antigen) (Table 3).

Distribution of Antibiotic-Resistant
Elements Among the Salmonella Species
The distribution of antibiotic-resistant elements amongst
Salmonella species is presented in Table 4. For Salmonella
Enteritidis 9/14 (64.3%) harbored Class 1 integrase, 6/14
(42.9%) demonstrated Class 2 integrase, 8/14 (57.1%) revealed
sul2 (sulphonamide resistance gene) and catB3 (group B
chloramphenicol acetyltransferase gene), 10/14 (71.4%)
revealed flor (florfenicol/chloramphenicol resistance gene),
tmp (dihydrofolate reductase gene), blaTEM (beta-lactamase
resistant gene), 11/14 (78.6%) demonstrated strB (streptomycin
inactivating enzyme), 12/14 (85.7%) harbored dfr1 (specific

Frontiers in Microbiology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1613658

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Beshiru et al. Resistance and Virulence Elements of Salmonella Serovars

TABLE 2 | Distribution of multiple antibiotic resistant characterizations of the Salmonella species.

Salmonella

species

No of

antimicrobial class

No of

antibiotics

Resistance phenotypes No of resistant

species (%)

MAR index

Salmonella Enteritidis

(n = 14)

3 5 AMPR, AMXR, AMCR, ERYR, PENR 9(64.3) 0.21

6 8 AMPR, AMXR, AMCR, STRR, SAMR, CIPR, ERYR, PENR 6(42.9) 0.33

8 11 AMPR, AMXR, AMCR, STRR, SAMR, CIPR, OXYR, TETR,

OFXR, ERYR, PENR
4(28.6) 0.46

Salmonella Typhimurium

(n = 11)

3 4 AMPR, AMXR, ERYR, PENR 9(81.8) 0.17

5 7 AMPR, AMXR, ERYR, PENR, STRR, AMCR, DOXR 5(45.5) 0.29

7 11 AMPR, AMXR, ERYR, PENR, STRR, AMCR, DOXR, SAMR,

TETR, CIPR, OFXR
3(27.3) 0.46

Other Salmonella spp.

(n = 20)

4 6 STRR, AMPR, AMXR, ERYR, PENR, AMCR 9(45) 0.25

6 9 STRR, AMPR, AMXR, ERYR, PENR, AMCR, SAMR, DOXR,

TETR
8(40) 0.38

7 11 STRR, AMPR, AMXR, ERYR, PENR, AMCR, SAMR, DOXR,

TETR, OXYR, OFXR
5(25) 0.46

7 12 STRR, AMPR, AMXR, ERYR, PENR, AMCR, SAMR, DOXR,

TETR, OXYR, OFXR, CIPR
3(15) 0.50

GEN, Gentamycin (10 µg); KAN, Kanamycin (30 µg); STR, Streptomycin (25 µg); TOB, Tobramycin (10 µg); AMP, Ampicillin (10 µg); AMX, Amoxicillin (25 µg); SAM, Ampicillin/Sulbactam

(30 µg); IPM, Imipenem (10 µg); MEM, Meropenem (10 µg); CTX, Cefotaxime (30 µg); CEF, Cephalothin (30 µg); SUL, Sulfamethoxazole (30 µg); TMP, Trimethoprim (25 µg); ERY,

Erythromycin (15 µg); PEN, Penicillin G (10 µunits); AMC, Amoxicillin/clavulanate (30 µg); CHL, Chloramphenicol (30 µg); CST, Colistin (20 µg); PMB, Polymyxin B (300 units); DOX,

Doxycycline (30 µg); OXY, Oxytetracycline (30 µg); TET, Tetracycline (30 µg); CIP, Ciprofloxacin (10 µg); OFX, Ofloxacin (5 µg); R, Resistant; I, Intermediate; S, Sensitive; Values in

parenthesis represent percentage; MAR, Multiple antibiotic resistance.

TABLE 3 | Distribution of virulence genes in the Salmonella species.

Salmonella species Virulence determinants

spiA sipB invA sifA fljB sefA

Salmonella Enteritidis (n = 14) 10(71.4) 11(78.6) 14(100) 12(85.7) 12(85.7) 13(92.9)

Salmonella Typhimurium (n = 11) 9(81.8) 10(90.9) 11(100) 10(90.9) 10(90.9) 10(90.9)

Other Salmonella spp. (n = 20) 16(80) 15(75) 20(100) 18(90) 19(95) 18(90)

Total (n = 45) 35(77.8) 36(80) 45(100) 40(88.9) 41(91.1) 41(91.1)

trimethoprim resistance), and tetC (tetracycline resistance
protein) (Table 4).

DISCUSSION

Gastrointestinal illnesses continue to be a global and public
health menace. Exposure to food borne Salmonella directly
or indirectly via consumption of RTE seafood can be an
important route of infection to humans. Findings from this
study provide an estimation of the prevalence of Salmonella
from RTE shrimps in open markets from south-south region
in Nigeria. The prevalence of Salmonella positive samples was
higher than a previous study from Turkey (Ikiz et al., 2016)
(2%), Iran (Rahimi et al., 2013) (1.8%) and China (Yang et al.,
2015) (13%). The prevalence of Salmonella spp. from the RTE
shrimp samples assessed in this study was also lower compared
to those detected from India (Kumar et al., 2008) (29.0%),
Saudi Arabia (Elhadi, 2014) (39.9%), Vietnam (Nguyen et al.,
2016) (49.1%), Thailand (Woodring et al., 2012) (21%), Brazil

(Carvalho et al., 2013) (16.12%), China (Zhang et al., 2015)
(29.7%) and India (Kumar et al., 2009) (26.7%); but higher than,
findings by Koonse et al. (2005) from six different countries
with participating countries not mentioned at their request (two
countries are located in southeast Asia, one is in central Asia,
one is in Central America, one is in North America, and one
is an island in the Pacific Ocean) re-counted a prevalence rate
of 1.6% in shrimp samples. It was also reported in Nigeria
(Raufu et al., 2014) that a total of 23/200 (11.5%) samples
were positive for Salmonella, with three serovars comprising
Salmonella serovars Eko, 47: mt:-, and Hadar, recovered. In Brazil
(Carvalho et al., 2013) reported that from a total of 186 confirmed
Salmonella spp., five serovars were identified and they include:
Salmonella Saintpaul, Salmonella Infantis, Salmonella Panama,
Salmonella Madelia, and Salmonella Braenderup. Five different
Salmonella serotypes including Salmonella Typhi, Salmonella
Newport, Salmonella Paratyphi B, Salmonella Enteritidis, and
Salmonella Typhimurium were recovered from seafood samples
in Iran (Rahimi et al., 2013). The most prevailing Salmonella
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TABLE 4 | Distribution of antibiotic-resistant genes in the Salmonella species.

Salmonella species Antibiotic-resistant genes

Class 1 integrase Class 2 integrase sul2 flor Tmp strB dfr1 blaTEM catB3 tetC

Salmonella Enteritidis (n = 14) 9(64.3) 6(42.9) 8(57.1) 10(71.4) 10(71.4) 11(78.6) 12(85.7) 10(71.4) 8(57.1) 12(85.7)

Salmonella Typhimurium (n = 11) 7(63.6) 6(54.5) 7(63.6) 9(81.8) 10(90.9) 8(72.7) 10(90.9) 6(54.5) 4(36.4) 9(81.8)

Other Salmonella spp. (n = 20) 11(55) 5(25) 17(85) 16(80) 17(85) 16(80) 18(90) 12(60) 9(45) 17(85)

Total (n = 45) 27(60) 17(37.8) 32(71.1) 35(77.8) 37(82.2) 35(77.8) 40(88.9) 28(62.2) 21(46.7) 38(84.4)

serovars from China (Zhang et al., 2015) among the 730 seafood
samples examined were Salmonella Typhimurium (4.1%),
Salmonella Hvittingfoss (4.1%), Salmonella Schwarzengrund
(4.6%), Salmonella Stanley (4.6%), Salmonella Singapore (5.5%),
Salmonella Thompson (9.2%), SalmonellaWandsworth (12.0%),
and Salmonella Aberdeen (18.4%).

The findings from Yang et al. (2015) reported a most probable
number (MPN)/g of 0.3–10, with one sample exceeding 110
MPN/g which was somewhat similar to the Salmonella density
in this study. The mean Salmonella density in this study varied
across the sampling months as higher densities were observed
in the wet season (March to October) compared to dry season
(November to February) and from one open market to another
particularly from open markets in Delta State. Siala et al. (2017)
reported that the presence of Salmonella spp. in shrimps is
an indicator of contamination in the shrimp industry which
happens to be one of the most significant seafood commodities
worldwide. The high rate of positive Salmonella species in RTE
shrimps in Southern Nigeria is worrisome and a substantial risk
to public health. Thus, it is imperative to manage Salmonella
infection in the food production process by further strengthening
the surveillance of aquatic food products to circumvent the
contamination of RTE seafood products. The high prevalence of
Salmonella in open markets in the present study indicates poor
sanitary condition during processing as well as the environment
and poor hygiene of the RTE shrimp handlers during preparation
of the products. The difference in the densities and prevalence
of Salmonella from RTE seafood could also be ascribed to
geographical variation, contaminated raw materials and poor
/inadequate detection methods.

Determination of Salmonella resistance to antibiotics is crucial
for therapeutic regimen during outbreaks. Salmonella resistance
to erythromycin, amoxicillin and penicillin in this study are of
public health threat and thus be as a consequence of extensive
usage of these antibiotics in the study area. Interestingly, no
Salmonella serovars was resistant to cefotaxime, cephalothin,
colistin, and polymyxin B. This is very important to public health
as these antibiotics could be crucial in threating drug resistant
Salmonella pathogens. Public education to enlighten individual
not to misuse these antibiotics is essential to circumvent the
occurrence and development of resistance to these antibiotics.

Akiyama et al. (2011) reported from the United States that
none of the Salmonella isolates showed resistance to ampicillin,
gentamicin, chloramphenicol, kanamycin, sulfisoxazole,
tetracycline, and streptomycin. The highest antibiotic resistance
Salmonella species form seafood observed by Elhadi (2014)

from Saudi Arabia were amoxicillin-clavulanic acid (45%),
ampicillin (70%) and tetracycline (90.71%). Percentage
resistance to nalidixic acid (47.4%) was the predominant
report from Iran by Rahimi et al. (2013), prior to others such
as ciprofloxacin (5.3%), trimethoprim (15.8%), streptomycin
(15.8%), and tetracycline (36.8%). From China, Yang et al. (2015)
reported resistance for ampicillin (28.2%), tetracycline (35.9%),
trimethoprim-sulfamethoxazole (25.2%), streptomycin (18.4%)
and chloramphenicol (20.4%), with 34.0% being resistant tomore
than three antibiotics. These were somewhat in accordance to the
findings in this study. Zhang et al. (2015) also reported resistance
of Salmonella from China from retail aquaculture products
to tetracycline (34.1%), sulfonamides (56.5%), streptomycin
(28.6%) and ampicillin (23.5%) with lower levels of resistance
for ciprofloxacin (2.3%), gentamicin (3.2%), ceftazidime (0.5%)
cefepime (0.5%), and cefotaxime (0.9%) which was rather similar
to the findings in this study. In addition, 43.3% of the Salmonella
serovars from a finding of Zhang et al. (2015) were multidrug
resistant which is reduced when compared to the results in
this study. Salmonella serotypes such as Typhimurium and
Enteritidis have historically been reported as the significant
causes of non-typhoidal salmonellosis. Though, other serotypes
have been revealed to be included to be prevalent with respect to
difference in geographical regions (Brands et al., 2005).

The occurrence of resistance to ciprofloxacin in Salmonella
serovars is of public health importance as it translates possible
misuse in animals and over-prescription in humans. Salmonella
isolates in this study that were resistant to ciprofloxacin were also
observed to be multidrug resistant strains to other antibiotics
which were in accordance to the finding of Vo et al. (2006)
from the Netherlands. MDR Salmonella isolates in this study are
prevalent in openmarkets, which necessitates thatmore attention
be ascribed toward the control and supervision of antibiotic
usage, particularly in human health care and agriculture divisions
in Nigeria. Bacterial virulence is predisposed by both the
occurrence of antibiotic resistance and virulence determinants.
The advancement of Salmonella strains that are is based
particularly on elements of biochemical and genetic mechanisms
so as to heighten their survival via preservation of their antibiotic
resistance genes. As regards the virulence determinants that
were analyzed, Salmonella Enteritidis, Salmonella Typhimurium,
and other Salmonella isolates represent a broader range
of pathogenicity.

High MAR index was observed in this study which indicates
high use/misuse of antibiotics in the study areas. MAR index
of Salmonella isolates ranged from 0.14 to 0.45 for different
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seafood in a study by Budiati et al. (2013) in Malaysia. From
Brazil, Carvalho et al. (2013) reported that 23% of Salmonella
serovars were resistant to ≤ 1 antibiotic, 20% were resistant
to ≤ 2 antibiotics while 3 strains showed multi-resistance
characteristics. These were lower compared to the findings of this
study. The rapid development of bacterial resistance is ascribed to
the selective pressure of antibiotics via evolutionary responses as
a consequence of natural selection.

The dissemination of resistant elements in natural ecosystem
can alter as well as change the physiology and population
dynamics of resident microbial populaces (Igbinosa and
Odjadjare, 2015). The emergence of antibiotic resistant
determinants in pathogenic Salmonella species has made
it more problematic due to the pervasiveness of horizontal
gene transfer which is the procedure where bacteria obtain
elements/determinants from the environment (Thomas and
Nielsen, 2005). Most antibiotic resistance genes are found on
intregons, plasmids or transposons, which can be transferred
and mobilized to other bacteria of different or the same species.
Integrons have been reported to be involved in the acquisition
of antibiotic resistance elements. Class 1 integrons which
contains numerous resistance elements could play vital roles
in the maintenance and spread of antibiotic resistance in
Salmonella species both in the absence and presence of selective
pressure as reported in India (Deekshit et al., 2012). Meng et al.
(2011) from China documented that class 1 integron showed
empty regions from strains in serotypes Choleraesuis isolated
from seafood. Findings by Meng et al. (2011) also suggest the
possible dissemination of class 1 integrons from foodborne
pathogens to human inhabited bacteria through horizontal
gene transfer.

The occurrence and dissemination of resistant elements to
pathogenic and commensal bacteria of human origin as well
as gene transfer in human intestinal microbiome have been
reported (Slayers et al., 2004). Antibiotic resistance genes such
as tetA and catA1 were present in 60 and 57.52%, of Salmonella
isolates, respectively in a study by Deekshit et al. (2012) from
India. Adesiji et al. (2014) reported that of the 20 tetracycline
resistant isolates from India, 20(100%) tetA, 6(30%) tetB, 7(35%)
tetC, and 10(50%) tetG encoded resistant elements, respectively.
Of 18 cotrimoxazole-resistant strains, 4(22.2%), 14(77.7%), and
18(100%) had sul3, sul2, and sul1genes, respectively (Adesiji
et al., 2014). Deekshit et al. (2013) reported the occurrence of
three antibiotic resistance determinants sul1, tetG, and floR from
seafood some of which were also detected in this study.

Virulence determinants are involved in bacterial
pathogenicity, and their occurrence in Salmonella can result
in salmonellosis (). Findings from this study revealed that
isolates of Salmonella Enteritidis and Salmonella Typhimurium
demonstrated a diverse range of pathogenicity elements, which
makes these serovars more virulent toward consumers of
the RTE shrimp products especially immunocompromised
individuals. Antibiotic resistance phenotypes and determinants
have also been reported to be positively correlated with
Salmonella virulence (Turki et al., 2014). Infections as a
consequence of antibiotic-resistant Salmonella with virulence
potential have been reported to take longer to recover from

by been frequently fatal, when compared with ailments
caused by antibiotic-susceptible strains of Salmonella with
virulent capabilities.

The spiA gene of Salmonella is essential for its virulence and
biofilm formation in host cells (Romling et al., 2003; Socher et al.,
2005; Dong et al., 2011; Col et al., 2013; Beshiru et al., 2018).
The sipB gene is required by Salmonella to form functional pores
during Salmonella infection of erythrocytes for entry into the host
cell through the host cell plasma membrane (Miki et al., 2004).
The sipB gene is referred to as trans-locators as they translocate
Salmonella effector proteins into host cells (consumers of RTE
shrimps) which can cause typhoid fever and gastroenteritis
(Galan and Wolf-Watz, 2006). The sipB gene in Salmonella
serovars induces apoptotic macrophage either by activating or
inducing autophagy and disruption of mitochondria, or by
binding the proapoptotic enzyme caspase-1 which results in the
discharge of interleukin-1 beta active form (Myeni et al., 2013).

A significant step in the cycle of facultative pathogenic
intracellular Salmonella serovars on RTE shrimps and by
extension the consumers is the incursion of the cells via the
intestinal mucosa. Amplification of nucleotide sequences within
the invA gene of Salmonella has been evaluated as a means of
detecting invasive Salmonella serovars (). The invA gene of the
Salmonella species allows the bacteria to invade the host and
initiate infection, thereby increasing the degree of pathogenicity
of the isolates. PCR analysis of 15 virulence genes by Yang
et al. (2015) from retail seafood in China showed that all 103
Salmonella isolates had at least 4 virulence genes (mgtC, ssaQ,
siiD, bcfC, and sopB), where the loci that remains were unevenly
distributed. In addition, isolates of Salmonella Typhimurium,
Salmonella Enteritidis, and Salmonella Weltevreden displayed a
broader range of pathogenicity elements when compared with
other Salmonella serovars by Yang et al. (2015) which was evident
in this study.

A significant number of Salmonella serovars from RTE
shrimps in this study harbored the sifA gene. The sifA
gene plays a crucial role in Salmonella virulence. The degree
of pathogenicity by Salmonella lies predominantly on the
phenotypic manifestation of effector proteins released into the
bacterial cell. Salmonella gains enterance into eukaryotic cells and
exist in a vascular section with which some effector proteins (e.g.,
sifA) are located (Zhao et al., 2015).

Flagellin occurrence on RTE shrimps is a significant external
antigen for numerous species which aids Salmonella virulence.
Considerable heterogeneity of sequence exist within alleles which
codes for different flagellar antigen from a previous study by
McQuiston et al. (2004) while alleles which encodes similar
antigenic flagella were homologous, signifying that flagellin
determinants may be beneficial to targets for the genotypic
resolve of flagellar antigenic type. Fimbriae are an important
factor in Salmonella survival and persistence in the host (Kaur
and Jain, 2012). The sefA gene encodes the Salmonella Enteritidis
fimbrial protein (Mirmomeni et al., 2008). Studies have also
revealed that the sefA gene plays a significant part in the adhesion
of Salmonella Enteritidis to biotic surfaces (Lopes et al., 2006).
Akiyama et al. (2011) reported that all Salmonella strains were
positive for 14 virulence genes (sifA, spiA, invA, sopE, spaN, sipB,
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msgA, iroN, pagC, prgH, orgA, lpfC, tolC, and sitC) and negative
for three genes (cdtB, spvB, and pefA). Some of these genes
detected by Akiyama et al. (2011) were also detected in this study.
Antibiotic resistance is a major public health menace globally,
and particularly persistent in developing countries, including
Nigeria, where the problem of infectious disease is on the increase
with decreased healthcare budget. Though the emergence and
dissemination of antibiotic-resistant Salmonella is a significant
concern to food processors, cinnamaldehyde and carvacrol which
are effective plant-derived antimicrobials have been reported
to inactivate antibiotic-resistant Salmonella enterica in oysters,
buffer and celery (Ravishankar et al., 2010). Bacteriophages
propose effective and highly specific bio-control of antibiotic-
resistant Salmonella pathogens from RTE foods (Guenther et al.,
2012). Although phage particles keep their infectious capabilities,
they are immobilized freely by the RTE food, which result in loss
of their capacity to infect and diffuse target cells. Short-chain
fatty acids have found application in animal diets to manage
pathogens with Salmonella serovars inclusive (Van-Immerseel
et al., 2002). Another alternative to eliminating pathogens is the
precise suppression of functions vital to cause infection in the
host (Clatworthy et al., 2007). Gene regulation mechanism via
quorum sensing, where bacteria regulate the manifestation of
numerous genes in reaction to the occurrence of small signal
molecules is also very crucial (Defoirdt et al., 2011).

Othermanagement strategies for antibiotic resistance includes
the following: limiting the non-therapeutic usage of antibiotics
for agriculture; improved information to strengthen resolutions
on standard therapeutic regimen, education, other actions,
coupled with continuous monitoring and validating effectiveness
of management strategies; strengthening infection control boards
in hospitals; nutrient management and runoff control; and
improved diagnostic procedures, which requires developmental
variations and infrastructure upgrades, enhancements in
microbiological laboratory equipment and personnel (Global
Antibiotic Resistance Partnership - India Working Group, 2011;
Pruden et al., 2013). These recommendations could assist in
the reduced of antibiotic resistance, directly advance public
health, advantageous to the populace and decrease pressure on
healthcare system. Finally, enhancing the coverage and types of
juvenile vaccines administered by government agencies would

enormously decrease the disease burden and circumvent the
misuse of antibiotics (Global Antibiotic Resistance Partnership -
India Working Group, 2011).

CONCLUSION

Findings indicate that RTE shrimps act as reservoirs in
harboring multiple Salmonella strains. The recovered Salmonella
serovars which exhibits multiple virulence and antibiotic
resistance genes coupled with high MAR index constitute
a risk to consumers. Hence, it is crucial to monitor the
usage of antibiotics and hygiene status in processing and
post-processing handling to circumvent the acquisition and
dissemination of virulent Salmonella serovars. Furthermore,
maintenance, and implementation of control measures such
as good manufacturing practices (GMP), and hazard analysis
and critical control point (HACCP) coupled with education of
the RTE shrimp processors is necessary, for reducing and/or
spreading Salmonella contamination.
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Multidrug-resistant (MDR) Klebsiella pneumoniae (Kp) is a major bacterial pathogen
responsible for hospital outbreaks worldwide, mainly via the spread of high-risk
clones and epidemic resistance plasmids. In this study, we evaluated the molecular
epidemiology and β-lactam resistance mechanisms of MDR-Kp strains isolated in a
Brazilian academic care hospital. We used whole-genome sequencing to study drug
resistance mechanisms and their relationships with a K. pneumoniae carbapenemase-
producing (KPC) Kp outbreak. Forty-three Kp strains were collected between 2003 and
2012. Antimicrobial susceptibility testing was performed for 15 antimicrobial agents, and
polymerase chain reaction (PCR) was used to detect 32 resistance genes. Mutations
in ompk35, ompk36, and ompk37 were evaluated by PCR and DNA sequencing.
Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were
carried out to differentiate the strains. Based on distinct epidemiological periods, six
Kp strains were subjected to whole-genome sequencing. β-lactamase coding genes
were widely distributed among isolates. Almost all isolates had mutations in porin
genes, particularly ompk35. The presence of blaKPC promoted a very high increase in
carbapenem minimum inhibitory concentration only when ompk35 and ompk36 were
interrupted by insertion sequences. A major cluster was identified by PFGE analysis and
all isolates from this cluster belonged to clonal group (CG) 258. We have also identified
a large repertoire of resistance genes in the sequenced isolates. A blaKPC−2-bearing
plasmid (pUFPRA2) was also identified, which was very similar to a plasmid previously
described in the first Brazilian KPC-Kp (2005). We found high-risk clones (CG258) and
an epidemic resistance plasmid throughout the duration of the study (2003 to 2012),
emphasizing a persistent presence of MDR-Kp strains in the hospital setting. Finally, we
found that horizontal transfer of resistance genes between clones may have played a
key role in the evolution of the outbreak.

Keywords: Brazil, hospital outbreak, MLST, antimicrobial resistance, clonal group 258, whole-genome sequencing
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INTRODUCTION

Multidrug-resistant Klebsiella pneumoniae (MDR-Kp) is
recognized in healthcare settings as a cause of high morbidity
and mortality among patients with severe infections. Some MDR-
Kp isolates have evolved to become extensively drug-resistant
(XDR) isolates that have few therapeutic options (Lee et al.,
2016). In Brazil, the National Program for Monitoring Bacterial
Resistance has reported increasing annual rates of carbapenem-
resistant Kp isolated from bloodstream infections (Anvisa, 2017).
Carbapenem resistance is attributed to a high expression of
carbapenemases and extended spectrum β-lactamases (ESBLs)
or AmpC β-lactamases coupled with modification of outer
membrane permeability (Fernandez and Hancock, 2012). Kp
produces an intrinsic β-lactamase, blaSHV, and two major porins,
OmpK35 and OmpK36, in addition to the major multidrug efflux
pump AcrAB-TolC, which may also be related to this phenotype
(Fernandez and Hancock, 2012; Lee et al., 2016).

Klebsiella pneumoniae carbapenemase-producing Kp (KPC-
Kp) is a major bacterial pathogen responsible for hospital
outbreaks worldwide (Lee et al., 2016), mainly via the spread
of high-risk clones and epidemic resistance plasmids (Mathers
et al., 2015). In general, these clones belong to clonal group
258 (CG258), which comprises 43 different sequence types (STs)
(Chen et al., 2014) between single- and double-locus variants,
based on multilocus sequence typing (MLST) (Chen et al.,
2014; Bowers et al., 2015; Gaiarsa et al., 2015). Epidemiological
data have reported that STs 11, 258, 340, 437, and 512
comprise most of the blaKPC CG258 isolates (Chen et al.,
2014; Bowers et al., 2015; Gaiarsa et al., 2015). Furthermore,
epidemic resistance plasmids harboring blaCTX−M and blaKPC,
often belong to incompatibility groups F and N and are common
among members of the STs from CG258 (Mathers et al., 2015;
Lee et al., 2016).

Here, we evaluated the molecular epidemiology and β-lactam
resistance mechanisms of MDR-Kp strains isolated between
2003 and 2012 in a Brazilian academic care hospital. We also
selected six MDR-Kp strains for whole-genome sequencing
(WGS) to gather insights on their drug resistance mechanisms
and association with a KPC-Kp outbreak.

MATERIALS AND METHODS

Study Setting
This study was performed at Complexo Hospital de Clínicas
of the Universidade Federal do Paraná (CHC/UFPR), a 655-
bed tertiary hospital located in Curitiba, Paraná, Southern
Brazil. CHC/UFPR is a referral center which also supports
other hospitals. The Institutional Ethics Review Board of the
CHC/UFPR approved this study under reference number IRB#:
2656.263/2011-11.

Bacterial Strains and Phenotypic Tests
A total of 43 clinical isolates of Kp from different body sites
of 32 patients were studied. These isolates were selected from
a CHC-UFPR bacterial collection. Only isolates resistant to at

least one carbapenem (ertapenem) by disk diffusion testing were
included. These isolates were collected between August 2003
and February 2012, a time interval that we divided into three
well-defined epidemiological periods, according to the prevalence
of MDR-Enterobacteriaceae. The first period (2000–2009) was
characterized by ESBL prevalence, resistance to fluoroquinolones
and aminoglycosides, and low resistance to imipenem and
meropenem (Nogueira Kda et al., 2014, Nogueira et al., 2015).
The second period was defined by a KPC-Kp outbreak that
occurred in June 2010 (Almeida et al., 2014), and the third period
was characterized by a gradual increase in the prevalence of
KPC-Kp and other Enterobacteriaceae.

Five isolates recovered from patients treated in four other
hospitals were also included (C4, C5, C7, D1, and D5; Figure 1
and Table 1). In all but six cases, a single bacterial specimen
was isolated. However, from each of those six patients, between
two and four bacterial samples were isolated (Table 1). Kp
isolates recovered from clinical specimens were stored at
−80◦C in trypticase soy broth (TSB; HiMedia, Mumbai, India)
containing 15% glycerol. Bacterial isolates were identified using
a Vitek2 Compact instrument (BioMérieux S.A., Marcy l’Etoile,
France) and mass spectrometer (Microflex LT; Bruker Daltonics,
Bremen, Germany).

Antimicrobial susceptibility testing (AST) was performed for
15 antimicrobial agents (Table 1) by agar dilution, except for
polymyxin which was tested by broth dilution, as recommended
by the Clinical and Laboratory Standards Institute (CLSI).
Minimal inhibitory concentrations (MICs) were interpreted
according to CLSI standards (CLSI M100-S27 document,
20171). Polymyxin, tigecycline, and fosfomycin breakpoints were
interpreted using Brazilian Committee on AST and European
Committee on AST standards (BrCAST-EUCAST2). Double-disk
synergy (EUCAST, 20133) and imipenem hydrolysis assay by
spectrophotometry (Nicoletti et al., 2015) were performed to
determine the carbapenem resistance phenotypes.

Antibiotic Resistance Characterization
and Molecular Typing
The presence of blaMOX , blaCMY, blaLAT, blaBIL, blaDHA, blaACC,
blaMIR, blaACT, blaFOX , blaTEM, blaCTX−M−1, −M−2, −M−8,

−M−9, −M−25, blaPER, blaBES, blaVEB, blaKPC, blaGES, blaIMP,
blaVIM, blaNDM, blaSPM, blaGIM , blaSIM, blaOXA−23, blaOXA−48,
blaOXA−51, blaOXA−58, blaOXA−143, and blaBKC was investigated
by polymerase chain reaction (PCR) using primers and
amplification conditions indicated in Supplementary Table 1.

Mutations in ompk35, ompk36, and ompk37 were evaluated
by PCR and DNA sequencing (Kaczmarek et al., 2006; Nicoletti
et al., 2015). PCR products were sequenced using a 3730XL DNA
Analyzer (Applied Biosystems, Carlsbad, CA, United States).
Nucleotide and protein sequences were compared to the
reference proteins OmpK35 (GenBank accession no. AJ011501),
OmpK36 (accession no. Z33506), and OmpK37 (accession no.
AJ011502). Genes or promoter regions of porins truncated

1http://em100.edaptivedocs.info
2http://brcast.org.br/, accessed in January 2018.
3http://www.eucast.org/resistance_mechanisms
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FIGURE 1 | Dendrogram constructed on the basis of PFGE patterns and MLST profile of 43 K. pneumoniae isolates. A dice coefficient similarity of at least 80%
included two PFGE clusters designated as A and C, as indicated by the vertical red arrow crossing the dendrogram on the left. Isolate identifiers are shown aligned
to the dendrogram tips in the column ID. A dashed line delimits the cluster A, which contains the largest numbers of PFGE profiles. Isolates with the same pulsotype
designation (column PFGE profile) are genetically indistinguishable under this procedure. KpA2, KpA3, KpA4, KpA5, KpA6, and KpA9 are isolates of the Kp outbreak.

by insertion sequences (IS) were evaluated using ISFinder
(Siguier et al., 2006).

Pulsed-field gel electrophoresis (PFGE) was performed
according to Nogueira et al. (Nogueira Kda et al., 2014;

Nogueira et al., 2015) to differentiate between isolates. Gels
were analyzed with BioNumerics program version 6.6 (Applied
Maths, Kortrijk, Belgium). The dice similarity coefficient was
used to determine the similarity between each banding pattern.
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TABLE 1 | Clinical data, antibiotic susceptibilities and molecular features of 43 K. pneumoniae isolatesa−d.

Patient Isolate
ID

Date of
isolation

Clinical data Minimal inhibitory concentration (mg/L)g bla genes Porin mutationsh

Sourcee Outcome Clinicf AMI CAZ CIP CPM CTX DOX ERT FOS GEN IMI LEV MER MIN POL TIG OmpK35 OmpK36 OmpK37

P1 D10 2003.08.28 BAL Death ICU 16 64 >16 128 128 8 0.5 32 >64 0.25 2 0.06 4 >16 1 blaCTX−M−2

P2 D7 2004.12.04 TA Death ICU 64 32 >16 >128 >128 8 32 256 64 1 2 8 4 0.5 0.5 blaTEM, blaCTX−M−2 +(ii)

P3 D8 2005.01.14 Blood Recovery ID 32 32 >16 64 128 8 0.25 32 16 0.25 8 0.06 4 0.5 0.5 blaTEM, blaCTX−M−2

P4 D9 2005.01.27 Blood Death CT 32 32 >16 >128 >128 64 32 >512 4 1 8 4 >64 0.5 8 blaTEM, blaCTX−M−2 +(ii) +(ii)

P5 E1 2006.01.02 Blood Death ICU 2 32 >16 128 128 8 0.25 32 >64 0.12 2 0.12 2 0.5 0.5 blaCTX−M−2

P6 E2 2006.01.22 IC Death ICU 32 16 >16 16 64 8 0.12 16 16 0.25 2 0.06 4 0.5 1 blaCTX−M−2 +(i)

P7 E3 2006.02.24 Blood Death ICU 1 32 >16 64 128 32 0.25 128 0.25 0.25 1 0.06 32 0.5 2 blaCTX−M−2 +(iii) +(v)

P8 C9 2006.11.18 Urine Recovery FMC 32 32 >16 >128 >128 64 32 >512 >64 4 4 8 16 >16 1 blaTEM, blaCTX−M−2 +(i) +(ii)

P9 C7 2007.01.31 PF Death ICU 128 32 >16 >128 >128 8 16 128 32 1 8 4 4 0.5 0.5 blaCTX−M−2 +(i) +(ii)

P10 D1 2007.02.11 Blood Death ICU 128 32 >16 >128 >128 8 32 512 64 1 8 4 4 0.5 1 blaTEM, blaCTX−M−2 +(i) +(ii)

P11 E4 2007.10.22 Urine Recovery P-ICU 16 8 0.03 16 128 8 0.03 32 >64 0.5 0.004 0.06 2 0.5 0.5 blaTEM, blaCTX−M−2 +(i)

P12 E5 2008.01.17 Blood Death ICU >256 16 >16 64 128 32 1 64 >64 0.25 8 0.12 32 0.5 8 blaTEM, blaCTX−M−2

P13 A2 2010.06.24 CSF Death ID 4 64 >16 32 128 >64 4 16 64 0.5 8 1 >64 0.5 2 blaTEM, blaCTX−M−1, blaKPC +(ii)

P13 A3 2010.06.29 Rectal Death ID 4 >64 >16 >128 >128 >64 256 >512 >64 64 2 64 >64 0.5 2 blaTEM, blaCTX−M−1, blaKPC +(ii) +(ii)

P13 A4 2010.06.30 CSF Death ID 4 >64 >16 16 128 >64 4 16 64 2 8 2 >64 0.5 4 blaTEM, blaCTX−M−1, blaKPC +(ii)

P13 A5 2010.07.01 CSF Death ID 4 >64 >16 32 64 >64 4 16 64 2 8 2 >64 0.5 4 blaTEM, blaCTX−M−1, blaKPC +(ii)

P14 A6 2010.07.01 Rectal Recovery NS 4 >64 >16 32 128 64 4 16 >64 2 8 2 >64 0.5 4 blaTEM, blaCTX−M−1, blaKPC +(ii)

P15 A7 2010.07.01 TA Death ICU 2 64 >16 >128 >128 64 64 512 64 4 2 8 4 0.5 1 blaCTX−M−2 +(ii)

P16 A9 2010.08.02 SW Death OT 4 >64 >16 32 64 >64 4 16 >64 1 8 2 >64 0.5 4 blaTEM, blaCTX−M−1, blaKPC +(ii)

P17 A10 2010.09.01 Rectal Death N-ICU 8 1 0.06 1 0.5 8 0.25 >512 2 1 0.008 0.25 1 0.5 0.25 blaCTX−M−25 +(ii)

P17 B1 2010.09.09 Rectal Death N-ICU 8 4 0.25 8 4 32 4 >512 2 1 0.12 1 16 0.5 4 blaCTX−M−25 +(ii)

P17 B2 2010.09.11 Rectal Death N-ICU 8 32 0.5 32 4 32 16 >512 2 2 0.12 2 16 0.5 4 blaCTX−M−25 +(ii)

P18 B3 2011.03.11 Urine Death ICU 1 16 >16 4 2 >64 4 16 >64 2 8 2 >64 0.5 2 blaTEM, blaCTX−M−25, blaKPC +(ii)

P19 B4 2011.03.16 Rectal Death ICU 4 64 >16 32 128 64 4 16 64 2 8 1 >64 0.5 4 blaTEM, blaCTX−M−1, blaKPC +(ii)

P20 D6 2011.05.16 TA Death ICU 16 64 >16 >128 >128 8 64 >512 64 8 2 16 2 0.25 1 blaTEM, blaCTX−M−2

P21 B5 2011.06.19 Blood Death FMC 1 16 >16 >128 >128 8 16 128 32 1 2 4 4 ≤0.25 1 blaCTX−M−2 +(i)

P21 B6 2011.06.20 Urine Death FMC 1 32 >16 >128 >128 32 32 128 64 4 8 8 4 ≤0.25 1 blaCTX−M−2 +(i) +(ii)

P22 C5 2011.06.28 TA Death ICU 32 >64 >16 >128 >128 32 64 >512 32 2 >8 8 16 0.5 1 blaCTX−M−2 +(ii)

P23 D5 2011.07.10 Urine Recovery MMC 2 >64 >16 32 128 32 2 8 0.25 1 4 1 8 0.5 1 blaCTX−M−1, blaKPC +(ii)

P24 B7 2011.07.12 Urine Recovery LT 16 >64 >16 >128 >128 16 32 32 >64 2 2 8 4 >16 1 blaCTX−M−1 +(i) +(ii)

P25 B8 2011.07.22 Blood Death ICU 2 >64 >16 >128 >128 8 8 64 64 0.5 4 2 2 0.5 0.25 blaTEM, blaCTX−M−2 +(i) +(ii)

P26 B9 2011.07.24 Blood Death ICU 4 >64 >16 >128 >128 8 4 64 64 0.5 2 1 2 0.5 0.25 blaTEM, blaCTX−M−2 +(ii) +(iii, iv) +(ii)

P27 B10 2011.07.27 Rectal Recovery P-ICU 2 >64 >16 >128 >128 32 256 256 0.5 256 2 128 16 0.5 2 blaCTX−M−1, blaKPC +(ii) +(ii)

P28 D4 2011.07.28 IC Death ICU 16 >64 >16 64 >128 64 0.5 32 >64 0.5 8 0.12 >64 0.5 0.5 blaTEM, blaCTX−M−1 +(ii)

P27 C1 2011.08.09 TA Recovery P-ICU 1 16 >16 32 16 32 256 256 0.25 256 2 128 4 0.5 1 blaCTX−M−1, blaKPC +(ii) +(ii)

P29 C4 2011.08.10 SW Recovery OT 2 16 >16 4 4 8 8 32 0.25 1 2 2 4 0.5 1 blaCTX−M−25, blaKPC +(ii) +(v)

P27 C2 2011.08.14 Blood Recovery P-ICU 2 >64 >16 >128 >128 32 256 64 0.25 256 2 128 16 0.5 2 blaCTX−M−1, blaKPC +(ii) +(ii)

(Continued)
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A dendrogram was constructed using the unweighted-pair
group method with arithmetic averages. The values used for
optimization and tolerance were 1.0 and 2.0%, respectively.
Isolates with similarities greater than 80% were considered to
belong to the same cluster, following previously proposed criteria
(Tenover et al., 1995). Different PFGE profiles within clusters
were numbered according to the order in the dendrogram
(Figure 1). MLST was performed by PCR and sequencing of
seven Kp housekeeping genes (i.e., gapA, infB, mdh, pgi, phoE,
rpoB, and tonB) following the protocol available at the Pasteur
MLST website (Diancourt et al., 2005).

Genome Sequencing, Assembly, and
Annotation
Based on three previously defined epidemiological periods,
antimicrobial resistance profiles, and body sites from which
strains were isolated, six Kp isolates were selected for genome
sequencing, including the index isolates KpA2 and KpA3
of the KPC outbreak. KpD8/KpC9 and KpB10/KpC2 were
isolated before and after the outbreak, respectively (Table 1).
KpA2 and KpA3 were isolated from different body sites of
the same patient (P13), as were KpB10 and KpC2 (P27),
while C9 and D8 were obtained from distinct patients (P8
and P3, respectively) (Table 1). Genomic DNA was extracted
using a DNeasy 96 Blood & Tissue Kit (Qiagen, Silicon
Valley, CA, United States) and sequenced at the Life Sciences
Core Facility of the State University of Campinas (LaCTAD;
São Paulo, Brazil).

Paired-end (PE) libraries with an average insert size of 550 bp
fragments were generated using an Illumina TruSeq DNA PCR-
free LT Kit (Illumina Inc., San Diego, CA, United States) and
sequenced (PE, 2 × 150 bp) using a HiSeq 2500 instrument in
RAPID run mode (Illumina Inc.).

Quality-based trimming and filtering were performed using
Trimmomatic version 0.32 (Bolger et al., 2014). Paired-end
reads were assembled using Velvet version 1.2.10 (Zerbino
and Birney, 2008). Chromosomal and plasmid contigs were
manually inspected and separated based on BLASTn results,
considering the best hit for identity and coverage. Chromosomal
contigs were scaffolded using SSPACE version 3.0 (Boetzer
et al., 2011). To sort the chromosomal sequence, the scaffolds
were ordered by synteny against a reference chromosome
using Gepard version 5.0 (Krumsiek et al., 2007). For each
isolate, the reference genome used for scaffold sorting was
the publicly available genome with the most similar k-mer
spectrum, which was determined by KmerFinder version 2.04,
which was Kp HS11286 (GenBank accession no. CP003200.1)
(Bi et al., 2015) for KpA2, KpA3, and KpD8 and Kp
JM45 (accession no. CP006656.1) for KpB10, KpC2, and
KpC9. Gaps within scaffolds were filled using GapFiller
version 2.1.1 (Nadalin et al., 2012) and inspected by aligning
PE reads against the scaffolds using Bowtie2 version 2.1.0
(Langmead and Salzberg, 2012). Draft chromosomes and plasmid
contigs had their genes predicted with Prokka version 1.12

4https://cge.cbs.dtu.dk/services/KmerFinder
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(Seemann, 2014). In silico sequence typing was defined by MLST
version 1.85.

The presence of plasmids was also investigated using
plasmidSPAdes version 3.10.0 (Antipov et al., 2016). The plasmid
scaffolds obtained with plasmidSPAdes were compared against
all plasmids available in GenBank (Updated 2016.11.03) and
plasmid rep genes available in PlasmidFinder version 1.36.
We also used Bandage (Wick et al., 2015) to analyze graph
structures (Supplementary Table 2). Furthermore, plasmids
recognized by plasmidSPAdes were mapped against reads and
contigs using GFinisher (Guizelini et al., 2016) to improve
plasmid assemblies. The complete plasmid was annotated
with Prokka and manually curated using similarity with
sequences available in UniRef907. Plasmid incompatibility
groups were predicted using PlasmidFinder (Supplementary
Table 2) and oriT region was annotated using oriTfinder
(Li et al., 2018).

Profiling of Antibiotic
Resistance-Related Genes
Chromosomal and plasmid antibiotic resistance genes were
predicted by ResFinder database version 2.18 and Comprehensive
Antimicrobial Resistance Database (CARD) version 1.1.8 (Jia
et al., 2017). The Short Read Sequence Typing (SRST2)
version 0.2.0 (Inouye et al., 2014) and Genefinder algorithms
(Sadouki et al., 2017) were tested to detect resistance genes
with both databases. Furthermore, for ResFinder, the following
parameters were defined: all databases were set for the
antimicrobial configuration, and the type of input was set
to assembled genomes/contigs and minimum thresholds of
98% identity and 80% alignment coverage between query
and hit sequences.

Nucleotide Sequence Accession
Numbers
The genomes of the six MDR-K. pneumoniae subsp. pneumoniae
isolates have been deposited at DDBJ/ENA/GenBank
under the accession numbers: PYWQ00000000 (D8),
PYWR00000000 (C9), PYWS00000000 (C2), PYWT00000000
(B10), PYWU00000000 (A3), and PYWV00000000 (A2). The
complete nucleotide sequence of the pUFPRA2 plasmid was
included under accession number PYWV00000000.

RESULTS

Clinical Patient Profiles
Patient outcomes and clinical data are summarized in Table 1.
Blood (n = 10/43, 23%), urine (n = 9/43, 20%), rectal (n = 7/43,
16%), and tracheal aspirate (n = 5/43, 11%) specimens yielded the
highest numbers of isolates. Most patients were in the intensive

5https://cge.cbs.dtu.dk/services/MLST
6https://cge.cbs.dtu.dk/services/PlasmidFinder
7https://uniprot.org
8https://cge.cbs.dtu.dk/services/ResFinder

care unit (ICU), and a high mortality rate was observed (24 out
of 32 patients died; Table 1).

Antimicrobial Susceptibility, β-Lactam
Resistance Profile, and Molecular Typing
Table 1 summarizes the results of ASTs. All isolates (except
A10 and E4) displayed increased MICs for at least three classes
of antibiotics and were classified as MDR (Magiorakos et al.,
2012). Nine isolates exhibited sensitivity to all carbapenems
by agar dilution.

All Kp isolates had blaCTX−M and co-occurrence of blaTEM
and blaCTX−M was found in 48.8% (n = 21/43) of isolates. No
class C β-lactamase or minor-ESBL (BES, GES, PER, and VEB)
was detected. Among carbapenemases, 18 isolates possessed
blaKPC, although no class B or D carbapenemases were detected.
Ciprofloxacin and gentamicin showed low activity against
ESBL-producing isolates. For isolates co-producing ESBL and
KPC, neither ciprofloxacin nor minocycline were effective. All
isolates were resistant to doxycycline. Only amikacin, fosfomycin,
polymyxin, and tigecycline showed good activity against KPC-
ESBL-coproducing isolates.

Nearly 90% of isolates had mutations in porins (n = 38/43,
Table 1); among them, 33 were carbapenem-resistant and five
were carbapenem-sensitive (i.e., A10, D4, E2, E3, and E4). Out of
the five remaining samples which did not show porin mutations,
four were carbapenem-sensitive (D8, D10, E1, and E5) and one
was carbapenem-resistant (D6). Mutations in either ompk35 or
ompk36 were observed in 14 strains and 6 strains, respectively,
while 18 isolates were identified as having mutations in both of
these porin genes. Only two isolates had mutations in ompk35,
ompk36, and ompk37 (Table 1). Types of mutations identified in
the porin genes included: frameshift mutations caused by indels
(9 isolates), fragmentation of the coding sequence or promoter
regions caused by insertion of the IS1-like, IS5-like, IS6-like,
or IS1380-like transposons (34 isolates), nonsense mutations
resulting in premature stop codons (2 isolates), insertion of
nucleotides in the loop 3 region (1 isolate), and mutations of
trinucleotides not causing frameshifts (2 isolates) (Table 1 and
Supplementary Figure 1).

The ompk37 truncation by an IS5-like IS did not result in
increased carbapenem MICs (i.e., B9 and C6, Table 1). Moreover,
higher carbapenem MICs were observed only when blaKPC was
associated to ompk35 and ompk36 interrupted by ISs. Different
antimicrobial resistance profiles were observed in Kp isolated
from different body sites of the same patient (Table 1; P13, P17,
P21, P27, P31, and P32), justifying their inclusion in the study. In
some of these patients, isolates from different body sites had the
same bla genes, but a different set of porin mutations.

Two distinct clusters A and C (>80% similarity) were
identified based on similarities observed in dendrogram analysis
based on PFGE typing (Figure 1). Notably, the major part of
cluster A isolates (n = 33) belong to CG258 (ST11, n = 12;
ST340, n = 1; ST379, n = 2; and ST437, n = 18), except for
three non-CG258 isolates (ST12, n = 3). The cluster C displayed
STs that do not belong to CG258 (ST15, 442, 584, and 874)
(Figure 1). KpB3, KpB4, KpE7, and KpE8 isolates showed more
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than 95% similarity to outbreak isolates, although these strains
were isolated in 2011 and 2012.

Genomic Diversity of Six Kp Isolates
Pulsed field gel electrophoresis results were not used to select
samples for WGS, since most of them belong to a single
cluster (cluster A). We performed WGS of six Kp strains from
the previously defined epidemiological period and diversity
of antimicrobial resistance: two strains isolated before the
outbreak, with low (KpD8) and high (KpC9) carbapenem MIC;
two strains from the outbreak, with low (KpA2) and high
(KpC9) carbapenem MIC (KpA3), and two strains isolated after
the outbreak, both with high carbapenem MIC (KpB10 and
KpC2) (Table 1).

Each of the six sequenced isolates belonged to cluster A
(Figure 1) and had the following distinct PFGE and MLST
profiles: KpD8 (pulsotype A14, ST11), KpC9 (pulsotype A10,
ST11), KpA2 and KpA3 (pulsotype A19, ST437), and KpB10 and
KpC2 (pulsotype A7, ST437). A summary of the genomic features
of the six MDR-Kp isolates is shown in Supplementary Table 3.

Resistance genes were widely distributed among isolates.
In Table 2, we list resistance genes in the plasmids and
chromosomes of the sequenced genomes, which were identified
based on the results of manually inspected BLAST searches (see
section “Materials and Methods” for details). In addition to the
β-lactamases detected by PCR, narrow-spectrum oxacillinases
were also found (blaOXA−1 and blaOXA−2). No discrepancies were
found between PCR and genome sequencing data. Mutations in
ompk35 and ompk36 were confirmed and mutations in ompk26,
lamB, and phoE were not found. Various aminoglycoside-
modifying enzymes (AMEs) were detected, even in isolates
that showed sensitivity to amikacin and gentamicin (Table 2).
However, this result was not supported by all used prediction
tools, as we found some divergences in the identification
of AMESs from ResFinder, CARD, SRST2, and Genefinder.
Determinants of resistance to fluoroquinolones were: (i)
mutations in gyrA and parC, (ii) presence of the acetyltransferase,
AAC(6′)Ib-cr, and (iii) presence of qnrB1 (Table 2). Resistance
to levofloxacin emerged when there were more mutations in
gyrA (Ser83Ile and Asp87Gly; in D8) or when QnrB was present
(A2). KpC9 was unique regarding its resistance to polymyxin
because the mgrB from this isolate was truncated by ISKpn13 (IS5
family), which was inserted in the opposite orientation, between
nucleotides 75 and 76.

Due to intrinsic methodological limitations, it was not possible
to obtain a complete view of the plasmid landscape of each isolate.
However, PlasmidSPAdes provided important support for the
presence of some plasmids (Supplementary Table 2), including
the recovery of a complete conjugative plasmid, pUFPRA2
(Figure 2), which was identified in the index isolates KpA2 and
KpA3 of the KPC outbreak, also in KpB10 and KpC2 isolated after
the outbreak. This plasmid belongs to the IncN group and carries
blaKPC−2 within a Tn4401b transposon. pUFPRA2 possesses 98%
identity to pKPC_FCF/3SP (GenBank accession no. CP004367)
and 95% identity to pKPC_FCF13/05 (GenBank accession no.
CP004366), which are previously published plasmids. The region
around ∼15 kbp contains ardA, an anti-restriction gene, lacking

only in pKPC_FCF13/05. Furthermore, pUFPRA2 presented a
Tn4401b sequence identical to pKPC_FCF/3SP, including the
direct-repeat target site duplications (5′CTTCAG3′). We were
able to independently recover the complete sequence of plasmid
pUFPRA2 from the WGS of all KPC-producing isolates (A2, A3,
and C2), although it was not possible to reconstruct the complete
plasmid from KpB10 (Supplementary Table 2).

DISCUSSION

This study describes the gradual increase in antimicrobial
resistance in Kp, including an outbreak of KPC and its spread
in the hospital between August 2003 and February 2012. Our
intention was to study the molecular epidemiology of Kp isolated
from a period shift in resistance profile revealed by our hospital
infection control service.

Antimicrobial resistance evolution in Enterobacteriaceae
involved in outbreaks at CHC/UFPR was initially associated
with expansion of ESBL-carrying strains co-expressing
fluoroquinolone and aminoglycoside resistance genes (Toledo
et al., 2012; Nogueira Kda et al., 2014, Nogueira et al., 2015). Since
the 2000s, ESBL prevalence has led to an increase in carbapenem
prescriptions, resulting in the emergence of ertapenem-resistant
strains between 2004 and 2009 (Nogueira Kda et al., 2014,
Nogueira et al., 2015).

Several functional studies have investigated the role of porins
in antimicrobial resistance (Kaczmarek et al., 2006; Fernandez
and Hancock, 2012; Sugawara et al., 2016). Here, we evaluated
the distribution of ompk35, ompk36, and ompk37 mutations and
their correlation with other resistance markers. Our results are
also consistent with a previous observation that loss of OmpK35
is more frequent than that of OmpK36, particularly among
ESBL producers (Domenech-Sanchez et al., 2003). The higher
frequency of OmpK35 loss could be explained by selection for
a less permeable outer membrane, as suggested by the recent
discovery that OmpK35 allows faster influx of β-lactams than
OmpK36 (Sugawara et al., 2016). Considering the reported
differences in the impact of each porin on permeability, loss-
of-function mutations affecting ompK35 are expected to be
more rapidly fixed than those affecting ompK36. Among our
samples, we found carbapenem-sensitive strains, although some
of them were ESBL producers that lost one of the porins.
Kp is extremely versatile, and compensation by other outer
membrane proteins or changes in gene expression could explain
these different resistance profiles (Garcia-Sureda et al., 2011a;
García-Sureda et al., 2011b).

In this study, we observed different mutations in porins
among isolates recovered from different body sites of the same
patient (P13 and P21). Patient P13 had isolates from CSF that
were resistant to a single carbapenem (ertapenem), whereas
the isolate from the rectal specimen showed high MICs for
ertapenem, imipenem, and meropenem. Similar trends were
observed for patient P21 from different sources. Concomitant
loss of both OmpK35 and OmpK36 was observed in the isolates
that were most resistant to carbapenems. These isolates were
also found at body sites that contained abundant and diverse
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TABLE 2 | Resistance gene repertoire identified using ResFinder and CARD databases.

Sample ID KpD8 KpC9 KpA2 KpA3 KpB10 KpC2

Plasmid-mediated

Beta-lactams blaTEM−1 blaTEM−1 blaTEM−1 blaTEM−1 blaOXA−1 blaOXA−1

blaCTX−M−2 blaOXA−2 blaOXA−1 blaOXA−1 blaCTX−M15 blaCTX−M15

blaCTX−M−2 blaCTX−M−15 blaCTX−M−15 blaKPC−2 blaKPC−2

blaKPC−2 blaKPC−2

Aminoglycosides aac(3)-IIa aac(3)-IIa aac(3)-IId aac(3)-IId aadA2 aadA2

aadA1(2
copies)

aadA2 aph(3′)-Ia aph(3′)-Ia aph(3′)-Ia aph(3′)-Ia

aadA2

aph(3′)-Ia

aph(3′)-VIa

Quinolones aac(6′)Ib-cr aac(6′)Ib-cr aac(6′)Ib-cr aac(6′)Ib-cr aac(6′)Ib-cr

qnrB1

Fosfomycin fosA5/6 fosA5/6 fosA5/6 fosA5/6 fosA5/6 fosA5/6

Sulphonamide sul1 sul1 sul1 sul1 sul1 sul1

sul3

Trimethoprim dfrA12 dfrA12 dfrA5 dfrA5 dfrA5 dfrA5

dfrA30 dfrA30 dfrA8 dfrA8

dfrA30 dfrA30

Chloramphenicol catA1 catB3 catB3 catA1 catA1

cmlA1 catB3 catB3

Chromosome-mediated

Beta-lactams blaSHV−11 blaSHV−11 blaSHV−11 blaSHV−11 blaSHV−11 blaSHV−11

blaCTX−M−15

ompk35, frameshift
(1342C)

ompk35, disrupted by
IS

ompk35, disrupted by
IS

ompk35, disrupted
by IS

ompk35, disrupted
by IS

ompk36, disrupted
by IS

ompk36, disrupted by
IS

ompk36, disrupted
by IS

ompk36, disrupted
by IS

Quinolones GyrA (Ser83Ile,
Asp87Gly)

GyrA (Ser83Ile) GyrA (Ser83Ile) GyrA (Ser83Ile) GyrA (Ser83Ile) GyrA (Ser83Ile)

ParC (Ser80Ile) ParC (Ser80Ile) ParC (Ser80Ile) ParC (Ser80Ile) ParC (Ser80Ile) ParC (Ser80Ile)

oqxA oqxA oqxA oqxA oqxA oqxA

oqxB oqxB oqxB oqxB oqxB oqxB

Polymyxin mgrB, disrupted by
IS

Tetracycline tetA tetA tetA tetA tetA

tetD tetD

microbiota, which is interesting given the roles of the gut human
microbiome in antibiotic resistance (Carlet, 2012). Changes in
the gut microbiome, particularly those driven by antibiotics,
could silently select for increasingly resistant bacteria. These
microorganisms may remain for months in the gut of the carrier
or translocate through the gut epithelium, promoting infections
and cross-transmission to other patients, resulting in outbreaks
that are hard to control.

Klebsiella pneumoniae carbapenemase-producing Kp were
first described in Brazil in 2006 (Monteiro et al., 2009) and
their incidence has significantly increased since that time. In
2010, a great dispersion of blaKPC was observed in Brazil (Seki
et al., 2011; Pereira et al., 2013), including an outbreak in
our hospital (Almeida et al., 2014). During 2011 and 2012,
few KPC-producing Enterobacteriaceae were found in this same
hospital (42 cases in 2 years). However, in 2013, the number of

cases doubled, and the co-occurrence of blaKPC and blaCTX−M
was widespread, mainly in the ICU. Interestingly, PFGE
analysis showed a major cluster containing isolates recovered
between 2003 and 2012, including both non-KPC and KPC-Kp.
A previous study, also conducted in our hospital, investigated
the distribution of ESBL-producing Enterobacteriaceae isolated
between 2003 and 2008 (Nogueira et al., 2015). They reported
that both Kp and Enterobacter aerogenes (recently renamed
Klebsiella aerogenes) isolates were clustered, but clustering was
not observed in Escherichia coli. Another study showed that 84%
of 129 KPC-Kp isolates from different healthcare facilities in
Curitiba belonged to two clusters, isolated between 2010 and 2012
(Arend et al., 2015), suggesting that a predominant lineage of Kp
might have spread in the city.

Emerging technologies for rapid identification of resistance
determinants, such as WGS, may lead to a shift from traditional
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FIGURE 2 | Map of the 55-kb plasmid obtained from KpA2, the index isolate of the KPC outbreak at CHC/UFPR. The representative genes of the pUFPRA2 plasmid
are shown in colored boxes. The area in red indicates the Tn4401b region. Tra genes confirm that it is a conjugative plasmid.

AST toward the analysis of genetic elements and discovery
of emergent resistance mechanisms. By using this technology,
we have found a large and diverse repertoire of resistance
genes that accounts for most of the MDR phenotype obtained
in vitro. The genetic MDR profile has been described by co-
existence of beta-lactam (blaKPC, blaCTX−M, blaTEM, blaOXA),
quinolone [aac(6′)-Ib-cr, qnr], aminoglycosides (AMEs-coding
genes, methylases), tetracyclines (tet), sulfonamides (sul), and
trimethoprim (dfr) determinants. These elements are frequently
mobilized by a variety of mobile genetic elements (insertion
sequences, transposons, and integrons) which are recombined in
plasmids and/or chromosomes (Carattoli, 2013; Bi et al., 2015;
Mathers et al., 2015; Shankar et al., 2017).

Most of the isolates studied here displayed a single genetic
cluster under PFGE analysis and all are members of CG258,
predominantly distributed among two different sequence types
(ST11 and ST437). Kitchel et al. (2009) showed that all members
of a single Kp cluster with more than 80% similarity by
PFGE belonged to ST258, corroborating with our findings. Our
results also revealed higher-than-expected genotypic diversity of
isolates from different body sites of the same patient during
a short period of antibiotic therapy, highlighting additional
potential challenges for the treatment, diagnosis, and surveillance
of MDR bacteria.

The blaKPC−2-bearing plasmid identified in our Kp isolates
(pUFPRA2) was similar to pKPP_FCF13/05 and pKPC_FCF/3SP,
which were obtained from two distinct blood cultures of patients

infected by Kp. The strain harboring FCF1305-Kp belonged to
ST442 and was isolated for the first time in Brazil in 2005
from a patient living in the State of São Paulo; FCF3SP-Kp,
also a member of ST442, was isolated in 2009 in the same state
(Perez-Chaparro et al., 2014). The KPC-Kp outbreak at our
hospital, located further South, in the State of Paraná, occurred
in 2010. The presence of very similar plasmids in earlier isolates
from the neighboring state of São Paulo indicates that these
plasmids are successfully spreading among Kp strains in the
Brazilian population.

In summary, our results indicate long-term stability of the
same cluster and MLST clonal group of Kp that has been
observed in hospitals since the rise of the ESBL endemicity
period until the development of resistance to carbapenems,
including the blaKPC outbreak. A considerable amount of genetic
variation, particularly in β-lactams resistance determinants, was
observed among isolates. Porin mutations may play an important
role in increasing carbapenem MIC. In several cases, they
were shown to be even more effective than beta-lactamases
at inducing carbapenem resistance. In addition, variation in
resistance mechanisms between isolates from the same patient
suggests selection and propagation of MDR bacteria in the
patient’s body and shows how challenging it is for healthcare
teams to control and treat such infections. The remarkable
transmissibility coupled with limited therapeutic options to
fight MDR isolates drastically reduce the effective control of
this pathogen in the nosocomial setting. The integration of
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WGS technologies and computational analyses with diagnostic
procedures can contribute to a better understanding of the co-
occurrence of several distinct resistance mechanisms.
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Zając M, Sztromwasser P,

Bortolaia V, Leekitcharoenphon P,
Cavaco LM, Ziętek-Barszcz A,
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The emergence of plasmid-mediated colistin resistance (mcr genes) threatens the
effectiveness of polymyxins, which are last-resort drugs to treat infections by multidrug-
and carbapenem-resistant Gram-negative bacteria. Based on the occurrence of colistin
resistance the aims of the study were to determine possible resistance mechanisms and
then characterize the mcr-positive Escherichia coli. The research used material from the
Polish national and EU harmonized antimicrobial resistance (AMR) monitoring programs.
A total of 5,878 commensal E. coli from fecal samples of turkeys, chickens, pigs, and
cattle collected in 2011–2016 were screened by minimum inhibitory concentration (MIC)
determination for the presence of resistance to colistin (R) defined as R > 2 mg/L.
Strains with MIC = 2 mg/L isolated in 2014–2016 were also included. A total of
128 isolates were obtained, and most (66.3%) had colistin MIC of 2 mg/L. PCR
revealed mcr-1 in 80 (62.5%) isolates recovered from 61 turkeys, 11 broilers, 2 laying
hens, 1 pig, and 1 bovine. No other mcr-type genes (including mcr-2 to -5) were
detected. Whole-genome sequencing (WGS) of the mcr-1–positive isolates showed
high diversity in the multi-locus sequence types (MLST) of E. coli, plasmid replicons,
and AMR and virulence genes. Generally mcr-1.1 was detected on the same contig
as the IncX4 (76.3%) and IncHI2 (6.3%) replicons. One isolate harbored mcr-1.1 on
the chromosome. Various extended-spectrum beta-lactamase (blaSHV−12, blaCTX−M−1,
blaCTX−M−15, blaTEM−30, blaTEM−52, and blaTEM−135) and quinolone resistance genes
(qnrS1, qnrB19, and chromosomal gyrA, parC, and parE mutations) were present
in the mcr-1.1–positive E. coli. A total of 49 sequence types (ST) were identified,
ST354, ST359, ST48, and ST617 predominating. One isolate, identified as ST189,
belonged to atypical enteropathogenic E. coli. Our findings show that mcr-1.1 has
spread widely among production animals in Poland, particularly in turkeys and appears
to be transferable mainly by IncX4 and IncHI2 plasmids spread across diverse E. coli
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lineages. Interestingly, most of these mcr-1–positive E. coli would remain undetected
using phenotypic methods with the current epidemiological cut-off value (ECOFF). The
appearance and spread of mcr-1 among various animals, but notably in turkeys, might
be considered a food chain, and public health hazard.

Keywords: WGS, mcr-1, colistin resistance, aEPEC, food animal, IncX4, IncHI2

INTRODUCTION

The worldwide increase in the occurrence of antimicrobial
resistance (AMR) and prevalence of multidrug-resistant (MDR)
Gram-negative Enterobacteriaceae challenge our ability to treat
infections in humans and animals, thus resulting in a renewed
interest in old drugs such as polymyxins. Colistin (polymyxin
E), which has been used in veterinary practice for decades
mainly for treating Gram-negative bacteria infections of the
gastrointestinal tract in pigs, poultry and cattle, is nowadays
considered a last-resort drug to treat human infections by
multidrug-, and carbapenem-resistant Gram-negative bacteria.
Together with third, fourth, and fifth generation cephalosporins,
glycopeptides, quinolones, and macrolides, polymyxins are
among the critically important antimicrobials (CIA) for human
medicine (World Human Organization [WHO], 2017) and
should be mainly used for treating the severest human
infections to preserve their effectiveness. Antimicrobials are
used in hospitals and care facilities as well as in veterinary
clinics and on farms. Extensive use of antimicrobials is
recognized as the most important factor selecting for AMR in
bacteria (Centers for Disease Control and Prevention [CDC],
2013). According to the European Surveillance of Veterinary
Antimicrobial Consumption (ESVAC) report, sales of veterinary
antimicrobial agents in 2016 varied from 0.7 to 2,726.5 tons
in the 30 participating countries (European Medicine Agency
[EMA] and European Surveillance of Veterinary Antimicrobial
Consumption [ESVAC], 2018). Notably, polymyxins were
the fifth most sold group of antimicrobials in 2015–2016
(European Medicine Agency [EMA] and European Surveillance
of Veterinary Antimicrobial Consumption [ESVAC], 2017, 2018).
In Poland, colistin sales increased by 35% from 2011 to
2016, reaching their highest value of 5.94 mg per population
correction unit (PCU) in 2015 and exceeding the recommended
maximum sale target of 5 mg/PCU for this antimicrobial
(European Medicine Agency [EMA] and European Surveillance
of Veterinary Antimicrobial Consumption [ESVAC], 2016, 2017,
2018). Currently, there are 26 veterinary medicinal products
containing colistin (Colistini sulfas or colistinum) registered
in Poland as powders for oral solution, with six registered
only in 20171.

In Enterobacteriaceae, resistance to polymyxines was
theorized to be regulated by the two-component systems
PhoP/PhoQ and PmrA/PmrB involved in LPS modifications
(Olaitan et al., 2014). The emergence and spread of plasmid-
mediated colistin resistance (the mcr-1 gene), first described
in China in 2015 (Liu et al., 2016), and poses a threat to the

1http://bip.urpl.gov.pl/pl/biuletyny-i-wykazy/produkty-lecznicze-weterynaryjne

effectiveness of colistin. The mcr-1 gene has been detected
in several bacterial species (Li et al., 2017; Tian et al.,
2017; Torpdahl et al., 2017) in association with different
plasmid types such as IncI2, IncHI2, IncP, IncFIP, and
IncX4 and also inserted into the bacterial chromosome
(Liu et al., 2016; Zurfluh et al., 2016; Hadjadj et al.,
2017; Sun et al., 2018). New mcr genes and their variants
have also been identified: mcr-2 (Xavier et al., 2016), mcr-
3 (Yin et al., 2017), mcr-4 (Carattoli et al., 2017), mcr-5
(Borowiak et al., 2017), mcr-6 (Abuoun et al., 2017), mcr-7
(Yang et al., 2018), mcr-8 (Wang et al., 2018), and mcr-9
(Carroll et al., 2019).

Little is known about the prevalence of colistin resistance
and the occurrence of mcr genes in livestock in Poland.
In 2015, a single case of mcr-1–positive Escherichia coli
was described from a human patient with a urinary tract
infection (Izdebski et al., 2016). This might be the first
evidence from Poland that mcr-mediated colistin resistance
from animals has spread to humans, which would validate
concerns over foodborne transfer of colistin-resistant bacteria
to humans (Grami et al., 2016). Based on investigation of the
occurrence of colistin resistance among E. coli isolated from
food-producing animals in Poland over a 6-year period, the
aim of the study was to determine the resistance mechanisms
among the colistin-resistant isolates. Whole genome sequence
analysis of the mcr-1–positive E. coli strains was made to
elucidate the pathways of dissemination of mcr-1 in food-
producing animals in Poland and highlight possible animal and
public health threats.

MATERIALS AND METHODS

Bacterial Isolates
A total of 5,878 commensal E. coli isolates were obtained
from individual fecal samples collected from turkeys, chickens,
pigs and cattle in 2011–2016, and tested for antimicrobial
susceptibility by minimum inhibitory concentration (MIC)
determination (Sensititre, TREK Diagnostic; EUMVS2 and
EUVSEC plates). The isolates were screened to confirm
the presence of microbiological resistance (R) to colistin
(R > 2 mg/L). Additionally, available isolates with MIC = 2 mg/L
(wild-type isolates) from 2014 to 2016 were included in
the study because they represented colistin MIC values one
dilution step from those considered as non-wild type (NWT).
Isolates were collected as part of the multiannual national
program (2011–2016) and the EU harmonized AMR monitoring
program carried out in 2014–2016 (Decision 2013/652/EU).
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Those programs are based on isolation of commensal E. coli
from the cecal content of samples collected from random
animals at slaughter. The sampling was carried out by veterinary
officers on a by-slaughterhouse basis proportionally to the
annual capacity of the slaughterhouse and at intervals distributed
over the 6-year period. The antimicrobial susceptibility testing
(AST) for ampicillin, azithromycin, cefotaxime, ceftazidime,
chloramphenicol, ciprofloxacin, gentamicin, colistin, nalidixic
acid, meropenem, sulfamethoxazole, tetracycline, tigecycline,
and trimethoprim was interpreted according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
criteria describing epidemiological cut-off values (ECOFFs) for
antimicrobials. The selected isolates were subjected to PCR
targeting the mcr-1 and mcr-2 genes (Cavaco et al., 2016).
Subsequently, resistant isolates were whole-genome sequenced
(WGS) as detailed below. PCR-negative strains were re-tested
phenotypically to confirm the MIC to colistin and screened
for the presence of mcr-1, -2, -3, -4, and -5 using PCR
(Rebelo et al., 2018).

Whole Genome Sequencing
DNA from bacterial cells of the 80 mcr-1–positive isolates was
extracted from nutrient agar plate cultures using a Genomic
Mini Kit (A&A Biotechnology) following the manufacturer’s
recommendations. Sequencing libraries were prepared with the
Nextera XT DNA Sample Preparation Kit (Illumina) according
to the manufacturer’s protocol. Sequencing of the strains was
performed using Illumina MiSeq 2 bp× 250 bp and 2 bp× 300 bp
reads or Illumina HiSeq 2 bp × 150 bp reads, generating on
average 398 Mb per sample (176–673 Mb), which corresponds to
average coverage of 80× (35–135×) in a 5 Mb genome. The raw
reads were processed using bbmerge v36.62 (Bushnell, 2018) to
merge overlapping reads and Trimmomatic v0.36 (Bolger et al.,
2014) to trim adapters and low quality reads. Merged reads
and trimmed unmerged pairs were used to generate assembly
contigs and scaffolds using SPAdes 3.9.0 (Bankevich et al., 2012).
The mean N50 of assemblies was 178 kb (77–433 kb) and the
average number of contigs longer than 1 kb was 102 (40–364).
Six isolates where the mcr gene was not located on the same
contig as a plasmid replicon were subjected to additional Pacific
Biosciences long-read sequencing, three samples per SMRTcell.
The raw PacBio reads were de-multiplexed to subreads using
lima 1.0.0 (Pacific Biosciences) (Topfer, 2018) yielding on average
225 Mb per sample (72–390 Mb), which translates to average 45×
coverage (14.4–78×) of a 5 Mbps genome. The mean subread
length was 3,555 bp (3,183–3,929 bp) and mean basepair quality
13.1 (12.95–13.22). Subreads were used in a hybrid SPAdes
assembly together with raw short Illumina reads. Assembly
analysis with QUAST 4.5 (Gurevich et al., 2013) reported 8–
13 contigs longer than 10 kb per sample and 2.1 Mb average
N50 (0.91–3.9 Mb). The DNA sequences (reads) from the isolates
were deposited in the European Nucleotide Archive (ENA) under
project number PRJEB23993. Specific sequence numbers are
included in Supplementary Table S1. E. coli strains which codes
start from “U” were gathered within antimicrobial resistance
monitoring according to 2013/652/EC and they are included in
the annual EFSA/ECDC reports.

Bioinformatic Data Analysis
Sequences were analyzed for the presence of AMR genes,
virulence genes and plasmid replicons by using the
Center for Genomic Epidemiology (CGE)2 ResFinder
3.1.0 (with database updated on September 10, 2018)
(Zankari et al., 2012), VirulenceFinder 1.5 (February 18,
2016) (Joensen et al., 2014), PlasmidFinder 1.3 (December
15, 2017) (Carattoli et al., 2014), and pMLST v1.4 (December
15, 2017) (Carattoli et al., 2014) web-based tools for typing
of IncHI2 plasmids. The criteria for these tools were: 90%
threshold for identity with the reference and minimum 60%
coverage of the gene length. Multi-locus sequence typing (MLST)
of strains was performed using MLST 1.8 (Carattoli et al.,
2014). The phylogenetic tree of 80 isolates was constructed by
complete linkage clustering using a sequence similarity distance
matrix. The distance matrix was generated by global pairwise
MUMmer 3.23 (Kurtz et al., 2004) alignments between samples’
scaffolds, automated by CONCOCT 0.4.0 (Alneberg et al.,
2014). A phylogenetic tree of IncX4 plasmids was created in a
similar way, using contigs carrying the IncX4 replicon and the
mcr-1 gene. The mcr-1 carrying contigs were identified using
BLAST (Altschul et al., 1990) and mcr-1 sequence AKF16168.1.
The iTol web-based tool (Letunic and Bork, 2016) was used to
visualize the trees.

RESULTS

Occurrence of Colistin Resistance and
mcr-1
Retrospective analysis of MIC data revealed a total of 128 (2.2%)
out of 5,878 commensal E. coli fulfilling the selection criteria
with colistin MICs ranging from 2 to 16 mg/L (Figure 1).
They originated mostly from turkeys (63%) and chickens (23%).
A slight temporal increase of microbiological resistance to
colistin from very low to low (0.7–1.7%) was observed when
considering all E. coli isolates detected in samples from 2011 to
2016 taken from Polish food-producing animals irrespective of
their origin (Figure 2).

The mcr-1 gene was detected in 80 (62.5%) out of the selected
128 isolates, deriving from 76 fecal samples recovered from
turkeys (n = 61), broilers (n = 11), laying hens (n = 2), pigs
(n = 1), and cattle (n = 1). Most of the mcr-1–positive E. coli
originated from individual samples, but in four samples from
turkeys (n = 3) and broilers (n = 1), two different isolates per
sample were identified (Supplementary Table S1). An increase
in occurrence of the mcr-1–positive E. coli was noted in turkey
and chicken samples, respectively from 1.1 and 0.0% in 2011
to 11.6 and 1.7% in 2016 (Figure 3). The CGE ResFinder
tool confirmed the presence of the mcr-1.1 gene in all PCR-
confirmed isolates. No mcr-2, mcr-3, mcr-4, or mcr-5 was
identified either from PCR or the genome analysis in mcr-1–
positive isolates. Noteworthily, the mcr-1.1 was mostly found
(n = 53; 66.3%) in isolates with colistin MIC = 2 mg/L which
is the EUCAST ECOFF and regarded as that of the wild-type

2https://cge.cbs.dtu.dk/services/
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FIGURE 1 | Colistin MIC distribution and occurrence of the mcr-1 and mcr-2 gene among 128 Escherichia coli selected based on colistin MIC > 2 mg/L
(2011–2013) and ≥2 mg/L (2014–2016). ∗ only isolates with MICcolistin ≥ 2 mg/L were tested for mcr-1 and mcr-2 genes. Different MIC values (>4 and 8, 16, and
>16) are result of changed MIC panel in plates. EUMVS2 plate (2–4 mg/L) was used in 2011–2013, EUVSEC plate (1–16 mg/L) in 2014–2016.

FIGURE 2 | Occurrence of isolates meeting the selection criteria (MIC > 2 mg/L for isolates in 2011–2013 and MIC ≥ 2 mg/L for isolates in 2014–2016) and mcr-1
positive commensal and ESBL/ampC producing E. coli from all tested sources (turkeys, chickens, pigs, and cattle), 2011–2016. The occurrence of colistin resistant
and mcr-1 positive isolates when using exclusively EUCAST ECOFF was included (dashed line).

population. Most of these (n = 41; 77.4%) were sampled from
turkeys. Additionally, a mutation in the chromosomal pmrB
gene (Val161→Gly) was detected in one mcr-1.1–positive isolate
with MIC = 2 mg/L.

As shown on the maps of the farm locations from
which mcr-1–positive E. coli was isolated, the colonized farms
were distributed over the country with no specific regional
trend (Figures 4–6).

An MIC ≥ 2 mg/L for colistin could not be confirmed in
any of the re-tested 48 isolates initially suspected but found
negative for mcr-1 and mcr-2, and none of the mcr-1, -2, -3, -4,
or -5 genes were identified by PCR. They were not investigated
further as we considered them either false positives in the initial
testing, or to have eventually lost the mechanisms over prolonged
storage or handling.

Phylogeny and Epidemiology
The MLST revealed 49 ST among the sequenced isolates. In 64
E. coli from turkeys, 41 STs were identified, as were 10 in 14
chicken isolates. The most common types were ST354 and ST359,
which were observed in five isolates each, ST48 and ST617 which
were identified in four isolates each, and ST10, ST58, ST155, and
ST1011 which were represented by three isolates each. Single
isolates represented 32 ST (Figure 7).

The analysis showed high heterogeneity of mcr-1–positive
E. coli independent of source and year of isolation. Isolates
deriving from animals from 27 farms and slaughtered in
27 slaughterhouses (Supplementary Table S2) were clustered
according to their ST. The majority of isolates belonging to
the most numerous STs (i.e., ST48, ST88, ST359, and ST1011)
derived from different animal species (Figure 7) slaughtered
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Zając et al. Colistin Resistant E. coli in Poland

FIGURE 3 | Occurrence of mcr-1-positive E. coli in Poland isolated from turkey and chicken fecal samples. ∗ isolates collected in multiannual governmental
programs (according to of the Council of Ministers Decisions), ∗∗ isolates deriving from official monitoring according to Decision 2013/652/EC and thus not
encompassing samples from turkeys and broilers in 2015; n1 and n2 indicate the total number of isolates tested for MIC determination from turkeys and chickens
(both broiler and laying hens), respectively. The occurrence of mcr-1 positive strains when using exclusively EUCAST ECOFF during selection of isolates was also
included (dashed line).

in different slaughterhouses (Supplementary Table S1) and
originating from different farms or flocks (data not shown).
In cases where the same ST was found in animals from the
same slaughterhouse and/or farm, the mcr localization and
plasmid profile were often different, as for example with ST354
observed exclusively in turkeys where two isolates deriving from
the same farm but slaughtered in different places had mcr
localized on IncX4 (U16_0311), and chromosome (U16_0259)
(Supplementary Table S1). In a few cases, the same ST (i.e.,
ST354, ST359, ST919, and ST1564) was present among strains
isolated in different years.

Phenotypic and Genetic Traits of
Microbiological Resistance to Additional
Antimicrobials
The mcr-1–positive strains showed resistance to at least two
and up to seven different classes of antimicrobials and had
different resistance gene contents. Seventy-eight (97.5%) mcr-
1-positive E. coli were classified as MDR isolates. Seventy-
nine (98.8%) were resistant to ampicillin and 22 (27.5%)
to cefotaxime and ceftazidime. Resistance to ciprofloxacin
was confirmed in 70 (87.5%), to tetracycline in 61 (76.3%),
to nalidixic acid in 50 (62.5%), to chloramphenicol in 27
(33.8%), to gentamicin in 16 (20.0%), and to tigecycline
in 12 (15.0%). Four of the isolates had an azithromycin
MIC≥ 16 mg/L, which can be interpreted as resistance according
to the tentative ECOFF for this antimicrobial. The strains
were susceptible to meropenem and presented no resistance
genes to carbapenems.

The whole-genome sequencing data revealed the occurrence
of blaTEM−1 in the majority (n = 73; 92.4%) of the ampicillin-
resistant isolates. The genes encoding extended-spectrum
beta-lactamases (ESBLs) and AmpC-type cephalosporinases

were identified in 18 (22.5%) E. coli belonging to 14 STs:
blaSHV−12 was present in five isolates (ST58, ST69, ST359, and
ST1011), blaCTX−M−1, blaTEM−30, and blaTEM−135 in two each
(respectively, ST617, ST1611, ST154, ST617, ST93, and ST5979),
single isolates carried blaCTX−M−15 (ST767), or blaTEM−52C
(ST117) and blaCMY−2 was present in six strains (ST48, ST58,
ST155, ST398, and ST1011) (Figure 7). Fifteen isolates carried
extended-spectrum cephalosporin (ESC) resistance gene in
combination with blaTEM−1. Two isolates, U15_0035X (ST767)
and U16_0016X (ST617), possessed simultaneously two ESC
resistance genes, respectively, blaCTX−M−15 with blaCMY−2 and
blaCTX−M−1 with blaTEM−30. The swine isolate (U15_0035X)
was the only one carrying the blaCTX−M−15 gene.

Analysis of the genetic background of resistance to quinolones
showed chromosomal mutations in the quinolone resistance-
determining region (QRDR) of topoisomerase genes in 63.8%
(n = 51) isolates, resulting in amino acid substitutions in the
gyrA subunit [Ser83→Leu (n = 48); Asp87→Ans (n = 40),
Asp87→Tyr (n = 2)], parC [Ser80→Ile (n = 37), Ser80→Arg
(n = 4); Ser57→Thr (n = 1); Glu84→Gly (n = 3), Glu84→Lys
(n = 2)], and parE [Leu416→Phe (n = 2), Leu460→Asp
(n = 1)]. The gyrB gene remained unaltered. Several silent
mutations irrelevant for quinolone resistance were also noted.
Different patterns combining up to four simultaneous amino
acid substitutions were noted among tested isolates with a
combination of mutations in gyrA S83L, gyrA D87N, and parC
S80I being the most frequent (n = 30) (Figure 7). Plasmid-
mediated quinolone resistance (PMQR) genes were detected in 23
isolates, namely qnrS1 (n = 12) and qnrB19 (n = 11) (Figure 7).
Four of the PMQR carriers also harbored QRDR chromosomal
mutations. Eight isolates carried both ESBL/AmpC and PMQR
determinants. The aac(6′)Ib-cr gene, conferring resistance to
both quinolones and aminoglycosides, was identified in two
strains, occurring along with qnrS1 (U15_0035X), or the set
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FIGURE 4 | Geographical distribution (commune level) of turkey sampling. Single turkey caeca was collected at slaughter and farm of origin was retrieved for
verification of randomization of samples used for isolation of indicator E. coli in 2014 and 2016.

of mutations in gyrA (S83L and D87N) and parC (S80I and
E84G) (U14_0810). A 21.3% portion of the isolates carrying
quinolone resistance mechanisms were also confirmed as ESBL-
or AmpC-producers.

A variety of gentamicin resistance genes was identified.
The sequences revealed genes coding N-acetyltransferases
catalyzing acetyl CoA-dependent acetylation of an amino
group, like aac(3′)-IIa (n = 8) and aac(3′)-IId (n = 5),
and O-phosphotransferases (APH) catalyzing ATP-dependent
phosphorylation of a hydroxyl group, namely aph(3′)-Ia (n = 14)
(Supplementary Table S1). Overall, there was 93.8% genotype–
phenotype correlation for gentamicin resistance. The presence of
genes coding adenyltransferases [aadA1, aadA2, aadA5, aadA24,

and ant(2”)-Ia] was identified in 50 isolates (Supplementary
Table S1). WGS data showed the occurrence of three genes
responsible for macrolide resistance: mph(B), mph(A), and
msr(E)-mph(E) in single isolates with MICs equal to 8, 16,
and 32 mg/L, respectively. Sixty isolates were resistant to
sulfonamides due to sul1 (n = 32), sul2 (n = 39), or sul3 (n = 18). In
5 isolates all three genes occurred simultaneously, while in 23 a set
of two genes was found with sul1 and sul2 being the most frequent
(n = 19). Of the 49 trimethoprim-resistant E. coli, 45 harbored at
least one of the following genes: dfrA1 (n = 33), dfrA12 (n = 2),
dfrA14 (n = 5), dfrA15 (n = 1), dfrA16 (n = 1), and dfrA17 (n = 5).

At least one of the tetracycline resistance genes tet(A) or tet(B)
was carried by 73 isolates, these genes being found, respectively
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FIGURE 5 | Geographical distribution (commune level) of broiler sampling. Single broiler caeca was collected at slaughter and farm of origin was retrieved for
verification of randomization of samples used for isolation of indicator E. coli in 2014 and 2016.

in 60 and 18 E. coli. In five isolates both genes were detected
and tet(M) was additionally identified in one of them. Overall,
there was 100% genotype–phenotype correlation for tetracycline
resistance. In 31 isolates the presence of catA1 (n = 13), catB3
(n = 2), cmlA1 (n = 18), and floR (n = 10) was confirmed.
In four isolates the resistance genes were present despite a
lack of phenotypic resistance to chloramphenicol. Two of them
possessing the cmlA1 gene had MIC = 16 mg/L, one isolate had
two point mutations in cmlA1 and in the last case a fragment of
the catB3 gene was missing (short contig length).

Plasmids and Location of the mcr-1 Gene
Escherichia coli positive for mcr-1 carried a wide variety of
plasmid incompatibility group replicons in different proportions
and ranging from 4 up to 11 replicons per strain (Supplementary
Table S1). The most frequent were: IncFIB (AP001918) (n = 64),
ColRNAI (n = 47), Col (MG828) (n = 43), IncFII (n = 40), IncI1

(n = 30), p0111 (n = 24), IncFIC (FII) (n = 21), Col156 (n = 17),
IncX1 (n = 17), IncHI2A (n = 16), IncQ1 (n = 14), and IncN
(n = 9). Plasmid replicons of all other identified plasmids are
noted in Supplementary Table S1.

Sixty-one isolates out of the 80 mcr-1–positive E. coli (76.3%)
harbored plasmids of the IncX4 group with the replicon located
on the same contig of the mcr-1 gene (hereafter IncX4–mcr-1
contigs). In most cases, the mcr-1 gene was the only resistance
gene found on IncX4–mcr-1 contigs, which ranged in size from
10772 to 39252 bp. The isolates U16_0149 and U16_0323 also
contained the qnrS1 and blaTEM−1 genes and IncX1 replicon
located on the IncX4–mcr-1 contig (contig sizes 76785 bp
and 69841 bp, respectively). IncX4–mcr-1 contigs were of high
sequence similarity and clustered independently of the sample
isolation source and sampling year (Figure 8).

In five of the mcr-1–positive E. coli isolates (6.3%), IncHI2
plasmids were found to be mcr-1 carriers. In 4 out of 5 cases
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FIGURE 6 | Geographical distribution (district level) of mcr-1 positive E. coli isolation sites.

the mcr-carrying plasmid was identified using PacBio data as
it was not possible to link the plasmid replicon with the mcr-1
gene using only short Illumina reads. All the IncHI2–mcr-1
plasmids were subtyped as pST4. On the IncHI2–mcr-1 contig
(234213 bp) of the U16_0565X isolate additional resistance genes
were identified as follows: aadA1, aadA2, blaTEM−1B, catA1,
cmlA1, sul1, and tet(A). This isolate possessed the blaTEM−52C
gene located on the other contig (8917 bp). On the IncHI2–mcr-
1 contig (235356 bp) of U16_0288X, aac(3)-IIa, aadA1, aadA2,
blaTEM−1C, sul1, cmlA1, dfrA1, tet(A), aph(3′′)-Ib, and aph(6)-
Id were also found. The presence of the aph(3′)-Ia gene was
confirmed on the relevant contig (201917 bp) of U16_0579.
No other plasmid replicons except IncHI2 were annotated
on those contigs.

Three isolates (3.7%) possessed both the IncHI2 and IncX4
replicons, but mcr-1 was associated with IncX4. In one strain

(U16_0259) a chromosomal location of the mcr-1 gene was
confirmed (data not shown). In 15.0% (n = 12) of isolates no
plasmid replicons were found on contigs carrying the mcr-1 gene
(ranging in size from 2587 to 57048 bp) but the presence of
the IncX4 or IncHI2 replicon in the assembly was confirmed.
A curiosity is that in two E. coli (ID U16_0115 and U16_0115X)
isolated from the same sample, the mcr-1 genes were located on
different incompatibility group plasmids (IncX4 or IncHI2).

Virulence Genes
The virulence genes were variable among isolates
(Supplementary Table S1). Of the 80 E. coli sequences, six
contained one virulence gene, whereas the remainder carried up
to 10 virulence genes. The most common were: gad (n = 72),
iss (n = 62), iroN (n = 56), lpf A (n = 41), cma (n = 28), mchF
(n = 25), astA (n = 19), air (n = 15), eilA (n = 13), and tsh (n = 10),
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FIGURE 7 | Phylogeny of mcr-1-positive E. coli (sequence types, year and source of isolation, and map of phenotypic resistance and resistance genes). Full and
empty square mean presence and absence of antimicrobial resistance (AMR) gene, respectively, whereas empty space means non-defined or not tested.
(A) Resistance profiles (black): ampicillin, azithromycin, cefuroxime, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, colistin, nalidixic acid, meropenem,
sulphonamides, tetracycline, tigecycline, and trimethoprim (Sensititre EUSVEC MIC panel). (B) Aminoglycoside resistance genes (green): aac(3)-IIa, aac(3)-IId,
aadA1, aadA2, aadA5, aadA24, aadB, aph(3′)-Ia, aph(3′)-Ic, aph(3′′)-Ib, and aph(6)-Id. (C) Beta-lactam resistance genes (blue): blaTEM−1A, blaTEM−1B, blaTEM−1C,
blaTEM−30, blaTEM−135, blaTEM−52C, blaCMY−2, blaSHV−12, blaOXA−1,blaCARB−2, and blaCTX−M−1. (D) Quinolone resistance genes: plasmid-mediated quinolone
resistance (PMQR, brown): qnrS1, qnrB19; mutations in quinolone resistance determining regions (QRDR, violet): gyrA S83L, gyrA D87N, gyrA D87Y, parC S80I,
parC S80R, parC S57T, parC E84G, parC E84K, parE L416F, and parE L460D. (E) Sulphonamide resistance genes (dark brown): sul1, sul2, and sul3.
(F) Tetracycline resistance genes (light brown): tet(A), tet(B), and tet(M).

whereas cba, celb, ireA, vat, capU, iha, and mcmA were found in
single isolates. We found no correlation of virulence genes with
sample source or sampling year. Isolates were characterized with
different sets of virulence genes. Notably, one isolate (U14_0002)
presented a unique set of virulence genes (cif, eae, espA, espB, espF,
nleB, tccP, and tir) that designated it as atypical enteropathogenic
E. coli (aEPEC) group (Supplementary Table S1).

DISCUSSION

Based on screening of colistin MIC values in E. coli derived
from various monitoring programs on AMR in 2011–2016, we
collected extensive information about the occurrence of the
mcr-1 gene in E. coli isolated from food-producing animals
in Poland. Detailed characterization of mcr-1–positive isolates
from several hosts, different geographical locations, and a
range of sampling years included analysis of the phenotypic
AMR to a broad range of antimicrobials and its genetic
background, the presence of virulence genes, plasmid replicons,
and ST identification.

Many European countries reported the occurrence of
colistin resistance in E. coli deriving from both humans
and animals (Hasman et al., 2015; Irrgang et al., 2016;
Malhotra-Kumar et al., 2016; Perrin-Guyomard et al., 2016;
Carattoli et al., 2017; Duggett et al., 2017; Hartl et al., 2017;
Kawanishi et al., 2017; Apostolakos and Piccirillo, 2018). In
Poland, we observed a slight increase in colistin resistance
in E. coli and also in the prevalence of mcr-positive isolates
originating from healthy livestock from 0.7 to 1.7% and 0.2 to
3.7%, respectively in the analyzed time frame, irrespective of the
animal of origin. The overall occurrence of colistin resistance
in turkeys was higher than in chickens but it still remained low
compared to data from some European countries (European
Food Safety Authority [EFSA], 2018).

Escherichia coli totaling 53 mcr-positive E. coli were identified
after including isolates with MICcolistin = 2 mg/L, which is
the EUCAST epidemiological cut-off delimiting the wild-type
population. Applying this criterion, the prevalence was 3.7%
mcr-1–positive E. coli rather than 0.8% in Poland in 2016.
Detection of the mcr gene in wild-type isolates was reported
(Fernandes et al., 2016; Lentz et al., 2016; Hadjadj et al., 2017;
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FIGURE 8 | Phylogenetic relationship of contigs with mcr-1 and IncX4 plasmid replicon extracted from the genomes of 61 E. coli isolates by source and year of
E. coli isolation. Complete sequence of IncX4 plasmid with accession number KU761327.1 from GenBank was used as the reference.

Wang et al., 2017; Zhou et al., 2017) and might result from a
non-functional mcr-1 gene (Terveer et al., 2017). Some reports
indicate the possibility of deactivation of mcr-1 by insertion
of an IS1294b element and its reactivation by the loss of that
element under colistin selection pressure (Zhou et al., 2018).
In the current study, all of the mcr-1 had the typical sequence
of the mcr-1.1 gene. In some cases, the wild-type concentration
MICcolistin = 2 mg/L could result from a limitation in the MIC
determination method where one dilution step difference is
permissible. It should therefore be considered during selection of
suspected isolates. Except for one isolate, the presence of mcr-1
was not associated with a high level of resistance (MIC > 4 mg/L)
to colistin and the presence of a chromosomal resistance
mechanism in one of the isolates did not lead to elevated colistin
MIC values either (MIC = 2 mg/L). There was a noted presence in
Brazil of the mcr-1 gene in wild type isolates derived from poultry
confirmed as never exposed to polymyxin during their entire lives
(Lentz et al., 2016).

In some cases the lack of genotype–phenotype correlation in
isolates with resistance genes but without phenotypic resistance
to chloramphenicol could result from the limitation of the MIC
method. In others the reason could be substitutions found in the
relevant gene. In an isolate carrying the catB3 gene the lack of
genotype–phenotype correlation could not be identified due to
lack of a fragment gene at one end of the contig.

Despite several mcr-types and their variants being described
in isolates from animals across Europe (Rebelo et al., 2018), our

study suggests only mcr-1.1 being present in Polish livestock,
the first cases dating back to 2011. For yet unknown reasons,
but in concordance with data from Germany and France, the
highest occurrence of mcr-1–positive E. coli was detected in
turkeys (Irrgang et al., 2016; Perrin-Guyomard et al., 2016).
We speculate it could be related to the longer life span of
these animals compared to chickens, and consequently to a
longer length of exposure to selective pressure favoring antibiotic
resistance. Colistin is used for treatment of gastrointestinal
infections in animals, but in some countries low doses
may be used as a growth promoter (Kempf et al., 2013;
Fernandes et al., 2016). However, this practice is not allowed in
Poland or the other EU countries (European Medicine Agency
[EMA] and European Surveillance of Veterinary Antimicrobial
Consumption [ESVAC], 2017). The proliferation of mcr-1–
carrying E. coli, only occasionally found in 2011 but reaching
a case count of several dozen by 2016, raises the question
of the effects of excessive colistin use in animal husbandry.
Worth noting is that in Poland, unlike other animal species,
most of the turkey population is raised from imported one-
day-old poults or hatching eggs and it might be an additional
way for resistant isolates to be introduced to Polish farm
environments. Some research indicates that the introduction of
resistant bacteria may have been through imported breeding
animals (Mo et al., 2014).

Horizontal transfer via plasmids plays an important role in the
dissemination of antibiotic resistance genes. The IncX4 plasmid
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is considered one of the most prevalent carriers of the mcr-
1 gene in Enterobacteriaceae (Johnson et al., 2012; Matamoros
et al., 2017; Sun et al., 2017). Our study showed that mcr-
1 was associated with IncX4 plasmids in the vast majority
(76.3%) of isolates, and with IncHI2 plasmids, another well-
known mcr-1 vector (Matamoros et al., 2017; Sun et al., 2018)
in a few (6.3%) isolates. The fact that in one sample two
different E. coli were found with mcr-1 located on different
plasmids (IncX4 and IncHI2) might evidence a parallel route
of resistance spread but we cannot exclude transfer across the
plasmids. Furthermore, occurrence of the mcr-1 gene on the
chromosome shows that plasmid-mediated colistin resistance
genes might become fixed into specific E. coli populations and
spread vertically.

Most of the tested isolates were genetically unrelated, which
has also been observed in other reports on mcr-1–positive
E. coli (Veldman et al., 2016). One of the reported E. coli
ST 10, identified in 3 isolates, has been previously described
in relation to mcr-1 (Yang et al., 2017), and is considered
a reservoir of this gene (Matamoros et al., 2017). The STs
exhibited genetic diversity and were not related to animal source,
geographic area, or isolation year. The identification of the
same ST (i.e., ST919, ST354, and ST1564) in strains deriving
from the same animal source but isolated in different years,
or even in strains isolated from different species and in some
cases harboring the mcr-1 gene on different plasmids proves
the wide dissemination of plasmid-mediated colistin resistance
over the whole country. The study shows, in the light of the
ESVAC data on colistin sales (European Medicine Agency
[EMA] and European Surveillance of Veterinary Antimicrobial
Consumption [ESVAC], 2017), that the phenomenon is
probably a result of wide colistin selection pressure and
plasmid dissemination, and not due to the spread of specific
bacterial clones (El Garch et al., 2017; Wang et al., 2017). In
Poland, sales of colistin still remain above the maximum sale
target (European Medicine Agency [EMA] and European
Surveillance of Veterinary Antimicrobial Consumption
[ESVAC], 2018). External introduction, transmission of
plasmids, and dissemination under selection pressure create the
potential for the mcr-1 gene to become established in Polish
food-producing animals.

Of significance is that almost all mcr-1.1–positive isolates
were MDR including the compounds considered CIA (World
Human Organization [WHO], 2017). They carried a range of
genes encoding resistance to cephalosporins and quinolones.
Some reports have demonstrated the presence of the mcr-1 gene
together with ESBL genes (Robin et al., 2017; Yamaguchi et al.,
2018). Therefore mcr-1–positive E. coli should be considered a
reservoir not only of the colistin resistance gene, but also of those
of PMQR, and ESBL or sets of other resistance genes carried
along with mcr-1 on some plasmids. This is supported by our
finding of the genes encoding for resistance to beta-lactams,
including cephalosporins, aminoglycosides, or sulphonamides
located on the same contig as mcr-1.1 and IncHI2 replicon.
This is a serious concern for veterinary medicine and also for
human health since direct transmission of resistant isolates from
animals to humans has been confirmed (Marshall and Levy,

2011). The genes found in the current study did not differ
from the ones identified previously in E. coli occurring in the
healthy animal population (Wasyl, 2014; Lalak et al., 2016).
The blaCTX−M−15 gene, which occurs in isolates responsible for
nosocomial infections in Poland (Empel et al., 2008) was found
in this study in only a single pig isolate.

The aEPEC (atypical enteropathogenic Escherichia coli)
isolates are a cause of diarrhea in both humans and animals
(Afset et al., 2004; Almeida et al., 2012). Here, in the collection
of non-clinical E. coli isolates from healthy animals, we identified
mcr-1.1 in a single chicken strain surprisingly carrying several
virulence determinants of the aEPEC phenotype, namely EAST1,
cell cycle inhibiting factor, intimin adherence protein Eae,
secreted proteins EspA, EspB, and EspF type III secretion
system effector NleB, Tir-cytoskeleton coupling protein, and
translocated intimin receptor Tir. The strain carried also
additional AMR genes combining to afford resistance to 4 classes.
Since the mcr-1.1–positive, multidrug resistant aEPEC should
be considered a vector of both resistance determinants and
pathogens, this finding is worrisome for successive treatment of
animals or humans.

CONCLUSION

The results highlight that poultry, especially turkeys, can be an
important reservoir of mcr-1.1–carrying E. coli strains in Poland.
Our findings indicate an increasing occurrence of mcr-1.1 in
E. coli from turkeys and, to a lesser extent, chickens in Poland
from 2011 to 2016, whereas cases in pigs and cattle appear to
be sporadic in the study period. The mcr-1.1 gene occurred
mainly on the IncX4 and IncHI2 plasmids in a wide diversity
of E. coli harboring multiple resistance genes, virulence genes,
and various plasmid replicons. Thus, dissemination of mcr-
positive plasmids is a probable pathway for plasmid-mediated
colistin resistance to spread in food-producing animals. The
impressive genetic diversity of isolates as well as the association
of colistin resistance with particularly relevant phenotypes (e.g.,
third-generation cephalosporin and fluoroquinolone resistance
as well as aEPEC) call for urgent reduction in the use of colistin
to avoid further selection of co-resistance in E. coli in animal
production and possible animal and public health consequences.
Definitely excluding isolates that are currently considered wild-
type might contribute to silent dissemination of the mcr-positive
ones. Great attention should be given to continuous phenotypic
and genotypic surveillance of AMR and data collection in both
human and veterinary settings, thus enabling intervention to
counteract any rapid dissemination of mcr-1.1–positive E. coli.
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Rene S. Hendriksen 3 and Dariusz Wasyl 1,2

1Department of Microbiology, National Veterinary Research Institute, Puławy, Poland, 2Department of Omics Analyses,

National Veterinary Research Institute, Puławy, Poland, 3 Research Group for Genomic Epidemiology, European Union

Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne

Pathogens and Genomics, National Food Institute, Technical University of Denmark, Lyngby, Denmark, 4 Statens Serum

Institute, Copenhagen University, Copenhagen, Denmark, 5Department of Epidemiology, National Veterinary Research

Institute, Puławy, Poland

Keywords: WGS, mcr-1, colistin resistance, aEPEC, food animal, IncX4, IncHI2

A Corrigendum on

Occurrence and Characterization of mcr-1-Positive Escherichia coli Isolated From

Food-Producing Animals in Poland, 2011–2016

by Zajac, M., Sztromwasser, P., Bortolaia, V., Leekitcharoenphon, P., Cavaco, L. M., Ziȩtek-Barszcz,
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an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

690

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.02816
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.02816&domain=pdf&date_stamp=2019-12-04
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:magdalena.zajac@piwet.pulawy.pl
https://doi.org/10.3389/fmicb.2019.02816
https://www.frontiersin.org/articles/10.3389/fmicb.2019.02816/full
http://loop.frontiersin.org/people/95657/overview
http://loop.frontiersin.org/people/370779/overview
http://loop.frontiersin.org/people/500084/overview
http://loop.frontiersin.org/people/89525/overview
http://loop.frontiersin.org/people/47387/overview
https://doi.org/10.3389/fmicb.2019.01753
https://doi.org/10.3389/fmicb.2019.01753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


OPINION
published: 09 August 2019

doi: 10.3389/fmicb.2019.01703

Frontiers in Microbiology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 1703

Edited by:

Gilberto Igrejas,

University of Trás-os-Montes and Alto

Douro, Portugal

Reviewed by:

Stanley Brul,

University of Amsterdam, Netherlands

César de la Fuente,

Massachusetts Institute of

Technology, United States

Jianhua Wang,

Chinese Academy of Agricultural

Sciences, China

Tim Maisch,

University of Regensburg, Germany

*Correspondence:

M. Teresa Machini

mtmachini@iq.usp.br

Specialty section:

This article was submitted to

Antimicrobials, Resistance and

Chemotherapy,

a section of the journal

Frontiers in Microbiology

Received: 15 August 2018

Accepted: 10 July 2019

Published: 09 August 2019

Citation:

Pizzolato-Cezar LR,

Okuda-Shinagawa NM and

Machini MT (2019) Combinatory

Therapy Antimicrobial

Peptide-Antibiotic to Minimize the

Ongoing Rise of Resistance.

Front. Microbiol. 10:1703.

doi: 10.3389/fmicb.2019.01703

Combinatory Therapy Antimicrobial
Peptide-Antibiotic to Minimize the
Ongoing Rise of Resistance
Luis R. Pizzolato-Cezar, Nancy M. Okuda-Shinagawa and M. Teresa Machini*

Peptide Chemistry Laboratory, Department of Biochemistry, University of São Paulo, São Paulo, Brazil

Keywords: antibiotic-resistant organisms, multidrug-resistant organisms, microbial infections, infection diseases

treatment, biofilm-forming organisms, antimicrobial peptides

THE ANTIBIOTIC RESISTANCE CRISIS

Antibiotics are cytotoxic or cytostatic compounds, very effective, harmful and specific against
pathogenic microorganisms that have saved millions of lives and increased human life expectancy
and quality (Zaman et al., 2017). Nevertheless, we have almost reached a post-antibiotic era,
where even simple infections have become untreatable due to the remarkable rise of resistance
(Chaudhary, 2016).

Antibiotic resistance is the ability of microorganisms to withstand the effect of medicines.
Although an inevitable natural phenomenon, the abusive use of antibiotics has provided constant
selection pressure and accelerated the emergence of highly resistant strains (Richardson, 2017). It
is perhaps not intuitive, but it is estimated that the vast majority of all antibiotics produced is used
improperly in the food-animal sector to promote rapid growth and prevent infectious diseases,
rather than in human medicine (Landers et al., 2012). This article focuses on the main aspects of
the combinatory therapy antimicrobial peptide (AMP)-antibiotic to treat infectious diseases.

COMBINATORY THERAPY AMP-ANTIBIOTIC

Antibiotic resistance management is an attempt to decrease the resistance rate. It demands both
the limitation of antibiotic use and the application of more efficient infection therapies. Since
antibiotic exposure time correlates with the development of resistance, effective therapies should
include drugs with rapid death kinetics and broad spectra of action. Such requirements are mainly
found in combinatory therapies, which in contrast to monotherapies, simultaneously employs
different drugs to treat a particular disease. Combining different drugs mainly leads to synergism
or antagonism. In a synergistic response, the combination has a considerably stronger effect
than single drugs would, more than just an additive effect. It meaningfully improves clinical
outcomes and decreases the probability of resistance evolution since it is unlikely that a pathogen
simultaneously develops resistance to multiple antibiotics (Xu et al., 2018). Correctly choosing the
combination cocktail is a crucial step and AMPs have been increasingly recognized as a promising
class of compounds to be used in combination with classic antibiotics for the treatment of various
infections (Lewies et al., 2018).

AMPs are composed of amino acids, typically 5–50 residues, and produced by all classes of
multicellular organisms as an essential part of the innate immune response. Usually, they target
a broad range of essential metabolic processes of bacterial and fungal cells. The main characteristic
of most AMPs is its positive net charge, which allows for the interaction with negatively charged
components of the cell wall and plasma membrane. Following interaction, amphipathic AMPs
insert into themembrane, a process driven by the presence of hydrophobic amino acids. Subsequent
membrane disruption occurs by a variety of mechanisms, leading to loss of its integrity and,
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ultimately, cell death (Carvalho et al., 2015). In addition
to membrane-lytic activities, AMPs also exert intracellular
inhibitory activity by interfering with diverse essential processes
as protein biosynthesis, cell division, cell-wall biosynthesis
and nucleic acid metabolism. Furthermore, in complement
to antimicrobial activities, AMPs also modulate the immune
response stimulating cytokine production, acting as chemokines,
and promoting wound healing (Bechinger and Gorr, 2017).

Presumably, the crucial advantage of AMPs is that they are
described as less prone to induce resistance as most have multiple
targets and rarely interact with a specific receptor. Among those
with a single target, most act on the membrane where resistance
evolution is more unlikely to occur (Sierra et al., 2017). However,
in exceptional cases involving specific protein interactions, the
possibility of genetic mutation and resistance development is
a significant event but unlikely in combinatory therapy AMP-
antibiotic due to the magnitude of different targets involved.
Moreover, this rare event can be overcome by slight structural
modifications that is easy and rapid for AMPs due to the
tremendous progress made in solid phase peptide synthesis. Such
advance resulted from the availability of low-cost high-quality
building blocks and coupling reagents, establishment of efficient
approaches and protocols to speed up peptide assembly, and the
development of fully automated synthesizers (Mijalis et al., 2017).

In the last few years, several studies have demonstrated
the benefits and advantages of combinatory AMP-antibiotic
therapy, which include the successful elimination of multidrug-
resistant (MDR) and biofilm-forming organisms, a significant
lower outcome of resistance development, reduction of single
doses and a decrease in side effects (Lewies et al., 2018).
Perhaps one of the leading causes of resistance development
is the low microbial cell membrane permeability to antibiotics
(especially the outer membrane of gram-negative bacteria that
is primarily composed of polyanionic lipopolysaccharides) and
since most AMPs act on membranes, perturbing their structures,
the combinatory therapy AMP-antibiotic arises as an efficient
tool to increase antibiotic bioavailability (Li et al., 2017).
Indeed, recent studies have shown that in particular cationic
AMPs, such as LL-37, piperacillin, buforin II, ceprocin P1,
indolicidin, nisin, and magainin II, are remarkably effective
in combination with antibiotics like polymyxin E, piperacillin,
azithromycin, daptomycin, linezolid, and clarithromycin to
enhance antibiotic bioavailability against highly multidrug-
resistant gram-negative and methicillin-resistant S. aureus
(MRSA) pathogens (Giacometti et al., 2000; Mataraci and
Dosler, 2012; Lin et al., 2015). These studies are of enormous
importance as increasing bioavailability reduces the required
antibiotic concentration and, consequently, the probability of
resistance development.

More than to enhance oral bioavailability, the strong
membrane permeabilization capacity of AMPs can directly
kill even dormant biofilm-forming cells in combination
with classical antibiotics. An example demonstrating the
efficacy of AMP-antibiotic therapy to remove biofilm is the
treatment of Pseudomonas aeruginosa (P. aeuruginosa) with
carbapenems. Such antibiotics belong to the class of broad-
spectrum antimicrobials routinely used for the treatment

of infections caused by multidrug-resistant P. aeuruginosa
that leads to chronic diseases. Recently, a novel synthetic
cyclolipopeptide analog of polymyxin (AMP38) was tested
in combination with carbapenems, and the synergistic effect
was observed to cause the killing of biofilm-forming and
carbapenem-resistant P. aeruginosa (Rudilla et al., 2016).
Since biofilm represents an enormous obstacle in antibiotic-
therapy, this area has recently received increased attention from
the scientific community, given the high number of reports
demonstrating the benefits of combination AMP-antibiotics for
the treatment of biofilm-forming organisms (Reffuveille et al.,
2014; Ribeiro et al., 2015; Grassi et al., 2017).

Besides affecting membrane integrity, some AMPs also have
intracellular targets. For instance, arenicin-1 in combination with
a broad spectrum of antibiotics increases drug bioavailability
and promotes oxidative stress by depletion of NADH (Choi
and Lee, 2012). Similarly, buforin II was primarily shown to
act on the membrane, but as it was demonstrated later, it also
interacts with DNA, interrupting DNA and RNA metabolisms
(Sim et al., 2017). It is important to note that since most AMPs
have multiple cell targets, their mechanisms of action are strictly
dependent on the concentration. For instance, studies conducted
with pleurocidin has shown that, at its lowest inhibitory
concentrations, this is less able to damage cell membranes but
capable of inhibiting macromolecular synthesis (Patrzykat et al.,
2002). Indeed, typically, AMPs cause membrane lysis at high
concentrations and no-membrane lysis at low concentrations
(Cudic and Otvos, 2002).

It is also essential to emphasize that the combinatory therapy
AMP-antibiotic is effective to treat diseases caused by MDR
organisms as for such proposes the essential requirement
of the drug cocktail is to have components with different
killing mechanisms. For example, the combination of the
antimicrobial peptide DP7 with azithromycin or vancomycin
was shown to eradicate some antibiotic-resistant bacteria like
Staphylococcus aureus (S. aureus), P. aeruginosa, and Escherichia
coli (E. coli) (Wu et al., 2017). Analogously, the AMP SET-
M33 was extremely effective against a set of gram-negative
MDR organisms as Klebsiella pneumoniae (K. pneumoniae),
P. aeruginosa and Acinetobacter baumannii (A. baumannii),
especially in combination with rifampin (Pollini et al., 2017).
Even in cases where the AMP alone has just a moderate
antimicrobial activity, its combination with antibiotics was
effective against MDR organisms. Indeed, as recently shown,
a combination of ASU014, a bivalent branched peptide with
moderate activity against S. aureus, with oxacillin was also
very efficient against MRSA. The synergism between both
meaningfully improved the killing effect as compared to single
drugs, so that lower peptide concentrations and sub-MIC doses
of the antibiotic were required for the complete eradication of
the pathogen (Lainson et al., 2017).

Closely related to resistance is persistence, a phenomenon
in which microorganisms become insensible toward lethal
antibiotic doses not due to genetic acquired modifications, but
by entering in a dormant and drug-tolerant state. This state
is transient and lasts as long as the stress condition endures.
Consequently, persistence is directly related to chronic and
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recurrent infectious diseases. Themediation of persistence occurs
by the signaling molecule ppGpp in response to environmental
stress as the presence of antibiotics (Pollini et al., 2017). A recent
study of the synergistic effect between a broad set of AMPs
and antibiotics like ciprofloxacin, meropenem, erythromycin,
and vancomycin for treating infections caused by clinical
hard-to-treat pathogens, including all ESKAPE (Enterococcus
faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa,
Enterobacter cloacae) pathogens, revealed the ability of AMPs
to elicit degradation of ppGpp, avoiding the entry in an
energy-starved state. This is a significant finding as potentially
all microorganisms react to antibiotic treatment mediating
persistence, and the fact that some AMPs can prevent it opens
new doors for the development of alternative therapies that
effectively decrease the resistance rate (Pletzer et al., 2018).

In addition to all those benefits, some AMPs can confer
protection by acting as potent immune regulators by means
of chemokine, inhibiting pro-inflammatory cytokine production
and modulating the response of the adaptive immune response
via the regulation of T cells (Diamond et al., 2009). In this
regard, LL-37 is probably the most tested AMP in combinatory
therapy. A study performed to assess the antibacterial activity of
amoxicillin with clavulanic acid and amikacin against different
clinical isolates of S. aureus revealed that the killing effect of
the antibiotic alone was strongly potentiated by the addition of
synthetic LL-37 (Leszczyńska et al., 2010). Similarly, the anti-
tuberculosis antibiotics isoniazid and rifampicin were shown to
clearMycobacterium tuberculosis (M. tuberculosis) from infected
lungs, liver, and spleen, more efficiently in combination with the
human neutrophil peptide (HNP)-1 in comparison to when they
were employed alone (Kalita et al., 2004).

In summary, the benefits of AMPs associated with the potency
of conventional antibiotics in combinatory therapy can very
efficiently favor the resolution of infections caused by MDR and
biofilm forming microorganisms, enhances the natural immune
response and decreases the likelihood of resistance.

BARRIERS FOR THE THERAPEUTIC USE
OF AMPs

In clinical therapy, the most desirable route of drug
administration is orally due to the relatively low cost of
production and patient compliance (Zhu et al., 2017). However,
before any drug reaches the bloodstream, and consequently
its target, it will typically face many obstacles that include the
mouth environment and the harsh gastric tract containing
digestive enzymes, highly viscose mucosal layers, epithelial
cells preventing the direct contact with the capillary and tight
junctions between the epithelial, blocking the paracellular
passage. For peptides, all those barriers restrict their ease of
administration due to their low cell membrane permeability and
limited stability toward proteolysis (Lewis and Richard, 2015). In
fact, according to THPdb (http://crdd.osdd.net/raghava/thpdb/),
a database for therapeutic peptides and proteins, only 4 % of all
approved therapeutic peptides and proteins are administered
orally. The following sections focus on the stability issue and the

low membrane permeability of peptides in general and present
some successful strategies that overcome the practical limitations
of peptides as orally administered drugs.

Except cyclic andD-amino acid composed AMPs, themajority
is linear and formed by natural L-amino acids. Thus, they
are similar to food peptide/proteins and substrates of several
digestive enzymes. Nevertheless, most proteases exclusively
recognize the 20 natural L-amino acids and, consequently, the
stability of many AMPs can be enhanced by the addition
of chemical modifications, replacement of L-amino acids by
their D-isomers (Remuzgo et al., 2014) and chain cyclization.
In contrast to conventional antibiotics, AMPs tolerate more
modifications while maintaining their activity. As already
discussed, most AMPs form disruptive pores in the membrane,
an event that is primarily driven by physical properties like net
charge rather than by amino acids conformation. Thus, changing
L-amino acids to the corresponding D-isomers usually does not
impair AMP activity. Even in cases involving specific receptor-
AMP interaction, replacements and modifications might not
necessarily impair AMP action. Unlike classic antibiotics, the
interaction surface AMP-receptor is usually more extensive, and
the replacement of natural amino acids by non-natural analogs
is less pronounced and, in some cases, can even improve the
affinity. A study comparing the impact of manymodifications has
revealed that the addition of alpha-methyl amino acids and D-
analogs confers to the peptide the most pronounced protection
from proteolysis without activity loss (Werner et al., 2016).

In addition to the stability problem, oral delivery of AMPs is
also challenging due to their poor cell membrane permeability.
Once orally administered, AMPs should cross the gastrointestinal
epithelium to reach the bloodstream. However, this is not so
simple for hydrophilic molecules exceeding 700 Da (Fosgerau
and Hoffmann, 2015). Nonetheless, it has been shown that
the successful transport of different molecules like proteins,
peptides or DNA across the biological membrane could be
achieved by the simultaneous addition or fusion of the molecule
of interest with a class of transcellular enhancers known as
cell penetrating peptides (CPPs). Such molecules are short
peptides able to cross cellular membranes via an energy-
dependent or independent mechanism. Their chemical nature
is diverse, but most CPPs are positively charged; a primary or
secondary amphipathic character can also be implicated but
is not strictly required for internalization. In fact, it has been
reported that even octa-arginine can mediate cellular uptake
when co-administered or in conjugation with a cargo molecule
(Dinca et al., 2016). Conjugation of CPPs with clinically relevant
molecules was reported. Examples include the combination of
lipo-polyarginine with insulin that was shown to enhance the
transport through Caco-2/HT-29 cells almost two-fold (Garcia
et al., 2018). Moreover, the conjugation or co-administration of
TAT and polynonaarginin with the parathyroid hormone has
sharply increased the transport through Caco-2 cells (Kristensen
et al., 2015). However, in cases where the AMP should act in
the gastrointestinal tract, low bioavailability is desired as the
MIC value is more likely to be reached by lower doses. Thus,
only proteolytic stability remains a possible issue. For instance,
surotomycin is a cyclic lipopeptide antibiotic active against
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Clostridium difficile (C. difficile), and as clinical evidence has
shown, its low oral bioavailability allows the gastrointestinal tract
concentrations to considerably exceed its MIC for the pathogen
(Knight-Connoni et al., 2016).

PERSPECTIVES

The combinatory therapy AMP-Antibiotic has increasingly
attracted attention within contemporary studies due to its
diverse benefits. The number of combination studies involving
AMP-antibiotic has therefore been exponentially growing over
the last few years (Jorge et al., 2017). However, the peptide
permeability/stability problem remains the main obstacle for the
use of peptides in clinical therapy. Currently, no straightforward
solution is available, but great efforts have been made to develop
targeted AMPs and to turn peptides into more appropriate
drugs for oral use. In addition, the standardization of methods
used to determine the synergism between AMPs and antibiotics,
their interactions and the creation of antimicrobial combination
networks has been facilitating combinatory studies (García-
Fuente et al., 2018; Pemovska et al., 2018). Given the promising

results obtained so far, the trend shows that the appeal of using
combinatory therapy AMP-antibiotic will become even greater.
It could represent the beginning of a modern and efficient era in
the battle against infectious diseases.
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The objectives of this study were to investigate the prevalence and fluoroquinolone
resistant Salmonella isolated from an integrated broiler chicken supply chain and their
molecular characterization. In total, 73 Salmonella isolates were recovered from a broiler
chicken supply chain in Shanghai. Salmonella isolates were tested for susceptibility to
11 antimicrobial agents using the broth dilution method and were characterized using
pulsed-field gel electrophoresis (PFGE). Then, the Salmonella isolates were examined for
mutations in quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and
parE, and were screened for plasmid-mediated quinolone resistance (PMQR) genes.
Lastly, we sequenced the plasmids carrying qnrS1 in six Salmonella isolates from
three sources (two isolated per source). Among 73 Salmonella isolates, 45 isolates
were identified as S. Indiana, 24 were S. Schwarzengrund, 2 were S. Enteritidis, and
2 were S. Stanleyville. In addition, high rates of resistance were detected for nalidixic
acid (41.1%) and ciprofloxacin (37.0%), while resistance to other test agents was
diverse (2.0–100%). S. Indiana and S. Schwarzengrund isolates from different sources
exhibited the same PFGE pattern, suggesting that the Salmonella isolates possessed
high potential to spread along the broiler chicken supply chain. gyrA and parC exhibited
frequent missense mutations. Moreover, qnrS1 was the most prevalent PMQR gene in
the 73 Salmonella isolates, and it was found about a new hybrid plasmid. This study
concludes a high prevalence of fluoroquinolone resistant Salmonella in chicken supply
chain, threatening the treatment of Salmonella foodborne diseases. In particular, the
emergence of a new hybrid plasmid carrying qnrS1 indicates that the recombination of
plasmid carrying resistance gene might be a potential risk factor for the prevention and
control strategies of drug resistance.

Keywords: Salmonella, fluoroquinolone resistance, qnrS1, hybrid plasmid, broiler chicken supply chain
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INTRODUCTION

Salmonellosis, caused by Salmonella, is one of the most
frequently reported foodborne illnesses worldwide. Salmonella is
divided into more than 2500 serovars by the White–Kauffman
and Le Minor scheme. This classification scheme defines the
serogroup according to expression of somatic lipopolysaccharide
O antigens, and the serovar by the expression of flagellar H
antigens. Salmonella, as an important human pathogen, is a
potential public health risk.

It has been estimated that Salmonella causes about 1.2 million
illnesses in the United States every year. Food is a major
source of these infections, accounting for 1 million illnesses,
19,336 hospitalizations, and 378 deaths (Scallan et al., 2011).
The majority of human infections caused by Salmonella is
associated with the consumption of food products. Chicken,
as one of the most widely consumed meats, is an important
reservoir of Salmonella (Adu-Gyamfi et al., 2012; Truong Ha and
Yamaguchi, 2012). Importantly, antibiotic-resistant bacteria of
animal origin could be transmitted to humans (Piddock, 2002;
Khemtong and Chuanchuen, 2008), which adversely affect the
treatment of salmonellosis. Therefore, it is necessary to monitor
the epidemiology and genetic characteristics of Salmonella
in the food chain.

Fluoroquinolones are widely used to treat salmonellosis
in human and animal (Folster et al., 2015). Currently,
the main mechanism underlying quinolone resistance is the
accumulation of mutations in quinolone resistance-determining
region (QRDR) of gyrA, gyrB, parC, and parE and plasmid-
mediated quinolone resistance (PMQR), which includes five
major groups of qnr determinants (qnrA, qnrB, qnrC, qnrD,
and qnrS), aac(6′)-Ib-cr and quinolone extrusion such as qepA
and oqxAB (Strahilevitz et al., 2009). Some studies focused on
fluoroquinolone resistance-related determinants about PMQR
and QRDR in Salmonella derived from humans and animals
(Wasyl et al., 2014; Wong et al., 2014). However, comprehensive
data regarding fluoroquinolone resistance determinants in
Salmonella from chicken supply chain are lacking, despite the
implication for human health.

Thus, the aims of this study were to investigate the prevalence
of Salmonella and their molecular characteristics related to
fluoroquinolone resistance determinants, including PMQR and
QRDR, in the broiler chicken supply chain in Shanghai. These
data provide insight into the quantitative risk of resistant
Salmonella from chicken supply chain.

MATERIALS AND METHODS

Statement of Ethics
This study was carried out in accordance with the ethical
guide lines of the College of Veterinary Medicine, China
Agricultural University, Beijing. Moreover, before the initiation
of this study, formal approval was obtained by the departmental
committee of institute. Sampling was carried according to the
standard protocols and with prior consent of the farmer/manager
of the facilities.

Salmonella Strains and Antimicrobial
Susceptibility Testing
Salmonella isolates were recovered from three sources including
adult broilers, broiler carcasses and retail chicken, representing
vertically integrated commercial broiler chicken supply chain
in Shanghai City, China. One sample was collected from
each animal or meat product as appropriate. Caecal samples
from adult broilers were randomly collected at the abattoir.
Whole carcasses or meat samples were aseptically obtained from
chicken processing chain. Carcasses from the retail chicken
source were sampled from the markets. All samples were
immediately transported to the laboratory in an insulated ice
boxes containing ice packs. Microbiological procedures were
performed immediately upon arrival at the laboratory. All
test strains were isolated in CHROMagar Salmonella agar
(CHROMagar Company, Paris, France). Suspected Salmonella
colonies were confirmed by a PCR assay targeting the invA gene
(Rahn et al., 1992). Salmonella serotyping was conducted by
performing the slide agglutination test, using Salmonella antisera
(S & A Reagents Lab Ltd., Bangkok, Thailand) according to
manufacturer’s instructions.

Salmonella isolates were subjected to antimicrobial
susceptibility tests using standard broth dilution method of
minimum inhibitory concentrations according to the guideline
of the Clinical and Laboratory Standards Institute [CLSI]
(2015a). Antimicrobial agents included 11 antimicrobials (i.e.,
amoxicillin/clavulanic acid, nalidixic acid, ampicillin, cefazolin,
doxycycline, gentamicin, trimethoprim/sulfamethoxazole,
chloramphenicol, ciprofloxacin, meropenem, and ceftriaxone).
Escherichia coli ATCC 25922 was used as a quality control
strain. The interpretive category for each isolate (susceptible,
intermediate, or resistant) was determined according to the CLSI
recommendations (Clinical and Laboratory Standards Institute
[CLSI], 2015b).

Identification of Fluoroquinolone
Resistance-Related Determinant
The DNA templates of isolates were prepared using TIANamp
Bacteria DNA Reagent Kit (Tiangen, Beijing, China). The
extracted DNAs were amplified by PCR assay. The mutations
in gyrA, gyrB, parC, and parE genes were analyzed as described
previously (Eaves et al., 2004). Salmonella isolates were screened
for oqxA, oqxB, qnrA, qnrB, qnrC, qnrD, qnrS, aac(6′)-Ib-cr,
and qepA genes. The primers and amplification conditions were
described previously (Chen et al., 2012). PCR products were
sequenced and identified.

Pulsed-Field Gel Electrophoresis (PFGE),
S1 Nuclease Pulsed-Field Gel
Electrophoresis (S1-PFGE), Southern
Hybridization, Conjugation and
Sequencing by Illumina
All Salmonella isolates were analyzed by PFGE method according
to a previous protocol for subtyping Salmonella (Cui et al.,
2016). According to the PFGE profile, six Salmonella isolates
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carrying qnrS1 were randomly selected from three sources (two
isolates per source) for analysis by S1-PFGE and Southern
hybridization, as previously described (Zhang et al., 2015). For
the conjugation assay, six selected Salmonella isolates were
used as donor strains, and sodium azide-resistant E. coli J53
was used as recipient strains. Both the donor strain and
recipient strain were mixed on Luria-Bertani agar at a ratio of
1:3, and 100 µL mixtures were incubated for 16 h at 37◦C.
Transconjugants were selected on LB supplemented with sodium
azide (100 mg/L) and ciprofloxacin (0.5 mg/L). Plasmids DNA
were extracted from six Salmonella isolates transconjugants
using by Wizard

R©

Plus SV Minipreps DNA Purification Systems
(Promega, Madison, WI, United States), then been sequenced by
Illumina HiSeq 2500 system.

RESULTS

Prevalence and Characteristics of
Salmonella Isolates in the Chicken
Supply Chain
A total of 73 (7.7%) Salmonella isolates were recovered from
715 samples. The highest prevalence of (17.5%, 48 isolates)
detected in 200 broiler carcass samples, followed by 127 retail
chicken samples (8.7%, 16 isolates), while lowest prevalence
(2.3%, 9 isolates) of Salmonella isolates was observed in 388
adult broiler samples. Among these, 45 isolates were identified
as S. Indiana, 24 were S. Schwarzengrund, 2 were S. Enteritidis,
and 2 were S. Stanleyville. Furthermore, all 73 Salmonella isolates
were evaluated for susceptibilities to eleven antibiotics. The
rates of resistance were 41.1% for nalidixic acid and 37.0%
for ciprofloxacin, while, resistance to other test agents varied
substantially (amoxicillin/clavulanic acid: 43.8%, ampicillin:
42.5%, cefazolin: 47.9%, doxycycline: 95.9%, gentamicin: 6.8%,
trimethoprim/sulfamethoxazole: 100%, chloramphenicol: 43.8%,
meropenem: 2.0%, and ceftriaxone: 12.3%). PFGE profiles are
shown in Figure 1. Notably, some S. Indiana isolates from
different sources exhibited the same PFGE pattern. Likewise,
some S. Schwarzengrund exhibited the same PFGE pattern,
suggesting that Salmonella isolates have high potential to spread
along the broiler chicken supply chain.

Fluoroquinolone Resistance
Determinants in the Chicken
Supply Chain
Based on the detail information in Supplementary Table S1,
mutations within QRDR of gyrA, gyrB, parC, and parE are
summarized in terms of serotype in Table 1 The presented data
indicated that missense mutations frequently occurred in gyrA
and parC, whereas silent mutations were observed in gyrA, gyrB,
parC, and parE. Among 73 Salmonella isolates from this broiler
chicken supply chain, 47 Salmonella isolates carried the wild-type
(no mutation) within gyrA gene, missense mutation (Thr57Ser)
within parC gene, 15 of which did not exhibit implicated
in fluoroquinolone resistance phenotypes. The remaining 26
isolates contained missense mutations within gyrA (Ser83Phe and

Asp87Asn) and parC (Thr57Ser, Ser80Arg). In addition, Table 2
shows the distribution of fluoroquinolone resistance genes (oqxA,
oqxB, qnrA, qnrB, qnrC, qnrD, qnrS, aac (6′)-Ib-cr, and qepA).
Among them, qnrS1 (30/73) was predominant gene, following
by qnrB1 (22/73), oqxA (1/73), oqxB (1/73), and aac (6′)-Ib-cr
(1/73). The genes sequences of qnrS1, qnrB1, oqxA, oqxB, and aac
(6′)-Ib-cr were deposited in GenBank. Accession numbers were
MK990505, MK990506, MK990507, MK990508, and MK990509,
respectively. However, the other fluoroquinolone resistance genes
were not observed. In total, 53 of 73 Salmonella isolates
carried fluoroquinolone resistance genes, and qnrS1 gene was
detected in most S. Indiana (23/45), S. Schwarzengrund (5/22),
and S. Enteritidis (2/2) isolates, accounting for the majority
Salmonella isolates in the broiler supply chain.

Novel Plasmid Associated With qnrS1
The qnrS1 was predominant gene in the chicken supply chain,
thus, six Salmonella isolates from three sources (two isolates
per source) were randomly selected to analyze the transmission
mechanism of qnrS1 according to the PFGE profile. S1-PFGE
and Southern blot analyses (Figure 2) indicated that qnrS1 is
located on a ∼40 kb plasmid, designated pSH-01. Conjugation
experiments by filter mating revealed that qnrS1 could be co-
transferred from Salmonella isolates to E. coli J53. S1-PFGE and
Southern hybridization confirmed that the DNA probes specific
for qnrS1 hybridized to the same plasmids with a size ∼40 kb
in both Salmonella isolates and their transconjugants (Figure 2).
Then, the plasmids were extracted from transconjugants and
sequenced using the Illumina MiSeq system. The analysis of the
sequences showed that the plasmids are extremely similar with
more than 99% identity, indicating that the plasmids from the
different strains are indeed the same plamids. The NCBI BLAST
results showed that the hybrid plasmid carrying qnrS1 is a new
plasmid type (pSH-01, submission number KY486279.1). It was
43,257 bp in length and harbored 51 predicted open reading
frames. Furthermore, a plasmid sequence analysis (Carattoli et al.,
2014) of pSH-01 indicated that it is an IncR type hybrid plasmid.

According to the BLAST results of pSH-01 nucleotide
sequence against the NCBI database, the two junctions
(Figures 3B,C) were often occurred, indicating that the three
fragments are usually associated and transferred as a whole.
These fragments were almost derived from plasmids. Notably,
the genetic features of pSH-01 showed that the fragment carrying
qnrS1 (2849–14429) is derived from plasmids of one Shigella
flexneri and six E. coli isolates (blast query cover: above 99%
and blast identity: 99%). Another fragment (nt14429–31031)
was derived from plasmids of Salmonella and other bacterial
isolates, and an additional fragment (30758–43257, 1–2851)
was mostly derived from plasmids of Klebsiella pneumoniae.
The origin of target plasmids covered different bacterial host.
According to an alternative sequence analysis, for example,
it was postulated that pSH-01 might be hybrids of three
plasmids (Figure 3A); the region spanning nt 2849–14429
matched with plasmid pEBG1 (KF738053; nt 37915–26335) of
the E. coli strain, nt 14429–31031 shared a nucleotide identity
of 99% to the plasmid p33676 (CP012682; nt 25123–41725)
from S. Typhimurium, and nt 30758–43257, 1–2851 shared a
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FIGURE 1 | PFGE profiles of Salmonella isolates from the broiler chicken supply chain. Strain codes indicate the source of broiler chicken supply chain and the
isolate number. aUnderlined strains were selected to been sequenced by the Illumina HiSeq 2500 system.
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TABLE 1 | Mutations within QRDR of gyrA, gyrB, parC, and parE genes in Salmonella isolates from broiler chicken supply chain.

Serotype

S. Indiana S. Schwarzengrund S. Enteritidis S. Stanleyville

Gene Mutation type (n = 45) (n = 24) (n = 2) (n = 2)

gyrA Wild type (n = 47) 32 13 2 0

Ser83Phe, Asp87Asn (n = 26) 13 11 0 2

gyrB Lys447, Leu451, Leu462, Ser464 (n = 47) 32 13 2 0

Arg438, Lys439, Leu451, Leu462, Ser464 (n = 26) 13 11 0 2

parC Thr57Ser, Val67, His75, His77, Asp101, Gly102,
Gly104, Ala117, Ser123 (n = 47)

32 13 2 0

Thr57Ser, Val67, His75, His77, Ser80Arg, Gly104,
Ala117, Ser123 (n = 26)

13 11 0 2

parE Glu460, His509 (n = 27) 14 11 0 2

Glu460, le464, His509 (n = 46) 31 13 2 0

Missense mutations are marked in bold.

nucleotide identity of 99% to the plasmid tig00000005_pilon
(CP021858; nt 17585–5015, 4958–1790) from K. pneumoniae
AR_0125. Similar recombination junctions could also be found
in another alternative sequence analysis. Therefore, based on
sequence analyses of three recombination junctions (Figure 3B),
it was postulated that Tn3, IS6 and homologous recombination
played important roles in the formation of pSH-01.

DISCUSSION

In the broiler supply chain in China, there are geographical
differences in the dominance of various Salmonella serotypes and
in the prevalence of fluoroquinolones resistant Salmonella. In
this study, S. Indiana was the most common serotype isolated
from the broiler supply chain, which differs from previous
results showing that S. Enteritidis is dominant in Qingdao and
S. Weltevreden is dominant in Guangdong, China (Cui et al.,
2016; Ren et al., 2016). In addition, several studies have indicated
Salmonella could be transmitted along the food chain (Nogrady
et al., 2008; Hauser et al., 2012). Our PFGE results showed that
there is the potential for the transmission of Salmonella along
the broiler chicken chain. With the emergence of antibiotic-
resistant bacteria presenting a serious challenge in human and

TABLE 2 | The distribution of fluoroquinolone resistance genes about PMQR in
Salmonella isolates from broiler chicken supply chain.

Genes Serotype

S. Indiana S. Schwarzengrund S. Enteritidis S. Stanleyville

(n = 45) (n = 24) (n = 2) (n = 2)

qnrS1 (n = 30) 23 5 2 0

qnrB1 (n = 22) 12 9 0 1

oqxA (n = 1) 1 0 0 0

oqxB (n = 1) 1 0 0 0

aac-Ib-cr (n = 1) 0 1 0 0

qnrC, qnrD, qnrA, and qepA were not detected.

veterinary medicine globally, there is an abundance of evidence
showing that the antimicrobial resistance of Salmonella in the
chicken supply chain is more possibly attributed to the use
of antibiotics in the animal husbandry (Cui et al., 2016). In
particular, there are many reports of increasing prevalence
of fluoroquinolone-resistant Salmonella (Piddock, 2002; Wasyl
et al., 2014), which might be a potential risk for human health.
In this study, resistance to ciprofloxacin was detected in 37.0% of
the Salmonella isolates, and this resistance rate was relatively high
compared to those of previous reports (Cui et al., 2016; Ren et al.,
2016; Nhung et al., 2018).

FIGURE 2 | Results of S1-PFGE and Southern blotting. Location of the
qnrS1-carrying plasmid pSH-01 in Salmonella by S1-PFGE (lanes M, 1, 2, 3,
4, 5, and 6) and Southern blot hybridization (lanes M, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, and 18). Lane M, serotype Braenderup H9812; lane 1 and 7,
Adult broiler 70; lane2 and 8, Adult broiler 71; lane 3 and 9, Broiler carcass 3;
lane 4 and 10, Broiler carcass 4; lanes 5 and 11, Retail chicken 49; lanes 6
and 12, Retail chicken 59; lanes 13, Adult broiler 70 transconjugant; lane 14,
Adult broiler 71 transconjugant; lane 15, Broiler carcass 3 transconjugant;
lane 16, Broiler carcass 4 transconjugant; lanes 17, Retail chicken 49
transconjugant; and lanes 18, Retail chicken 5.
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FIGURE 3 | Genetic environment of the qnrS1 gene in plasmid pSH-01. (A–C) The potential recombination junctions in plasmid pSH-01. (A) A structural comparison
was made with plasmid pEBG1 from E. coli 09/22a, plasmid p33676 from S. Typhimurium, and plasmid tig00000005_pilon from K. pneumoniae AR_0125. The
arrows indicate the positions and directions of transcription of the genes. Regions of 99% nucleotide sequence identity are marked by gray shading. (B) Sequence
analysis of three recombination junctions (A–C). The bases in black are upstream sequence of recombination junction in plasmid pSH-01. The bases in red are
downstream sequence of recombination junction in plasmid pSH-01. The bases in green and in red boxes represent the common region shared by potential
hybridized plasmids.

In this study, the same PFGE pattern was shared among
the majority of Salmonella isolates (such as S. Indiana and
S. Schwarzengrund isolates), which might suggest they are clones
of S. Indiana and S. Schwarzengrund, respectively. Compared
with the QRDR genotypes in non-clones Salmonella isolates
(Eaves et al., 2004), the genetic diversity of Salmonella isolates in
this study was lower. In addition, similar to previous investigation
(Hopkins et al., 2005), our results indicate that missense
mutations occurred frequently in QRDR of gyrA and parC,
which are considered major quinolone resistance determinants in
Salmonella. In this study, gyrA missense mutations (Ser83Phe and
Asp87Asn) were detected in 26/73 Salmonella isolates and these
are considered the major target-site mutations in Salmonella
(Nüeschinderbinen et al., 2015). Thr57Ser parC substitution
was frequently observed in the Salmonella isolates, and a
second substitution (Ser80Arg) in parC was also detected in
26 Salmonella isolates. Importantly, Thr57Ser parC substitution
was considered not or doubtfully associated to fluoroquinolone
resistance phenotypes (Wasyl et al., 2014). The 15 Salmonella
isolates with the Thr57Ser parC substitution in this study did
not show fluoroquinolone resistance phenotypes, in agreement
with previous report (Ceyssens et al., 2015). Although mutation
types in gyrA and parC were similar to those in previous
studies of Salmonella, it is worth noting the high frequency of

silent site mutations in QRDR, which might be developed into
potential missense mutations (Heisig, 1993; Hopkins et al., 2005).
Furthermore, a recent study has shown that mutations in the
target genes gyrA and parC are correlated with an increase of
intrinsic fitness in Salmonella (Baker et al., 2013). This indicated
that the potential risk that Salmonella isolates with mutations in
gyrA and parC may naturally maintain during the broiler chicken
supply chain, even if fluoroquinolone use was reduced.

In addition, the predominant PMQR gene varies among
bacteria from different sources. The most common PMQR
gene was oqxAB in E. coli from chicken (Chen et al., 2012)
and in Salmonella from retail meat (Lin et al., 2015), qnrB
in Enterobacteriaceae from crows (Halova et al., 2014), and
aac(6′)-Ib-cr in bacteria isolated from sewage and surface water
(Osinska et al., 2016). However, this study indicated that qnrS
was commonly distributed in Salmonella isolates from the
broiler chicken supply chain, consistent with the high reported
rates in Salmonella isolated from animals, food, and feed
(Wasyl et al., 2014).

The recombination of plasmid, to some extent, can provide
a mechanism to improve the diversity of plasmids carrying
resistance genes. Recombination of hybrid plasmids frequently
occurs at insertion sequence (IS) location (Hudson et al., 2014).
Recently, NDM-5 and mcr-1 were recombined in the plasmid
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pCQ02-121 by recombination junctions: IS26 and the nic site
of oriT (Sun et al., 2016). Similarly, in this study, the novel
plasmid pSH-01 might arise via recombination junction IS6. The
other two recombination junctions involve Tn3 and homologous
recombination of sequences. Transposons in the Tn3 family
can mediate gene reassortment and genomic plasticity owing to
their modular organization, and they contribution substantially
to antimicrobial drug resistance dissemination or to endowing
environmental catabolic capacities (Nicolas et al., 2015).

Genetic features of pSH-01 showed that only region 2
(nt 14429–31031) could matched the plasmid sequences from
clinical Salmonella isolates, and the sequences with matches
in the other two regions (region 1 and 3) were derived from
plasmids from non-Salmonella bacteria. The full-length of pSH-
01 did not match an individual plasmid in NCBI. Therefore,
this is a new plasmid in Salmonella isolates from the broiler
chicken supply chain, suggesting that the diversity of plasmids
carrying the resistance gene might be a potential risk factor for
the dissemination of qnrS1.

It is worth noting that the new plasmid carrying qnrS1
presented in the six Salmonella isolates (three S. Indiana and three
S. Schwarzengrund) from different sources in the broiler chicken
supply chain. This suggests that there was a potential epidemic
spread of the plasmid in the Salmonella isolates of different
serotype from different geographical origin, which is similar
to the potential transmission of the plasmids among various
serotype of Salmonella and diverse geographical location (Li et al.,
2016; Wong et al., 2017). Therefore, we should carefully monitor
the new plasmid carrying qnrS1 along the chicken supply chain.

This study provided comprehensive data for the prevalence
of Salmonella and their fluoroquinolone resistance determinants
associated with QRDR and PMQR in the broiler chicken supply

chain. Furthermore, we found that qnrS1, a transmissible PMQR
gene, was prevalent in Salmonella isolates from the broiler
chicken supply chain. Selective pressure from fluoroquinolones
in animals may further promote the recombination and
dissemination of the plasmid carrying PMQR genes.
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The self-transferring integrative and conjugative elements (ICEs) are large genomic
segments carrying several bacterial adaptive functions including antimicrobial resistance
(AMR). SXT/R391 family is one of the ICEs extensively studied in cholera-causing
pathogen Vibrio cholerae. The genetic characteristics of ICE-SXT/R391 in V. cholerae
are dynamic and region-specific. These ICEs in V. cholerae are strongly correlated with
resistance to several antibiotics such as tetracycline, streptomycin and trimethoprim-
sulfamethoxazole. We screened V. cholerae O1 strains isolated from cholera patients
in Kolkata, India from 2008 to 2015 for antibiotic susceptibility and the presence of
ICEs, and subsequently sequenced their conserved genes. Resistance to tetracycline,
streptomycin and trimethoprim-sulfamethoxazole was detected in strains isolated
during 2008–2010 and 2014–2015. The genes encoding resistance to tetracycline
(tetA), trimethoprim-sulfamethoxazole (dfrA1 and sul2), streptomycin (strAB), and
chloramphenicol (floR) were detected in the ICEs of these strains. There was a decrease
in overall drug resistance in V. cholerae associated with the ICEs in 2011. DNA sequence
analysis also showed that AMR in these strains was conferred mainly by two types of
ICEs, i.e., ICETET (comprising tetA, strAB, sul2, and dfrA1) and ICEGEN (floR, strAB,
sul2, and dfrA1). Based on the genetic structure, Kolkata strains of V. cholerae O1 had
distinct genetic traits different from the ICEs reported in other cholera endemic regions.
Transfer of AMR was confirmed by conjugation with sodium azide resistant Escherichia
coli J53. In addition to the acquired resistance to streptomycin and trimethoprim-
sulfamethoxazole, the conjugally transferred (CT) E. coli J53 with ICE showed higher
resistance to chloramphenicol and tetracycline than the donor V. cholerae. Pulsed-field
gel electrophoresis (PFGE) based clonal analysis revealed that the V. cholerae strains
could be grouped based on their ICEs and AMR patterns. Our findings demonstrate
the epidemiological importance of ICEs and their role in the emergence of multidrug
resistance (MDR) in El Tor vibrios.

Keywords: cholera, V. cholerae O1, tetracycline, antimicrobial resistance, multidrug resistance, integrative
conjugative element
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INTRODUCTION

The Gram-negative pathogen Vibiro cholerae O1 has caused
seven pandemics in the history of cholera and tends to cause
several epidemics in developing countries (Lekshmi et al.,
2018). This pathogen has more than 200 serogroups, but only
the serogroups O1 and O139 are associated with epidemic
cholera (Lekshmi et al., 2018). The ongoing seventh pandemic
is linked with the El Tor biotype of serogroup O1 that has
spread in the cholera endemic regions of the world (Lekshmi
et al., 2018). The emergence and spread of antimicrobial
resistant (AMR) V. cholerae, especially those resistant to nalidixic
acid, tetracycline, and trimethoprim-sulfamethoxazole, has been
reported since the 1980s (Ghosh and Ramamurthy, 2011).
Resistance to these antimicrobials has been strongly associated
with the presence of integrative and conjugative elements (ICEs)
of the SXT/R391 family and its discovery has greatly changed the
understanding of AMR in V. cholerae.

SXT/R391 ICEs have been characterized/classified based on
the conserved core genes, and their integration into the 5′-end
of the prfC gene that encodes peptide chain release factor 3
(Hochhut and Waldor, 1999). More than 1000 ICEs have been
updated in the ICEberg database1. Mobility of SXT/R391 ICEs
occurs between bacteria by conjugation, resulting in the transfer
of several functions including AMR, resistance to heavy metals,
regulation of motility and biofilm formation (Waldor et al., 1996;
Bordeleau et al., 2010). Five insertion hotspots (H1 to H5) and
four variable regions (VRI to VRIV) are also carried by the ICEs
(Wozniak et al., 2009). The structure of ICEs changes periodically
contributing to the differences in AMR profiles of V. cholerae.
More than 50 ICEs have been grouped within the SXT/R391
family, of which 30 are reported in clinical and environmental
V. cholerae strains (Pande et al., 2012). Between 1992 and
2001, 15 ICEs were identified in India and Bangladesh, of
which six (SXTMO10, ICEVchInd4, ICEVchBan5, ICEVchBan10,
ICEVchBan9, and ICEVchInd5) were completely sequenced and
annotated (Ceccarelli et al., 2011).

Tetracycline has been the drug of choice in treating cholera
cases for a long time (World Health Organization [WHO], 2005).
A sudden upsurge in the tetracycline resistance (TetR), from 1%
in 2004 to 76% in 2007, was reported among V. cholerae in
Kolkata and it decreased to about 50% in 2009 (Bhattacharya
et al., 2011). Similar trends have been observed previously in
large cholera epidemics in Tanzania and Madagascar due to
extensive prophylactic use of tetracycline (Mhalu et al., 1979;
Dromigny et al., 2002). Only a few studies have been carried out
to understand the mechanisms of AMR due to ICEs in India
(Roychowdhury et al., 2008; Bhattacharya et al., 2011; Kutar
et al., 2013). In this study, we screened the AMR patterns of
V. cholerae O1 Ogawa strains isolated from cholera patients in
Kolkata, India from 2008 to 2015 and examined the type of ICEs
present by analyzing their backbone genes. Our study revealed
the differences between the sequence types of ICEs and recent
changes in AMR patterns of V. cholerae.

1http://db-mml.sjtu.edu.cn/ICEberg

MATERIALS AND METHODS

Clinical Specimens and Bacterial Strains
Stool specimens were collected from the Infectious Diseases
Hospital (IDH) and B. C. Roy Children Hospital (BCH),
Kolkata, before the patients were treated with antibiotics. Clinical
symptoms of diarrheal patients included loose/watery stools
with or without dehydration, abdominal cramps, vomiting and
fever. Dysentery patients had frequent passage of stool with
blood/mucus and mild to severe abdominal pain. For the
isolation of V. cholerae, all the stool specimens/rectal swabs were
enriched in alkaline peptone water (pH 8.0) (Difco, Sparks, MD,
United States) for 6 h, followed by inoculation and overnight
incubation in thiosulphate citrate bile-salts sucrose agar (TCBS,
Eiken, Tokyo, Japan) plates. Sucrose-positive strains were
confirmed serologically using commercially available V. cholerae
O1 poly and monovalent antisera (Denka-Seiken, Tokyo, Japan).
To obtain the AMR pattern from 2008 to 2015, 546 out of
1591 strains were randomly selected covering each month of the
study period. Sodium azide resistant (AzR) Escherichia coli J53
(Martínez-Martínez et al., 1998) was used for the conjugation
experiments. All the strains were preserved in Luria Bertani (LB)
broth (Difco) containing 15% glycerol at −80◦C. E. coli ATCC
25922 (Clinical and Laboratory Standards Institute [CLSI], 2014)
was used as a control strain in antimicrobial susceptibility testing.

Antibiotic Susceptibility Testing
Susceptibilities of V. cholerae strains to ampicillin (AMP, 10 µg),
ceftriaxone (CRO, 30 µg), chloramphenicol (CHL, 30 µg),
nalidixic acid (NA, 30 µg), ciprofloxacin (CIP, 5 µg), ofloxacin
(OFX, 5 µg), norfloxacin (NOR, 10 µg), imipenem (IPM,
10 µg), streptomycin (STR, 10 µg), azithromycin (AZM, 15 µg),
tetracycline (TET, 30 µg), trimethoprim-sulfamethoxazole (SXT,
1.25 and 23.75 µg) and gentamicin (GEN, 10 µg), were
determined by Kirby-Bauer disk diffusion technique using
commercial disks (BD, Sparks, MD, United States) as per the
Clinical and Laboratory Standards Institute guidelines (Clinical
and Laboratory Standards Institute [CLSI], 2014, 2015).

Detection of Antibiotic Resistance
Encoding Genes
Total nucleic acid of V. cholerae strains was extracted using a
QIAamp DNA mini kit (Qiagen, Hilden, Germany) following
the manufacturer’s instructions. The integrase gene (intSXT)
present in ICE was amplified by PCR using previously
described primer pair int1-F and int1-B (Dalsgaard et al.,
2001). Beside intSXT, PCR was also performed to detect the
presence of resistance encoding genes for chloramphenicol
(floR and cat), streptomycin (strA and strB), and sulfonamide
(sul1 and sul2) (Sarkar et al., 2015a). Primer pairs VCtetA.F-(5′-
ACGGTATCCTGCTGGCACTGTATG-3′) and VCtetA.R-(5′-
CATCCATATCCAGCCATCCCAACT-3′) and VctetR.F-(5′-GA
AGTGGGAATGGAAGGGCTGAC-3′) and VctetR.R-(5′-AG
CCTCTGTGCCATCATCTTG-3′) were designed to detect the
TetR encoding gene (tetA), and the repressor protein (tetR)
for a regulatory portion of resistance cassettes, respectively.
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Representative amplicons were purified using a PCR product
purification kit (Qiagen) and sequenced using the ABI Big
Dye terminator cycle sequencing ready reaction kit, version
3.1 (Applied Biosystems, Foster City, CA, United States) in an
automated DNA sequencer (ABI 3730, Applied Biosystems).
The sequences were assembled and analyzed using DNASTAR
software (DNASTAR Inc., Madison, WI, United States).

Conjugation
To test the mobility of the ICEs, conjugation assay was carried
out using a representative ICE-positive V. cholerae O1 strain as
donor with E. coli J53 (AzR, Martínez-Martínez et al., 1998).
In brief, overnight cultures of the bacteria were mixed at 1:2
donor-to-recipient ratios in 1 ml of LB broth and allowed to
grow overnight at 37◦C. The donor and recipient suspensions
were diluted serially in phosphate buffer saline (PBS) and
plated on TCBS and MacConkey agar plates, respectively, to
confirm the purity and count the number of colonies. To
detect the conjugally transferred E. coli J53 (CT-E. coli J53),
MacConkey agar supplemented with streptomycin (100 µg/ml)
and sodium azide (AZD, 100 µg/ml) was used. Transconjugants
were confirmed as ICE-positive by PCR analysis, followed by
PCR amplicon sequencing. To confirm the resistance phenotype,
antibiotic susceptibility patterns of the donor, recipient and
transconjugants were determined after their growth on Mueller-
Hinton (MH, Difco) agar by disk diffusion method. An increase
in resistance of transconjugants was quantified by determining
the MICs of CHL, STR, TET, and SXT using E-test strips (AB
bioMérieux, Solna, Sweden).

Pulsed-Field Gel Electrophoresis (PFGE)
Clonal analysis of representative V. cholerae O1 strains isolated
between 2008 and 2015 was made following the PulseNet
protocol (Cooper et al., 2006). V. cholerae O1 strains were used
after digesting the DNA with NotI [New England Biolabs (NEB),
Ipswich, MA, United States]. XbaI (NEB) digested Salmonella
Braendruff H-9812 was used as a DNA size marker. The PFGE
run conditions were generated by the auto-algorithm mode of the
CHEF Mapper system (Bio-Rad, Hercules, CA, United States).
PFGE profiles were analyzed by the BioNumerics version 4.0
software (Applied Maths, Sint-Martens-Latem, Belgium) using
the Dice coefficient and unweighted pair group method using
arithmetic averages (UPGMA).

Whole Genome Sequence Analysis
The whole genome sequences submitted from our previous study
(Imamura et al., 2017) were used in the analysis. The open
reading frames (ORFs) from the contigs were generated by contig
integrator for sequence assembly (CISA) using Glimmer-MG
program2. Nucleotide sequences and amino acid sequences were
obtained from these ORFs and translated in the appropriate
frame. The predicted ORFs were annotated using CANoPI
(Contig Annotator Pipeline) that also includes BlastX search
for each ORF sequence against the “nr” database of NCBI3.

2http://www.cbcb.umd.edu/software/glimmer-mg
3www.scigenom.com/CANoPI

From the whole genome sequence data of representative strains
(TetR IDH 1986 and TetS IDH 4268), we have used part
of the ICE region in the analysis. The contigs were aligned,
assembled and compared with SEQMAN, assembly module
of DNASTAR’s LASERGENE with published sequences like
ICEVchInd5 (GQ463142), ICEVchBan5 (GQ463140), MO10
(AY055428), etc. For confirmation, PCR was performed targeting
important short regions of the ICEs (rumAB, traI, traC, setR,
traA-traC, and traG) with previously described primers (Bani
et al., 2007). Published ICE sequences were used for homology
search. ORF search and gene prediction were performed for
the complete ICE region with EditSEQ, Lasergene software
(DNASTAR), and pairwise alignment was analyzed by blastN and
blastP homology search using the NCBI database.

Nucleotide Sequence Submission
The AMR encoding gene cassettes and their flanking sequences
of representative ICE of TetR and TetS V. cholerae O1 have
been submitted in GenBank (Accession numbers MK165649 and
MK165650, respectively).

Ethics and Biosafety Statements
The Ethics and Biosafety Committees of National Institute of
Cholera and Enteric Diseases, Kolkata approved this study
(A:1/2015-IEC). Each participant/parent in the case of children
gave written informed consent. All the experiments were
performed following Biosafety Level-2 standards.

RESULTS

Prevalence of Cholera
During 8 years of surveillance from 2008 to 2015, the isolation
rate of V. cholerae O1 Ogawa was about 11% (1591 of 14237
tested samples) (Figure 1). The incidence of this pathogen in
BCH samples was very low (∼2%) but was found to be much
higher (∼18%) in IDH samples. As shown in Figure 1, the mean
incidence of cholera in IDH/BCH fluctuated between 4.9% (2014)
and 27.2% (2009). Except for children ≤5 years, V. cholerae
O1 remained one of the important bacterial pathogens. The
incidence of V. cholerae O1 varies in certain extent from year to
year (Figure 1).

Antimicrobial Resistance
All the V. cholerae O1 strains isolated were consistently resistant
to NA. TetR gradually decreased from 58% in 2008 to 48% in
2009, followed by a further drop in 2010 (9%). Thereafter, all
the strains isolated between 2011 and 2013 were found to be
susceptible to TET (Table 1). Remarkably, TetR trait increased
again in 2015 (56%). There was a marked change in AMP
resistance each year with highest in 2010 (94%) and lowest in
2012 (21%) (Table 1). About three fourth of the strains were
resistant to AMP in 2009 and 2011 (>76%). Thereafter, most
of the V. cholerae isolated from 2013 to 2015 were found to be
susceptible to AMP.

Throughout the study period, only three V. cholerae strains
were found to be fully resistant to CHL and the rest of the
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FIGURE 1 | Isolation rate of V. cholerae O1 Ogawa among diarrheal patients. BCH sample collection was started from 2010 onward. The dotted line with yellow
boxes represent the mean incidence of cholera in IDH and BCH.

TABLE 1 | Resistance of V. cholerae O1 Ogawa against different antibiotics.

Year (n) % of resistance

TET CHL∗ STR SXT AMP NA

2008 (76) 58 33 92 92 53 100

2009 (120) 48 45 96 99 76 100

2010 (53) 9 91 98 98 94 100

2011 (52) 0 25 23 31 77 100

2012 (48) 0 58 67 69 21 100

2013 (87) 0 91 98 99 0 100

2014 (44) 2 86 91 93 0 98

2015 (66) 56 38 94 92 0 100

∗Except three, rest of the strains were intermediate (i) to CHL.

floR containing strains showed intermediate resistance [CHL(i)]
to this antibiotic. Interestingly, resistance to TET was found to
be inversely proportional to CHL(i), i.e., strains showing TetR

had intermediate resistance to CHL. The CHL(i) trait increased
in 2010 (91%) when TetR was very low (9%) but dropped to
38% with the re-emergence of TetR in 2015 (56%). Resistance
to STR and SXT were detected in most of the V. cholerae
O1 strains. Resistance to these antimicrobials was >90% from
2008 to 2010 and 2013 to 2015. Interestingly, there was a
sudden decrease in STR and SXT resistance (23 and 31%,
respectively, in 2011) followed by an increase in 2012 (67 and
69%, respectively) (Table 1).

This study shows the changing profile of MDR in V. cholerae
from Kolkata; MDR profiles NA-STR-SXT-TET-AMP and NA-
STR-SXT-TET were predominant during 2008, 2009 and 2015

(Table 2), while from 2009 to 2010 and 2012 to 2014 the MDR
profiles NA-STR-SXT-CHL(i), and NA-STR-SXT-CHL(i)-AMP
were found in more than 50% of the V. cholerae O1 strains.

ICE Comprising Antimicrobial
Resistance Genes
While analyzing the sequences of the resistance gene clusters, two
types of ICEs could be detected, i.e., ICETET (Acc No. MK165649;
TetR IDH 1986) and ICEGEN (Acc No. MK165650; TetS IDH
4268). The superscript “GEN” stands for “general.” Although the
ICEGEN was very similar to the ICEVchInd5 with 99% identity at
100% query coverage, the ICETET had only 99% identity at 70%
query coverage. The structure of these two ICEs with ORFs is
shown in Figure 2. The ICEGEN was found to be larger (96.7 kb)
than ICETET (91.5 kb). SXT and STR resistant V. cholerae O1
strains were positive for intSXT . Detection of ICEs was >90%
in 2008 and 2009, with highest in 2010 (98%), followed by an
abrupt decrease in 2011 (23%). However, in 2012, 68% of the
V. cholerae O1 strains harbored the ICEs. Interestingly, except for
NA, the intSXT negative strains were susceptible to most of the
antimicrobials tested in this study. In the 1st type, ICETET carried
a TET efflux pump encoding gene (tetAR; tetA is a gene encoding
TET efflux pump and tetR is a repressor protein regulating the
tetA expression) and in the 2nd type, ICEGEN harbored CHL
efflux pump encoding gene (floR). ICEGEN has high similarity
(99%) with the ICEVchInd5, the most common ICE detected
among seventh-pandemic El Tor vibrios (Spagnoletti et al., 2014;
Bioteau et al., 2018). This ICE also has very high similarity to
the ICEVchHai1 from the Haitian V. cholerae lineage (Sjölund-
Karlsson et al., 2011).
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TABLE 2 | Percentage of resistance pattern in V. cholerae O1 strains during 8 years in Kolkata.

Resistance
profile/Year

2008
(n = 76)

2009
(n = 120)

2010
(n = 53)

2011
(n = 52)

2012
(n = 48)

2013
(n = 87)

2014
(n = 44)

2015
(n = 66)

NA-STR-SXT-
TET-AMP

27.6 58 35.8 48 3.8 9 0.0 2 0.0 53

NA-STR-SXT-
TET

30.3 12.5 5.7 2.3 52.9

NA-STR-SXT-
CHL(i)-AMP

18.4 34 40.0 51 88.7 89 19.6 24 6.4 72 0.0 100 0.0 98 0.0 46

NA-STR-SXT-
CHL(i)

15.8 10.8 4.3 66.0 100 97.7 45.7

NA-AMP 6.6 8 0.8 1 1.9 2 56.5 76 14.9 28 0.0 1

NA 1.3 0.0 0.0 19.6 12.8 1.0

(i), intermediate resistance for CHL. Numbers in bold represents cumulative percentage of resistance patterns.

The ICEGEN and ICETET had sul2, strBA in the AMR gene
cluster conferring resistance to SXT and STR, respectively.
Generally, in V. cholerae, the presence of tet alleles within the ICE
gene clusters is uncommon. In the prototype SXTMO10, resistance
gene cluster comprised dfr18, floR, strBA, sul2 encoding
resistance to trimethoprim, CHL, STR, and sulfamethoxazole,
respectively (Table 3). In ICEVchInd4, there was a major deletion
of dfr18 gene in the cluster. In IDH1986 and IDH14268 strains, a
class 4 integron carrying the trimethoprim resistance encoding
dfrA1 was identified in H3 located within the s073-traF locus.
Such arrangement exists in ICEVchInd5 backbone (Figure 2) and
ICEVchInd1. But, tetA gene was absent in these ICEs.

Detection of ICETET in V. cholerae O1 decreased from 2008
(58% TetR) to 2010 (9% TetR). All the V. cholerae O1 strains
isolated during 2011–2013 lacked ICETET. In 2015, however, the
tetAR was again detected in a higher number of strains (56%
TetR). In contrast, ICEGEN was detected throughout the study
period. AMR gene cassettes located within the rumB locus are
also different. From 2011 to 2013, the tetAR locus in ICETET

was replaced by floR gene of ICEGEN. This feature marked the
difference of ICETET from ICEVchLao1, where floR and tetA were
concurrently present.

Based on the presence of the AMR encoding genes harbored
by these elements, the genetic background of ICETET appears
to be very different from the other ICEs carrying the tet.
The ICEPdaSpa1 was found to have only the TET resistance
determinant located within rumBA operon (Table 3). Whereas, in
the ICEVchLao1, resistance genes of CHL (floR), STR (strBA) and
sulfamethoxazole (sul2) were present along with tetA. But, the
ICEVchLao1 did not carry dfrA1 or dfr18 that confer resistance
to trimethoprim in SXTET and SXTMO10, respectively. Within
the resistance gene cluster of 2008–2010 strains of V. cholerae in
Kolkata, a deletion of floR gene, which was present upstream of
the tetA gene in ICEVchLao1 and ICEVchBan9 was detected.

Genetic Structure of the ICEs
Generally, the genetic organization of ICETET and ICEGEN was
similar to that of the other members of this family. Many ORFs
were commonly shared by these ICEs; most of them being in
the conserved core genes (Beaber et al., 2002). Five conserved
insertion hotspots are located between s043 (traJ) and traL (H1),

traA and s054 (H2), s073 and traF (H3), traN and s063 (H4), and
s025 and traID (H5) (Wozniak et al., 2009).

Five ORFs were found in the H1 of ICETET that include
tbp (integrase catalytic subunit), a hypothetical protein (HP),
transposase, ISPsy4 transposition helper protein and DNA
helicase family protein. These ORFs present in H1 are
unique compared to other reported ICEs. Instead of mosA,
mosT that encode toxin-antitoxin reported in the H2 of
other ICEs, the ICEGEN and ICETET have 3 ORFs with
ynd (transcriptional regulator with AbiEi antitoxin N-terminal
domain), ync (nucleotidyl transferase AbiEii/AbiGii toxin family
protein) and dsbC (disulfide isomerase DsbC). H3 of ICEGEN

and ICETET contains 7 ORFs with bleR (glyoxalase/bleomycin
resistance), araC (AraC family transcriptional regulator; helix-
turn-helix domain protein), a hypothetical protein, XRE family
transcriptional regulators, a putative membrane protein, dfrA1
(trimethoprim-resistance) and intI4 (site-specific recombinase
IntI4). Of these, AraC, XRE, and DFRA1 were reported in
ICEVchMoz10. H3 in ICEGEN and ICETET is varied from
ICEVchInd4, SXTMO10, ICER391 ICEVchMex1, ICEVflInd1,
ICEPmiUSA1, ICESpuPO1 (Wozniak et al., 2009). H4 of ICETET

was small with 2 ORFs, whereas the ICEGEN had 5 ORFs with two
SMC (structural maintenance of chromosome) domain proteins,
istB (ATP binding domain), istA (integrase catalytic subunit)
and deoxyribonuclease I. The ORF content of H4 in these ICEs
is different from the others. In ICEGEN and ICETET, the H5
has 10–11 gene combinations with the new ORFs of WYL
domain protein, N-6 DNA methylase, restriction endonuclease
subunit S, BstXI (restriction endonuclease protein), ATPases
associated with diverse cellular activities (AAA) family protein,
McrC (putative protein) in ICETET and WYL domain-containing
protein with three conserved amino acids, BrxC (BREX system
P-loop protein), PglX (BREX-1 system adenine-specific DNA-
methyltransferase) and abortive phage resistance protein in
ICEGEN. These changes in the hotspot regions may not have an
obvious effect on the ICE, as they did not influence its transfer.
VR-II has an insertion of single ORF, mutL similar to the ICE
contigs circulating in India and Bangladesh. In the VRIII of
ICETET, 12 ORFs [Tn3 (transposase), tnpA (transposase), tnpB
(InsA transposase), truncated virD2, tetA, tetR, IS91 transposase,
strB, strA, sul2, tnpA tn3 transposase, s021] were identified within
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TABLE 3 | Comparison of the ICE gene cluster with the other SXT/R391 ICE family members.

ICE Host strain Country and year
of isolation

Size (bp) Resistance gene
content

GenBank accession
number

References

ICEVchMex1 Vibrio cholerae non
O1-O139

Mexico 2001 82839 – GQ463143 Burrus et al., 2006

ICETET Vibrio cholerae O1
(IDH1986)

India 2009 91463 tetAR, strBA, sul2,
dfrA1

MK165649 In this study

ICEGEN Vibrio cholerae O1
(IDH4268)

India 2012 96718 floR, strBA, sul2,
dfrA1

MK165650 In this study

ICEVchInd4 Vibrio cholerae
O139

India 1997 95491 floR, strBA, sul2 GQ463141 Wozniak et al.,
2009

ICEVchInd5 Vibrio cholerae O1 India 1994 97847 floR, strBA, sul2,
dfrA1

GQ463142 Ceccarelli et al.,
2011

ICEVchBan5 Vibrio cholerae O1 Bangladesh 1998 102131 floR, strBA, sul2,
dfrA1

GQ463140 Wozniak et al.,
2009

ICEPalBan1 Providencia
alcalifaciens

Bangladesh 1999 96586 floR, strBA, sul2,
dfrA1

GQ463139 Wozniak et al.,
2009

ICEVflInd1 Vibrio fluvialis India 2002 91369 dfr18, floR, strBA,
sul2

GQ463144 Wozniak et al.,
2009

ICEVchMoz10/ICEVchB33 Vibrio cholerae O1 Mozambique 2004 104495 floR, strBA, sul2,
tetA’

ACHZ00000000 Taviani et al., 2009

ICEPmiUsa1 Proteus mirabilis United States 1986 79733 – AM942759 Pearson et al.,
2008

ICEVchBan9 Vibrio cholerae O1 Bangladesh 1994 106124 floR, strBA, sul2,
dfrA1, tetA’

CP001485 Wozniak et al.,
2009

ICEVchBan8 Vibrio cholerae non
O1-O139

Bangladesh 2001 105790 – NZ_AAUU00000000 Wozniak et al.,
2009

SXTMO10 Vibrio cholerae
O139

India 2002 99452 dfr18, floR, strBA,
sul2

AY055428 Beaber et al., 2002

R391 Providencia rettgeri South Africa 1967 88532 kanR, merRTPCA AY090559 Böltner et al., 2002

ICEPdaSpa1 Photobacterium
damselae

Spain 2003 102985 tetAR AJ870986 Juíz-Río et al., 2005

ICESpuPO1 Shewanella
putrefaciens

Pacific Ocean 2000 108623 – CP000503 Wozniak et al.,
2009

the two rumB portions. In the case of ICEGEN, 14 ORFs [Tn3
(trnansposase), tnpA (transposase), tnpB (InsA transposase),
virD2 (relaxase), floR, LysR family protein, truncated transpoase,
strB, strA, sul2, tnpA tn3 transposase, truncated s021, putative
transpoase, truncated mutL] have been detected.

The restriction-modification system is composed of genes
encoding the functions of DNA modification, recombination,
and repair (Wozniak and Waldor, 2009). ICEGEN and ICETET

were found to have a type I restriction-modification system
in the H5. In the ICE backbones, there were sequences in
the ORFs located between s024 and traI in Kolkata strains
(Figure 2). In ICEGEN carrying strains, after the traN locus,
there was an insertion of istBA gene flanked by gene encoding
SMC domain protein. This arrangement was not observed in
V. cholerae strains with ICETET. Though these two types of
ICEs had same traFHG locus, ORFs encoding transposases and
ATPase were found incorporated between the traD and traE
locus only in ICETET. In contrast, the ICEGEN possessed an
intact transfer region (Figure 2). In ICEVchInd4, there was
a major deletion of dfr18 gene in the cluster. In strains with
ICEGEN or ICETET, a class 4 integron carrying the trimethoprim
resistance encoding dfrA1 was identified in the H3 region located
within the s073-traF locus. Similar gene configuration exists in

the ICEVchInd1 and ICEVchInd5 backbones. In the 2008–2010
strains of V. cholerae in Kolkata, TetR in ICE was primarily due
to tetA, whose presence was previously reported in ICEPdaSpa1
of Photobacterium damselae, ICEVchLao1 and ICEVchBan9 of
V. cholerae O1 from Laos and Bangladesh, respectively (Table 3).

The tra loci appeared to be derived from a common ancestor
and were mostly present in ICEs of V. cholerae strains. These loci
are crucial for the transfer of ICEs and generating the conjugation
machinery (Wozniak et al., 2009). Similar to the other ICEs
backbone, the tra genes are arranged in four clusters in IDH1986
and IDH4268 strains, spanning more than 25 kb. Cluster 1
contains the genes and sequences necessary for transfer initiation,
the nickase (encoded by traI), and the coupling protein (encoded
in the traD). The mating pair formation function is controlled by
three gene clusters: (i) traLEKBVA, (ii) traC/trhF/traWUN, and
(iii) traFHG (Figure 2).

Comparison of Conserved Genes in the
ICEs
ICETET and ICEGEN shared the same exclusion group (EexR).
This EexR system might have been transferred from R391 type
ICEs (Marrero and Waldor, 2007). The site-specific integration
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FIGURE 3 | MEGA7 analysis based (Kumar et al., 2016) evolutionary relationships of taxa of int of V. cholerae O1 strains.

FIGURE 4 | MEGA7 analysis based (Kumar et al., 2016) evolutionary relationships of taxa of eex of V. cholerae O1 strains.

of the ICE is mediated through integrase enzyme encoded in the
int. The int of ICETET and ICEGEN harboring V. cholerae O1 is
identical to those present in the strains that have ICEPalBan1

of P. alcalifaciens, ICEVf Ind1 of V. fluvialis and ICEVchBan5,
ICEVchBan9 and ICEVchInd5 of V. cholerae (Figure 3). These
ICEs are distinct from those reported in Proteus mirabilis,
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FIGURE 5 | MEGA7 analysis based (Kumar et al., 2016) evolutionary relationships of taxa of setR of V. cholerae O1 strains.

TABLE 4 | Increased resistance attributed by acquired ICE in transconjugants.

Strain Resistance profile MIC value (µg/ml)

SXT STR TET CHL

IDH1986 (V. cholerae O1 Ogawa) NA-TET-SXT-STR >32 192 16 1

CT-E. coli J53/ICETET (Transconjugant) TET-SXT-STR-AZD >32 (>600 fold) 48 (24 fold) 24 (48 fold)∗ 3

E. coli J53 (Recipient) AZD 0.047 2 0.5 3

CT-E. coli J53/ICEGEN (Transconjugant) CHL-SXT-STR-AZD >32 (>600 fold) 64 (32 fold) 0.5 >256 (>85 fold)

IDH1439 (V. cholerae O1 Ogawa) NA-SXT-STR-{CHL(i)} >32 128 0.5 8

∗ Increase in fold compared to the recipient.

Providencia rettgeri, Shewanella putrefaciens, P. damselae as well
as in other V. cholerae with ICEVchMex1, ICEVchInd4, and
SXTMO10. SetR and SetC/D are the key regulators of ICEs, which
are closely followed by the genes encoding for inner membrane
proteins (Eex and TraG) of the donor and recipient cells. Eex and
TraG facilitate entry-exclusion in the SXT/R391 family of ICEs.
In the cluster tree, eex genes of the ICETET and ICEGEN showed
high homology with ICE identified in ICEVchBan5, ICEVchBan9,
ICEVchInd5, but was distantly related to other ICEs of V. cholerae
and other species (Figure 4). setR in the ICETET and ICEGEN are
identical with that in ICEVchInd4, ICEVchInd5, ICEVchBan5,
ICEVchBan9, SXTMO10, ICEVf Ind1, ICEPalBan1 but different
from ICEVchMex1 and ICEs of other species (Figure 5).

Transfer of ICEs
To test the transferability of the V. cholerae ICEs, we selected
ICETET and ICEGEN carrying strains (IDH1986 and IDH1439,
respectively). Both the types of ICEs could be transferred to E. coli

J53 by conjugation. The transconjugants acquired additional
resistance against SXT and STR (Table 4). Remarkably, CT-E. coli
J53 from ICEGEN was highly resistant to CHL compared to the
donor V. cholerae O1 strain, which showed reduced susceptibility
to this antibiotic. Similarly, CT-E. coli J53 from ICETET expressed
more resistance against TET than the donor Vibrio (Table 4).
The frequency of transfer ranged from 3 × 10−5 to 5 × 10−6

transconjugants/recipient.

PFGE Analysis
Pulsed-field gel electrophoresis was performed to identify
the clonal relationship between ICETET and ICEGEN carrying
V. choleare strains. It was found that the V. cholerae O1 strains
displayed clonal clusters reflecting their MDR profile, which
indirectly revealed the composition of AMR encoding genes in
the ICEs (Figure 6). Cluster A represented Vibrio strains devoid
of the ICEs. These strains were only resistant to NA. Strains with
ICEGEN were present in cluster B. These strains are resistant
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FIGURE 6 | PFGE profile of the representative V. cholerae O1 strains with their antimicrobial resistance. Cluster A, strains devoid of intSXT or ICE; Cluster B, strains
carrying ICEGEN; Cluster C, strains having ICETET. Number in the parenthesis represents the year of isolation.

to NA, SXT and exhibited intermediate susceptibility to CHL.
Cluster C contained the ICETET harboring strains that showed
resistance to NA, SXT, and TET (Figure 6).

DISCUSSION

Cholera is endemic in the Indian subcontinent and it has
spread to several other parts of the world (Mutreja et al.,
2011). In Kolkata, MDR V. cholerae is associated with sporadic
cholera for many years (Garg et al., 2000; Nair et al., 2010).
V. cholerae O1 was susceptible to several antibiotics before
1980s, but developed resistance to SXT in the following
years (Ghosh and Ramamurthy, 2011). V. cholerae O1 El
Tor biotype that re-emerged in 1994 may have acquired SXT
resistance phenotype from the O139 serogroup (Ramamurthy
et al., 2003). Investigations conducted almost during the same
period in several cholera endemic regions in India showed

that the isolation rate of V. cholerae O1 was lesser than
Kolkata, but the AMR pattern followed nearly the same trend,
especially to tetracycline (Taneja et al., 2010; Das et al., 2011;
Bhattacharya et al., 2012; Borkakoty et al., 2012; Mandal
et al., 2012; Roy et al., 2012; Palewar et al., 2015; Bhuyan
et al., 2016; Jain et al., 2016; Torane et al., 2016; Pal et al.,
2018).

From 2010 to 2012, V. cholerae strains with AMR profiles
of NA-STR-SXT-TET-AMP and NA-STR-SXT-TET were
completely replaced with NA-STR-SXT-CHL(i)-AMP and
NA-STR-SXT-CHL(i) along with NA-AMP and NA. Strains
with the AMR profile of NA-STR-SXT-TET appeared again in
2015 (53%). Though the number of V. cholerae strains with the
NA-SXT-STR-CHL(i) profile was highest from 2013 to 2014
(98–100%), it has reached to 46% with the re-emergence of TetR

in 2015. The appearance of TetR in V. cholerae O1 Ogawa in
2008 has been reported from northern parts of India (Taneja
et al., 2010). TetR has been previously reported mostly in Inaba
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serotype (Jesudason, 2006; Roychowdhury et al., 2008). Presence
of tetA, floR, strBA, sul2, dfrA1 within the AMR gene cassettes
has positive correlation with the phenotypic expression of drug
resistance against TET, CHL, STR, and SXT (Dalsgaard et al.,
2001; Hochhut et al., 2001; Wang et al., 2016). It is interesting to
note that although dfrA18 conferring resistance to trimethoprim
was reported in MO10, later it was replaced by the dfrA1 allele in
a class IV integron located in the H3 (Wozniak et al., 2009).

In our study, floR and tetA genes were not found to coexist
within the VRIII present in the rumB locus. Previous reports,
however, had shown the presence of both floR and tetA in the
V. cholerae ICEVchLao1 isolated from the Laos, ICEVchB33 from
Beira, Mozambique (Iwanaga et al., 2004; Taviani et al., 2009).
Depending upon the presence of resistance cassettes in the ICEs,
we found two types of ICEs in our study namely ICEGEN and
ICETET. Though the ICE backbone of ICEGEN was similar to
those of SXTMO10 and SXTET , it had 99% structural similarity to
ICEVchInd5. Lineages of ICEVchInd5 of V. cholerae O1 strains
causing epidemics in the Indian subcontinent might have spread
to Africa (Valia et al., 2013).

ICEGEN circulating in V. cholerae strains from Kolkata
belonged to the group 1 ICE, which comprised ICEVchInd5
(India, 1994–2005), ICEVchBan5 (Bangladesh, 1998),
ICEVchHai1 (Haiti, 2010), ICEVchNig1 (Nigeria, 2010),
and ICEVchNep1 (Nepal, 1994) (Marin et al., 2014). Type
I restriction-modification system systems of ICEGEN and
ICETET were also reported in the other ICEs families,
such as ICEVchMex1 and ICESpuPO1 (Burrus et al.,
2006; Pembroke and Piterina, 2006). ICEs are constantly
spreading in different geographical areas. ICEVchB33,
which is different from other ICEs of SXT/R391 was first
identified in V. cholerae O1 strains from India in 1994
and then Mozambique in 2004 (Taviani et al., 2009).
Similar to V. cholerae O1 from India with ICEVchInd1, the
other ICEs identified in Vietnam, Laos, and Mozambique
(ICEVchVie1, ICEVchLao1, and ICEVchB33, respectively)
lack the trimethoprim resistance encoding dfr18, but carried
virD2 and floR, conferring resistance to CHL (Taviani et al.,
2009). Majority of the V. cholerae O1 isolated in Kolkata
from 1989 to 1990 had STXMO10/ICEVchInd4. This ICE was
replaced by ICEVchInd5/ICEVchBan5 in the subsequent years
(Weill et al., 2017, 2019).

In this study, the ICETET detected in V. cholerae O1 strains
had significant structural dissimilarities with ICEVchBan9
(Bangladesh, 1994), ICEVchMoz10 (Mozambique, 2004),
ICEVchB33 (Beira, 2004), and ICEVchLao1 (Iwanaga et al., 2004;
Taviani et al., 2009; Marin et al., 2014). Nevertheless, structural
variations, unstable core region, and the transfer region of both
the ICEs found in our study were very much similar and shared
a common ancestral backbone. In many ICEs, the core genes
such as int, bet, exo, and setR are usually associated with phages,
and genes such as tra are associated with plasmids (Wozniak
et al., 2009; Armshaw and Pembroke, 2013). Having the same
exclusion group (eexR1), ICEGEN and ICETET were mutually
exclusive and therefore did not co-exist in a strain. ICE sequences
reconfirmed that there were two ICE types that kept emerging in
different years. The key modifications between them indicated

that they may have diverse origins or be derived from a common
ancestor and could have later evolved independently.

We could transfer the ICEGEN and ICETET from V. cholerae
O1 to E. coli J53 by conjugation. The frequency of transfer
observed was high (10−5 to 10−6), indicating that the ICEs were
promiscuous due to the presence of an active tra region (Kiiru
et al., 2009; Pande et al., 2012). Our study showed that only the
resistances conferred by genes present in ICE were transferable
and that the level of expression was different, being more in the
transconjugants with respect to the donor vibrios. This could be
due to “gene dosage” effect or absence of repressor in the new
genetic environment of the recipient E. coli. Transconjugants
showing higher drug resistance have been described in the
previous reports as well (Petroni et al., 2002; Sarkar et al., 2015b).
The co-existence of ICEs with plasmids and class 1 integrons in
clinical as well as environmental V. cholerae has been reported
(Thungapathra et al., 2002; Pande et al., 2012). The involvement
of plasmids carrying the ICEs was not tested in this study. We also
observed that resistance to NA and AMP were not transferable,
indicating that the resistance to these antimicrobials could be
contributed by the chromosomal factors such as mutations and
efflux pumps (Ghosh and Ramamurthy, 2011).

As shown in the PFGE analysis, the clonal relatedness of
V. cholerae strains isolated during different years corresponded
with the MDR profiles. ICE integrase-negative strains isolated
in 2008, 2011, and 2012 were found to cluster together (cluster
A). V. cholerae O1 strains harboring either ICEGEN or ICETET

were also grouped in different clusters (B and C, respectively).
A similar observation was made with the outbreak strains of
V. cholerae O1 in Kenya (Kiiru et al., 2009).

In conclusion, our findings revealed the existence of two
types of ICEs in V. cholerae O1 strains from Kolkata. The
ICEGEN that contained conserved backbone genes was most
commonly detected in V. cholerae O1 circulating around Kolkata.
Features of the Kolkata V. cholerae O1 strains with ICE carrying
the TetR encoding genes are unique and the sequence of the
ICETET had several variations from other sequenced ICEs. Also
the ICETET harboring V. cholerae O1 strains reappeared after
4 years of disappearance in Kolkata. Unique PFGE clusters of
V. cholerae O1 harboring different ICEs are linked with the
AMR patterns. The primer pair designed in this study may be
useful in the detection of ICEs carrying the tet. The transmission
potential of ICEs identified in this study was very high, as
evidenced from the conjugation assay. Therefore, the impact
of ICE regulation and interactions between bacteria prevailing
in the same ecological niches should be explored in detail.
Emergence of new types of ICEs may pose challenges in the
existing cholera management strategies.
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