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Editorial on the Research Topic

Bioinformatics in Microbiota

Microbiota are a group of microscopic organisms with simple structures and include bacteria,
fungi, viruses, and others. Increasing numbers of biological experiments have shown that
microbiota play a significant role in the occurrence and development of human diseases.
Understanding the relationship between the microbiota and the host disease can be very useful
in the treatment of complex diseases, such as inflammatory bowel disease, diabetes, and so on.
However, using traditional wet experimental methods to identify microbe-disease associations
is costly and time-consuming. During recent years, benefitting from the rapid development
of artificial intelligence, machine learning, and new complex network techniques have been
developed to work for the big data generated from human microbiome experiments. This
Research Topic explores the potential for these computational methods applied to the research
of human microbiota.

We are pleased to note that our Research Topic has attracted contributions from many highly
regarded researchers in this field around the world, including from China, the USA, Spain, Chile,
Korea, and India. We received 75 submissions, 39 of which were accepted for publication after
rigorous reviews. We have further categorized these manuscripts into four subtopics with the
Research Topic.

There are nine papers discussing the relationship between microbe and disease in the first part
of this special issue. Zhou S. et al. examined the correlations between the gene expression levels of
defensins and the viral and bacterial loads in the blood on a longitudinal, precision medicine study
of a severe pneumonia patient infected by influenza A H7N9 virus. They showed that DEFB116
and DEFB127 are positively correlated and DEFB108B and DEFB114 are negatively correlated
to the bacterial load. He B.-S. et al. proposed a novel predictive model of graph regularized
non-negative matrix factorization for human microbe-disease relationship prediction based on
known microbe-disease associations, Gaussian interaction profile kernel similarity for microbes
and diseases, and symptom-based disease similarity. Wang et al. proposed a novel low-rank matrix
completion model namedMCAAS to infer antigenic distances between antigens and antisera based
on partially revealed antigenic distances, virus similarity based on HA protein sequences, and
vaccine similarity based on vaccine strains. Peng et al. established a model of adaptive boosting
for human microbe-disease association prediction (ABHMDA) to reveal the associations between
diseases and microbes. Chen J. et al. made a patient level analysis between abscess and healthy
periodontium, which showed that P. gingivalis, and Prevotella spp. including P. intermedia were
found to be dominant in the abscess of some patients compared to those of healthy periodontium,
based on 16S rDNA metagenomic sequencing. Niu et al. introduced an in silico model named
RWHMDA to predict underlying microbe-disease associations. Both cross-validation and case
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studies on asthma, type 2 diabetes, and Crohn’s disease revealed
the reliability of RWHMDA. Li H. et al. proposed a novel
prediction model called BWNMHMDA to accelerate the process
of inferring potential microbe-disease associations, in which,
the core idea is to construct a weighted bidirectional microbe-
disease association network and then convert it into a matrix for
correlation probability calculation. Qu J. et al. put forward the
matrix decomposition and label propagation for humanmicrobe-
disease association prediction (MDLPHMDA) on the basis of
the dataset of known microbe-disease associations collected
from the database of HMDAD, the Gaussian interaction profile
kernel similarity for diseases and microbes, and disease symptom
similarity. Zhou W. et al. showed that the changes in the fecal
microbiome were associated with age and disease progression in
Zucker diabetic fatty rats.

Nine papers included in second part are focused on gut
microbiota. Li W. et al. applied both Hubbell’s and Sloan’s
neutral theory models to test the influence of obesity on
the gut microbiome assembly from both community and
species perspectives. Lai et al. investigated the effects of dietary
perfluorooctane sulfonic acid (PFOS) exposure on gutmicrobiota
in adult mice and examined the induced changes in animal
metabolic functions. Zeng et al. characterized the microbial
biogeographical characteristics in the GIT of a red panda using
high-throughput sequencing technology. Ma W. et al. treated
healthy mice with metformin and found that metformin could
indeed prominently affect gut microbiome structure in healthy
mice. Medina et al. compared the composition of the human gut
microbiota of obese and lean people from six different regions
and showed that the microbiota compositions in the context of
obesity were specific to each studied geographic location. Yin and
Xia firstly adopted a Silverman’s test on the original results of
the hybrid model, next using this strategy to reanalyze a dataset
of HIV-related human gut microbiome in order to find HIV-
specific changes in the assembly of gut microbial communities.
Dai et al. constructed metabolic dependency networks using gut
microbiota datasets of common enteric diseases including IBD
and CRC, and revealed unappreciated interaction patterns of
disease-enriched bacteria and probiotics. Ai et al. studied the
microbial community structure of a CRC metagenomic dataset
of 156 patients and healthy controls, and analyzed the diversity,
differentially abundant bacteria, and co-occurrence networks.
Quan et al. performed a comparative analysis of the fecal
microbiota in DLY pigs with polarizing FE using 16S rRNA gene
sequencing and shotgun metagenomic sequencing.

There are 12 papers with machine learning techniques
applied in the research of microbiomes. Xiao et al. proposed a
predictive framework to exploit sparse and clustered microbiome
signals using a phylogeny-regularized sparse regression model.
Xiong et al. developed a stacked ensemble model PredT4SE-
Stack to predict T4SEs, which utilized an ensemble of base-
classifiers implemented by various machine learning algorithms,
to generate outputs for the meta-classifier in the classification
system. Chaudhari et al. developed PanGFR-HM, a novel
dynamic web-resource that integrates genomic and functional
characteristics of 1,293 complete microbial genomes available
from the Human Microbiome Project. He W. et al. collected

the ncDNA benchmark dataset of Saccharomyces cerevisiae and
developed a support vector machine-based predictor, called Sc-
ncDNAPred, for predicting ncDNA sequences. Zhang et al.
presented a computational method to identify m6A sites in the
E.coli genome by encoding the RNA sequences using nucleotide
chemical properties and accumulated nucleotide frequency.
Manavalan et al. described a novel computational method for
predicting PVPs, called PVP-SVM, and utilized the available
PVPs sequences to develop the method. Hao et al. reviewed
three representative genome-scale cellular networks: GMN, TRN,
and STN, and discussed the integration of the three types of
networks. Qu K. et al. discussed the current application of
machine learning methods in the microbiome. They reported
that machine learning is widely used in microbiological research,
and that it has focused on classification problems and analysis
of interaction problems. Khan et al. developed an approach
for prediction of the global burden of tuberculosis based
on artificial neural networks. Ru et al. proposed a random
forest method to classify bacteriophage virion proteins and
non-phage virion proteins. Wei and Zhang presented a novel
dynamic multi-seeds clustering method (namely DMSC) to
pick operational taxonomic units. Chung et al. developed a
statistical test-basedmethod to determine the reference spectrum
when dealing with alignment of mass spectra datasets, and
constructed machine learning-based classifiers for categorizing
different strains of S. haemolyticus.

Other studies are categorized as the fourth part of our
special issue. There are nine papers in total in this part.
Ma Z. et al. reconstructed a genome-scale metabolic model
(GSMM) of a Ganoderma lucidum strain, and applied this
model to elucidate detailed physiological characteristics and
production of extracellular polysaccharide in this species. Chen
Y. X. et al. isolated 65 rhizobial strains from faba bean, then
studied their plant growth promoting ability with nitrogen
free hydroponics, genetic diversity with clustered analysis
of combined ARDRA and IGS-RFLP. Ma and Li analyzed
the scaling of semen microbiome diversity across individuals
with diversity-area relationship analysis, a recent extension
to classic species-area relationship law in biogeography and
ecology. Tamames et al. proposed a fully automatic pipeline
(SqueezeMeta) for metagenomics/metatranscriptomics, covering
all steps of the analysis. Nagpal et al. presented iVikodak,
a multi-modular web-platform that hosts a logically inter-
connected repertoire of functional inference and analysis tools,
coupled with a comprehensive visualization interface. Kioroglou
et al. performed metataxonomic analysis of two types of mock
community standards with the same microbial composition for
evaluating the effectives of QIIME balanced default parameters
on a variety of aspects related to different laboratory and
bioinformatic workflows. Burcham et al. monitored bacterial
community structural and functional changes taking place
during decomposition of the intestines, bone marrow, lungs,
and heart in a highly controlled murine model. Li and Ma
investigated the microbiome diversity scaling over space by
analyzing the diversity-area relationship, which is an extension
to classic species-area relationship law in biogeography. Kuntal
et al. presented Web-gLV—a GUI based interactive platform for
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generalized Lotka-Volterra (gLV) basedmodeling and simulation
of microbial populations.

Finally, we want to thank all the authors who contributed
their original work to our special issue and the reviewers for
their valuable comments. We would like to express our sincere
gratitude to the Specialty Chief Editor, Dr. Matthias Hess and
Dr. George Tsiamis, and also the editorial office of Frontiers in
Microbiology, for their excellent support and providing us with
this opportunity to organize this hot topic issue successfully.
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The genome-scale cellular network has become a necessary tool in the systematic
analysis of microbes. In a cell, there are several layers (i.e., types) of the molecular
networks, for example, genome-scale metabolic network (GMN), transcriptional
regulatory network (TRN), and signal transduction network (STN). It has been realized
that the limitation and inaccuracy of the prediction exist just using only a single-layer
network. Therefore, the integrated network constructed based on the networks of
the three types attracts more interests. The function of a biological process in living
cells is usually performed by the interaction of biological components. Therefore, it is
necessary to integrate and analyze all the related components at the systems level for
the comprehensively and correctly realizing the physiological function in living organisms.
In this review, we discussed three representative genome-scale cellular networks: GMN,
TRN, and STN, representing different levels (i.e., metabolism, gene regulation, and
cellular signaling) of a cell’s activities. Furthermore, we discussed the integration of the
networks of the three types. With more understanding on the complexity of microbial
cells, the development of integrated network has become an inevitable trend in analyzing
genome-scale cellular networks of microorganisms.

Keywords: integrated network, metabolic network, regulatory network, signal transduction network,
microorganism

INTRODUCTION

With the development of bioinformatics and system biology, large-scale cellular network comes
into the sight of researchers. Bioinformatics, based on data processing, model construction and
theoretical analysis, integrates information from different molecular levels to understand how the
biological system works. According to the types of biological information processing encoded
in the network, the cellular networks have been classified into different types: genome-scale
metabolic network (GMN), transcriptional regulatory network (TRN), and signal transduction
network (STN). The most well-studied large-scale biological network is GMN, which is a
fundamental framework in systems metabolic engineering (Kim et al., 2015). With the first GMN
constructed for Haemophilus influenzae Rd (Edwards and Palsson, 1999), the current GMN allows
systematic level predictions of metabolism in a variety of organisms (Yilmaz and Walhout, 2017).
The main concept of transcriptional control was established in bacterial system by Jacob and
Monod (1961). In the past decades, the development of genomic technology and computational
biology promotes the construction of large-scale TRNs (Brent, 2016). The TRN is composed of
the interactions between different transcriptional factors (TFs) and target genes. A TF, which
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is encoded by a gene itself, may influence the expression of one
or more target genes, which may subsequently give rise to the
expression change of a serial of proteins or genes. The STN is
different from the TRN in network structures and timescales. The
STN contains protein–protein and protein–gene interactions,
which includes multiple routes of rapid cell response to the
external stimuli, whereas the TRN may need to produce sustained
patterns of cellular activity over time (Babu et al., 2004; Papin
et al., 2005). On the other hand, some proteins in the STN are TFs,
which indicates some genes/proteins are in common between
STNs and TRNs. The detailed comparisons of these networks
have been described in the review (Wang et al., 2007).

From a system point of view, different kinds of biological
networks are not working alone, but cooperate with each other to
undertake their functions. Integrated network studies will build a
more realistic model by investigating the interacting relationships
and interacting effects among organism’s different information
processing components in its system. This kind of models has
an important sense to the theoretical research of living systems
and the construction of genetic engineering strains (Wang et al.,
2010). In this article, we discussed the research progress about the
integrated networks in microorganisms.

CELLULAR NETWORK

Cellular network analysis has become a hot research area in
bioinformatics and system biology; it utilizes computer model
and experimental data to analyze complex biological system in
a global view, and offers guidance and expectation for in vivo
experiments (Wu and Ma, 2014). Due to the complexity of the
biological system, researchers have classified cellular networks
into GMN, TRN, and STN based on the types of information
processing of biological molecules.

Genome-Scale Metabolic Network
Due to the advances of genome sequencing, high-throughput
data have been rapidly produced, which drives a transition
from the traditional biology research. On the basis of genome
sequencing and annotations in huge amounts of data, metabolic
network reconstruction in a genome-scale has been developed
rapidly (Francke et al., 2005; Notebaart et al., 2006). Currently,
GMN has become an indispensable tool for studying the
biological metabolic system (Pal et al., 2006; Feist and Palsson,
2008). It has important applications on designing classic
paths of metabolic engineering, inverse metabolites synthesis,
metabolic flux analysis, evolution analysis of metabolic pathways
between different species, mining omic data, and identifying
of the marks in enzyme engineering (Soh and Hatzimanikatis,
2010). GMN construction is based on genomic sequences,
combining with genes, enzyme reactions, metabolic databases
and related experimental data, to quantitatively study the
metabolic processes of living organisms from a systematic
perspective. All biochemical reactions in the cell have been
included as a network and the GMN reflects the interactions
between all the compounds involved in the metabolic processes
and all the catalytic enzymes. The construction of a GMN

allows an in-depth functional analysis of the biological metabolic
system, which is different from the traditional approach analysis
or biological response analysis, but try to understand the whole
metabolic system from the systematic view. GMN brings a
more comprehensive and accurate insight into cell metabolism
of the whole system and the interaction relationships between
different metabolic processes. On the other side, the topology
of the metabolic networks among many organisms can reflect
the dynamics of the metabolic system evolution, which can
help us understand the history of life evolution in the context
of metabolism (Ravasz et al., 2002; Stelling et al., 2002;
Zhao, 2008; Deyasi et al., 2015). In all the genome-scale
biological networks, GMN is the most extensive and deepest
studied network, with its construction procedures generally
normalized in Palsson’s review (Thiele and Palsson, 2010).
The process of constructing of a metabolic network mainly
consists of four parts, including data collection, relationship
model establishment, data curation, and transformation into a
mathematical model (Thiele and Palsson, 2010). To date, the
construction of metabolic network has been able to realize
some degree of automation, and therefore, 100s of metabolic
networks in different organisms have been constructed (Hao
et al., 2012).

Genome-scale metabolic network can be used to simulate
the growth of organisms. Among the GMNs, the most accurate,
comprehensive and classical model in microorganisms is the
GMN of Escherichia coli named iJO1366, which was constructed
by Palsson’s group in 2011. The model achieved 67.7 and 96%
accuracies for the prediction of essential and non-essential genes
in E. coli. It is capable of simulating the growth of E. coli on
334 kinds of nutrients (Orth et al., 2011). Recently, a novel
updated GMN of Clostridium difficile which called iCDF834 has
been presented. This network was constructed based on the
model iMLTC806cdf and transcriptome data, which detailed the
gene expression of the bacteria in various environments. It is
worth mentioning that the synonymous codon usage bias was
introduced into the model to remedy the inconsistence between
gene expression and protein abundance, which is the first time
that codon has been integrated into a GMN. The model achieved
a quite high (92.3%) accuracy in predicting gene essentiality
(Kashaf et al., 2017).

The GMN can be used to guide the metabolic engineering
experiments. Using Bacillus subtilis as an example, Hao et al.
(2013) constructed a GMN of B. subtilis, named iBSU1147. The
model has been used to successfully predict the yields of four
industrial products produced by B. subtilis [i.e., riboflavin, (R,R)-
2,3-butanediol, cellulase Egl-237, and isobutanol]. The results
have provided important guidance for the in vivo experiments
(Hao et al., 2013). Recently, Piubeli et al. (2018) constructed
a GMN iFP764 of halophilic bacterium Chromohalobacter
salexigens to explore the cell factory for producing ectoine. This
model was constructed based on the experimental data, genome
sequences and re-annotation of metabolic genes. The GMN is
capable of simulating the metabolic situation of C. salexigens
in low and high yield of ectoines. The salinity-specific essential
genes and the patterns of correlated reactions in central carbon
and nitrogen metabolisms response to the change of salinity
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were also simulated. The network is a useful tool to improve the
production of ectoines with bacteria (Piubeli et al., 2018).

The GMN also has an important value for drug discovery.
Chen et al. (2015) constructed a GMN of Treponema pallidum.
T. pallidum has a very specific metabolic network compared
to those of other bacterial pathogens. It lacks the oxidative
phosphorylation tricarboxylic and acid cycle pathways as well
as is incapable of synthesizing enzyme cofactors, fatty acids,
and most amino acids. By analyzing topological structure and
minimal cut sets of the network, they found that some hub
reactions in pyrimidine and purine metabolisms play significant
roles in T. pallidum, which may be helpful drug targets in the
treatment of syphilis, a sexually transmitted infection caused by
the T. pallidum (Chen et al., 2015). In the same year, Steinway
et al. (2015) constructed a GMN of intestinal bacteria based on
experimental data. This network summarized the relationships
between clindamycin and clostridium infection. Based on the
analysis of topological and chemical properties of the network,
the drug targets could be screened using the GMN, which can
be used in the design of the drug-molecule model (Cong, 2010)
and subsequently be applied in the treatment of anticlostridium.
They verified that B. intestinihominis can indeed slow the growth
of C. difficile through in vitro experimental validation (Steinway
et al., 2015).

Theoretically speaking, the number of completed genome
sequenced species should be as same as the number of
corresponding GMNs. However, the current number of GMNs
is much less than the number of sequenced species. The main
reason is that the network construction pipeline still needs
manual proofreading procedures due to the imperfect genetic
annotation algorithm. In addition, the incomplete understanding
of biochemical mechanisms also affects the development of
metabolic networks (Wang et al., 2010).

Genome-Scale Gene Transcriptional
Regulatory Network
Gene transcriptional regulation is the most basic and important
regulation mechanism in organisms. Therefore, computational
analysis of the gene transcriptional regulation is helpful for
the understanding of the interactions between transcriptional
processes and TRNs, and could provide support for the
understanding of the mechanisms of biological activities
(De-nan, 2014).

The basic components of TRNs are the interactions
between transcription factors (TFs) and the related target
promoters which function in the activation or repression
of gene transcription. In this definition, the intracellular
signals that regulate TF activities or any other additional
mechanisms that may influence the expression of genes were
excluded, as well as the upstream environmental. Although
the development of TRN is not as mature as that of GMN, the
current TRN construction is more and more standardized and
automated. The detailed construction method of the TRN in
microorganism can be seen in this paper (Feist et al., 2009).
The network construction method is roughly divided into
four steps: Step 1: an automated genome-based construction
with automated procedures and applying automated tools,

such as SMILEY algorithm, GapFind/GapFill, and PathoLogic;
Step 2: construction of the TRN based on bibliomic data
or high-throughput data; Step 3: transforming a genome-
scale reconstruction of the interactions into a computational
model; Step 4: curation the network by adding physiological
or in vivo experimental information to the genes and the
network.

Transcriptional regulatory network is a very complex non-
linear system. Therefore, it is difficult to be described in a
mathematical model. So far, the studies of the TRN are still
in the exploration stage in many aspects, and scientists are
constantly exploring new and better ways to construct a more
complete TRN. Using Bacillus as an example, in Sierro et al.
(2008) improved the database of transcriptional regulation in
B. subtilis (DBTBS), which is constructed in 1999 for collecting
the information of experimentally characterized TFs, and they
nearly doubled the information in DBTBS. Freyre-Gonzalez
et al. (2013) examined each regulatory element that constituted
the TRN of B. subtilis and presented some lessons from the
construction processes. Arrieta-Ortiz et al. (2015) used the
TRN of B. subtilis to calculate the activity of TFs with a new
combination of composition analysis based on a large number of
known transcriptome data and experimental data of B. subtilis.
They predicted 2258 new regulatory interactions and recalled
74% previously known interactions with this model. The accuracy
of predicted new regulation edges was 62% (391/635) (Arrieta-
Ortiz et al., 2015). Faria et al. (2016) expanded a TRN for
the central metabolism of B. subtilis reconstructed in 2008
by integrating the regulation information in DBTBS. They
demonstrated that atomic regulons (ARs), which are the sets
of genes with the same expression profile, are the effective
references for improving the regulatory networks by finding
the closely correlated genes in the ARs. The expanded model
contains the regulatory information for 2500 of the 4200 genes
in B. subtilis 168 (Faria et al., 2016). In addition, Gui et al.
(2012) searched for the homologous TFs and their regulatory
genes in the genetically closest pattern bacteria – B. subtilis, and
used comparative proteomics to forecast a regulatory networks
of Bacillus pumilus, which contains 195 TFs and 1201 controlled
genes. The results of their study showed that comparative
genomics is a reliable method to speculate the gene regulation
network of some species based on the gene transcriptional
regulatory relationships of their genetically close organism, which
is the best and a widely studied model organism. This method
offers a feasible way to explore some organisms’ regulatory
networks without large-scale gene expression data (Gui et al.,
2012).

The TRN can also be used to treat the human disease.
Recently, Fowler and Galan (2018) built a regulatory network
of Salmonella typhi, a pathogen causing typhoid fever. Typhoid
fever, which is a frequently happened disease in human,
was mainly caused by the typhus toxin secreted by S. typhi.
Typhoid fever toxin is expressed uniquely by intracellular
bacteria with unknown regulatory network. Fowler and
Galan (2018) built the TRN of S. typhi and developed an
algorithm called FAST-INSeq to identify the genes and
mutants which influence the expression of typhoid toxins.
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This network can help to understand the expressional
regulation of typhoid fever toxin in S. typhi, which would
contribute to the treatment of typhoid fever (Fowler and Galan,
2018).

Genome-Scale Signal Transduction
Network
Signal transduction is an important cellular activity, a living
cell can recognize, connect and interact with each other
through signal transduction pathway, and realize the overall
functional coordination and unity. Signal transduction carries
plenty of biological functions, and is closely connected with
the development of many diseases (Liu et al., 2008). In the
early years, scientists believed that the STN is a linear cascade
of information transmission and amplification. However,
due to more studies of the system, scientists found that
the concept mentioned above is incorrect. Therefore, a
new view taking a STN as a system consisting of multiple
complicated elements interacting in a multifarious fashion
emerges. This view conflicts with the protein-centric or single-
gene approach commonly used in the traditional research
(Levchenko, 2003). Scientists found that except a few STNs
that contain fewer signals and simpler network structures,
such as Jak-STAT pathway, most STNs are fairly complex
(Papin and Palsson, 2004). In the cellular signaling system,
a large amount of phosphorylation and dephosphorylation
reactions makes the signal transduction process usually
reversible. The lacking of mass flow and the complexity of
network state changes make the STN different from the GMN
and TRN.

To determine the relationships between the mechanism and
molecular regulations in STNs, it requires a large number
of experiments. However, the standard single cell technique
contributes little to the STN because the states of signal change
dynamically and are different between individual cells (Kamps
and Dehmelt, 2017). Fortunately, computational approaches such
as bioinformatics analysis using known data and biological
knowledge can help to interpret the STN (Shlomi et al., 2006).
As early as Gomez et al. (2001) used a statistic model to calculate
the molecular interactions in Saccharomyces cerevisiae on the
basis of protein structure domain and network topology. This
method can generate potential signaling pathways and also
be applied to multiple species (Gomez et al., 2001). Rother
et al. (2013) summarized the approaches of constructing a
STN and classified them into three types: network topology-
based method where network simulation could be applied using
Boolean models, network specific-state based method where
the network is simulated using differential equation models,
and reaction-contingency based method where the network is
simulated using agent based models, site-specific logical models
or bipartite Boolean models (Rother et al., 2013). Each of the three
methods performs well in small network modules. However,
when the scale of network extended to the genome level, none
of them is perfect for dealing with the whole information in
the entire STN (Le Novere et al., 2009). In recent years, lots
of small-scale STNs has been studied, such as the STN of
HRas (Herrero et al., 2017), mTOC1 (Hoxhaj et al., 2017), cell

circle (Wang et al., 2018), and cellular adhesion (Zheng et al.,
2014). At the meantime, much more efforts are being made
to construct large-scale STNs. Therefore, it is challenging to
model the large STNs. Even though signaling network in bacteria
is not as complex as those in eukaryotes, the construction of
a large-scale STN is still a major challenge. Vinayagam et al.
(2011) constructed a protein–protein interaction network to
resembling the signal transduction flow between 1126 proteins,
in which the interactions were obtained from yeast two-hybrid
experiments of more than 450 signaling proteins. This network
has been used to predict 18 previously unknown modulators
in EGF/ERK signaling. Their results shows that the integration
of genetic experiments and the computational approach is
valuable for elucidating interactions between signaling proteins
and facilities the identification of proteins in STNs (Vinayagam
et al., 2011). Wang et al. (2011) also performed an approach called
CASCADE_SCAN to construct STN with high-throughput data,
which further showed that the high-throughput experiments are
becoming a powerful tool for assisting in reconstructing large-
scale STNs. Besides, the integration of different techniques such
as optogenetics, protein design, surface patterning, and chemical
tools was reported to provide some valuable information of
the dynamic state of signals in the network and contribute
in the construction of large-scale STNs (Kamps and Dehmelt,
2017).

INTEGRATED NETWORKS IN
MICROORGNISMS

The establishment of various biological networks simulates and
validates key activities in cells. With the recent advances in high-
throughput studies, it has been realized that it is necessary to
integrate different levels of biological information processing
networks to fully investigate the biological mechanisms of the
organisms (Kitano, 2002; Ryll et al., 2014). Therefore, the
integrated network based on different network types has become
a trend in the field of system biology and bioinformatics.

Integrated Metabolic-Regulatory
Networks
Metabolism and transcriptional regulation are two closely related
cellular activities. Metabolites (substrates or reaction products)
involved in metabolic reactions affect the activities of certain TFs
or signal transduction pathways. On the other hand, enzyme-
catalytic metabolic reactions are regulated by other genes or
proteins, and the expression of enzymes is different in different
environmental conditions. In recent decades, the integrative
modeling of metabolic-regulatory networks has become an
important research area in the modeling of microorganisms
(Imam et al., 2015).

Covert et al. (2004) reconstructed the first genome-scale
metabolic-regulatory integrated network of E. coli (iMC1010)
based on the information derived from literature and databases.
The network contains 906 metabolic genes and 104 regulatory
genes, which regulate the expression of about 53% genes
(479/906) in the E. coli metabolic network. This model is
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capable of predicting the previously unknown TFs, which
play important roles in regulating metabolic processes, and
interactions between metabolites and TFs (Covert et al., 2004).
In 2005, they further used the literature-curated network
iMC1010v1 to evaluate the performance of the functional
states calculated in 15,580 growth environments for E coli.
The results showed that the TRN responds mainly to the
electron acceptors, which agrees with known experimental
data. They also found that a complicated network had a
small amount of dominant modes and the network clusters of
activity profiles can be organized based on the activities of a
few TFs. The integrated network gives crisper references than
the single metabolic network for the further experiments to
determine the functional states of an organism (Barrett et al.,
2005).

Goelzer et al. (2008) reported a manually curated metabolic-
regulatory integrated network of B. subtilis. The network
includes post-translational regulations translational regulation,
and modulation of enzymatic activities in the central metabolism.
They decomposed the complex network into different locally
regulated modules and found that these modules were managed
by global regulators. Their results exhibited the functional
organization of the metabolic-regulatory integrated network of
B. subtilis (Goelzer et al., 2008).

Chandrasekaran and Price (2010) proposed an algorithm
named probabilistic regulation of metabolism (PROM) and
constructed a genome-scale regulatory-metabolic integrated
network model for E. coli and Mycobacterium tuberculosis.
Before this effort, another method named regulatory flux balance
analysis (rFBA) has been used to integrate transcriptional
regulatory with metabolic networks. rFBA used the Boolean
logic to link transcriptional control to the metabolic process,
which permits only on/off states of the network components
(Shlomi et al., 2007). PROM introduces probabilities instead
of Boolean rules to represent gene expression and the
interactions between gene and TF (Simeonidis et al., 2013).
The analysis of integrated E. coli network demonstrates that
metabolic-regulatory integrated network is more accurate and
comprehensive than the models constructed based on manual
curation of literature. The integrated M. tuberculosis model
incorporated data from more than 2,000 TF, 1,300 microarrays,
1,905 KO phenotypes and 3,300 metabolic reactions. The
application of PROM on this model shows the capability of
PROM on various organisms. Particularly, they demonstrated
the outstanding capability of PROM in predicting the cellular
phenotypes, drug targets, and functions of less studied regulatory
genes.

Jiang et al. (2012) constructed a metabolic-transcriptory
integrated network of Corynebacterium glutamicum by
combining public databases and literature databases. The
network contains 1,384 reactions, 1276 metabolites, 88
regulators, and 999 transcriptional regulations. The study
systematically reorganized and analyzed the transcriptional
regulation information of C. glutamicum, and expanded it to
the metabolic network. They also preliminarily analyzed the
metabolic network of C. glutamicum on the basis of the bow-tie
structure of the network (Ma and Zeng, 2003). This work showed

that the integration of the TRN and the metabolic network with
the gene-enzyme-reaction relationship could be the foundation
for the large-scale data integration and simulation analysis. The
advantages of this integrated network are the discoveries of the
relationships between transcription and metabolism in cells,
which can’t be achieved if using either metabolic network or
TRN only (Jiang et al., 2012).

Wang Z. et al. (2017) performed another algorithm called
Integrated Deduced And Metabolism (IDREAM) to construct
enhanced metabolic-regulatory integrated networks. IDREAM
integrated Environment and Gene Regulatory Influence Network
(EGRIN) models with the PROM framework. IDREAM performs
better than PROM in the prediction of the phenotype and genetic
interactions between TFs and metabolic processes in S. cerevisiae
(Wang Z. et al., 2017).

Currently, large-scale metabolic-regulatory integrated
network has been constructed for several microorganisms
such as E. coli (Chandrasekaran and Price, 2010), S. cerevisiae
(Herrgard et al., 2006), Helicobacter pylori (Schilling et al., 2002),
Phaeodactylum tricornutum (Levering et al., 2017), comma
shaped gram negative anaerobic bacteria (Mahadevan et al.,
2006) and C. glutamicum (Kromer et al., 2004). Integration
of metabolism and transcription processes is generally quite
straightforward. Metabolic network produces precursors to
synthesize the metabolites such as nucleotides and amino acids
which are required by transcription processes. On the other hand,
the TRN couples back to the metabolic network by managing
the expression of the enzymes in the metabolic network and
thus regulating the flux distribution among different metabolic
functions (Feist et al., 2009).

Integrated Regulatory-Signaling
Networks
The integration of microbial transcriptional regulatory and
signaling network is still in the preliminary stage. Wang and
Chen (2010) combined the transcriptional regulation and signal
transduction pathway (e.g., mainly presented in the form of
protein–protein interaction) to construct the integrated yeast
cellular network. The network connects these two networks
together to form an integrated network using the nodes (i.e.,
TFs) between the TRNs and signaling pathways. The integrated
cellular networks related to heat shock, hyperosmotic stress, and
oxidative stress were constructed and the connections between
these networks were further analyzed. With the hyperosmotic
stress related network, the highly connected hubs related to the
stress response were predicted. The analyses of these networks
have identified a few TFs to serve as the core in the bow-tie
structure and the essential elements for the rapid response to
stress. In addition, they also identified a couple of genes/proteins
related to stress responses or potential drug targets. This method,
however, only integrates the transcriptional regulatory data
with the protein–protein interaction in the signal transduction
pathways, but not the completed STN. In order to get a more
complete integration, it also needs to list all the components in
a STN, and then combined with the TRN for the integration
(Wang and Chen, 2010). Recently, Ignatius Pang et al. (2018)
construct another regulatory-signaling integrated network of
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S. cerevisiae with protein–protein interaction as the bridge
to link the regulatory (TF-gene pairs) and signaling (kinase-
substrate pairs) parts. This network was used to investigate the
negative genetic interactions and the genes in the negative genetic
interactions closely related to the toxicity (Ignatius Pang et al.,
2018).

In the study of algorithms, Roy et al. (2013) proposed
a method called MERLIN (Modular regulatory network
learning with per gene information) to reconstruct the
regulatory network by identifying the connections from
regulators, including proteins and TFs, to target genes. The
regulatory network constructed by MERLIN actually reflects
the integration of transcriptional regulation and signaling
networks. The application of MERLIN on S. cerevisiae captured
the co-regulatory relationships between downstream TFs and
signaling proteins, and therefore uncovering the upstream
signaling systems which control transcriptional responses (Roy
et al., 2013). With the investigation of the integrated network,
the regulation program of each gene in the human cells is much
clearer than the application of either individual TRN or STN.

Integrated Metabolic-Signaling Networks
The development of integrated network for metabolic and
signaling networks is still in the very beginning stage. Few
metabolic-signaling integrated networks have been published.
Imam et al. (2015) discussed the challenges in the integration of
these two network types. Firstly, signaling mechanisms are closely
related to the specific concentrations of related molecules, while
constraint-based approaches widely used in metabolic network
analysis cannot reflect the metabolite concentrations. Secondly,
lots of kinetic parameters are required in the construction of

dynamic quantitative signaling network, but these parameters
are rarely available. This aspect limits the integration of
metabolic and signal transduction. Boolean or stoichiometric
methods which do not require kinetics parameters or metabolite
concentrations might be a possible choice for the integration of
metabolic and signaling networks in the future.

Integrated Metabolic-Regulatory-Signaling
Networks
The integration of metabolic-regulatory-signaling networks is
a challenge issue in the study of integrated networks. On the
graphic view, there are common components (proteins or TFs)
in metabolic, regulatory, and signaling networks (Figure 1).
Therefore, it is theoretically possible to merge these three
types of cellular networks into one integrated network. While
actually, lots of elements should be considered in the integration
process, such as the logics and computability. On a small scale
network integration, Covert and Palsson (2002) developed a
method named integrated FBA (iFBA) to model the dynamic
behavior among metabolic, signaling, and regulatory networks.
This method combines FBA with ordinary differential equations
(ODE) and regulatory Boolean logic (Figure 2). They used
this approach to construct an integrated network model of
E. coli which combines a FBA based central carbon metabolic-
regulatory network with an ODE based model of carbohydrate-
uptaking-controlling network. They compared the prediction of
E. coli single gene perturbation disturbance phenotypes and wild-
type for diauxic growth on glucose/glucose-6-phosphate and
glucose/lactose using rFBA and ODE methods. They found that
iFBA is capable of identifying the dynamics of three transporters
and three internal metabolites which cannot be predicted by

FIGURE 1 | Graphic view of the integrated cellular network.
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FIGURE 2 | Schematic diagram of iFBA.

rFBA alone. Furthermore, iFBA obtained different and more
accurate phenotype predictions in the wild-type simulations and
single gene perturbation simulations than the ODE model, which
indicates that iFBA is an improvement over either individual
rFBA or ODE method in network integration (Covert et al.,
2008).

Lee et al. (2008) proposed a method called integrated
dynamic FBA (idFBA) which could dynamically simulate cellular
phenotypes with integrated networks. idFBA was applicable
for the analysis of the integrated stoichiometric network of
metabolic, regulatory, and signal transduction processes. In this
method, the quasi-steady-state conditions were assumed for
“fast” reactions and then the “slow” reactions was incorporated
into the stoichiometric equation (Figure 3). idFBA has been
applied to a representative small network of S. cerevisiae, in which
metabolic, regulatory, and signaling activities have been included.
Finally, idFBA got similar results with an equivalent kinetic
model in the prediction of the influence of the extracellular
environment on the cellular phenotypes. The advantage of idFBA
is that it is capable of solving a linear programming problem
without the detailed kinetic parameters, which makes it a
possible approach for the genome-scale integration of metabolic,
regulatory, and STNs (Lee et al., 2008).

For a large-scale network integration, Karr et al. (2012)
collected information from 900 data sources, including reviews,
books and databases, and constructed a whole cell model
of Mycoplasma genitalium. This model includes data on
metabolism, signal transduction and transcriptional regulation,
and offers deep understanding on many previously unknown
cellular behaviors, such as the inverse relationship between
the replication rates and durations of DNA replication
initiation. Furthermore, experimental analysis based on the
model predictions has certified several previously undetected
biological functions and kinetic parameters (Karr et al., 2012).
However, due to the particularity of the species itself (e.g.,
unclear medium component, too small genome, etc.), the
experimental data is rare, so the model was built using lots
of data from other species, which makes it not suitable for
other species. The good news is that Carrera et al. (2014)
proposed a widely applicable modeling methodology for
integrated network reconstruction and reconstructed an E. coli
metabolic-regulatory-signaling integrated network by combining

high-throughput transcriptome and phenomic data. The
methodology is composed of four different algorithms including
Expression Balance Analysis (EBA), flux Variability Analysis
(FVA), TRAnscription-based Metabolic flux Enrichment
(TRAME) and FBA, which were sequentially used to calculate
the gene expression caused by the genetic or environmental
perturbations, the flux balance bounds modified by the predicted
gene expression, the metabolism-transcription interactions,
and the optimized objective function under the modified flux
bounds. With this methodology, the metabolism, transcription,
and signal transduction information were integrated into one
computable model. The application of this methodology on
E. coli showed that the integrated network has a more powerful
capability in phenotype prediction than the approaches using
metabolic network alone (Carrera et al., 2014).

THE INTEGRATED NETWORKS OF
MICROORGANISMS AND HUMAN
DISEASES

As many microorganisms are closely related to non-infectious
human diseases, their biological networks naturally provide a
possibility for studying the complex mechanisms of human
diseases. For example, signal and metabolic network are usually
used to understand the mechanism of disease and drug discovery
(Hasan et al., 2012). In this point of view, another type
of integrated network, microbe-disease association network
integrated with microorganisms and human diseases, is also
a quite helpful tool for improving the treatment of human
diseases or development of new drugs. Up to date some
efforts has been made to develop the algorithms or models
for predicting the disease-related microorganisms based on
the microbe-disease association network. Chen et al. (2017)
developed a computational model KATZHMDA (KATZ measure
for Human Microorganism–Disease Association prediction)
based on an assumption that microorganisms with similar
function likely to have similar interactions and non-interactions
with diseases. With the similar assumption, Huang Y.A. et al.
(2017) also developed a computational model called NGRHMDA
(a neighbor- and graph-based combined recommendation
model for human microbe-disease association prediction) to
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FIGURE 3 | Schematic diagram of idFBA.

predict the association between microorganisms and diseases.
They used a graph-based scoring method and neighbor-based
collaborative filtering to calculate the possibility of association
between microorganisms and diseases (Huang Y.A. et al.,
2017). Huang Z.A. et al. (2017) developed a computational
model PBHMDA (Path-Based Human Microorganism-Disease
Association prediction) based on the Gaussian interaction profile
kernel similarity calculation for microorganisms and diseases.
Besides, this model also integrated the known microbe-disease
relationships, and part of the results predicted with this model
has been confirmed by previous published literature (Huang
Z.A. et al., 2017). Similarly, Wang F. et al. (2017) proposed a
semi-supervised computational model LRLSHMDA (Laplacian
Regularized Least Squares for Human Microorganism-Disease
Association) by integrating the Gaussian interaction profile
kernel similarity and Laplacian regularized least squares classifier.
This model got good performance on the prediction of chronic
obstructive pulmonary, colorectal carcinoma, and asthma
diseases in the case studies (Wang F. et al., 2017). No matter
what kind of algorithms, the predictions were made based on
the known knowledge of microorganisms and microbe-disease
relationships. Therefore, as we know more about microbes and
diseases, the computational models are expected to offer more
insights in the identification of microbe-disease associations in
the future.

FUTURE OF MICROBE CELLULAR
NETWORK

Construction and analysis of biological information processing-
specific large-scale cellular networks (i.e., metabolic, signaling,
and gene regulatory networks) has output many important
biological insights in novel pathways, regulatory, and metabolic
mechanisms. Given the fact that these networks are highly
interconnected, the analysis of the integrated networks is
expected to supply more novel understanding on biological
behaviors which cannot be achievable using the biological
information processing-specific network models alone. From
biological information processing-specific networks to integrated

network, it is an irresistible trend of the analysis of cellular
networks. The integrated networks may provide better answers
to the issues such as how transcription-regulatory interactions
redirect flux distribution in a metabolic network; how a
environmental or genetic disturbance influences the phenotype
of an organism; or giving more accurate suggestions to the
experiment designs and driving biotechnology applications. As
lots of information is required in the reconstruction of a large-
scale integrated networks, high-throughput experiments will play
an increasingly significant role in the network integration. With
the development of sequencing technology in recent years, many
other types of cellular molecules involved in the regulatory
process has been identified with high throughput experiment,
and their related cellular networks have been studied, such
as the network of mRNA, microRNA (Ferguson et al., 2018),
lncRNAs (Zhang et al., 2018), and ceRNA (Xue et al., 2018).
These small molecules participate in the regulatory network and
control the RNA activity or gene expression directly or indirectly.
Therefore, the integration of these molecules with TFs provides
more information to the TRNs (Wong and Matus, 2017). With
the involvement of more types of elements in the molecular
networks, the integrated cellular networks will perform better
to simulate the activity of the real cells. Although integrating of
multiple types of information into a network will largely increase
its complexity and calculation difficulties, the integrated network
makes a computational network closer to a real cell, which pushes
us go further from the dream of reproducing real creatures on
computers.

ETHICS STATEMENT

The study was approved by College of Life Sciences, Tianjin
Normal Univeristy.

AUTHOR CONTRIBUTIONS

DW, LZ, and QW collected the references. EW and JS contributed
in the guideline and revision of the manuscript. TH analyzed the
reference. TH and DW wrote the paper.

Frontiers in Microbiology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 29616

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00296 February 23, 2018 Time: 11:57 # 9

Hao et al. Genome-Scale Integrated Network in Microorganisms

FUNDING

This work was supported by Grants of the Major
State Basic Research Development Program of China
(973 programs, 2012CB114405), National Natural Science
Foundation of China (31770904, 21106095), Tianjin

Research Program of Application Foundation and Advanced
Technology (15JCYBJC30700), Project of introducing
one thousand high level talents in three years, “131”
Innovative Talents cultivation of Tianjin, Academic
Innovation Foundation of Tianjin Normal University
(52XC1403).

REFERENCES
Arrieta-Ortiz, M. L., Hafemeister, C., Bate, A. R., Chu, T., Greenfield, A., Shuster, B.,

et al. (2015). An experimentally supported model of the Bacillus subtilis global
transcriptional regulatory network. Mol. Syst. Biol. 11:839. doi: 10.15252/msb.
20156236

Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., and Teichmann, S. A.
(2004). Structure and evolution of transcriptional regulatory networks. Curr.
Opin. Struct. Biol. 14, 283–291. doi: 10.1016/j.sbi.2004.05.004

Barrett, C. L., Herring, C. D., Reed, J. L., and Palsson, B. O. (2005). The global
transcriptional regulatory network for metabolism in Escherichia coli exhibits
few dominant functional states. Proc. Natl. Acad. Sci. U.S.A. 102, 19103–19108.
doi: 10.1073/pnas.0505231102

Brent, M. R. (2016). Past roadblocks and new opportunities in transcription factor
network mapping. Trends Genet. 32, 736–750. doi: 10.1016/j.tig.2016.08.009

Carrera, J., Estrela, R., Luo, J., Rai, N., Tsoukalas, A., and Tagkopoulos, I.
(2014). An integrative, multi-scale, genome-wide model reveals the phenotypic
landscape of Escherichia coli. Mol. Syst. Biol. 10:735. doi: 10.15252/msb.2014
5108

Chandrasekaran, S., and Price, N. D. (2010). Probabilistic integrative modeling
of genome-scale metabolic and regulatory networks in Escherichia coli and
Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 107, 17845–17850.
doi: 10.1073/pnas.1005139107

Chen, X., Huang, Y. A., You, Z. H., Yan, G. Y., and Wang, X. S. (2017).
A novel approach based on KATZ measure to predict associations of
human microbiota with non-infectious diseases. Bioinformatics 33, 733–739.
doi: 10.1093/bioinformatics/btx773

Chen, X., Zhao, M., and Qu, H. (2015). Cellular metabolic network analysis:
discovering important reactions in Treponema pallidum. Biomed. Res. Int.
2015:328568. doi: 10.1155/2015/328568

Cong, J. (2010). A Chemoinformatic Analysis on Metabolic Network and the
Application for Screening of Drug Tagets on Erwinia Carotovora. Master’s thesis,
Sichuan University, Chengdu.

Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., and Palsson,
B. O. (2004). Integrating high-throughput and computational data
elucidates bacterial networks. Nature 429, 92–96. doi: 10.1038/nature
02456

Covert, M. W., and Palsson, B. O. (2002). Transcriptional regulation in constraints-
based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064.
doi: 10.1074/jbc.M201691200

Covert, M. W., Xiao, N., Chen, T. J., and Karr, J. R. (2008). Integrating metabolic,
transcriptional regulatory and signal transduction models in Escherichia coli.
Bioinformatics 24, 2044–2050. doi: 10.1093/bioinformatics/btn352

De-nan, Z. (2014). Research on Prediction and Analysis of Transcriptional
Regulation and Construction of Regulatory Networks Based on High-Throughout
Seqyencing Data. Harbin: Harbin Institute of Technology.

Deyasi, K., Banerjee, A., and Deb, B. (2015). Phylogeny of metabolic networks: a
spectral graph theoretical approach. J. Biosci. 40, 799–808. doi: 10.1007/s12038-
015-9562-0

Edwards, J. S., and Palsson, B. O. (1999). Systems properties of the Haemophilus
influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416.
doi: 10.1074/jbc.274.25.17410

Faria, J. P., Overbeek, R., Taylor, R. C., Conrad, N., Vonstein, V., Goelzer, A.,
et al. (2016). Reconstruction of the regulatory network for Bacillus subtilis and
reconciliation with gene expression data. Front. Microbiol. 7:275. doi: 10.3389/
fmicb.2016.00275

Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., and Palsson, B. O.
(2009). Reconstruction of biochemical networks in microorganisms. Nat. Rev.
Microbiol. 7, 129–143. doi: 10.1038/nrmicro1949

Feist, A. M., and Palsson, B. O. (2008). The growing scope of applications of
genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol.
26, 659–667. doi: 10.1038/nbt1401

Ferguson, S. W., Wang, J., Lee, C. J., Liu, M., Neelamegham, S., Canty,
J. M., et al. (2018). The microRNA regulatory landscape of MSC-derived
exosomes: a systems view. Sci. Rep. 8:1419. doi: 10.1038/s41598-018-19
581-x

Fowler, C. C., and Galan, J. E. (2018). Decoding a Salmonella Typhi regulatory
network that controls typhoid toxin expression within human cells. Cell Host
Microbe 23, 65–76.e6. doi: 10.1016/j.chom.2017.12.001

Francke, C., Siezen, R. J., and Teusink, B. (2005). Reconstructing the metabolic
network of a bacterium from its genome. Trends Microbiol. 13, 550–558.
doi: 10.1016/j.tim.2005.09.001

Freyre-Gonzalez, J. A., Manjarrez-Casas, A. M., Merino, E., Martinez-Nunez, M.,
Perez-Rueda, E., and Gutierrez-Rios, R. M. (2013). Lessons from the modular
organization of the transcriptional regulatory network of Bacillus subtilis. BMC
Syst. Biol. 7:127. doi: 10.1186/1752-0509-7-127

Goelzer, A., Bekkal Brikci, F., Martin-Verstraete, I., Noirot, P., Bessieres, P.,
Aymerich, S., et al. (2008). Reconstruction and analysis of the genetic and
metabolic regulatory networks of the central metabolism of Bacillus subtilis.
BMC Syst. Biol. 2:20. doi: 10.1186/1752-0509-2-20

Gomez, S. M., Lo, S. H., and Rzhetsky, A. (2001). Probabilistic prediction
of unknown metabolic and signal-transduction networks. Genetics 159,
1291–1298.

Gui, J., Li, X., Zhao, P., Liu, Z., Wang, H., and Zhang, Y. (2012). A transcriptional
regularoty network of Bacillus pumilus predicted by comparative genomics
methods. J. Sichuan Univ. 49, 230–238.

Hao, T., Han, B., Ma, H., Fu, J., Wang, H., Wang, Z., et al. (2013). In silico
metabolic engineering of Bacillus subtilis for improved production of riboflavin,
Egl-237, (R,R)-2,3-butanediol and isobutanol. Mol. Biosyst. 9, 2034–2044.
doi: 10.1039/c3mb25568a

Hao, T., Ma, H., and Zhao, X. (2012). Progress in automatic reconstruction and
analysis tools of genome-scale metabolic network. Chin. J. Biotech. 70:661.

Hasan, S., Bonde, B. K., Buchan, N. S., and Hall, M. D. (2012). Network
analysis has diverse roles in drug discovery. Drug Discov. Today 17, 869–874.
doi: 10.1016/j.drudis.2012.05.006

Herrero, A., Reis-Cardoso, M., Jimenez-Gomez, I., Doherty, C., Agudo-Ibanez, L.,
Pinto, A., et al. (2017). Characterisation of HRas local signal transduction
networks using engineered site-specific exchange factors. Small GTPases 26,
1–13. doi: 10.1080/21541248.2017.1406434

Herrgard, M. J., Lee, B. S., Portnoy, V., and Palsson, B. O. (2006).
Integrated analysis of regulatory and metabolic networks reveals novel
regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635.
doi: 10.1101/gr.4083206

Hoxhaj, G., Hughes-Hallett, J., Timson, R. C., Ilagan, E., Yuan, M., Asara, J. M.,
et al. (2017). The mTORC1 signaling network senses changes in cellular
purine nucleotide levels. Cell Rep. 21, 1331–1346. doi: 10.1016/j.celrep.2017.
10.029

Huang, Y. A., You, Z. H., Chen, X., Huang, Z. A., Zhang, S., and Yan, G. Y. (2017).
Prediction of microbe-disease association from the integration of neighbor
and graph with collaborative recommendation model. J. Transl. Med. 15:209.
doi: 10.1186/s12967-017-1304-7

Huang, Z. A., Chen, X., Zhu, Z., Liu, H., Yan, G. Y., You, Z. H., et al. (2017).
PBHMDA: path-based human microbe-disease association prediction. Front.
Microbiol. 8:233. doi: 10.3389/fmicb.2017.00233

Ignatius Pang, C. N., Goel, A., and Wilkins, M. R. (2018). Investigating the
network basis of negative genetic interactions in Saccharomyces cerevisiae with
integrated biological networks and triplet motif analysis. J. Proteome Res.
doi: 10.1021/acs.jproteome.7b00649 [Epub ahead of print].

Frontiers in Microbiology | www.frontiersin.org 9 February 2018 | Volume 9 | Article 29617

https://doi.org/10.15252/msb.20156236
https://doi.org/10.15252/msb.20156236
https://doi.org/10.1016/j.sbi.2004.05.004
https://doi.org/10.1073/pnas.0505231102
https://doi.org/10.1016/j.tig.2016.08.009
https://doi.org/10.15252/msb.20145108
https://doi.org/10.15252/msb.20145108
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1093/bioinformatics/btx773
https://doi.org/10.1155/2015/328568
https://doi.org/10.1038/nature02456
https://doi.org/10.1038/nature02456
https://doi.org/10.1074/jbc.M201691200
https://doi.org/10.1093/bioinformatics/btn352
https://doi.org/10.1007/s12038-015-9562-0
https://doi.org/10.1007/s12038-015-9562-0
https://doi.org/10.1074/jbc.274.25.17410
https://doi.org/10.3389/fmicb.2016.00275
https://doi.org/10.3389/fmicb.2016.00275
https://doi.org/10.1038/nrmicro1949
https://doi.org/10.1038/nbt1401
https://doi.org/10.1038/s41598-018-19581-x
https://doi.org/10.1038/s41598-018-19581-x
https://doi.org/10.1016/j.chom.2017.12.001
https://doi.org/10.1016/j.tim.2005.09.001
https://doi.org/10.1186/1752-0509-7-127
https://doi.org/10.1186/1752-0509-2-20
https://doi.org/10.1039/c3mb25568a
https://doi.org/10.1016/j.drudis.2012.05.006
https://doi.org/10.1080/21541248.2017.1406434
https://doi.org/10.1101/gr.4083206
https://doi.org/10.1016/j.celrep.2017.10.029
https://doi.org/10.1016/j.celrep.2017.10.029
https://doi.org/10.1186/s12967-017-1304-7
https://doi.org/10.3389/fmicb.2017.00233
https://doi.org/10.1021/acs.jproteome.7b00649
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00296 February 23, 2018 Time: 11:57 # 10

Hao et al. Genome-Scale Integrated Network in Microorganisms

Imam, S., Schauble, S., Brooks, A. N., Baliga, N. S., and Price, N. D. (2015). Data-
driven integration of genome-scale regulatory and metabolic network models.
Front. Microbiol. 6:409. doi: 10.3389/fmicb.2015.00409

Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of
proteins. J. Mol. Biol. 3, 318–356. doi: 10.1016/S0022-2836(61)80072-7

Jiang, J. G., Song, L. F., and Zheng, P. (2012). Construction and structural analysis
of integrated cellular network of Corynebacterium glutamicum. Chin. J. Biotech.
28, 577–591.

Kamps, D., and Dehmelt, L. (2017). Deblurring signal network dynamics. ACS
Chem. Biol. 12, 2231–2239. doi: 10.1021/acschembio.7b00451

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,
et al. (2012). A whole-cell computational model predicts phenotype from
genotype. Cell 150, 389–401. doi: 10.1016/j.cell.2012.05.044

Kashaf, S. S., Angione, C., and Lio, P. (2017). Making life difficult for Clostridium
difficile: augmenting the pathogen’s metabolic model with transcriptomic and
codon usage data for better therapeutic target characterization. BMC Syst. Biol.
11:25. doi: 10.1186/s12918-017-0395-3

Kim, B., Kim, W. J., Kim, D. I., and Lee, S. Y. (2015). Applications of genome-
scale metabolic network model in metabolic engineering. J. Ind. Microbiol.
Biotechnol. 42, 339–348. doi: 10.1007/s10295-014-1554-9

Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662–1664.
doi: 10.1126/science.1069492

Kromer, J. O., Sorgenfrei, O., Klopprogge, K., Heinzle, E., and Wittmann, C.
(2004). In-depth profiling of lysine-producing Corynebacterium glutamicum by
combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol.
186, 1769–1784. doi: 10.1128/JB.186.6.1769-1784.2004

Le Novere, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., et al.
(2009). The systems biology graphical notation. Nat. Biotechnol. 27, 735–741.
doi: 10.1038/nbt.1558

Lee, J. M., Gianchandani, E. P., Eddy, J. A., and Papin, J. A. (2008). Dynamic
analysis of integrated signaling, metabolic, and regulatory networks. PLoS
Comput. Biol. 4:e1000086. doi: 10.1371/journal.pcbi.1000086

Levchenko, A. (2003). Dynamical and integrative cell signaling: challenges for the
new biology. Biotechnol. Bioeng. 84, 773–782. doi: 10.1002/bit.10854

Levering, J., Dupont, C. L., Allen, A. E., Palsson, B. O., and Zengler, K.
(2017). Integrated regulatory and metabolic networks of the marine diatom
Phaeodactylum tricornutum predict the response to rising CO2 levels. mSystems
2:e00142-16. doi: 10.1128/mSystems.00142-16

Liu, W., Li, D., Zhu, Y., and He, C. (2008). Bioinformatics analyses for signal
transduction networks. Sci. China C Life Sci. 11, 994–1002. doi: 10.1007/s11427-
008-0134-5

Ma, H. W., and Zeng, A. P. (2003). The connectivity structure, giant strong
component and centrality of metabolic networks. Bioinformatics 19, 1423–1430.
doi: 10.1093/bioinformatics/btg177

Mahadevan, R., Bond, D. R., Butler, J. E., Esteve-Nunez, A., Coppi, M. V.,
Palsson, B. O., et al. (2006). Characterization of metabolism in the Fe(III)-
reducing organism Geobacter sulfurreducens by constraint-based modeling.
Appl. Environ. Microbiol. 72, 1558–1568. doi: 10.1128/AEM.72.2.1558-1568.
2006

Notebaart, R. A., van Enckevort, F. H., Francke, C., Siezen, R. J., and Teusink, B.
(2006). Accelerating the reconstruction of genome-scale metabolic networks.
BMC Bioinformatics 7:296. doi: 10.1186/1471-2105-7-296

Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., et al. (2011).
A comprehensive genome-scale reconstruction of Escherichia coli metabolism–
2011. Mol. Syst. Biol. 7:535. doi: 10.1038/msb.2011.65

Pal, C., Papp, B., Lercher, M. J., Csermely, P., Oliver, S. G., and Hurst, L. D. (2006).
Chance and necessity in the evolution of minimal metabolic networks. Nature
440, 667–670. doi: 10.1038/nature04568

Papin, J. A., Hunter, T., Palsson, B. O., and Subramaniam, S. (2005). Reconstruction
of cellular signalling networks and analysis of their properties. Nat. Rev. Mol.
Cell Biol. 6, 99–111. doi: 10.1038/nrm1570

Papin, J. A., and Palsson, B. O. (2004). The JAK-STAT signaling network in the
human B-cell: an extreme signaling pathway analysis. Biophys. J. 87, 37–46.
doi: 10.1529/biophysj.103.029884

Piubeli, F., Salvador, M., Argandona, M., Nieto, J. J., Bernal, V., Pastor, J. M.,
et al. (2018). Insights into metabolic osmoadaptation of the ectoines-producer
bacterium Chromohalobacter salexigens through a high-quality genome

scale metabolic model. Microb. Cell Fact. 17:2. doi: 10.1186/s12934-017-0
852-0

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A. L. (2002).
Hierarchical organization of modularity in metabolic networks. Science 297,
1551–1555. doi: 10.1126/science.1073374

Rother, M., Munzner, U., Thieme, S., and Krantz, M. (2013). Information content
and scalability in signal transduction network reconstruction formats. Mol.
Biosyst. 9, 1993–2004. doi: 10.1039/c3mb00005b

Roy, S., Lagree, S., Hou, Z., Thomson, J. A., Stewart, R., and Gasch, A. P. (2013).
Integrated module and gene-specific regulatory inference implicates upstream
signaling networks. PLoS Comput. Biol. 9:e1003252. doi: 10.1371/journal.pcbi.
1003252

Ryll, A., Bucher, J., Bonin, A., Bongard, S., Goncalves, E., Saez-Rodriguez, J., et al.
(2014). A model integration approach linking signalling and gene-regulatory
logic with kinetic metabolic models. Biosystems 124, 26–38. doi: 10.1016/j.
biosystems.2014.07.002

Schilling, C. H., Covert, M. W., Famili, I., Church, G. M., Edwards, J. S.,
and Palsson, B. O. (2002). Genome-scale metabolic model of Helicobacter
pylori 26695. J. Bacteriol. 184, 4582–4593. doi: 10.1128/JB.184.16.4582-4593.
2002

Shlomi, T., Eisenberg, Y., Sharan, R., and Ruppin, E. (2007). A genome-
scale computational study of the interplay between transcriptional
regulation and metabolism. Mol. Syst. Biol. 3:101. doi: 10.1038/msb41
00141

Shlomi, T., Segal, D., Ruppin, E., and Sharan, R. (2006). QPath: a method
for querying pathways in a protein-protein interaction network. BMC
Bioinformatics 7:199. doi: 10.1186/1471-2105-7-199

Sierro, N., Makita, Y., de Hoon, M., and Nakai, K. (2008). DBTBS: a database of
transcriptional regulation in Bacillus subtilis containing upstream intergenic
conservation information. Nucleic Acids Res. 36, D93–D96. doi: 10.1093/nar/
gkm910

Simeonidis, E., Chandrasekaran, S., and Price, N. D. (2013). A guide to integrating
transcriptional regulatory and metabolic networks using PROM (probabilistic
regulation of metabolism). Methods Mol. Biol. 985, 103–112. doi: 10.1007/978-
1-62703-299-5_6

Soh, K. C., and Hatzimanikatis, V. (2010). DREAMS of metabolism. Trends
Biotechnol. 28, 501–508. doi: 10.1016/j.tibtech.2010.07.002

Steinway, S. N., Biggs, M. B., Loughran, T. P. Jr., Papin, J. A., and Albert, R.
(2015). Inference of network dynamics and metabolic interactions in the
gut microbiome. PLoS Comput. Biol. 11:e1004338. doi: 10.1371/journal.pcbi.
1004338

Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E. D. (2002).
Metabolic network structure determines key aspects of functionality and
regulation. Nature 420, 190–193. doi: 10.1038/nature01166

Thiele, I., and Palsson, B. O. (2010). A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121. doi: 10.1038/
nprot.2009.203

Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J.,
et al. (2011). A directed protein interaction network for investigating
intracellular signal transduction. Sci. Signal. 4:rs8. doi: 10.1126/scisignal.20
01699

Wang, E., Lenferink, A., and O’Connor-McCourt, M. (2007). Cancer systems
biology: exploring cancer-associated genes on cellular networks. Cell Mol. Life
Sci. 64, 1752–1762. doi: 10.1007/s00018-007-7054-6

Wang, F., Huang, Z. A., Chen, X., Zhu, Z., Wen, Z., Zhao, J., et al.
(2017). LRLSHMDA: laplacian regularized least squares for human microbe-
disease association prediction. Sci. Rep. 7:7601. doi: 10.1038/s41598-017-08
1298127-2

Wang, H., Ma, H., and Zhao, X. (2010). Progress in genome-scale metabolic
network: a review. Chin. J. Biotech. 26, 1340–1348.

Wang, K., Hu, F., Xu, K., Cheng, H., Jiang, M., Feng, R., et al. (2011).
CASCADE_SCAN: mining signal transduction network from high-throughput
data based on steepest descent method. BMC Bioinformatics 12:164.
doi: 10.1186/1471-2105-12-164

Wang, R., Su, C., Wang, X., Fu, Q., Gao, X., Zhang, C., et al. (2018). Global gene
expression analysis combined with a genomics approach for the identification
of signal transduction networks involved in postnatal mouse myocardial

Frontiers in Microbiology | www.frontiersin.org 10 February 2018 | Volume 9 | Article 29618

https://doi.org/10.3389/fmicb.2015.00409
https://doi.org/10.1016/S0022-2836(61)80072-7
https://doi.org/10.1021/acschembio.7b00451
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1186/s12918-017-0395-3
https://doi.org/10.1007/s10295-014-1554-9
https://doi.org/10.1126/science.1069492
https://doi.org/10.1128/JB.186.6.1769-1784.2004
https://doi.org/10.1038/nbt.1558
https://doi.org/10.1371/journal.pcbi.1000086
https://doi.org/10.1002/bit.10854
https://doi.org/10.1128/mSystems.00142-16
https://doi.org/10.1007/s11427-008-0134-5
https://doi.org/10.1007/s11427-008-0134-5
https://doi.org/10.1093/bioinformatics/btg177
https://doi.org/10.1128/AEM.72.2.1558-1568.2006
https://doi.org/10.1128/AEM.72.2.1558-1568.2006
https://doi.org/10.1186/1471-2105-7-296
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/nature04568
https://doi.org/10.1038/nrm1570
https://doi.org/10.1529/biophysj.103.029884
https://doi.org/10.1186/s12934-017-0852-0
https://doi.org/10.1186/s12934-017-0852-0
https://doi.org/10.1126/science.1073374
https://doi.org/ 10.1039/c3mb00005b
https://doi.org/10.1371/journal.pcbi.1003252
https://doi.org/10.1371/journal.pcbi.1003252
https://doi.org/10.1016/j.biosystems.2014.07.002
https://doi.org/10.1016/j.biosystems.2014.07.002
https://doi.org/10.1128/JB.184.16.4582-4593.2002
https://doi.org/10.1128/JB.184.16.4582-4593.2002
https://doi.org/10.1038/msb4100141
https://doi.org/10.1038/msb4100141
https://doi.org/10.1186/1471-2105-7-199
https://doi.org/10.1093/nar/gkm910
https://doi.org/10.1093/nar/gkm910
https://doi.org/10.1007/978-1-62703-299-5_6
https://doi.org/10.1007/978-1-62703-299-5_6
https://doi.org/10.1016/j.tibtech.2010.07.002
https://doi.org/10.1371/journal.pcbi.1004338
https://doi.org/10.1371/journal.pcbi.1004338
https://doi.org/10.1038/nature01166
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1007/s00018-007-7054-6
https://doi.org/10.1038/s41598-017-08127-2
https://doi.org/10.1038/s41598-017-08127-2
https://doi.org/10.1186/1471-2105-12-164
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00296 February 23, 2018 Time: 11:57 # 11

Hao et al. Genome-Scale Integrated Network in Microorganisms

proliferation and development. Int. J. Mol. Med. 41, 311–321. doi: 10.3892/
ijmm.2017.3234

Wang, Y. C., and Chen, B. S. (2010). Integrated cellular network of transcription
regulations and protein-protein interactions. BMC Syst. Biol. 4:20. doi: 10.1186/
1752-0509-4-20

Wang, Z., Danziger, S. A., Heavner, B. D., Ma, S., Smith, J. J., Li, S., et al. (2017).
Combining inferred regulatory and reconstructed metabolic networks enhances
phenotype prediction in yeast. PLoS Comput. Biol. 13:e1005489. doi: 10.1371/
journal.pcbi.1005489

Wong, D. C. J., and Matus, J. T. (2017). Constructing integrated networks for
identifying new secondary metabolic pathway regulators in grapevine: recent
applications and future opportunities. Front. Plant Sci. 8:505. doi: 10.3389/fpls.
2017.00505

Wu, M., and Ma, H. (2014). The progress of integrated genome-scale cellular
networks. Microbiol. China 41, 367–375.

Xue, W. H., Fan, Z. R., Li, L. F., Lu, J. L., Ma, B. J., Kan, Q. C., et al. (2018).
Construction of an oesophageal cancer-specific ceRNA network based on
miRNA, lncRNA, and mRNA expression data. World J. Gastroenterol. 24,
23–34. doi: 10.3748/wjg.v24.i1.23

Yilmaz, L. S., and Walhout, A. J. (2017). Metabolic network modeling with model
organisms. Curr. Opin. Chem. Biol 36, 32–39. doi: 10.1016/j.cbpa.2016.12.025

Zhang, Y., Tao, Y., Li, Y., Zhao, J., Zhang, L., Zhang, X., et al. (2018).
The regulatory network analysis of long noncoding RNAs in human
colorectal cancer. Funct. Integr. Genomics doi: 10.1007/s10142-017-0
588-2 [Epub ahead of print].

Zheng, Y., Du, S., Xu, H., Xu, Y., Zhao, H., Chi, T., et al. (2014). [Cellular
adhesion signal transduction network of tumor necrosis factor-alpha induced
hepatocellular carcinoma cells]. Zhonghua Yi Xue Za Zhi 94, 3345–3348.

Zhao, J. (2008). Research on Structure,Function and Evolution of Cellur Metabolic
Networks. Master’s thesis, Shanghai Jiaotong University, Shanghai.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Hao, Wu, Zhao, Wang, Wang and Sun. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 11 February 2018 | Volume 9 | Article 29619

https://doi.org/10.3892/ijmm.2017.3234
https://doi.org/10.3892/ijmm.2017.3234
https://doi.org/10.1186/1752-0509-4-20
https://doi.org/10.1186/1752-0509-4-20
https://doi.org/10.1371/journal.pcbi.1005489
https://doi.org/10.1371/journal.pcbi.1005489
https://doi.org/10.3389/fpls.2017.00505
https://doi.org/10.3389/fpls.2017.00505
https://doi.org/10.3748/wjg.v24.i1.23
https://doi.org/10.1016/j.cbpa.2016.12.025
https://doi.org/10.1007/s10142-017-0588-2
https://doi.org/10.1007/s10142-017-0588-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


ORIGINAL RESEARCH
published: 16 March 2018

doi: 10.3389/fmicb.2018.00476

Frontiers in Microbiology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 476

Edited by:

Qi Zhao,

Liaoning University, China

Reviewed by:

Yi Xiong,

Shanghai Jiao Tong University, China

Wei Chen,

North China University of Science and

Technology, China

*Correspondence:

Gwang Lee

glee@ajou.ac.kr

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 07 December 2017

Accepted: 28 February 2018

Published: 16 March 2018

Citation:

Manavalan B, Shin TH and Lee G

(2018) PVP-SVM: Sequence-Based

Prediction of Phage Virion Proteins

Using a Support Vector Machine.

Front. Microbiol. 9:476.

doi: 10.3389/fmicb.2018.00476

PVP-SVM: Sequence-Based
Prediction of Phage Virion Proteins
Using a Support Vector Machine

Balachandran Manavalan 1, Tae H. Shin 1,2 and Gwang Lee 1,2*

1Department of Physiology, Ajou University School of Medicine, Suwon, South Korea, 2 Institute of Molecular Science and

Technology, Ajou University, Suwon, South Korea

Accurately identifying bacteriophage virion proteins from uncharacterized sequences

is important to understand interactions between the phage and its host bacteria in

order to develop new antibacterial drugs. However, identification of such proteins using

experimental techniques is expensive and often time consuming; hence, development

of an efficient computational algorithm for the prediction of phage virion proteins

(PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector

machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136

optimal features. A feature selection protocol was employed to identify the optimal

features from a large set that included amino acid composition, dipeptide composition,

atomic composition, physicochemical properties, and chain-transition-distribution.

PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which

was 6% higher than control SVM predictors trained with all features, indicating

the efficiency of the feature selection method. Furthermore, PVP-SVM displayed

superior performance compared to the currently available method, PVPred, and

two other machine-learning methods developed in this study when objectively

evaluated with an independent dataset. For the convenience of the scientific

community, a user-friendly and publicly accessible web server has been established at

www.thegleelab.org/PVP-SVM/PVP-SVM.html.

Keywords: bacteriophage virion proteins, feature selection, hybrid features, machine learning, support vector

machine

INTRODUCTION

Bacteriophages, also known as phages, are viruses that can infect and replicate in bacteria, and
are found wherever bacteria survive. The phage virion is composed of proteins that encapsulate
either DNA or RNA, which binds to bacterial surface and injects its genetic materials into the
specific host bacteria. In lytic cycle, phage genes are expressed for proteins that poke hole in the cell
membrane, which makes cell expand and burst. Subsequently, released phages from cell bursting
spread and infects other host cells. Identification of phage virion proteins (PVPs) is important for
understanding the relationship between phage and host bacteria and also development of novel
antibacterial drugs or antibiotics (Lekunberri et al., 2017). For instance, phage encoded proteins
including endolysins, exopolysaccharidases, and holins have been proven as promising antibacterial
products (Drulis-Kawa et al., 2012). Experimental methods, including mass spectrometry, sodium
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dodecyl sulfate polyacrylamide gel electrophoresis, and protein
arrays (Lavigne et al., 2009; Yuan and Gao, 2016; Jara-Acevedo
et al., 2018) have been used to identify PVPs. However, these
methods are expensive and often time-consuming. Therefore,
computational methods to predict PVPs prior to in vitro
experimentation are needed. It is difficult to predict the function
of PVPs from sequence information because of relatively limited
experimental data. However, machine-learning (ML) approaches
have been successfully applied to several similar biological
problems. Therefore, it may be possible to predict the functions
of phage proteins using ML.

To this end, Seguritan et al., developed the first method to
classify viral structure proteins using an artificial neural network,
using amino acid composition (AAC) and protein isoelectric
points as input features (Seguritan et al., 2012). Later, Feng et al.,
developed a naïve Bayesian method, with an algorithm utilizing
AAC and dipeptide composition (DPC) as input features (Feng
et al., 2013b). Subsequently, Ding et al., developed a support
vector machine (SVM)-based predictionmodel called PVPred. In
this method, analysis of variance was applied to select important
features from g-gap DPC (Ding et al., 2014). Recently, Zhang
et al., developed a random forest (RF)-based ensemble method
to distinguish PVPs and non-PVPs (Zhang et al., 2015). PVPred
is the only existing publicly available method that was developed
using the same dataset as our method. Although the existing
methods have specific advantages in PVPs prediction, it remains
necessary to improve the accuracy and transferability of the
prediction model.

It is worth mentioning that several sequence-based features
including AAC, atomic composition (ATC), chain-transition-
distribution (CTD), DPC, pseudo amino acid composition
and amino acid pair, and several feature selection techniques
including correlation-based feature selection, ANOVA feature
selection, minimum-redundancy and maximum-relevance, RF-
algorithm based feature selection have been successfully applied
in other protein bioinformatics studies (Wang et al., 2012, 2016;
Lin et al., 2015; Qiu et al., 2016; Tang et al., 2016; Gupta et al.,
2017; Manavalan and Lee, 2017; Manavalan et al., 2017; Song
et al., 2017). All these studies motivated us in the development
of a new model in this study. Hence, we developed a SVM-based
PVP predictor called PVP-SVM, in which the optimal features
were selected using a feature selection protocol that has been
successfully applied to various biological problems (Manavalan
and Lee, 2017). We selected the optimal features from a large
set, including AAC, DPC, CTD, ATC, and PCP. In addition
to SVM (i.e., PVP-SVM), we also developed RF and extremely
randomized tree (ERT)-based methods. The performance of
PVP-SVM was consistent in both the training and independent
datasets, and was superior to the current method and the RF and
ERT methods developed in this study.

MATERIALS AND METHODS

Training Dataset
In this study, we utilized the dataset constructed by Ding et al.,
which was specifically used for studying PVPs (Ding et al., 2014).
We decided to use this dataset for the following reasons: (i)

it is a reliable dataset, constructed based on several filtering
schemes; (ii) it is a non-redundant dataset and none of the
sequences possesses pairwise sequence identity (>40%) with
any other sequence. Hence, this dataset stringently excludes
homologous sequences; and (iii) most importantly, it facilitates
fair comparison between the current method and existing
methods, which were developed using the same training dataset.
Thus, the training dataset can be formulated as:

S = S
+

∪ S
− (1)

where the positive subset S+ contained 99 PVPs, the negative
subset S− contained 208 non-PVPs, and the symbol ∪ denotes
union in the set theory. Thus, S contained 307 samples.

Independent Dataset
We obtained PVP and non-PVP sequences from the Universal
Protein Resource (UniProt) as previously described (Feng
et al., 2013b; Ding et al., 2014; Zhang et al., 2015). To avoid
overestimation in the prediction model, we excluded sequences
that shared greater than 40% sequence identity with sequences
in the training dataset. The final dataset contained 30 PVPs and
64 non-PVPs. We note that our independent dataset included
Ding et al., independent dataset. The above two datasets can be
downloaded from our web server.

Input Features
(i) AAC: The fractions of the 20 naturally occurring amino acid
residues in a given protein sequence were calculated as follows:

AAC (i) =
Frequency of amino acid (i)

Length of the protein sequence
(2)

where i can be any of the 20 natural amino acids.
(ii) ATC: The fraction of five atom types (C, H, N, O, and S)

in a given protein sequence was calculated as previously reported
(Kumar et al., 2015; Manavalan et al., 2017), with a fixed length
of five features.

(iii) CTD: The global composition feature encoding method
CTD comprises properties such as hydrophobicity, polarity,
normalized van der Waals volume, polarizability, predicted
secondary structure, and solvent accessibility. It was first
proposed in protein folding class prediction (Dubchak et al.,
1995). Composition (C) represents the composition percentage
of each group in the peptide sequence. Transition (T) represents
the transition probability between two neighboring amino acids
belonging to two different groups. Distribution (D) represents
the position of amino acids (the first 25, 50, 75, or 100%) in each
group in the protein sequence. For each qualitative property of
a given sequence, C, T, and D produce 3, 3, and 15-dimension
features, respectively. As a result, 7× (3+ 3+ 15)= 147 features
can be generated for seven qualitative properties.

(iv) DPC: The fractions of the 400 possible dipeptides present
in a given protein sequence were calculated as follows:

DPC(j) =
Total number of dipeptide (j)

Total number of all possible dipeptides
(3)
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where j can be any of the 400 possible dipeptides.
(v) PCP: We employed 11 representative PCP attributes of

amino acids for feature extraction (polar, hydrophobic, charged,
aliphatic, aromatic, positively charged, negatively charged, small,
tiny, large, and peptide mass).

Note that all of the above features were in the range of [0, 1] as
input for training and testing.

The Support Vector Machine
We employed a SVM as our classification algorithm, a well-
known supervised ML method introduced in Boser et al. (1992)
that has been applied to several biological problems (Wang
et al., 2009; Eickholt et al., 2011; Deng et al., 2013; Cao et al.,
2014; Manavalan et al., 2015). The objective of a SVM is to
find the hyperplane with the largest margin to decrease the
misclassification rate. Given a set of data points (input features)
and an objective function associated with the data points (PVPs:
1 and non-PVPs: 0), SVM learn a function in the form of

y = sign
(

∑n

i = 1
αi yi K(xi, x) + b

)

(4)

where y is the predicted class associated with an input feature
vector of x; αi is the adjustable weight assigned to the training
data point xi during training by minimizing a quadratic objective
function; b is the bias term; and K is the Kernel function.
Therefore, y can be viewed as a weighted linear combination
of similarities between the training data points xi and the
target data point x. Data points with positive weights in
the training dataset affect the final solution and are called
support vectors. SVM is especially effective when the input
data are not linearly separable. K is required to map the input
data into a higher dimensional space to identify the optimal
separating hyperplane (Scholkopf and Smola, 2001). Therefore,
we experimented with several common Ks, including linear,
Gaussian radial basis, and polynomial functions. The Gaussian

radial basis K (e(−γ × ‖x−y‖2); γ = 1
σ 2 ) performed the best.

Here, two critical parameters (γ and C) required optimization:
γ controls how peaked Gaussians are centered on the support
vectors, while C controls the trade-off between the training
error and the margin size (Smola and Vapnik, 1997; Vapnik and
Vapnik, 1998; Scholkopf and Smola, 2001). These two parameters
were optimized using a grid search from 2−15–210 for C and
2−10–210 for γ, in log2 steps. In this study, we used a SVM
implemented in the scikit-learn package (Pedregosa et al., 2011).

Cross-Validation and Independent Testing
As demonstrated in a series of studies (Feng et al., 2013a,c,
2018; Chen et al., 2014, 2017a,b), among three cross-validation
methods, i.e., independent dataset test, K-fold cross-validation
test and Leave-one-out cross-validation (LOOCV, also called
jackknife cross validation), LOOCV is the most rigorous and
objective evaluation methods. Accordingly, the jackknife test has
been widely recognized and increasingly used to test the quality
for various predictors. In LOOCV, each sample in the training
dataset is in turn singled out as an independent test sample and
all the rule parameters are calculated without including the one
being identified. We performed LOOCV on the training dataset

and the trained model was tested on the independent dataset to
confirm the generality of the developed method.

Performance Evaluation Criteria
The following four metrics are commonly used in literature to
measure the quality of binary classification (Xiong et al., 2012;
Li et al., 2015): sensitivity, specificity, accuracy and Matthews’
correlation coefficient (MCC), which are expressed as































Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

Accuracy = TP + TN
TP + FP + TN + FN

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

where TP is the number of PVPs predicted to be PVPs; TN is
number of non-PVPs predicted to be non-PVP; FP is the number
of non-PVPs predicted to be PVP; and FN is the number of PVPs
predicted to be non-PVP.

To further evaluate the performance of the classifier, we
employed a receiver operating characteristic (ROC) curve. The
ROC curve was plotted with the false positive rate as the x-axis
and true positive rate as the y-axis by varying the thresholds. The
area under the curve (AUC) was used for model evaluation, with
higher AUC values corresponding to better performance of the
classifier.

RESULTS

Framework of the Proposed Predictor
Figure 1 illustrates the overall framework of the PVP-SVM
method. It consisted of four steps: (i) construction of the training
and independent datasets; (ii) extraction of various features from
the primary sequences, including AAC, ATC, CTD, DPC, and
PCP; (iii) generation of 25 different feature sets based on feature
importance scores (FIS) computed using the RF algorithm.
These different sets were inputted to the SVM to develop their
respective prediction models; and (iv) the model producing the
best performance in terms of MCC was considered the final
model, and the corresponding feature set was considered the
optimal feature set.

Feature Selection Protocol
Generally, high dimensional features can contain a higher
degree of irrelevant and redundant information that may greatly
degrade the performance of ML algorithms. Therefore, it is
necessary to apply a feature selection protocol to filter the
redundant features and increase prediction efficiency (Wang
et al., 2012; Zheng et al., 2012; Manavalan et al., 2014;
Manavalan and Lee, 2017; Song et al., 2017). Previously,
Manavalan and Lee applied a systematic feature selection
protocol and developed a novel quality assessment method
called SVMQA (Manavalan and Lee, 2017), which was the
best method in CASP12 blind prediction experiments (Elofsson
et al., 2017; Kryshtafovych et al., 2017). We applied a similar
protocol in our recent studies, including cell-penetrating peptide
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FIGURE 1 | PVP-SVM development consisted of four steps: (i) dataset construction; (ii) feature extraction; (iii) development of the prediction model; and (iv) selection

of the best model and construction of PVP-SVM.

and DNase I hypersensitivity predictions (Manavalan et al.,
2018). Interestingly, this protocol significantly improved the
performance of our method. Therefore, we extended this
approach to the current problem. The current protocol differs
slightly from the published protocol in terms of parameters (ntree
and mtry) used in the RF algorithm, which is mainly due to the
large number of features used in this study (i.e., 26-fold more
features than were used in SVMQA).

In our study, each protein sequence was represented as 583
dimensional vectors, which was higher than the number of
samples. In the first step, we applied the RF algorithm and
estimated the FIS of 583 features (AAC: 20; DPC: 400; ATC:
5; PCP: 11; and CTD: 147) to distinguish PVPs and non-PVPs.
A detailed description of how we computed the FIS scores
of the input features has been reported previously (Manavalan
et al., 2014; Manavalan and Lee, 2017). Briefly, we used all
features as inputs in the RF algorithm and performed ten-
fold cross-validation using the training dataset. For each round
of cross-validation, we built 5,000 trees, and the number of
variables at each node was chosen randomly from 1 to 100.
The average FIS from all the trees are shown in Figure 2A,
where most of the features had similar scores and only ∼5%
(FIS ≥ 0.005) contributed significantly to PVP prediction. In the
second step, we applied a FIS cutoff ≥ 0.001 and selected 477
features as optimal feature candidates (Figure 2B). Subsequently,
we generated 25 different sets of features from the optimal
feature candidates based on an FIS cut-off (0.001 ≤ FIS ≤ 0.004,

with a step size of 0.0011). Basically, we considered each set
of more important features in a step-wise manner. To identify
the optimal feature set, we inputted each set into the SVM
separately and performed LOOCV to evaluate their performance.
The prediction model that produced the best performance (i.e.,
the highest MCC) was considered final, and the corresponding
feature set was considered optimal.

Performance of Various Prediction Models
on the Training Dataset
Figure 3A shows the performances of the SVM model using
different sets of input features, in which the MCC gradually
increased with respect to the different feature sets, peaked with
the F136-based model, and then gradually declined. Figure 3B
shows the classification accuracy vs. parameter variation (C and
γ ) of the final F136-based model. The maximal classification
accuracy was 0.870, when the parameters log2(C) and log2(γ )
were 6.72 and −2.18, respectively, with MCC, sensitivity, and
specificity values of 0.695, 0.737, and 0.933, respectively. The
feature type distribution of the optimal feature set and the total
features employed in this study are shown in Figure 3C. Among
136 optimal features, there were eight AAC features, one ATC
feature, 25 CTD features, 98 DPC features, and four PCP features,
indicating that important properties from all five compositions
contributed to PVP prediction.

To demonstrate the effect of our feature selection
protocol, we compared the F136-based model with the
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FIGURE 2 | (A) The x- and y-axes represent each feature and its feature importance scores (FIS), respectively. We applied a FIS cutoff ≥ 0.001 and selected 477

optimal feature candidates. (B) Distribution of each feature type in the optimal feature candidates and original feature set.

FIGURE 3 | (A) Performance of SVM-based classifiers in distinguishing between PVPs and non-PVPs. A total of 25 classifiers were evaluated using LOOCV, and their

performances in terms of MCC, accuracy, sensitivity, and specificity are shown. The red arrow denotes the final selected model. (B) Classification accuracy of the

F136-based (final selected) model with respect to variations in parameters C and γ . (C) Distribution of each feature type in the optimal feature set (136 features) and

original feature set (583 features).

control SVM (using all features) and also an individual
composition-based prediction model. As shown in Table 1,
F136-based model accuracy, MCC, and area under curve
(AUC) were 15–44, 6–17, and 6–11% higher, respectively,
than the other models. These results demonstrate that the
many redundant or uninformative features present in the
original feature set were eliminated through our feature

selection protocol, resulting in significant performance
improvement.

Comparison of PVP-SVM With Other ML
Algorithms
In addition to PVP-SVM, we also developed RF- and ERT-based
models using the same feature selection protocol and training
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dataset (Figures 4A,B). These two methods have been described
in detail in our previous study (Manavalan et al., 2017, 2018).
The procedure for ML parameter optimization and final model
selection was the same as for PVP-SVM. The performance of
the final selected RF and ERT models was compared with PVP-
SVM, as well as PVPred, which was constructed using the same
training dataset.Table 2 shows that the accuracy, AUC, andMCC
of PVP-SVMwere 2–4, 0.1–2, and 8–9% higher, respectively, than
those achieved by other methods, indicating the superiority of
PVP-SVM.

Method Performance Using an
Independent Dataset

We evaluated the performance of our three ML methods
and PVPred using an independent dataset. Table 3 shows that
PVP-SVM achieved the highest MCC and AUC values (0.531
and 0.844, respectively). Indeed, the corresponding metrics
were 2.2–17.4% and 4.8–10.0% higher than those achieved
by other methods, indicating the superiority of PVP-SVM.
Specifically, PVP-SVM outperformed PVPred in all five metrics,

TABLE 1 | A comparison of the proposed predictor with the individual composition-based SVM model on training dataset.

Methods MCC Accuracy Sensitivity Specificity AUC P-value

PVP-SVM 0.695 0.870 0.737 0.933 0.900

SVM control 0.554 0.811 0.636 0.894 0.837 0.068

AAC 0.525 0.792 0.841 0.687 0.841 0.086

DPC 0.395 0.743 0.837 0.546 0.760 0.00023

CTD 0.534 0.801 0.880 0.636 0.819 0.022

DPC 0.478 0.782 0.889 0.556 0.812 0.014

ATC 0.252 0.708 0.091 1.000 0.788 0.002

The first column represents the method name employed in this study. The second, the third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and specificity.

The sixth column and the seventh represent the AUC and pairwise comparison of ROC area under curves (AUCs) between PVP-SVM and the other methods using a two-tailed t-test.

A P ≤ 0.05 indicates a statistically meaningful difference between PVP-SVM and the selected method (shown in bold italic).

FIGURE 4 | Performance of ERT- and RF-based classifiers in distinguishing between PVPs and non-PVPs. A total of 26 classifiers were evaluated using LOOCV,

whose performances in terms of MCC, accuracy, sensitivity, and specificity are shown. (A) ERT-based performance, (B) RF-based performance. Red arrow denotes

the final selected models for each ML method.
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TABLE 2 | A comparison of the proposed predictor with other ML-based

methods on training dataset.

Methods MCC ACC Sensitivity Specificity AUC P-value

PVP-SVM 0.695 0.870 0.737 0.933 0.900

PVPred NA 0.850 0.758 0.894 0.899 0.974

RF 0.600 0.831 0.657 0.914 0.877 0.476

ERT 0.614 0.837 0.636 0.933 0.883 0.594

The first column represents the method name employed in this study. The second, the

third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and

specificity. The sixth column and the seventh represent the AUC and pairwise comparison

of ROC area under curves (AUCs) between PVP-SVM and the other methods using a

two-tailed t-test.

TABLE 3 | Performance of various methods on independent dataset.

Method MCC ACC Sensitivity Specificity AUC P-value

PVP-SVM 0.531 0.798 0.667 0.859 0.844

ERT 0.509 0.798 0.533 0.922 0.778 0.367

RF 0.481 0.787 0.500 0.922 0.756 0.238

SVM control 0.414 0.755 0.533 0.859 0.796 0.505

PVPred 0.357 0.713 0.600 0.765 0.742 0.176

The first column represents the method name employed in this study. The second, the

third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and

specificity. The sixth column and the seventh represent the AUC and pairwise comparison

of ROC area under curves (AUCs) between PVP-SVM and the other methods using a

two-tailed t-test.

suggesting its usefulness as an improvement to existing tools for
predicting PVPs.

In general, ML-based methods are problem-specific (Zhang
and Tsai, 2005). Instead of selecting a ML method arbitrarily,
it is necessary to explore different ML methods on the same
dataset to select the best one. Hence, we explored three most
commonly used ML methods (SVM, RF, and ERT), each having
its own advantages and disadvantages. The PVP-SVM method
performed consistently better than other two methods both with
the training and independent datasets (Figures 5A,B). Although
the differences in performance between these three methods
were not significant (P > 0.05), SVM was superior to other ML
methods in PVP prediction, consistent with a previous report
(Ding et al., 2014). Hence, we selected PVP-SVM as the final
prediction model.

Comparison of PVP-SVM and PVPred
Methodology
A detailed comparison between our method and the existing
method in terms of methodology is as follows: (i) the PVPred
method utilizes only g-gap dipeptides as input features, and its
optimal features were determined by an analysis of variance-
based feature selection protocol. However, PVP-SVM utilizes
AAC, ATC, CTD, and PCP in addition to DPC, with optimal
features selected based on a RF algorithm; (ii) the number of
optimal features used differs between the two methods; PVP-
SVM uses 136 features, while PVPred uses 160; (iii) although the

same ML method was used for the two methods, the parameter
optimization procedure differed, as PVP-SVM used LOOCV,
while PVPred used five-fold cross-validation.

Web Server Implementation
Several examples of bioinformatics tools/web servers utilized
for protein function predictions have been reported in previous
publications (Govindaraj et al., 2010, 2011; Manavalan et al.,
2010a,b, 2011; Basith et al., 2011, 2013), and are of great practical
use to researchers. To this end, an online prediction server
for PVP-SVM was developed, which is freely accessible at the
following link: www.thegleelab.org/PVP-SVM/PVP-SVM.html.
Users can paste or upload query protein sequences in FASTA
format. After submitting the input protein sequences, the results
can be retrieved in a separate interface. All the curated datasets
used in this study can be downloaded from the web server. PVP-
SVM represents the second publicly available method for PVP
prediction, and delivers a higher level of accuracy than PVPred.

DISCUSSION

PVPs play critical roles in adsorption between phages and
their host bacteria, and are key in the development of new
antibiotics. Phage-derived proteins are considered as safe and
efficient antimicrobial agents due to its versatile properties,
including bacteria-specific lytic mechanism, broad range of
antibacterial spectrum, enhanced tissue penetration by small
size, low immunogenicity, and reduced possibility for bacterial
resistance (Drulis-Kawa et al., 2012). Thus, we have developed
a novel computational method for predicting PVPs, called
PVP-SVM. The molecular functions and biological activities of
proteins can be predicted from their primary sequence (Lee et al.,
2007); hence, we utilized the available PVPs sequences to develop
the method.

A combination of AAC, ATC, DPC, CTD, and PCP features
was used to map the protein sequences onto numeric feature
vectors, which were inputted into the SVM to predict PVPs.
Although AAC, CTD, and DPC features have been used
previously (Feng et al., 2013b; Ding et al., 2014; Zhang et al.,
2015), this is the first report including ATC and PCP. In
ML-based predictions, feature selection is one of the most
important steps because of redundant and non-informative
features. Generally, high dimensional features contain numerous
non-informative and redundant features, which affect prediction
accuracy. Hence, the feature selection protocol is considered one
of the most important steps in ML-based prediction (Wang et al.,
2012; Manavalan et al., 2014; Manavalan and Lee, 2017; Song
et al., 2017). To this end, we applied a feature selection protocol
that has been proven effective in various biological applications
(Manavalan and Lee, 2017; Manavalan et al., 2018), and identified
the optimal features. Of those, the major contribution was from
DPC (∼72%), followed by CTD, AAC, PCP, and ATC, indicating
that information about the fraction of amino acids as well as
their local order might play a major role in predicting PVPs. A
previous study demonstrated that basic amino acids (Lys and
Arg) usually occur in the flanking potential cleavage site in PVPs,
as their side chain flexibility is required to accommodate the
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FIGURE 5 | Receiver operating characteristic curves of the prediction models. (A) LOOCV of the training dataset. (B) Evaluation with an independent dataset. Higher

AUC values indicate better method performance.

change observed in the cleavage site (Coia et al., 1988; Speight
et al., 1988). Interestingly, our optimal features contain these two
important types of residues.

In general, if a prediction model is developed using a training
dataset that contains highly homologous sequences, this method
will overestimate the prediction accuracy. In this regard, Feng
et al., and Ding et al., used a lower homology (<40% sequence
identity) sequence dataset to develop their prediction models
(Feng et al., 2013b; Ding et al., 2014). Zhang et al., developed
their model using a highly homologous sequence dataset (<80%
sequence identity); as a result, this method showed higher
accuracy when evaluated with an independent dataset (Zhang
et al., 2015). Furthermore, PVPred is the only publicly available
method of the three, in the form of a web server, and was
generated using the same dataset as our method. Therefore, we
compared the performance of our method with PVPred only.
Generally, a prediction model tends toward over-optimization in
order to attain higher accuracy. Therefore, it is always necessary
to evaluate the prediction model using an independent dataset,
to measure the generalizability of the method (Chaudhary et al.,
2016; Manavalan and Lee, 2017; Nagpal et al., 2017). Hence,
we evaluated our three prediction models and PVPred on an
independent dataset. Our study demonstrated that PVP-SVM
consistently performed better than PVPred and the two other
methods developed in this study on both datasets, indicating the
greater transferability of the method.

The superior performance of PVP-SVM may be attributed
to two important factors: (i) integration of previously reported
features and inclusion of novel features that collectively
make significant contributions to the performance; and (ii)
a feature selection protocol that eliminates overlapping and
redundant features. Furthermore, our approach is a general
one, which is applicable to many other classification problems
in structural bioinformatics. Although PVP-SVM displayed
superior performance over the other methods, there is room
for further improvements, including increasing the size of the

training dataset based on the experimental data available in
the future, incorporating novel features, and exploring different
ML algorithms including stochastic gradient boosting (Xu et al.,
2017) and deep learning (LeCun et al., 2015).

A user-friendly web interface has been made available,
allowing researchers access to our prediction method.
Indeed, this is the second method to be made publicly
available, with higher accuracy than the existing method.
Compared to experimental approaches, bioinformatics
methods, such as PVP-SVM, represent a powerful and
cost-effective approach for the proteome-wide prediction
of PVPs. Therefore, PVP-SVM might be useful for large-scale
PVP prediction, facilitating hypothesis-driven experimental
design.
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N6-methyladenosine (m6A) plays important roles in a branch of biological and

physiological processes. Accurate identification of m6A sites is especially helpful for

understanding their biological functions. Since the wet-lab techniques are still expensive

and time-consuming, it’s urgent to develop computational methods to identify m6A sites

from primary RNA sequences. Although there are some computational methods for

identifying m6A sites, no methods whatsoever are available for detecting m6A sites in

microbial genomes. In this study, we developed a computational method for identifying

m6A sites in Escherichia coli genome. The accuracies obtained by the proposed method

are >90% in both 10-fold cross-validation test and independent dataset test, indicating

that the proposed method holds the high potential to become a useful tool for the

identification of m6A sites in microbial genomes.

Keywords: N6-methyladenosine, machine learning method, nucleotide physicochemical properties, microbial

genome, pseudo nucleotide composition

INTRODUCTION

At present,∼150 kinds of RNAmodifications have been found in different RNA species (Boccaletto
et al., 2018), which not only enrich the genetic information, but also play critical roles in a
variety of biological processes as mentioned in a recent review (Roundtree et al., 2017). Among
these modifications, the N6-methyladenosine (m6A) is the most abundant posttranscriptional
modification and has been found in the three domains of life. m6A has been found to participate in
various biological activities, such as mRNA splicing (Nilsen, 2014), mRNA translation (Wang et al.,
2015), mRNA maturation (Hoernes et al., 2016), stem cell proliferation (Bertero et al., 2018), and
even a series of diseases (Zhang et al., 2016; Cui et al., 2017; Li et al., 2017).

In order to reveal its biological functions, different kinds of high-throughput sequencing
techniques have been proposed to map the locations of m6A on genome wide (Dominissini et al.,
2013; Linder et al., 2015; Wan et al., 2015; Hong et al., 2018). Although these techniques promoted
the research progress on understanding the biological functions and the identification of RNA
modifications, they are still labor-intensive and cost-ineffective. In addition, the resolution of
detecting m6A sites for most techniques is still not satisfactory. Therefore, it’s necessary to develop
novel methods to detect m6A sites.

Giving the credit to the experimental data yielded by these high-throughput sequencing
techniques as reported in a recent work (Chen X. et al., 2017), some machine learning based
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computational methods have been proposed to identify m6A sites
(Chen et al., 2015a,b, 2016a, 2017b,c; Zhou et al., 2016). Although
these methods are really good complements to experimental
methods for detecting m6A sites, to the best of our knowledge,
so far there is no computational tool available for detecting m6A
sites in microbial genomes.

Stimulated by the successful applications of machine learning
methods in computational genomics and proteomics (Chen et al.,
2012; Feng et al., 2013; Cao et al., 2016, 2017a,b; Hu et al.,
2018), in the present work, we presented a support vector
machine (SVM) based method for identifying m6A sites in
the Escherichia coli (E. coli) genome. By encoding the RNA
sequences using nucleotide chemical property and accumulated
nucleotide frequency, the proposed method obtained promising
performances in 10-fold cross validation test. Moreover, we also
validated the method on the independent dataset and obtained
satisfactory results.

MATERIALS AND METHODS

Benchmark Dataset
The m6A site containing sequences of E. coli genome were
obtained from the RMBase database (Xuan et al., 2018). All the
sequences are 41 bp long with the m6A site in the center. To
overcome redundancy and reduce the homology bias, sequences
with more than 80% sequence similarity were removed by using
the CD-HIT program (Fu et al., 2012). After such a screening
procedure, 2,055 m6A site containing sequences were retained
and regarded as positive samples.

The negative samples (non-m6A site containing sequences)
were obtained by choosing the 41-bp long sequences with
the central adenosine that was not experimentally confirmed
occurring methylation on its 6th nitrogen. By doing so, we
could obtain a large number of negative samples. After removing
sequences with identify >80%, the number of negative samples
are still dramatically larger than that of positive samples. To
balance out the numbers between positive and negative samples
in model training, we randomly picked out the same number of
negative samples and repeated this process 10 times. Therefore,
10 negative subsets were obtained, and each of them includes
2,055 non-m6A site containing sequences. The positive and
negative samples thus obtained are provided in Supplementary
Material.

Sequence Encoding Scheme
Inspired by recent studies (Chen et al., 2016b,c,d, 2017a,d; Feng
et al., 2017), in order to transfer the RNA sequences into discrete
vectors that can be recognized and handled by machine learning
methods, we encoded RNA sequences using nucleotide chemical
properties and accumulated nucleotide frequency. Their brief
descriptions are as following.

The four nucleotides, namely, adenine (A), guanine (G),
cytosine (C), and uracil (U) can be classified into three different
groups according to their physicochemical properties, i.e., ring
structures, secondary structures, and chemical functionality
(Chen et al., 2016b,c,d, 2017a,d; Feng et al., 2017). Therefore,
based on the different physicochemical properties, the four

coordinates (1, 1, 1), (0, 0, 1), (1, 0, 0), and (0, 1, 0) were used
to represent the four bases (A, C, G, and U) of RNA, respectively.

In order to include nucleotide composition surrounding the
modification site as well, the accumulated nucleotide frequency
of any nucleotide nj at position i was also used to represent RNA
sequences and was defined as

di =
1

|Ni|
∑l

j=1
f (nj), f

(

nj
)

=
{

1 if nj = q
0 other cases

(1)

where |Ni| is the length of the sliding substring concerned, l
denotes each of the site locations counted in the substring, qǫ{A,
C, G, U}.

By integrating both nucleotide physicochemical properties
and accumulated nucleotide frequency, an L nt long RNA
sequence could be represented a 4L-dimensional vector (Chen
et al., 2016b,c,d, 2017a,d; Feng et al., 2017).

Support Vector Machine
As an efficient supervised machine learning algorithm, SVM has
been widely used in the realm of bioinformatics (Cao et al., 2014;
Li et al., 2017; Wang et al., 2017b; Zhang et al., 2017). Its basic
idea is to transform the input data into a high dimensional feature
space and then determine the optimal separating hyperplane.

In the current study, the implementation of SVM was
performed by using the LibSVM package 3.18, available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm/. The radial basis kernel
function (RBF) was used to obtain the classification hyperplane.
The grid searchmethod was applied to optimize its regularization
parameter C and kernel parameter γ .

Evaluation Metrics
The performance was evaluated by using the following four
metrics, namely sensitivity (Sn), specificity (Sp), Accuracy (Acc),
and the Mathew’s correlation coefficient (MCC), which can be
expressed as



















Sn = TP
TP+FN × 100%

Sp = TN
TN+FP × 100%

Acc = TP+TN
TP+FN+TN+FP × 100%

MCC = (TP×TN)−(FP×FN)√
(TP+FN)×(TP+FP)×(TN+FN)×(TN+FP)

(2)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

To further evaluate the performance of the current method
more objectively, inspired by recent works (Wang et al., 2017a),
the ROC (receiver operating characteristic) curve was also
plotted. Its vertical coordinate indicates the true positive rate
(sensitivity) and the horizontal coordinate indicates the false
positive rate (1-specificity). The area under the ROC curve
(auROC) is an indicator of the performance quality of a binary
classifier, i.e., the value 0.5 of auROC is equivalent to random
prediction while the value 1 of auROC represents a perfect one.
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TABLE 1 | The 10-fold cross validation predictive results by using different

negative datasets for identifying m6A sites in E. coli.

Dataset Sn (%) Sp (%) Acc (%) MCC

Negative set 1 100.00 98.59 99.29 0.98

Negative set 2 100.00 98.78 99.39 0.98

Negative set 3 100.00 98.44 99.22 0.98

Negative set 4 100.00 98.88 99.44 0.98

Negative set 5 100.00 98.44 99.22 0.98

Negative set 6 100.00 98.49 99.25 0.98

Negative set 7 100.00 98.54 99.27 0.98

Negative set 8 100.00 98.69 99.34 0.98

Negative set 9 100.00 98.49 99.25 0.98

Negative set 10 100.00 98.25 99.12 0.97

Average 100.00 98.56 99.28 0.98

RESULTS AND DISCUSSIONS

Performance for m6A Site Identification
In statistical prediction, independent dataset test, K-fold cross-
validation test and jackknife test are often used to derive the
metric values for a predictor (Chou, 2011). In order to saving
computational time, the 10-fold cross-validation test was used
to examine the performance of the proposed method. In 10-fold
cross-validation test, the samples in the dataset are randomly
partitioned into 10 equal sized sub-datasets. Of the 10 sub-
datasets, a single sub-dataset is retained as the validation data
for testing the model, and the remaining 9 sub-datasets are used
as training data. The process is then repeated 10 times, with
each of the 10 sub-datasets used exactly once as the validation
data.

By encoding RNA sequences using nucleotide chemical
property and accumulated nucleotide frequency, each sample in
the dataset was represented by a (4 × 41) = 164-dimensional
vector and used as the input of SVM. The 10-fold cross-validation
test results for identifying m6A sites in E. coli were listed in
Table 1. In addition, to demonstrate that whether its accuracy
is sensitive to the selection of negative data, the method was
also tested on the other nine negative datasets, respectively.
Their predictive results of the 10-fold cross-validation were also
provided in Table 1.

As indicated in Table 1, we found that the predictive accuracy
is not affected by the selection of negative data. In addition,
the 10 ROC curves obtained based on the 10 different negative
datasets were also plotted in Figure 1. It was found that their
auROCs are all higher than 0.98. These results demonstrate
the reliability and robustness of the model developed in this
study.

Comparison With Other Methods
In order to demonstrate the effectiveness of nucleotide
chemical property and accumulated nucleotide frequency
for identifying m6A sites in E. coli, we compared the
performance of the proposed method with that of the
method based on other commonly used RNA sequence

FIGURE 1 | The ROC curves of 10-fold cross validation test for identifying

m6A sites in E. coli based on different negative datasets. The vertical

coordinate is the true positive rate (Sn) while horizontal coordinate is the false

positive rate (1-Sp).

TABLE 2 | Comparison of different parameters for identifying m6A sites in E. coli.

Parameters Sn (%) Sp (%) Acc (%) MCC

PseKNC 65.74 60.29 63.02 0.26

Secondary structure 67.06 60.73 63.89 0.28

Our method 100.00 98.56 99.28 0.98

features. Chen et al. have proposed the pseudo nucleotide
composition (PseKNC) to represent RNA sequences (Chen
et al., 2014a,b), in which both the local and global sequence
order information w included. Since it has been proposed
in 2014, PseKNC have been used in in many branches
of computational genomics (Guo et al., 2014; Lin et al.,
2014, 2017). Therefore, we employed the SVM to perform
the comparisons between the model based on nucleotide
chemical property and accumulated nucleotide frequency
features and that based on the PseKNC features (Chen et al.,
2015a). The 10-fold cross-validation test results were listed in
Table 2.

As indicated in a recent study (Schwartz et al., 2013), the
m6A modification is also affected by RNA secondary structures.
Therefore, we performed the prediction of m6A sites by using
RNA secondary structure. To this end, all the sequences in
the benchmark dataset were encoded by using their second
structures. The details about the encoding scheme based on
secondary structures can be found in a recent work (Xue et al.,
2005). By doing so, each RNA sequence is converted to a 32
dimensional vector (Xue et al., 2005) and used as the input feature
of SVM. Its 10-fold cross-validation test results were also listed in
Table 2.

As shown in Table 2, the predictive performance of the
method based on nucleotide chemical property and accumulated
nucleotide frequency is dramatically higher than that based on
PseKNC and RNA secondary structure.
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Validation on Independent Dataset
The proposed method trained based on the benchmark dataset
from the E. coli genome was further used to identify the m6A sites
in the P. aeruginosa genome. For this purpose, we firstly collected
the 5,814 experimentally confirmed m6A sites from the RMBase
to form an independent dataset, which is given in Supporting
Information S2. Of the 5,814m6A sites in the P. aeruginosa, 5,809
were correctly identified, indicating that the proposed method
is really quite promising for identifying m6A sites in microbial
genomes.

CONCLUSION

In this study, we present a computational method to identify
m6A sites in the E. coli genome by encoding the RNA sequences
using nucleotide chemical property and accumulated nucleotide
frequency. The results obtained based on the benchmark dataset
and independent dataset demonstrate that the proposed method
is powerful and promising in discovering m6A sites. We hope
that the proposed method will be helpful for the future research
on m6A sites in microbial genomes.

Since user-friendly and publicly accessible web-servers (Feng
et al., 2018)and databases (Liang et al., 2017) represent the
direction of developing new prediction method, we will make
efforts in our future work to provide a web-server for the method
presented in this paper.
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We isolated 65 rhizobial strains from faba bean (Vicia faba L.) from Panxi, China,

studied their plant growth promoting ability with nitrogen free hydroponics, genetic

diversity with clustered analysis of combined ARDRA and IGS-RFLP, and phylogeny

by sequence analyses of 16S rRNA gene, three housekeeping genes and symbiosis

related genes. Eleven strains improved the plant shoot dry mass significantly comparing

to that of not inoculated plants. According to the clustered analysis of combined

ARDRA and IGS-RFLP the isolates were genetically diverse. Forty-one of 65 isolates

represented Rhizobium anhuiense, and the others belonged to R. fabae, Rhizobium

vallis, Rhizobium sophorae, Agrobacterium radiobacter, and four species related to

Rhizobium and Agrobacterium. The isolates carried four and five genotypes of nifH

and nodC, respectively, in six different nifH-nodC combinations. When looking at the

species-nifH-nodC combinations it is noteworthy that all but two of the six R. anhuiense

isolates were different. Our results suggested that faba bean rhizobia in Panxi are diverse

at species, plant growth promoting ability and symbiosis related gene levels.

Keywords: faba bean, rhizobia, genetic diversity, multilocus sequence analysis, symbiosis gene, lateral gene

transfer

INTRODUCTION

Legumes like faba bean (Vicia faba L.) and rhizobial bacteria can form a symbiotic relationship in
which the legume host provides the rhizobia with nutrients and niche while rhizobia provide the
host with fixed atmospheric dinitrogen in the form of ammonia. Owing to symbiosis, legumes can
act as pioneer plants in nitrogen deficient areas and improve soil fertility (Graham and Vance, 2003;
Gentzbittel et al., 2015). Nitrogen fertilization affects the environment; however, applying biological
N fixation (BNF) has some advantages over synthetic N fertilizers. If incorporated into the soil,
legumes do not acidify the soil like ammonium-based fertilizers (Crews and Peoples, 2004). Unlike
the production of synthetic N fertilizers, BNF does not rely on non-renewable energy sources
(Crews and Peoples, 2004).
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In legumes, nitrogen fixation takes place in a specific root
or stem organ called nodule. The formation of plant growth
promoting symbiosis requires that the legume and the rhizobia
are compatible, and that the rhizobia fix nitrogen efficiently.
Inoculating the legume with suitable rhizobia increases growth
when compatible rhizobia are not present or when the compatible
rhizobia are not efficient (Thilakarathna and Raizada, 2017).

Faba bean, a grain legume grown worldwide, is a good
resource of protein, starch, cellulose and minerals. Its high
yield and great adaption to different environments makes faba
bean very popular among farmers, feed and food manufacturers
(Haciseferoǧullar et al., 2003). Moreover, the capacity for
biological nitrogen fixation with rhizobial bacteria makes faba
bean a renewable resource for sustainable agriculture (Köpke and
Nemecek, 2010). Thus, it is common that faba bean is grown as
an intercrop or in rotation with non-legume plants (Song et al.,
2007; Mei et al., 2012). However, in China faba bean frequently

FIGURE 1 | The 25 sampling sites in Panxi. The location of Panxi in China is shown in the inset. The maps were drawn using ArcGIS 10.0 software. Temperature and

precipitation refer to the average annual values.

receive synthetic N fertilizer, resulting in over fertilization (Li
et al., 2016).

Panxi region in Sichuan, southwestern China, is on the
western margin of Yangtze Block, between Tibet Plateau,
Yunnan-Guizhou Plateau and Sichuan basin. Panxi is within
the South-West China mountains biodiversity hotspot (Wu
et al., 2006; www.cepf.net/resources/hotspots/Asia-Pacific/Pages/
Mountains-of-Southwest-China.aspx). Mountains occupy 80%
of the total area of Panxi and the altitude differences in
this area reach 5,600m. Panxi receives plenty of rainfall and
strong solar radiation, and the climate ranges from southern
Asian semitropical climate to northern temperate climate with
xerothermic climate as the main characteristic of the arid-hot
river valley area. Faba bean is one of the main crops in Panxi.
Cultivation relies on seeds produced by farmers themselves. N
fertilizers would be unnecessary if the soils hosted compatible,
plant growth promoting rhizobia.
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The species range of rhizobia nodulating legumes in Panxi
differs from that in other parts of China. For example,
in Panxi Leucaena leucocaphala and Pueraria lobate were
mostly nodulated by Ensifer and Rhizobium strains, respectively,
while in subtropical China L. leucocaphala was nodulated by
Mesorhizobium strains and in other parts of Sichuan P. lobate by
Bradyrhizobium strains (Chen et al., 2004; Wang et al., 2006; Xie
et al., 2009; Xu et al., 2013). Since faba bean rhizobia in Panxi
have not been studied systematically prior to this study, our aim
was to assess if faba bean rhizobia in the area were diverse and
unique. Thus, we isolated rhizobia from faba bean growing in the
special arid-hot environment of Panxi in diverse soil types, and
studied their plant growth promoting ability, genetic diversity
and phylogeny based on molecular methods.

MATERIALS AND METHODS

Isolation of Strains
Local variety faba bean samples were taken in 25 sites in
Panxi, Sichuan, China (Figure 1) to collect root nodules.
Nodules were surface sterilized in 95% ethanol for 3min
and 0.1% HgCl2 for 5min, followed by rinsing six times
in sterile distilled water. The sterilized nodules were crushed
individually and streaked on yeast extract mannitol (YEM)
medium (Vincent, 1970) containing 25mg L−1 congo red at
28◦C. The purified strains were stored on YEM slants at 4◦C
for short term and in 25% glycerol at −80◦C for long term
storage.

Nodulation Assays
The nodulation ability and symbiotic efficiency of the isolates
was tested on the local faba bean (V. faba L.) cultivar Hanyuan
dabaidou. Seeds of faba bean were immersed in 95% ethanol
for 5min, rinsed for 5min with 0.2% mercury bichloride
(HgCl2) and 8 times (10min per time) with sterilized water.
After surface sterilization, the seeds were soaked in sterilized
water overnight to soften the thick and hard seed coat. The
seeds were transferred on 0.5% water-agar for germination.
The seedlings were transplanted in sterile 250ml infusion
bottles containing Jensen’s solution (Vincent, 1970) in all
inoculation assays. The seedlings were inoculated with 1.5ml
of the culture containing ca 109 bacterial cells per milliliter
and grown under a 16 h light and 8 h dark regime at 25◦C
in greenhouse. The assays were done in triplicate with one
seedling per bottle, including the uninoculated controls. After
50 days, the plants were harvested and the numbers of
nodules and the plant shoot dry mass were measured. One-
way analysis of variance with a least significant difference
(LSD) analysis (P = 0.05) was done using Excel 2010
(Microsoft, Redmond, USA) and SPSS 17.0 (SPSS Inc., Chicago,
USA).

PCR-RFLP and CACAI
Total DNA was extracted by GUTC (Guanidinium-Tris-CDTA
buffer with celite) method (Terefework et al., 2001) from
purified bacteria. 16S rDNA and intergenic spacer region
(IGS) of the strains were amplified for restriction fragment

TABLE 1 | PCR primers and reaction procedures applied in this study.

Gene Primers Reaction procedure References

16S rDNA P1:5′-AGAGTTTGATCCTGGCTCAGAACGAACGCT-3′;
P6: 5′- TACGGCTACCTTGTTACGACTTCACCCC-3′

92◦C for 3min, 30 cycles of 94◦C for 1min,

58◦C for 1min, 72◦C for 2min, final extension

for 72◦C 8min

Tan et al., 1997

IGS pHr (F):5′-TGCGGCTGGATCACCTCCTT-3′;
p23SR01(R):5′-GGCTGC TTCTAAGCCAAC-3′

92◦C for 3min, 30 cycles of 94◦C for 1min,

60◦C for 1min, 72◦C for 2min, final extension

for 72◦C 8min

Navarro et al., 1992; Massol-Deya et al., 1995

atpD atpD255F: 5′-GCTSGGCCGCATCMTSAACGTC-3′;
atpD782R: 5′-GCCGACACTTCMGAACCNGCCTG-3′

95◦C for 2min; 30 cycles of 94◦C for 45 s,

59◦C for 1min, 72◦C for 1.5min; final

extension 72◦C for 10min

Vinuesa et al., 2005

glnII glnII12F:YAAGCTCGAGTACATYTGGCT;

glnII689R: TGCATGCCSGAGCCGTTCCA

95◦C for 5min; 30 cycles of 94◦C for 1min,

58◦C for 1min, 72◦C for 1min; final extension

72◦C for 10min

Vinuesa et al., 2005

recA recA 41F: 5′-TTCGGCAAGGGMTCGRTSATG-3′;
recA 640R: 5′-ACATSACRCCGATCTTCATGC-3′

95◦C for 5min; 30 cycles of 94◦C for 1min,

58◦C for 1min, 72◦C for 1min; final extension

72◦C for 10min

Vinuesa et al., 2005

nifH nifHctg:5′-CTCATCGTCGGCTGTGACCC-3′;
nifHI: 5′-AGCATGTCYTCSAGYTCNTCCA-3′

95◦C for 3min; 40 cycles of 94◦C for 1min,

59◦C for 1min, 72◦C for 1min; final extension

72◦C for 5min

Laguerre et al., 2001; Gurkanli et al., 2014

nifH1F:5′-GTCTCCTATGACGTGCTCGG-3′;
nifH1R:5′-GCTTCCATGGTGATCGGGGT-3′

94◦C for 3min; 30 cycles of 94◦C for 30 s,

58◦C for 30 s, 72◦C for 1min; final extension

72◦C for 5min

Rivas et al., 2002

nodC nodC540: 5′-TGATYGAYATGGARTAYTGGYT-3′;
nodC1160: 5′-CGYGACAGCCANTCKCTATTG-3′

95◦C for 5min; 30 cycles of 94◦C for 1min,

55◦C for 1min, 72◦C for 1min; final extension

72◦C for 10min

Sarita et al., 2005

nofCf: 5′-GCTGCCTATGCAGACGATG-3′;
nodCr: 5′-GGTTACTGGCTTTCATTTGGC-3

′
94◦C for 5min; 30 cycles of 94◦C for 1min,

55◦C for 1min, 72◦C for 3min; final extension

72◦C for 7min

Moschetti et al., 2005
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TABLE 2 | Rhizobial isolates from faba bean in Panxi, their genetic and symbiotic characteristics and phylogenetic affiliation.

Isolatea Sampling siteb 16S rDNA

RFLP

genotypec

IGS

RFLP

genotypec

CACAI

genotype

CACAI

groupd
MLSAe Plant shoot dry mass

(g plant−1)f
No. of nodules

per plant

SCAUf129 21 a 1 1 A 1.593 ± 0.340↑* 34.3

SCAUf141 17 a 17 5 A 1.523 ± 0.020↑* 41.7

SCAUf142 4 a 1 1 A 1.457 ± 0.247↑* 93.0

SCAUf110 11 a 21 9 B 1.397 ± 0.301↑* 18.7

SCAUf126 12 a 1 1 A 1.377 ± 0.074↑* 25.0

SCAUf118 7 a 1 1 A 1.375 ± 0.025↑* 62.0

SCAUf114 12 a 1 1 A 1.327 ± 0.186↑* 40.3

SCAUf122 14 a 1 1 A 1.287 ± 0.156↑* 39.7

SCAUf123 9 g 22 24 C 1.283 ± 0.063↑* 43.3

SCAUf113 22 a 1 1 A 1.280 ± 0.265↑* 94.3

SCAUf148 16 h 20 25 D 1.267 ± 0.201↑* 52.0

SCAUf131 25 a 1 1 A R. anhuiense CCBAU

23252T (98.5%)

1.215 ± 0.365 98.5

SCAUf125 18 a 23 10 E 1.135 ± 0.095 61.5

SCAUf136 9 a 1 1 A 1.130 ± 0.160 58.7

SCAUf111 21 a 1 1 A 1.127 ± 0.109 72.3

SCAUf133 11 a 19 7 B R. sophorae CCBAU

03386T (96.6 %)

1.120 ± 0.210 17.0

SCAUf102 2 a 1 1 A 1.097 ± 0.138 28.3

SCAUf106 1 a 5 13 F R. vallis CCBAU

65647T (93.0%)

1.095 ± 0.088 48.0

SCAUf109 1 a 4 12 G R. vallis CCBAU

65647T (93.0%)

1.094 ± 0.087 46.7

SCAUf139 4 a 1 1 A 1.087 ± 0.121 40.3

SCAUf150 16 h 20 25 D A. radiobacter NCPPB

2437T (97.3%)

1.080 ± 0.131 4.0

SCAUf121 23 a 18 6 A 1.050 ± 0.044 44.7

SCAUf134 15 a 19 7 B 1.017 ± 0.153 27.0

SCAUf115 7 a 1 1 A 0.950 ± 0.410 22.5

SCAUf87 19 c 8 19 H A. radiobacter NCPPB

2437T (97.3%)

0.934 ± 0.146 23.0

SCAUf137 23 a 18 6 A 0.933 ± 0.206 35.0

SCAUf101 2 a 1 1 A 0.930 ± 0.021 27.7

SCAUf143 15 a 19 7 B 0.923 ± 0.228 22.5

SCAUf147 15 a 19 7 B 0.893 ± 0.173 22.0

SCAUf146 12 a 1 1 A 0.870 ± 0.150 4.5

SCAUf99 20 a 6 14 E R. sophorae CCBAU

03386T (96.6 %)

0.864 ± 0.041 59.7

SCAUf92 1 a 2 8 A 0.856 ± 0.099 23.7

SCAUf132 21 a 1 1 A 0.833 ± 0.231 16.7

SCAUf103 19 f 15 22 I 0.820 ± 0.066 68.0

SCAUf107 13 a 12 4 J 0.815 ± 0.066 3.0

SCAUf149 11 i 25 26 K A. radiobacter NCPPB

2437T (97.3%)

0.805 ± 0.155 35.0

CK – – – 0.801±0.139 0.0

SCAUf95 5 a 1 1 A 0.790 ± 0.169 20.0

SCAUf120 17 a 17 5 A 0.790 ± 0.030 25.0

SCAUf90 10 a 11 3 B R. sophorae CCBAU

03386T (96.6 %)

0.785 ± 0.051 60.3

SCAUf94 8 a 9 16 L R. vallis CCBAU

65647T (93.0%)

0.780 ± 0.060 18.7

(Continued)
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TABLE 2 | Continued

Isolatea Sampling siteb 16S rDNA

RFLP

genotypec

IGS

RFLP

genotypec

CACAI

genotype

CACAI

groupd
MLSAe Plant shoot dry mass

(g plant−1)f
No. of nodules

per plant

SCAUf86 13 b 12 17 J R. sophorae CCBAU

03386T (99.3 %)

0.770 ± 0.121 12.7

SCAUf124 14 a 1 1 A 0.753 ± 0.067 36.0

SCAUf138 14 a 1 1 A 0.750 ± 0.057 38.0

SCAUf145 18 a 17 5 A 0.750 ± 0.110 35.5

SCAUf140 17 a 18 6 A R. anhuiense CCBAU

23252T (98.9%)

0.743 ± 0.170 23.0

SCAUf117 22 a 1 1 A 0.737 ± 0.177 71.7

SCAUf127 22 a 1 1 A R. anhuiense CCBAU

23252T (98.9%)

0.733 ± 0.065 41.3

SCAUf128 9 a 1 1 A 0.707 ± 0.188 13.3

SCAUf100 10 e 13 21 M R. vallis CCBAU

65647T (99.0%)

0.689 ± 0.034 11.0

SCAUf104 24 f 16 23 I R. anhuiense CCBAU

23252T (99.2%)

0.680 ± 0.082 15.0

SCAUf89 20 a 10 2 B 0.680 ± 0.060 21.3

SCAUf119 4 a 1 1 A 0.667 ± 0.188 20.0

SCAUf135 4 a 1 1 A 0.663 ± 0.114 16.7

SCAUf105 3 a 3 11 A R. anhuiense CCBAU

23252T (99.3%)

0.660 ± 0.020 5.0

SCAUf108 3 a 7 15 A 0.650 ± 0.031 6.3

SCAUf116 25 a 1 1 A 0.647 ± 0.189 47.0

SCAUf112 21 a 1 1 A 0.647 ± 0.099 11.7

SCAUf96 5 a 1 1 A 0.643 ± 0.070 21.3

SCAUf88 19 a 2 8 A 0.632 ± 0.073 15.0

SCAUf144 4 b 24 18 C R. fabae CCBAU

33202T (99.9 %)

0.605 ± 0.090 24.0

SCAUf97 19 a 1 1 A 0.573 ± 0.032 31.0

SCAUf91 6 a 2 8 A R. anhuiense CCBAU

23252T (99.8%)

0.533 ± 0.087 13.0

SCAUf130 23 a 18 6 A 0.532± 0.086 23.0

SCAUf93 19 d 14 20 N A. radiobacter NCPPB

2437T (97.3%)

0.532± 0.069 0

SCAUf98 19 a 1 1 A 0.517± 0.059 0

aCK: uninoculated treatment in the symbiotic efficiency test. Representative isolates for sequencing in bold.
bSampling sites are the same as Figure 1.
cGenotype: the combination of the restriction patterns obtained by enzymes MspI, HaeIII, TaqI, and HinfI.
dCACAI: clustered analysis of combined ARDRA and IGS-RFLP, Groups were defined at 94.5% similarity level.
eMLSA, multilocus sequence analysis of combined recA, atpD, and glnII. The percentages are sequence similarities to the closely related species or the closest type strain. TType strain.
f↑*Significantly higher shoot dry mass than that in CK treatment according to the LSD test (P = 0.05). Data presented as mean value ± standard deviation (n = 3, except n = 2 for

SCAUf93 and SCAUf98).

length polymorphism analysis. Primer pairs P1, P6 and pHr(F),
p23SR01(R) (Table 1) were used for polymerase chain reaction
(PCR) amplification. Amplification products (5µl) were digested
separately by four restriction enzymes HinfI, TaqI, MspI, and
HaeIII following the manufacturer’s instructions (Fermentas,
EU). The fragments were separated by gel electrophoreses in
2% agarose with 0.5 µg ml−1 ethidium bromide at 80V for
3 h and photographed. Amplified ribosomal DNA restriction
analysis (ARDRA) and IGS-RFLP were done by combining
the results from the four restrictions. Clustered analysis of
combined ARDRA and IGS-RFLP (CACAI) was conducted by

UPGM clustering algorithm in the NTSYS program (Rohlf,
1990).

Sequencing of Housekeeping and
Symbiotic Genes
According to the results of CACAI, representative strains were
selected for sequencing of housekeeping and symbiotic genes.
To facilitate the comparison of faba bean nodulating diversity
in Panxi and other parts of Sichuan, we applied the same
methods as in our earlier study on rhizobia from Sichuan hilly
areas (Xu et al., 2015). 16S rDNA was amplified as described
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TABLE 3 | The nodC and nifH types in the representative strains isolated from

faba bean.

Representative strain nodCa nifHa

R. anhuiense SCAUf104 R. fabae HRsp1

R. anhuiense SCAUf127 R. fabae HRsp1

R. fabae SCAUf144 R. fabae HRsp1

R. sophorae SCAUf86 R. fabae HRsp2

R. anhuiense SCAUf131 R. fabae HRsp2

R. anhuiense SCAUf140 R. laguerreae HRsp1

R. anhuiense SCAUf105 CRla1 HRsp2

R. vallis SCAUf100 CRsp1 HRsp3

R. anhuiense SCAUf91 CRsp2 HRsp4

Rhizobium sp.I f99 CRsp2 HRsp4

Rhizobium sp.I SCAUf90 CRsp2 HRsp4

Rhizobium sp.I SCAUf133 CRsp2 HRsp4

Rhizobium sp.II SCAUf94 CRsp2 HRsp4

Rhizobium sp.II SCAUf106 CRsp2 HRsp4

Rhizobium sp.II SCAUf109 CRsp2 HRsp4

aClosest type strain or clade.

above. Three housekeeping genes atpD, glnII, and recA and two
symbiotic genes nifH and nodC were amplified as described
in Table 1. The PCR products were sequenced directly at BGI
Tech (Shenzhen, China). Sequences have been deposited to
NCBI (National Center for Biotechnology Information research
database) nucleotide database under the accession numbers of
KU947312-KU947400.

The sequences of the housekeeping and symbiotic genes
were compared with sequences in NCBI, and the 16S rDNA
sequences were compared with sequences in EzTaxon (http://
www.ezbiocloud.net/) using BLASTN. Phylogenetic analyses of
sequences from our isolates and reference sequences from
databases were done using a Neighbor-Joining method in MEGA
6.0 (Tamura et al., 2013) with 1,000 bootstrapped replicates.
Genospecies were defined by multilocus sequence analysis
(MLSA) using concatenated sequence of three housekeeping
genes applying 97% average nucleotide identity as the threshold
(Cao et al., 2014).

RESULTS

Nodulation, Plant Growth Promoting
Ability, and Genetic Diversity of Faba Bean
Isolates
We isolated 65 strains from root nodules of faba bean growing in
Panxi, China (Table 2). All but two of the strains formed nodules
on the roots of faba bean with the average nodule numbers
ranging from 3.0 to 98.5 per plant. No nodules were detected on
the roots of the uninoculated plants (Table 2). The plant growth
promoting ability of the isolates was assessed by measuring the
dry masses of the inoculated plants. The eleven strains that
significantly increased the plant shoot dry mass (p < 0.05) were
considered as potential inoculant strains (Table 3).

FIGURE 2 | Neighbor-joining tree based on 16S rDNA (1,336 nt) presenting

the phylogenetic relationship among the representative strains isolated from

faba bean (in bold) and reference strains. Bootstrap values ≥50% are shown

on the branches. Genbank accession numbers are in parentheses. Scale bar

= 1% substitutions per site. R, Rhizobium; A, Agrobacterium.

Amplification of the 16S rDNA gene resulted in an
approximately 1,500 bp band from all the isolates. In the
16S rDNA PCR-RFLP, nine fragment pattern types (a-i) were
observed: type a included 54 strains, types b, f, and h included
two strains each, and types c, d, e, g, and i included one strain
each (Table 2).

For the majority of strains, IGS PCR resulted in a single band
ranging from 1,900 to 2,200 bp, whereas for strains SCAUf90 and
SCAUf99 IGS PCR resulted in two and three bands, respectively
(Table 2). The strains were divided to 25 IGS-RFLP types.
In the combined analysis of 16S rDNA RFLP and IGS-RFLP
(CACAI) the strains were divided into 14 CACAI groups at
94.5% similarity level and 26 CACAI genotypes (Table 2). CACAI
group A was the largest group including 40 isolates with CACAI
genotypes 1, 5, 6, 8, and 15. Seven of the plant growth promoting
strains represented genotype 1, and the other four were assigned
to genotypes 5, 9, 24, and 25.

16S rDNA Phylogeny
Based on CACAI groups as well as considering the sites
of isolation of the strains, 19 representative strains were
selected for sequencing. In the 16S rDNA phylogenetic tree
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FIGURE 3 | Neighbor-joining tree based on multilocus sequence analysis

using concatenated sequence of atpD (395 nt), glnII (483 nt), and recA (344 nt)

genes presenting the phylogenetic relationship among the representative

strains isolated from faba bean (in bold) and reference strains. Bootstrap

values ≥50% are shown on the branches. Genbank accession numbers are in

parentheses. Scale bar = 1% substitutions per site. R, Rhizobium, A,

Agrobacterium.

(Figure 2), the strains clustered into six distinct clades with
the reference strains. Four clades were related to Rhizobium
(R group) and two to Agrobacterium (A group). Four strains
clustered with Agrobacterium radiobacter type strain with 98.3–
99.8% similarities. SCAUf144 clustered with R. fabae with
100% similarity, SCAUf100 clustered with R. vallis with 98.6%
similarity, and SCAUf86, SCAUf90, SCAUf94, SCAUf99, and
SCAUf133 clustered with Rhizobium sophorae into clade R2
with 97.9–99.9% similarities. The other eight strains clustered
into a distinct clade with R. gallicum, Rhizobium anhuiense,
R. laguerreae, and Rhizobium leguminosarum with similarities
ranging from 99.8 to 100%.

Multilocus Sequence Analysis
In the multilocus sequence analysis (MLSA) based on
housekeeping genes atpD, glnII and recA, the 19 representative
strains clustered into nine distinct clades related to Rhizobium
and Agrobacterium species (Figure 3). SCAUf86 was 99.3%
similar to R. sophorae CCBAU 03386T, thus assigned as
R. sophorae. SCAUf90, SCAUf99 and SCAUf133 clustered
separately and were assigned as Rhizobium sp. I, as did SCAUf94,
SCAUf106 and SCAUf109 that were assigned as Rhizobium sp.
II. SCAUf91, SCAUf104, SCAUf105, SCAUf127, SCAUf131, and
SCAUf140 were 98.5–99.8% similar to R. anhuiense type strain,
thus assigned as R. anhuiense strains. SCAUf144 and SCAUf100
clustered with R. fabae CCBAU 33202T and R. vallis CCBAU
65647T, respectively, thus assigned as R. fabae and R. vallis,
respectively. As in 16S rDNA analysis, four strains clustered

FIGURE 4 | Neighbor-joining tree based on nifH (329 nt) gene of 17

representative strains isolated from faba bean (in bold) and reference strains.

Genbank accession numbers are in parentheses. Bootstrap values ≥50% are

shown on the branches. Scale bar = 2% substitutions per site. R, Rhizobium.

with Agrobacterium in the MLSA. Because no glnII sequences
of the relevant Agrobacterium type strains except A. radiobacter
type strain were available in the GenBank sequence database,
the relationships between Agrobacterium strains were studied
based on non-type strains (Supplementary Figure S1). SCAUf87
clustered separately, and was assigned as Agrobacterium sp. I.
SCAUf93 and SCAUf150 clustered separately and were assigned
as Agrobacterium sp. II. SCAUf149 was 97.3% similar to A.
radiobacter NCPPB 2437T with, thus assigned as A. radiobacter.

Diversity of Symbiosis Genes
For both nifH and nodC amplification was not successful with
one primer pair only, possibly due to differences in primer
binding sites. Approximately 700 bp fragments were obtained
using primer pair nifHctg/nifHI (13 representative strains), and
400 bp products using primer pair nifH1F/ nifH1R (SCAUf87,
SCAUf105, SCAUf133, SCAUf140). Amplification of nifH from
SCAUf149 and SCAUf150 was not successful. Seventeen strains
clustered into four clades in the nifH phylogenetic tree (Figure 4,
Table 3). The nifH of Agrobacterium sp. II SCAUf93 and R.
anhuiense SCAUf104 were 99.7 and 99.6%, respectively, similar
to that of R. anhuiense CCBAU 23252T. The nifH of R. anhuiense
SCAUf127 and R. fabae SCAUf144 were 100% similar to that
of R. fabae type strain. The nifH of R. sophorae SCAUf86, R.
anhuiense SCAUf105 and SCAUf131 clustered with that of R.
leguminosarum USDA 2370T with 98.4% similarity. R. vallis
SCAUf100 clustered with R. leguminosarum CCBAU 43200 with
100% similarity. The strains R. anhuiense SCAUf91, Rhizobium
sp. I SCAUf90, Rhizobium sp. II SCAUf94, SCAUf106 and
SCAUf109 carried nifH 100% similar to that of R. leguminosarum
CCBAU 71124.
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Nearly 600 bp nodC fragments were amplified from thirteen
representative strains using primer pair nodC540/nodC1160.
Amplification from strains SCAUf105 and SCAUf140 was
successful only while using R. leguminosarum sv. viciae nodC
specific primer pair nodCf/nodCr. Amplification of nodC from

FIGURE 5 | Neighbor-joining tree based on nodC gene of 13 representative

strains (499 nt) (A) and 2 representative strains (230 nt) (B) isolated from faba

bean (in bold) and reference strains. Genbank accession numbers are in

parentheses. Bootstrap values ≥50% are shown on the branches. Scale bar

= 5% substitutions per site. R, Rhizobium.

strains assigned as Agrobacterium was not successful. Fifteen
strains clustered into five clades in the nodC phylogenetic
tree (Figure 5, Table 3). The nodC of R. anhuiense SCAUf131,
SCAUf127, and SCAUf104, R. fabae SCAUf144 and R. sophorae
SCAUf86 were 100% similar to that of R. fabae type strain
(Figure 5A). Similarly to the nifH analysis, the nodC of R. vallis
SCAUf100 clustered with nodC from non-type strains. Seven
strains carried nodC 100% similar to that of R. leguminosarum
non-type strain. The nodC of R. anhuiense SCAUf140 and
SCAUf105 (Figure 5B) were 100 and 97.2% similar to that of R.
laguerreae.

DISCUSSION

Due to overcutting and mining Panxi in Southwestern China has
suffered serious soil degradation and heavy metal contamination
(Xu et al., 2013; Yu et al., 2014). Reclaiming the soils requires
sustainable and efficient yet low economic input methods, for
example utilization of biological nitrogen fixation (BNF) by
legume-rhizobium symbiosis instead of relatively cheap nitrogen
fertilizer. To facilitate the utilization of BNF we tested the plant
growth promoting ability of rhizobial isolates from faba bean in
search of locally adapted, potential inoculant strains. In Ethiopia,
chickpea nodulating rhizobia showed big differences in efficiency
and nodule numbers, and strains with similar efficiencies did not
necessarily induce similar numbers of nodules and vice versa
(Tena et al., 2017). Similarly, in our study variations in plant
growth promoting ability and nodule numbers were large, and
only 11 strains increased faba bean shoot dry mass significantly.
Similar to Leucaena leucocephala isolates from Panxi (Xu et al.,
2013), for many of the strains inoculation resulted in dry mass
lower than that in uninoculated plants, highlighting the need to
apply selected inocula to promote BNF.

The diversity and identity of the strains were assessed using
molecular methods. Faba bean is nodulated by R. fabae, R.
leguminosarum, R. anhuiense, R. laguerraeae and A. radiobacter
strains, and the dominant species is different in different regions
(Tian et al., 2007, 2008; Youseif et al., 2014; Xu et al., 2015;
Zhang et al., 2015; Xiong et al., 2017). In our study, the isolated

TABLE 4 | Rhizobial species, nodD and nodC diversity in subtropical China.

Province Climate Species nodD types nodC types Dominant species References

Yunnan Subtropical highland, humid subtropical 5a 3c nd R. laguerraeae Xiong et al., 2017

Yunnan Subtropical highland, humid subtropical 1b 4d 1d R. leguminosarum Tian et al., 2007

Anhui, Jiangxi, Henan, Zhejiang Humid subtropical 3a 5c nd R. anhuiense Xiong et al., 2017

Anhui, Jiangxi Humid subtropical 2b 3d 1d R. leguminosarum Tian et al., 2007

Sichuan Humid subtropical 5b nd 3e R. leguminosarum Xu et al., 2015

Panxi See Introduction 6b nd 5e R. anhuiense This study

Nd, not determined.
aDetermined by amplicon sequencing targeting rpoB.
bDetermined by multilocus sequence analysis.
cDetermined by amplicon sequencing targeting nodD.
dDetermined by RFLP.
eDetermined by Sanger sequencing nodC.
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strains were related to genera Rhizobium andAgrobacterium. The
Rhizobium strains were assigned as representing R. anhuiense, R.
fabae, R. sophorae, and R. vallis, and two putative new species
in the genus Rhizobium. Similar to subtropical provinces in
East China (Xiong et al., 2017), R. anhuiense was the dominant
species among the faba bean nodulating rhizobia in Panxi. To
our knowledge, R. sophorae, a symbiont of medicinal legume
Sophora flavescens (Jiao et al., 2015) and R. vallis, a symbiont
of Phaseolus vulgaris (Wang et al., 2011), have not earlier been
shown to nodulate faba bean.

The rhizobia-legume symbiosis benefits sustainable
agriculture due to the symbiotic nitrogen fixation capacity
that needs two key points: nodule infection and nitrogen
fixation, both of which need the regulation of symbiosis related
genes (Masson-Boivin et al., 2009). In the present study, nifH
gene that is the structural gene encoding the nitrogenase Fe
protein (Masson-Boivin et al., 2009), and nodC that is the
gene encoding enzymes involved in the synthesis of the core
structure of the Nod-factor (Geremia et al., 1994) were selected
for sequencing to analyze the symbiotic phylogeny of the
faba bean rhizobia in Panxi region. The symbiotic genes are
commonly located on a symbiotic plasmid or island which may
be transferred (Laranjo et al., 2012; Bakhoum et al., 2014). Faba
bean nodulating R. leguminosarum strains that carried four
different types of nodulation gene nodD had all similar nodC
(Table 4) (Tian et al., 2007). The five types of nodC detected in
this study suggest higher diversity at symbiosis related gene level.
However, considering the six different nifH-nodC combinations
in our study, the faba bean isolates from Yunnan (Tian et al.,
2007) and Panxi were approximately equally diverse.

TheDesmodium nodulating rhizobium strains in Panxi region
were quite different from those in other places such as temperate
and subtropical region of China and Central and North America,
possibly due to the special environmental conditions (Xu et al.,
2016). The faba bean rhizobia in this area were approximately
as diverse as in Sichuan hilly areas and in Yunnan (Table 4)
(Xu et al., 2015; Xiong et al., 2017), yet more diverse than in
other parts of subtropical China (Tian et al., 2007; Xiong et al.,
2017). When looking at the species-nifH-nodC combinations it
is noteworthy that all but two of the six R. anhuiense isolates

were different. The symbiosis and nitrogen fixation related
genes of rhizobia can be transferred laterally (Sullivan et al.,
1995). However, whether the increase in diversity in Panxi was
caused by lateral transfer cannot be concluded based on our
data.

In conclusion, eleven out of 65 faba bean strains in Panxi
area could significantly promote plant growth, and were thus
considered as potential inoculants. The nodule isolates in this
area were diverse belonging to nine species. R. anhuiense, the
dominant faba bean nodulating species in this area, was diverse
both at plant growth promoting ability and symbiosis related
gene levels.
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In recent years, the first-line anti-diabetic drug metformin has been shown to be also
useful for the treatment of other diseases like cancer. To date, few reports were about
the impact of metformin on gut microbiota. To fully understand the mechanism of
action of metformin in treating diseases other than diabetes, it is especially important
to investigate the impact of long-term metformin treatment on the gut microbiome in
non-diabetic status. In this study, we treated healthy mice with metformin for 30 days,
and observed 46 significantly changed gut microbes by using the 16S rRNA-based
microbiome profiling technique. We found that microbes from the Verrucomicrobiaceae
and Prevotellaceae classes were enriched, while those from Lachnospiraceae and
Rhodobacteraceae were depleted. We further compared the altered microbiome
profile with the profiles under various disease conditions using our recently developed
comparative microbiome tool known as MicroPattern. Interestingly, the treatment of
diabetes patients with metformin positively correlates with colon cancer and type
1 diabetes, indicating a confounding effect on the gut microbiome in patients with
diabetes. However, the treatment of healthy mice with metformin exhibits a negative
correlation with multiple inflammatory diseases, indicating a protective anti-inflammatory
role of metformin in non-diabetes status. This result underscores the potential effect of
metformin on gut microbiome homeostasis, which may contribute to the treatment of
non-diabetic diseases.

Keywords: metformin, gut microbiome, diabetes, 16S rRNA sequencing, MicroPattern

INTRODUCTION

Metformin, also known as 1,1-dimethylbiguanide has been widely used in the treatment of type
2 diabetes mellitus (T2DM) since 1958 in United Kingdom and 1995 in United States (Witters,
2001). The main mechanisms underlying its anti-hyperglycemia effect include decreasing intestinal
absorption of glucose, increasing insulin sensitivity and decreasing hepatic glucose production
(Bailey and Turner, 1996; Hundal et al., 2000), which together result in reduction of basal and
postprandial glucose levels. Because clinical investigations have shown that metformin has low
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risk of hypoglycemia, modest weight loss, persistent anti-
hyperglycemic effect and cardiovascular safety, it is now approved
as one of the first-line drugs for treating T2DM (Garber et al.,
2013).

Interestingly, it was shown in 2005 that metformin has the
anti-cancer properties (Evans et al., 2005). Then a series of studies
provided supporting evidence of its anti-cancer effects in a variety
of cancer types such as ovarian cancer (Shank et al., 2012),
endometrial cancer (Shafiee et al., 2014), breast cancer (Zhang
and Li, 2014), liver cancer, pancreatic cancer, esophageal cancer,
gastric cancer, and colorectal cancer (Franciosi et al., 2013).
Metformin has been shown to reduce the incidence and mortality
of cancer and block migration and invasion of tumor cells (Bao
et al., 2012; Wu et al., 2015). Current knowledge pertaining to
the molecular mechanisms underlying the anti-cancer activity of
metformin is focused on two pathways that inhibit mTOR: (1) the
AMPK-dependent pathway, in which metformin activates LKB1-
AMPK to inhibit mTOR; (2) the AMPK-independent pathway,
in which metformin inhibits mTOR via the PI3K/Akt/mTOR
cascade (Sosnicki et al., 2016; Zhang and Guo, 2016). Besides,
many studies have shown that metformin could also be utilized
for the treatment of other diseases including obesity, polycystic
ovary syndrome and tuberculosis (Gundelach et al., 2016; Igel
et al., 2016; Restrepo, 2016). Moreover, it was reported that
metformin also has potentially anti-aging effects (Novelle et al.,
2016).

Body microbiota play extensive roles in physiology and it is
therefore known as a “forgotten organ” (O’Hara and Shanahan,
2006). A lot of diseases are associated with gut microbiota,
including cancer (Schwabe and Jobin, 2013; May et al., 2016),
cardiovascular diseases (Koeth et al., 2013; Tang et al., 2013),
obesity (Ley, 2010), diabetes (Wen et al., 2008; Qin et al.,
2012), multiple sclerosis (Ezendam et al., 2008; Berer et al.,
2011; Lee et al., 2011), neuromyelitis optica (Varrin-Doyer et al.,
2012; Banati et al., 2013), Guillain–Barré syndrome (Ochoa-
Reparaz et al., 2011), central nervous system disorders (Wang
and Kasper, 2014) and autoinflammatory diseases (Lukens
et al., 2014). For example, in obese individuals, Bacteroidetes is
decreased whereas Firmicutes is increased (Furet et al., 2010),
while Prevotellaceae that could produce H2 is increased and
methanogenic archaea which could utilize H2 is also increased
(Zhang et al., 2009). The co-existence of H2-producing bacteria
with relatively high numbers of H2-utilizing methanogenic
archaea in the gastrointestinal tract of obese individuals implies
the plausible inter-species H2 transfer between bacterial and
archaeal species as an important mechanism for increasing
intestinal energy uptake in obese persons. Moreover, in the
gut of human subjects with type 2 diabetes, Firmicutes is
significantly decreased (Larsen et al., 2010). The abundance
of Faecalibacterium prausnitzii was negatively correlated with
both diabetic and inflammatory markers, which indicated that
Faecalibacterium prausnitzii could regulate inflammation in gut
in diabetic patients (Furet et al., 2010). Finally, Bolte et al. found
that in gut of autistic disorder, Clostridium tetani is increased
while Finegold et al. found that Bacteroidetes is also increased.
(Bolte, 1998; Finegold et al., 2010). Since the gut microbiota
play important roles in the development of various diseases,

they are intuitively one of the first targets for drugs and may
also contribute to the effect of metformin in treating diseases
like cancer and T2DM. Nevertheless, to date, few studies have
taken gut microbiota into consideration. As a result, current
knowledge about the mechanism of action of metformin is still
not completed. Since metformin has been suggested to treat a
wide spectrum of diseases other than T2DM even for healthy
individuals, it is especially important to assess the effect of
metformin on the gut microbiota considering its potential long-
term usage in healthy conditions. What microbes are regulated
by metformin in healthy individuals? How do these regulated
microbes associate with other diseases? What is the difference
of changes of gut microbiota between healthy and various
diseases when treated with metformin? A profiling of the gut
microbiome under healthy condition is necessary to answer these
questions.

In this study, we treated healthy mice with metformin for
30 days and used 16S rRNA sequencing to evaluate the abundance
of microbes in fecal samples. By comparing the metformin-
treated healthy mice to the mock controls, we observed 46
significantly changed microbes. In addition, from previous
publications, we also obtained significantly changed microbes
from T2DM patients after metformin treatment (Forslund et al.,
2015; Wu et al., 2017; Allin et al., 2018). We then used
MicroPattern, a tool we recently developed for the comparison of
microbiome profiles under different situations, to analyze these
significantly altered microbes. By procedure, whether metformin
could elicit different alterations of gut microbiota under diabetes
and non-diabetic conditions, respectively, were evaluated and
discussed.

MATERIALS AND METHODS

Animal Protocol and Sample Collection
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of the Guide
for the Care and Use of Laboratory Animals, US National
Institutes of Health (NIH Publication No. 85-23, revised 1996).
The protocol was approved by the Animal Research Committee
of the Peking University Health Science Center. More specifically,
19 C57BL/6 healthy mice were separated into two groups: 9
were controls and 10 were included in the metformin-treated
group. Until 8 weeks of age, mice were maintained on a chow
diet. Then, mice in the metformin-treated group were treated
with metformin (300 mg/kg of body weight) once daily via
intragastric administration for 30 days. Mice in the control group
were treated with an equivalent amount of saline via intragastric
administration for 30 days. Fecal samples were obtained from 19
mice under sterile conditions. Because the microbiome profiling
technique requires a large amount of raw materials, fecal was
collected from 3 or 4 mice per sample (e.g., the fecal from the
first, second and third mice was gathered together as the first
sample). Finally, we acquired 3 metformin-treated samples and
3 mock control samples. Every sample was stored in a sterile
1.5 ml centrifuge tube at −80◦C until microbiome profiling
analysis.
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16S rRNA Gene Sequencing
Microbial DNA was extracted from the fecal samples and
the 16S rRNA gene of the isolated DNA was sequenced
using Illumina Miseq2500 platform (service provided by GENE
DENOVO Corporation) following the manufacturer’s guidelines.
16S rRNA gene sequences de-multiplexing, quality control and
operational taxonomic unit (OTU) binning were performed
using Mothur version 1.3.4.0 with the standard pipeline (Schloss
et al., 2009). The statistical test was performed in R, a
free tool for scientific computing. OTU pathway analysis was
performed using the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) tool (Langille
et al., 2013).

Enrichment Analysis and Disease
Similarity Calculation
Enrichment analysis and disease similarity calculation were
performed using MicroPattern (Ma et al., 2017). We just keep
the significantly changed microbes at genus or species level
as the input. At last, we acquired 46 microbes that changed
significantly in metformin treated mice versus mock controls.
To analyze the effect of metformin more comprehensively,
we used the published human gut microbiome profiles under
different diabetes situation, with or without metformin treatment
(Forslund et al., 2015; Wu et al., 2017; Allin et al., 2018).
First, Forslund et al. (2015) studied the effects of type 2
diabetes and metformin on the human gut microbiota. In
their research, there are four group including healthy controls,
type 1 diabetes mellitus (T1DM) patients, T2DM patients and
metformin treated T2DM patients (MTT2DM). We acquired 36
significantly changed microbes from metformin treated T2DM
patients contrasted against T2DM patients without metformin
treatment, 26 significantly changed microbes from T2DM
contrasted against healthy and 9 significantly changed microbes
from T1DM patients contrasted against healthy controls.
Second, Allin et al. (2018) studied the aberrant intestinal
microbiota in individuals with prediabetes and 5 significantly
changed microbes in prediabetes individuals versus healthy
controls were obtained. Third, we got 29 significantly changed
microbes from Wu et al.’s study about alteration of gut
microbiome in treatment-naive T2DM patients after metformin
treatment (Wu et al., 2017). We integrated those data and
our data together for the comparison analysis. Finally, the
significance of the similarity in microbiota changes was evaluated
by permutation-based resampling test. More specifically, we
shuffled the de-regulated microbiota between different diseases
and re-calculated the similarity scores based on the randomly
permutated microbiota. This procedure was repeated for 10000
times. For the observed positive similarity, if no higher similarity
could be observed in more than 9000 out of 10000 such
permutation tests, this similarity was considered significant.
Likewise, for the observed negative similarity, if no lower
similarity could be observed in more than 9000 out of 10000
such permutation tests, this similarity was considered significant.
Such threshold also corresponded to a false discovery rate (FDR)
threshold of 0.1.

RESULTS

Effect of Metformin of Mice Gut
Microbiota
We treated healthy mice with metformin for 30 days and
acquired significantly changed microbes in comparison with
saline treated mock controls. To reduce noise, we just used the
microbes whose tags occupy at least 0.1% of all tags. There is no
significant difference of bacterial diversity between two groups
with respect to Shannon diversity metrics (6.95 versus 6.87
for mean Shannon diversity of control group and metformin
treated group, respectively, two sided t-test, p = 0.84) (Kemp
and Aller, 2004). There are 46 significantly changed microbes,
including 22 enriched microbes and 24 depleted microbes
identified. At the class level, Verrucomicrobiaceae, Prevotellaceae,
Porphyromonadaceae, Rikenellaceae are increased, while
Lachnospiraceae, Rhodobacteraceae are decreased. Hierarchical
clustering shows that samples from each group are clustered
together (Figure 1A). Principal component analysis (PCA)
suggests that metformin treated group and control group could
be clearly separated in PC1, which explains 40.8% of the variation
(Figure 1B). These results indicate that metformin consistently
alters the gut microbiome of healthy mice.

To probe the function of these significantly changed
microbes, PICRUSt was used to perform KEGG pathway
analysis. Six pathways including ribosome, biosynthesis of amino
acids, lipopolysaccharide biosynthesis, folate biosynthesis, purine
metabolism and aminoacyl-tRNA biosynthesis are significant
enriched (FDR < 0.05), see also Figure 2. The main function
of gut microbiota is its important roles in metabolism, such
as vitamin metabolism, short chain fatty acid metabolism,
neuropeptide response, food digestion and so on. From the
results of KEGG pathway analysis, it can be found that metformin
mainly affects the gut microbiota related to such biological
synthesis functions, including biosynthesis of lipopolysaccharide,
folate, amino acids and proteins.

Comparative Analysis of the Altered
Microbiome Profile
We applied our comparative microbiome tool MicroPattern
to compare the significantly changed microbiome profile
by metformin treatment, with the de-regulated microbiome
profiles under various disease situations. Thirty-six and 29
significantly changed microbes of metformin treated T2DM
patients (MTT2DM), from Forslund et al. and Wu et al.’s
studies respectively, were integrated together for the analysis.
We first calculated microbiome similarity between (MTT2DM)
patients and other diseases. Then we calculated microbiome
similarity between metformin treated healthy mice (MTHM)
and other diseases. Finally, we also calculated microbiome
similarity between prediabetes and other diseases. There are 17
diseases exhibit microbiome profile similarity with MTT2DM.
Among them, 5 of them are significant (FDR < 0.1), see
Figure 3A. As intuitively expected, we found that the metformin
treated T2DM has the largest negative similarity (−0.26,
FDR < 1.00E-5) with T2DM. Metformin may reverse the
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FIGURE 1 | Effect of metformin on the gut microbiome in healthy mice. (A) Heatmap of metformin treated mice and mock controls based on top 25 abundant
microbes at the genus level; M: metformin treated mice; C: mock controls. (B) Principal component analysis of metformin treated mice and mock controls, red
rounds indicate mock controls and green triangles indicate metformin treated mice; PC1: the first principal component; PC2: the second principal component.

FIGURE 2 | KEGG pathway enrichment analysis of the significantly changed microbes with metformin treatment. The result shown in this bubble plot was generated
by using PICRUSt tool. Briefly, each microbe was assigned to several specific metabolic gene signatures, and whether these genes were enriched in certain pathway
was tested. The size of bubble plot is correlated with the number of the genes presented in the specific pathways while the color conforms to the statistical
significance of the pathway enrichment; Rich factor: the number of significantly changed genes divided by the total number of genes in one pathway.

changed microbes under T2DM and thus relieves diabetic
conditions. In contrast, there are 15 diseases that exhibit
microbiome profile similarity with MTHM. Among them, 4

of them show positive similarities while 11 show negative
similarities (Figure 3B). In all, five significant diseases are
observed and 4 of them show negative similarity, indicating
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FIGURE 3 | Correlated microbiome profile changes between metformin treatment and disease conditions. Red bars indicate significant positive similarities
(FDR < 0.1 by 10000 times of permutation-based resampling test), while green bar indicate significant negative similarities. Insignificant similarities are shown as gray
bars. The FDR is listed in details on the right side. (A) Microbe profile similarity between metformin treated T2DM (MTT2DM) and other diseases. COPD, chronic
obstructive pulmonary disease; SIRS, systemic inflammatory response syndrome. (B) Microbe profile similarity between metformin treated healthy mice (MTHM) and
other disease. (C) Microbe profile similarity between prediabetes and other disease.
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that metformin may play an important role in gut microbiota
homeostasis by reversing the disease-associated microbiome
alteration. Finally, as for prediabetes, there are 6 diseases
exhibiting microbiome profile similarity (Figure 3C). In the
original study, the authors investigated the aberrant of intestinal
microbiota in individuals with prediabetes, overweight, insulin
resistance, dyslipidaemia and low-grade inflammation, which
were precursors of T2DM. Interestingly, the similarity between
T2DM and prediabetes is 0.058, which suggests that the gut
microbiota plays an important role in T2DM pre-conditioning.
We also performed the enrichment analysis to identify the
associated disease situations for the significantly changed
microbes in MTT2DM, MTHM and prediabetes groups. No term
is enriched in MTT2DM, rheumatoid arthritis and colorectal
carcinoma are enriched in MTHM, whereas liver cirrhosis
and irritable bowel syndrome are enriched in prediabetes
(Table 1). From this result, MTHM show strong association with
colorectal carcinoma, suggesting that the effect of anti-colorectal
carcinoma of metformin may at least partly be mediated via
gut microbiota. Moreover, the prediabetes individuals show
altered microbiota profile similar to that in irritable bowel
syndrome (Figure 3B), while MTHM negatively correlates
with diarrhea irritable bowel syndrome in terms of microbiota
alteration. Therefore, the metformin treatment may also be
beneficial to the gut microbiota homeostasis as it can partly
act against the microbiota de-regulation in prediabetes. Finally,
MTHM also has negative similarity with multiple inflammatory
diseases such as diarrhea irritable bowel syndrome, necrotizing
enterocolitis, systemic inflammatory response syndrome (SIRS)
and rheumatoid arthritis, which collectively indicates that the
anti-inflammatory role of metformin is also related to gut
microbiota.

DISCUSSION

Metformin was found useful for its anti-T2DM, anti-cancer, anti-
aging effects and the treatment of polycystic ovary syndrome
(Gundelach et al., 2016; Heckman-Stoddard et al., 2016; Kedia
et al., 2016; Novelle et al., 2016). Previous researches have shown
that gut microbiota alterations may be partly responsible for
metformin’s therapeutic effects against T2DM. For example, in
diabetic rats, intravenous administration of metformin is less
effective than intra-duodenal administration for lowering blood
glucose levels (Bonora et al., 1984; Stepensky et al., 2002).
Delayed-release metformin has lower bioavailability, and tends

TABLE 1 | MicroPattern disease enrichment analysis result.

Microbe set P-value FDR

MTHM

Colorectal neoplasms 0.016 0.16

Arthritis, rheumatoid 0.016 0.16

Prediabetes

Liver cirrhosis 0.0077 0.086

Irritable bowel syndrome 0.033 0.18

to accumulate in the lower bowel at higher concentrations
compared with the common formulation (Stepensky et al., 2002;
Buse et al., 2016). Changes of gut microbiota composition have
been found in several diseases such as colon cancer (Wu et al.,
2009; Kostic et al., 2013), rheumatoid arthritis (Scher et al., 2013),
cardiovascular diseases (Wang et al., 2011; Tang et al., 2013) and
diabetes (Larsen et al., 2010; Qin et al., 2012; Karlsson et al., 2013;
Forslund et al., 2015; de la Cuesta-Zuluaga et al., 2017; Wu et al.,
2017), obesity (Lee and Ko, 2014; Shin et al., 2014; Zhang et al.,
2015). However, many questions exist. Could metformin alter
gut microbiota of healthy individuals? How does metformin alter
the gut microbiota of healthy individuals? What is the difference
of the influence of metformin on gut microbiota under healthy
and disease conditions? Does any correlation of microbiota
alteration exist between different metformin treatment context?
In our study, we treated healthy mice with metformin and found
that metformin could indeed prominently affect gut microbiota
under healthy condition. Subsequently, a computational method
was applied for calculating the similarities between different
conditions based on the changed microbes. Interestingly, the
effects of metformin on gut microbiota turn out to be not
identical under healthy and diabetes conditions. On the one hand,
metformin could reverse the change of gut microbiota under
diabetes, but the metformin treated mice did not show such
trend. In fact, our result indicates a significant positive correlation
with prediabetes and a weak positive correlation with T2DM.
Therefore, although metformin shows a beneficial effect on gut
microbiota in terms of improving disease condition in diabetic
patients, our result cannot support the idea that metformin
treatment of healthy mice could prevent diabetes-related gut
microbiota disorder. To the contrary, metformin treatment of
healthy mice may induce at least prediabetes. On the other hand,
metformin treatment of diabetes patients positively correlates
with colon cancer while metformin treatment of healthy mice
exhibits negative correlation with multiple inflammatory diseases
including diarrhea irritable bowel syndrome. This result indicates
that metformin has potentially anti-inflammatory role especially
under healthy condition. Indeed, the anti-inflammatory role
of metformin was reported in previous research. For example,
Koh et al. (2014) studied the anti-inflammatory mechanism
of metformin but the proposed mechanism did not take gut
microbiota into consideration. In their study, they found that
metformin significantly inhibits interleukin (IL)-8 induction in
COLO-205 cell stimulated with tumor necrosis factor (TNF)-
α. Metformin significantly attenuates the severity of colitis
in IL-10−/− mice and inhibits the development of colitic
cancer in mice. Similarly, in Liu et al.’s study, metformin
significantly decreases the mRNA expression of IL-6 and THF-
α and increases the mRNA expression of PI3K and Akt in
pancreatic tissue of T2DM rats. A lot of microbes are shown to
be correlated with inflammatory factors such as IL-6 and THF-
α (Liu et al., 2018). In Lee et al. (2017) study, IL-1β and IL-6
expression was significantly decreased in metformin-treated in
aged obese mice and IL-1β and IL-6 expression is negatively
correlated with the abundance of Bacteroides, Butyricimonas,
Anaerotruncus and Akkermansia. These studies link the anti-
inflammatory mechanism of metformin with gut microbes in
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disease conditions. Our results also indicate that gut microbiota
may play an important role in the anti-inflammatory effect of
metformin in non-diabetic condition, which complements the
conclusions of the previous studies. In summary, our microbiome
profiling analysis signifies the role of gut microbiome in
the mechanism underlying metformin treatment, which
deserves detailed experimental and clinical investigation in the
future.
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The red panda (Ailurus fulgens) is a herbivorous carnivore that is protected worldwide.
The gastrointestinal tract (GIT) microbial community has widely acknowledged its
vital role in host health, especially in diet digestion; However, no study to date has
revealed the GIT microbiota in the red panda. Here, we characterized the microbial
biogeographical characteristics in the GIT of a red panda using high-throughput
sequencing technology. Significant differences were observed among GIT segments by
beta diversity of microbiota, which were divided into four distinct groups: the stomach,
small intestine, large intestine, and feces. The stomach and duodenum showed less
bacterial diversity, but contained higher bacterial abundance and the most unclassified
tags. The number of species in the stomach and small intestine samples was higher than
that of the large intestine and fecal samples. A total of 133 core operational taxonomic
units were obtained from the GIT samples with 97% sequence identity. Proteobacteria
(52.16%), Firmicutes (10.09%), and Bacteroidetes (7.90%) were the predominant phyla
in the GIT of the red panda. Interestingly, Escherichia–Shigella were largely abundant in
the stomach, small intestine, and feces whereas the abundance of Bacteroides in the
large intestine was high. Overall, our study provides a deeper understanding of the gut
biogeography of the red panda microbial population. Future research will be important
to investigate the microbial culture, metagenomics and metabolism of red panda GIT,
especially in Escherichia–Shigella.

Keywords: Ailurus fulgens, gastrointestinal tract, microbiota, Escherichia–Shigella, Illumina HiSeq sequencing

INTRODUCTION

The red panda (Ailurus fulgens) is a vulnerable wildlife species that belongs to the family Ailuridae,
which is endemic to Carnivora (Yu et al., 2011). The species lives mainly in temperate forests
in China, Bhutan, India, Burma, and Nepal. Their population is threatened by the climate, diet,
and human activity (Deryabina et al., 2015; Princée and Glatston, 2016). A number of serious
illnesses have led to death in this species, as investigated in the 20-year survey of captive dead
red pandas (Delaski et al., 2015). Surveys show that pneumonia is the most common cause of
death in newborns and juveniles, whereas cardiovascular disease, renal disease, and gastrointestinal
disease are the common causes of death in the adult and geriatric red pandas. The probability of the
survival of red panda has increased with successful captive breeding (Kumar et al., 2016). Improved
captive measures, such as nutrition diets, regular veterinary care, and species breeding strategies,
can promote the protection and conservation of red panda.
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Intestinal microbial research is currently an important means
of wildlife protection and conservation (Amato, 2013; Barelli
et al., 2015; Stumpf et al., 2016). Microbiota plays a vital role in
animal intestinal digestion, immune response, physiology, and
disease treatment (Byndloss et al., 2017; Ramos and Hemann,
2017; Zheng et al., 2017). Together with the giant panda, the red
panda is a herbivorous carnivore with simple gut morphologies
(Ley et al., 2008). Nevertheless, they both specifically eat bamboo
and shared 10 pseudogenes associated with digestion (Fei et al.,
2017; Hu et al., 2017). Among the main candidate genes of
the pseudothumbs, DYNC2H1 and PCNT are mainly related to
the absorption of amino acids in bamboo. Several studies have
evaluated the faecal microbiota of red pandas and compared them
with other wild animals, especially the giant panda (Kong et al.,
2014; Li et al., 2015; Nishida and Ochman, 2017). Firmicutes was
the predominant phylum found in the red and giant panda faecal,
of which the bacteria abundance is extraordinary high in the
giant panda. In particular, Proteobacteria was also found to be the
second main flora in the red panda faecal. Firmicutes was found
to be closely related to the degradation of bamboo fiber (Zhu
et al., 2011). However, there is still relatively little research on the
Proteobacteria in these animals gastrointestinal tract (GIT). No
study has been conducted about the GIT microbiota of the red
panda. All previous studies were conducted using faecal samples
of red panda.

Our previous study assessed the bacterial diversity of this red
panda using the polymerase chain reaction-denaturing gradient
gel electrophoresis (DGGE) (Li et al., 2017). Higher bacterial
diversity was found in the stomach and large intestine, whereas
less bacterial diversity was obtained in the small intestine.
Moreover, abundant DGGE bands in the GIT of red panda
were identified with most belonging to Firmicutes, whereas the
identified bacteria that belong to Proteobacteria were dominant
in all segments. To improve our understanding of the microbial
community structure and composition in red panda GIT, the
Illumina HiSeq sequencing method is required. We hypothesize
that the number and species of bacterial populations in the red
panda’s GIT is greater than what we know in it’s faecal matter.
We predict that Proteobacteria predominates in the GIT of the
red panda. Our findings provide the first insight into the gut
biogeography of microbial populations in red panda using high-
throughput next-generation sequencing technology.

MATERIALS AND METHODS

Ethics Statement
The sample collection of the dead red panda was approved by
the Ethical Committee of Animal Care and Use Commission
of Chengdu Institute of Wildlife, Chengdu Zoo. Laboratory
experiments were approved by the Animal Microecology
Institute of Veterinary Medicine, Sichuan Agricultural
University.

Sample Collection
In July 2016, a male, 5-year-old captive red panda was found
dying in Chengdu Zoo. The animal was involved in a fight and

its tail was docked before death. GIT contents were derived
from GIT segments, which include the stomach, small intestine
(duodenum, jejunum, and ileum), and large intestine (colon
and rectum). The contents at the beginning and end of each
segment were discarded. The content samples close to the
middle of each segment were mixed. All GIT contents were
collected within one day of the death of the red panda. In
the same colonial house, faecal samples from other captive red
pandas were thoroughly mixed to form a replacement faecal
sample for the dead red panda. All samples were collected in
accordance with the Sichuan Agricultural University Committee
ethics (Certificate No. SYXKchuan 2014-187) regarding the care
and use of experimental animals. The samples were placed in
sterile tubes, frozen immediately, sent to the lab in 20 min, and
stored at −80◦C until further analysis.

DNA Extraction and Sequencing
Microbial genomic DNA was extracted from GIT contents and
faecal samples (0.2 g each) using the QIAamp Stool Mini
Kit (Qiagen, Germany). DNA concentration and purity were
monitored on a Nano Drop spectrophotometer (Nano Drop
Technologies, Wilmington, DE, United States) to ensure it is
greater than 20 ng/µl and stored at −80◦C prior to further
analysis.

The V4 hypervariable region of the 16S rRNA gene
from microbial genomic DNA was PCR-amplified using
515F (GTGCCAGCMGCCGCGGTAA) and 806R (GGAC
TACHVGGGTWTCTAAT) primers with a 6 bp error-correcting
barcodes (Caporaso et al., 2011) (Supplementary Table S1). PCR
reactions were performed in triplicate with 20 µl of a mixture
that contains 8 µl DNA, 1 µl each primer, 10 µl Phusion R© High-
Fidelity PCR Master Mix and 1 µl of ddH2O. The following
PCR reaction conditions were used: initial denaturation at
98◦C for 1 min, 35 cycles of denaturation at 98◦C for 10 s,
annealing at 55◦C for 30 s, and elongation at 72◦C for 30 s and
then 72◦C for 5 min. PCR products were then mixed with the
same volume of 1× loading buffer (contained SYBR green) and
ran on a 2% agarose gel. PCR products with bright dominant
bands of 400–450 bp were mixed at equal density ratios. The
mixture PCR product was purified using a Qiagen gel extraction
kit (Qiagen, Germany). Sequencing libraries were constructed
according to the instructions using the TruSeq R© DNA PCR-Free
Sample Preparation Kit (Illumina, United States) and indexed by
addition codes. Library quality was assessed using a Qubit@2.0
Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100
system. Finally, sequencing was performed on the Illumina
HiSeq 2500 platform, which generated 250 bp paired-end reads.
The original 16S rRNA sequence data was available in the
National Center for Biotechnology Information, BioProject ID
PRJNA385220 and Sequencing Read Archive (SRP1062181).

Bioinformatics Analysis
The barcode and primer sequences (Caporaso et al., 2011)
of paired-end sequencing readings in all samples were first

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA385220
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removed. FLASH was used to assemble sample reads (V1.2.72)
(Magoč and Salzberg, 2011). Raw tags were filtered (Quality
threshold < = 19, default length 3, and continuous high-quality
base length greater than 75% tags) to obtain clean tags using
QIIME (Version 1.7.03) (Caporaso et al., 2010). To improve the
quality of the analysis, a gold database4 and UCHIME algorithm5

(Edgar et al., 2011) were used to compare tags and remove
chimeric sequences (Supplementary Table S1). Uparse software
(Version 7.0.10016) was used to cluster valid tags to obtain
operational taxonomic units (OTUs) at 97% similarity level
(Edgar, 2013). After removing the chloroplast and mitochondrial
reads, species annotation (Threshold 0.8-1) was performed by
the SSU rRNA database of SILVA7 (Wang et al., 2007) and
mothur (v 1.32) (Schloss et al., 2009). The classification level
included the kingdom, phylum, class, order, family, genus, and
species. Multiple sequence alignment analysis was performed
using MUSCLE (Version 3.8.318).

Alpha and beta diversity were analyzed using the QIIME
(Version 1.7.0) (Caporaso et al., 2010) and visualized using
R software (Version 2.15.3) (McMurdie and Holmes, 2013).
With rarefaction at each sampling depth, alpha diversity
included Shannon index, Simpson index, Observed-species,
Good’s coverage, Chao1, and ACE. Chao1 and ACE were
obtained and show the community richness of the red panda GIT.
The Shannon and Simpson indices revealed community diversity.
The principal component analysis (PCA) of unweighted UniFrac
distances was constructed (Lozupone et al., 2011). To compare
the differences between the three groups, the ternary diagram was
analyzed using the centroid plot of three variables, of which the
sum of the three variables was constant (ggplot2) (Bulgarelli et al.,
2015).

RESULTS

Metadata General Description
Using the Illumina HiSeq 2500 platform of 16S rRNA gene V4
region amplicons, a total of 460,679 sequences were obtained in
seven samples of the red panda (Supplementary Table S1) with a
median length of 253 bp. The number of sequences per sample
ranged from 57,849 to 73,638. A total of 9,379 unique OTUs
were obtained at 97% identity and an average of 1,340 OTUs
for each sample, which range from 883 to 1643 (Supplementary
Figure S1A and Supplementary Table S1). The number of OTUs
was higher in the stomach (1643) and duodenum (1638). An
average of 44 unclassified tags were observed in samples from the
stomach (104 unclassified) and duodenum (121 unclassified) but
not in the faecal samples. After the annotation of species through
the SSU rRNA database, the taxonomic levels included kingdom,

2http://ccb.jhu.edu/software/FLASH/
3http://qiime.org/scripts/split_libraries_fastq.html
4http://drive5.com/uchime/uchime_download.html
5http://www.drive5.com/usearch/manual/uchime_algo.html
6http://drive5.com/uparse/
7http://www.arb-silva.de/
8http://www.drive5.com/muscle/

phylum, class, order, family, genus, and species of microbiota
were conducted, which revealed in-depth microbial information
(Supplementary Figure S1B). The large numbers of sequences
in samples from the stomach and small intestine were detected
at the species level. Samples from the large intestine revealed
more sequences at the genus level. Species profiles observed
from colon, rectum, and feces (Supplementary Figure S2A)
tended to approach the saturated platform but also increased
with samples from the stomach and small intestine. Arranging
the rank abundance curve gave the same result and shows that
only a large curve span is obtained from the colon, rectum, and
feces (Supplementary Figure S2B). Generally, a large number of
microbial sequences were investigated in the red panda, of which
the number of the sequence is distinct among the GIT segments.

Microbial Diversity Across the Red
Panda GIT
The alpha diversity (Observed species, Shannon, Simpson,
Chao1, Ace, and goods coverage) was assessed by OTUs
(Supplementary Table S2). Higher bacterial diversity was
observed in both the large intestine and fecal samples than
that in the stomach and small intestine. According to the
ANOSIM analysis, significant differences were found in the
bacterial community structure in the stomach, small intestine,
large intestine, and faecal (P < 0.05). The number of species
in the stomach and small intestine samples was higher than
that of the large intestine and fecal samples. The beta diversity
of the microbiota indicated that GIT segments are divided
into four distinct groups: the stomach, small intestine, large
intestine, and feces (Figure 1A). The heat map (weighted and
unweighted uniFrac) of the distance matrix from the rectum
and faecal samples showed a higher number than other samples
(Figure 1B). This shows significant differences in the large
intestine compared with other segments. A histogram generated
by clustering analysis at phylum level divided the GIT samples
into four major groups: the stomach, small intestine, large
intestine, and feces (Figure 1C). Of the first three major
bacterial phyla (Proteobacteria, Firmicutes, and Bacteroidetes),
Proteobacteria predominated in all segments, especially in the
stomach, small intestine and feces. Firmicutes was mainly
distribute in faecal compared with other segments. Bacteroidetes
was abundant in the large intestine.

Distinct Microbiota Across the Red
Panda GIT
Next, the classification of specific taxonomy groups of species
(e.g., kingdom, phylum, class, order, family, genus, and species)
was conducted (Figure 2 and Supplementary Figure S3).
Proteobacteria (52.16%), Firmicutes (10.09%), and Bacteroidetes
(7.90%) were the three major GIT phyla. Escherichia–Shigella
(49.20%), Helicobacter (1.10%), Pseudomonas (1.07%),
Methylobacterium (0.45%), and Salinisphaera (0.35%)
mainly comprised the phylum Proteobacteria. Moreover,
Escherichia–Shigella mainly included higher abundances
of Escherichia coli (49.20%). Escherichia–Shigella showed
the closest relationship with Proteus and Morganella in the
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FIGURE 1 | Beta diversity of microbiota in red panda GIT. (A) Principal component analysis (PCA) with unweighted uniFrac of bacterial community in GIT samples.
(B) Heatmap of the distance matrix, number above and under the central line in each rhombus is calculated using the weighted uniFrac and unweighted uniFrac
methods, with higher values showing significant differences. (C) Clustering of the microbiota at the phylum level. Sto, Duo, Jej, Ile, Col, Rec, and Fae represent
samples from the stomach, duodenum, jejunum, ileum, colon, rectum, and faecal, respectively.

evolutionary tree (Supplementary Figure S4). Firmicutes were
primarily composed of Enterococcus (4.10%), Clostridium_sensu_
stricto_1 (3.02%), Weissella (2.62%), and Turicibacter (0.36%).
The genus Clostridium_sensu_stricto_1, which mainly consisted
Clostridium_sp._CL-2 (0.83%), Clostridium_beijerinckii (0.14%),
Clostridium_sp._ND2 (0.05%), Clostridium_colicanis (0.04%),
and Clostridium_perfringens (0.03%), was the closest to the genus
sarcina in the evolutionary tree (Supplementary Figure S4).
Bacteroidetes was mainly composed of Bacteroides (7.89%),
including Bacteroides_fragilis (3.67%), Bacteroides_ovatus
(0.36%), Bacteroides_uniformis (0.30%), Bacteroides_pyogenes
(0.05%), and Bacteroides_caccae (0.01%). Moreover, Bacteroides
was the closest genus to Alloprevotella, Prevotella_7, and
Prevotella_9 in the phylogenetic tree (Supplementary Figure S4).
The species annotation of red panda GIT microbiota was further
analyzed at the family, genus, and species level using the SSU
rRNA database (Supplementary Figures S1B, S3, S5). The
composition of the entire red panda GIT, Enterobacteriaceae,
Enterococcaceae, Escherichia–Shigella, Enterococcus, and
Escherichia coli were enriched in the stomach and small intestine.
Bacteroidaceae, Peptostreptococcaceae, Helicobacteraceae,
Lachnospiraceae, Ruminococcaceae, Pseudomonadaceae,
Bacteroides, Helicobacter, and Pseudomonas were mainly in the
large intestines. Leuconostocaceae, Weissella, Salinisphaera, and
Turicibacter were major in the faecal.

Using the Venn petal diagrams, a total of 133 core OTUs were
obtained from the GIT samples of the red panda (Figure 3A). Of

the 133 core OTUs, 100 genera of bacteria were identified. Of all
the GIT samples, Escherichia–Shigella was the highest among the
top 10 bacterial species, followed by Bacteroides, Enterococcus,
Clostridium_sensu_stricto_1, Helicobacter, Pseudomonas,
Christensenellaceae R-7 group, Acinetobacter, Blautia, and
Methylobacterium (Figure 3B and Supplementary Table S3).
The unique OTUs for stomach, duodenum, jejunum, ileum,
colon, rectum, and faecal were 222, 158, 233, 158, 77, 179, and
86, respectively (Figure 3A and Supplementary Table S4). In
the stomach sample, Parafilimonas, Tamlana, and Thiocapsa
were the top three unique bacterial genera (Figure 3C). In the
small intestine, Aciditerrimonas, Inquilinus, and unidentified_
Subgroup_7 were predominate in the duodenum, jejunum,
and ileum, respectively (Figures 3D–F). Polycyclovorans and
Exiguobacterium contribute most of the unique bacterial
genus in colon and rectum samples. Moreover, Nitrococcus,
Filomicrobium, and Croceibacter constituted the top three unique
bacterial genera in faecal samples.

Predominant Bacteria With Classification
From Phylum to Genus Revealed in the
GIT of the Red Panda
Finally, the dominant bacteria belonged to the phylum
Proteobacteria were analyzed in the red panda’s GIT
(Figures 1, 2). The ternary plots of the bacteria of the
stomach, small intestine, and large intestine samples at
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FIGURE 2 | Specific species taxonomy tree analysis of microbiota in red panda GIT. Classification levels include the kingdom, phylum, class, order, family, genus,
and species. The first percentile in parentheses shows the percentage of microflora in all the detected bacteria. The second percentile in parentheses shows the
percentage of microflora in all the selected bacteria. Sto, Duo, Jej, Ile, Col, Rec, and Fae represent samples from the stomach, duodenum, jejunum, ileum, colon,
rectum, and faecal, respectively.

family and genus levels showed that the Escherichia–
Shigella and Enterobacteriaceae were predominant and
similar to the samples from the stomach and small
intestine (Figures 4A,B). Bacteria sequenced due to the
use of the 16S rRNA gene V4 region amplicons were
less accurate. Thus, the statistical correlation of the
Escherichia–Shigella, Enterobacteriaceae, Enterobacteriales,
Gammaproteobacteria, and Proteobacteria across the GIT
were exhibited in Figure 4C. These bacteria were present
in the stomach and small intestine at a higher level
than those in the large intestine and feces; the highest
number was found in the duodenum. The duodenum
bacterial sequence numbers for Escherichia–Shigella,
Enterobacteriaceae, Enterobacteriales, Gammaproteobacteria,
and Proteobacteria were 51,754, 52,527, 52,527, 53,525, and
56,810, respectively (Supplementary Table S5). We suggest

that the bacteria are related to the small intestine, especially the
duodenum.

DISCUSSION

Consistent with our hypothesis, the high-throughput sequencing
data from the current study showed that the microbiota in the
red panda GIT is distinct, with the Proteobacteria predominating
(Figure 3). In healthy mammals, the stomach is the first
segment of the GIT that receives and digests food and resides
in bacteria that originated from Firmicutes, Bacteroidetes, and
Proteobacteria (Gu et al., 2013; Gulino et al., 2013; Weldon
et al., 2015). Moreover, the responsibility of nutrition digestion
in small intestine is to ferment monosaccharides and amino
acids (Gu et al., 2013). This gut nutrition environment is
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FIGURE 3 | Core and unique microbiota in red panda GIT. (A) The venn petal diagrams of the bacterial community in GIT. (B) Top 10 core bacterial genera of all the
segments. (C–I) Top three unique bacterial genera in samples from the stomach, duodenum, jejunum, ileum, colon, rectum, and faecal, respectively.

suitable for facultative anaerobes growth, which mainly belongs
to Proteobacteria. This existence and “disappearance” of the
hypothetical “transient microbiota” may explain the great
number of bacteria in the stomach and small intestine of mice,
especially the highest numbers of duodenum bacteria (Gu et al.,
2013). Our results revealed that the microbiota in the stomach
and the small intestine of red panda showed a large number of
OTUs: 1643 OTUs in the stomach and 1638 OTUs in the small
intestine, mostly Proteobacteria (Supplementary Figure S1A
and Supplementary Table S1). The large intestine digests
polysaccharides and shows the dominance of Bacteroidetes (Faith
et al., 2013; Seedorf et al., 2014). Bacteroidetes dominated the
samples from the large intestine of the red panda, which is
consistent with our findings. Although the number of bacterial
sequences in these studies is not exactly the same, they have
similar trends. Our data indicates that Firmicutes is the dominant
species with a percentage of 40.49% in the fecal sample, compared

with other segments. These results are consistent with the
findings from other studies on microbiota in wild and captive red
panda faecal (Kong et al., 2014; Li et al., 2015; Williams et al.,
2018). In Williams’s study, they used the Illumina MiSeq method
to test the bacteria 16S rRNA V3–V4 region of two captive red
panda faecal at different stages of weaning. Their results show
that Firmicutes are the most abundant bacteria, with a percentage
of 71 ± 6.9%. The Illumina MiSeq and Illumina HiSeq are two
platforms widely used in the bacteria DNA sequencing, and they
have 150 and 100 bp paired-end reads, respectively (Caporaso
et al., 2012). The selection of the bacterial target regions of 16S
rRNA can lead to the error and bias in amplicon-based microbial
community (Gohl et al., 2016; Sinha et al., 2017). Nonetheless,
these approaches allow the use of MiSeq and HiSeq methods to
study the same trends of microbial flora.

For wild animals, bacterial communities in the feces are
the easiest to study using living wild animals (Kong et al.,
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FIGURE 4 | Escherichia–Shigella is a major genus of bacteria in the red panda GIT. (A) The ternary plot of bacterial between the stomach, small intestine, and large
intestine at family level. The three vertices in the figure represent the sample group (ST: stomach; SI: small intestinal; LI: large intestinal). Circles represent species,
and size represents relative abundance. The closer the circle is to the vertex, the higher the relative abundance of this species. (B)The ternary plot of bacterial
between the stomach, small intestine, and large intestine at genus level. (C) Total bacteria and the major bacterial genera of Escherichia–Shigella, classified from the
phylum to genus level across the GIT.

2014; Barelli et al., 2015; Li et al., 2015; Borbón-García et al.,
2017; McKenney et al., 2017; Menke et al., 2017). The study
of GIT microbiota has broadened our understanding of host
digestion, immune response, physiology and disease treatment
and will help us further develope better ways of protecting
wild animals (Amato, 2013; Bahrndorff et al., 2016; Stumpf
et al., 2016). In recent years, some studies have focused on
the study of the gastrointestinal flora of wild mammals. For
example, when analyzing the V4 region of the 16S rRNA
gene sequenced by Illumina MiSeq, the data showed that the
colonized bacteria of macaques GIT are mainly Firmicutes,
Bacteroidetes, Spirochaetes, and Proteobacteria (Yasuda et al.,
2015). However, our study found that Proteobacteria is the
major bacteria in the red panda GIT, followed by Firmicutes
and Bacteroidetes (Figure 1C). Moreover, different results were
found in the red kangaroo (Macropus rufus) GIT; Firmicutes,
Bacteroidetes, and Actinobacteria were the major bacteria, and
the target regions for 16S rRNA genes V3 and V4 were analyzed
by Illumina MiSeq (Li et al., 2016). In addition to different
sequencing methods, different breeds of animals contribute
most of these differences. Similarly, Bacteroidetes (24.64%) and
Firmicutes (13.28%) are mainly characterized in the GIT of
a Brazilian Nelore steer. A similar result was found in the
GIT of the bison (Bergmann, 2017), with the Bacteroidetes
abundant in most segments. However, in the GIT of dairy
cattle, the first three major bacteria were Firmicutes (42.22%),
Bacteroidetes (21.00%), and Proteobacteria (17.56%). Bacterial

relative abundance was found contributed most of the differences
among different species of animals than that of the taxa of
the bacteria (Chen et al., 2017). Firmicutes were found to be
the dominant bacteria in the feces of primates (gibbon, golden
monkey, chimpanzee, and assam macaque) and Proteobacteria
were the dominant bacteria in carnivora (red panda, giant
panda, tiger, black bear, and lion). Consistent with this study,
our study found that Proteobacteria is primarily responsible
for the red panda GIT, especially in the stomach and small
intestine.

Our previous study showed that the predominate DGGE
band in the GIT of the red panda was identified closest to
the Escherichia coli strain KR-1. The same trend was found
in this study. Proteobacteria was the main phyla in the GIT
of red panda, including the class Gammaproteobacteria, the
order Enterobacteriales, the family Enterobacteriaceae, and the
genus Escherichia–Shigella (Figure 4). Microbiota appear to
be functionally stable in the gut of different healthy hosts
(Costea et al., 2017; Mehta et al., 2018). A recent study
found that Proteobacteria (59.00%) is a dominant factor that
influences functional variability in human gut microbiota
than that in Bacteroidetes (12.00%) and Firmicutes (29.00%)
(Bradley and Pollard, 2017). The class Gammaproteobacteria
and Betaproteobacteria were found to be two of the four core
microbiome in a survey of 112 animal species (herbivores,
omnivores, and carnivores) representing 14 mammalian orders
(Nishida and Ochman, 2017). However, Gammaproteobacteria
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was observed more abundantly in captive animals in a study
of the gut microbiome in 41 mammalian taxa (herbivores,
omnivores, and carnivores) across six orders (Mckenzie et al.,
2017). Despite this, Betaproteobacteria was found to be more
abundant in wild animals in the six mammalian orders. This
shift in Proteobacteria bacteria can be inferred to be related
to animal diets, species and whether they are captive or wild.
Moreover, Proteobacteria abundance seems to be sensitive to
environmental changes. For example, Proteobacteria dominates
in studies of fecal matter in brown bears (Ursus arctos) (Sommer
et al., 2016) and Andean bears (Borbón-García et al., 2017).
The change from winter to summer, frequent activities and food
intake can lead to an increasing abundance of Proteobacteria
in the feces of brown bears (Ursus arctos). Although captivity
plays an important role in the population breeding and species
conservation of wildlife, the bacterial diversity in their feces
has declined (e.g., Andean bear, red panda, Przewalski’s horse,
woodrats, and panda) (Kohl et al., 2014; Kong et al., 2014;
Wei et al., 2015; Borbón-García et al., 2017; Metcalf et al.,
2017). These studies show that the protection of indigenous
microbiota in the gut of wild animals is another important
aspect of human conservation of wildlife. Currently, within its
usefulness, Escherichia–Shigella can digest and absorb animal
food. For example, Escherichia–Shigella is the dominant genus of
feces in two captive red pandas during weaning (Williams et al.,
2018). Moreover, Escherichia–Shigella, Clostridium, Turicibacter,
and Streptococcus are the major genera in the wild giant panda
feces at different times of the year, especially the utilization
of the shoot and leaf stage (Wu et al., 2017). Consistent with
this trend, Escherichia–Shigella is abundant in leaves that are
predominantly mucus-seasoned samples (Williams et al., 2016).
However, the overgrowth of Proteobacteria can also lead to some
diseases, such as inflammatory bowel disease (Mukhopadhya
et al., 2012) and metabolic syndrome (Shin et al., 2015).
Additionally, Escherichia–Shigella is found to be closely related
to Proteus and Morganella in the evolutionary tree in our
study (Figure 4C and Supplementary Figure S4). A previous
study shows that Proteus is associated with Crohn’s disease
(Lopetuso et al., 2018). With the distemper virus infection, the
number of dominant Escherichia is reduced (Zhao et al., 2017).
Based on the relatively few research results, we cannot confirm
the role of the Escherichia–Shigella in red panda. However,
recent studies have shown that different gastrointestinal (GI)
diseases result in the significantly different composition of gut
microbiota (Lopetuso et al., 2018). As for adult and old red
pandas, gastrointestinal (e.g., ulceration, esophagitis, gastritis,
diaphragmatic hernia, intussusception, and gastric torsion) and
renal diseases (e.g., chronic interstitial nephritis and renal cysts)
are mainly responsible for animal deaths (Delaski et al., 2015).
Moreover, captive red pandas suffer from clinical illnesses, such
as infectious diseases and parasites (Philippa and Ramsay, 2011).
Gut microbes, such as Clostridium, Lactobacillus, Eggerthella, and
Bacteroides, are usually active during the decomposing corpses
(6–9 days) of dead bodies under natural conditions (Hyde et al.,
2013). Although the GIT samples in our study are not fresh, they
were collected within one day of the animal’s death. Therefore,
we consider that death status did not have significant impact

on intestinal flora in the dead red panda in our study. Despite
this, few intestinal samples of the dead red panda are available
for further study, such as microbial culture and metabolomics
studies. Not enough intestinal microflora information is available
in other red panda studies for comparison. Given the similar
habitat, dietary, and species evolution, the comparison of gut
microbiota in other wildlife, such as the giant panda, is crucial
to the GIT microbiota of red panda.

CONCLUSION

The contributions of this work are presented as follows: our study
provides a first preliminary understanding of the biogeography
of GIT microbiota in the red panda (Ailurus fulgens). Four
different bacterial community areas, namely, the stomach, small
intestine, large intestine, and feces, were obtained. Proteobacteria,
Firmicutes, and Bacteroidetes were dominated by red panda’s
GIT. It will be important that future research investigate the
microbial culture, metagenomics and metabolism of red panda
GIT, especially in Escherichia–Shigella. Additionally, the results
of the microbiota of the red panda in our study are limited. In
the future, it will be necessary to conduct in-depth comparative
analysis with other wild animals.
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FIGURE S1 | Tag information and bacterial classification. (A) Total tags, taxon
tags, operational taxonomic units (OTUs), unclassified tags, and unique tags.
(B) The classification level includes the kingdom, phylum, class, order, family,
genus, and species.

FIGURE S2 | Rarefaction curve analysis. Duplicate samples of OTU subgroups
are evaluated whether further sampling would likely yield additional taxa, as
indicated by the plateau value. (A) The y-axis represents the number of OTUs
detected and the x-axis indicates the number of taxa in the analyzed subsets of
sequences. (B) Rank abundance curves were used to estimate the richness and
evenness of taxa present in the samples. The y-axis indicates the relative
abundance of OTUs and the x-axis indicates the number of OTUs according to
the relative abundance from largest to smallest. The larger the span curve is on
the x-axis, the higher the species richness. The smoother the curve on the y-axis,
the more evenly the species are distributed.

FIGURE S3 | Species-specific tree analysis of bacteria from the (A) stomach,
(B) duodenum, (C) jejunum, (D) ileum, (E) colon, (F) rectum, and (G) faecal. The
first percentile in brackets shows the percentage of all detected bacteria in the
microbiota. The second percentile in parentheses shows the percentage of
microbial communities in all selected bacteria.

FIGURE S4 | Top 100 bacteria genus in the evolutionary tree of red panda GIT.

FIGURE S5 | Species annotation of microbiota of red panda GIT at levels from
(A) phylum, (B) class, (C) order, (D) family, and (E) genus.

TABLE S1 | General information of sequence data. Sto, Duo, Jej, Ile, Col, Rec,
and Fae represent samples from the stomach, duodenum, jejunum, ileum, colon,
rectum, and faecal, respectively.

TABLE S2 | Alpha diversity index, including observed species, Shannon,
Simpson, chao1, ACE, and goods coverage. Sto, Duo, Jej, Ile, Col, Rec, and Fae
represent samples from the stomach, duodenum, jejunum, ileum, colon, rectum,
and faecal, respectively.

TABLE S3 | Core bacterial average sequence in red panda GIT. Sto, Duo, Jej, Ile,
Col, Rec, and Fae represent samples from the stomach, duodenum, jejunum,
ileum, colon, rectum, and faecal, respectively.

TABLE S4 | Unique bacterial genus from the stomach, duodenum, jejunum, ileum,
colon, rectum, and faecal samples, respectively. Sto, Duo, Jej, Ile, Col, Rec, and
Fae represent samples from the stomach, duodenum, jejunum, ileum, colon,
rectum, and faecal, respectively.

TABLE S5 | Dominant bacterial community at the classification level from phylum
to genus in red panda GIT.
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With the rapid development of high-speed sequencing technologies and the

implementation of many whole genome sequencing project, research in the genomics

is advancing from genome sequencing to genome synthesis. Synthetic biology

technologies such as DNA-based molecular assemblies, genome editing technology,

directional evolution technology and DNA storage technology, and other cutting-edge

technologies emerge in succession. Especially the rapid growth and development

of DNA assembly technology may greatly push forward the success of artificial life.

Meanwhile, DNA assembly technology needs a large number of target sequences of

known information as data support. Non-coding DNA (ncDNA) sequences occupy most

of the organism genomes, thus accurate recognizing of them is necessary. Although

experimental methods have been proposed to detect ncDNA sequences, they are

expensive for performing genome wide detections. Thus, it is necessary to develop

machine-learning methods for predicting non-coding DNA sequences. In this study, we

collected the ncDNA benchmark dataset of Saccharomyces cerevisiae and reported a

support vector machine-based predictor, called Sc-ncDNAPred, for predicting ncDNA

sequences. The optimal feature extraction strategy was selected from a group included

mononucleotide, dimer, trimer, tetramer, pentamer, and hexamer, using support vector

machine learning method. Sc-ncDNAPred achieved an overall accuracy of 0.98. For the

convenience of users, an online web-server has been built at: http://server.malab.cn/Sc_

ncDNAPred/index.jsp.

Keywords: non-coding DNA, DNA sequence, feature representation, genome synthesis, support vector machine

INTRODUCTION

After the implementation of many whole genome sequencing projects, more and more researches
showed that non-coding DNA (ncDNA) is amajor component of the biological genome. Numerous
studies (Vogel, 1964; Thomas, 1971; Eddy, 2012; Puente et al., 2015; Liu et al., 2017a; Yao et al.,
2018) have shown that the complexity of organisms is related to the length of non-coding regions,
which are specially transcribed in physiological and disease states. Although the function of most
ncDNAs is still unknown(Khurana et al., 2016), some studies (Horn et al., 2013; Huang et al., 2013;
Vinagre et al., 2013; Puente et al., 2015; Hu et al., 2017, 2018; Rheinbay et al., 2017; Liao et al.,
2018; Zhang W. et al., 2018) have shown that most cancer-related gene mutations are located in
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ncDNA regions. How ncDNAs specifically affect tumor
formation is also an urgent problem to be solved. In addition,
ncDNAs in the genome play an important role in gene
expressing, regulatory, and inheritance (Khurana et al., 2016).

Especially, with the rapid growth and development of
synthetic biology, research in the genomics is advancing from
genome sequencing to genome synthesis (Erlich and Zielinski,
2017; Jain et al., 2018; Liu B. et al., 2018). In recent years,
various DNA assembly technologies (Ni et al., 2017; Wu et al.,
2017; Xie et al., 2017; Zhang et al., 2017b) have been developed
according to the principles of atypical enzyme cut connection
(Engler et al., 2009; Sleight et al., 2010), single strand annealing
and splicing (Gibson et al., 2009; Li and Elledge, 2012) and
PCR (Warrens et al., 1997), which provide more rapid technical
support for synthetic biology. In the following years, people
are committed to improving the efficiency of large scale DNA
assembly technologies. With the rapid development of the
computer network and the popularity of the Internet, the number
of digital information, such as network data, audio data, and
video data, is increasing rapidly. It is urgent to establish a
new system which has more efficiency than the existing storage
system. DNA storage technology (Baum, 1995; Davis, 1996; Carr
and Church, 2009) can meet the requirements above. In a new
study (Shipman et al., 2017), the researchers introduced amethod
that encode images and video images into the genome of the
Escherichia coli and read the corresponding images and videos
from the genome of living bacterial cells. All the above studies
require a large amount of DNA data.

As a complex type of genetic information, DNA sequences
have specific characteristics not only in the coding sequence
(cDNA) but also in the ncDNA sequences. Currently, the
identification of cDNAs and ncDNAs relies mainly on
experimental methods. However, traditional experimental
methods are time-consuming and laborious, and the amount
of genomic data is large and the sequence types are complex.
In this context, there is an urgent need to establish accurate
and efficient prediction methods to mine the information and
knowledge of ncDNAs and cDNAs. Computational methods,
which achieve a complementary effect, indeed effectively
improved the recognition accuracy (Zhou et al., 2016).

In this study, a SVM-based computational method was first
established to recognize the ncDNA sequences in Saccharomyces
cerevisiae (S. cerevisiae). Totally several types of features,
such as mononucleotide composition (MNC), dimer nucleotide
composition (DNC), trimer nucleotide composition (TNC),
tetramer nucleotide composition (TrNC), pentamer nucleotide
composition (PNC), and hexamer nucleotide composition
(HNC) were extracted. The optimal feature extraction strategy
was selected using SVMmachine learningmethod. The workflow
of constructing the Sc-ncDNAPred model is shown in Figure 1.

METHODS

Benchmark Dataset
In this study, the benchmark dataset was derived from the
Ensembl genome database project (Hubbard et al., 2002), which
is one of several well-known genome browsers for the retrieval of

genomic information. Experimentally validated cDNA sequences
of S. cerevisiaewere extracted from their database, which contains
6713 samples. Intercepting the ncDNAs of the S. cerevisiae based
on the initial marker information of the coding region provided
by the original genomic data. By doing so, we obtained 6410
ncDNA samples. To get rid of redundancy, the CD-HIT (Li
and Godzik, 2006) was adopted to remove those sequences that
had ≥ 75% sequence identity. Finally, we obtained 6030 and
6251 samples in ncDNAs and cDNAs, respectively. Thus, the
benchmark dataset can be formulated as

S = S+ ∪ S− (1)

where S+ contained 6030 ncDNA samples, S−contained 6251
cDNA samples and the symbol ∪ means the ‘union’ in the set
theory.

The length distribution of ncDNA samples was shown in
Figure 2. According to the graph, the length distribution of
ncDNA is mainly between 100 and 800.

Feature Vector Construction
A sample can be simplified by a convenience form as:

P = R1R2R3R4 . . . RL−1RL (2)

where Ri (i= 1,2,3 . . . L) represents the nucleotide at i-th position
in one sequence.

K-mer Composition
K-mer nucleotide composition has been applied in many fields
of bioinformatics (Liu et al., 2015b,c; Kim et al., 2017; Matias
Rodrigues et al., 2017; Orenstein et al., 2017; Liu, 2018; Liu X.
et al., 2018; Rangavittal et al., 2018). MNC equate to k = 1, DNC
equate to k= 2, TNC equate to k= 3, TrNC equate to k= 4, PNC
equate to k= 5, HNC equate to k= 6. The occurrence frequency
of k−mer(i)can be represented as:

f ki = f (k−mer(i)) =
nki

L− k+ 1

(i = 1, 2, ..., 4k; k = 1, 2, 3, 4, 5, 6) (3)

where nki denote the number of the i-th k-mer, L is the length
of the sample sequence. Thus, each DNA sample can be defined
feature vectors in different dimension of size 4k. The generalized
form of whole feature vectors X can be given by:

X = [f k1 , f
k
2 , · · · , f

k
i , · · · f

k
4k
]T (4)

Feature Ranking
Each sample sequence was represented by a large set of features,
which leads to the redundant information (Wei and Billings,
2007; Senawi et al., 2017). In order to distinguish the contribution
of different features to the prediction model. To analyze these
feature vectors, F-scoremethod (ChenW. et al., 2016; Jia and He,
2016; Tang et al., 2016, 2018; He and Jia, 2017) was adopted to
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FIGURE 1 | The workflow of Sc-ncDNAPred.

FIGURE 2 | The length distribution of ncDNA samples.

rank the feature, in this study. The F-score value of the i-th feature
is defined as:

F−score(i) =
(x̄

(+)
i − x̄i)

2
+ x̄

(−)
i − x̄i

2

1
n+−1

n+
∑

k=1

(x
(+)
k,i

− x̄
(+)
i )

2
+ 1

n−−1

n−
∑

k=1

(x
(−)
k,i

− x̄
(−)
i )

2

(5)

wherex̄i, x̄
(+)
i and x̄

(−)
i are the average values of the i-th feature

in whole, ncDNA and cDNA datasets, respectively. n+represents
the number of ncDNA training samples, n−represents the

number of cDNA training samples, x
(+)
k,i

represents the i-th feature

of the k-th ncDNA sample andx
(−)
k,i

represents the i-th feature of
the k-th cDNA sample. Obviously, the feature with a greater score
value indicates that it has a better discrimination ability.
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Support Vector Machine
Support vector machine (SVM) (Hearst et al., 1998) is a
widely used two-class classification algorithm based on statistical
learning theory. It has been proven to be powerful in many
fields of pattern recognition and data classification (Byun and
Lee, 2002; Nasrabadi, 2007; Zhang N. et al., 2018;). More and
more applications also proved that SVM also has strong data
processing capabilities in the fields of bioinformatics (Xiong
et al., 2011; Jia et al., 2013, 2017; Cao et al., 2014; Liu et al.,
2014, 2017b; Wei et al., 2015; Chen X. X. et al., 2016; Jia and
He, 2016; Yang et al., 2016; Zou et al., 2016; Xiao et al., 2017;
Qiao et al., 2018; Su et al., 2018). A set of ncDNA samples
and cDNA samples were represented by the feature vectors. The
SVM classifies the data by mapping the input feature vectors
to a high-dimensional feature space using a kernel function. In
this study, the public LIBSVM package (Chang and Lin, 2011)
was implemented to train models for discriminating between
ncDNA sequences and cDNA sequences. Here, the radial basis

function (RBF) K(Si, Sj) = exp(−γ
∥

∥Si − Sj
∥

∥

2
)was set as the

TABLE 1 | The 10-fold cross-validation results by different feature methods on the

benchmark dataset.

Methods Sn (%) Sp (%) ACC (%) MCC

MNC 80.56 87.02 83.85 0.678

DNC 92.64 92.62 92.64 0.853

TNC 96.62 97.22 96.93 0.939

TrNC 98.01 98.51 98.26 0.965

PNC 95.25 95.84 95.56 0.911

HNC 90.71 92.25 91.49 0.830

All Features 95.99 96.08 96.03 0.921

The experiments have been executed 5 times and the results were the mean values.

FIGURE 3 | The ROC curves to assess the predictive performance based on

different feature extraction methods.

kernel function. The penalty parameter C and kernel parameter
were preliminarily optimized through a grid search strategy.

Performance Evaluation
K-fold cross-validation (Chou and Zhang, 1995; Kohavi, 1995;
Zhang et al., 2012a,b, 2015; Liu et al., 2015a; Chen X. et al.,
2016; Li et al., 2016; Luo et al., 2016; Chen et al., 2017b, 2018a,b;
Pan et al., 2017a; Xu et al., 2017; He et al., 2018) is one of the
widely used approach to examine the ability of prediction model,
and other approaches: independent dataset test and jackknife test
(Chou and Shen, 2008) are also used in many applications. To
reduce the computational cost, 10-fold cross validation was used
to examine each model for its effectiveness in identifying ncDNA
sequences. The training dataset were randomly divided into 10
subsets of approximately the same size. In each iteration, one
subset was chosen as the test set and the remaining 9 subsets were
used to train the model. For a complete cycle of a 10-fold cross-
validation, the process was repeated 10 times until each subset
was chosen as a test set. This 10-fold cross-validation procedure
was repeated five times, then the results were averaged.

To evaluate the prediction performance of the models, five
classic metrics were computed (Chou, 2001; Qiu et al., 2015,
2016; Liu et al., 2017; Pan et al., 2017b; Zhang et al., 2017a; Tang
et al., 2018; Yang et al., 2018), including sensitivity (Sn), specificity
(Sp), accuracy (Acc), Matthew correlation coefficient (MCC), and
the receiver operating characteristic (ROC). Thesemeasurements
were defined as:

Sn = 1−
N+
−

N+

Sp = 1−
N−
+

N−

Acc = 1−
N+
− + N−

+
N+ + N−

MCC =
1− (

N+
−

N+ + N−
+

N− )
√

(1+ N−
+−N+

−
N+ )(1+ N+

−−N−
+

N− )

(6)

FIGURE 4 | Heap map to illustrate the F_score values of 256 different

tetramers to identify ncDNA and cDNA.
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TABLE 2 | Rules of composition of heat map.

AAAA AAAC AACA AACC ACAA ACAC ACCA ACCC CAAA CAAC CACA CACC CCAA CCAC CCCA CCCC

AAAG AAAT AACG AACT ACAG ACAT ACCG ACCT CAAG CAAT CACG CACT CCAG CCA CCCG CCCT

AAGA AAGC AATA AATC ACGA ACGC ACTA ACTC CAGA CAGC CATA CATC CCGA CCGC CCTA CCTC

AAGG AAGT AATG AATT ACGG ACGT ACTG ACTT CAGG CAG CATG CATT CCGG CCG CCTG CCTT

AGAA AGAC AGCA AGCC ATAA ATAC ATCA ATCC CGAA CGAC CGCA CGCC CTAA CTAC CTCA CTCC

AGAG AGAT AGCG AGCT ATAG ATAT ATCG ATCT CGAG CGAT CGCG CGCT CTAG CTAT CTCG CTCT

AGGA AGGC AGTA AGTC ATGA ATGC ATTA ATTC CGGA CGGC CGTA CGTC CTGA CTGC CTTA CTTC

AGGG AGGT AGTG AGTT ATGG ATGT ATTG ATTT CGGG CGGT CGTG CGTT CTGG CTGT CTTG CTTT

GAAA GAAC GACA GACC GCAA GCAC GCCA GCCC TAAA TAAC TACA TACC TCAA TCAC TCCA TCCC

GAAG GAAT GACG GACT GCAG GCAT GCCG GCCT TAAG TAAT TACG TACT TCAG TCAT TCCG TCCT

GAGA GAGC GATA GATC GCGA GCGC GCTA GCTC TAGA TAGC TATA TATC TCGA TCGC TCTA TCTC

GAGG GAGT GATG GATT GCGG GCGT GCTG GCTT TAGG TAGT TATG TATT TCGG TCGT TCTG TCTT

GGAA GGAC GGCA GGCC GTAA GTAC GTCA GTCC TGAA TGAC TGCA TGCC TTAA TTAC TTCA TTCC

GGAG GGAT GGCG GGCT GTAG GTAT GTCG GTCT TGAG TGAT TGCG TGCT TTAG TTAT TTCG TTCT

GGGA GGGC GGTA GGTC GTGA GTGC GTTA GTTC TGGA TGGC TGTA TGTC TTGA TTGC TTTA TTTC

GGGG GGGT GGTG GGTT GTGG GTGT GTTG GTTT TGGG TGGT TGTG TGTT TTGG TTGT TTTG TTTT

In these expressions, N+ and N− are the total number of
ncDNA and cDNA samples, respectively, while N+

− and N−
+ are

respectively the number of ncDNA samples incorrectly predicted
as cDNA samples, and the number of cDNA samples incorrectly
predicted as ncDNA samples.

RESULTS AND DISCUSSION

Prediction Results of Models
We used six types of effective feature extraction methods, such
as MNC, DNA, TNC, TrNC, PNC, and HNC, as input of SVM
to establish six models. The ability of each feature extraction
method to discriminate between ncDNA and cDNA samples was
compared by the 10-fold cross-validation (Table 1). As we can
see from Table 1, the model for a combination SVM and TrNC
yielded the best prediction performance, with the accuracy of
98.26%, the sensitivity of 98.01%, the specificity of 98.51%, and
the MCC of 0.965, respectively. Then, the following second best
prediction performance was yielded by TNC with the accuracy
of 96.93%, the sensitivity of 96.62%, the specificity of 97.22%,
and the MCC of 0.939, respectively. Besides, in the case of PNC,
the corresponding model still obtained a good prediction results,
which are 95.56% of accuracy, 95.25% of sensitivity, 95.84% of
specificity and 0.911 of MCC, respectively.

To further investigate the overall prediction performance of
each model, we showed the ROC curves and AUC values of
different models for the 10-fold cross-validation in Figure 3.
With the increase of k-mer value, the performance first increased
and then decreased. Comparison demonstrated that the TrNC
could produce the best results. Thus, the feature TrNC was
adopted as the final model for Sc-ncDNAPred.

To further optimize the model, we performedmultiple rounds
of experiments on TrNC to select the appropriate subset of all
256 features (see Additional file 1: Table S1 for full details);
however, the results showed no significant improvement in
the corresponding performance. The possible reason is that

FIGURE 5 | Key features of each k-mer composition selected by F-score

method. Red color denotes F-score value of each feature.

the selected feature cannot burden enough information for the
discrimination.

Compositional Analysis
To understand the 256 different tetramers bias in ncDNAs and
cDNAs, a heap map was provided in Figure 4. Each square in the
heat map corresponds to the F-score value of one tetramer (see
Table 2 for full details). Deep red in the heap map corresponds to
a strong recognition ability.

Heap map analysis revealed that tetramers include TATA,
TTTT, CAAG, CCAA, ATAT, TAAA, TGGA, TTTA, ATGG,
ATAA, AATA, and CTGG are with the F-score values ranking
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FIGURE 6 | A semi-screenshot of the top page of the Sc-ncDNAPred web-server at: http://server.malab.cn/Sc_ncDNAPred/index.jsp.

top twelve in all tetramers. In addition, we also analyzed
the other k-mer components based on the F-score method,
respectively. Among them, the two key nucleotides G and T
from MNC, the top five key dimer nucleotide composition
(TA, CG, GA, TT, and CA) from DNC, (TGG, ATA, CCA,
TAT, and TTT) from TNC, (TTTTT, ATATA, TAAAA, TATAT,
and TTTTA) from PNC, and (TTTTTT, ATTTTT, TTTTTA,
TTTTTC and CTTTTT) from HNC. These key features are
presented in a radar diagram (Figure 5). The study of these
key features can deepen the understanding of the overall
structure of the genome, which not only promotes the annotation
of the genome, but also promotes the study of biological
evolution.

Comparison With Other Classifiers
To the best of our knowledge, this is the first time that machine
learningmethod has been used to identify ncDNA in S. cerevisiae.
In order to further testify the superiority of proposed model
Sc-ncDNAPred, the predictive results of it were compared with
that of other powerful and widely used classifiers, i.e., k-Nearest
Neighbor (KNN), Naïve Bayes, Random Forest, and J48 Tree as
implemented in WEKA (Frank et al., 2004).The 10-fold cross
validation results of these four classifier for identifying ncDNA
in the same benchmark dataset were shown in Additional file
1: Table S2. The results showed that the four metrics as defined
in Eq. 6 of the proposed model Sc-ncDNAPred are all higher
than those of k-Nearest Neighbor (KNN), Naïve Bayes, Random
Forest, and J48 Tree.

Web-Server
Based on the benchmark dataset defined in Eq.1, a predictor
called Sc-ncDNAPred was established, where “Sc” stands for

S. cerevisiae and “Pred” stands for “Prediction.” For conveniences
of users’ community, a step-by-step guide about how to use the
web-server is provided as follows:

Step 1. Open the web-server at: http://server.malab.cn/Sc_
ncDNAPred/index.jsp, you will see the home page of Sc-
ncDNAPred, as shown in Figure 6. Click the “About” button
to see a brief introduction of the server.
Step 2. Paste the query DNA sequences into the input box. The
input sequence should be in FASTA format. For the example of
DNA sequences in FASTA format, click the “example” button
top above the input box.
Step 3. Click on the “Submit” button to start the prediction.
If the prediction result of a sequence is positive, its output is
“ncDNA.” Otherwise, its output is “cDNA.”
Step 4. Click on the “DataSet” button to download the
benchmark dataset.
Step 5. Click on the “Contact” button to contact us.

CONCLUSIONS

DNA assembly technology needs a large number of target
sequences of known information as data support. Non-coding
DNA (ncDNA) sequences occupymost of the organism genomes,
thus accurate recognizing of them is necessary. In this study,
an efficient computational model was proposed to identify
ncDNAs in S. cerevisiae. The tetramer nucleotide composition
(TrNC) was adopted to extract features. The F-score method
was used to analyze these feature vectors and find the key
features. The high accuracy indicated that Sc-ncDNAPred was
a powerful tool for predicting ncDNA. Finally, a free web-
server was developed based on the proposed model. We hope
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that the predictor will provide convenience to most of scholars.
Currently, annotations for the genomic sequences of most species
are lacking or unavailable. To analyze the ncDNA data of these
organisms, we can obtain data and methodological support in a
cross-species manner from annotated species. For example, we
could try to use the model built from S. cerevisiae dataset to
analyze other species of bacteria that have not been explored
in depth. In addition, we will also apply this computational
model for the prediction of potential disease related non-coding
DNA. In the future, we will apply this computational model
for the prediction of potential disease related non-coding RNA
(Chen and Huang, 2017; Chen et al., 2017a, 2018c,d; You et al.,
2017).
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The conglomerate of microorganisms inhabiting various body-sites of human, known
as the human microbiome, is one of the key determinants of human health and
disease. Comprehensive pan-genomic and functional analysis approach for human
microbiome components can enrich our understanding about impact of microbiome
on human health. By utilizing this approach we developed PanGFR-HM (http://www.
bioinfo.iicb.res.in/pangfr-hm/) – a novel dynamic web-resource that integrates genomic
and functional characteristics of 1293 complete microbial genomes available from
Human Microbiome Project. The resource allows users to explore genomic/functional
diversity and genome-based phylogenetic relationships between human associated
microbial genomes, not provided by any other resource. The key features implemented
here include pan-genome and functional analysis of organisms based on taxonomy or
body-site, and comparative analysis between groups of organisms. The first feature
can also identify probable gene-loss events and significantly over/under represented
KEGG/COG categories within pan-genome. The unique second feature can perform
comparative genomic, functional and pathways analysis between 4 groups of microbes.
The dynamic nature of this resource enables users to define parameters for orthologous
clustering and to select any set of organisms for analysis. As an application for
comparative feature of PanGFR-HM, we performed a comparative analysis with 67
Lactobacillus genomes isolated from human gut, oral cavity and urogenital tract,
and therefore characterized the body-site specific genes, enzymes and pathways.
Altogether, PanGFR-HM, being unique in its content and functionality, is expected
to provide a platform for microbiome-based comparative functional and evolutionary
genomics.
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INTRODUCTION

The variety of microorganisms inhabiting different body-sites
of human – is one of the key determinants of human health
and disease. Recent emergence of metagenomic approaches,
empowered by the technical and conceptual advancements
in low-cost, high-throughput sequencing methodologies
have enabled the scientific community to understand the
genetic/functional diversity of the “healthy microbiome”
components, a crucial step for identifying the microbial species
that are implicated in disease (Reid et al., 2011; Gupta et al.,
2017). The vast resource of microbial reference genomes
from different body-sites of healthy humans, available at Data
Analysis and Coordination Center of Human Microbiome
Project (HMP-DACC)1, provides the scientific community an
opportunity to comprehend the genomic landscape and thus
functional potential of any particular group of organisms in
various body habitats (NIH HMP Working Group et al., 2009;
Human Microbiome Project Consortium, 2012).

One of the major bioinformatic frameworks that have been
proven to be useful and informative in comparative analysis
of multiple microbial genomes is the ‘pan-genome’ approach
developed by Tettelin et al. (2005). Pan-genome of a given
species/taxon represents the complete set of non-redundant
genes from its representative genomes and is comprised of three
parts: core genes (representatives from all genomes), accessory
genes (representatives from two or more genomes, not all)
and genome specific genes. The pan-genomic profiling and
subsequent systemic functional annotation at various taxonomic
levels, varying from within-species community to cross-species
communities at intra-/inter-habitat level, offer evolutionary
insights and potential functional importance of any group
of microorganisms. Moreover, various reports reveal that the
comparative pan-genome analysis has tremendous potential for
offering new perspective on the species diversity and adaptive
strategies of human microbiome in body-site specific manner
(Rasko et al., 2008; Conlan et al., 2012; Gupta et al., 2015; Bakshi
et al., 2016; Duranti et al., 2016). Therefore, a comprehensive
resource of human microbiome providing in-depth pan-genomic
analysis of strains at various taxonomic levels, with subsequent
estimation of the functional repertoire from same or different
body-sites along with comparative analysis approach will be of
great interest.

The existing database tools for pan-genome analysis of
microbes like, MetaRef (Huang et al., 2014), MicroScope
platform (Vallenet et al., 2017), and EDGAR 2.0 (Blom
et al., 2016) provide basic pan-genomic information about
the microbes in general but lack features like user-defined
selection of strains or isolation body-site from human, in-
depth strain wise pan-genomic details of shared genes, and
strain specific presence/absence of genes along with their
functional profiling. Also, there is no such resource which
allows users to investigate/compare pan-genomes of multiple
user defined groups within human microbiome strains. To
this end, we developed PanGFR-HM – Pan-Genomic and

1https://www.hmpdacc.org/HMRGD/

Functional Repertoire of Human Microbiome components –
an online dynamic resource that systematically integrates the
functional and compositional characteristics of complete gene
repertoire of 1293 reference bacterial and archaeal genomes
from HMP-DACC. It offers options for pan-genomic analysis,
potential functional analysis using Clusters of Orthologous
Genes (COG) and Kyoto Encyclopedia of Genes and Genomes
(KEGG), and comparative analyses for any possible combinations
of genomes. The features for pan-genome analysis provide
information about core, accessory and unique gene families
among a user defined set of genomes, which can belong to a
specific taxonomical clade or body-site. PanGFR-HM allows the
users to explore the genomic and functional diversity, potential
lateral gene transfer events and phylogenetic relationships
between human associated microbial genomes, which are not
provided by any existing public domain computational resources.
Exceptionally, within a user defined set of genomes, this
resource provides information about probable gene loss events,
i.e., the genes exclusively absent from a specific genome but
present in all other genomes. Also, significant over/under
representation of KEGG/COG functional categories in different
gene families (core, accessory, unique) are provided for that
dataset. Most importantly, this resource enables users to perform
comparative analysis between different groups of microbes
(based on taxonomy and/or body-site) for common as well
as group specific functional and gene-family architectures. All
the results can be accessed freely through an online web-
interface, interactively and can be downloaded for further
analysis. We envision that, PanGFR-HM, being unique in its
content and functionality, will greatly facilitate the progress of
microbiome-based evolutionary research, clinical application of
microbial genomics and create footprints for future studies on
the composition-activity relationship of the human microbiome
components.

MATERIALS AND METHODS

Overview of PanGFR-HM
PanGFR-HM serves as an ample and appropriate resource
for exploring the genomic and functional repertoire and
diversity, phylogenetic relationships among human associated
microbial genomes by providing numerous attributes not
available in any existing computational resources. All
1293 strains belong to 8 major bacterial/archaeal phyla,
i.e., Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria, Spirochaetes, Synergistetes, and Euryarchaeota.
At genus level, these genomes represent 187 different defined
genera (see Supplementary Table S1). These microbes, as part of
human microbiome, comprise mostly of bacteria derived from
distinct body-sites of human (Detailed list of microbial species
is provided in Supplementary Table S1). Gene families (gene
clusters) generated from all annotated proteins from complete
genomes of these microbes were integrated into a database,
where pan-genomic details of any subset of these microbial
strains belonging to specific taxonomical clade or body-site, can
be dynamically retrieved.
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FIGURE 1 | Workflow for PanGFR-HM. The workflow involves preprocessing of the whole genome records from GenBank. The protein sequences from all the
available strains are then clustered using USEARCH at various sequence identity cut off levels. The gene presence/absence is determined and stored as a binary
matrix using BPGA Pipeline. The tabular data generated after sequence processing and functional assignments are then uploaded into separate MySQL databases
for respective sequence identity cut offs. Majority of the backend programs are written in PHP. Finally, various pan genomic and comparative analysis results
generated from the set of strains and clustering parameters selected by the users are then provided via the web browser.

PanGFR-HM provides the pan-genomic profile for genomes
of the interest based on user defined sequence identity criteria
for protein sequences (ranging from 40 to 90%) for detection
of orthologous clusters. The pan-genome profile comprises of
comprehensive information about core gene families, accessory
gene families, gene families with genome wise exclusive
presence and absence, and prediction of nature of pan-genome

(open/close) with statistics. PanGFR-HM integrates additional
features for reconstructing the phylogenetic relationships among
selected genomes based on concatenated core genes (users can
select 10, 20, 30, 50, 70, or 100 random core genes for this
purpose, 20 by default) as well as gene presence/absence profile
(pan-genome tree). PanGFR-HM can provide the functional
composition (based on COG and KEGG annotations) of
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core, accessory and unique gene families with over/under
representation statistics for genomes of the interest. It is also
capable of delivering information about the genes exclusively
absent from a specific genome but present in all other genomes
within a group, indicating probable gene loss events. Apart
from these, another important feature is Pan-CA, which enables
users to perform the comparative analyses of pan-genomes and
function/pathway annotations of core, accessory and unique
genes for up to four user defined groups of pan-genomes.

The web interface for PanGFR-HM has been developed
to offer a user-friendly way to access the taxonomic and
body-site specific interactive view to explore the divergence
in gene repertoire and functional composition among human
microbiota. The resource utilizes latest plotting, data storage
and computing libraries from various free community
resources. All information, including pan-genome profiles,
phylogenetic trees (based on both concatenated core genes and
gene presence/absence profile), COG and KEGG annotation
distribution (for core, accessory and unique gene families), and
protein sequences (core, accessory, unique and genes exclusively
absent from a particular strain) incorporated in PanGFR-HM
are available for download in publication level graphical, tree
(newick), table (xls) and text (fasta format of sequences) formats
wherever applicable. The protein sequences can be downloaded
as representative sets for core/accessory/unique gene families as
well as for all the members of each gene family. These sequence
files can easily be used further for evolutionary analyses,
domain/motif search, study of physicochemical properties etc.
PanGFR-HM not only provides novel aspects such as body-site
specificity and comparative analysis, but also allows users
to choose the genomes of their interest as well as sequence
identity criteria for orthology detection. The different levels
of sequence identity for orthology prediction allow users to
precisely target various evolutionary distances within human
microbiota (Pearson, 2013). These features provide PanGFR-HM
a ‘dynamic’ status instead of ‘static’ database unlike MetaRef,
MicroScope platform and EDGAR 2.0 where, no such user
defined options are available. PanGFR-HM is the only dynamic
database especially dedicated to human microbiome and
integrated huge information with unique functionality compared
to its analogs.

Database Design, Organization and
Structure
The PanGFR-HM logistics has been shown schematically in
Figure 1. The detailed schema for the database and its
connections to the web resource is available in Supplementary
Figure S1. The resource integrates bacterial and archaeal
reference genome data derived from human microbiome and
delivers the outcome in the form of pan-genome profile. An easy
to use web interface allows users to retrieve the pan-genomic
profile and information of functional distribution for any set of
available genomes.

For a user defined set of genomes the extrapolation of pan
and core genome curves can be performed by empirical power
law equations and exponential decay equations respectively

as implemented by Bacterial Pan-Genome Analysis Pipeline
(BPGA) (Chaudhari et al., 2016). Slope of the power curve
(the B value), helps users to decide the open/closed nature
of pan-genome, i.e., whether the pan-genome size increases
considerably after inclusion of additional microbial genome or
the saturation is achieved. Phylogenetic analysis can be retrieved
from core orthologous clusters and binary presence/absence
matrix (pan matrix) using MUSCLE (Edgar, 2004). It first aligns
the concatenated protein sequences of core proteins and then
builds Neighbor Joining tree upon the alignment. Users can select
the number of random core proteins (10, 20, 30, 50, 70, and
100 – default 20) in order to reconstruct the phylogenetic tree. If
less number of core proteins than the user-defined core proteins
are present, all of them will be considered for phylogenetic tree
reconstruction. The overall topology of this random core-genome
tree remains unaltered as compared to the tree formed using all
core protein sequences when present in large number (Chaudhari
et al., 2016). Core, accessory and unique protein families are then
assigned for given set of genomes along with their sequences
and function/pathway annotations. The functions are annotated
using NCBI COG database, 2014 update (Galperin et al., 2015)
and KEGG enzymes are annotated using KAAS server (Moriya
et al., 2007).

The home page of PanGFR-HM serves as the gateway to
the interlinked genomic and functional features. The interface
is capable of utilizing the database features dynamically as
instructed through interactive web input forms at the respective
web modules. The web resource is compatible with the latest
versions of Edge (version 41+), Google Chrome (version 66.0+),
Safari (version 11.1+), and Mozilla Firefox (version 59.02+).

Data Generation
The high quality complete genome sequences for 1293
bacteria and archaea were downloaded from HMRGD (HMP
Reference Genome sequence Data)1. The protein sequences
and annotations were extracted from the GenBank records
for the same. Protein sequences were clustered separately
into orthologous gene families at different sequence identity
cut-off values of 40, 50, 60, 70, 80, and 90% using USEARCH
(Edgar, 2010). The orthologous clusters were then processed
using BPGA (Chaudhari et al., 2016). Using the features of
BPGA pipeline, paralogs were discarded for the ease of analysis
and binary gene presence/absence matrix was generated.
Each orthologous cluster was then mapped with latest NCBI
COG database (last updated 2014)2 using best blast-hits for
annotation of functions and then the assignments of pathways
were done by KAAS v2.1 (KEGG Automatic Annotation
Server)3 using BBH (bi-directional best hit) method using
representative protein sequences (Moriya et al., 2007; Galperin
et al., 2015).

Database Creation
All the clustering data along with sequence and function data
were integrated into MySQL community database engine (v5.7)

2ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/
3http://www.genome.jp/tools/kaas/
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in organized manner for each identity cut-off level so that the
orthology data can be retrieved based on a query provided by the
users.

Data Processing and Delivery
Web pages were designed in HTML5. User forms and
all other calculations including SQL database queries were
processed in PHP (v7.0.9) and JavaScript. Most of the plots
generated during these analyses used Plotly (v1.29.1), the
open source JavaScript graphing library4. Sequence alignments
and phylogeny trees were generated using MUSCLE (v3.8.31)
(Edgar, 2004). Users can also import the phylogenetic trees
to iTOL (Interactive Tree Of Life) web server5 for better
visualizations, formatting and high resolution graphics (Letunic
and Bork, 2016). Phylocanvas Library is used for interactive tree
visualizations6.

Characterization of Pan-Genome
Pan-genome characterization of group of genomes is a dynamic
process and depends upon the criteria for construction of
orthologous gene families or clusters generated from clustering
tools. We utilized the USEARCH clustering tool (Linux v9.2.64)
for all proteins from 1293 currently accessible reference genomes
derived from human microbiome at HMRGD1. Using PanGFR-
HM web form, users can select any number of genomes
(maximum 200 genomes recommended) either body-site wise or
taxonomy-wise for an analysis, and consider any of the amino
acid identity cut-offs (ranging from 40 to 90% with steps of 10)
for estimating the orthologous clusters. On the basis of selected
identity cut-off value, the respective protein families are then
extracted from database along with sequence and functional
details to build the pan-genomic and functional profile.

Functional Over/Under Representation
Analysis
For a group of genomes, the differentially represented functional
sub categories of each major category of COG and KEGG
classification for pan-genome component (core, accessory and
unique) proteins are determined based on the respective major
category as reference. The statistical analysis for the significance
testing is performed using Chi-Square Test with 1 degree of
freedom. The following formula is used for calculation of Chi-
Square value for a particular sub category within a major category
of a specific pan-genome component,

x2
=

n · (a · b − b · c)2

(a+ b) · (c+ d) · (a+ c) · (b+ d)

Where, n = a+ b+ c+ d; a is the count of COG/KEGG
assignments of that particular functional sub category and b
is the count of the rest of that sub categories of that specific
pan-genome component, c and d are the respective counts
of COG/KEGG assignments of same functional sub category

4https://plot.ly/javascript/
5https://itol.embl.de/
6http://phylocanvas.org/

and rest of the sub categories of remaining two pan-genome
components. The functional sub categories which pass the
significance test are marked accordingly for over or under
representation.

Methodology for Comparative Analysis
In Pan-CA module the comparative gene analysis is performed
in two steps. First, the orthologous gene clusters from all
member genomes of each group selected by users are identified
and next every possible shared and exclusive gene clusters
between the groups are calculated. For example, if users select
strains for three groups (A, B, and C) then total seven possible
sets will be there: one core set (ABC), three accessory sets
(AB, AC, and BC) and three unique sets (A, B, and C).
Further the COG/KEGG classification of shared and exclusive
gene clusters is presented in both graphical and tabular
format. For comparative function analysis and comparative
pathway analysis in Pan-CA, only the annotated COG protein
identifiers and KEGG enzyme identifiers of all the selected
genomes are extracted and pooled instead of gene clusters,
followed by group-wise comparison for shared and exclusive
COG/KEGG identifiers. All the results are then presented by
plotting Venn diagrams (downloadable SVG or PNG images)
and providing tabular output with browsing options and
downloadable links.

RESULTS

Data Overview and Statistics
The pan-genome statistics of selective genera of human
microbiome present in PanGFR-HM are summarized in Figure 2.
The genera containing at least 5 complete genomes are selected
for this analysis. Along with core, accessory and unique gene
counts, the figure also depicts the B statistic of each pan-genome
at both 50 and 80% amino acid sequence identity cut-offs. B
statistic value gives an idea about the open or closed nature of
pan-genome. The B value toward ‘1’ indicates the open pan-
genome where pan-genome size constantly rises after stepwise
addition of new genomes. Whereas, the B value toward ‘0’
indicates closed pan-genome where pan-genome size does not
change after inclusion of additional genomes.

As shown in Figure 2, pan-genomes of the genera Aeromonas,
Finegoldia, Mobiluncus, Myroides, Peptoclostridium, and Rothia
seem to add fewer new genes with addition of new genomes
with B value < 0.4 (Chaudhari et al., 2016). These estimates may
be misleading as they are based on predictions from only few
available members of a genus (only 5–8 genomes). Whereas, the
pan-genomes of genera Escherichia, Klebsiella, Propionibacterium
and Staphylococcus are found to be not growing rapidly with
lower B values of 0.3/0.33, 0.35/0.38, 0.26/0.31, and 0.39/0.41
based on 35, 14, 80, and 56 genomes at 50/80% sequence identity
cut-offs, respectively.

Query Options
PanGFR-HM offers various features for flexible query
and comprehensive pan-genomics as well as comparative
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FIGURE 2 | Summary of pan-genome statistics for selected genera. The Neighbor Joining phylogenetic tree is constructed using 16S rRNA genes from
representatives of each taxon. The B values are depicted as heatmap and the percentages of core, accessory and unique genes as stacked bar plots for each taxon
using 50 and 80% sequence identity cut-offs. The plot and heatmap are constructed by iTOL web server using statistics calculated from PanGFR-HM.

analysis of human microbiome strains. The resource can be
navigated through any of the three options: (I) Taxonomy-
wise Pan-Genome and Functional Analysis, (II) Body-site wise
Pan-Genome and Functional Analysis, and (III) Comparative
Pan-Genome and Functional Analysis for flexible and rational
selection of strains based on various criteria. All of them deliver
in-depth analysis of the genomic and functional repertoire of
selected strains. Apart from these we have also integrated the
BLAST7 program within this resource. Therefore users can
perform BLAST search for their query sequences against any
pan-genomic profile of group of genomes.

The performance of this resource mainly depends on the size
of the selected dataset by users and collective server load. The
resource took around 15 min for pan-genomic analysis of top
10 genera (based on number of strains present) having total 699
strains run in parallel.

7https://blast.ncbi.nlm.nih.gov/Blast.cgi

Taxonomy-Wise Pan-Genome and Functional
Analysis (Pan-TX)
This module enables pan-genomic analysis of any set of the
available strains from HMP based on their taxonomy. The users
can select all the human microbiome strains from a desired
species, genus or any other taxonomic level irrespective of the
isolation site within human body. It provides phylogenetic tree
reconstruction of the selected strains based on the approaches
like pan-genome (gene presence/absence) and core-genome
(concatenated and aligned amino acid sequences of core genes)
along with the comprehensive pan-genomic and potential
functional repertoire of selected taxon.

Body-Site Wise Pan-Genome and
Functional Analysis (Pan-BS)
This module enables users to select microbiome strains for
analysis on the basis of their major site of isolation within
human body as defined by HMP. Users can also select only
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the strains isolated from a particular body-site to extract
information about gene, function and pathway repertoire among
the selected strains along with the routine pan-genomic analysis
results.

Comparative Pan-Genomic and Functional Analysis
(Pan-CA)
The Pan-CA module is another flexible and novel feature of
PanGFR-HM. This module enables users to make a flexible query
for analysis of up to 4 distinct groups of strains and derive the
comparative picture of genes, functions and pathways among
selected groups (pan-genomes). The groups can be formed on
the basis of taxonomy (like Pan-TX), isolation site of microbes
(like Pan-BS) or any other suitable criteria decided by the
users.

Output Options
Pan-genome analysis performed on strains of interest, selected
via Pan-TX or Pan-BS, delivers comprehensive pan-genome
and functional analyses results. The results include: details
of selected strains (dataset), overall pan-genome statistics
(proportion of core, accessory, unique genes) for given set
of genomes, core and pan-genome profile plots, phylogenetic
reconstruction based on core genes and pan-genome, genes
specifically absent from individual strain, distribution of proteins
in different COG and KEGG functional categories and their
over/under representation for each pan-genomic component,
and strain wise pan-genome statistics along with data or sequence
download links for all plots, phylogenetic trees and protein
sequences etc.

The comparative analyses performed in Pan-CA module
on groups of microbiome strains of interest provide results
for orthologous proteins, COG identifiers and KEGG enzyme
identifiers for all possible sets (shared and unique) between up
to four groups. Distribution of proteins or identifiers in every
possible set is explained with Venn diagrams, and data for each of
these sets is provided as spreadsheets. For comparative analysis of
orthologous proteins downloadable FASTA sequences for further
analyses and COG/KEGG classification details with plots are also
given.

When BLAST search is performed with protein sequences
uploaded by users, it generates mainly two kinds of outputs.
One of them includes pan-genomic distribution plot of gene
clusters from selected strains for building the database. The
other depicts the BLAST output spreadsheet showing how many
proteins among the queried proteins have pan-genomic orthologs
along with pan-genomic status (core/accessory/unique), KEGG
identifiers, COG identifiers, sequence alignment details etc.
For each orthologous proteins clickable links are given to
corresponding alignments, COG/KEGG and gene identifiers
details. Also a distribution plot is available summarizing pan-
genomic distribution of orthologous proteins.

Additional Novel Features
Dynamic Estimation of Pan-Genome
Pan-genome characterization of a group of genomes is a
dynamic process, which greatly depends upon the criteria for

TABLE 1 | Summary dataset of Lactobacillus strains used for comparative
analysis.

Body site No. of
strains

Total proteins Average
proteins

per
genome

Gastrointestinal tract 23 53687 2334

Oral cavity 4 10534 2634

Urogenital tract 40 69081 1727

construction of orthologous gene families or clusters generated
from the sequence clustering tools. The pan-genome estimation
may highly fluctuate for different sequence identity cut-off
criteria depending upon the rate of divergence, although
overall pan-genome characteristic does not vary much for
closely related genomes (Paul et al., 2016). Using PanGFR-
HM web form, users may select at least 5 to all genomes
(maximum 200 recommended, for more than that the resource
will take longer time) at a time, and proceed for analysis
based on various sequence identity cut-offs ranging from
40 to 90% for constructing orthologous protein clusters.
This feature brands PanGFR-HM as a dynamic server, not
just a static database with pre-calculated clusters with fixed
parameters.

Exclusive Absence of Genes: A Clue to Gene Loss
Events
It is well known that bacterial genomes acquire new genes
from surrounding gene pools to get an adaptive advantage to
the environmental or cellular changes (Dutta and Pan, 2002;
Popa et al., 2011; Arber, 2014; Li et al., 2014). Most of these
genes fall under unique genes category in any pan-genome
analysis due to lack of orthologs in related organisms. Apart
from these unique genes, another very important evolutionary
process is gene loss, which may be another adaptive strategy for
genome evolution (Hottes et al., 2013; Bolotin and Hershberg,
2015). The gene loss events are often hard to track down at
sequence level. A novel feature is integrated in PanGFR-HM
for investigating the genes exclusively absent (not matching
under given sequence identity cut off) from a genome but
present in all other genomes of the users selected dataset. By
exclusive gene absence analysis in PanGFR-HM, one can estimate
such probable events, in silico. These exclusively absent genes
might also be important for adaptation of the microbes at
a specific niche. PanGFR-HM specifically extracts those gene
families and provides their sequences for download and function
annotations.

Functional Over/Under Representation Analysis
The assignments of COG and KEGG functional classification are
done for core, accessory and unique gene sets. The significantly
over and underrepresented functional categories within a major
category among the above sets are reported. The feature aids in
understanding the gene divergences which led to the functional
evolution of pan-genome.
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FIGURE 3 | Comparative analysis for Lactobacillus strains from gut, oral cavity and urogenital tracts. Venn diagrams depict the number of gene families (A), COG
proteins (B) and KEGG enzymes (C) at three body-sites. Distribution of major KEGG functional categories for 1192 core enzymes is shown as pie chart (D). Bar
plots are created in order to illustrate the distribution of detailed core functional KEGG enzymes (E) and COG proteins (F).

BLAST Search Against Pan-Genomic Profile
This feature allows users to paste/upload their own protein
sequences in FASTA format and perform the BLAST search
against user defined pan-genomic profile from PanGFR-HM.
Users have the option to select strains of interest (either based
on taxonomy or isolation site) in order to create a representative
set of pan-genomic profile, which will be used as database
for BLAST search. Therefore, if the query sequences have
orthologous proteins in pan-genome set, the queried proteins will
be annotated accordingly. Thus, by performing the BLAST search
against any user-defined pan-genomic profile for all the proteins
in any new genome of interest, it is possible to define the core,
accessory and unique proteins of that new genome.

Demonstration of Comparative Analysis
and Its Applications
For demonstration of Pan-CA Module, we considered all
available Lactobacillus strains from human microbiome and
divided them into three groups according to their major body-site

of isolation, i.e., human gastrointestinal tracts (gut), oral cavity
and urogenital tracts. The summary of selected dataset is shown
in Table 1. The complete list of strains used for this analysis is
provided in Supplementary Table S2.

These three groups are provided as input for comparative
analysis to retrieve group specific exclusive sets of gene families,
KEGG enzymes, and COG annotated proteins. The analysis
reveals interesting trend about the peculiar gene/function
repertoire of these three groups and created a comparative
evolutionary portrait of Lactobacillus strains at the distinct body-
sites.

The Gene Family Distribution
The complete set of proteins upon clustering (using sequence
identity cut-off of 50%) generates the protein families for
all members of three groups. The group specific exclusive
sets are calculated along with all other possible combinations
between groups. Then the shared and exclusive gene sets
are extracted with sequences. As shown in Figure 3A, there
are 2477 gene families which contain proteins from at least
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one member from each body-site. Out of these 2477 gene
families, 68 gene families are found in all the 67 Lactobacillus
strains irrespective of body-sites representing the absolute
core; most of them are involved in house-keeping functions
like translation and cell wall/membrane/envelop biogenesis.
While, the remaining 2409 gene families represent extended
core set. There are 10185, 5557 and 2059 gene families
specific for gut, urogenital tract and oral cavity respectively
(Figure 3A).

The COG Function Distribution
The comparison of COG identifiers pooled together for each
Lactobacillus group provides exclusive COG functions present
at respective body-site at annotation level; irrespective of strain
details. Figure 3B shows the distribution of COGs between the
three Lactobacillus sets. There are total 1348 COGs common
to all the three Lactobacillus groups, i.e., core in nature. As
shown in Figure 3F, most of the Core COGs fall under Amino
acid transport and metabolism, Translation and Carbohydrate
transport and metabolism. The distributions of body-site specific
functional categories are also retrieved through Pan-CA module
(see Supplementary Figures S2–S4).

The KEGG Enzyme Distribution
The comparison of KEGG enzymes pooled together for each
Lactobacillus group provides exclusive pathway profile present at
respective body-site at pathway level; irrespective of strain details
(Figure 3C). Most out of these 1192 core enzymes are involved
in Metabolism and Genetic information processing (Figure 3D).
Upon detailed analysis, the proportions of genes in Translation,
Carbohydrate metabolism, and Membrane transport pathway
categories are found to be high within these core enzymes
(Figure 3E).

The results also reveal about gut, oral cavity and urogenital
tract specific enzymes among Lactobacillus strains (see

Supplementary Figures S5–S10). Overall, the gut, oral and
urogenital tract specific enzymes show highest proportion of
Membrane transport related pathways. However, the Cell motility
pathways are highly represented in gut specific Lactobacilli; this
is in conformation of previous reports suggesting biological
significance for presence of cell motility in gut bacteria which
may potentially favor better acquisition of nutrients and
successful colonization to the niche environment (Cousin et al.,
2015). Cancer related pathways are present in oral Lactobacilli
only, indicating possible role of oral microbiota in carcinogenesis
(Meurman, 2010). Signal transduction related pathways are in
higher proportion in urogenital tract Lactobacilli as compared to
those from other body-sites, also reported previously (Mendes-
Soares et al., 2014). Such body-site specific enzyme sets might
be involved in body-site specific adaptive strategies during
human-microbe co-evolution.

Comparison of PanGFR-HM With Other
Resources
PanGFR-HM is the only resource providing comprehensive
pan-genomic analysis exclusively for the human microbiome
strains. Also, as per our knowledge, no resource provides online
comparative gene, COG/KEGG classification analysis of user-
defined groups of microbiome strains. However, some related
resources are considered here for overall comparison of pan-
genomic output on microbial data irrespective of their relation
to human microbiome context. The details can be accessed from
Table 2.

DISCUSSION

The prime objective of PanGFR-HM was to create a user friendly
dynamic platform, which applies concept of pan-genome to
better understand genomic/functional repertoire of inhabitant

TABLE 2 | Comparison of PanGFR-HM with other microbial pan-genome analysis resources.

Functional feature PanGFR-HM† EDGAR 2.0 Micro Scope MetaRef

No. of genomes included 1293 (S.) 2160 (N.S.) 3871 (N.S.) 2818 (N.S.)

Pan-genome distribution X X X X

Pan, core profile (development) plots X X X ×

Strain wise pan-genome distribution X X X ×

Core-genome based phylogeny X X × ×

Forming groups of strains X X × ×

Sequence identity cut-off setting option X#
× X∗ ×

Editable and interactive plots X × × ×

Pan-genome based phylogeny X × × ×

Strain wise sequence retrieval from pan-genome X × × ×

Exclusive gene distribution X × × ×

Exclusive COG and KEGG distribution X × × ×

Over/under-representation of functional classes X × × ×

Exclusive absence of genes X × × ×

COG and KEGG distribution of pan-genome X × × ×

†Present tool, #40–90% (40, 50, 60, 70, 80, and 90%) identity cut-off options available, ∗Only 50 and 80% identity cut-off option available, S., Specific to human
microbiome, N.S., Non Specific, X-present, ×-absent. Features listed in italics are exclusive to PanGFR-HM.
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microbes of the human microbiome. This web resource is
equipped with unique features to extrapolate the genomic data to
speed up and simplify pan-genomic and functional comparative
analyses on large datasets of reference microbes from the human
body.

Limitations of the Pan-Genome
Construction Methods
In cases of orthology based pan-genome approaches, the
sequence identity cut-off is the critical parameter which
determines if the given gene family belongs to conserved genome
or dispensable genome. Larger changes in the cut-off values
may considerably change the status of gene family. The higher
identity cut-off (more than 70%) may reduce the ‘core’ set
and increase the accessory or strain specific gene sets. On
the other hand, lower identity cut-off used for exactly same
dataset will allow more genes to be assigned as core genes
based on lower threshold for ortholog prediction. Also, the
protein diversity within a selected taxon, clade or dataset is
one of the factors for deciding appropriate identity cut-off.
The members of same species are closely related in taxonomic
and evolutionary aspects. They need higher identity cut-offs to
establish the orthology in order to reveal recent evolutionary
changes. As we move from specific taxonomic levels like species
to genus or more general ones, the members become distant
in terms of genome evolution, so, lower identity cut offs are
recommended. So, the default 50% used for PanGFR-HM seems
optimal for related organisms up to genus or family level, but
again the genome diversity characteristics of each genus or
family may vary. The users need to set these parameters with
caution.

Availability of Complete Genomes for
Human Microbiota
The present dataset of completely sequenced microbial genomes
isolated from human body specific sources may not represent
the complete picture of the microbiome, it will always remain
a work in progress for a while. The advantage of pan-genome
based concept is that it hints you toward the sequencing effort
needed for certain taxa, i.e., whether the number of strains used
in pan-genome are sufficient to explain the genomic architecture
of particular taxon. For taxa showing open pan-genomes need
more and more completed genomes of its members for more
comprehensive genomic landscape of those taxa, while the near-
closed pan-genome suggests limited gene acquisition and loss
within that taxon.

CONCLUSION

This resource will encourage researchers to study essential
and ubiquitous microbiota at various taxonomic levels and
enable them to gaze into the intricate functional and pathway
details of specific groups of microbiome communities. Currently,
the resource is focused to the genomic/functional repertoire
of completely sequenced microbial genomes from HMP, and
in future we plan to make the database more resourceful

with each update by incorporating new complete genomes,
draft genomes and genomes from other sources. As there will
be additional newly sequenced complete microbiome stains
available through human microbiome or other microbiome
projects we plan to update the database contents twice a year to
accommodate those strains. Obviously, the more the reference
genomes better will be the overall representation of pan-
genomic features. PanGFR-HM is committed to accommodate
the expanding taxonomic and genomic landscape of the human
microbiome.

AVAILABILITY OF SUPPORTING DATA
AND MATERIALS

The resource can be freely accessed at http://www.bioinfo.iicb.
res.in/pangfr-hm/. All the complete genomes used for generation
of PanGFR-HM were publically available from https://www.
hmpdacc.org/HMRGD/ (The complete list of genomes used for
PanGFR-HM is available in Supplementary Table S1). The case
study results on 67 Lactobacillus strains can be reproduced
from http://www.bioinfo.iicb.res.in/pangfr-hm/pan-ca.html, by
selecting the strains listed in Supplementary Table S2.
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There are countless microbes in the human body, and they play various roles in the
physiological process. There is growing evidence that microbes are closely associated
with human diseases. Researching disease-related microbes helps us understand the
mechanisms of diseases and provides new strategies for diseases diagnosis and
treatment. Many computational models have been proposed to predict disease-related
microbes, in this paper, we developed a model of Adaptive Boosting for Human
Microbe-Disease Association prediction (ABHMDA) to reveal the associations between
diseases and microbes by calculating the relation probability of disease-microbe pair
using a strong classifier. Our model could be applied to new diseases without any
known related microbes. In order to assess the prediction power of the model, global
and local leave-one-out cross validation (LOOCV) were implemented. As shown in the
results, the global and local LOOCV values reached 0.8869 and 0.7910, respectively.
What’s more, 10, 10, and 8 out of the top 10 microbes predicted to be most likely to
be associated with Asthma, Colorectal carcinoma and Type 1 diabetes were all verified
by relevant literatures or database HMDAD, respectively. The above results verify the
superior predictive performance of ABHMDA.

Keywords: microbe, disease, association prediction, adaptive boosting, decision tree

INTRODUCTION

Microbes are ubiquitous in our lives. After deeper research, microbes could be simply divided
into the following types: bacteria, fungi, viruses, archaea, protozoa, and so on (Sommer and
Backhed, 2013). As we all know, there are a number of microbes living in the human tissues,
such as gut (Grenham et al., 2011), skin (Fredricks, 2001) and lung (Cole, 1989). Cells are
the basic unit of our body’s structure and function, and our body contains more than 40
trillion cells, but studies have shown that the number of microorganisms in humans is 10%
more than the number of cells, which shows that the microbial community is relatively large
in the human body (Sender et al., 2016). There are studies showing that microorganisms are
involved in many biological processes in the human body, such as metabolic function, immune
function, and so on (Gill et al., 2006). For example, in the intestinal tract of the adult, most
of the intestinal microbes living in the gastrointestinal tract are able to not only synthesize
necessary amino acids and vitamins, but also are conducive to the digestion and absorption of
indigestible food (Huang Z.A. et al., 2017). So it is not surprising that there are links between
microbes and human diseases (Consortium, 2012).Some researchers had found a close relationship
between human type 2 diabetes and changes in the composition of the intestinal microbiota
(Larsen et al., 2010). Gut microbes could induce colorectal cancer by generating butyrate that
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promoted the hyperproliferation of MSH2(−/−) colon epithelial
cells (Belcheva et al., 2014). There was also evidence that toxins
produced by microbes such as Streptococcus and Staphylococcus
aureus had been shown to be a new class of allergens that
could induce or even aggravate inflammatory skin diseases
(Skov and Baadsgaard, 2000). Therefore, revealing disease-related
microbes not only helps to further understand the pathogenesis
of the disease but also provides new strategies for the diagnosis
and treatment of the disease. Although some proven disease-
microbe associations have been documented in the database
HMDAD (Ma et al., 2017)1, such as Allergic asthma-Helicobacter
pylori, Allergic sensitization-Clostridium difficile, and Asthma-
Bacteroidetes, these are far from enough. Unfortunately, using
biological experiments to reveal the relationship between disease
and microbes is cumbersome and costly. Therefore, it is
imperative to predict the potential disease-related microbes by
constructing computational models.

According to the assumption that functionally similar
microbes tend to be associated with similar diseases, by
integrating two separate recommendation algorithms based
on neighbor information and network topology, respectively,
Huang Y.A. et al. (2017) developed a neighbor and graph based
combined recommendation model for human microbe-
disease association prediction (NGRHMDA) to predict
potential disease-related microbes. As a combination of
two independent recommendation models, the prediction
accuracy of NGRHMDA was significantly improved compared
to a single recommendation model. Unlike previous methods,
NGRHMDA was an unsupervised learning method that did
not require negative samples. Of course, there were some
restrictions on NGRHMDA. Firstly, NGRHMDA could not
be applied to predict microbes associated with new diseases
without any known related microbes. Secondly, the optimal
values of some parameters in the model were still not solved.
Huang Z.A. et al. (2017) proposed a method of Path-Based
Human Microbe-Disease Association prediction (PBHMDA)
by integrating confirmed disease-microbe relations and the
Gaussian interaction profile kernel similarity for diseases and
microbes into a heterogeneous network. This model traversed
all possible pathways between microbes and diseases through
a novel depth-first search algorithm to predict the most likely
disease-associated microbes. Both global and local leave-one-out
cross validation (LOOCV) AUC values of PBHMDA were
greater than 0.9, which showed that the prediction accuracy
of PBHMDA was quite impressive. Regrettably, this model
still had some shortcomings. Firstly, both the disease–disease
similarities and microbe–microbe similarities were obtained
from the Gaussian kernel for interaction profiles of microbes
and diseases that were calculated based on the known disease-
microbe associations, which might be biased for diseases with
more known related microbes. Secondly, PBHMDA was also
not suitable for new diseases. What’s more, based on the known
human microbe-disease association network obtained from
the HMDAD database, Wang et al. (2017) proposed a novel
computational model of Laplacian Regularized Least Squares

1http://www.cuilab.cn/hmdad

for Human Microbe-Disease Association (LRLSHMDA) to
reveal potential disease-related microbes (Wang et al., 2017).
LRLSHMDA applied a semi-supervised learning framework
due to the lack of pairs of disease-microbes that had proven
to be unrelated. In this model, the microbe similarity network
and the disease similarity network were constructed based on
the Gaussian interaction profile kernel similarity calculated by
known microbe-disease association, and then by constructing
and optimizing the cost functions in microbe space and disease
space to integrated the optimal classifier functions to calculate
the relation probabilities of microbe-disease pairs. Although
the reliable prediction performance of LRLSHMDA had been
verified, the model still had some shortcomings that needed
further improvement. Firstly, the number of proven-microbe
associations was too small, and sparse known association
network might affect the prediction performance of the model.
Secondly, LRLSHMDA could not be suitable for new microbes
without any known related diseases.

In addition, Ma et al. (2017) built a microbe-disease
association network based on published literature, and
constructed a disease–disease network (Human Microbe
Disease Network, HMDN) based on disease-associated microbes
where the weight of the link between diseases was the similarity
of microbes associated with the corresponding disease, and
then by integrating data of disease genes, symptoms, chemical
fragments, and drugs to investigate the overlaps between
microbes and genes. Chen et al. (2017a) built a microbe-
human disease association network and proposed a novel
computational model of KATZ measure for Human Microbe-
Disease Association prediction (KATZHMDA) based on this
hypothesis that functionally similar microbes tend to have similar
interactions and non-interactive patterns with non-infectious
diseases and vice versa. By merging known disease-microbe
association networks, disease similarity networks and microbe
similarity networks into a heterogeneous network, KATZHMDA
integrated walks with different lengths in the network to
calculate the relation probability between microbe and disease.
As a global computation method, KATZHMDA was capable of
simultaneously revealing microbes associated with all diseases
in a large-scale network. However, KATZHMDA still had many
problems need to be solved in the future. For example, the
problem of the optimal value of the parameter k had not been
solved yet, and the prediction accuracy of KATZHMDA needed
to be improved.

The above methods had various shortcomings. For instance,
some models were not suitable for new diseases, and the optimal
values of the parameters in some models were not well solved. For
the sake of revealing the association between microbe-diseases
better, in this paper, we proposed a model of Adaptive Boosting
for Human Microbe-Disease Association prediction (ABHMDA)
to uncover the associations between diseases and microbes by
calculating the relation probability of disease-microbe pair using
a strong classifier. Compared with the above methods, our model
had the advantage of predicting microbes associated with new
diseases. Since the number of negative samples was much larger
than that of positive samples, we introduced k-means clusters
to sample negative samples to balance the samples for training.
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What’s more, the strong classifier was composed of multiple
weak classifiers according to the corresponding weights, and the
higher the prediction accuracy of weak classifier, the greater the
weight of it. We applied global and local LOOCV to evaluate
the prediction performance of ABHMDA. As the results shown,
the global and local LOOCV values reached 0.8869 and 0.7910,
respectively, which indicated that the model’s prediction power
was reliable. Besides, we used ABHMDA to conduct case studies
on three diseases. 10, 10, and 8 out of the top 10 microbes
predicted to be most likely to be associated with Asthma,
Colorectal carcinoma and Type 1 diabetes were all verified by
relevant literatures or database HMDAD, respectively.

MATERIALS AND METHODS

Human Microbe-Disease Associations
We could obtain 450 known associations between 292 microbes
and 38 diseases from Human Microbe-Disease Association
Database (HMDAD) (Ma et al., 2017). For the reason that there
were several grades of microbe classification, and when using
16s RNA sequences to study microbes, only the information in
the level of genus would be acquired, we revealed the microbes
which were likely to be related with human diseases in genus level.
Besides, we defined the adjacency matrix A, if there was known
association between disease d (i) and microbes m

(
j
)
, the value

of the element A
(
d (i) , m

(
j
))

matrix A was 1. We applied the
variable nd, nm to denote the number of diseases and microbes
studied, respectively.

Gaussian Interaction Profile Kernel
Similarity
Inspired by this article (Laarhoven et al., 2011), Considering the
assumption that if two similar diseases were associated with two
microbes, respectively, the two microbes were likely to be similar,
and there were similar interaction and non-interaction pattern
between diseases and microbes, Gaussian interaction profile
kernel similarity for disease KD was constructed to indicated the
similarities between diseases based on the known associations
of disease-microbe pairs. Firstly, binary vector IP

(
d (i)

)
was

defined to represented the interaction profiles of diseases d(i)
by observing whether there was a known association between
disease d(i) and each microbe (i.e., the ith row of the adjacency
matrix A). Then, the Gaussian interaction profile kernel similarity
between disease d(i) and d(i) could be calculated as follow:

KD
(
d (i) , d

(
j
))
= exp

(
−γd||IP

(
d (i)

)
− IP

(
d (i)

)
||

2) (1)

Here, parameter γd was introduced to regulated the kernel
bandwidth and got by normalizing another parameter γ′d by the
average number of related microbes of all the diseases. γd was
calculated as follow:

γd =
γ′

d∑
1 nd||IP(d(i))||2

nd

(2)

where the value of γ′d was 1.

The definition of Gaussian interaction profile kernel similarity
for microbe KM was similar to KD

Integrating Symptom-Based Disease
Similarity
From the above we could see that Gaussian interaction profile
kernel similarity was only based on the adjacency matrix A. If we
wanted to effectively and scientifically predict potential disease-
associated microbes, it was necessary to introduce other datasets
in combination with the Gaussian interaction profile kernel
similarity. Based on the disease and corresponding symptom
recorded in PubMed bibliography. Zhou et al. (2014) calculated
similarity between diseases and constructed the symptom-based
human disease network (HSDN). Here, we integrated the
Gaussian interaction profile kernel similarity for disease KD
and the symptom-based disease similarity SDM to obtained
the Integrating symptom-based disease similarity SD, and the
calculation of SD was defined as follow:

SD =
KD+ SDM

2
(3)

ABHMDA
Motivated by this paper (Rayhan et al., 2017), we constructed a
novel calculation model of ABHMDA to predict disease-related
microbes and the flow chart of the algorithm was shown in
Figure 1. The core idea of ABHMDA was to train different
classifiers (weak classifiers) for the same training samples, and
then grouped these weak classifiers with different ratios to form
a stronger classifier to score and sort samples. Here, we chose
the decision tree as our weak classifier. The specific steps were
mainly divided into three steps: integrating the data, training the
model, and scoring the samples. In the first step, we integrated
the Gaussian interaction profile kernel similarity for microbe KM
and the Integrating symptom-based disease similarity SD. In the
second step, we firstly referred to the sample with confirmed
association as a positive sample, otherwise it was an unknown
sample. On account of the unknown sample accounting for about
97% in all the samples, that was to say, there were far more
unknown samples than positive ones, and it was unreasonable
to directly train such unbalanced datasets. Here, we introduced a
novel method to balance the datasets. In this method, we applied
the k-mean clustering to divide the unknown sample into k
parts, and then randomly extract some samples from each part as
negative samples, while positive samples kept unchanged. There
were researchers studying the effect to random extraction when
k took different values, and the results shown that the optimal
value of parameter k was 23. In order to make the dataset used
for training more balanced, the number of the unknown samples
randomly selected ought to be approximately equal to the positive
sample. In the end, the negative and positive samples together
formed the training samples. Each training sample was weighted
with an initial weight of 1

n , where n was the total number of
training samples. The main purpose of the training process was to
calculate the proportion of each weak classifier in the final strong
classifier and update the weight of each training sample according
to whether it was classified correctly by the last classifier and the
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FIGURE 1 | The flowchart of ABHMDA includes three steps: preparing the data; training the model; and scoring and ranking the disease-microbe pairs.

overall classification accuracy of the last classifier. After updating,
the new training sample set with modified weight values was sent
to the next weak classifier for training. Here, we built lists DI, h(i)
and Y , all of which had n elements. The value of each element in
Di was the weight of the corresponding sample when the ith weak
classifier trained the sample. The value of i was 0, 1, 2, , , , 29. In
other words, D0 was a list with all elements being 1

n . The value
of the element in label lists h (i) and Y was only 0 or 1, and the
difference between them was that the value of h(i)j depended
on the prediction of the ith weak classifier, while the value of Yj
depended on whether the corresponding sample was a positive
sample, if the corresponding sample was a positive sample, the
value of Yj was equal to 1, otherwise 0. The error function ∈i was
calculated as follow:

∈i=

n∑
j=1

Di1h(i)j6=Yj (4)

It could be seen from the formula that the error function ∈i
was equal to the sum of the weights of the samples, whose label
predicted by the weak classifier h (i)j was different from the
known label Yj. That was to say ∈i was equal to the sum of the
weights of all the samples that were predicted wrong. Then the
proportion of the ith weak classifier in the strong classifier could
be defined as follow:

αi =
log 1−∈i

∈i

2
(5)

It could be seen from equation (5) that the smaller the error
function was, the larger the proportion of the weak classifier
in the strong classifier would be. And the variate Zi could be
calculated as follow:

Zi = 2 [∈i (1− ∈i)]2 (6)

The weight of the sample could be updated according to the
following formula:

Di+1
(
j
)
=

1
Zi

Di
(
j
)

e−αiYjh(i)j (7)

Here j = 0, 1, 2...n− 1. After the weights of samples being
updated, the samples with the new weights were sent to the
next weak classifier to start the next training until all the weak
classifiers completed the training (Theoretically, the more weak
classifiers, the higher the prediction accuracy of strong classifier.
But when the weak classifier reached a certain number, the
prediction accuracy tended to be stable. And then as the number
of weak classifiers increased, accuracy was not significantly
improved, but the prediction process took longer. We compared
the prediction results with 20, 30, and 40 weak classifiers, the
accuracy of using 30 and 40 weak classifiers was basically the
same, which was better than 20 weak classifiers. However, the
prediction time of 40 weak classifiers was longer than using 30
classifiers. Comprehensive consideration of prediction time and
accuracy, here, we chose to use 30 weak classifiers to form the
final strong classifier.), then the training process was end. The
next step was to score the sample, and the score of the jth sample
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was defined as follows:

s
(
j
)
=

29∑
i=0

αiH (i)j (8)

Here, H (i)j was the score scored by the ith weak classifier for the
jth sample. That was to say, the score of the sample was equal
to the sum of the product of the sample’s goal scored by weak
classifier and the corresponding weight (The corresponding data
and code had been submitted to the website2).

RESULTS

Performance Evaluation
In order to verify the prediction performance of ABHMDA,
we implemented global and local LOOCV for our model based
on the database HMDAD (Ma et al., 2017) which recorded
450 known associations between 39 diseases and 292 miRNAs.
Specifically, each of the 450 samples (positive samples) with
known association was left out in turn as a test sample while
the remaining 449 were used for model training, while all of
the samples without known associations were considered as
candidate samples (unknown samples). In global LOOCV, we
sorted the test sample with all candidate samples based on the
score marked by calculation model, while the test sample was
ranked with the candidate samples that contained the same
disease as the test sample in local LOOCV. We evaluated the
prediction performance of models based on the AUC value of
the LOOCV. To be specific, only the test sample ranked above
a certain threshold, could it be considered as a correct prediction,
and then we set the true positive rate (TPR, sensitivity) as the
horizontal axis and the false positive rate (FPR, 1-specificity) as
the vertical axis. Therefore, we could plot the Receiver operating
characteristics (ROC) curve, which was composed of points
corresponding to different thresholds, then we could obtain the
Area under the ROC curve (AUC). A model with an AUC value
equal to 0.5 was equivalent to a random prediction. When the
AUC took the maximum value of 1, the model had excellent
prediction performance. In other words, when the value of AUC
was greater than 0.5 and less than 1, the larger the value was, the
better the prediction performance of the model would be.

As shown in Figure 2, the global LOOCV value of
ABHMDA was 0.8869, which was significantly larger than that
of KATZHMDA (0.8644) and LRLSHMDA (0.8843). What was
more, the local LOOCV value of our model reached 0.7910,
which was also obviously better than KATZHMDA (0.6998)
and LRLSHMDA (0.7508). These results confirmed the superior
prediction performance of ABHMDA

Case Study
In order to further assess the prediction ability of ABHMDA,
we implemented two case studies on some important diseases
of human. In the first kind, there were 10938 unknown samples
about 39 diseases and 292 miRNAs in HMDAD. We sorted

2https://github.com/githubcode007/ABHMDA

and ranked all unknown samples corresponding to the same
disease and verified whether the association between the top 10
microbes and the disease studied was verified by the relevant
literature. In the second kind, we converted all 1 in the adjacency
matrix A to 0 and sorted all the samples (positive and unknown
samples) corresponding to the same disease and then verified
the association between disease and the 10 microbes most
likely associated with it predicted by the model in the database
HMDAD. In other words, the purpose of the second case study
was to verify our model’s power to predict microbes associated
with new diseases without any known related microbes. Here,
we implemented the first case study on asthma, Colorectal
carcinoma, and the second case on Type 1 diabetes.

As an inflammatory disease on the airway, it was very difficult
to completely cure asthma under current medical conditions
(Preston et al., 2007). According to statistics, there were about
300 million asthma patients worldwide, and in recent years its
morbidity and mortality had also increased rapidly, especially
in developing countries (Sagar et al., 2014). Therefore, a deeper
study of asthma was imperative, and studies had shown that there
was a close relationship between the microbes in the respiratory
tract and the development and progression of asthma (Marri
et al., 2013). For example, studies had shown that Firmicutes was
reduced in asthmatic patients compared with normal humans
(Wu et al., 2018). In contrast, Proteobacteria accounted for a
larger proportion of microorganisms in asthma patients than
normal people (Marri et al., 2013). What’s more, there was
evidence that when the hypopharyngeal area of Neonates was
infected with Streptococcus pneumoniae, the risk of developing
asthma was increased compared to uninfected (Bisgaard et al.,
2007). We implemented the first case study of asthma and the 10
microbes predicted to be most relevant to asthma were all verified
by literatures. For instance, the experimental results showed that
the abundance of Lachnospiraceae (First in the prediction list)
in asthma patients was 1.9 times that of normal people (Jung
et al., 2016). The researchers found that the relative abundance
of Veillonella (Second in prediction list ) in infants at risk
of asthma was significantly lower than in normal people, and
inoculation of sterile mice with Veillonella could improve its
airway inflammation, which provided new ideas for the treatment
of asthma (Arrieta et al., 2015). Moreover, there was evidence that
if there was Clostridium coccoides (Third in prediction list) in a
3 week old baby’s stool, he was at risk of developing asthma, so
Clostridium coccoides may become an early diagnostic target for
asthma (Vael et al., 2011; See Table 1).

To facilitate further research and validation, we provided
a ranking of the relevant probabilities for all pairs of
disease-microbe pairs without confirmed association (See
Supplementary Table S1).

Colorectal carcinoma (CRC) was a common gastrointestinal
malignant tumor in China (Xue et al., 2014). As one of the top
cancers with the highest morbidity and mortality worldwide, it
was estimated that there were approximately one million new
cases of CRC and 500000 deaths per year (Sun et al., 2013).
What was more serious was that its incidence would continue
to increase in the next few decades, and the survival rate in
5 years was less than 60% (Sun et al., 2011). Therefore, it
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FIGURE 2 | Comparison of prediction performance of ABHMDA with two other computational models (KATZHMDA, LRLSHMDA) in terms of ROC curves and AUCs
values based on global and local LOOCV. As shown in the results, the global and local LOOCV values of ABHMDA were 0.8869 and 0.7910, respectively, which
were significantly larger than that of KATZHMDA (0.8644, 0.6998) and LRLSHMDA (0.8843, 0.7508).

TABLE 1 | The 10 microbes predicted to be most likely to be associated with the
Asthma.

microbe Evidece

Lachnospiraceae PMID: 27433177

Veillonella PMID: 26424567

Clostridium coccoides PMID: 21477358

Firmicutes PMID: 23265859

Streptococcus PMID: 17928596

Actinobacteria PMID: 23265859

Lactobacillus PMID: 20592920

Bacteroides uniformis PMID: 27433177

Enterococcus PMID: 22641478

Escherichia coli PMID: 26277095

The first column records the top 10 microbes most likely to be related Asthma, and
the second column records the databases and experimental literatures in PubMed,
which verify the associations between the corresponding microbe and Asthma.

was necessary to study the pathogenesis of CRC to explored
new treatment methods, and studies had shown that microbes
played an important role in the development and progression
of cancer that were closely related to inflammation like CRC
(Liang et al., 2014). For example, there were studies showing
that the number of Lactobacillus hamster increased significantly
during the formation of CRC (Liang et al., 2014). The researchers
compared CRC cases with the normal control group and found
that the relative abundance of phylum Bacteroidetes in the case
group reached 16.2%, which was much higher than 9.9% of
the normal group (Ahn et al., 2013). We applied ABHMDA to
implement the first case study on CRC, and the 10 predicted
microorganisms most likely to be associated with CRC were all
verified by related literature in PubMed. There was evidence
that the relative abundance of Veillonella (First in the prediction

TABLE 2 | The 10 microbes predicted to be most likely to be associated with the
Colorectal carcinoma.

microbe Evidece

Veillonella PMID: 22761885

Klebsiella PMID: 22776247

Enterobacteriaceae PMID: 25182170

Proteobacteria PMID: 24603888

Lachnospiraceae PMID: 21850056

Clostridium coccoides PMID: 19807912

Streptococcus PMID: 21247505

Actinobacteria PMID: 24316595

Lactobacillus PMID: 15828052

Bacteroides uniformis PMID: 24828543

The first column records the top 10 microbes most likely to be related Colorectal
carcinoma, and the second column records the databases and experimental
literatures in PubMed, which verify the associations between the corresponding
microbe and Colorectal carcinoma.

list) in CRC cancer tissues was 2.87% and only 0.68% in the
intestinal lumen (Chen et al., 2012). Pyogenic liver abscess was
identified as an early manifestation of adult CRC, and an 11-
year follow-up study showed that pyogenic liver abscess patients
with Klebsiella (Second in the prediction list) pneumoniae had
a higher probability of having CRC than those without (Huang
et al., 2012). What was more, there were studies showing that
Enterobacteriaceae (Third in the prediction list) was very rich
in CRC patients (Arthur et al., 2014). From the above results, it
could be seen that the predicted performance of ABHMDA was
very reliable (See Table 2).

Type 1 diabetes was an autoimmune disease which resulted
from the immune-mediated destruction of insulin-producing
pancreatic β cells (Li et al., 2014). The incidence of Type 1
diabetes was increasing globally, but the proportion of patients
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TABLE 3 | The 10 microbes predicted to be most likely to be associated with the
Type 1 diabetes.

microbe Evidece

Veillonella confirmed

Bacteroidaceae confirmed

Enterobacteriaceae PMID: 24475780

Coxiellaceae unconfirmed

Prevotella confirmed

Bacteroidetes confirmed

Prevotella copri unconfirmed

Lachnospiraceae confirmed

Lactobacillus confirmed

Clostridia confirmed

The first column records the top 10 microbes most likely to be related Type
1 diabetes, and the second column records the databases and experimental
literatures in PubMed, which verify the associations between the corresponding
microbe and Type 1 diabetes.

suffering from genetic factors was decreasing, which suggested
that the virus, nutrition, and overweight were very likely to have
become the main cause of Type 1 diabetes (Islam et al., 2014).
Studies had shown that the abnormality in the gut microbiota was
closely related to the development of Type 1 diabetes (De Goffau
et al., 2014). The number of Firmicutes and Actinomycetes were
significantly reduced in children with Type 1 diabetes compared
with normal people (Murri et al., 2013). We conducted the
second case study on Type 1 diabetes to test the prediction power
of ABHMDA to predict the potential microbe-related of new
diseases, and the results showed that 7 of the top 10 potential
disease-related microbes predicted were validated by the database
HMDAD. The associations between Type 1 diabetes and microbe
Veillonella (First in the prediction list) with Bacteroidaceae
(Second in the prediction list) were confirmed by HANDAD.
Some researchers had found that patients with Type 1 diabetes
had increased colonization of Enterobacteriaceae (Third in the
prediction list) in addition to Escherichia coli compared with
normal people (Soyucen et al., 2014). The above results indicated
that ABHMDA’s ability to predict microbes associated with new
diseases was also reliable (See Table 3).

DISCUSSION

As a kind of tiny creature that are invisible to the human eyes, the
microbes are small in size and simple in structure, but they are
closely related to human beings. There are thousands of microbes
in the human body. They build complex functional institutions
and play an extremely important role in many biological
processes, although they can benefit people, they can also bring a
lot of trouble to human beings, such as diseases. More and more
research shows that many human diseases are closely related
to microorganisms, especially gastrointestinal diseases. Revealing
the relation between disease and microbes contributes to further
understand the pathogenesis of the disease and the development
of new drugs (Chen et al., 2016b, 2017a). However, due to limited
technology, the cost of using experimental methods to reveal

disease-related microbes is greater. Therefore, it is imperative
to construct model for the prediction of potentially relevant
microbes. In this paper, we proposed a novel model ABHMDA
to reveal the association between disease and microbes. The
global and local LOOCV value of ABHMDA was 0.8869 and
0.7910, respectively, which was significantly larger than that of
KATZHMDA (0.8644, 0.6998) and LRLSHMDA (0.8843, 0.7508).
This result confirmed the strong prediction power of ABHMDA.

Several factors that led to ABHMDA prediction performance
were summarized as follows. Firstly, the datasets used by
our model were relatively reliable. Secondly, we extracted the
potential similarities for diseases and microbes through Gaussian
interaction profile kernel similarity. Thirdly, we combined
multiple weak classifiers into one strong classifier according
to different weights to score the samples. The high-precision
weak classifiers accounted for a high proportion and vice
versa, which conduced to improve the accuracy of the strong
classifier. Of course, ABHMDA also had some defects that
needed to be resolved in future work. Firstly, although the
prediction performance of ABHMDA had improved compared
to previous methods, prediction capabilities were expected to
improve further if more reliable similarities were considered.
Many groups have developed several effective computational
models for the association prediction (Chen and Yan, 2013; Chen
et al., 2016a; Chen and Huang, 2017; You et al., 2017; Chen
et al., 2018a,b,c). We would introduce these reliable techniques
to this new research area. Secondly, ABHMDA might cause bias
to microbes with more associated diseases. Finally, the model did
not consider the microbe–microbe similarity based on sequence
similarity, which was also where we needed to improve in our
future work (Chen et al., 2017b,c; Hu et al., 2018; Zhao et al.,
2018).
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The rapid mutation of influenza viruses especially on the two surface proteins

hemagglutinin (HA) and neuraminidase (NA) has made them capable to escape

from population immunity, which has become a key challenge for influenza vaccine

design. Thus, it is crucial to predict influenza antigenic evolution and identify new

antigenic variants in a timely manner. However, traditional experimental methods

like hemagglutination inhibition (HI) assay to select vaccine strains are time and

labor-intensive, while popular computational methods are less sensitive, which presents

the need for more accurate algorithms. In this study, we have proposed a novel low-rank

matrix completion model MCAAS to infer antigenic distances between antigens and

antisera based on partially revealed antigenic distances, virus similarity based on HA

protein sequences, and vaccine similarity based on vaccine strains. The model exploits

the correlations of viruses and vaccines in serological tests as well as the ability of HAs

from viruses and vaccine strains in inferring influenza antigenicity. We also compared the

effects of comprehensive 65 amino acids substitution matrices in predicting influenza

antigenicity. As a result, we applied MCAAS into H3N2 seasonal influenza virus data. Our

model achieved a 10-fold cross validation root-mean-squared error (RMSE) of 0.5982,

significantly outperformed existing computational methods like antigenic cartography,

AntigenMap and BMCSI. We also constructed the antigenic map and studied the

association between genetic and antigenic evolution of H3N2 influenza viruses. Finally,

our analyses showed that homologous structure derived amino acid substitution matrix

(HSDM) is most powerful in predicting influenza antigenicity, which is consistent with

previous studies.

Keywords: hemagglutination inhibition assay, low-rank matrix completion, influenza antigenicity, antigenic map,

HA protein sequence information

INTRODUCTION

According to the United States Centers for Disease Control and Prevention (CDC), seasonal
influenza and its linked respiratory diseases cause approximately 650,000 deaths annually
worldwide, posing a serious threat to human health and socio-economic environment (WHO,
2017). This is mainly attributed to seasonal influenza viruses that frequently evade immunity in
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the human population through mutations in their hemagglutinin
(HA) and neuraminidase (NA) surface glycoproteins (Hay et al.,
2001; Neher et al., 2016). The most effective way to prevent
influenza virus infection is to inoculate vaccines with similar
antigenicity to the influenza virus (Sun et al., 2013). Therefore,
timely and accurate identification of the effectiveness of existing
vaccines on circulating virus strains is critical for vaccine design
and influenza surveillance (Smith et al., 2004; Huang et al.,
2017). However, the task is challenging (Blackburne et al.,
2008; Yao et al., 2017). To facilitate the selection and design
of vaccine strains, the World Health Organization’s (WHO)
Global Influenza Surveillance and Response System (GISRS)
continuously monitors genotypic and antigenic characteristics of
circulating viruses (Barr Ig, 2014).

The hemagglutination inhibition (HI) is one of the most
popular experimental methods for measuring the effectiveness of
a vaccine against an influenza virus (Hirst, 1943). It is a binding
assay used to characterize the ability of antisera (vaccines) to
block HA of antigens (viruses) from agglutinating red blood
cells (RBC). Based on the HI assay, the concept of antigenic
distance can be used to quantitatively describe the closeness
among antigens. The antigenic distance is often defined to be
the Euclidean distance between their representing vectors in a
normalized HI table according to multiple reference antisera
(Cai et al., 2010). HI assay and its derived antigenic distance
provide great convenience for comparing antigenic similarity
among influenza viruses (Fouchier et al., 2010; Neher et al.,
2016). However, HI assays are expensive and time-consuming,
so it is impractical to use it to measure the antigenic similarity
among all antigens and antisera (Sun et al., 2013). This urges
the need to explore effective computational methods (Liao
et al., 2012a,b; Chen et al., 2018) to estimate the antigenic
distance between an antigen and an antiserum (Liao et al.,
2010, 2015a,b; Li et al., 2013; Liang et al., 2016; Peng et al.,
2017).

A popular category of methods for predicting the antigenicity
of influenza virus is the sequence-based method. Unlike
imputation-based methods, sequence-based methods often
explore the association between mutations in the HA protein
and antigenic distances obtained from serological tests (Lee
and Chen, 2004; Barnett et al., 2012; Li et al., 2016). The
antigenic difference between two influenza viruses indicates
whether they antigenic variant, which is measured by either
an antigenic distance or simply a binary value (Lee and
Chen, 2004; Smith et al., 2004; Liao et al., 2008). For
example, a model based on multiple logistic regression was
proposed by Liao et al. to predict antigen variants. For further
exploration, 65 amino acid substitution models based on 20
amino acid physicochemical groups were also studied. The
experimental results showed that high agreement was achieved
in the H3N2 influenza data from 1999 to 2003 (Liao et al.,
2008). Huang et al. introduced a decision tree algorithm to
predict antigenic variants (Huang et al., 2009). Sun et al.
proposed a bootstrapped ridge regression model consisting
of antigenic related sites, which uses the quantitative amino
acid substitutions in the HA1 [a sub-unit of HA forming
globular domain (Wang et al., 2015)] protein sequence to

predict antigenic distances (Sun et al., 2013). Inspired by the
co-evolution of HA1 that may have contributed to antigen
evolution, Yang et al. integrated the single mutation and co-
mutation characteristics of the HA1 sequence and proposed
a Lasso model (Yang et al., 2014). Neher et al. proposed an
optimization model for interpreting known antigen data and
studied its ability to predict future influenza virus population
composition (Neher et al., 2016). However, these methods rely
on the reliability of rapidly changing antigen-associate sites (Sun
et al., 2013).

Imputation-based methods are widely used for predicting and
visualizing the antigenicity of influenza viruses (Smith et al., 2004;
Cai et al., 2010; Barnett et al., 2012). They are based on the
assumption that the antigens and antisera are located in a low
dimensional space (i.e., the normalized HI table is of low rank),
so the HI table can be fully recovered from partially revealed
HI titers (Lapedes and Farber, 2001). For example, Smith et al.
proposed antigenic cartography for visualizing and predicting
antigenic evolution of influenza viruses (Smith et al., 2004). They
first transformed the known values in the HI table to Euclidean
distances and then embedded them into a 2D map using
the modified multidimensional scaling (MDS) method. This
antigenic map implicitly implies the distance between antigen
and antiserum with unknown HI titer. Cai et al. first recovered
the normalizedHI table by a low-rankmatrix completionmethod
(Cai et al., 2010), and then calculated the antigenic distance using
the fully recovery normalized HI table and mapped it into a 2D
or 3D (Barnett et al., 2012) antigenic map. Imputation-based
methods can better detect the antigenic evolutionary trend of
H3N2 influenza virus, but it is still insufficient. For example, the
accuracy of its predicted antigenic distance is yet to be improved
(Huang et al., 2017).

The antigenic evolution of influenza viruses are ultimately
caused by genetic changes of the viruses especially on HA andNA
genes, thus principally the sequence information of antigens and
antisera will help predict missing values in HI. In this study, we
propose a novel algorithm called matrix completion with antigen
and antiserum similarity (MCAAS), which integrates antigen
sequence information and antiserum information in a low-rank
matrix completion model to predict influenza antigenicity. To
our best knowledge, this the first model to leverage both the
low-rank space of viruses spaces and the importance of genetic
mutations in predicting influenza antigenicity. To explore the
influence of different amino acids properties on the prediction of
the antigenicity of the H3N2 influenza virus, we systematically
compared the 65 amino acid substitution matrices in the
AAindex database (Shuichi Kawashima et al., 2008), reflecting a
comprehensive list of amino acid properties, including structural,
physicochemical, and biochemical information. In addition, in
order to make full use of the information, we have proposed a
mixed-rank strategy to improve the sliding window method. The
algorithm proposed in this paper was applied to H3N2 influenza
data from 1968 to 2003. We then constructed an antigenic map
based on the fully recovered HI table and evaluated existing
vaccine strains. Finally, we explored the relationship between the
genetic and antigenic evolution of the influenza virus in H3N2
data.

Frontiers in Microbiology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 250093

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wang et al. Predicting Influenza Antigenicity

MATERIALS AND METHODS

Dataset and Problem Formulation
H3N2 influenza data are used in this study (Smith et al., 2004),
which is a partially revealed HI table consisting of 253 viruses
(antigens) and 79 vaccine (antisera) from 1967 to 2003, i.e., a
matrix of 253 rows and 79 columns. The HI table contains Type
I data, Type II data, Type III data, which are regular HI titers,
low reactors (i.e., the HI titers less than a threshold) and missing
values (Cai et al., 2010). Similar to many literatures (Smith et al.,
2004; Cai et al., 2010; Sun et al., 2013; Huang et al., 2017), the
HI table was normalized to facilitate subsequent analyses. We
also downloaded HA protein sequences of viruses and vaccine
strains related to HI tables from the NCBI influenza database.
Only the sequence on 329 sites belonging to the HA1 protein was
kept for further analysis (Yao et al., 2017). We also downloaded
65 amino acid substitution matrices from the AAindex database
(Shuichi Kawashima et al., 2008) to analyze the effect of amino
acid structure, physical and biological information on predicting
influenza antigenicity. In this paper, the problem is how to
accurately estimate low reactors and predict missing values
based on values on regular entries and fusion information,
which combines multiple amino acids substitution matrices and
sequence information of the viruses and vaccine strains.

Matrix Completion With Antigen and
Antiserum Similarity
In this paper, we consider the problem of predicting the
antigenicity of influenza viruses against vaccines, which is to fill
the missing values in the HI table (as well as corrections for
Type I and Type II data). Without considering the temporal bias
effect, we can convert this problem into a matrix completion
problem (Cai et al., 2010). Specifically, we use H to denote an
HI table with m rows and n columns, which corresponds to m
antigens and n antisera. Let E to represent the corresponding
Type I and Type II data locations in H. Let X be the underlying
matrix to recover H. Since X is in a low-dimensional space for
influenza viruses, we assume that r ≪ min(m, n) as the rank
of X. For some 6r×r matrices, X can be expressed as X =
Um×r6r×r(Vn×r)

T according to singular value decomposition.
In the literature (Huang et al., 2017), it has been shown that

incorporating the HA protein sequence information of viruses
into the matrix completion method achieves better results.
However, since themodel does not use vaccine strainsHAprotein
sequence information, the use of information is incomplete.
Moreover, the calculation of protein sequence similarity in this
model does not take into account the physicochemical and
biochemical properties of amino acids. In addition, the effect
of the antigenic determinant regions on protein properties was
not discussed in detail. Therefore, in order to solve the above
deficiencies, we propose two new models that incorporate the
above information into the matrix completion model.

Model 1 without Type II data
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Model 2 with Type II data
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The function G (X) =
m
∑

i=1
g

(

‖U i‖2
3δr

)

+
n
∑

i=1
g

(

‖V i‖2
3δr

)

is a

regularization term, where g (z) = e(z−1)2 − 1 when z ≥ 1 and
g (z) = 0, otherwise. U iand V i denote the ith row of U and V ,
respectively and δ = max (m, n) (Keshavan et al., 2009a; Cai
et al., 2010). Kij is the HA protein sequence similarity between
virus i and j, Tij is the HA protein sequence similarity between
vaccine strains for vaccine i and j. Xi and Xj represent the ith

row and jth row of X, respectively. (XT)
i
and (XT)

j
represent

the ith column and jth column of X, respectively. The three
parameters λ1, λ2, and λ3 control the contribution of matrix
completion, HA1 protein sequence of antigens and HA1 protein
sequence of vaccine strains to recover the matrix. The third and
fourth terms in the model are based on the assumption that if
the viruses (vaccine strains) have similar HA protein sequences
(especially in antigenic determinant regions), they should have
similar HI titers against the same group of vaccines (viruses).
Based on previous literatures, the antigenic regions B and C
seems to be more important than A, D, and E (Yao et al.,
2017). Thus, we define Kij = ξ1K

ADE
ij + ξ2K

BC
ij + Kother

ij (Tij =
ξ1T

ADE
ij + ξ2T

BC
ij + Tother

ij ) as the similarity calculation formula,

in which ξ1 and ξ2 are the parameter to control the weight of
antigenic determinants. KADE

ij measures sequence similarity on

antigenic determinant regions site A, site D, and site E. KBC
ij

measures sequence similarity on antigenic determinant regions
site B and site C. Kother

ij measures sequence similarity on other

site. Parameters λ1, λ2, λ3, ξ1, and ξ2 were tuned by 10-fold
cross-validation.

An Alternating Gradient Descend Method
To solve Model 1, we propose an alternating gradient descend
AGD method similar to literature (Keshavan et al., 2009a; Cai
et al., 2010). Since the corresponding singular vectors are highly
concentrated on the high-weight row (column) index when |E| =
2(n) (Keshavan et al., 2009b), in order to ensure that the number
of non-zero values per row (column) is less than 2|E|

m ( 2|E|n ), we
need to trim the H matrix. When a row (column) has more non-
zero values than 2|E|

m ( 2|E|n ), we randomly set some non-zero values
to zero.

We replace all missing values in H with 0 to form H(0). After
singular value decomposition (SVD) H(0) = U6VT , we set
U(0) = U0 ∗

√
m and V(0) = V0 ∗

√
n as initial values, where,

U0 and V0 consist of the first r columns of U and V , respectively.
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Then we use the following updates until convergence or
reaching a preset maximum number of iterations.

Fix U(t) and V(t) and calculate the matrix 6r×r to minimize
the Model 1 as follows:

vec(6r×r) =
(

VTV ⊗ VTHTV + λ2V
TV ⊗ UTKT

LU + λ3

UTU ⊗ VTTT
LV

)−1
vec(UTHV)

where ⊗ is Kronecker Product, KL is the Laplacian matrix of K
and TL is the Laplacian matrix of T.

Update U(t+1) and V(t+1) using gradient descent: U(t+1) =
U(t) + α∇U(t) and V(t+1) = V(t) + α∇V(t).
The gradients of U and V are:
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Where α = max (m, n) and f (Cm×r ,Dm×1) = Zm×r with

Zij =
{

1
αrCij ∗Di if Di > 0

0 otherwise

The difference between Model 2 and Model 1 is that Model 2
has Type II data, where the Type II data is treated differently
by multiplying B in the model. Therefore, we use the same
method to solve Model 1 and Model 2. We only need to

replace
∑ ∑

(

XE
ij −HE

ij

)2
with

∑ ∑

(

XE
ij −HE

ij

)2
I(XE

ij ≥ θij)

and replace (
(

U6VT
)E − HE) with (

(

U6VT
)E − HE) · I.

Here, I is an indication matrix, dot multiplication denotes the
multiplication of corresponding elements between the matrices.

A Sliding Window Method
Since there is temporal bias in the HI matrix that can affect the
accuracy of the matrix completion, in this paper we introduce a
sliding window method to reduce this effect. The method mainly

based on the principle that the temporal bias effect becomes
smaller in the temporal-grouped submatrix than in the entire
HI matrix. The generally flow of the method is summarized in
Figure 1: let Y0 and Y be the starting and ending year and W be
the window size. Then the i+ 1th window year span should be
from (Y0 + i) to (Y0 + i+W) and there is a total of (Y −W + 1)
windows. Since the rank of the submatrix is less than or equal
to the rank of the full-matrix, it is reasonable to consider a
mixed rank rather than a single rank consistent with the full-
matrix. In this paper, the rank of the submatrix is set to rank′

and (rank′ − 1) in the window sliding method, and rank′ is the
setting of the full-matrix rank. Missing values are estimated on
each submatrix in the case of rank rank′ and (rank′ − 1), and
then the average of these estimates is taken as the recovered value
of the corresponding position of the matrix. After the window
is sliding, a partially recovered HI matrix is obtained, and on the
basis of this, the algorithm proposed in this paper is performed on
the whole window to fill in the values that has not been recovered.

Performance Evaluation
The performance of imputation algorithms is evaluated
using the root-mean-squared error (RMSE). Given k values
{O1,O2, . . . ,Ok} and {P1, P2, . . . , Pk}, the RMSE is defined as:

RMSE =

√

∑k
i=1 (Oi − Pi)

2

k
(1)

Where Oi represents an observed value and Pi represents the
corresponding predicted value. The smaller the RMSE value is,
the closer the predicted value is to the observed value, indicating
that the performance of the algorithm is better.

In this paper, we use 10-fold cross validation to calculate the
RMSE value. Specifically, the H matrix is randomly divided into
10 equal parts. We will run it repeatedly for 10 times in the
experiment until each part was used as the prediction set once.
Each time, we use 9 parts for matrix completion; then calculate
the RMSE between the completed matrix and the observed
matrix entry in the remaining part. The mean RMSE between the
predicted values and observed values across 10 runs are used to
compare different methods. And themodel parameters λ1, λ2, λ3,
ξ1, ξ2, r, and w are tuned in this process.

Construction of Antigenic and Genetic
Cartography
Similar to literature (Cai et al., 2010; Barnett et al., 2012), we
use the Euclidean distance between viruses after completion of
the matrix as the antigenic distance. Then, multidimensional
scaling (MDS) is used to generate virus coordinates and construct
antigen maps based on antigenic distances. The construction of
the genetic map is similar to the antigenic map. We first calculate
the P-distance matrix between pairs of viruses and use MDS to
construct the genetic map.
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FIGURE 1 | A cartoon to show the sliding window process. Row and column indicate antigen and antiserum, respectively, which are placed chronologically from the

up-left to bottom-right of the window. MCAAS is used from the first window consisting of antigens and antisera starting from Year1 to the t-w+1 window consisting of

antigens and antisera starting from Year t-w+1. In the shaded region, the final values are taken as the mean of the completed values in all related windows. In the end,

MCAAS is performed on the whole window.

RESULTS

Dataset
In this paper, we used the H3N2 influenza data as our test dataset
for HI values from 253 viruses against 79 antisera. There are 3,991
observed HI values in this matrix, and the sparseness is about 0.2.
These viruses formed 11 antigenic clusters, namely HK68, EN72,
VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97, and FU02
(Smith et al., 2004). The HA1 protein sequences of viruses and
vaccine strains were then downloaded from the NCBI Influenza
Virus Database.

Matrix Completion for HI Table of H3N2
In this paper, we used the similarity matrix between protein
sequences to assist matrix completion. There are many amino
acid substitution matrices that reflect different amino acid
properties, and the literatures (Lee and Chen, 2004; Liao
et al., 2008) show that the substitution matrix is critical to
the accuracy of the prediction. To investigate the effect of
different amino acid properties on the evolution of antigens,
we used the method in this article to evaluate 65 amino
acid substitution matrices with parameters set to ξ1 = 500,
ξ2 = 1000, r = 10, w = 32, lam1 = 1E-4, and
lam2 = lam3 = 2.5E-7 (after normalizing the similarity
matrix). The 10-fold cross-validation root mean square errors
(RMSE) for all 65 substitution matrices were presented in
Supplementary Table S1, with the top 12 RMSEs summarized in
Table 1.

As can be seen from Table 1, different substitution matrices
have a certain influence on the prediction result. The best

TABLE 1 | The top 12 amino acids substitution matrices in predicting influenza

antigenicity.

Accession

number

Description RMSE

PRLA000102 Homologous structure derived matrix (HSDM)

for alignment of distantly related sequences

0.6349

HENS920101 BLOSUM45 substitution matrix 0.6351

JOND920103 The 250 PAM PET91 matrix 0.6352

QU_C930101 Cross-correlation coefficients of preference

factors main chain

0.6352

PRLA000101 Structure derived matrix (SDM) for alignment of

distantly related sequences

0.6352

KANM000101 Substitution matrix (OPTIMA) derived by

maximizing discrimination between homologs

and non-homologs

0.6352

CSEM940101 Residue replace ability matrix 0.6353

LUTR910107 Structure-based comparison table for other

class

0.6354

MIYS930101 Base-substitution-protein-stability matrix 0.6354

BENS940104 Genetic code matrix 0.6355

NIEK910102 Structure-derived correlation matrix 2 0.6355

HENS920103 BLOSUM80 substitution matrix 0.6358

substitution matrix is “Homologous structure derived matrix
(HSDM) for alignment of distantly related sequences.” The
RMSE obtained by using it is 0.6349. This implies the importance
of HA1 protein structure in influenza antigenicity, since the best
ones are based on structure-based substitution matrices, which is
very reasonable because the structural information is the key to
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TABLE 2 | Ten-fold cross-validation RMSEs for different window sizes and ranks on H3N2 data.

w\r 6 7 8 9 10 11 12 13 14

8 1.2563 1.3737 1.5396 / / / / / /

12 1.0394 1.0995 1.1398 1.1838 1.1749 1.1676 1.4021 / /

16 0.9902 0.9802 0.9666 0.9011 0.9427 0.9909 1.1016 1.1051 1.2234

20 0.9434 0.9125 0.8681 0.9542 0.8833 0.8621 0.8765 0.9284 0.9421

24 0.8322 0.8705 0.8218 0.8648 0.7294 0.7396 0.7475 0.7722 0.8516

28 0.7939 0.6995 0.7879 0.7894 0.6792 0.6320 0.6881 0.7083 0.7958

32 0.7856 0.7294 0.6503 0.5982 0.6068 0.6872 0.7069 0.6779 0.6577

TABLE 3 | Ten-fold cross-validation RMSEs for the analysis of single virus information dependence on H3N2 data.

row 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 0.6028 0.5985 0.6052 0.5966 0.6288 0.6385 0.6427 0.6410 0.6268 0.6585

130 0.6049 0.6360 0.6182 0.6583 0.6453 0.6693 0.6746 0.6171 0.6157 0.7115

240 0.5803 0.5762 0.5862 0.5886 0.5933 0.6115 0.6176 0.6405 0.6438 0.7651

“row” means the row where the information was deleted in HI. “10%, ... , 100%” means the proportion of information deleted.

TABLE 4 | Ten-fold cross-validation RMSEs for the analysis of combined virus information dependence on H3N2 data.

row RMSEs row RMSEs row RMSEs row RMSEs

10 0.6585 130 0.7115 10/30 0.7296 10/30/50/70 0.9707

30 0.6987 150 0.7874 50/240 0.8178 90/110/130/150 0.9405

50 0.6958 180 0.7282 70/110 0.8524 180/200/220/240 1.0118

70 0.7742 200 0.7666 90/220 0.7988 10/30/50/70/90/110 1.0101

90 0.7131 220 0.7280 130/180 0.7419 130/150/180/200/220/240 1.1963

110 0.7543 240 0.7651 150/200 0.8243 10/30/50/70/90/110 1.4959

130/150/180/200/220/240

“row” means the row where the information is completely deleted in HI. For example, “10” and “30” mean that the 10th line and the 30th line are deleted, respectively. “10/30” means

the 10th line and the 30th line are deleted at the same time.

the binding affinity between the antigen and the antisera (Hirst,
1943).

We set the mixed low-rank r to vary from 6 to 14, and
the sliding window size W to vary from 8 to 32 with a step
size of 4. Here we used the PRLA000102 substitution matrix to
measure sequence similarity and use the mixed rank window
sliding method proposed in this paper. Other parameters are
consistent with before. We listed the 10-fold cross validation
RMSEs for different r and W in Table 2. As can be seen from
the table, the lowest RMSE 0.5982 is achieved at window size
32 and rank 9 (mixed rank of 8 and 9). According to Huang
et al. (2017), the best RMSE value for BMCSI is 0.6586 and
those for antigenic cartography (Smith et al., 2004; Cai et al.,
2010) and AntigenMap (Barnett et al., 2012) are 1.04 and
1.05, respectively. The above results indicate that the complete
HA1 protein sequence information with discriminating antigenic
determinant regions is a good compensation for low rank matrix
completion. From Tables 1, 2, it is clear that a mixed rank sliding
window method is more appropriate in completing the H3N2
influenza data.

In order to analyze the dependence of the model on
available virus information, we selected 3 viruses for single virus
information analysis, and selected 12 viruses for combined virus
information analysis. In the analysis of single virus information
dependence, we selected the 10th, 130th, and 240th rows of
virus information in the HI table, sequentially deleted about
10% of the information. The results of the analysis were shown

in Table 3. It can be seen from Table 3 that with the increase
of information deletion, the prediction performance of the
model is generally declining. In the analysis of combined virus
information dependence, we ran all the cases where all the
individual virus information was deleted, the case of 2 virus
combinations, the case of 4 virus combinations, the case of 6
virus combinations, and the case of 12 virus combinations. The
results of the analysis were shown in Table 4. As can be seen from
Table 4, asmore virus information is deleted, the prediction effect
becomes worse and worse.

Antigenic Cartography for H3N2 Viruses
Based on the antigenic distance predicted by the MCAAS
method, we constructed an antigenic map of 253 viruses in
H3N2 by multidimensional scaling in Figure 2. As can be seen
from Figure 2, 11 antigen clusters can be distinguished very well,
especially VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97,
and FU02. It is reasonable since there are more HI observations
in these later years, resulting inmore reliable calculations.We can
also find from Figure 2 that the virus has generally evolved locally
along an S-shaped pathway, which are consistent with previous
research (Smith et al., 2004).

We also calculated the average antigenic distances
within cluster and between clusters (see Table 5), which are
generally consistent with Figure 2. For example, the antigenic
distance between BE92 and BE89 is much greater than the
antigenic distance between SI87 and BE89 in Figure 2, whose
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corresponding average antigenic distances were 4.86 and
3.23, respectively. From Table 3, we can find that the average
within-cluster distances of the 11 clusters are all <1.7, and the
inter-cluster distances are >1.7 except for BK79-BK79 (1.64) and
BE92-BE92 (1.68). In addition, the antigenic distance between
viruses becomes larger as the time interval increases.

Relationship Between Influenza Genetic
and Antigenic Evolution of H3N2
To further explore relationship between the genetic and
antigenic evolution of the H3N2 virus, we not only constructed
a genetic map (Figure 3) of the 253 viruses using the
uncorrected P-distance and MDS, but also calculated the
average genetic distance (uncorrected P distance) of viruses
within and between 11 antigen clusters (Table 6). As shown
in Figure 3, it can be seen that the genetic evolution
of the virus proceeds along a semicircle. By comparing

FIGURE 2 | The antigenic cartography of H3N2 influenza viruses from 1968 to

2003 constructed by MCAAS. Each node denotes a virus and the distance

between two nodes reflect their antigenic distance. The viruses in 11 antigenic

clusters (HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97,

and FU02) are marked with different shapes and colors.

Figure 2 with Figure 3, we found that the genetic and
antigenic profiles are partially consistent. However, their
evolutionary shapes are different, and genetic maps are more
continuous, while antigenic maps are more punctual. From
Table 4, we can see that the genetic distance between clusters
increases with the increase of time span. The average genetic
distance within-cluster varies from 0.004 to 0.025, while the
average genetic distance between-clusters varies from 0.025
to 0.165.

Although the genetic map and the antigenic map are roughly
consistent, we also found that some viruses are very close in the
genetic map, but are far apart in the antigenic map. For example,
BE89 and BE92 are very close in the genetic map (Figure 3)
with the average genetic distance only 0.043, but they are far in
the antigenic map (Figure 2) with the average antigenic distance
4.86. This shows that not all genetic changes are equivalent to
cause antigenic changes and different protein sites contribute

FIGURE 3 | The genetic map using the uncorrected-P distance for HA1

protein sequences of H3N2 influenza virus from 1968 to 2003. Each node

denotes a virus and the distance between two nodes reflect their genetic

distance. The viruses in 11 antigenic clusters (HK68, EN72, VI75, TX77, BK79,

SI87, BE89, BE92, WU95, SY97, and FU02) are marked with different shapes

and colors.

TABLE 5 | The average antigenic distances among viruses within and between 11 antigenic clusters for H3N2 influenza.

HK68 EN72 VI75 TX77 BK79 SI87 BE89 BE92 WU95 SY97 FU02

HK68 1.29 1.97 5.00 4.41 6.48 7.27 6.83 4.80 6.15 5.55 7.00

EN72 1.97 0.68 2.12 3.18 6.45 7.68 7.57 6.52 7.01 5.04 8.18

VI75 5.00 2.12 0.52 1.94 3.71 8.49 7.07 10.48 7.77 6.57 16.95

TX77 4.41 3.18 1.94 0.28 1.77 5.08 6.35 4.57 4.32 6.07 11.65

BK79 6.48 6.45 3.71 1.77 1.64 4.44 6.00 6.62 4.51 8.70 16.96

SI87 7.27 7.68 8.49 5.08 4.44 1.40 3.23 4.61 7.14 7.98 12.39

BE89 6.83 7.57 7.07 6.35 6.00 3.23 0.88 4.86 5.21 7.01 9.96

BE92 4.80 6.52 10.48 4.57 6.62 4.61 4.86 1.68 2.55 6.19 8.03

WU95 6.15 7.01 7.77 4.32 4.51 7.14 5.21 2.55 0.85 3.76 5.79

SY97 5.55 5.04 6.57 6.07 8.70 7.98 7.01 6.19 3.76 1.22 2.32

FU02 7.00 8.18 16.95 11.65 16.96 12.39 9.96 8.03 5.79 2.32 1.13
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TABLE 6 | The average genetic distances among viruses within and between 11 antigenic clusters for H3N2 influenza.

HK68 EN72 VI75 TX77 BK79 SI87 BE89 BE92 WU95 SY97 FU02

HK68 0.022 0.04 0.077 0.074 0.113 0.13 0.132 0.143 0.138 0.157 0.165

EN72 0.043 0.02 0.051 0.047 0.089 0.11 0.116 0.126 0.125 0.14 0.15

VI75 0.077 0.05 0.007 0.044 0.084 0.109 0.118 0.126 0.13 0.144 0.154

TX77 0.074 0.05 0.044 0.011 0.056 0.08 0.094 0.098 0.105 0.127 0.138

BK79 0.113 0.09 0.084 0.056 0.024 0.042 0.057 0.07 0.085 0.109 0.12

SI87 0.13 0.11 0.109 0.08 0.042 0.015 0.025 0.042 0.059 0.085 0.109

BE89 0.132 0.12 0.118 0.094 0.057 0.025 0.012 0.043 0.05 0.074 0.101

BE92 0.143 0.13 0.126 0.098 0.07 0.042 0.043 0.021 0.037 0.072 0.099

WU95 0.138 0.13 0.13 0.105 0.085 0.059 0.05 0.037 0.022 0.057 0.085

SY97 0.157 0.14 0.144 0.127 0.109 0.085 0.074 0.072 0.057 0.025 0.051

FU02 0.165 0.15 0.154 0.138 0.12 0.109 0.101 0.099 0.085 0.051 0.004

differently to antigenic evolution (Smith et al., 2004; Lee et al.,
2016).

DISCUSSIONS

It is known that the antigenicity of influenza virus changes very
quickly. To prevent influenza outbreaks caused by changes in
influenza virus antigens, the 80 WHO collaborating laboratories
actively monitored the influenza viruses to determine vaccine
strains for the next flu season. However, the selection of influenza
vaccine strains is a labor-intensive and time-consuming process
that relies on the identification of antigenic variants. In this paper,
we propose a new method for integrating similarity information
between viruses and between vaccines into matrix completion.
The completed matrix was also used for constructing antigenic
map, which helps to select vaccine strains.

With the development of sequencing technology, the
acquisition of sequence information becomes easier. In the
literature (Huang et al., 2017), it is shown that the integration
of sequence information contributes to the prediction of
viral antigenicity. This paper further explores the effect of
fusion of sequence information on the prediction of virus
antigenicity, mainly from four perspectives. (1) The integration
of sequence information improved antigenic prediction. Not
only the similarity information of the virus sequences but also
the similarity information of the vaccine strains was used.
(2) We discussed in more detail the influence of antigenic
determinant regions on antigenic changes and further analyzed
the B and C regions in the five antigenic determinant regions.
(3) We analyzed 65 substitution matrices, which reflect the
different physicochemical and biochemical properties of
amino acids. The results show that the characteristics of the
structure have a greater impact on antigen evolution. (4) We
proposed a mixed rank sliding window method that can solve
matrix completion problems more reasonably than single
rank methods. As a result, our method reduces the prediction
RMSE compared with the literature (Huang et al., 2017) and
previous interpolation methods (Smith et al., 2004; Cai et al.,
2010). On this basis, we also discovered a semi-circular genetic
evolution and S-shaped antigen evolution, which is consistent
with previous findings (Smith et al., 2004; Fouchier et al.,
2010).

It is worth noting that although we used the H3N2 data in
this paper, our method is applicable to all influenza subtype data
such as H1N1, H5N1, and H7N9. In fact, this method could
be applied to any data with a response matrix and predictive
characteristics, such as the prediction of diseases and drugs, the
association between miRNAs with diseases, and the recognition
of protein folds (Wei and Zou, 2016). For example in drug-
response prediction, the entries in the matrix represent the effect
of drugs on samples, which can be formulated as a typical matrix
completion problem. We believe that the similarity among drugs
based on their chemical properties and the samples genetic and
gene expression similarity will also help to infer drug effects.
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The gut microbiome is a dynamic ecosystem formed by thousands of diverse bacterial
species. This bacterial diversity is acquired early in life and shaped over time by a
combination of multiple factors, including dietary exposure to distinct nutrients and
xenobiotics. Alterations of the gut microbiota composition and associated metabolic
activities in the gut are linked to various immune and metabolic diseases. The
microbiota could potentially interact with xenobiotics in the gut environment as a
result of their board enzymatic capacities and thereby affect the bioavailability and
toxicity of the xenobiotics in enterohepatic circulation. Consequently, microbiome-
xenobiotic interactions might affect host health. Here, we aimed to investigate the
effects of dietary perfluorooctane sulfonic acid (PFOS) exposure on gut microbiota
in adult mice and examine the induced changes in animal metabolic functions.
In mice exposed to dietary PFOS for 7 weeks, body PFOS and lipid contents
were measured, and to elucidate the effects of PFOS exposure, the metabolic
functions of the animals were assessed using oral glucose-tolerance test and
intraperitoneal insulin-tolerance and pyruvate-tolerance tests; moreover, on Day 50,
cecal bacterial DNA was isolated and subject to 16S rDNA sequencing. Our
results demonstrated that PFOS exposure caused metabolic disturbances in the
animals, particularly in lipid and glucose metabolism, but did not substantially
affect the diversity of gut bacterial species. However, marked modulations were
detected in the abundance of metabolism-associated bacteria belonging to the phyla
Firmicutes, Bacteroidetes, Proteobacteria, and Cyanobacteria, including, at different
taxonomic levels, Turicibacteraceae, Turicibacterales, Turicibacter, Dehalobacteriaceae,
Dehalobacterium, Allobaculum, Bacteroides acidifaciens, Alphaproteobacteria, and
4Cod-2/YS2. The results of PICRUSt analysis further indicated that PFOS exposure
perturbed gut metabolism, inducing notable changes in the metabolism of amino acids
(arginine, proline, lysine), methane, and a short-chain fatty acid (butanoate), all of which
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are metabolites widely recognized to be associated with inflammation and metabolic
functions. Collectively, our study findings provide key information regarding the biological
relevance of microbiome–xenobiotic interactions associated with the ecology of gut
microbiota and animal energy metabolism.

Keywords: gut microbiome, bacterial diversity, microbiome-xenobiotic interaction, PFOs, energy metabolism

INTRODUCTION

The prevalence of non-communicable diseases (NCDs) is rapidly
increasing, with cardiovascular diseases and diabetes being at
the top of this list of NCDs, and multiple risk factors are
widely recognized to be responsible for the increased incidences.
Recently, the cumulative incidence of certain NCDs has been
correlated to exposure to environmental chemicals (Gluckman
et al., 2010). The past decades have witnessed the production
of >150,000 synthetic chemicals, with approximately 2000
new chemicals being produced annually (Judson et al., 2009),
and these heterogeneous chemical substances have been used
for generating diverse industrial, agricultural, and commercial
products. However, the release of these substances into the
environment has adversely affected ecological and animal
health. Depending on their chemical properties, these chemical
substances have become dispersed in distinct environmental
compartments and have contaminated food and water supplies.
Retrospective analysis has revealed that exposure to various
classes of environmental chemicals can occur through distinct
routes and processes, including inhalation, dietary intake, and
skin contact; this has resulted in the bodily accumulation of
different environmental chemicals in the general population
worldwide (Centers for Disease Control and Prevention, 2009),
which indicates direct interactions of the exogenous chemicals
within our body system.

The 2017 WHO global report on diabetes showed that
>422 million adults were diagnosed with diabetes, underpinning
the high prevalence of the disease and associated metabolic
syndromes. People with a susceptible genetic background are
predisposed to developing these diseases, and consumption of
calorically dense diets and physical inactivity are the major
risk factors associated with the disease development. However,
these factors cannot account for the widespread prevalence
of metabolic diseases in recent years, and thus additional
investigation is required to reveal the pathogenesis of these
diseases. Recently, scientific research has been focused on other
potential risk factors that might disrupt body energy homeostasis,
and considerable attention has been attracted by the roles of
(1) gastrointestinal microbiota and (2) endocrine-disrupting
chemicals (EDCs) as contributing factors.

The animal gut microbiome is a dynamic ecosystem formed
by thousands of distinct bacterial species (Qin et al., 2010),
and the remarkable metabolic activity in the gut environment
is driven through a complex symbiotic interaction between
these species. The gut bacterial diversity is shaped over time,
with the complexity increasing due to the combined effect of
multiple factors (such as genotype, diet composition, antibiotic
therapy, and environmental exposure to xenobiotics) (Spor

et al., 2011; Yatsunenko et al., 2012). The gut microbiota can
potentially interact with environmental chemicals by altering
the processes of absorption, disposition, metabolism, and
excretion. Accordingly, gut bacteria have been widely reported
to exhibit board ability to metabolize various environmental
chemicals by using enzyme families (e.g., azoreductases,
β-glucuronidases, β-lyases, nitroreductases, sulfatases) to
catalyze diverse chemical reactions (e.g., reduction, hydrolysis,
dehydroxylation, deacetylation, dinitration, deconjugation,
demethylation) (Eriksson and Gustafsson, 1970; Williams
et al., 1970; Bakke and Gustafsson, 1986; Rafii et al., 1990;
Rafil et al., 1991; Roldan et al., 2008). A recent register of
gut microbial biocatalytic reactions on xenobiotics listed 529
microorganisms that affect >1369 compounds (Gao et al., 2010);
the study highlighted the capacity of gut microbes to transform
diverse types of environmental chemicals. Notably, emerging
evidence has indicated an association between body burden
of environmental chemicals and gut microbial communities
in the development of metabolic diseases (Alonso-Magdalena
et al., 2011). In 2011, the U.S. National Toxicological Program
studied the roles of environmental chemicals in the development
of diabetes and obesity and reported positive correlations
between EDC exposure and disease prevalence; the analysis
prioritized the ten most predicted positive compounds across
distinct biological processes: flusilazole, forchlorfenuron,
d-cis/trans-allethrin, fentin, fludioxonil, niclosamide, prallethrin,
thidiazuron, (Z,E)-fenpyroximate, and perfluorooctane sulfonic
acid (PFOS). Among these chemicals, PFOS was listed as one of
the risk factors for the development of metabolic diseases in the
European research project OBELIX.

Alterations of gut microbiota composition are reported to be
associated with various immune and metabolic diseases (e.g.,
inflammatory bowel disease, obesity, diabetes) (Cummings et al.,
2003; Ley et al., 2006; Qin et al., 2012). However, few previous
studies have investigated the interactions between environmental
chemicals and gut microbiota and their toxicological relevance to
the development of metabolic diseases. Here, we used a mouse
model to assess the metabolic impact of dietary PFOS exposure.
Physiological experiments and 16S rDNA metagenomic analyses
were conducted to investigate the association among PFOS
exposure, changes in gut bacterial community, and metabolic
function.

MATERIALS AND METHODS

Experimental Animals and Chemicals
Female CD-1 mice (6–8 weeks old), obtained from the Animal
Unit of the University of Hong Kong, were housed in
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polypropylene cages containing sterilized bedding, maintained
under a controlled temperature (23± 1◦C, ambient temperature)
and 12/12-h light/dark cycle, and provided ad libitum access
to standard chow (LabDiet, 5001 Rodents Diet) and water (in
glass bottles). The animal handling protocol was approved by
the Committee on the Use of Human and Animal Subjects
of the Hong Kong Baptist University (Permit no. 261812), in
accordance with the Guidelines and Regulations of Department
of Health, the Government of Hong Kong Special Administrative
Region. The mice were acclimatized for 1 week before the PFOS-
exposure experiments and then randomly divided into three
groups (control, AC; low-dose PFOS, AL; high-dose PFOS, AH;
at least four mice/group). PFOS (98% pure, Sigma-Aldrich)
was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich)
before mixing with corn oil; the final concentration of DMSO
was <0.05% in all groups. The PFOS-exposure groups were
weighed using an electronic balance (Shimadzu, Tokyo, Japan)
and administered, every morning by oral gavage, 0.3 (AL) or
3 µg/g/day (AH) PFOS in corn oil for 7 weeks. The exposure
doses were selected as described in our previous study (Lai et al.,
2017), in reference with the human tolerable daily intake of
PFOS established by the Scientific Panel on Contaminants in the
Food Chain (European Food Safety Authority, 2008). The dose-
range corresponded to the general population and occupational
exposure levels. The control group (AC) received corn oil mixed
with DMSO (0.05%).

Animals were sacrificed on Day 50 by cervical dislocation
and cecal samples were collected. Blood samples were collected
through cardiocentesis, and blood serum was prepared by
centrifuging the samples at 3000 × g for 15 min. The serum and
the weighed liver samples were stored at −20◦C and then used
for triglyceride (TG) and PFOS measurements.

Serum and Liver TGs
Serum and liver TG levels were quantified using the method
described in our previous study (Wan et al., 2012) and a TG
assay kit (Cayman, United States). Briefly, tissue samples were
homogenized in chloroform:methanol (2:1) solution and then
0.05% sulfuric acid was added for phase separation. The aqueous
phase was discarded, and the organic phase was collected and
blow-dried under nitrogen gas at room temperature. The pellet
was reconstituted in deionized water for 30 min at 37◦C and then
used for TG measurement.

Chemicals and Instrumental Analysis for
PFOS
We used a mass-labeled mixed standard solution for
perfluorinated compounds (Product code: MPFAC-MXA;
Lot number: MPFACMXA0714; >98% pure) from Wellington
Laboratories (ON, Canada). Samples were extracted and
analyzed as previously described (Wan et al., 2013). Briefly,
each tissue sample was mixed with 2 ng of internal standard,
1 mL of 0.5 M tetrabutylammonium hydroxide solution, 2 mL of
0.25 M sodium carbonate buffer, and 5 mL of methyl tert-butyl
ether, and this was followed by mixing in a reciprocating shaker
(HS 501 digital shaker, Janke and Kunkel IKA Labortechnik)

at 250 rpm for 20 min. The organic and aqueous layers were
separated, and the organic phase was collected, and the extraction
procedure was repeated and all organic phases were pooled. The
solution was blow-dried under nitrogen gas (N2 ≥ 99.995%,
Hong Kong Oxygen) in a nitrogen evaporator (N-EVAP112,
Organomation Associates, Inc., MA, United States) and re-
dissolved in 40% acetonitrile/60% 10 mM of ammonium acetate
in Milli-Q water. An Agilent 1200 series liquid-chromatography
system (Waldbronn, Germany) was used for PFOS detection.
Chromatographic separation was performed using an Agilent
ZORBAX Eclipse Plus C8 Narrow Bore guard column and
an Agilent ZORBAX Eclipse Plus C8 Narrow Bore column.
Tandem mass detection was conducted using an Agilent 6410B
Triple Quadrupole mass spectrometer equipped with an Agilent
Masshunter Workstation (version B.02.01) and an electrospray
ionization source. The values of matrix recoveries were all 99%.

Physiological Analysis
Oral glucose-tolerance test (OGTT) and intraperitoneal (i.p.)
insulin-tolerance test (ITT) and pyruvate-tolerance test (PTT)
were conducted on Day 50 on control and PFOS-exposed mice,
as described in our previous study (Wan et al., 2014). Briefly,
for OGTT, 16-h-fasted mice were administered glucose (2 mg/g
body weight); for PTT, 16-h-fasted mice received an i.p. injection
of sodium pyruvate (2 mg/g of body weight); and for ITT,
12-h-fasted mice received an i.p. injection of insulin (1 IU/kg
body weight). For measuring blood glucose, blood samples were
collected by means of tail prick at 0, 15, 30, 60, and 120 min.
Area under the curve (AUC) values for OGTT, PTT, and ITT
were calculated to evaluate glucose tolerance, the total glucose
synthesized from pyruvate, and insulin sensitivity, respectively.

16S rDNA Metagenomic Sequencing
Cecal bacterial DNA was isolated using DNeasy Blood &
Tissue Kit (Qiagen), according to manufacturer instructions, and
30 ng of qualified DNA was used to construct the library for
metagenomic sequencing. V3-V4 Dual-index Fusion PCR Primer
Cocktail and PCR Master Mix were used to amplify the V3-
V4 regions of 16S rDNA, and the PCR product was purified
using Ampure XP beads (Agencourt). The library was quantified
using real-time quantitative PCR and was quality-checked
using an Agilent 2100 bioanalyzer instrument (EvaGreen). The
normalized library was subject to Illumina MiSeq sequencing
for 250-bp paired-end sequencing; sequencing data have been
deposited in the NCBI Sequence Read Archive (SRA)1, accession
code SRP156864.

Bioinformatics Analysis
To obtain accurate and reliable results in bioinformatics analyses,
we used a dual-indexing approach (Fadrosh et al., 2014). Raw data
were filtered to eliminate adapters and low-quality reads by using
an in-house procedure; this included truncation of sequencing
reads, based on the phred algorithm: the removed sequencing
reads (1) were <75% of their original length and contained
their paired reads; (2) included adapter sequences (default

1http://www.ncbi.nlm.nih.gov/sra
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parameter: 15 bases overlapped by reads); (3) contained an
ambiguous base (N base) and their paired reads; and (4) exhibited
low complexity (default: reads containing the same base in 10
consecutive positions). For pooling the library with barcoded
samples, the clean reads were assigned to corresponding samples
by allowing 0 base mismatch to barcode sequences with in-house
scripts. The data-processing results are listed in Supplementary
Table S1. At least 2 Mbp of clean data were obtained from
each sample, and the read-usage ratio was >70%. Paired-
end reads featuring overlaps were merged to tags that were
clustered to operational taxonomic units (OTUs) by using the
scripts of USEARCH software (v7.0.1090) (Edgar, 2013). All tags
were clustered to OTUs at 97% sequence similarity. Taxonomic
ranks were assigned to OTU representative sequences by using
Ribosomal Database Project (RDP) Naïve Bayesian Classifier
v.2.2. Alpha-diversity analysis and the screening for different
species were based on OTU and taxonomic ranks. Phylogenetic
investigation of communities by reconstruction of unobserved
states (PICRUSt) analysis was employed to predict functional
capabilities by using our sequencing data (Langille et al., 2013).

Statistical Analysis
Data are presented as means ± SEM. Differences between
treatment and respective control groups were analyzed using
Student’s t-test; p < 0.05 was considered significant. Analyses
were conducted using SigmaStat for Windows.

RESULTS

Effect of Chronic Dietary PFOS Exposure
on Liver Weight and TG Content
Upon completion of the PFOS-exposure study, on Day 50, the
mean body weights were increased in the control (AC) group and
the low-dose (AL) and high-dose (AH) PFOS-treatment groups,
and the weights did not differ in a statistically significant manner
among the groups. However, in the AH group, the liver was
enlarged and the absolute liver weight was increased (Figure 1A),
as was the ratio of liver weight to body weight (Figure 1B). The
liver appeared yellowish in the AH-group mice (data not shown),
which might be associated with lipid accumulation. Accordingly,
measurement of liver TG content revealed a significant increase
in the PFOS-exposed mice (Figure 1C), and the liver TG content
was positively correlated with the increase in absolute liver
weight. Intriguingly, serum TG content in the AH group was
significantly decreased relative to control (Figure 1D). Table 1
shows the PFOS levels in both the liver and the serum in
control and treatment groups; the accumulated PFOS levels were
increased in a PFOS dose-dependent manner.

OGTT, ITT, and PTT
On Day 50, mice from the control and low- and high-dose PFOS-
exposure groups were prepared for testing glucose metabolism
and insulin function. OGTT results revealed that whereas the
low-dose PFOS treatment did not significantly affect glucose
tolerance (Figure 2A), the high-dose treatment elicited an earlier

FIGURE 1 | Effect of 7-week dietary PFOS exposure on liver weight and
triglyceride content in mice. (A) Absolute liver weight, (B) liver index, (C) liver
triglyceride level, and (D) serum triglyceride level were measured on Day 50
after PFOS treatment. Data are presented as means ± SD; ∗p < 0.05 versus
control group. AC, control; AL, 0.3 µg/g body weight/day; AH, 3 µg/g body
weight/day.

TABLE 1 | Perfluorooctane sulfonic acid (PFOS) concentrations in liver and serum
samples.

Sample name PFOS (ng/g)

Liver Serum

AC 7.10 ± 2.50 23.90 ± 8.18

AL 32942 ± 13473∗ 33781 ± 4365∗

AH 503817 ± 325990∗ 109526 ± 19371∗

∗Statistically significant, p < 0.05 as compared with the AC group. AC-control,
AL-0.3 µg/g body weight per day, and AH-3 µg/g body weight per day.

response in the reduction of blood glucose levels, at 15 and 30 min
(p< 0.05), following glucose administration. The AUCs of OGTT
were similar between the AC and AL groups, but the AUC of
the AH group was significantly lower than that of the AC group
(control).

Next, ITT-based measurement of body insulin sensitivity
revealed that the mice in the AC and AL groups showed similar
rate and extent of responses (Figure 2B), but in the AH-group
mice, plasma glucose after insulin treatment was significantly
lower than that in the control group. Accordingly, the AUC of
the AH group was significantly lower than that of the AC group.

Lastly, to measure the effect of PFOS exposure on
gluconeogenesis, pyruvate (a gluconeogenic substrate) was
administrated and the rate of pyruvate conversion to glucose was
measured. The PTT results indicated that pyruvate conversion
in the AL and AH groups was significantly decreased relative to
that in the AC group (Figure 2C).
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FIGURE 2 | Effect of 7-week dietary PFOS exposure in mice, examined using
(A) oral glucose-tolerance test (OGTT), (B) insulin-tolerance test (ITT), and (C)
pyruvate-tolerance test (PTT). Left panels: changes in serum glucose levels
against time in the assays; right panels: area under curve (AUC) values of the
respective assays. Data are presented as means ± SD; ∗p < 0.05 versus
control group. AC, control; AL, 0.3 µg/g body weight/day; AH, 3 µg/g body
weight/day.

PFOS Exposure Exerted No Marked
Effect on Gut Bacterial Species Diversity
To determine the changes in gut bacterial community caused
by chronic dietary PFOS exposure, we performed metagenomic
sequencing analysis on the V3-V4 regions of 16S rDNA; the DNA
was collected from the ceca of mice in the AC, AL, and AH
groups. In OTU analysis, we found that the degree of bacterial
diversity was similar among the groups, and the predominant
phyla included Firmicutes, Bacteroidetes, and Proteobacteria.
In the sample AH4, the number of bacterial species was low
(Table 2). Venn diagram analysis (Figure 3A) revealed that 395
OTUs were shared among the three groups. Alpha diversity was
next applied for analyzing the complexity of species diversity in
each sample by using several indices: observed species, Chao1,
ACE, Shannon, and Simpson indices (Table 3). The rarefaction

TABLE 2 | Operational taxonomic unit (OTU) analysis on each sample from the
control (AC), low-dose (AL), and high-dose (AH) PFOS-exposed groups.

Sample name Tag number OTU number

AC1 67943 336

AC2 74582 301

AC3 74330 350

AC4 85158 284

AC5 88637 364

AH1 102682 351

AH2 91873 364

AH3 38690 255

AH4 75163 177

AL1 115877 385

AL2 55484 301

AL3 57234 318

AL4 57614 318

AL5 52056 306

AL6 71264 320

curves based on the observed species value and Chao1 and
ACE data were used to evaluate the coverage of the sequencing.
The result showed that the sequencing data were adequate for
covering all the bacterial species in the community, which was
reflected in the appearance of plateau regions in the curves
from all the samples (Supplementary Figure S1). Moreover,
comparison of the species diversity in the three groups revealed
that the PFOS-exposure groups showed no significant differences
in gut bacterial species diversity relative to the control group
(Figure 3B).

PFOS Exposure Altered Gut Microbiome
Community at Different Taxonomic
Levels
We compared the composition of the cecal microbiota at
distinct taxonomic levels after dietary PFOS exposure. In
the AL and AH groups, PFOS exposure produced similar
and consistent effects in terms of changes in the abundance
of certain microbial communities (Table 4). These changes
included a significant increase at the level of the order
Turicibacterales (belonging to the phylum Firmicutes) and
a reduction of the species Bacteroides acidifaciens (phylum
Bacteroidetes) (Figure 4A and Table 4); the increase in
Turicibacterales was mainly contributed by an induction of
the family Turicibacteraceae and genus Turicibacter (Figure 4A
and Table 4). However, the abundance of certain other
microbes was increased in either the AL group or the AH
group: In the AL group, we identified a significant induction
of the phylum Cyanobacteria (Figure 4B and Table 4),
increases in 4Cod-2 (Cyanobacteria-like lineage) and the class
Alphaproteobacteria (phylum Proteobacteria) (Figure 4C and
Table 4), and an induction of the order YS2 (phylum
Cyanobacteria) (Figure 4D and Table 4). Conversely, in
the AH group, we detected a significant reduction in the
family Dehalobacteriaceae (phylum Firmicutes) (Figure 4E and
Table 4) and the genus Dehalobacterium (Figure 4F and
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FIGURE 3 | Effect of 7-week dietary PFOS exposure on gut bacterial structure in mice. (A) Comparison of operational taxonomic units (OTUs); different colors
represent distinct groups: (i) control (AC), (ii) low-dose PFOS exposure (AL), and (iii) high-dose PFOS exposure (AH). The intersection represents the set of OTUs
commonly present in the counterpart groups. Venn diagram was drawn using VennDiagram software R (v3.0.3). (B) Changes in observed species number, Chao1
index, Ace index, Shannon’s diversity, and Simpson’s diversity; the results suggest that dietary PFOS intake exerted no effect on the species diversity of the gut
bacterial community.
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TABLE 3 | Alpha diversity statistics in each samples from the control (AC),
low-dose (AL), and high-dose (AH) PFOS-exposed groups.

Sample
name

Observed
species

Chao1 ACE Shannon Simpson

AC1 336 348.75 343.26 4.16 0.04

AC2 301 322.00 315.92 2.33 0.26

AC3 350 359.13 360.02 3.40 0.13

AC4 284 295.67 293.48 2.87 0.16

AC5 364 367.93 367.49 3.29 0.13

AH1 351 365.00 365.72 2.96 0.13

AH2 364 373.55 369.73 3.55 0.09

AH3 255 263.00 261.75 2.69 0.22

AH4 177 186.07 184.91 1.72 0.28

AL1 385 393.08 395.01 3.50 0.08

AL2 301 313.21 308.38 3.14 0.12

AL3 318 339.43 329.40 2.95 0.16

AL4 318 336.07 328.85 3.70 0.07

AL5 306 333.36 335.19 2.59 0.22

AL6 320 334.77 333.86 2.97 0.16

TABLE 4 | Alteration of gut microbiome community at different taxonomy levels
caused by dietary PFOS exposure.

Taxonomy
level

Bacterial name Ratio of low
PFOS/normal diet

Ratio of high
PFOS/normal diet

Phylum Cyanobacteria 11.47∗ 4.98

Class Alphaproteobacteria 19.25∗ 6.15

4C0d-2 11.51∗ 5.01

Order Turicibacterales 154.93∗ 68.49∗

YS2 11.51∗ 5.01

Family Turicibacteraceae 154.93∗ 68.49∗

Dehalobacteriaceae 1.03 0.37∗

Genus Dehalobacterium 1.03 0.37∗

Allobaculum 9.82∗ 29.73

Turicibacter 154.93∗ 68.49∗

Species Bacteroides
acidifaciens

0.19∗ 0.23∗

∗Statistically significant change, p < 0.05.

Table 4). Collectively, our results demonstrated that dietary PFOS
exposure led to changes in the abundance of specific members of
the gut-microbiome bacterial community.

PFOS Exposure Altered Gut Metabolism
Phylogenetic investigation of communities by reconstruction
of unobserved states analysis was conducted to predict
the functional profiling of gut bacterial communities in
response to PFOS exposure. Our result demonstrated that
both high- and low-dose PFOS exposure led to significant
suppression of arginine and proline metabolism (Table 5).
Moreover, high-dose PFOS exposure significantly reduced
lysine biosynthesis and methane metabolism but induced
butanoate metabolism. Taken together, these data suggest
that PFOS exposure resulted in the alteration of gut
metabolism.

DISCUSSION

Perfluorooctane sulfonic acid represents a risk factor for the
development of metabolic diseases. A cross-sectional study
conducted using data from the U.S. National Health and
Nutrition Examination Survey 1999–2000 and 2003–2004,
which examined 474 adolescents and 969 adults, reported
that high plasma concentrations of PFOS were associated
with increased blood insulin levels (Lin et al., 2009). In an
evaluation of a potential link between plasma PFOS levels
in 571 Taiwanese workers and the risk of diabetes, elevated
levels of the chemical were correlated with impaired glucose
homeostasis and increased prevalence of diabetes (Su et al., 2016).
Furthermore, experimental studies in animal and cell models
have demonstrated that PFOS exposure alters glucose and/or
lipid metabolism through perturbations of pancreatic β-cells,
adipocytes, and liver function, and in studies on adult-stage
animals, chronic PFOS exposure has been found to reduce body
weight and fat, accompanied by an increase in liver mass (Lau
et al., 2007; Martin et al., 2007; Zhang et al., 2008; Cui et al.,
2009). In the previous studies, most experiments were conducted
using high-dose and acute PFOS exposure, and the experimental
setting was thus unlike that in the real-world scenario, where low-
dose and chronic exposure occurs. Moreover, limited information
on the roles of gut microbes in PFOS-exposed animals is
currently available. Therefore, our study was designed to address
this knowledge gap. In the biochemical analysis of body TG
content, our data revealed hepatomegaly and lipid accumulation
in the liver of AH-group mice. The observation of liver
enlargement and lipid accumulation agreed with the results of
our previous study in which we used higher PFOS doses (5
and 10 µg/g body weight/day) but a shorter exposure time
(21 days) (Wan et al., 2012). The hepatic lipid content might
be increased because of the impairment of lipid catabolism
and/or hepatic lipid export; the reduction in lipid catabolism
probably occurred due to an inhibition of β-oxidation, whereas
the reduction in lipid transport was related to a downregulation
of apolipoprotein B (Wan et al., 2012). This correlation was
further supported by the results obtained in this study, which
showed a marked reduction in serum TG level in the AH
group. The perturbation of lipid metabolism could have affected
glucose metabolism and insulin secretion (Antinozzi et al.,
1998). Thus, we conducted physiological tests to evaluate the
impact of PFOS exposure on glucose tolerance, insulin sensitivity,
and hepatic gluconeogenesis. Our results showed statistically
significant changes in the responses measured in OGTT and ITT
in the AH group. The findings of both assays suggested that
the high-dose PFOS exposure induced insulin hypersensitivity in
mice, with the evidence indicating an increased rate of reduction
of plasma glucose levels and a decreased rate of gluconeogenesis.
The observation is supported by a previous study showing that
exposure of mice to PFOA (perfluorooctanoic acid, a member
of the PFOS family) led to an elevation of insulin sensitivity
(Yan et al., 2015). One of the recognized physiological functions
of insulin is to promote hepatic fatty acid synthesis. The high
liver lipid content in the AH group appeared to be the biological
outcome of this effect. Dietary PFOS exposure would lead to
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FIGURE 4 | Effect of 7-week dietary PFOS exposure on gut microbiome community at distinct taxonomic levels. (A) Phylogenetic tree diagram at genus level. The
same color indicates the same phylum. Taxonomic composition distributions in control (AC), low-dose PFOS-exposure (AL), and high-dose PFOS-exposure (AH)
groups are shown at the levels of (B) phylum, (C) class, (D) order, (E) family, and (F) genus.
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TABLE 5 | Alteration of gut metabolisms caused by dietary PFOS exposure.

Functional
classification

Ratio of low
PFOS/normal diet

Ratio of high
PFOS/normal diet

Arginine and proline
metabolism

0.92∗ 0.93∗

Butanoate
metabolism

1.04 1.06∗

Lysine biosynthesis 0.95 0.95∗

Methane
metabolism

0.91 0.87∗

∗Statistically significant change, p < 0.05.

direct interaction of the chemical with the bacteria in the
gut environment, and, intriguingly, this physiological outcome
correlated with the changes in gut bacterial diversity assessed
using 16S metagenomic analysis.

In our previous study in mice, we showed that daily intake
of an environmental obesogen, bisphenol A, altered the gut
bacterial structure (Lai et al., 2016). The pattern of the alteration
was similar to that in high-fat-diet-fed mice. This observation
supports the notion that environmental chemicals can perturb
gut bacterial communities. In this study, we extended our
investigation to address the effects of PFOS exposure on gut
bacterial structure. Our results showed that chronic PFOS
exposure (0.3 and 3 µg/g body weight, for 49 days) exerted no
effect on gut bacterial diversity in general. However, when we
examined specific taxonomic levels, we found that both low-
dose and high-dose of PFOS exposure altered the abundances
of distinct gut bacteria belonging to the phyla Firmicutes,
Bacteroidetes, Proteobacteria, and Cyanobacteria. Some of these
changes were reported to be associated with the symptoms of
metabolic perturbations. For instance, PFOS exposure caused
a marked induction of microbes in the order Turicibacterales,
which was due to the growth of the bacteria in the family
Turicibacteraceae and genus Turicibacter, and this induction
was stronger in the low-dose PFOS-exposure group than in the
high-dose group. A previous study showed that Turicibacter was
increased in mice fed with a high-cholesterol diet, as compared
with the level in the control group (Dimova et al., 2017); the
data implied that Turicibacter was increased in response to the
abundance of dietary cholesterol. Intriguingly, the results of an
epidemiological analysis showed a positive correlation between
serum PFOS and total cholesterol levels (Nelson et al., 2010).
Moreover, other studies suggested that an increase in Turicibacter
was correlated with dietary fat content, although the observations
were inconclusive (Everard et al., 2014; Zhong et al., 2015).
Nonetheless, the increase we observed here in the abundance
of Turicibacter was likely related to the perturbing effects of
PFOS on lipid metabolism. Another study on host–microbiota
relationship in glucose-metabolism disorder demonstrated a
positive association with Turicibacteraceae (Lippert et al., 2017).
This association was observed here in our OGTT, ITT, and
PTT data, particularly in the case of high-dose PFOS exposure.
Moreover, following low-dose PFOS exposure, the abundance of
the genus Allobaculum was increased substantially. Allobaculum,
a putative short-chain fatty-acid-producing bacterium, was

suggested to contribute to insulin resistance and obesity (Zhang
et al., 2015). Besides this increase of bacterial abundance, our data
revealed a marked reduction in the proportion of B. acidifaciens
in the gut of mice in the PFOS-exposed groups, as compared
with the proportion in the control group. B. acidifaciens is one
of the predominant bacterial species responsible for promoting
IgA production in the large intestine and is a specific commensal
bacterium associated with amelioration of metabolic disorders in
mice (Yanagibashi et al., 2013; Yang et al., 2017). The abundance
of B. acidifaciens was found to be negatively correlated with liver
TG levels in mice fed with a high-fat diet (Blasco-Baque et al.,
2017), which supports our data indicating negative correlation
between the levels of hepatic and serum TG in PFOS-exposed
mice. The family Dehalobacteriaceae showed reduced abundance
only in the high-dose group, which was contributed by the
decrease in Dehalobacterium. In a study of 416 twin-pairs from
the Twins population, a low abundance of Dehalobacterium was
associated with a high body mass index and high blood lipid
levels (Fu et al., 2015). The involvement of the gut microbiota
in multiple metabolic pathways in the host is widely recognized,
and, accordingly, the results of our PICRUSt analysis showed
that PFOS exposure altered the microbial community functions,
specifically in the metabolism of amino acids (arginine, proline,
lysine), methane, and a short-chain fatty acid (butanoate).
Alternations in the metabolism of these metabolites in intestinal
bacteria were reported to affect host physiology (Dai et al.,
2011; Nicholson et al., 2012); changes in arginine and proline
metabolism were associated with coronary heart disease (Feng
et al., 2016), whereas perturbations of butyrate and methane
metabolism were related to inflammatory diseases (Morgan et al.,
2012) and Type I diabetes (Brown et al., 2011). Furthermore, the
GPR-43 receptor for short-chain fatty acids was demonstrated
to be linked with fat accumulation in the host (Kimura et al.,
2013). Retrospectively, we can conclude that our data on the
changes in the abundance of gut bacteria and their metabolism
in the PFOS-exposed groups were associated with the observed
metabolic perturbations.

To our knowledge, this the first integrative study to report
the effects of PFOS exposure on animal metabolism and gut
bacterial community. Our data revealed that chronic PFOS
exposure at 3 µg/g body weight/day induced insulin sensitivity,
which was associated with an increase in hepatic lipid content
but a reduction in hepatic gluconeogenesis. The results of
intestinal 16S metagenomic analysis demonstrated marked
changes in the abundances of bacteria at distinct taxonomic
levels, including Turicibacter, Allobaculum, B. acidifaciens, and
Dehalobacteriaceae; changes in the abundance of these bacteria
are known to be associated with perturbations of glucose and
lipid metabolism. Collectively, the results from this study implied
that dietary PFOS exposure affected not only the glucose and lipid
metabolism of the host animals, but also caused disturbance to
the gut bacterial ecosystem. However, certain questions remain
unresolved, such as the mechanistic interactions between PFOS
and gut microbes and the changes in the production of bacterial
metabolites, and further investigation in necessary to clarify
the potential correlation between these changes and PFOS
exposure.
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Gram-negative bacteria use various secretion systems to deliver their secreted effectors.
Among them, type IV secretion system exists widely in a variety of bacterial species,
and secretes type IV secreted effectors (T4SEs), which play vital roles in host-
pathogen interactions. However, experimental approaches to identify T4SEs are time-
and resource-consuming. In the present study, we aim to develop an in silico stacked
ensemble method to predict whether a protein is an effector of type IV secretion
system or not based on its sequence information. The protein sequences were encoded
by the feature of position specific scoring matrix (PSSM)-composition by summing
rows that correspond to the same amino acid residues in PSSM profiles. Based on
the PSSM-composition features, we develop a stacked ensemble model PredT4SE-
Stack to predict T4SEs, which utilized an ensemble of base-classifiers implemented by
various machine learning algorithms, such as support vector machine, gradient boosting
machine, and extremely randomized trees, to generate outputs for the meta-classifier
in the classification system. Our results demonstrated that the framework of PredT4SE-
Stack was a feasible and effective way to accurately identify T4SEs based on protein
sequence information. The datasets and source code of PredT4SE-Stack are freely
available at http://xbioinfo.sjtu.edu.cn/PredT4SE_Stack/index.php.

Keywords: type IV secreted effector, sequence information, position specific scoring matrix, machine learning,
stacked ensemble method

INTRODUCTION

Gram-negative bacteria use various secretion systems to deliver their secreted substrates (also called
as effectors) from the bacterial cytosol into host cells, which can promote virulence and cause
diseases. Until now, eight different secretion systems (type I to type VIII) have been found in Gram-
negative bacteria, which differ from each other in their outer membrane secretion mechanisms.
There are a number of well-organized databases or web resource on collecting experimentally
validated effectors of Type III, IV, and VI secretion systems (Bi et al., 2013; Li et al., 2015; Eichinger
et al., 2016; An et al., 2017). Among them, type IV secretion system (T4SS) exists widely in a
variety of bacterial species, such as Bordetella pertussis, Helicobacter pylori, Coxiella burnetii, and
Legionella pneumophila (Chandran et al., 2009; Fronzes et al., 2009; Lifshitz et al., 2013). T4SS
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specifically secretes type IV secreted effectors (T4SEs), which vary
widely across bacterial species. T4SEs mimic the function of host
proteins, exert vital functions in cytoplasm of infected eukaryotic
cells and play crucial roles in host-pathogen interactions.
Accurate and reliable identification of T4SEs is a crucial step
toward the understanding of the pathogenic mechanism of
T4SS. Due to the biological significance of T4SEs, a number
of experimental approaches have been developed to identify
novel T4SEs such as fusion protein report assays and secretion
apparatus. However, these experimental approaches are time-
and resource-consuming. It is highly desirable to develop in silico
classification models to accurately predict type IV secreted
effectors of T4SS based on protein sequence information.

In the last decade, several computational approaches using
machine learning (ML) algorithms were developed to predict
T4SEs based on protein sequence information. A pioneering
method proposed by Burstein et al. (2009) formulated the task
of identifying T4SEs on Legionella pneumophila genome as a
classification problem using various ML algorithms, including
naïve Bayes, Bayesian networks, support vector machine (SVM),
Neural networks, and a voting algorithm that is based on these
four algorithms. The input features of these algorithms include
taxonomical dispersion, regulatory data, genomic organization,
and similarity to eukaryotic proteomes (Burstein et al., 2009).
Later, the same group developed a hidden semi-Markov model
(HSMM) to characterize the amino acid composition of the
secretion signal for identification of T4SEs across species (Lifshitz
et al., 2013). Chen et al. (2010) used the similar ML-based
model as the previous study (Burstein et al., 2009) to predict
putative T4SEs in Coxiella burnetii genome, which helped narrow
the number of potential targets for subsequent experimental
validation. T4EffPred is a SVM-based prediction tool for
identifying T4SEs based on four types of sequence-derived
features, which were calculated from amino acid composition
(AAC) and position specific scoring matrix (PSSM) profiles (Zou
et al., 2013). T4SEpre (Wang et al., 2014) is another SVM-
based tool for predicting T4SEs from C-terminal 100 amino
acids of protein sequences by using AAC, position-specific AAC
profiles, and predicted structural features such as secondary
structure and solvent accessibility. An et al. (2016) constructed an
ensemble model by random forest to integrate the output of the
individual predictors (i.e., T4EffPred and T4SEpre) to improve
predictive performance. Recently, Wang Y. et al. (2017) presented
an effective method to predict T4SEs prediction by integrating
information from both 50 N-terminal and 100 C-terminal
residues of protein sequences. The model was built by SVM based
on three types of features, namely AAC, PSSM, and composition,
transition and distribution.

Overall, the currently available computational approaches for
prediction of T4SEs vary from one another in terms of the utilized
features and ML algorithms. Since the numbers of effectors and
non-effectors in genomes are heavily unbalanced (the effectors
comprise only a small fraction of a genome), it is highly desirable
to develop a prediction method with high precision and high
specificity. Otherwise, the number of true positives would easily
be overwhelmed by the number of false positives, so that such
a predictor is impractical to generate reliable candidates for

experimental validation. In the present study, we aim to propose
a stacked ensemble model, PredT4SE-Stack, to further improve
the prediction performance (i.e., higher precision and specificity)
for identifying T4SEs from protein sequence information. The
stacked generalization approach (Wolpert, 1992) consists of an
ensemble of base classifiers whose outputs are further learned
by a meta-classifier to model the relationship between the
ensemble outputs and the actual classes/labels. To construct
the model, the protein sequences are firstly encoded by the
feature of PSSM-composition by summing rows that correspond
to the same amino acid residues in PSSM profiles. Based on
the PSSM-composition features, a total of eight types of ML-
based algorithms (including advanced ML techniques) are used
to build base-classifiers in the first stage. Then, the optimal
combination of base-classifiers is searched, and the output of
these selected base-classifiers are utilized as input for a meta-
classifier at the second stage. Our experimental results on both
cross validation and independent tests demonstrated that the
framework of PredT4SE-Stack is a feasible and effective way to
accurately identify T4SEs based on protein sequence information.
It also has achieved better performance than previously published
methods.

MATERIALS AND METHODS

Dataset
In this study, the same benchmark dataset curated by Wang
Y. et al. (2017) was used to evaluate the performance of our
proposed method. The dataset consists of 1,765 protein sequences
across multiple bacterial species, categorized into two classes (380
T4SEs as the positive class and 1,385 non-T4SEs as the negative
class). These proteins in this dataset have mutual sequence
identity no more than 30%. The 1,765 protein sequences were
divided into two subsets for cross validation in the training and
the independent testing, respectively. The training dataset (Train-
915) are composed of 915 sequences, among which 305 T4SE
sequences were randomly selected from positive class, and 610
non-T4SE sequences were randomly selected from negative class.
The dataset of Train-915 was further randomly divided into five
subsets (or folds) with an equal number of protein sequences
for cross validation to attain the optimized model. In each of
the five validations, 4 of the 5-folds were used for training and
the remaining one for testing, which was repeated for five times.
The testing dataset (Test-850) included the remaining 75 T4SE
sequences as positive samples and 775 non-T4SE sequences as
negative samples for independent testing.

Feature Representation of Protein
Sequence Samples
One of the key problems in designing a predictor based on
machine learning is how to encode a protein sequence as an
informative feature vector enriched with highly discriminative
information. In the present section, we describe how to formulate
an effective mathematical expression that describes protein
sequences in the training and testing data sets.
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The protein sequence profile (i.e., PSSM) is a powerful
representation of residue or sequence information of proteins. It
has achieved good performance on a number of bioinformatics
applications such as functional residues prediction and protein
function prediction (Xiong et al., 2011a,b, 2012; Zhu et al., 2013;
Wei et al., 2017a). In this study, PSSMs were generated by
three iterations of PSI-BLAST searches against Uniref50 with the
BLOSUM62 substitution matrix. The parameter of e-value was
set to 0.001. Because ML-based models can only handle vectors
with equal lengths for all protein sequence samples, the PSSM
of a protein sequence (amino acid length is L) has a dimension
of L∗20, which could not be directly used as the input feature
vector for machine learning algorithms. Instead, the original
PSSM profile was further used to calculate the feature of PSSM-
composition by summing rows that correspond to the same
amino acid residues in a PSSM profile, in much the same way
as the previous studies (Zou et al., 2013; Wang J. et al’s., 2017).
The sum value was divided by the length of the protein sequence
for each type of amino acid (there is a total of 20 types). Thus, a
vector of size at 400 (=20 × 20) is finally used for representing
a protein sequence sample. Figure 1 presents the details about
how to generate a feature vector of PSSM-composition for a given
protein sequence.

Classification System
The ensemble learning techniques can be categorized into
three main types, which include bagging, boosting, and stacked
ensemble. It is demonstrated that the ensemble learning
techniques can help improve the prediction performance in
various bioinformatics applications (Zhang et al., 2012; Lin et al.,
2013, 2014; Zou et al., 2015; Li et al., 2016; Yuan et al., 2016; Wan
et al., 2017; Iqbal and Hoque, 2018; Mishra et al., 2018; You et al.,
2018). In this section, we introduce the components of the two-
stage stacked ensemble scheme, including various classification
algorithms used as base-classifiers in the first stage, and the input
of the meta-classifier in the second stage.

Base-Classifier
In order to find the optimal combination of base-classifiers
in the first stage and the meta-classifier in the second stage,
the following eight different machine learning algorithms were
exploited: (i) SVM (Cortes and Vapnik, 1995), (ii) Naïve Bayes
(NB), (iii) K Nearest Neighbor (KNN), (iv) Logistic Regression
(LR), (v) Random Forest (RF) (Breiman, 2001), (vi) Extremely
Randomized Trees (ERT) (Geurts et al., 2006), (vii) Gradient
Boosting Machine (GBM) (Friedman, 2001), and (viii) eXtreme
Gradient Boosting (XGB). The algorithms such as NB, LR, and
GBM were implemented by using h2o package in R software. The
algorithms of SVM, KNN, RF, ERT, and XGB are implemented
by using e1071, caret, randomForest, extraTrees and xgboost
packages in R, respectively. The optimal parameters in these
algorithms are determined by a grid search strategy.

Meta-Classifier
The meta-classifier in the second level generalization (or stacked
generalization) is used to combine the outputs of base-classifiers
in an ensemble. In our classification system, we applied a

stacked generalization approach proposed by Wolpert (1992), in
which an ensemble of base-classifiers are first constructed, whose
outputs are used as inputs to a second level of meta-classifier
to learn the relationship between the ensemble outputs and the
actual classes/labels. The stacked generalization scheme can be
viewed as an extension version of cross validation. In the first
stage, the base-classifiers were trained with the feature of PSSM-
composition of sequences. In the second stage, the prediction
class probabilities of the base-classifiers were taken as inputs to
the meta-classifier (shown in Figure 2).

Model Validation Method
To evaluate performances of classification models, the validation
methods are mainly consisting of k-fold cross validation, leave-
one-out cross validation (or called as jackknife test), and
independent tests. In k-fold cross validation, the sample set is
randomly divided into k subsets with equal sizes. Of the k subsets,
only one subset is selected as the validation data for testing the
model, and the remaining k-1 subsets are used as training data.
The cross validation process is then repeated k times (the folds),
with each of the k subsets used exactly once as the validation
data. The results from k folds are finally averaged. The k-fold
cross validation method has been widely used as the model
validation approach in various bioinformatics applications (Zhu
and Mitchell, 2011; Xu et al., 2017; Zeng et al., 2017; Chen X.
et al., 2018; He et al., 2018a,d). In the present study, the 5-fold
cross validation was used for validation in the training set, and the
independent test was used for testing the generalization ability of
the proposed method, and comparison with other methods.

Model Evaluation Metric
In order to assess prediction performances of single-label
classification systems, a set of six threshold-dependent metrics
are widely used in the bioinformatics studies (Xia et al., 2010;
Li et al., 2011; Zhang et al., 2017, 2018a,b,c; He et al., 2018c;
Jia et al., 2018; Zhao et al., 2018). They are accuracy (ACC),
sensitivity (SE, also called recall), specificity (SP), precision (PR),
Matthew’s correlation coefficient (MCC) and F-measure (F1). The
definitions of these metrics are shown as below.

ACC =
TP + TN

TP + TN + FP + FN
(1)

SE =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

PR =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN

√
(TP + FN)× (TP + FP)× (TN + FP)× (TN + FN)

(5)

F1 =
2× SE× PR
SE+ PR

(6)

where TP (true positives) is the number of correctly predicted
T4SEs, TN (true negatives) is the number of correctly predicted
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FIGURE 1 | The illustration of PSSM-composition profile calculation for a query sequence.

Frontiers in Microbiology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 2571115

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02571 October 24, 2018 Time: 15:1 # 5

Xiong et al. Predicting Type IV Secreted Effectors

FIGURE 2 | The framework of the stacked ensemble scheme proposed in PredT4SE-Stack.

TABLE 1 | Performance comparison of eight types of base-classifiers in the first stage on Train-915 dataset using 5-fold cross validation.

Method Parameter ACC(%) SE (%) SP (%) PR(%) MCC F1

NB laplace = 0 73.2 81.0 69.3 57.0 0.476 0.669

KNN k = 10 85.5 82.0 87.2 76.3 0.680 0.790

LR family = “binomial” 87.9 74.8 94.4 87.1 0.722 0.803

RF ntree = 500 88.5 72.5 96.6 91.4 0.738 0.807

ERT numRandomCuts = 9 89.4 74.8 96.7 92.1 0.759 0.824

SVM cost = 1, gamma = 2−8, kernel = “radial” 90.2 78.0 96.2 91.6 0.777 0.839

XGB eta = 0.3, max_depth = 6, nrounds = 500, objective = “binary:logistic” 90.1 78.7 95.7 90.4 0.774 0.840

GBM learn_rate = 0.7, max_depth = 9, ntrees = 50 90.5 80.0 95.7 90.7 0.784 0.847

non-T4SEs, FP (false positives) is the number of non-T4SEs
wrongly predicted as T4SEs, and FN (false negatives) is the
number of T4SEs wrongly predicted as non-T4SEs.

The receiver operating characteristic (ROC) curve is a plot of
the sensitivity versus (1-specificity) for a binary classifier at varying
thresholds from 0 to 1 (the threshold is assigned as the probability
of the target sequence to be a T4SE in our study). The area under
the curve (AUC) can be used as a powerful metric for evaluation
performances of classifiers. It is worth mentioning that AUC of
ROC (and ACC, MCC) can present overly optimistic assessment
of performance of an algorithm on a heavily unbalanced dataset.
Therefore, we only used AUC of ROC for evaluation in 5-fold
cross validation, but not used it for evaluation in the independent
dataset (only 75 proteins are true positives among 850 samples).
Instead, the metric of F1, which is a harmonic mean of recall
(or sensitivity) and precision, is a main metric for evaluating
performances of classifiers in the present study.

RESULTS AND DISCUSSION

Predictive Power of Various
Base-Classifiers on Train-915 Dataset
The aim of this section is to test the predictive power of base-
classifiers based on PSSM-composition profiles for eight different
machine learning algorithms on Train-915 dataset using 5-
fold cross validation. Experimental results shown in Table 1
indicate that the algorithm of naïve Bayes performed worst on
this task. The algorithms of KNN, logistic regression, random
forest, and extremely randomized trees performed moderately.

The algorithms of support vector machine, extreme gradient
boosting, and gradient boosting machine performed best. The
results of ROC shown in Figure 3 are mainly in agreement
with the findings in Table 1. However, the fact that the AUC-
ROC of SVM is higher than that of XGB and GBM indicates
that SVM can achieve more stable performance than XGB and
GBM using PSSM-composition feature as input in the present
task, in regardless of the change of the thresholds. It should be
noted that we tried a large number of other types of PSSM-
derived features generated by POSSUM tookit (Wang J. et al’s.,
2017), and a variety of structural and physiochemical descriptors
extracted from protein sequences generated by iFeature tookit
(Chen Z. et al., 2018) when we designed the input features
of the base-classifiers. Our experimental results demonstrated
that the PSSM-composition feature utilized in this study yielded
satisfactory performance, which performed better than other
types of sequence-based features. Moreover, we attempted to
directly combine the PSSM-composition feature with other types
of features as the input of the base-classifiers. It was found that
the combined features could not significantly produce higher
performance than the single type of PSSM-composition feature
(data not shown).

Predictive Power of Meta-Classifiers on
Train-915 Dataset
Since combining all of the above mentioned base-classifiers in a
meta-classifier could not yield optimal prediction performance,
it is desirable to search for the optimal combination of base-
classifiers. Since RF and ERT are tree-based classifiers, we chose
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FIGURE 3 | ROC curves of base-classifiers in the first stage on Train-915 dataset using 5-fold cross validation.

FIGURE 4 | ROC curves of meta-classifiers in the second stage on Train-915 dataset using 5-fold cross validation.
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TABLE 2 | Performance comparison of eight types of meta-classifiers in the second stage on Train-915 dataset using 5-fold cross validation.

Method Parameter ACC(%) SE (%) SP (%) PR(%) MCC F1

ERT numRandomCuts = 9 88.9 80.3 93.1 86.5 0.752 0.828

RF ntree = 500 90.4 81.0 95.1 89.7 0.783 0.847

SVM cost = 10, gamma = 2−10, kernel = “radial” 90.6 80.3 95.7 90.7 0.787 0.849

GBM learn_rate = 0.1, max_depth = 3, ntrees = 50 90.6 82.0 94.9 89.3 0.788 0.851

XGB eta = 0.1, max_depth = 2, nrounds = 100, objective = “binary:logistic” 90.7 81.3 95.4 90.4 0.791 0.852

NB laplace = 0 90.9 82.3 95.2 89.9 0.795 0.857

KNN k = 19 91.0 82.0 95.6 90.5 0.797 0.857

LR family = “binomial” 91.1 81.0 96.2 91.9 0.800 0.858

one of them at a time. Because GBM and XGB are boosting-based
methods, and XGB is an efficient and scalable implementation
of GBM, we chose one of them too. It was found that the
combination of SVM, GBM, and ERT achieved the optimal
performance, which is in agreement with the finding of study
by Pan et al. (2018) on the prediction task of hot spots in
protein-RNA interfaces.

Furthermore, we tested the same set of eight ML methods as
the classification algorithms of meta-classifiers to compare their
prediction performances. The results in Table 2 showed that
all meta-classifiers except the one based on ERT achieved very
similar performances, for example, the values of F1 are falling in
a narrow range from 0.847 to 0.858, whereas the base-classifiers
using the same set of ML algorithms are ranging from 0.669 to
0.847 in the first stage. These results can be explained by the fact
that the pattern learned from the first stage is effective enough,
leading to the similar level of performances at the second stage
on the same dataset of Train-915, irrespective of ML algorithms,
except ERT (also demonstrated in Figure 4) .

Predictive Power of Meta-Classifiers on
Test-850 Dataset
In the section, the prediction performances of meta-classifiers
are evaluated on the independent dataset, which is mimicking a
true prediction task, since the model trained on one dataset is
really tested on an unseen dataset for examining its generalization
ability on a new dataset. Table 3 indicated that LR and SVM
have top performances on Test-850 dataset. Therefore, both of
them can be utilized as the classification algorithms of the meta-
classifier in PredT4SE-Stack. Considering the fact that LR is more
interpretable than SVM, we could use LR to construct the meta-
classifier in our model PredT4SE-Stack. In real application, we
will re-train PredT4SE-Stack on a whole dataset consisting of
Train-915 and Test-850.

Comparison With Previous Studies
The main purpose of this section is to compare our proposed
approach PredT4SE-Stack to previously published methods.
Performance comparisons among different T4SE prediction
approaches are scientifically meaningful only if they train and test
their methods on the same dataset. Accordingly, our approach
PredT4SE-Stack was only compared with the recently published
method proposed by Wang Y. et al. (2017). The first reason
is that both two studies used the same benchmark dataset

TABLE 3 | Performance comparison of eight types of meta-classifiers in the
second stage on the independent dataset Test-850.

Method ACC(%) SE (%) SP (%) PR(%) MCC F1

XGB 92.4 85.3 93.0 54.2 0.643 0.663

GBM 93.1 88.0 93.5 56.9 0.674 0.691

KNN 93.5 88.0 94.1 58.9 0.688 0.706

RF 93.8 86.7 94.5 60.2 0.691 0.710

NB 93.8 88.0 94.3 60.0 0.696 0.714

ERT 94.0 88.0 94.6 61.1 0.703 0.721

LR 94.4 88.0 95.0 62.9 0.715 0.733

SVM 94.5 86.7 95.2 63.7 0.715 0.734

TABLE 4 | Performance comparison between our method with the other method
on the independent dataset Test-850.

Method ACC(%) SE (%) SP (%) PR(%) MCC F1

Wang Y. et al.’s
(2017) method

85.3 90.7 84.8 36.6 0.518 0.521

PredT4SE-Stack
(SVM, 0.23)

87.5 90.7 87.2 40.7 0.556 0.562

PredT4SE-Stack
(SVM, 0.50)

94.5 86.7 95.2 63.7 0.715 0.734

PredT4SE-Stack
(LR, 0.11)

88.7 90.7 88.5 43.3 0.579 0.586

PredT4SE-Stack
(LR, 0.50)

94.4 88.0 95.0 62.9 0.715 0.733

for training and testing. The second reason is that Wang Y.
et al.’s (2017) method had been proved to be improved over
other published methods such as T4EffPred (Zou et al., 2013),
T4SEpre (Wang et al., 2014), and An et al.’s (2016) method.
Table 4 shows the comparison results between our method with
Wang Y. et al.’s (2017) method. Since the measures of F1 and
precision are not available in Table 4 in their published study,
we firstly calculated the TP, TN, FP, and FN using the sensitivity
and specificity of their method, and then calculated F1 and
precision of Wang Y. et al.’s (2017) method. The meta-classifier
of our PredT4SE-Stack classification system was implemented
by SVM or LR. For SVM or LR, the performance (F1 = 0.734
or 0.733) of our method is much higher than that (F1 = 0.521)
of Wang Y. et al.’s (2017) method. If our SVM-based meta-
classifier is tuned on the same recall or sensitivity of 90.7%,
our method achieved better performance at specificity, precision,
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and F1, which are 2.4, 4.1, and 4.1% respectively, higher than
that of Wang Y. et al.’s (2017) method. If our LR-based meta-
classifier is tuned on the same recall or sensitivity of 90.7%, our
method achieved better performance at specificity, precision, and
F1, which are 3.7, 6.7, and 6.5% respectively, higher than that of
Wang Y. et al.’s (2017) method.

CONCLUSION

The main goal of the current study is to develop a stacked
ensemble model PredT4SE-Stack to predict T4SEs from protein
sequence information. The proposed model utilized an ensemble
of base-classifiers implemented by SVM, GBM, and ERT to
generate outputs for the meta-classifier in the classification
system. It was demonstrated that the framework of PredT4SE-
Stack was a feasible and effective way to accurately identify
T4SEs based on protein sequence information. However, the
performance of PredT4SE-Stack can be further improved in
several respects. Firstly, the diversity of base-classifiers was
implemented by various classification algorithms in the present
work. It can be further improved by different features in different
base-classifiers. Secondly, inspired by the successful application
of feature selection strategies in various bioinformatics tasks (Zou
et al., 2016;Wei et al., 2017b, 2018; He et al., 2018b;Manavalan
et al., 2018; Qiao et al., 2018; Su et al., 2018; Tang et al.,
2018), the predictive power of base-classifiers can be boosted by

incorporating an effective feature selection technology on a large
pool of sequence-derived features. Moreover, an effective model
selection on a large number of candidate base-classifiers will be
explored to improve the prediction performance of the meta-
classifier. These improvements will be explored in the further
study.
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Background: The implications of gut microbiome to obesity have been extensively

investigated in recent years although the exact mechanism is still unclear. The question

whether or not obesity influences gut microbiome assembly has not been addressed.

The question is significant because it is fundamental for investigating the diversity

maintenance and stability of gut microbiome, and the latter should hold a key for

understanding the etiological implications of gut microbiome to obesity.

Methods: In this study, we adopt a dual neutral theory modeling strategy to address

this question from both species and community perspectives, with both discrete and

continuous neutral theory models. The first neutral theory model we apply is Hubbell’s

neutral theory of biodiversity that has been extensively tested in macro-ecology of plants

and animals, and the secondwe apply is Sloan’s neutral theorymodel that was developed

particularly for microbial communities based on metagenomic sequencing data. Both

the neutral models are complementary to each other and integrated together offering a

comprehensive approach to more accurately revealing the possible influence of obesity

on gut microbiome assembly. This is not only because the focus of both neutral theory

models is different (community vs. species), but also because they adopted two different

modeling strategies (discrete vs. continuous).

Results: We test both the neutral theory models with datasets from Turnbaugh et al.

(2009). Our tests showed that the species abundance distributions of more than ½

species (59–69%) in gut microbiome satisfied the prediction of Sloan’s neutral theory,

although at the community level, the number of communities satisfied the Hubbell’s

neutral theory was negligible (2 out of 278).

Conclusion: The apparently contradictory findings above suggest that both stochastic

neutral effects and deterministic environmental (host) factors play important roles in

shaping the assembly and diversity of gut microbiome. Furthermore, obesity may just
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be one of the host factors, but its influence may not be strong enough to tip the balance

between stochastic and deterministic forces that shape the community assembly. Finally,

the apparent contradiction from both the neutral theories should not be surprising given

that there are still near 30–40% species that do not obey the neutral law.

Keywords: obesity, Hubbell neutral theory of biodiversity, Sloan’s neutral model for microbes, niche theory,

community assembly, species abundance distribution (SAD)

INTRODUCTION

Obesity is a complex physiological disorder that is often
associated with multi-organ (e.g., cardiac, adipose, muscle,
hypothalamic, pancreatic, and hepatic tissue), chronic metabolic,
and inflammatory alterations. Obesity may induce some chronic
metabolic diseases directly or indirectly, such as type 2 diabetes,
atherosclerosis, nonalcoholic fatty liver disease, and gout (Sun
et al., 2012; Henao-Mejia et al., 2014). Obesity has become a
serious health threat to a growing number of people around
the world in the past decades. Obesity epidemic relates to many
factors, including not only diet habits, physical activity, and
genetic makeup (Ravussin and Ryan, 2018), but also behavioral
factors, environmental exposures, social-psychological factors,
and reproductive factors (Davis et al., 2018). In addition,
its close links with the human gut microbiome have been
revealed by more recent studies in the last decade (e.g.,
Turnbaugh et al., 2006, 2009; Zhao, 2013; Davis et al., 2018).
Because of the significant overlap between obesity and the
metabolic syndrome, dysbiosis of gut microbiome or shift of
the balance, is a phenomenon deserving serious considerations
when assessing the elements driving adiposity (Stephens et al.,
2018). Several studies showed a significant difference in the
ratio of Firmicutes to Bacteroidetes, where higher Firmicutes and
lower Bacteroidetes were found in obese subjects (Ley et al.,
2005, 2006; Turnbaugh et al., 2006, 2009; Armougom et al.,
2009; Hildebrandt et al., 2009; Fleissner et al., 2010; Murphy
et al., 2010), but exceptions regarding the ratio change were also
reported (Schwiertz et al., 2010; Zhang et al., 2010; Zhao, 2013).
More recent studies found that the abundance of Bacteroides

thetaiotaomicron remarkably decreased in obese individuals (Liu

et al., 2017), and the ratio of two enterotypes in human gut
microbiome (Prevotella spp. to Bacteroides spp.) has been shown
to play a role in predicting the weight loss of people with

different diets (Hjorth et al., 2017). Goodrich et al. found that
the family Christensenellaceae was enriched in individuals with
low body mass index (BMI), and the weight is reduced in the
recipient mice inoculated with Christensenella minuta (Goodrich
et al., 2014, 2016a,b). Menni et al. (2017) further assessed the

association of gut microbiome composition and change in body
weight over time by analyzing the data of 1632 females from
“TwinsUK” database including longitudinal BMI data and fecal
microbiome data. They demonstrated that Ruminococcaceae and
Lachnospiraceae were associated with lower long-term weight
gain, and Bacterioides was associated with increased risk of
weight gain. In addition, many studies have suggested the
lowered gut microbial diversity in obese individuals (Ley et al.,

2006; Turnbaugh et al., 2009; Le Chatelier et al., 2013). In spite of
the extensive studies on the relationship between gut microbiome
diversity and obesity, and several computational models that can
help for predicting potential obesity-related microbe (Chen et al.,
2017; Huang et al., 2017a,b; Wang et al., 2017), the underlying
mechanism has not been addressed to the best of our knowledge.

The mechanisms of species coexistence and biodiversity
maintenance in ecological communities have long been a core
research theme of community ecology, in which the deterministic
niche theory and stochastic neutral theory are well recognized
as two most influential. Traditional niche theory maintains that
species coexisting in a community must have different niches,
and species with the same niche requirements could not stably
coexist in long term (Matthews et al., 2014). Although niche
theory was supported by many field and laboratory studies, it
encountered difficulties in explaining the mechanisms of species
coexistence in tropical forests. Hubbell (1997, 2001); Wills et al.
(1997) introduced the neutral theory of biodiversity that provided
alternative perspectives of species coexistence. Hubbell’s neutral
theory of biodiversity is an individual-based stochastic dynamic
theory that assumes equivalences among interacting species and
can be formulated as a dispersal-limited, distribution-sampling
model (Etienne, 2005; Alonso et al., 2006; Rosindell et al.,
2011, 2012). The latter allows rigorous statistical testing of the
neutral theory with the species abundance data (SAD) that can
be obtained from field survey (in macro-ecology of plants and
animals) ormetagenomic sequencing data (inmicrobial ecology).

In consideration of the unique characteristics of metagenomic
sequencing data of microbial species abundance distribution,
Sloan et al. (2006, 2007) proposed an alternative neutral
model that emphasizes the species-level neutrality in microbial
communities. Unlike traditional neutral theories that were
calibrated by using “almost complete description of the taxa-
abundance distribution for community,” Sloan’s model can
calibrate itself just with the small-sample microbial data that
were collected using molecular approaches since Sloan’s model
allowed for the difference of competitiveness among species
in microbial communities (Sloan et al., 2006, 2007). Another
important characteristic of Sloan’s model is that it was derived
from a continuous diffusion process rather than from a discrete
distribution model as that of Hubbell (Sloan et al., 2006,
2007). These two features make Sloan’s neutral model a nice
complement to Hubbell’s neutral model (Hubbell, 2001; Etienne,
2005; Rosindell et al., 2011, 2012).

The neutral theory offers a powerful quantitative tool to
identify the forces that shape the gut microbial communities,
and the revealed information is crucial for understanding
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the mechanisms that maintain microbiome diversity and
possible influences of diseases/disorders such as obesity on
the mechanistic shifts of community assembly. In spite of
extensive studies on the relationship between the gut microbiome
and obesity, as reviewed previously, whether or not obesity
plays a tipping role in “re-assembling” gut microbiota, or
exerting a significant influence on themechanisms of community
assembly and diversity maintenance, is still an open question.
For example, the test of neutral theory can help to answer the
following question: which forces, deterministic host factors such
as obesity, or stochasticities in birth, death and migration of
gut microbes, are in control of the composition and diversity of
gut microbiome. If the former is the case, it suggests that the
community is formed through the partition of different niches,
occupied by species with different niche requirements, and
the exhibited diversity (heterogeneity) at the community level
is determined by the deterministic environmental factors that
delineate different niches. If the latter is the case, it suggests that
the community is essentially a random mix of largely ecological
equivalent species, and the exhibited diversity (heterogeneity) is
caused by the stochasticities in birth, death and migration of
different species. The primary objective of this article is to apply
the neutral theories of Hubbell (2001) and Sloan et al. (2006,
2007) for exploring the above question with the dataset from a
large-scale, comprehensive study of the human gut microbiome
involving 283 overweight, obese and lean individuals, originally
reported by Turnbaugh et al. (2009).

MATERIAL AND METHODS

Dataset Description
The 16S r-RNA datasets of gut microbiomes we used to test
the neutral theories were first reported in Turnbaugh et al.
(2009), and a brief description is presented as follows. A series
of fecal samples were collected from 154 individuals, including
31 monozygotic twin pairs, 23 dizygotic twin pairs and their
mothers (n = 46), and each participant was sampled twice
with an average interval between sampling of 57 ± 4 days.
A total of 283 fecal samples were taken, including 196 were
collected from participants in obesity (BMI > 30 kg/m−2),
61 were collected from participants in leanness, and 24 were
collected from overweight participants (BMI ≥ 25 and < 30).
The datasets of 16S rRNA reads and corresponding species or
OTU (operational taxonomic unit) table was obtained by using
the 454 FLX platform and subsequent bioinformatics analysis.
Each sample corresponds to one row in the OTU table, and was
treated as one microbial community. More detailed information
on the dataset is referred to Turnbaugh et al. (2009).

Hubbell’s (2001) Neutral Theory Model
Hubbell’s neutral theory is an individual-based sampling theory,
and offers a biological occurrence mechanism to explain
observed species abundance distributions (SADs) in ecological
communities. It assumes that all individuals in a saturated
local community are ecologically equivalent, which means they
have the same rate of birth, death and migration, excluding
their random fluctuations. Etienne (2005) developed a sampling

formula (distribution) that can be utilized to statistically test the
Hubbell’ neutral theory with field observation data of SAD, in our
case the OTU tables described in the previous section.

Etienne sampling formula (Etienne, 2005) is with the
following form:

P(D|θ ,m, J) =
J!

∏S
i=1 ni

∏J
j=1 φj!

θS

(I)J

J
∑

A=S

K(D,A)
IA

(θ)A
, (1)

where m is the migration probability, J is the total number of
individuals in the community, I is the number of immigrants
that compete with the local community individuals, S is the total
number of species, θ is the fundamental biodiversity parameter of
the formula, ni is the abundance of species i, φj is the number of
species with abundance j,D is the species-abundance distribution
containing the abundance of each species, D= (n1, n2, ..., ns).

The immigration rate (probability)m is further defined as:

m =
I

I + j− 1
, (2)

K(D, A) is further defined as:

K(D,A) =
∑

{a1,a2 ....aS|
S

∑

i=1
ai=A}

S
∏

i=1

s(ni ,ai)s(a1,1)

s(ni ,1)
(3)

where ai is the number of ancestors of the species i, and the
summation is over ai =1, . . . , ni with the restriction that the ai
sum to A.s(ni, ai) is defined as:

s(ni, ai) =
∑

{D+,i|ai}
(

ni!
∏ni

j=1 J
φi,jφi,j!

) (4)

and s(ni, 1) and s(ai, 1) are factorials of (ni −1) and (ai−1),
respectively (Tavaré and Ewens, 1997).

Then we used the following equation to compare the observed
community and neutral theory predicted community:

D = −2 ln(
L0

L1
) = −2[ln(L0)− ln(L1)] (5)

where L0 represents the log-likelihood of the null model and L1
represents the log-likelihood of the alternative model, and D is
the deviation. The p-value was computed via an X2-distribution
with the degree of freedom being one.

Etienne (2005) sampling formula is used to test the neutrality
of fecal microbial communities through Etienne’s Exact test
of neutrality. The Etienne’s “Exact neutrality test,” which is
based on the sequential construction schemes, does not require
alternative model in hypothesis testing. Therefore, it avoids
the discussion of validity of the alternative model in empirical
evaluations (Etienne, 2007). In brief, firstly, we apply the
maximum likelihood estimation (MLE) method to estimate the
parameters of the neutral model. This process was performed
using the R package UNTB (available at: https://cran.r-project.
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org/web/packages/untb/index.html). Secondly, for each sample,
we simulated 100 artificial communities (datasets) using the
estimated parameters (θ , I, J) and then calculated the likelihood
for each artificial dataset via Etienne formula, namely Ps.
Finally, we compared the mean of the likelihoods (Ps) of 100
artificial datasets for each sample and the likelihood (P0) of the
corresponding observed sample using a Chi-squared test. The
null hypothesis is that there is no significant difference between
the probability from the observed community and the values
computed from the artificial data sets. If no significant difference
between Ps and P0 were detected, the community would be
judged as neutral. The p-value of 0.05 (p > 0.05) is adopted as
the threshold for passing the neutrality test.

Sloan’s (2006) Neutral Theory Model
Sloan et al. (2006) derived an alternative neutral model
based on Hubbell’s (2001) neutral theory. Sloan’s model was
aimed to address the difficulty in inferring the taxa-abundance
distribution of a microbial community from small metagenomic
samples. Sloan’s model assumes that the local (or destination)
community is saturated with a total of NT individuals. In
the local community, an individual either dies locally or
immigrate from the remote (source) community, which occurs
at a species-independent rate δ. An immigrant from a source
community, with probability m, would immediately replace
the dead individual, or a local-born member with probability
1–m would replace it. Hence, the destination community
is assembled/reassembled (formed and developed) through a
continuous cycle of immigration, reproduction and death.
Further assuming that deaths are uniformly distributed in time,
then one death is expected during a period of time 1/δ. In the
meantime, the i-th species, whose initial absolute abundance was
Ni, would either increase by one, stay the same or decrease by one
with the probability specified by the following three expressions,
respectively.

Pr(Ni + 1/Ni) =
(

NT − Ni

NT

) [

mpi + (1−m)

(

Ni

NT − 1

)]

(6)

Pr(Ni/Ni) =
Ni

NT

[

mpi + (1−m)

(

Ni − 1

NT − 1

)]

+
(

NT − Ni

NT

)

[

m(1− pi)+ (1−m)

(

NT − Ni − 1

NT

)]

(7)

Pr(Ni − 1/Ni) =
Ni

NT

[

m(1− pi)+ (1−m)

(

NT − Ni

NT − 1

)]

(8)

Let xi be the occurrence frequency of the i-th species in the
destination community, i.e., xi = n/N,where n is the number
of local community samples where species i occurred and N
is the total number of local community samples (Burns et al.,
2016), pi is the occurrence frequency of i-th species in the
source community, i.e., the counterpart of xi in the destination
community Sloan et al. (2006) showed that xi should follow the
following beta distribution:

xi ∼ Beta[NTmpi,NTm(1− pi)]. (9)

Specifically,

φi(xi;NT , pi,m) = cx
NTmpi−1
i (1− xi)

NTm(1−pi)−1, (10)

c =
Ŵ(NTm)

Ŵ[NTm(1− pi)]Ŵ(NTmpi)
, (11)

where Ni and NT are the total number of individuals of species
i and the total number of individuals (of all species) in the local
community samples, respectively, m is the migration frequency,
and φi represents the probability density function, rather than the
number of species mentioned in Equation 1.

According to Burns et al. (2016), the process for testing Sloan
et al. (2006) neutral model can be summarized as the following
three steps.

(i) Compute pi and xi, with both pi and xi, one can fit the beta
distribution (Equations. 7, 8) and obtain the estimation ofm.

(ii) Compute the predicted (theoretical) ϕi the theoretical
occurrence frequency of species i across all destination
community samples, based on m and the beta distribution
(Equation 8).

(iii) Judge whether or not the observed xi of species i falls
within its theoretical interval ϕi predicted from the neutral
model, and obtain a list of neutral species whose observed xi
satisfy the prediction from the neutral model.

Unlike Hubbell (2001) neutral theory model, there is not a
community level statistic (p-value) for testing neutrality with
Sloan’s model (Sloan et al., 2006, 2007), other than the percentage
of neutral or non-neutral species. Obviously, it is not easy to
define what “majority” level of the neutral species to designate
the whole community as neutral as in the case of Hubbell’s
model. Another important metric that can be utilized to judge
the goodness-of-fitting for Sloan’s model is the R2 or R-squared,
the coefficient of determination. Another important metric that
can be utilized to judge the goodness-of-fitting for Sloan’s model
is the R2 or R-squared, the coefficient of determination. We use
a subjective threshold of R-squared = 0.5 as passing the Sloan
model test.

RESULTS AND DISCUSSION

Testing the Influence of Obesity on
Neutrality at the Community Level
We tested the neutrality of gut microbial community samples
using Etienne sampling formula. The model parameters were
estimated using the MLE (maximum likelihood estimation) &
LLR (log-likelihood ratio) test, as detailed in Etienne (2005, 2007)
and Li and Ma (2016). To perform the LLR test, we compared
the log-likelihood of each observed gut microbial community
with the average log-likelihood of corresponding simulated
communities based on the neutral model, and the p-value of the
LLR test was listed in the online Supplementary Table S1.

The results in Supplementary Table S1 show that there were
only 2 gut microbial communities (subject ID: TS75.2_298948
and TS98_299220) out of 283 communities that passed Etienne
neutrality test of Hubbell’s neutral theory. Both the communities
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satisfying the neutral community model were sampled from
the obese patients, and their neutral model parameters are
summarized in the following Table 1. Figure 1 displays the
graphs of fitting the neutral theory model to these two
communities that passed the neutrality exact test.

The test results presented in Supplementary Table S1 and
Table 1, as well as Figure 1, revealed that, at the whole
community level, the number of communities (only 2 out of
283) passing the neutrality test of Hubbell’s neutral theory is
negligible. Therefore, the assembly processes of gut microbiota
should be dominantly shaped by host environmental effects
rather than by stochastic neutral effects such as birth/death
stochasticities. While the compositions and diversities of gut
microbial communities may be different between obese and
healthy people as demonstrated in existing studies (Ley et al.,
2006; Liu et al., 2017; Menni et al., 2017), obesity is not strong
enough to change the intrinsic mechanisms of the community
assembly and diversity maintenance in the gut microbiome.
In other words, the structure of gut microbiome is primarily
shaped by rather strong deterministic host environment, and
stochasticities in gut microbial communities do not play a
significant role in shaping the assembly of gut microbiome.
Furthermore, obesity as a relatively common health disorder

nevertheless, does not change the landscape of gut microbiome
assembly.

Testing the Influence of Obesity on
Neutrality at the Species Level
While the previous section was focused on testing the influence
of obesity on gut microbiota neutrality at the whole community
level based on Hubbell’s (2001) neutral model, here our focus is
the neutrality at species level based on Sloan et al. (2006, 2007)
neutral model. Because the results from testing Sloan’s neutral
model may be influenced by samples sizes, we randomly sampled
50 microbiota samples from the lean and obese treatments,
respectively, to achieve balanced sample sizes between both the
treatments. We further repeated this sampling process 30 times.
The averages of the 30 times were taken as the final results
of testing Sloan’s neutral model (Table 2) and the standard
deviations were displayed in Supplementary Table S2.

The parameters listed in Table 2 included the average
individuals in destination community (N), the immigration rate
(m), the goodness-of-fitting (R2), and the total number of species
in each treatment (Total). The column “Neutral” in Table 2

listed the percentage of the species within the 95% confidence
intervals predicted by the best-fitted neutral model. These species

TABLE 1 | The gut microbial communities passing the neutrality exact test with Etienne sampling formula based on (Hubbell, 2001) neutral theory model*.

Treatment ID J S θ m Log(L0) Log(L1) q-value p-value

Obese TS75.2_298948 1676 148 38.947 0.99997 −86.334 −85.809 1.051 0.3052

TS98_299220 2602 177 42.752 0.99991 −110.238 −108.549 3.379 0.0660

*The total number of reads (total individuals) in the sample community (J), the number of species (S), the fundamental biodiversity (θ), the immigration probability (m), log-likelihood of

the observed sample [log(L0 )], log-likelihood predicted by the neutral model (log(L1 )), and the log-likelihood ratios (q-value and p-value). P-value >0.05 indicates the community satisfies

the prediction of Hubbell’s neutral theory.

FIGURE 1 | The rank abundance curves of two community samples that successfully passed the neutrality test: the solid red line represents for the observed

community and the black dash lines for the simulated communities based on the neutral theory model. The X-axis is the species rank order in abundance and Y-axis

is the abundance of each species in natural logarithm.
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follow Sloan’s neutral theory. The column “Non-neutral” listed
the percentage of the species deviating from the prediction of
Sloan’s neutral model.

As shown in Table 2, there are 65.5 and 68.5% of the
species that satisfied Sloan’s neutral theory in the gut microbial
communities of the lean and obese treatment, respectively. In
other words, in more than a half of the species in the gut
microbiome, stochastic neutral effects are significant. In addition,
there were no significant differences in the percentage of neutral
species between the obesity and lean treatments (t-test: p > 0.05,
Figure 2). We also tested Sloan’s neutral model by treating the
lean treatment as source community and the obese treatment as
the destination community, and the percentage of neutral species
is slightly less (58.6%) than those of the lean or obese treatment
alone.

The results from testing Sloan’s neutral model seemed to
be in conflict with the results from testing Hubbell’s neutral
model. Why are there more than a half of neutral species
in a non-neutral community? The apparent contradiction can
be easily resolved if we recall that Hubbell’s neutral theory
is tested at the whole community level, and a portion of the
non-neutral species in a community is sufficient to change the
behavior of the whole community. Since Sloan’s model tests the

neutrality of individual species, theoretically, only if all species
in a community pass Sloan’s neutrality test, then it should
be guaranteed that the whole community is neutral in terms
of Hubbell’s model. In our study, there were still more than
1/3 of species that clearly demonstrated non-neutral behavior,
hence, the results from both the neutral models not only do
not contradict with each other, but also present complementary
insights for understanding the community assembly mechanisms
of the human gut microbiome.

Conclusions and Discussion
In summary, in this study, we applied both Hubbell’s and Sloan’s
neutral theory models to test the influence of obesity on the
gut microbiome assembly from both community and species
perspectives. At community level, we found that all 283 but
2 gut microbial community samples we tested failed to pass
the test of Hubbell’s neutral theory, and obesity did not affect
the test results. We conclude that the gut microbiome, as a
whole, is not neutral and is governed by deterministic host
effects. Obesity does not play a significant role in determining
the rules (mechanisms) of gut microbiome assembly. From a
species perspective, although more than a half of the species in
gut microbiome were neutral according to Sloan’s neutral model,

TABLE 2 | The gut microbial species passing the test of Sloan’s neutral theory in the gut microbiome of lean and obese treatments*.

Source Destination N m R2 Total Neutral (%) Non-neutral (%)

Lean Lean 3629 0.043 0.416 1640 65.5 34.5

Obese Obese 2543 0.063 0.472 1476 68.5 31.5

Lean Obese 2586 0.032 0.296 1220 58.6 41.4

*N is the average individuals in destination community, m is the immigration probability, R2 is the goodness-of-fitting, total is the total number of species in the treatment, neutral is the

percentage of the species within the 95% confidence interval predicted by the neutral model, and non-neutral is the percentage of the species deviating from the neutral model.

FIGURE 2 | The percentages of the neutral (green) and non-neutral (red) species, respectively, in the three regimes designed for testing Sloan’s neutral theory.
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it is the minority (∼1/3 of species) that ultimately determined
the behavior’ of community as a whole. Our findings suggest
that gut microbial community is a world consisting of both
neutral and non-neutral species, whose collective behavior (i.e.,
assembly and diversity maintenance mechanisms) is determined
by the non-neutral ones. Furthermore, we failed to detect a
significant influence of the obesity on neutrality at either species
or community scale.

Testing the neutral theory models has been challenging, at
least, because of the following four factors: (i) the availability of
quality data, (ii) the availability of computationally efficient
algorithms, (iii) the neutral model itself, and (iv) the
interpretation of the test results. First, ideally, the datasets
should be sampled from a metacommunity setting consistent
with the model assumption, but in practice, such datasets
are not easy to obtain. Second, fitting the neutral models
with a truly multi-site setting (allowing the computation of
variable migration rates among different local communities) was
challenging until Harris et al. (2015) recent work, who developed
an efficient machine-learning based algorithm. Nevertheless,
the adoption of their fitting approach has been slow, possibly
due to the availability of suitable datasets. For example, the
datasets used in this study and Harris et al. (2015) approach
cannot be utilized to test the neutral theory because we cannot
assume there are exchanges of microbes (migrations) among
individual subjects in ecological time and the neutral theory
is largely an ecological time-scale model. Third, obviously, the
neutrality assumption is overly simplified, and more recent
niche-neutral hybrid models (e.g., Tang and Zhou, 2013) can
help to determine the relative significance of deterministic
niche forces vs. stochastic neutral forces. Yet, among the four
challenges (factors), the most challenging task is to accurately
interpret the results from fitting the neutral or niche-neutral
hybrid models. For example, it has been suggested that neutral
theory can help to determine the significance of drift, dispersal,
and speciation, the three of the four key processes for driving
community dynamics (the other is selection) (Vellend, 2010;
Rosindell et al., 2011, 2012). The difficulty lies in the fact that
processes such as dispersal may not be stochastic and instead

may be asymmetric among species. In other words, dispersal may

be an adaptive behavior in many cases. Therefore, to accurately
interpret the results from neutrality test, additional mechanistic
studies should be conducted. That said, our study has significant
room to improve given the previous discussed challenges. To
fully understand the mechanisms of gut microbiome assembly
as well as the influences of obesity on the mechanisms,
additional biomedical studies including manipulative
experiments with animal models should be performed.
Nevertheless, we believe that the cross-scale approach we
adopted in this study should also be helpful for addressing those
challenges.
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A microbe is a microscopic organism which may exists in its single-celled form or

in a colony of cells. In recent years, accumulating researchers have been engaged

in the field of uncovering microbe-disease associations since microbes are found

to be closely related to the prevention, diagnosis, and treatment of many complex

human diseases. As an effective supplement to the traditional experiment, more and

more computational models based on various algorithms have been proposed for

microbe-disease association prediction to improve efficiency and cost savings. In this

work, we developed a novel predictive model of Graph Regularized Non-negative

Matrix Factorization for Human Microbe-Disease Association prediction (GRNMFHMDA).

Initially, microbe similarity and disease similarity were constructed on the basis of the

symptom-based disease similarity and Gaussian interaction profile kernel similarity for

microbes and diseases. Subsequently, it is worth noting that we utilized a preprocessing

step in which unknown microbe-disease pairs were assigned associated likelihood

scores to avoid the possible negative impact on the prediction performance. Finally, we

implemented a graph regularized non-negative matrix factorization framework to identify

potential associations for all diseases simultaneously. To assess the performance of our

model, cross validations including global leave-one-out cross validation (LOOCV) and

local LOOCV were implemented. The AUCs of 0.8715 (global LOOCV) and 0.7898 (local

LOOCV) proved the reliable performance of our computational model. In addition, we

carried out two types of case studies on three different human diseases to further analyze

the prediction performance of GRNMFHMDA, in which most of the top 10 predicted

disease-related microbes were verified by database HMDAD or experimental literatures.

Keywords: microbe, disease, association prediction, graph regularization, matrix factorization

INTRODUCTION

Antonie Van Leeuwenhoek, the father of microbiology, was the first to discover, observe, describe,
study, and conduct scientific experiments with microbes, using simple single-lensed microscopes
of his own design in 1673 (Leeuwenhoek, 1683-1775). From then on, with the development of
biological theory and technology, a great mass of microbes has been discovered. It has been
suggested that the amount of organisms living below the Earth’s surface is comparable with the
amount of life on or above the surface (Gold, 1992). As we know, microbes are very closely related
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to humans in many fields, such as food production (Smid and
Lacroix, 2013), water treatment (Tabatabaei et al., 2010), energy
(Tanaka, 1999), and human health (Thiele et al., 2013). Especially,
many studies have demonstrated that one of the most important
effects of microbes on humans is the associations between
microbes and complex human diseases. For example, Boleij et al.
(2015) proved that the Bacteroides fragilis toxin gene is associated
with colorectal neoplasia, especially in late-stage colorectal
cancer (CRC). Moreover, Galiana et al. (2014) found that
Actinomyces can be as an indicator in the evolution of chronic
obstructive pulmonary disease (COPD) patients because their
study confirmed a strong association between the presence or
absence of Actinomyces and the severity of the clinical condition.
Another example is that periodontal pathogens Porphyromonas
gingivalis and Fusobacterium nucleatum stimulate tumorigenesis
of oral squamous cell carcinoma (OSCC) via direct interaction
with oral epithelial cells through Toll-like receptors which is
beneficial to the development of corresponding prevention and
treatment schemes (Binder Gallimidi et al., 2015). Thus, due to
the fact that detecting potential microbiological markers could
help to provide a better understanding of the pathogenesis of
diseases and the role played by the microbiota in its severity, it is
of great significance to explore the potential associations between
microbes and diseases. However, since traditional experimental
methods always suffer from the time constraints and capital
limitations, proposing novel computational models is able to
be an effective complement for uncovering potential microbe-
disease associations. Recently, many feasible and effective
prediction models have been developed by researchers.

In the last few years, some prediction models were proposed
based on network analysis. Ma et al. (2017) developed an
analysis method based on the microbe-based human disease
network (Human Microbe Disease Network, HMDN) to infer
the associations between microbes and disease genes, symptoms,
chemical fragments, and drugs. In the method, they first utilized
a large-scale text mining-based method to build the microbe-
disease association network, on which the cosine similarity was
calculated for each disease pair to construct the HMDN. Taking
microbe-disease gene association prediction as an example, the
potential related disease genes of a microbe in the HMDN
can be finally obtained by finding the highly overlapped genes
among the microbe-related diseases in the gene-based human
disease network (Human Gene Disease Network, HGDN).
Besides, in a similar way, this analysis method can also be
used between HMDN and symptom-based human disease
network (Human Symptoms Disease Network, HSDN), chemical
fragment-based human disease network (Human Chemical
Fragments Disease Network, HCDN), and drug-based human
disease network (Human Drug Disease Network, HDDN) to
infer the associations between microbes and disease symptoms,
chemical fragments, and drugs, respectively. However, the
prediction performance of this analysis method is limited by
the small microbe-based disease network. Thereafter, Chen et al.
(2017a) was the first to propose a computational model of KATZ
measure for Human Microbe-Disease Association prediction
(KATZHMDA) on a large scale. Firstly, they integrated the
known microbe-disease associations network and Gaussian

interaction profile kernel similarity networks of microbes and
diseases into a heterogeneous graph. Through summarizing
all walks with different weighted lengths (i.e., the walk with
shorter length was assigned larger coefficient) for each microbe-
disease pair, they finally calculated the association probability
between each microbe and disease. Moreover, KATZHMDA is
applicable for new diseases/microbes without known associations
if there are additional available similarity information between
the new disease/microbe and other diseases/microbes in the
known microbe-disease association network. One limitation
of KATZHMDA is that the optimal value of the number of
walks is still hard to select. Later,Huang Z. A. et al. (2017)
proposed a model of Path-Based Human Microbe-Disease
Association Prediction (PBHMDA) by integrating known
microbe-disease association network and Gaussian interaction
profile kernel similarity network for microbes and diseases
into a heterogeneous interlinked network in which a threshold
was set to remove the edges that represent weak correlations.
In the heterogeneous interlinked network, the weights of all
paths between a microbe-disease pair were finally aggregated
to represent the association probability between the microbe
and the disease, while the weight of each path was calculated
by multiplying the weights of all edges in the path without
overlap and then penalizing the path with a decay coefficient.
The limitation existing in PBHMDA is that it will cause
bias to microbes or diseases with more known associations.
Moreover, PBHMDA cannot work well for new microbes and
new diseases.

In addition, some proposed models were not based on
network analysis. Since the negative microbe-disease samples
(i.e., microbe-disease pairs that are confirmed to have no
associations) are unavailable, Wang et al. (2017) presented
a semi-supervised learning-based computational model of
Laplacian Regularized Least Squares for Human Microbe-
Disease Association prediction (LRLSHMDA) by optimizing
the Laplacian regularized least squares classifiers in microbe
space and disease space. Finally, they used a simple weighted
average operation on the above two optimal classifiers to
obtain the final probability matrix that indicates the potential
association probabilities between microbes and diseases.
However, LRLSHMDA is still faced with the problem of being
unable to be implemented to new diseases without known
associated microbes. Similarly, with no need for negative
samples, Huang Y. A. et al. (2017) developed the method of
a Neighbor- and Graph-based combined Recommendation
model for Human Microbe-Disease Association prediction
(NGRHMDA) by combining two recommendation models that
are neighbor-based collaborative filtering model and topological
information-based model. In the neighbor-based collaborative
filtering model, considering that different microbe-disease pairs
may share the same microbes or diseases, they computed two
association possibility matrices respectively from the microbe
perspective and disease perspective and then averaged them to
obtain a prediction matrix. While in the topological information-
based model, they introduced a two-step diffusion approach
on the microbe-disease bipartite graph to obtain another
prediction matrix. Ultimately, the above two prediction matrices
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were simply averaged to get the final association possibilities
for all microbe-disease pairs. What is worth noting is that
NGRHMDA shares the same aforementioned disadvantage with
LRLSHMDA.

In summary, all of the above models have their own
limitations in predicting microbe-disease associations. Due to
the lack of measurements for microbe/disease similarity, some
models are only based on the Gaussian interaction profile kernel
similarity of microbes and diseases that leads to unavoidable
bias to those well-investigated diseases and microbes. Besides,
some models cannot predict for new microbes/diseases and
optimal parameters in some models are not easy to select. In this
work, considering some of the above limitations, we developed a
novel computational model of Graph Regularized Non-negative
Matrix Factorization for Human Microbe-Disease Association
prediction (GRNMFHMDA). First of all, the information of
Gaussian interaction profile kernel similarity of microbes and
diseases, symptom-based disease similarity and known microbe-
disease associations in HMDAD (Ma et al., 2017) were combined
as the input to start the whole prediction process. Here, after
data preparation, the prediction process consists of two main
steps, the preprocessing step and the step of GRNMF. In the
preprocessing step, the weighted K nearest neighbor profiles for
microbes and diseases were calculated to reconstruct the original
adjacency matrix obtained based on the known microbe-disease
associations so that we could avoid the possible negative impact
on the final prediction performance from unknown microbe-
disease pairs. While in the step of GRNMF, Tikhonov (L2) and
graph Laplacian regularization were introduced into the standard
NMF framework to obtain a smoother solution from matrix
factorization and take full advantage of the geometric structure
of our data, respectively. In addition, global leave-one-out cross
validation (LOOCV), local LOOCV and two types of case studies
were carried out to evaluate the prediction performance of our
model. As a result, GRNMFHMDA obtained AUCs of 0.8715
(global LOOCV) and 0.7898 (local LOOCV). More than that, 9
(Asthma), 9 (Obesity), and 8 (Type 1 diabetes) out of the top 10
predicted disease-related microbes were confirmed by HMDAD
or experimental literatures. Thus, it is obvious that our model
would perform well in microbe-disease association prediction
according to the aforementioned results.

MATERIALS AND METHODS

Method Overview
Here, to predict potential associations between microbes
and diseases, the model of GRNMFHMDA (See Figure 1)
can be decomposed into three steps: (1) data preparation,
in which adjacency matrix, microbe similarity, and disease
similarity were established; (2) the preprocessing step, in which
unknown microbe-disease pairs were assigned with associated
likelihood scores based on the calculation of weighted K nearest
neighbor profiles for microbes and diseases; (3) GRNMF, in
which Tikhonov (L2) and Graph Laplacian regularization were
introduced into the standard NMF framework to obtain the final
score matrix.

Human Microbe-Disease Associations
From the Human Microbe-Disease Association Database
(HMDAD, http://www.cuilab.cn/hmdad) (Ma et al., 2017), we
can download 483 known microbe-disease associations between
292 microbes and 39 human diseases. However, since some
microbe-disease associations we downloaded are the same, there
were only 450 known associations after removing the duplicate
parts according to different evidences. In order to represent
the associations information in a more convenient and efficient
way, we defined an adjacency matrix Y ∈ Rm*n, where m and
n denoted the number of microbes and diseases, respectively.
Moreover, the element Y(mi, dj) was set to 1 if microbe mi and
disease dj had known association, otherwise 0.

Gaussian Interaction Profile Kernel
Similarity for Microbes
There is a hypothesis that similar microbes (i.e., microbes
exhibiting a similar pattern of interaction and non-interaction
with the diseases of a microbe-disease association network) are
inclined to be associated with the same disease, on which many
previous studies had relied to construct the Gaussian interaction
profile kernel similarity for microbes (Chen et al., 2017a; Huang
Z. A. et al., 2017). In this article, based on the same assumption,
we first represent the interaction profile for each microbe with
a binary vector involving the association information between
the microbe and each disease in the known microbe-disease
association network. On the basis of the definition of adjacency
matrix Y , the i th row vector (Y(mi) = (Yi1,Yi2, . . . ,Yin)) can
be used to denote the interaction profile of microbe mi. Thus,
according to the method of van Laarhoven et al. (2011), the
Gaussian interaction profile kernel similarity between microbe
mi andmj can be defined as follows:

Sm(mi,mj) = exp(−γm
∥

∥Y(mi)− Y(mj)
∥

∥

2
) (1)

where

γm = γ ′m/

(

1

m

m
∑

i=1

∥

∥Y(mi)
∥

∥

2

)

(2)

Here, γm is the adjustment coefficient that can be obtained by
normalizing another bandwidth parameter γ ′m.

Gaussian Interaction Profile Kernel
Similarity for Diseases
The construction of the Gaussian interaction profile kernel
similarity for diseases is based on the assumption that similar
diseases (i.e., diseases exhibiting a similar pattern of interaction
and non-interaction with the microbes of a microbe-disease
association network) are more likely to be associated with
similar microbes. Here, the interaction profile for each disease
is also represented by a binary vector containing the association
information between the disease and each microbe in the known
microbe-disease association network. Based on the same method
of van Laarhoven et al. (2011), the j th column vector (Y(dj) =
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FIGURE 1 | Flowchart of GRNMFHMDA model to predict the potential microbe-disease associations.

(Y1j,Y2j, . . . ,Ymj)) denotes the interaction profile of disease dj
and the Gaussian interaction profile kernel similarity between
disease di and dj can be defined as follows:

Sd
′
(di, dj) = exp(−γd

∥

∥Y(di)− Y(dj)
∥

∥

2
) (3)

where

γd = γ ′d/





1

n

n
∑

j=1

∥

∥Y(dj)
∥

∥

2



 (4)

Similarly, γd is the adjustment coefficient that can be calculated
by normalizing another bandwidth parameter γ ′d.

Integrated Symptom-Based Disease
Similarity
As we have mentioned above, Gaussian interaction profile kernel
similarity is used in our model to measure the similarity of
microbes and diseases. However, since the Gaussian interaction
profile kernel similarity is an association information-based
measurement, it is essential to combine more types of microbe

or disease similarities based on other available biological
information. Indeed, according to different biological data, many
researchers have developed their own method to measure the
similarity of microbes or diseases. For instance, Zhou et al.
(2014) proposed a model of symptom-based human disease
network (HSDN) to measure the disease similarity based on
co-occurrence of disease/symptom terms recorded in different
literatures. In this work, we implemented HSDN to calculate
symptom-based disease similarity (SDM) and then constructed

a new disease similarity matrix (Sd) by integrating SDM with Sd
′

in an average way according to the study of Chen et al. (2017a):

Sd =
Sd
′ + SDM

2
(5)

Weighted K Nearest Neighbor Profiles for
Microbes and Diseases
Due to the fact that values in interaction profiles of microbes or
diseases without known associations are all zeros, the prediction
performance may be affected to some extent. Considering that,
to deal with the above mentioned problem, we came up with a
preprocessing step to establish new interaction profiles both for
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microbes and diseases. For each microbe mq, we first find out its
K nearest known microbes, each of which must has at least one
known association. Next, the similarity information between mq

and its K nearest known microbes together with the information
of their corresponding K interaction profiles are combined to
calculate the new interaction profile as follows:

Ym(mq) =
1

Qm

∑K

i=1
wiY(mi) (6)

where

wi = αi−1
∗
Sm(mi,mq) (7)

Qm =
∑

1≤i≤K
Sm(mi,mq) (8)

Here, m1 to mK denote the K nearest known microbes of mq

which were sorted in descending order based on the similarity
values between them. The function of the weight coefficient wi is
that the corresponding similarity value is assigned higher weight
ifmi is more similar tomq. Besides, α is a decay term whose value
is in the range of [0,1] and Qm is the normalization term.

In a similar way, the new interaction profile for each disease
dp can be defined as follows:

Yd(dp) =
1

Qd

∑K

j=1
wjY(dj) (9)

wj = αj−1
∗
Sd(dj, dp) (10)

Qd =
∑

1≤j≤K
Sd(dj, dp) (11)

After calculating the new interaction profiles from microbe
perspective and disease perspective, we combine Ym and Yd as
follows:

Ymd = (a1Ym + a2Yd)/(a1 + a2) (12)

where a1 and a2 are two weight coefficient and both of them are
set to 1 for simplicity.

Finally, to replace the element Y(mi, dj) = 0 with an
associated likelihood score, we use the following equation to
update the original adjacency matrix Y .

Y = max(Y ,Ymd) (13)

GRNMF
As a common method, the purpose of the standard NMF is
to find two non-negative matrices whose product is an optimal
approximation to the original matrix (Sotiras et al., 2015; Xu
et al., 2015). Therefore, the adjacency matrix Y ∈ Rm*n can be
decomposed into two parts after implementing NMF, namely,
W ∈ Rm*k and H ∈ Rn*k (Y ≈ WHT). Accordingly, we can
further get the following standard optimization problem:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+ L(W,H) (14)

where L(W,H) is a regularization term to prevent overfitting.
Here, motivated by the study of Xiao et al. (2017) and the

standard NMF framework, we introduced other two terms,
the Tikhonov (L2) (Guan et al., 2011) and graph Laplacian
regularization (Cai et al., 2011), to predict microbe-disease
associations. The utilizing of Tikhonov regularization aims
to obtain a smooth solution (W and H), while the purpose
of introducing graph regularization is to ensure a part-
based representation through taking full advantage of the data
geometric structure. Thus, we can construct the optimization
problem of GRNMF as follows:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+λl( ‖W‖2F + ‖H‖

2
F )

+λm

n
∑

i,p=1

∥

∥wi − wp

∥

∥

2
Sm
∗
ip+λd

m
∑

j,q=1

∥

∥hj − hq
∥

∥

2
Sd
∗
jq s.t.W ≥ 0,H ≥ 0

(15)

Here, λl, λm and λd are the corresponding regularization
coefficients. Besides,wi and hj are defined as ith rows of W and
j th rows of H, respectively. In order to avoid negative affects
to the prediction performance of our model, we introduced
sparse weight matrices of Sd

∗
and Sm

∗
that are constructed on

the basis of the geometrical information of disease and microbe
data spaces (Sd and Sm), respectively. Then, Equation (14) can be
transformed into:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+λl( ‖W‖2F + ‖H‖

2
F )

+λmTr(W
TLmW)+λdTr(H

TLdH) s.t.W ≥ 0,H ≥ 0 (16)

where Tr(•) represents the trace of a matrix. Here, Lm and Ld are
the corresponding graph Laplacian matrices for Sm

∗
and Sd

∗
that

can be calculated as follows:

Lm = Dm − Sm
∗

(17)

Ld = Dd − Sd
∗

(18)

whereDm andDd are the diagonal matrices whose entries are row
(or column) sums of Sm

∗
and Sd

∗
, respectively.

Based on the information of the nearest neighbor graph on a
scatter of data points, researchers came up with a conclusion that
local geometric structure is able to be effectively modeled (Cai
et al., 2011; Li et al., 2017). Since microbes or diseases appearing
in the same cluster are more likely to behave similarly, according
to the above conclusion, we construct the graph matrices Sm

∗
and

Sd
∗
in terms of microbe space and disease space respectively on

the basis of the p nearest neighbors and corresponding clustering
information. Here, we use the ClusterONEmethod (Nepusz et al.,
2012) to construct the graph Sm

∗
frommicrobe space, in which the
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weight matrix Xm is generated based on the microbe similarity
matrix Sm as follows:

Xm
ij =







1 i ∈ N(mj) & j ∈ N(mi),mj ∈ C
0 i /∈ N(mj) & j /∈ N(mi),mj /∈ C
0.5 otherwise

(19)

where N(mi) and N(mj) are the sets of p nearest neighbors of mi

andmj, respectively.C denotes to any one of the clusters obtained

by ClusterONE method and we define the graph matrix Sm
∗
for

microbes as follows:

∀i, j Sm
∗

ij = Xm
ij S

m
ij (20)

In a similar way as the computation of Sm∗, we calculate the graph
matrix Sd

∗
according to the disease similarity matrix Sd.

Here, we defined 8=[ϕik] and 9=[ψjk] as the Lagrange
multipliers for the constrainswik ≥ 0 and hjk ≥ 0, respectively. In
this work, we first convert the optimization problem in Equation
(15) to an unconstraint problem, then minimize this problem by
utilizing the corresponding Lagrange function Lf as follows:

Lf = Tr(YYT)− 2Tr(YHWT)+ Tr(WHTHWT)+ λlTr(WWT)

+ λlTr(HHT)+ λmTr(WTLmW)+ λdTr(HTLdH)

+ Tr(8WT)+ Tr(9HT) (21)

To solve the above problem, we first calculate the partial
derivatives with respect toW and H as follows:

∂Lf

∂W
= −2YH + 2WHTH + 2λlW + 2λmLmW +8 (22)

∂Lf

∂H
= −2YTW + 2HWTW + 2λlH + 2λdLdH +9 (23)

After using the Karush-Kuhn-Tucker (KKT) conditions of
ϕikwik = 0 and ψjkhjk = 0 (Facchinei et al., 2014), we can obtain
the equations for wik and hjk as follows:

− (YH)ikwik + (WHTH)ikwik + (λlW)ikwik

+ [λm(Dm − Sm
∗
)W]ikwik = 0 (24)

− (YTW)jkhjk + (HWTW)jkhjk + (λlH)jkhjk

+ [λd(Dd − Sd
∗
)H]jkhjk = 0 (25)

Finally, on the basis of the above two equations, we can get the
updating rules for wik and hjk as follows:

wik ← wik
(YH + λmSm

∗
W)ik

(WHTH + λlW + λmDmW)ik
(26)

hjk ← hjk
(YTW + λdSd

∗
H)jk

(HWTW + λlH + λdDdH)jk
(27)

Based on the above two updating formulas, we can obtain
the final two non-negative matricesW and H until convergence.
Subsequently, we calculate the score matrix Y* for microbe-
disease pairs by utilizing Y* = WHT, in which the higher score
of a microbe-disease pair indicates that the microbe is more likely
to be associated with the corresponding disease. In addition, for
better understanding, we provided the pseudocode of the whole
GRNMF algorithm (See Figure 2).

RESULTS

Performance Evaluation
Cross validation, a widely used assessment method, was
introduced to evaluate the prediction performance of
GRNMFHMDA. In this study, we utilized two types of cross
validations, namely, global LOOCV and local LOOCV. For the
global LOOCV, each of the known microbe-disease associations
was in turn considered to be the test sample while the remaining
known associations were treated as the training samples. Besides,
all of the unknown microbe-disease pairs were regarded as the
candidate samples which would be used in the ranking process.
After implementing GRNMFHMDA, we ranked each test sample
with all candidate samples according to their predicted scores. As
for local LOOCV, the difference is that the test sample was only
ranked with the candidate samples involving the investigated
disease.

In each cross validation process, we would consider that
the test sample was successfully predicted if the ranking of the
test sample was higher than the given threshold. Further, based
on the ranks of all test samples, we drew a receiver operating
characteristic (ROC) curve through calculating the ratio between
true positive rate (TPR, sensitivity) and false positive rate (FPR,
1-specificity) under different thresholds both for global LOOCV
and local LOOCV. Sensitivity meant the ratio between the
number of test samples ranking higher than the given threshold
and the number of positive samples (known microbe-disease
associations), while 1-specificity denoted the percentage of the
number of negative microbe-disease pairs whose ranks were
lower than the given threshold. Moreover, area under the ROC
curve (AUC) was calculated to make quantitative evaluation
for our model’s prediction performance. The model would be
considered to be able to perfectly predict all associations if
the value of AUC equaled to 1, while the model was only
supposed to be able to make random prediction if the value
of AUC equaled to 0.5. As a result, GRNMFHMDA obtained
AUCs of 0.8715 and 0.7898 in global LOOCV and local LOOCV,
respectively. Furthermore, the prediction performance of our
model outperformed the KATZHMDA both in global LOOCV
(0.8644) and local LOOCV (0.6998), which proved the superior
accuracy and reliability of our model in predicting microbe-
disease associations (See Figure 3).

Case Study
Here, we put forward two types of case studies on three
different common human diseases with the purpose of further
assessing the prediction performance of GRNMFHMDA. On the
basis of the known microbe-disease associations in HMDAD,
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FIGURE 2 | The pseudocode of the whole GRNMF algorithm.
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FIGURE 3 | The comparison of prediction performance between GRNMFHMDA and the classical model of KATZHMDA both in global LOOCV and local LOOCV. As a

result, GRNMFHMDA achieved AUCs of 0.8715 and 0.7898 in the global and local LOOCV, which exceed the first computational model of KATZHMDA in the field of

microbe-disease association prediction.

we implemented GRNMFHMDA to predict disease-related
microbes and then validated the top 10 predicted microbes by
HMDAD or recent literatures.

Asthma, a common long-term inflammatory disease of the
airways of the lungs, often starts during childhood and its
average number of deaths and death rates (per 100,000 people)
respectively reached to 38 and 0.1 in 2016 in the World Health
Organization (WHO) European region among 10–14 years old
children (Kyu et al., 2018). Here, under the GRNMFHMDA
framework, asthma was treated as an investigated disease to
explore its potential associated microbes. As a result, 9 out of
the top 10 microbes in the prediction list were confirmed to be
associated with asthma by experimental literatures (See Table 1).
For example, Lactobacillus casei rhamnosus Lcr35, a species of
Lactobacillus (1st in the prediction list), was found to be able to
attenuate airway inflammation and hyperreactivity in a mouse
model of asthma through oral treatment before sensitization (Yu
et al., 2010). Besides, Ding et al. (2018) discovered that exosomes
derived by Pseudomonas (2nd in the prediction list) aeruginosa
could induce protection against allergic sensitization in asthma
mice. Another example is that there is a distinct alteration of the
sputum microbiota with a greater prominence of Firmicutes (4th
in the prediction list) in severe asthma (Zhang et al., 2016).

Obesity, a medical condition in which accumulated excess
body fat reaches a certain level that may have a negative effect on
health, is a leading preventable cause of death worldwide (Reinier
and Chugh, 2015). In recent years, plenty of studies have shown
certain associations between obesity andmicrobes that helps a lot
to the prevention and treatment of obesity. For instance, many
researchers have demonstrated that methanogens play a specific
role in weight gain and the development of obesity in human
subjects (Armougom et al., 2009; Krajmalnik-Brown et al., 2012).
Not only that, many studies have now been conducted into

TABLE 1 | Prediction list of the top 10 potential asthma-related microbes based

on the known associations in HMDAD database and the corresponding validation

evidences (experimental literatures in PubMed) for these associations.

Rank Microbe Evidence

1 Lactobacillus PMID: 20592920

2 Pseudomonas PMID: 29795208

3 Burkholderia unconfirmed

4 Firmicutes PMID: 27078029

5 Actinobacteria PMID: 23265859

6 Clostridium coccoides PMID: 21477358

7 Streptococcus PMID: 17928596

8 Clostridia PMID: 22047069

9 Lachnospiraceae PMID: 26512904

10 Fusobacterium PMID: 24024497

the potential of probiotics to ameliorate obesity and diabetes
(Delzenne et al., 2011; Peterson et al., 2015). Therefore, taking
obesity as another investigated disease in the first type of case
study, we found that 9 out of the top 10 predicted obesity-
related microbes were confirmed by experimental literatures (See
Table 2). For the phylum Proteobacteria (1st in the prediction
list) which belongs to gram-negative bacteria, the existing study
already discovered that it was abundant in the obese group
compared with lean group (Park et al., 2015). Besides, as a
species of Clostridia (2nd in the prediction list), the presence of
Clostridium ramosum in simplified human intestinal (SIHUMI)
enhanced diet-induced obesity according to the experiment
data of Woting et al. (2014). Moreover, Bacillus, a genus of
Clostridia (3rd in the prediction list), was found to have outgrown
dramatically in the obesity group by Gao et al. (2018).
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TABLE 2 | Prediction list of the top 10 potential obesity-related microbes based

on the known associations in HMDAD database and the corresponding validation

evidences (experimental literatures in PubMed) for these associations.

Rank Microbe Evidence

1 Proteobacteria PMID: 25407880

2 Clostridia PMID: 25271283

3 Bacilli PMID: 29280312

4 Faecalibacterium prausnitzii PMID: 19849869

5 Clostridium PMID: 23645850

6 Betaproteobacteria PMID: 29312822

7 Clostridium coccoides PMID: 23147032

8 Lactobacillus PMID: 23056479

9 Fusobacterium nucleatum unconfirmed

10 Prevotella PMID: 21695273

More than that, in order to facilitate future researchers to
study the disease-related microbes that they are interested in,
based on the known associations in HMDAD, we provided the
whole prediction list including all pairs between 292 microbes
and 39 diseases as well as their predicted association scores (See
Supplementary Table 1).

In addition, to prove the predictive applicability of our
model on new diseases without known associated microbes, we
carried out another case study on a disease via removing all
its known associations in HMDAD. In this way, the prediction
process of seeking the investigated disease-related microbes can
only depend on the information of other known microbe-
disease associations (training samples) and the relevant similarity
measures. What needs to be emphasized is that only candidate
samples (all microbe-disease pairs including the investigated
disease) were ranked and then verified in HMDAD. Hence, there
was no overlap between training samples and prediction list.
In other words, the verification of predicted associations was
independent of HMDAD. Type 1 diabetes, a form of diabetes
mellitus, is believed to involve a combination of genetic and
environmental factors such as dietary agents (Serena et al.,
2015), viral infections (Rewers and Ludvigsson, 2016) and gut
microbiota (Bibbò et al., 2017). Especially in gut microbiota,
the previous study confirmed that the genus Bacteroides is the
largest representative of type 1 diabetes-associated dysbiosis
that can be modulated by diet (Mejjía-León and Barca, 2015).
Thus, considering the significance of studying type 1 diabetes-
related microbes, we took type 1 diabetes as the investigated
disease to predict its potential associated microbes under the
framework of the second type of case study. After implementing
GRNMFHMDA, we obtained the ranks of type 1 diabetes’
candidate microbes in terms of their association scores (See
Table 3). As a result, 8 out of the top 10 predictions were
confirmed by HMDAD or recent literatures. For example,
Giongo et al. (2011) demonstrated that the Clostridia (1st in the
prediction list) sequences increased in control samples (samples
of general population) as the abundance of Clostridia decreased
overtime in the case samples (samples of patients with type
1 diabetes). Moreover, at the phylum level and at p-values <

TABLE 3 | Prediction list of the top 10 potential type 1 diabetes-related microbes

via removing all the known type 1 diabetes-microbe associations in HMDAD

database.

Rank Microbe Evidence

1 Clostridia confirmed by HMDAD

2 Proteobacteria confirmed by HMDAD

3 Clostridium coccoides unconfirmed

4 Lactobacillus confirmed by HMDAD

5 Bacteroidetes confirmed by HMDAD

6 Firmicutes confirmed by HMDAD

7 Faecalibacterium prausnitzii PMID: 23934614

8 Clostridium PMID: 23433344

9 Betaproteobacteria unconfirmed

10 Bacilli PMID: 24930037

The validation evidences denote to whether the predicted associations were confirmed

by the HMDAD database or experimental literatures in PubMed.

0.001, Proteobacteria (2nd in the prediction list) was found to be
higher in case samples than that in control samples (Brown et al.,
2011). Another example is that Lactobacillus strains (a species of
Lactobacillus ranking 4th in the prediction list) was found to be
able to induce specific changes in the immune system of non-
obese diabetic (NOD) mice that can increase or decrease diabetes
(Brown et al., 2011).

According to the results presented, GRNMFHMDA
consistently achieved an excellent predictive performance in the
two types of case studies. With the continuous experimental
research on microbe-disease associations, we expect that more
and more microbes in the prediction lists generated by our
model would be verified in the future.

DISCUSSION

In this article, we proposed a novel prediction model
of GRNMFHMDA based on the known microbe-disease
associations in HMDAD, Gaussian interaction profile kernel
similarity of microbes and diseases and symptom-based
disease similarity. To eliminate the possible problem caused
by unknown microbe-disease pairs that may affect our final
prediction performance, we first implemented a preprocessing
step to establish new interaction profiles both for microbes
and diseases. Then, after introducing Tikhonov (L2) and graph
Laplacian regularization under the standard NMF framework, we
finally obtained reliable and satisfactory prediction performance
both in LOOCV and case studies. Therefore, we can conclude
that our prediction model is able to play critical role in revealing
the associations between microbes and diseases, thus improving
the prevention, diagnosis and treatment of many complex
human diseases in the future.

Here, the reason why GRNMFHMDA performed well in
microbe-disease association prediction lies in the following facts.
Firstly, in the study of Wang et al. (2015), to model cancer
hallmark traits and networks, nodes and links in the network
were weighted, and certain scoring functions were developed to
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represent gene regulatory logics/strengths on networks. Inspired
by that, based on the data extracted from the acknowledged
databases, we implemented proper and effectivemeasurements to
quantify microbe-disease association network, microbe similarity
network and disease similarity network, which guaranteed the
reliable prediction performance of our model. Secondly, before
implementing GRNMF, we constructed new interaction profiles
both for microbes and diseases to further assign those unknown
microbe-disease pairs with associated likelihood score, which
also improved our model’s performance in some degree. Thirdly,
different from the standard NMF, we introduced Tikhonov (L2)
and graph Laplacian regularization that ensured the final two
non-negative matrices smoothness and guaranteed a part-based
representation via fully exploiting the data geometric structure,
respectively.

Nevertheless, here are also some limitations restricting the
accuracy of our model that need to be overcome in future
studies. Initially, the types of similarities for microbes and
diseases are not enough yet and we believe that our model
would be significantly improved with more biological data
and similarity measurements being taken into consideration.
Successful advance in association prediction research in various
fields of computational biology would also accelerate the
development of effective models for microbe-disease association
prediction (Chen and Yan, 2013; Chen et al., 2016, 2017b,
2018a,b,c; Chen and Huang, 2017; You et al., 2017). Secondly,
as shown in the research of Hao et al. (2018), three
representative genome-scale cellular networks, genome-scale
metabolic network (GMN), transcriptional regulatory network
(TRN), and signal transduction network (STN), were found to
be able to become a necessary tool in the systematic analysis of
microbes through network integration. Therefore, whether there

are similar molecular networks between two microbes is well
worth studying in constructing our prediction model. Thirdly,
the selection of the optimal parameters is still worth studying.
Finally, GRNMFHMDA would inevitably cause bias to diseases
that havemore known associatedmicrobes and vice versa. Hence,
we would come up with optimization strategies to deal with those
limitations in our next work.
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Acute respiratory infections by influenza viruses are commonly causes of severe

pneumonia, which can further deteriorate if secondary bacterial infections occur.

Although the viral and bacterial agents are quite diverse, defensins, a set of antimicrobial

peptides expressed by the host, may provide promising biomarkers that would greatly

improve the diagnosis and treatment. We examined the correlations between the gene

expression levels of defensins and the viral and bacterial loads in the blood on a

longitudinal, precision-medical study of a severe pneumonia patient infected by influenza

A H7N9 virus. We found that DEFA5 is positively correlated to the blood load of influenza

A H7N9 virus (r = 0.735, p < 0.05, Spearman correlation). DEFB116 and DEFB127 are

positively and DEFB108B and DEFB114 are negatively correlated to the bacterial load.

Then the diagnostic potential of defensins to discriminate bacterial and viral infections

was evaluated on an independent dataset with 61 bacterial pneumonia patients and

39 viral pneumonia patients infected by influenza A viruses and reached 93% accuracy.

Expression levels of defensins in the blood may be of important diagnostic values in clinic

to indicate viral and bacterial infections.

Keywords: viral infection, bacterial infection, diagnosis, defensin, gene expression

INTRODUCTION

Acute respiratory infections by influenza viruses are commonly the causes of severe pneumonia,
which can further deteriorate if secondary bacterial infections occur (McCullers, 2014). Accurate
detection of influenza virus infections and the potential secondary bacterial infections is important
to improve the diagnosis and treatment of patients with severe pneumonia. Because the viral and
bacterial agents are quite diverse, seeking a broad-spectrum test based on only the characteristics
of pathogens is currently still a challenging task. Although the rapidly developed next-generation
sequencing (NGS) technology provides a powerful tool to catalog the taxonomic composition of
clinical samples, the great technological complexity and high price makes it hard to adopt in clinic
soon. Identifying biomarkers that can be readily adopted into clinic is urgently needed. Because
different pathogens can result in convergent host responses, identifying broad-spectrum diagnostic
biomarkers from the host response is probable. With the rapid development of high-throughput
biomedical technologies, the gene expression profiles of host blood can now be readily obtained.
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Recently several groups have reported in succession that the
gene expression profiles of a certain set of genes in the
human blood can robustly discriminate bacterial infections from
viral infections and a series of bioinformatics tools have been
developed to identify the associations between microbes and host
health (Ramilo et al., 2007; Edelman et al., 2009; Zaas et al., 2009;
Parnell et al., 2012; Hu et al., 2013; Mejias et al., 2013; Peng et al.,

FIGURE 1 | Spearman correlations of defensins and the viral/bacterial loads in blood. (A) Plots of the expression levels of selected defensins and the viral/bacterial

loads along disease progression. (B) Spearman correlations of the total 30 defensins and the viral/bacterial loads.

2013; Ye et al., 2014; Suarez et al., 2015; Sweeney et al., 2016;
Tsalik et al., 2016; Huang Y. A. et al., 2017; Huang Z. A. et al.,
2017; Wang et al., 2017; Chen et al., 2018), suggesting the great
potential of host response as the diagnostic signature.

Defensins are diverse members of a large family of
antimicrobial peptides that are considered as an important part
of the innate immune response of hosts and are found in many

Frontiers in Microbiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 2762141

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhou et al. Defensins Correlate to Bacterial/Viral Infection

compartments of the body (Ganz, 2003). These great properties
of defensins indicate that they may be good candidates of
diagnostic biomarkers to discriminate bacterial/viral infections.
However, the currently reported gene signatures identified with
human blood gene expression profiles seldom include defensins.
It is of pressing need to find out the clinically diagnostic values of
defensins.

To reach the objective, we profiled the gene expression levels
in blood and the viral and bacterial loads in plasma of a severe
pneumonia patient infected by influenza A H7N9 virus via
the next-generation sequencing (NGS) technology along with
the disease progression. Then we examined the correlations
between the expression levels of defensins and the viral and
bacterial loads in the blood. Although many defensins did not
demonstrate statistically significant correlations with either the
viral or the bacterial loads, the p-values of several defensins
did reach the statistical significance cutoff after multiple-
testing corrections. And these statistically significant defensins
demonstrated mutually exclusive correlations with the viral loads
and the bacterial loads, suggesting that defensins are of great
diagnostic values to discriminate viral and bacterial infections.
Upon this observation, we then examined the diagnostic
potential of defensins on an independent dataset with 61 bacterial
pneumonia patients and 39 viral pneumonia patients infected
by influenza A viruses (Parnell et al., 2012) via a machine
learning method, which confirmed again that defensins are of
great diagnostic values to discriminate bacterial infections from
viral infections. These results suggest that expression levels of
defensins in the blood may be of important diagnostic values in
clinic to indicate viral and bacterial infections.

MATERIALS AND METHODS

Longitudinal Gene Expression Profiles of a
Severe Pneumonia Patient Infected by
Influenza a H7N9 Virus
The severe pneumonia patient infected by influenza A H7N9
virus was admitted to hospital on Day 5 after illness onset and
died on Day 29. Since Day 6, blood samples were collected for
every three days, i.e., on Days 6, 9, 12, 15, 18, 21, 24, and 27
after illness onset. The total RNA was isolated and then subjected
to sequencing on Illumina Solexa GA II with read length of
80 bp (see Hu et al., 2015 for the technical details). Cufflinks
(version 2.1.1, with default parameters) (Trapnell et al., 2010)
was used to quantify the gene expression profiles of defensins
after mapping the quality-controlled reads to human genome
(GRCh37 and Gencode19) using Tophat (version 2.0.10, with
default parameters) (Kim et al., 2013). This study was reviewed
and approved by the Ethics Committee of the Institute of
Pathogen Biology, Chinese Academy of Medical Sciences and
Peking Union Medical College. Written informed consent was
obtained for the use of peripheral blood samples from the
patient’s relatives. This study was carried out in accordance
with the recommendations of the Institute of Pathogen Biology,
Chinese Academy ofMedical Sciences and PekingUnionMedical
College. The protocol was approved by the Institute of Pathogen

TABLE 1 | The expression levels of the total 30 defensins and the viral/bacterial

loads along disease progression.

Day6 Day9 Day12 Day15 Day18 Day21 Day24 Day27

H7N9 105 6 17 1 6 22 13 1

Acinetobacter

baumannii

3 0 7 12 279 54 69 76

DEFB4A 0.00 0.57 0.82 0.58 0.00 0.37 0.19 0.00

DEFB4B 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00

DEFA4 0.00 0.08 0.26 0.57 0.08 0.15 0.08 0.52

DEFA3 0.14 0.11 0.24 0.00 0.00 0.00 0.11 0.00

DEFB131 1.32 3.14 1.13 1.08 0.00 2.04 2.06 0.00

DEFB1 0.46 0.48 0.39 0.25 0.00 0.47 0.47 0.48

DEFA5 0.52 0.28 0.30 0.00 0.44 0.40 0.41 0.18

DEFA6 0.47 0.37 0.67 0.38 0.00 0.12 0.49 0.49

DEFB136 0.90 2.14 0.00 0.73 2.26 0.70 0.00 0.94

DEFB135 2.82 2.24 0.00 0.77 2.36 0.73 0.73 1.97

DEFB133 2.24 0.00 0.00 1.83 0.00 0.00 0.00 2.35

DEFB116 0.40 0.00 0.34 0.32 0.99 0.61 0.92 1.24

DEFB115 0.00 0.48 0.00 0.99 0.00 0.94 1.42 1.91

DEFB114 0.72 2.86 0.62 1.77 0.00 0.56 1.12 0.00

DEFB113 0.00 0.00 1.30 0.62 0.00 1.18 1.19 0.00

DEFB112 0.00 0.24 0.52 1.74 1.27 0.00 0.24 0.00

DEFB110 0.70 0.18 2.20 0.76 0.20 0.36 1.82 2.45

DEFB134 4.95 0.61 4.39 2.10 0.48 0.33 0.34 1.58

DEFB121 0.68 1.24 1.16 0.45 0.60 0.88 0.71 0.34

DEFB132 0.56 0.54 0.51 0.42 0.45 0.35 0.50 0.67

DEFB128 0.75 0.00 0.00 0.41 1.04 0.58 0.00 0.78

DEFB125 0.32 0.26 0.46 0.44 0.27 0.59 0.59 1.02

DEFB123 0.63 0.13 0.41 1.16 0.66 0.37 0.37 0.83

DEFB119 2.59 1.47 0.58 0.82 0.88 0.52 1.34 2.32

DEFB124 1.93 1.80 3.41 1.56 0.66 0.96 4.44 0.00

DEFB108B 1.00 2.15 0.61 0.76 0.17 0.79 0.48 0.75

DEFB118 0.17 0.21 0.52 0.25 0.32 0.27 0.13 0.63

DEFB126 0.09 0.44 0.47 0.52 0.46 0.57 0.21 0.48

DEFB129 0.42 0.66 0.21 0.55 0.14 0.32 0.46 0.53

DEFB127 0.27 0.11 0.11 0.44 0.45 0.41 0.63 0.42

Defensin expression levels were quantified by FPKM and the viral/bacterial loads were

quantified by the number of reads.

Biology, Chinese Academy of Medical Sciences and Peking
Union Medical College. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Quantifying the Microbial Species Infecting
in the Blood Samples
To quantify the microbial species infecting in the blood
samples, a metagenomic analysis method was applied. In detail,
the same sequencing reads were aligned to the NCBI non-
redundant nucleotide database by BLASTN (version 2.2.22,
with parameters “-e 1e-10 –b 10 –v 10”) (Altschul et al.,
1997). Then, the results were parsed and visualized by the
MEGAN software (Huson et al., 2007, 2016; Mitra et al., 2011),
upon which those reads specifically mapped to bacterial or
viral genomes were counted and exported as the bacterial/viral

Frontiers in Microbiology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 2762142

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhou et al. Defensins Correlate to Bacterial/Viral Infection

FIGURE 2 | True, clustered and predicted infection types of 61 bacterial and 39 viral pneumonia patients. Expression levels of defensins and associated genes were

extracted from the whole dataset and then subjected to t-SNE analysis for visualization. Circles mean correctly clustered/classified samples while rectangles mean

incorrectly clustered/classified samples.

FIGURE 3 | Four example defensins and associated genes that showed significant differences between bacterial and viral pneumonia patients (illustrated by boxplots).

loads in each sample. To facilitate comparisons among
samples, the bacterial/viral loads were normalized by sequencing
depth (i.e., the total sequencing reads obtained for each
sample).

Evaluating Correlations of Defensin Levels
And Bacterial/Viral Loads
Spearman’s rank correlation coefficient (Spearman, 1987) was
then used to evaluate the associations between defensins and
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FIGURE 4 | ROC curves of defensins and associated genes for classifying

bacterial and viral infections on three datasets.

viral/bacterial loads. Specifically, given the expression levels of
a defensin at all the eight time points xi where i = 1, ..., 8
and the normalized loads of a specific bacterial/viral species yj
wherej = 1, ..., 8, ranks rx and ry were firstly obtained and then
the correlation was calculated according to the following formula:

rxy =
cov(rx, ry)

σrxσry
(1)

Where cov(rx, ry) is the covariance of the rank variables and σrx

and σry are the standard deviations of the rank variables. For each
pair of defensin and microbial species, the corresponding p-value
was also calculated, which was further subject to multiple testing
correction by the Benjamini and Hochberg method.

Validating the Diagnostic Value of
Defensins On Independent Datasets
An independent cohort of 100 pneumonia patients (61 bacterial
and 39 viral) were used to validate the diagnostic value
of defensins and associated genes (NCBI Gene Expression
Omnibus, access number: GSE40012) (Parnell et al., 2012).
The whole blood gene expression profiles were quantified by
Illumina HT-12 gene-expression beadarrays. Expression levels of
defensins and associated genes were then extracted for clustering
and classification analysis. For clustering analysis, t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten and
Hinton, 2008) was first used to reduce the dimensionality of the
data to two for visualization and then a clustering method based
on searching density peaks (Rodriguez and Laio, 2014) was used
to cluster the samples into two groups. For classification analysis,

the popular random forest method (Breiman, 2001) was used to
evaluate the diagnostic value via a leave-one-out cross-validation
method. The diagnostic value of defensins and associated
genes was further validated on two additional independent
datasets. One dataset included 12 children’s admitted to
Streptococcus pneumoniae or Staphylococcus aureus infections
and 10 children’s admitted to viral infections by influenza viruses
(NCBI Gene Expression Omnibus, access number: GSE6269)
(Ramilo et al., 2007). The other dataset included 67 bacterial and
113 viral infections for adults (NCBI Gene Expression Omnibus,
access number: GSE63990) (Tsalik et al., 2016).

RESULTS

Evident Associations of Different
Defensins to the Bacterial And Viral Loads
of H7N9 Pneumonia Patients
It is evident that influenza H7N9 virus demonstrated two peaks
in the patient blood (from Day 6 to Day 12 and from Day
18 to Day 24), with days from Day 12 to Day 18 forming
a valley (Figure 1A). However, at Day 18, a huge peak of
Acinetobacter baumannii infection appeared which declined in
the following days with small fluctuations (Figure 1A). The total
of 30 defensins measured (4 α and 26 β defensins) were all
expressed in at least one sample or more (Table 1). Most of the
defensins except DEFA5, DEFB116, DEFB127, DEFB114, and
DEFB108B did not show correlations to or only showed weak
correlations to viral/bacterial loads in blood that were statistically
not significant (Figure 1B). DEFA5 was positively correlated to
the blood load of influenza A H7N9 virus (r = 0.735, p < 0.05,
Spearman correlation), which also showed two peaks similar
to those of the virus (Figure 1A). But DEFA5 did not show
correlations to the bacterial load. Different from DEFA5,

DEFB116 and DEFB127 were positively correlated to the
blood load of Acinetobacter baumannii (r = 0.881 and 0.810, p
< 0.05), both of which showed two peaks with one consistent
with the peak of Acinetobacter baumannii and another at Day
6 (Figure 1A). The peak at Day 6 may indicate latent bacterial
infection that was undetectable in blood, suggesting potentially
superior sensitivity of defensin-based diagnostics. DEFB114 and
DEFB108B showed negative correlations with Acinetobacter
baumannii (r = −0.731 and −0.786, p < 0.05, Spearman
correlation, Figures 1A,B).

Diagnostic Values of Defensins On an
Independent Pneumonia Cohort
On the independent validation dataset, we first extracted the
expression profiles of defensins and associated genes and
conducted t-SNE for visualization. It is obvious that bacterial
and viral pneumonia patients separately formed clusters with a
few exceptions (Figure 2, left). Clustering analysis grouped the
patients into two classes, one of which corresponded to bacterial
pneumonia and the other corresponded to viral pneumonia
(Figure 2, middle). The accuracy of clustering analysis reached
82%, with 18 patients mis-clustered. Clustering based on the
raw high-dimensional data resulted in similar results, suggesting
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that bacterial and viral infections caused different responses
for defensins and associated genes in blood. When switching
the algorithms from unsupervised to supervised, high accuracy
(93%), AUC (0.97), sensitivity (0.98), specificity (0.82), precision
(0.90), and F1-score (0.94) were achieved by a random forest
classifier with default parameters (Figure 2, right), suggesting
the potential of defensin-based diagnostics to discriminate
viral/bacterial infections.

Among the 87 defensins and associated genes that had
expression values available, DEFA4 and DEFA3 were the
most significantly differentially expressing defensins between
bacterial and viral pneumonia patients. Both of these two
defensins are alpha defensins and highly expressed in viral
pneumonia patient blood (Figure 3, upper). The p-values tested
by Wilcoxin rand-sum test were 7.96 × 10−6 and 2.89 ×
10−6 for DEFA4 and DEFA3, respectively. DEFB107A was
significantly highly expressed in bacterial pneumonia patient
blood (Figure 3, lower left, p = 0.0055, Wilcoxin rand-sum
test). MX1 is the most significant defensin-associated gene
differentially expressed between bacterial and viral pneumonia
(Figure 3, lower right, p = 1.07 × 10−9, Wilcoxin rand-sum
test).

Evaluations on two additional datasets (GSE6269 and
GSE63990) confirmed the diagnostic power of defensins
and associated genes (Figure 4). On the dataset GSE6269,
the accuracy can reach 95% while the AUC, sensitivity,
specificity, precision, and F1-score are 0.96, 1, 0.9, 0.92,
and 0.96, respectively. On the dataset GSE63990, similar
performance was obtained, with accuracy 89%, AUC 0.94,
sensitivity 0.84, specificity 0.93, precision 0.88 and F1-score
0.85.

DISCUSSION

Accurate discrimination of bacterial and viral infections has
important clinical values and can inform clinicians to properly
select therapies. Identifying biomarkers that can accurately
classify bacterial infections from viral infections is thus of
great importance. Blood-based assays including microarrays
and next-generation sequencing provide a quite convenient
method to quantify the expression levels of various genes,
which form a rich resource for determination of biomarkers
discriminating bacterial and viral infections. Multiple studies
have been completed to seek such biomarkers from human
blood gene expression profiles (Zaas et al., 2009; Parnell et al.,
2012; Hu et al., 2013, 2015; Suarez et al., 2015). However, the
values of defensins are often overlooked. Defensins, which are a
major family of antimicrobial peptides expressed predominantly
in neutrophils and epithelial cells and play important roles
in innate immune defense against infectious pathogens, are
hypothesized by us to action in distinct ways when combating
against bacterial and viral infections, and thus we conducted this
study.

We addressed the diagnostic values of defensins through two
ways. Firstly, we checked the associations between human blood

defensin mRNAs and the bacterial and viral loads through a
continuous follow-up of a pneumonia patient caused by infection
of influenza A H7N9 virus. This longitudinal study revealed
that bacterial and viral loads were associated to beta and alpha
defensins, respectively, among which several defensins showed
impressing statistical significance. Secondly, we re-analyzed the
diagnostic values of defensins on an independent dataset, which
quantified blood gene expression profiles of 100 pneumonia
patients including 61 bacterial and 39 viral infections. This lateral
study demonstrated again the diagnostic power of defensins
for discriminating bacterial and viral infections. Both studies
remind that defensins and associated genes have great diagnostic
potentials which deserve further investigation in the future.
Although, the statistically significant defensins in these two
studies did not overlap well, they could be caused or at least
explained by the different study types and profiling techniques
(microarray-based or NGS-based). Further studies were needed
to exclude the technical interference and to include more
biological variance.

We also compared the defensin-based biomarkers with
published biomarker panels. We noticed that MX1 appeared
multiple times across the studies, consistent with its great
difference between bacterial and viral infections. Other defensins
and associated genes are reported for the first time to have
diagnostic power to discriminate bacterial from viral infections,
and thusmay provide new insights into the infectionmechanisms
and serve as important tools for clinical diagnosis. Because innate
immunity is the first frontier of host to combat pathogens, the
differences of defensins and associated genes during bacterial and
viral infections may suggest that prominent patterns exist in host
innate immune responses and defensins are valid representative
molecules.

In summary, defensins not only are important molecules for
hosts to combat infections, but also may provide promising
biomarkers to indicate the types of infectious agents, which
is expected to of significant clinical utility and needs further
investigations.
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1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan
University, Wuxi, China, 2 National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi,
China, 3 Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Life
Science and Technology, Central South University of Forestry and Technology, Changsha, China, 4 School of Food
and Biological Engineering, Jiangsu University, Zhenjiang, China

In this study, we reconstructed for the first time a genome-scale metabolic model
(GSMM) of Ganoderma lucidum strain CGMCC5.26, termed model iZBM1060,
containing 1060 genes, 1202 metabolites, and 1404 reactions. Important findings
based on model iZBM1060 and its predictions are as follows: (i) The extracellular
polysaccharide (EPS) biosynthetic pathway was elucidated completely. (ii) A new
fermentation strategy is proposed: addition of phenylalanine increased EPS production
by 32.80% in simulations and by 38.00% in experiments. (iii) Eight genes for key
enzymes were proposed for EPS overproduction. Model iZBM1060 provides a useful
platform for regulating EPS production in terms of system metabolic engineering for
G. lucidum, as well as a guide for future metabolic pathway construction of other high
value-added edible/ medicinal mushroom species.

Keywords: Ganoderma lucidum, extracellular polysaccharide, genome-scale metabolic model, biosynthetic
pathway, phenylalanine, simulation
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INTRODUCTION

Ganoderma lucidum (lingzhi or reishi mushroom) is a species
well known for its edible and medicinal properties, and has a long
history of use for prevention and treatment of various human
diseases. Extracellular polysaccharides (EPSs) from G. lucidum
comprise a structurally diverse group of macromolecules that
display immunomodulatory, antitumor, and a wide range
of other biological activities (Ferreira et al., 2015). Many
studies have described enhancement of EPS production through
optimization of medium and culture conditions in submerged
fermentation (Tang and Zhong, 2003). However, EPS molecules,
their structural features, and their biosynthetic pathways are all
highly complex, and attempts to improve EPS production are
often hampered by this complexity. There is an urgent need for
more extensive, systematic knowledge of physiological features
and metabolism of G. lucidum EPSs.

Genome-scale metabolic models (GSMMs), in which a
systems biology approach is used to integrate genomic,
transcriptomic, proteomic, and metabolomic data, are highly
effective tools for metabolism research. GSMMs have been widely
used for analysis of network properties, prediction of growth
phenotypes, and interpretation of experimental data, particularly
in Escherichia coli and Saccharomyces cerevisiae models (Kim
et al., 2017).

There have been no reports to date of GSMMs for edible/
medicinal mushroom species. The publication in 2012 of the
whole genome sequence of G. lucidum strain CGMCC5.26 (Chen
et al., 2012), and subsequent related reports, have made GSMM
reconstruction feasible for this species. Such reconstruction
will help clarify G. lucidum global metabolism, guide design
of metabolic regulation strategies, and indicate useful research
targets of “wet” experiments. Biosynthetic pathways of EPSs
remain poorly known at this point because of our inadequate
knowledge of related enzymes and their functions. Adequate
knowledge will require gene cloning and genetic transformation
studies (Wang et al., 2017).

We describe here reconstruction of the first GSMM of
G. lucidum, model iZBM1060, and its application to elucidate
detailed physiological characteristics and production of EPSs
in this species. The nucleoside sugar biosynthetic pathway of
model iZBM1060 was elucidated completely, the reactions of this
pathway are summarized and illustrated, and related strategies for
improving EPS production are proposed.

MATERIALS AND METHODS

Reconstruction and Refinement of
G. lucidum GSMM
The availability of the whole genome sequence of G. lucidum
allowed us to perform GSMM reconstruction according to a
three-step general workflow scheme described previously (Thiele
and Palsson, 2010).

(i) Sequenced G. lucidum genome data were downloaded
from the UniProt database (UniProt, 2010). Genes were
functionally annotated by two methods: (a) Thresholds of the

bidirectional BLAST for a functional sequence were set to have
e-value < 1 × 10−30, amino acid sequence identity > 40%, and
matching length ≥ 70% of the query sequence (Liu et al., 2012).
An original reactions list was produced by selecting GSMMs
of Aspergillus niger iMA871(Andersen et al., 2008), Mortierella
alpina iCY1106 (Ye et al., 2015), and Aspergillus terreus iJL1454
(Liu, et al., 2013) as template frameworks to map the assigned
genes. (b) The KEGG Automatic Annotation Server (KAAS)
(Moriya et al., 2007) was used for functional annotation of all
amino acid query sequences.

(ii) A draft model was developed and used as a starting point
for subsequent network refinements. Biochemical information
was acquired from public databases [KEGG (Kanehisa et al.,
2010), MetaCyc (Caspi et al., 2008), CELLO (Yu et al., 2004), and
TCDB (Saier et al., 2006)], and manual revisions (deletion of error
reactions, addition of organism-specific information, checking of
mass-charge balance, filling of metabolic gaps) were conducted
sequentially.

(iii) The COBRA Toolbox was used to simulate growth
rate and product formation, and the model was validated by
comparison of results with experimentally observed phenotypes
(Figure 1).

Biomass Composition and
Determination of Target Equation
The biomass components of G. lucidum are proteins, DNA, RNA,
lipids, glucan, chitin and small molecules. Detailed information
on biomass composition is summarized in Supplementary
Table S1. A metabolic model (Andersen et al., 2008) were
used as reference to calculate ATP required for cell growth
and RNA: DNA ratio. Nucleotide and amino acid compositions
were calculated based on G. lucidum genome (Chen et al.,
2012). Detailed compositions of individual macromolecules were
derived from published reports on G. lucidum (Mau et al., 2001;
Stojkovic et al., 2014). A target equation of EPS production was
determined based on mole percentages of monosaccharides in
EPSs (Peng et al., 2015).

G. lucidum Strain and Culture Conditions
Ganoderma lucidum CGMCC5.26 was obtained from the China
General Microbiological Culture Collection Center (Beijing) and
maintained on potato dextrose agar slants at 4◦C. The seed
and fermentation medium [glucose 20 g/L, yeast nitrogen base
without amino acids (YNB) 5 g/L, tryptone 5 g/L, KH2PO4
4.5 g/L, MgSO4·7H2O 2 g/L, initial pH 6.0] was kept at 30◦C
on a rotary shaker (150 rpm). The minimal growth medium for
functional tests was composed of carbon source 20 g/L, nitrogen
source 10 g/L, KH2PO4 4.5 g/L, MgSO4·7 H2O 2 g/L, initial pH
6.0.

Determination of Biomass, Residual
Sugar in Medium, and EPS
Mycelia were harvested by centrifugation (10,000 rpm) for
10 min. The precipitate was washed three times with distilled
water, and dried at 60◦C to constant weight. Dry weight (DW)
was determined by gravimetric method. Amount of residual
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FIGURE 1 | Scheme of model reconstruction process used in this study. Blue: basic process of model reconstruction. Purple: major aspects of refinement of the
model. Pink: usage of Database and Toolbox to refine the process.

sugar in medium was determined by 3, 5-dinitrosalicylic acid
(DNS) method (Dubois et al., 1956).

For determination of EPS, centrifugal fluid as above was
precipitated with adding 4 times of 95% (v/v) ethanol and left
8 h at 4◦C to precipitate crude polysaccharides. Precipitate was
collected by centrifugation (8,000 rpm) for 20 min, washed three
times with 80% (v/v) ethanol, and dried at 60◦C to remove
residual ethanol. Total EPS content was assayed by phenol-
sulfuric acid method (Dubois et al., 1951).

Simulation, Curation, and Analysis of
Model iZBM1060
To assess the ability of the reconstruction to accurately reflect
metabolic processes of G. lucidum, we converted the reaction list
to a standard SBML document that could be read by COBRA
Toolbox (Schellenberger et al., 2011) and subjected to Flux
balance analysis (FBA) (Lakshmanan et al., 2014). Flux ranges
of reactions in the network were limited for simulations (Thiele
and Palsson, 2010). Essential elements must be obtained from the
environment through the exchange reaction (Wang et al., 2016).
For growth simulation, the biomass equation in minimal medium
(no amino acids) was set as the objective function. A complex

fermentation medium (basic elements and 20 amino acids) was
simulated for EPS production, and maximal uptake rate for
each amino acid was set to 0.01 mmol/gDW/h (Ye et al., 2015).
Essential genes were assessed by setting fluxes of reactions to zero,
and simulating optimal growth rate with FBA. The criterion for
an essential gene was that its deletion results in zero growth.

For identification of target genes, MOMA (Segre et al., 2002)
framework was used for better prediction of flux distribution. The
overexpression algorithm involved five steps (Boghigian et al.,
2012): (i) EPS production flux was imposed on the reconstructed
model. (ii) Flux for each reaction was calculated based on the
fermentation medium. (iii) Amplification of flux was imposed
on individual reactions with non-zero flux, to simulate the
effect of gene overexpression. (iv) MOMA was performed to
overcome the problem of overexpression. (v) An overexpressed
target having higher EPS production and fPH value > 1 was
identified (Equation 1), fPH being the product of the specific
biomass overexpression and specific EPS overexpression rates.

fPH = (fbiomass)(fEPS)

=

(Vbiomass, overexpression

Vbiomass, WT

) (
VEPS, overexpression

VEPS, WT

)
(1)
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RESULTS AND DISCUSSION

Reconstruction and Characteristics of
Model iZBM1060
The GSMM reconstruction was completed by automatic
annotation and manual refinement, and a reaction list was
obtained through KAAS and BLASTP. The final reconstructed
GSMM of G. lucidum, termed model iZBM1060, contained 1060
genes, 1202 metabolites, and 1404 reactions (Supplementary
Table S2). The 1404 reactions in model iZBM1060 were classified
into 10 subsystems, according to the KEGG Pathway Database
(Figure 2A). The largest subsystem (accounting for 21.97% of
the 1404 reactions) was lipid metabolism (fatty acid biosynthesis;
fatty acid degradation; glycerolipid, glycerophospholipid,
sphingolipid, and steroid metabolism), followed by amino
acid metabolism and carbohydrate metabolism. These three
subsystems, combined, accounted for >50% of the 1404
reactions. There were a total of 1047 gene-associated reactions.
In eight of the 10 subsystems, >80% of the reactions were
associated with genes (the exceptions were lipid metabolism and
transport reactions; Figure 2B).

Growth Verification and Simulation in
Model iZBM1060
Qualitative Verification and Analysis of Growth
Phenotypes
The central metabolic pathway of G. lucidum carbon sources
is shown schematically in Figure 3. Glucose, galactose,
mannose, and fructose produce a corresponding phosphate
monosaccharide through action of a kinase, and the
monosaccharide then passes directly into the tricarboxylic
acid (TCA) cycle, glyoxylate cycle, and pentose phosphate
pathway (PPP). Xylose and arabinose are first phosphorylated
by oxidation-reduction reaction, and then fructose-6-phosphate
(fructose-6-P) is synthesized. In rhamnose and fucose

metabolism, pyruvate and glycerone phosphate (respectively) are
synthesized firstly.

The capability of G. lucidum to utilize 18 different carbon
sources (13 saccharides, 3 alcohols, 2 carboxylic acids) for
cell growth was predicted qualitatively by FBA. Each of the
carbon sources was used as sole carbon source in minimal
growth medium. Results were compared to experimental data,
and the growth phenotype matching rate was 94.4%(Table 1).
G. lucidum is able to utilize not only glucose, galactose, mannose,
arabinose, xylose, rhamnose, fucose, and other monosaccharides,
but also sucrose, maltose, lactose, and other disaccharides. FBA
also predicted the capability to utilize various nitrogen sources
(nitrate, urea, 20 amino acids) for cell growth. When results were
compared to experimental data, the matching rate was 95.5%
(Table 2).

Ganoderma lucidum grew successfully on 17 of the 18 carbon
sources and 20 of the 22 nitrogen sources as above, indicating
its broad substrate adaptability. There were no “fatal gaps” in
model iZBM1060, and it can therefore be used for predicting
catabolic pathways of various carbon and nitrogen sources. Two
of the apparently non-conforming sources (citrate and urea) can
be attributed to unclear transport pathways and the absence of
regulatory mechanisms in this stoichiometric model.

On the basis of carbon source metabolic pathways and the
experimental results, we selected seven monosaccharides as single
carbon sources for evaluation of effects of various carbon sources
on biomass and EPS production (Supplementary Figure S1
and Figure 4A). The consistency of results further supports the
validity of the model.

Quantitative Verification
Fermentation data were used as constraints for simulation of cell
growth, including specific growth rate and glucose uptake rate.
Maximal specific growth rate was 0.076 h−1, and corresponding
sugar consumption rate was 0.506 mmol/gDW/h (Figure 4B).
For simulation of cell growth in various media, the biomass
equation was maximized in flux analysis. For glucose medium

FIGURE 2 | Properties of model iZBM1060. (A) Numbers of reactions in each subsystem, and corresponding percentages of total reactions. (B) Numbers of
reactions associated with genes in each subsystem. LM, lipid metabolism; AM, amino acid metabolism; CM, carbohydrate metabolism; TR, transport reactions; MC,
metabolism of cofactors and vitamins; NM, nucleotide metabolism; EM, energy metabolism; GB, glycan biosynthesis and metabolism; MT, metabolism of terpenoids
and polyketides; ER, exchange reactions.
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FIGURE 3 | Central metabolic pathway of representative carbon sources in model iZBM1060 (detailed information on enzyme information and reactions are
presented in Supplementary Table S3).

without production constraints, predicted cell growth rate was
0.077 h−1 – only 1.3% higher than experimental growth rate
(0.076 h−1).

Identification and Analysis of Essential Genes for Cell
Growth
Consistency of growth rate in silico and in vivo indicated
that model iZBM1060 successfully reflected G. lucidum cellular
metabolism. Essential genes for cell growth were predicted by
single-gene deletion in COBRA Toolbox (MATLAB package)
with two media (minimal growth medium, fermentation
medium). Hundred and nineteen genes (11.23% of 1060 total
genes) were predicted to be essential in minimal growth
medium, and 88 genes (8.30% of total) were predicted to be
essential in fermentation medium (Figure 5A). On minimal
growth medium, >50% of the essential genes for growth
were involved in either amino acid (32.77%) or carbohydrate
metabolism (19.33%) (Figure 5B). In contrast, on fermentation
medium, >90% of essential genes for growth were classified

in 5 subsystems (amino acid metabolism, metabolism of
cofactors and vitamins, nucleotide metabolism, carbohydrate
metabolism, lipid metabolism) (Figure 5C), reflecting the
important roles of these subsystems in cell growth (essential
genes and simulation conditions are listed in Supplementary
Table S4).

Nucleoside Sugar Biosynthetic Pathway
in G. lucidum
Construction of Nucleoside Sugar Biosynthetic
Pathway
The biosynthetic pathway of EPSs can be divided into three
stages: (i) biosynthesis of nucleoside sugar precursors; (ii)
assembly of repeating units; (iii) process of polymerization (Li
et al., 2016). The monosaccharide composition of all EPSs
includes glucose, galactose mannose, xylose, arabinose, fucose,
and rhamnose. Typically, the proportion of glucose is high
whereas that of fucose and rhamnose is low (Peng et al., 2015;
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TABLE 1 | Growth phenotypic validation under a sole carbon source.

Substrate Biomass

Carbon source In vivo In silico Reference

Glucose + + Babitskaya et al., 2005; Wei et al., 2016

Sucrose + + Babitskaya et al., 2005; Wei et al., 2016

Galactose + + Babitskaya et al., 2005; Wei et al., 2016

Mannose + + Babitskaya et al., 2005; Wei et al., 2016

Xylose + + Babitskaya et al., 2005; Wei et al., 2016

Maltose + + Babitskaya et al., 2005; Wei et al., 2016

Lactose + + Babitskaya et al., 2005; Wei et al., 2016

Fructose + + Babitskaya et al., 2005

Arabinose + + Babitskaya et al., 2005

Mannitol + + Babitskaya et al., 2005

Cellobiose + + Babitskaya et al., 2005

Starch + + Babitskaya et al., 2005

Fucose + + Babitskaya et al., 2005

Rhamnose + + This study

Inositol − − This study

Ethanol + + This study

Citrate − + This study

Malate + + This study

In vivo, experimental results. In silico, simulation results.

Wang et al., 2017). Monosaccharide heterogeneity is reflected in
the complexity of EPS biosynthetic pathways.

Biosynthetic pathways of EPSs are poorly known because
of our inadequate knowledge of related enzymes and their
functions. On the basis of model iZBM1060, we hereby
propose a detailed nucleoside sugar biosynthetic pathway.
Glucose, galactose, fucose, mannose, and arabinose reactions are
catalyzed by monosaccharide kinase to produce corresponding
phosphate monosaccharides, and UDP-glucose, UDP-galactose,
GDP-mannose, and UDP-arabinose are then synthesized through

TABLE 2 | Growth phenotypic validation under a sole nitrogen source.

Substrate Biomass

Nitrogen source In vivo In silico Reference

Urea − + This study

NH4Cl + + This study

L-Methionine − − This study

L-Isoleucine + + This study

L-Leucine + + This study

L-Phenylalanine + + This study

L-Proline + + This study

L-Alanine + + This study

L-Glutamate + + This study

L-Glutamine + + This study

L-Glycine + + This study

L-Threonine + + This study

L-Aspartate + + This study

L-Asparagine + + This study

L-Tryptophan + + This study

L-Histidine + + This study

L-Serine + + This study

L-Tyrosine + + This study

L-Valine + + This study

L-Lysine + + This study

L-Arginine + + This study

L-Cysteine + + This study

In vivo, experimental results. In silico, simulation results.

action of pyrophosphorylase. E.g., hexokinase (GL26783-R1,
GL20491-R1, and GL20491-R2) and mannose phosphomutase
(GL20742-R1 and GL21817-R1) participate respectively in
synthesis of mannose-6-P and mannose-1-P. GDP-mannose is
then synthesized by action of GDP-mannose pyrophosphorylase
(GL25424-R1).

FIGURE 4 | Verification of specific growth rates in cells. (A) Under conditions of fermentation medium, cell growth, EPS production, and sugar consumption curve.
(B) Nonlinear curve fit of growth curve and sugar consumption curve.
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FIGURE 5 | Percentages of essential genes in each subsystem under various culture conditions. (A) Numbers of essential genes under various conditions.
(B) Essential genes for cell growth, on minimal growth medium. (C) Essential genes for cell growth, on fermentation medium. (D) Essential genes for EPS production,
on minimal growth medium. (E) Essential genes for EPS production, on fermentation medium. The abbreviations of each subsystem are the same with that in
Figure 2.

Xylose enters the PPP to synthesize fructose-6-P, and then a
nucleoside precursor. Fucose and rhamnose can also synthesize
fructose-6-P via the gluconeogenesis pathway. Fructose-6-P has
two pathways for synthesis of nucleoside sugar: (i) glucose-6-
P isomerase (GL22245-R1) catalyzes conversion of fructose-6-
P to glucose-6-P; (ii) fructose-6-P is converted to mannose-
6-P by mannose-6-P isomerase (GL17878-R1 and GL22193-
R1) and further synthesizes GDP-mannose and GDP-fucose
(Figure 6).

Glucose, galactose, mannose, fucose, and arabinose are able
to synthesize nucleoside sugars via short metabolic pathways. In
contrast, xylose, fructose, and rhamnose cannot directly enter
the nucleoside sugar biosynthetic pathway, and are therefore
less ideal carbon sources. This concept is supported by our
“wet” experimental results (Supplementary Figure S1 and
Figure 4A).

The proposed nucleoside sugar biosynthetic pathway involves
20 genes, 17 enzymes, and glucose as carbon source. Peng et al.
(2015) observed activity of related enzymes in a biosynthetic
pathway, indicating the accuracy of our reconstructed pathway
(Table 3).

Identification and Analysis of Essential Genes for
EPS Synthesis
Essential genes for EPS synthesis were predicted by single-gene
deletion using COBRA Toolbox in two media. Prior to such
prediction, biomass function must be constrained to ensure
normal growth of cells. For minimal growth medium and
fermentation medium, 124 genes (11.70% of total) and 106
genes (10.00%), respectively, were identified as essential for EPS
synthesis (Figure 5A; essential genes and simulation conditions
are listed in Supplementary Table S4).
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FIGURE 6 | Proposed nucleoside sugar biosynthetic pathway of G. lucidum based on model iZBM1060 (detailed information on enzyme information and reactions
are presented in Supplementary Table S3).

TABLE 3 | The reported enzymes of G. lucidum EPS biosynthetic pathway (Peng et al., 2015).

EC No. Gene ID Enzyme name Reaction

5.3.1.9 GL22245-R1 Glucose-6-phosphate isomerase (GPI) D-Glucose-6-phosphate <=> D-Fructose-6-phosphate

3.1.3.11 GL24591-R1 GL24591-R2 Fructose-1,6-bisphosphatase (FBP) D-Fructose-1,6-bisphosphate - > D-Fructose-6-phosphate

5.3.1.8 GL17878-R1 GL22193-R1 Mannose-6-phosphate isomerase (PMI) D-Mannose-6-phosphate <=> D-Fructose-6-phosphate

1.1.1.22 GL18437-R1 UDP-glucose-6-dehydrogenase (UGDH) UDP-glucose <=> UDP-glucuronate

5.4.2.2 GL24280-R1 Glucose phosphomutase (PGM) D-Glucose 1-phosphate <=> D-Glucose-6-phosphate

2.7.7.9 GL25739-R1 UTP-glucose pyrophosphorylase (UGP) D-Glucose-1-phosphate - > UDP-glucose

2.7.7.24 Not annotated dTDP-glucose synthase (RFFH) D-Glucose-1-phosphate <=> dTDP-glucose

5.1.3.2 GL30389-R1 GL29575-R1 UDP-glucose 4-epimerase (GALE) UDP-glucose <=> UDP-alpha-D-galactose

2.7.7.13 GL25424-R1 GDP-mannose pyrophosphorylase (GMP) D-Mannose-1-phosphate - > GDP-mannose

For minimal growth medium, predicted essential genes
for EPS synthesis were involved primarily in amino acid
metabolism (31.45%) and carbohydrate metabolism (21.77%)
(Figure 5D). For fermentation medium, predicted essential genes
were involved in amino acid metabolism (22.64%), metabolism
of cofactors and vitamins (16.04%), lipid metabolism (16.98%,
and carbohydrate metabolism (25.47%) (total∼80%; Figure 5E).
These findings indicate that more carbon metabolism pathways

are needed for EPS synthesis on minimal growth medium than
on fermentation medium.

Comparative Genomics Analysis of Nucleoside Sugar
Biosynthetic Pathway
To further elucidate EPS metabolic mechanisms and pathways,
we performed comparative genomics analysis of G. lucidum EPSs
and other important fungi.
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TABLE 4 | Key enzymes of EPS biosynthesis in six well-studied mushroom species.

EC No. G. lucidum A. cinnamomea C. militaris O. sinensis F. velutipes P. ostreatus

2.7.1.1 3 2 4 4 2 2

5.3.1.9 1 1 1 1 1 1

5.3.1.8 2 2 1 1 1 1

5.4.2.8 2 0 0 0 0 0

2.7.7.13 1 0 0 0 0 0

4.2.1.47 1 1 0 0 1 1

1.1.1.271 1 1 0 0 1 1

5.4.2.2 1 2 1 1 3 2

2.7.7.9 1 2 1 1 1 1

5.1.3.2 2 1 1 1 1 1

1.1.1.22 1 1 1 1 1 1

4.1.1.35 1 1 0 0 1 1

5.1.3.5 0 0 0 0 0 0

2.7.7.24 0 0 0 0 0 0

4.2.1.46 0 0 1 2 0 0

5.1.3.13 0 0 0 0 0 0

1.1.1.133 0 0 0 0 0 0

2.7.1.6 1 0 1 1 1 1

2.7.7.12 0 0 1 1 1 1

1.1.1.307 1 0 0 0 0 0

1.1.1.9 1 1 2 0 1 1

1.1.1.14 1 1 2 3 3 2

4.1.2.13 2 1 3 2 2 2

3.1.3.11 2 1 1 1 1 1

2.7.1.17 2 2 1 1 2 2

2.2.1.1 0 1 1 1 1 1

2.7.1.11 1 1 1 1 1 1

4.1.2.9 1 1 0 0 1 1

2.7.1.46 1 0 0 0 0 0

2.7.7.64 1 0 0 0 0 0

2.7.1.52 1 0 0 0 0 0

2.7.7.30 1 0 0 0 0 0

Numbers in table columns are numbers of genes that were annotated.

Genomes of five related edible/ medicinal mushroom
species (Antrodia cinnamomea (Riley et al., 2014), Cordyceps
militaris (Zheng et al., 2011), Ophiocordyceps sinensis (Hu
et al., 2013), Flammulina velutipes (Park et al., 2014),
Pleurotus ostreatus (Riley et al., 2014) were annotated by
KAAS. Metabolic enzymes related to EPS biosynthesis in
these other species were compared with those in G. lucidum
to clarify the characteristics of EPS biosynthesis. A total of
32 key enzymes were annotated. Numbers of key enzymes
annotated were 25 for G. lucidum, 18 for A. cinnamomea,
17 for C. militaris, 16 for O. sinensis, 20 for F. velutipes,
and 20 for P. ostreatus (Table 4). G. lucidum and the other
five species had comprehensive gene annotations in the
glycolysis pathway. All six species displayed gene deletion in
the dTDP-rhamnose biosynthetic pathway. For example, dTDP-
glucose synthase participated in synthesis of dTDP-glucose,
and dTDP-4-dehydro-6-deoxy- D-glucose 3,5-epimerase and

dTDP-4-dehydrorhamnose reductase participated in synthesis
of dTDP-rhamnose. UDP-arabinose 4-epimerase, which
catalyzed conversion of UDP-xylose to UDP-arabinose, was
absent.

The above findings, taken together, indicate that the metabolic
network of G. lucidum is more complex than other fungi, and
allows synthesis of a greater variety of fungal nucleoside sugar
precursors.

Optimization Strategies for Improving
EPS Production in silico
On the basis of our model analysis, we propose two feasible
optimization strategies for improvement of EPS production.

Biochemical Engineering Strategies
Effects of addition of amino acids on cell growth and EPS
production were simulated, and both these parameters were
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FIGURE 7 | Predicted EPS production rates in G. lucidum under various conditions. (A) Maximal growth rate and EPS production rate on minimal growth medium,
and on minimal growth medium with one of 20 amino acids. (B) Effects on biomass and EPS production rate of separate addition of 10 amino acids. (C) Effects of
single gene overexpression on EPS production rate and fPH (see Simulation, Curation, and Analysis of Model iZBM1060). RFBC,
dTDP-4-dehydro-6-deoxy-D-glucose 3,5-epimerase; TGDS, dTDP-glucose 4,6-hydro-lyase; PGM, glucose phosphomutase; RFFH, dTDP-glucose
pyrophosphorylase; TSTA3, GDP-fucose synthase; UGP, UDP-glucose pyrophosphorylase; GMDS, GDP-mannose 4,6-hydro-lyase; UXE, UDP-arabinose
4-epimerase.
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found to be enhanced (Figure 7A). EPS production was
increased > 15% by addition of 10 separate amino acids in
simulation results. Especially, the increase was greatest for
tryptophan (41.85%), followed by phenylalanine (32.80%) and
tyrosine (31.39%).

The wet experiment results indicated that EPS production
was greatly increased by addition of phenylalanine (38.00%)
or tyrosine (25.00%) and no enhancement occurred when
tryptophan or the other amino acids were applied in
EPS production (Figure 7B). Addition of phenylalanine is
clearly effective in enhancing EPS production. Polysaccharide
yields can be further improved by adjustment of
quantity and timing of amino acid addition in future
studies.

Genetic Engineering Strategies
In several recent studies, expression levels of EPS biosynthetic
genes have been manipulated in order to increase EPS
production. However, less is known regarding overexpression
of target genes for this purpose. On the basis of GSMM, we
simulated gene overexpression to guide metabolic engineering
for enhancement of EPS production, using MOMA to reevaluate
the fluxes and obtain an overexpression algorithm. Eight key
enzymes were identified as potential targets for EPS production;
i.e., overexpression of PGM gene (EC: 5.4.2.2, GL24280-
R1), UGP gene (EC: 2.7.7.9, GL25739-R1), TSTA3 gene (EC:
1.1.1.271, GL21002-R1), GMDS gene (EC: 4.2.1.47, GL20928-
R1), UXE gene (EC: 5.1.3.5), RFBC gene (EC: 5.1.3.13), TGDS
gene (EC: 4.2.1.46), and RFFH gene (EC: 2.7.7.24) notably
enhanced EPS production (Figure 7C and Supplementary
Table S5).

PGM catalyzed conversion of glucose-6-P to glucose-1-P;
each of these compounds is an important intermediate in EPS
biosynthetic pathway. Overexpression of PGM gene increased
EPS production from 0.005 mmol/gDW/h in wild-type (WT) to
0.0133 mmol/gDW/h. Thus, increased PGM transcription level
was directly correlated with increased EPS production. PGM
was also implicated as the key enzyme for EPS biosynthesis in
a previous study: maximal EPS production in a PGM gene-
overexpressing strain was 1.76 g/L – 44.3% higher than in WT
(Xu et al., 2015). Overexpression of UGP gene in silico caused
an increase of EPS production rate to 0.0106 mmol/gDW/h.
UGP is directly involved in synthesis of UDP-glucose, and
EPSs contain a high proportion of glucose. UDP-glucose plays
a key role in EPS production as a synthetic precursor. Li
et al. (2015) also demonstrated an effect of UGP on EPS
synthesis.

UXE catalyzes interconversion of two EPS synthesis
precursors: UDP-arabinose and UDP-xylose. When glucose is
used as carbon source, UXE plays an essential role in production
of UDP-arabinose. TSTA3 and GMDS are involved in synthesis
of GDP-fucose. RFBC, TGDS, and RFFH participate in synthesis
of dTDP-rhamnose.

Results of the analysis described above indicate that EPS
production can be effectively improved by overexpression of
genes for eight key enzymes. Previous studies have demonstrated
the usefulness of PGM and UGP genes in this regard. Future

studies will focus on overexpression of the other six genes for
improvement of EPS production.

CONCLUSION

A GSMM for Ganoderma lucidum (lingzhi mushroom) is
presented here for the first time. The GSMM (termed model
iZBM1060) is focused on EPSs, and contains 1404 reactions,
1202 metabolites, and 1060 genes. The model was validated and
shown to accurately simulate cell growth and EPS production
under various conditions. The nucleoside sugar (EPS precursor)
biosynthetic pathway in the model was elucidated completely.
Essential genes for cell growth and EPS synthesis, and genes
for eight key EPS production enzymes, were analyzed. Two
strategies for improvement of EPS production, based on model
iZBM1060, were proposed: (i) addition of phenylalanine; (ii)
overexpression of the eight key enzyme genes. PGM and UGP
genes have previously been shown to be useful targets for
enhancement of EPS production, and future studies will focus
on overexpression of the other six genes for this purpose.
Model iZBM1060 provides a useful platform for regulating
EPS production in terms of system metabolic engineering for
G. lucidum, as well as a guide for future metabolic pathway
construction of other high value-added edible/ medicinal
mushroom species.
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Fueled by technological advancement, there has been a surge of human microbiome

studies surveying the microbial communities associated with the human body and their

links with health and disease. As a complement to the human genome, the human

microbiome holds great potential for precision medicine. Efficient predictive models

based on microbiome data could be potentially used in various clinical applications such

as disease diagnosis, patient stratification and drug response prediction. One important

characteristic of the microbial community data is the phylogenetic tree that relates all the

microbial taxa based on their evolutionary history. The phylogenetic tree is an informative

prior for more efficient prediction since the microbial community changes are usually not

randomly distributed on the tree but tend to occur in clades at varying phylogenetic

depths (clustered signal). Although community-wide changes are possible for some

conditions, it is also likely that the community changes are only associated with a small

subset of “marker” taxa (sparse signal). Unfortunately, predictive models of microbial

community data taking into account both the sparsity and the tree structure remain

under-developed. In this paper, we propose a predictive framework to exploit sparse

and clustered microbiome signals using a phylogeny-regularized sparse regression

model. Our approach is motivated by evolutionary theory, where a natural correlation

structure among microbial taxa exists according to the phylogenetic relationship. A novel

phylogeny-based smoothness penalty is proposed to smooth the coefficients of the

microbial taxa with respect to the phylogenetic tree. Using simulated and real datasets,

we show that our method achieves better prediction performance than competing sparse

regression methods for sparse and clustered microbiome signals.

Keywords: microbiome, phylogenetic tree, sparse generalized linearmodel, predictivemodel, statistical modeling,

high-dimenisonal statistics
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1. INTRODUCTION

The human microbial community (a.k.a., microbiota) is the

collection of microorganisms associated with the human body.

These microorganisms, their genomes, and the environment they
reside in are collectively known as the human “microbiome.” The

human microbiome plays a critical role in health and disease
(Cho and Blaser, 2012). For instance, the human gut microbiome
aids the digestive system with inaccessible nutrients, synthesizes
beneficial nutrients and protects us against pathogens. An
abnormal microbiome has been implicated in many human
diseases including various cancer types (Ahn et al., 2013;
Bultman, 2014; Walther-Antonio et al., 2016; Peters et al., 2017).
Dysbiosis of the microbiome has been observed in obesity, type II
diabetes, rheumatoid arthritis and multiple sclerosis (Turnbaugh
et al., 2009; Kinross et al., 2011; Honda and Littman, 2012;
Pflughoeft and Versalovic, 2012; Qin et al., 2012; Chen et al.,
2016; Jangi et al., 2016). Therefore, the human microbiome holds
great potential for various clinical applications such as disease
diagnosis, patient stratification and drug response prediction.
Building up an efficient microbiome-based predictor could thus
empower microbiome-based precision medicine (Kashyap et al.,
2017).

Advances in low-cost, high-throughput DNA sequencing
technologies such as Illumina Solexa sequencing has enabled
researchers to study the microbiome composition by directly
sequencing the microbial DNA. Two main approaches have been
employed to sequence themicrobiome: gene-targeted sequencing
and shotgun metagenomic sequencing (Kuczynski et al., 2011).
Compared to the shotgun metagenomic sequencing, where
all microbial DNA is sequenced, the gene-targeted approach
only sequences a “fingerprint” region of a “molecular clock”
gene such as the 16S rRNA gene in the bacteria. Although
the shotgun metagenomic sequencing provides more biological
information, the targeted approach is still the dominant approach
for large-scale microbiome studies due to its lower cost and high
scalability (McDonald et al., 2018). In the targeted sequencing,
standard practices involve clustering the sequencing reads into
operational taxonomic units (OTUs) or amplicon sequence
variants (ASVs) based on their sequence similarities (Schloss
et al., 2009; Caporaso et al., 2010, 2012; Chen et al., 2013b,
2017; Edgar, 2013; Rideout et al., 2014; Callahan et al., 2016;
Amir et al., 2017). A taxonomic lineage is further assigned
to each OTU/ASV by comparing their sequence to existing
16S rRNA gene databases. Finally, a phylogenetic tree, which
characterizes the evolutionary relationships among OTUs/ASVs,
is constructed based on their sequence divergences (Price et al.,
2010). For shotgun metagenomic sequencing, a phylogenetic tree
can also be constructed based on the reference genomes of the
detected species (Kembel et al., 2011). As a result, a typical
microbiome sequencing study is usually summarized as a table
of the read counts of the detected OTUs/ASVs/Species, together
with a phylogenetic tree, reflecting the community structure and
composition of the studied microbiome. For simplicity, hereafter,
we use the term “OTU” to stand for the basic taxonomic
units (e.g., OTU, ASV, species, taxa) from any sequencing
experiment/bioinformatics pipeline. Compared to other types

of omics sequencing data, one important characteristic of
microbiome sequencing data (microbial community data) is the
phylogenetic tree that relates all the OTUs. The phylogenetic tree
provides prior knowledge about how the OTUs are evolutionarily
related. Related OTUs, which usually share similar biological
functions, are more likely to be simultaneously associated with
the outcome, forming “clustered signals” at varying phylogenetic
depths (Garcia et al., 2014; Martiny et al., 2015). Therefore, the
phylogeny creates linkages among OTUs and induces a grouping
structure, allowing more efficient linkage between the OTUs and
the phenotype. As the microbial community data moves into
even higher resolutions such as strain-level resolution (Mallick
et al., 2017; Edgar, 2018), the phylogenetic relationship becomes
even more important for OTU data analysis. Clearly, it is not
sensible to treat OTUs with only 1% sequence divergence in
the same way as the OTUs with more than 10% sequence
divergence. Indeed, incorporating the tree structure has proven
to make the analyses more efficient and robust for various
statistical tasks ranging from ordination to microbiome-wide
multiple testing (Purdom, 2011; Chen et al., 2012, 2013a;
Evans and Matsen, 2012; Wang and Zhao, 2017; Xiao et al.,
2017).

One important task for microbiome analysis is to predict the
phenotype/outcome (either quantitative or qualitative) based on
the features of the underlying microbial community (relative
abundances of the OTUs and their phylogeny). This process is
also known as predictive modeling or supervised learning in
machine learning literature, where we try to derive some function
from the training data that can be used to predict the outcome
of future data, and to learn which features (i.e., OTUs) are
predictive of the outcome. For clinical applications, the outcome
includes disease state, treatment response, and drug toxicity. To
enable prediction based on microbial community data, general-
purpose predictive methods have been applied (Knights et al.,
2011; Statnikov et al., 2013; Pasolli et al., 2016). These methods
include classical machine learning methods (e.g., Random Forest
and Support Vector Machine) and modern regression methods
for high-dimensional data [e.g., Lasso (Tibshirani, 1996), MCP
(Zhang, 2010), and Elastic Net (Zou and Hastie, 2005)], focusing
onmodeling the nonlinear relationship between the outcome and
the microbiome as well as selecting the most predictive OTUs
for better interpretation. However, these methods do not fully
exploit the information in the microbiome data, particularly the
phylogenetic relationship among OTUs. The phylogenetic tree is
an informative prior since the microbial community changes are
usually not randomly distributed but tend to occur in clades at
varying phylogenetic depths (clustered signal). In other words, the
phylogenetic structure offers a biologically motivated grouping
structure, through which we can aggregate sparse OTU data
to enrich signals and achieve better predictive performance.
The objective of the proposed study is thus to provide a data-
adaptive approach to use the tree structure when constructing
the predictive model, i.e., let the data determine how much
phylogenetic information and what level of phylogenetic depth
we should use to achieve optimal performance. The inputs of
our method are the OTU count table, the phylogenetic tree of
the OTUs and the outcome measurements, and the outputs are
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the selected OTUs and the predictive function based on their
abundances.

Many previous attempts have been made to incorporate the
tree information into prediction, particularly in the regression
framework (Tanaseichuk et al., 2014; Chen et al., 2015; Ning
and Beiko, 2015; Wang and Zhao, 2017; Randolph et al., 2018;
Xiao et al., 2018). These methods are advantageous over previous
methods by taking into account the tree. However, they still
have many limitations. For example, some methods do not
perform variable selection in model building (Wang and Zhao,
2017; Randolph et al., 2018; Xiao et al., 2018), and hence their
prediction performance is subpar for sparse-signal scenarios (i.e.,
only a subset of OTUs are associated with outcome). For methods
that perform variable weighting or selection (Tanaseichuk et al.,
2014; Ning and Beiko, 2015), they usually rely solely on the
tree topology. The branch lengths, which provide more detailed
evolutionary history, are usually ignored. Therefore, there is still
a need to develop prediction methods for sparse clustered signals
while exploiting the full information of the phylogenetic tree,
which consists of both the tree topology and branch lengths.

Previously, we developed glmgraph (Chen et al., 2015),
a graph-regularized sparse regression model for structured
genomic data. In the glmgraph framework, besides a sparsity
penalty, a graph Laplacian-based structure penalty (Laplacian
penalty) was imposed to smooth the coefficients with respect
to the graph structure. It also encourages structurally related
predictors to be selected simultaneously (Huang et al., 2011).
In principle, a graph Laplacian can be constructed based on
the pair-wise distances between OTUs with respect to the
phylogenetic tree. However, the Laplacian penalty has two major
drawbacks for microbiome applications. First, the Laplacian-
induced smoothing/grouping effects are susceptible to the
interference by a large number of distantly relatedOTUs since the
graph is fully connected. It is well- known that distantly related
OTUs have very different biological characteristics, and thus their
contribution to the smoothing should be minimized. Second, the
smoothing effects induced by the Laplacian penalty is completely
driven by the external graph structure. This is in stark contrast
to the l2 penalty-induced smoothing effects (Zou and Hastie,
2005; Huang et al., 2016), which are mainly driven by the internal
correlation structure in the data. In case of a misspecified tree, the
Laplacian penalty cannot reduce to the l2 penalty. Therefore, it
does not possess the data-driven smoothing property, which has
been shown to be important to improve prediction performance
under certain scenarios (Waldron et al., 2011).

In this work, in parallel to our previous prediction method
for “dense and clustered” microbiome signals (Xiao et al.,
2018), we develop a phylogeny-regularized sparse regression
model for “sparse and clustered” microbiome signals. The
proposed method uses a novel phylogeny-based smoothness
penalty, which is defined based on the inverse of the phylogeny-
induced correlation matrix. The new penalty addresses the
two major drawbacks of the Laplacian penalty: it encourages
local smoothing, i.e., smoothing effects from more immediate
neighbors, as well as enjoys the data-driven smoothing property
if the tree is misspecified. In summary, the sparse nature of the
distribution of OTUs in complex microbiome data can be better

captured by our model because it provides a data-adaptive way to
group the OTUs according to their phylogeny as well as to select
the most predictive OTUs, which leads to improved prediction
and interpretation.

2. METHODS

2.1. A Phylogeny-Induced Correlation
Structure Among OTUs
We first introduce a phylogeny-induced correlation structure, on
which our phylogeny-based smoothness penalty will be defined.
Suppose we have p OTUs on a phylogenetic tree, following the
evolutionary model proposed in Martins and Hansen (1997), the
correlation of the traits between OTU i and j can be modeled as

cij(α) = e−2αdij , i, j = 1, . . . , p, (1)

where dij is the patristic distance between OTU i and j (i.e., the
length of the shortest path linking the two OTUs on the tree)
and the parameter α ∈ (0,∞) characterizes the evolutionary
rate. When α = 0, cij = 1 ∀i, j, indicating all the traits are the
same and there is no evolution. When α → ∞, cij = 0 ∀i 6= j,
indicating that the traits evolve independently. The parameter
α is also related to the phylogenetic depth of trait conservation
(Martiny et al., 2015), with a smaller α value indicating a greater
phylogenetic depth at which the trait is conserved (i.e., a large
clade of OTUs share the trait). In other words, the parameter
α has a (soft) grouping effect and groups the OTUs at various
phylogenetic depths. Compared to the taxonomic grouping,
where the OTUs are grouped at a specific taxonomic level, such
phylogeny-based grouping not only achieves more resolutions,
but also circumvents the difficulty of the uncertainty in taxonomy
assignments. Therefore, in the context of predictive modeling,
the parameter α can be treated as a tuning parameter, which
allows us to explore different phylogenetic depths to optimize
prediction. Also to be noted, the pairwise distance dij can be
simply the genetic distance based on pairwise comparison of the
DNA sequences without the need for explicit tree construction.

2.2. Phylogeny-Regularized Sparse
Generalized Linear Model
To account for the high dimensionality and the phylogenetic
tree structure in microbiome-based prediction, we introduce
a phylogeny-regularized sparse generalized linear model. We
assume that there are n samples with the abundances of p
OTUs being profiled. For the ith sample, let yi denote the
outcome variable, which can be binary or continuous, and
xi = (xi1, xi2, . . . , xip)

T denote the normalized and properly
transformed abundance vector of the pOTUs.We further assume
the data have been standardized (

∑

i xij = 0,
∑

i x
2
ij = n). The

goal is to predict yi based on xi. We will use a generalized linear
model

g(E(yi)) = β0 + x
T
i β ,

where β0 is the intercept, β = (β1,β2, . . . ,βp) and g(.) is
a link function (identity and logit link for continuous and
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binary outcome, respectively). Since p > n, we need to
make some sparsity assumption in order for the model to
be estimable. Additional assumption will be imposed on the
structural relationship among the model parameters to make the
estimation more efficient. To this end, we propose the following
penalized log-likelihood to estimate the regression coefficients:

pl(β0,β; λ1, λ2) =
1

n

n
∑

i=1

{−l(β0,β; yi, xi)} + p
sp
λ1
(β)+ psmλ2 (β),

(2)
where

l(β0,β; yi, xi)

=

{

−(yi − β0 − x
T
i β)2/2 linear regression,

yi(β0 + x
T
i β)− log(1+ eβ0+x

T
i β ) logistic regression.

The penalized likelihood estimate can be obtained by solving the
optimization problem

β̂ = argminβ0 ,β
pl(β0,β; λ1, λ2). (3)

The two penalty terms in Equation (2) play distinct roles. p
sp
λ1
(β)

is the sparsity penalty, which induces a sparse solution and has
been demonstrated to improve both the prediction performance
and model interpretability (Tibshirani, 1996) in the high-
dimensional setting. psmλ2 (β) is the smoothness penalty, which
encourages smoothness of the estimated coefficients with respect
to the phylogenetic tree (i.e., encourage similar coefficients for
clustered OTUs at a certain phylogenetic depth).

For the sparsity penalty p
sp
λ1
(β), we choose to use MCP

(Minimax Concave Penalty) (Zhang, 2010):

p
sp
λ1
(β) =

p
∑

j=1

ρ(|βj|; λ1, γ ), ρ(t; λ1, γ )

= λ1

∫ |t|

0
(1− x/(γ λ1)+dx, (4)

where λ1 ≥ 0 is the tuning parameter, (.)+ indicates the
nonnegative part and the parameter γ (1 ≤ γ ≤ +∞) controls
the degree of concavity. Larger values of γ make ρ less concave.
By varying the value of γ from 1 to +∞, the MCP provides a
continuum of penalties with the hard-threshold penalty as γ → 1
and the convex l1 penalty at γ = +∞. In practice, γ is usually
fixed to a reasonable value without the need for further tuning.
An important advantage of the MCP over the l1 penalty is that
it leads to a nearly unbiased estimator and achieves selection
consistency under weaker conditions. More detailed discussions
of MCP could be found in Zhang (2010).

Our major contribution is the design of a novel structure-
based smoothness penalty psmλ2 (β) to achieve efficient phylogeny-
based smoothing. One common approach to accommodate
structure/graph information in sparse regression model is
through the use of a graph Laplacian penalty psmλ2 (β) =
λ2β

TLβ , where the Laplacian matrix L is defined based on

the connectivity, or adjacency among predictors. The penalized
likelihood estimator resulted from the combination of the MCP
and Laplacian penalty, termed as Sparse Laplacian Shrinkage
(SLS) estimator, has been shown to have nice properties such
as selection consistency and generalized grouping (Huang et al.,
2011). For microbiome applications, a graph Laplacian for
microbiome data can be defined using the phylogeny-induced
correlation (Equation 1) as the adjacency measure. However, we
found that this approach did not always achieve better prediction
performance than the procedure without the Laplacian penalty.
The subpar performance is partly due to the interference by a
large number of distantly related OTUs since the phylogeny-
induced graph is fully connected. To achieve better prediction
performance, it is important to reduce the contribution of
smoothing effects from the large number of distantly related
OTUs. Although this can be achieved by sparsifying L, in practice,
the degree of sparsity to achieve optimal prediction depends on
the data and it is difficult to set a universal degree of sparsity for all
applications. To overcome the limitation of the graph Laplacian
approach, we propose to use an alternative smoothness penalty

psmλ2 (β) = λ2β
TC−1(α)β , (5)

where C(α) = (cij(α))p×p is the phylogeny-induced correlation
structure defined in the previous section. The inverse correlation
matrix � , C−1 also implies a graph structure among predictors
but encourages more local smoothing, that is, the coefficient
smoothing is mainly contributed by its immediate neighbors. To
demonstrate a stronger local smoothing effect by � than L, we
plot �ij, Lij, the elements of the � and L, against the pairwise
patristic distances between OTUs (Figure 1). As the pairwise
distance increases, �ij approaches zero quickly while Lij does not
decrease as fast. Since |�ij|, |Lij| determine the contribution of the
smoothing effect of OTU i to OTU j, a faster rate to zero suggests
a stronger local smoothing effect.

FIGURE 1 | Local smoothing effects of the proposed smoothness penalty.

The data was generated based on a simulated phylogenetic tree

(p = 200,“rcoal” from R “ape” package). The correlation C(α) was calculated

based on the pairwise patristic distances with α = 2. (A) The elements of

inverse correlation matrix (�ij ) are plotted against pairwise patristic distances

(dij ). (B) The elements of Laplacian matrix (Lij ) are plotted against pairwise

patristic distances (dij ).
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In the phylogeny-regularized sparse generalized linear model,
we have three parameters λ1, λ2 and α, which need to be tuned in
the training step for optimal prediction performance. These three
parameters, respectively control the model sparsity (i.e., how
many OTUs are predictive of the outcome), the phylogeny-based
smoothing effects (i.e., how much smoothing effects should be
induced by the tree), and the phylogenetic depth of the signal (i.e.,
what level of clustering is needed to achieve better prediction).
With the inverse correlation matrix-based smoothness penalty,
we call the resulting penalized likelihood estimator Sparse Inverse
Correlation Shrinkage (SICS) estimator. The proposed approach
also has a Bayesian interpretation: it assumes that the coefficient
β has a prior multivariate normal component with the covariance
matrix τC and the penalized likelihood estimate can be viewed
as the MAP (maximum a posteriori) estimate from a Bayesian
perspective.

2.3. Connection With Existing Methods
The proposed smoothness penalty β

T�β , the graph Laplacian
penalty β

TLβ and the l2 penalty β
T
β are all special cases of a

general class of quadratic penalties β
T6β , where 6 is a positive

semi-definite matrix. When α → ∞, the proposed penalty
becomes l2 penalty and the SICS estimator is reduced to theMnet
estimator (Huang et al., 2016). It is well-known that l2 penalty
induces a grouping effect based on the correlation structure in
the data (data-driven smoothing). As α decreases, the phylogeny-
driven smoothing will take control (prior-driven smoothing).
Thus, α also provides some tradeoff between data-driven and
prior-driven smoothing (Theorem 1). To better understand
the behavior of the proposed smoothness penalty, we rewrite
it as

β
T�β =

p
∑

i=1

(�ii −
p

∑

j=1,j6=i

|�ij|)β2
i +

∑

1≤j<k≤p

|�jk|(βj − sjkβk)
2

(6)
where sjk = sgn(−�jk) is the sign of −�jk. Note that
the second part has the same form as the Laplacian penalty
(Huang et al., 2011). Thus, the proposed smoothness penalty
is a combination of a weighted l2 penalty (first part) and a
Laplacian penalty (second part) with the adjacency coefficients
−�ij. For the phylogeny-induced correlation structure, all the
off-diagonal elements �ij are negative and the magnitude
controls the prior-driven smoothing effect. The weighted l2
penalty, on the other hand, offers the data-driven smoothing
effect. In contrast, the Laplacian penalty cannot reduce to
the l2 penalty and does not have the data-driven smoothing
effect.

Since the proposed smoothness penalty has a weighted l2
component, some degree of shrinkage in the coefficient estimate
is expected (Zou and Hastie, 2005). For orthogonal designs,
rescaling could remove the bias due to l2 shrinkage without
significantly increasing the variance. However, we find that,
for more general designs, rescaling could instead increase the
variance of the SICS estimator and decrease the prediction
performance. Therefore, we will not rescale the coefficients in the
implementation.

2.4. Some Theoretical Properties
We further investigate the smoothing effect and grouping
property of the proposed SICS estimator. Previously, Li and Li
(2008) derived the smoothing effect and grouping property for
the penalty combining l1 and Laplacian penalty, and Huang et al.
(2016) demonstrated a similar property for the Mnet estimator.
Here, we demonstrate such property for our SICS estimator
under a linear regression model and a simple graph design. The
proof of the theorem can be found in the Supplementary File.

Without loss of generality, we assume that the whole graph
(as characterized by �) corresponding to the index set {1, . . . , p}
is divided into disjoint cliques V1, . . . ,VJ . We further assume
that the patristic distances between OTUs are the same in each
clique so that the phylogeny-induced correlation coefficient cij
are the same. Thus, � has a special block-diagonal structure:
� = diag(�1, . . . ,�J) with �g=(�g,lm)vg×vg , where vg=|Vg |
for g=1, . . . , J, �g,ll = κg(vg − 1)�0

g for �g , κg>0, l=1, . . . , vg

and �g,lm= − �0
g for 1 ≤ l,m ≤ vj, l 6= m. Also, denote

ρjk = n−1
∑n

i=1 xijxik (data-induced correlation between OTU
i and OTU j). For the SICS estimator based on this inverse
correlation matrix �, we have the following smoothing and
grouping property:

Theorem 1. Denote t = 2λ2κg(vg − 1)�0
g and

ξ =
{

max {2γ (γ t − 1)−1, (γ t + 1)(t(γ t − 1))−1, t−1}, if γ t > 1,

t−1, if γ t ≤ 1.

Then for j, k ∈ Vg and g ∈ {1, . . . , J}, we have

|β̂j(α, λ1, λ2)− β̂k(α, λ1, λ2)| ≤
ξ ||y||1√

n

√

2(1− ρjk).

Especially, if ρjk = 0, we have |β̂j(α, λ1, λ2)− β̂k(α, λ1, λ2)| ≤√
2ξ ||y||1√

n
.

Based on Theorem 1, both the prior-induced correlation cjk
(which in turn determines �0

g and ξ ) and the data-induced
correlation ρjk contribute to the smoothing effect. With the

tuning parameter α, cjk can vary from 0 to 1 (equivalently, �0
g

varies from 0 to∞). We can thus increase and decrease the prior-
driven smoothing by varying α. The optimal level of prior-driven
smoothing effect can be tuned based on the data.

2.5. Model Estimation and Computational
Complexity
Since the proposed penalty is convex with respect to β ,
coordinate descent algorithm, which is developed for sparse
regression model with convex and non-convex sparsity penalties
(Friedman et al., 2010; Breheny and Huang, 2011) can be
readily extended to our case. For the linear regression model,
we have a closed-form solution for each coordinate update. For
the logistic regression model, we solve a series of structure-
regularized sparse linear regression model at each iteratively
reweighed least squares step. Coordinate descent continues until
a certain convergence criterion is reached. More details could
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be found in Chen et al. (2015). We implemented the method in
the R package SICS (https://github.com/lichen-lab/SICS), which
depends on our previously developed glmgraph R package (Chen
et al., 2015).

The computation complexity of the proposed method consists
of two parts: coordinate descent and matrix inversion. For
each coordinate descent loop, it requires O(n + p) arithmetic
operations, and a full cycle through the p OTUs requires
O(np + p2) operations. Assume the number of iterations to
reach convergence is c1 and the number of tuning parameter
combinations is c2. The overall complexity for the coordinate
descent algorithm is thus O(c1c2(np + p2)). In addition, taking
inverse of the correlation matrix typically has a computational
complexity of O(p3) (some algorithm may reduce it, but could
not bring down to O(p2)). A total of O(c3p

3) is required to
perform matrix inversion, where c3 is the number of grid points
for the tuning parameter α. Therefore, the total computational
complexity for SICS is O(c1c2(np+ p2)+ c3p

3). Usually, c1, c2, c3
are treated as fixed, so the computational complexity for SICS
is O(np + p3). Thus it is highly scalable with the sample
size but not with the number of OTUs. Since we usually
perform OTU filtering before running the algorithm, it is
computationally efficient for typical microbiome datasets with
p < 1000.

3. SIMULATION STUDIES

3.1. Simulation Strategy
We performed extensive simulations to evaluate the prediction
performance of SICS for both continuous and binary outcome.
For the continuous outcome, we simulated 100 samples in the
training set and 200 samples in the testing set. For the binary
outcome, we simulated an equal number of 50 samples for
both case and control groups in the training set, and an equal
number of 100 samples in case and control groups in the
testing set. We used a Dirichlet-multinomial distribution with
parameters estimated from a real microbiome data to simulate
OTU counts and generated the outcome based on the abundances
of the outcome-associated OTUs. We investigated the effect of
the informativeness of the phylogenetic tree and the level of
signal strength on the prediction performance. The simulation
studies were aimed to reveal the scenarios in which our model
performed favorably and also to test whether our model was
robust when the phylogenetic tree was not informative or
misspecified.

3.1.1. Simulating OTU Abundance Data
We included 200 OTUs in the simulation. The OTU counts
were generated using a Dirichlet-multinomial distribution with
the parameter values (dispersion, mean proportions) estimated
based on a real dataset from the human upper respiratory tract
microbiome (Charlson et al., 2010). Only the count data from the
200 most abundant OTUs were used in the parameter estimation.
Accordingly, the phylogenetic tree was trimmed to contain the
200 OTUs. For each sample, the total read count was sampled
from a negative binomial distribution with mean 5,000 and
dispersion 25, reflecting a typical sequencing depth for a targeted

sequencing experiment. The OTU counts were normalized into
OTU proportions by dividing the total read counts.

3.1.2. Selecting Outcome-Associated OTUs
We simulated both phylogeny-informative and non-informative
scenarios to study the performance of the proposed method
with respect to the informativeness of the phylogenetic tree.
In the phylogeny-informative scenarios, we selected outcome-
associated OTUs (“aOTUs”) from an OTU cluster and let their
effects in the same direction. In the phylogeny-non-informative
scenarios, we either randomly selected OTUs or let the effects
of the aOTUs in a cluster have opposite effects, which violates
the assumption that closely related aOTUs should have similar
effects. To construct OTU clusters, we partitioned the 200 OTUs
into 20 clusters using the partitioning-around-medoids (PAM)
algorithm based on their patristic distances. The simulation
strategy was illustrated in Figure 2 and the detailed settings for
four scenarios were presented below,

• S1: The phylogenetic tree was informative. One cluster with 12
aOTUs formed an outcome-associated cluster (“aCluster”). In
the aCluster, the aOTUs had the same effect size and the effect
direction was also the same.

• S2: The phylogenetic tree was informative. On top of S1, we
varied the effect size of each aOTU but the effect direction was
still the same.

• S3: The phylogenetic tree was non-informative. We randomly
selected 12 OTUs to be aOTUs. We restricted one cluster to
have only one aOTU.

• S4: The phylogenetic tree was non-informative. On top of S1,
we reversed the effect direction for half of the aOTUs.

FIGURE 2 | Illustration for the simulation strategy. We simulated both

phylogeny-informative scenarios (S1 and S2) and phylogeny-non-informative

scenarios (S3 and S4). Blue and red color indicate the direction of the effect

while the darkness of the color indicates the magnitude of the effect.
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3.1.3. Generating the Outcome Based on the

Outcome-Associated OTUs
DenoteA as the set containing the indices of aOTUs, and let xij be
the proportion of OTU j in sample i. We first generated ηi based
on the following linear relationship

ηi = β0 +
∑

j∈A
βjxij (7)

For a continuous outcome,

yi = ηi + ǫi, ǫi ∼ N(0, σ 2
ǫ ) (8)

For a binary outcome,

πi =
eηi

1+ eηi

yi ∼ Bernoulli(πi)

(9)

We simulated different levels of signal strength (effect size).

The signal strength was defined as

√
var(η)

σǫ
for the continuous

outcome and
∑

j∈A var(xj)β
2
j (xj denotes the abundance for

the jth OTU) for the binary outcome. In the simulation,
we investigated a signal strength at 1.0, 1.5, and 2.0 for
continuous outcome and 5.0, 10.0, and 20.0 for binary outcome
to represent low, medium and high signal strength. The detailed
parameter settings for the four scenarios were included in the
Supplementary File.

3.2. Competing Methods, Model Selection
and Evaluation
3.2.1. Competing Methods
We compared the proposed method (SICS) to Lasso, MCP and
Elastic Net (Enet), the three sparse regression models without
considering the phylogenetic tree. We also compared SICS to a
Laplacian-regularized sparse regression model as implemented
in glmgraph (SLS) (Chen et al., 2015). The Laplacian matrix L
was constructed using the same phylogeny-induced correlation
matrix C as the adjacency matrix. L was further sparsified to
90% sparsity level to reduce the adverse effects of distantly
related OTUs on the outcome prediction. Besides those sparse
regression models, we also compared SICS to a representative
machine learning method, Random Forest (RF), which has been
demonstrated good prediction performance on microbiome data
(Pasolli et al., 2016). The parameter settings for the competing
methods were shown in Box 1.

3.2.2. Model Selection and Evaluation
For SICS, the parameters (λ1, λ2,α) were tuned to achieve
optimal model sparsity and phylogenetic depth. Specifically, we
searched their best combination over a three-dimensional grids.
λ2 was searched on the grid {0, 2−5, 2−5+ν , 2−5+2ν , · · · , 25}

︸ ︷︷ ︸

12

, and

α on the grid {0, 2−5, 2−5+ν , 2−5+2ν , · · · , 25}
︸ ︷︷ ︸

12

, ν = 1, while λ1

was selected from a finer grid on a log scale from the most

Box 1 | Parameter settings for competing methods

• Lasso: glmnet R package, all parameters were set as the default.

• Elastic Net (Enet): glmnet R package. Tuning parameter for l2 penalty was

searched on the grid {0, 0.1, 0.2, · · · , 1}
︸ ︷︷ ︸

11

.

• MCP: ncvreg R package, all parameters were set as the default.

• SLS: glmgraph R package, the search grid for λ2 and α were set the same

as SICS.

• Random Forest (RF): randomForest R package, parameters were set as

default.

sparse to a very dense model as implemented in glmgraph and
glmnet.

The best tuning parameter values were selected based on
5-fold cross-validation (CV), where the training samples were
randomly divided into 5-folds with 4-folds for model fitting and
the remaining fold for testing . We used PMSE (Predicted Mean
Square Error) as the CV criterion for a continuous outcome and
AUC (Area Under the Curve) for a binary outcome as in Xiao
et al. (2018). Once the optimal tuning parameters were selected,
we fit the final model using all the training samples and evaluated
the prediction on independent testing samples.

To evaluate the prediction performance, we used PMSE
(“Brier score” for a binary outcome), which quantifies the
discrepancy between the predicted and observed values. In
addition, we also investigated the R2, which quantifies the
(squared) correlation between the predicted and observed values
and ranges from 0 (no correlation) to 1 (perfect correlation).
Detailed definition of R2 could be found in Xiao et al. (2018).

Although we focused our evaluation on outcome prediction,
variable selection and parameter estimation performance were
also investigated to gain more insights about the improved
prediction performance of SICS. Variable selection was assessed
by sensitivity and specificity, where sensitivity is the true
positive rate, i.e., the proportion of aOTUs that are selected,
and specificity is true negative rate, i.e., the proportion of
irrelevant OTUs that are not selected. The parameter estimation
performance was evaluated using MSE (Estimation Mean-
Squared Error). Each simulation setting was repeated 50 times
and the averages and standard errors of the performance
measures were reported.

3.3. Simulation Results
3.3.1. Results for Continuous-Outcome Data
We evaluated the prediction performance in terms of both R2 and
PMSE across different scenarios and signal strengths (Figure 3).
We observed a general increase in performance for all methods
when the signal strength increased. When the phylogenetic tree
was informative (Scenario S1 and S2), SICS outperformed other
methods substantially with a much larger R2 and lower PMSE
across all levels of signal strength. The improvement of SICS
over other methods was more evident when the signal strength
decreased, indicating the importance of using the tree prior to
pool signals when the signal was weak. Under the weak signal,
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FIGURE 3 | Prediction performance for continuous-outcome simulations across different signal levels and scenarios. Both R2 (A) and PMSE (B) were used for

evaluation. S1, S2: phylogeny-informative scenarios, and S3, S4: phylogeny-non-informative scenarios; Signal-S, -M, and -L represent weak, medium and strong

signals, respectively.

SICS had a clear advantage over SLS, which uses the Laplacian
penalty to smooth the coefficients, demonstrating the benefit of
using the proposed smoothness penalty that encourages more
local smoothing. SICS and SLS were both significantly better than
other sparse regression methods and RF across different levels of
signal strength. The lower performance of these sparse regression
methods was due to their inability to exploit the phylogenetic
structure. The improved prediction performance of SICS could
be explained by more accurate parameter estimation evidenced
by a lower MSE (Figure S1) and an increased sensitivity to retain
the aOTUs (Figure S2). Although the increased sensitivity was
at the cost of a slightly lower specificity (Figure S3), inclusion
of aOTUs was more important than exclusion of non-aOTUs
to improve prediction. We also observed that SICS performed
similarly in Scenario S1, S2, indicating the robustness of SICS to
the variation of the effect size of individual aOTUs as long as the
effects are in the same direction.

It should be noted that SICS achieved similar performance
as other sparse regression methods in its unfavorable scenarios,
when the phylogenetic tree was not informative (Scenarios
S3 and S4), demonstrating the robustness of SICS. The
comparable performance could be explained by that the
additional parameters λ2,α, which makes MCP and Enet as
special cases of SICS.

3.3.2. Results for Binary-Outcome Data
We repeated the same simulations for binary-outcome data and
presented the results in Figure 4. Compared to the continuous
outcome-based simulations, the prediction improvement of
SICS was even more striking when the phylogenetic tree was
informative (Scenarios S1 and S2). SICS achieved a significantly
larger R2 and smaller Brier Score than other methods across

different levels of signal strength. The advantage was even
evident when the signal was strong, which was not observed for
continuous-outcome data. Overall, a similar trend was observed:
SICS had the best performance, followed by SLS under an
informative phylogeny; SICS was comparable to other methods
for a non-informative phylogeny. The advantage of SICS could be
explained by a higher sensitivity of selecting aOTUs (Figure S4)
at some cost of specificity (Figure S5).

3.3.3. Comparison to SLS With Different Sparsity

Levels in the Laplacian Matrix
In the above simulation, we adopted a sparsity level of 90%
in the Laplacian matrix L for SLS, which generally resulted a
satisfactory prediction performance. To further investigate the
impact of sparsity level on the prediction performance of SLS, we
compared SICS to SLS with different levels of sparsity in L. We
tested sparsity levels at 0, 10, 30, 50, 70, and 90% and 0% sparsity
indicates no sparsification.

For the continuous-outcome data, SICS consistently
outperformed SLS in Scenario S1 & S2 when the signal was weak
or medium, and was on par with SLS when the signal was strong
(Figures S6, S7). When the tree was not informative (Scenarios
S3, S4), SLS was not sensitive to the sparsity level as expected and
the performance was similar to SICS. For binary-outcome data,
the performance difference between SICS and SLS was even more
striking and SICS performed much better across levels of signal
strength when the phylogeny was informative (Figures S8, S9).
We also found that the performance of SLS varied for different
levels of sparsity, and SLS generally achieved the best prediction
at a sparsity level of 90%. In contrast, SICS did not need to select
the optimal sparsity level and had an overall better performance
than SLS, regardless of the sparsity level used.
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FIGURE 4 | Prediction performance for binary-outcome simulations across different signal levels and scenarios. Both R2 (A) and Brier score (B) were used for

evaluation. S1, S2: phylogeny-informative scenarios, and S3, S4: phylogeny-non-informative scenarios; Signal-S, -M, and -L represent weak, medium and strong

signals, respectively.

4. REAL DATA APPLICATIONS

We applied SCIS to two real microbiome datasets and compared
it to the competing methods evaluated in the simulations. We
compared to two versions of SLS: SLS without sparsifying L
matrix (SLS(0)) and SLS with 90% sparsity level (SLS(0.9)). In
addition, we compared to glmmTree, a phylogeny-regularized
linear model for dense and clustered microbiome signals (Xiao
et al., 2018). The first dataset came from a study of the impact of
the long-term dietary pattern on the gut microbiome. We used
the caffein intake as the continuous outcome (Wu et al., 2011).
The second dataset came from a study of the smoking effect on
the human upper respiratory tract microbiome (Charlson et al.,
2010). We used the microbiome data from the left side of the
throat and treated the smoking status as the binary outcome.

4.1. Caffeine Intake Data
The caffeine intake data was taken from a cross-sectional study
of long-term dietary effects on the human gut microbiome
in a general population (Wu et al., 2011). The dataset was
downloaded from Qiita (https://qiita.ucsd.edu/) with study ID
1011, which consists of 98 samples and 6674 OTUs. We selected
the caffeine intake as the outcome of interest since caffeine
intake was found to have a significant impact on the gut
microbiota (Jaquet et al., 2009). We aimed to predict the caffeine
intake based on the OTU abundances. Before applying the
prediction methods, we implemented a series of preprocessing
steps designed in Xiao et al. (2018) to make the microbiome
data more amenable to predictive modeling. First, we removed
outlier samples based on an outlier index defined on Bray-
Curtis distance and removed rare OTUs with prevalence <10%
to reduce the dimensionality of OTUs, leaving 98 samples

and 499 OTUs. Second, we normalized OTU raw read counts
using GMPR (Chen et al., 2018) followed by a replacement of
outlier counts using winsorization at 97% quantile. Third, we
transformed the normalized OTU abundance data using square-
root transformation to reduce the influence of highly abundant
observation. Finally, we applied quantile transformation to the
caffeine intake to make it approximately normally distributed.

To have an objective evaluation of the prediction
performance, the dataset was randomly divided 50 times into
5 folds each time, among which 4 folds were used for training
and the remaining one for testing. In the training set, tuning
parameter selection was based on CV as in the simulation. R2 and
PMSE were used as metrics for prediction performance based on
the testing set. The results were presented in Figures 5A,B. SICS
achieved the best performance for caffeine intake prediction as
indicated by the highest R2 and lowest PMSE, followed by Elastic
Net, SLS and Random Forest. On the other hand, Elastic Net
and SLS, which had data-driven smoothing and prior-driven
smoothing, respectively, did improve over Lasso and MCP,
which only exploited the model sparsity. To verify whether
the improvement of prediction was statistically significant, we
performed paired Wilcoxon signed-rank test between SICS and
any other methods based on R2 , PMSE values obtained from the
fifty random divisions. SICS achieved significantly higher R2 ,
and significantly lower PMSE than any other method (P<0.05).

4.2. Smoking Data
The smoking data was from a study of the smoking effect on
the human upper respiratory tract microbiome (Charlson et al.,
2010). We aimed to predict the smoking status based on the
microbiome profile. All the data processing steps were carried
out as described in the previous example. After preprocessing,
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FIGURE 5 | Performance comparison on the caffeine intake data (A,B) and

smoking data (C,D). The red dashed line indicates the median value of various

performance measures for SICS. SLS(0): SLS without sparsification; SLS(0.9):

SLS with 90% sparsity level in the Laplacian matrix.

the final dataset consisted of 32 non-smokers and 28 smokers
with 174 OTUs. For smoking vs. non-smoking prediction, SICS
still achieved the highest R2 and lowest Brier Score, followed
by Elastic Net, glmmTree and Random Forest (Figures 5C,D).
However, SLS did not improve the prediction performance
compared to Lasso and MCP. We also noticed that SLS(0) and
SLS(0.9) performed differently (R2 P = 0.01; Brier Score P = 0.12).
Overall, SICS achieved the best prediction performance for both
continuous caffeine intake and dichotomous smoking status.

5. DISCUSSION

The power of a predictive model depends on its capability
to exploit the full information in the data, which usually
requires domain knowledge. For microbiome data, one unique
characteristic is the phylogenetic relationship relating all OTUs,
which is important prior information that could be utilized to
improve prediction performance. In this paper, we proposed
a phylogeny-regularized sparse regression model for capturing
sparse and clustered microbiome signals. In the model, a novel
phylogeny-based smoothness penalty was designed based on the
inverse of phylogeny-induced correlation matrix. We show that
such inverse correlation-based smoothness penalty improved
over the traditional Laplacian-based smoothness penalty for
microbiome applications, due to its local smoothing property as
well as the dual smoothing effects (i.e., data-driven and prior-
driven smoothing). Moreover, an additional tuning parameter
in the smoothness penalty allows our model to capture signals
at various phylogenetic depths, further improving its prediction
power. We demonstrated the robustness of the proposed

method when the tree was not informative or misspecified. A
noisy or misspecified tree could be resulted from applying an
inappropriate tree construction method or be due to the fact that
DNA sequence similarity does not necessarily reflect biological
similarity. Interestingly, the proposed method could reduce to
Mnet (Huang et al., 2016), which possesses the data-driven
smoothing effect.

Similar to other sparse regression models, the proposed
method builds on the assumption that the model is sparse:
only a few OTUs are associated with the outcome. It is thus
expected to be a powerful predictive tool when the signal is
sparse. Many diseases have been shown to be associated with
a small number of “marker” taxa. For example, in the case of
colorectal cancer or arthritis (Scher et al., 2013; Zeller et al., 2014),
individual marker taxa were found to be associated to the disease
state, whereas effects on the overall composition were very mild.
In contrast, other disease states were associated with marked
shifts in the overall composition as in the case of obesity and
inflammatory bowel disease (Manichanh et al., 2012; Le Chatelier
et al., 2013). In such “dense-signal” scenario, sparse regression
models including the proposed approach may not work well.
Instead, a prediction model based on the global community
similarity, such as our recently proposed glmmTree (Xiao et al.,
2018), is expected to be more powerful. Exploratory analysis
of the microbiome data should be performed before selecting a
suitable model.

In the model, we assume a linear relationship between the
OTU abundance and the outcome. Although the assumption
is usually reasonable after the abundance data is properly
normalized and transformed, it may fail to capture complex
nonlinear relationship for some applications. Our model can
be extended to capture more complex nonlinear effects. The
simplest strategy is to apply various transformations, e.g., Box-
cox transformation (Sakia, 1992), to the OTU abundance data
and selects the best transformation function based on cross-
validation. In the case of Box-cox transformation, the power
parameter can be treated as another tuning parameter (Xiao and
Chen, 2017; Xiao et al., 2018). Alternatively, one could apply an
additive model, which is more flexible and allows OTU-specific
nonlinear effects (Wood, 2006). However, a larger sample size
may be needed to achieve good performance.

Finally, the distribution of OTU abundances is very skewed,
and a large number of OTUs are rare and of low-abundance.
For these rare OTUs, their sampling variability is very large.
Accommodating the sampling error in the predictive model
could potentially improve the prediction performance. Jointly
modeling the microbiome and the outcome data is thus a
promising direction. We leave these extensions as our future
work.
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Functional Potential of Microbial
Communities
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Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services, Pune, India

Background: The objectives of any metagenomic study typically include identification

of resident microbes and their relative proportions (taxonomic analysis), profiling

functional diversity (functional analysis), and comparing the identified microbes and

functions with available metadata (comparative metagenomics). Given the advantage of

cost-effectiveness and convenient data-size, amplicon-based sequencing has remained

the technology of choice for exploring phylogenetic diversity of an environment. A

recent school of thought, employing the existing genome annotation information for

inferring functional capacity of an identifiedmicrobiome community, has given a promising

alternative to Whole Genome Shotgun sequencing for functional analysis. Although a

handful of tools are currently available for function inference, their scope, functionality

and utility has essentially remained limited. Need for a comprehensive framework that

expands upon the existing scope and enables a standardized workflow for function

inference, analysis, and visualization, is therefore felt.

Methods: We present iVikodak, a multi-modular web-platform that hosts a

logically inter-connected repertoire of functional inference and analysis tools, coupled

with a comprehensive visualization interface. iVikodak is equipped with microbial

co-inhabitance pattern driven published algorithms along with multiple updated

databases of various curated microbe-function maps. It also features an advanced

task management and result sharing system through introduction of personalized and

portable dashboards.

Results: In addition to inferring functions from 16S rRNA gene data, iVikodak enables

(a) an in-depth analysis of specific functions of interest (b) identification of microbes

contributing to various functions (c) microbial interaction patterns through function-driven

correlation networks, and (d) simultaneous functional comparison between multiple

microbial communities. We have bench-marked iVikodak through multiple case studies

and comparisons with existing state of art. We also introduce the concept of a

public repository which provides a first of its kind community-driven framework for

scientific data analytics, collaboration and sharing in this area of microbiome research.
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Conclusion: Developed using modern design and task management practices,

iVikodak provides a multi-modular, yet inter-operable, one-stop framework, that intends

to simplify the entire approach toward inferred function analysis. It is anticipated to serve

as a significant value addition to the existing space of functional metagenomics.

iVikodak web-server may be freely accessed at https://web.rniapps.net/iVikodak/.

Keywords: inferred functions, 16S metagenome, functional metagenomics, functions of microbial communities,

microbiome analysis, visualization, data analyses

INTRODUCTION

Whole Genome Shotgun (WGS) metagenomic DNA sequencing
(and subsequent computational analysis of resultant sequence
data) helps in not only profiling or cataloging the (microbial)
biodiversity characterizing a given habitat, but also enables
estimation (of the types and proportions) of various biological
functions encoded within the genetic material of microbes
resident in that ecological niche (Quince et al., 2017). Multitude
of tools and analytical workflows currently exist for WGS driven
integrated metagenomics (Keegan et al., 2016; Narayanasamy
et al., 2016; White et al., 2017). However, due to high sequencing
(and significant downstream computational) costs associated
withWGS approach (Bose et al., 2015; Quince et al., 2017; Rossen
et al., 2018), initial exploration and estimation of microbial
biodiversity (of an environment of interest) is done, in most
cases, using amplicon sequencing (Petrosino et al., 2009; Ganju
et al., 2016). The latter approach involves PCR amplification
and sequencing of a taxonomically informative target genomic
marker (e.g., 16S rRNA gene) from the DNA extracted from all
microbes present in a given environmental sample. The primary
objective of the aforesaid (16S rRNA gene) amplicon-based
sequencing has therefore been limited to obtaining quick snap-
shots of microbial taxonomic diversity in a cost-effective manner.
A plethora of bioinformatics tools and standard workflows/
pipelines are currently available for pre-processing and analysing
such amplicon sequencing (16S rRNA gene) datasets to meet the
said objectives of taxonomic profiling and analyses (Kuczynski
et al., 2011; Arndt et al., 2012; McMurdie and Holmes, 2013;
Zakrzewski et al., 2017).

A recent school of thought however adds a new dimension
to the utility of amplicon sequencing, i.e., “inferring” functional
potential of microbial communities “from taxonomic abundance
profiles” (Langille et al., 2013). Such inferences are based on the
assumption that the pool of genes (and associated functions) in a
given microbial community is ultimately a function of the “types
and relative abundances” of various microbes (constituting that
community). Consequently, given a quantified taxonomic profile
corresponding to a given microbial community (residing in a
particular environmental niche), it is possible to estimate the

Abbreviations: WGS, Whole Genome Shotgun; PEC, Pathway Exclusion Cut-

off; JSD, Jensen-Shannon Divergence; BH, Benjamini-Hochberg; ISFA, Inter

Sample Feature Analyzer; PCoA, Principal Coordinate Analysis; ICo, Independent

Contributions; CoM, Co-Metabolism; UI, UX, User Interface, User Experience.

functional potential encoded by various microbes constituting
the said environment.

A handful of recent methods like PICRUSt (Langille et al.,
2013), Tax4Fun (Aßhauer et al., 2015), and Vikodak (Nagpal
et al., 2016), have successfully exploited the above mentioned
taxa-function inter-relationship for inferring (in silico) the
functional capacity of microbial communities from their
taxonomic profiles (generated through amplicon sequencing).
The mentioned methods use distinct algorithms to infer or
predict abundances of various functions for a givenmetagenomic
environment in the form of “function abundance matrices.”
Given that this school of thought is a recent development, the
avenue of probing the functional capacity of a metagenomic
environment using (16S rRNA gene) amplicon sequencing, has
still remained limited to generation of mere “textual matrices”
representing the functional abundance for each sample of an
environment. A lot of “potential scope” remains unexplored
and a standard workflow in the domain of amplicon sequencing
driven functional metagenomic analysis is currently lacking.
For example, given the availability of various information rich
databases like IMG (Markowitz et al., 2012), PATRIC (Wattam
et al., 2014), KEGG (Kanehisa and Goto, 2000), that hold
prior-collated information about genome-specific functional
potentials, it is possible to infer functional correlation based
microbe-microbe interaction patterns for a given environment.
In addition, functional analysis can also be explored at a granular
level to deliver “single pathway or module specific” insights to
the researchers. Furthermore, given the availability of established
statistical tools and visualization technologies, coupled with
multivariate nature of inferred function data, it is possible to
define a logical workflow that can not only infer functions,
but also perform meta-analyses, statistical comparisons,
deep probing and generate meaningful and insightful
visualizations.

In the above context, it may be noted that performing such
meaningful analysis necessitates end users to garner working
knowledge of not only available state-of-art “function prediction”
tools (and the input/ output formats, run-time parameters they
support), but also an array of statistical and visualization tools,
which are additionally required to be implemented for efficient
downstream analysis, and hence realize the said workflow for
this domain. Needless to say, a platform that enables and
(more importantly) automates all of the above mentioned steps
is expected to greatly ease the burden on end users. Access
to such a framework would enable researchers to efficiently
focus on deriving and analysing “functional” insights and
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subsequently scrutinize the observed trends with respect to
related “metadata” and observed taxonomic variation. Such
an automated framework would effectively relieve researchers
of the mundane nitty-gritty’s of (input/ output) data parsing,
processing, and visualization support required at almost every
stage of analysis, in addition to providing more scope for
functional exploration.

Although, the idea of integrating a compendium of tools
and utilities to develop such an automated one-stop “infer-
compare-visualize” frame-work typically appears more of an e-
enablement exercise (driven by IT expertise), it is important
to note that the real value add of any such “16S rRNA gene
sequencing based” functional annotation framework lies not only
in terms of the variety of domain information and functionalities
it provides, but also the types of “biologically-relevant” insights
it enables for obtaining possible and meaningful answers. The
said information, functionalities, and insights may be in terms
of (a) Back-end database: with respect to the variety, accuracy,
and comprehensiveness of its back-end functional-unit (cross)-
mappings (b) Algorithms: in terms of the types of algorithms
and the functional assumptions these algorithms enable for
eliciting biologically relevant functional inference(s) (c) Taxa-
function inter-relationships: in terms of flexibility to back-trace
(and visualize in context) the taxonomic sources of the inferred
functions and/or deeply probing a pathway or function of interest
(d) Function contribution-based taxonomic relationships/network
identification: derived through co-relation analysis of (inferred)
functional capabilities of contributingmicrobes. Such analysis are
expected to enable endusers to additionally narrow down upon,
at a microbial (sub) community level, the specific taxonomic
drivers behind observed functional patterns or shifts.

Considering the existing state of art in the amplicon
sequencing driven functional metagenomic space, we
present “iVikodak”—a multi-modular, yet, inter-operable
web application framework that provides end users algorithmic
options (coupled with updated back-end domain information)
for comprehensively inferring the functional potential of
microbial communities. At the outset it may be noted that
iVikodak represents a significantly upgraded version of Vikodak
(Nagpal et al., 2016). iVikodak vastly advances upon the
scope and variety of functionalities provided not only in
Vikodak, but also other available tools (Langille et al., 2013;
Aßhauer et al., 2015; McNally et al., 2018) in the said space.
Various functionalities in iVikodak have been intuitively
designed and have been e-enabled in formats that simplify
for end users the entire approach toward inferred function
analysis. Advancements in iVikodak are not limited to the
variety of available options for statistical and visual analyses,
but also from a user interface (UI) and user-experience
(UX) perspective, through development of a well-structured
task and data management system. The concept of a public
repository (named “ReFDash”) which, in addition to hosting pre-
generated functional profiles of various environments, provides
the research community a frame-work for scientific data
collaboration/sharing is also introduced. Figure 1 provides an
overview of iVikodak’s functionalities and workflow. Subsequent
sections of this paper provide a detailed description of various

features of the iVikodak platform. Case-studies highlighting the
comparisons with other tools, and utility of specific technical
advancements and visualizations incorporated in iVikodak are
also provided.

RESULTS AND DISCUSSION

A Comparison of iVikodak With Available
Tools and Platforms
As a one-stop “infer-compare-visualize” automated frame-work,
iVikodak represents a significant advancement over the textual
function abundance matrices generated by the first generation
of function inference/prediction tools viz. PICRUSt (Langille
et al., 2013), Tax4Fun (Aßhauer et al., 2015), and Vikodak
(Nagpal et al., 2016). The prime role of the latter tools
is to infer, from end user provided taxonomic profiles, the
principal building blocks i.e., information about the types and
abundances of various functional units. In an ideal scenario,
end users would prefer access to such an inferred or predicted
information in terms of varied types of possible functional units
(as many as possible). iVikodak, with its updated back-end
database (with comprehensive functional unit cross-mapping
information) provides, by default, functional annotations in
terms of, enzyme copy numbers (EC) (McDonald et al., 2015),
TIGRfam (Haft et al., 2003), Pfam (Finn et al., 2014), and COG
(Tatusov et al., 2000) categories. Although PICRUSt provides
a similar repertoire of information (albeit as textual outputs),
iVikodak scores over PICRUSt (and the other two tools) by
enabling end users to intuitively compare, probe, and visualize
this wealth of information. For instance, the simple automated
utility wherein end users are provided queryable tables that not
only indicate the subset of bacteria contributing to a chosen
function of interest, but also an intuitive (and interactive) visual
interface that helps in simultaneously examining the taxonomic
and functional context of the same.

In this specific context of comparing iVikodak with other tools
of the same genre, it may be noted that a recently published
web-utility “Burrito” (McNally et al., 2018) also provides
an analogous visualization layout for analysing taxa–function
relationships. Using Burrito, users can browse, interactively
explore and/or visualize the proportions of individual functions
across various samples, along-side the taxa contributing to the
said functions. Although Burrito, as a tool, does provide for
an automated functional inference cum visualization frame-
work besides hosting a decent set of backend parsers and
related frontend utilities, it falls short in terms of the following
important aspects. Primarily, Burrito’s interface is limited
to displaying 3 distinct types of visualizations. Prominently,
“bar-plot” representations of predicted functions are provided
along-side expandable/collapsible “cladograms” that represent
corresponding taxonomic hierarchies. These layouts merely
enable end users to interactively visualize the types and
abundances of various functions (inferred using PICRUSt) in the
context of their source taxonomy. In contrast, iVikodak provides
end users a comprehensive and inter-operable framework
comprised of three logically connected modules, each one of
them in turn, having their own repertoire of utilities and multiple
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FIGURE 1 | Overview of iVikodak web platform and its structured workflow. An overview of iVikodak’s task management and well-structured personalized approach

toward 16s rRNA gene sequencing based functional inference, analyses and visualization. Three inter-connected modules of iVikodak ensure comprehensive and

meaningful analyses. Each submission to (any module of) iVikodak is tagged to a unique JOB ID, which provides access to a personal and portable dashboard. A

dashboard represents an ensemble of “analysable, analyzed, and visualized” results, specific to the chosen module and the type of data uploaded by the end user.

The generated dashboards (and associated taxonomic/functional data) can be deposited to the ReFDash repository. This is expected to pave the way for

building/populating a community-driven readily accessible database of amplicon sequencing-based functional metagenomics projects and associated data.

types of visualizations. To highlight the array of differences
between iVikodak and Burrito, we have used the same dataset
(Theriot et al., 2014) that was previously utilized in Burrito for
showcasing/ exemplifying its functionalities. This comparison

(case study 1) throws light not only on the functionalities

available in iVikodak, but also attempts to put forward the vast

range of functionalities that were hitherto unavailable (or are

not comprehensive enough) in other existing analogous tools

including Burrito. Table 1 provides a comparison of features

available in iVikodak, Burrito, Vikodak, PICRUSt and Tax4Fun.

Functionalities Enabling Generation and
Visualization of Biologically Meaningful
Insights
The visual options provided in iVikodak are not to be construed
as a mere e-enablement exercise. For instance, the “functional
networks” generated (from each of the taxonomic profiles
corresponding to one or multiple environments) by the Global
Mapper module are based on the assumption that microbes co-
contributing to specific functions (in a correlated manner) are
likely to be interacting (details of various modules provided
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TABLE 1 | Comparison of iVikodak with other function inference tools.

Features iVikodak Burrito Vikodak PICRUSt Tax4Fun

Multivariate inputs X X X X X

Default RDP compatibility X × X × X

Default Greengenes compatibility X X × X ×

Default SILVA compatibility X × X × X

KEGG, Pfam, COG, TIGRfam inference X X × X ×

In-depth analysis of pathway of interest X × X × ×

Co-inhabitance based algorithms X × X × ×

Gene Quorum Assumption X × X × ×

Metadata acceptance X X X × ×

Multiple Categories of Metadata acceptance X × X × ×

Tools for Statistical Comparisons X X × × ×

Graphical Visualizations X X × × ×

- Ordination (PCoA) X × × × ×

- Core Functions (Heatmaps) X × × × ×

- Top Functions (Grouped Box plots) X × × × ×

- Top Functions (Grouped Bar plots) × X × × ×

- Differentiating functions (Heatmaps) X × × × ×

- Differentiating functions (Cladograms) X × × × ×

- Taxa – Function Contribution tree X X × × ×

- Function-driven Networks X × × × ×

- Enzyme Abundance Profiles (Heatmaps) X × × × ×

3D and Colored KEGG Pathway Maps X × × × ×

Task Management (multi-jobs, JOB IDs etc.) X × × × ×

Personalized and Portable Dashboards X × × × ×

in section Methods, Modules, and Functionalities). Enabling
(automated) generation and (interactive) visualization of such
networks (and their properties) can potentially help end users in
identifying microbial sub-communities that are likely drivers of
functional shifts observed between two or more environments.
Furthermore, the interactive PCoA ordination plots (in 2D
and 3D formats) and the accompanying bar-charts (which
visually indicate the proportion of samples in each of the
clusters generated during ordination) represent another such
functionality (and automated utility) of iVikodak (which tools
like Burrito do not provide). It may be noted that during
ordination (in iVikodak), samples are clustered based on their
(inferred) functional potential, and not as per taxonomic
proportions mentioned in the uploaded input profiles.

From an e-enablement perspective, the range of visualizations
in iVikodak’s Global Mapper Module is worth mentioning. “Box-
plots” representing abundance of “top” (i.e., most abundant)
functions, “heat-maps” of functions identified as “core” to given
environments, 2D/3D ordination plots, function-contribution-
based networks are some of the utilities that iVikodak provides.
The highlight is that end users can overlay as many types
of (available) metadata features over the entire repertoire of
visualizations to analyse and download relevant (publication-
friendly) images for scientific sharing. Unlike existing tools, right
from the step of uploading input data, iVikodak tends to reduce
the pre-processing efforts that are typically required to be done
by end users. The acceptance of taxonomic profile data generated

using any of the three popular taxonomic classification frame-
works is one such example.

Apart from identifying and visualizing at various p-value
thresholds, the set of pathways (or pathway-classes) whose
abundances are found to have a statistically significant difference
(between two or more environments), the PEC profile chart
generated by the inter sample feature analyser (ISFA) module
represents another important functionality that adds value
from a biological viewpoint (details in section Methods,
Modules, and Functionalities). During the backend process
of functional inference, besides providing unfiltered results,
iVikodak additionally reports a pathway to be “present” (in a
given environment) only when the proportion or the number
of its inferred constituent enzymes exceeds at least a minimum
quorum of 50%. This threshold is referred to as the “Pathway
Exclusion Cut-off” (PEC) threshold (Nagpal et al., 2016). Given
that a different functional context may necessitate end users to
employ threshold(s) higher than the 50% minimum, iVikodak
performs these computations at 5 progressively higher PEC
levels, viz. 50, 60, 70, 80, and 90%, and provides a consensus
PEC profile chart (in form of a heat-map). This enables users
to visually take an informed decision regarding the set of
“differentiating” pathways to finally consider (or purge) from
their final analysis.

The local mapper is a unique module that sets apart iVikodak
in comparison to its peers. By enabling end users intending to
drill their analysis to the level of individual functional units
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that constitute a specific pathway of interest, this module serves
as a logical extension to the other two modules of iVikodak
(details of the module are provided in sectionMethods, Modules,
and Functionalities). The module provides a contextual platform
that facilitates visual analysis of the presence and abundance
of various enzymes constituting a given pathway of interest.
Typically, end users can employ this module to probe (at a
high level of granularity) one or more pathways identified by
ISFA module to have a significantly different abundance pattern
between the compared environments (e.g., healthy vs. diseased,
time-series data, etc.). The facility to generate 3D formatted and
colored pathway map(s) is expected to vastly improve the visual
(analysis) experience for end users.

Case Study 1: Temporal Observation of
Functional Perturbations in Gut Microbiota
of Antibiotic Treated Mice
This case-study pertains to available gut microbiome data (from
case and time-matched controls) obtained in a longitudinal
fashion from mice administered with antibiotics (Theriot et al.,
2014). The datasets corresponded to samples obtained at 2 days
and at 6 weeks post-treatment with antibiotics (indicated as
Abx_Day2, Abx_Day42 for treated samples and Control_Day2,
Control_Day42 for control samples).

Figures 2–4 represent a graphical ensemble of (a subset)
of key results generated by iVikodak for the aforementioned
dataset. The array of results exemplifies the substantially
expanded scope/breadth of functionalities available in iVikodak
as compared to that in Burrito (McNally et al., 2018) for the same
dataset (Supplementary File 1). The images in panels 1A and 1B
of Figure 2 depict ordination (JSD-based PCoA) results grouped
at two levels viz. as per nature of samples (controls vs. treated)
and according to treatment time-points (Day 2 and Day 42 for
both controls and treated). It may be noted that the ordination
was performed using the functional profiles (of respective
samples) that were inferred using Global Mapper module of
iVikodak and were automatically (pre)processed for enabling
the ordination functionality. While results in panel 1A display
the expected trend of segregation between control and treated
samples, the clustering profile in panel 1B exhibits a biologically
relevant observation, wherein temporal segregation is limited
only to the treated samples. Panels 2A and 2B (Figure 2)
also enable end users to explore, concomitantly visualize, and
download a single visual (a readymade box-plot) that captures the
pattern of top abundant functions in the provided samples at two
different levels of functional hierarchy. Furthermore, iVikodak
provides to end users a combined (and easily customizable)
heatmap depicting the “core” set of functions (which are “high”
as well as “consistently” abundant) in provided sample (and
sample classes). Visuals generated for this functionality (depicted
in panel 3A and 3B of Figure 2) along with that depicted in
panel 2 (for the analyzed case-study datasets) enables end users
to easily comprehend the relative abundance pattern of various
key functions in the analyzed samples.

The (function-driven) taxa correlation networks depicted in
panels 4A–E of Figure 2 unravel quite a few interesting biological

insights. These networks clearly depict a state of dysbiosis in
gut microbial communities treated with antibiotics. Comparison
of networks in panels 4A and 4B visually depicts a marked
breakdown of functional interactions between various microbes
constituting the gutmicrobiomes in treated states. It is interesting
to note the complete absence of any functional correlations
(between any of the members in the bacterial community) 2
days post-antibiotic treatment, and the re-appearance of some
interactions 42 days post-treatment. Although this represents an
interesting scientific observation (with respect to the immediate
impact of antibiotic treatment) whether this represents a true
biological event or is it a mere statistical artifact (owing to
sample size) remains to be probed further. Overall, it may be
noted that these interesting findings (with respect to functional
correlation based taxonomic interaction patterns) wouldn’t have
been obtained using other available analogous tools in this field
of research.

The set of images depicted in Figure 3 enable end users to view
(in context) the specific set of functions that display a statistically
significant difference in their abundance across the analyzed
sample classes. It may be noted that the ISFAmodule of iVikodak
facilitates automated multivariate differentiating feature analyses
(both pair-wise as well as multi-class). Of note is ISFA’s ability to
generate and depict differentiating functions in form of a (three-
level) cladogram (representing the functions at all three levels of
hierarchy). From the perspective of the present case-study, the
cladogram panel in Figure 3 indicates the relative and significant
depletion of various functionalities in antibiotic treated samples.
The interactive downloadable taxa-function contribution tables
represent a value-add to users intending to further decipher
specific functions and/ or taxa of interest.

Taking cues from the results of Global Mapper and ISFA
with respect to the depletion of functions related to amino
acid metabolism (in antibiotic treated sample class) and also
the corresponding observations in both Burrito (McNally et al.,
2018) and previous reports (Theriot et al., 2014), we set forth
to employ the Local Mapper module of iVikodak to probe this
aspect in further detail. For this purpose, we chose to investigate
“Arginine biosynthesis” using the same as an example query.
Results (depicted in form of intuitive dendrobars in panel 1A–
D of Figure 4) provide end users a detailed visual insight with
respect to the contribution of various microbes (in context
of their taxonomic lineage) to this specific function across
various classes of the analyzed data. It is apparent from the
results (panels 1C and 1D in Figure 4) that while contribution
of microbes toward this function gets depleted immediately
post antibiotic treatment, it gets restored a few weeks post-
withdrawal of antibiotic administration. The heat map depicted
in panel 2 of Figure 4 represents the abundance profile of
various enzymes constituting this particular function of interest.
The heatmap pattern appears to be more or less in sync with
previously stated observations. Unlike other existing analogous
tools, iVikodak provides readily up-loadable (formatted) KEGG
map files that enable end users to generate colored pathway
maps visually indicating the difference in enzyme profiles
intuitively in a format as depicted in panel 3 of Figure 4.
The KEGG colored pathway map and heatmap depicting the
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FIGURE 2 | Results of iVikodak’s Global Mapper Module for datasets corresponding to case study 1. Plots represent (1) Ordination (2) Top Functions (3) Core

Functions (4) Function driven networks aimed at temporal observation of inferred “functional perturbations” in gut microbiota of antibiotic treated mice.
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FIGURE 3 | Results of iVikodak’s ISFA Module for datasets corresponding to case study 1. Plots represent (A) PEC Profile of differentiating functions (B) Sankey

based cladogram of differentiating functions (C) Contributors’ profile for differenatiating functions, aimed at temporal observation of inferred “functional perturbations”

in gut microbiota of antibiotic treated mice.
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FIGURE 4 | Results of iVikodak’s Local Mapper Module for datasets corresponding to case study 1. Plots for (1) Contributors’ dendrobar (2) Pathway specific enzyme

profile (3) Colored KEGG Path way Map pertaining to Arginine Biosynthesis for case study 1, qenerated by Local Mapper.
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enzyme profile of Arginine Biosynthesis further substantiate the
differences between the samples from controls and antibiotic
treated mice (as well as the differences at various time points,
once again highlighting the extensive metadata handling capacity
of iVikodak).

In contrast, the graphic layout depicted in
Supplementary File 1 primarily represents the type of visual
analysis that Burrito (as a tool) enables. As seen from this figure,
the visualizations generated by Burrito are primarily confined to
two broad categories – (a) an interactive grouped/ stacked bar
chart that allows end users to visualize the types and proportions
of various taxa and functionalities in each uploaded sample
(and sample classes), and (b) a collapsible dendrogram that
helps in understanding the identified/ predicted functions in
their respective hierarchical context. Viewed in the context
of the present case study, although the generated charts do
provide users an overall sense of important taxonomic and
functional differences between the uploaded sample classes,
the visualizations remain limited to “only” two types. Hovering
over these visualizations pops up information regarding
name and proportions of taxa/functions in form of tool-tips.
Downloads of visuals highlighting/ showcasing any or all of the
displayed information is in form of screen-grabs/SVG’s requiring
significant post-processing efforts to make them amenable
for scientific publication. Overall, even viewed at a mere level
of comprehensively meeting e-enablement and automation
requirements, a lot of questions, scope and/ or utilities still
remain unaddressed by Burrito.

In summary, the results of the above case-study
presented in Figures 2–4 represent the structured and
logical connection between the three modules of iVikodak.
Commencing from Global Mapper, end users can first
probe the data at a community level and then proceed for
a comparative analysis of various classes of interest using
the next module i.e., ISFA. The deciphered functions of
interest from both previous modules lay the perfect context
for ultimately performing a detailed visual/ exploratory
(and statistical) investigation using the Local Mapper
module.

Other Case Studies Highlighting the
Functionalities of iVikodak
Five pre-executed jobs are provided as case studies to exemplify
various functionalities of all three modules of iVikodak. Job IDs
50a7bef1a5, 998f4e89e5, and d819c619f7 represent “dashboards”
for results of Global Mapper, ISFA and Local Mapper for
the available Periodontitis microbiome datasets (Aas et al.,
2005; Griffen et al., 2012; Souto et al., 2014; Kirst et al.,
2015). Briefly, analysis indicates a distinct functional signature
common to diseased samples (in contrast to individual-specific
pattern in healthy samples). The common set of top core
functions identified is in line with functions expected in an
oral environment. Distinct changes are observed with respect to
the contribution of microbes toward functions that significantly
differ between healthy and diseased states. Similarly, Job
IDs 5cb3a79c2a and 6c32ef5cda represent results for complex
environments (Navarrete et al., 2015; Derycke et al., 2016) and
human body sites (Cui et al., 2012; Griffen et al., 2012; Human

Microbiome Project Consortium, 2012; Alekseyenko et al., 2013;
Botero et al., 2014; Kato et al., 2014; Romero et al., 2014; Xiao
et al., 2014) respectively. Details of case studies are provided in
Supplementary File 2.

IMPLEMENTATION

Overview
IVikodak is a multi-modular framework that enables inference
of functional capabilities of a given microbial community, as
well as provides an array of automated analytical methods
and visualization options for the inferred function data. The
three modules in the platform are logically inter-connected
to enable automated functional metagenomic analyses in
a structured manner, thereby offering a standard working
procedure for inferred function driven metagenomics. iVikodak
is implemented as a php based web platform developed
with modern design practices. The platform employs a job-
id and personalized (yet non-intrusive) dashboard-driven task
management framework that facilitates seamless end user access
to all available utilities and modules without the need for
registration and/or the step of sharing personal information
(Figure 1).

Input Requirements
All modules of iVikodak primarily require two input files (i)
Multivariate taxonomic abundance data File (ii) Multi-column
metadata of various samples in the taxonomic abundance
data. Supplementary (Video) File 3 and Supplementary File 4

represent a video tutorial and a schematic representation
(respectively) describing the format of a sample taxonomic input
data and the corresponding metadata file. Appropriately placed
video tutorials, documentation and sample files embedded in
tool tips of various modules of the platform, also attempt to
provide a succinct guide to the end-users. Supplementary File 5

contains a listing of various objectives or functions that iVikodak
is enabled to provide and perform along with a description of
steps (SOP) to be followed for achieving the intended results as
well as visualizations.

It may be noted that the existing function inference/prediction
tools infer functional abundances using taxonomic input
information that have been generated by querying (in silico)
16S rRNA gene sequences against “specific reference databases.”
For example, default implementations of Tax4Fun, Vikodak, and
PICRUSt employ (i.e., use as input) taxonomic profiles generated
by performing in silico comparisons of query sequences against
reference taxonomies in SILVA (Pruesse et al., 2007), RDP (Cole
et al., 2014), and Greengenes (DeSantis et al., 2006) databases,
respectively. Absence of cross-compatibility between tools and
the input formats they require therefore presents a challenge to
end users. To address this, iVikodak has been enabled to auto-
detect, (re-)format, and appropriately process input taxonomic
profiles generated using any of the three mentioned reference
databases/tools.

Outputs
Each module of iVikodak generates a comprehensive ensemble
of “Textual output files” (downloadable as RESULTS.zip from
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personal dashboards) and “interactive visualizations/graphs”
corresponding to various analytical approaches followed in the
module. Said output files/graphs are unique to functionalities
of the module used, details pertaining to the same have been
described in the following sections of the article.

METHODS, MODULES AND
FUNCTIONALITIES

In order to establish a meaningful workflow for performing
amplicon sequencing data based functional metagenomic
analysis, iVikodak framework incorporates three logically inter-
connected modules, namely: Global Mapper, Feature Analyzer
(ISFA) and Local Mapper. An additional module, named
“Recreator” is provided. The latter enables end users to re-
create an entire dashboard using the “dashboard specific.dash
file” retained by the user post completion of analysis (details
in section “Web-front utilities and improvements”). A detailed
description of each of three key modules of iVikodak is provided
below.

Global Mapper Module
This module enables users to computationally infer (and
subsequently visualize and download) the functional potential
of one or more microbial environments quantified in terms of
the relative abundance of various metabolic pathways. These
inferences are obtained by processing (user-supplied) input
taxonomic profiles in a series of steps that involve-

(a) Enumerating the repertoire of genes/enzymes/proteins
encoded by the set of microbes constituting the provided
taxonomic profile

(b) Normalizing this information using 16S and functional gene
copy-number information

(c) Cross-mapping this information to other functional units,
and

(d) Estimating the relative abundance of various metabolic
pathways (in terms of appropriate functional units)

A pre-compiled back-end database is employed by iVikodak’s
Global Mapper module for performing the first three steps. This
database includes copy number and mapping information of
over 2,900 enzymes, 15,500 proteins (Pfam: ∼11,200; TIGRfam:
∼4,300), ∼4,600 COGs, and ∼11,000 KOs corresponding to
more than 33,000 prokaryotic genomes. This information was
collated from IMG (Markowitz et al., 2012) and PATRIC
(Wattam et al., 2014) databases. While the first three steps
are completed at the back-end (in default automatic mode, as
described in Vikodak Nagpal et al., 2016, the final estimation
step in Global Mapper module requires end users to provide
their preference regarding the functional assumption to proceed
with. Choosing “Co-metabolism” (CoM) option results in
computing the effective abundance of a metabolic pathway
under the assumption that various microbes residing in an
environment can pool together the functional units they encode
and contribute to the overall functioning of that pathway
(in that environment). The other option i.e., “Independent

contributions” (ICo), assumes microbes in an environment to be
independent functioning entities (with respect to the functional
units they encode). Consequently, under this assumption,
pathway abundances are independently computed for (and from)
each individual microbe (resident in that environment) prior
to obtaining their respective sums (which are considered as the
effective abundances of respective metabolic pathways).

Besides providing various algorithmic options, the practical
utility of the Global Mapper module lies in the variety of
(enabled) functional insights that can possibly be queried,
obtained, visualized, downloaded, and shared by end users.
The option to upload metadata corresponding to each of
the samples and directly overlay (and visualize each type of)
metadata over the generated results (in an automated manner)
is expected to vastly improve the overall visual-experience and
aid in showcasing relevant functional insights and differences
between environments. Overall, the e-enablement efforts put
in behind this module facilitates end users to look beyond
simple textual predictions/ inferences, and generate an array of
interactive, customizable, publication-friendly graphics (coupled
with metadata information of individual environments) in terms
of the following functionalities –

(a) Top functions present in these environments (depicted
as box plots). These functions may correspond to various
pathways or modules or COG/Pfam/TIGRfam classes at
various levels of functional hierarchy. Method for “Top
Functions” computation is described in Supplementary File 6.

(b) Core functions that consistently have a minimum defined
abundance in a given environment (depicted as heat-maps).
Method for “Core Functions” computation is described in
Supplementary File 6.

(c) Differentiating functions that exist between two or more
environments (based on Wilcoxon-rank sum and Kruskal-
Wallis tests) visualized in the context of a cladogram. Method
for “Differentiating Functions” computation is described in
Supplementary File 6.

(d) Ordination Analysis, wherein the inferred functional
profiles of the environments under study are subjected to
Jensen-Shannon Divergence (JSD) based Principal Coordinate
Analysis (Arumugam et al., 2011), and visualized as 2D/3D
interactive plots. The sample metadata (e.g., geography,
disease status, age, sex, etc.) can also be overlaid on various
data points (i.e., microbiome samples) in the generated plot.
The latter overlay feature is applicable to all visuals generated
by iVikodak.

(e) Function driven Correlation networks, wherein nodes

represent microbes and an edge between two microbes

indicates that they are (potentially) co-contributing to one or

more specific functions. Various centrality measures (degree,

betweenness, clustering coefficient, etc.), characterizing the

generated networks, are also computed. It may be noted that

the relative contribution of individual microbes (constituting
a given environment) to an inferred functional unit is obtained
by invoking the “independent contributions” algorithm (of
Global Mapper) which assumes functional exclusiveness
between members of the microbial community. Method used
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for generation of “Function-driven Correlation networks” is
described in Supplementary File 6.

Inter-sample Feature Analyzer (ISFA)
Module
This module enables users to perform statistical (multi-class)
comparison of functional profiles generated by the Global
Mapper module. Wilcoxon rank-sum test and Kruskal-Wallis
tests are used for statistical comparison of two ormulti-class data,
respectively. Both uncorrected as well as Benjamini-Hochberg
(BH) corrected (Benjamini and Hochberg, 1995) p-values are
reported for the features identified as having a significantly
different abundance among the compared environments. Users
are provided with two modes of operation, namely, rapid
and batch mode. The “rapid” mode of operation enables
(comparative) statistical analysis between functional abundances
that have previously been inferred from taxonomic profiles
corresponding to two or more environments. These abundances,
preferably derived using iVikodak’s Global Mapper module (may
be generated using any other functional inference tool), are to
be provided in typical multivariate data table format to the ISFA
module.

The “batch” mode of ISFA, in contrast, works with “Zipped”
input data (that is obtained as output from Global Mapper
module). The zipped data, containing functional abundance
profiles at various Pathway Exclusion Cut-off (PEC) thresholds
(Nagpal et al., 2016), enables a consensus-driven differentiating
function analysis. PEC threshold based filtering ensures that a
pathway is reported as “present” and “functional” only when the
(inferred) proportion of its constituent genes/enzymes exceeds
a minimum quorum. Interactive cladograms and consensus
heat-maps (indicating the list of differentiating functions across
all PEC values) are also generated, when the ISFA module is
operated in “batch” mode.

The highlight of the ISFA module lies in the “interactive
lists of differentiating functions” that it automatically generates
and displays in a “queryable” format. These lists in form of
“filterable, sortable, and exportable” tables represent various
inferred functions, bacteria contributing to these functions along
with their corresponding quantum of contribution. Given that
these lists are “queryable,” end users get the flexibility to probe,
in real-time, the following two aspects –

(a) Any specific pathway (or pathway-class) of interest, so as to
find the list of bacteria contributing to that pathway (along
with a comparative view of the proportions in which these
bacteria have contributed to various environments or sample
classes), and

(b) Any specific bacterial taxon of interest, to estimate its
contribution to various pathways (or pathway-classes) in one
or more environments.

Local Mapper Module
This module enables a granular-level analysis of user-specified
pathway of interest. For a given pathway, end users can
probe, visualize, and compare (between environments, and the
samples they constitute), the inferred abundances of various

enzymes constituting the said pathway. The customizable
output, provided in form of a heatmap, in a way depicts the
“functional coverage” of any selected pathway across samples
or environments. For a given environment (or any other
feature provided in metadata), the Local Mapper module also
provides an advanced “dendrobar” output format that not only
represents the contribution of individual bacteria to the chosen
pathway, but also enables users to visualize these bacteria in
the context of their taxonomic lineage. As in all other modules,
end users are provided drop-down menu options to visualize
samples grouped as per metadata. More importantly, iVikodak
additionally provides KEGG (Kanehisa and Goto, 2000) color
map and KEGG 3D map files corresponding to a user-specified
pathway. The latter files are derived from normalized enzyme
abundance profiles of the chosen pathway. These ready-to-
use pre-formatted output files can be directly uploaded by
end users to the KEGG Mapper module of www.genome.jp
(KEGG web-server) to generate a colored pathway map and a
3D pathway map (for graphically visualizing relative enzyme
abundances).

WEB-FRONT UTILITIES, UI AND UX

In order to provide a seamless user-interface (UI) and user-
experience (UX) through a highly interactive and responsive
web application, iVikodak uses modern design practices and
its front-end employs contemporary state-of-art technologies
including bootstrap 3.0, D3.js (Bostock et al., 2011), plotly.js
(Plotly Technologies Inc., 2015), cytoscape.js (Franz et al., 2016),
in-house java-scripts, etc.

As mentioned earlier, a stand-out feature of iVikodak worth
a mention includes incorporation of a personalized and portable
“Dashboard” feature. Jobs submitted to iVikodak are tagged to
unique “job-ids” that not only help end users to secure or track
job status, but also enables them to retrieve, visualize, customize,
save, and instantly share the generated results with scientific peers
through a personalized “Dashboard.” The latter is downloadable
as a “.dash” file, which when re-uploaded, seamlessly re-creates
the entire dashboard (even post-job ID expiry) for the end user.
The dashboard feature in iVikodak is relevant given the present-
day trend of open-science and scientific data collaboration or
sharing. iVikodak incorporates a “live” task tracking system
that provides users a real-time view and access of the
following –

• Live status of jobs: Indicating time elapsed, stage of execution
i.e., in-progress/completion, etc.,

• Access to intermediate textual results (as an when they are
completed) so that users need not wait until the entire
dashboard is created.

In addition, post job-completion, the dashboard indicates the
total time taken to complete the given job. Apart from enhancing
user experience, this feature provides users details pertaining
to performance statistics for various submitted jobs. It may be
noted that the time taken for various jobs is a function of
not only the size of taxonomic abundance data, but also the
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scale or the types of metadata provided. It takes approximately
2min for dashboard generation when a taxonomic abundance
data comprises of 500 taxonomic features computed for around
100 microbiome samples with a two-column metadata. It
may be noted that the live-tracking system enables users to
instantly access (within 10–20 s) the functional profiles that are
inferred by iVikodak from the uploaded taxonomic data. It is
pertinent to note that the described task management approach
and associated feature of dashboard-driven personalization is
prominently absent in tools analogous in functionality to
iVikodak.

FUTURE DEVELOPMENT AND
ENHANCEMENTS

Following are the key enhancements planned for iVikodak –

1. Algorithmic cross-compatibility: Currently, functions in
iVikodak are inferred using algorithms and methodologies
as described in Vikodak (Nagpal et al., 2016). The resultant
(inferred) functional information is suitably re-processed
(at the backend) and subsequently provided to end users
through an interactive visualization interface. As a future
enhancement, iVikodak is planned to enable end users to
upload functional information inferred using algorithms other
than Vikodak e.g., PICRUSt (Langille et al., 2013) and
Tax4Fun (Aßhauer et al., 2015). Such uploaded data will also
be appropriately re-formatted for enabling respective analyses
and visualizations.

2. Functional Scope: It is planned to incorporate KEGG
modules (Kanehisa and Goto, 2000) and Gene Context based
Modules (GCMs) (Bhatt et al., 2018) to the current scope of
KO, COG, Pfam and TIGRfam inference.

3. Custom phylogeny: The present version of iVikodak accepts
taxonomic input data generated using any of the three popular
taxonomic classification frame-works (viz. RDP Classifier,
Greengenes, and SILVA). Post processing, it currently employs
(in its backend) a pre-built taxonomic hierarchy to display
respective taxonomic cladograms in various outputs that it
generates. The scope of this functionality is planned to be
enhanced to enable end users to upload (along with input
taxonomic profile data) customized taxonomic as well as
functional hierarchies that they wish to use in respective
downstream visualizations.

4. Prediction of Microbe-Disease associations: In order
to derive clinically actionable insights from iVikodak’s
functional inferences, we intend to enhance functionalities
in iVikodak that can appropriately mine disease-specific
(inferred) function profiles and decipher in quantifiable
terms the association of specific sets of bacteria with
a particular disease state (i.e., function driven Human
Microbe-Disease Associations, HMDA). A global ensemble
of conventional as well as recently developed (validated)
algorithms/classifiers like Random Forest (Breiman,
2001), Adaptive Boosting (Freund and Schapire, 1997;
Peng et al., 2018), NGRHMDA (Huang et al., 2017),
LRLSHMDA (Wang et al., 2017) and other graph theory

based approaches (Chen et al., 2017) to extend the
utility of microbial co-contribution networks generated
by iVikodak, are planned to be included in ISFA module of
iVikodak.

5. ReFDash Database (Repository of Functional Dashboards):
iVikodak’s “dashboards” represent a comprehensive ensemble
of information, results and visualizations pertaining to
the (inferred) functional profiles of one or multiple
environments/populations representing one or more
microbial communities. Given the fact that each dashboard
is unique and can be accessed using personalized JOB
IDs, it is possible to create a repository of well annotated
dashboards, using public data, as well as through community
collaborations.

Given the above context, we intend to create a database
(named as ReFDash Repository) with the following objectives –

1. Host pre-generated functional dashboards created using
taxonomic profiles (and available metadata) corresponding to
various environments.

2. Enable end users to upload, deposit and share their dash-files
(or dashboards generated by iVikodak) with other members
in the scientific community. The underlying objective is
to encourage microbiome researchers to help expand the
repertoire of environments (represented by dash files in the
ReFDash database). This would ease the process of scientific
data collaboration, sharing or even a peer-review process.

3. A further objective is to create a framework that facilitates
(automated) “on-demand” (reprocessing and) comparison of
functional profiles of a subset of selected environments that
are available as pre-generated/ end user deposited dash-files in
the ReFDash repository.

Although, the above ideas are under active development, a
prototype of the database may be accessed at https://web.rniapps.
net/iVikodak/refdash/.

CONCLUSIONS

iVikodak represents an effort to develop a one-stop “infer-
analyse-compare-visualize” solution that can assist researchers
in deciphering important biological insights with respect to
the functional potential of microbial communities based on
16S rRNA gene sequencing datasets. The modular (yet inter-
operable) framework of iVikodak intends to lay-down a standard
workflow for inferred functional metagenomics. It can facilitate
end users to concomitantly infer, statistically analyze, and
compare multiple microbial communities, and in the process
generate a plethora of intuitive self-explanatory visual outputs
in an automated fashion. The ISFA and Local Mapper modules
of iVikodak are logical extensions of the Global Mapper module
and their expanded scope now enable end users to automate
the statistical comparison between the functional potential of
multiple environments (and their corresponding classes or
metadata). The planned development (and eventual) linkage
to ReFDash Repository represents the broad vision behind
this work, and it is anticipated that iVikodak will add a
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significant value to the existing space of inferred function driven
metagenomics space.

AVAILABILITY AND REQUIREMENTS
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https://web.rniapps.net/iVikodak/tutorials.documentation/
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Fully Automatic Metagenomic
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Javier Tamames* and Fernando Puente-Sánchez
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The improvement of sequencing technologies has facilitated generalization of
metagenomic sequencing, which has become a standard procedure for analyzing the
structure and functionality of microbiomes. Bioinformatic analysis of sequencing results
poses a challenge because it involves many different complex steps. SqueezeMeta is a
fully automatic pipeline for metagenomics/metatranscriptomics, covering all steps of the
analysis. SqueezeMeta includes multi-metagenome support that enables co-assembly
of related metagenomes and retrieval of individual genomes via binning procedures.
SqueezeMeta features several unique characteristics: co-assembly procedure or co-
assembly of unlimited number of metagenomes via merging of individual assembled
metagenomes, both with read mapping for estimation of the abundances of genes in
each metagenome. It also includes binning and bin checking for retrieving individual
genomes. Internal checks for the assembly and binning steps provide information about
the consistency of contigs and bins. Moreover, results are stored in a MySQL database,
where they can be easily exported and shared, and can be inspected anywhere using
a flexible web interface that allows simple creation of complex queries. We illustrate
the potential of SqueezeMeta by analyzing 32 gut metagenomes in a fully automatic
way, enabling retrieval of several million genes and several hundreds of genomic bins.
One of the motivations in the development of SqueezeMeta was producing a software
capable of running in small desktop computers and thus amenable to all users and
settings. We were also able to co-assemble two of these metagenomes and complete
the full analysis in less than one day using a simple laptop computer. This reveals the
capacity of SqueezeMeta to run without high-performance computing infrastructure and
in absence of any network connectivity. It is therefore adequate for in situ, real time
analysis of metagenomes produced by nanopore sequencing. SqueezeMeta can be
downloaded from https://github.com/jtamames/SqueezeMeta.
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INTRODUCTION

The improvement of sequencing technologies has permitted the
generalization of metagenomic sequencing, which has become
standard procedure for analyzing the structure and functionality
of microbiomes. Many novel bioinformatic tools and approaches
have been developed to deal with the vast numbers of short
read sequences produced by a metagenomic experiment. Aside
from the simply overwhelming amount of data, a metagenomic
analysis is a complex task comprising several non-standardized
steps, involving different software tools whose results are often
not directly compatible.

Lately, the development of highly portable sequencers,
especially those based on nanopore technologies (Deamer et al.,
2016), has facilitated in situ sequencing in scenarios where the
need to obtain quick results is paramount, for instance clinical
scenarios of disease control or epidemics (Quick et al., 2015,
2016). Metagenomic sequencing has also been performed in situ,
for instance in oceanographic expeditions in the Antarctic ice
(Lim et al., 2014; Johnson et al., 2017), illustrating the growing
capability of producing sequences right away in sampling
campaigns. This will enable informed planning of upcoming
sampling experiments according to the results found in previous
days. We foresee that this kind of application will be increasingly
used in the near future. Therefore, bioinformatic analysis should
be performed in a very short time span (hours), and be amenable
to lightweight computing infrastructure.

A standard metagenomic pipeline involves read curation,
assembly, gene prediction, and functional and taxonomic
annotation of the resulting genes. Several pipelines have been
created to automate most of these analyses (Li, 2009; Arumugam
et al., 2010; Glass and Meyer, 2011; Abubucker et al., 2012;
Eren et al., 2015; Kim et al., 2016). However, they differ in
terms of capacities and approaches. One of the most important
differences is whether or not the assembly step is needed. Some
platforms skip assembly and, consequently, gene prediction and
rely instead on direct annotation of the raw reads. Nevertheless,
there are several drawbacks of working with raw reads: since
this is based on homology searches for millions of sequences
against huge reference databases, it usually requires very large
CPU usage. Especially for taxonomic assignment, the reference
database must be as complete as possible to minimize errors
(Pignatelli et al., 2008). Furthermore, sequences are often too
short to produce accurate assignments (Wommack et al., 2008;
Carr and Borenstein, 2014).

Assembly, however, is advisable because it can recover larger
fragments of genomes, often comprising many genes. Having the
complete sequence of a gene and its context makes its functional
and taxonomic assignment much easier and more reliable. The
drawback of assembly is the formation of chimeras because
of misassembling parts of different genomes, and the inability
to assemble some of the reads, especially the ones from low-
abundance species. The fraction of non-assembled reads depends
on several factors, especially sequencing depth and microbiome
diversity, but it is usually low (often below 20%). Recently, some
tools have been developed to reassemble the portion of reads
not assembled in the first instance, increasing the performance

of this step (Hitch and Creevey, 2018). Co-assembling related
metagenomes can also alleviate this problem significantly, as we
will illustrate in the results section.

Assembly is also advisable because it facilitates the recovery
of quasi-complete genomes via binning methods. The retrieval of
genomes is a major step forward in the study of a microbiome,
since it enables linking organisms and functions, thereby
contributing to a much more accurate ecologic description of the
community’s functioning. It is possible, for instance, to determine
the key members of the microbiome (involved in particularly
important functions), to infer potential interactions between
members (for instance, looking for metabolic complementation),
and to advance in the understanding of the effect of ecologic
perturbations.

The best strategy for binning is co-assembly of related
metagenomes. By comparing the abundance and composition of
the contigs in different samples, it is possible to determine which
contigs belong to the same organism: these contigs have similar
oligonucleotide composition, similar abundances in individual
samples, and a co-varying pattern between different samples. In
this way, it is possible to retrieve tens or hundreds of genomic
bins with different levels of completion that can be used as the
starting point for a more in-depth analysis of the microbiome’s
functioning.

SqueezeMeta is a fully automatic pipeline for
metagenomics/metatranscriptomics, covering all steps of
the analysis. It includes multi-metagenome support allowing co-
assembly of related metagenomes and the retrieval of individual
genomes via binning procedures.

A comparison of the capabilities of SqueezeMeta and other
pipelines is shown in Table 1. Most current pipelines do
not include support for co-assembling and binning, while
some permit importing external binning results to display the
associated information.

SqueezeMeta offers several advanced characteristics that make
it different to existing pipelines, for instance:

1. Co-assembly procedure coupled with read mapping for the
estimation of the abundances of individual genes in each
metagenome.

2. An alternative co-assembly approach enabling the
processing of an unlimited number of metagenomes via
merging of individual metagenomes.

3. Support for nanopore long reads.
4. Binning and bin checking for retrieving individual

genomes.
5. Internal checks for the taxonomic annotation of contigs and

bins.
6. Metatranscriptomic support via mapping of cDNA reads

against reference metagenomes, or via co-assembly of
metagenomes and metatranscriptomes.

7. Inclusion of MySQL database for storing results, where they
can be easily exported and shared and inspected anywhere
using a web interface.

We have designed SqueezeMeta to be able to run in scarce
computer resources, as expected for in situ metagenomic
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TABLE 1 | Features of different metagenomic analysis pipelines, in comparison to SqueezeMeta.

MG-
Rast
(Meyer
et al.,
2008)

Anvio
(Eren
et al.,
2015)

Smash
community
(Arumugam
et al.,
2010)

Humann
(Abubucker
et al.,
2012)

fmap
(Kim
et al.,
2016)

MetaWrap
(Uritskiy
et al.,
2018)

Samsa2
(Westreich
et al.,
2018)

IMP
(Narayanasamy
et al.,
2016)

Squeeze
Meta

Assembly No No Yes No No Yes No Yes Yes

Data
source

Reads
or
contigs

Contigs Contigs Reads Reads
or
contigs

Contigs Reads
(RNA)

Reads Reads

Gene
prediction

Yes Yes Yes No No No No Yes Yes

Function
assignment

Yes Yes Yes Yes Yes No Yes Yes Yes

RNA
assignment

Yes Yes No No No No Yes Yes Yes

Taxonomic
assignment

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Gene
abundances

Yes Yes No Yes Yes No Yes Yes Yes

Metagomic
comparison

Yes Yes Yes Yes Yes No Yes Yes Yes

Co-
assembly

No No No No No Yes No Yes Yes

Binning No Support No No No Yes No Yes Yes

Bin
validation

No Yes No No No No No No Yes

Local
Installation

No Yes Yes Yes Yes Yes Yes Yes Yes

sequencing experiments. By adequately setting all the pipeline’s
components, we were able to fully analyze completely individual
metagenomes and even co-assemble related metagenomes using
a desktop computer with only 16 GB RAM. The fully automatic
nature of our system, not requiring any technical or bioinformatic
knowledge, also makes it very easy to use. It is also completely
independent of the availability of any Internet connection.

SqueezeMeta can be downloaded from https://github.com/
jtamames/SqueezeMeta.

MATERIALS AND METHODS

SqueezeMeta is aimed to perform the analysis of several
metagenomes in a single run. It can be run in three different
modes (for a schematic workflow for the three modes, see
Figure 1). These are:

1. Sequential mode: all metagenomes are treated individually
and analyzed sequentially. This mode does not include
binning, since each metagenome is treated independently.

2. Co-assembly mode: reads from all samples are pooled and
a single assembly is performed. Reads from individual
samples are then mapped back to the co-assembly, which
enables obtaining the coverage of contigs and individual
genes in these contigs. Based on these abundances,
subsequent binning methods allow classifying contigs in
genomic bins.

3. Merged mode: co-assembly is a very intensive process
that requires plenty of computational resources, especially
RAM. If the number of samples is high, requirements
can easily exceed the capabilities of the computing
infrastructure. SqueezeMeta’s merged mode permit
co-assembly of a large number of samples, using a
procedure similar to the one used in the analysis of
TARA Oceans metagenomes (Tully et al., 2018). Samples
are first assembled individually. The resulting sets of
contigs are merged by combining contigs with ≥99%
semi-global identity, using CD-HIT (Fu et al., 2012).
Then the remaining contigs are re-assembled using
Minimus2 (Treangen et al., 2011) with parameters -D
OVERLAP = 100 MINID = 95, to look for overlapping
contigs coming from pieces of the same genome in different
samples. The merging produces a single set of contigs, and
the analysis proceeds as in the co-assembly mode.

SqueezeMeta uses a combination of custom scripts and
external software packages for the different steps of the analysis.
A more detailed description of these steps follows:

Data Preparation
A SqueezeMeta run only requires a configuration file indicating
the metagenomic samples and the location of their corresponding
sequence files. The program creates the appropriate directories
and prepares the data for further steps.
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FIGURE 1 | Workflow of the three modes of operation of SqueezeMeta:
sequential, co-assembly and merged. Starting from metagenomic samples,
green, blue and red arrows indicate main steps in sequential, merged and
co-assembly modes. All modes create two of the three main results tables:
ORF and contig tables. Co-assembly and merged modes also apply binning
and, therefore, they also create the bin table.

Trimming and Filtering
SqueezeMeta uses Trimmomatic for adapter removal, trimming
and filtering by quality, according to the parameters set by the
user (Bolger et al., 2014).

Assembly
When assembling large metagenomic datasets, computing
resources, especially memory usage, are critical. SqueezeMeta
uses Megahit (Li et al., 2015) as its reference assembler, since we
find it has an optimal balance between performance and memory
usage. SPAdes (Bankevich et al., 2012) is also supported. For
assembly of the long, error-prone MinION reads, we use Canu
(Koren et al., 2017). The user can select any of these assemblers. In
the merged mode, each metagenome will be assembled separately
and the resulting contigs will be merged and joined as outlined
above. Either way, the resulting set of contigs is filtered by length
using prinseq (Schmieder and Edwards, 2011), to discard short
contigs if required.

Gene and rRNA Prediction
This step uses the Prodigal gene prediction software (Hyatt et al.,
2010) to perform a gene prediction on the contigs, retrieving the
corresponding amino acid sequences, and looks for rRNAs using
barrnap (Seemann, 2014). The resulting 16S rRNA sequences are
classified using the RDP classifier (Wang et al., 2007).

Homology Searching
SqueezeMeta uses the Diamond software (Buchfink et al., 2015)
for comparison of gene sequences against several taxonomic and
functional databases, because of its optimal computation speed
while maintaining sensitivity. Currently, three different Diamond
runs are performed: against the GenBank nr database for
taxonomic assignment, against the eggNOG database (Huerta-
Cepas et al., 2016) for COG/NOG annotation, and against the
latest publicly available version of KEGG database (Kanehisa and
Goto, 2000) for KEGG ID annotation. SqueezeMeta also classifies
genes against the PFAM database (Finn et al., 2014), using
HMMER3 (Eddy, 2009). These databases are installed locally and
updated at the user’s request.

Taxonomic Assignment of Genes
Custom scripts are used for this step of the analysis. For
taxonomic assignment, SqueezeMeta implements a fast LCA
algorithm that looks for the last common ancestor of the hits for
each query gene using the results of the Diamond search against
GenBank nr database (the most complete reference database
available). For each query sequence, we select a range of hits
having at least 80% of the bit-score of the best hit and differing
by less than 10% of its identity percentage. The LCA is the lower
rank taxon common to most hits, since a small number of hits
belonging to other taxa are allowed to add resilience against, for
instance, annotation errors. Importantly, our algorithm includes
strict cut-off identity values for the various taxonomic ranks.
This means that hits must pass a minimum amino acid identity
level to be used for assigning to a particular taxonomic rank.
These thresholds are 85, 60, 55, 50, 46, 42, and 40% for species,
genus, family, order, class, phylum, and superkingdom ranks,
respectively (Luo et al., 2014). Hits below these identity levels
cannot be used to make assignments to the corresponding rank.
For instance, a protein will not be assigned to species level if it
has no hits above 85% identity. Moreover, a protein will remain
unclassified if it has no hits above 40% identity. Inclusion of these
thresholds guarantees that no assignments are performed based
on weak, inconclusive hits.

Functional Assignments
Genes in COGs and KEGG IDs can be annotated using
the classical best hit approach or a more sensitive one
considering the consistency of all hits (Supplementary Methods
in Supplementary File S1). In short, the first hits exceeding
an identity threshold for each COG or KEGG are selected.
Their bitscores are averaged, and the ORF is assigned to the
highest-scoring COG or KEGG whose score exceeds the score
of any other by 20%, otherwise the gene remains unannotated.
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This procedure does not annotate conflicting genes with close
similarities to more than one protein family.

Taxonomic Assignment of Contigs and
Disparity Check
The taxonomic assignments of individual genes are used to
produce consensus assignments for the contigs. A contig is
annotated to the taxon to which most of their genes belong
(Supplementary File S1). The required percentage of genes
assigned to that taxon can be set by the user, so that it is possible
to accommodate missing or incorrect annotations of a few genes,
recent HGT events, etc. A disparity score is computed for each
contig, indicating how many genes do not concur with the
consensus (Supplementary File S1). Contigs with high disparity
could be flagged to be excluded from subsequent analyses.

Coverage and Abundance Estimation for
Genes and Contigs
To estimate the abundance of each gene and each contig in each
sample, SqueezeMeta relies on mapping of original reads onto
the contigs resulting from the assembly. The software Bowtie2
(Langmead and Salzberg, 2012) is used for this task, but we
also included Minimap2 (Li, 2018) for mapping long MinION
reads. This is followed by Bedtools (Quinlan and Hall, 2010) for
extraction of the raw number of reads and bases mapping to each
gene and contig. Custom scripts are used to compute the average
coverage and normalized RPKM values that provide information
on gene and contig abundance.

In sequential mode, SqueezeMeta would stop here. Any of
the co-assembly modes allow binning the contigs for delineating
genomes.

Binning
Using the previously obtained contig coverage in different
samples, SqueezeMeta uses different binning methods to separate
contigs putatively coming from the same organism. Basically,
binning algorithms classify contigs coming from the same
genomes because their coverages covary along the samples, and
their oligonucleotide composition is similar. Currently, Maxbin
(Wu et al., 2015) and Metabat2 (Kang et al., 2015) are supported.
In addition, SqueezeMeta includes DAS Tool (Sieber et al., 2018)
to merge the multiple binning results in just one set.

SqueezeMeta calculates average coverage and RPKM values
for the bins in the same way as above, mapping reads to the
contigs belonging to the bin.

Taxonomic Assignment of Bins and
Consistency Check
SqueezeMeta generates a consensus taxonomic assignment for
the bins in the same way as it did for the contigs. A bin is
annotated to the consensus taxon, that is, the taxon to which most
of its contigs belong. As previously, a disparity score is computed
for each bin, indicating how many of the contigs are discordant
with the bin’s consensus taxonomic assignment. This can be used
as an initial measure of the bin’s possible contamination.

Bin Check
The goodness of the bins is estimated using the CheckM software
(Parks et al., 2015). In short, CheckM provides indications of
a bin’s completeness, contamination and strain heterogeneity
by creating a profile of single-copy, conserved genes for the
given taxon and evaluating how many of these genes were found
(completeness), and how many were single-copy (contamination
and strain heterogeneity). SqueezeMeta automates CheckM runs
for each bin, using the consensus annotation for the bin as the
suggested taxonomic origin.

Merging of Results
Finally, the system merges all these results and generates several
tables: (1) a gene table, with all the information regarding
genes (taxonomy, function, contig and bin origin, abundance in
samples, and amino acid sequence). (2) A contig table, gathering
all data for the contigs (taxonomy, bin affiliation, abundance in
samples, and disparity), and (3) A bin table with all information
related to the bins (taxonomy, completeness, contamination,
abundance in samples, and disparity).

Database Creation
These three tables and the optional metadata will be used to create
a MySQL database for easy inspection of the data arising from the
analysis. The database includes a web-based user interface that
enables easy creation of queries, so that the user does not need to
have any knowledge on database usage to operate it (Figure 2).
The interface allows queries on one table (genes, contigs or
bins) or combinations of tables, enabling complex questions
such as “Retrieve contigs having genes related to trehalose from
Bacteroidetes more abundant than 5x coverage in sample X” or
“Retrieve antibiotic resistance genes active in one condition but
not in another”. The resulting information can be exported to a
table.

When combining metagenomes and metatrancriptomes, the
latter can be analyzed in a straightforward way by just mapping
the cDNA reads against the reference metagenomes. In this way,
we can obtain and compare the abundances of the same genes
in both the metagenome and the metatranscriptome. However,
this will obviate these genes present only in the latter, for
instance genes belonging to rare species in the metagenome
(therefore unassembled) and that happen to be very active.
SqueezeMeta can deal with this situation using the merged mode.
Metagenomes and metatranscriptomes are assembled separately
and then merged so that contigs can come from DNA from
the metagenome, cDNA from the metatranscriptome or both.
Normalization of read counts makes it possible to compare
presence and expression values within or between different
samples.

RESULTS

To illustrate the use of the SqueezeMeta software, we analyzed
32 metagenomic samples corresponding to gut microbiomes of
Hadza and Italian subjects (Rampelli et al., 2015), using the three
modes of analysis. The total number of reads for all metagenomes
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FIGURE 2 | Snapshot of the SqueezeMeta user interface to its database. A flexible and intuitive system for building queries allows interrogating the database with
complex questions involving combination of data from different tables.

FIGURE 3 | Results of the application of SqueezeMeta to 32 gut metagenomes of Hadza (H) and Italian (IT) subjects. The figure shows the size of the metagenomes
and the number of genes obtained by the three modes of analysis.

is 829.163.742. We used a 64-CPU computer cluster with 756 GB
RAM in the National Center for Biotechnology, Madrid, Spain.
After discarding contigs below 200 bps, the total number of
genes was 4,613,697, 2,401,848, and 2,230,717 for the sequential,

merged and co-assembled modes, respectively. Notice that the
number of genes is lower in the two latter modes that involve co-
assembly since the genes present in more than one metagenome
will be counted just once in the co-assembly (they are represented
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by just one contig product of the co-assembly) but more than
once in the individual samples (they are present in one different
contig per sample). A more accurate comparison is shown in
Figure 3, where a gene in the co-assembly is assumed to be
present in a given sample if it can recruit some reads from
that sample. As co-assemblies create a much larger reference
collection of contigs than individual metagenomes alone, even
genes represented by a few reads in a sample can be identified
by recruitment, while they will probably fail to assemble in
the individual metagenome because of their low abundance. In
other words, co-assembly will produce contigs and genes from
abundant taxa in one or more samples, that can be used to
identify the presence of the same genes in samples in which
these original taxa are rare. Therefore, it enables discovering the
presence of many more genes in each sample.

The improvement of gene recovery for the smaller samples is
also noticeable by the percentage of mapped reads. The individual
assembly for small samples achieves barely 35% of read mapping
to the assembled metagenome, indicating that most reads could
not be used. The small size (and therefore low coverage) of the
metagenome prevented these reads from being assembled. When
co-assembling these samples with the rest, more than 85% of
the reads could then be mapped to the reference metagenome,

TABLE 2 | Statistics on contigs and bins for the three SqueezeMeta modes on
Hadza & Italian metagenomes.

Merged mode Co-assembly
mode

Sequential mode

Number of contigs 893,438 983,350 2,478,560

N50 3900 2357 2854

Average
percentage of
mapped reads

85.01 89.47 74.47

Contigs with
phylum annotation

719,098 (80.4%) 759,903 (77.2%) 1,951,445 (78.7%)

Contigs with
disparity > 0

6626 (0.7%) 3772 (0.4%) 7588 (0.3%)

Highly inconsistent
contigs
(disparity > 0.25)

4496 (0.5%) 2993 (0.3%) 5433 (0.2%)

Number of genes 2,401,848 2,230,717 4,613,697

Genes with COG
function

1,098,635 (45.7%) 982,029 (44.0%) 2,164,980 (46.9%)

Genes with KEGG
function

835,498 (34.8%) 749,892 (33.6%) 1,683,636 (36.5%)

Total bins 563 423 N/A

Bins > 90%
complete

120 115 N/A

Bins > 50%
complete

359 192 N/A

High-quality bins
(>90% complete,
<10% contam)

50 67 N/A

Good quality bins
(>75% complete,
<10% contam)

82 112 N/A

Binning statistics refer to MaxBin results.

indicating that co-assembly is able to capture most of the diversity
found in these small samples.

Table 2 shows the characteristics of the analysis. Even if
the merged mode obtains more contigs and genes than the
co-assembly mode, we can see that the number of putatively
inconsistent contigs (having genes annotated to different taxa) is
lower in the second. Therefore, the co-assembly mode is more
accurate than the merged mode, but the latter has the advantage
of being able to work with an almost unlimited number of
metagenomes because of its lower requirements.

Binning results have been analyzed according to the
completeness and contamination values provided by CheckM
(Table 3). Again, there are differences between the merged and
the co-assembly modes, with the first providing more but less
complete bins, and the latter giving bins of higher quality. Both
modes are capable of obtaining quasi-complete genomes for tens
of species, and hundreds of less complete genomes.

Figure 4 shows the abundance distribution of bins in
samples. Italian subjects reveal a clear distinctive profile that
make them cluster together. Bins belonging to the genera
Bacteoides and Faecalibacterium are more abundant in these
individuals than in Hadza individuals. The Hadza have increased
diversity and fall into different groups corresponding to the
presence of diverse species, in accordance with the distinctions
found using functional profiles (Rampelli et al., 2015). The
microbiota of these individuals contains genera such as
Allistipes or Prevotella not present in the Italian metagenomes.
Moreover, Spirochaetes from the genera Treponema are only
present in Hadza subjects, which are supposedly not associated
with pathogenesis. This information is directly retrieved from
SqueezeMeta results and offers a revealing view of the genomic
composition and differences between the samples. A similar
result can be obtained for the functional annotations. The
original functions represented in the bins can be used to
infer the presence of metabolic pathways using the MinPath

TABLE 3 | Example of some relevant high-quality bins (>90% completion, <10%
contamination) obtained by the co-assembly mode of Hadza & Italian
metagenomes.

Taxa Size (bp) Completeness Contamination

o: Clostridiales 3,098,646 99.53% 3.57%

g: Bacteroides 3,521,779 99.45% 0.18%

o: Aeromonadales 2,579,625 99.16% 0.69%

g: Akkermansia 3,031,328 98.94% 4.31%

g: Treponema 2,879,091 98.62% 4.78%

g: Prevotella 3,354,102 97.51% 0.47%

s: Escherichia coli 4,710,119 97.49% 6.01%

g: Bifidobacterium 2,266,937 97.40% 3.70%

g: Megasphaera 2,490,127 96.93% 2.88%

s: Succinatimonas sp. 2,250,348 96.61% 4.22%

g: Parabacteroides 4,558,677 96.57% 3.18%

s: Alistipes putredinis 2,258,860 95.28% 5.77%

s: Oscillibacter sp. 1,801,182 95.11% 4.20%

s: Bacteroides sp. 3,901,726 95.08% 7.76%

Taxa are labeled according to their taxonomic rank. g, Genus; o, Order; s, Species.
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FIGURE 4 | Abundance of bins in the diverse samples. Bins were compared with the CompareM software (https://github.com/dparks1134/CompareM) to estimate
their reciprocal similarities. The distances calculated between the bins were used to create a phylogenetic tree illustrating their relationships. The tree is shown in the
inner part of the Figure. Branches in the tree corresponding to the four more abundant phyla in the tree (Firmicutes, Bacteriodetes, Proteobacteria, and Spirochaetes)
were colored. Bins were named with their id number and original genera, and labels for the most abundant genera were also colored. Outer circles correspond to:
the completeness of the bins (green-colored, most internal circle), and the abundance of each bin in each sample (red-colored). Each circle corresponds to a
different sample (H, Hadza; I, Italians), and the red color intensities correspond to the bin’s abundance in the sample. The picture was prepared using the iTOL
software (https://itol.embl.de).

algorithm (Ye and Doak, 2009), that defines each pathway
as an unstructured gene set and selects the fewest pathways
that can account for the genes observed within each bin.
The inference of several carbohydrate degradation pathways
in the bins can be observed in Supplementary Figure
S1.

One of the motivations for the development of SqueezeMeta
was making it capable of performing a full metagenomic
analysis on a limited computing infrastructure, such as the one
that can be expected in the course of in situ metagenomic
sequencing (Lim et al., 2014; Johnson et al., 2017). We
created a setting mode (–lowmem) carefully tailored to run
with limited amounts of resources, especially RAM memory.
To test this capability, we were able to co-assemble two
metagenomic samples from the Hadza metagenomes, composed
of 40 million reads amounting to almost 4 GB of DNA sequence.
We ran the merged mode of SqueezeMeta using the – low-
memory option in a standard laptop computer, using just 8
cores and 16 GB RAM. The run was completed in 10 h,
generating 33,660 contigs in 38 bins and 124,065 functionally

and taxonomically annotated genes. Using the same settings,
we also co-assembled ten MinION metagenomes from the gut
microbiome sequencing of head and neck cancer patients1,
summing 581 MB in less than 4 h. These experiments reveal
that SqueezeMeta can be run even with scarce computational
resources, and it is suitable for its intended use of in situ
sequencing where the metagenomes will be moderate in
size.

DISCUSSION

SqueezeMeta is a highly versatile pipeline that enables analyzing
a large number of metagenomes or metatranscriptomes in
a very straightforward way. All analysis steps are included,
starting with assembly, subsequent taxonomic/functional
assignment of the resulting genes, abundance estimation

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA493153
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and binning to obtain as many genomes as possible in the
samples. SqueezeMeta is designed to run in moderately-
sized computational infrastructures, relieving the burden
of co-assembling tens of metagenomes by using sequential
metagenomic assembly and ulterior merging of resulting contigs.
The software includes specific software and adjustments to be
able to process MinION sequences.

The program includes several verifications on the results,
such as the detection of possible inconsistent contigs and bins,
and estimation of the latter’s completion using the checkM
software. Finally, results can easily be inspected and managed
since SqueezeMeta includes a built-in MySQL database that can
be queried via a web-based interface, allowing the creation of
complex queries in a very simple way.

One of the most remarkable features of this software is
its capability to operate in limited computing infrastructure.
We were able to analyze several metagenomes in a few
hours using a virtual machine with just 16 GB RAM.
Therefore, SqueezeMeta is apt to be used in scenarios in which
computing resources are limited, such as remote locations
in the course of metagenomic sampling campaigns. Also, it
does not require the availability of any Internet connection.
Obviously, complex, sizeable metagenomes cannot be analyzed
with these limited resources. However, the intended use of in situ
sequencing will likely produce a moderate and manageable data
size.

SqueezeMeta will be further expanded by the creation of new
tools allowing in-depth analyses of the functions and metabolic
pathways represented in the samples.
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FIGURE S1 | The presence of several carbohydrate degradation pathways in the
bins. The outer circles indicate the percentage of genes from a pathway present in
each of the bins. According to that gene profile, MinPath estimates whether or not
the pathway is present. Only pathways inferred to be present are colored. As in
Figure 4, the bins tree is performed from a distance matrix of the orthologous
genes’ amino acid identity, using the compareM software
(https://github.com/dparks1134/CompareM). The four most abundant phyla are
colored (branches in the tree), as well as the most abundant genera (bin labels).
The picture was elaborated using the iTOL software (https://itol.embl.de).

FILE S1 | Description of novel algorithms implemented in SqueezeMeta.

REFERENCES
Abubucker, S., Segata, N., Goll, J., Schubert, A. M., Izard, J., Cantarel, B. L., et al.

(2012). Metabolic reconstruction for metagenomic data and its application to
the human microbiome. PLoS Comput. Biol. 8:2358. doi: 10.1371/journal.pcbi.
1002358

Arumugam, M., Harrington, E. D., Foerstner, K. U., Raes, J., and Bork, P. (2010).
SmashCommunity: a metagenomic annotation and analysis tool. Bioinformatics
26, 2977–2978. doi: 10.1093/bioinformatics/btq536

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
et al. (2012). SPAdes: a new genome assembly algorithm and its applications
to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.
0021

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.
1093/bioinformatics/btu170

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment
using DIAMOND. Nat. Methods 12, 59–60. doi: 10.1038/nmeth.3176

Carr, R., and Borenstein, E. (2014). Comparative analysis of functional
metagenomic annotation and the mappability of short reads. PLoS One
9:e105776. doi: 10.1371/journal.pone.0105776

Deamer, D., Akeson, M., and Branton, D. (2016). Three decades of nanopore
sequencing. Nat. Biotechnol. 34, 518–524. doi: 10.1038/nbt.3423

Eddy, S. R. (2009). A new generation of homology search tools based
on probabilistic inference. Genome Inform. 23, 205–211. doi: 10.1142/
9781848165632_0019

Eren, A. M., Esen, C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., et al.
(2015). Anvi’o: an advanced analysis and visualization platform for ‘omics data.
PeerJ 3, 1–29. doi: 10.7717/peerj.1319

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., et al.
(2014). Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230.

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
doi: 10.1093/bioinformatics/bts565

Glass, E. M., and Meyer, F. (2011). “The metagenomics RAST server: a
public resource for the automatic phylogenetic and functional analysis of
metagenomes,” in Handbook of Molecular Microbial Ecology I: Metagenomics
and Complementary Approaches, (Hoboken, NJ: Wiley Blackwell), 325–331.
doi: 10.1002/9781118010518.ch37

Hitch, T. C. A., and Creevey, C. J. (2018). Spherical: an iterative workflow for
assembling metagenomic datasets. BMC Bioinformatics 19:2. doi: 10.1186/
s12859-018-2028-2

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C.,
et al. (2016). EGGNOG 4.5: a hierarchical orthology framework with improved
functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic
Acids Res. 44, D286–D293. doi: 10.1093/nar/gkv1248

Frontiers in Microbiology | www.frontiersin.org 9 January 2019 | Volume 9 | Article 3349194

https://www.frontiersin.org/articles/10.3389/fmicb.2018.03349/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03349/full#supplementary-material
https://github.com/dparks1134/CompareM
https://itol.embl.de
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1093/bioinformatics/btq536
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1371/journal.pone.0105776
https://doi.org/10.1038/nbt.3423
https://doi.org/10.1142/9781848165632_0019
https://doi.org/10.1142/9781848165632_0019
https://doi.org/10.7717/peerj.1319
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1002/9781118010518.ch37
https://doi.org/10.1186/s12859-018-2028-2
https://doi.org/10.1186/s12859-018-2028-2
https://doi.org/10.1093/nar/gkv1248
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03349 January 22, 2019 Time: 17:18 # 10

Tamames and Puente-Sánchez A Portable Automatic Metagenomic Analysis Pipeline

Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser,
L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation
site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-
11-119

Johnson, S. S., Zaikova, E., Goerlitz, D. S., Bai, Y., and Tighe, S. W. (2017). Real-
time DNA sequencing in the antarctic dry valleys using the Oxford nanopore
sequencer. J. Biomol. Tech. 28, 2–7. doi: 10.7171/jbt.17-2801-009

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopaedia of genes and
genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27

Kang, D. D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient
tool for accurately reconstructing single genomes from complex microbial
communities. PeerJ 3:e1165. doi: 10.7717/peerj.1165

Kim, J., Kim, M. S., Koh, A. Y., Xie, Y., and Zhan, X. (2016). FMAP: functional
mapping and analysis pipeline for metagenomics and metatranscriptomics
studies. BMC Bioinformatics 17:420. doi: 10.1186/s12859-016-
1278-0

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive
κ-mer weighting and repeat separation. Genome Res. 27, 722–736. doi: 10.1101/
gr.215087.116

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Li, D., Liu, C. M., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics assembly
via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/
bioinformatics/btv033

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100. doi: 10.1093/bioinformatics/bty191

Li, W. (2009). Analysis and comparison of very large metagenomes with fast
clustering and functional annotation. BMC Bioinformatics 10:359. doi: 10.1186/
1471-2105-10-359

Lim, Y. W., Cuevas, D. A., Silva, G. G. Z., Aguinaldo, K., Dinsdale, E. A., Haas,
A. F., et al. (2014). Sequencing at sea: challenges and experiences in Ion Torrent
PGM sequencing during the 2013 Southern Line Islands Research Expedition.
PeerJ 2:e520. doi: 10.7717/peerj.520

Luo, C., Rodriguez-R, L. M., and Konstantinidis, K. T. (2014).
MyTaxa: an advanced taxonomic classifier for genomic and
metagenomic sequences. Nucleic Acids Res. 42:e73. doi: 10.1093/nar/
gku169

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., and Kubal, M. (2008).
The metagenomics RAST server—a public resource for the automatic phylo-
genetic and functional analysis of metagenomes. BMC Bioinformatics 9:386.
doi: 10.1186/1471-2105-9-386

Narayanasamy, S., Jarosz, Y., Muller, E. E. L., Heintz-Buschart, A., Herold, M.,
Kaysen, A., et al. (2016). IMP: a pipeline for reproducible reference-
independent integrated metagenomic and metatranscriptomic analyses.
Genome Biol. 17:260. doi: 10.1186/s13059-016-1116-8

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W.
(2015). CheckM: assessing the quality of microbial genomes recovered from
isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.
1101/gr.186072.114

Pignatelli, M., Aparicio, G., Blanquer, I., Hernández, V., Moya, A., and
Tamames, J. (2008). Metagenomics reveals our incomplete knowledge of
global diversity. Bioinformatics 24, 2124–2125. doi: 10.1093/bioinformatics/
btn355

Quick, J., Ashton, P., Calus, S., Chatt, C., Gossain, S., Hawker, J., et al.
(2015). Rapid draft sequencing and real-time nanopore sequencing in a
hospital outbreak of Salmonella. Genome Biol. 16:114. doi: 10.1186/s13059-015-
0677-2

Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., et al.
(2016). Real-time, portable genome sequencing for Ebola surveillance. Nature
530, 228–232. doi: 10.1038/nature16996

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841–842. doi: 10.1093/
bioinformatics/btq033

Rampelli, S., Schnorr, S. L., Consolandi, C., Turroni, S., Severgnini, M., Peano, C.,
et al. (2015). Metagenome sequencing of the hadza hunter-gatherer gut
microbiota. Curr. Biol. 25, 1682–1693. doi: 10.1016/j.cub.2015.04.055

Schmieder, R., and Edwards, R. (2011). Quality control and preprocessing
of metagenomic datasets. Bioinformatics 27, 863–864. doi: 10.1093/
bioinformatics/btr026

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics
30, 2068–2069. doi: 10.1093/bioinformatics/btu153

Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G.,
et al. (2018). Recovery of genomes from metagenomes via a dereplication,
aggregation and scoring strategy. Nat. Microbiol. 3, 836–843. doi: 10.1038/
s41564-018-0171-1

Tamames, J., and Puente-Sanchez, F. (2018). SqueezeM, a fully automatic
metagenomic analysis pipeline from reads to bins. bioRxiv [Preprint]. doi:
10.1101/347559

Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S., and Pop, M. (2011). Next
generation sequence assembly with AMOS. Curr. Protoc. 33, 11.8.1–11.8.18.
doi: 10.1002/0471250953.bi1108s33

Tully, B. J., Graham, E. D., and Heidelberg, J. F. (2018). The reconstruction of
2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data
5:170203. doi: 10.1038/sdata.2017.203

Uritskiy, G. V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP - a flexible
pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158.
doi: 10.1186/s40168-018-0541-1

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naïve Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.
00062-07

Westreich, S. T., Treiber, M. L., Mills, D. A., Korf, I., and Lemay,
D. G. (2018). SAMSA2: a standalone metatranscriptome analysis
pipeline. BMC Bioinformatics 19:175. doi: 10.1186/s12859-018-
2189-z

Wommack, K. E., Bhavsar, J., and Ravel, J. (2008). Metagenomics: read length
matters. Appl. Environ. Microbiol. 74, 1453–1463. doi: 10.1128/AEM.021
81-07

Wu, Y. W., Simmons, B. A., and Singer, S. W. (2015). MaxBin 2.0: an automated
binning algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics 32, 605–607. doi: 10.1093/bioinformatics/btv638

Ye, Y., and Doak, T. G. (2009). A parsimony approach to biological pathway
reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol.
5:465. doi: 10.1371/journal.pcbi.1000465

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Tamames and Puente-Sánchez. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 10 January 2019 | Volume 9 | Article 3349195

https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.7171/jbt.17-2801-009
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.7717/peerj.1165
https://doi.org/10.1186/s12859-016-1278-0
https://doi.org/10.1186/s12859-016-1278-0
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/1471-2105-10-359
https://doi.org/10.1186/1471-2105-10-359
https://doi.org/10.7717/peerj.520
https://doi.org/10.1093/nar/gku169
https://doi.org/10.1093/nar/gku169
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1186/s13059-016-1116-8
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/bioinformatics/btn355
https://doi.org/10.1093/bioinformatics/btn355
https://doi.org/10.1186/s13059-015-0677-2
https://doi.org/10.1186/s13059-015-0677-2
https://doi.org/10.1038/nature16996
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1016/j.cub.2015.04.055
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1101/347559
https://doi.org/10.1101/347559
https://doi.org/10.1002/0471250953.bi1108s33
https://doi.org/10.1038/sdata.2017.203
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1186/s12859-018-2189-z
https://doi.org/10.1186/s12859-018-2189-z
https://doi.org/10.1128/AEM.02181-07
https://doi.org/10.1128/AEM.02181-07
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1371/journal.pcbi.1000465
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00052 January 25, 2019 Time: 17:50 # 1

ORIGINAL RESEARCH
published: 29 January 2019

doi: 10.3389/fmicb.2019.00052

Edited by:
Xing Chen,

China University of Mining
and Technology, China

Reviewed by:
Xianwen Ren,

Peking University, China
Robert Heyer,

Otto-von-Guericke-Universität
Magdeburg, Germany

*Correspondence:
Jie Yang

jieyang2012@hotmail.com
Zhenfang Wu

wzfemail@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 22 October 2018
Accepted: 14 January 2019
Published: 29 January 2019

Citation:
Quan J, Cai G, Yang M, Zeng Z,

Ding R, Wang X, Zhuang Z, Zhou S,
Li S, Yang H, Li Z, Zheng E, Huang W,

Yang J and Wu Z (2019) Exploring
the Fecal Microbial Composition

and Metagenomic Functional
Capacities Associated With Feed

Efficiency in Commercial DLY Pigs.
Front. Microbiol. 10:52.

doi: 10.3389/fmicb.2019.00052

Exploring the Fecal Microbial
Composition and Metagenomic
Functional Capacities Associated
With Feed Efficiency in Commercial
DLY Pigs
Jianping Quan1†, Gengyuan Cai1,2†, Ming Yang2, Zhonghua Zeng1, Rongrong Ding1,
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Zicong Li1, Enqin Zheng1, Wen Huang3, Jie Yang1* and Zhenfang Wu1*
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Gut microbiota has indispensable roles in nutrient digestion and energy harvesting,
especially in processing the indigestible components of dietary polysaccharides.
Searching for the microbial taxa and functional capacity of the gut microbiome
associated with feed efficiency (FE) can provide important knowledge to increase
profitability and sustainability of the swine industry. In the current study, we
performed a comparative analysis of the fecal microbiota in 50 commercial
Duroc × (Landrace × Yorkshire) (DLY) pigs with polarizing FE using 16S rRNA gene
sequencing and shotgun metagenomic sequencing. There was a different microbial
community structure in the fecal microbiota of pigs with different FE. Random forest
analysis identified 24 operational taxonomic units (OTUs) as potential biomarkers to
improve swine FE. Multiple comparison analysis detected 8 OTUs with a significant
difference or tendency toward a difference between high- and low-FE pigs (P < 0.01,
q < 0.1). The high-FE pigs had a greater abundance of OTUs that were from
the Lachnospiraceae and Prevotellaceae families and the Escherichia-Shigella and
Streptococcus genera than low-FE pigs. A sub-species Streptococcus gallolyticus
subsp. gallolyticus could be an important candidate for improving FE. The functional
capacity analysis found 18 KEGG pathways and CAZy EC activities that were different
between high- and low-FE pigs. The fecal microbiota in high FE pigs have greater
functional capacity to degrade dietary cellulose, polysaccharides, and protein and may
have a greater abundance of microbes that can promote intestinal health. These results
provided insights for improving porcine FE through modulating the gut microbiome.
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INTRODUCTION

Feed cost accounts for nearly 70% of the total cost in pig
production (Teagasc, 2015). Therefore, improving feed
efficiency (FE) of the pig will reduce feeding expense and
increase profitability while also reducing the environmental
impact of pig production (Rotz, 2004). In the commercial pig
population, especially in Duroc × (Landrace × Yorkshire)
(DLY) pigs, the improvement in FE will bring obvious
benefits. The FE can be measured by using residual feed
intake (RFI) or the feed conversion ratio (FCR). The FCR
is calculated as the feed intake divided by the body weight
gained. In other words, the high-FCR individuals are less
efficient at converting feed into body weight than the
low-FCR individuals. The FE in this study was measured
by FCR.

In recent years, analyzing the microbiota of breeding animals
has gained interest because it allows for the prediction of
the potential function and associated metabolites of such
communities, which are believed to impact all aspects of host
physiology including nutrient processing, energy harvesting, and
animal performance (Hiergeist et al., 2015; Xiao et al., 2016;
Ferrario et al., 2017; Fouhse et al., 2017; Tan et al., 2017).
Previous studies have revealed a possible link between the
intestinal microbiota and FE in pigs; e.g., Tan et al. (2018)
discovered that in Landrace pigs, the high-FCR pigs had a
greater abundance of Lactobacillus and Streptococcus than the
low-FCR pigs. In Large White × Landrace pigs, there was
a greater abundance of Christensenellaceae, Oscillibacter, and
Cellulosilyticum in the gastrointestinal tract of high-FE pigs
(McCormack et al., 2017). In Duroc pigs, Yang et al. (2016)
identified 31 operational taxonomic units (OTUs) showing
potential associations with FE. Interestingly, these studies
also imply that in different breeds of pigs, there may be
differences in microbial composition and advantage species.
Xiao et al. (2017) also indicated that breed-specific bacteria
in swine intestinal tract may exist, even when pigs were
treated with the same diet, farm conditions, and management
methods.

There are few studies that focus on the association between
microbial composition and functional capacity in regards to FE
in DLY pigs. For DLY pigs, which are the largest population in the
world porcine industry, understanding the relationships between
the intestinal tract and host FE performance is meaningful. In
our previous studies, we found that DLY pigs with contrasting
FE have 11, 55, and 55 OTUs that were different among ileum,
cecum and colon (Quan et al., 2018). The functional predictive
analysis suggested that the microbial fermentation in cecum
and colon may play important roles in improving porcine FE.
However, due to the limitations of the research strategy, we
have not been able to annotate the microbial gene into more
functional database and get more detailed microbial classification
differences between high- and low- FE pigs. In this study, we used
16S rRNA gene sequencing and high-throughput metagenomic
sequencing to investigate whether the microbiota composition
and potential functionality of the intestinal microbiota are linked
with FE.

MATERIALS AND METHODS

Animals and Sample Collection
This study was conducted according to the protocols approved by
the Animal Care and Use Committee (ACUC) of the South China
Agricultural University (SCAU) (approval number SCAU#0017).
In an experimental pig farm (Guangdong, Yunfu, Southern
China), a total of 226 normal weaning (28-day-old) commercial
DLY female pigs were randomly raised in a fattening house
comprised of 30 pens, each housing 6–8 pigs. All of the pigs
that were analyzed in this study were selected from populations
with similar genetic backgrounds and were the same gender.
During the fattening stage, the pigs were raised with the same
customized diet in man-controlled farm conditions and similar
management conditions. The customized corn-soybean feed (free
of probiotics and antibiotics) contained 16% crude protein, 3100
kJ of digestible energy and 0.78% lysine. The diet was available
ad libitum from an automatic feeding trough, Osborne’s FIRE
(Feed Intake Recording Equipment) System (Osborne Industries
inc, Osborne, Kansas), which can separately record daily feed
intake and daily body weight gain of each pig. Water was available
ad libitum from nipple drinkers. During the whole experiment,
any pigs treated with antibiotics were removed from the study.
The FCR values of all pigs were calculated at 140 days of age.
After the FCR value ranking of each pig, the 25 pigs with the
lowest FCR (highest FE) and the 25 pigs with the highest FCR
(lowest FE) were selected for this study. The fecal samples of
50 sows were collected following rectal stimulation and were
transferred immediately to liquid nitrogen for temporary storage.
Then, the samples were sent to the laboratory where they were
stored at−80◦C until analysis. We further chose six fecal samples
for metagenomic sequencing. These six pigs included three
individuals from the high-FE group and their full siblings from
the low-FE group.

DNA Extraction, PCR Amplification, and
16S rRNA Gene Sequencing
Fecal DNA was extracted using a Soil GenomeTM DNA
Isolation Kit (Qiagen, Düsseldorf, Germany) in accordance
with the manufacturer’s instructions. DNA concentration
and quality were measured using UV-Vis spectrophotometry
(NanoDrop 2000, Waltham, MA, United States) and agarose
gel electrophoresis. The DNA obtained from each sample was
diluted to 1 ng/µL with sterile water. Amplification of the
V4–V5 hypervariable region of the bacterial 16S rRNA gene
was performed using universal primers, where the reverse
primer contained a 6-bp error-correcting barcode unique
to each sample (515f: 5′-GTGCCAGCMGCCGCGGTAA-3′,
907r: 5′-CCGTCAATTCCTTTGAGTTT-3′). Amplification
was performed using an initial denaturation at 98◦C for 1 min
followed by 30 cycles of denaturation at 98◦C for 10 s, annealing
at 50◦C for 30 s, elongation at 72◦C for 30 s, and a final step
at 72◦C for 5 min. All PCR reactions were carried out using
Phusion R© High-Fidelity PCR Master Mix (NEB, Ipswich, MA,
United States). PCR products were run in an electrophoresis
chamber on a 2% agarose gel to confirm the successful
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amplification of the target gene. DNA bands of 400–450 bp,
corresponding to the 16S rRNA gene amplicon, were excised
and purified using the GeneJET Gel Extraction Kit (Thermo
Fisher Scientific, Waltham, MA, United States) according to the
manufacturer’s instructions. Purified amplicons were used for
library preparation and pyrosequencing. Sequencing libraries
were generated using NEB Next R© UltraTM DNA Library Prep Kit
for Illumina (NEB, Ipswich, MA, United States), following the
manufacturer’s recommendations, and index codes were added.
A Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, United States) and Agilent Bioanalyzer 2100 system were
used to assess the quality of the library. Pyrosequencing was
performed on the Illumina HiSeq 2 × 250 platform (Illumina,
San Diego, CA, United States). The 16S rRNA gene sequence
data have been deposited in the NCBI SRA database with an
accession number of SUB4418365.

Processing of Sequencing Data
Sequencing reads were assigned to each sample, based on
unique barcodes, and truncated by cutting off the barcode and
primer sequence. The original DNA fragments were merged
into tags using FLASH (v1.2.7) (Magoc and Salzberg, 2011).
Quality filtering of the raw tags was performed under specific
filtering conditions to generate high-quality clean tags according
to the QIIME (v1.9.1) quality-controlled process (Caporaso
et al., 2010). To generate effective tags, the chimeric sequences
were removed from clean tags using the UCHIME algorithm
based on the reference database (Gold database) (Haas et al.,
2011). After selecting representative species for each OTU, each
of the remaining sequences was assigned to an OTU when
at least 97% threshold identity was obtained using UPARSE
software (v7.0.1) (Edgar, 2013). The taxonomy of each OTU
representative sequence was assigned for further annotation
using the RDP Classifier algorithm1 (Wang et al., 2007) against
the SILVA ribosomal RNA gene database. Subsequent analyses
were performed based on the OTU information. A Venn diagram
was generated using the VennDiagram R package to show shared
and unique OTUs between high- and low-FE pigs.

In this study, we used mothur software (v.1.30.1) to
calculate the community alpha diversity indices, including Chao1
and ACE indices, which estimate community richness, and
Shannon and Simpson indices, which estimate community
diversity (Schloss et al., 2011). A significant difference in alpha
diversity between high- and low-FE groups was determined
using the Mann–Whitney U-test. Moreover, we also calculated
the community pan-OTU number and Good’s coverage index
to evaluate sample size and the sequencing depth. Principal
component analysis (PCA) was determined to evaluate the
community structure similarity between the samples in the
high- and low-FE groups. Significant differences in beta-diversity
across opposite FE groups were evaluated using permutational
multivariate analysis of variance (PERMANOVA) with 104

permutations. In addition, the effects of pen information,
initial weight and final weight on variance of sample microbial
community composition were evaluated by PERMANOVA

1http://rdp.cme.msu.edu/

analyses (Anderson, 2001; Anderson and Walsh, 2013). Bacterial
taxonomic distributions of sample communities were visualized
using the ggplot2 R package. In subsequent analyses, taxa
occurring in less than three samples with a relative abundance
less than 0.01% of the total community were removed. To test
whether microbial community composition can predict feed
conversion, we trained a random forest model at the OTU level
on all samples based on a random sampling with replacement
(Number of decision trees = 500). We evaluated the performance
using 10-fold cross-validation. The cross-validation error curve
(average of 5 test sets each) of the 10-fold cross-validation was
averaged. The variable importance by mean decrease in accuracy
was calculated. The predictive power was scored in a receiver
operating characteristic (ROC) analysis. The discriminatory
power of OTUs was calculated as the area under the ROC curve
(AUC) using the plotROC R package.

The comparison of relative abundances of OTUs between
high- and low-FE pigs was performed using Welch’s t-test in
STAMP software (White et al., 2009). The Benjamini–Hochberg
False Discovery Rate (FDR) method (q-value) was used to correct
the multiple comparisons (Benjamini and Hochberg, 1995). The
statistical cutoff of the p-value <0.05 (Welch-Test) and q-value
<0.05 (FDR) were set as the significance threshold. The relative
abundance of different OTUs between high- and low-FE pigs was
visualized by heatmap using vegan R package.

Metagenomic Sequencing and Statistical
Analyses
Metagenome sequencing libraries were generated with an
insert size of 350 base pairs (bp) for six fecal DNA samples
following the manufacturer’s instructions (Illumina, San
Diego, CA, United States). The libraries for metagenomic
analysis were sequenced on an Illumina HiSeq 2500 platform
by an Illumina HiSeq – PE150 strategy. The raw reads were
treated to remove reads with low qualities, trim the read
sequences and remove adaptors using Readfq software (v8).
The metagenomic sequencing data have been deposited
in the NCBI SRA database with the accession number
SUB4056369. Subsequently, pig genomic DNA sequences
were removed by SOAPaligner software (v2.21) (Li et al.,
2008).

De novo assembly of high quality reads was performed using
SOAPdenove software (v2.04) with the parameters -d 1, -M 3,
-R, -u, -F. Scaffolds were broken into new scaftigs at their gaps
(Luo et al., 2012). Meanwhile, the scaftigs with a length less
than 500 bp were removed, and the number of scaftigs ≥500 bp
was calculated. The qualified scaftigs were applied to predict
the bacterial open reading frames (ORFs) by MetaGeneMark
(v2.10) software, and the sequences with lengths less than 100 bp
were filtered out (Zhu et al., 2010). CD-HIT software (v4.5.8)
was used to exclude the redundant genes from all predicted
ORFs to construct a preliminary non-redundant gene catalog
(Fu et al., 2012). Subsequently, clean reads of each sample
were compared to the preliminary non-redundant gene catalog
using SOAPaligner with the parameters of -m 200, -× 400,
identity ≥95%. The number of reads was compared for each
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gene that could be calculated. The genes with a read number
≤2 were removed to obtain a final non-redundant gene catalog
(Qin et al., 2012). The genes in the final non-redundant gene
catalog were called unigenes. The abundance of a gene was
calculated based on the number of reads that aligned to the
gene, normalizing by the gene length and the total number
of reads aligned to the unigenes (Karlsson et al., 2012). The
specific formula for the relative abundance calculation of a gene
was Gk =

rk
Lk
·

1∑n
i = 1

ri
Li

., here r is the number of reads mapped

to a gene and L is the length of gene. Subsequently, we used
DIAMOND software (V0.7.9) to compare the unigenes with
the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
database to obtain KO annotation information and metabolic
pathway information (Buchfink et al., 2015). We compared
the unigenes with the Carbohydrate-Active enzymes database
(CAZy) to obtain information on species and the functional
classification of EC.

To determine the differential abundance of functional features
between the high- and low-FE groups, Metastats analysis was
applied (White et al., 2009). The Benjamini–Hochberg FDR
method (q-value) was used to correct the multiple comparisons
(Benjamini and Hochberg, 1995). Z-scores were calculated to
construct a heatmap to demonstrate the relative abundance of the
pathways in each group with the formula z = (x−µ)/σ, where
x is the relative abundance of the pathways in each group, µ

is the mean value of the relative abundances of the pathways

in all groups, and σ is the standard deviation of the relative
abundances.

RESULTS

Phenotypic Values of Porcine FCR and
Community Composition of Porcine
Fecal Microbiota
All experimental pigs had daily feed intake and daily body weight
gain separately recorded during the fattening stage (28-day-old
to 140-day-old). The 25 pigs with the highest FE (FCR value:
2.29 ± 0.080) and the 25 pigs with the lowest FE (FCR value:
2.60 ± 0.088) were selected for this study. The FCR value was
significantly different between the high- and low-FE groups
(p-value < 0.001, Figure 1A and Supplementary Table S1).

A total of 50 pigs, which included extreme FCR values, were
selected, and 16S rRNA gene sequencing was performed, which
generated a total of 3,788,293 DNA sequence reads, aligned
into 2,851,748 effective tags after quality control. Based on the
97% sequence similarity, the number of OTU samples ranged
from 569 to 1037. The pan-OTU numbers of community would
reach saturation when the sample size was greater than thirty
(Figure 1B) and the Good’s coverage indices in high- and low-FE
groups were greater than 99% (Figure 1C), which indicated
a sufficient sample size and adequate sequencing depth for

FIGURE 1 | The feed conversion ratio value (FCR), pan OTUs, Good’s coverage and community composition in high- and low-feed-efficiency (FE) pigs. Groups are
coded according to the feed efficiency status (High_FE, high feed efficiency; Low_FE, low feed efficiency). (A) FCR value in high- and low-FE pigs. (B) Pan
OTU = sample size. The horizontal axis represents the number of samples. The vertical axis represents the number of OTUs contained in all samples. (C) Good’s
coverage value in high- and low-FE pigs. (D) Community composition at the phylum level in high- and low-FE pigs. (E) Community composition at the genus level in
high- and low-FE pigs.
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this study. The Venn diagrams show that 1437 OTUs were
shared between the high- and low-FE groups. Only 44 and 60
OTUs were unique in the low- and high-FE groups, respectively
(Supplementary Figure S1A).

These OTUs were annotated to the phylum, class, order,
family and genus classification level. At the phylum level, the
high- and low-FE pigs’ microbial community was dominated
by Firmicutes (67.47% vs. 63.35%), Bacteroidetes (24.40% vs.
24.68%), Tenericutes (2.43% vs. 7.01%), Spirochaetes (2.66% vs.
2.11%), and Proteobacteria (1.93% vs. 1.49%) (Figure 1D). At
the genus level, Streptococcus (11.80%), Clostridium sensu stricto
1 (11.11%), and Lactobacillus (10.19%) were the three most
abundant genera in the high-FE group; Clostridium sensu stricto
1 (15.21%), Lactobacillus (7.51%), and uncertain genera from
Bacteroidales S24-7 (7.40%) were the three most abundant genera
in the low-FE group (Figure 1E).

To further investigate microbial composition at the species
level, shotgun metagenomic sequencing was performed in six
fecal samples from three pairs of full-siblings having the
high- and low-FCR phenotypes. The metagenomic sequencing
produced a total of 56 Gbp of clean reads after removing
low-quality sequences and host genomic DNA sequences. After
subsequent assembly, a total of 1.15 million scaftigs with an
average length of 1,095 bp and an average N50 length of 1,152 bp
were produced. The phylogenetic composition of the fecal
microbiota determined by shotgun metagenomic sequencing was
similar to the result obtained in the 16S rRNA gene sequencing.
Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria were
the dominant phyla (Supplementary Figure S1B). At the species
level, we detected a total of 6,972 bacterial species from all six fecal
samples. Firmicutes bacterium CAG:110, Treponema bryantii and
Bacteroides sp. CAG:1060 were the three most abundant species
(Supplementary Figure S1C).

Comparison of Fecal Microbial
Community Diversity Between High- and
Low-FE Pigs
To evaluate the alpha-diversity of bacterial communities in high-
and low-FE pigs, we compared the community richness indices
(Chao1 and ACE) and diversity indices (Shannon and Simpson)
of the microbiota in high- and low-FE pigs. We found that
high-FE pigs have significantly higher Chao1 and ACE indices
than low-FE pigs (P < 0.01, Figure 2A and Supplementary
Figure S2A). However, the Shannon and Simpson indices were
not significantly different between these two groups (Figure 2B
and Supplementary Figure S2B). Based on the abundance
profiling of the OTU level, PCA analysis showed that most of
the samples could be clustered into two groups, which was very
consistent with the grouping results according to performance
of feed conversion (Figure 2C). A significant dissimilarity in
beta-diversity between high- and low-FE groups was observed
(PERMANOVA, p-value <0.01). Based on the abundance
profiling of species level generated by metagenomic sequencing,
there were also a clear difference in bacterial composition in
the high- and low-FE pigs (Supplementary Figure S2C). In
addition, we found that the initial weight and final weight had no

significant effect on porcine fecal microbial composition (p-value
>0.3). The pig pen had a tendency to make effect on microbial
composition, but also cannot reach the significant level in our
study (p-value = 0.077) (Supplementary Table S2).

Identification of Potential Biomarkers
That Could Account for the FE
Differences
To determine whether OTUs could serve as biomarkers to
classify pigs into high- and low-FE groups and which OTUs
play important roles in this process, we constructed a random
forest model. The OTU-level random forest model had an
error of 0.025 when the number of top important variables
was 24 (Figure 3A). The mean decrease in accuracy of the
top 24 important variables is shown in Figure 3B. Six OTUs
that included the top three important variables (OTU509,
OTU1013, and OTU197) for predicting FE were annotated to
the genus of Streptococcus. Fortunately, based on the existing
database information, the most important candidate biomarker
(OTU509) can also be annotated to species level, which was
Streptococcus gallolyticus subsp. gallolyticus. Ten OTUs were
annotated to the family of Lachnospiraceae (OTU962, OTU555,
OTU1185, OTU931, OTU738, OTU684, OTU403, OTU399,
OTU928, and OTU458). Two pairs of OTUs were annotated to
the families of Erysipelotrichaceae (OTU1434 and OTU826) and
Ruminococcaceae (OTU1094 and OTU1355). Four single OTUs
were annotated to the families Coriobacteriaceae (OTU123),
Peptococcaceae (OTU670), Prevotellaceae (OTU10), and
Enterobacteriaceae (OTU398) (Figure 3B and Supplementary
Table S3). The area under the ROC curve (AUG) was 0.99 based
on the 24 most important variables (Figure 3C).

We further compared the abundance of OTUs between the
high- and low-FE pigs using STAMP software with Welch’s
t-test. We detected only two OTUs (OTU509 and OTU1013)
that were significantly different between pigs with low or high
FE using p-value <0.05 and q-value <0.05 as the significance
threshold. However, at a threshold of p-value <0.01 and q-value
<0.1, we identified an additional six OTUs with a tendency
toward a difference (Figure 3D). The average abundance of
these OTUs between the high- and low-FE groups are shown in
Supplementary Figure S3. Most of these OTUs were contained in
the OTU list that outlined important variables to account for the
differences in FE (Supplementary Table S4), except OTU1456,
which was annotated to the order Clostridiales.

Comparison of the Functionality of the
Fecal Microbiome in High- and Low-FE
Groups Based on Metagenomic
Sequencing
Comparison of the functional capacity of the gut microbiome
can help to investigate the metabolic differences between high-
and low-FE groups and further indicate the microbes that may
affect special nutrient metabolism. The functional capacity was
determined according to the annotation of ORFs predicted from
the assembled contigs. The predicted genes were then aligned
with the KEGG gene database to obtain the KO annotation
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FIGURE 2 | The community diversity between fecal samples from high- and low-FE pigs at the OTU level. (A) The Chao1 index in high- and low-FE pigs. (B) The
Shannon index in high- and low-FE pigs. (C) Principal component analysis (PCA) of the fecal microbiota based on OTUs.
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FIGURE 3 | Important biomarkers selected by random forest analysis and the different abundance of OTUs in high- and low-FE pigs. (A) Model evaluation by using
top important variables. The horizontal axis represents the number of variables ranked by importance. The vertical axis denotes the average prediction error rate
using 10-fold cross-validation when using the number of corresponding variables. (B) The ordination diagram of variables of importance. The horizontal axis is the
measurement standard of variables of importance, and the value is equal to the measurement value of variables of importance/standard deviation. The vertical axis is
the variable names sorted by importance. (C) ROC of the random forest classifier based on the 24 most important variables. The AUC value is the area under the
corresponding curve. When the AUC > 0.5, the AUC value is closer to 1, the diagnostic effect is better. (D) The OTUs with a significantly different abundance
between high- and low-FE pigs detected by STAMP software.

information from the KEGG database (see section “Materials and
Methods”). A total of 1,857,107 ORFs were found with an average
length of 616 bp. We identified a total of 352,002 KEGG genes
and assigned them into 322 KEGG pathways. Subsequently, we
compared the KEGG pathways abundance between the high- and
low-FE groups, but no pathways were significantly different at
FDR < 0.05. When we relaxed the threshold (p-value <0.05 and
q-value <0.3), 18 pathways showed different enrichment at level
3. Eight pathways were more enriched in high-FE groups, and 10
pathways were more enriched in low-FE groups. The pathways
that were enriched in high-FE pigs were associated with protein
metabolism (ko04974), lipid metabolism (ko00600), and glycan
degradation (ko00511). The pathways enriched in low-FE pigs
involved endocrine regulation (ko03320 and ko04924), signal
transduction (ko04152), the immune system (ko04622) and
cardiovascular diseases (05410) (Figure 4A and Supplementary
Table S5).

We further investigated the functional information of genes
in the CAZy database; over forty thousand genes were identified
and categorized into six CAZy classes. Glycoside hydrolases
(GHs), glycosyl transferases (GTs) and carbohydrate-binding

modules (CBMs) were the three classes enriched the most in
both the high- and low-FE groups (Supplementary Figure S4).
When we compared the EC activity abundance between the
high- and low-FE groups, we found that 15 EC activities were
more abundant in the high-FE groups, and 3 EC activities
were enriched in the low-FE groups (p-value <0.05, q-value
<0.05). The higher abundance of EC activities in the high-FE
groups involved the degradation of xylan, cellulose and many
other polysaccharides. The low-FE pigs have a greater abundance
of three kinds of fucosyltransferases than the high-FE pigs
(Figure 4B and Supplementary Table S6).

DISCUSSION

Metagenomic approaches based on high-throughput sequencing
methods have rapidly facilitated the compositional and
functional study of the gut microbiota in recent years (Fraher
et al., 2012; Weinstock, 2012). Based on these high-throughput
sequencing methods, many previous studies had revealed
potential microbial biomarkers for improving FE in multiple
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FIGURE 4 | Heatmap of functional capacity profiles showing different enrichment in high- and low-FE pigs by metagenomic sequencing analysis. Samples are
coded according to the feed efficiency status (HighFE, high feed efficiency; LowFE, low feed efficiency). For example, HighFE.1 represented the first sample that was
collected from high-feed-efficiency pig. (A) Heatmap of KEGG pathways showing different enrichments in high- and low-FE pigs. (B) Heatmap of CAZy EC activities
showing different enrichments in high- and low.
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breeds of pigs (McCormack et al., 2017; Tan et al., 2017, 2018;
Yang et al., 2017; Quan et al., 2018). However, this study is
one of the first to combine the technology of 16S rRNA gene
sequencing and shotgun metagenomic sequencing to analyze
the fecal microbial composition and function in commercial
DLY pigs with high and low FE. All experimental pigs were
selected from populations with similar genetic backgrounds.
They were the same gender and were subjected to the same
environmental, nutritional and management conditions to
minimize the variability in FE due to genetic, gender, and
external factors. Even in this well-controlled environment,
there was still polarization in the FE of the experimental pig
population. The difference in the intestinal microbiota in the
experimental pigs was partly contributed to this phenomenon,
which was suggested by previous studies (Nicholson et al., 2012;
Parks et al., 2013; Yang et al., 2014). Although the experimental
pig population and the number of sequencing samples is not
particularly large in this study, the obvious FE variations reflect
the real phenomenon in the pig industry. The pan-OTU number
and the Good’s coverage indices in the sequencing samples
showed sufficient sampling of the population and adequate depth
to investigate different bacterial species in the high- and low-FE
pigs. The different bacterial species that were involved in feed
nutrient processing and energy harvesting in high- and low-FE
DLY pigs could be considered potential microbial biomarkers
for FE.

When looking at the fecal microbiota composition, consistent
with previous findings in pigs, the core phyla within the fecal
microbiota were dominated by Firmicutes and Bacteroidetes
(Yang et al., 2016; Xiao et al., 2017). Bacteroidetes have an
important role in degrading indigestible dietary polysaccharides
into short-chain fatty acids that can be reabsorbed by the host
(Becker et al., 2014). Firmicutes were also thought to play a
vital role in the energy harvest of mice (Turnbaugh et al.,
2006). This finding may indicate that the dominant core phyla
maintain a balance and can ensure the stability of intestinal
function during the growth process in pigs. However, in our
present study, we did not observe differences in Bacteroides and
Firmicutes in high- and low-FE pigs. These findings differed
with the results in pigs that showed an increase in Firmicutes
in high fatness compared with low fatness subjects (Yang et al.,
2016). Furthermore, when considering the annotation result at
the genera level of the swine fecal microbiota, many studies had
different classification compositions. In Yang et al.’s (2016) study,
Prevotella, Lactobacillus, and Treponema were the three most
abundant genera in Duroc pigs. Prevotella, Streptococcus, and
SMB53 were the three most abundant genera in Hampshire pigs,
and Clostridium, SMB53, and Streptococcus were the three most
abundant genera in Landrace and Yorkshire pigs in Xiao et al.
(2017) study. This result suggested a special composition of the
intestinal microbial community at the genus level, which may be
due to differences in the breed, age, feed, and husbandry of pigs.

When we compared the bacterial community composition
between the high- and low-FE pigs, we found that the community
structure was significantly different (Figures 2A,C). The
community of high-FE pigs had more richness and similar
diversity to that of low-FE pigs. This finding suggested that the

difference in FE is not due to the presence of specific bacteria in
high-FE pigs but to the larger number of certain bacteria. These
differences may come from colonized difference in the early life
of mammalian, whose gut microbiome were thought to be at
least partially shared by their parents, and it is relatively stable
to perturbation once a dense microbial population is established
(Antonopoulos et al., 2009; Snijders et al., 2016). However,
no study has confirmed the causality between the microbial
difference of offspring and their parents in pigs. In the present
study, since the dams of our experimental pigs could not be fully
tracked, we could not conclude that mother animals would cause
a bias between high- and low FE pigs. In addition, gut microbiota
composition may also be influenced by environmental factor
(Yang et al., 2017), such as pig pen. However, in our study, the pig
pen did not have a significant effect on porcine fecal microbial
composition, but had a tendency to take a significant effect
(p-value = 0.077) (Supplementary Table S2). In the current
study, the random forest analysis showed that many OTUs
played important roles in varying FE (Figure 3B). According to
the annotation information from these OTUs, bacteria belonging
to the genus Streptococcus and the families Lachnospiraceae,
Erysipelotrichaceae, Ruminococcaceae, Coriobacteriaceae,
Peptococcaceae, Prevotellaceae, and Enterobacteriaceae may be
important candidates to improve swine FE. Furthermore, the
OTUs that were enriched in high-FE pigs were mainly found in
Streptococcus, Escherichia-Shigella, and Prevotellaceae NK3B31
and the family Lachnospiraceae (Figure 3D and Supplementary
Table S4).

A previous study suggested that Lachnospiraceae was
associated with human obesity (Cho et al., 2012). Kameyama and
Itoh (2014) reported that a bacterial strain of Lachnospiraceae
can induce obesity in mice. Many members of Lachnospiraceae
can produce short-chain fatty acids (SCFAs) by fermenting
dietary polysaccharide (Pryde et al., 2002). The SCFAs were
linked to a reduced risk of developing gastrointestinal disorders,
cancer and cardiovascular disease and promote human obesity
(Wong et al., 2006; Cho et al., 2012). Therefore, we hypothesized
that the Lachnospiraceae might improve porcine FE by
maintaining the gut in a healthy state to increase its absorptive
capacity. Prevotellaceae is reported to relate to several diseases,
such as asthmatic airway inflammation and arthritis, and
associate with mucin degradation (Brinkman et al., 2011;
Scher et al., 2013). Several members of Prevotellaceae were
well-known succinate producer and can improve glucose
homeostasis through activation of intestinal gluconeogenesis
(De Vadder et al., 2016). A recent study reported that the
succinate level was associated with carbohydrate metabolism and
energy production (Serena et al., 2018). This study indicated
that Prevotellaceae may increase FE in pigs by promoting
host health or energy metabolism. A study in dairy calves
suggested that SCFA concentration and carbohydrate utilization
were significantly correlated with Escherichia-Shigella (Song
et al., 2018). Streptococcus has been generally considered
a health-promoting microbe for its roles in modulating
human health (Kleerebezem and Vaughan, 2009). Many species
belonging to Streptococcus were associated with carbohydrate
fermentation, starch hydrolysis and the production of glucan

Frontiers in Microbiology | www.frontiersin.org 9 January 2019 | Volume 10 | Article 52204

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00052 January 25, 2019 Time: 17:50 # 10

Quan et al. Porcine Feed Efficiency-Associated Microbes

from sucrose (Facklam, 1972; Nelms et al., 1995). In this
study, Streptococcus gallolyticus subsp. gallolyticus (annotated by
OTU509) was considered an important candidate that might be
used for improving porcine FE. Most strains of this species can
ferment mannitol, trehalose, and inulin and can produce acid
from starch and glycogen (Schlegel et al., 2003). These finding
suggested that high-FE pigs are likely to have a greater abundance
of intestinal microbes that can promote host intestinal health
or degrade dietary carbohydrates. Therefore, high-FE pigs might
have a greater ability to utilize feed and better intestinal health
than low-FE pigs.

We also performed functional capacities analyses. Although
we did not identify any core metabolic pathways at the q-value
<0.05 level, some pathways showed a trend toward difference
in high- and low-FE pigs. The pathways associated with protein
metabolism (ko04974), lipid metabolism (ko00600), and glycan
degradation (ko00511) were enriched in high-FE pigs. The
higher abundance of protein metabolism and glycan degradation
pathways in the high-FE groups had been reported in previous
studies (Li and Guan, 2017; Yang et al., 2017). The experimental
pigs in this study were fed with a fiber-enriched and high-protein
diet. Therefore, the fecal microbiota may be more competent
in terms of utilizing the diet protein. It is interesting that the
fecal microbes of high-FE pigs have relatively more pathways
of lipid metabolism, and it was believed that most of digestion
and absorption occur in the small intestine (Rudd, 2012; Voet
et al., 2013). We confirmed whether the fecal microbes have
a compensatory metabolism function for unmetabolized lipid.
Analysis of the microbial gene functional annotation in the CAZy
database revealed expected results. In high-FE groups, the EC
activities included the degradation of xylan, cellulose and many
other polysaccharides. These functional results were consistent
with the previous hypothesis that the high-FE pigs might have
a greater ability to utilize dairy protein and carbohydrate than
low-FE pigs.

CONCLUSION

In conclusion, there was a different microbial community
structure in the fecal microbiota of pigs with different FE.
We detected 24 OTUs that can serve as potential biomarkers
to improve swine FE. Eight OTUs were significantly different
or had a trend toward difference in the high- and low-FE
pigs. The high-FE pigs had a greater abundance of OTUs
in the families Lachnospiraceae and Prevotellaceae and in
the genera Escherichia-Shigella and Streptococcus compared to
low-FE pigs. Streptococcus gallolyticus subsp. gallolyticus could

be an important candidate microbe for improving FE. We
detected 18 KEGG pathways and CAZy EC activities that were
different between high- and low-FE pigs. We found that the
fecal microbiota in high-FE pigs have a greater capacity to
degrade dietary cellulose, polysaccharide, and protein and may
have a greater abundance of microbes to promote intestinal
health. These findings should improve our understanding of the
differences in the fecal microbial composition between high-
and low-FE commercial pigs and provide important candidate
microbes that can potentially use for improving porcine FE.
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Investigating inter-subject heterogeneity (or spatial distribution) of human semen

microbiome diversity is of important significance. Theoretically, the spatial distribution

of biodiversity constitutes the core of microbiome biogeography. Practically, the

inter-subject heterogeneity is crucial for understanding the normal (healthy) flora of

semen microbiotas as well as their possible changes associated with abnormal fertility.

In this article, we analyze the scaling (changes) of semen microbiome diversity across

individuals with DAR (diversity-area relationship) analysis, a recent extension to classic

SAR (species-area relationship) law in biogeography and ecology. Specifically, the unit

of “area” is individual subject, and the microbial diversity in seminal fluid of an individual

(area) is assessed via metagenomic DNA sequencing technique and measured in the

Hill numbers. The DAR models were then fitted to the accrued diversity across different

number of individuals (area size). We further tested the difference in DAR parameters

among the healthy, subnormal, and abnormal microbiome samples in terms of their

fertility status based on a cross-sectional study of a Chinese cohort. Given that no

statistically significant differences in the DAR parameters were detected among the three

groups, we built unified DAR models for semen microbiome by combining the healthy,

subnormal, and abnormal groups. The model parameters were used to (i) estimate the

microbiome diversity scaling in a population (cohort), and construct the so-termed DAR

profile; (ii) predict/construct the maximal accrual diversity (MAD) profile in a population; (iii)

estimate the pair-wise diversity overlap (PDO) between two individuals and construct the

PDO profile; (iv) assess the ratio of individual diversity to population (RIP) accrual diversity.

The last item (RIP) is a new concept we propose in this study, which is essentially a ratio of

local diversity to regional or global diversity (LRD/LGD), applicable to general biodiversity

investigation beyond human microbiome.

Keywords: semenmicrobiome, biogeography, inter-subject heterogeneity, DAR (diversity-area relationship), beta-

diversity, RIP (ratio of individual to population accrual diversity), LRD/LGD (ratio of local to regional/global

diversity)
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INTRODUCTION

Similar to other humanmicrobiome habitats such as gut, vaginal,
or breast milk, human seminal fluid also hosts a microbiome
including several hundreds of bacterial species per individual
with various levels of abundances (Kiessling et al., 2008; Moretti
et al., 2009; De Francesco et al., 2011; Hou et al., 2013; Weng
et al., 2014). The seminal microbiome, just like other human
microbiomes, is highly personalized. If we considered a cohort
or population of men, their semen microbiomes are independent
in ecological time in general, and each individual is not unlike
an island available for microbes to invade and/or inhabit. Similar
scenarios have been investigated extensively in macro-ecology
of plants and animals since the 1960s, started with MacArthur
and Wilson’s (1967) island biogeography. The biogeography
studies the spatial and/or temporal distribution of biodiversity
and is a foundation of the modern conservation biology and
biodiversity conservation in large. It has been widely recognized
that seminal microbiome is implicated, at least in some of the
male infertilities (Kiessling et al., 2008; Moretti et al., 2009; De
Francesco et al., 2011; Domes et al., 2012; Hou et al., 2013;
Weng et al., 2014). Therefore, investigating the biogeography or
spatial distribution of seminal microbiome diversity is necessary
for deep understanding the seminal microbiome as well as their
implications for male infertility.

Prior to recent large-scale DNA sequencing studies of seminal

microbiome samples (e.g., Hou et al., 2013; Weng et al., 2014),
most studies on seminal microbes were focused on acute and
chronic microbial infections, either based on PCR, microscopic
or artificially culture-based methods (Keck et al., 1998; Henkel
et al., 2006; Kiessling et al., 2008; Lbadin and Ibeh, 2008;
Ochsendorf, 2008; Moretti et al., 2009; Akutsu et al., 2012; Domes
et al., 2012), and majority of the early studies were conducted to
explore the relationship between infections and male infertility.

It was reported that infectious etiologies cause about 15% of
male infertility cases (Diemer et al., 2003; Weng et al., 2014).
The adoption of NGS (next generation sequencing) technologies

have lead to significant advances in understanding the semen
microbiome, because it greatly expanded our capability to detect
virtually all bacteria in seminal fluid with rather low cost. Since
the cataloging the semen microbes is not limited to infectious or
opportunistically infectious microbes anymore, the NGS-based
metagenomic technology and associated bioinformatics analyses
have made the examination of the whole seminal microbiome
from ecological perspective a routine research technique. For
example, Weng et al. (2014) showed that the most abundant
genera among the semen samples of 96 Chinese individuals were
Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%),
and Gardnerella (4.21%). They further found that the seminal
bacterial communities were clustered (through unsupervised
clustering analysis) into three major types, dominated by
Lactobacillus, Pseudomonas, and Prevotella, respectively. They
also investigated the association between seminal microbial
community and semen quality. In spite of the significant
advances made in the existing studies, to the best of our
knowledge, no studies with biogeography approaches to seminal
fluid microbiome have ever been performed. As mentioned

previously, biogeography approaches offer applicable theory and
ideal techniques for analyzing the spatial distribution patterns
of seminal microbiome diversity in a human population or
cohort, and insights from the biogeography approaches such as
heterogeneities of the seminal microbiome among individuals
and the population-level characteristics should certainly be rather
useful for personalized fertility research and public health.

Microbial biogeography is charged with the mission
of understanding the spatial and/or temporal distribution
of microbial diversities on regional or global scales. The
classic species-area relationship (SAR), which quantitatively
characterizes the relationship between the number of species
(formally known as species richness, which is a rough measure
of biodiversity) and the geographic area species distributed as
a power-law function, is regarded as one of few classic laws in
ecology and biogeography. The first documentation of the SAR
relationship can be traced back to British botanist (Watson’s,
1835) study of the distribution of plants. Since then, numerous
theoretical and field studies have been performed (Watson, 1835;
Preston, 1960; Connor and McCoy, 1979; Rosenzweig, 1995;
Harte et al., 1999; Lomolino, 2000; Drakare et al., 2006; Tjørve
and Tjørve, 2008; Tjørve, 2009; He and Hubbell, 2011; Sizling
et al., 2011; Storch et al., 2012; Triantis et al., 2012; Whittaker
and Triantis, 2012; Helmus et al., 2014). In the 1960’s, the SAR
theory inspired (MacArthur andWilson’s, 1967) establishment of
their island biogeography theory, and the theory not only greatly
enriched the principles and methods of general biogeography,
but also was essential in shifting the focus of ecological research
from population to community and in advancing community
ecology in the 1970s and after. Today, much of the ecological
theories and analysis techniques applied to microbiome research
come from community ecology.

Recently, taking advantage of the big metagenomic datasets
from the human microbiome project (HMP) and related studies,
Ma, 2018a,b extended the classic SAR to general DAR (diversity-
area relationship) by replacing the “species richness” in the classic
SAR with general “diversity.” As mentioned previously, species
richness or the number of species in a community, region or area,
is rather rough as a measure of biodiversity because it ignores the
fact that not all species are born equally abundant on the planet.
Some species like panda are on one extreme and others such as
flies are another extreme. The classic SAR is therefore somewhat
flawed when the relationship is used to characterize the spatial
distribution of biodiversity thanks to the simplified measure
of biodiversity with species numbers. The DAR overcomes the
flaw of traditional SAR by using more scientific metrics for
biodiversity measures. Specifically, to construct DAR models,
Ma, 2018a,b utilized Renyi’s entropy based Hill numbers, which
included some of the most widely used diversity indexes such as
Shannon diversity and Simpson diversity indexes as its special
cases. The adoption of Hill numbers for building DAR models
also overcomes an issue of selecting diversity index frommany of
the choices, which often confuses non-ecologists unnecessarily.

The present article aims to apply the recent extended DAR
modeling approach to discovering the important patterns of
biogeography of seminal microbiome. We build the DAR
models and compute these metrics by using the metagenomic
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sequencing data originally reported by Weng et al. (2014), and
we also explore whether or not those metrics are related to
the sperm quality. Specifically, we build DAR models for alpha-
diversity and beta-diversity, respectively, and further derive
some critical parameters including diversity scaling parameter—
measuring the change rates of diversity across individuals
(the size of microbial habitat area), pair-wise diversity overlap
(similarity) (PDO)—measuring the average proportion of shared
diversity or similarity between two individuals,maximum accrual
diversity (MAD) in a population or cohort, and the ratio of
individual to population diversity (RIP), a newly introduced
metric that measures the ratio of individual microbial diversity
to population-level microbial diversity. In terms of more general
biogeography terms beyond the human microbiome, the concept
of RIP can be generalized as the ratio of local to regional diversity
(LRD) or ratio of local to global diversity (LGD), which can be
applied to general biodiversity research in any other ecosystems.

MATERIALS AND METHODS

Datasets Description
The 16S-rRNA OTU (operational taxonomic unit) tables of
the semen microbiome at genus and species taxonomic levels,
respectively, which we used to perform the DAR analysis, were
originally reported by Weng et al. (2014). The OTU tables
were generated from DNA-sequencing the semen microbiome
samples, collected from 96 individuals including 35 with normal
fertility, 28 with sub-normal fertility, and 33 with abnormal
fertility, and the consequent bioinformatics analysis. From the
96 samples, Weng et al. (2014) obtained a total of 8,337,766
sequence reads, that is 80,424 reads per participant sample, a
sufficiently large sample size for consequent statistical analyses.
They detected an average number of 135 genera and 569 species
from those samples.

Since the objective of Weng et al. (2014) study was to
investigate the relationship between sperm quality and seminal
microbiome, the original study included three treatments
(groups), i.e., the normal, sub-normal, and abnormal as
mentioned previously. The study design, of course, has no issue
at all with its original objectives. To harness the data for our
DAR analysis in this study, we first build DAR models for each
treatment separately, and then perform statistical tests to see if
there are any differences in the DAR parameters among the three
treatments. If there is any significant difference, we keep the
results and further investigate the implications of the difference
to the status of treatments (fertility status). If there is not any
significant difference, we then combine all 96 samples from the
three treatments, build a single set of DAR models with the
combined datasets, and further use the DAR models to explore
the general biogeography properties of the seminal microbiome.

The Diversity-Area Relationship (DAR)
The process of constructing DARmodels for microbes consists of
the following three steps: (i) bioinformatics analysis of 16S-rRNA
reads to get OUT tables (Schloss et al., 2009; Caporaso et al., 2010;
Bokulich et al., 2018); (ii) computing species or OTU diversities

measured with the Hill numbers (Chao et al., 2012, 2014; Ma,
2017); (iii) building the DAR models (Ma, 2018a,b).

Diversity Measured in Hill Numbers
The Hill numbers are a form of Renyi’s entropy (Renyi, 1961).
It was initially introduced as an evenness index from economics
by Hill (1973) and later reintroduced into ecology by Jost (2007)
and Chao et al. (2012) who further clarified Hill’s numbers for
measuring alpha diversity as:

qD =

(

S
∑

i=1

p
q
i

)1/(1−q)

(1)

where S is the number of species, pi is the relative abundance of
species i, q is the order number of diversity.

The Hill number is undefined when q = 1, but its limit as q
approaches to 1 exists in the following form:

1D = lim
q→1

qD = exp

(

−
s
∑

i=1

pi log(p1)

)

(2)

The parameter q controls the sensitivity of the Hill number to
the relative frequencies of species abundances. When q = 0, the
species abundances do not weigh at all and 0D = S, i.e., species
richness. When q = 1, 1D equal the exponential of Shannon
entropy, and is interpreted as the number of typical or common
species in the community because 1D is weighted proportionally
by species abundances. When q = 2, 2D equal the reciprocal of
Simpson index, i.e.,

2D = (1/

S
∑

i=1

p2i ) (3)

which is interpreted as the number of dominant or very abundant
species in the community (Chao et al., 2012) because 2D
is weighted in favor of more abundant species. The general
interpretation of qD is that the community has a diversity of order
q, which is equivalent to the diversity of a community with qD =
x equally abundant species.

A recent consensus suggested that, with the Hill numbers,
the multiplicatively defined beta-diversity, rather than additively
defined, by partitioning gamma diversity into the product of
alpha and beta, should be used to define beta-diversity, in which
both alpha and gamma diversities are measured with the Hill
numbers.

qDβ = qDγ /qDα (4)

This beta diversity derived from the above partition takes the
value of 1 if all communities are identical, the value of N
(the number of communities) when all the communities are
completely different from each other (there are no shared
species). With Jost (2007) words, this beta diversity measures “the
effective number of completely distinct communities.” In this study,
we compute diversities until q = 3, i.e., to the third order. Note
that a series of the Hill numbers at different order q is termed
diversity profile (Jost, 2007; Chao et al., 2012, 2014).
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The DAR (Diversity-Area Relationship) Models
Based on the fact that all Hill numbers are in the units of species
or species equivalents such as OTUs, and on the intuition that
Hill numbers should follow the same or similar pattern of the
classic SAR (species area relationship), Ma (2018a) extended SAR
to general DAR (diversity-area relationship), in which diversity is
measured with Hill numbers.

The basic power function, known as the power law (PL)
species scaling law widely adopted in SAR study, is extended to
describe the general diversity-area relationship (DAR):

qD = cAz (5)

where qD is diversity measured in the q-th order Hill numbers, A
is area, and c and z are parameters.

A slightly modified PL model, the power law with exponential
cutoff (PLEC) model, originally introduced to SAR modeling by
Plotkin et al. (2000) and Ulrich and Buszko (2003), respectively
(also see Tjørve, 2009), can also be utilized for DAR modeling.
The PLEC model is:

qD = cAz exp(dA), (6)

where d is a third parameter and should be negative in DAR
scaling models, and exp(dA) is the exponential decay term that
eventually overwhelms the power law behavior at very large value
of A.

The following log-linear transformed equations (7, 8) can
be used to estimate the model parameters of Equations (5, 6),
respectively:

ln(D) = ln(c)+ z ln(A) (7)

ln(D) = ln(c)+ z ln(A)+ dA (8)

Both linear correlation coefficient (R) and p-value can be used
to judge the goodness of the model fitting. In fact, either of
them should be sufficient to judge the suitability of the models to
data. Three advantages are associated with the linear-transformed
fitting: (i) simplicity in computation, (ii) parameter z is scale-
invariant with Equation (7), (iii) the ecological interpretation of
scaling parameter is preserved with Equation (8). The scaling
parameter z is also termed the slope of the DAR power-law,
because z represents the slope of the linearized function in log–log
space.

The relationship between DAR model parameter (z) of the
DAR PL model and the diversity order (q), or z-q trend, was
defined as the DAR profile (Ma, 2018a). It describes the change
of diversity scaling parameter (z) with the diversity order (q),
comprehensively. Obviously, the DAR profile is an extension of
the diversity profile concept Chao et al. (2012, 2014) proposed,
which is the diversity in the Hill numbers at the q-th order.

In macro-ecology, there are usually natural spatial orders for
the “areas,” which is generally lacking in human microbiome
because human residences are little relevant to the accrual
of diversities for DAR modeling. To avoid the potential bias
from an arbitrary order of the human microbiome samples, we
totally permutated the orders of all the microbiome samples

under investigation, and then randomly chose 100 orders of
the microbiome samples generated from the total permutations.
That is, rather than taking a single arbitrary order for accruing
microbiome samples in one-time fitting to the DAR model, we
repeatedly perform the DARmodel-fitting 100 times with the 100
randomly chosen permutation orders. Finally, the averages of the
model parameters from the 100 times of DAR fittings are adopted
as the model parameters of the DAR for the set of microbiome
samples under investigation. An additional advantage of this re-
sampling from total permutations is that the procedure makes
the parameter c of the DAR-PL model being able to represent
an average individual in the population (cohort) from which the
individual comes from.

Predicting MAD (Maximal Accrual Diversity) With

DAR-PLEC Models
Ma (2018a) derived the maximal accrual diversity (MAD) in a
cohort (or population) based on the PLEC model [Equations (6,
8)] as follows:

Max(qD) = qDmax = c(−
z

d
)
z
exp(−z) = cAz

max exp(−z) (9)

and the number of individuals (Amax) needed to reach the
maximum can be estimated by

Amax = −z/d (10)

where all parameters are the same as Equations (6,8).
Similar to the previous definition for DAR profile (z-q

pattern), the MAD profile (Dmax-q pattern), was defined as a
series of Dmax values corresponding to different diversity order
(q) (Ma, 2018a).

Pair-Wise Diversity Overlap (PDO) Profile
The pair-wise diversity overlap (g) of two bordering areas of the
same size (i.e., the proportion of the new diversity in the second
area) is (Ma, 2018a):

g = 2− 2z (11)

where z is the scaling parameter of DAR-PL model [Equations
(5, 7)]. If z = 1, then g = 0, there is no overlap (similarity); if z
= 0, then g = 1, totally overlap. In reality, g should be between 0
and 1.

Since the equal size of area assumption is largely true in
the case of sampling human microbiome, the parameter z of
the DAR-PL can be utilized to estimate the pair-wise diversity
overlap (PDO), i.e., the diversity overlap (similarity) between two
individuals, in the human microbiome with Equation (11).

Similar to previous definitions for DAR profile (z-q pattern)
and MAD profile (Dmax-q pattern), the PDO profile (g-q pattern)
was defined as a series of PDO-g values at different diversity order
(q) (Ma, 2018a).

A Summary on the Interpretations of Important DAR

Parameters
We summarize the ecological interpretations from PL/PLEC as
follows to facilitate the discussion of the results from fitting DAR
models with semen microbiome datasets.
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z: The slope of the DAR-PL model or scaling parameter, and it
is the ratio of diversity accrual rate to area increase rate. TheDAR
profile is a series of z-q values, corresponding to different diversity
order (q).

c: Theoretically, by setting A = 1, S0=cAz=c, hence c is the
Hill numbers (i.e., the number of species or species equivalents
of diversity) in one unit of area, but not per unit of area because
the scaling is non-linear. However, since we used 100 times of
re-sampling to get the DAR parameters as explained previously,
plus that the area size in human microbiome sampling can be
considered as approximately equal, we argue that, in practice, the
parameter c of the DAR-PLmodel can be treated as an estimate of
the individual-level diversity in Hill numbers, or of the diversity
of an averaged individual in the cohort (or population) he or she
belongs to.

g: The pair-wise diversity overlap (PDO) parameter. It
measures the pair-wise diversity similarity between two
neighboring areas of the same size, i.e., between two individuals
in a cohort (or population). The PDO profile is a series of g-q
values, corresponding to different diversity order (q).

Dmax: The maximal accrual diversity (MAD) parameter.
It estimates the maximal accrual diversity across individuals.
Theoretically, it should be specific to the microbiome type (e.g.,
the gut microbiome or semen microbiome). TheMAD profile is a
series ofDmax-q values, corresponding to different diversity order
(q).

RIP (the Ratio of Individual Diversity to Population

Accrual Diversity)—A New Definition
We define the RIP (Ratio of Individual diversity to Population
accrual diversity) as:

qRIP = qc/qD (12)

where qc is the DAR-PL parameter at diversity order of q, and qD
is the estimated accrual diversity of the population (cohort) with
DAR-PL model at diversity order of q.

We further define qRIP-q series (there is a RIP for each
diversity order q) as RIP profile, similar to the previously defined
DAR-, PDO-, and MAD-profiles.

According to the above RIP definition, a RIP profile can be
constructed with population (cohort) of any size. However, in
practice, using qDmax in place of qD should be more convenient,
that is:

qRIP = qc/qDmax (13)

The RIP parameter measures the average level of an individual
can represent a population (or cohort) from which the
individual comes from. As argued previously, parameter c is
an approximated value of individual diversity (or diversity
per individual). The approximation is contingent on two
implicit assumptions: (i) the sizes of areas are equal, which
is generally true in the case of human microbiome; (ii) the
start of area accrual won’t exert significant influence on the
estimation of parameter c. This appears to be satisfied given
that assumption (i) is largely true for the human microbiome.

However, given the well-known inter-individual heterogeneity of
the human microbiome, the choice of starting area (individual)
to accrue diversity may indeed have a significant impact on
the estimate of parameter c. To deal with the issue associated
with assumption (ii), we adopt the previously introduced the re-
sampling approach from total permutations of the microbiome
samples, and use the average parameters from certain times
(usually 100 should be enough) of repeatedly DAR model-fitting
from the re-sampling.

In general biogeography terms beyond human microbiome,
the previous definitions for RIP can be generalized as LRD (ratio
of local to regional diversity) (Equation 14) or as LGD (ratio of
local to global diversity (Equation 15). Both can be applied to
measure the relationship between the local and regional/global
biodiversities in any ecosystems. LRD & LGD are defined as:

qLRD = qc/qD (14)
qLGD = qc/qDmax (15)

where the symbols (parameters) in the right have the same
interpretations as in Equations (13,14).

RESULTS AND DISCUSSION

Test the Differences in Semen DAR

Parameters Among the Three Groups
We aimed to test whether or not there are significant differences
among the three groups (normal, sub-normal and abnormal)
in their DAR parameters. To perform this test, we built DAR
models (including both alpha-DAR and beta-DAR models) for
each group separately and then performed the randomization
tests for the parameters of those DAR models. The parameters
of the alpha-DAR models and beta-DAR models for the three
different groups were listed in Tables S1, S2 of the online
supplementary information (OSI), respectively. The results from
the randomization test for the model parameters were listed in
Table S3 (for alpha-DAR parameters) and Table S4 (for beta-
DAR parameters), respectively. It turned out that there were
no significant differences in any of the major DAR parameters
between the groups, as revealed by the p-values (p > 0.05) in the
last column of Tables S3, S4.

Biogeography Analysis of the Semen

Microbiome With DAR Modeling
Alpha-DAR Modeling
Tables 1, 2 listed the alpha-DAR parameters for the human
semen microbiome at the genus and species level, respectively.
The leftmost column in both the tables listed the diversity order
(q = 0, 1, 2, 3) and, and the parameters for DAR-PL models
and DAR-PLEC models were listed in the left and right side,
respectively. From Tables 1, 2, we summarize the following
findings:

(i) The DAR models fitted to the semen microbiome diversity
in the Hill numbers at both genus and species levels
statistically significant (p < 0.05 in 6 cases and p < 0.1 in
two cases). Judged from the success rates among 100 times
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TABLE 1 | The parameters of alpha-DAR (alpha-diversity-area relationship) computed with 100 times of re-sampling at genus level for the human semen microbiome.

Diversity order

and statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.277 5.148 0.984 0.000 0.788 100 0.344 −0.002 5.027 0.993 0.000 100 139 590.8

Std. Err. 0.031 0.129 0.012 0.000 0.026 0.065 0.002 0.181 0.006 0.000

Min 0.211 4.812 0.936 0.000 0.718 0.218 −0.006 4.533 0.963 0.000

Max 0.359 5.444 0.998 0.000 0.843 0.514 0.000 5.384 0.999 0.000

q = 1 Mean 0.100 3.176 0.668 0.039 0.927 94 0.154 −0.002 3.078 0.761 0.022 95 77 36.3

Std. Err. 0.076 0.318 0.250 0.168 0.056 0.131 0.003 0.377 0.215 0.112

Min −0.049 2.303 0.008 0.000 0.774 −0.230 −0.010 2.005 0.061 0.000

Max 0.294 3.832 0.975 0.940 1.034 0.546 0.010 4.051 0.987 0.839

q = 2 Mean 0.075 2.308 0.514 0.061 0.944 89 0.125 −0.002 2.217 0.667 0.013 97 67 13.7

Std. Err. 0.107 0.463 0.250 0.208 0.080 0.170 0.005 0.490 0.200 0.084

Min −0.133 1.013 0.003 0.000 0.721 −0.365 −0.011 0.723 0.069 0.000

Max 0.355 3.171 0.937 0.976 1.088 0.639 0.017 3.342 0.968 0.799

q = 3 Mean 0.055 1.998 0.455 0.093 0.958 76 0.102 −0.002 1.914 0.629 0.030 92 59 9.3

Std. Err. 0.111 0.483 0.268 0.208 0.082 0.172 0.005 0.489 0.216 0.123

Min −0.161 0.719 0.000 0.000 0.744 −0.385 −0.012 0.439 0.073 0.000

Max 0.329 2.877 0.942 0.999 1.105 0.602 0.017 2.943 0.959 0.780

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

TABLE 2 | The parameters of alpha-DAR (alpha-diversity-area relationship) computed with 100 times of re-sampling at species level for the human semen microbiome.

Diversity order

and statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.507 6.627 0.984 0.000 0.577 100 0.637 −0.005 6.393 0.993 0.000 100 132 7099.5

Std. Err. 0.061 0.247 0.012 0.000 0.060 0.127 0.003 0.354 0.006 0.000

Min 0.341 5.937 0.937 0.000 0.400 0.334 −0.012 5.357 0.962 0.000

Max 0.678 7.347 0.998 0.000 0.734 1.000 0.002 7.213 0.999 0.000

q = 1 Mean 0.158 4.570 0.681 0.019 0.881 93 0.231 −0.003 4.438 0.790 0.004 98 85 187.6

Std. Err. 0.115 0.491 0.234 0.084 0.091 0.215 0.006 0.590 0.185 0.037

Min −0.156 3.180 0.068 0.000 0.613 −0.343 −0.020 2.785 0.147 0.000

Max 0.472 5.949 0.983 0.508 1.102 0.917 0.013 5.817 0.988 0.362

q = 2 Mean 0.035 3.313 0.417 0.124 0.969 73 0.079 −0.002 3.235 0.663 0.005 96 49 32.0

Std. Err. 0.157 0.683 0.273 0.239 0.116 0.306 0.009 0.770 0.196 0.022

Min −0.322 1.548 0.015 0.000 0.645 −0.786 −0.022 1.217 0.208 0.000

Max 0.439 4.965 0.951 0.888 1.200 0.902 0.024 4.866 0.959 0.129

q = 3 Mean −0.022 2.893 0.453 0.072 1.009 81 0.010 −0.001 2.836 0.667 0.008 98 8 17.3

Std. Err. 0.158 0.693 0.258 0.181 0.112 0.306 0.010 0.762 0.191 0.062

Min −0.388 1.144 0.020 0.000 0.690 −0.803 −0.024 0.945 0.101 0.000

Max 0.389 4.489 0.944 0.846 1.236 0.768 0.023 4.422 0.948 0.619

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

of random re-sampling, the PLECmodel performed slightly
better than the PL model, and species-level modeling
slightly better than genus level. Therefore, the PLEC model
at the species level performed best among four categories of
the models.

(ii) At both genus and species levels, the DAR scaling parameter
z decreased monotonically with diversity order q, and the
species level parameters are generally larger than their

genus level counterparts. In the case of scaling parameter
z, larger z-value indicates larger PL slope or fast change
rates of diversity per unit accrual of area. This result
should be expected obviously because the differences among
individual subjects should be smaller at higher taxonomic
level (genus) than lower level (species). In other words,
the resolution of higher (genus) taxonomic level is rougher
than that of the lower (species) taxonomic level. Figure 1
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FIGURE 1 | The alpha-DAR profile scaling parameter (z-q series) for the

semen microbiome alpha-diversity at the genus level, for normal, sub-normal,

abnormal, and combined groups.

FIGURE 2 | The alpha-PDO profile (g-q series) for the semen microbiome

alpha-diversity at the genus level for normal, sub-normal, abnormal, and

combined groups, respectively.

exemplified the DAR profiles of the alpha-diversity at the
genus level, for the normal, sub-normal, abnormal, and
combined groups, respectively.

(iii) At both genus and species levels, the PDO (pair-wise
diversity overlap) parameter (g) showed a monotonically
increasing trend, which is opposite with that of the scaling
parameter (z) as expected. The PDO parameter confirmed
the previous finding that semen microbiome has higher
similarity (overlap) at genus level than at species level,
indicated by higher g-value. Figure 2 exemplified the PDO
profiles of the alpha-diversity at the genus level, for the
normal, sub-normal, abnormal, and combined groups,
respectively.

(iv) The negative d-values of all PLEC models at both genus
and species levels, indicated the existence of asymptote
lines and the necessity of introducing more sophisticated
PLEC model, which also made the prediction of MAD
(maximal accrual diversity) or Dmax possible. The MAD
(Dmax) decreased with the increase of diversity order
(q), as determined by the nature (definition) of the Hill

FIGURE 3 | The alpha-MAD profile (Dmax-q series) for the semen microbiome

alpha-diversity at the genus level, for normal, sub-normal, abnormal, and

combined groups, respectively.

numbers. The MAD at q = 0, or 0Dmax which is simply
the maximal accrual of microbial species (genus) richness
of the population of individuals. Figure 3 exemplified the
MAD profiles of the alpha-diversity at the genus level, for
the normal, sub-normal, abnormal, and combined groups,
respectively.

(v) Table 5 further computed the RIP [Ratio of Individual
diversity to Population maximal accrual diversity: Equation
(12b)] for all DAR models listed in Tables 1–4. The left side
is the RIP computed from alpha-DAR parameters, and the
right side is that computed from beta-DAR parameters. The
RIP parameter measures the average level of an individual
can represent a population from which he or she comes
from. For example, at diversity order q = 0, i.e., species
(genus) richness level, the alpha-diversity of an individual,
on average, contains approximately 10.6% (species level)
or 29.1% (genus-level) of the diversity accrued by the
population. When the diversity order (q) increases, the RIP
percentage is also increased, as indicated by Table 5. Note
that since RIP is defined in terms of an averaged individual,
it may be a poor representative for a specific individual,
especially when the inter-subject heterogeneity of diversity
is high. Figure 4 exemplified the RIP profiles of the alpha-
diversity at the genus level, for the normal, sub-normal,
abnormal, and combined groups, respectively.

Beta-DAR Modeling
Tables 3, 4 listed the beta-DAR parameters for the human
semen microbiome at the genus and species level, respectively.
The leftmost column in both the tables are the diversity order
(q= 0, 1, 2, 3) and, and the parameters for beta-DAR PL models
and beta-DAR PLEC models were listed in the left and right side,
respectively. From both the tables, we observed the following
findings:

(i) The beta-DARmodels fitted to the semenmicrobiome beta-
diversity data at both genus and species levels statistically
significant (p < 0.05 in 7 cases and p < 0.1 in 1 case).
Judged from the success rates among 100 times of random
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TABLE 3 | The parameters of beta-DAR (beta-diversity area relationship) computed with 100 times of re-sampling at genus level.

Diversity order &

statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.266 0.294 0.990 0.000 0.797 100 0.338 −0.002 0.152 0.997 0.000 100 140 4.4

Std. Err. 0.014 0.059 0.005 0.000 0.012 0.025 0.001 0.067 0.002 0.000

Min 0.235 0.160 0.975 0.000 0.773 0.272 −0.004 0.023 0.988 0.000

Max 0.296 0.424 0.999 0.000 0.823 0.395 −0.001 0.341 0.999 0.000

q = 1 Mean 0.160 0.483 0.800 0.004 0.882 99 0.277 −0.004 0.252 0.895 0.000 100 70 3.2

Std. Err. 0.061 0.273 0.165 0.045 0.047 0.107 0.004 0.255 0.092 0.000

Min −0.010 −0.103 0.079 0.000 0.772 0.010 −0.012 −0.339 0.483 0.000

Max 0.296 1.225 0.982 0.448 1.007 0.556 0.005 0.943 0.984 0.000

q = 2 Mean 0.225 0.595 0.782 0.008 0.829 99 0.393 −0.006 0.264 0.872 0.000 100 69 4.6

Std. Err. 0.084 0.364 0.166 0.083 0.068 0.171 0.005 0.401 0.107 0.000

Min −0.005 −0.321 0.022 0.000 0.623 −0.066 −0.018 −0.886 0.470 0.000

Max 0.462 1.564 0.977 0.829 1.003 0.864 0.009 1.112 0.983 0.000

q = 3 Mean 0.273 0.586 0.804 0.002 0.789 99 0.441 −0.006 0.252 0.874 0.000 100 77 5.6

Std. Err. 0.092 0.385 0.143 0.015 0.077 0.207 0.006 0.463 0.106 0.000

Min 0.033 −0.430 0.150 0.000 0.541 −0.070 −0.022 −1.080 0.509 0.000

Max 0.545 1.541 0.980 0.148 0.977 1.016 0.011 1.178 0.985 0.000

N*, the number of successful fitting to DAR model from 100 times of random re–sampling of the individual orders.

TABLE 4 | The parameters of beta-DAR (beta-diversity area relationship) computed with 100 times of re-sampling at species level.

Diversity order &

statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.480 0.389 0.994 0.000 0.605 100 0.588 −0.004 0.174 0.999 0.000 100 161 13.1

Std. Err. 0.012 0.052 0.003 0.000 0.011 0.028 0.001 0.064 0.001 0.000

Min 0.453 0.222 0.985 0.000 0.568 0.534 −0.006 0.003 0.996 0.000

Max 0.518 0.506 0.998 0.000 0.631 0.666 −0.002 0.323 1.000 0.000

q = 1 Mean 0.226 0.572 0.884 0.000 0.830 100 0.366 −0.005 0.294 0.944 0.000 100 77 4.6

Std. Err. 0.051 0.236 0.090 0.000 0.041 0.107 0.004 0.230 0.042 0.000

Min 0.090 0.004 0.577 0.000 0.736 0.086 −0.016 −0.241 0.743 0.000

Max 0.338 1.205 0.983 0.000 0.935 0.670 0.005 0.816 0.989 0.000

q = 2 Mean 0.235 0.732 0.781 0.000 0.821 100 0.405 −0.006 0.396 0.876 0.000 100 71 5.6

Std. Err. 0.083 0.377 0.146 0.000 0.068 0.173 0.006 0.360 0.084 0.000

Min 0.074 −0.121 0.358 0.000 0.648 −0.028 −0.024 −0.392 0.623 0.000

Max 0.435 1.452 0.961 0.000 0.947 0.855 0.011 1.099 0.979 0.000

q = 3 Mean 0.276 0.676 0.765 0.000 0.786 100 0.378 −0.003 0.474 0.838 0.000 100 109 6.5

Std. Err. 0.103 0.438 0.143 0.002 0.088 0.228 0.008 0.430 0.124 0.001

Min 0.057 −0.294 0.248 0.000 0.574 −0.181 −0.024 −0.602 0.317 0.000

Max 0.512 1.478 0.945 0.016 0.959 0.868 0.019 1.353 0.980 0.008

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

re-sampling, the beta-PLECmodel performed slightly better
than beta-PL model, and species-level modeling slightly
better than the genus-level. Therefore, the beta-PLECmodel
at the species level performed best among four categories of
the models.

(ii) At both genus and species levels, the beta-DAR scaling
parameter z exhibited a valley-shaped pattern with diversity
order (q), and the species level parameters are generally

larger than their genus level counterparts. In the case of
scaling parameter z, larger z-value indicates larger slope
or faster change rates of diversity per unit change of area
accrual. This result should be expected obviously because
the differences among individual subjects should be smaller
at higher taxonomic level (genus) than lower level (species).

(iii) At both genus and species levels, the beta-PDO parameter
(g) showed a mountain-shaped trend, which is opposite
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TABLE 5 | RIP (ratio of individual diversity to population maximal accrual diversity).

Diversity

order (q)

Alpha-RIP (%) Beta-RIP (%)

Genus-level Species-level Genus-level Species-level

q = 0 29.1 10.6 30.5 11.3

q = 1 66.0 51.5 50.7 38.5

q = 2 73.4 85.8 39.4 37.1

q = 3 79.3 100 23.5 39.2

with that of the scaling parameter (z) as expected. The beta-
PDO parameter confirmed previous finding that semen
microbiome has higher level of similarity at genus level than
at species level, indicated by higher g-value, which measures
the pair-wise diversity overlap (similarity).

(iv) The negative d-values of all beta-PLECmodels at both genus
and species levels, indicated the existence of asymptote lines
and the necessity for introducing the more sophisticated
beta-PLEC model, which also made the prediction of beta-
Dmax (beta-MAD) possible. The beta-MAD-q or beta-Dmax-
q, or beta-MAD profile, exhibited a valley-shaped trend,
which is consistent with the z-q series or DAR profile. The
beta-MAD or at q = 0, 0Dmax, which is simply the species
(genus) richness or the number of species (genus) in the
cohort (or population).

(v) Table 5 listed the RIP profile, i.e., the ratio of individual
diversity to population maximal accrual diversity (Equation
12b), at different diversity order (q), for all DAR models
listed in Tables 1–4. The two right columns were computed
for beta-DAR models from Tables 3, 4 (the left side for
alpha-DAR). The RIP parameter (profile) measures the
average level of an individual can represent a population
from which he or she comes from. For example, when q
= 0 (species or genus richness level), beta-RIP = 11.3%
at species level, and beta-RIP = 30.5% at genus level. This
suggested that beta-diversity of an individual, on average,
contains ∼11.3% (at the species level) and 30.5% (at the
genus level) of the diversity accrued at the population
level. When the diversity order (q) increases, the RIP also
increased accordingly.

An interesting observation is that alpha-RIP profile and beta-RIP
profile exhibited different patterns: the former is monotonically
increasing, but the latter is mountain-shaped. This pattern is clear
from comparing of the left side and right side of Table 5.

DISCUSSION

The results of DAR analysis presented above revealed that
fertility status (normal, subnormal, abnormal) did not have a
significant influence on biogeography of semen microbiome,
specifically, on the inter-subject (spatial) heterogeneity in terms
of either alpha-diversity or beta-diversity. Previous studies have
suggested changes in semenmicrobiome diversity associated with
fertility health (Hou et al., 2013; Weng et al., 2014), although
no rigorous statistical tests were performed with the published

FIGURE 4 | The RIP-profile (RIP-q series) for the semen microbiome diversity

(alpha and beta diversity, respectively) at the genus level, for the normal,

sub-normal, abnormal, and combined groups, respectively.

studies. Furthermore, the diversity of a microbiome sample per
se and the diversity scaling (or spatial heterogeneity changes,
a topic of this study) within a population are very different
concepts. Logically, the change of individual diversity does not
necessary lead to changes of the diversity heterogeneity among
individuals. Therefore, the lack of differences in the diversity
scaling parameter (z) and other DAR parameters, among three
groups with different fertility status do not contradict the
published studies on the human semen microbiome.

The lack of significant differences among various fertility
groups actually simplified our study, enabled us to build the DAR
models for a general Chinese population. Using the DARmodels,
we were able to (i) estimate the diversity changes of semen
microbiome in a human cohort (population) or DAR profile;
(ii) predict the maximal accrual diversity (MAD) of semen
microbiome in a human cohort (population) or the MAD profile;
(iii) estimate the PDO (pair-wise diversity overlap or similarity)
between two individuals or the PDO profile; (iv) assess the RIP
profile (i.e., the ratio of individual diversity to population accrual
diversity), which measures the level an individual can represent
a population which he belongs to. The “profiles” provide series
of key parameter associated with different diversity order (q),
which weights diversity differently: from species richness (q
= 0), where all species are weighted equally, to q = 3, where
dominant species were weighted for more and rare species
were weighted for less. These parameters sketched out the
biogeography “maps” of the human semen microbiome in terms
of the four profiles: the DAR-, PDO-, MAD-, and RIP profiles.
Together, the four profiles (maps) comprehensively sketched out
the biogeography of semen microbiome—the spatial distribution
or inter-subject heterogeneity of semen microbiome diversity
at different diversity orders (q). The different biogeography
maps are similar to different geography maps, each may with
different utilization (e.g., rainfall map vs. biodiversity map,
both of different utilizations). Using another analogy, maps at
different diversity order (q) are similar to the maps with different
scales or resolutions.

Hence, similar to the obvious significance of geographic
maps, our biogeographic maps for the human semen
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microbiome diversity distribution should be rather important
for further investigating the spatial distribution (or inter-
subject heterogeneity) of the semen microbiome and their
biomedical implications. A limitation of this study is that the
datasets we used were limited to a Chinese population. We
hope that future studies will include datasets from other ethnic
groups.
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Background: Although substantial efforts have been made to link the gut microbiota
to type 2 diabetes, dynamic changes in the fecal microbiome under the pathological
conditions of diabetes have not been investigated.

Methods: Four male Zucker diabetic fatty (ZDF) rats received Purina 5008 chow
[protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%, fiber (crude) = 3.3%,
ash = 6.1%, fat (ether extract) = 6.7%, and fat (acid hydrolysis) = 8.1%] for 8 weeks.
A total of 32 stool samples were collected from weeks 8 to 15 in four rats. To
decipher the microbial populations in these samples, we used a 16S rRNA gene
sequencing approach.

Results: Microbiome analysis showed that the changes in the fecal microbiome
were associated with age and disease progression. In all the stages from 8 to
15 weeks, phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria primarily
dominated the fecal microbiome of the rats. Although Lactobacillus and Turicibacter
were the predominant genera in 8- to 10-week-old rats, Bifidobacterium, Lactobacillus,
Ruminococcus, and Allobaculum were the most abundant genera in 15-week-old rats.
Of interest, compared to the earlier weeks, relatively greater diversity (at the genus level)
was observed at 10 weeks of age. Although the microbiome of 12-week-old rats had
the highest diversity, the diversity in 13–15-week-old rats was reduced. Spearman’s
correlation analysis showed that F/B was negatively correlated with age. Random blood
glucose was negatively correlated with Lactobacillus and Turicibacter but positively
correlated with Ruminococcus and Allobaculum and Simpson’s diversity index.

Conclusion: We demonstrated the time-dependent alterations of the abundance and
diversity of the fecal microbiome during the progression of diabetes in ZDF rats. At the
genus level, dynamic changes were observed. We believe that this work will enhance
our understanding of fecal microbiome development in ZDF rats and help to further
analyze the role of the microbiome in metabolic diseases. Furthermore, our work
may also provide an effective strategy for the clinical treatment of diabetes through
microbial intervention.

Keywords: 16S gene sequencing, fecal microbiome, type 2 diabetes mellitus, gut microbiota, time series, rat
microbiome
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is currently the most prevalent
metabolic disease in the world and is characterized by insulin
resistance, with an initial increase in insulin secretion, but
subsequent beta cell death and insulin insufficiency over time.
According to the International Diabetes Federation, T2DM will
affect 693 million people worldwide by 2045 (Cho et al., 2018).
T2DM is a multifactorial disorder, with pathogenic contributions
from genetic, environmental, and lifestyle factors (Mengual et al.,
2010; Saxena et al., 2012). The gut microbiota has increasingly
been recognized as a key contributor to T2DM, and T2DM
can be linked to dysbiosis of the intestinal microbiota (Cox
et al., 2014; Forslund et al., 2015; Yano et al., 2015). Two
independent studies based on fecal samples from European
and Chinese populations showed increased abundances of
opportunistically pathogenic Clostridium species and decreased
abundances of butyrate-producing Roseburia, Faecalibacterium,
and Eubacterium species associated with T2DM patients (Qin
et al., 2012; Karlsson et al., 2013). Karlsson et al. (2013) also
found that increased abundances of Lactobacillus gasseri and
Streptococcus mutans can predict insulin resistance, while Qin
et al. (2012) found enrichment in Escherichia coli associated
with current T2DM patients. Some studies have also found
that pro-inflammatory bacteria such as Ruminococcus gnavus
and Bacteroides spp. are more common in the feces of T2DM
patients (Everard and Cani, 2013). Numerous studies have
shown significant changes in the composition and diversity
of the fecal microflora under conditions of diabetes. Studies
also speculate that changes in the composition and diversity
of feces can determine the prognosis and severity of T2DM.
Our understanding of the relevance of the microbiome in
metabolic diseases might be enhanced by systematically assessing
the role of the fecal microbiota in disease performance
and its control.

An understanding of the fecal microbiome in T2DM has
recently arisen by analyzing microbial populations found in fecal
samples at a certain point in time. Although such assessments
of the fecal microbiome composition and diversity in T2DM are
valuable, they are time-limited and do not reflect the dynamic
changes of microbial flora in the progression of T2DM. Several
studies have reported that the fecal microbiome differs at different
times during the progression of T2DM (Horie et al., 2017; Liu
et al., 2017). Therefore, more work needs to be done to determine
the role of the fecal microbiome diversity and composition
and their association with T2DM. Due to ethical issues and
the availability of a limited number of samples, analysis of the
fecal microbiome and its role in the disease pathogenesis of
diabetes in humans is limited. Thus, to establish the diabetic fecal
microbiome, small animal models can be used. In these models,
fecal samples can be conveniently collected, thereby allowing for
investigation of the microbiome contribution in T2DM. In fact,
to understand the role of the microbiome in T2DM, many animal

Abbreviations: F/B, Firmicutes/Bacteroidetes; IQR, interquartile range; OGTT,
oral glucose tolerance test; OTUs, operational taxonomic units; PCoA, principal
coordinates analysis; RBG, random blood glucose; SDI, Simpson’s diversity index;
T2DM, type 2 diabetes mellitus; ZDF, Zucker diabetic fatty.

models have been widely used (Bagarolli et al., 2017; Bindels
et al., 2017; Caparros-Martin et al., 2017). In addition, evidence
emerging from animal models shows that many of the symptoms
associated with diabetic syndrome and insulin sensitivity may
be improved through replenishing probiotics (Lactobacillus
rhamnosus, Lactobacillus acidophilus, and Bifidobacterium) and
butyric-acid producing bacteria Clostridium butyricum (Bagarolli
et al., 2017; Jia et al., 2017). Although some studies have used rat
models to elucidate the microbiome’s role in T2DM (Goldsmith
et al., 2017; Kim et al., 2017), in the field of T2DM, one of the
major unanswered questions is whether the microbiome can be
utilized to alleviate diabetic pathologies.

Currently, only a few studies have examined details about
the compositional dynamics of the diabetic microbiome (Horie
et al., 2017; Liu et al., 2017). Since most of these studies were
conducted at some point in the course of T2DM development,
they do not provide an insight into the development of the
diabetic fecal microbiome. Using animal models might establish a
better understanding of the fecal microbiome in the progression
of T2DM, and such knowledge can enhance our understanding
of the microbiome effects on T2DM. ZDF rats with a missense
mutation (fatty, fa) in the leptin receptor gene can develop
obesity, insulin resistance, and T2DM (Phillips et al., 1996;
Yamashita et al., 1997; Da Silva et al., 1998; Yokoi et al., 2013).
Male ZDF rats exhibit an age-dependent diabetic phenotype that
develops hyperglycemia at 8 weeks of age and the blood glucose
level remains high throughout its lifespan (De Lemos et al.,
2007). Due to these characteristics, ZDF rats are an attractive
experimental model for this study. In this study, we monitored
body weight, food intake, water intake, rectal temperature, RBG,
OGTT, and the fecal microbiome from 8 to 15 weeks of age in
ZDF rats. We analyzed the fecal microbiome at different time
points in diabetic rats and tracked changes in microbial diversity.
A deep sequencing of 16S rRNA genes amplified from genomic
DNA isolated from the rat feces was used. To this end, we
also performed non-parametric Spearman’s correlation analysis
to evaluate associations between physiological characteristics and
the microbiome in ZDF rats.

MATERIALS AND METHODS

Experimental Design
This study was done longitudinally and its primary purpose
was to understand the changes in fecal microbiome composition
during diabetes progression in four ZDF rats. We studied the
microbiome from week 8 onward to week 15 at 1-week intervals.
Studies were performed using ZDF rats as they have been shown
to exhibit hyperinsulinemia and hyperglycemia (De Lemos et al.,
2007) and are thus a good model of T2DM.

Ethics Statement
In the present study, the animal experiments used rats and
were approved by the Animal Ethics Committee of Nanjing
University of Chinese Medicine (Approval No. ACU170606).
All animal experiments were conducted in accordance with the
National Institutes of Health Guide for the Care and Use of
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Laboratory Animals at Nanjing University of Chinese Medicine
(Nanjing, China).

Animal
Four male 6-week-old ZDF rats were purchased from Vital River
Laboratories (Beijing, China) and housed in a specific pathogen-
free animal experimental center in Nanjing University of Chinese
Medicine. Animals were fed autoclaved Purina 5008 chow
[protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%,
fiber (crude) = 3.3%, ash = 6.1%, fat (ether extract) = 6.7%, and
fat (acid hydrolysis) = 8.1%; Vital River Laboratories, Beijing,
China], had free access to autoclaved water, and housed at
24◦C ± 2◦C, humidity 65% ± 5%, with a 12 h light-dark cycle.
During the trial, body weight, food and water intake, and rectal
temperature were measured daily. All rats were in one group and
housed in one cage during the study.

Random Blood Glucose Test
Random blood glucose was measured weekly to examine the
progression of diabetes in ZDF rats. Glucose levels in tail blood
samples were measured from weeks 8 to 15 using a glucometer
(CareSens, I-SENS, Anyang, South Korea). The rats were not
fasted for RBG tests.

Oral Glucose Tolerance Test
Zucker diabetic fatty rats were fasted for 14 h (overnight) and
then the OGTT was performed with a glucose solution in saline
at 2 g/kg. Tail blood was sampled at 0, 30, 60, and 120 min
after glucose administration. Glucose levels were determined
immediately with a glucometer (CareSens, I-SENS).

Stool Sample Collection and DNA
Extraction
One fresh fecal sample was collected directly from the anus
into a sterile tube from each rat weekly, avoiding contact with
rat skin or urine (see Supplementary Table S1). A total of 32
stool samples were collected from weeks 8 to 15 in four ZDF
rats and stored at −80◦C prior to processing. Bacterial DNA
was extracted from feces using the Fast DNA SPIN extraction
kit (MP Biomedicals, Santa Ana, CA, United States) according
to the manufacturer’s instructions and stored at −20◦C before
further analysis. The quantity and quality of extracted DNA
were measured using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States) and
agarose gel electrophoresis, respectively.

16S rRNA Amplification and Sequencing
PCR amplification of the bacterial 16S rRNA genes (V3–
V4 region) was carried out using forward primer 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and reverse primer 806R
(5′-GGACTACHVGGGTWTCTAAT-3′). Sample-specific 7-bp
barcodes were incorporated into the primers for multiplex
sequencing. PCR components contained 5 µl Q5 reaction buffer
(5×), 5 µl Q5 High-Fidelity GC buffer (5×), 0.25 µl Q5 High-
Fidelity DNA polymerase (5 U/µl), 2 µl dNTPs (2.5 mM),
1 µl of each forward and reverse primers (10 µM), 2 µl DNA

template, and 8.75 µl ddH2O. Thermal cycling included initial
denaturation for 2 min at 98◦C, followed by 25 cycles including
denaturation for 15 s at 98◦C, annealing for 30 s at 55◦C, and
extension for 30 s at 72◦C, and a final extension of 5 min at
72◦C. PCR amplicons were purified using Agencourt AMPure
Beads (Beckman Coulter, Indianapolis, IN, United States) and
quantified with the PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, United States). After the individual quantification
step, amplicons were combined in equal amounts and subjected
to 2 × 300 bp sequencing of the end using the Illumina
MiSeq platform and the MiSeq kit v3 from Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China). Sequencing data were
processed using a quantitative analysis of microbial ecology
(QIIME, v1.8.0). In brief, original sequencing reads that perfectly
matched the barcode were assigned to the corresponding samples
and identified as valid sequences. Low-quality sequences (Gill
et al., 2006; Chen and Jiang, 2014) were filtered by the following
criteria: sequences <150 bp in length, sequences with average
Phred scores <20, sequences containing indefinite bases, and
sequences containing single nucleotide repeats of >8 bp. Paired-
end reads were assembled using FLASH (Magoc and Salzberg,
2011). After chimera detection, the remaining high-quality
sequences were clustered into OTUs with 97% sequence identity
by UCLUST (Edgar, 2010). The default parameters were used
to select the representative sequence from each OTU. Using the
best hits (Altschul et al., 1997), OTU taxonomy classification
was performed by a BLAST search on the representative set
of sequences against the Greengenes database (Desantis et al.,
2006). The abundance of each OTU in each sample and the
taxonomy of these OTUs were recorded by generating an OTU
table. OTUs with a total content of less than 0.001% in all
samples were discarded. To minimize the difference in the
depth of sequencing across samples, the average analysis of 100
evenly resampled OTU subsets under the 90% of the minimum
sequencing depth was performed to generate an average, rounded
dilution OTU table.

Bioinformatics Analysis
Sequencing data were evaluated using the QIIME and R software
packages (v3.2.0). The OTU table in QIIME was used to calculate
the α diversity index of the OTU level, such as the Shannon
diversity index and the SDI. Principal weighted UniFrac distance
metrics (Lozupone and Knight, 2005) were used for principal
coordinate analysis (PCoA). Diversity was assessed using the
Simpson Diversity Index (SDI) by calculating “inverse” (1/λ) and
“complement” (1-λ) SDI. Higher SDI values indicated higher
microbial diversity. Based on the occurrence of OTUs across
samples, a petal diagram was created to visualize the shared and
unique OTUs among samples or groups by the R package “Venn
Diagram.” Metastats (White et al., 2009) was used to statistically
compare the abundance of taxa at the level of phylum and genus
among samples or groups.

Statistical Analysis
The physiological characteristics data of the ZDF rats are
presented as mean ± SD. Statistical analyses among different
ages were performed by repeated ANOVA, followed by Tukey’s
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FIGURE 1 | Physiological characteristics in ZDF rats ranging from 8 to 15 weeks old. (A) Body weight gain in ZDF rats. (B) Food intake changes in ZDF rats.
(C) Water intake changes in ZDF rats. (D) Rectal temperature changes in ZDF rats. (E) Random blood glucose levels in ZDF rats. (F) Oral glucose tolerance test
measured at week 14 in ZDF rats. Data are expressed as mean ± SEM. N = 4 in individual groups; data were analyzed by repeated ANOVA: compared with week 8,
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; compared with the previous week, 1p < 0.05, 11p < 0.01, 111p < 0.001.

honestly significant difference or Dunnett’s post hoc test with
SPSS 19.0 (IBM, Chicago, IL, United States), considering a
P-value ≤ 0.05 as statistically significant. Correlations between
physiological characteristics data and either F/B ratio or genus
were tested by Spearman’s correlation analysis using Prism 5
(GraphPad, La Jolla, CA, United States).

Sequence Accession Numbers
The datasets generated in this study are available through the
NCBI Sequence Read Archive (accession number SRP148630).

RESULTS

Physiological Characteristics of ZDF
Rats From 8 to 15 Weeks
Zucker diabetic fatty rats gained significantly more weight from
9 to 15 weeks of age compared to weights at 8 weeks of age
(P < 0.01 at weeks 9–15, Figure 1A). Compared with the previous
week, ZDF rats gained significantly more weight at 9, 10, and
11 weeks of age (P < 0.01 at week 9, P < 0.05 at weeks 10–
11, Figure 1A). ZDF rats generally experienced an upward trend
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in food and water intake from 8 to 15 weeks (Figures 1B,C),
but the rectal temperature remained stable (Figure 1D). Insulin
sensitivity was assessed by measuring RBG levels and by the
OGTT at week 14. RBG levels in 8-week-old ZDF rats reached
diabetes status (Figure 1E). The OGTT showed that the blood
glucose level reached the highest value at 30 min, and then
gradually decreased, but still could not recover to the initial
value at 120 min (Figure 1F). These findings are consistent
with previous reports (Jourdan et al., 2013; Wessels et al., 2015;
Van Bree et al., 2016; Szokol et al., 2017) and indicate that the
ZDF rats presented with pathological conditions of diabetes. The
disease was generally aggravated with age, glucose tolerance was
impaired, and insulin sensitivity was reduced.

Developing T2DM Harbors Temporally
Dynamic Microbial Diversity
The progression of diabetes may be associated with microbiome
dynamic changes; thus, we tracked the fecal microbiome changes
in rats from 8 weeks of age until 15 weeks of age. Of note, we
did not include rats older than 15 weeks of age in this work
because published literature suggests that male ZDF rats exhibit
significant diabetic complications at 15 weeks of age (Gu et al.,
2017). A total of 1,944,426 16S rRNA (V3–V4 region) reads
were obtained, averaging 60,763 reads per sample. Reads were
undertaken to generate a total of 44,613 OTUs, which could
be further grouped into ∼315 unique OTUs. Collectively, these
sequences represented 247 unique genera. The average Shannon
Diversity Index for all time points ranged from 4.87 to 6.28,
with an average of 5.52 (confidence intervals for all SDI values
are provided in Supplementary Table S2). Between Shannon
and Simpson’s diversity indices, there was a consistent trend.
Using the SDI could clearly visualize the trends (Figure 2). SDI
described an increase in diversity from 9 to 12 weeks in ZDF
rats, with the highest diversity observed at 12 weeks of age,
followed by a slight decrease at 13–15 weeks of age. This trend was
repeatable using the inverse SDI (Supplementary Figure S1A).
The median and inter-quartile range (IQR) are provided in
Supplementary Figure S1B.

The cluster heatmap for each genus per week is shown in
Figure 3. The abundance levels of each genus in the cluster
heatmap revealed the weekly dominant genera. Overall, the fecal
microbiome consisted of unique genera that can reflect the
diversity and dynamic changes of a microbial population.

Identification of Core Microbial
Communities in the Diabetic Stage of
ZDF Rats
The number of rats per week was 4 (see Supplementary Table S3
for the number of each sample). We plotted the weighted UniFrac
distances for all weeks (Figure 4) to compare abundance across
weeks. Inter-week weighted UniFrac distances were longer than
intra-week weighted UniFrac distances.

At the phyla level, compared to the relative percent
abundance, more than 90% of the microbial population in ZDF
rats from weeks 8 to 15 consisted of the phyla Firmicutes,

FIGURE 2 | Simpson’s diversity index for all 32 samples representing the
weeks of development T2DM. Early weeks (8–9) have lower diversity, and the
increase in diversity at 10 weeks of age can be clearly visualized from the box
plots. Median (line within the box) and minimum and maximum values
(whiskers) are illustrated by box and whisker plots. Compared within the
weeks, ∗p < 0.05.

Bacteroidetes, Actinobacteria, and Proteobacteria. During 8–
15 weeks of age, the most abundant phylum was Firmicutes
(Figure 5). At 8–9 weeks of age, the predominant phyla were
Firmicutes and Bacteroidetes. Actinobacteria gradually increased
from the 10th week of age until the 15th week of age.
Proteobacteria increased significantly in ZDF rats at 15 weeks of
age compared to other ages. We have plotted the mean abundance
measure along with the standard error for individual phyla
(Supplementary Figure S2). It is worth noting that the percent
abundance of different phyla varied at every week, thereby
suggesting a dynamic microbial ecosystem in ZDF rats.

Grouping of Microbial Abundance in the
Feces of ZDF Rats Shows Temporal
Signatures
To identify differences and similarities between the microbial
populations in different samples, cluster analyses based on
weighted UniFrac distances (Lozupone and Knight, 2005) were
carried out. These analyses revealed that weeks 8–10 and 11–13
showed mixed effects and formed two distinct clusters (Figure 6).
Some samples clustered with other samples from the same week,
thus exhibiting high specificity (samples from week 12). Samples
from other weeks either clustered non-specifically with other
samples or clustered with the nearest neighboring time point
(weeks 11–12 and 13–14).

To visualize whether the samples could form distinct
clusters, weighted UniFrac distances were used for the principal
coordinate analysis (PCoA). Whereas samples from week 8 (red
circle), week 9 (blue circle), and week 10 (brown circle) grouped
together in a cluster (along the PC3 axis), the remaining samples
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FIGURE 3 | Hierarchical clustering using Euclidean distances was used to construct an inter-week genus-level heatmap. In the figure, red represents high
abundance and blue represents low abundance.

(weeks 11–15) grouped into a large cluster (Figure 7). To display
the number of common and unique OTUs presented in each
group during the progression of diabetes, a petal diagram was
constructed (Figure 8A). It revealed that among all the weeks,
∼306 OTUs were shared. It enabled us to more clearly visualize
those OTUs that were distinct for each time scale [ranges from
2 (week 12) to 95 (week 15)] (Figure 8B). The dominant
phyla of these unique OTUs were Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria.

Microbial Diversity Initially Increases and
Then Decreases With Age and Disease
Progression in ZDF Rats
Employing the test for equal proportions (using Pearson’s chi-
square test statistic), a total of 16 dominant genera (p < 0.05)
were found in the feces of ZDF rats among the developmental
weeks (Figure 9). From this relative abundance OTU plot, it is
clear that Lactobacillus was the predominant genus at 8 weeks
of age, along with the presence of Turicibacter, Adlercreutzia,
Ruminococcus, Bacteroides, Coprococcus, Prevotella, Blautia,

Allobaculum, Oscillospira, Dorea, Clostridium, Bifidobacterium,
Rothia, Akkermansia, and Trichococcus. At 9 weeks of age,
Lactobacillus was also the dominant genus, and abundance
of Turicibacter was slightly reduced. At 10 weeks of age,
Lactobacillus continued to increase, Turicibacter decreased, but
Bifidobacterium was significantly present. At 11 weeks of age,
Lactobacillus and Bifidobacterium became the most abundant
genera, Ruminococcus, Dorea, and Allobaculum were significantly
present, and Turicibacter was greatly reduced. The abundance
of Allobaculum increased from weeks 11 to 15. At week 12,
Lactobacillus, Bifidobacterium, and Allobaculum remained the
dominant genera until week 13. At week 14, Lactobacillus,
Bifidobacterium, and Ruminococcus were the most abundant
genera, and Bacteroides abundance was significantly elevated. At
week 15, Bifidobacterium abundance was significantly elevated
and it remained the dominant genus along with Lactobacillus,
Ruminococcus, and Allobaculum. In brief, Lactobacillus was the
most abundant genus in feces during the progression of diabetes
in ZDF rats. The abundance of Turicibacter decreased from
weeks 8 to 15. The abundance of Allobaculum increased from
weeks 11 to 15. We provide the bar plot for the average
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FIGURE 4 | Weighted UniFrac distance box plots. The inter-week weighted UniFrac distances are longer than the intra-week distances.

FIGURE 5 | Four phyla: Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria dominated the majority of ∼315 OTUs. 16S rRNA gene
sequences were used to establish the identities. Different proportions of phyla
can be seen at different stages of diabetes development in ZDF rats. More
than 90% of the reads belonged to these four phyla.

abundance of weekly OTUs to clearly visualize the remaining
OTUs in Supplementary Figure S3. It can be seen that 16 genera
accounted for 50–60% of the total genera present per group. The
remaining percentage is occupied by low abundance taxa (n = 62).

To analyze the genera with the greatest temporal variation,
the relative abundances of species at the genus level were
employed. This resulted in the selection of 15 genera based
on significant differences (P < 0.05) (Figure 10). These data

depicting changes in the abundance levels over time indicate that
microbial populations changed significantly over time. Although
we could analyze the genera that showed large fluctuations
in their abundance levels across the developmental weeks,
it must be noted that the genera Bilophila, Proteus, Rothia,
and Streptococcus had significantly low/negligible abundance
levels. These fluctuations with low abundance levels might
be attributed to sequencing and/or normalization adjustments.
The temporal fluctuations of different microbial communities
generally indicate that microbial populations are dynamic during
the progression of diabetes over time. We speculate that diet,
geography, and other environmental factors play an important
role in the development of diabetic microbial communities.
Finally, the maximum richness in microbial diversity was
obtained in rats at 12 weeks of age.

Physiological Characteristics in ZDF
Rats Are Associated With Dysregulated
Microbial Taxa
The Firmicutes/Bacteroidetes (F/B) ratio is widely used to indicate
microbial dysbiosis. Spearman’s correlation analysis showed a
significant, negative correlation between F/B and age [R =−0.35,
P = 0.04] (Figure 11A); however, no significant correlations
between F/B and body weight, RBG, food intake, water intake,
and rectal temperature were found (Figures 11B–F). RBG was
strongly and negatively associated with the relative abundance
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FIGURE 6 | Heatmap generated of the 32 samples. Clustering similarity based on Weighted UniFrac distance matrix data was performed to construct the heatmap;
blue in the graph represents high similarity and red represents low similarity. ZDF15–18 represents fecal samples from 8-week-old ZDF rats, ZDF25–28 represents
fecal samples from 9-week-old ZDF rats, ZDF35–38 represents fecal samples from 10-week-old ZDF rats, ZDF45–48 represents fecal samples from 11-week-old
ZDF rats, ZDF55–58 represents fecal samples from 12-week-old ZDF rats, ZDF65–68 represents fecal samples from 13-week-old ZDF rats, ZDF75–78 represents
fecal samples from 14-week-old ZDF rats, and ZDF85–88 represents fecal samples from 15-week old ZDF rats.

values of Lactobacillus [R = −0.42, P = 0.02] and Turicibacter
[R = −0.48, P = 0.004] (Figures 12A,B) but positively associated
with the relative abundance values of Ruminococcus [R = 0.45,
P = 0.009] and Allobaculum [R = 0.37, P = 0.03] (Figures 12C,D)
and SDI [R = 0.44, P = 0.01] (Figure 12E). We found
that there was no significant correlation between RBG and
relative abundance values of Bacteroides [R = 0.31, P = 0.08],
Akkermansia [R = −0.20, P = 0.27], and Bifidobacterium
[R = 0.21, P = 0.24] (Figures 12F–H). The implications
of these associations are unclear and would require further
experimentation to demonstrate causality.

DISCUSSION

Microbes play a crucial role in many metabolic-related diseases
such as T2DM (Qin et al., 2012). However, systematic studies on
the dynamic correlation between microbes and the progression
of T2DM are lacking. Therefore, we generated a temporal

map of microbial diversity during the progression of T2DM
by analyzing the composition of microbes residing in rat
feces at different ages. To this end, high-throughput 16S
rRNA pyrosequencing was used to study the progressing
T2DM fecal microbiome. We used rats of different ages,
ranging from 8 to 15 weeks (diabetic stage). We observed
that physiological characteristics in ZDF rats, including
body weight, food intake, water intake, and RBG increased
over time; however, glucose tolerance was impaired and
diabetic pathological conditions were aggregated. The phyla
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
dominated the fecal microbiome during the progression
of T2DM. We also demonstrated that Lactobacillus and
Turicibacter are the dominant genera at 8–10 weeks of age,
while significant richness and diversity were achieved at 11–
12 weeks of age. The maximum diversity was achieved at
12 weeks of age. We believe that these findings significantly
improve our understanding of the fecal microbiome during the
progression of T2DM.
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FIGURE 7 | Diversity and distribution of OTUs at different stages of diabetes
development. As a measure of beta diversity, PCoA of weighted UniFrac
distances (between samples diversity): samples from week 8 (red dots), week
9 (blue dots), and week 10 (brown dots) grouped together into a cluster (when
viewed in 3D along the PC3 axis).

Advances in high-throughput sequencing have made it
possible to analyze temporal variations in microbial communities
based on time series and longitudinal studies. Unique ecological
observations relating to the dynamics, stability, and diversity of
microbial populations are revealed in these studies. At present,
research on temporal data is still rare, and published studies
have often focused on only a few time points in many subjects
(Horie et al., 2017; Liu et al., 2017). Complex interactions among
microbiota may either occur between microorganisms and their
niche environment or between microbes. These factors may
contribute to the temporal dynamics of microbial populations.
In this study, we used bioinformatic strategies to characterize the
specific aspects in fecal samples from T2DM. We traced dynamic
changes in the rat fecal microbiome during the progression
of T2DM by using well-established statistical methods, such as
hierarchical clustering and PCoA.

One of the most important findings from this research is
that microbial diversity in the rats increased gradually from 8 to
12 weeks of age and slightly decreased from 13 to 15 weeks of age
with the progression of T2DM. The diversity at various periods
of T2DM was measured by sophisticated indices. Thus, in future
studies, we will address whether microbial diversity affects the
severity or incidence of diabetes. Another important finding of
this study was that, based on weighted UniFrac distance, the fecal
microbiome from rats of similar ages were grouped together in
the cluster analyses. At all ages, four phyla, namely Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria dominated the
fecal microbiome. Importantly, Firmicutes and Bacteroidetes were
the predominant phyla at all ages. This is of note as about
95% of the human intestinal microbial metabolic profile belongs
to Firmicutes and Bacteroidetes, followed by Actinobacteria and
Proteobacteria (Dicksved et al., 2007; Jernberg et al., 2007; Naseer
et al., 2014), suggesting that the human and rat microbiomes

are identical in composition at the phylum level. In addition,
at the genus level, we observed that Lactobacillus was the
dominant genus at 8 weeks of age and remained predominant
throughout T2DM development. Several reports have indicated
that an increase in the abundance of Lactobacillus is essential
for the prevalence of obesity (Ley et al., 2006; Turnbaugh
et al., 2006; Million et al., 2012a,b). Similarly, reports also
illustrate the presence of a greater number of Lactobacillus
in patients with T2DM and ZDF rats, which contributes to
the development of chronic inflammation of diabetes (Zeuthen
et al., 2006; Sato et al., 2014; Gu et al., 2016). Moreover,
Lactobacillus is involved in insulin resistance (Le et al., 2012) and
is coincident with bile salt hydrolase enzymatic activity, thereby
disturbing lipid and glucose metabolism and contributing to
T2DM (Tremaroli and Backhed, 2012). We observed a slight
decrease in the abundance of Turicibacter, a Gram-positive,
strictly anaerobic bacterium (Bosshard et al., 2002), in rats at
9 weeks of age. It has also been reported that Turicibacter
was associated with intestinal butyric acid (Zhong et al., 2015).
Butyric acid is a short-chain fatty acid that stimulates insulin
secretion in the pancreas, increases insulin sensitivity, and alters
insulin signaling (Gao et al., 2009; De Vadder et al., 2014). It
has significant functions such as providing anti-obesity effects,
reducing metabolic stress, and inhibiting inflammatory reactions
(Li et al., 2013; Valvassori et al., 2014). However, the metabolism
of Turicibacter and its interaction with the host in the intestine
are still unclear. Bifidobacterium was significantly present in
rats at 10 weeks of age. Bifidobacterium, a dominant member
of the intestinal microbiota and probiotic strain of the phylum
Actinobacteria, was increased in non-diabetics than in T2DM
patients. It has been reported that endotoxemia negatively
correlates with Bifidobacterium and positively correlates with
improved glucose tolerance, glucose-induced insulin secretion,
decreased endotoxemia, and adipose tissue proinflammatory
cytokines (Cani et al., 2007b). This is because Bifidobacterium
improves mucosal barrier function, thereby decreasing endotoxin
levels (Griffiths et al., 2004; Wang et al., 2006). At 11 weeks of age,
Lactobacillus and Bifidobacterium became the dominant genera,
and Ruminococcus and Allobaculum were significantly present.
Ruminococcus has been shown to assist gut epithelial cells to
absorb sugars, which could contribute to weight gain in the host.
Nobel et al. (2015) reported that Allobaculum was an important
functional phenotype of metabolic dysbiosis. Additionally, it has
been reported that Allobaculum is the abundant genus in mice
that are particularly fed on low-fat and high-fat diets (Ravussin
et al., 2012). At 12 weeks of age, Lactobacillus, Bifidobacterium,
and Allobaculum remained the dominant genera until week 13.
Likewise, Lactobacillus was also the dominant genus in 12-week-
old TSOD mice (12-week-old TSOD mice exhibit typical clinical
status of diabetes) (Horie et al., 2017). At 14 weeks of age,
Bacteroides was significantly elevated. Bacteroides is a Gram-
negative bacterium that contains lipopolysaccharide in its cell
wall (Finegold et al., 2010). It is known that a large number
of Gram-negative bacteria in the intestine may damage the
gut barrier, releasing lipopolysaccharide into the bloodstream
and triggering a low degree of chronic inflammation (Cani
et al., 2007a). Although Lactobacillus and Turicibacter were the
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FIGURE 8 | The petal diagram reveals common and unique genera associated with different stages of diabetes development. Different colors represent different
modules. (A) The petal diagram (nodes) at the center of the petal diagram (∼306) is shared by all weeks. (B) The total number of OTUs and the number of unique
OTUs are shown in the table.

predominant genera in 8- to 10-week-old rats, Bifidobacterium,
Lactobacillus, Ruminococcus, and Allobaculum were the most
abundant genera in 15-week-old rats. One possible reason is
that, at the genus level, Lactobacillus predominates throughout
the progression of T2DM. Turicibacter only predominated in
the early stage of diabetes in ZDF rats, while the abundance
of Bifidobacterium, Ruminococcus, and Allobaculum increased
with the aggravation of the pathological state of diabetes and
elevated blood glucose levels in rats (Gu et al., 2016; Kim et al.,
2017). Blood glucose levels may also affect the abundance of
the bacteria, however, the causal relationship between them is
still unclear. Future research needs to prove the relationship
between them. In addition, as the rats continued eating high-
fat diets, Allobaculum may also gradually increase in abundance.
These all indicated that, at the genus level, the fecal microbes

in the diabetic stage of ZDF rats changed dynamically. Of
interest, when compared with previous weeks, a relatively
higher diversity was observed at the genus levels at 12 weeks
of age, whereas during 13–15 weeks of age, lower diversity
was achieved.

Intriguingly, we have observed a gradual decrease in the
abundance of Akkermansia muciniphila with the progression
of diabetes. A. muciniphila is an adherent mucin-degrading
bacterium that has been proposed to modulate intestinal health,
energy balance, and glucose balance (Everard and Cani, 2013).
Recent studies uncovered that A. muciniphila decreases in
prediabetic patients (Yassour et al., 2016; Allinet al., 2018) and
has a negative association with T2DM, implying a protective
effect on diabetes (Everard et al., 2013; Chen M. et al., 2018;
Mithieux, 2018). A. muciniphila is found in the feces of rats, and
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FIGURE 9 | Microbial communities at different stages of diabetes development are dynamic over time. The stacked bar plot reveals that the fecal microbiota was
dominated by 16 genera. The average abundance of OTUs per week is represented in bars. Lactobacillus was most prominent among the rats at all ages.

a decrease in its abundance is associated with the progression of
diabetes. The mechanisms and factors that play an important role
in promoting the growth of the bacteria remain unknown and
will play an important role in modulation of metabolic diseases.

The presence of Ruminococcus in the stool was a surprising
finding. Of interest, Ruminococcus was earlier detected in the
feces and gut flora from adults with T2DM (Everard and Cani,
2013). Since a number of Ruminococcus species are known
to be associated with metabolic diseases, the identification of
Ruminococcus to the species level might be critical for further
understanding the relationship between Ruminococcus and
diabetes and its effect on the development of metabolic diseases.

Notably, we found that the F/B ratio is negatively correlated
with age. The F/B ratio, the ratio of the two largest microbial
phyla, has previously been considered to be a sign of obesity
and T2DM (Turnbaugh et al., 2009). However, the causality
of this transformation of the phyla as an integral part in
the health of the organism, and even as a useful biomarker,
has recently been questioned (Brown et al., 2012). RBG is
negatively associated with Lactobacillus and Turicibacter, while
it is positively correlated with Ruminococcus, Allobaculum and
SDI, suggesting that under conditions of diabetes, Lactobacillus
and Turicibacter may help recover blood glucose levels. There
may be mutual influence between the blood glucose levels and
microbial diversity; however, precisely how they are affected and
whether there is a link in function and causality requires further
proof of experimentation. The lack of statistical significance
between the F/B ratio and body weight, food intake, water intake,
and RBG, and the lack of statistical significance between RBG

levels and Akkermansia, Bacteroides, and Bifidobacterium, may
be due to variability among individuals and a small sample size.
Although a few studies have shown a correlation between specific
physiological characteristics and specific gut microbes, to the best
of our knowledge, this is the first study to attempt to correlate the
dynamic physiological characteristics of 8–15-week-old ZDF rats
with microbes. Further investigations are required with a greater
number of animals or a human cohort to verify the results of this
study and to determine the possible underlying mechanisms.

T2DM is a complex metabolic disorder. Beyond the widely-
accepted concept that genetic factors play an important role in
diabetes susceptibility, growing evidence has demonstrated that
environmental factors (such as commensal bacteria, chemicals,
diet, and viruses) may also modify diabetes development. Of
these factors, the gut microbiota has been shown to play an
important role in influencing the progression of T2DM. This
has been supported by results from both human research and
animal studies, especially the discordant incidence of diabetes in
monozygotic twins who are genetically identical (Tai et al., 2015).
Lactobacillus might be used as one of the genera in experiments,
showing a role for the microbiome during the progression in
T2DM. We also observed that among groups of rats of different
ages, Firmicutes and Bacteroides are the dominant phyla. These
observations confirm findings from patients with diabetes, where
these phyla were found in the feces of diabetics (Dicksved et al.,
2007; Jernberg et al., 2007; Naseer et al., 2014). In this study,
we observed that the microbiome of rats was predominated
by the genera Lactobacillus, Turicibacter, Bifidobacterium,
Ruminococcus, Allobaculum, and Bacteroides. Studies in humans
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FIGURE 10 | Fifteen genera experienced maximum temporal fluctuations in abundance levels at different stages of diabetes development. These 15 genera (A–O)
depict highly dynamic variations. P-values (P < 0.5) are shown on plot corners. Box plots display the following values: the Y-axis represents relative abundance of
the genus, the X-axis represents time grouping; middle box line, represents the median; the upper and lower whiskers represent 1.5 times IQR beyond the upper
and lower quartiles, respectively; and dots represent outlier values. Genera Bilophila, Proteus, Rothia, and Streptococcus have low abundance levels. For better
inspection, these plots have been divided into three parts (red, green, and blue) that reflect their relative abundances.

suggest that the human fecal microbiome is primarily dominated
by Bifidobacterium, Bacteroides, Escherichia, Intestinibacter,
Prevotella, A. muciniphila, Blautia, and Ruminococcus (Moreno-
Indias et al., 2014; Wu et al., 2017). These data seem to indicate
that the rat fecal microbiome has some similarities with the
human fecal microbiome while harboring some other genera.

This observation indicates that the ZDF rat can be used as
a model for studying the T2DM microbiome. Analyzing the
changes in the rat fecal microbiome and comparing them
with the available data from human clinical studies will be
interesting. In addition, increasing evidence indicates miRNAs
have close associations with diabetes, so miRNA biomarkers
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FIGURE 11 | Correlation between the F/B ratio and physiological characteristics in ZDF rats. (A) Age. (B) Body weight. (C) Random blood glucose. (D) Food intake.
(E) Water intake. (F) Rectal temperature.

will be particularly useful in early diagnostics of diabetes
(Chen et al., 2017; Chen X. et al., 2018; Hu et al., 2018; Zhao et al.,
2018a,b). It would be meaningful to correlate miRNA biomarkers
with gut microbes in T2DM, but this is still beyond the scope of
this study.

Although our research has monitored the changes in
microbiome composition and the diversity of feces in ZDF rats
with age and disease progression, important questions remain
unanswered. These include whether the fecal microbiome is
influenced by sex or diet. A number of earlier studies have
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FIGURE 12 | Correlations between random blood glucose levels and variation in microbial communities and Simpson’s diversity index. (A) Lactobacillus.
(B) Turicibacter. (C) Ruminococcus. (D) Allobaculum. (E) Simpson’s diversity index. (F) Bacteroides. (G) Akkermansia. (H) Bifidobacterium.
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shown that sex may influence the fecal microbiome (Shastri
et al., 2015; Fields et al., 2018). Diet can also affect the
intestinal flora, especially high-fat diets (Daniel et al., 2014;
Chi et al., 2018; He et al., 2018) Thus, one of the weaknesses
of the present study is that we did not take into account the
effects of sex or diet on the rat fecal microbiome. Another
limitation of this study is that our results are based on a
small sample size. Further validation in a larger number of
animals or a human cohort is needed. Moreover, we have
not demonstrated a causal relationship between microbiota
and diabetes. Future work to establish causality would involve
the isolation of specific taxa and transfer of anaerobically
cultured clones into germ-free animals to demonstrate the
development of diabetes in recipient animals. Unfortunately,
there was no negative control group included to dissect the
specific correlation between microbial changes and disease
progression. Future studies should include negative control
studies to better understand the correlation between microbial
changes and disease progression. The main strength of this
research is that fecal microbiome composition was associated
with age and the progression of diabetes. Toward this, fecal
samples in the rats of different ages were collected and fecal
microbiome analysis was performed. To conclude the association
between the diabetic microbiome and age and disease progression
in rats, we performed rigorous analyses.

This research differs from other research projects which
address the effect of the gut microbes on diabetes. In this
study, we monitored the changes in the fecal microbiome with
the growth and disease progression of T2DM. However, many
other confounding factors may affect fecal microbes, including
stress and feed type, as in the gut microbiome (Hufeldt et al.,
2010). In summary, we have monitored the changes in the fecal
microbiome in ZDF rats from 8 to 15 weeks of age by using deep
sequencing. This analysis suggests that the microbial composition
is associated with the age and progression of diabetes in rats.

CONCLUSION

Other research has implicated the microbiome in playing
an important role in metabolic diseases such as diabetes.
However, there is a lack of time-resolved microbial changes
during the progression of diabetes. This understanding is
crucial for creating new interventions for curing metabolic

diseases such as diabetes. In this study, we monitored
changes in the fecal microbiome during the progression of
diabetes from 8 to 15 weeks of age. The fecal microbiome
in rats was highly dynamic and underwent major changes
during the progression of diabetes. The determined time-
dependent alteration of the fecal microbiome supports further
investigation to determine whether Lactobacillus, Turicibacter,
Bifidobacterium, Allobaculum, Ruminococcus, and Akkermansia
may play functional roles in the progression of diabetes before
any intervention can be considered.
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The affordability of high throughput DNA sequencing has allowed us to explore the

dynamics of microbial populations in various ecosystems. Mathematical modeling and

simulation of such microbiome time series data can help in getting better understanding

of bacterial communities. In this paper, we present Web-gLV—a GUI based interactive

platform for generalized Lotka-Volterra (gLV) based modeling and simulation of microbial

populations. The tool can be used to generate the mathematical models with automatic

estimation of parameters and use them to predict future trajectories using numerical

simulations. We also demonstrate the utility of our tool on few publicly available datasets.

The case studies demonstrate the ease with which the current tool can be used by

biologists to model bacterial populations and simulate their dynamics to get biological

insights. We expect Web-gLV to be a valuable contribution in the field of ecological

modeling and metagenomic systems biology.

Keywords: microbiome, modeling, numerical-simulation, web-server, time-series, visualization, lotka-volterra,

microbial population

INTRODUCTION

The ensemble of microbial groups residing in an ecosystem constitutes its microbiome. Mutual
interactions between the resident microbes in a given microbiome depend not only on species
diversity and abundances, but also on properties of their inhabited environment. On the other
hand, the resident microbiota also has a profound influence on the properties of the habitat itself
(Levy and Borenstein, 2013; Zelezniak et al., 2015). High throughput sequencing studies, especially
for longitudinal microbiome projects, have greatly enhanced our understanding of the nature
and dynamics of complex microbial interactions. Temporal analysis of microbial profiles has led
to several intriguing findings (Gerber, 2014) and strengthened our understanding of the role of
microbes in many diseases. Researchers have also reported new insights such as the existence of
multiple steady states in human microbiome using time series microbiome experiments (Gajer
et al., 2012; Faust et al., 2015).

Realizing the importance of the dynamic microbiome has encouraged development of methods
and tools for its analysis and modeling (Fisher andMehta, 2014; Bucci et al., 2016; Shaw et al., 2016;
Baksi et al., 2018). Some of these tools provide specializedmethods to visualize, cluster and compare
temporally similar microbial groups, find causal relationships, analyze stationarity, identify
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community-states, etc. Modeling microbial populations has
recently attracted generous attention owing to its capability and
potential to forecast future behaviors of the system as well as
allow improved estimation of microbial interactions (Berry and
Widder, 2014; Fisher and Mehta, 2014). The classical Lotka-
Volterra equations can be used to model simple systems such
as two species predator prey where the interactions are strictly
assumed to be competitive. The “generalized” Lotka-Volterra
(gLV) equations on the other hand are an extension of the
logistic growth model and are more general than the classical
predator-prey (Lotka-Volterra) equations where the interacting
species might have a wide range of relationships including
competition, cooperation, or neutralism. Such gLVs assume
that the interaction (or the effect) of one species with another
is encoded in the corresponding coefficient in the equation,
providing a powerful framework tomodel and simulatemicrobial
populations. It must be noted that gLV based models capture the
interactions using a single averaged effect in a mean-field type
model for which modest computational resource is sufficient.
Consequently, it does not account for stochastic fluctuations
(random processes), intrinsic dynamic correlations, and cannot
address any emerging spatial structures which requires extensive
computation. All the caveats applicable to extrapolation of
the dynamics of a non-linear system apply to the predictions
of the model. However, gLV formulations can still provide a
reasonable starting point for more advanced community models
and capture the effect of inter microbial associations in a more
meaningful way as compared to conventional correlation based
methods. Although correlations between groups of microbes
can help in revealing underlying ecological processes, they
are in most cases insufficient to serve as proxy for microbial
interactions (Berry and Widder, 2014; Fisher and Mehta, 2014).
Parameter estimations using Lotka-Volterra based models have
been demonstrated to be better than correlation based measures
(Fisher and Mehta, 2014). Additionally, the gLV models can
provide an estimate of the native growth rates of uncultured
microbes. While a positive value of the “interaction coefficient”
is assumed to be a beneficial effect, a negative value indicates
an inhibitory effect. If the coefficient has a zero value, no
interaction is assumed to be present between the two taxa.
The gLV equations were first used to model the interaction
between bacteria and yeast in a cheese microbiome (Mounier
et al., 2008) and thereafter in a few more microbiome studies
(Marino et al., 2014; Dam et al., 2016; Vos et al., 2017; Venturelli
et al., 2018). Simulation studies using generalized Lotka-Volterra
(gLV) models can be used to understand microbiome dynamics
and can assist biologists to design better experimental strategies.
For a given microbial community (with known abundance and
diversity), gLV can also be used to predict the future state of
the microbiome. Similarly, it can be utilized to understand the
temporal behavior of the microbiome if the initial conditions
are perturbed.

Tools like LIMITS (Fisher and Mehta, 2014), MetaMis
(Shaw et al., 2016), and MDSINE (Bucci et al., 2016) are
available for applying gLV modeling on microbial time series
data. LIMITS and MetaMis focus mainly on reconstruction of
microbial interactions and are available as Mathematica code and

an offline Matlab based GUI, respectively. MDSINE, although
providing the most comprehensive suite of functionalities for
analysis, requires knowledge of Matlab programming. In this
communication, we present a web based tool called “Web-
gLV” (freely available at http://web.rniapps.net/webglv) which
can be used for modeling, visualization, and analysis of microbial
populations without any programming expertise and has no
installation requirements (Supplementary Table 1). Users can
either upload a microbial time series abundance data matrix
to formulate the mathematical models automatically or can
provide pre-calculated model parameters, namely the growth
rate, and inter-microbial interaction matrix. The outcomes of
the simulations can be used to obtain various biological insights
and enable optimization of experimental designs. “Web-gLV” is
expected to be a valuable addition to the suite of tools in the field
of ecological modeling and metagenomic systems biology.

RESULTS

“Web-gLV” provides an easy platform for biologists to exploit the
benefits of gLVmodeling by simply uploading the experimentally
obtained time series microbial abundance data. The application
is flexible to allow users input microbial growth rates and
interaction values if known from other sources. We demonstrate
the utility of “Web-gLV” using few publicly available datasets.

Case-Study 1: Predicting the Future State

of Gut Microbiome
In this simulation, we used an available longitudinal
metagenomic time series data of gut microbiome samples
from a healthy human subject (Caporaso et al., 2011). The
aim of this case study was to model the temporal behavior of
top five dominant microbial taxa present in healthy human
gut microbiome and use the model for predicting temporal
dynamics of a future state which is unknown to the model.
In order to achieve this, we used the above dataset to create
a gLV model using the first 100 time points and considered
the 101th time point as a start point to predict the abundance
profiles of the subsequent 30 time points. The predicted 30 time
points were then compared with the experimentally reported
abundance profiles (Supplementary Figure 1A). In order to
evaluate how close “Web-gLV” predicted trends are with respect
to the experimentally observed trends, a Dynamic TimeWarping
(DTW) based algorithm (Berndt and Clifford, 1994) was used.
DTW can evaluate the similarity between two time series of
equal or unequal lengths using a dynamic programming based
approach and can be used to successfully capture equivalence in
the overall pattern. The lowDTWdistances between the observed
and predicted trajectories (Supplementary Figure 1B) indicated
that the gLV model was able to capture the observed temporal
patterns in the selected taxonomic groups with good accuracy.
The predicted dynamics could capture Lachnospira’s positive
influence on Faecalibacterium as well as its negative influence
on Akkermansia, Bacteroides, and Phascolarctobacterium
(Supplementary Figure 1C). Cyclic trends in the Bacteroides
abundance (as prevalent in the observed trends) were also seen
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to be well captured in the predicted trajectories. In order to
evaluate the robustness of the predicted trends, we changed the
initial abundance values (to half and one fourth) of the two
most abundant taxa, namely Bacteroides, and Akkermansia.
With these changes, the predicted abundances of the two
taxa did not show much deviation in their temporal trends
(Supplementary Figure 2). Therefore, as expected, these two
taxa, being the most abundant, were seen to be robust to
different initial values. To check the similarities in the trends
of the selected taxa over time, DTW distance metric was used
to generate the dendograms (Supplementary Figure 1D).
The obtained results indicated a good agreement between the
observed and “Web-gLV” predicted trees, thereby validating
the simulation capability of gLV models. The details of the
individual steps followed in the case study are explained under
the “Methods” section.

Case-Study 2: Understanding Changes in

Microbial Interaction Patterns Upon

Perturbation
The ability of gLV modeling to decipher interaction patterns in
a microbial community was exploited in this case study to find
differences between a healthy and perturbed gut microbiome.
In order to understand the effect of perturbation on the
dominant microbial genera, we used the publicly available time
series microbiome data corresponding to Clostridium difficile
infection (Bucci et al., 2016). The dataset consisted of regularly
sampled time-series microbiome abundances (for 28 days) in five
gnotobiotic mice pre-colonized with human commensal bacterial
strains which were later infected with C. difficile spores. The
data also includedmeasuredmicrobial abundances for additional
28 days post infection in these mice. For constructing the gLV
model and predicting microbial interactions in the unperturbed
state of the microbiome, we used the top five abundant taxa
from data corresponding to the pre C. difficile infection time
points of all five mice samples. Similarly, in order to construct
a representative model and predict microbial interactions in
the perturbed state, we considered the post C. difficile infection
time points. Thus, two models, namely “normal state model”
and “perturbed state model”, were generated for each mouse
sample using gLV modeling implemented in “Web-gLV.” A
biological realistic constraint enforcing positive intrinsic growth
and negative or zero self interaction (Bucci et al., 2016) was
considered during model generation (see Methods for details).

The predicted interaction profiles revealed a clear
difference in the nature of microbial interactions between
“normal” and “perturbed” states for all the five samples
(Supplementary Figure 3). Upon inspecting the changes in the
nature of interactions of individual taxa (from their normal
to perturbed state) across all the samples, it was observed that
genera exhibiting the maximum change differed in each of
the samples (Supplementary Figure 3). For example, while
Akkermansia muciniphila showed the least change across a
majority of the mice samples (“Mouse 1,” “Mouse 3” and
“Mouse 4”), no clear cut pattern was observed for other taxa.
Overall, the total negative interactions decreased in most of the

samples (“Mouse 3,” “Mouse 4” and “Mouse 5”) but every mouse
displayed a unique combination of interaction profiles. This
may be explained as an effort by the dominant players (taxa)
in the microbiome, each trying in its own way to influence the
individual sample level variations.

In order to evaluate whether the model generated using
the perturbed state of one mouse is able to predict the
perturbation dynamics of the other mice, we predicted the
post perturbation trajectories corresponding to each mouse,
considering perturbation model of every other mice. Results
of this simulation indicated an overall good prediction of
the temporal dynamics (Supplementary Figure 4).The results
corresponding to the predicted perturbed state trajectories of a
mouse based on the model of its own normal state is shown
(Supplementary Figure 4). To achieve this, gLV models were
also generated for the normal states corresponding to all the mice
samples (see Methods for details). In the next step, we checked
whether these predictions could be improved by incorporating
the normal state of the same mouse in combination with
the perturbed state of another mouse. The comparison of the
predicted and observed perturbation dynamics for each of the
subjects was performed by evaluating their sum DTW distances.
Comparison of the results indicated that the perturbed state of
a mouse could be predicted better using the perturbed state
of another mouse instead of using the model corresponding to
the normal state of the same mouse. Interestingly, utilizing the
normal state model of the same mouse in combination with
the perturbed state model of another mouse did not show a
consistent improvement (Supplementary Figure 4). Thus, the
results indicate that the growth rate and interaction parameters
of perturbation dynamics are better encoded in a comparable
perturbation model rather than the normal state model of the
same subject. However, additional advanced modeling steps like
inclusion of antibiotic susceptibilities are expected to further
enhance prediction accuracies (Bucci et al., 2016). The main
objective of this case study was to demonstrate the capability
of “Web-GLV” to use growth rate and interaction parameters
derived from other experiments to perform simulations on new
data in a user friendly way.

CONCLUSIONS

The increased affordability of DNA sequencing has enabled
researchers to move beyond the hypothesis generated using
static snapshots of microbiome. Lotka-Volterra based modeling
provides an efficient means to leverage the current volume
of generated longitudinal microbiome data. The generalized
Lotka-Volterra (gLV) modeling extends the classical two species
predator prey models which are widely used in ecology. An
important advantage of gLV models is its ability to estimate the
native growth and interaction parameters of unculturedmicrobes
in a given environment from temporal data which would
otherwise be difficult using traditional culture based methods
(Bucci and Xavier, 2014). Consequently, using these parameters,
one can study the changes in microbial communities over time
starting with unknown initial conditions. This allows testing
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of new hypothesis and helps to gather improved mechanistic
insights. However, the intricacies of the advanced mathematical
concepts involved as well as their implementation might prove
to be a hindrance for many biologists. The limited availability of
“ready-to-use” tools for such analysis also serves as a bottleneck
to quickly test a hypothesis and obtain meaningful insights.
We have developed “Web-gLV” to bridge this gap and to
enable biologists take advantage of the multispecies modeling
and simulation without any programming expertise. “Web-gLV”
also bypasses any installation needs and requires only the time
series microbial abundance data as input. A set of interactive
operations allows easy initialization and simulation of microbial
population as well as analysis of the output trajectories. Results
of repeated simulations can be easily evaluated by altering the
initial values and the parameters using GUI based inputs. The
interactive graphical plots generated by the tool aids in easy
analysis and comparison of the results. We demonstrate the
ease with which Web-gLV can be used to automatically model
and simulate microbial communities and generate outputs.
Furthermore, we demonstrate the accuracy of the predictions and
possible biological interpretations of the results.

Although gLV based models provide a good starting point for
modeling microbial community dynamics, it does not account
for random processes which forms essential part of any biological
system. Additionally, with the increase in number of species and
time span of prediction, the simulation output is also prone
to numerical errors. Consequently, Web-gLV limits simulating
a maximum of 10 species at a time for at the most 100 time
points. The compositionality bias in microbiome data arising
due to sampling and sequencing limitations may also cause
inaccurate estimation of simulation parameters. Moreover, too
much irregularity in the sampled time points may also result
in inaccurate parameter estimations. Hence, it is advised to
cautiously interpret the findings obtained using Web-gLV and
more importantly augment it with the underlying biology of the
systems (Faust and Raes, 2012; Gerber, 2014).

MATERIALS, METHODS, AND

IMPLEMENTATION

Modeling and Parameter Estimation of a

Generalized Lotka-Volterra Equation
A multi species gLV model for rate of change of a counts “xi” of
a species “i” can be written as an ordinary differential equation as
shown below:

dxi

dt
= xi



ri +
n

∑

j=1

∝ij xj



 . . . (1)

where, ri corresponds to the intrinsic specific growth rate of
species “i” and ∝ij is the influence on the growth rate of
species “i” exerted by another species “j” of the community
consisting of “n” species. Thus, for a given set of “n” species, “n”
differential equations can be formulated which can then be used
for simulating the behavior of those species starting with a set
of initial values. However, in order to perform such simulation,

one also needs to find the values of other types of parameters for
each of the equations namely the growth rate ri and the set of
inter-species interaction parameter ∝ij.

The Equation (1) can be rewritten as below:

1

xi

dxi

dt
=



ri+
n

∑

j=1

∝ijxj



 . . . (2)

Further, Equation (2) can be expressed as:

dln(xi (t))

dt
=



ri +
n

∑

j=1

∝ij xj



 . . . (3)

For numerical integration following the implicit trapezoid
method, upon discretizing Equation (3) for each sub interval (let
[k,k+1]), and taking the average value of xj we get:

ln xi ( tk+1) − ln xi ( tk)

≈



ri +
n

∑

j=1

∝ij







(

xj(k+1)
+ xjk

)

2









1t . . .

(4)

Now, given a time series data for abundances of the set of
“n” species, these two parameters namely ri and ∝ij can be
estimated by comparing equation (4) to a linear regression
model for log lagged differences in abundances estimated for
each ith taxa (xi) available in the microbiome time series
data wherein the intercept corresponds to the ri values and
the coefficients to the ∝ij values (Figure 1). Earlier studies
have suggested using a constrained regression (with enforced
positive intrinsic growth and negative or zero self interaction
constraints) for microbial populations as it is biologically
more realistic (Bucci et al., 2016). Web-gLV implements two
methods for parameter estimation namely PLSR (Partial least
squares regression) for unconstrained estimation (Haenlein
and Kaplan, 2004) and LSEI algorithm (Haskell and Hanson,
1978) for constrained estimations (Supplementary Figure 5).
The constrained estimation solves a least square problem under
conditions where ri is forced to take a positive value and ∝ii

values are constrained to less than or equal to zero.

Evaluation of Predicted Trajectory
The observed and predicted trajectories are compared using a
Dynamic Time Warping algorithm (DTW). DTW measures the
similarity between two time series (with or without a lag) using a
dynamic programming approach (Berndt and Clifford, 1994) and
can be used to compare time series of unequal lengths. As, inmost
cases, the compared trajectories in “Web-gLV” are expected to be
unequal, DTWfits as the best scoringmetric. If “T1” and “T2” are
two time series vectors of length “m” and “n,” respectively, DTW
finds a mapping path {(p1,q1),(p2,q2),. . . ,(pk,qk)} with boundary
conditions (p1,q1)=(1,1) and (pk,qk)=(m,n). The DTW distance
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FIGURE 1 | Overview of formulation and use of multi species generalized Lotka-Volterra (gLV) models for obtaining microbial interactions and predict future trajectories.

between T1 and T2 for a point (i, j) is calculated by solving a
dynamic programming using the distance formula shown below:

DTW
(

i, j
)

=
∣

∣T1 (i) − T2(j)
∣

∣ +min







DTW (i− 1) , j
DTW(i− 1, j− 1)
DTW(i, j− 1)







. . .(5)

To calculate the final distance, a matrix MDTW of dimensions
m×n is constructed after filling MDTW(1,1) with the initial
condition value of MDTW(1,1) =

∣

∣T1 (1) − T2(1)
∣

∣. The whole
matrix is then filled one element at a time using the formula
shown in Equation 5. The final distance value is available at the
cell MDTW(m,n). The distance is calculated between the scaled
(between 0 and 1) time series belonging to the “Observed” and
“Predicted” data which is presented as a table along with the
trend plots in the “Web-gLV” tool. The sum total (or cumulative)
DTW distance for a set of predicted taxa can be used as a
measure to score the similarity between two or more simulations.
Additionally, the “all vs. all” DTW distance is calculated for the
“Observed” and “Predicted” data to generate the hierarchically
clustered dendograms. These dendograms can be useful to
understand the microbial community structure.

Implementation of the Web-gLV Tool
Web-gLV has been developed using JavaScript (and PHP) for
the frontend with R (deSolve package) and Perl scripts in the
backend (Soetaert et al., 2010). The tool can perform simulations
starting two types of input sets. A user can either upload only
a taxonomic abundance file which will be used to estimate

parameters and generate reference plots for the observed trends.
Alternatively, in addition to a taxonomic abundance file, a growth
rate file and inter-taxa interaction file can also be uploaded
separately to bypass the automatic parameter estimation step and
use the supplied values for numerical simulation. A metadata
file corresponding to the timepoints specified in the main
taxonomic abundance file can also be uploaded as an optional
input. This metadata information will be used by the tool to
augment the time series plots based on the available information.
The reference values of initial starting point of simulation for
the selected taxa set can be selected from one of the time
point row of this abundance table. Once the input files are
uploaded, the various steps involved in running a simulation are
described below:

Step 1: Selecting the taxa required for simulation from the
input dataset:

Given a time series microbiome data as input, the tool
presents a tabulated graphical summary in the form of box
plots, trend charts and other accompanying statistics of the
input microbial abundance profiles (Figure 2A). Additionally,
a Pearson correlation (r ≥ 0.5 and r ≤ −0.5) based network
is created using the core taxa (having <30% zeroes in the
sampled longitudinal timescale) (Figure 2B). This network can
be viewed by clicking on the link “Click here to show/hide
correlation network.” The taxonomic groups desired to be added
for modeling can be selected using the graphical summary table,
the dropdown search box or the correlation network. Clicking
on a taxa label in the summary table adds that taxa to the
simulation. Similarly, clicking on a node in the network adds
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FIGURE 2 | Demonstration of the various features of the web-gLV tool. (A) Tabulated summary of the input microbiome abundance data. (B) Microbial association

network generated from the input data which can be used to select the required taxa to be used for modeling. (C) A stacked line plot based comparison of the

observed (C) and predicted (D) trajectories. (E) A matrix representation of the predicted interaction coefficients for the modeled taxa (Red, Negative, Blue, Positive

and Green, No interaction). Dendogram based comparison of the change in the microbial community structure between the observed (F) and the predicted (G)

trends. (H) Evaluation of the similarity between the observed and predicted time series curves scored using a DTW metric.

it and the connected nodes. This feature can be used to select
a set of closely related microbial groups showing a correlated
temporal behavior. Adding a taxa for simulation using the above
two methods also makes it visible in the searchable dropdown
along with a graphical display of its temporal behavior in the
“Observed trend” window. This dropdown can also be used
to remove added taxa or add more taxa by selecting from the
dropdown. Adding or deleting a taxon automatically updates
the “Observed trend” plot. Several user interactive operations
like log transformation, stacking/un-stacking, viewing gridlines
and selecting a desired window of the trend plot is possible.
A moving average based smoothing can also be applied to the
time series plot by modifying the value in the left bottom corner
box (Figures 2C,D).

Step 2: Selecting simulation parameters:
After selecting the taxonomic groups, a user has to

specify the modeling parameters like start and end point of
data time-points for estimating the interaction coefficients,
numerical simulation interval duration and the solver used
for numerical integration of the ordinary differential equations

(ODE) method. The interaction coefficients for the equation
are then inferred using a partial least square regression (if
selected for unconstrained growth rate selection) or a constrained
regression (if selected for an enforced positive intrinsic growth
and negative/zero self interaction constraints). Other parameter
estimation methods that require numerical integration at each
step of the optimization process are potentially better in terms of
accuracy but require substantially more resources and time than
the implemented methods. Earlier studies have suggested using
the constrained method for modeling microbial populations as
it is biologically more realistic (Bucci et al., 2016). The start
time (or initial value) for the simulation can be interactively
selected as any one of the time-point from the input dataset
with provision to edit the values. This option can be used
to test perturbations in the initial microbial abundance values
and observe the simulation outcomes. It needs to be noted
that the “Parameter estimation” settings are not available when
a simulation is started with a user supplied growth rate and
interaction file.

Step 3a: Running the simulation:
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After setting the parameters, The “Run simulation” button
can be clicked to perform a simulation. If the simulation is
successful, the predicted trajectories for the selected taxa are
displayed under the “Predicted trend” window (Figure 2D). The
observed vs. predicted trend plot for a taxon is also generated
as a mixed plot with the observed trends shown in points
connected by dotted lines and the predicted as firm lines of same
color. In case of an unsuccessful simulation due to incorrect
parameter or solver limitation, an error message is displayed
and no trajectories are generated. The timeseries plot in the
“Observed trend” window is automatically set to display the
selected time range if the simulation range matches. This feature
is helpful to compare the predicted trajectories from a modified
starting point and compare it with the unmodified observed
trends. The predicted growth rate and interaction coefficient
matrix (Figure 2E) which was used for simulation is displayed
graphically for convenience. A simulation can be re-run by
altering some parameter/simulation settings as well as with a
modified set of initial values.

Step 3b: Performing cross predictions:
“Web-gLV” can also be used to perform cross predictions

by estimating growth and interaction parameters in one
simulation and use the same to predict dynamics in a
different simulation. The predicted parameters can be
saved as text files using the “Download table” option
available under “Predicted Intrinsic Growth Rates” and
“Predicted Interaction Matrix” headers in the “Web-gLV”
tool. While performing a new simulation with a similar
type of taxonomic groups whose time series abundances are
available, the downloaded parameters can be uploaded to
perform the simulation. This feature available in the “Web-
gLV” tool can be used to test the prediction performance of
models on unknown initial conditions as demonstrated in
case study 2.

Step 4: Evaluating the simulation output:
The predicted trajectories are scored for their similarities

(Figure 2H) with the observed time series using a
Dynamic Time Warping (DTW) distance metric (Berndt
and Clifford, 1994). The all vs. all DTW metric is used
to construct a hierarchal clustered dendogram for the
observed and predicted trends (Figures 2F,G). These
dendograms represents the temporal similarities between
the selected microbial groups and hence a reflection
of their community structure. A comparison of the
dendograms generated for the “Observed” and “Predicted”
data can hence be used as a measure of the simulation
prediction accuracy.

Numerical Validation of Web-gLV

Predictions
Web-gLV implements two methods for parameter estimation
namely PLSR (Partial least squares regression) for unconstrained
estimation (Haenlein and Kaplan, 2004) and LSEI algorithm
(Haskell and Hanson, 1978) for constrained estimations.
We used standard R modules namely pls and limSolve,
respectively, for the backend implementation. The tool is

designed to capture trends, which provides an idea of the
growth rate and nature of interactions. However, for an
improved understanding, it is imperative to look into the
functional potential of the participating taxonomic groups
(Nagpal et al., 2016; Bhatt et al., 2018). Web-gLV can provide
a good starting point for more advanced community models
by augmenting information from other sources. We compared
both the constrained as well as unconstrained parameters
estimated by web-gLV with previously reported methods
as demonstrated in section introduction of Data Sheet 1.
It should be noted that the calculated coefficients for the
constraint optimization solves the same problem in different
ways providing non-unique solutions. Consequently, the
parameters are free to take any values depending on the
solution which may result in differences between the estimated
parameter values. However, as expected, the predicted
trajectories (when evaluated for the case studies) show a
good agreement between the various tools (Section results
ofData Sheet 1).

Using “Web-gLV” to Perform the Case

Studies
The modeling and simulations involved in the case studies
demonstrated in the “Results” sectionwere performed completely
using the “Web-gLV” tool. The datasets are available in the
home page of the tool which can be auto-loaded by selecting
the “View” button corresponding to each case study. The
first 100 time point for case study 1 were selected using
Timepoint 1 (sampling interval: 0) as start and Timepoint
100 (sampling interval: 143) as end under the “parameter
estimation settings.” The future 30 time points were predicted
by selecting Timepoint 101 (sampling interval: 144) as start
and setting the “Time duration” option to 30 under “simulation
settings.” For case study 2, the start and end time points for
creating the “normal” state models corresponded to Timepoint
1 (sampling interval: 0.75) and Timepoint 13 (sampling
interval: 28), respectively. Similarly, for the perturbed models,
Timepoint 1 (sampling interval: 28.75) and Timepoint 26
(sampling interval: 56) corresponded to the start and end
time points, respectively. The solver for numerical simulation
was selected as ODE45 for both the case studies with time
interval as 0.1. A biological realistic constraint enforcing
positive intrinsic growth and negative or zero self interaction
was applied for generating all the modes by selecting the
option under “parameter estimation settings.” However, the
constrained parameter optimization failed to find an exact
solution for the “normal” state model of “Mouse 5” for which
we unselected the option and generated the model without
the constraints.

DATA AVAILABILITY

The link https://web.rniapps.net/webglv contains the data-sets
used in the case study along with the user manual for running
the Web-gLV tool.
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The spatial distribution of biodiversity (i.e., the biogeography) of the hot-spring

microbiome is critical for understanding the microbial ecosystems in hot springs. We

investigated the microbiome diversity scaling (changes) over space by analyzing the

diversity-area relationship (DAR), which is an extension to classic SAR (species-area

relationship) law in biogeography. We built DAR models for archaea and bacteria with

16S-rRNA sequencing datasets from 165 hot springs globally. From the DAR models,

we sketch out the biogeographic maps of hot-spring microbiomes by constructing: (i)

DAR profile—measuring the archaea or bacteria diversity scaling over space (areas);

(ii) PDO (pair-wise diversity overlap or similarity) profile—estimating the PDO between

two hot springs; (iii) MAD (maximal accrual diversity) profile—predicting the global MAD;

(iv) LRD/LGD (ratio of local diversity to regional or global diversity) profile. We further

investigated the differences between archaea and bacteria in their biogeographic maps.

For example, the comparison of DAR-profile maps revealed that the archaea diversity

is more heterogeneous (i.e., more diverse) or scaling faster than the bacterial diversity

does in terms of species numbers (species richness), but is less heterogeneous (i.e., less

diverse) or scaling slower than bacteria when the diversity (Hill numbers) were weighted

in favor of more abundant dominant species. When the diversity is weighted equally in

terms of species abundances, archaea, and bacteria are equally heterogeneous over

space or scaling at the same rate. Finally, unified DAR models (maps) were built with the

combined datasets of archaea and bacteria.

Keywords: biogeography of hot-spring microbiome, DAR (diversity-area relationship), MAD (maximal accrual

diversity), local to regional (global) diversity (LED/LGD), biogeographic differences between archaea and bacteria

INTRODUCTION

Hot springs are one of the extreme environments on the earth planet. Hot spring microbiomes
play a critical role in shaping the geothermal ecosystems. The structures and functions of microbial
communities inhabiting hot springs have their somewhat unique characteristics compared with
non-geothermal environment microbiomes (Inskeep et al., 2013a,b; Song et al., 2013; Masaki et al.,
2016; Poddar and Das, 2018), such as soil microbiome (Fierer et al., 2012; Hartmann et al., 2014),
marine microbiome (Gajigan et al., 2018), and human microbiome (Huttenhower et al., 2012).
Hot springs are often abundant in thermophilic, hyperthermophilic, and thermoresistant bacterial
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and archaeal taxa (Urbieta et al., 2014a,b). For example, the hot
springs located in the Chilas and Hunza areas of Pakistan with
90–95◦C temperature harbor abundant phylum Thermotogae
(Amin et al., 2017). Many reports have suggested that hot spring
microbial communities are extremely heterogeneous and are
often dominated by the thermophilic bacterium (e.g., Cole et al.,
2013; Sharp et al., 2014; Masaki et al., 2016; Poddar and Das,
2018). Even though some recent studies showed that microbial
eukaryotes, especially microbes from the phyla of Ascomycota
and Basidiomycota, may also be important components of hot
springs microbiomes (de Oliveira et al., 2015; Salano et al., 2017;
Liu et al., 2018; Oliverio et al., 2018), the microbial communities
routinely consist of Bacteria and Archaea (Meyer-Dombard and
Amend, 2014; Hedlund et al., 2015; Merkel et al., 2017).

The stability of hot spring environments is routinely
determined by the steady state of their microbial diversity
in a specific environment, where water temperature, pH, and
chemical composition are often the most important factors to
influence the diversity (Mohanrao et al., 2016; Amin et al., 2017;
Chan et al., 2017; Ghilamicael et al., 2017; Poddar and Das,
2018). In general, there is an inversely proportional relationship
between microbial diversity and temperature of hot spring (Cole
et al., 2013; De León et al., 2013; Amin et al., 2017; Chan et al.,
2017). In addition to temperature, water pH is another primary
environmental factor directly influencing microbial diversity
in hot springs (Inskeep et al., 2013a,b; Xie et al., 2015). The
water pH is determined by the chemical composition in hot
springs. The role of chemical composition in designing the
structure of geothermal microbial communities should not be
underestimated, which sometimes play together with the pH
(Jiang et al., 2015; Geesey et al., 2016). In spite of the extensive
studies on the microbial diversities in hot springs, which
suggest that the biodiversity of microbial communities vary
with physicochemical conditions and biogeographical location
of inhabiting hot springs, to the best of our knowledge, the hot-
spring microbiome diversity scaling on regional or global scales
from a biogeography perspective has not been investigated yet.

To investigate the microbiome diversity scaling on
regional/global scale, one of the most powerful theoretical
tools is the classic species-area relationship (SAR) power law,
which achieved a rare “law” status in ecology and biogeography.
The SAR is often described with a power function S = cAz ,
where S is the number of species accumulated from a region
of size A, and z is termed species (number) scaling parameter.
The study of SAR can be traced back to the nineteenth century
(Watson, 1835; Arrhenius, 1921; Preston, 1960, 1962) and
the relationship was said to inspire MacArthur and Wilson
(1967) to establish their island biogeography theory, which
helped to shift the focus of ecology from population level to
community level.

Theoretically, a series of extensions of the classic SAR to
general diversity-area relationship (DAR) were introduced by
the author’s group recently (Ma, 2018a,b). The extensions were
justified to remedy a limitation with classic SAR, where the
biodiversity is measured with the number of species or the
so-termed species richness. Species richness can be a rather
meaningful measure for biodiversity in the case of large

plants and animals, but in many other cases (especially for
microbes), it is a poor measure of biodiversity because it
ignores the differences in species abundances. For example,
1,000 of panda and one billion of panda will weigh in the
same with species richness; but if the latter number were the
case, panda would not have been on the endangered species
list. The DAR extension was facilitated by the adoption of
the Hill numbers (Hill, 1973; Chao et al., 2012, 2014) as
general diversity measures, which weight diversity differently
depending on the so-termed diversity order. In terms of the
Hill numbers, biodiversity can be measured by the so-termed
diversity profile (Chao et al., 2012, 2014), which calculates
a series of Hill numbers, weighted differently by the species
abundance distribution (SAD). Therefore, Hill numbers are
now well-recognized as the most appropriate measures for
alpha-diversity and its multiplicative partition of beta-diversity
is also considered with advantages over other beta-diversity
measures. With the new DAR approach, four sets of new
tools: DAR profile, PDO (pair-wise diversity overlap) profile,
and MAD (maximal accrual diversity) profile, and LRR/LGR
[local to regional (global) diversity ratio], can be established
with the parameters from DAR modeling. These profiles,
together with DAR models offer powerful tools, not only
for quantifying the regional/global scaling of biodiversity, but
also for sketching out the biogeography maps of biodiversity
distribution (Ma, 2018a,b). In the present study, we apply the
DAR approach to analyzing the global biodiversity scaling of
hot-spring microbiome by reanalyzing the 16S-rRNA marker
gene abundance datasets of 165 hot springs on a global scale,
previously collected and published by Sharp et al. (2014).
We further sketch out and compare the biogeography “maps”
of archaea and bacteria, and highlight their differences in
biodiversity distribution.

The four profiles, DAR (diversity-area relationship), PDO
(pair-wise diversity overlap), MAD (maximal accrual diversity)
profile, LRD (local to regional diversity ratio), we build for
archaea, bacteria, and their combined assemblages offer tools to
sketch out the biogeography maps with different themes. While,
themap theme profiled byDAR is the diversity scaling (difference
or heterogeneity) over space, the theme profiled by PDO is the
similarity of diversity over space. While the map theme profiled
byMAD is the theoretically maximal accrual diversity (essentially
the maximal gamma diversity), the theme profiled by LRD/LGD
is then the local vs. regional diversity comparison, which answers
a simple question: how much, on average, a local sample can
represent the regional or global diversity.

MATERIALS AND METHODS

The Hot Spring Microbiome Datasets
The datasets of 165 hot-spring microbiome were originally
collected and reported by Sharp et al. (2014). Their 16S-
rRNA OTU (operational taxonomic unit) tables were
generated from 165 microbiome samples taken from
sediment, soil, and mat in Western Canada and Taupo
Volcanic Zone, New Zealand (Sharp et al., 2014). A total of
1,162,553 high quality sequences were obtained from the 165

Frontiers in Microbiology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 118245

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Li and Ma Hot Springs Microbiome Diversity Scaling

samples with 634–15,283 sequences per sample. There were
61,910 OTUs, including 7,964 archaea and 53,946 bacteria,
when those sequences were clustered at the 97% identity
threshold. Further information on the datasets is referred to
Sharp et al. (2014).

Definitions and Computational Procedures
Three steps are involved in building DAR models with
microbiome datasets (see Figure 1): (i) bioinformatics analysis
of 16S-rRNA data to get OTU tables (e.g., Schloss et al., 2009;
Caporaso et al., 2010; Sinha et al., 2015). The microbiome
quality control project: baseline study design and future
directions. Genome Biology. Vol. 16: 276, https://doi.org/
10.1186/s13059-015-0841-8; (ii) computing species or OTU
diversities measured with the Hill numbers (Chao et al.,
2012, 2014; Ma, 2017); (iii) constructing the DAR models
(Ma, 2018a,b).

Diversity Measured in Hill Numbers
The Hill numbers (Hill, 1973; Jost, 2007; Chao et al., 2012) are
considered as the most appropriate measure for alpha diversity,

qD =

(

S
∑

i=1

p
q
i

)1/(1−q)

(1)

where S is the number of species, pi is the relative abundance of
species i, q is the order number of diversity. The Hill number is
not defined when q = 1, but its limit as q approaches to 1 exists
in the following form:

1D = lim
q→1

qD = exp

(

−
s
∑

i=1

pi log(p1)

)

(2)

The parameter q determines the sensitivity of the Hill number
to the relative frequencies of species abundances. If q = 0, the
species abundances do not weigh at all and 0D = S, which is
simply the species richness.When q= 1, 1D equal the exponential
of Shannon entropy, and is interpreted as the number of typical
or common species in the community because 1D is weighted
proportionally by species abundances. When q= 2, 2D equal the
reciprocal of Simpson index, i.e., the number of dominant or very
abundant species in the community (Chao et al., 2012) because
2D is weighted in favor of more abundant species. The general
interpretation of qD (diversity of order q) is that the community
has a diversity of order q, which is equivalent to the diversity of a
community with qD= x equally abundant species. The so-termed
diversity profile refers to the Hill numbers at different diversity
order q (Jost, 2007; Chao et al., 2012, 2014).

The DAR Models and DAR Profile
Ma (2018a) extended SAR (species area relationship) to general
DAR (diversity area relationship), in which diversity is measured
with Hill numbers. The first DAR model, which borrowed the
same power law (PL) function from the classic SAR, is:

qD = cAz (3)

where qD is diversity measured in the q-th order Hill numbers, A
is area, and c and z are parameters.

A second DARmodel is the power law with exponential cutoff
(PLEC)model, which was originally introduced to SARmodeling
by Plotkin et al. (2000), Ulrich and Buszko (2003), and Tjørve
(2009) is:

qD = cAz exp(dA), (4)

where d is a third parameter and is usually negative in the
DAR models, and exp(dA) is the exponential decay term, which
eventually overwhelms the power law behavior at very large
value of A.

The following log-linear transformed equations can be used to
estimate the parameters of the DAR models:

ln(D) = ln(c)+ z ln(A) (5)

ln(D) = ln(c)+ z ln(A)+ dA (6)

The linear correlation coefficient (R) and p-value are used to
judge the goodness of the model fitting.

Ma (2018a) defined the relationship between DAR-PL (power
law) model parameter (z) and diversity order (q), or z-q
trend, as the DAR profile, which comprehensively describes the
change of diversity scaling parameter (z) with the diversity
order (q).

Predicting MAD (Maximal Accrual
Diversity) With PLEC-DAR Models
Ma (2018a) derived the maximal accrual diversity (MAD) in a
cohort or population based on PLEC model [Equations (4) and
(6)] as follows:

Max(qD) = qDmax = c(−
z

d
)
z
exp(−z) = cAz

max exp(−z) (7)

whereAmax is the number of areas accrued to reach themaximum
and is equal to:

Amax = −z/d (8)

and all parameters are the same as in Equations (4) and (6).
Similar to the previous definition for DAR profile (z-q

pattern), Ma (2018a) defined the MAD profile (Dmax-q pattern)
as a series of Dmax values corresponding to different diversity
order (q).

Pair-Wise Diversity Overlap (PDO) Profile
The pair-wise diversity overlap (g) of two bordering areas of the
same size (i.e., the proportion of the new diversity in the second
area) is:

g = 2− 2z (9)

where z is the scaling parameter of DAR-PLmodel [Equations (3)
and (5)]. If z = 1, then g = 0 and there is no overlap (similarity);
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FIGURE 1 | A diagram showing the three steps involved in DAR (diversity-area relationship) analysis: major software packages (MOTHUR, QIIME, QIIME2), data

format (OTU table), definitions (Hill numbers), models (PL and PLEC), and concepts (profiles) were illustrated.

and if z = 0, then g = 1 and there is a total overlap. In reality, g
should be between 0 and 1. Since g is between 0 and 1, one may
even use percentage notation to measure PDO.

Similar to previous definitions for DAR profile (z-q pattern)
and MAD profile (Dmax-q pattern), Ma (2018a) defined the PDO
profile (g-q pattern) as a series of PDO values corresponding to
different diversity order (q).

The Ratio of Local Diversity to Regional (or
Global) Accrual Diversity
Ma and Li (2019) defined the LRD (or LGD) as the ratio of local
diversity of an averaged area to the regional diversity accrued or
the global MAD (maximal accrual diversity). The dividend (local
diversity) is ideally estimated with the parameter c of the DAR-
PL model, but can be approximated with the parameter c of the
DAR-PLEC model. The divisor can be either regional accrual
diversity (which can be estimated with PLEC model directly) or
global maximal accrual diversity (which is simply the MAD or
Dmax). Hence, in general, two similar metrics can be defined,
depending on the regional or global scale is adopted: one is the
ratio of local diversity to regional diversity (LRD), and another is
the ratio of local diversity to globalMAD (LGD). The LRD (LGD)
can be computed with the following formulae, respectively:

LRD = c/D (10a)

LGD = c/Dmax (10b)

where D can Dmax be computed with the PLEC model
directly (Equations 4 and 7, respectively), c can be
estimated or approximately with the PL or PLEC model.
The LRD (LGD) at different diversity orders (q = 0,
1, 2, . . . ) were defined as LRD (LGD) profile, or local
to regional (local to global) diversity scaling profile

(Ma and Li, 2019). It is essentially the ratio of alpha to
gamma diversity.

Re-sampling Procedure to Enhance the
Robustness of DAR Modeling
The accumulation order of areas in DARmodeling may influence
the estimation of parameter c in fitting PL/PLEC models
(Equations 3–6). When there is not a natural spatial sequence
(or arrangement) among the communities sampled, or the
arrangement information is not available, arbitrarily choosing
an accumulation order (arrangement) can be problematic. To
avoid the potential bias from an arbitrary order of the hot
spring microbiome samples, we totally permutated the orders
of all the community samples under investigation, and then
randomly choose 100 orders of the communities generated from
the permutation operation. In other words, rather than taking a
single arbitrary order for accruing community samples in one-
time fitting to the DAR model, we iteratively perform the DAR
model-fitting 100 times with the 100 randomly chosen orders.
Finally, the averages of the model parameters from the 100
times of DAR fittings are adopted as the model parameters of
the DAR. In the case of this study, we do not have detailed
information on the geographic locations of the hot-spring
microbiome samples, the re-sampling scheme is adopted to
remedy the deficiency.

RESULTS AND DISCUSSION

DAR Analysis of the Archaea
Table 1 displays the parameters from fitting the DAR (diversity-
area relationship) PL (power law) and PLEC (power law with
exponential cutoff) models to the datasets of archaea in hot
springs. The p-values in Table 1 show statistically significant
fitting (in all models p < 0.001) of both PL and PLEC to
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the datasets. The PLEC model has an advantage of being
able to estimate the MAD (maximal accrual diversity) or
Dmax, which essentially measures the accrued diversity in
a population or cohort, with the so-termed MAD-profile,
as explained previously. The other two parameters from
PL model, scaling parameter (z) and pair-wise diversity
overlap (PDO) parameter (g) define the DAR-profile and
PDO profile, respectively. From Table 1, we summarized the
following findings:

(i) The archaea diversity scaling (changes across space) fitted to
the PL model successfully, with p < 0.001, and succeeded in
all 100 times of re-sampling. It also fitted to PLEC model
successfully p < 0.001, but with slightly less robustness

given that some failures out of the 100 times of re-sampling
occurred, especially at the high diversity orders. This does

not imply that PLEC model is not applicable to the archaea
DAR at all; it only suggests that the order of accruing areas
(hot spring samples) influences the fitting of the model.

(ii) The DAR profile: the parameter z-q series from the PL
model is: z-q = {0.867[q = 0], 0.575[q = 1], 0.512[q = 2],
0.492[q = 3]}, a monotonically decreasing trend with the
increase of diversity order (q). This indicates that at lower
diversity orders, the spatial heterogeneity is larger than
that at higher orders. The highest heterogeneity is at the
species richness level (q = 0). Since at higher diversity

order, the dominant species were given more weights in
computing the diversity (Hill numbers). This suggests that
the hot spring microbiomes are more homogenous (less

heterogeneous or less diverse) in terms of their dominant
species. Since at lower diversity order, the rare species

were given more weights in computing the diversity (Hill
numbers). This suggests that the hot spring microbiomes are
more heterogeneous (more diverse) in terms of rare species.

(iii) The PDO profile: the parameter g-q series from the PL
model is: g-q = {0.170[q = 0], 0.505[q = 1], 0.568[q = 2],
0.588[q = 3]}, a monotonically increasing trend with the

increase of diversity order (q). This indicates that at lower
diversity orders, the pair-wise diversity overlap (similarity)
is smaller than that at higher orders. The lowest diversity

overlap (similarity) is at the species richness level (q = 0),
and the highest similarity occurred at the diversity order
q = 3. This finding further supports the finding revealed by

the DAR-profile in the previous item (ii).
(iv) The MAD profile: the parameter Dmax-q series estimated

from the PLEC model is: Dmax-q = {8,397[q = 0],
248.3[q = 1], 68.8[q = 2], 45.0[q = 3]}, shows a
monotonically decreasing trend with the increase of diversity
order (q). This, of course, is determined by the nature of
the diversity (Hill numbers). The Dmax(q = 0) = 8,397 is
simply the maximal accrual of species richness since the Hill
numbers at q = 0 is the species richness. For example, at
diversity order q = 1, the Hill numbers (our measure for the
diversity) are equivalent to (function of) Shannon diversity
index. This suggests that the maximal accrual diversity in
terms of the Shannon index is 248.3. Similar interpretations
can be made for q = 2, and 3. The maximal accrual species
richness of 8,397 means that, it needs to accrue Amax = 262

hot spring sites (areas) globally to reach this theoretical
asymptote of species richness in the hot spring microbiome.

(v) There appears a trend of decreasing correlation coefficient
(R) with increasing diversity order (q). This should
be expected because with increasing q, the complexity
associated with non-linearity in higher order entropy (i.e.,
Hill numbers) is increased. Consequently, goodness-of-
fitting to the linear models (Equations 5, 6) is likely
to decline.

DAR Analysis of the Bacteria
We did the same DAR analysis with bacteria dataset, and the
results are exhibited in Table 2. We further performed Wilcox
non-parametric significance test of the differences between
Archaea and Bacteria in their DAR parameters, and it turned
out that (i) regarding the PL-model, archaea-DAR and bacteria-
DAR have significantly different DAR parameter values except
for the diversity order q = 1. (ii) Regarding the PLEC model,
archaea-DAR, and bacteria-DAR have significantly different
DAR parameter values at the higher diversity orders (q = 2,
3), but no significant differences occurred at the lower diversity
orders (q = 0, 1). These test results justify our attempt to
separately build DAR models for archaea and bacteria. Since the
format of Tables 1, 2 are exactly the same, our explanations for
the bacteria-DAR is presented relatively brief intentionally. From
Table 2, we summarized the following findings:

(i) The bacteria diversity scaling (changes across space) fitted to
both the PL and PLECmodels successfully, with all p< 0.001.
The goodness-of-fitting is equally well with that for the
archaea DAR models in the previous sub-section.

(ii) The DAR profile: the parameter z-q series from the PL
model is: z-q = {0.830[q = 0], 0.616[q = 1], 0.575[q = 2],
0.544[q = 3]}, a monotonically decreasing trend with the
increase of diversity order (q). This indicates that at lower
diversity orders, the spatial heterogeneity is larger than that
at higher orders. The highest heterogeneity is at the species
richness level (q = 0). This pattern per se is the same as that
of archaea-DAR.

If we further compare both the DAR profiles (see
statistical tests in Table 3), we found that archaea has a
larger diversity scaling parameter (z-values) at diversity
order q = 0 (i.e., species richness, but smaller scaling
parameter (z-values) at diversity order q = 2 or 3. At
diversity order q = 1, which is equivalent to the diversity
measured with Shannon entropy and weighs all species in
proportion with their relative abundance levels, archaea and
bacteria showed no significant difference in their scaling
parameter (z-values). These findings indicate that archaea
is more heterogeneous or scaling faster than bacteria does
in terms of species numbers (species richness), but is less
heterogeneous or scaling slower than bacteria when the
diversity (Hill numbers) were weighted computationally
in favor of more abundant dominant species. When the
diversity (Hill numbers) is weighted equally in terms
of species abundances, archaea, and bacteria are equally
heterogeneous over space or scaling at the same rate.
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The above finding also highlighted the necessity of using
Hill numbers as general diversity measures (the diversity
profile) over using a single ad-hoc diversity measure such
as Shannon entropy or Simpson’s index, because the latter
may lead to inconsistent results or loss of information. This
also shows the necessity of using DAR profile, a series of
scaling parameter values (z) across different diversity orders
(q), rather than using a single scaling parameter as in classic
SAR (species-area relationship) analysis.

(iii) The PDO profile: the parameter g-q series from the PL
model is: g-q = {0.217[q = 0], 0.456[q = 1], 0.502[q = 2],
0.535[q = 3]}, a monotonically increasing trend with the
increase of diversity order (q). This pattern is the same as
that of the archaea DAR PDO profile.

Similar to the previous DAR-profile comparison between
archaea and bacteria, the archaea has a smaller PDO overlap
(similarity) than the bacteria has at species richness level
(q = 0), but has a larger PDO overlap (similarity) at the
higher diversity order q= 2 or 3. At the diversity order q= 1,
archaea and bacteria have the same level of diversity overlap
(similarity) across space. The interpretation for this finding
is exactly the same as that for the DAR-profile above.

(iv) The MAD profile: the parameter Dmax-q series estimated
from the PLEC model is: Dmax-q = {55,489[q = 0],
2,831.1[q = 1], 427.7[q = 2], 207.9 [q = 3]}, showing
a monotonically decreasing with the increase of diversity
order (q). This, of course, is determined by the nature of
the diversity (Hill numbers). The Dmax(q = 0) = 55,489
is simply the maximal accrual of species richness since
the Hill numbers at q = 0 is the species richness. Similar
interpretations can be made for q= 1, 2, and 3. The maximal
accrual species richness of 55,489 means that, it needs to
accrue Amax = 256 hot spring sites (areas) globally to reach
this theoretical asymptote of species richness in the hot
spring microbiome.

(v) Similar to the previous DAR models for archaea, there
appears a trend of decreasing correlation coefficient (R) with
increasing diversity order (q). This should be expected as
explained previously.

While the above pattern for bacteria MAD-profile is similar to
the pattern for archaea MAD profile, the vis-a-vis comparison
of both the MAD profiles is a different story. Obviously,
the values of bacteria Dmax are far larger than the values of
archaea Dmax. Indeed, the difference is consistent with biological
(ecological) reality that there are far more bacteria species than
archaea species in hot springs. Unfortunately, unlike the cases
of DAR and PDO profiles, we cannot perform the permutation
(randomization) test for MAD-profile (Dmax). This is because
the Dmax was computed based on the average parameter values
form 100 times of re-sampling. We believe biological (ecological)
observations justify our claims that MAD-profiles are also
different between the archaea and bacteria.

DAR Analysis With the Combined Datasets
of Archaea and Bacteria
Since there are significant differences between the archaea
and bacteria in their DAR parameters, ideally, independent

TABLE 3 | The p-values of Wilcox non-parametric significance test between the

differences between Archaea and Bacteria in their DAR parameters.

Diversity

order (q)

DAR-PL model DAR-PLEC model

z g z

6= > < 6= > < 6= > <

q = 0 0.030 0.015 0.985 0.030 0.985 0.015 0.245 0.123 0.878

q = 1 0.137 0.932 0.069 0.137 0.069 0.932 0.114 0.943 0.057

q = 2 0.005 0.997 0.003 0.005 0.003 0.997 0.032 0.984 0.016

q = 3 0.011 0.995 0.005 0.011 0.005 0.995 0.028 0.986 0.014

TABLE 4 | The LGD (the ratio of local diversity to global maximal accrual diversity)

profile for the archaea, bacteria, and combined communities in the hot springs.

Diversity

order (q)

Alpha-LGD

(%) (Archaea)

Alpha-LGD

(%) (Bacteria)

Alpha-LGD (%)

(Combined)

q = 0 1.25 1.52 1.57

q = 1 6.43 5.33 5.75

q = 2 8.29 6.23 5.95

q = 3 8.95 7.13 6.12

DAR models should be built for each kingdom. However,
there is no doubt that they cohabitate (coexist) in the hot
spring environment. Therefore, building unified DAR models
(Table S7) for the combined archaea and bacteria is justified.
Table S7 shows that the DAR models fitted to the combined
datasets of archaea and bacteria equally well with those for
the archaea or bacteria, independently. For practical purpose
such as conservation planning, the unified models (Table S7)
are obviously more convenient, but for theoretical (mechanistic)
inquiries, the separately built DAR models previously (Tables 1,
2) should be more appropriate. Since the pattern of the
unified DAR models are similar to the separately built ones,
except some nuances, which make little differences for practical
applications. As to the theoretical implications of those nuances,
we recommend the use of those separately built DAR models
directly. Therefore, we do not further compare the subtle
differences between the unified and separate DAR models here.

The Ratio of Local Diversity to Regional (or
Global) Accrual Diversity
The LRD (or LGD) is defined as the ratio of the local diversity of
an averaged area to the regional diversity [or the global maximal
accrual diversity (MAD)]. The dividend (local diversity) can be
estimated with parameter c of the DAR-PLmodel, and the divisor
can be either regional accrual diversity (which can be estimated
with PLEC model directly) or global maximal accrual diversity
(which is simply the MAD or Dmax). Note that we defined
LRD/LDG at different diversity orders (q = 0, 1, 2, 3, . . . ) as
LRD/LGD profile.

Here we only computed LGD, the global version of the
ratio. Table 4 listed the LGD for the archaea, bacteria and their
combined microbiome, at each diversity order (q). For example,
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at species richness level (q = 0), the LGD is between 1.24
and 1.57%, which suggests that, on average, a single (local) hot
spring only hosts between 1.24 and 1.57% of the global scale
diversity. At high diversity orders, the ratios increased (up to
9% approximately). Another interesting observation is that at the
species richness (q = 0), the LGD for archaea is lower than that
for bacteria. However, at higher diversity orders (q = 1, 2, 3), the
trend is reversed.

DISCUSSION

With the gold rush of microbial community ecology, thanks
to the revolutionary metagenomic sequencing technology, the
classic SAR has been called for new missions. Green et al. (2004)
andHorner-Devin et al. (2004) published, in the same issue of the
journal Nature, the first two studies on the SAR of microbes. The
following year, two other important studies by Bell et al. (2005)
and Smith et al. (2005) were published in two other leading
journals, Science and PNAS, respectively. The SAR power law
exponent (b) values from those studies were 0.074 (fungi), 0.019–
0.040 (bacteria in marsh sediment), 0.26 (bacteria in tree holes),
and 0.134 (phytoplankton). According to Green and Bohannan
(2006) review, the reported SAR exponents in microbes were
in the range between 0.019 and 0.470, but most values were
below 0.2 (8 out of 11 studies). A major limitation of these
pioneering studies on the testing of SAR with microbes is then
low throughput of DNA sequencing technology in detecting
bacteria, and consequently the diversity and SAR exponent
were significantly underestimated. Even with the technology
limitation, the reported exponent values have already indicated
the applicability of SAR in microbes, and recent studies further
confirmed the validity of microbial SAR (e.g., Noguez et al., 2005;
Peay et al., 2007; Bell, 2010; Barreto et al., 2014; Pop Ristova et al.,
2014; Ruff et al., 2015; Terrat et al., 2015; Várbíró et al., 2017).
For example, nearly a decade after Green and Bohannan (2006)
review, the range of exponent (z) of microbial SAR is nearly
unchanged and most studies have still been limited to bacteria
and archaea (Barreto et al., 2014).

While the classic SAR has been well-recognized as one of
the most significant laws in ecology and biogeography, it is not
without limitations. The recent extension from SAR to DAR by
Ma (2018a,b) generalized the scaling law of biodiversity from
species richness (the number of species) to general diversity
measures (the Hill numbers). Furthermore, DAR profile, PDO
profile, MAD profile, LRD/LGD profile based on DAR models
can offer useful novel tools to sketch out the biogeography maps,
which comprehensively characterize the biodiversity scaling over
space and time.

Despite the large number studies of microbial SAR in various
environments, to the best of our knowledge, the SAR of
the hot-spring microbiome has not been reported in existing
literature. In consideration of the more general nature of
DAR over SAR, we skipped SAR and directly applied DAR
modeling to reanalyze the hot spring microbiome datasets of
Sharp et al. (2014). In fact, our DAR analysis, as presented
in previous sections, included SAR as a special case when
diversity order q = 0. Our study therefore provides the
first glimpse of the SAR/DAR of the hot spring microbiome.
The results and conclusions we obtained should certainly be
further verified in future with more extensive datasets of
the hot spring microbiomes. Although the sample size of
165 hot springs, we used, is not small, the future studies
should attempt to collect samples from more diverse regions
from different continents to validate our study on a truly
global scale.
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Studies have shown that microbes exist widely in the human body and are closely

related to human complex diseases. Predicting potential associations between microbes

and diseases is conducive to understanding the mechanisms of complex diseases

and can also facilitate the diagnosis and prevention of human diseases. In this

paper, we put forward the Matrix Decomposition and Label Propagation for Human

Microbe-Disease Association prediction (MDLPHMDA) on the basis of the dataset

of known microbe-disease associations collected from the database of HMDAD and

the Gaussian interaction profile kernel similarity for diseases and microbes, disease

symptom similarity. Moreover, the performance of our model was evaluated by means

of leave-one-out cross validation and five-fold cross validation, and the corresponding

AUCs of 0.9034 and 0.8954 ± 0.0030 were gained, respectively. In case studies,

10, 9, 9, and 8 out of the top 10 predicted microbes for asthma, colorectal

carcinoma, liver cirrhosis, and type 1 diabetes were confirmed by literatures, respectively.

Overall, evaluation results showed that MDLPHMDA has good performance in potential

microbe-diseasepositive free parameter, which associations prediction.

Keywords: microbe, disease, association prediction, matrix decomposition, label propagation

INTRODUCTION

Microbes are microscopic organisms that may exist in single-celled form or in a colony of cells
(Madigan and Michaelt, 2015). They live in almost all the habitats from the poles to the deep
sea and also make up the microbiota in all multicellular organisms (Delong and Pace, 2001).
There are trillions of microbes in the human body. Lots of them are beneficial for human health,
while others may cause infectious diseases (Thiele et al., 2013). Human microbiota can form an
endosymbiotic relationship with their host, providing services and useful goods to humans. For
example, the gut flora can contribute to gut immunity as well as digest complex carbohydrates and
synthesize vitamins (O’hara and Shanahan, 2006). It is now accepted that most of the microbes are
not intrinsically harmful. However, the pathogenic microorganisms and the imbalance of resident
microbes are closely related to human disease.

Microorganisms are closely related to both infectious diseases and non-infectious diseases.
Infectious diseases are global problems. They have induced several feared plagues in human history
and new infections are still emerging today (Morse, 1995). Microorganisms are the causative
pathogens for many infectious diseases. The involved organisms include pathogenic bacteria such
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as Mycobacterium tuberculosis and Bacillus anthracis, which
can cause tuberculosis and anthrax, respectively (Hawn et al.,
2014; Hendricks et al., 2014); protozoan parasites such as
Plasmodium and Toxoplasma gondii, which can cause malaria
and toxoplasmosis (Torgerson and Mastroiacovo, 2013; Iburg,
2015); and also fungi such as Candida albicans and Histoplasma
capsulatum which can cause candidiasis or histoplasmosis
(Stenn, 1960; Pappas et al., 2016). Meanwhile, most new
infections appear to be caused by already discovered pathogenic
microorganisms. These pathogens obtain selective advantage by
changing conditions to infect new host populations or cause a
new disease (Morse, 1991). On the other hand, microbiota can
interact with human at multiple levels. Due to these complex
microbiota-host relationships, dysbiosis can be the cause of
the pathology (Forum on Microbial et al., 2014). Various
factors including antibiotics, radiations, stress or nutritional
changes can alter the compositions of human microbiota. This
disruption of homeostasis can induce many maladies (Tamboli
et al., 2004). For example, it is founded that the interactions
between host immunity and gut microbiota can directly result
in inflammatory bowel disease (IBD). IBD is a long-term
aggravating inflammation of the intestine (Schirbel and Fiocchi,
2010). Both commensal microbiota and individual genetic
susceptibility play key roles in the occurrence and development of
this disease (Ferreira et al., 2014). Compared to healthy control,
the composition of gut microbiota in IBD patients is distinct
with decreased Firmicutes (Walker et al., 2011). The complex
interplay between microbiota and human is also closely related
to metabolic disease such as obesity (Ley et al., 2006). In a
study about overweight and obese children, scientists found that
the lower numbers of fecal Staphylococcus aureus was further
linked with normal-weight development (Kalliomaki et al., 2008).
Besides intestinal tract, microbial communities in respiratory
tract are also closely related to various lung diseases such as
sinusitis and chronic obstructive pulmonary disease (COPD)
(Huang et al., 2017b). A study showed that sinusitis patients
experienced an increase in Corynebacterium tuberculostearicum
(Abreu et al., 2012). In COPD, increased Lactobacillus is induced
by an inflammatory modulation and results in the formation
of tertiary lymphoid (Sze et al., 2012). All the above studies
revealed the close associations between microbes and various
human diseases. Unquestionably, identifying potential microbe-
disease associations is of great significance in exploring the
pathogenesis, prevention, and treatment of diseases. As the
traditional experimental method is time-consuming, costly,
random, and blind, there is an urgent need to develop an
effective calculation approach so as to help researchers in
finding the regular pattern of microbe-disease associations and
to provide complementary and supportive evidence for the
experimental study.

Relevant research for the identification of potential microbe-
disease associations are still in its infancy, and effective
calculation models for the association prediction are even
more scarce. Ma et al. (2017) created the first database
of Human Microbe-Disease Association Database (HMDAD),
which collected confirmed microbe-disease associations from
published literatures. Based on the above work, several

computational models were established to prioritize candidate
microbes for diseases. For example, Chen et al. (2017a)
introduced the network-based model of KATZ measure for
HumanMicrobe-Disease Association prediction (KATZHMDA),
the first calculationmethod for the identification of newmicrobe-
disease associations through computing the number of walks of
connections between microbe and disease nodes in the microbe-
disease association network. Recently, the computational model
of Laplacian Regularized Least Squares for Human Microbe-
Disease Association (LRLSHMDA) was presented by Wang et al.
(2017). It is a global measure based on a semi-supervised learning
framework. In their proposed calculation model, the Laplacian
regularized least squares (LapRLS) classification was adopted to
prioritize candidate microbes for all interested diseases through
the application of known microbe-disease associations, the
Gaussian interaction profile kernel similarity for microbes and
diseases. Similarly, with the same dataset of known microbe-
disease associations, the Gaussian interaction profile kernel
similarity for microbes and diseases mentioned above, a path-
based search model of Path-Based Human Microbe-Disease
Association prediction (PBHMDA) was introduced by Huang
et al. (2017c). In themodel, the association score of eachmicrobe-
disease pair would be computed by the integration of all paths
less four between the microbe and disease with different weights.
In addition, Huang et al. (2017a) put forward a Neighbor-
and Graph-based combined Recommendationmodel for Human
Microbe-Disease Association prediction (NGRHMDA). The final
prediction scores of novel microbe-disease associations were
attained via the integration of two prediction results predicted
by neighbor-based collaborative filtering and the graph-based
scoring method. Also, Peng et al. (2018) put forward a model
of Adaptive Boosting for Human Microbe-Disease Association
prediction (ABHMDA) by enforcing a strong classifier on the
samples. Specifically, the strong classifier was constructed by the
integration of 30 weak classifiers with different weights.

In this paper, by combining known microbe-disease
associations collected from HMDAD, disease symptom
similarity and Gaussian interaction profile kernel similarity
for microbes and diseases, we introduced a computational model
of Matrix Decomposition and Label Propagation for the Human
Microbe-Disease Association prediction (MDLPHMDA). In our
proposed algorithm, a new adjacency matrix of microbe-disease
associations was first generated by employing the spare learning
method (SLM) on the original association information extracted
from HMDAD, and potential microbe-disease associations
would be further predicted under the implementation of
the label propagation algorithm (LPA). The leave-one-out
cross validation (LOOCV) and five-fold cross validation were
subsequently enforced for accuracy evaluation of MDLPHMDA.
Assessment results showed that MDLPHMDA gained the area
under the receiver operating characteristic curves (AUCs)
of 0.9034 and 0.8954 ± 0.0030 in LOOCV and five-fold
cross validation, respectively. In case studies, we carried out
MDLPHMDA to predict potential microbes for asthma and
colorectal carcinoma (CRC), respectively. Moreover, via the
implementation of our developed algorithm, we prioritized
microbes for liver cirrhosis and type 1 diabetes by removing their
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known related microbes, respectively. Finally, the results analysis
of cross validations and case studies showed that MDLPHMDA
is a suitable and effective model in potential microbe-disease
association prediction.

MATERIALS AND METHODS

Human Microbe-Disease Associations
The dataset of confirmed microbe-disease associations used in
this paper were collected from HMDAD (http://www.cuilab.cn/
hmdad) (Ma et al., 2017). According to the 16s RNA sequencing-
based microbiome research, the database collected 483 microbe-
disease associations between 39 diseases and 292 microbes from
61 previous works. Along with the deletion of the same microbe-
disease associations based on different evidences in the database,
we finally obtained a dataset of 450 associations between 39
diseases and 292 microbes. Moreover, the variables nd and nm
were defined to represent the 39 diseases and 292 microbes,
respectively. Also, adjacency matrix A of the verified microbe-
disease associations was defined as follows:

A(i, j) =
{

1, if microbe m(j) is related to disease d(i)
0, otherwise

(1)

Integrated Diseases Similarity
The integrated disease similarity was constructed by combining
the Gaussian interaction profile kernel similarity for diseases and
disease symptom similarity. First, we calculated the Gaussian
interaction profile kernel similarity for diseases by adopting the
calculation approach in the previous literature (Van Laarhoven
et al., 2011). According to the idea that similar diseases possess
similar interaction and non-interaction patterns with microbes,
the Gaussian interaction profile kernel similarity for diseases was
created in light of confirmed microbe-disease associations. We
defined the interaction profile of each disease by using a binary
vector that shows whether the disease is related to each microbe
or not. For example, for disease d(i), its interaction profile
IP(d(i)) is the ith row of the adjacency matrix A. Therefore, the
Gaussian interaction profile kernel similarity between disease d(i)
and disease d(j) can be computed as follows:

KD(d(i), d(j)) = exp(−γd
∥

∥IP(d(i))− IP(d(j))
∥

∥

2
) (2)

γd = γd
′/(

1

nd

nd
∑

k=1

∥

∥IP(d(k))
∥

∥

2
) (3)

where γd indicates the normalized kernel bandwidth in light of
the new bandwidth parameter γd

′. Second, according to the data
of diseases and their symptoms in PubMed bibliography, disease
symptom similarity DSS could be constructed (Zhou et al.,
2014). Finally, in accordance with disease symptom similarity put
forward by Zhou et al. (2014), taking into account of the Gaussian
interaction profile kernel similarity for diseases, we constructed

integrated disease similarity by using the method applied in a
previous study (Chen et al., 2017a).

DS =
KD+ DSS

2
(4)

Gaussian Interaction Profile Kernel
Similarity for Microbes
In the same way, motivated by previous literature (Van
Laarhoven et al., 2011), the Gaussian interaction profile kernel
similarity for microbes was established according to confirmed
microbe-disease associations. For microbe m(j), its interaction
profile IP(m(j)) is the jth column of the adjacency matrix A.
Therefore, the Gaussian interaction profile kernel similarity
between microbe m(i) and microbe m(j) can be computed
as follows:

KM(m(i),m(j)) = exp(−γm
∥

∥IP(m(i))− IP(m(j))
∥

∥

2
) (5)

γm = γm
′/(

1

nm

nm
∑

k=1

∥

∥IP(m(k))
∥

∥

2
) (6)

where γm indicates the normalized kernel bandwidth in light of
the new bandwidth parameter γm

′.

MDLPHMDA
In this manuscript, motivated by SLM developed by Pech
et al. (2017) and LPA introduced by Zhang et al. (2017),
we applied the calculation model of MDLPHMDA to infer
novel microbe-disease associations. Starting from the fact that
redundant formation may be present in the original dataset
of known microbe-disease associations, we employed matrix
decomposition to eliminate the noise of known microbe-disease
associations and then applied LPA for the identification of the
potential microbe-disease associations (see Figure 1). It is worth
mentioning that matrix decomposition has been widely used in
Bioinformatics research (Chen et al., 2018b,d; Zhao et al., 2018).

Since a part of microbe-disease associations in the dataset
may be incorrect or redundant, we adopted SLM to remove the
noise of the original data and search a lowest-rank matrix among
candidates to gain a novel adjacency matrix. In our introduced
model, we divided the original adjacency matrix A into two parts
by using SLM. The first part is a linear combination of the original
adjacency matrix A and a low-rank matrix, while the second part
is a spare matrix that can be regarded as the noise of the original
adjacency matrix A. Hence, the original adjacency matrix can be
decomposed as follows:

A = AX + E (7)

In order to get a low-rank matrix X and a sparse matrix E, we
could transform Equation (7) into a optimization problem by
applying the nuclear norm on X and the sparse norm on E.

min
X,E

‖X‖∗ + α‖E‖2,1 s.t. A = AX + E (8)
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FIGURE 1 | Flowchart of the calculation model of MDLPHMDA: We first enforced matrix decomposition to eliminate the noise of original known microbe-disease

associations and gained a new adjacency matrix. Then LPA was implemented based on the created new adjacency matrix for the identification of the potential

microbe-disease associations.

where

‖A‖∗ =
∑

i
σi (i.e., σi is the sigular values of A) (9)

‖E‖2,1 =
∑n

j=1

√

∑n

i=1
(Eij)

2 (10)

Here, α is a positive free parameter, which can balance the weight
between the low-rankmatrix and the sparse matrix. To transform
the original optimization problem into an augmented Lagrange
function, we rewrote the optimization problem into a constraint
and convex optimization problem of Equation (11) and enforced
an inexact augmented Lagrange multipliers (IALM) algorithm
(Meng et al., 2014) to solve it (see Table 1).

min
X,E,J

‖J‖∗ + α‖E‖2,1

s.t. A = AX+E,X = J (11)

L = ‖J‖∗ + α‖E‖2,1 + tr(YT
1 (A− AX − E))

+tr(YT
2 (X − J))+

µ

2
(‖A− AX − E‖2F + ‖X − J‖2F) (12)

where µ ≥ 0 is a penalty parameter and the detailed solution
process to gain solution X∗ and E* of Equation (12) could be
explained in previous literature (Pech et al., 2017).

As the solution of Equation (12) was solved, we gained a new
adjacency matrix A* with less noise by the linear combination

TABLE 1 | Computational procedures of the Inexact augmented Lagrange

multipliers (IALM) algorithm.

Algorithm: IALM

Input: Given a adjacency matrix A and parameter α=0.1

Output:X∗ and E∗

Initialize:X = 0, E = 0, Y1 = 0, Y2 = 0,µ = 10−4,maxµ =

1010, ρ = 1.1, ε = 10−6

while ‖A− AX− E‖∞ ≥ ε and ‖X− J‖∞ ≥ ε do

a.J = argmin 1
µ ‖J‖∗ + 1

2

∥

∥J− (X+ Y2/µ)
∥

∥

2
F

b.X = (I+ ATA)(ATA− ATE+ J+ (ATY1 − Y2)/µ)

c. E = argmin α
µ ‖E‖2,1 + 1

2

∥

∥E− (A− AX+ Y1/µ)
∥

∥

2
F

d.Y1 = Y1 + µ(A− AX− E); Y2 = Y2 + µ(X− J)

e. µ = min(ρµ,maxµ)

end while

of the original adjacency matrix A and the low-rank matrix X∗

as follows:

A∗ = AX∗ (13)

Then, based on the Gaussian interaction profile kernel similarity
for microbes and diseases, disease symptom similarity and the
newly created adjacency matrix A*, we enforced LPA to infer
novel microbe-disease associations. First, from the perspective
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of disease, we constructed an undirected graph with diseases
as nodes, and similarity scores as edge weight. To combine the
original microbe-disease associations information, we treated
the new adjacency matrix of microbe-disease associations as the
labels to propagate in the disease undirected graph and each label
is updated through the absorption of its neighborhoods’ label
information with a rate of α and going back to its original known
microbe-disease association nodes with a rate of 1−α . Referring
to previous literature (Yao et al., 2017; Zhang et al., 2017), we set α
as 0.3. The label propagation process can be described as follows:

Yd
t+1 = αDSYd

t + (1− α) A (14)

where Yd
t indicates the predicted scores between microbes and

diseases at step t. Specifically, Y0
d
refers to the newly created

adjacency matrixA*. The iteration would be stable after some
steps (the change in value between Yd

t+1 and Yd
t measured by

L1 norm is <10e-6). The final value Yd would be the predicted
scores of new microbe-disease associations from the perspective
of diseases.

Also, from the perspective of microbes, we can build another
microbe undirected graph and employ LPA to gain another
predicted scores Ym of novel microbe-disease associations.
Finally, we defined the final predicted scores Y for the potential
microbe-disease associations by the average of the two predicted
scores mentioned above.

Y =
Yd + Ym

2
(15)

RESULTS

Performance Evaluation
In order to test the prediction performance of MDLPHMDA
based on the 450 confirmed microbe-disease associations

collected from HMDAD (Ma et al., 2017), our model was
compared with two classic algorithms (LRLSHMDA and
KATZHMDA) on the basis of the evaluation method of LOOCV
and five-fold cross validation. In LOOCV, each confirmed
microbe-disease association was taken as test sample by turn
and the rest 449 identified associations were used to train. After
executing MDLPHMDA, the score of the test sample would be
ranked with the scores of candidate samples that were made
up of all unconfirmed microbe-disease pairs. In five-fold cross
validation, we first divided the 450 microbe-disease association
pairs into five equal parts and later made each part as test
sample in turn and the remaining four parts of associations as
training samples. In the same way, each test sample’s score would
be ranked with the scores of all candidate samples that were
composed of unconfirmed microbe-disease pairs. As the sample
divisions may cause bias, we enforced five-fold cross validation
100 times to gain an average value as the final result. If the
ranking of the test sample is higher than a given threshold,
our model is considered to make a successful prediction. Then,
according to varying thresholds, we plotted the receiver operating
characteristics (ROC) curve by computing the ratio of true
positive rate (TPR, sensitivity) to false positive rate (FPR, 1-
specificity). Sensitivity denotes the percentage of test samples
which obtained ranks higher than the set threshold. Meanwhile,
specificity denotes the percentage of negative microbe-disease
pairs with ranks lower than the threshold. Finally, to assess
the performance of MDLPHMDA effectively, we computed
corresponding AUCs. When AUC = 1, the model possesses
perfect forecast ability; when AUC = 0.5, the model possesses
random forecast ability. In LOOCV, assessment results showed
that MDLPHMDA, LRLSHMDA, and KATZHMDA gained the
AUCs of 0.9034, 0.8909, and 0.8382, respectively (see Figure 2).
In five-fold cross validation, MDLPHMDA, LRLSHMDA, and
KATZHMDA gained the AUCs of 0.8954 ± 0.0030, 0.8794 ±
0.0029, and 0.8301 ± 0.0033, respectively. Stated thus, it can
be seen that our model possesses good prediction ability and

FIGURE 2 | Performance comparison between MDLPHMDA and other two classical microbe-disease association prediction models (LRLSHMDA and KATZHMDA)

by means of AUCs based on LOOCV. The results showed that MDLPHMDA gained AUCs of 0.9034 in LOOCV.
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could be used to assist the identification of novel microbe-disease
associations. Moreover, we carried out a paired t-test based
on the ranking results of LOOCV to observe the statistical
significance of differences among MDLPHMDA, LRLSHMDA,
and KATZHMDA. As a result, the p-value of MDLPHMDA and
LRLSHMDA is 0.0088, whereas the p-value of MDLPHMDA
and KATZHMDA is 1.2510e-08. We can see that MDLPMDA
is significantly different from LRLSHMDA and KATZHMDA on
the basis of their ranking results of LOOCV (p < 0.05).

Case Study
Via two different types of case studies, we further assessed the
prediction ability of MDLPHMDA based on the confirmed 450
microbe-disease associations. In the first kind, we identified
potential microbes for asthma and CRC, respectively, through
the implementation of MDLPHMDA. Also, we released all
prediction scores for 10938 novel microbe-disease pair between
39 diseases and 292 microbes (see Supplementary Table 1).
In the second kind, we enforced MDLPHMDA to identify
liver cirrhosis-associated microbes by removing 62 known
liver cirrhosis-associated microbes from the dataset of known
microbe-disease associations and also predicted for another
disease of type 1 diabetes by removing its known microbes.
Based on the results of the two types of case studies, the
proposed algorithm of MDLPHMDA was proven to be an
effective algorithm in the identification of novel microbe-
disease associations.

Asthma is a long-term inflammatory disease of the
airways (Lemanske and Busse, 2010). Its common symptoms
include coughing, reversible airflow obstruction, wheezing, or
bronchospasm (Lemanske and Busse, 2010). Epidemiological
studies indicated that microbial exposures in early life might
determine microbiota composition, which can help to prevent
allergy or lead to the development of asthma (Wang et al., 2003;
Weber et al., 2015). A study in asthmatic children has found a
low abundance of Bifidobacterium in their intestinal microbiota,
which may reduce the immune function and potentially
contribute to disease chronicization (Kalliomaki et al., 2001).
Similarly, a probiotic strain Lactobacillus rhamnosus reduced
allergic responses in the airways of neonates (Martinon et al.,
2009). In this paper, via the implementation of MDLPHMDA
for the inference of novel asthma-related microbes, we could see
that the top 10 predicted microbes for asthma were all confirmed
through literature (see Table 2). Among the top 3 confirmed
associations between microbes and asthma, relevant differences
in Firmicutes were found between samples from asthmatic
and non-asthmatic subjects (Marri et al., 2013). Another study
investigated that Clostridium difficile was associated with
an increased risk for asthma (Van Nimwegen et al., 2011).
Meanwhile, in a study about early intestinal colonization of
infants, Clostridium coccoides was confirmed to be associated
with increased risk for the development of asthma before the age
of 3 years (Vael et al., 2011).

CRC is the cancer in the colon or rectum (Watson and
Collins, 2011). Common symptoms include weight loss, blood
in stool, and feeling tired all the time (Watson and Collins,
2011). It typically starts in the form of a polyp as a benign

TABLE 2 | The validation of the top 10 predicted asthma-related microbes after

implementing MDLPHMDA based on the confirmed microbe-disease associations

from HMDAD.

Disease Microbe Score Evidence

Asthma Firmicutes 0.035113958 PMID:23265859

Asthma Clostridium difficile 0.026401159 PMID:21872915

Asthma Clostridium coccoides 0.023247917 PMID:21477358

Asthma Staphylococcus aureus 0.022891159 PMID:25533526

Asthma Actinobacteria 0.022703105 PMID:23265859

Asthma Lachnospiraceae 0.022512904 PMID: 27433177

Asthma Lactobacillus 0.022019371 PMID:20592920

Asthma Enterobacteriaceae 0.018834777 PMID:21639872

Asthma Veillonella 0.018243753 PMID: 26424567

Asthma Bacteroides 0.017354957 PMID: 18822123

As a result, all of the top 10 predicted microbes were confirmed by literatures.

tumor, which becomes cancerous over time (Watson and Collins,
2011). A quantitative polymerase chain reaction (qpcr) analysis
verified that Fusobacterium nucleatum, an invasive anaerobe
previously linked to appendicitis and periodontitis but not
to cancer, was increased in a CRC tumor vs. normal tissue
(Castellarin et al., 2012). Furthermore, this overabundance is
positively associated with lymph node metastasis (Castellarin
et al., 2012). Another study also observed a significant difference
of Bacteroides and Prevotella in a CRC group, as compared
to a normal group (Sobhani et al., 2011). Moreover, we
employed the proposed algorithm to predict CRC-related
microbes and the outcomes displayed that all but one of
the top 10 microbes for CRC were verified (see Table 3).
Among the top 3 confirmed associations, according to the
taxonomic results, Proteobacteria showed a higher abundance
in CRC rats compared to control groups and constitute the
third most abundant phyla (Zhu et al., 2014). In another
analysis on CRC, the Helicobacter pylori infection was noted
in 50 CRC patients. Furthermore, an infection with H. pylori
CagA+ was associated with an increased risk for CRC (Shmuely
et al., 2001). Moreover, a statistically significant difference in
C. difficile was detected between the CRC and healthy group,
suggesting a possible role of this bacteria in CRC carcinogenesis
(Fukugaiti et al., 2015).

Liver cirrhosis is a disease induced by long-term damage. This
damage is due to the replacement of normal tissue by scar tissue
(Li et al., 1999). Typically, the disease develops slowly and there
are often no significant early symptoms. As it worsens, patients
may become tired, bruise easily, develop yellow skin, have fluid in
the abdomen, or have swelling in the lower legs (Li et al., 1999).
Liver cirrhosis is commonly caused by alcohol, non-alcoholic
fatty liver disease, hepatitis B, or hepatitis C (Li et al., 1999).
In a study on the alterations of the human microbiome in liver
cirrhosis, quantitative metagenomics reveals 66 cognate bacterial
species that differ in abundance between healthy individuals
and patients, including Alistipes finegoldii, Bacteroides eggerthii,
Eubacterium rectale, Faecalibacterium prausnitzii, Haemophilus
parainfluenzae, and so on (Qin et al., 2014). In another
study about fecal microbial communities in patients with liver
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TABLE 3 | The validation of the top 10 predicted CRC-related microbes after

implementing MDLPHMDA based on the confirmed microbe-disease associations

from HMDAD.

Disease name Microbe name Score Evidence

CRC Proteobacteria 0.046859257 PMID: 24603888

CRC Helicobacter pylori 0.023587271 PMID: 11774957

CRC Clostridium difficile 0.023311807 PMID: 26691472

CRC Actinobacteria 0.023310463 Unconfirmed

CRC Lactobacillus 0.022992627 PMID:15828052

CRC Haemophilus 0.022582968 PMID:26549775

CRC Lachnospiraceae 0.02243978 PMID:21850056

CRC Clostridium coccoides 0.021696923 PMID:18237311

CRC Enterobacteriaceae 0.021122176 PMID: 25182170

CRC Staphylococcus aureus 0.020450372 PMID:7074582

As a result, 9 out of the top 10 predicted microbes were confirmed by literatures.

cirrhosis, research has detected the prevalence of pathogenic
bacteria such as Enterobacteriaceae and Streptococcaceae as well
as the reduction of beneficial populations such as Lachnospiraceae
(Chen et al., 2011). Here, by removing 62 known liver cirrhosis-
associated microbes from the dataset of known microbe-
disease associations, we enforced MDLPHMDA to identify liver
cirrhosis-associated microbes on the basis of integrated disease
similarity, Gaussian interaction profile kernel similarity for
microbes, and the rest known microbe-disease associations. As
a result, 9 out of the top 10 microbes for liver cirrhosis were
confirmed by HMDAD and literature (see Table 4). Among the
top 3 confirmed associations, Firmicutes was found to be highly
enriched in the patients group (Chen et al., 2011). Moreover,
researchers found significantly higher H. pylori prevalence in
patients with previous hospital admissions (Siringo et al., 1997).
This high prevalence ofH. pylori is related to age and sex (Siringo
et al., 1997). An analysis on the C. difficile infection in patients
with liver cirrhosis showed that cirrhotic patients with the C.
difficile infection have increased mortality than those without the
C. difficile infection, suggesting the importance of C. difficile in
the diagnosis and therapy of liver cirrhosis (Trifan et al., 2015).

Type 1 diabetes is a type of diabetes mellitus induced by
very little or no insulin produced in the pancreas (Daneman,
2006). It results in high blood sugar levels in the human
body. The classic symptoms include increased thirst and hunger,
frequent urination and weight loss (Daneman, 2006). The cause
of type 1 diabetes is still unclear. However, it is believed
to involve both genetic and environmental factors (Chiang
et al., 2014). One theory proposes that type 1 diabetes may
be caused by an autoimmune response while the immune
system attacks virus-infected insulin-producing cells in the
pancreas (Knip et al., 2005). In a microbiome metagenomics
analysis on type 1 diabetes, researchers identified the differences
between patients and controls at the genus level. The most
significant differences were noted in the genera Prevotella and
Bacteroides (Brown et al., 2011). In another study defining
the autoimmune microbiome for type 1 diabetes, scientists
identified bacteria that correlated with the autoimmune state
including Bacteroides fragilis, Clostridia, Eubacterium eligens,

TABLE 4 | The validation of the top 10 predicted liver cirrhosis-associated

microbes after implementing MDLPHMDA by removing liver cirrhosis-related

associations from the dataset of known microbe-disease associations.

Disease name Microbe name Score Evidence

Liver cirrhosis Proteobacteria 0.037652208 HMDAD

Liver cirrhosis Bacteroidetes 0.033708121 HMDAD

Liver cirrhosis Firmicutes 0.033302216 PMID:21574172

Liver cirrhosis Prevotella 0.028842704 HMDAD

Liver cirrhosis Helicobacter pylori 0.021108828 PMID:9365129

Liver cirrhosis Clostridium difficile 0.020872569 PMID:26440041

Liver cirrhosis Actinobacteria 0.020204542 PMID:22326468

Liver cirrhosis Clostridium coccoides 0.018391455 Unconfirmed

Liver cirrhosis Staphylococcus aureus 0.01835198 PMID:22833245

Liver cirrhosis Lactobacillus 0.016449739 HMDAD

As a result, 9 out of the top 10 predicted microbes were confirmed by HMDAD

and literatures.

and so on (Giongo et al., 2011). Similarly, we employed
MDLPHMDA to identify type 1 diabetes-associated microbes
by removing 167 known type 1 diabetes-associated microbes
from the dataset of known microbe-disease associations. The
results showed that 8 out of the top 10 microbes for liver
cirrhosis were confirmed (see Table 5). In a case-control study,
scientists found a meaningful correlation between the H. pylori
infection and the duration of diabetes in type 1 diabetic children
(Bazmamoun et al., 2016). In another study, researchers found
that Staphylococcus aureus is associated with the vitamin D
receptor (VDR) polymorphisms in patients with type 1 diabetes
(Panierakis et al., 2009).

DISCUSSION

Since the application of traditional experimental methods to
prioritize disease-associated microbes is time consuming and
expensive, the calculation approach of MDLPHMDA was put
forward through the fusing of integrated disease similarity,
Gaussian interaction profile kernel similarity for microbes
and known microbe-disease associations. The performance of
MDLPHMDAwas tested using cross validations and case studies.
Results on the basis of confirmed microbe-disease associations
showed that the performance of our introduced algorithm
is significantly improved in contrast with other two classic
algorithms of LRLSHMDA and KATZHMDA. Consequently,
the introduced algorithm is a suitable and effective model in
the identification of novel microbe-disease associations. We
further expect that the identified microbe-disease associations
with high probability scores would be verified through biological
experiment in the future.

The reason why MDLPHMDA could get excellent prediction
performance is due to the following attractive properties. First,
with the application of SLM on the original information
of known microbe-disease associations, a new adjacency
matrix with more accurate association information (the linear
combination of low-rank matrix and the original adjacency
matrix) and a noise (sparse) matrix would be gained. Obviously,
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TABLE 5 | The validation of the top 10 predicted type 1 diabetes-related microbes

after implementing MDLPHMDA by removing type 1 diabetes-related associations

from the dataset of known microbe-disease associations.

Disease name Microbe name Score Evidence

Type 1 diabetes Proteobacteria 0.035314225 HMDAD

Type 1 diabetes Bacteroidetes 0.030725459 HMDAD

Type 1 diabetes Firmicutes 0.02813792 HMDAD

Type 1 diabetes Prevotella 0.026244828 HMDAD

Type 1 diabetes Clostridium difficile 0.021633674 Unconfirmed

Type 1 diabetes Helicobacter pylori 0.021284419 PMID:27497772

Type 1 diabetes Clostridium coccoides 0.019300705 Unconfirmed

Type 1 diabetes Staphylococcus aureus 0.017744364 PMID:19411183

Type 1 diabetes Lactobacillus 0.016082255 HMDAD

Type 1 diabetes Actinobacteria 0.015923043 HMDAD

As a result, 8 out of the top 10 predicted microbes were confirmed by HMDAD and

literatures.

in light of the new generated adjacency matrix, the forecast
performance of the proposed algorithm for the identification
of new microbe-disease associations could be significantly
enhanced. Second, LPA was used to predict novel microbe-
disease associations from the perspectives of microbe and disease,
respectively, which would promote the ability of MDLPHMDA
in terms of forecast accuracy. Third, in comparison with
the previous calculation algorithms that only used Gaussian
interaction profile kernel similarity for diseases as disease
similarity, MDLPHMDA could achieve superior performance
through integrating disease symptom similarity and Gaussian
interaction profile kernel similarity for diseases into the
final disease similarity. Moreover, the implementation of
MDLPHMDA does not require negative samples and the
algorithm could be applied to new diseases (microbes) without
the relevant microbes (diseases).

However, the model has some main disadvantages. For
instance, the amount of known microbe-disease associations
used in this paper is very finite and more confirmed microbe-
disease associations need to be collected. Additionally, as the

computation of Gaussian interaction profile kernel similarity
of microbes depended on known microbe-disease associations,
other features of microbe similarity should be collected and
combined to gain a more comprehensive dataset of microbe
similarity such as microbe-drug associations collected by MDAD
(Sun et al., 2018). For MDLPHMDA, it is difficult to find
the optimum value of all the parameters to ensure that
the prediction model achieves the highest accuracy. Also,
the employment of SLM for creating new adjacency matrix
may bring unnecessary and useless association information,
which would affect the prediction result of LPA. Finally,
successfully established models in the other computational fields
would inspire the development of microbe-disease association
prediction, such as microRNA-disease association prediction
(Chen and Huang, 2017; Chen et al., 2018c), long non-
coding RNA-disease association prediction (Chen and Yan,
2013; Chen et al., 2017b), drug-target interaction prediction
(Chen et al., 2016b, 2018a), and synergistic drug combinations
(Chen et al., 2016a).
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Background: The global burden of tuberculosis (TB) and antibiotic resistance is
attracting the attention of researchers to develop some novel and rapid diagnostic tools.
Although, the conventional methods like culture are considered as the gold standard,
they are time consuming in diagnostic procedure, during which there are more chances
in the transmission of disease. Further, the Xpert MTB/RIF assay offers a fast diagnostic
facility within 2 h, but due to low sensitivity in some sample types may lead to more
serious state of the disease. The role of computer technologies is now increasing in the
diagnostic procedures. Here, in the current study we have applied the artificial neural
network (ANN) that predicted the TB disease based on the TB suspect data.

Methods: We developed an approach for prediction of TB, based on an ANN. The
data was collected from the TB suspects, guardians or care takers along with samples,
referred by TB units and health centers. All the samples were processed and cultured.
Data was trained on 12,636 records of TB patients, collected during the years 2016 and
2017 from the provincial TB reference laboratory, Khyber Pakhtunkhwa, Pakistan. The
training and test set of the suspect data were kept as 70 and 30%, respectively, followed
by validation and normalization. The ANN takes the TB suspect’s information such as
gender, age, HIV-status, previous TB history, sample type, and signs and symptoms
for TB prediction.

Results: Based on TB patient data, ANN accurately predicted the Mycobacterium
tuberculosis (MTB) positive or negative with an overall accuracy of >94%. Further, the
accuracy of the test and validation were found to be >93%. This increased accuracy of
ANN in the detection of TB suspected patients might be useful for early management
of disease to adopt some control measures in further transmission and reduce the drug
resistance burden.

Conclusion: ANNs algorithms may play an effective role in the early diagnosis of TB
disease that might be applied as a supportive tool. Modern computer technologies
should be trained in diagnostics for rapid disease management. Delays in TB diagnosis
and initiation treatment may allow the emergence of new cases by transmission, causing
high drug resistance in countries with a high TB burden.

Keywords: ANN, TB, data, diagnosis, drug resistance

Abbreviations: ANN, artificial neural network; ATH, Ayub Teaching Hospital; ATO, Agency TB officers; CSF, cerebrospinal
fluid; DTO, district TB control officers; KPK, Khyber Pakhtunkhwa; MMTH, Mufti Mehmood Teaching Hospital; MTB,
Mycobacterium tuberculosis; PMDT, Programmatic Management of Drug Resistant TB; PTRL, Provincial tuberculosis control
program; TB, tuberculosis.
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INTRODUCTION

According to the (World Health Organization [WHO], 2018),
1.7 billion people (23%) of the world’s population are estimated
to have latent TB infection, indicating a risk of developing active
TB during their lifetime (World Health Organization [WHO],
2018). Approximately 10.4 million incidences of TB occurred
worldwide, including 5 million (56%) men, 3.5 million (34%)
women and 1 million (10%) among children (WHO, 2017). Due
to an increase in the world’s population, the health care units are
continuously struggling to improve the standard and reduce the
transmission and cost. Methods commonly used to diagnose TB
include, GeneXpert assay, sputum-smear microscopy and chest
radiography (Dheda et al., 2017; Ejeta et al., 2018). However,
diagnosis became more complicated when the infectious agent
spread to other parts of the body – this is referred to as
extra pulmonary TB. All these diagnostic methods possess some
limitations. Culture method is considered the gold standard
for detection of the causative agent of TB, Mycobacterium
tuberculosis (MTB) but it is time consuming in diagnosis and the
chances of contamination are high (Crowle et al., 1991; Osman
et al., 2010; Asgharzadeh et al., 2015). Some common issues
reported from other diagnostics methods include performance
issues, sputum samples from children (pediatric cases), live MTB,
highly skilled medical staff for high throughput tools and high
cost (Dheda et al., 2017; Pandey et al., 2017). Delay in diagnosis
may lead to drug resistance, multidrug resistance (MDR), where
an isolate shows resistance to two first line drugs, rifampicin and
isoniazid, and extensive drug resistance (XDR) which include
MDR and also show resistance to fluoroquinolones and at least
one of the injectable drug (Seung et al., 2015).

In health sciences, wet lab tests can be time consuming and
the chances of contamination could further lead the disease to an
irreversible state. Although the Xpert MTB/RIF assay offers a fast
diagnostic facility within 2 h, but due to low sensitivity in some
sample types and cost may lead to more serious state of disease
(Pandey et al., 2017).

In the last few decades, the researchers have collected an
extensive amount of biological data in genomics, proteomics,
and in some other fields of biology during the gene and protein
expression analysis. To extract some meaningful information and
interpret the results, high throughput computational algorithms
have been developed (Fojnica et al., 2016; Dande and Samant,
2018). In bioinformatics, data mining is a process of extracting
useful information deep inside of large datasets (Sebban et al.,
2002; Zheng et al., 2008; Li et al., 2013). These techniques
also involve artificial intelligence, statistics, machine learning,
and visualization (Li et al., 2013; Dande and Samant, 2018).
Such techniques are applied to expose and analyze the hidden
information inside the data or sometimes also called Intelligent
Data Analysis (IDA), for better prediction of results. This
knowledge discovery obtained from health data has some
major objectives, including diagnosis in health sciences and
simulations (Mello et al., 2006; Guillet and Hamilton, 2007;
Chang et al., 2012).

Traditionally implemented diagnostic methods for tuber-
culosis patients can be minimized with data mining approaches.

National and International laboratory researchers are currently
involved in developing new diagnostics, and their evaluation
helps to introduce more rapid and accurate methods in the
diagnosis of TB along with the evaluations of alternative
algorithms for TB reference laboratories (Parsons et al., 2011).

Artificial Neural Networks (ANNs) are operated by using
algorithms to interpret non-linear data, independent of
sequential pattern. The networks consist of a number of smaller
units called neurons, organized between the input of data and
the output of results into many layers. The ANN perform
and behave like biological neurons, and this behavior may be
learned through a backpropagation process. In this process, the
precise output of a data set is previously known as input into
the network. The least mean square difference of the entire data
set is minimized by the continuous comparison of output of the
ANN to the known output. A good level precision is adjusted by
performing complex tasks without many computing resources
(Drew and Monson, 2000).

The main advantage usually provided by ANN is their
capability to extract hidden linear and non-linear relationships,
even in the high dimensional and complex data sets (Zhang et al.,
2010). In order to ease clinical decision makers, some more rapid
evaluation techniques with low costs and good precision may
further support in the diagnosis of TB to give optimum time
for therapy, especially in TB high burden countries. Modern
methods in data mining along with some traditional methods like
regression have proven to be useful for comparison of prediction
power of different models. The objective behind the current
study is to support physicians in diagnosis, using predictive
models as a diagnostic method for TB. Here, this investigation
presents the data mining methods, i.e., classification, decision tree
algorithm on the TB suspect data sets with selected attributes of
patients to predict the presence or absence of TB disease. This
information can be applied to develop less expensive diagnostic
methods, dropping drug effects, data modeling, management of
health care information systems, public health, and also patient’s
future prediction.

MATERIALS AND METHODS

Ethics Statement
This study proposal was approved and permitted by Institutional
Committee (Ref 30/CUST2017) and incharge and molecular
biologist, Provincial Tuberculosis Research Lab (PTRL)
(Ref No. 1-06-17) where individual patient names and sensitive
information were removed and neither of the these have been
linked with an individual TB suspect. Further, the study was also
conducted according to the WHO Standards and Operational
Guidance for Ethics Review of World Health Organization
[WHO] (2011). Annex-3(IV)-B (13).

Data Mining of TB Patient Data
Data in the current research was retrieved from TB control
program at PTRL, Hayatabad Medical Complex Peshawar. All
follow up and diagnostic patients have been included and the
data of patients has been collected from guardians or care takers.
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TABLE 1 | Characteristics of TB suspects/patients received from KPK TB units.

Characteristics No. Characteristics No. Characteristics No.

Gender Hiv status Sample type

Female 6445 Hiv +ve 534 Sputum 11089

Male 6043 Hiv −ve 5 Pleural fluid 343
∗Other 148 Unknown 12097 ∗BAL 312

Total 12636 Total 12636 Gastric aspirate 224
∗CSF 172

History Age group Pus 124

Diagnosis 10416 0.1–14 1072 Ascetic fluid 117

Follow up 2220 15–24 3474 Tissue 104

Total 12636 25–34 2438 Urine 69

35–44 1678 Pericardial fluid 43

Disease type 45–54 1690 Synovial fluid 16

Extra pulmonary 1323 55–64 1336 Lymph node 11

Pulmonary 11313 65–74 661 Total 12636

Total 12636 75–84 222 Culture

85–94 55 MTB 1809

95–104 8 No growth 10827

100–105 2 Total 12636

Total 12636

∗CSF, cerebrospinal fluid; BAL, bronchoalveolar lavage; Other, she male.

The data include location, age, gender, sample type, history,
HIV status. The data set contain information’s from 36 different
TB units of Khyber Pakhtunkhwa (KPK). The characteristics of
data is given Table 1, 2.

Dataset Development
Suspects referred by TB units and health care centers during the
years 2016 and 2017, were included. Samples were processed and

TABLE 2 | Number of TB suspects received from different units of KPK province.

S.No. Health center Cases S.No. Health center Cases

1 ∗ATO Khyber agency 71 20 DTO Sawabi 32

2 ∗CMH 296 21 DTO Shangla 4

3 ∗DTO Bajawar agency 11 22 DTO Swat 6

4 DTO Bannu 8 23 Hayatabad medical complex 1903

5 DTO Buner 8 24 Khyber teaching hospital 699

6 DTO Charsadda 54 25 Kuwait hospital 21

7 DTO Chitral 5 26 Leady reading hospital 2

8 DTO D.I. Khan 8 27 Mardan medical complex 8

9 DTO Dir Lower 7 28 ∗PMDT ATH 627

10 DTO Dir Upper 13 29 PMDT leady reading hospital 5333

11 DTO Hangu 39 30 PMDT ∗MMTH 1255

12 DTO Kohat 8 31 PMDT Swat 855

13 DTO Kohistan 1 32 Private 2

14 DTO Lakki 2 33 Peshawar reference lab 111

15 DTO Malakand 4 34 Rehman medical institute 66

16 DTO Mansehra 1 35 DTO Takht Nusrati 4

17 DTO Mardan 17 36 TB control Ganj 1

18 DTO Noshera 37

19 DTO Peshawar 1117 Total 12636

∗ATH, Ayub Teaching Hospital; ATO, Agency TB officers; CMH, Combined Military
Hospital; DTO, district TB control officers; MMTH, Mufti Mehmood Teaching
Hospital; PMDT, Programmatic Management of Drug Resistant TB.

cultured according the previous study (Kent and Kubica, 1985;
Khan et al., 2018) and MTB negative and positive was confirmed
after the culture result. Further confirmation was carried, using
BD MGIT MTBc identification test (TBc ID, Ref: 245159,
Becton, Dickinson), a rapid chromatographic immunoassay
which detects the MTB complex antigen MPT64 secreted during
culture (Arora et al., 2015). The dataset was validated by
MATLAB software (Attaway, 2013). Total 12,636 inputs were
used in order achieve a good output efficiency, where 70% were
used as a training dataset and the remaining 30% were used as
testing (Drew and Monson, 2000; Kulkarni et al., 2017). The
validation observed for test dataset was about 93.71%.

Artificial Neural Networks Approach
Artificial neural networks are nature inspired algorithms (Fojnica
et al., 2016) that include input layer node, hidden layer node,
and output node. Every node in a layer has one parallel
node in the layer following it, thereby consequently building
the stacking. Back-propagation learning algorithm is based on
gradient descent search algorithms to fiddle with the correlation
weight (Sollich and Krogh, 1996; Kaushik and Sahi, 2018). The
output of every neuron was the aggregation of information of
neurons of the prior stage multiplied by parallel weights with
biased value. Input value was transformed into output with
respect to activated functions shown in Figure 1.

Step 1 – Normalization of MTB Dataset.
TB patients dataset was normalized according to proposed

study (Kaushik and Sahi, 2018).

Vnew = (Vold −MinV) / (MaxV−MinV) ∗ (Dmax − Dmin)

+ Dmin

where Vnew represent new assessment post-normalization,
Vold is the assessment before normalization, MinV is the
variable’s minimum assessment, MaxV is the variable’s maximum
estimation. Dmax and Dmin are the maximum estimation
succeeding normalization and the minimum assessment
subsequent to normalization, respectively.

Step 2 – Input the data for training, the interrelated values of
input and output execute for training using feed forward back
propagation neural network algorithms.

Step 3 – Set Network constraint.
Step 4 – Calculate the neurons of output, every neuron output

signal calculated using

netj=
∑

i= 1∼m

wji xi+ bj

where netj and wji are output neurons and connection weight
neurons, respectively, while xi and bj are the input signal, and bias
neurons. The sigmoid function or logistic function, also called
the sigmoidal curve (Seggern, 2016), was used for netj and every
neuron of ten hidden layers.

Step 5 – Signal of output layers’ calculation using,

netk=TVk+ δL
K

where TVk is target value of output neurons and δL
K is the

error of neuron.
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FIGURE 1 | Neural network structure of MTB dataset where dataset was categorized into three categories input, hidden, and output layers. “W” represent weight
parameter with layer node, “B” represent bias unit.

FIGURE 2 | Flow chart of ANN methodology for data processing, normalization, training, testing, and prediction.
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Step 6 – Compute the error of neuron k and step 3 and step 6
were repetitive until network was congregated, and the error was
computed using,

SSE =
∑

i= 1∼n

(Ti − Yi)
2

where Ti is actual assessment and Yi is estimated assessment.
A step by step flowchart methodology has been

given in Figures 1, 2.

RESULTS

The drug resistance and patient’s characteristics has been shown
in Figure 4. MDR are very high among the population of KPK
followed by other first line drug resistance. Although XDR are
very few, they are very hard to treat and often take years to recover
and the chances are very rare. Mono-resistant (resistant to any
single drug) and poly resistant (resistant to any two or more
drugs other than MDR and XDR) have been found in significant
numbers. This high prevalence of drug resistance may be due to

the delay type of diagnosis of some gold standard methods like
culture. Owing to the current situation, we applied ANN on the
patient records to find the accuracy of prediction.

Based on the ANN, the data used in the current study has
12,636 records (Table 1), where 70 and 30% were used as training
and test sets, respectively. The accuracies of test and validation to
predict TB based on patient data, were found at 93.90 and 93.71%,
respectively. ANN-based, this algorithm accurately predicted that
a suspect may have TB or not and generated the output through
the hidden layer implementation. The hidden layers, learning
parameters of ANN were as follows.
Number of input layer units 12636
Number of hidden layers 10
Number of first hidden layer units 10
Number of second hidden layer units 10
Number of output layer units 1
Momentum rate 0.88
Learning rate 0.70
Error after learning 0.000050
Learning cycle 30,000

FIGURE 3 | Depicts artificial neural network prediction on the basis of normalized data of MTB. Out of 12636 records, 70% was training and 30% was test set where
the validation score was achieved with an accuracy of about 94%. The overall model got an accuracy of 94.58%.

Frontiers in Microbiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 395269

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00395 March 1, 2019 Time: 11:26 # 6

Khan et al. Prediction of Tuberculosis

FIGURE 4 | (A) Drug resistance among MTB isolates from Khyber Pakhtunkhwa. Frequency of all sensitive, MDR, Mono_Resistant, Poly resistant, and XDR are color
coded. (B) Patients data and drug resistance pattern. Drug resistance is shown by red color while drug sensitive isolates are colored yellow. Resistance type
(Resist_Type), Sample_Type, TB_Type, previous TB History of patients, and Gender are color coded.

The Architecture of ANN
1. Initialize the weight and parameters µ (µ = 0.01)
2. Compute the sum of the squared errors overall input

F(w) = eTe
Where weight of network w = [w1, w2, w3. . .. wn] and e is
the error vector for the network.

3. Solve to obtain the increment of weight 1w = [JT J+µI]−1

JT e
Where J is jacobian matrix, µ is learning rate neither µ is
multiplied by decay rate β(0 < β < 1).

4. Using w+1w
F(w) < F(w) then (go back to Step 2)
W = w+1w
µ = µ.β (β = 0.1) (go back to Step 2)
ELSE
µ = µ/β (go back to Step 2)
END IF

The approach has been found efficient and possesses robust
application for TB disease prediction with prediction accuracy.
Using this approach, users can predict the active TB positively or
negatively based on the patient’s data after clinical sign symptoms
including, cough that lasts 3 weeks or longer and pain in the
chest coughing up blood or sputum (mucus from deep inside the
lungs). Other symptoms of TB disease may include; weakness or
fatigue, weight loss, no appetite, chills, fever, sweating at night
(CDC Tuberculosis (TB), 2019).

User input data include; age, gender (male, female, other),
sample type [bone, bone marrow, bronchoalveolar lavage,
cerebrospinal fluid (CSF), gastric aspirate, lung biopsy, lymph
nodes, pericardial fluid, pleural fluid, synovial fluid, pus, tissue
biopsy, urine, sputum], history (follow up, diagnostic), HIV
status (positive, negative, unknown). The model includes 70%
training and 30% test set of the entire data set (12636 records)
where the validation score was achieved with an accuracy of 94%.

The approach was written in MATLAB script where prediction
accuracy was achieved as >94% based on ANN (Figure 3),

dependent on dataset, where dataset input and hidden layer were
categorized on two basic parameters W (weight) and B (bias unit),
which contain ten sub-models and generate single output based
on dataset accuracy. Users can predict their TB risk after entering
their data, history, and the appearance of signs and symptoms.

DISCUSSION

Tuberculosis is a challenging disease; in spite of advanced
technologies, the diagnosis is often difficult because of the
nature of the disease (Dheda et al., 2017; WHO, 2017; World
Health Organization [WHO], 2018). Clinical diagnosis requires
standardization, where immunodiagnostic tests may help to
improve sensitivity, but not in latent TB and some lack specificity
(Newton et al., 2008; Elhassan et al., 2016). Xpert MTB/RIF have
been saving our time to detect MTB, but decades old technologies
like culture still remained the standard. Today, the battle against
TB still poses one of the primary diagnostic problems in the
pediatric laboratory (Dunn et al., 2016). Delay in notification and
a weak coordination among TB management might be a cause
to unnecessary diagnosis and treatment initiation (Yagui et al.,
2006; Htun et al., 2018). Although the Xpert MTB/RIF assay
offers fast diagnostic facility within 2 h, in some sample types
like lymph node tissue biopsy (extrapulmonary TB) the overall
sensitivity to rule out the TB is suboptimal (Creswell et al., 2014;
Pandey et al., 2017; Tadesse et al., 2018). Performance was found
to vary according to specimen type and acid-fast bacilli smear
status. Further, the gold standard for MTB drug susceptibility
testing is still culture on solid media, taking weeks to months to
grow (Lin and Desmond, 2014; Dookie et al., 2018; Koch et al.,
2018). Treatment is often empirical and initiated after looking at
factors like past medical or social history, or the prevalence of
drug resistance in that locality. These may delay the initiation of
proper TB treatment that lead to drug resistance (Schaberg et al.,
1996; Melchionda et al., 2013; Dookie et al., 2018; Khan et al.,
2018). The high prevalence of drug resistance in TB high burden
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countries may delay the initiation of appropriate treatment due to
culture of MTB in vitro which is a time consuming method. These
issues should be addressed through more studies especially in
TB high burden regions. We found an increased drug resistance
in the recent years’ data (Figure 4) calculation, pointing toward
advanced computational technologies to integrate for diagnosis
in MTB prediction (Khan et al., 2018).

Modern neural networks have attained a great significance and
importance in the recognition of images (Drew and Monson,
2000; Krizhevsky et al., 2012; Esteva et al., 2017; Kaushik and Sahi,
2018), speech recognition (Hinton et al., 2012), and processing
of natural language (Socher et al., 2011). Medicinal researchers
have started to apply these tactics in personalized clinical
care. Diabetic retinopathy has also been identified through the
approaches of deep neural networks (Gulshan et al., 2016) and
classifying cancers of skin (Esteva et al., 2017). The applications
of such approaches have also been found to be successful in
computational biology and bioinformatics such as in inferring
target gene expression (Chen et al., 2016), predicting RNA-
binding protein sites (Zhang et al., 2016), and in identification
and prediction of biomarkers for human chronological age (Putin
et al., 2016). To reduce cost and time wastage, various data
mining approaches may be helpful in diagnosis and on time
initiation of TB therapy.

According to the WHO global TB report, 2018, India,
Indonesia, China, Philippines, and Pakistan are the top five
countries with 56% TB prevalence of the world. Timely TB
diagnosis to reduce transmission and initiation of treatment to
improve the outcomes for TB patients is essential, especially in
high burden countries (Yagui et al., 2006; Dheda et al., 2017).

Classification and clustering algorithms are working efficiently
with good precision in the prediction of the tuberculosis
diagnosis. Presence of MTB and patient’s data may support such
model up to large extents. When handling high-dimensional
classification problems, different modeling approaches may be
used. Earlier works have applied multivariate logistic regression
(Wisnivesky et al., 2005; Solari et al., 2008), classification
trees (Mello et al., 2006; Aguiar et al., 2012) and ANN
(Aguiar et al., 2013; Dande and Samant, 2018) for predicting
smear-negative TB.

CONCLUSION

Artificial neural networks may be applied as a diagnostic tool
for TB prediction and supportive in expanding the role for
computer technologies in diagnostics for a rapid management of

TB. Therefore, this high correlation (>94% accuracy) with the
experimental result of MTB detection may help to choose optimal
therapeutic regimens, especially in TB high burden countries.
Delays in TB diagnosis and initiation of treatment may allow the
emergence of new cases by transmission, and is one of the causes
of high drug resistance in TB high burden countries.

The approach developed here may offer and support the rapid
diagnosis of MTB with further additions such as drug resistance
prediction in near future for better TB management.
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Next-generation sequencing (NGS)-based 16S rRNA sequencing by jointly using the
PCR amplification and NGS technology is a cost-effective technique, which has been
successfully used to study the phylogeny and taxonomy of samples from complex
microbiomes or environments. Clustering 16S rRNA sequences into operational
taxonomic units (OTUs) is often the first step for many downstream analyses. Heuristic
clustering is one of the most widely employed approaches for generating OTUs.
However, most heuristic OTUs clustering methods just select one single seed sequence
to represent each cluster, resulting in their outcomes suffer from either overestimation
of OTUs number or sensitivity to sequencing errors. In this paper, we present a novel
dynamic multi-seeds clustering method (namely DMSC) to pick OTUs. DMSC first
heuristically generates clusters according to the distance threshold. When the size of
a cluster reaches the pre-defined minimum size, then DMSC selects the multi-core
sequences (MCS) as the seeds that are defined as the n-core sequences (n ≥ 3), in
which the distance between any two sequences is less than the distance threshold.
A new sequence is assigned to the corresponding cluster depending on the average
distance to MCS and the distance standard deviation within the MCS. If a new sequence
is added to the cluster, dynamically update the MCS until no sequence is merged
into the cluster. The new method DMSC was tested on several simulated and real-life
sequence datasets and also compared with the traditional heuristic methods such as
CD-HIT, UCLUST, and DBH. Experimental results in terms of the inferred OTUs number,
normalized mutual information (NMI) and Matthew correlation coefficient (MCC) metrics
demonstrate that DMSC can produce higher quality clusters with low memory usage
and reduce OTU overestimation. Additionally, DMSC is also robust to the sequencing
errors. The DMSC software can be freely downloaded from https://github.com/NWPU-
903PR/DMSC.

Keywords: multi-seeds, dynamic update, clustering, operational taxonomic units, 16S rRNA

Abbreviations: AL, average linkage; MCC, matthews correlation coefficient; MCS, multi-core sequences; OTU, operational
taxonomic units; rRNA, ribosomal RNA; std, standard deviations.
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INTRODUCTION

Bacteria are the most diverse domain on our planet and play
an essential role in various biogeochemical activities as well as
an important role in human health and disease (Fuks et al.,
2018). Characterizing the taxonomic community composition
taken from an environmental sample is critical for understanding
the bacterial world (Lane et al., 1985; Wei et al., 2016). Most
of our knowledge about the microbial community descriptions
comes from the 16S rRNA (ribosomal RNA) marker genes
generated by high-throughput sequencing technology (Koslicki
et al., 2013). Bypassing the necessity of isolating single organisms
for cultivation, the advanced sequencing technology can produce
millions of 16S rRNA and has become a powerful tool for
in-depth analysis of bacterial community composition (Zhang
et al., 2013; Wei and Zhang, 2018).

Usually, a fundamental first step for rapidly processing the 16S
sequencing data is to cluster them into the OTUs (Turnbaugh
et al., 2007; Peterson et al., 2009), which form the basis for
estimating the species, diversity, composition, and richness of
the microbes in the environment (Amir et al., 2017; Westcott
and Schloss, 2017). Two major approaches for binning 16S rRNA
sequences include: (i) taxonomy dependent methods, where
each query sequence is compared against a reference taxonomy
database and assigned to the organism of the best-matched
annotated sequence using sequence searching (Altschul et al.,
1990) or classification (Liu et al., 2017, 2018), and (ii) taxonomy
independent methods (also called de novo clustering) (Chen
et al., 2013b), where sequences are grouped into OTUs based on
pairwise sequence similarities. However, a significant portion of
microbes in a sample is contributed by unknown taxa which are
not recorded in databases, thus taxonomy dependent methods
are inherently limited by the completeness of reference databases
(Chen et al., 2016). In contrast, de novo clustering methods
divide sequences into OTUs without needing any reference
database and have become the preferred choice for researchers
(Cai et al., 2017).

In the past decade, a wide variety of de novo clustering
methods has been proposed for binning OTUs. These methods
can be further categorized into hierarchical clustering, heuristic
clustering, model-based and network-based methods (Wei et al.,
2017). Hierarchical clustering methods [e.g., mothur (Schloss
et al., 2009), HPC-CLUST (Matias Rodrigues and von Mering,
2013), ESPRIT (Sun et al., 2009), and mcClust (Cole et al.,
2013)] require a distance matrix derived either from all pairs
sequences alignment or a multiple sequence alignment, then
build a hierarchical tree with a predefined threshold to assign
sequences into OTUs. Network-based methods [e.g., M-pick
(Wang et al., 2013) and DMclust (Wei et al., 2017)] first construct
a fully connected graph by computing all pairwise sequences
distances and then employ the strategy of modularity community
detection to generate OTUs. As a result, the computational
complexity of both hierarchical and network-based methods is
O(N2), where N is the number of sequences (Wei and Zhang,
2017; Wei et al., 2017). Model-based methods [e.g., CROP (Hao
et al., 2011) and BEBaC (Cheng et al., 2012)] mainly apply
some statistical model (e.g., Bayesian model) or mathematics

framework (e.g., Gaussian mixture model) to describe sequence
data then assign sequences to OTUs based on probability
theory, and still, have a high computational burden (Chen
et al., 2013a). Therefore, hierarchical clustering, model-based
and network-based clustering methods quickly meet with the
bottleneck in terms of computational time and memory usage for
dealing with large-scale sequencing data (Wei et al., 2017).

A dozen of heuristic clustering methods such as CD-HIT
(Li and Godzik, 2006), UCLUST (Edgar, 2010), DySC (Zheng
et al., 2012), VSEARCH (Rognes et al., 2016), and DBH (Wei
and Zhang, 2017) were developed to decrease the computational
complexity. These methods build up clusters in an iterative
incremental strategy. Each cluster is represented by one sequence
(called seed) and each sequence is compared to all seeds. If the
distance between one input sequence and a seed is within a
given threshold, the input sequence is assigned to an existing
cluster. Otherwise, this sequence becomes a seed of a new cluster.
This procedure is repeated until all sequences are assigned.
The computational complexity of heuristic clustering methods
is O(NM), where M is the number of seeds (usually M ≤ N).
Therefore, heuristic clustering methods run several orders of
magnitude faster than other clustering algorithms and are more
widely used in processing millions of 16S rRNA sequences
(Cai and Sun, 2011).

Although heuristic clustering approaches are computationally
efficient, they always overestimate the OTUs number and
produce lower clustering quality than other methods (Huse et al.,
2010; Wei and Zhang, 2015). Because most existing heuristic
clustering methods just use one single sequence as the seed for
each cluster, the results show an obvious sensitivity to the selected
seeds that represent the clusters, especially when sequences
datasets contain sequencing errors (Zheng et al., 2012; Chen et al.,
2013a; Wei and Zhang, 2017). Therefore, selecting “good” seeds
for one cluster is profoundly significant for heuristic clustering
methods. In this work, inspired by the seed reselection procedure
in DySC and the Gaussian model representation of one cluster
in CROP, we proposed a dynamic multi-seeds clustering (namely
DMSC) method to pick OTUs. The DMSC algorithm consists of
four main phases. First, heuristically generate clusters according
to the distance threshold, which is similar to classical heuristic
methods (e.g., CD-HIT or UCLUST). Second, when the size
of a cluster reaches the pre-defined minimum size, select the
MCS as seeds of a cluster, in which the distance between any
two sequences is less than the distance threshold. Third, a new
sequence is assigned to the corresponding cluster depending
on the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS. Finally,
DMSC dynamically updates the MCS until no sequence is merged
into the cluster.

Compared with other heuristic clustering methods, the unique
characteristics of our DMSC method mainly manifest in the
following three points. (i) DMSC selects MCS as the seeds in
one cluster instead of the single seed representation used in most
heuristic clustering methods such as CD-HIT and UCLUST; (ii)
in DMSC, the MCS of one cluster is always dynamically updated
with the cluster size increases, while the seed of each cluster in
most other heuristic methods is always fixed; and (iii) according
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to the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS, a new
sequence is assigned to the corresponding cluster, while other
heuristic methods assign the new sequence to one cluster just
base on the distance with the seed sequence. Four experimental
results demonstrate that DMSC can achieve higher quality
clusters and reduce OTU overestimation with low memory usage.
Additionally, DMSC is also robust to sequencing errors.

MATERIALS AND METHODS

The first motivation of our DMSC method is to decrease the
sensitivity of single seed representation to sequencing errors
in most heuristic clustering methods. Here we select the MCS
as seeds of a cluster, in which the distance between any two
sequences is less than the distance threshold. There are two
different parameters in DMSC approach: η (default value 25), the
minimum sequence number in a cluster to ensure that the cluster
contains enough sequences to yield a reliable MCS; and µ (default
value 3), the time (multiple) of distance standard deviation
between each pair of sequences in the MCS. These parameter
settings have been evaluated in following experiments and the
default values have robust performance. Figure 1 is a flowchart
showing the OTUs generating process with DMSC. It can be seen
that DMSC method has four main phases: (i) according to the
distance threshold θ , a series of clusters are formed by heuristic
clustering of each sequence one by one; (ii) when the size of a
cluster reaches the pre-defined minimum sequence number (η),
the MCS is selected as the seeds; (iii) according to the average
distance to MCS and the distance standard deviation (σ) between
each pairwise sequences in MCS, a new sequence is assigned to
the corresponding cluster; and (iv) after a new sequence is added
to one cluster, update the MCS.

Generating Clusters
At the beginning of DMSC, the input sequences are sorted
by abundance in a descending order. These can eliminate the
influence of sequence input order on the clustering results. Then
the first sequence is assigned to the first cluster and becomes the
seed of this cluster. The second sequence is added to the cluster
if the distance between the sequence and the seed is within the
pre-defined threshold (θ), otherwise, this sequence is stored as
a new seed for creating a new cluster. Repeat this process until
the size of a cluster reaches the predefined threshold (η), then the
MCS selection procedure is activated.

Selecting Multi-Core Sequences (MCS)
The multi-core sequences of one cluster is defined as the n-core
sequences (n ≥ 3), in which the distance between any two
sequences within the cluster is less than the distance threshold
(θ). If more than 3-core sequences are selected in the cluster,
these core sequences are taken as seeds to represent this
cluster, otherwise, one seed sequence is selected to represent this
cluster. Although the MCS selection procedure can reduce OTU
overestimation and decrease the sensitivity to the sequencing
errors, it will increase the computational burden. Considering

both the clustering quality and the computational burden, we
select more than 3 core sequences (i.e., n ≥ 3) as the seeds in
this paper. The pseudo-code for the MCS selection procedure is
outlined in the following Figure 2.

Assigning Sequences
One reason that heuristic clustering methods generally
overestimate the OTUs number is that these methods just
compare the distance with single seed to assign sequences.
Model-based clustering methods can reduce OTU overestimation
because they consider the distance distribution in one cluster.
Therefore, we introduce the distance standard deviation
(σ) between each pairwise sequences in one MCS in this
work. That is: ∣∣d(s,Mi)

∣∣ ≤ µ∗σi (1)

where Mi is the MCS of the i-th cluster, d(s, Mi) is the average
distance between sequence s and Mi, µ is the multiple constant,
σi is the distance standard deviation of Mi. If the sequence s meets
Equation 1, then s is merged into the i-th cluster. d(s, Mi) and σi
are defined as:

d (s,Mi) =
1
|Mi|

|Mi|∑
i=1

d (s, si) , si ∈ Mi (2)

σi =

√√√√√ 1
|Mi| − 1

si 6=sj∑
si,sj∈Mi

[
d
(
si, sj

)
− d̄Mi

]2
(3)

where |Mi| is the sequence number in Mi, d̄Mi is the average
distance of all pairwise sequences in Mi.

Updating MCS
Once one sequence is merged into a cluster, the MCS will be
updated according to the MCS selection procedure in Figure 2.
Therefore, the MCS of one cluster is always dynamically updating
with the cluster size increases.

After all the MCSs are no long change, all the isolated
sequences are checked and assigned to the nearest neighbor
clusters to form OTUs.

RESULTS

We compared our DMSC method with seven state-of-the-art
OTUs clustering algorithms: CD-HIT (v.4.6.8) (Li and Godzik,
2006), UCLUST (v.11.0.667) (Edgar, 2010), DBH (Wei and
Zhang, 2017), DySC (Zheng et al., 2012), ESPRIT-Forest (Cai
et al., 2017), AL clustering algorithm implemented in mothur
(v.1.40.5) (Schloss et al., 2009), and CROP (Hao et al., 2011).
Among these methods, CD-HIT, UCLUST, DySC, and DBH are
typical heuristic clustering approaches; mothur is an open source
software package for analyzing the biological sequence data, and
the AL clustering in mothur (mothur-AL) has been demonstrated
that it is a reliable method to represent the actual distances
between sequences (Westcott and Schloss, 2015); ESPRIT-Forest
is a new parallel hierarchical clustering method, and CROP is
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FIGURE 1 | Flowchart of DMSC algorithm. DMSC contains four main modules: generating clusters, selecting MCS, assigning sequences, and updating MCS. θ
denotes the distance threshold; η is the minimum sequence number of a cluster to select the MCS; Mi is the MCS of the i-th cluster; σi is the distance standard
deviation between each pairwise sequences in Mi ; and µ denotes the multiple.

a model-based method. We conducted these methods on four
benchmark datasets including two simulated dataset and three
published real-life datasets. Some features of each benchmark
dataset are shown in Table 1.

The metrics of OTUs number, NMI, and MCC are adopted
to access the performance of every OTU picking method in the
following experiments. The metrics of OTUs number and NMI
have been widely used to compare the performance of OTU
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FIGURE 2 | The pseudo-code of the MCS selection procedure for one cluster.

picking methods based on the known ground truth information
datasets (Sun et al., 2011; Schmidt et al., 2015). Although the
ground truth information (i.e., how many species the dataset
includes, and what species the sequence belongs to) is always
unknown for most real-life 16S rRNA sequencing dataset, it can
be partially resolved by applying some searching methods against
the reference database to annotate the 16S rRNA sequences (Cai
and Sun, 2011; Chen et al., 2013b; Edgar, 2018). MCC metric was
also used to evaluate the performance of OTU picking methods
based on the sequence distance and clustering threshold without
relying on an external reference (Schloss and Westcott, 2011),
which is an objective metric to assess the clustering quality of
OTUs picking methods (He et al., 2015; Westcott and Schloss,
2015; Schloss, 2016). The computational formulas of NMI and
MCC are listed in Supplementary File.

All methods were executed on an Ubuntu 16.04.5 server with
16 3.2-GHz Intel Xeon (E5-2667V4) processors and 128 GB of
RAM. And the running command lines of each method are listed
in Supplementary Table S1.

Experiment 1: Stacked_60 Dataset
The Stacked_60 benchmark dataset was constructed by Barriuso
et al. (2011), which is retrieved from 59 different bacterial
genera in the NCBI and trimmed to obtain the V6 region

(from positions 963 to 1063 in E. coli). Stacked_60 contains
random mutation and is specially designed to test the accuracy
of OTUs picking methods at different sequence distances. The
taxa distance range and the taxa abundance are in 0.01–0.38 and
0.001–0.003, respectively.

Table 2 lists the maximum NMI value and the corresponding
OTUs number, from which we can see that DMSC and CROP
have higher maximum NMI value than the other methods,
and different methods achieve the maximum NMI values at
different distance thresholds. At the respective maximum NMI
value, DMSC and CROP inferred 59 OTUs which equals to
the expected number, while DBH, DySC, CD-HIT, mothur-AL
and ESPRIT-Forest overestimated OTUs number, and UCLUST
underestimated OTUs number.

Figure 3 shows the NMI values of DMSC, CROP, UCLUST,
CD-HIT, DySC, DBH, mothur-AL, and ESPRIT-Forest with
different distance thresholds on the Stacked_60 dataset. It can
be seen that the NMI value of DMSC is almost identical to the
CROP from 0.03 to 0.05 distance threshold, and also higher
than that of other methods. In the range of 0.06∼0.09, DMSC
achieved the highest NMI values, while the NMI value of CROP
continuously drops, indicating that CROP is more sensitive to the
distance threshold. Because the NMI values vary a lot in the range
of 0.01∼0.02 distance thresholds for all methods, Figure 3 just
represents the NMI values from 0.03 to 0.10 distance thresholds.
Figure 4 depicts the MCC curves of eight methods with different
distance thresholds on Stacked_60 dataset. From Figure 4 we
can see that DMSC method always achieved the highest MCC
value in the range of 0.01∼0.10 distance thresholds. The NMI
values, OTUs number and MCC values of eight methods in
the range of 0.01∼0.1 distance thresholds can be found in
Supplementary Table S2.

These results in Figures 3, 4, Table 1, and Supplementary
Table S2 show that our DMSC method can accurately estimate
the species number and obtain better cluster quality for
Stacked_60 dataset.

Experiment 2: Simulated Dataset
We then considered another widely used simulated dataset
to estimate the clustering accuracy, where the ground truths
were directly taken from a simulator software (Cheng et al.,
2012). A total of 22,000 sequences (∼500 bp) from 11 taxa
were generated and each taxon contains 2,000 sequences with
different substitution rates. Among these 11 taxa, three taxa are
within 1% different from each other. Therefore, the expected
OTUs number is 9.

TABLE 1 | Details of the benchmark datasets.

Datasets Taxon
number

Sequence
number

Average
length

Variable
regions

Data source

Stacked_60 dataset 59 2,614 98 bp V6 Barriuso et al., 2011

Simulated dataset 11 22,000 500 bp – Cheng et al., 2012

V6 dataset 177 ∼310 K 121 bp V6 Chen et al., 2013a

V4 dataset 68 ∼511 K 253 bp V4 Westcott and Schloss, 2015

Error datasets 30 150 K 120 bp V6 Wei and Zhang, 2017
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TABLE 2 | The maximum NMI values and OTUs number with different methods on stacked_60 dataset.

Methods DMSC
(0.03)

CROP
(0.03)

DySC
(0.03)

DBH
(0.02)

CD-HIT
(0.04)

UCLUST
(0.09)

mothur-AL
(0.06)

ESPRIT-Forest
(0.08)

Max. NMI 0.99951 0.99951 0.99475 0.99868 0.99557 0.98528 0.96650 0.96614

OTUs 59 59 60 62 65 56 161 86

The value in the bracket is the distance threshold where each method achieves its maximum NMI. For mothur-AL method, the maximum NMI of mothur-AL is selected
from the distance range of 0.01∼0.06 for reason that mothur-AL method just obtains the clustering results in these distance thresholds.

FIGURE 3 | NMI values of different algorithms on stacked_60 dataset.

FIGURE 4 | MCC values of different methods on stacked_60 dataset.

By setting different distance thresholds ranging from 0.01 to
0.1, the maximum NMI values of seven methods at different
distance thresholds and the corresponding inferred OTUs
number are reported in Table 3, from which we can see that
DMSC achieved the highest NMI (0.9503). Meanwhile, DMSC,

CROP, DBH, and CD-HIT successfully obtained 9 OTUs at
their best NMI value, while DySC, UCLUST, and ESPRIT-Forest
overestimated OTUs. The NMI curves of seven methods are
shown in Figure 5, from which we can see that DMSC achieved
better NMI values than other methods at distance intervals
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TABLE 3 | Maximum NMI values of seven methods on the simulated dataset.

Methods DMSC
(0.02)

CROP
(0.03)

DySC
(0.03)

DBH
(0.03)

CD-HIT
(0.05)

UCLUST
(0.05)

ESPRIT-Forest
(0.05)

Maximum NMI 0.9503 0.9334 0.9252 0.9293 0.9334 0.9107 0.8979

OTUs number 9 9 17 9 9 10 13

The value in the bracket is the distance threshold where each method achieves its maximum NMI.

[0.01, 0.04] and [0.07, 0.1], reaching the highest NMI value at
0.02 distance threshold; other methods obtained their best NMI
values at different distance thresholds. Figure 6 represents the
MCC curve of seven methods with different distance thresholds
ranging from 0.01 to 0.1, from which we can see that MCC
values of DMSC are higher than that of other six methods in
the range of 0.02∼0.07 distance thresholds. The NMI values,
OTUs number and MCC values of seven methods are listed
in Supplementary Table S3. These results indicate that DMSC
has a better cluster performance than ESPRIT-Tree, CD-HIT,
UCLUST, DBH, CROP, and DySC.

Experiment 3: V6 Variable Region
Dataset From Human Gut Flora
In this experiment, we use one real-world benchmark dataset
of the V6 variable region from human gut flora to evaluate the
performance of OTUs picking methods. This dataset contains
∼310K sequences (average length: ∼121 bp) which are classified
into 177 species and covers the V6 hypervariable region of 16S
rRNA gene (Chen et al., 2013a). In order to reduce computational
burden and remove statistical variations, each method was run
10 times and ∼30K reads were randomly extracted from the V6
dataset in each run.

Figure 7 describes the average NMI value as a function of
the distance threshold over 10 runs for six methods, from which

we can observe that DMSC has the highest NMI values than
other methods in the range of 0.01∼0.07 distance thresholds, and
DBH also achieved higher NMI values than CD-HIT, UCLUST,
DySC, and ESPRIT-Forest from distance threshold interval [0.02,
0.08]. CD-HIT has the lowest NMI values except at 0.1 distance
threshold. The average OTUs number inferred with six methods
at different distance thresholds are described in Supplementary
Figure S1, from which we can see that DMSC inferred fewer
OTUs than CD-HIT, UCLUST, DBH and ESPRIT-Forest, but
more than DySC at different distance thresholds. These can be
explained by the fact that the sequence distance calculation in
DySC is based on pairwise k-mer distances (Zheng et al., 2012),
while other methods (including DMSC) are based on pairwise
sequence alignment (PSA). It’s reported that k-mer distance is
looser than PSA (Sun et al., 2009). In other words, when setting
to the same threshold (e.g., 0.03), more sequences of using the
k-mer distance will satisfy the threshold to be clustered into
one group, resulting in that DySC trends to generate fewer
OTUs. However, DySC always gives less clustering accuracy and
quality than DMSC in terms of the NMI (Figure 7) and MCC
(Figure 8) evaluation metrics. Supplementary Figure S2 reports
the NMI std of six methods at different distance thresholds
with 10 re-sampled runs, from which we can see that the NMI
std of DMSC varies in the scope of 0.003∼0.012 at different
distance thresholds. DMSC has the lowest std than other five
methods in the range of 0.06∼0.09 distance thresholds and

FIGURE 5 | NMI values of different methods on the simulated dataset.
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FIGURE 6 | MCC values of different methods on the simulated dataset.

FIGURE 7 | Average NMI values of six methods at different distance thresholds on V6 data set.

almost equals to CD-HIT and UCLUST in the range of 0.01∼0.05
distance thresholds. Figure 8 presents the MCC curves of six
methods with different distance thresholds, from which we can
see that the MCC values of DMSC and DBH are higher than
that of other four methods in the range of 0.03∼0.10 distance
thresholds. For reason that CROP takes longer running time
to output the OTUs for the large-scale dataset, we did not
list the results of CROP in this experiment. Supplementary
Table S4 lists the NMI values, OTUs number and MCC values
of six methods, and Supplementary Table S5 gives the t-test
results of DMSC compared with the other four methods. These

results in Figures 7, 8, Supplementary Figures S1, S2, and
Supplementary Tables S4, S5 show that DMSC can generate the
most robust estimations.

Experiment 4: V4 Variable Region
Dataset From the Murine Gut
In this experiment, we adopt another real-world benchmark
dataset of the V4 variable region from the Murine gut
to assess the performance of OTUs picking methods. The
V4 dataset was generated by Illumina’s MiSeq platform
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FIGURE 8 | The MCC values of six methods on V6 dataset.

(Westcott and Schloss, 2015), covering the V4 hypervariable
region of 16S rRNAs from Murine microbiota [36]. The raw
sequences of V4 dataset can be freely obtained from http:/www.
mothur.org/MiSeqDevelopmentData/StabilityNoMetaG.tar. The
ground-truth of V4 dataset can be extracted as followings.
First, the pair end raw sequences were merged by FLASH
(Magoč and Salzberg, 2011), then the usearch (Edgar, 2010)
program was adopted to filter the merged sequences. Finally,
the Python script (assign_taxonomy.py) in QIIME (Caporaso
et al., 2010) was used to align the sequences for obtaining
the ground-truth information with a stringent criterion. If
the identity percentage is more than 97% (≥97%) and the
length of the aligned region is more than 90% (≥90%)
of the total length, the annotated sequences are retained.
Thus, we obtained about ∼511K annotated reads, which were
classified into 68 genera.

By setting different distance thresholds ranging from 0.01
to 0.15, the NMI curves of five methods are shown in
Figure 9, and the inferred OTUs number of five methods at
different distance threshold are presented in Supplementary
Figure S3. Figure 10 is the MCC curves of five methods at
different distance thresholds. The NMI values, OTUs number
and MCC values inferred with five methods at different distance
thresholds are listed in Supplementary Table S6. Because DySC
software returns a debug information, ESPRIT-Forest appears
a segmentation fault (core dumped) information, and CROP is
time-consuming on this large V4 dataset, we did not give the
results of DySC, ESPRIT-Forest, and CROP in this experiment.

From Figure 9, we can see that most of NMI values of
DMSC are higher than that of other four methods in the range
of 0.01∼0.13 distance thresholds, and it is obviously higher
than other three methods in the distance range of 0.09∼0.12.

The results in Supplementary Figure S3 show that DMSC and
DBH inferred less OTUs than other methods, and DMSC inferred
67 OTUs which is near the ground truth at 0.09 distance
threshold. From Figure 10, we can see that the MCC values of
DMSC are higher than that of the other four methods except
at 0.10 distance threshold. These results suggest that DMSC can
achieve higher clustering quality than UCLUST, CD-HIT, DBH,
and mothur-AL methods.

DISCUSSION

Inspired by the seed reselection strategy and model-based
methods, we herein developed a novel dynamic multi-seeds
heuristic method for picking OTUs from 16S rRNA sequences.
Besides the distance threshold θ given by users, DMSC also
needs another two parameters in picking OTUs procedure: η

and µ. How these two parameters affect the clustering results
needs to be further investigated. In the following, we tested the
parameter effect on the simulated dataset used in experiment
2. We first tested the effect of the η by fixing µ (e.g., µ = 3).
The NMI values at different distance thresholds are presented
in Supplementary Figure S4, from which we can see that
we can see that the NMI values of η = 10, 15, 20, 15 in
the range of 0.02∼0.1 distance thresholds are nearly equal,
indicating that η has little influence on the clustering results.
Supplementary Figure S5 shows the effect of µ by fixing η

(e.g., η = 25). From Supplementary Figure S5, we found that
the NMI values of µ = 3, 4 are higher than that of µ = 1,
2 in the range of 0.01∼0.1 distance thresholds. Therefore, we
select η = 25 and µ = 3 as the default parameter values in
our DMSC method.
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FIGURE 9 | NMI values of five methods at different distance thresholds on V4 dataset.

FIGURE 10 | MCC values of five methods at different distance thresholds on V4 dataset.

Sequencing errors (i.e., deletion, insertion, and substitution)
are inevitably introduced during the high-throughput sequencing
procedure, which can easily lead to OTUs overestimation
(Schmidt et al., 2015). In order to estimate the robustness of
handling sequencing errors for different OTU picking methods,
ten simulated datasets in DBH (Wei and Zhang, 2017) with error
rate varies from 0.21 to 0.42% are used to test our DMSC method.
Each dataset contains 150,000 sequences from 30 taxa and each
taxon contains 5,000 sequences. The OTUs number inferred at

0.05 distance threshold is shown in Supplementary Figure S6,
from which we can see that with the error rate increase from
0.21 to 0.41%, DMSC infer a smaller number of OTUs than other
methods, especially in the 0.33∼ 0.41% scope of higher error rate,
the OTUs number inferred by DMSC is obviously less than that
of other five methods. Table 4 lists the average OTUs number and
std (σ) in the scope of 0.21∼0.41% sequencing errors, from which
we can see that the average OTUs number of DMSC is smaller
than that of other five methods, and the standard deviation is

TABLE 4 | Average OTUs number and standard deviation of six methods in the scope of 0.21∼0.41% sequencing errors at 0.05 distance threshold.

DMSC UCLUST DBH CD-HIT DySC ESPRIT-Forest

Average OTUs 34 38 37 39 46 92

σ 3.748 9.605 6.863 11.253 3.588 24.691
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lower than that of UCLUST, DBH, CD-HIT, and ESPRIT-Forest,
near to DySC. Supplementary Table S7 reports the average OTUs
number and std at 0.03 distance threshold, from which we can see
that the standard deviation of DMSC is lower than that of other
five methods. These results indicate that DMSC can better reduce
the OTUs overestimation than the other five methods.

The rapid increase in the amount of sequencing data provides
a valuable source to significantly understand bacterial diversity
from the environmental samples, meanwhile introducing a
serious computational challenge for processing these mass data.
In addition to the clustering accuracy, computational complexity
is also used to assess a new clustering method. The computational
complexity of DMSC mainly contains three components. (1) For
generating clusters, a total of N sequences needs to be processed.
The large maximum complexity is O(N). (2) In the MCS selection
procedure, a distance matrix with size of η × η needs to be
calculated with a complexity of O(K × η2), where K is the
number of clusters with size larger than η. (3) In the sequences
assignment procedure, each sequence is compared with each
cluster, resulting in a complexity of O(K × N). As a result, the
total time complexity of DMSC is O(N+K × η2

+K × N), which
is larger than that of traditional heuristic clustering methods such
as CD-HIT and UCLUST, but smaller than that of model-based
clustering methods such as CROP. In this work, all methods were
executed with 16 threads. In order to graphically demonstrate the
scaling property of our DMSC method, we compared DMSC with
CD-HIT, UCLUST, DBH, DySC, mothur-AL and ESPRIT-Tree
on V6 dataset at different sequence size ranging from 1 K to 100
M. Supplementary Figure S7 shows the running time (wall time)
of seven methods. We can see that with the sequence number
increases, the speed of DMSC is much faster than mothur-AL,
and little lower than the traditional heuristic methods (e.g.,
CD-HIT, UCLUST, and DBH) that just use one sequence as the
seed for each cluster. For the memory usage, Supplementary
Figure S8 graphically describes the memory property of seven
methods. From Supplementary Figure S8, we can see that DMSC
needs a little larger memory usage than the classical greedy
clustering methods such as CD-HIT, UCLUST and DySC, and
much smaller memory storage than ESPRIT-Forest and mothur-
AL for large-scale sequences.

CONCLUSION

16S rRNA high-throughput sequencing has become a powerful
and convenient technology for studying microbial diversity and
composition in the environmental samples. Until now, numerous
heuristic clustering methods have been developed to pick OTUs,
but most of them just select one sequence as the cluster
seed, resulting in OTUs overestimation and sensitivity to the
sequencing errors. In this work, we proposed a novel dynamic
multi-seeds heuristic clustering method (namely DMSC) by

incorporating the dynamical multi-seeds updating strategy and
the heuristic clustering procedure. Meanwhile, DMSC considers
the distance’s standard deviation within the MCS to generate
OTUs. DMSC method is inspired by the idea of seed reselection
procedure in DySC, but there are three main differences between
DMSC and DySC: (i) DMSC selects MCS as the seeds in
one cluster, while DySC just uses one single sequence as the
seed; (ii) DySC only updates seed once time, then the seed
will be fixed, while DMSC dynamically updates the MCS if a
new sequence is added to one cluster, therefore, the seeds is
always updated with the cluster size increases; and (iii) a new
sequence is assigned to the corresponding cluster depending
on the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS, while DySC
assigns the new sequence just based on the distance to seed
sequence. Compared with the state-of-the-art methods, such
as UCLUST, CD-HIT, DBH, DySC, ESPRIT-Forest, CROP, and
mothur-AL, the clustering results show that DMSC can produce
OTUs with higher quality and reduce OTUs overestimation with
low memory usage. Additionally, DMSC is also robust to the
sequencing errors.
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The uniqueness of bacteriophages plays an important role in bioinformatics research.

In real applications, the function of the bacteriophage virion proteins is the main area

of interest. Therefore, it is very important to classify bacteriophage virion proteins

and non-phage virion proteins accurately. Extracting comprehensive and effective

sequence features from proteins plays a vital role in protein classification. In order

to more fully represent protein information, this paper is more comprehensive and

effective by combining the features extracted by the feature information representation

algorithm based on sequence information (CCPA) and the feature representation

algorithm based on sequence and structure information. After extracting features,

the Max-Relevance-Max-Distance (MRMD) algorithm is used to select the optimal

feature set with the strongest correlation between class labels and low redundancy

between features. Given the randomness of the samples selected by the random

forest classification algorithm and the randomness features for producing each node

variable, a random forest method is employed to perform 10-fold cross-validation on

the bacteriophage protein classification. The accuracy of this model is as high as 93.5%

in the classification of phage proteins in this study. This study also found that, among

the eight physicochemical properties considered, the charge property has the greatest

impact on the classification of bacteriophage proteins These results indicate that the

model discussed in this paper is an important tool in bacteriophage protein research.

Keywords: phage virion proteins, machine learning, feature extraction, feature selection, hybrid sequence features

INTRODUCTION

In the biological world, bacteriophages are ubiquitous, with different genomes and lifestyles.
According to their morphology, they can be classified as either tail, tailless, or filamentous
bacteriophages. According to morphology and nucleic acid, phages are classified as infect bacteria
and infect archaea. The bacteriophage must be attached to a host cell for growth and reproduction
(Seguritan et al., 2012), and directly affects the host population by lysing host cells. In addition,
each bacteriophage is specific and greatly reduces the damage to host cells (Haq et al., 2012).
Identification and classification of various bacteria can be performed based on the universality,
diversity, dependence, and specificity of bacteriophages (Marks and Sharp, 2015).The structure
of bacteriophages is simple, consisting of only a protein shell and genetic material (DNA
or RNA) (Haq et al., 2012), making them important substances for simplifying experimental
research in bioinformatics. As a bacteriophage can insert genes into host cells (Ding et al., 2014),
it is an important tool for studying genetics (Cheng et al., 2018; Hu et al., 2018). Hershey
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(Hershey and Chase, 1952) performed biological experiments
using the T2 bacteriophage and bacteria in 1952, and finally
confirmed that DNA is the genetic material of bacteriophages
and other organisms. The significance of this research in
the development of biological science earned Hershey and
coworkers the Nobel Prize in Physiology. Bacteriophage provide
experimental systems and tools for the molecular biological
science revolution. The bacteriophage rapid development has led
to dection of basic principles of ecology and evolution. Besides,
it is relatively easy to synthesize and has modular characteristic,
which cater to the needs of synthetic biologists and carry out
engineering research and implementation of biological function.

Bacteriophage proteins are classified into virion and non-
viron proteins (Zhang et al., 2015), with most practical interest
focusing on the function of bacteriophage virion proteins
(Feng et al., 2013b). Therefore, bacteriophage proteins must be
accurately classified and identified so that researchers can further
study the structure and function of a particular bacteriophage.
After the human genome project was officially launched in
1990, the number of bacteriophage protein sequences with
unknown functions increased dramatically (Seguritan et al.,
2012; Chen et al., 2018a). Faced with a large volume of
data, traditional biological experimental methods could no
longer keep up with the post-gene era (Chen W. et al., 2016;
Cheng et al., 2019; Mrozek et al., 2016; Hu et al., 2018). For
this reason, researchers introduced different machine learning
algorithms into bacteriophage classification and prediction
research. For example, Li et al. (2007) developed a support
vector machine system called SynFPS that uses the gene–gene
distance determined by k-means clustering to identify closely
related genomes and perform gene function prediction. Using the
protein appearance frequency of amino acids and information of
isoelectric points, Seguritan et al. (2012) developed an artificial
neural network method to classify viral structures. Feng et al.
(2013b) used the main amino acid and dipeptide components
as an encoding scheme, and modified a naive Bayes classifier
to identify bacteriophage proteins. Ding et al. (2014) used
g-gap dipeptide composition to represent protein sequence
information, incremental feature selection to analyze the variance
and identify the optimal feature set, and a support vectormachine
for classification. Zhang et al. (2015) obtained sequence feature
vectors with various techniques, and then used the incremental
feature selection algorithm to select the optimal feature subsets.
Finally, the prediction results of individual classifiers trained
in different feature spaces were integrated to produce the final
classification effect. Machine learning algorithm (Robert, 2012;
Stephenson et al., 2018) automatically analyze and obtain rules
from data and use them to predict unknown data (Chen and
Yan, 2013; Yu et al., 2015, 2016a; Chen and Huang, 2017; Chen
et al., 2018h; Wang et al., 2018). This saves time and money, but
the results from such algorithms are not as convincing as those
from biological experiments. Therefore, it is especially important
to choose an appropriate machine learning algorithm to ensure
the most accurate classification results (Liu, 2017; Yao et al.,
2017; Yu et al., 2017a). In a protein classification experiment, the
classification effect depends largely on the feature set extracted
(Zou et al., 2013; Bin et al., 2015; Mrozek et al., 2015; Jia et al.,

2016; Yu et al., 2016b, 2018; Zhang et al., 2016; Huang et al.,
2017; Qu et al., 2017; Jiang et al., 2018; Qiao et al., 2018; Xiong
et al., 2018; Xu et al., 2018b). To date, feature extraction methods
are divided into sequence-based and structure-based approaches
(Huang et al., 2017; Qu et al., 2017) The feature set extraction part
of this study is obtained by combining the features extracted by
the two feature extraction methods.

In this study, we examined the final classification effect of
the selected methods and the stability of the dataset when
the feature dimension was reduced. First, to remove the
imbalance in the reference dataset, CD-Hit was used to remove
redundant data, resulting in a balanced dataset that contains
comprehensive information and less redundancy. Pearson’s
correlation coefficient and three distance functions (Euclidean
and cosine distances and the Tanimoto coefficient) (Zou et al.,
2016) were then used to calculate the correlation between features
and class labels and the redundancy between features. Finally,
the optimal feature subset with the strongest correlation between
features and class labels and low redundancy between features
was selected. According to some recent studies(Wu et al., 2009;
Yi et al., 2011; Chen and Lin, 2012; Yang et al., 2015; Yu et al.,
2017b; Zhang and Liu, 2017; Xu et al., 2018a; Liu et al., 2019),
the best algorithms for protein classification are support vector
machines and random forest algorithms. However, support
vector machines are more suitable for small sample sets in
which the number of dimensions is greater than the number
of samples. Thus, the random forest algorithm was used in this
study. The random forest algorithm (Breiman, 2001; Yao et al.,
2017) combines multiple weak classifiers to produce a final result
that has higher accuracy and better generalization performance.
It can achieve good results, mainly because of the random nature
of the “forest,” which makes the algorithm resistant to overfitting
and more precise. Finally, in terms of bacteriophage protein
classification, the data set extracted by combining the features
and the feature selection of the feature set have a positive impact
on the protein classification effect. Our results also show that,
among the eight physicochemical properties of amino acids, the
charge property has the greatest influence on the classification
of bacteriophage proteins. To evaluate the performance of the
models used in this study, the results were compared with those
given by the methods introduced in (Feng et al., 2013b; Ding
et al., 2014; Zhang et al., 2015). Figure 1 shows the workflow of
this study.

METHODS

Dataset Processing
Source: UniProt (Rolf, 2004; Consortium, 2012) is a widely
used protein sequence database that offers low protein sequence
redundancy and complete protein function interpretation (Cao
and Cheng, 2016a; Jiang et al., 2016). As this website is free and
open, researchers can download the desired protein sequence
for free. The original positive samples used in this study (a
total of 15,765 data), e.g., the number of bacteriophage virion
proteins, were downloaded from this database. After obtaining
the bacteriophage virion protein (positive) sample set, the PFAM
family of positive samples was excluded from all PFAM families,

Frontiers in Microbiology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 507287

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ru et al. Identification of Phage Viral Proteins

FIGURE 1 | Outline flowchart of this study.

such that the remaining samples were families of non-phage
virion proteins. Finally, the longest protein sequence of the
remaining families was extracted to form a negative sample
set. The positive and counterexample datasets obtained as
described above may all contain homologous sequences. Using
such sample sets would result in the classification accuracy being
overestimated, which is not conducive to the establishment of
predictionmodels. Therefore, we used the CD-Hit tool to remove
redundant positive and negative samples from the datasets.

Data integration: The CD-Hit (Li et al., 2001; Li and Godzik,
2006; Huang et al., 2010; Fu et al., 2012; Chen et al., 2017)
redundancy tool effectively clusters similar sequences. The basic
principle is to sort protein sequences in the dataset in descending
order. The longest sequence is taken as the first class, and then
this is compared with the second-longest protein sequence in
terms of their similarity. If the similarity between the two is
greater than some threshold, they are deemed to belong to
the same class. Otherwise, the second-longest sequence forms a
new class. Because the bacteriophage virion protein sequences
were downloaded from UniProt, which ensures relatively low
redundancy, the interrupt threshold was set to 0.8. The non-
phage virion proteins had a higher degree of redundancy, so
their interrupt threshold was set to 0.4. Thus, 6,251 bacteriophage
virion protein sequences and 9,514 non-phage virion protein
sequences were obtained. The union of the resulting positive
and negative sample datasets gives the total dataset, and the
intersection of the two is empty.

Feature Extraction
Representation Algorithms for Amino Acid

Composition and Eight Physicochemical Properties
In this study, a feature set containing 188 dimensions
was extracted based on amino acid composition and eight
physicochemical properties. The amino acid composition is one
of the most basic features of proteins (Zhang et al., 2015;
Cao and Cheng, 2016b). Eight physicochemical properties of

amino acids also play a role in the functional properties of
bacteriophage proteins. In 1988, Coia et al. (1988) found that
amino acids having lighter side chain groups are more likely
to constitute bacteriophage virion sequences. In 1994, Marvin
et al. (1994) proposed that hydrophilicity, hydrophobicity, and
charge have a greater impact on the function of bacteriophage
virion proteins. In 2008, Shen and Chou (2008) identified the
vital role that the hydrophilicity and hydrophobicity of amino
acids play in the folding of proteins. In 2014, Ting et al. (2014)
used logistic regression to integrate several biological features,
including physicochemical properties for predicting lysine
acetylation, thus demonstrating the effect of physicochemical
properties on protein structure and function. Therefore, the
amino acid composition and its eight physicochemical properties
are used to extract features that reflect the characteristics of
bacteriophage proteins.

The 20 most common amino acids are as follows:

CAA = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S,T,V ,W,Y}
(1)

The occurrence frequency of each amino acid in a protein
sequence can be expressed as:

f1i =
{ni

L
|1 ≤ i ≤ 20

}

(2)

Where ni is the frequency with which amino acid i occurs in the
protein sequence and L is the length of the protein sequence.

In addition, these 20 amino acids can be classified into three
types according to their physicochemical properties (Chou and
Com, 2010), as shown in Figure 2.

The composition, transformation, and distribution of amino
acids were determined by Dubchak et al. (1995) based on a global
description of protein sequences. The feature extraction methods
for the eight physicochemical properties of a protein sequence
are as follows. Taking the electrode polarity as an example
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FIGURE 2 | Eight physicochemical properties of amino acids.

(expressed by p), the 20 amino acids are divided into high-,
medium-, and low-charged polarity groups, which are expressed
by ph, pp, pl, respectively. The composition, transformation, and
distribution of the amino acids at this time can be represented by
equations (3)–(7).

Composition features (Dubchak et al., 1995) (frequency of
each charged electrode group in a sequence):

(

f21, f22, f23
)

=
[

n1ph

L
,
n2pp

L
,
n3pl

L

]

(3)

where f21, f22, f23 denote the content of the high-, medium-, and
low-charged polarity groups in a sequence, respectively,L is the
length of the protein sequence,n1, n2, n3 are the frequencies with
which the three electrode groups appear in the sequence.

Conversion feature (Dubchak et al., 1995) (frequency of
occurrence of bigeminal sequences):

(

f31, f32, f33
)

=
[

m1phl

L− 1
,
m2php

L− 1
,
m3ppl

L− 1

]

(4)

Where f31, f32, f33 denote the content of the three bigeminal
groups phl, php, ppl, and m1,m2,m3 are the frequencies of these
three bigeminal groups appearing in sequence. There are
three possible sequences of the charged polarity: phl, php, ppl In
addition, in a protein sequence of length L, assuming that any
two adjacent amino acids constitute a pair, the protein sequence
contains L− 1 paired sequences (Zou et al., 2013).

Distribution features (Dubchak et al., 1995) (amino
acid distribution of the high-, medium-, and low-charged

polarity groups):

(

f411, f412, f413, f414, f415
)T = [a1%, a25%, a50%, a75%, a100%]

T (5)
(

f421, f422, f423, f424, f425
)T =

[

b1%, b25%, b50%, b75%, b100%
]T

(6)
(

f431, f432, f433, f434, f435
)T = [c1%, c25%, c50%, c75%, c100%]

T (7)

Where a1%, a25%, a50%a75%a100% represent the positions of the
first, 25, 50, 75, and 100% high-charged polarity groups in a
sequence, b1%, b25%, b50%, b75%, b100% represent the positions of
the first, 25, 50, 75, and 100%medium-charged polarity groups in
a sequence and c1%, c25%, c50%, c75%, c100% represent the positions
of the first, 25, 50, 75, and 100% low-charged polarity groups in
a sequence.

In summary, (3 + 3 + 3 × 5) = 21-dimensional features
can be extracted from each physicochemical property, and so
8 × 21 = 168-dimensional features can be extracted from the
eight physicochemical properties. The 188-dimensional features
(20-dimensional + 168-dimensional) are used to express the
characteristics of bacteriophage proteins, and are extracted based
on the content ratio of each of the 20 amino acids in the sequence
and the eight physicochemical properties.

Adaptive k-skip-n-Gram Algorithm
A feature set containing 400 dimensions is extracted based on
the adaptive k-skip-n-grammethod (Feng et al., 2013c; Cao et al.,
2017; Wei et al., 2017a; Tang et al., 2018) . In this study, the value
of n was set to 2 (202 = 400).

The K value represents the separation distance between
two amino acids. For example, in the protein sequence S =
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A1A2A3 · · ·AL (where L is the length of the sequence),

K = i− j− 1 (8)

And Ai,Aj are the ith and jth amino acids of S.
In a bacteriophage protein dataset, the sequences have very

different lengths. If the parameter K is fixed to a specific value,
the sequence information cannot be properly represented, which
will affect the final classification effect. Therefore, the value of k
was set to be adaptive so that K could vary with the length of
the sequence.

For n = 2, the combinations of the 20 most common amino
acids and the number of occurrences of each combination in the
sample datasets are as shown in Figure 3.

This process is similar to full connection in a neural network.
Among the 20 common amino acids, anyone can combine with
another amino acid (or itself) in pairs, and the combination
is random. In the same way as full connection, this leads to
overfitting when there are too many data. Therefore, n should
not be too high when using an adaptive k-skip-n-gram method.
When n = 1, we have the traditional n-gram model proposed
by Guthrie et al. (2006), which does not apply to shorter protein
sequences. Therefore, n was set to 2 in this study.

In this feature extraction method, the combination set of two
specified interval amino acids (Wei et al., 2017a) is given by:



















skip (K = 0) = {A1A2,A2A3, · · · , AL−1AL}
skip (K = 1) = {A1A3,A2A4, · · · , AL−2AL}

...

skip
(

K = k
)

=
{

A1A2+k,A2A3+k, · · · , AL−k+1AL

}

(9)

In addition, C is used to represent a set of two amino acids
that are combined at all intervals in a sequence (Wei et al.,
2017a).Namely:

Cskipgram =
{

⋃k

d=0
skip(K = d)|d = 1, 2, 3, · · · k

}

(10)

Finally, the feature extraction formula (Wei et al., 2017a) is:

FV =

{

N(am1am2 · · · amn)

N(Cskipgram)
|1 ≤ mi ≤ 20, 1 ≤ i ≤ n

}

(11)

Where N(Cskipgram) is the total number of elements in set
C,am1am2 · · · amn are the 20n kinds of amino acid combinations
of length n, N(am1am2 · · · amn) is the frequency that the two-two
combination in am1am2 · · · amn occurs in Cskipgram

Mixed Representation Algorithm (Seq-Str)
Some researchers have combined different feature extraction
methods and achieved very good classification results (Dehzangi
et al., 2013; Zou et al., 2014; Leyi et al., 2015, 2018; Chen X.
et al., 2016; Ding et al., 2016, 2017a,b; Li et al., 2016; Chen
et al., 2017,a,b, 2018c,d,e; Su et al., 2018 Shen et al., 2019; Wei
et al., 2019; Zhu et al., 2019). Wei et al. (2015) proposed a
novel feature extraction method that uses both the profile of

PSI-BLAST (Altschul et al., 1997) and the profile of PSI-PRED
(Jones, 1999), which contain rich evolutionary information and
secondary structure information, respectively. In this way, the
473-dimensional feature can be extracted.

1) Extract 20-dimensional features based on PSI-BLAST
as follows:

FV =
{

Si =
1

L

∑L

z=1
Sz,i| i = 1, 2, . . . 20

}

(12)

Sz,iindicates that during the evolution process, the residue at
the “z” position in the sequence S is mutated to the fraction of

the “i” species, and “i” is one of the 20 common residues. Si
indicates that during the evolution, the residue in sequence S
is mutated to the average score of the ith residue.

2) Extracting 420-dimensional features based on n-gram: The
Adaptive k-skip-n-gram algorithm that does not consider the
k value is the n-gram method. Here, take n equal to 1 and n
equal to 2

3) Based on the secondary structure sequence, the following
six features are extracted (Wei et al., 2015): Three feature
extraction formulas for spatial arrangement

CMVH =
∑nH

z=1
PHz/L(L− 1) (13)

Where PHz represents the position index of the zth H in the
secondary structure of the sequence S. nH represents the
total number of occurrences of H in the secondary structure
of sequence.

Two feature extraction formulas for the percentage of the
maximum continuous length (Wei et al., 2015).

RmaxCH = max {CH}/L (14)

CH represents the length of the fragment in which H appears
consecutively in the sequence of the secondary structure.

A new feature for distinguishing between two structural
classes, α + β and α

β
: (Wei et al., 2015)

fβαβ = nβαβ/Lseg − 2 (15)

This formula calculates the frequency at which βαβ appears in
the fragmented sequence Sseg , nβαβ represents the number of
times βαβ appears in Sseg , Lseg indicates the length of Sseg .

4) Extracting 27 features based on structural probability
matrices: Three features from the overall information and 24
features from local information

Feature Selection
Based on the feature extraction methods described in section
Feature extraction, We extracted a 188-dimensional, 400-
dimensional feature set based on sequence information, and
a 473-dimensional data set based on sequence and secondary
structure information representing the entire bacteriophage
protein sequence dataset. Some redundant or irrelevant cases
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FIGURE 3 | Two-two combination process of amino acids. (A) Two-two combination of residues. (B) Three-dimensional heat map of amino acid frequency. (C) Heat

map of amino acid frequency.

TABLE 1 | Classification results of three data sets under different classification

algorithms.

Feature_

extraction

Feature_

selection

number

of D

LibSVM

(%)

Naive

Bayes (%)

Random

forest (%)

CCPA 188D 68.5 78.3 91.3

MRMD 185D 68.5 78.3 91.5

AKSNG 400D 60.3 71.8 88.7

MRMD 252D 60.3 72.8 89.0

Seq-Str 473D 80.6 80.9 92.6

MRMD 189D 82.0 83.1 93.2

were still present in these features. The existence of invalid
features wastes time and computational resources, and affects
the classification accuracy of the model (Chen et al., 2018b,f,g;
Dao et al., 2018; Yang et al., 2018; Zhu et al., 2018a,b). In this
paper, the Max-Relevance-Max-Distance (MRMD) (Zou et al.,
2016) method was used to select features and identify higher-
quality feature sets, i.e., the optimal feature subset. In this
method, Pearson’s correlation coefficient is used to calculate
the correlation between features and class labels (MR), thus
enabling the selection of features with strong correlation to
the target class. Three distance functions (Euclidean and cosine

TABLE 2 | Classification performance under different feature extraction methods.

Extraction

method

Number of D SN (%) SP (%) ACC (%) MCC (%)

Seq based 188D 87.4 93.6 91.3 81.5

400D 82.8 92.4 88.7 76.1

Seq and str based 473D 86.2 97.2 92.6 85.1

Com based 588D 87.1 93.2 91.2 80.7

661D 87.5 96.5 93.1 85.3

distances and the Tanimoto coefficient) are used to calculate the
redundancy between features (MD) and identify features with
low redundancy.

Taking the two eigenvectors (X,Y) as an example,
Pearson’s correlation coefficient (Pearson, 1909) expressed
as follows:

ρX,Y = corr (X,Y) =
cov (X,Y)

σXσY
(16)

Where σX and σY denote the standard deviation of the two
vectors, cov(X,Y) is the covariance, which is used to measure
the relationship between two random variables. The covariance
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formula is as follows:

cov (X,Y) =

∑n
i=1

(

Xi −
−
X

) (

Yi −
−
Y

)

n− 1
(17)

Where
−
X and

−
Y denote the mean of the respective vectors.

The formula for the Euclidean distance (Larson and Edwards,
1991; Deza and Deza, 2009) is:

EDi =
1

M − 1

∑

√

∑n

q=1
(xq − yq)2 (18)

Where M is the number of feature vectors,n is the total number
of elements in each vector, and xq, yq are the q-th elements in
X,Y , respectively.

The cosine distance formula (Tan et al., 2005) is:

COSi =
1

M − 1

∑

(

X · Y
||X|| · ||Y||

)

(19)

Where

‖X‖ =
√

∑n

q=1
xq2 (20)

The Tanimoto coefficient (Rogers and Tanimoto, 1960) is
given by:

TCi =
1

M − 1

∑

(

X · Y
||X||2 + ||Y||2 − X · Y

)

(21)

Using these distance metrics, we identified the features with the
strongest correlation and minimum redundancy with respect
to the class labels. In different scenarios, we can increase the
weights of MR and MD (max

(

wr ×MRi + wd ×MDi

)

)
to ensure the acquired features are suitable for the
classification task.

EXPERIMENTS

Performance Evaluation Criteria
A 10-fold cross-validation method was employed to evaluate
the models. There are four common evaluation indicators,
namely the accuracy (ACC), sensitivity (SN), specificity (SP), and
Matthews’ correlation coefficient (MCC) (Feng et al., 2013a, 2018;

TABLE 3 | Classification performance under each model.

Model Feature_extraction SN (%) SP (%) ACC (%) MCC (%)

Mode l CCPA (188) 87.5 93.4 91.5 81.4

Mode 2 AKSNG (400) 82.9 92.2 89.0 76.0

Mode 3 Seq-Str (473) 86.7 96.6 93.2 84.8

Mode 4 Combine (588) 87.6 93.5 91.5 81.5

Mode 5 Combine (661) 87.9 96.3 93.5 85.3

Chen W. et al., 2016; Wei et al., 2017b,c; Xu et al., 2017; Jingjing
et al., 2018). These are expressed as follows (Zou et al., 2013; Chen
et al., 2014; Qu et al., 2017):

SN =
TP

TP + FN
(22)

SP =
TN

TN + FP
(23)

ACC =
TP + TN

TP + TN + FP + FN
(24)

MCC =
TP × TN − FP × FN

√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

(25)

Where TP denotes true positive, i.e., the number of positive
samples that are predicted to be positive samples, TN denotes
true negative, i.e., the number of negative samples that are
predicted to be negative samples, FP denotes false positive, i.e.,
the number of negative samples that are predicted to be positive
samples, and FN denotes false negative, i.e., the number of
positive samples that are predicted to be negative samples.

Classification Effects of
Different Classifiers
Experiment 1: This part of the experiment is based on the feature
sets of 188, 400, and 473 dimensions extracted by the method in
Feature extraction. The accuracy of each classification algorithm
before and after using the MRMD feature selection algorithm is
presented in Table 1.

The data in Table 1 indicate that, for the classification of
bacteriophage proteins, no matter which feature extraction
algorithm is used, whether or not feature selection is performed,
the random forest algorithm is the best classification effect.

Performance of Different Feature
Extraction Methods
Experiment 2: Experiment 1 showed that the random forest
algorithm produces the best classification of bacteriophage
proteins. In this second experiment, the 188-dimensional
and 400-dimensional datasets extracted based on sequence
information (Seq Based), a 473-dimensional dataset extracted
based on structure (Seq and stru Based), and two combined
feature sets (Com Based) were integrated into the random forest
algorithm, and the resulting performance was compared. The
experimental results are presented in Table 2.

TABLE 4 | Performance comparison against recent methods.

Model SN (%) SP (%) ACC (%) MCC (%)

Feng et al. (2013b) 75.7 80.7 79.1 54.9

Ding et al. (2014) 75.7 89.4 85.0 65.5

Zhang et al. (2015) 87.0 83.0 85.0 70.1

This search 87.9 96.3 93.5 85.3
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TABLE 5 | Impact of physicochemical properties on classification.

NO. Fea name Score Implication

1 Fea 120 1.0 Position of the 100%th neutral electrical storage amino acid in a sequence

2 Fea 157 0.9968696407744475 Position of the 100%th helical amino acid in a sequence

3 Fea 178 0.9950260206126923 Position of the 100%th soluble amino acid in a sequence

4 Fea 99 0.9949600329187752 Position of the 100%th neutral polarizability amino acid in a sequence

5 Fea 136 0.9948079966447566 Position of the 100%th large tensile amino acid in a sequence

6 Fea 83 0.994509178771573 Position of the 100%th high-electrode amino acid in a sequence

7 Fea 52 0.994137797849692 Position of the 100%th small van der Waals volume amino acid in a sequence

8 Fea 31 0.9937317569946658 Position of the 100%th hydrophilic amino acid in a sequence

Feature fusion can boost the recognition performance by
combining the complementary information of different features
(Zhu et al., 2016, 2018c). A 588-dimensional feature set was
obtained by combining the features of the 188- and 400-
dimensional feature sets, and a 661-dimensional feature set
was obtained by combining the features of the 188- and
473-dimensional feature sets. According to the experimental
results, the 188-, 473-, 588-, and 661-dimensional feature
set models give better bacteriophage protein classification
performance, However, based on the data of the other three
evaluation indicators, the 661-dimensional feature set obtained
by combining the 188-dimensional feature set extracted based
on the sequence information and the features of the 473-
dimensional feature set extracted based on the sequence and the
secondary structure is the best. This indicates that the feature
set extracted by the feature representation algorithm containing
both sequence information and structural information in
phage protein classification has the best influence on the
classification effect, and also shows that combining some
feature sets in protein classification is effective for improving
classification performance.

Importance of Feature Selection
Experiment 3: This experiment used the random forest
classification algorithm to classify the feature sets after MRMD.
The results are given in Table 3.

The comparison of the data in Tables 2, 3 shows that after
using the feature selection algorithm (MRMD), the classification
effect does not change with the decrease of the dimension,
and even with the decrease of the dimension, the classification
effect becomes better. After removing the redundant features,
the best classification performance is still the data set obtained
by feature combination, that is, the 256-dimensional feature
set obtained by removing redundant features from the 661-
dimensional feature set.

Comparison With Recent Methods
Experiment 4: To provide an objective demonstration of
the performance of the model described in this paper,
this experiment compared the optimal proposed model with
bacteriophage protein classification models proposed in recent
years. The results are presented in Table 4.

It is clear from Table 4 that the bacteriophage classification
model proposed in this paper achieves a good classification effect,
with a classification accuracy of 93.5%. Compared with Feng, it
has increased by 14%, compared with Ding and Zhang by 8%.
In the other three evaluation indicators, there are also different
degrees of improvement, indicating that the model proposed in
this paper is an effective tool for phage protein classification.

Analyzing the Impact of Eight
Physicochemical Properties
This section summarizes the first eight dimensional features
that have a significant impact on the classification effect of
bacteriophage proteins. The top eight features are listed in
Table 5 in order of their impact.

According to the information in this table, the effects of eight
physicochemical properties of amino acids on the classification of
bacteriophage proteins are evenly distributed, and that which has
the greatest impact on the classification is the charge property of
amino acids.

CONCLUSION

Bacteriophage proteins are of special significance for cell typing
and pathological research. It is very important to correctly classify
virion and non-virion bacteriophage proteins. Therefore, this
paper has proposed the following classificationmodel: (1) higher-
quality feature datasets are extracted with extraction algorithms
based on feature combination; (2) the optimal feature subset is
selected using the MRMD algorithm for feature selection; and
(3) the random forest algorithm is applied to perform protein
classification. The model can achieve accuracy of up to 93.5% for
the classification of bacteriophage proteins. This demonstrates
that themodel developed in this paper is an important tool for the
classification of bacteriophage proteins. For the future direction,
link prediction paradigms, which have been successfully applied
in the prediction of disease genes (Zeng et al., 2017) and
miRNAs (Liu et al., 2016; Zeng et al., 2018), can be considered
for identification of bacteriophage proteins. It might also be
important to integrate evolutionary information using tools like
evolutionary trees and networks (Yang et al., 2013, 2014). Finally,
computational intelligence such as neural networks (Song et al.,
2018a,b) and evolutionary algorithms (Hang et al., 2018) can be
applied in this field.
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The survival of human beings is inseparable from microbes. More and more studies

have proved that microbes can affect human physiological processes in various

aspects and are closely related to some human diseases. In this paper, based on

known microbe-disease associations, a bidirectional weighted network was constructed

by integrating the schemes of normalized Gaussian interactions and bidirectional

recommendations firstly. And then, based on the newly constructed bidirectional

network, a computational model called BWNMHMDA was developed to predict potential

relationships between microbes and diseases. Finally, in order to evaluate the superiority

of the new prediction model BWNMHMDA, the framework of LOOCV and 5-fold cross

validation were implemented, and simulation results indicated that BWNMHMDA could

achieve reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in these two different frameworks

respectively, which is outperformed some state-of-the-art methods. Moreover, case

studies of asthma, colorectal carcinoma, and chronic obstructive pulmonary disease

were implemented to further estimate the performance of BWNMHMDA. Experimental

results showed that there are 10, 9, and 8 out of the top 10 predicted microbes having

been confirmed by related literature in these three kinds of case studies separately,

which also demonstrated that our new model BWNMHMDA could achieve satisfying

prediction performance.

Keywords: microbe, disease, association prediction, bidirectional weighted network,

bidirectional recommendations

1. INTRODUCTION

Microorganisms are small in shape, simple in structure, and closely related to human beings.
The development of modern bioinformatics and sequencing technologies has led to the study
of microorganisms living in the ocean, soil, human body, and other places by the scientific
community (Gilbert and Dupont, 2011). Among them, eukaryotes, archea, bacteria, and viruses
are human-related microorganisms, collectively known as human microbiota (Turnbaugh et al.,
2007; Methé et al., 2012). Microorganisms exist in large quantities in humans, nearly 10 times that
of human cells (Sender et al., 2016). According to recent researches, there are nearly 1,014 bacterial
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cells in the human body with more than 10,000 kinds of
microorganisms, which provide different degrees of metabolic
activity (Bhavsar et al., 2007; Turnbaugh et al., 2007; Shah et al.,
2016). Parasitic in the human body, these microbes do not harm
the host, but are interdependent with human beings and are
called “forgotten organs” (Quigley, 2013). With the continuous
advancement of high-throughput sequencing technology and
analytical systems, people have gradually realized the importance
of microorganisms in the investigation. According to the
survey, microbes participate in a series of human life activities,
such as harvesting and storing energy, regulating the immune
system, protecting the human body from foreignmicroorganisms
and pathogens, participating in the digestion and absorption
of carbohydrates and promoting metabolism (Guarner and
Malagelada, 2003; Gill et al., 2006). Therefore, once the microbes
become “unhealthy” in the human body, the human body
will receive their effects leading to physiological disorders and
even illness.

Humans and commensal microbiota have formed a close
symbiotic relationship in the process of continuous evolution.
The microbiota will be affected by the host and living
environment. It has been reported that diet affects the structure
and activity of human intestinal microbes (Duncan et al., 2006;
Ley et al., 2006; Walker et al., 2010; David et al., 2013) For
example, a short-term high-fat, low-fiber diet can cause changes
in microbial structure, while long-term diets are associated
with alternative intestinal status (Wu et al., 2011). Besides,
smoking (Mason et al., 2014), age, and genes are also factors
influencing the composition of the microbiota (Gill et al., 2006).
Therefore, once the human body and the microbiota cannot
coexist harmoniously, it may cause various problems in the
human body. Based on the 16S ribosomal RNA (rRNA) gene
sequence and classification spectrum (Thompson et al., 2014;
Jesmok et al., 2016), researchers have found that a large number
of human diseases are closely related to human microorganisms,
including cancer (Moore and Moore, 1995), diabetes (Wen et al.,
2008; Brown et al., 2011; Qin et al., 2012), Obesity (Ley et al.,
2005; Zhang et al., 2009), kidney stones (Hoppe et al., 2011),
and other thorny diseases. For example, Huang (2013) pointed
out that microbes can affect allergic sensitization and asthma
development in susceptible individuals, and early intervention in
promoting “healthy” human microbiome constitution may have
the potential and benefits of preventing asthma. Hence, some
researchers are proposing to promote the induction of sensitized
immune response through the research and development of
probiotic-based therapies (Rauch and Lynch, 2012).

Disease-related microbes are obtaining more and more
attention from humans, and researchers have carried out
some large-scale sequencing projects, including the Human
Microbiome Project (HMP) (Turnbaugh et al., 2007) and the
EarthMicrobiome Project (EMP) (Gilbert et al., 2010).Moreover,
some databases (Matsumoto et al., 2005; Faith et al., 2007;
Chen et al., 2010; Mikaelyan et al., 2015) for categorizing
and managing disease-related microbial information have
also been developed. For instance, Ma et al. collected and
compiled 483 pairs of human microbe-disease associations
by collecting published literature and established the Human

Microbe-Disease Association Database (HMDAD) (Ma et al.,
2016). These accurate data provide the possibility to predict
human microbes and diseases. Nowadays, most microbial
community identification methods are independent culture
methods and quantitative methods. Their shortcomings are
obvious and often take a lot of time and efforts. Previously, many
researchers have studied the potential correlation predictions
of diseases and other biological categories (such as miRNA
Chen and Yan, 2014; You et al., 2017; Chen et al., 2018b,c
and lncRNA Chen and Yan, 2013; Chen et al., 2016b, 2018a;
Yu et al., 2018; Xuan et al., 2019), and simultaneously, Drug-
target interaction prediction (Chen et al., 2012) and the study of
synergistic drug combinations prediction (Chen et al., 2016a) has
also achieved satisfying successes. And among existing state-of-
the-art methods, the computational model of KATZ measure for
human microbe-disease association prediction (KATZHMDA)
(Chen et al., 2017) proposed by Chen et al. is one of their
prominent representatives, which not only achieved excellent
prediction performance but also initialized the research field
of the microbe-disease prediction. Later, Huang Z.A. et al.
(2017) proposed a Path-Based computational model of Human
Microbe-Disease Association prediction (PBHMDA), which
adopts a special depth-first search algorithm to traverse all
possible paths between microbes and diseases in heterogeneous
networks to obtain the prediction score of each microbe-disease
pair. Wang et al. (2017) proposed a semi-supervised learning-
based computational model of Laplacian Regularized Least
Squares for Human Microbe-Disease Association prediction
(LRLSHMDA), which utilizes Laplace’s regular least squares
classification combined with topological information of the
known microbe-disease association network to train an optimal
classifier. Huang Y.A. et al. (2017) developed a method based
on Neighbor and Graph-based combined recommendation
model for Human Microbe-Disease Association prediction
(NGRHMDA) by combining two recommendation models as
a neighbor-based collaborative filtering model and a topology-
based model. Peng et al. (2018) developed a model of Adaptive
Boosting for Human Microbe-Disease Association prediction
(ABHMDA), which reveals the associations between disease and
microbe by using a strong classifier to calculate the probability
of disease-microbe pair association. In addition, Shen et al.
(2018) proposed Bi-Random Walk based on Multiple Path
(BiRWMP) to predict microbe-disease associations. Shi et al.
(2018) propose BMCMDA based on Binary Matrix Completion
to predict potential microbe-disease associations.

In this paper, inspired by the performance of KATZHMDA,
we proposed a new microbe-disease association prediction
model called BWNMHMDA. A novel two-way network
was constructed firstly based on the known microbe-disease
associations downloaded from the HMDAD database, and
then, the Gaussian interaction profile kernel similarity were
adopted to assign weights to every node and edge in a newly
constructed two-way network. Hence, a bidirectional weighted
network was further obtained by implementing two newly
developed bidirectional recommendation measures. Finally,
based on the newly constructed bidirectional weighted network,
a computational model was constructed to infer potential
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microbe-disease associations. In order to estimate the prediction
performances of BWNMHMDA, the framework of leave-one-
out cross validation (LOOCV) and 5-fold cross validation(5-Fold
CV) were implemented, and simulation results indicated
that BWNMHMDA could achieve reliable AUCs of 0.9127
in LOOCV and 0.8967 ± 0.0027 in 5-Fold CV, respectively,
which is much better than that of state-of-the-art methods. And
moreover, in case studies of asthma, colorectal carcinoma, and
chronic obstructive pulmonary disease, the simulation results
also demonstrated the effective predictability of BWNMHMDA.

2. MATERIAL

Since known microbe-disease associations were considered in
our prediction model BWNMHMDA, we firstly downloaded
known microbe-disease associations from the Human Microbe-
Disease Association database (HMDAD) (Ma et al., 2016), and
as a result, after getting rid of the redundant associations, a
total of 450 different microbe-disease associations including 39
human diseases and 292 microbes were collected from 61 public
publications. Hence, a 39×292 dimensional adjacency matrix A
is obtained finally, which will be utilized as the data source of
our prediction model BWNMHMDA. And additionally, in the
adjacency matrix A, the value of A[i][j] is set to 1 if there is a
known association between the ith disease and the jth microbe,
otherwise, A[i][j] is set to 0.

3. METHODS

As illustrated in the following Figure 1, in BWNMHMDA, three
kinds of association networks such as the knownmicrobe-disease
association network, the microbe similarity network and the
diseases similarity network will be constructed firstly. And then,
through integrating these three kinds of association networks, an
integrated microbe-disease heterogeneous association network
will be obtained. Moreover, through adopting the Gaussian
interaction profile kernel similarity to assign weights to every
node and edge in the integrated microbe-disease heterogeneous
association network, a bidirectional weighted microbe-disease
association network can be further obtained. Hence, based on the
newly constructed bidirectional weighted association network,
a novel computation model can be developed to infer potential
microbe-disease associations.

3.1. Microbes Similarity Based on Gaussian
Interaction Profile Kernel Similarity
It is obviously reasonable that for any two microbes if there
are more common human diseases proved to be related to
them, may tend to share more functional similarities potentially.
Hence, in the known microbe-disease association network, we
will first adopt the Gaussian interaction profile kernel similarity
to construct a microbe similarity network according to the
following formula (1):

KM(m(i),m(j)) = exp(−γm‖IP(m(i))− IP(m(j))‖2) (1)

Where m(i) and m(j) represent the ith and jth microbes
respectively in the adjacency matrix A, IP[m(i)] and IP[m(j)]
denote ith and jth column, respectively, in the adjacency matrix
A, and ‖X‖ represents the norm of the vector X. Moreover, the
parameter γm can be obtained as follows:

γm = γm
′/

1

Nm

Nm
∑

i=1

∥

∥IP(m(i))
∥

∥

2
(2)

Here, γm
′ is a parameter utilized to control the Gaussian kernel

bandwidth, and according to the related studies (van Laarhoven
et al., 2011), γm

′ will be set to 1 in BWNMHMDA. In addition,
the parameter Nm indicates the total number of microbes
collected from the HMDAD database, and it is obvious that
there is Nm=292.

Thereafter, according to the above formula (1), it is easy
to see that a microbe similarity matrix KM can be calculated,
specifically, and for simplicity, we will replace KM[m(i),m(j)]
with KM(i, j) in the following sections.

3.2. Diseases Similarity Based on Gaussian
Interaction Profile Kernel Similarity
In a similar way, through adopting the Gaussian interaction
profile kernel similarity, we can further construct a disease
similarity network according to the following formula (3):

KD(d(i), d(j)) = exp(−γd‖IP(d(i))− IP(d(j))‖2) (3)

Here, the parameter γd can be obtained as follows:

γd = γd
′/

1

Nd

Nd
∑

i= 1

∥

∥IP(d(i))
∥

∥

2
(4)

Here, γd
′ is a parameter utilized to control the Gaussian kernel

bandwidth, and according to the related studies (van Laarhoven
et al., 2011), γd

′ will be also set to 1. In addition, the parameter
Nd indicates the total number of diseases collected from the
HMDAD database, and it is obvious that there is Nd=39.

Thereafter, according to the above formula (3), it is easy to see
that a disease similarity matrix KD can be calculated, specifically,
and for simplicity, we will replace KD[d(i), d(j)] with KD(i, j) in
the following sections.

3.3. Data Pre-processing
Based on the newly constructed microbe similarity network and
disease similarity network, after integrating the known microbe-
disease associations with these two similarity networks, it is
obvious that we can construct an integrated heterogeneous
microbe-disease association network consisting of two kinds
of nodes such as microbe and disease, and three kinds of
edges such as the edges between microbes, the edges between
microbes and diseases, and the edges between diseases. And
furthermore, based on the integrated heterogeneous microbe-
disease association network, we can obtain a (39+292)×(39+292)
dimensional matrix P as follows:

p =
[

KD A

AT KM

]

(5)
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FIGURE 1 | Flowchart of BWNMHMDA.

Moreover, in the integrated heterogeneous microbe-disease
association network, if a microbe (or disease) node has more
edges connecting with disease (or microbe) nodes, then it
is obvious that the microbe (or disease) node will have less
significance to those disease (or microbe) nodes connecting
with it, which means that the microbe (or disease) node shall
be assigned smaller weights than those microbe (or disease)
nodes with fewer edges. Hence, based on above formula (5), we
can further obtain a (39+292)×(39+292) dimensional diagonal
matrix W to represent the weight value of each node in the
heterogeneous network as follows:

W = diag(1/(P × PT)) (6)

In addition, while calculating the similarity between two nodes in
the heterogeneous network, there may be cases where the scores
of the path consisting of three edges are larger than the scores of
the path consisting of two edges. Hence, in order to avoid such
kind of situation, we will normalize the weights of edges in the
heterogeneous network by adopting the following formula (7)
and formula (8) separately.

KM∗(i, j) =
KM(i, j)

∑Nm
i=1 KM(i, j)

× NZ(m(i)) (7)

Where NZ[m(i)] denotes the number of elements with non-
zero values in the ith row of the matrix KM. And based
on above formula (7), it is noteworthy that the symmetric
matrix KM will be changed to an asymmetric matrix KM∗ after
the normalization. Moreover, in the heterogeneous network,
KM∗(i, j) represents the weight of the directed edge from the
microbe nodemi to the microbe nodemj, whileKM

∗(j, i) denotes
the weight of the directed edge from the microbe node mj to the
microbe nodemi.

KD∗(i, j) =
KD(i, j)

∑Nd
i=1 KD(i, j)

× NZ(d(i)) (8)

Where NZ[d(i)] denotes the number of elements with non-
zero values in the ith row of the matrix KD. And based on the
above formula (8), it is noteworthy that the symmetric matrix
KD will as well be changed to an asymmetric matrix KD∗ after
the normalization. Moreover, in the heterogeneous network,
KD∗(i, j) represents the weight of the directed edge from the
disease node di to the disease node dj, while KD∗(j, i) denotes
the weight of the directed edge from the disease node dj to the
disease node di .

Therefore, according to the above descriptions, it is obvious
that we can obtain a bidirectional heterogeneous network based
on the above formula (7) and formula (8).
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FIGURE 2 | Flowchart of the method utilized to recommend diseases to microbes.

3.4. Bidirectional Recommendation of
Potential Associations
Considering that there are only 450 known associations
in the adjacency matrix A, which is very sparse, therefore,
in order to solve the problem of the adjacency matrix
A caused by the scarcity of known associations, as
illustrated in the following Figure 2, we designed a novel
bidirectional recommendation model in this section based
on the bidirectional heterogeneous network constructed
above. And in this bidirectional recommendation
model, we first designed a recommendation algorithm
to recommend diseases for microbes based on the
Gaussian interaction profile kernel similarities between
microbes as follows:

(1) Firstly, for any given microbe node mi in the bidirectional
heterogeneous network, let QM1 denote the set consisting
of the first K microbes that are other than mi in the
bidirectional heterogeneous network and most similar to mi

at the same time, and considering about the time complexity,
in this paper, K will be set to 3. And then, let QD1 represent
the set of diseases having known associations with at least
one of the microbe nodes in QM1, thereafter for any microbe
nodemj inQM1, we can obtain the recommendation score of

mj tomi according to the following formula (9):

R(mi,mj) =
KM(i, j)

∑

mk∈QM1
KM(i, k)

(9)

Moreover, for any given disease node dj in QD1, we can further
obtain the recommendation score of dj to mi according to the
following formula (10):

DS(mi, dj) =
∑

mk∈QM1

R(mi,mk) (10)

Hence, in a similar way, for any given microbe node mp in QM1,
we can obtain a set QpM1 consisting of the first K microbes that
are other than mp in the bidirectional heterogeneous network
and most similar to mp at the same time, and then, based
on the set QpM1, we can further obtain a set QpD1 consisting
of diseases that have known associations with at least one of
the microbe nodes in QpM1. In addition, let QpD = QD1 ∩
QpD1, it is obvious that for any node dk in ∪mp∈QM1QpD, it
shall be assigned higher recommendation score than those nodes
that are in QD1 and not in ∪mp∈QM1QpD . Hence, for any
given disease node dj in QD1, based on the above formula
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(10), we can obtain a modified recommendation score of dj to
mi as follows:

DS(mi, dj) =















∑

mk∈QM1

R(mi,mk)+
∑

mp∈QM1

mq∈QpM1

R(mi,mp)× R(mp,mq) : if dj ∈
⋃

mp∈QM1

QpD

∑

mk∈QM1

R(mi,mk) : otherwise
(11)

Obviously, according to the above formula (11), for all these
disease nodes in QD1, we can obtain their corresponding
recommendation scores, after sorting these disease nodes
according to their recommendation scores in descending order,
we will finally recommend the disease node ranking first to the
microbe node mi. And additionally, for the microbe node mi,
supposing that the disease node that we recommended to it is
dj, then we will further set the value of A(i, j) in the adjacency
matrix A to 1. Consequently, through updating the adjacency
matrix A as stated above, it is obvious that we can obtain a new
adjacency matrix Am.

(2) Secondly, in a similar way, for any given disease node di in
the bidirectional heterogeneous network, let QD2 denote the
set consisting of the firstK (=3) diseases that are other than di
in the bidirectional heterogeneous network and most similar
to di at the same time, and then, let QM2 represent the set
of microbes having known associations with at least one of
the disease nodes in QD2, thereafter, for any given disease
node dp in QD2, we can obtain a set QpD2 consisting of the
first K diseases that are other than dp in the bidirectional
heterogeneous network and most similar to dp at the same
time. Moreover, based on the set QpD2, we can further
obtain a set QpM2 consisting of microbes that have known
associations with at least one of the disease nodes in QpD2.
Finally, let QpM = QM2 ∩QpM2, then for any given microbe
node mj in QM2, we can obtain a recommendation score of
mj to di as follows:

DS(di,mj) =















∑

dk∈QD2

R(di, dk)+
∑

dp∈QD1

dq∈QpD2

R(di, dp)× R(dp, dq) : if mj ∈
⋃

dp∈QD2

QpM

∑

dk∈QD2

R(di, dk) : otherwise
(12)

Here,

R(di, dj) =
KD(i, j)

∑

dk∈QD2
KD(i, k)

(13)

Obviously, according to the above formula (12), for all these
microbe nodes in QM2, we can obtain their corresponding
recommendation scores, after sorting these microbe nodes
according to their recommendation scores in descending order,
we will finally recommend the microbe node ranking first to
the disease node di. And additionally, for the disease node di,
supposing that the microbe node that we recommended to it is
mj, then we will further set the value of A(j, i) in the adjacency
matrix A to 1. Consequently, through updating the adjacency

matrix A as stated above, it is obvious that we can obtain a new
adjacency matrix Ad.

3.5. Prediction Model of BWNMHMDA
KATZ is a network-based method that can solve link prediction
problems. In recent years, KATZ has been implemented
successfully in many different prediction applications such
as prediction of social networks (Katz, 1953), prediction of
associations between gene (Yang et al., 2014) and prediction
of associations between lncRNAs (Chen, 2015), etc. In 2017,
Chen et al. further applied KATZ in the field of microbe-
disease association prediction for the first time (Chen et al.,
2017). Considering that KATZ can be utilized to calculate
the similarities between nodes in heterogeneous networks, and
according to the above description in section 3.3, we have
built a bidirectional heterogeneous microbe-disease association
network, hence, in this section, we will design a model called
BWNMHMDA based on KATZ to predict potential microbe-
disease associations. For constructing the prediction model, we
will convert the bidirectional heterogeneous microbe-disease
association network to a (39+292)*(39+292) dimensional matrix
S as follows:

S =
[

KD∗ Ad

AT
m KM∗

]

(14)

Hence, based on above formula (14), for any given disease
node di and microbe node mj in the bidirectional heterogeneous
microbe-disease association network, we can predict the
potential similarity between them as follows:

Sim(di,mj) = A∗
n(i, j) (15)

Here, n is a parameter representing the number of steps
between disease nodes and microbe nodes in the bidirectional
heterogeneous microbe-disease association network. For n = 1,
2, 3, ..., there are:

A∗
n =

Sn2 + STn3
2

(16)

Sn = Sn−1 ×W × Sn−1 =
[

Sn1 Sn2
Sn3 Sn4

]

(17)

S2 = S×W × S (18)

Specifically, in formula (16), the matrix Sn2(i, j) represents the
total score of all paths with length of n from the disease di to
microbe mj, and correspondingly, the matrix Sn3(j, i) represents
the total score of all paths with length of n from the microbe mj

to disease di. It is worth noting that since the weights of the edges
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FIGURE 3 | AUCs achieved by BWNMHMDA in LOOCV while n = 2, 3, 4 separately.

in the heterogeneous network are bidirectional, we integrate Sn2
and Sn3 as formula (16). The two matrices are assigned the same
weight as the final predictive score matrix A∗

n.

4. RESULT

4.1. Effects of the Parameter n to
BWNMHMDA
The framework of Leave-one-out cross validation (LOOCV) and
5-fold cross validation (5-Fold CV) are two kinds of common
methods to evaluate model performance. While implementing
LOOCV on our prediction model BWNMHMDA, each known
microbe-disease association will be used as a test sample and
further predicted by training the other known microbe-disease
associations. Moreover, all microbe-disease pairs without known
relevant evidence will be considered as candidate samples.
The predicted score which obtained a higher rank than the
given threshold will be considered as a successful prediction.
Obviously, while setting different thresholds, the true positive
rate (TPRs, sensitivity) and false positive rate (FPRs, 1-specificity)
can be obtained. Here, sensitivity refers to the percentage
between the number of test samples with ranks higher than the
given threshold and the number of positive samples (known
microbe-disease associations). Meanwhile, 1-specificity denotes
the percentage of negative microbe-disease associations which
obtained ranks lower than the threshold. Finally, the receiver

operating characteristic (ROC) curve can be further drawn. The
area under the ROC curve(AUC) can be calculated to evaluate
its predictive performance, where the AUC value of 1 indicates
perfect prediction perfection and the AUC value of 0.5 implies
pure random prediction performance (Chen et al., 2017).

As described above, in our prediction model BWNMHMDA,
the variable n in the formulas (15) is a critical parameter. Hence,
we will first estimate its effect to the prediction performance of
BWNMHMDA in this section. And as illustrated in Figure 3.
BWNMHMDA achieved the best prediction performance while
n = 2, and as the value of n sequentially increased from 2 to 4,
the AUCs achieved by BWNMHMDA decreased continuously,
and through analysis, we found that the reason may be
that the number of known microbe-disease associations is
minimal in the HMDAD database, which leads that long paths
in the bidirectional heterogeneous microbe-disease association
network will be meaningless to the prediction performance
of BWNMHMDA.

In order to further evaluate the effects of the parameter
n to our prediction model, we further implemented 5-fold
cross validation on BWNMHMDA, and during simulation, all
known microbe-disease associations were randomly divided into
five segments with almost the same size, among which, four
segments were utilized for model learning, and the remaining
segment were used as test samples for model evaluation.
Similar to LOOCV, all microbe-disease pairs without relevant
evidence would be considered as potential candidates. In order
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TABLE 1 | AUCs achieved by BWNMHMDA in the framework of 5-Fold CV while

n = 2, 3, 4 separately.

n = 2 n = 3 n = 4

0.8967 ± 0.0027 0.8804 ± 0.0026 0.8109 ± 0.0052

to reduce the experimental bias, we repeated our simulation
based on the 5-fold cross validation 100 times, and during
each time of simulation, the samples were divided randomly.
Finally, as illustrated in the following Table 1, it is easy to see
that BWNMHMDA could as well achieve the best prediction
performance while n=2, and moreover, as the value of n
sequentially increased from 2 to 4, the AUCs achieved by
BWNMHMDA also decreased continuously. Hence, we will set
n to 2 in the subsequent experiments.

4.2. Comparison With Other
State-of-the-Art Methods
In order to verify the prediction performance of BWNMHMDA,
in this section, we compared it with KATZHMDA (Chen
et al., 2017), BiRWMP (Shen et al., 2018), and LRLSHMDA
(Wang et al., 2017) based on the dataset of known microbe-
disease associations downloaded from the HMDAD database.
And as illustrated in the following Figure 4 and Table 2, it
is easy to see that in LOOCV, BWNMHMDA can achieve a
reliable AUC of 0.9127 that is much better than the AUC
achieved by KATZHMDA (0.8382), BiRWMP (0.8637), and
LRLSHMDA (0.8909), and in the framework of 5-fold cross
validation, BWNMHMDA can achieve a reliable AUC of 0.8967
± 0.0027 that is much better than the AUC achieved by
KATZHMDA (0.8301 ± 0.0033), BiRWMP (0.8522 ± 0.0054),
and LRLSHMDA (0.8794± 0.0029) as well.

We further compare BWNMHMDA with NGRHMDA
(Huang Y.A. et al., 2017), ABHMDA (Peng et al., 2018),
and BMCMDA (Shi et al., 2018) in LOOCV based on the
same dataset. As shown in Table 3, our method achieves the
best performance.

5. CASE STUDIES

In order to further measure the prediction performance of
BWNMHMDA, in this section, we selected three kinds of
important human diseases such as asthma, colorectal carcinoma,
and COPD (Chronic Obstructive Pulmonary Disease) to explore
the associations between the human microbes and the human
respiratory and digestive system diseases. Among them, asthma
is a heterogeneous disease process accompanied by recurrent
episodes of wheezing, chest tightness, difficulty breathing, and
indirect cough (Busse, 2007). In recent years, the prevalence
of asthma is rising rapidly. It is reported that about 8% of
people have been affected by asthma by 2010, especially in the
children’s population (Guilbert et al., 2014). Hence, considering
that asthma has been demonstrated to be closely associated
with microbes as well (Çalşkan et al., 2013; Gilstrap and Kraft,
2013), for example, Hemophilia, Moraxella, and Neisseria spp.

in the lungs of asthma patients are proved to be closely related
to the increased risk of asthma in the neonatal oropharynx.
Staphylococcus was found in the respiratory tract of children
with asthma (Sullivan et al., 2016), in this section, we selected
asthma as one of our case studies to evaluate the performance
of BWNMHMDA. And as illustrated in the following Table 4,
all of these top 10 microorganisms predicted by BWNMHMDA
have been verified to be associated with the onset of asthma.
For example, Tropheryma whipplei (Ranking first in the list of
top 10 predicted microbes) has been confirmed to be abundant
in airway of patients with eosinophilic asthma (Simpson et al.,
2015). Clostridium difficile (Ranking second in the list of top
10 predicted microbes) has been confirmed to be associated
with asthma after 6–7 years of colonization (van Nimwegen
et al., 2011). Firmicutes (Ranking third in the list of top 10
predicted microbes) has been confirmed to be increased in severe
asthmatics (Zhang et al., 2016). Furthermore, the increased
sensitivity to Staphylococcus aureus (Ranking fifth in the list of
top 10 predicted microbes) has been proved to be a marker
of eosinophilic inflammation and severe asthma in asthmatic
patients as well (Nagasaki et al., 2017). We published evidence
for the top 10 potential asthma-related microbes predicted by
BWNMHMDA in the Table 4.

In recent years, colorectal carcinoma (CRC) is becoming a
major cause of cancer mortality in both China and the United
States. In 2016, an estimated 134,000 people had been diagnosed
with CRC, and approximately 49,000 had died of CRC (Bibbins-
Domingo et al., 2008). By gender, CRC is the second most
common cancer in women (about 9.2%) and the third in men
(about 10%) (Astin et al., 2011). Since it has been proved that
CRC is related to gut microbiota such as the Fusobacterium,
the Bacteroides fragilis and the enteropathogenic Escherichia coli,
and the dysbiosis of these gut microbiotas will induce colon
cancer through a chronic inflammatory mechanism (Mármol
et al., 2017). Hence in this section, we selected CRC as one of
our case studies to evaluate the performance of BWNMHMDA.
And as illustrated in the following Table 5, there are 9 out
of these top 10 microorganisms predicted by BWNMHMDA
have been verified to be associated with the onset of colorectal
carcinoma. For instance, related studies have shown that the
abundance of Firmicutes (Ranking 6th in the list of top 10
predicted microbes) in the lumen of CRC rats will increase,
while the abundance of Bacteroidetes (Ranking 4th in the list
of top 10 predicted microbes) will reduce. And moreover, the
abundance of Proteobacteria (Ranking second in the list of top
10 predicted microbes) has been confirmed to be higher in CRC
rats than in healthy rats. Meanwhile, Bacteroides (Ranking 9th
in the list of top 10 predicted microbes) has been proved to
of a relatively high abundance in CRC rats at the genus level.
Prevotella (Ranking third in the list of top 10 predicted microbes)
has been found to be significantly more abundant in healthy
rats than CRC rats (Zhu et al., 2014). Additionally, compared
with the healthy control group, Fukugaiti MH et al. detected
more C. difficile (Ranking 5th in the list of top 10 predicted
microbes) in the cancer group, which suggests that these
bacteria may play an important role in the colorectal carcinoma
(Fukugaiti et al., 2015). We published evidence for the top 10
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FIGURE 4 | AUCs achieved by KATZHMDA, BiRWMP, LRLSHMDA, and BWNMHMDA in LOOCV.

TABLE 2 | AUCs achieved by BWNMHMDA, KATZHMDA, BiRWMP, and

LRLSHMDA in LOOCV and 5-Fold CV separately.

Method LOOCV 5-Fold CV

BWNMHMDA 0.9127 0.8967 ± 0.0027

LRLSHMDA 0.8909 0.8794 ± 0.0029

BiRWMP 0.8637 0.8522 ± 0.0054

KATZHMDA 0.8382 0.8301 ± 0.0033

TABLE 3 | AUCs achieved by BWNMHMDA, NGRHMDA, ABHMDA, and

BMCMDA in LOOCV separately.

Method BWNMHMDA NGRHMDA ABHMDA BMCMDA

AUC 0.9127 0.8938 0.8869 0.906

potential CRC-related microbes predicted by BWNMHMDA in
the Table 5.

Finally, COPD is an obstructive pulmonary disease that
worsens over time, and the main symptoms of COPD are
shortness of breath and coughing. And as of 2015, patients
with chronic obstructive pulmonary disease accounted for
approximately 174.5 million (about 2.4%) of the global
population (Vos et al., 2016). For the past few years, due to high
smoking rates and an aging population in developing countries,
the death toll of COPD is rising fast (Mathers and Loncar,
2006). Although treatments can slow the progression of COPD,
there is no cure yet. Considering that many evidences have

TABLE 4 | Top 10 potential asthma-related microbes predicted by BWNMHMDA

and all of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei PMID: 26647445

2 Clostridium difficile PMID: 21872915

3 Firmicutes PMID: 27078029

4 Lachnospiraceae PMID: 26512904

5 Staphylococcus aureus PMID: 17950502

6 Clostridia PMID: 22047069

7 Bacteroides PMID: 18822123

8 Fusobacterium PMID: 24024497

9 Clostridium coccoides PMID: 21477358

10 Actinobacteria PMID: 23265859

demonstrated that there exist associations between microbiomes
and COPD, for instance, Galiana et al. found that the microbiota
diversity of patients with severe COPD was lower than that of
mild/moderate diseases, and actinomyces accounted for a high
proportion of patients with severe COPD (Galiana et al., 2013),
hence in this section, we selected COPD as one of our case
studies to evaluate the performance of BWNMHMDA. And as
illustrated in the following Table 6, there are 8 out of these top 10
microorganisms predicted by BWNMHMDA have been verified
to be associated with the onset of COPD. For instance, COPD
has been confirmed to be a kind of essential comorbidity in
human immunodeficiency virus (HIV) patients, and more T.
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TABLE 5 | Top 10 potential CRC-related microbes predicted by BWNMHMDA

and 9 out of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei Unconfirmed

2 Proteobacteria PMID:24603888

3 Prevotella PMID:29432368

4 Bacteroidetes PMID:26992426

5 Clostridium difficile PMID:19807912

6 Firmicutes PMID:29985435

7 Helicobacter pylori PMID:11774957

8 Clostridia PMID:26691472

9 Bacteroides PMID:30090033

10 Staphylococcus aureus PMID:7074582

TABLE 6 | Top 10 potential COPD-related microbes predicted by BWNMHMDA

and 8 out of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei PMID:24460444

2 Proteobacteria PMID:23071781

3 Bacteroidetes PMID:29709671

4 Prevotella PMID:30053882

5 Clostridium difficile PMID:15655746

6 Firmicutes PMID:24591822

7 Helicobacter pylori PMID:15733502

8 Lachnospiraceae Unconfirmed

9 Staphylococcus aureus Unconfirmed

10 Clostridia PMID:26852737

whipplei (Ranking first in the list of top 10 predicted microbes)
has found in lower airway of human immunodeficiency virus-
infected subjects (Segal et al., 2014; Sze et al., 2016). And
also, it has been demonstrated that Proteobacteria (Ranking
second in the list of top 10 predicted microbes) and Firmicutes
(Ranking 3rd in the list of top 10 predicted microbes)
will increase significantly with the development of COPD
(Pragman et al., 2012). We published evidence for the top 10
potential COPD-related microbes predicted by BWNMHMDA
in the Table 6.

Furthermore, in order to reconfirm the prediction
performance of BWNMHMDA, we compared it with
KATZHMDA in the case studies of these three kinds of same
diseases, and as shown in the following Table 7, it is obvious that
there are 10, 9, and 8 out of these top 10 microbes predicted by
BWNMHMDA having been verified to be associated with the
onset of asthma, colorectal carcinoma and COPD respectively,
while there are only 4, 5, and 5 out of these top 10 microbes
predicted by KATZHMDA having been verified to be associated
with the onset of asthma, colorectal carcinoma, and COPD
separately, which demonstrated that our prediction model
BWNMHMDA could achieve better predictive hit rate in case
above studies than the prediction model of KATZHMDA. And
in addition, we published all these rankings of microbe-disease
associations and top 10 disease-related microbes predicted by

TABLE 7 | The number of of microbes having been confirmed by evidences in the

top 10 potential disease-related microbes predicted by BWNMHMDA and

KATZHMDA respectively in case studies of the three kinds of diseases such as

Asthma, CRC, and COPD.

Model Asthma colorectal carcinoma COPD

BWNMHMDA 10 9 8

KATZHMDA 4 5 5

BWNMHMDA in Supplementary Tables 1, 2, respectively, and
hope that these data may provide some help to the future works
of relevant researchers.

6. DISCUSSION AND CONCLUSION

Human microbiome is normal flora for humans, which has
been proved to be of symbiotic relationship with humans
and harmless to humans. If the microbes that breed in the
human body become “unhealthy,” it will definitely affect the
host’s physical condition. People are continuing to explore the
pathologic relationship between microorganisms and the human
body through high-throughput sequencing technologies and
analysis systems. However, it is a pity that their pathogenesis
cannot be fully understood as yet. Considering that relying
only on conventional experimental methods is time-consuming
and laborious, in this article, we proposed a novel prediction
model called BWNMHMDA to accelerate the process of
inferring potential microbe-disease associations, in which, the
core idea is to construct a weighted bidirectional microbe-
disease association network and then convert it into a matrix
for correlation probability calculation. While constructing the
prediction model BWNMHMDA, we first downloaded known
microbe-disease associations from the HDMDA database, and
then, based on these downloaded associations, we constructed
a heterogeneous network through adopting the Gaussian
interaction profile kernel similarity to calculate the weights
of nodes in the heterogeneous network. Moreover, based on
the heterogeneous network, we further constructed a weighted
bidirectional network by standardizing the weights of edges in
the heterogeneous network and introducing a novel bidirectional
recommendation method. Finally, we transformed the weighted
bidirectional network into an integration matrix that can be
utilized for prediction of potential microbe-disease associations.
And simulation results show that BWNMHMDA can achieve
reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in the frameworks
of LOOCV and 5-Fold CV respectively. And moreover, in the
case studies of asthma, colorectal cancer, and COPD, there are
10, 9, and 8 out of the top 10 potential associated microbes
predicted by BWNMHMDA having been verified by published
literature evidence, which demonstrated that BWNMHMDA
could provide valuable potential microbe-disease associations
for future biological experiments. Certainly, there are some
deficiencies in BWNMHMDA. For instance, there is a lack of
negative samples in BWNMHMDA, and it may be possible
to improve the predictive reliability of BWNMHMDA by
identifying unrelated microbe-disease pairs. And moreover, in
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BWNMHMDA, we adopt the Gaussian interaction profile kernel
similarity to calculate the similarities between microbes, which
may bias the similarity between some individual microbes.
Hence, in subsequent work, we will introduce some effective
methods such as Symptom-Based Disease Similarity (Zhou
et al., 2014) to further improve the accuracy and efficiency
of BWNMHMDA.
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Decomposing remains are a nutrient-rich ecosystem undergoing constant change due
to cell breakdown and abiotic fluxes, such as pH level and oxygen availability. These
environmental fluxes affect bacterial communities who respond in a predictive manner
associated with the time since organismal death, or the postmortem interval (PMI).
Profiles of microbial taxonomic turnover and transmigration are currently being studied
in decomposition ecology, and in the field of forensic microbiology as indicators of
the PMI. We monitored bacterial community structural and functional changes taking
place during decomposition of the intestines, bone marrow, lungs, and heart in a
highly controlled murine model. We found that organs presumed to be sterile during
life are colonized by Clostridium during later decomposition as the fluids from internal
organs begin to emulsify within the body cavity. During colonization of previously sterile
sites, gene transcripts for multiple metabolism pathways were highly abundant, while
transcripts associated with stress response and dormancy increased as decomposition
progressed. We found our model strengthens known bacterial taxonomic succession
data after host death. This study is one of the first to provide data of expressed bacterial
community genes, alongside transmigration and structural changes of microbial species
during laboratory controlled vertebrate decomposition. This is an important dataset
for studying the effects of the environment on bacterial communities in an effort to
determine which bacterial species and which bacterial functional pathways, such as
amino acid metabolism, provide key changes during stages of decomposition that relate
to the PMI. Finding unique PMI species or functions can be useful for determining time
since death in forensic investigations.

Keywords: decomposition, postmortem microbiome, necrobiome, metatranscriptomic, metagenomic

INTRODUCTION

Decomposing remains are a continuously shifting ecological system leading to changes in nutrient
availability and microhabitat conditions, thus yielding a microbial consortium under constant
selective pressures (Carter et al., 2007; Janaway et al., 2009; Hyde et al., 2013; Metcalf et al., 2016).
Microorganisms associated with vertebrate remains are ubiquitous and may be deposited on a body
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from the environment, invertebrate, or vertebrate scavengers of
the necrobiome or were part of the existing microflora during
life (Benbow et al., 2018). Vertebrate decomposition begins
immediately after death and as tissue begins to breakdown
during autolysis, an efflux of cellular components and nutrients
occurs which is used by microbial, predominately bacterial,
communities (Janaway et al., 2009; Hyde et al., 2013; Crippen
et al., 2015). After an initial lag phase immediately following
organismal death, bacterial communities begin to exponentially
proliferate, transmigrate, and create specialized proteins that
digest host tissues during putrefaction (Can et al., 2014;
Pozhitkov et al., 2017). These metabolic changes drive the
transformation of the environmental decomposing landscape
through the release of waste products, nutrient depletion,
oxygen availability, and pH cycles which further facilitates host
tissue breakdown. In turn, bacterial communities involved in
the decomposition process are highly dynamic and constantly
competing for survival, nutrient acquisition, and habitat space.

Bacterial community succession occurs in a predictive manner
associated with the time since death, or postmortem interval
(PMI) (Finley et al., 2015; Hauther et al., 2015; Burcham
et al., 2016). This discovery has led to extensive research of
bacterial communities associated with remains for understanding
intrinsic microbial ecology of decomposition, and more recently,
to aid in biomarker discovery for forensic PMI estimation
(Pechal et al., 2014; Javan et al., 2016; Metcalf et al., 2016).
PMI estimation supports forensic investigations by providing
a window of time when death occurred to help support or
refute eyewitness accounts regarding events leading up to death.
These community analyses have now been widely performed on
animal models targeting the bacterial 16S gene for taxonomic
community profiling and predictive function in an attempt
to discover PMI-associated biomarkers (Damann and Carter,
2013; Metcalf et al., 2013, 2016; Pechal et al., 2014). Although
research is also conducted on human remains, animal models
provide investigators the ability for robust sample sizes in order
to create statistically powerful studies, and control of habitat
conditions, such as with insect colonization, temperature, etc.
(Finley et al., 2015; Hyde et al., 2017; Pechal et al., 2018).
In a study using terrestrial swine models, microbial diversity
decreased as decomposition progressed with Proteobacteria
being the dominant phylum in early stages, while Firmicutes
dominated late stages. In those studies, Clostridiaceae was one
of the most dominant families toward the end of decomposition
(Pechal et al., 2014). Additionally, in terrestrial murine models,
during bloat stage the abdominal cavity has increased relative
abundances of anaerobic gut microbiota, Lactobacillaceae,
and Bacteroidaceae, but transitions to contain more oxygen-
tolerant (i.e., Enterobacteriaceae) bacteria following burst
(Metcalf et al., 2013, 2016). Overall, animal models have
shown similarities to microbial succession discovered in human
remains such as the transition from aerobic to anaerobic
bacteria, prevalence of Clostridium in late stages, and bacterial
community differences based on body location (Hyde et al.,
2013; Finley et al., 2015; Hauther et al., 2015). These data
are promising for the use of animal decomposition models as
surrogates for microbial involvement within human remains,

and for measuring correlates of microbial structure and function
during decomposition.

While recognizing the broad trends in microbial contributions
to decomposition is important for narrowing research foci, it
is imperative that we study microbial interactions at a finer
resolution with reference baseline activity, if specific, usable
biomarkers are going to be detected. This fine resolution along
with baseline data approach is important for teasing apart
bacterial taxonomic and functional succession variability in the
decomposition process, which may affect potential microbial
biomarker discovery. This approach raises the call for highly
controlled studies with the ability to focus on the microbial
interactions solely associated with the host so that a host
baseline can be established and built upon with other variables
(i.e., climate, soil, and scavengers) and external environmental
microbial communities.

Our study aims to develop the host postmortem microbial
structure in conjunction with functional activity using a highly
controlled laboratory setting, without the introduction of
external environmental factors. We are also among the first
to utilize postmortem microbial metatranscriptomic analyses.
While metagenomic investigation provides insights about
microbial community structure and functional potential,
metatranscriptomic investigation is a useful tool to shed light on
the active functional profiles of a microbial community. Together,
both analytic methods provide knowledge on both the microbial
diversity as well as genes actively involved in ecosystem processes.
For instance, are postmortem microbiome changes observed
and measured during decomposition succession reflective of
coordinated responses, plasticity within an individual microbial
species, or consequences of environment disturbance? Data
have shown that many coexisting but taxonomically distinct
microbes can encode genes for the same metabolic functions,
which may blur the association between community composition
and ecosystem functioning (Louca et al., 2018). However, for
functions performed by only a few taxa, the sensitivity and
resilience of this function may closely follow changes in the
abundance of those taxa (Langenheder et al., 2006; Delgado-
Baquerizo et al., 2016; Louca et al., 2018). Understanding
mechanisms by which microbial functions vary, including shifts
in community composition, gene expression patterns, or density,
will benefit studies in decomposition ecology and forensic
science, in order to determine what changes are most meaningful
during decomposition, and will aid in biomarker discovery
for PMI estimation.

MATERIALS AND METHODS

S. aureus/C. perfringens Preparation and
Murine Inoculation
A detailed description on the construction of Staphylococcus
aureus KUB7 and Clostridium perfringens inoculums along with
the murine inoculation, sacrifice, and organ harvest can be found
in Burcham et al. (2016). An experimental procedure flow chart
is detailed in Figure 1. Briefly, S. aureus KUB7 is a constructed
strain that constitutively expresses a red fluorescent protein.
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FIGURE 1 | Experimental flow chart. A visual representation of the
experimental design and downstream analyses. Mouse groups are
represented as SSC = surface sterilized, colonized; NSSC = nonsurface
sterilized, colonized; and CON = control.

C. perfringens type A strain WAL 14572 is non-fluorescent and
was obtained from ATCC. S. aureus KUB7 and C. perfringens
were grown to exponential phase in 100 mL tryptic soy broth
(TSB) or reinforced clostridial medium (RCM), respectively.
Sixty-four 1 mL cultures obtained from the original culture were
pelleted and S. aureus KUB7 was resuspended in 7 µL TSB while
C. perfringens was resuspended in 7 µL of RCM supplemented
with 60 g/L sucrose. The resuspensions were combined and
used for nasal inoculation through inhalation in 42 isoflurane
sedated SKH-1 female mice (N = 42) obtained from Charles
Rivers Laboratories with 21 mice not being inoculated as controls
(N = 21) for a total of 90 mice (N = 63). The final inhalation
inoculum was 2.8 × 108 CFU/mL and 2.24 × 107 CFU/mL
for S. aureus KUB7 and C. perfringens, respectively. These two
species have been shown to colonize living humans, albeit in
separate niches, and have been shown to transmigrate and
produce enzymes that break down tissues during decomposition
(Kellerman et al., 1976; Melvin et al., 1984; Tuomisto et al., 2013;
Burcham et al., 2016). We introduced chromosomally labeled
red fluorescent S. aureus and non-labeled C. perfringens to the
nasal pharynx and upper respiratory tract of mice by inhalation.
This location was selected as it is a natural colonization site for
S. aureus in humans and C. perfringens should not thrive in

these oxygen rich environments. All animal experiments were
conducted according to Mississippi State University IACUC
approved protocol 14–102.

Murine Sacrifice, Controlled
Decomposition, and Organ Harvest
Twenty-four hours after inoculation, all mice were sacrificed
by cervical dislocation, as previously described (Burcham et al.,
2016). Twenty-one of the 42 inoculated mice were randomly
chosen to be surface sterilized to disrupt the skin microbial
communities. The surface sterilized mice were submerged up
to below the mouth in a 10% bleach solution for 45 s avoiding
sterilization of the mouth, nares, and ears to prevent the
bleach solution from entering the body. The bleach solution
was rinsed twice successively with distilled water. All 63 mice
were individually placed in a Nalgene bottle top 0.2 µm filter
container (Thermo Scientific) and sealed with Parafilm M to
prevent environmental microbial and insect contamination.
Mouse carcasses were allowed to naturally decompose within a
bilaminar flow hood at ambient room temperature for up to 30 d
during July 2015 in Starkville, MS, United States.

Three mice per treatment (control, inoculated with no surface
sterilization, and inoculated with surface sterilization) were
analyzed per time point (T = 1 h, 3 h, 5 h, 24 h, 7 d, 14 d,
and 30 d postmortem). All tissue harvesting, and subsequent
analyses were performed in a bilaminar flow hood under BSL2
and sterile conditions. A sterile scalpel blade was used to cut
through the right hind leg and femur. The separated leg was used
to obtain bone marrow from the femur using a sterile syringe
containing nuclease-free water. A second sterile scalpel blade was
used to dissect each mouse from the ventral side to remove the
lungs, heart, and composite of the intestines using sterile forceps,
individual for each organ. The bone marrow solution and each
organ were transferred to individual 2.0 mL screw cap tubes.
Each organ was crushed with a sterile cotton swab excluding
the bone marrow solution. All organ swabs were swabbed on
specialized agar plates for plate count determination discussed
in Burcham et al. (2016). Afterward, RNAlater R© (Ambion) was
added to each tube and the samples were stored in −20◦C until
nucleic acid extraction. Due to the variation of decomposition
across individuals, some organs were no longer discernable in
the later stages of decomposition and composite samples of the
organ location were collected. Decomposition stages present at
each postmortem timepoint are represented in Figure 2.

Nucleic Acid Extraction and Purification
The following postmortem timepoints were chosen for
sequencing to focus on the early decomposition processes:
1 h, 3 h, 5 h, 24 h, and 7 d. Therefore, to obtain both RNA and
DNA from these samples, the dual extraction method using the
TRIzolTM Reagent (Thermo Fisher) standard issued protocol
was performed on the preserved samples after being spun down
and RNAlater R© removed. Briefly, 100 mg of tissue or the pelleted
bone marrow was added to 1 mL of TRIzolTM Reagent and a
mix of 0.1/0.5 mm glass beads. The samples were homogenized
in a bead beater with phase separation following chloroform
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FIGURE 2 | Mouse decomposition stages. Images of mice before dissection and organ harvest for their selected postmortem times to represent the decomposition
stages present at each timepoint.

addition. RNA was precipitated with isopropanol, washed with
75% ethanol, and resuspended in 50 µL of nuclease-free water,
and incubated at 60◦C for 15 min. The samples were purified
using the PowerClean R© Pro RNA Clean-Up Kit (Qiagen),
quantified fluorometrically using a Qubit 2.0TM (Invitrogen),
and then stored at −80◦C. DNA was extracted during the
TRIzolTM Reagent protocol as described above. DNA within the
sample interphase was precipitated with ethanol, washed with
0.1 M sodium citrate in 10% ethanol, washed with 75% ethanol,
and resuspended in 0.6 mL of 8 mM NaOH. The samples were
purified using a PowerClean R© Pro DNA Clean-Up Kit (Qiagen).
All samples were quantified fluorometrically using a Qubit
2.0TM (Invitrogen) and stored at −20◦C. The non-sequenced
timepoints (T = 14 d and 30 d) had DNA extracted using a
modified protocol of that discussed in Williamson et al. (2014).

C. perfringens WAL 14572 Detection
Difficulty in creating a fluorescently tagged C. perfringens strain
resulted in detection of C. perfringens only in association with
bacterial community analysis by metagenomic sequencing.
Metagenomic sequencing analysis allowed determination
of whether C. perfringens introduced nasally caused
increased C. perfringens levels during early decomposition,
particularly in less microbially rich organs, when compared to
non-inoculated mice.

S. aureus KUB7 Quantitative
PCR Analysis
Transmigration of S. aureus KUB7 through body tissues as
decomposition progressed was tracked at all postmortem times
(1 h, 3 h, 5 h, 24 h, 7 d, 14 d, and 30 d) using qPCR
by amplifying the red fluorescent protein gene incorporated
in the genome of S. aureus KUB7. A 25 µL reaction
was created using 3 µL template, 12.5 µL SsoAdvancedTM

Universal Probes Supermix (Bio-Rad), 1 µL forward primer
(5′-TTGAAGGTGAAGGTGAAGGA-3′), 1 µL reverse primer
(5′-TGCAAATGGTAATGGACCAC-3′), 2.5 µL FAM probe (5′-
6FAMTGGAAGGTACACAAACAGCAAAAMGBNFQ-3′), and
5 µL nuclease-free water. The reaction was amplified using a
Bio-Rad C1000 TouchTM thermal cycler and measured with a
Bio-Rad CFX96TM real-time system with the following cycling
conditions: 95◦C for 10 min and (95◦C for 15 s, 56◦C for
30 s) × 40 cycles. Each sample was analyzed in duplicate
to obtain an average CQ value and copies/run, which was
extrapolated to obtain the mean genomic units of KUB7 per
sample. The R statistical package was used to remove outliers
in each organ as determined by Cook’s distance (R Core Team,
2013). The mean genomic units were log transformed, the mean
log genomic units (logGU)± standard error of the mean for each
postmortem time for each organ were calculated. Wilcoxon rank
sum significance testing between (non)surface sterilization did
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not show a difference between treatments (intestines: p = 0.79,
bone marrow: p = 0.56, heart: p = 0.16, lungs: p = 0.84). Therefore,
both treatments were combined and treated as the same for
further testing. Significant differences between postmortem times
were tested using a Kruskal–Wallis rank sum test for each organ.
Significance was based on a p < 0.05.

Metagenomic/Metatranscriptomic
Library Preparation
The following postmortem timepoints were chosen for
sequencing to focus on the early decomposition processes:
1 h, 3 h, 5 h, 24 h, and 7 d. Total DNA libraries were created using
the NEBNext R© UltraTM DNA Library Prep Kit and NEBNext R©

Multiplex Oligos (Dual Index Primers) for Illumina R© (New
England BioLabs) protocols on all samples. Total RNA libraries
were created using the NEBNext R© UltraTM RNA Library Prep
Kit and NEBNext R© Multiplex Oligos (Dual Index Primers) for
Illumina R© (New England BioLabs) protocols for use with purified
mRNA or rRNA depleted RNA on the nonsurface sterilized and
control samples excluding the lungs since they did not sequence
well for metagenomic analysis. These protocols were chosen to
maintain rRNA and mRNA within the RNA sample in order to
preserve 16S rRNA genes and mRNA for both structural and
differential transcript expression analysis. DNA samples were
used for metagenomics community analysis.

Whole Metagenome/Metatranscriptome
Shotgun Sequencing and Processing
High-throughput whole metagenome and metatranscriptome
sequencing was performed by St. Jude Children’s Research
Hospital on an Illumina HiSeq2000 with 2 × 100 bp paired
end (PE) read lengths. Sequences were initially trimmed by
the sequencing facility using TrimGlare v0.4.2 (Krueger, 2015),
but a more stringent quality trimming was performed using
Trimmomatic v0.33 (Bolger et al., 2014). Metagenome sequences
were trimmed to remove nucleotides in a four-position sliding
window with an average phred33 score less than 28, and
read lengths less than 36 bp. The trimmed metagenomic
sequences were then used for bacterial community analysis.
Metatranscriptome sequences were input in the SAMSA2
pipeline (Westreich et al., 2018). SAMSA2 was used to merge the
paired-end sequences with PEAR v0.9.10 (Zhang et al., 2014),
and then trimmed in a four-position sliding window with an
average phred33 score less than 20, and read lengths less than
99 bp with Trimmomatic v0.3 (Bolger et al., 2014). SortMeRNA
v2.1 (Kopylova et al., 2012) was used to remove bacteria/archaea
16S/23S rRNA genes and eukaryotic 18S/28S/5S/5.8S rRNA genes
based on the documentation recommended SILVA and Rfam
databases (Quast et al., 2013; Yilmaz et al., 2014; Kalvari et al.,
2018). Sample identifiers and metadata can be found in Table 1.

Metagenomic Bacterial
Community Analysis
Relative abundance of the bacterial genera present in each
metagenomic sample was determined using MetaPhlAn2
(Truong et al., 2015). MetaPhlAn2 uses roughly 1 million

clade-specific markers from over 7500 species to characterize
the microbial taxonomic profiles. Genera that constituted less
than 3% of sample were grouped as rare taxa to reduce sampling
noise, but were not grouped as rare taxa for community metrics
so that rare taxa could be account for between test groups.
The relative abundances were used to determine the log genera
richness, Shannon diversity indices, and Bray–Curtis and binary
Jaccard distance indices using the R statistical package vegan
v2.5-1 (Oksanen et al., 2018). The metadata factors (colonization,
sterilization, organ, and postmortem time) were used in a type-II
Multivariate Analysis of Variance (MANOVA) additive model
to test for differences in log genera richness, Shannon diversity
indices, and Pielou’s evenness using the R statistical package
car v3.0-0 (Fox and Weisbert, 2011). The Bray–Curtis and
binary Jaccard indices were tested against the metadata factors
in a type-II permutational MANOVA additive model using
the R statistical package RVAideMemoire v0.9-69-3 (Herve,
2018). Both distance indices were calculated based on their
nature to account for taxonomic abundances (Bray–Curtis)
or to treat taxonomic data as presence–absence (Jaccard).
Analysis of both distances is important as presence–absence
data give more statistical weight to rare taxa while using
abundances give more statistical weight to the taxa of higher
abundance. Determination of the distance-based redundancy
analysis (dbRDA) explanatory variables (metadata factors)
was performed using forward selection with both distance
indices after the recommended “method 1” transformation by
Legendre and Anderson (1999). Forward selection is a method of
stepwise regression which starts with an empty model and then
adds the metadata factor which improves the model the most.
This metadata factor addition continues with the remaining
metadata until no more factors significantly improve the model.
The forward selection determined significant explanatory
variables were used to create dbRDA ordination plots with both
distance indices and the significant explanatory variables as
interactions. The genera driving the ordination distances were
determined with permutation environmental fit by their p-value
(p < 0.05) and R2. The dbRDA and environmental fit analyses
were performed using the R statistical package vegan v2.5-1
(Oksanen et al., 2018).

Transcript Annotation and Differential
Expression Analysis
Ribosomal RNA depleted RNA transcripts were used in the
SAMSA2 pipeline (Westreich et al., 2018). The reads were
annotated using the DIAMOND sequence aligner to a database
created from the March 2018 NCBI nr-protein database
(Buchfink et al., 2015). The best protein hit for each read in
the sample was aggregated for differential expression analysis
using the R statistical packages edgeR v3.22.1 and DESeq2
v1.20.0 (Robinson et al., 2010; McCarthy et al., 2012; Love
et al., 2014). Treatments were not differentiated, as community
analysis showed no difference between colonization nor surface
sterilization. In edgeR, the counts per million were computed
and transcripts that were not present more than 1 CPM in at
least two samples were removed to reduce noise. In DESeq2,
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TABLE 1 | Sample metadata.

Sample Treatment Colonized Sterilized PMI Organ Number of
DNA reads

Number of
RNA reads

Genera
richness

MG01 C N N 1H BM 519 10642207 0

MG02 C N N 1H HT 141 9424377 0

MG03 C N N 1H INT 6869462 11198249 5

MG04 C N N 1H LU 246592 NA 0

MG05 NS Y N 1H BM 12541054 6174552 4

MG06 NS Y N 1H HT 4069 4370991 0

MG07 NS Y N 1H INT 13588235 9345718 9

MG08 NS Y N 1H LU 7921779 NA 0

MG09 S Y Y 1H BM 12371788 NA 2

MG10 S Y Y 1H HT 114640 NA 0

MG11 S Y Y 1H INT 23356918 NA 14

MG12 S Y Y 1H LU 5764224 NA 0

MG13 C N N 3H BM 3085317 6966014 0

MG14 C N N 3H HT 68 6198445 0

MG15 C N N 3H INT 1519870 10537046 3

MG16 C N N 3H LU 552826 NA 0

MG17 NS Y N 3H BM 9372874 6585375 2

MG18 NS Y N 3H HT 11238 8625237 0

MG19 NS Y N 3H INT 3748353 9724755 6

MG20 NS Y N 3H LU 16267397 NA 0

MG21 S Y Y 3H BM 12034029 NA 0

MG22 S Y Y 3H HT 10885 NA 0

MG23 S Y Y 3H INT 3403829 NA 3

MG24 S Y Y 3H LU 13384061 NA 0

MG25 C N N 5H BM 2082085 6939217 0

MG26 C N N 5H HT 671145 7417681 0

MG27 C N N 5H INT 12924794 9505797 6

MG28 C N N 5H LU 667927 NA 0

MG29 NS Y N 5H BM 14411164 6502696 3

MG30 NS Y N 5H HT 1353231 6454480 1

MG31 NS Y N 5H INT 4597616 5133461 7

MG32 NS Y N 5H LU 12237082 NA 0

MG33 S Y Y 5H BM 12515225 NA 0

MG34 S Y Y 5H HT 14546830 NA 12

MG35 S Y Y 5H INT 17560686 NA 10

MG36 S Y Y 5H LU 20161875 NA 1

MG37 C N N 24H BM 5704975 3622308 0

MG38 C N N 24H HT 1583416 3309305 0

MG39 C N N 24H INT 9105711 5814593 2

MG40 C N N 24H LU 654955 NA 0

MG41 NS Y N 24H BM 5137625 1608180 0

MG42 NS Y N 24H HT 5126506 5397803 0

MG43 NS Y N 24H INT 6336406 771048 3

MG44 NS Y N 24H LU 11441973 NA 0

MG45 S Y Y 24H BM 13481461 NA 0

MG46 S Y Y 24H HT 4407690 NA 0

MG47 S Y Y 24H INT 34742830 NA 4

MG48 S Y Y 24H LU 20444728 NA 0

MG49 C N N 7D BM 59584111 778479 2

MG50 C N N 7D HT 7277358 3818602 3

MG51 C N N 7D INT 142284 2124152 3

MG52 C N N 7D LU 16679 NA 0

(Continued)
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TABLE 1 | Continued

Sample Treatment Colonized Sterilized PMI Organ Number of
DNA reads

Number of
RNA reads

Genera
richness

MG53 NS Y N 7D BM 63145271 537412 2

MG54 NS Y N 7D HT 10769919 3795345 1

MG55 NS Y N 7D INT 6286983 5305095 10

MG56 NS Y N 7D LU 11484731 NA 0

MG57 S Y Y 7D BM 16535712 NA 1

MG58 S Y Y 7D HT 9303940 NA 1

MG59 S Y Y 7D INT 27283847 NA 21

MG60 S Y Y 7D LU 13993375 NA 3

Table demonstrates the sample identification with their treatment (C, control; NS, nonsurface sterilized; S, sterilized), if they were colonized (Y, yes; N, no), if they were
sterilized (Y, yes; N, no), their PMI (1 h, 3 h, 5 h, 24 h, and 7 d), the organ the sample was obtained from (BM, bone marrow; HT, heart; INT, intestines; LU, lungs),
the average number of DNA reads between paired-end reads, the number of RNA reads after paired-end merging, and the genera richness. Read counts are after
quality control.

transcripts that were not present in at least two samples with
counts above 1 were removed. Normalization by library size
was performed based on each packages’ recommended method.
Normalization based on library size allows for samples with
different numbers of RNA reads to be compared against each
other without the read count differences affecting the results.
This was especially important in our study as we found that
our samples tended to decrease in RNA read abundance as
decomposition progressed. EdgeR dispersion parameters for
the negative binomial model estimations were determined
individually per organ with bone marrow using bin-spline,
heart using power, and intestines using spline. These dispersion
methods were chosen independently for each organ based on
which method provided a trendline which most fits the variation
distribution. DESeq2 dispersions were estimated based on the
default settings from the DESeq command. All models were
created with no y-intercept and postmortem timepoint groups
as the explanatory variable for each organ. EdgeR models were
negative binomial generalized log-linear models (GLM) with
quasi-likelihood and DESeq2 models were negative binomial
GLMs with likelihood ratio tests between the full and reduced
model without timepoints. For both methods, differential
expression was tested to contrast the timepoint groups (early
vs. middle, middle vs. late, early vs. late) for each organ and
significantly differentially expressed transcripts were identified
based on a Benjamini–Hochberg corrected p-value < 0.10 above
1 log2-fold-change threshold. Only transcripts determined to be
significant by both methods were considered truly significantly
expressed between the compared groups, to reduce procedural
bias. Transcripts were annotated into pathways based on the
KEGG and UniProt databases (Kanehisa and Goto, 2000;
The UniProt Consortium, 2017).

RESULTS

S. aureus KUB7 Quantitative PCR
The S. aureus KUB7 mean log genomic units (logGU± SE) in the
lungs decreased from 6.91 ± 2.32 logGU to 4.21 ± 2.74 logGU
then to 0± 0 logGU from 1 to 3 then 5 h after death, respectively.

After 5 h, the mean logGU increased from 0 ± 0 logGU to
3.95 ± 1.90 logGU after 24 h, 18.97 ± 2.69 logGU after 7 d,
and reached its maximum concentration (19.09 ± 6.77 logGU)
after 14 d. Finally, the mean logGU decreased to levels similar
to early timepoints of 6.75 ± 2.17 logGU at 30 d postmortem
(Figure 3A). Overall, the lungs began with S. aureus KUB7
present then diminished within 5 h postmortem. Afterward,
S. aureus KUB7 increased rapidly until returning to low levels
after 14 d postmortem.

The S. aureus KUB7 mean logGU± SE in the intestines stayed
relatively consistent the first three timepoints (T = 1 h, 3 h, and
5 h) with logGU of 11.33 ± 0.95, 13.90 ± 0.58, and 12.40 ± 0.87,
respectively. A decrease occurred at 24 h to 7.57 ± 3.40 logGU.
The logGU increased to its maximum concentration after 7 d to
18.08± 2.0 logGU. S. aureus KUB7 detection decreased to below
starting levels after 14 d (4.85 ± 1.57 logGU) to the minimum
(2.86 ± 1.81 logGU) after 30 d postmortem time (Figure 3B).
Overall, S. aureus KUB7 concentrations in the intestines during
early postmortem times were relatively stable until exponential
growth after 7 d, but then immediately began to decrease to levels
below initial sampling.

Staphylococcus aureus KUB7 detection in the heart remained
at zero until 7 d postmortem (11.72 ± 2.64 logGU) and
increased to its maximum (18.49 ± 7.25 logGU) after
14 d. After 30 d, detection decreased to levels near zero
(3.07 ± 3.07 logGU) (Figure 3C). Overall, the heart did
not appear to be colonized, based on qPCR detection, by
S. aureus KUB7 until 7 d postmortem, but once established, grew
substantially until decreasing back to almost undetectable levels
by 30 d postmortem.

Staphylococcus aureus KUB7 detection in the bone marrow
started at 6.08 ± 3.13 logGU and decreased to 0 ± 0 logGU
after 3 h. Detection increased to 1.88 ± 1.88 logGU after
5 h to 4.17 ± 2.64 logGU after 24 h and then to the
maximum of 8.18 ± 3.71 logGU at 7 d. Detection decreased
to 4.35 ± 3.27 logGU after 14 d then to 0 ± 0 logGU by
30 d postmortem (Figure 3D). Surprisingly, S. aureus KUB7 was
detected almost immediately in the bone marrow after death, but
then quickly decreased after 3 h until steadily increasing to its
highest concentration after 7 d, then dissipating.
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FIGURE 3 | S. aureus KUB7 detection with qPCR in organs as decomposition progresses. The log genomic units are plotted on the y-axis and postmortem time on
the x-axis. Each circle represents a sample and the line represents the mean (±SE) log genomic units of S. aureus KUB7 during decomposition in the (A) lungs, (B)
intestines, (C) heart, and (D) bone marrow.

When testing for a significance difference between
postmortem times in each organ using Kruskal–Wallis
rank sum test based on logGU we were able to reject the
null hypothesis that the mean logGU of all timepoints are
equal in the lungs (χ2 = 19.71, df = 6, p = 0.003), intestines
(χ2 = 23.94, df = 6, p = 0.0005), and heart (χ2 = 25.28, df = 6,
p = 0.0003). We were not able to reject the null hypothesis for the
bone marrow samples.

Metagenomic Bacterial Genera
Relative Abundance
Twenty-six unique genera were detected across the 60 samples
for a total of 144 detections (min = 0, max = 21, mean = 2.4,
SD = 4.08). Thirty-one samples did not match classified
bacteria. These samples were pre-dominantly associated with
early–middle (≤24 h) postmortem times in the lungs, bone
marrow, and heart. In the lungs, only two samples provided
community profiles (Figure 4A). Sample MG36 contained 100%
Lactobacillus at 5 h and sample MG60 was made up of
approximately 44% and 55% Clostridium and Staphylococcus
at 7 d, respectively. As expected, the intestines provided the
most robust abundance community profiles (Figure 4B). Early
(≤5 h) postmortem times in the intestines showed dominating
bacterial genera consisting of Parabacteroides (µ = 47.0%),
Mucispirillum (µ = 29.6%), and Lactobacillus (µ = 14.4%).
At 24 h, there was a decrease of relative abundance in
Parabacteroides (µ = 10.5%), disappearance of Mucispirillum

and increase of Lactobacillus (µ = 86.3%). At 7 d, Lactobacillus
(µ = 30.6%) had decreased, allowing for the increase of
Anaerostipes (µ = 28.6%), Clostridium (µ = 16.1%), and
Enterococcus (µ = 13.3%). Bacterial genera within the heart
were only detected at 5 h and 7 d (Figure 4C). At 5 h, sample
MG30 showed 100% Escherichia, while MG34 showed a diverse
community with the highest percentage of genera detected
being Candidatus Arthromitus (31.7%), Parabacteroides (24%),
Anaerostipes (19.3%), and Dorea (10.7%). At 7 d, the highest
percentage of genera detected was Clostridium (µ = 72.1%),
with Lactobacillus (µ = 15.5%) and Peptostreptococcaceae spp.
(µ = 12.4%) being detected in one sample. In the bone marrow,
four out of nine samples in early (≤24 h) postmortem times
provided detected genera (Figure 4D). The early time group
genera detected were Propionibacteriaceae spp. (µ = 10.6%),
Staphylococcus (µ = 9.1%), Propionibacterium (µ = 8.8%),
Enterococcus (µ = 8.3%), and Pseudomonas (µ = 7.1%). At 7 d,
similar to heart sequences, Clostridium dominated the samples
(µ = 84.0%), with Peptostreptococcaceae spp. (µ = 11.7%) and
Pseudomonas (µ = 4.3%) also being detected.

Metagenomic Bacterial
Community Analyses
Type-II MANOVA additive model testing for log genera richness
only showed a significant difference among organs (SS = 8.05,
df = 2, F = 9.28, p = 0.002) with pairwise analysis determining
differences between intestines–bone marrow (p = 0.01) and
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FIGURE 4 | Bacterial genera relative abundance in samples at postmortem times. The bacteria genera detected in (A) lungs, (B) intestines, (C) heart, and (D) bone
marrow samples are represented by their relative percent abundance on the x-axis with the sample on the y-axis. The samples are labeled by postmortem timepoint
group with the color bars [green = early (1 h, 3 h, 5 h), purple = middle (24 h), and yellow = late (7 d)]. Genera that constituted less than 3% of sample were grouped
as rare taxa to reduce sampling noise. Relative abundances were determined using MetaPhlAn v2.0.

intestines–heart (p = 0.02). Type-II MANOVA additive model
testing Shannon diversity indices only showed a significant
difference among organs (SS = 1.71, df = 2, F = 4.07,
p = 0.04) with pairwise analysis determining no significant pairs.
Type-II MANOVA additive model testing squared Simpson’s
diversity indices showed no difference. The type-II permutational
MANOVA additive model for Bray–Curtis distance showed a
difference between organs (SS = 1.74, mean sq. = 0.87, df = 2,
F = 4.68, p = 0.001) and postmortem times (SS = 2.81, mean
sq. = 0.70, df = 4, F = 3.79, p = 0.001). The type-II permutational
MANOVA additive model for binary Jaccard distance showed a
difference among organs (SS = 1.83, mean sq. = 0.92, df = 2,
F = 4.19, p = 0.001) and postmortem times (SS = 2.2, mean
sq. = 0.55, df = 4, F = 2.51, p = 0.001). It is important to
note that bacterial diversity analyses comparing the treatments
(control, inoculated with no surface sterilization, and inoculated
with surface sterilization) showed no differentiation. We detected
no difference between mice bacterial communities that were or
were not surface sterilized nor did we detect a difference between
the mice bacteria communities that were or were not inoculated
with S. aureus and C. perfringens. Because of this we were able
to combine the data across treatments to obtain higher sample
sizes for comparing community structure and function across
postmortem times and organs.

The forward selection model for all metadata factors using
dbRDA ordination on Bray–Curtis distances determined the
explanatory variables to be PMI (R2 = 0.18, df = 4, AIC = 69.90,
F = 2.45, p = 0.002) and organ (R2 = 0.32, df = 2, AIC = 66.32,
F = 3.24, p = 0.002). These explanatory variables were treated
as interactions to create the Bray–Curtis dbRDA ordination
(Figure 5A). The environmental fit of the organ (R2 = 0.48,
p = 0.001) and PMI (R2 = 0.46, p = 0.003) variables were

significant with improved fits. Seven genera were identified to be
structuring the ordination by environmental fit (Figure 5A). The
forward selection model for all metadata factors using dbRDA
ordination on Jaccard distances determined the explanatory
variables to be PMI (R2 = 0.21, df = 4, AIC = 62.18, F = 2.76,
p = 0.002) and organ (R2 = 0.35, df = 2, AIC = 58.43,
F = 3.33, p = 0.002). These explanatory variables were treated as
interactions to create the Jaccard dbRDA ordination (Figure 5B).
The environmental fit of the organ (R2 = 0.32, p = 0.001) and
PMI (R2 = 0.54, p = 0.001) variables was significant with the
organ fit decreasing slightly and PMI fit improving. Six genera
were determined to be driving the ordination by environmental
fit (Figure 5B).

Differential Expression
The edgeR mean transcript library sizes after filtering for
the intestines was 24,055 (min = 10,549, max = 38,257,
SD = 8702.23), the heart was 116,150 (min = 52,102,
max = 191,191, SD = 47,094.28), and the bone marrow was 22,882
(min = 17,500, max = 84,116, SD = 25,909.62). The DESeq2
mean transcript library sizes after filtering for the intestines was
17,899 (min = 9570, max = 26,012, SD = 4920.05), the heart
was 110,393 (min = 50,531, max = 185,198, SD = 46,014.13),
and the bone marrow was 34,932 (min = 14,795, max = 79,693,
SD = 24,868.38). Significantly differentially expressed transcripts
for each method were determined, but only transcripts that
were reported as significant by both edgeR and DESeq2
were considered significant to reduce program bias (Table 2).
The intestines contained no significantly down-regulated or
up-regulated transcripts.

In total, the heart contained 58 significantly down-regulated
transcripts, and 8305 significant up-regulated transcripts.
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FIGURE 5 | Distance-based RDA plots of the mouse organ microbiome over the postmortem interval. Distance-based RDA plots were created for both
(A) Bray–Curtis and (B) Jaccard distances. Colors represent the postmortem intervals and shapes represent the organ from where the sample was obtained. Linear
vectors were determined by genera with a significant environmental fit to the plot based on a p < 0.05.

Out of the significant transcripts in the heart, 25 of the 58
down-regulated transcripts and 753 of the 8305 up-regulated
transcripts were annotated as hypothetical or ribosomal
proteins. In total, the bone marrow contained 734 significantly
down-regulated transcripts and 22 significant up-regulated
transcripts. Out of the significant transcripts in the bone marrow,
422 of the 734 down-regulated transcripts and 12 of the 22
up-regulated transcripts were annotated as hypothetical or
ribosomal proteins. A difference was detected in the heart and
bone marrow between the early vs. late and middle vs. late group
comparisons, while no difference occurred between the early and
middle timepoint groups. In the heart, the pathway regulations
were nearly identical with the majority of the pathways detected
being up-regulated (N = 7552) (Figure 6A). Metabolic pathways
were the most up-regulated with other notable pathways
detected in abundance being stress response, sporulation,

cell motility, and membrane transport. Few transcripts were
significantly down-regulated (N = 33), but the most abundantly
down-regulated were associated with metabolism (N = 15).

In the bone marrow, the majority of the significant
transcripts occurred from a comparison of the early and
late timepoint groups and most pathways were down-regulated
(N = 312) (Figure 6B). Energy and carbohydrate metabolism
were the most detected down-regulated pathways with
other notable pathways being transport and catabolism,
stress response, and cell motility. Few transcripts were
significantly up-regulated (N = 10), though the most
abundant pathway was sporulation (N = 3). A complete
list of the individual significant transcripts with their
logFC, FDR, NCBI nr protein annotations, and pathway
annotations can be found in Online Supplementary Material
(Supplementary Table S1).
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TABLE 2 | Number of transcripts detected from differential expression analysis.

Organ Time comparison Number of significantly
up-regulated
transcripts

Number of
non-significantly

expressed transcripts

Number of significantly
down-regulated

transcripts

DESeq2 EdgeR DESeq2 EdgeR DESeq2 EdgeR

Intestines Early vs. middle 0(0) 0(0) 26,563 26,500 0(0) 2(0)

Middle vs. late 0(0) 0(0) 26,563 26,501 0(0) 1(0)

Early vs. late 0(0) 439(0) 26,563 26,055 0(0) 8(0)

Heart Early vs. middle 86(0) 1(0) 27,968 24,623 52(0) 1(0)

Middle vs. late 6024(3774) 6358(3774) 27,968 17,740 41(14) 527(14)

Early vs. late 6023(3778) 8919(3778) 27,968 13,613 44(19) 2093(19)

Bone marrow Early vs. middle 1(0) 0(0) 14,329 10,416 687(0) 0(0)

Middle vs. late 36(3) 17(3) 10,278 14,326 483(44) 121(44)

Early vs. late 16(7) 1022(7) 8632 14,689 704(268) 762(268)

Time comparisons are separated by their postmortem time groups: early (1 h, 3 h, 5 h), middle (24 h), and late (7 d). The number of significant transcripts from each
analysis method is shown with the number of common transcripts between the two methods being in parenthesis.

DISCUSSION

The microbial changes that take place during decomposition have
been previously studied with the intent to describe patterns that
are consistent, reproducible, and precise for forensic evidence.
Our data have shown that an individual S. aureus bacterial
strain can be tracked as it migrates across organs in the body
and behaves in a similar manner across different locations for
when it reached maximum abundance and subsequently began
to decline. S. aureus KUB7 and C. perfringens WAL 14572
introduction nor surface sterilization significantly altered the
bacterial community structures. It is possible the introduction
of S. aureus KUB7, while detectable through sensitive DNA
techniques, was not at a high enough concentration to highly
alter the existing community structure in a manner that
would affect the diversity analyses. C. perfringens, while not
detectable with qPCR, did not appear at levels higher than
rare taxa during early decomposition in organs in which
C. perfringens is not considered natural microbiota, such as
the heart. A limitation to this approach of colonization is
the difficulty to accurately assess the extent of competition
that may have occurred between the natural microbiota and
introduced species, and although the introduction of new species
to any environment will inevitably affect the ecosystem, our
results showed minimal microbial structure disruption when
comparing the inoculated versus uninoculated mice suggesting
that future transmigration studies could be performed without
major concern for causing detrimental effects to the natural
microbiota as long as researchers use appropriate organisms and
colonization levels.

Additionally, the lack of significant microbial community
alterations associated with internal organs by surface sterilization
suggests that while external microbiota play a large role
in skin decomposition, the breakdown of internal tissues
relies predominately on internal microbes. For example, if
after sterilization of the skin, internal organs have similar
microbial profiles to non-sterilized hosts then the skin
microbiome is not playing a large role in the internal organ

decomposition. Alternatively, if skin-sterilized mice had
drastically different microbial profiles internally than their
non-sterilized counterparts, it would suggest that the microbial
communities found in the internal organs during decomposition
are heavily affected by the transmigration of skin microbes to
the internal organs. Our results showed the former, suggesting
that internal organs are decomposed primarily by internal
microbes and not skin microbes. While this is not surprising,
few studies to our knowledge have specifically tested this
hypothesis. These results provide strength for the use of
internal microbes as potential internal PMI biomarkers, and
are useful for future studies that may aim to investigate
transmigration and source tracking of specific internal microbes
in relation to PMI.

Our transmigration tracking of inhaled S. aureus KUB7
showed similar overarching trends in the body as a whole, but
with slight differences depending upon the organ (Figure 3).
In the lungs (Figure 3A) and the heart (Figure 3C), S. aureus
KUB7 reached its highest count at 14 d, while in the intestines
(Figure 3B) and the bone marrow (Figure 3D) the highest
count was reached at 7 d. We expected the lungs and the
intestines to contain S. aureus KUB7 immediately after death as
these sites were most likely to be colonized following inhalation,
and sometimes leading to intake of S. aureus KUB7 down
the esophagus. The decrease of S. aureus KUB7 in the lungs
immediately following death could be attributed to competition
with other microbial species, an increase in host immune gene
transcripts which occurs up to 24 h postmortem, and/or lack
of oxygen as blood flow and breathing ceased, though further
research is needed to discover the specific mechanisms taking
place in our system (Coleman et al., 1983; Pozhitkov et al.,
2017). S. aureus is a facultative anaerobe that has been shown
to have much slower growth in the absence of oxygen, though
the lack of oxygen does not completely stop growth (Coleman
et al., 1983; Belay and Rasooly, 2002). This may account for the
decrease immediately following death, as metabolism shifted and
a lag of growth occurs. The spike of growth from 7 to 14 d is
likely due to the reintroduction of oxygen, being accustomed
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to an anaerobic environment, complete immune system loss,
or increase of nutrients present after tissue breakdown (Janaway
et al., 2009; Hyde et al., 2013; Crippen et al., 2015; Pozhitkov
et al., 2017). The same reasoning can be used to explain the trend
found in the intestines as the growth spike occurs at the same
time, but the absence of a dip immediately following death may
be attributed to the fact that the environment in the intestines
is already anaerobic and a drastic shift in oxygen availability
did not occur coupled with the fact the S. aureus KUB7 present
had likely already adjusted to this environment during living
colonization. Although it is important to note that we did not
generate oxygen level data from our model and could not confirm
the aerobic and anaerobic shifts. Furthermore, the presence
of non-circulating, active but decreasing host apoptotic cells
and neutrophils along with increased immunity gene transcripts
between early and late timepoints could also potentially account
for fluctuations in S. aureus KUB7 concentrations (Heimesaat
et al., 2012; Pozhitkov et al., 2017). All organs returned to
bacterial levels either similar to or below 1 h postmortem levels
by the end of 7 d.

The bone marrow and heart trends are interesting as they do
not represent locations where colonization should have occurred
from initial host inhalation, and in fact should represent sterile
locations during life that are colonized through transmigration
after death. Interestingly, S. aureus KUB7 was detected within
the first hour in the bone marrow, possibly resulting from rapid
transmigration or an artifact from the skin when the femur was
cut. If rapid transmigration occurred, then S. aureus KUB7 was
not able to thrive in the early bone marrow environment leading
to the immediate decrease at 3 h. However, transmigration began
slowly around 5 h until reaching its highest concentration after
7 d. The heart had no detection of S. aureus KUB7 until 7 d
postmortem and reached maximum detected abundance at 14 d.
Suggesting S. aureus KUB7 migrated to the heart sometime after
24 h, though it is not clear exactly when it occurred. The 14 d
peak may be due to the lag in time between transmigration
and heart colonization, as the organ is presumed sterile during
host life. The decline seen at the later timepoints is likely
due to nutrient limitations or toxicity. However, determining
the window where migration into the heart can be pinpointed
may serve as a useful biological marker for narrowed PMI
estimation ranges.

Bacterial community and differential expression analyses
aimed to (1) strengthen existing knowledge of community shifts
in vertebrate intestines, (2) provide data toward community shifts
in underexplored organs, and (3) identify cellular processes and
metabolic changes taking place from early to late decomposition.
We provide one of the first sets of metatranscriptomic analyses
of these communities showing genes active across decomposition
time. Functional analyses performed by other groups have been
based on 16S rRNA predictive function, but it is important to
study active gene function because, while it may be predicted
a gene is expressed, it must be confirmed by expression data
if functional biomarkers can be discovered. Additionally, the
ability to determine functional activity in a microbial community
has the opportunity to by-pass one of the main concerns of
solely monitoring the postmortem microbial structure. This

FIGURE 6 | Heatmaps of the significant pathway regulation during timepoint
group comparisons. Heatmaps for (A) heart and (B) bone marrow
representing the transcript count of each pathway annotated from the
significant transcripts of each comparison by color. Pathway is included on
the x-axis and timepoint group (EvL = early vs. late, MvL = middle vs. late) on
the y-axis. Down-regulated transcripts were considered negatives and
up-regulated transcripts were considered positives. Pathways that were not
detected in a comparison are in gray.

concern focuses on the fact that human microbial profiles are
unique to the individual and while one individual may carry a
certain species of bacteria, another person may not. This can
be concerning if using detailed species markers that may not
be found ubiquitously across human populations. Monitoring
the function of microbes during decomposition may circumvent
this concern because, while the individual species may change
between people, the functions needed to survive during each
PMI should be redundant. For example, the functional pathways
needed to utilize decomposition nutrients and survive oxygen
fluxes will be highly expressed no matter the individual organism.
Another consideration is that species in microbial communities
may have dissimilar functional roles during decomposition,
that might be obscured while analyzing functional potential
from metagenomic data. Therefore, integrating community
composition with active gene function may provide evidence to
the state of the microbial decomposition ecology across PMIs that
are more concrete and less biased to the individual. This coupling
of structure and function data, as we have shown, may also yield
a predictive framework for determining associations between
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community structure and function during decomposition, with
utility for forensic science. Therefore, we suggest that more
empirical data should be gathered linking microbial functional
groups and genes with community structure in studies of
decomposition ecology.

Our data suggest genera richness and Shannon diversity
indices vary by organ. Bray–Curtis and Jaccard indices were
affected by both organs and postmortem time. This is not
surprising as the intestines are a natural location of high
levels of microbial diversity compared to other organs, and
as decomposition occurs these less diverse organs begin to
increase in diversity as transmigrations occur due to the
increase of nutrients and lack of immune system after 24 h
(Pechal et al., 2014; Guo et al., 2016). These microbial shift
trends have been shown in both animal and human models
(Heimesaat et al., 2012; Hyde et al., 2013). We found that
Bray–Curtis dissimilarity index ordination fit the community
profile and genera environmental fit better than Jaccard
(Figure 5). Jaccard indices treat data as presence–absence,
while Bray–Curtis indices accounts for genera richness, which
is needed when comparing organs and postmortem times
that have been previously shown to vary drastically in their
diversity and richness.

We detected distinct microbial changes in the community
structure, which corroborate shifts seen in other studies (Metcalf
et al., 2013; Tuomisto et al., 2013; Pechal et al., 2014;
Hauther et al., 2015). In particular, the ratio decreased of
Parabacteroides and increase of Lactobacillus in the first 24 h
followed by the increased ratio of Enterococcus and Clostridium
in late stages is a common postmortem trend (Figure 4B).
The Bray–Curtis ordination (Figure 5A) similarly shows the
transition of the intestinal community from Parabacteroides
to Clostridium. However, we did not detect any significantly
differential expressed transcripts within the timepoint group
comparisons for the intestine microbial communities (Table 2).
The cellular pathways needed to survive in the intestines
may be relatively consistent during the first 7 d, but then
community turnover in the intestines may be attributed
to factors involved in abilities to use alternate sources to
maintain existing pathways, outcompete for nutrients, or
replicate faster.

Due to poor sequence coverage or bacterial abundance
lower than the needed threshold for quality sequencing,
only two lung samples (MG36 and MG60) and two heart
samples (MG30 and MG34) from the first 24 h could
be classified for structure profiles (Figures 4A,C). The two
5 h cardiac samples were drastically different because MG30
only has a single genus detected (Escherichia), while MG34
and contained six genera that were not considered rare
taxa. The 7 d heart samples were mostly predominated
by Clostridium with one sample containing Lactobacillus
and Peptostreptococcaceae; all of which are common Gram-
positive gut bacteria associated with decomposition (Pechal
et al., 2014; Javan et al., 2017). The heart contained the
most differentially expressed transcripts (Table 2). Over 99%
of the transcripts were up-regulated from ≤24 h to 7 d
postmortem. This activity is likely due to the influx of

microorganisms from transmigration leading to an increased
usage of motility and metabolism pathways to use nutrients
in the new environment (Figure 6A) as some organisms,
such as some species of Clostridium, are motile and replicate
extremely fast. These organisms could also have migrated to
the heart between 24 h and 7 d, leading to nutrient depletion
after 7 d with an increased stress response and sporulation to
prepare for dormancy.

The bone marrow had bacterial classifications in five samples
≤24 h postmortem (Figure 4D). The majority of these
early-detected genera are associated with the skin microbiome.
Since early timepoints contained multiple genera associated
with the skin microbiome, it is likely early bone marrow
samples obtained these genera during dissection, but it cannot
be fully ruled out that early transmigration took place. As
with the heart, the bone marrow 7 d samples were dominated
by Clostridium. However, opposed to the heart, the bone
marrow’s differentially expressed transcripts were predominately
down-regulated (312 of 322 classified genes) (Table 2). These
down-regulated transcripts were primary attributed to energy
metabolism, carbohydrate metabolism, and transport and
catabolism (Figure 6B). The early bone marrow genera can
survive in oxygenated environments (i.e., Propionibacterium) so
that anaerobic shifts would cause oxidative energy metabolism
pathways to be down-regulated as they switch to the preferred
anaerobic energy metabolism pathways. Additionally, these
profiles could result from late-arriving genera (i.e., Clostridium)
having to use carbohydrates not available in the early stages of
decomposition, and obtaining energy anaerobically as the oxygen
availability shifted from aerobic to anaerobic.

We also detected up-regulation of sporulation in marrow
samples during late decomposition, suggesting a need to prepare
for dormancy, similar to the heart community. The Bray–Curtis
ordination (Figure 5A) separated the early bone marrow samples
from the rest of the organs due to the early classification
of potential skin microbes, but showed similarities in bone
marrow and heart microbial communities. A homogenization
of microbial communities (Clostridium begins to dominate)
probably occurs as organ communities become more similar
due to the decomposition process. However, a similar trend was
not clearly visualized by the Jaccard ordination (Figure 5B),
as early bone marrow and late intestines were similar in
Jaccard distance though not reflected in the detected microbial
communities from each organ at those times. These conflicting
data reflect an important point of consideration when dealing
with different organ ecosystems using a presence–absence model,
as opposed to taking in account the genera richness. This
suggests comparing ecosystems suspected to vary in microbial
abundance and diversity should be compared using methods
that take into account richness, to not overinflate rare taxa
(Lozupone et al., 2007).

Additionally, it is important to note that the decomposition
process is highly affected by environmental factors and host
individuality. In this study, many of these factors were controlled
by using a genetically identical model, eliminating scavengers,
and maintaining ambient temperature/moisture. But in a
more natural setting these factors alter decomposition rates
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making PMI estimation more difficult. Although the time it
takes a cadaver to progress through the stepwise patterns of
decomposition can vary, the process itself is rather ubiquitous,
with the exception of extreme cases. Because of this, it is
suspected that metabolic activities of microorganisms associated
with decomposition may be similar across ecosystems and
individuals during decomposition with little variance. For
example, the need to transcribe genes for survival during
oxygen fluxes is universal no matter the specific species present.
Our data show that the functional profiles of these microbial
communities are PMI dependent and coupled with community
structural data may provide better insight on the mechanisms
of microbially mediated decomposition, though the impact of
environmental factors on these functional changes are still
poorly understood.

We have also shown community structure results in our
system that correlate with results that have been shown in
work by other researchers using animal and human models
in multiple geographic locations (Pechal et al., 2014; Guo
et al., 2016; Metcalf et al., 2016; Javan et al., 2017). This
corroboration by multiple, independent sources is a critical
step for future implementation of microbiological assessment
to the PMI in forensic cases (Burcham et al., 2016). However,
abiotic factors not measured in this study, such as pH
and oxygen levels, should be assessed in further studies to
expand on the microbial physiological responses of these
communities. Lastly, we have performed one of the first
studies combining bacterial taxonomic and metatranscriptomic
analyses as decomposition occurs, which includes detailed
exploration of both commonly and underreported microbial
communities of the postmortem microbiome. From these,
we have shown distinct changes in microbial community
structure and function during decomposition succession.
Microbial community structure in conjunction with community
functioning are imperative to understand as we explore in-
depth analysis of transmigration and microbial succession
of commensal organisms in response to environmental
disturbances within the once living host. We have provided
a broad overview of the metabolic and stress response
changes taking place during decomposition, along with the
individual transcript fold changes, so that future research can
narrow its scope to clusters of genes, along with associated
community composition, with potential for biomarkers to aid
in PMI determination.
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Microorganisms are ubiquitous and closely related to people’s daily lives. Since they
were first discovered in the 19th century, researchers have shown great interest in
microorganisms. People studied microorganisms through cultivation, but this method
is expensive and time consuming. However, the cultivation method cannot keep a
pace with the development of high-throughput sequencing technology. To deal with
this problem, machine learning (ML) methods have been widely applied to the field of
microbiology. Literature reviews have shown that ML can be used in many aspects
of microbiology research, especially classification problems, and for exploring the
interaction between microorganisms and the surrounding environment. In this study,
we summarize the application of ML in microbiology.

Keywords: microorganisms, classification, environment, species, association, diseases

INTRODUCTION

Microorganisms first appeared approximately 3.5 billion years ago, making them one of the earliest
living things on Earth (Nannipieri et al., 2010). Microorganisms include bacteria, viruses, fungi,
some small protozoa, and microscopic algae. These organisms, which are closely related to human
beings (Ley et al., 2006a), have a wide range of beneficial and harmful uses, including in the food
(Cotter et al., 2005), medicine (Petrof et al., 2012; Yu et al., 2018), agriculture (Morris et al., 1986),
industrial (Souza, 2010), environmental protection and other fields (Reiff and Kelly, 2010).

Microbiology is a discipline that studies the structure and function of microbial groups,
the interrelationships and mechanisms of internal communities, and the relationships between
microorganisms and their environments or hosts (Alexander, 1962; Niel, 1966). The microbiome
is a collection of all microbial species and their genetic information and functions in a
given environment. Studies of the microbiome also include the interaction between different
microorganisms (DiMucci et al., 2018), the interaction between microorganisms and other
species (Xie et al., 2018), and the interaction between microorganisms and the environment
(Moitinho-Silva et al., 2017). Because of their small size, the microscope is an important tool
for studying microorganisms. However, microscopy analyses only allow observation and must
therefore be complemented by culture techniques to study the biological, physiological, genetic,
metabolic, pathogenic and other biological characteristics of microorganisms (Waldron, 2018).
During cultivation, researchers can also explore the interactions between microorganisms and
the environment, which reflect the breadth and diversity of microbial distribution. A variety of
microorganisms living in different environments or in different hosts form microbial communities,
which have extensive and complex interactions with the environment and the host and form various
types of ecosystems (Srinivasan et al., 2012; Xie et al., 2018).

With the development of microbial sequencing in recent years, the microbiome has become
increasingly popular in many studies. High-throughput sequencing technology has resulted in
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generation of an increasing amount of microbial data. Traditional
methods using microscopes and biological cultures are expensive
and labor intensive; therefore, machine-learning methods have
been gradually applied to microbial studies (Huang Y. A. et al.,
2017; Huang Z. A. et al., 2017; Wang et al., 2017; Wei et al.,
2017a,b; Peng et al., 2018; Yang et al., 2018b; Zou et al., 2018a).
Here, we introduce the application of machine learning (ML) in
microbial analyses. Since ML is mainly applied to classification
and interaction problems, we focus on these two areas. Figure 1
shows the framework of this paper.

MACHINE LEARNING METHODS

Machine Learning is a multi-disciplinary subject involving many
disciplines including probability theory, statistics, approximation
theory, convex analysis, and algorithm complexity theory (Qu
et al., 2017; Zou et al., 2018b). ML methods can be divided
into two types (Zitnik et al., 2019), supervised learning and
unsupervised learning. Supervised learning (Stoter et al., 2019)
requires that the model be trained using a training set. The
training sets for supervised learning include features and results.
Common supervised learning algorithms include regression
analysis and statistical classification. Unsupervised learning, also
known as clustering, adopts k-means to establish a centriole
and reduce error through iteration and descent to achieve
classification. With the development of ML, more and more
fields have begun to use this technique for research (Chen W.
et al., 2016, Chen et al., 2017a,d, 2018a,b,e,f,g; Li et al., 2016;
Zou et al., 2016, 2017; Ding et al., 2017a,b; Feng et al., 2017a;
Yu et al., 2017a; Zeng et al., 2017a, 2018; Liu et al., 2018; Pan
et al., 2018; Wei et al., 2018a,b; Yang et al., 2018a; Zhao et al.,
2018b; He et al., 2019; Zhang et al., 2019), for example, drug
repositioning (Yu et al., 2016b, 2017b), disease-related microRNA
(Chen and Huang, 2017; Chen et al., 2017d, 2018b,e,g; Zhao
et al., 2018a,c) identification, and disease-related long non-coding
RNA identification (Chen and Yan, 2013; Chen et al., 2017e,
2018c; Hu et al., 2017, 2018). There are four main steps in
developing ML algorithms (Oudah and Henschel, 2018). The
first step is extraction of the features, which is critical to the
ML method (Liu et al., 2015). Then, the operational classification
units (OTU) table can be obtained by clustering. Next, important
features that can improve the accuracy and efficiency are selected.
Finally, a training dataset is used to train the model, after
which a test set is used to evaluate the model. The process is
summarized in Figure 2.

In microbial studies, according to the collected samples,
obtaining relevant OTU is an important step in the study
of microbial data. OTU is a type of similar microorganisms,
which are cluster according to the similarity DNA sequences
(Blaxter et al., 2005). In recent years, OTUs are always used
for microbial diversity, especially when analyzing small subunit
16S or 18S rRNA datasets (Schmidt et al., 2014). Sequences
can be clustered according to their similarity to one another,
and the researcher sets the similarity threshold. After OTU
clustering and species classification annotation for OTU, the
OTU table can be obtained, which contains the OTU types

and quantities for each sample, as well as species annotation
information for each OTU.

As we know, some microbes have higher data dimensions, so
feature dimensionality reduction is also an important part of data
processing. There are some common methods for reducing the
dimensionality and many studies are about how to reduce the
dimensionality. For example, the principal components analysis
(PCA) is a common reduction dimensionality method, which
is mainly to decompose the covariance matrix to obtain the
principal components and their weights (Jolliffe, 2002). PCA
is often used to reduce the dimensionality of dataset while
maintaining the feature that maximizes the contribution of the
variance in the data set. Principal co-ordinates analysis (PCoA)
is another common method. After sorting the feature values and
the feature vectors, PCoA selects the features, which are in the top
digits and the most significant coordinates in the distance matrix
can be found (Podani and Miklós, 2002). The result is a rotation
of the data matrix. It does not change the mutual positional
relationship between the sample points, but only changes the
coordinate system.

In microbial studies, supervised learning is always used,
especially the support vector machine (SVM) (Feng et al., 2013a,
2017b; Chen X. X. et al., 2016; Yang et al., 2016), and the
Naïve Bayes (NB) (Feng et al., 2013b,c), random forest (RF)
(Chen et al., 2018d), and k nearest neighbor (KNN) methods
(Chen et al., 2017c).

The SVM is a generalized linear classifier that can perform
binary classification of data employing a decision basis, according
to the maximum-margin hyperplane of the learning sample. The
SVM can classify non-linear data by the kernel methods (Drucker
et al., 2002). SVM is widely used in bioinformatics, such as the
prediction of proteins (Xu et al., 2018a,b,c). The NB method
(Meena and Chandran, 2009), which is a classification based
on Bayes’ theory and the independent assumption of features
that originate from classical mathematical theory (Rodríguez and
Kuncheva, 2007), has a solid mathematical foundation and stable
classification efficiency. The NB classifier, which requires only a
few parameters, is less sensitive to missing data and simpler than
other methods (Jordan, 2008). The RF is a classifier that contains
multiple decision trees and its output accords to the voting on
each decision tree (Svetnik et al., 2003). KNN (Cui et al., 2001)
is a theoretically mature method. The method infers the sample
category based on its neighbors. The main steps of the algorithm
are as follows (Liao and Vemuri, 2002). First, the distance, which
is between the test sample and each training sample, should be
calculated. Then, the nearest k training samples are found as the
nearest neighbors of the test sample. Finally, the test sample is
classified according to the categories of the k nearest neighbors.

CLASSIFICATION AND PREDICTION
IN MICROBIOLOGY

Prediction of Microbial Species
There are two main types of microorganisms (Maiden et al.,
1998), one of them with non-cellular morphology (Yeom and
Javidi, 2006), such as viruses, and the other with cellular
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FIGURE 1 | The framework of this paper.

morphology that can divided into two types, one of them
namely prokaryotes (Weinbauer, 2010), such as archaea and
eubacteria, and the other namely eukaryotes (Nowrousian, 2010),
such as fungi and unicellular algae. Different microorganisms
have different characteristics, so it is important to identify the
microorganisms properly. There are two main approaches to
the identification of microorganisms. In one, the species of
an unknown microorganism is determined with the goal of
classifying it based on its domain, kingdom, phylum, class,
order, family genus and species. In the other, the goal is to
determine whether an unknown microorganism belongs to a
specific species or not. For example, we can determine if an
unknown microorganism is a virus or not, or more specifically,
whether it is a certain virus. In this section, we will introduce
recent studies that have used machine-learning methods to
predict microorganisms.

In the study (Murali et al., 2018), the authors classified specific
species of microorganisms using the IDTAXA, which employed
the LearnTaxa and IdTaxa functions. Both of these functions are
part of the R package DECIPHER, which was released under the
GPLv3 license as part of the Bioconductor, which provides tools
for the analysis and comprehension of high-throughput genomic
data. The LearnTaxa function attempts to reclassify each training
sequence into its tagged taxon using a method known as tree
descent, which is similar to the decision tree, a commonly ML
algorithms. IdTaxa uses the objects returned by the LearnTaxa
and query sequences as input data. This system returns the
classification results for each sequence in the taxonomic form and

provides the relevant confidence for each level. If the confidence
does not reaches the required value, which indicates that the
classification cannot be accurately performed at that level. The
classification of IdTaxa may lead to different conclusions in
microbiological studies. Although the misclassification is small,
many of the remaining misclassifications may be caused by
the errors in the reference taxonomy. Fiannaca et al. (2018)
presented a method for identifying the 16S short-read sequences
based on k-mer and deep learning. According to their results,
the method can classify both 16S shotgun (SG) and amplicon
(AMP) data very well.

It is important to identify specific microbial sequences in
mixed metagenomics samples. At present, gene-based similarity
methods are popularly used to classify prokaryotic and host
organisms from mixed samples; however, these techniques
have major weakness. Therefore, many studies have been
conducted to identify better methods for identification of specific
microorganisms. Amgarten et al. (2018) proposed a tool known
as MARVEL for predicting double-stranded DNA bacteriophage
sequences in metagenomics. MARVEL uses the RF method, with
a training dataset composed of 1,247 phage and 1,029 bacterial
genomes and a test dataset composed of 335 bacteria and 177
phage genomes. The authors proposed six features to identify the
phages, then used random forests to select features and found
three features provided more information (Grazziotin et al.,
2017). Ren et al. (2017) developed VirFinder, which is a ML
method based on k-mer for virus overlap group identification
that avoids gene-based similarity searches. VirFinder trains the
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FIGURE 2 | The main steps of machine learning in microbiology.

ML model through known viral and non-viral (prokaryotic host)
sequences to detect the specificity of viral k-mer frequencies.
The model was trained with host and viral genomes prior
to January 1, 2014, and the test set consisted of sequences
obtained after January 1, 2014. VirSorter (Roux et al., 2015) is
based on reference dependence and reference independence in
different kinds of microbial sequence data to identify the viral
signal. Experimental results have shown that VirSorter has good

TABLE 1 | The available data and materials for prediction of microbial species.

Studies Availability of data and materials Reference

IDTAXA http://DECIPHER.codes Murali et al., 2018

Fiannaca et al. https://github.com/IcarPA-TBlab/
MetagenomicDC

Fiannaca et al., 2018

MARVEL https://github.com/
LaboratorioBioinformatica/MARVEL

Amgarten et al., 2018

VirFinder https://github.com/jessieren/VirFinder Ren et al., 2017

VirSorter https://github.com/simroux/VirSorter Roux et al., 2015

performance, especially for predicting viral sequences outside
the host genome.

The above methods specifically classify microorganisms
according to different needs. When we want to know the
taxonomy information of microorganisms, we can use the
method, which proposed by Murali et al. (2018). Moreover,
MARVEL, VirSort, and VirFinder can identify specific types of
microorganisms. According to the Amgarten et al. (2018), these
three methods have comparable performance on specificity, but
MARVEL has a better recall (sensitivity) performance. We have
compiled materials for implementation of the above methods,
which are shown in Table 1.

Prediction of Environmental
and Host Phenotypes
With the development of next-generation DNA and high-
throughput sequencing, a new area of microbiology has been
generated. The main research in this field is to link microbial
populations to phenotypes and ecological environments, which
can provide favorable support for disease outbreaks and precision
medicine (Atlas and Bartha, 1981). It is well known that
some microorganisms are parasitic and that the surrounding
environment and host cells have an important impact on
the microbial population. Differences in nutrient availability
and environmental conditions lead to differences in microbial
communities (Moran, 2015). Because microorganisms can
exchange information with the surrounding environment and
host cells, we can predict the environmental and host phenotypes
based on the microorganisms that are present (Xie et al.,
2018). This provides a more comprehensive understanding of
the environment and the host, so that we can better use the
environment and protect the host. Many studies have recently
been conducted to predict environmental and host phenotypes
using microorganisms. In this section, we introduce these studies.

Asgari et al. (2018) used shallow subsample representation
based on k-mer and deep learning, random forests, and SVMs
to predict environmental and host phenotypes from 16S rRNA
gene sequencing using the MicroPheno system. They found that
the shallow subsample representation based on k-mer is superior
to OTU in terms of body location recognition and Crohn’s
disease prediction. In addition, the deep learning method is
better than the RF and SVM for large datasets. This method not
only can improve the performance, but also avoid overfitting.
Moreover, it can reduce the time of pretreatment. Statnikov
et al. (2013) used OTUs as an input feature and processed
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the data as follows. First, the authors sequenced the original
DNA, after which they removed the human DNA sequence and
defined the OTUs based on the microbial sequence. Next, they
quantified the relative abundance of all sequences belonging
to each OTU. The authors used SVM, kernel ridge regression,
regularized logistic regression, Bayesian logistic regression, the
KNN method, the RF method and probabilistic neural networks
with different parameters and kernel functions. Overall, they
investigated 18 ML methods. In addition, they used five feature
extraction methods. The experimental results revealed that the
RF, SVM, kernel-regression and Bayesian logic use Laplacian
prior regression provided better performance. Based on their
research, human skin microorganisms collected from objects
that have been touched can be used to identify the individual
from which they originated. In this work, the author used a
variety of classification and dimensionality reduction methods
to explore the effects of each method. It is very useful for
the next work, which provides a comprehensive comparison.
Schmedes et al. (2018) used the microbial community for forensic
identification. In their study, they developed the hidSkinPlex,
a novel targeted sequencing method using skin microbiome
markers developed for human identification. In forensic science,
it is important to estimate the time of death. Johnson et al.
(2016) used KNN regression to predict the time interval after
death using datasets from nose and ear samples. This indicates
that skin microbiota can be an important tool in forensic
death investigation. Traditionally, marine biological monitoring
involves the classification and morphological identification of
large benthic invertebrates, which requires a great deal of time
and money. Cordier et al. (2017) used eDNA metabarcoding and
supervised ML to build a powerful prediction model of benthic
monitoring. Moitinho-Silva et al. (2017), studied the microbial
flora of sponges and their HMA-LMA status demonstrated
the applicability of ML to exploring host-related microbial
community patterns.

Due to the specificity of microbial communities, we can
better identify the environment and the host. Moreover, we can
judge the existing environmental conditions and host survival
status according to the existence of microbial community.
We summarize the available datasets and methods, which are
shown in Table 2.

Using Microbial Communities to
Predict Disease
Microbiomes are important to human health and disease (Bourne
et al., 2009). Indeed, there are many microbial communities
in the human body. Once a microbial community is out of
balance or foreign microorganisms invade, the human body is

TABLE 2 | The available data and materials for prediction of environmental and
host phenotypes.

Studies Availability of data and materials Reference

Asgari et al. https://llp.berkeley.edu/micropheno Asgari et al., 2018

Statnikov et al. https://link.springer.com/article/10.
1186/2049-2618-1-11

Statnikov et al., 2013

likely to get sick. For example, intestinal microbial communities
are associated with obesity (Ley et al., 2006b) and pulmonary
communities with pulmonary infection (Sibley et al., 2008).
Because of the complexity of these communities, it is difficult
to determine which kind of microbiome communities cause
of the disease. Recently, many studies have investigated use of
microbiome communities to predict diseases, especially bacterial
vaginosis (Srinivasan et al., 2012; Deng et al., 2018) and
inflammatory bowel disease (Gillevet et al., 2010). By analyzing
microbial communities, we can better understand the disease and
then make effective decisions regarding treatment. Therefore,
in this section, we discuss current studies investigating use of
microbiome communities to predict diseases.

Bacterial vaginosis (BV) is a disease associated with the vaginal
microbiome. Beck and Foster (2014) used the genetic algorithm
(GP), RF, and logistic regression (LR) to classify BV according
to microbial communities. There are two criteria for BV, the
Amsel standard, which accord to the discharge, whiff, clue
cells, and pH (Amsel et al., 1983), and Nugent score, which
dependents on counting gram-positive cells (Nugent et al., 1991).
The dataset in Beck et al. study was from Ravel et al. (2011) and
Sujatha et al. (2012). The method in the paper (Beck and Foster,
2014) first classifies BV according to vaginal microbiota and
related environmental factors, then identifies the most important
microbial community for predicting BV.

Hierarchical feature extraction is based on the classification
of microbes from kingdoms to species. The existing stratification
feature selection algorithm will lead to information loss, and the
stratification information of some 16S rRNA sequences is usually
incomplete, influencing the classification. Therefore, Oudah and
Henschel (2018) proposed a method known as hierarchical
feature engineering (HFE) to identify colorectal cancer (CRC).
To accomplish this, they used RF, decision trees and the NB
method to classify a dataset of Next Generation Sequencing based
16S rRNA sequences provided by metagenomics studies. This
method is good for processing datasets with high dimensional
features. Moreover, the available dataset and method are in https:
//github.com/HenschelLab/HierarchicalFeatureEngineering.

In another study (Wisittipanit, 2012), the author focused on
predicting inflammatory bowel disease. In that study, patients
with Crohn’s disease and ulcerative colitis were compared with
healthy controls to identify differences between the mucosa and
lumen in different intestinal locations. The author used the
Relief algorithm (Kira and Rendell, 1992) to select features, and
Metastats (White et al., 2009) to detect differential features.
Finally, the author used KNN and SVM as classifiers to perform
disease specificity and site specificity analysis.

In this section, we discuss using microorganisms to predict
different diseases. Beck and Foster (2014) predicted BV according
to the microorganisms and the diagnosis standard of BV. HFE
identified the CRC according to the OTU ID and the taxonomy
information. Wisittipanit proposed a method to predict Crohn’s
disease, based on OTU and feature selection method. The
above methods used different ideas to predict diseases by using
microorganisms and obtained good results. This indicates that
some diseases affect human colonies. According to these colony
changes, we can not only predict the disease, but also treat the
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disease according to the colony condition, which is a direction
for future research.

INTERACTION AND ASSOCIATION IN
MICROBIOLOGY

Interaction Between Microorganisms
The collective behavior of microbial ecosystems in biomes is
the result of many interactions between community members.
These interactions include metabolite exchange, signaling and
quorum sensing processes, as well as growth inhibition and
killing (Langille et al., 2013; DiMucci et al., 2018). Understanding
the interspecific interactions within microbial communities is
critical to understanding the functions of natural ecosystems
and the design of synthetic consortia (Mainali et al., 2017).
Therefore, in this section, we introduce the application of ML to
investigation of interactions between microorganisms.

DiMucci et al. (2018) showed how the microbial interaction
network can be combined with the characteristic level of
individual microbes to provide an accurate inference of the
missing edges in the network and a constructive mechanism
of the interaction. The same authors proposed the notion of
a composite vector that combined the generated trait vectors
and pairwise interactions. The training set for the model is
all observed interactions. The model was then used to predict
the unobserved interactions. If the random forest classifier
is used, feature contributions can be calculated. Microbial
interactions in the soil can affect crop yields; therefore, Chang
et al. (2017) used the random forest method to predict the
productivity based on the microorganisms. In this study, the
improved crop productivity differences were linked to the soil
microbial composition.

There are cooperative and competitive relationships within
the same microbial population. Moreover, there are eight
relationships between the different microbial populations,
which are neutralism, commensalism, synergism, mutua-
lism, competition, amensalism, parasitism and predation.
Understanding the interactions between microorganisms is
important for the study of microbial species and for microbial
applications. However, there are not many studies on ML in this
area, which will be an important research direction.

Microbiome-Disease Association
There are many kinds of microorganisms in human bodies,
and they are inseparable from human health. For example,
intestinal microbial disorders can cause intestinal inflammatory
diseases (Chen et al., 2017b), such as ulcerative colitis, CRC,
atherosclerosis, diabetes and obesity. Accordingly, it is necessary
to predict the microbial-disease association because this study
not only improves the diagnosis and prognosis of human
diseases, but also develops the new drugs (Yu et al., 2015,
2016a; Shi et al., 2016; Su et al., 2018; Fan et al., 2019).
However, few studies have investigated predictive analysis of
the microbial-disease association. Therefore, in this section, we
introduce the application of ML to the study of microbial-
disease association.

Fan et al. (2019) proposed a new approach to analyze the
microbial-disease association by integrating multiple data sources
from the human microbe-disease consortium (MDPH_HMDA)
and path-based HeteSim scores. First, heterogeneity networks
were constructed. Microbe-disease pair weighting was conducted
according to the standardized HeteSim measurement method,
after which the microbe-disease-disease pathway and microbe-
microbe-disease pathway HeteSim scores were integrated.
Finally, the correlation scores of potential micro genome
associations were calculated. Xuezhong et al. (2014) proposed
a method based on the Human Disease Network (HSDN)
in which co-occurrence of disease/symptom terms based on
PubMed bibliographic records was used to calculate disease
similarity. KATZ (Katz, 1953) is a network based measurement
method that calculates the similarly of nodes in a heterogeneous
network, to solve the link prediction problem proposed by
Katz. The KATZ method has been applied in many fields,
including disease-gene association prediction (Xiaofei et al.,
2014) and IncRNA-disease association prediction (Chen et al.,
2015). Chen et al. (2017b) proposed a novel method based on
KATZ to predict associations of human microbiota with non-
infectious diseases (named KATZHMDA). The KATZHMDA
first constructs adjacency matrix A based on known microbial-
disease associations. The kernel similarity matrix KD and KM
are calculated based on the disease Gaussian interaction profile
and microbial Gaussian interaction profile, respectively. We
can construct the integrated matrix A∗ based on KM, KD
and known microbial-disease associations. Next, all walks of
different lengths are integrated to obtain a single microbe-
disease association measurement. Therefore, we can calculate
microbe-disease association probability in a matrix form. Shi
et al. (2018) proposed a prediction method based on binary
matrix completion named BMCMDA. The BMCMDA assumes
that the incomplete microbiome-disease association (MDA)
matrix is the sum of a potential parameterization matrix
and a noise matrix. Additionally, the BMCMDA assumes
that the independent subscripts of the items observed in
the MDA matrix follow the binomial model. Shi et al.
(2018) used the same dataset, which was collected from the
Human Microbe-Disease Association Database (HMDAD) and
included 292 microbes and 39 human diseases, to perform
comparisons. According to the study, BMCMDA is better
than the KATZHMDA in AUC. BMCMDA can be integrated
with other and independent microbial/disease similarities or
characteristics to enhance MDA prediction. Moreover, this
method can be applied to more prediction aspects. We
summarize the available datasets and methods, which are
shown in Table 3.

TABLE 3 | The available data and materials for microbiome-disease association.

Studies Availability of data and materials Reference

Zhou et al. https://www.nature.com/articles/
ncomms5212#supplementary-information

Xiaofei et al., 2014

KATZHMDA http://dwz.cn/4oX5mS. Chen et al., 2017b

BMCMDA https://github.com/JustinShi2016/ISBRA2017 Shi et al., 2018
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CONCLUSION

Microorganisms are involved in many life activities, and
affect their surrounding environment and other organisms.
Microorganisms play important roles in human heath,
crop growth, livestock farming, environmental management,
industrial chemical production and food production. In the
19th century, people first observed microbes using microscopes
and began to study them. However, the development of high-
throughput sequencing technology has led to generation of
large amounts of microbial related data. As a result, machine-
learning methods are now being applied to microbiological
research. Here, we discuss the current application of ML in
the microbiome. The results revealed that ML is widely used in
microbiological research, and that it has focused on classification
problems and analysis of interaction problems. However, many
problems remain unresolved and will require the cooperation
of researchers from different fields, such as biology, informatics
and medicine, to jointly promote the development and progress
of microbiological research. On the other hand, the recent
developed link prediction (Liu et al., 2016; Zeng et al., 2017b)
and computational intelligence methods (Cabarle et al., 2017;

Song et al., 2018), can be promising in discovering the
relationship between diseases and microbes.
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Colorectal cancer (CRC) is the third most common cancer worldwide. Its incidence is still

increasing, and the mortality rate is high. New therapeutic and prognostic strategies are

urgently needed. It became increasingly recognized that the gut microbiota composition

differs significantly between healthy people and CRC patients. Thus, identifying the

difference between gut microbiota of the healthy people and CRC patients is fundamental

to understand these microbes’ functional roles in the development of CRC. We studied

the microbial community structure of a CRC metagenomic dataset of 156 patients

and healthy controls, and analyzed the diversity, differentially abundant bacteria, and

co-occurrence networks. We applied a modified zero-inflated lognormal (ZIL) model

for estimating the relative abundance. We found that the abundance of genera:

Anaerostipes, Bilophila, Catenibacterium, Coprococcus, Desulfovibrio, Flavonifractor,

Porphyromonas, Pseudoflavonifractor, and Weissella was significantly different between

the healthy and CRC groups. We also found that bacteria such as Streptococcus,

Parvimonas, Collinsella, and Citrobacter were uniquely co-occurring within the CRC

patients. In addition, we found that the microbial diversity of healthy controls is

significantly higher than that of the CRC patients, which indicated a significant negative

correlation between gut microbiota diversity and the stage of CRC. Collectively, our

results strengthened the view that individual microbes as well as the overall structure

of gut microbiota were co-evolving with CRC.

Keywords: gut microbiota, colorectal cancer, zero-inflated lognormal model, association network,

microbial diversity

INTRODUCTION

A large number of microbes colonize the human body. They form a complexmicrobial community,
or microbiota (Tringe et al., 2005; Zhao et al., 2013; Liao et al., 2015). Among them, the gut
microbiota is the most diverse, with more than 1,000 species (Kostic et al., 2012; Li et al., 2012;
Ahn et al., 2013). Those microbes are involved in maintaining intestinal homeostasis, through
physiological processes such as metabolism, immune responses, and inflammation, all of which are
essential for human health. Previous studies revealed a deliciated and dynamic balance between the
microbial community and the host, which is likely the result of long term co-evolution. However,
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studies also observed that pathogenic changes in the structure,
composition, and function of gut microbiota can lead
to various diseases, often by causing the production of
abnormal metabolites (Chen et al., 2016a; Huang et al.,
2017a,b). Those diseases and conditions include irritable
bowel syndrome (Kipanyula et al., 2013), Crohn’s disease
(Sommer and Bäckhed, 2013), and colorectal cancer
(CRC) (Zackular et al., 2014; Rea et al., 2018).

The mechanisms by which gut microbes influence the
CRC tumorigenesis (Iacob et al., 2017) were actively under
study. For examples, researchers have recently learned that
the gut microbiota plays a regulatory role in the tumor
microenvironment and thus in tissue carcinogenesis (Sohn et al.,
2015; Nagy-Szakal et al., 2017; Morgillo et al., 2018). Guo
et al. also found that the microbiota structure and microbial
metabolites can affect the body’s susceptibility to CRC by directly
inducing pathological conditions, such as adenoma (Guo et al.,
2015). However, to further understand such interactions, it
is essential to characterize and compare the gut microbiota
structure of healthy controls and cancer patients. And based
on that, specific microbiota patterns or strain types need to
be identified to provide new targets and strategies for cancer
prevention and treatment (Hu et al., 2017, 2018; Zhao et al.,
2018a,b,c). Therefore, in this paper, we aim to determine the
microbes that are associated with CRC using a large-scale
metagenomic data set.

While the metagenomics research has provided enormous
scientific data for investigating the role of the gut microbiota in
the context of cancer development and progression (Zhang et al.,
2014), appropriate bioinformatics and statistical analyses are
also required to accurately identifying the differential microbes.
Several algorithms using either parametric or non-parametric
tests have been proposed to determine such species. For
examples, Abusleme et al. (2013) combined the Kruskal-Wallis
test with the Wilcoxon rank-sum test to analyze periodontitis
data and used linear discriminant analysis to identify the species
with significant differences between periodontitis patients and
healthy controls. Nagy-Szakal et al. used the non-parametric
Mann-Whitney U test with Benjamini-Hochberg correction to
show that the microbial composition in the intestines of patients
with chronic fatigue syndrome differed significantly from that of
healthy individuals (Nagy-Szakal et al., 2017). And Peng et al.
conducted beta regression on the abundance of microbes to
obtain regression coefficients (Peng et al., 2016).

One particular difficulty associated with the statistical testing
of differential abundance is the under-sampling or dropout
(Hughes et al., 2001) of less abundant microbes caused by
an insufficient sequencing depth. This fact creates many zeros
in the abundance values and leads to inaccurate differential
analysis when only conventional normalization was applied.
This issue might be mitigated with the Zero-inflated Negative
Binomial modeling (ZINB) (Ridout et al., 1998). The method
is now widely adopted. For examples, Paulson et al. analyzed
the differential abundance in sparse high-throughput large-scale
microbial marker gene survey data by using a zero-inflated
Gaussian distribution mixture model with cumulative-sum
scaling normalization (Paulson et al., 2013). Zhang et al. (2016)

identified differentially abundant taxa between two or more
populations by using a ZINB regression method and estimated
the model parameters by Expectation Maximization algorithm.
Chen et al. proposed a zero-inflated Beta regression model
which included two parts: a logistic regression component and a
Beta regression component, for testing the association between
microbial abundance and clinical covariates for longitudinal
microbiome data (Chen and Li, 2016). Chen Jun et al. in
2017, proposed a robust and powerful framework of differential
analysis of microbiome data based on a zero-inflated negative
binomial (ZINB) regression model (Chen et al., 2017). They also
proposed an omnibus test of all the parameters. Omnibus test
was compared with previous methods [edgeR (Robinson et al.,
2010), RAIDA (Sohn et al., 2015), DESeq2 (Love et al., 2014), and
metagenomeSeq (Paulson et al., 2013)] by using simulated data.
RAIDA had slightly worse FDR control at a high nominal level
than omnibus test, but better FDR control than other methods.
The performance of RAIDA was close to that of the omnibus
test, and were higher than one of other methods. RAIDA is more
effective at controlling FPR than other method including the
omnibus test.

In this study, we identified the differentially abundant
gut microbes between CRC and healthy samples using the
Ratio Approach for Identifying Differential Abundance (RAIDA)
algorithm (Sohn et al., 2015). The algorithm fitted the
distribution of observed data with a modified zero-inflated
lognormal (ZIL) model and estimated the statistical significance
of abundance difference by the T-test. Furthermore, we used the
GRAMMy algorithm (Xia et al., 2011) to estimate and analyze the
relative abundance of gut microbes and diversity of the microbial
communities. Finally, we constructed and analyzed a microbial
association network based on all healthy, small adenoma, large
adenoma, and CRC samples.

MATERIALS AND METHODS

Two Metagenomics Datasets
Our first gut metagenomics dataset was downloaded from
the European Nucleotide Archive (ENA) database (accession
number ERP005534) (Table 1). The dataset (Zeller et al., 2014)
consists of 156 samples from France (61 healthy, 27 small
adenoma, 15 large adenoma, and 53 CRC samples). Samples with
an adenoma diameter smaller than 10mmwere classified as small
adenoma while those with larger than 10mm ones were classified
as large adenoma.

Our second gut metagenomics dataset was also downloaded
from the ENA database (accession number ERP008729) (Zeller
et al., 2014). The dataset included 156 samples from Austria,
including 63 healthy samples, 47 adenoma patient samples, and
46 CRC patient samples.

A Modified ZIL Model
We estimated the relative abundance of gut microbes using
the GRAMMy algorithm. We then identified differentially
abundant microbes by the RAIDA algorithm which uses
a modified ZIL model to account for ratios with zeros.
Metagenomic data are typically sparse because of undersampling
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TABLE 1 | Number of experimental samples.

Total

number

of

samples

Healthy

control

Adenoma Colorectal cancer

Small Large Early Late

(<1 cm) (>1 cm) stage stage

I II III IV

156 61 27 15 15 7 10 21

of the microbial community or insufficient sequencing depth.
The resulting abundance table is over-presented with zeros
assumed that most of those zeros is a result of insufficient
sequencing depth, i.e., the under-sampling of the microbial
community. Based on the assumption that most microbes are not
differentially abundant, the RAIDA algorithm was systematically
demonstrated to consistently identify differentially abundant
microbes. We adapted the RAIDA model for our statistical
analysis as follows.

Let γij denote the observed count for microbes i and sample
j, and let rij denote the ratio of γij to γkj, where k represents the
microbe (or a set of microbes) used as a divisor and γkj > 0 for
all j. Here, i = 1, 2, ..., n and j = 1, 2, ...,m. The abundance ratio
computed this way is denoted as Rε

ij such that:

Rε
ij ∼

{

Unif (0, ε) with probability pi
LN(µi, σ

2
i ) with probability 1− pi

(1)

In this study, we used ε = min(rij
∣

∣rij > 0) for all i and j.
The parameters θi = (αi,µi, σi) were estimated by the following
expectation-maximization (EM) algorithm. Given that a ratio R
follows a lognormal distribution, thus:

LN(r
∣

∣µ, σ 2 ) =
1

σ
√
2πr

exp

[

−
(log r − µ)2

2σ 2

]

, (2)

in which, by definition, Y = logR is normally distributed with
mean µ and variance σ 2. Let yij = log rεij, zij is an unobservable

latent variable that accounts for the probability of zero coming
from the false state. Thus, the maximum-likelihood estimate of
θi for the modified ZIL model, i.e., Equation (1), can be obtained
by solving

ℓ(θi
∣

∣yij, zij ) =
m
∑

j=1
zij log

[

ηi + (1− pi)φ(yij;µi, σ
2
i )

]

+
m
∑

j=1
(1− zij) log(1− pi)

+
m
∑

j=1
(1− zij) logφ(yij;µi, σ

2
i ),

(3)

where φ is the probability density function of a
normal distribution.

Diversity Analysis
To analyze microbial diversity, alpha diversity was used to
measure the differences in gut microbial structure in the

following three stages: healthy, adenoma (small and large
combined), and cancer. We used the Shannon diversity index to
measure the alpha diversity of the gut community. The Shannon
index is defined as

H = −
N

∑

j=1

aj ln aj, (4)

where H represents the Shannon Index, N indicates the total
number ofmicrobial species detected, and aj indicates the relative
abundance of the j th microorganism.

RESULTS AND DISCUSSION

Alpha Diversity of Gut Microbiota Predicts
Colorectal Cancer Status
We computed the alpha diversity of gut microbes of the
healthy samples, adenoma samples and CRC samples using the
Shannon index and compared themwith the rank-sumDunn test
(Figure 1). We found that the alpha diversity was significantly
lower in the CRC samples as compared to the healthy samples
(two tailed, Dunn test, P < 0.0001) and adenoma samples (two
tailed, Dunn test, P = 0.0021). However, the alpha diversity of
the healthy and adenoma samples was not significantly different
(two tailed, Dunn test, P = 0.0571). To study the relationship
between the probability of cancer occurrence and the alpha
diversity, we performed logit regression to associate CRC status
with the Shannon index. The regression results showed that the
Shannon index is a significant predictor of CRC status (univariate

FIGURE 1 | Analysis of intestinal microbial diversity in different environments.

The three colors in the figure indicate the microbial diversity in different states:

green represents the healthy samples, yellow represents adenoma

(precancerous lesion) growth in the intestine, and red represents a sample of

colorectal cancer patients. The average value of Alpha diversity of healthy

samples was 4.0456, whereas the counterpart in the adenoma sample was

3.8957, and that in the cancer sample was 3.7161.
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FIGURE 2 | Differences in intestinal microbiome at the genus and species level among samples of different states. Green represents a healthy sample, and red

represents a colorectal cancer sample. (A) The top nine microbial genera with significant differences in abundance. (B) The top five microbial strains with significant

differences in abundance.

logistic model, P < 0.05). The fitted logistic regression model was
as follows:

P =
exp(−4.563d + 17.546)

1+ exp(−4.563d + 17.546)
, (5)

i.e., logit(P) = −4.563d + 17.546, where P is the
probability of being CRC, and d is the Shannon diversity
index. We provided the plot of the relationship of probability
of cancer occurrence and Shannon index of adenoma patients
as show in Figure S1. Our result suggested that the diversity
of the microbial species in the human intestines decreases
as colorectal malignancies grow, which was supported by
literature (Ahn et al., 2013).

Nine Genera Were Differentially Abundant
in the Colorectal Cancer Gut Environment
Using the RAIDA algorithm, we identified nine microbial
genera that were significantly different in abundance between
the CRC and the controls, which included Anaerostipes,
Coprococcus, Pseudoflavonifractor, Bilophila, Flavonifractor,
Desulfovibrio, Catenibacterium, Porphyromonas, and Weissella
(Figure 2A). We first observed that the abundance of
Coprococcus was higher in the healthy samples as compared
to the CRC patients. As a validation, Shen et al. showed
that colorectal adenomas had lower relative abundance
of Bacteroides spp. and Coprococcus spp. than controls
(Shen et al., 2010). The metabolic activity of butyrate-
producing bacteria is the major source of butyrate in
human body. Coprococcus is among the essential butyrate-
producing genera in human body, which promote colonic

health by mediating anti-inflammatory and antitumor
effects, as well as providing energy for colonocytes
(Singh et al., 2014).

Also notable in our result were the genera Fusobacterium
(Fusobacteriaceae) and Porphyromonas (Porphyromonadaceae),
which were shown highly enriched in the CRC patients. So
was the species Bibliophile wadsworthia. Those sulfidogenic
bacteria, including Desulfovibrio, Fusobacterium, and Bilophila
wadsworthia, likely participate in the development of CRC by
producing hydrogen sulfide (Ridlon et al., 2016; Dahmus et al.,
2018). Bilophila wadsworthia was additionally reported to cause
systemic inflammatory response in a preclinical mice study
(Zhou et al., 2017).

Interestingly, we also observed that the abundance of
Eubacterium hallii, Anaerostipes hadrus, and Eubacterium
ventriosum (Figure 2B) were significantly higher in the healthy
samples than in the CRC samples. E. hallii and A. hadrus can
utilize the glucose and fermentation intermediates acetate and
lactate to form butyrate and hydrogen, which were considered
important microbes in maintaining intestinal metabolic balance
(Christina et al., 2016).

We also found that Flavonifractor was higher in the
healthy samples than that in the CRC samples, which was
in agreement with Anand et al. (2016). We also observed
that Anaerostipes had a significantly lower abundance in
the CRC samples, which agreed with previous studies
(Peters et al., 2016; Mori et al., 2018). We found that no
Catenibacterium and Gardnerella (Bifidobacteriaceae) were
present in CRC patient samples, which was supported by
Chen et al. (2012).

We tested if the nine differentially abundant genera are viable
biomarkers to distinguish healthy individuals fromCRC patients.
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FIGURE 3 | The association network of intestinal microbiome in different states. Each circle represents the average relative abundance of a microbial species in that

state. The higher the average relative abundance, the larger the area of the circle. The solid gray line between the circles indicates a positive Spearman correlation

between the two groups, and the solid red line indicates a negative Spearman correlation between the two groups. (A–D) The association network of intestinal

microbiome in healthy, small adenoma, large adenoma and cancer samples.

We trained a random forest classifier using a 5-fold cross-
validation (rotative using 80% data as the training set the rest
20% as the testing set) using the first metagenomic dataset. The
classifier achieved an Area Under Curve (AUC) of 0.9333.

Microbial Co-occurrence Network Evolves
With CRC Development
Sophie Weiss et al. compared 8 methods of establishing
association networks, they recommend filtering out extremely
rare OTUs prior to network construction (Weiss et al., 2016).
According to Figure 7 in this paper, SparCC should be used when
the inverse simpson neff of microbes < 13, SparCC maintain
high precision compared with predictions on abundance tables
with low neff. But the inverse simpson neff of microbes is
27.9 (>13) in our paper, abundance of OTUs are more than

50% sparse. So we calculated the correlation between species
by Pearson correlation coefficient (Pearson, 1909). We further
conducted an association network analysis to identify the co-
occurring intestinal microbes under different CRC states. All
significant co-occurrences (PCC > 0.5) were found to be within
the same genera, such as Bifidobacterium, Bacteroides, and
Bilophila (Figure 3). Furthermore, both Bifidobacterium and
Bacteroides were previously identified by us to have significant
differences in abundance between healthy controls and CRC
patients (Figure 3A). It is thus reasonable to assess that these
bacteria were pathogenic as a group because the change of
abundance in one them can result in changes of abundance in
the entire clique. Our observation supported the theory that CRC
ensues an interrupted balance between these bacteria (Brennan
and Garrett, 2016; Yazici et al., 2017).
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Co-occurrence was also found among species of the genus
Prevotella in the healthy, small adenoma, and large adenoma
environments (Figures 3A–C), however, such co-occurrence
was missing in the CRC environment (Figure 3D). Conversely,
several species of the genera Streptococcus, Parvimonas,
Collinsella, and Citrobacter were only co-occurring in the
cancer environment. Overall, we observed fewer microbial
co-occurrences the healthy environment. While, in the adenoma
environments, we found an increase of co-occurring pathogenic
microbes. The number of co-occurring microbes was then
reduced in the CRC environment. The total number of co-
occurrence is relatively close between the healthy and the CRC
environment, however, the microbes involved were distinct.
The number of total co-occurrence might have peaked at
the adenoma environments because of the co-existence of
competing homeostatic and pathogenic microbial interactions in
the intermediacy stage.

CONCLUSIONS

We analyzed the alpha diversity of the gut microbial community
of 156 healthy, adenoma and CRC samples. We found the alpha
diversity was significantly higher in healthy samples as compared
to the CRC samples. We applied a modified ZIL model and
identified nine significantly different genera between the healthy
and CRC groups, i.e., Anaerostipes, Bilophila, Catenibacterium,
Coprococcus, Desulfovibrio, Flavonifractor, Porphyromonas,
Pseudoflavonifractor, and Weissella. We used these nine genera
as input features for a random forest classifier and successfully
predicted the CRC status with a high AUC score of 0.9333. Our
results suggested that the community member and the overall
structure of the gut microbiota are potential effective biomarkers
of CRC stages. This avenue is being actively pursued by us and
other computational researchers (Chen and Yan, 2013; Chen
et al., 2016b,c, 2018a,b,c; Chen and Huang, 2017), who may

bring in novel strategies for preventing and curing CRC in the
near future.
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Metataxonomic analysis represents a fast and cost-effective approach for acquiring

informative insight into the composition of the microbiome of samples with variable

diversity, such as wine samples. Nevertheless, it comprises a vast amount of laboratory

procedures and bioinformatic frameworks each one associatedwith an inherent variability

of protocols and algorithms, respectively. As a solution to the bioinformatic maze, QIIME

bioinformatic framework has incorporated benchmarked, and balanced parameters as

default parameters. In the current study, metataxonomic analysis of two types of mock

community standards with the same microbial composition has been performed for

evaluating the effectivess of QIIME balanced default parameters on a variety of aspects

related to different laboratory and bioinformatic workflows. These aspects concern

NGS platforms, PCR protocols, bioinformatic pipelines, and taxonomic classification

algorithms. Several qualitative performance expectations have been the outcome of the

analysis, rendering the mock community a useful evaluation tool.

Keywords: metataxonomics, next-generation-sequencing, bioinformatics, QIIME, PCR, Ion Torrent, Illumina, wine

1. INTRODUCTION

During the past years significant improvements in Next Generation Sequencing (NGS) platforms
and computational performance have given a considerable momentum to the research of microbial
communities. Primarily there are two sequencing-based methods for the classification analysis of
a microbiome, the metagenomic approach which concerns the shotgun sequencing of microbial
DNA, and the metataxonomic approach which refers to the sequencing of a marker gene, having
as a usual target the ribosomal RNA gene (Breitwieser et al., 2017). Due to the cost-effectiveness
and decreased demands on computational resources of the latter, it has been used quite broadly in
research and consists the focus of the current study.

A typical metataxonomic analysis includes a process that combines laboratory and bioinformatic
workflows. The steps involved in the laboratory process concern the collection of a microbiome
sample, the DNA extraction, the library preparation based on the preferred rRNA gene marker and
the massive sequencing with the NGS platform of choice. The bioinformatic workflow concerns
the quality filtering of the resulted data, the clustering of sequences based on a specific clustering
strategy and the taxonomic assignment to the representative sequence of each cluster.

There are a plethora of bioinformatic frameworks for the analysis of the microbiome data with
Quantitative Insights Into Microbial Ecology (QIIME) being one of the most popular and thus,
implemented in the current study (Caporaso et al., 2010; Bolyen et al., 2018). As a bioinformatic
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framework, it contains a significant amount of algorithms and
parameters to select and tweak, respectively, but studies such
as Bokulich et al. (2013, 2018) have provided informative and
useful benchmarks with the resulted balanced parameters being
incorporated into QIIME as default parameters. Nevertheless,
microbiome samples are subjects to different laboratory
procedures and protocols and as such implementation of
parameters must be evaluated. For that reason, a mock
community, which represents a microbiome sample of known
composition (Bokulich et al., 2016), consists a valuable tool
in assessing both laboratory and bioinformatic workflows
prior to establishment of parameters. There are many studies
dedicated to mock communities, such as Yuan et al. (2012)
where a mock community was used for the comparison of six
common DNA extraction protocols, or Yeh et al. (2018) where
mock communities were the tool for the establishment of a
methodology that could verify similar performance between
sequencing runs. However, the way that the current study differs
from the rest is based on the fact that the main focus is given on
assessing the effectiveness of QIIME balanced default parameters
on our laboratory and bioinformatic workflows destined to the
metataxonomic analysis of wine samples.

Wine samples are characterized by extremely dynamic
microbial populations. During wine ageing, these populations
tend to be quite sparse with most of the microorganisms being
difficult to detect as they enter the viable but non-culturable state
(VBNC) (Millet and Lonvaud-Funel, 2000), and thus making
NGS technology the most appropriate detection tool. Therefore,
sparse microbial communities are quite important since wine
spoilage microorganisms may go undetected due to their low
abundance and significantly alter the wine quality later on.
For that reason, the mock community in the current study
was chosen to be simple. Additionally to the main focus, the
mock community will serve a double qualitative role on a series
of aspects related to our workflows. Regarding the laboratory
procedure, to evaluate 16S metataxonomic analysis on data
produced by Ion Torrent and Illumina platforms, the impact
of 18S and ITS amplicons on the metataxonomic classification
and the effect of the PCR cycles during the library preparation
on the downstream bioinformatic analysis of the Ion Torrent
data. As far as the bioinformatic analysis is concerned, the mock
community will assist in ascertaining the impact on classification
of different quality filtering thresholds, the performance of
different sequence clustering methods and the classification
performance of two different algorithms. Moreover, we are
examining the possibility of utilizing the confidence of the
assigned taxonomy, as reported by the classification algorithms,
as a tool for eliminating false positives.

2. METHODS

2.1. Laboratory Workflow
Two microbial community standards from ZymoBIOMICSTM

with the same microbial composition of 8 prokaryotes and 2
eukaryotes and impurity level < 0.01% have been used. The
first standard contained DNA extracted from pure cultures (DNA
standard D6305 200 ng), whereas the second standard was

TABLE 1 | Culture and DNA standard microbial composition of the mock

communities used during the current study and 16S theoretical relative

abundance.

Species NRRL

accession

NO.

Theoretical composition

of 16S rRNA(%)

Culture standard DNA standard

Pseudomonas aeruginosa B-3509 4.2 4.6

Escherichia coli B-1109 10.1 10.0

Salmonella enterica B-4212 10.4 11.3

Lactobacillus fermentum B-1840 18.4 18.8

Enterococcus faecalis B-537 9.9 10.4

Staphylococcus aureus B-41012 15.5 13.3

Listeria monocytogenes B-33116 14.1 15.9

Bacillus subtilis B-354 17.4 15.7

Saccharomyces cerevisiae Y-567 - -

Cryptococcus neoformans Y-2534 - -

Based on ZymoBIOMICSTM, the strain information was extracted from the website of the

Agricultural Research Service Culture Collection and can be accessed with the NRRL

accession number (NRRL, https://nrrl.ncaur.usda.gov/).

constructed by pooling pure cultures (Microbial Community
standard D6300). The microbial species along with the 16S
theoretical relative abundance, as provided by the standards
specifications, are given in Table 1. The theoretical relative
abundances have been calculated by the standards provider
taking into consideration differences in the number of copies
each amplicon has among the species. However, such correction
is rendered impossible when estimating relative abundances in
real wine samples. Therefore, the estimated relative abundances
have not been corrected in order to examine the amount
of deviation between estimated and ideal relative abundance.
The aim of using the DNA standard (DS) was to assess the
performance of different PCR primers and amplicons used with
the NGS platforms, the impact of PCR cycles on the number of
chimeric sequences in the Ion Torrent platform, as well as the
performance of the bioinformatic pipelines at reconstructing the
16S theoretical relative abundance as well as assigning correct
taxonomy to the eukaryotic DNA. The additional goal of using
the culture standard (CS) was to ascertain the effectiveness of the
in-house DNA extraction protocol that follows the recommended
procedure of the DNeasy Plant Mini kit (Qiagen, Hilden,
Germany), including three bead-beating steps for 3 minutes in a
FastPrep-24 bead beater (MP Bio, Solon, OH) (Lleixà et al., 2018).

Amplicon based sequences were generated by two different
platforms, Ion Torrent (Centre for Omics Sciences, Reus, Spain)
and Illumina (Centre for Genomic regulation, Barcelona, Spain).
In the case of Ion Torrent, the sequencing libraries were prepared
in the in-house laboratory of the University Rovira i Virgili using
both the DNA and culture standard. For the libraries creation,
the 16S rRNA region was amplified by PCR with the primers
515F and 806R (Caporaso et al., 2011) whereas the 18S rRNA
region was amplified using the primers FR1 and FF390 (Prevost-
Boure et al., 2011). Since a positive correlation between PCR
cycles and amount of chimeric sequences has been reported (Ahn
et al., 2012), 30 and 45 PCR cycles were used for the libraries
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FIGURE 1 | Two commercial mock community standards from

ZymoBIOMICSTM with exactly the same microbial composition of 8

prokaryotes and 2 eukaryotes have been used in the current study. The

Microbial Community standard (referred as CS) consisted of microbial cells

from which DNA was extracted using an in-house DNA extraction protocol.

The DNA standard (referred as DS) contained DNA from the same 10 microbial

cells as the CS but extracted by ZymoBIOMICSTM. Both standards were

sequenced using Ion Torrent and Illumina platforms. Regarding the DNA from

the prokaryotic cells, both platforms sequenced the 16S amplicon. Regarding

the DNA from the eukaryotic cells, Ion Torrent sequenced the 18S amplicon

whereas Illumina the ITS amplicon. In the case of Ion Torrent 30 and 45 PCR

cycles have been implemented in both amplicons, whereas in Illumina only 30

PCR cycles were implemented. Sequencing data derived from both NGS

platforms have been analyzed using QIIME 1 and QIIME 2.

creation. The PCR products were purified using GeneRed Size
selection Kit (Qiagen, Hilden, Germany) and sent to COS for
sequencing with the 530 chip using the Gene Studio S5 System of
the Ion Torrent platform. On the other side, the DNA standard
and extracted DNA from the culture standard were sent directly
to CRG to be sequenced by IlluminaMiSeq 2x300 yielding paired
end sequences for the v3 region of the 16S [primers 341F and
785R, Herlemann et al. (2011)] and for the ITS region [primers
ITS1F/ITS2R, White et al. (1990)]. Schematic representation of
the experimental design is given in Figure 1.

The Ion Torrent platform generated in average 300 bp reads
for the 16S amplicon and 350 bp reads for the 18S amplicon, with
an average Phred33 quality score of 29 and 27, respectively. On
the other hand, Illumina generated in average 300 bp reads for
both amplicons with an average Phred33 quality score of 36 for
both 16S and ITS forward reads and 34 and 35 for the 16S and
ITS reverse reads, respectively. Due to the fact that the Phred33
quality of the Ion Torrent reads dropped below 10 in positions
located in the middle of the read, two filtering strategies were
applied. One applying a quality threshold at 10 (Q10) and one
at 20 (Q20). The motivation behind these two strategies was to
examine whether higher number of sequences or higher overall
quality will produce better results. Contrarily, for the Illumina
reads, only the Q20 threshold was applied.

2.2. Bioinformatic Workflow
Bokulich et al. (2013) benchmarked different quality filtering
strategies with QIIME 1 and Bokulich et al. (2018) benchmarked
the performance of difference classification algorithms between
QIIME 1 and QIIME 2. Therefore, the bioinformatic pipelines
were based on two versions of QIIME, QIIME 1 (version 1.9.1)
and QIIME 2 (version 2018.2), with the processing and
taxonomic assignment steps mentioned in Table 2. Along with
QIIME, bioinformatic tools such as FastQC (Andrews, 2010),
Trimmomatic (Bolger et al., 2014) and FLASH (Magoč and
Salzberg, 2011) were executed externally.

From the default parameters of QIIME 1 for the quality
filtering of raws reads, only the Phred33 quality threshold was
altered. Generally, the quality filtering concerned discarding
reads with consecutive bases above a given Phred33 threshold
but occupying <75% of the total read length, truncating reads
at positions with more than 3 consecutive bases with Phred33
quality less than the desired and reassessing the discarding
rule after truncation. Due to the fact that QIIME 1 quality
filtering steps require the sequences to be multiplexed, for the
demultiplexed Illumina sequences the quality filtering steps of
QIIME 1 were replicated in Trimmomatic. Moreover, the
DADA2 algorithm (Callahan et al., 2016), as incorporated into
QIIME, truncated reads at the first base instance of undesired
quality and discarded reads with >2 expected errors. An
additional filtering step was implemented by removing chimeric
sequences with VSEARCH UCHIME de novo (Rognes et al.,
2016) or DADA2.

Regarding the Illumina reads two clustering methods were
applied. One that creates clusters of sequences, called operational
taxonomic units (OTU) based on a similarity threshold (Rideout
et al., 2014) and one that defines sequence variants called
amplicon sequence variants (ASV) (Callahan et al., 2017). The

TABLE 2 | Bioinformatic pipelines based on NGS platform and method of

clustering used during this study for comparison of their performance over the

mock community standards.

Ion Torrent OTU Illumina OTU Illumina ASV

Barcode extractiona Paired ends mergingc Paired ends mergingc

Quality filtering (Q10 or

Q20)a
Quality filtering (Q20)d DADA2 quality filtering

(Q20)b

Reads dereplicationb Reads dereplicationb DADA2 reads

dereplicationb

Open reference OTUb Open reference OTUb DADA2 Chimeras

filtering (only ITS)b

Chimeras filteringb Chimeras filteringb DADA2 ASVb

SKLEARN classifier

trainingb
SKLEARN classifier

trainingb
SKLEARN classifier

trainingb

SKLEARN taxonomy

assignmentb
SKLEARN taxonomy

assignmentb
SKLEARN taxonomy

assignmentb

BLAST+ taxonomy

assignmentb
BLAST+ taxonomy

assignmentb
BLAST+ taxonomy

assignmentb

a QIIME 1 ( version 1.9.1 ).
b QIIME 2 ( version 2018.2 ).
c FLASH.
d Trimmomatic.
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OTUmethod produces an OTU-table where, for each sample, the
number of sequences in each OTU has been recorded (Rognes
et al., 2016), whereas the ASV method is related with an ASV-
table of the frequency that each ASV has been observed in each
sample (Callahan et al., 2016). OTUs containing <10 sequences
across all samples were filtered-out as noise (Giordano et al.,
2018), and the similarity threshold for the OTU clustering was set
to 99% as this threshold returnsmore comparable results between
OTU and ASV (Van Der Pol et al., 2018).

For the metataxonomic classification the database SILVA
(version 132) has been the source of taxonomy for the 16S
and 18S amplicons (Quast et al., 2012) as it is the most recent
and updated database, whereas the ITS taxonomy relied on
the UNITE database (version 7.2) (Nilsson et al., 2018). The
taxonomic assignment was carried out by two algorithms, the
k-mer based multinomial naive Bayes algorithm integrated in
the Python Scikit-learn library (SKLEARN) (Pedregosa et al.,
2011) and the Basic Local Alignment Search Tool+ (BLAST+)
algorithm which represents an enhanced version of the very
popular BLAST algorithm available from 1997 (Camacho et al.,
2009). Both algorithms report a confidence percentage, with
the SKLEARN algorithm referring to the amount of confidence
for the taxonomy assigned at a specific taxonomic level and
BLAST+ referring to the fraction of top hits that matched the
consensus taxonomy at a given level. As SKLEARN represents
a machine learning approach, the additional flexibility provided
was to assign taxonomy after training the algorithm with
extracted reference sequences from the SILVA and UNITE
databases using the aforementioned PCR primers and trimmed
to a length equal to the maximum length of the reads after
quality filtering. The training process of SKLEARN is based
on k-mers where the value 7 was used as it is the default
balanced QIIME 2 parameter. In relaxed terms, during the
training process SKLEARN splits each reference sequence into
a series of overlapping heptamers and assigns a level of
taxonomy to a given collection of heptamers. Later on, during
the classification process SKLEARN splits each sequence once
again into a collection of overlapping heptamers, and tries to
assign a level of taxonomy by taking into consideration the
collections of heptamers from the reference sequences. The
balanced default parameters of BLAST+ remained unaltered
whereas the performance of SKLEARN improved after reducing
the confidence parameter from the default 0.7 value down to 0.5.

3. RESULTS

Figure 2 shows the number of sequences for each sample
after applying Phred33 quality filtering and removing chimeras.
For the Ion Torrent a mild filtering was applied after setting
the quality threshold at Q10 with an average of 8.6% of the
sequences filtered, across all samples, for the 16S amplicon
and 14.1% for the 18S whereas at Q20 an average of 62
and 72.4% was removed, respectively. An additional average
of 13.5% of the sequences were identified as chimeras for
the 16S amplicon and 1.2% for the 18S at Q10, while at
Q20 the identified chimeras were 5.9 and 1.3%, respectively.

Considering the PCR cycles, their impact on the production
of chimeras was not clear for the 16S amplicon as at Q10,
45 cycles generated 3.5% more chimeras than 30 cycles for
the CS but for the DS they produced 4.2% less. The same
pattern repeated for the 16S amplicon at Q20 with 45 cycles
of the CS producing 1.6% more chimeras but for the DS
3.5% more chimeras produced from 30 cycles. On the other
hand, the difference was more apparent for the 18S amplicon
producing more chimeras at 45 than 30 cycles, but the difference
was marginal representing only 1.6% of the sequences in
average (Figure 2A).

For the Illumina platform, the merging of the paired ends
caused a ≈ 2% loss of reads for the 16S amplicon in both
standards, whereas for the ITS amplicon of the DS the loss was
38%. Due to the fact that the sequencing of the ITS amplicon
for the CS generated very low amount of sequences which had
very low Phred33 quality, this sample was excluded from the
study. This was the additional reason for not reporting the
theoretical abundance of 18S and ITS amplicons, along with
the fact that from the two standards only the CS reports 18S
theoretical abundance in the specifications. However, research
interest still remained on examining whether the classification
algorithms could assign correct taxonomy to the eukaryotic
DNA and which amplicon of the two improves classification
performance. For the 16S amplicon of the CS, the Illumina OTU
pipeline removed 1.2% of sequences during the quality filtering
step and an additional 23.7% was identified as chimeras. The
pipeline performed quite similar for the DS removing 1 and
17.9%, respectively. On the contrary, for the 16S amplicon of the
two standards the Illumina ASV pipeline identified≈ 80% of the
sequences as chimeric. This high percentage could be justified
in cases where non-biological nucleotides, such as primers or
adapters, have not been removed prior to analysis 1, but since this
rationale did not hold for the given dataset, the chimera filtering
step was omitted for both standards. Therefore, the only loss was
during the quality filtering with both standards losing ≈ 5% of
sequences. Regarding the ITS amplicon of the DS, the Illumina
OTU pipeline filtered 0.8% of sequences based on quality but
did not identify any chimeras, and the Illumina ASV pipeline
removed 1.9% during quality filtering and a further 5% during
chimera filtering (Figure 2B).

The metataxonomic classification was performed at genus
level since accurate classification at species level is a known
limitation of rRNA amplicon sequencing due to the fact that
it is a highly conserved region (Sentausa and Fournier, 2013).
This limitation became apparent also in the current study as the
only bacterium identified consistently and accurately at species
level was Listeria monocytogeneswhereas Salmonellawas the only
one whose classification never reached species level. From the
rest, Bacillus demonstrated the highest variability with overall
7 different species being identified, 5 species for Staphylococcus
and Pseudomonas, and ≤ 3 for Escherichia, Lactobacillus, and
Enterococcus. Although this broad variability concerned the OTU
clustering method, the variability in the ASV method was more
constrained including only the cases of either correct species

1https://benjjneb.github.io/dada2/tutorial.html
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FIGURE 2 | Number of sequences resulted after applying quality and chimeras filtering. (A) Ion Torrent. First letter of the sample names (C or D) represents type of

mock community standard (Culture or DNA). What follows is the number of PCR cycles (30 or 45) with the amplicon (16S or 18S) at the end. The raw number of

sequences are represented in green and in red and blue the two Phred33 quality filtering strategies Q20 and Q10, respectively. (B) Illumina. First letter of the sample

names (C or D) represents type of mock community standard (Culture or DNA) with the amplicon (16S or ITS) at the end. The raw number of sequences are

represented in green and in red and blue the sequences resulted from the filtering steps of the Illumina ASV and Illumina OTU pipeline, respectively.

identification, no species identification or species identification
as uncultured bacterium.

Figures 3–6 depict 16S estimated relative abundance (orange
color) being juxtaposed against theoretical relative abundance
(blue color) for both standards and NGS platforms. Overlapping
between the two abundances is being represented with dark
gray color and estimated abundance below 1% or undefined
(0%) is being represented numerically. Excess of orange color
at the bar edges denotes abundance overestimation whereas
excess of blue color abundance underestimation. Next to each
figure the taxonomic assignment confidence is being displayed
as it has been reported by the classification algorithm at genus
level (All). An additional step has been performed where the
assigned taxonomies have been filtered by setting a confidence
threshold which is displayed next to the unfiltered confidence.
This threshold was initially set to 90% (> 0.90) and gradually
decreased until an optimal balance between amount of false
positives and theoretical abundance reconstruction is achieved.
Apart from Figures 5B, 6B,D this confidence threshold matches
the minimum unfiltered confidence reported by the classification
algorithm giving an identical estimated relative abundance before
and after confidence filtering as well as the same amount of false
positives (FP).

For the Ion Torrent platform, SKLEARN failed to identify
Salmonella regardless quality filtering threshold, PCR cycles
or standard type, while achieved best performance with the
DS, 45 PCR cycles, Q20 and confidence threshold 80%
(Figure 4G). Overall, themaximumnumber of false positives was
2 with the genera Carnobacterium, Citrobacter, Oenococcus, and
Pediococcus consisting the pool of false positives. At the same

time, BLAST+ seems to have exhibited a better performance than
SKLEARN with optimal performance also with the DS, 45 cycles
and Q20 (Figure 4H), but generating higher amounts of false
positives and requiring a lower confidence threshold for optimal
performance. In general, BLAST+ proved to be more sensitive
than SKLEARNwith 5 as the maximum number of false positives
and a persistent confidence threshold of 60%. The false positives
identified by BLAST+ were the genera Cedecea, Citrobacter,
Enterobacter, Klebsiella, Oenococcus, and Pediococcus.

With Illumina generated data, the landscape was more clear.
Both pipelines, Illumina OTU and ASV, yielded similar results
with both classification algorithms performing better with the
DS (Figure 6). Once again BLAST+ held the best performance
managing to approximate quite accurately the theoretical
composition (Figures 6B,D). However, it demonstrated overall
higher sensitivity producing more false positives with their
number being affected by even a slight increase of the confidence
threshold by just 1% from the minimum reported confidence
of 69% (Figures 5B, 6B,D). The pool of false positives for
SKLEARN was comprising the genera Acetobacter, Enterobacter,
and Oenococcus, whereas for BLAST+ the genera Citrobacter,
Acetobacter, Cronobacter, Enterobacter, and Oenococcus. In
general, although the relative abundance of the false positives
remained below 0.01%, the only excemption was with the CS
and the Illumina ASV pipeline where Cronobacter reached
0.3%. Moreover, even if the confidence level of the classification
assignment was quite low for the false positives in both
algorithms (60%), the genera that defied this trend were
Acetobacter, Enterobacter and Oenococcus reaching as high as
90% confidence.
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FIGURE 3 | 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard using Ion Torrent. Overlapping between the two

abundances is being represented with dark gray color. Cult_30 and Cult_45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold and FP

false positives without (first number) and with confidence filtering (second number). Figures to the left (A,C,E,G) represent estimated abundance based on SKLEARN

algorithm and to the right (B,D,F,H) based on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on

filtered (> %).

With respect to fungi, none of the algorithms detected
Cryptococcus regardless NGS platform or standard type, contrary
to Saccharomyces which was detected though not always at

species level. In both Illumina OTU and ASV pipelines, both
algorithms exhibited similar performance by identifying only
Saccharomyces with 100% confidence without yielding any false
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FIGURE 4 | 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard using Ion Torrent. Overlapping between the two

abundances is being represented with dark gray color. DNA_30 and DNA_45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold and

FP false positives without (first number) and with confidence filtering (second number). Figures to the left (A,C,E,G) represent estimated abundance based on

SKLEARN algorithm and to the right (B,D,F,H) based on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the

right on filtered (> %).

positives. On the other hand, BLAST+ in Ion Torrent managed to
identify Saccharomyces with 99.9% confidence in both standards
regardless quality threshold and PCR cycles, but produced

Zygosaccharomyces as a false positive with CS at Q10 and 30
cycles and Kazachstania with DS at Q20 and 45 cycles having
a 60% confidence in both cases. On the side of SKLEARN,
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FIGURE 5 | 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard using Illumina. Overlapping between the two

abundances is being represented with dark gray color. OTU and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number)

and with confidence filtering (second number). Figures to the left (A,C) represent estimated abundance based on SKLEARN algorithm and to the right (B,D) based on

BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).

Saccharomyces occupied ≈ 61% of the relative abundance in
average across the different PCR cycles in both standards at Q10
with the rest of the abundance being occupied by a taxonomy
assigned as uncultured fungus. At Q20, Saccharomyces occupied
99% of the relative abundance with the DS at 45 cycles and 50% in
the rest of the samples, with the remaining abundance once again
assigned as uncultured fungus. Although in the case of BLAST+
the false positives could be removed by raising the confidence
threshold, in the case of SKLEARN confidence filtering did not
improve the result as the confidence level was in average 90% for
Sacchraromyces and 85% for the false positives.

4. DISCUSSION

A mock community represents a microbiome sample of known
microbial composition and in the current study two types of
mock community standards with the same species composition
have become the tool for evaluating the effectiveness of
QIIME balanced default parameters on metataxonomic analysis
workflows destined to the analysis of wine aging samples.
The evaluation was performed with QIIME framework and
two classification algorithms, one representing a popular local
alignment algorithm (BLAST+) and the other one a popular
machine learning approach (SKLEARN). These two algorithms
have been introduced for the first time in QIIME 2 and
their performance compared to the classification algorithms

of QIIME 1 have been benchmarked by Bokulich et al.
(2018) where they exhibited similar as well as enhanced
performance on different performance metrics. Moreover,
Bokulich et al. (2013) in QIIME 1 benchmarked different
quality-filtering strategies so as to provide guidelines for
processing Illumina amplicon-based sequencing data. Although
the suggested parameters of these studies have been incorporated
as balanced default parameters in QIIME , microbiome samples
undergo different laboratory procedures and protocols and thus
these parameters should be evaluated prior to implementation.
Therefore, the aim of the present study was to examine the
effect of these parameters on a series of aspects related to
our laboratory and bioinformatic workflows using a mock
community and focusing on reconstructing the theoretical 16S
relative abundance or yeast composition based on 18S and
ITS amplicon sequencing. Furthermore, the mock community
facilitated the qualitative assessment of other aspects such as the
performance of the classification algorithms, the possibility of
utilizing the reported taxonomic assignment confidence from the
classification algorithms as a tool for eliminating false positives,
the performance of Ion Torrent and Illumina NGS platforms
with the 16S amplicon, the effect of PCR cycles on the analysis
of Ion Torrent data, as well as the outcome of the in-house DNA
extraction protocol by using a culture based standard (CS).

The 16S metataxonomic analysis of the CS approximated
quite closely the outcome of the DS analysis in the Illumina
platform, while it demonstrated an apparent variability in the

Frontiers in Microbiology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 1084352

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kioroglou et al. QIIME Default Parameters on Metataxonomic Analysis

FIGURE 6 | 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard using Illumina. Overlapping between the two abundances

is being represented with dark gray color. OTU and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number) and with

confidence filtering (second number). Figures to the left (A,C) represent estimated abundance based on SKLEARN algorithm and to the right (B,D) based on BLAST+.

Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).

case of the Ion Torrent platform. On the other hand, the
Ion Torrent 18S analysis produced similar results in both
standards. This denotes that pinpointing a performance culprit
among the NGS platforms, PCR protocols or bioinformatic
pipelines is rendered difficult as a further variability is being
added by the DNA extraction protocol. Regarding the discard
of the ITS amplicon based sample of the CS due to low
quality, it has been attributed to the poor performance of
the DNA extraction protocol since good quality Illumina
sequences were generated with the corresponding sample of
the DS.

With Ion Torrent, both classification algorithms performed
better with the DS linked to 45 PCR cycles and Q20 as a
quality threshold signifying that optimal performance is more
related to better overall sequence quality rather than higher
amount of sequences as produced by the Q10 threshold. This
could be associated with the fact that Q20 is related to 1%
base call error rate while Q10 to 10% (Ewing and Green,
1998), indicating that low Phred33 quality threshold might
lead to higher possibility of misclassification. Nevertheless, this
result could not be easily attributed to the PCR cycles as 45
cycles in DS produced the highest amount of sequences among
all samples and on the other hand in CS both algorithms
favored 30 cycles. Moreover, the impact of PCR cycles on the
amount of chimeric sequences was either marginal or unclear,
however a negative correlation between quality threshold and

amount of chimeras became apparent with the 16S amplicon,
with fewer chimeras being identified at Q20 threshold. This
indicates that a small increase of the PCR cycles does not
influence greatly the production of chimeras and many of those
chimeric sequences had overall low quality as they represent
PCR artifacts. Similarly, slight difference on the production
of chimeric sequences was also observed by a small increase
of PCR cycles in the study of Ahn et al. (2012) when
25 PCR cycles were compared to 30 cycles, however great
disparity on the amount of chimeras was observed between
15 and 30 cycles with the authors suggesting the lowest PCR
cycles possible.

As Van Der Pol et al. (2018) suggested, setting the similarity
threshold to 99% for the OTU clustering method produced
similar results as the ASV method in Illumina, however
the latter demonstrated a narrower variability of taxonomic
assignment at species level. Furthermore, the omitted chimera
filtering step in Illumina ASV pipeline for the 16S amplicon
highlighted its importance as false positives above the impurity
level of 0.01% were emerged. Additionally, the two NGS
platforms presented different filtering behaviors at Q20 with Ion
Torrent removing more sequences during the Phred33 quality
filtering and less during chimera filtering, whereas Illumina
performed the opposite. That could indicate that more chimeric
sequences with high Phred33 quality score were generated
with Illumina.
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As a whole, BLAST+ exhibited better and more balanced
performance in both NGS platforms than SKLEARN, however
it demonstrated higher sensitivity producing more false positives
and overall lower confidence regarding taxonomic assignment.
The low amount of false positives generated by SKLEARN with
the 16S amplicon could be associated with its training process
as higher amount of reference sequences were extracted from
the database with the PCR primers of this amplicon compared
to 18S and ITS. Nonetheless, its enhanced performance with
the Illumina data could be connected to the fact that its default
parameters were linked with this NGS platform in the study of
Bokulich et al. (2018). Moreover, the lack of false positives from
both algorithms with the ITS amplicon could be explained by
its higher specificity compared to 18S (Trtkova and Raclavsky,
2006), and overall the reported taxonomic assignment confidence
from the algorithms could not lead to an effective filtering tool of
false positives as some of the false taxonomies have been assigned
with high confidence level.

5. CONCLUSIONS

Overall, the mock community standards have been proven
a useful tool demonstrating good performance of QIIME
balanced default parameters on our workflows especially
with the Illumina platform. Nevertheless, the performance
of the NGS platforms or the classification algorithms
should not be considered deterministic since an exhaustive
benchmarking process is needed for that purpose. As underlined
by Bokulich et al. (2018), further fine-tuning of theQIIME default
parameters with limited number of mock communities could
lead closer to an overfitted rather than generalized performance.
Moreover, a series of qualitative performance expectations could
be proposed that could be summarized as better metataxonomic

outcome when setting the Phred33 quality filtering threshold
as high as possible, marginal difference in chimeras production
between 30 and 45 PCR cycles, less false positives with ITS
amplicon sequencing compared to 18S, similar performance
between ASV and OTU clustering method when the clustering
similarity threshold of the latter is set to 99% and more
comparable results between Ion Torrent and Illumina platforms
using the BLAST+ classification algorithm.
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In recent decades, increasing evidence has strongly suggested that gut microbiota play
an important role in many intestinal diseases including inflammatory bowel disease (IBD)
and colorectal cancer (CRC). The composition of gut microbiota is thought to be largely
shaped by interspecies competition for available resources and also by cooperative
interactions. However, to what extent the changes could be attributed to external
factors such as diet of choice and internal factors including mutual relationships among
gut microbiota, respectively, are yet to be elucidated. Due to the advances of high-
throughput sequencing technologies, flood of (meta)-genome sequence information and
high-throughput biological data are available for gut microbiota and their association
with intestinal diseases, making it easier to gain understanding of microbial physiology
at the systems level. In addition, the newly developed genome-scale metabolic models
that cover significant proportion of known gut microbes enable researchers to analyze
and simulate the system-level metabolic response in response to different stimuli
in the gut, providing deeper biological insights. Using metabolic interaction network
based on pair-wise metabolic dependencies, we found the same interaction pattern
in two IBD datasets and one CRC datasets. We report here for the first time that
the growth of significantly enriched bacteria in IBD and CRC patients could be
boosted by other bacteria including other significantly increased ones. Conversely, the
growth of probiotics could be strongly inhibited from other species, including other
probiotics. Therefore, it is very important to take the mutual interaction of probiotics
into consideration when developing probiotics or “microbial based therapies.” Together,
our metabolic interaction network analysis can predict majority of the changes in
terms of the changed directions in the gut microbiota during enteropathogenesis. Our
results thus revealed unappreciated interaction patterns between species could underlie
alterations in gut microbiota during enteropathogenesis, and between probiotics and
other microbes. Our methods provided a new framework for studying interactions in gut
microbiome and their roles in health and disease.

Keywords: bacterial interaction patterns, metabolic interaction network, gut microbiota community, intestinal
microbial ecology, enteropathogenesis, probiotics
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INTRODUCTION

In recent decades, increasing evidence has strongly suggested that
gut bacteria play an important role in human health and disease
(Selber-Hnatiw et al., 2017; Jackson et al., 2018). Gut bacteria
has been considered as a real tissue with its specific functions
such as modulating the metabolic phenotype, influencing innate
immunity, protecting against pathogens, and so on (Eckburg
et al., 2005; Tomasello et al., 2017). Changes in the composition
of the gut microbiota have been proven to be associated with
many diseases (Jackson et al., 2018) including inflammatory
bowel disease (IBD; Joossens et al., 2011; Matsuoka and Kanai,
2015; Chu et al., 2016; Sartor and Wu, 2017; Zuo and Ng, 2018),
type 2 diabetes (Delzenne et al., 2015), obesity (Moreno-Indias
et al., 2014; Tai et al., 2015), atherosclerosis (Drosos et al., 2015;
Yamashita et al., 2015) and colorectal cancer (CRC; Aarnoutse
et al., 2017; Liang et al., 2017; Russo et al., 2018). Among which,
IBD (Miyoshi and Chang, 2017; Sartor and Wu, 2017), including
both Crohn’s Disease (CD) and ulcerative colitis (UC), is one of
the most-studied imbalances between intestinal microflora and
the immune system. Over the past 50 years, there was a dramatic
increase in IBD (Sartor and Wu, 2017). In addition, patients with
IBD are at increased risk of CRC, accounting for less than 2%
of colon cancer cases yearly (Tilg et al., 2018). CRC, one of the
most common cancers with the highest mortality worldwide, has
also been reported to be associated with intestinal microflora
(Zeller et al., 2014).

Gut microbes live as a community, sharing the common
intestinal environment (Shetty et al., 2017). They interact with
each other, maintaining the intestinal microbial flora in a state
of equilibrium (Sommer et al., 2017). The composition of gut
microbiota is thought to be largely shaped by interspecies
competition for available resources along with cooperative
interactions (Zelezniak et al., 2015). Diet is considered as
one of the main drivers (De Filippo et al., 2010), with
certain contributions from intrinsic metabolic dependencies.
However, to what extent the changes could be attributed to
external factors like diet of choice and internal factors such
as mutual relationships among gut microbiota, respectively, are
yet to be elucidated. Furthermore, it is still unclear how such
intrinsic dependencies could contribute to the parthenogenesis
of intestinal diseases such as IBD and CRC.

In this study, we performed systematic network analysis
based on pairwise interspecies metabolic dependencies among
gut microbes in IBD and CRC patients and compared that
of the healthy controls. Network analysis has proven to be a
valuable tool in exploring interactions between a set of items
(nodes, such as individuals in a school, species in a complex
food web, proteins in metabolic pathways) by biologists and
scientists in other fields (Kim and Hastak, 2018), and has recently
been applied to explore and identify microbial patterns that are
generally difficult to detect in complex systems (Chow et al., 2014;
Cardinale et al., 2015; Kong et al., 2018). Due to the advances
of high-throughput sequencing technologies, flood of (meta)-
genome sequence information and high-throughput biological
data are available for gut microbiota and their association with
intestinal diseases, making it easier to gain understanding of

microbial physiology at the systems level (Covert et al., 2004).
In addition, the newly developed genome-scale metabolic models
that cover significant proportion of known gut microbes enable
researchers to analyze and simulate the system-level metabolic
response in response to different stimuli in the gut, providing
deeper biological insights (Zhang and Hua, 2016; Magnusdottir
et al., 2017; van der Ark et al., 2017). Based on these data,
we revealed unappreciated patterns in gut microbes of IBD
and CRC patients and healthy controls, and were able to
accurately predict the majority of the changes (i.e., decreased
or increased) in the gut microbiota during enteropathogenesis.
As compared with co-occurrence network (Cardinale et al.,
2015), which has been widely applied in the identification
and characterization of interspecies interactions among gut
microbes, our metabolic dependency network is a directional
network and can provide more information with considering
the interaction between the bacteria. We thus concluded
that metabolic dependencies underlie interaction patterns of
gut microbiota community during enteropathogenesis, and
believed that our methods could provide a new framework
for studying interactions in gut microbiome and their roles in
health and disease.

MATERIALS AND METHODS

Data Collection
Pair-Wise Interactions (Metabolic Dependencies) of
Human Gut Microbes
Genome-wide metabolic models for 773 human gut microbes
were obtained from Stefanía et al. (Magnusdottir et al., 2017).
Pairwise interactions, i.e., changes in silico growth rates of two
co-culturing microbes as compared with that of cultured alone
were calculated using the methods described in the literature
(Magnusdottir et al., 2017).

Briefly, genome-scale metabolic models of 773 human
gut microbes described in literature (Magnusdottir
et al., 2017) were reconstructed based on comparative
genomics and enrichment literature-derived experimental
data. Through a combination of detailed biochemical
information from genome annotations and literature resources,
genome-scale metabolic models can be constructed. The
gene-protein-reaction (GPR) relationships are annotated
in the metabolic modes with mass- and energy-balanced
reactions. Furthermore, other omics data such as transcriptomic
and proteomic data could be integrated into the model,
making the model more informative. Additionally, pairwise
simulations were performed on every pair of 773 microbes
(298,378 pairs). Single and pairwise in silico growth
rates were calculated on two different diets (Western and
High fiber diet).

Based on these growth rates, we calculated the “weight” of
the interaction between bacteria using the following equation,
w = Log2

P
S , where P stands for growth rate of the species

of interest when co-cultivated with another bacterium (paired
growth rate) and S stands for growth rate when cultivated alone.
A “w” value of 0 indicates the growth rate of a bacterium is
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not changed by the other co-cultivated bacterium; a positive
(negative) value of “w” indicates the growth rate can be promoted
(inhibited) by the co-cultivated bacterium. The interactions
between two bacteria are thus bi-directional.

Gut Metagenomic Data of IBD and CRC Patients and
Healthy Controls
In total three metagenomic datasets, including two for IBD and
one for CRC, were obtained from the European Nucleotide
Archive (ENA; Leinonen et al., 2011)1 database.

The first IBD datasets (referred to as IBD1 in our
study) are available from ENA under the accession of
ERP005534. It contained ten IBD and ten healthy individuals
whose fecal microbiome compositions were determined using
Illumina HiSeq 2500.

The second IBD datasets [ENA accession ID: SRP002423;
referred to as IBD2 (NIH HMP Working Group et al., 2009;
Noecker et al., 2016) in our study] contained 14 healthy samples
and 20 disease samples; their fecal samples were sequenced using
a 454 GS FLX Titanium pyrosequencer. This study is a part of the
NIH Human Microbiome Project (HMP).

The third CRC datasets [ENA accession ID: ERP005534;
referred to as CRC (Zeller et al., 2014) in our study] contained
fecal samples of 53 patients and 61 healthy controls. In this study,
metagenomic sequencing of fecal samples was used to identify
potential markers for distinguishing CRC patients from tumor-
free controls. The detailed description about the experiments
actually entailed can be found in the literature (Zeller et al.,
2014). In brief, fresh stool samples were collected and genomic
DNA was extracted using the GNOME DNA Isolation Kit
(MP Biomedicals). Then library preparation for metagenomic
sequencing was automated and adapted on a Biomek FXp Dual
Hybrid. And metagenomic sequencing was performed on the
Illumina HiSeq 2000/2500 platform.

Read Processing and Quality Control
Trimmomatic (Bolger et al., 2014) was used to remove adaptors
and low quality bases (trimming) from the Illumina paired-
end and single-end reads. For Roche/454 sequence data, QTrim
(Shrestha et al., 2014) was used for trimming. FastQC (Andrews,
2014)2 was then used for quality control prior to downstream
analysis; the generated HTML report files were manually
examined for possible problems in the raw and processed data.
The usable trimmed data were referred to as “Clean Data,” and
were used for downstream analysis.

Species Identification and Composition
Analysis of Metagenomic Data
MetaPhlAn2 (Metagenomic phylogenetic analysis version 2;
Truong et al., 2015) was used for the taxonomic composition
analysis on the Clean Data with default parameters. MetaPhlAn2
can efficiently profile the composition of microbial communities
with species level resolution.

1http://www.ebi.ac.uk/ena
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Differential Abundance Analysis Between
Disease and Healthy Samples
Wilcoxon Rank Sum test was used to identify differentially
abundant species between patients and healthy controls. The
detailed results are available in Supplementary Table S1.
Supplementary Figure S1 shown in is the boxplot of the
relative abundances of identified species in IBD1 patients
(red) and healthy controls (blue); the red (blue) dots under
the box plots represent a significant decrease (increase) in
the abundance in disease group. The classification of the
bacteria (Commensal, Pathogen, and Probiotic) is provided by
the literature (Magnusdottir et al., 2017), which is shown in
Supplementary Table S2.

Construction and Characterization of
Metabolic Dependency Network for
Disease and Healthy Controls
The metabolic dependency networks were constructed using
pairwise interactions and consisted of nodes and edges. Networks
were constructed for each of the three datasets we collected, and
separately for patients and healthy controls. For each network,
the nodes were microbial species selected from the union of the
top 50 most abundance species in patients and the respective
healthy controls, whose combined account for more than 90%
of the total abundances of all species, while the edges were
pairwise interactions (“weights”) between two connected species.
To account for the impact of diets [Western and High fiber diet,
as described in the literature (Magnusdottir et al., 2017)], two
networks were constructed for each of the patient and control
groups. At the end, four networks were obtained for each dataset.
An open-source tool, Gephi (Bastian et al., 2009), was used for
network visualization and analysis.

Statistics
All statistical analysis and plots were performed in R version
3.4.33. Mann–Whitney and Chi square test were used to
analyze differences between groups. The p-value < 0.05 was
considered significant.

RESULTS

Construction of Metabolic Dependency
Network for Gut Microbiota During
Enteropathogenesis
The flow chart of the methods used is shown in Supplementary
Figure S2. We collected gut metagenomics data from in total
three published datasets, including two for IBD (NIH HMP
Working Group et al., 2009; Noecker et al., 2016) and one for
CRC (Zeller et al., 2014), each with different numbers of patients
and healthy controls (see section “Materials and Methods” for
details). We first constructed a metabolic dependency network
for each of the sample groups (i.e., patients and controls). Briefly,

3www.r-project.org
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MetaPhlAn2 was used for the taxonomic composition analysis on
the clean data with default parameters. The nodes in the network
are microbial species selected from the union of the top 50 most
abundance species that together account for more than 90% of
the total abundances of all species in healthy and disease groups,
while the edges represent pairwise interactions between two
connecting species. The weight of the edge is the absolute value
of the influence, which equals to log2-transformed growth rates
change between co-culturing and single-growth (i.e., the growth
rate when cultivated alone). The edges are thus directional;
depending on the thresholds of the weights of the edges, there
could be two edges connecting two neighboring nodes in the
network, with each representing the impact of co-culturing as
compared with the respective single-growth. Because the growth
rate under co-cultured conditions could be slower than that of the
single-culturing, we used red (green) to represent the increased
(decreased) growth rate under co-cultured conditions.

For each of the three studies from where our data were
obtained, we constructed networks for the patients and the
respective healthy controls separately. To account for the impact
of diet [western diet and a high fiber diet, as described in
Magnusdottir et al. (2017)], we constructed two networks each
of the patient and control groups. At the end, we obtained four
networks for each dataset. In this study, we described the results
of IBD1 in western diet as an example, other datasets produced
approximately the same results which were not shown here.

Network Centrality Analysis Revealed
Probiotics Are Among the Top Important
Nodes
As shown in Figure 1, we included dependencies of weight
greater than four to build the network for healthy and
disease groups respectively. We used gray, green, red, and
pink to indicate nodes for commensal, probiotic, pathogenic,
and opportunistic pathogenic bacteria, respectively, using
classifications from a public dataset (Magnusdottir et al., 2017).
To identify subclusters in which nodes are more densely
connected than to the rest of the network, we used a modularity
algorithm (a “community” detection technique) implemented in
Gephi (Bastian et al., 2009) and identified two main subclusters
(Figure 1); among which, one was mainly composed of probiotics
bacteria, while the other was mostly composed of species of the
genus of bacteroides. Surprisingly, we found that some pathogen
bacteria, such as some strains of Escherichia coli, was also
included in the probiotics subcluster and had a notable inhibitory
effect on the probiotics included (Figure 1).

We then checked the top important nodes in the metabolic
dependency network. We used the Gephi’s PageRank algorithm
(Chen et al., 2007) to rank the nodes. In addition to network
centrality, PageRank also considers both the inbound and
outbound links, which is suitable for analyzing our metabolic
dependency network. Strikingly, we found that most of the top
20 bacteria were probiotics (10/11 in health and 11/11 in disease
states), as shown in Supplementary Tables S3, S4 and Figure 2.
These results thus indicate that probiotics may play important
roles in the metabolic dependency network.

Growth of Probiotics Was Strongly
Inhibited by Other Bacteria in Both
Patients and Healthy Controls
Strikingly, we found that the growth of probiotics topped the
centrality analysis was strongly inhibited by themselves and
others; we found similar results in patients and healthy controls.
As shown in Figure 3, we divided the interactions into four
groups. First, the background group includes interactions among
bacteria excluding the probiotics. Second, the within group
includes interactions among probiotics. Third, the affecting
group includes the impacts of probiotics to other bacteria.
Fourth, the affected group includes the impacts of other
bacteria on probiotics. We found that the weight scores were
significantly lower in the “within” and “affected” groups as
compared with the other two; we found similar trends in both
patients and the controls (Figures 3B,D, respectively; Wilcoxon
Rank Sum test). Similarly, we found that the proportion of
inhibitory effects in the “affected” were significantly higher
than other three groups (Figures 3A,C; Chi-square test).
The “with” group contained significantly higher proportion of
inhibitory effects than the “affecting” group; its proportion
was also higher than that of the background, although the
difference was not significant. These results indicate that
although probiotics are mostly beneficial to the host, they often
face competition from other probiotics and are clearly not
welcomed by other.

Disease-Enriched Bacteria Are Boosted
by Themselves as Well as Other Bacteria
We found that the growth of bacteria whose abundances were
significantly increased in patients (then were hence referred as
to “disease-enriched bacteria”) could be promoted by themselves
as well as by others. We divided pairwise interactions into
four groups. First, the background group contains interactions
excluding the disease-enriched bacteria and the probiotics.
Second, the within-group includes interactions among the
disease-enriched bacteria. Third, the affecting group includes
the impacts of disease-enriched bacterial on others. Fourth,
the affected group includes the impact of other bacteria on
the disease-enriched ones. As shown in Figure 4, there were
significantly more promoting affects in the second and third as
compared with other two groups (Figures 4B,C), indicating a
marked difference of the disease-enriched bacteria as a group as
compared to others.

TABLE 1 | The recognition accuracy for the three datasets (analyzed in different
diet).

Accuracy (%)

IBD10_mphlan_HF 53.10

IBD10_mphlan_W 65.60

twin_mphlan_HF 72.70

twin_mphlan_W 63.60

CRC_mphlan_HF 57.14

CRC_ mphlan_W 47.62
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FIGURE 1 | The bacteria interaction networks (weight > 4) obtained from healthy controls (A) and patients (B). ForceAtlas2 layout in Gephi (Bastian et al., 2009) was
used for this representation. Nodes filled with gray, green, red, and pink represent commensal, probiotic, pathogenic, and opportunistic pathogenic bacteria,
respectively. Two main subclusters were identified, one includes mostly probiotic bacteria (Probiotics Module), while the other consists mostly of species in the genus
bacteroides (Bacteroides Module).
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FIGURE 2 | Most of the top 20 bacteria based on PageRanks are probiotics in health (A) and disease (B) states.

FIGURE 3 | The growth of probiotics was strongly inhibited by other bacteria in both patients and healthy controls. (A,C) Proportions of inhibitory interactions in the
four groups, calculated separately for patients (A) and healthy controls (C); Chi-square test was used to test pairwise differences between two groups. (B,D)
Distribution of weight values in the four groups, calculated separately for patients (B) and healthy controls (D); Wilcoxon Rank Sum test was used for pairwise
comparisons between two groups. Interaction data of the four groups are: background – interactions among bacteria excluding probiotics; within – interactions
among probiotics; affecting – impacts of probiotics on others; affected – impacts of others on probiotics. Level of significance: NS – not significant; ∗∗∗p < 0.01.
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FIGURE 4 | The growth of disease-enriched bacteria could be promoted by themselves and others. (A) An exemplary network of disease-enriched bacteria.
(B) Proportion of promoting interactions in each group; chi-square test was used to perform pairwise (two-groups at a time) comparisons. (C) Distribution of weight
values in the four groups; Wilcoxon Rank Sum test was used for pairwise comparisons. Interaction data of the four groups are: background – interactions among
bacteria excluding probiotics and disease-enriched ones; within – interactions among disease-enriched bacteria; affecting – impacts of disease-enriched bacteria on
others; affected – impacts of others on disease-enriched bacteria. Level of significance: NS – not significant; ∗p < 0.05; ∗∗0.01 < p < 0.05; ∗∗∗p < 0.01.

Alterations of the Gut Microbiota During
Enteropathogenesis Can Be Explained
by Their Immediate Neighbors in the
Metabolic Dependency Network
We next checked if alterations of the gut bacteria could
be explained by their immediate neighbors in the network.
For a given node (species) in the network, we considered
two parameters in this calculation, namely the weight of
the interactions (w) and the relative abundances (a) of its
connecting nodes, and calculated an Inbound Influence Index
using following equation:

∑
(w̄× a). As shown in Table 1 and

Supplementary Table S5, we were able to predict up to 75% of the
directions (i.e., increase or decrease) of the nodes in the metabolic
dependency network.

DISCUSSION

In this study, we constructed metabolic dependency networks
using gut microbiota datasets of common entero-diseases
including IBD and CRC, and revealed unappreciated interaction
patterns of disease-enriched bacteria and probiotics. In addition,
we showed that the alterations of the gut microbiota during
enteropathogenesis can be explained by their immediate
neighbors in the metabolic dependency network with
reasonable accuracy.

We used Wilcoxon Rank Sum test to identify differentially
abundant species between patients and healthy controls.
Although the identified significantly changed bacteria are quite

different in the two IBD datasets (both contained patients and
healthy controls, see Supplementary Table S1), we found similar
interaction patterns (“mutual inhibition” between probiotics
and “mutual promotion” between those significantly enriched
bacteria) in the two IBD datasets and the CRC dataset.

Here, the classification of the bacteria (Commensal, Pathogen,
and Probiotic) is provided by the literature (Magnusdottir et al.,
2017), which is shown in Supplementary Table S2. Some strains
in Bifidobacterium bifidum, which belong to the probiotics, were
identified as the most variable strains between the healthy and
disease. It is generally known that probiotics can improve human
health. A precise definition of probiotics has been proposed by
Laurent Verschuere (Verschuere et al., 2000). It was defined as a
live microbial adjunct which has a beneficial effect on the host by
modifying the host-associated or ambient microbial community,
by enhancing the host response toward disease, by improving
the quality of its ambient environment, or by ensuring improved
use of the feed or enhancing its nutritional value. Above all,
the most commonly purported benefits of the consumption of
probiotics is modulation of host immunity (Corthésy et al.,
2007). Because of these merits, the market for probiotics and
probiotic-containing commercial products is constantly growing
(Marco et al., 2006; Varankovich et al., 2015). However, a stable
microbial community cannot be achieved by a sudden increase in
nutrients due to exogenous feeding with probiotics (Verschuere
et al., 2000). And we report here for the first time that there
is a tendency of mutual restrain between the probiotic bacteria.
Therefore, it is very important to take the mutual interaction
of probiotics into consideration when develop probiotics or
“microbial based therapies.”
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With the growing recognition of the profound impacts of
gut microbiota on human health, it is urgent to understand
the molecular basis underlying the alterations of individual
species in this complex microbial ecosystem. Compared to the
undirected co-occurrence network, the metabolic dependency
network is directional and thus could provide mechanistic
insights into interspecies interactions. Numerous previous
studies have suggested that host genetic and environmental
factors can influence the diversity and composition of the gut
microbiota (Benson et al., 2010). Among the environmental
factors, dietary habits has proven to play a dominant role over
other possible variables such as geography, climate, sanitation,
hygiene, and ethnicity in shaping the gut microbiota (De Filippo
et al., 2010; Walker et al., 2011). Our results indicate that
at least in part, the alterations of the gut microbiota under
different healthy statuses of the hosts, could be attributed
to internal factors including species-species interactions of
the gut microbes.

Using metabolic interaction network based on pair-wise
metabolic dependencies, we found that unappreciated interaction
patterns of between-species metabolic interactions could underlie
alterations in gut microbiota during enteropathogenesis, and
between probiotics and other microbes. Our methods provided
a new framework for studying interactions in gut microbiome

and their roles in health and disease. Though carefully evaluated,
our results are still highly predictive and to be experimentally
validated in the future.
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That both stochastic neutral and deterministic niche forces are in effect in shaping the
community assembly and diversity maintenance is becoming an increasingly important
consensus. However, assessing the effects of disease on the balance between the two
forces in the human microbiome has not been explored to the best of our knowledge.
In this article, we applied a hybrid model to address this issue by analyzing the potential
effect of HIV infection on the human gut microbiome and adopted a further step of
multimodality testing to improve the interpretation of their model. Our study revealed
that although niche process is the dominant force in shaping human gut microbial
communities, niche process- and neutral process-driven taxa could coexist in the same
microbiome, confirming the notion of their joint responsibility. However, we failed to
detect the effect of HIV infection in changing the balance. This suggests that the rule
governing community assembly and diversity maintenance may be changed by the
disturbance from HIV infection-caused dysbiosis. Although we admit that the general
question of disease effect on community assembly and diversity maintenance may
still be an open question, our study presents the first piece of evidence to reject the
significant influence of diseases.

Keywords: neutral theory, niche theory, microbiome analyses, hybrid model, HIV

INTRODUCTION

Human gut is an ideal micro ecosystem colonized by countless microbes, where the mechanistic
explanation of species abundance distribution (SAD) needs to be clarified. Typically, the forces that
shape and maintain the biodiversity of community are thought to be controlled by deterministic
factors, such as host species, genotype, diet, health, competition and niche differentiation, which
has been referred to Niche Theory, but it fails to explain a number of rare taxa could coexist in very
diverse environments when applied to macro-organisms (Ofiteru et al., 2010; Burns et al., 2015).
The Neutral Theory proposed by Hubbell and widely used in the macro-ecology area nowadays has
challenged this view. This theory considers trophically similar species are functionally equivalent
and the SAD patterns in community can be explained by stochastic processes (Hubbell, 2001,
2006). The Neutral Theory combines neutrality, stochasticity, sampling and dispersal and presents
a simple null model to test the mechanism of community assembling and biodiversity maintenance
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in ecological communities, but its abundance-based simplicity
also arises query that is was thought by someone not robust
enough, because many parameters may cause similar result
(Alonso et al., 2006; Ofiteru et al., 2010; Li and Ma, 2016).
Although contentious debates on both theories have been
provoked, there have been adequate evidences supporting the
idea that neither of them alone is sufficiently to explain the
full range of observed SAD in natural communities (Stokes and
Archer, 2010). The hypothesis that two contrasting theories are
probably jointly responsible for the community assembly (Gravel
et al., 2006; Leibold and McPeek, 2006; Zhang et al., 2009;
Dumbrell et al., 2010; Stegen et al., 2012) seems more reasonable
than either theory alone.

The ecological theories accounting for the community
assembly have been tested in macro community widely until
now, and their uses on microbial community have been
gradually recognized recently, although there is still a long way
to completely understand the microbial community. Schmidt
et al. (2015) revealed that deterministic processes drive fish
microbiome assembly dominantly while no evidence supports
stochastic theory. O’Dwyer et al. (2015) also tested neutral theory
for several datasets to determine whether or not the observed
SAD patterns can fit the neutral prediction and found a clear
departure from the predictions of standard neutral theories,
indicating that standard neutral models may not provide the
most useful null models for microbial communities. Li and Ma
(2016) tested more than 7000 samples from different parts of
human body with neutral theory, which revealed that very few
microbial communities passed the neutral prediction. Given the
hypothesis of hybrid effects of neutral and niche theory, it is too
arbitrary to draw a conclusion that neutral processes do not play
a role in microbial community. In this study, with the aim to
identify the possible neutral process within non-neutral microbial
communities, we used a hybrid model considering both neutral
and niche theory to test a dataset of human gut sample. As the
dataset we used contains samples from healthy individuals and
patients with HIV that is proven to cause dramatic dysbiosis
of gut microbiome (Lozupone et al., 2013; Mutlu et al., 2014;
Dubourg et al., 2016; Williams et al., 2016), our another aim is
to recognize the alteration of the mechanism of gut microbiome
assembly resulted from HIV infection.

As mentioned before, it is difficult to identify quantitatively
the exact processes shaping community from certain SAD
patterns with standard neutral theories empirically. Quantifying
the relative roles of neutral and niche process brings a
non-trivial task. Microbial community is usually characterized
by rich biodiversity, suggesting a high possibility that at least
subpopulations controlled mainly by neutral process exist in
a community. In a global view, such community consisting
of both neutrally assembly and niche-selected taxa may not
be recognized as a neutral community via neutral models
concerning SAD pattern alone. Hence it is necessary to adopt
more information, such as phylogenetic analysis, to build
sophisticated models to evaluate the relative roles of both
processes. Jeraldo et al. (2012) proposed a model that fuses
measures of abundance with phylogenetic information that
has been attracting increasingly attention in ecological studies

(Kelly et al., 2008; Cavender-Bares et al., 2009; Jabot and Chave,
2009; Burbrink et al., 2015) to address this problem, which is
particularly suitable for microbial community characterized by
high level of biodiversity. The authors identified successfully
subpopulations of the chicken gastrointestinal tracts that may
be undergoing neutral process via the observation of a small
non-zero peak within the distance-based plot generated by their
genomic-based model. However, observations from histograms
may sometimes be hard to determine and even misrepresent the
real distributions. Therefore, we went a further step by adopting
a multimodality statistical test, Silverman (1981), to improve the
interpretation of Jeraldo et al. (2012) model.

MATERIALS AND METHODS

Dataset Reprocessing
In Lozupone et al. (2013) study, they collected fecal samples of
individuals with chronic HIV infection (n = 22), recent infection
(n = 3), and HIV-negative controls (n = 13) on sterile swabs either
during or 12 hr prior to the visit and then all individuals were
assigned into four cohorts: (1) recent HIV-1 infection, individuals
likely infected within the prior 6 months; (2) chronic HIV-1
infection untreated, individuals infected for >6 months and ART
drug naive or off treatment for >6 months; (3) chronic HIV-1
infection on long-term ART, ART treatment for ≥12 months
with a minimum of three ART drugs prior to study entry and
viral suppressed for >6 months; and (4) healthy controls. Some
individuals donated samples twice and 58 samples entered into
the 16s rRNA sequencing process finally. The reads for each
sample were stored at EBI1 (Accession Number ERP003611). In
our study, we downloaded the sequencing data from EBI and
selected qualified samples with enough numbers of high quality
sequences to perform the recalculation.

We used Jeraldo et al. (2012) pipeline (Tornado2) to reanalyze
the reads data. In brief, short sequences (shorter than 100 bp)
and chimeras were eliminated firstly and remaining sequences
were aligned using Mothur and Silva reference database. To make
sure the sequences start and end at the same position, the ends of
all alignments were trimmed. Then operational taxonomic units
(OTUs) were picked with the complete linkage method of Schloss
et al. (2009) with a cutoff of 3% sequence identity. All reprocessed
OTUs entered the following analysis.

The Computational Procedure for the
Hybrid Model
For each sample, the observed OTUs can be classified into two
categories: modal OTUs (most abundant) and rare OTUs (less
abundant), on the basis of a threshold value k. The core idea is to
visualize the correlations between modal and rare OTUs, which
will depend on the ecological dynamics, using the information
obtained from the phylogenetic distances of representative
sequences between both types of OTUs and the abundances of
OTUs in a hypothetic high-dimensional sequence space.

1http://www.ebi.ac.uk/ena/
2http://tornado.igb.uiuc.edu/bio/

Frontiers in Microbiology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 1467366

http://www.ebi.ac.uk/ena/
http://tornado.igb.uiuc.edu/bio/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01467 July 3, 2019 Time: 16:52 # 3

Yin and Xia Hybrid Effects on Gut Microbiome

In the first case, suppose that a community is drove by neutral
process, hence modal and rare OTUs in this community would
distribute at random in the hypothetic space. The distances
between OTUs (representative sequences) can be measured using
a normalized Hamming distance:

Hij =
1
L

L∑
α=1

[1− δ(Si
α − Sj

α)] (1)

where H is the distance between the ith and jth OTU, L is the
length of the representative sequence (to compare the Hamming
distance, all the analyzed sequences should be in the same
length), δ is the Kronecker delta and S represents the label of
base at a given position (from α to L) in the sequence with
superscripts (e.g., i and j) indicating OTUs. S takes values 1, 2,
3, 4 corresponding to the four bases ACGT.

Ideally, in a neutral process-driven community, the mean
of H should be 3/4 as the chance that two bases at the
same position are identical is 1/4. However, considering the
complications deriving from highly conserved bases that cannot
be appropriately modeled as being chosen randomly from the
alphabet in reality, the actual value of the mean of H would be
3(L-M)/4L, given there are M conserved bases in the sequence.
Then, for each rare OTU (labeled k), the distances between it and
all modal OTUs are calculated via method described above and
the shortest one is selected and labeled Ek. {Ek} is a subset of {Hij}
and its distribution is also a bell-shape plot peaked at a slightly
smaller value than mean {Hij}.

In another case, i.e., when the community is driven by niche
process, the distributions of both types of OTUs are not random,
where rare OTUs that evolve from modal OTUs through a
few point mutations surround the modal OTUs closely. Such
distributions are also observed in Jeraldo et al. (2012) study using
a weighted version of principal component analysis (PCA) to
reduce the hypothetic space into a 2D space, which are obviously
different from the distributions in neutral community. All the
normalized Hij from each rare OTU to the nearest modal OTU
are calculated via making a Voronoi polyhedron construction
in the hypothetic space. Thus, the probability distribution of Ek
should be a delta distribution that is peaked at E = 0 and decreases
monotonically for E > 0.

In most cases, both neutral and niche process will not
be responsible for the construction of the community solely
therefore the hybrid effect should be took into account. Jeraldo
et al. (2012) evaluated the hybrid effect of model when there are
αN OTUs undergo a niche dynamic in a community containing
N OTUs using Monte Carlo simulations on a simulated dataset.
The parameter α can serve as an indicator suggesting observed
community is driven by purely neutral process (α = 0), purely
niche process (α = 1) or hybrid process (α is between 0 and 1).
The distributions of distance plot in three types of community
are clearly distinct in shape: for purely neutral community, the
distribution plot is bell-shaped; for purely niche community, the
distribution is a delta distribution that is peaked at E = 0 and then
decreases for E > 0 (the authors found for niche-like models, the
peak at zero moves to a non-zero peak that corresponds to the
average size of the niche); for hybrid community, the distribution

plot shows characteristic of niche distribution at the first-member
(i.e., starts at a non-zero peak and then decreases monotonically)
and characteristic of neutral distribution at the end-member (i.e.,
a non-zero peak arises in the end-member). The non-zero peak
at the end-member can be viewed as an evidence for the presence
of subpopulations shaped mainly by neutral process and the
sequences within the peak may be undergoing neutral dynamics.

Jeraldo et al. (2012) also tried to improve their model by
weighting the contribution of Ek by abundance of OTU but failed
to find change in the neutral community and qualitative change
in the niche community, suggesting the distribution of distance
may be only weakly dependent on the abundance distribution
of OTUs. To simplify the calculation, the information of OTU
abundance is not included in such analysis. Another concern is
the choice of the threshold k. In the original study, the authors
revealed that the results of the metric on model systems are
unchanged when k is changing between 2 and 10% hence they
select 1 to 10% for this parameter in their pipeline. In our
study, we set the k value as 5%, which is used by the authors
to present their experimental data in the original article. The
complete computational procedure was performed in the softer
ware Tornado see text footnote 2.

Multimodality Test for the Distribution of
Nearest Distances
The mode of a distribution is the value having highest probability
of being observed. On the basis of the principle of their
model, the non-zero peak at the right side of the histogram of
nearest distance represents the neutral-driven subpopulations in
a community. Thus, a pure niche process-driven community
should have only one mode, and community driven by
niche-neutral hybrid process should have more than one mode.
Given the pure neutral community did not exist in the real
world, the unimodality should represents niche process and
multimodality should be equivalent to hybrid process. Silverman
(1981) provides a classical method to test the null hypothesis
that a distribution has at most n modes (n = 1 in our study),
where the alternative hypothesis that the distribution has more
than n modes can be rejected on the basis of a p-Value. In
this study, for each sample, we draw both histogram and kernel
density plot using the distribution of distance to the nearest
modal OTU of every rare OTU in the sample community with
R (version 3.3.2) and conducted Silverman (1981) with the R
package, silvermantest3.

RESULTS AND DISCUSSION

Only samples with enough numbers of high quality sequences
were included in our study. In total, 52 qualified samples with
4 in cohort (1), 18 in cohort (2), 8 in cohort (3), and 21
in cohort (4) were selected. As the number of individuals in
four cohorts are not balance, we here assigned cohort 1, 2,
and 3 into HIV group and cohort 4 into Non-HIV group

3https://www.mathematik.uni-marburg.de/∼stochastik/R_packages/
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FIGURE 1 | Representative histograms (left) and kernel density plots (right) for niche process- (A) and niche-neutral process-driven (B) community.

and compared the number of samples that fitted neutral-
niche plot between two groups. For each sample, we generated
both histogram and density plot on the distance of each rare
OTU to nearest modal OTU and performed Silverman’s test
for multimodality. Two pairs of representative histograms and
density plots from niche process- and hybrid process-driven
community, respectively, are displayed in Figure 1. The remains
are shown in Supplementary Figure S1 and results of Silverman’s

TABLE 1 | The number of samples passing Silverman’s test.

Group Cohort Samples
driven by

niche-neutral
process

Samples
driven by

niche-neutral
process

HIV infection Cohort 1 25% (1/4) 66.67% (20/30)

Cohort 2 72.22% (13/18)

Cohort 3 75% (6/8)

Non-HIV infection Cohort 4 42.86% (9/21) 42.86% (9/21)

test are listed in Supplementary Table S1. The number of samples
passing Silverman’s test for each cohort and group are displayed
in Table 1. In detail, 56.86% (29/51) samples in total passed the
Silverman’s test (p < 0.05), indicating they are undergoing niche-
neutral process, thus 43.14% (22/51) samples are driven by niche
process dominantly. According to different cohorts, 25% (1/4)
samples in cohort (1), 72.22% (13/18) samples in cohort (2),
75% (6/8) samples in cohort (3) and 42.68% (9/21) samples in
cohort (4) passed the multimodality test. No one sample satisfied
the pure neutral plot, so the remains in each cohort are niche-
driven community, suggesting that although niche process is the
dominant force in shaping gut microbiome assembly and play
roles in all samples, the contributions made by neutral process
should not be neglected.

Because the number of individuals in four cohorts are not
balance, we than assigned cohort 1, 2, and 3 into HIV group
and cohort 4 into Non-HIV group and compared the number
of samples that fitted neutral-niche plot between two groups.
In HIV group, 66.67% (20/30) samples fitted neutral-niche
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plots and 42.86% (9/21) fitted neutral-niche plots in Non-HIV
group. There is no significant difference between the results
of two groups (p = 0.1504, Fisher’s exact test), indicating HIV
infection may not change the force that shapes gut microbiome
assembly essentially.

Four representative neutral-niche plots and niche-like plots
for each cohort are displayed in Figure 1 and remaining plots can
be found in Supplementary Figure S1.

It has been generally accepted that the community assembly
is an important topic in the macro-community ecology area and
can be accounted for by different ecological theories (Niu et al.,
2009; Latombe et al., 2015). From the view of ecologists, however,
the microbial community where the birth, death, immigration
and speciation happen at any time is also an important subject
that is controlled by general ecological principles and laws.
Hence the two important theories explaining the assembly of
community, niche theory underlying deterministic factors and
neutral theory underlying stochastic factors, should be also
appropriate to describe the microbial community assembly.

In this study, we performed a test of hybrid model considering
both neutral and niche process on human gut samples and
did not find one sample satisfy the prediction of pure neutral
theory, which is consistent with our previous report, where
we tested Human Microbiome Project (HMP) dataset with
neutral models and found none of the gut samples passed the
neutrality test (Li and Ma, 2016). The reason may be the high
level of diversity and complexity of organisms colonizing in
gut, just as the study by Fisher and Mehta (2014) suggests
that the communities with large population sizes and relatively
stable environment is more like driven mainly by niche-process
and the communities with small population size and unstable
environment is more likely driven by neutral-process. Fisher and
Mehta (2014) also reveals the presence of a phase transition
process between niche-driven phases and neutral-driven phases
in communities, suggesting a neutral-niche phase where niche
process and neutral process are jointly responsible for the
assembly and maintenance of community should exist in amount
of communities. Although our study confirmed that niche
process play its role dominantly in shaping gut microbiome,
our results also provides evidence that there are subpopulations
driven mainly by neutral process in certain overall neutral
communities, indicated by the observation of neutral-niche plots
containing a small non-zero peak comparing with niche-like
plots, where the sequences under the non-zero peak should be
belong to the neutral-driven taxa. The coexist of neutral and
niche process has been supported by many studies (Leibold and
McPeek, 2006; Dumbrell et al., 2010; Ofiteru et al., 2010; Ayarza
and Erijman, 2011), which may result from different physical
reasons (Jeraldo et al., 2012), such as the fact that those generalist
microbes that can exist in various environments constitute
the neutrally assembly part of microbiome (Langenheder and
Szeìkely, 2011), while the niche portion consists of those specific
microbes that is adapted to the medium conditions (Burke et al.,
2011). Disturbances of gut physiological environment may cause
selections on microbes, especially for those niche process-driven
taxa, hence we also wonder the question that whether or not the
typical dysbiosis caused by HIV infection is linked to change of

the force that shapes gut microbiome assembly. We compared
the gut microbiome assembly forces between HIV infection
and health and found that despite the different progress of
HIV patients, the proportion of samples fitted niche-neutral
plots in HIV group is 66.67% (20/30), which has no significant
difference with the proportion of 42.86% (9/21) in health group,
implying HIV infection would not change the rule that shapes gut
microbiome assembly essentially.

Jeraldo et al. (2012) hybrid model provides a very effective
tool to quantify the relative roles of niche and neutral
processes shaping microbial community by merging measures
of abundance with phylogenetic information, but there is room
for improvement. First, it adopts distance-based histogram to
measure the neutral-niche process, where the shape of plots
sometimes is difficult to distinguish via observation, especially
when the non-zero peak representing neutral process is not very
evident. Second, the smoothness of distance plot is dependent
largely on the number of OTUs, hence when the number of
OTUs is not large enough, the shape of distance plot would
be shapeless so that little information can be achieved. For the
first issue, we adopted a statistical method, Silverman’s test,
for testing multimodality via kernel density estimation, through
which the niche-neutral hybrid process-driven community can
be distinguished from niche community. As to the second issue,
according to our experiences, for human microbiome samples,
the gut samples usually can satisfy the requirement of the number
of OTUs whereas other body parts such as lung and oral can
hardly meet the number that generates eligible plots.

In summary, we firstly adopted a Silverman’s test on the
original results of Jeraldo et al. (2012) hybrid model, which
improved the interpretation of the results. Then we use this
strategy to reanalyze a dataset of HIV-related human gut
microbiome in order to find HIV-specific changes in the
assembly of gut microbial community. Our results revealed
that although niche process is dominant in shaping human
gut microbiome, niche process- and neutral process-driven taxa
could coexist in the same microbiome, confirming the idea that
niche and neutral processes may be jointly responsible for the
gut microbial community assembly and HIV infection-caused
dysbiosis may not change the force that shape the assembly of
gut microbiome. Besides the evidences that niche and neutral
process may co-occurrence in gut microbiome, our study also
offer suggestions for improvement of Jeraldo et al. (2012) model
via introducing statistical multimodality test method.

Our study is a pilot study reanalyzing only one dataset with
limited samples. This is the major limitation of our study. As
there has not been a consistent HIV-specific dysbiosis pattern
of gut microbiome, which reflects from the contradictory results
of studies using different samples and datasets (Noguera-Julian
et al., 2016). This may because gut microbiome is related to plenty
of factors in addition to HIV infection, such as socioeconomic
factors, geography, age, diet, drug use, genetic, lifestyle and sex
preference (Noguera-Julian et al., 2016; Liu et al., 2017; Williams,
2019). For example, Noguera-Julian et al. (2016) found that the
gut microbiome of men who has sex with men (MSM) was richer
and more diverse than that of non-MSM men. Given the limited
samples available for each study, it is challenging to control all
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the confounders in HIV-related gut microbiome study. Thus few
studies have successfully established causal links between changes
of the gut microbial community composition and HIV infection.
Likewise, to investigate the HIV-specific change of assembly of
gut microbial community is also a non-trivial task. In further
study, we would try to collect more samples from different
datasets and use a hierarchical analysis strategy to achieve more
reliable results.
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Based on advancements in deep sequencing technology and microbiology, increasing
evidence indicates that microbes inhabiting humans modulate various host physiological
phenomena, thus participating in various disease pathogeneses. Owing to increasing
availability of biological data, further studies on the establishment of efficient
computational models for predicting potential associations are required. In particular,
computational approaches can also reduce the discovery cycle of novel microbe-
disease associations and further facilitate disease treatment, drug design, and other
scientific activities. This study aimed to develop a model based on the random walk
on hypergraph for microbe-disease association prediction (RWHMDA). As a class
of higher-order data representation, hypergraph could effectively recover information
loss occurring in the normal graph methodology, thus exclusively illustrating multiple
pair-wise associations. Integrating known microbe-disease associations in the Human
Microbe-Disease Association Database (HMDAD) and the Gaussian interaction profile
kernel similarity for microbes, random walk was then implemented for the constructed
hypergraph. Consequently, RWHMDA performed optimally in predicting the underlying
disease-associated microbes. More specifically, our model displayed AUC values
of 0.8898 and 0.8524 in global and local leave-one-out cross-validation (LOOCV),
respectively. Furthermore, three human diseases (asthma, Crohn’s disease, and type
2 diabetes) were studied to further illustrate prediction performance. Moreover, 8, 10,
and 8 of the 10 highest ranked microbes were confirmed through recent experimental
or clinical studies. In conclusion, RWHMDA is expected to display promising potential
to predict disease-microbe associations for follow-up experimental studies and facilitate
the prevention, diagnosis, treatment, and prognosis of complex human diseases.

Keywords: hypergraph, random walk, microbe, human diseases, association prediction

INTRODUCTION

Microbes exist in almost all habitats of flora and fauna, including humans. Deeper microbiological
insights have indicated more compact associations between humans and their microflora (Sommer
and Backhed, 2013). Some microbes are harmless and vital for host health in various manners, such
as enhancement of host immunity, improvement of host metabolic capability, and protection of
the host against pathogens (Eckburg et al., 2003; Ventura et al., 2009). Over the past few decades,
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numerous studies have focused on microbes inhabiting humans
(Peterson et al., 2009). For instance, the gut flora are a
complicated microbial community in the human digestive tract
(Sommer and Backhed, 2013). Human gut microbes potentially
benefit the host by synthesizing different vitamins, metabolizing
bile acids, etc., thus exhibiting a fundamentally mutualistic
association between some gut flora and the human host
(Clarke et al., 2014). Therefore, microbes may be considered
a supplemental “organ” in the host (Bäckhed et al., 2005).
Furthermore, the number of microbial cells in the human
body is reportedly approximately 10-fold the number of human
cells (Rosner, 2014). Therefore, it is essential to systematically
analyze associations between microbes and humans. The
Human Microbiome Project (HMP) has furthered the current
understanding of microbial structure, diversity, and function
over the years (Human Microbiome Project Consortium, 2012).
However, numerous basic and clinical studies have investigated
the association between the human microbiome and human
health (Moore and Moore, 1995; Dethlefsen et al., 2007; Zhang
et al., 2009; Brown et al., 2011).

It is important to understand microbe-host interactions,
which could benefit the prevention, diagnosis, treatment, and
prognosis of human diseases (Bao et al., 2017; Zou et al., 2018).
Microbial communities could be influenced by not only maternal
genetic factors (Khachatryan et al., 2008; Turnbaugh et al.,
2009; Goodrich et al., 2014) but also the habitat environments,
such as the change of season (Davenport et al., 2014), host
diet (David et al., 2014), antibiotic consumption (Donia et al.,
2014), host smoking habits (Mason et al., 2015), and residential
hygiene of the host (Sommer and Backhed, 2013). Changes in
environmental variables may modify microbial communities and
alter host-microbe interactions (Ma et al., 2014). In the past
decades, with the development of high-throughput sequencing
techniques and ensuing computational tools, increasing evidence
demonstrates the close association between microbial dysbiosis
and various human diseases (Neish, 2009), such as inflammatory
bowel disease (IBD) (Frank et al., 2007), diabetes (Brown et al.,
2011; Giongo et al., 2011), asthma (Chen and Blaser, 2007),
obesity (Ley et al., 2006), and some cancers (Moore and Moore,
1995; Schwabe and Jobin, 2013). For example, through 16S rRNA
microarray and parallel clone library-sequencing analysis, Huang
et al. (2011) collected bronchial epithelial brushings from 65
asthma patients and compared them with 10 other samples from
healthy control subjects, reporting that members of the airway
microbiota, such as Comamonadaceae, Sphingomonadaceae, and
Oxalobacteraceae, were greater in asthma patients. Hoppe et al.
(2011) evaluated the effect of Oxalobacter formigenes on primary
hyperoxaluria, a rare genetic disease. In particular, the urinary
oxalate test and ad hoc analysis in their study revealed a
reduction in Oxalobacter formigenes in patients with kidney
stones. Furthermore, to analyze and elucidate the microbiota of
colon cancer patients, Sobhani et al. (2011) extracted bacterial
DNA from 179 colon cancer patients. Through qPCR and
the immunohistochemical analyses, C. coccoides, Bacteroides,
Lactobacillus groups, and Faecalibacterium prausnitzii species
were reportedly increased in colon cancer patients. Moreover,
on comparing microbes from 83 healthy control individuals

and 98 liver cirrhosis patients, Qin et al. (2014) identified
several biomarkers associated with liver cirrhosis, reporting
that certain groups were reduced (e.g., Alistipes finegoldii,
Bacteroides eggerthii, and Coprococcus) while certain others
were enriched (e.g., Fusobacterium, Haemophilus parainfluenzae,
and Phascolarctobacterium). Therefore, elucidation of the
association between microbes and human diseases may facilitate
novel drug discovery.

Despite some reported microbe-disease associations, they are
not sufficient to completely understand disease pathogenesis,
diagnosis, and treatment. Fortunately, Wang et al. (2015)
proposed the excellent work about cancer hallmark network
framework in the predictive genomics. The cancer hallmark
network framework offered great insights on modeling genome
sequencing data to predict cancer evolution and associated
clinical phenotypes, which provided valuable designment
strategies for using the framework in conjunction with genome
sequencing data in any other attempt to prediction works
on human diseases, drug targets and other fields, microbe
included. Indeed, construction of a computationally efficient
model from existing associations to predict potential ones
is practical, potentially providing novel insights into time-
consuming microbiology experiments by elucidating the most
promising previously unknown associations (Chen et al., 2017c).
Specifically, in determining lncRNA-disease associations (Chen,
2015), studies on drug targets (van Laarhoven et al., 2011;
Yamanishi, 2013) and miRNA-disease associations (Wang
et al., 2010; Chen et al., 2017d) have yielded various efficient
in silico models to predict the underlying associations. Recently,
based on experimentally verified microbe-disease associations,
Ma et al. (2017) constructed the first Human Microbe-
Disease Association Database (HMDAD). Thereafter, several
computational models have been proposed to further contribute
to the HMDAD. For example, Chen et al. (2017a) generated
a model based on the KATZ measure, named KATZHMDA.
In their model, they first constructed an association network
showing pairwise relationships between microbes and human
disease. Furthermore, they introduced Gaussian interaction
profile kernel similarity for microbes and diseases to predict
novel associations. Moreover, Huang Z.A. et al. (2017) developed
a model of Path-Based Human Microbe-Disease Association
Prediction (PBHMDA), wherein they used a special depth-first
search algorithm on the heterogeneous biological network.
In particular, they investigated all possible paths between
diseases and microbes to infer highly probable associations.
Resulting from the idea of collaborative recommendation
model, Huang Y.A. et al. (2017) provided a computational
model by adopting neighbor-based collaborative filtering and
a graph-based scoring approach to calculate the association
possibility of unknown microbe–disease pairs. The usage
of hybrid approach based on two single recommendation
methods contributed much more on their prediction results.
Based on the microbe-disease interaction network, Wang
et al. (2017) developed the model of Laplacian Regularized
Least Squares for Human Microbe-Disease Association
(LRLSHMDA). LRLSHMDA is a semi-supervised computational
model using the Laplacian regularized least squares classifier.
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Recently, Zou et al. (2018) integrated symptom-based disease
similarity to predict novel human microbe-disease associations
based on network consistency projection (NCPHMDA). In
detail, they conducted microbe space projection and disease
space projection and combined the projections to design
an advisable non-parametric approach. Based on adaptive
boosting approach, Peng et al. (2018) developed a model named
Adaptive Boosting for Human Microbe-Disease Association
prediction (ABHMDA) to reveal the underlying associations
between microbes and human diseases by calculating the
association probability of concerned disease-microbe pair
by grouped weak classifiers to form a stronger classifier for
further scoring and sorting samples. Not long time ago, Qu
et al. (2019) proposed a computational model on the basis of
HMDAD by the methods of matrix decomposition and label
propagation, which divided the original adjacency matrix about
the relationship between microbes and diseases into a linear
combination of itself and a low-rank matrix to predict novel
disease-microbe associations.

Herein, we present a Random Walk on Hypergraph for
Microbe-Disease Association Prediction (RWHMDA) model to
predict underlying microbe-disease associations. In particular,
we constructed a higher-order hypergraph model to accurately
determine the implicit inherent association between microbes
and human diseases. Thereafter, we generalized the well-
known random walk process to the hypergraph in a modified
manner, wherein vertices (microbes) within a hyperedge (human
disease) were differentiated by the walker depending on their
features. Finally, we ranked all candidate microbes for every
investigated human disease. The merit of this study is the
introduction of the concept and method of hypergraph to
predict microbe-disease associations. Hypergraph is practical
and suitable because it could provide biologically decipherable
aspects by placing all disease-associated microbes in one
hyperedge. Furthermore, we implemented global and local Leave-
one-out cross-validation (LOOCV) to evaluate the predictive
performance of RWHMDA.

MATERIALS AND METHODS

Human Microbe-Disease Associations
In this study, we utilized microbe-disease associations in
HMDAD database (Ma et al., 2017)1, containing 483 known
microbe-disease associations among 292 microbes inhabiting
the human body and 39 human diseases. The associations in
HMDAD were obtained from sequencing-based microbiological
analyses. In addition, if different data are available for overlapping
microbe-disease associations in the database, only one record
would be maintained. Finally, we obtained 450 distinct known
microbe-disease associations for further prediction. Microbe-
disease associations could be stored in an adjacency matrixA,
where element A(i, j) represented the binary association of disease
d(i) and microbe m(j). In other words, we obtained a nd × nm
matrix A, where 450 elements were 1 and the others were 0.

1http://www.cuilab.cn/hmdad

Meanwhile, nd was the number of diseases, and nm was the
number of microbes.

Gaussian Interaction Profile Kernel
Similarity for Microbes
Gaussian interaction profile kernel similarity was calculated on
the basis of a type of Radial Basis Function (RBF), namely
Gaussian kernel function. In this study, we adopted the Gaussian
interaction profile kernel similarity to determine the similarity
between microbes. In detail, based on the constructed adjacency
matrix A, microbial interaction profiles could be defined as a
binary vector IP(m(j)), representing the absence or presence
of the interaction between microbe m(j) and diseases. IP(m(j))
was the j-th column of matrix A. Thereafter, we calculated the
Gaussian kernel similarity between microbe m(j) and microbe
m(j), using Gaussian kernel function as follows:

GM
(
m (i) , m

(
j
))
= exp

(
−rm||IP (m (i))− IP

(
m
(
j
))
||

2)
(1)

where rm was set to balance the kernel bandwidth, and GM
defined the Gaussian interaction profile kernel similarity matrix
for microbes. Specially, rmwas calculated in accordance with a
new parameter rm and the average known association number per
miRNA as follows:

rm =
r′m( 1

nm
∑nm

i=1 ||IP (m (i)) ||2
) (2)

where nm is the total number of microbes. Technically, rm was set
as 1 here (Chen et al., 2017b).

RWHMDA
In this study, we proposed the RWHMDA model from
the random walk on hypergraph to predict novel microbe-
disease associations. Although Gaussian interaction profile kernel
similarity for microbes is also accounted for in this method,
RWHMDA is still a graph structure-based model without extra
domain information in microbiological studies. Random walks
on simple graphs have been investigated extensively in various
biological fields. However, random walks on hypergraph have
not been reported with respect to the prediction of microbe-
disease associations thus far. Hypergraph is a type of higher-
order graphical representation of biological data, compensating
for information loss in the normal graph method, exclusively
describing pair-wise association structures (Figure 1).

Generally, in the present model, we first constructed a
hypergraph comprising microbes and diseases, wherein diseases
are presented as hyperedges and microbes are presented as nodes.
If several microbes have been confirmed to be associated with
one disease, they would be presented as nodes in the hyperedge
corresponding to the disease. In the hypergraph, hyperedges
can join numerous vertices (not limited to two nodes as in
simple graph). Specifically, if microbe m(i) is associated with
disease d(j), then node m(i) belongs to hyperedge d(j). Obviously,
one microbe might belong to different hyperedges. We assessed
all known microbe-disease associations and established a
hypergraph with 39 hyperedges. Without loss of generalizability,
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FIGURE 1 | An example of a hypergraph comprising 5 hyperedges and 8
nodes. Different hyperedges are indicated with different colors. Every
hyperedge contains different numbers of nodes based on their practical
applications.

we defined the hypergraph as HG (V, E) where E is the set of
hyperedges, and V is the set of vertices. Hyperedge e ∈ E is a
subset of V, hyperedge e is incident with node v if the node
belongs to the hyperedge. Neighborhood relationships among
nodes can be defined if v ∈ e, w ∈ e.

After constructing the hypergraph, we implement random
walk with restart on it. The random walk on the normal graph
is a type of Markov process. The surfer travels between nodes in
the graph by starting at a node and shifting to an adjacent node
at each discrete time step t. The transition probability between
nodes is completely independent of the time t. Therefore, we
could define the transition probability matrix P ∈ R|V|×|V| for the
whole process. Matrix P represents the transition probabilities
of the random internodal movements. Matrix P is actually
a critical factor calculated on the basis of multifarious filed
knowledge. Furthermore, we introduced the random walk on the
hypergraph. Basically, the surfer shifts between two nodes only
if they are neighbors in the currently visited hyperedge. Briefly,
this process may be considered a two-step procedure as follows:
the surfer randomly selects a hyperedge incident with a currently
visited node in step 1; thereafter, the surfer selects a destination
neighbor node within the selected hyperedge in step 2 (Figure 2).
Thereafter, we would focus on capturing transition matrix P with
respect to the random walk on the hypergraph.

Considering an unweighted hypergraph HG (V, E), wherein
hyperedges and nodes have no weights, the incidence matrix
H ∈ R|V|×|E| was defined as follows:

h (v, e) =
{

1, if v ∈ e
0, if v /∈ e

(3)

δ (e) = |e| (4)

d (v) = |E (v)| (5)

where δ (e) is the degree of hyperedge e, d(v) is the degree of
vertex v, |e| indicates the number of nodes within hyperedge e,
E (v) is the set of hyperedges incident with vertex v. Thereafter,

we obtained the diagonal hyperedge degree matrix De ∈ R|E|×|E|,
the diagonal vertex degree matrix Dv ∈ R|V|×|V| .

Regarding data on microbe-disease associations, it means the
surfer would select a disease known to be associated with the
current microbe. We could not unambiguously distinguish the
more critical disease associated with the referenced microbe.
Therefore, we intend for the surfer to uniformly randomly
select a hyperedge at step 1. Furthermore, the surfer would
walk to a node within this hyperedge. In our predictive case,
although it is potentially difficult to evaluate the features of
nodes, we differentiated microbes within a hyperedge of disease
in accordance with the Gaussian interaction profile kernel
similarity. Technically, in step 2, we intend for the surfer to shift
to a node within a hyperedge in accordance with the sum of
similarities of the node with all other nodes in the hypergraph. In
summary, starting from node u, the surfer would select hyperedge
e incident with u proportional to the weight of hyperedge w(e).
Thereafter, the surfer selects node v proportional to the weight of
v within the current hyperedge e, namely w (ve ).

Considering the afore-mentioned motivation, we then
defined the weighted incident matrix W ∈ R|V|×|E|of hypergraph
HG(V, E) as follows:

w (v, e) =
{

w (ve) , if v ∈ e
0, if v /∈ e

(6)

where w (ve) is the weight of node v in hyperedge e. In the present
model, we calculated w (ve) on the basis of matrix GM. In this
study, the weight of a microbe m(i) in a hyperedge is the sum of
ith row in GM. Thereafter, we redefined hyperedge degree δ

′

(e)
and hyperedge degree matrix Dve ∈ R|E|×|E| as follows:

δ (e) =
∑
v∈e

w (v, e) (7)

where Dve is the diagonal hyperedge degree matrix with element
δ (e).

We then calculated the transition probability from vertex u to
vertex v as follows:

P (u, v) =
∑
e∈E

w (e)
h (u, e)∑
ê∈E w

(
ê
) w (v, e)∑

v̂∈e w
(
v̂, e
) (8)

which may also be expressed in matrix form as follows:

P = D−1
v HW eD−1

ve WT (9)

where We ∈ R|E|×|E| is the diagonal matrix of hyperedge weights,
wherein all diseases are considered with equal weightage in
accordance with the previously described practical consideration,
i.e., all hyperedges are 1/ |E|. Naturally, transition matrix P is
stochastic, implying that the sum of every row equals 1.

Furthermore, we implement the random walk with restart on
the hypergraph. In particular, assuming that microbes associated
with disease d(i) are to be predicted, all microbes with known
associations with d(i) are considered seed microbes, while the
others are considered candidate microbes. Thereafter, we set
the initially normalized probability vector Ev (0) ∈ R|V|×1 such
that seed microbes are assigned with equal probability and the
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FIGURE 2 | Illustration of the random walk process on the hypergraph. Generally, the surfer selects a hyperedge in step 1 and then selects a node as the destination
vertex to shift to the selected hyperedge in step 2.

non-seed miRNAs are zero. After the first step, Ev (1) = PT
Ev (0).

Moreover, we set the restart probability at every step at source
nodes as α (0 < α < 1), Ev (1) = (1− α) PT

Ev (0)+ αEv (0). Finally,
we obtained the random walk with the following formula:

Ev (t + 1) = (1− α) PT
Ev (t)+ αEv (0) (10)

Ev (t) is defined such that the ith element means the probability of
moving to node i at step t. After some steps, the random walk
would stabilize, implying that the difference between Ev (t + 1)
and Ev (t) measured by the L1 norm is smaller than the provided
threshold. The stable state of the random walk with restart
is defined as Ev (∞). Stationary probability in Ev (∞) indicates
the probable associations between candidate microbes with the
currently investigated disease. We conducted the random walk
for every disease in the HMDAD database and ranked the
underlying microbe-disease associations in accordance with the
corresponding Ev (∞) of the current disease (Figure 3).

As a supplement, we set the α-value as 0.2 and set the cutoff
value as 10−6.

RESULTS

Performance Evaluation
LOOCV was usually implemented to assess the performance
of the prediction model. Global and local LOOCV in the
present study were both conducted to comprehensively assess
the performance of RWHMDA. Specifically, global LOOCV
was conducted on the basis of the known microbe-disease
associations in the HMDAD database (Ma et al., 2017). Each
association was left out in turn as the test sample, while others
were set as candidate samples. If the rank of the test sample was
higher than that of the candidate samples, the test association

was considered to have been correctly predicted. Furthermore,
local LOOCV was somewhat different from global LOOCV, and
it was implemented as follows: first, for an investigated disease,
based on the association records in the HMDAD (Ma et al., 2017)
database, each known disease-associated microbe was excluded in
turn as the test sample and the others were used as seed samples.
Thereafter, the predicted association probability of the current
test sample would be ranked with the probability of candidate
samples. If the test sample was ranked beyond the threshold, the
model successfully predicted this microbe–disease association.
Further, we plotted a receiver operating characteristics (ROC)
curve. The area under the ROC curve (AUC) was determined
to assess the prediction performance of RWHMDA. Specifically,
AUC = 1 implied an excellent performance, and AUC = 0.5
indicated a random performance. Consequently, RWHMDA
yielded a global AUC value of 0.8898 and local AUC value
of 0.8524, which were higher than some previously reported
computational models, such as LRLSHMDA (0.8959, 0.7657)
(Bao et al., 2017) and KATZHMDA (0.8382, 0.6812) (Chen et al.,
2017a; Figure 4).

Case Studies
To further assess the performance of the proposed model, we
conducted case studies of asthma, Crohn’s disease (CD), and
type 2 diabetes by assessing the 10 highest probable microbes
ranked by RWHMDA.

It is unambiguous that the human microflora play an
important role in asthma pathogenesis (Li N. et al., 2017).
Morbidity rates among asthma patients have significantly
increased since the 1960s (Anandan et al., 2010). Asthma caused
approximately 400 thousand deaths worldwide in 2015. More
recently, on evaluating data regarding the association between
Helicobacter pylori status with the history of asthma from 7663
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FIGURE 3 | Schematic representation of the RWHMDA model.

FIGURE 4 | Comparisons between the RWHMDA model and the other two state-of-the-art prediction models (LRLSHMDA and KATAHMDA) in terms of global and
local AUC values. Consequently, RWHMDA yielded AUCs of 0.8898 and 0.8524, yielding a better prediction performance.

adults in the Third National Health and Nutrition Examination
Survey, childhood acquisition of H. pylori is associated with a
reduced risk of asthma (Chen and Blaser, 2007). We implemented
RWHMDA for the asthma case study. Consequently, 9 of the
10 most highly ranked asthma-related microbes were confirmed
from the literature (Table 1). For example, the study reporting the
presence of Propionibacterium acnes (1st ranked in the prediction
list of RWHMDA) in asthma patients helped diagnose asthma

(Romero-Espinoza et al., 2018). Pseudomonas, ranked 3rd by
our model, was confirmed to be more prevalent in the sputum
of asthma patients (Jung et al., 2016). Moreover, as the 10th
predicted asthma-related microbe, Streptococcus are associated
with asthma, potentially contributing to its pathophysiology
(Zhang et al., 2016).

The worldwide prevalence of diabetes mellitus has
increased continuously over the past few decades
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TABLE 1 | A case study on predicted potential asthma-related microbes.

Rank Microbe Evidence

1 Propionibacterium acnes PMID:29447223

2 Propionibacterium PMID:29447223

3 Pseudomonas PMID:27433177

4 Burkholderia PMID:24451910

5 Enterobacter aerogenes PMID:18790035

6 Enterobacter hormaechei Unconfirmed

7 Klebsiella pneumoniae PMID:26220531

8 Shigella dysenteriae Unconfirmed

9 Actinobacteria PMID:23265859

10 Streptococcus PMID:27078029

Among the 10 highest ranked potential asthma-related microbes, eight were
confirmed from the literature.

(Tadic and Cuspidi, 2015). Type 2 diabetes mellitus is a
subclass of diabetes mellitus, accounting for approximately
90% of all the diabetes mellitus cases. The traditional view
holds that the pathogenesis of type 2 diabetes is associated
with both genetic and lifestyle-related factors. Recent evidence
suggests that the pathomechanism and pathogenesis of type
2 diabetes mellitus are also associated with an unbalance in
microbial communities (Ripsin et al., 2009; Furet et al., 2010).
Larsen et al. (2010) assessed the differences in the composition
of the intestinal microbiota in individuals without and those
with type 2 diabetes via high-throughput 16S rDNA gene
pyrosequencing, reporting an increase in Bacilli, Bacteroidetes,
and Betaproteobacteria and reductions in Clostridia, Clostridium,
Firmicutes, etc. Among the 10 highest ranked microbes by
probability, 8 were confirmed through recent evidence (Table 2).
For example, Fusobacterium nucleatum was ranked first
and confirmed to be significantly higher in type 2 diabetes
mellitus patients than in those without type 2 diabetes mellitus
(Miranda et al., 2017). Pseudomonas, abundant in the subgingival
plaque, ranked 2nd by our model and was markedly different
between individuals with and those without diabetes (Zhou
et al., 2013). Furthermore, Aerococcus and Atopobium were

TABLE 2 | RWHMDA used to predict candidate microbes associated with type 2
diabetes.

Rank Microbe Evidence

1 Fusobacterium nucleatum PMID:28198980

2 Pseudomonas PMID:23613868

3 Aerococcus PMID:28786059

4 Atopobium PMID:28177125

5 Atopobium vaginae unconfirmed

6 Candidate division TM7 unconfirmed

7 Eggerthella PMID:26046242

8 Gardnerella PMID:28316574

9 Gardnerella vaginalis PMID:2131794

10 Lactobacillus crispatus PMID:28608654

Consequently, 8 of the 10 most probable microbes were experimentally confirmed
through the relevant literature.

associated with the risk of type 2 diabetes (Li H. et al., 2017;
Long et al., 2017).

Crohn’s disease (CD) is a type of IBD. Although the etiology
of CD is generally believed to associated with the combination
of immune, environmental, and bacterial factors, however, the
precise etiology of CD is still unclear (Dessein et al., 2008;
Stefanelli et al., 2008; Cho and Brant, 2011). In fact, no surgical
treatment or pharmacotherapeutic methods have been reported
to cure Crohn’s disease (Baumgart and Sandborn, 2012). Studies
have increasingly investigated the bacterial factors associated
with the etiology of CD. Gevers et al. (2014) reported that
the increased abundance of Fusobacteriaceae, Enterobacteriaceae,
Pasteurellacaea, and Veillonellaceae and the decreased abundance
of Clostridiales Erysipelotrichales, and Bacteroidales are closely
correlated with Crohn’s disease. A case study on Crohn’s
disease revealed that the 10 most probable microbes were
confirmed through recent researches (Table 3). For example,
the two most promising microbes predicted by our model were
Clostridium difficile and Bacteroides fragilis, both confirmed to be
present at high levels in CD patients compared than in healthy
individuals (Cojocariu et al., 2014; Zhou et al., 2016). Moreover,
studies evaluating the association between disease status and gut
microbiota in CD patients revealed that Clostridium coccoides
(3rd place in the ranking list) was abundant in febrile patients
presenting with remission in comparison with patients with
active CD (Prosberg et al., 2016).

DISCUSSION AND CONCLUSION

Accumulating falsifiable evidence indicates that microbial
involvement is associated with disease pathogenesis in some
cases. In this study, with data from microbiological studies,
hypergraph theory, and other research areas, we introduced
an in silico model named RWHMDA to predict underlying
microbe-disease associations. Many previous computational
models performed pairwise comparisons and illustrated microbe-
disease associations as a normal graph. RWHMDA has been
developed primarily on the basis of a hypergraph, thus
compensating for the information loss issue by normal graph.
Known microbe-disease associations in the HMDAD database

TABLE 3 | A case study on Crohn’s disease verifying all 10 of the 10 most
probable candidates of Crohn’s disease-related microbes.

Rank Microbe Evidence

1 Clostridium difficile PMID:25599768

2 Bacteroides fragilis PMID:27684872

3 Clostridium coccoides PMID:27687331

4 Bacilli PMID:29559804

5 Betaproteobacteria PMID:27833911

6 Lachnospiraceae PMID:26628508

7 Clostridium PMID:29722832

8 Prevotella PMID:28852861

9 Alistipes finegoldii PMID:28877044

10 Alistipes putredinis PMID:29311644
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and the Gaussian interaction profile kernel similarity for
microbes were utilized to design a weighted hypergraph
comprising microbes and diseases. Random walk with restart
was implemented on the hypergraph for every disease to identify
the potential disease-associated microbes. Both cross-validation
and case studies on asthma, type 2 diabetes, and Crohn’s disease
revealed the reliability of RWHMDA. In addition, the predicted
microbes for all diseases were publicly released for further
validation through biological assays (Supplementary Table S1).

Generally, RWHMDA performed reliably, thus revealing
several important factors. First, as a representation of a higher-
order structure, hypergraphs adequately illustrate and present
data on microbe-disease associations without information loss.
In particular, the practice of setting disease as a hyperedge
and microbe as a node was reasonable and biologically
decipherable, thereby naturally benefiting the prediction of
potential associations. Second, owing to the valid and updated
data on disease-microbe associations through numerous
biological analyses, RWHMDA had a greater prediction accuracy
with greater probability. Third, random walk process is a
widespread and significant physical dynamic process, used
extensively in numerous studies. RWHMDA was developed on
the basis of the random walk with restart process, following
a seemingly iterative 2-step walking strategy to investigate
the potential association probability between any pair of
microbe and disease.

However, the present RWHMDA model has some limitations.
Hypergraph and Gaussian interaction profile kernel were both
constructed largely on the basis of known associations. Therefore,
the model may have a bias toward those well-known diseases
and microbes. Furthermore, some other similarity measures
of diseases could also be meticulously integrated into the
RWHMDA model, such as symptom-based disease similarity
and disease semantic similarity. Finally, the RWHMDA model
could not be implemented for new diseases without known

associations with microbes, being an inherent limitation of the
graph-based model.

In conclusion, RWHMDA is expected to display promising
potential to predict disease-microbe associations for follow-up
experimental studies and facilitate the prevention, diagnosis,
treatment, and prognosis of complex human diseases.
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Periodontal abscess is an oral infective disease caused by various kinds of bacteria.
We aimed to characterize the microbiota composition of periodontal abscesses by
metagenomic methods and compare it to that of the corresponding pocket and
healthy gingival crevice to investigate the specific bacteria associated with this disease.
Samples from abscess pus (AB), periodontal pocket coronally above the abscess
(PO), and the gingival crevice of the periodontal healthy tooth were obtained from
20 periodontal abscess patients. Furthermore, healthy gingival crevice samples were
obtained from 25 healthy individuals. Bacterial DNA was extracted and 16S rRNA gene
fragments were sequenced to characterize the microbiota and determine taxonomic
classification. The beta-diversity analysis results showed that the AB and PO groups
had similar compositions. Porphyromonas gingivalis, Prevotella intermedia, and other
Prevotella spp. were the predominant bacteria of human periodontal abscesses.
The abundances of Filifactor alocis and Atopobium rimae were significantly higher in
periodontal abscesses than in the periodontal pocket, suggesting their association
with periodontal abscess formation. In conclusion, we characterized the microbiota in
periodontal abscess and identified some species that are positively associated with
this disease. This provides a better understanding of the components of periodontal
abscesses, which will help facilitate the development of antibiotic therapy strategies.

Keywords: high-throughput sequencing, oral microbiota, periodontal abscess, 16S rDNA metagenomic,
periodontal pocket

INTRODUCTION

Periodontal abscess is an acute exacerbation of chronic periodontitis, exhibiting clinical symptoms
of swelling and severe pain in the gingival margin. It is defined as a localized suppurative lesion that
is related to periodontal alveolar bone loss and the accumulation of pus in the gingival wall of the
periodontal pocket (Herrera et al., 2000). Previously, we cultured obligate anaerobic bacteria from
periodontal abscess and characterized their antimicrobial resistance profiles (Xie et al., 2014), in
which the predominant obligate anaerobes were black-pigmented Prevotella. Although the results
were partly in agreement with the findings of previous studies (Jaramillo et al., 2005; Herrera
et al., 2014), some bacteria such as those of the genus Treponema were unculturable and some
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predominant anaerobes such as Porphyromonas gingivalis,
Tannerella forsythia, and Fusobacterium spp. were less frequently
cultured, due to the culture condition or suitability of medium
(Xie et al., 2014). In addition, it has been reported that the
therapeutic effect of antibiotic regimens on periodontal abscess
is limited (Smith and Davies, 1986; Herrera et al., 2000, 2014),
suggesting the complexity of associated pathogens. Recently,
we used high-throughput barcoded 16S rDNA sequencing to
characterize the microbiota in the periodontal pocket of patients
with periodontitis and compared these to those of patients
with chronic obstructive pulmonary disease (COPD). As the
number of different kinds of bacteria was determined in the
subgingival plaque of every patient, we hypothesized that
periodontal abscess is caused by a combination of microbiota,
and specific pathogens might be more dominant in the abscess
than in the pocket and in healthy controls suggesting a
positive-association with abscess formation. Therefore, a clearer
understanding of pathogens and the microbiota that cause
periodontal abscess is necessary.

In this study, we used high-throughput barcoded 16S
rDNA sequencing technique to characterize the microbiota
of periodontal abscess, the corresponding pocket, and healthy
gingival crevice to investigate the specific bacteria associated with
periodontal abscess in human periodontitis.

MATERIALS AND METHODS

Patient Recruitment
Forty-five participants were recruited from March 2015 to
September 2015, including 20 periodontitis patients with
periodontal abscess and 25 periodontal healthy individuals.
Subjects with the following conditions were excluded from
the study: pregnancy, use of antibiotics or anti-inflammatory
drugs during the past 3 months, and administration of
periodontal therapy during the last 6 months. The study
was approved by the ethics committee of Huashan Hospital,
Fudan University (No. KY2014-023). All participants provided
signed, informed consent. The study design is shown in
Supplementary Figure S1. Probing depth (PD), clinical
attachment loss (CAL), and simplified oral hygiene index
(OHI-S) were assessed according to World Health Organization
recommendations (WHO, 1997). Periodontitis was diagnosed
as previously described (Wu et al., 2017) with the presence
of more than one tooth with at least one site (mesiobuccal,
buccal, distobuccal, mesiolingual, lingual, and distolingual
sites) with PD ≥ 4 mm, CAL ≥ 2 mm, and bleeding on
probing. Periodontal abscess was diagnosed by a periodontal
specialist based on the patients’ symptomatology, clinical
and radiological examination findings such as swelling and
enlargement of the gingiva, history of periodontal disease,
and radiograph of the alveolar bone destruction around the
cementoenamel junction. Patients with periodontal abscess but
without periodontitis were excluded. Periodontal tooth health
was defined as PD ≤ 2 mm and with no bleeding on probing
at all six sites.

Specimen Collection and Isolation of
Bacterial DNA
Three samples were collected from all the patients with
abscess, including the sample of abscess pus (abscess group,
AB), periodontal pocket coronally above the abscess (pocket
group, PO), and gingival crevice of periodontal healthy tooth
(patient control group, PC). Healthy teeth were also sampled
from periodontally healthy individuals as the healthy control
(control group, HC). The abscess samples were drained after
decontamination of the mucosa. A No. 25# sterilized paper point
(Gapadent, China) was immersed into the deep area of pus
for 10 s after drainage with a sterilized probe. The periodontal
pocket and healthy gingival crevice samples were dipped with
No. 25# sterilized paper points as previously described (Wu et al.,
2017). The periodontal pocket sample was not collected from one
patient due to contamination with pus. All samples were stored
in tris-EDTA buffer solution of pH 7.4 (Sigma, United States)
in a freezer (−80◦C). Bacterial DNA was extracted using the
QiAamp DNA Mini Kit (Qiagen, Germany), according to the
manufacturer’s instructions.

Amplification of the 16S rDNA and
Sequencing
According to previous studies (Claesson et al., 2010; Mizrahi-
Man et al., 2013; Jorth et al., 2014), hypervariable V3–V4 or
V4–V5 regions are recommended to study the microbiome when
using the second-generation sequencing method. It was also
determined that the V4–V5 region showed the best performance
among all regions. Therefore, the amplification of the V4–V5
regions of 16S rDNA, library construction, index PCR, and PCR
clean-up were performed as previously described (Wu et al.,
2017). Equal amounts of tagged 16S rRNA gene amplicons of
each sample were mixed and denatured with 0.1 M NaOH. The
mixed library was diluted to a final concentration of 10–20 pM
using 10 mM tris at pH 8.5. Multiplexed paired-end sequencing
(2 × 300 bp reads) of the 16S rRNA amplicons was performed
using a Miseq system (Illumina, San Diego, CA, United States).
Image analysis and base calling were performed on the Miseq
system using the MiSeq Reporter software (MSR). After de-
multiplexing the data and removing the reads that failed the
purity filter (PF = 0), the reads were converted to FASTQ format.

Data Analyses
The generated FASTQ files (.fastq) and quality files were acquired
as raw and mapped sequence data using default settings of
the QIIME2 software (version: 2018.8) (Caporaso et al., 2010).
Each operational taxonomic unit (OTU) was generated with 97%
similarity cutoff using UPARSE v7.1 and chimeric sequences
were identified and removed using UCHIME. The phylogenetic
affiliation of each 16S rRNA gene sequence was analyzed using
RDP Classifier1 based on the Silva (SSU132) 16S rRNA database
using a confidence threshold of 70% (Amato et al., 2013;
Duan X.B. et al., 2017; Duan X. et al., 2017; Xu et al., 2018).
The output was based on the classification of reads at several

1http://rdp.cme.msu.edu/
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taxonomic levels. The alpha- and beta-diversity analyses were
computed from the previously constructed OTU table using
Mothur software (v.1. 30.1) (Schloss et al., 2009) and weighted
UniFrac (Lozupone et al., 2011) analysis. In the group level,
abundance analysis was determined from rarefaction files by the
Mann–Whitney test between patient and health control groups
and a paired t-test in the self-control comparison (SPSS Statistics
v20.0 and GraphPad Prism software v6.01). At the patient level,
when analyzing the significantly dominant bacteria in abscess
patients, any OTUs with abundance differences greater than
10% were considered significantly dominant. The minimum
abundance cutoff was set at 0.1% abundance, and abundance
values < 0.1% were neglected.

RESULTS

Participant Characteristics
Characteristics of the 45 enrolled subjects are listed in Table 1.
The sex proportion and smoking status between patients and
controls were not statistically different.

Taxonomic Classification of the 16S
rDNA Sequences
In total, 4.1 GB raw data containing 1.70 million high-quality
and classifiable reads were obtained from 84 samples. The
sequencing depth was similar among the four groups as follows:
20.85 ± 3.16 k reads in the AB group, 15.50 ± 1.93 k reads
in the PO group, 15.40 ± 1.40 k reads in the PC group, and

TABLE 1 | Characteristics data of the enrolled study participants.

Patient (N = 20) Health control (N = 25)

Gender (%)

Male 11 (55.0%) 11 (44.0%)

Female 9 (45.0%) 14 (56.0%)

Age

Mean (sd) 53.2 (16.2) 64.8 (6.7)

Smoking status (%)

Non-smokera 17 (85.0%) 20 (80.0%)

Smoker 3 (15.0%) 5 (20.0%)

Former smokerb 0 1 (4.0%)

Current smokerc 3 (15.0%) 4 (16.0%)

Cigarettes/day, Mean (SD)

Smoker 12.3 (7.5) 16.4 (14.4)

Former smoker 0 20 (N/A)

Current smoker 12.3 (7.5) 15.5 (16.5)

Periodontal Index

PD, Mean (SD) 4.8 (0.7) 2.5 (0.5)

CAL, Mean (SD) 5.8 (1.0) 2.8 (0.7)

OHI-S, Mean (SD) 2.43 (1.12) 1.45 (0.51)

aNon-smokers were those who either had never smoked or quit cigarettes at least
10 years prior to study entry. bFormer smokers were those who quit cigarettes at
least 6 months but < 10 years prior to study entry. cCurrent smokers were currently
smokers or those who quit cigarettes < 6 months prior to study entry. PD, probing
depth; CAL, clinical attachment loss; OHI-S, simplified oral hygiene index.

27.31 ± 7.21 k reads in the HC group. Among these high-
quality reads, 99.41% were classified into 322 genera, belonging
to 22 phyla, 38 classes, 84 orders, and 153 families. There
was no significant difference in the proportion of unclassifiable
sequences among the four groups based on a Kruskal–Wallis
test (P = 0.186).

Alpha-Diversity Analysis
The alpha-diversity analysis was conducted with two indexes,
namely the Shannon index implicating community diversity
and the Chao1 index implicating community richness
(Supplementary Figure S2). Plots were generated and exported
to the rarefaction curves (Aagaard et al., 2012; Supplementary
Figure S3). There was no significant difference in Chao1 and
Shannon indexes among the four groups based on a one-way
ANOVA analysis with Tukey’s multiple comparisons test.

Beta-Diversity Analysis
The microbial raw OTU data were subjected to the principal
coordinate analysis (PCoA) to evaluate the similarities among the
four groups (Figure 1). The results showed that the samples from
the AB and PO groups had similar microbiota compositions,
which could be grouped into one cluster, whereas the HC group
formed another cluster. The samples from the PC group could
not be grouped into one cluster and were scattered in the 3D
plot (Figure 1).

Abundance Analysis
Consistent with the results of the beta-diversity analysis, 8 of
the top 10 most dominant bacteria were the same in these two
groups. The genera Porphyromonas, Treponema 2, Streptococcus,
Neisseria, Fusobacterium, Prevotella, Prevotella 7 and Tannerella
accounted for 61% of the bacteria in the AB and PO groups,
and exhibited no significant differences between the AB and PO
groups based on a paired t-test (Table 3 and Supplementary
Figure S4). Furthermore, based on the hierarchical clustering
analysis of the four groups, 17 of the 20 (85%) AB samples
and 11 of the 19 (58%) PO samples clustered together (lower
cluster in Figure 2). In the PC and HC control groups, 8 of
the top 10 most dominant bacteria overlapped. The genera
Streptococcus, Neisseria, Bacteroides, Fusobacterium, Veillonella,
Prevotella, Actinomyces, and Porphyromonas accounted for 57
and 59% of the total bacteria in the PC and HC groups,
respectively (Supplementary Figure S4). Fourteen of the 20
(70%) PC samples and 22 of the 25 (88%) HC samples clustered
together (upper cluster in Figure 2), indicating almost similar
compositions between these two groups.

Dominant Bacteria in Abscesses at the
Patient Level
In the AB group, the abundance of the most abundant OTUs
in all samples did not exceed 50% (Figure 3). The data showed
that 9 of 20 samples had two OTUs with an abundance over
10% and 7 of 20 samples had three or more OTUs with an
abundance over 10%. Furthermore, 2 of 20 samples had two
OTUs with an abundance over 20%, including the combination
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FIGURE 1 | Beta diversity analysis based on UniFrac analysis. Plots were generated using weighted UniFrac distances. Red dot represents the abscess pus (AB)
group. Green dot represents the pocket (PO) group. Yellow dot represents the patient control (PC) group. Blue dot represents the healthy control (HC) group. Circles
in red and blue represent different periodontal bacterial community clusters, respectively.

of Leptotrichiaceae_Unclassified (27.8%) and P. gingivalis W83
(23.1%) in abscess 031711C, and Lautropia_uncultured bacterium
(29.5%) and Streptococcus_uncultured bacterium (21.6%) in
abscess 052004B (Figure 3). These results suggest that disease in
these patients was caused by bacterial co-infections.

To reveal the dominant bacteria involved in abscess, we
compared the OTUs of the AB group with those of the PC group
by performing a paired t-test at the group level. The results
showed that the abundance of 6 OTUs was significantly higher
in the AB than in the PC group (Supplementary Table S1).
However, except P. gingivalis W83, other classical opportunistic
bacteria causing periodontal abscess were not significantly
different based on this analysis. Furthermore, the OTUs, except
P. gingivalis W83, which was relatively high in the AB group,
were low in average abundance (Supplementary Table S1),
suggesting that group comparison is not ideal for the analysis of
dominant bacteria.

Considering the heterogeneity of dominant opportunistic
bacteria in different patients, we performed a direct bacterial
abundance comparison between the AB and PC groups at the
patient level, and the bacteria with abundance differences > 10%
between the AB and PC groups were identified as significantly
dominant bacteria (Table 2 and Supplementary Table S2).
In total, 19 OTUs including P. gingivalis W83 (8/20, 40%),
Prevotella spp. (3/20, 15%), Prevotella intermedia (2/20, 10%),
P. gingivalis TDC60 (1/20, 5%), and Prevotella heparinolytica
(1/20, 5%), were found to be significantly dominant in the
AB group compared with abundances in the PC group in the
corresponding number of patients (Table 2). Additionally, 20
OTUs, including Streptococcus spp. (6/20, 30%), Actinomyces spp.
(3/20, 15%), Lautropia spp. (3/20, 15%), Neisseria spp. (3/20,
15%), Veillonella spp. (3/20, 15%), Fusobacterium spp. (2/20,
10%), P. intermedia (2/20, 10%), and Bacteroides neonati (2/20,

10%), were found to be significantly more dominant in the PC
group than in AB group (Table 2). Interestingly, P. intermedia
was identified as significantly dominant in the AB group of some
patients and the PC group of other patients, indicating that it
might have a heterogeneous function in abscess formation in
different populations.

Specific Bacteria in Abscess Compared
With Those in Pockets at the Group Level
At the group level, a comparison between the AB and
PO groups revealed specific bacteria associated with acute
disease. The abundance of bacteria in these two groups
was highly similar. At the genus level, only Filifactor and
Atopobium exhibited significantly higher abundance in the AB
group, whereas nine genera presented significantly lower in
abundance in the AB group than in the PO group (Table 3).
Similarly, 3 OTUs including Filifactor alocis and Atopobium
rimae presented significantly higher abundance in the AB
group, suggesting that they might function in periodontal
abscess formation. Moreover, 4 OTUs exhibited significantly
lower abundance in the AB group than in the PO group
(Table 3). However, all 4 OTUs were not accurately classified to
the species level.

Bacteria Associated With Abscess at the
Group Level
At the group level, a comparison between the AB and HC
groups was made in the present study. At the genus level,
24 genera including Porphyromonas, Treponema 2, Tannerella,
Filifactor, Parvimonas, and Prevotella 1 were significantly more
abundant in the AB group than in the HC group (Supplementary
Table S3). Moreover, 25 genera including Streptococcus, Neisseria,
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TABLE 2 | The Dominant OTUs in AB group compared to PC group at patient level.

OTUs Patients (Radio)

Greater than 10% higher in AB group than in PC group

Porphyromonas gingivalis W83 8 (40%)

Prevotella_uncultured bacterium 3 (15%)

Prevotella intermedia 2 (10%)

Streptococcus constellatus subsp. constellatus 2 (10%)

Fusobacterium_uncultured bacterium 2 (10%)

Porphyromonas_Unclassified 2 (10%)

Porphyromonas gingivalis TDC60 1 (5.0%)

Prevotella heparinolytica 1 (5.0%)

[Eubacterium] brachy 1 (5.0%)

Fusobacterium_uncultured organism 1 (5.0%)

Leptotrichiaceae_Unclassified 1 (5.0%)

Porphyromonas_uncultured organism 1 (5.0%)

Prevotella 1_Unclassified 1 (5.0%)

Rikenellaceae RC9 gut group_uncultured bacterium 1 (5.0%)

Streptococcus_uncultured bacterium 1 (5.0%)

Tannerella_Unclassified 1 (5.0%)

Treponema 2_Unclassified 1 (5.0%)

Treponema 2_uncultured Treponema sp. 1 (5.0%)

Treponema 2_uncultured bacterium 1 (5.0%)

Greater than 10% lower in AB group than in PC group

Streptococcus_uncultured bacterium 6 (30%)

Actinomyces_uncultured bacterium 3 (15%)

Lautropia_uncultured bacterium 3 (15%)

Neisseria_Unclassified 3 (15%)

Veillonella_uncultured bacterium 3 (15%)

Prevotella intermedia 2 (10%)

Bacteroides neonati 2 (10%)

Fusobacterium_uncultured bacterium 2 (10%)

Porphyromonas gingivalis W83 1 (5.0%)

Bergeriella denitrificans 1 (5.0%)

Treponema 2_Unclassified 1 (5.0%)

Capnocytophaga_uncultured bacterium 1 (5.0%)

Corynebacterium_uncultured bacterium 1 (5.0%)

Fretibacterium_Unclassified 1 (5.0%)

Gemella_uncultured bacterium 1 (5.0%)

Haemophilus_uncultured bacterium 1 (5.0%)

Lentimicrobiaceae_uncultured bacterium 1 (5.0%)

Neisseria_uncultured bacterium 1 (5.0%)

Porphyromonas_uncultured bacterium 1 (5.0%)

Streptococcus_Unclassified 1 (5.0%)

The dominant different abundance of OTU was set as 10%.

Veillonella, Capnocytophaga, Actinomyces, Selenomonas 3, and
Prevotella 2 were significantly less abundant in the AB group
than in the HC group (Supplementary Table S3). At the
OTU level, 28 OTUs including P. gingivalis, Treponema 2
spp., P. intermedia, F. alocis, and T. forsythia exhibited
significantly higher abundance in the AB group than in
the HC group. In contrast, 22 OTUs including Streptococcus
spp., Veillonella spp., Actinomyces spp., and Neisseria spp.

showed less abundance in the AB group than in the HC
group (Table 4).

Porphyromonas gingivalis and P. intermedia were found to
be dominant in the AB group at the patient level, and their
abundance was significantly higher in the AB group than in
the HC group at the group level. Additionally, Prevotella spp.
was identified to be the dominant species in the abscesses of a
few patients, but its abundance was not significantly different
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TABLE 3 | Specific bacteria of significant difference in AB compared with PO group based on a paired t-test at group level.

Genus/OTUs AB (Mean ± SE, %) PO (Mean ± SE, %) p-value

Higher in AB in Genus level

Filifactor 2.05 ± 0.40 1.06 ± 0.26 0.009

Atopobium 0.75 ± 0.33 0.03 ± 0.01 0.046

Lower in AB in Genus level

Leptotrichia 0.15 ± 0.05 0.96 ± 0.25 0.005

Selenomonas 3 0.12 ± 0.06 0.75 ± 0.29 0.029

Desulfobulbus 0.24 ± 0.13 0.61 ± 0.22 0.019

Prevotella 2 0.06 ± 0.02 0.52 ± 0.14 0.009

Flexilinea 0.09 ± 0.04 0.44 ± 0.16 0.048

Eikenella 0.02 ± 0.01 0.23 ± 0.09 0.037

F0332 0.03 ± 0.02 0.12 ± 0.05 0.029

Bergeyella 0.04 ± 0.02 0.11 ± 0.04 0.012

Lachnoanaerobaculum 0.02 ± 0.01 0.10 ± 0.03 0.013

Higher in AB in OTU level

Streptococcus constellatus subsp. constellatus 2.08 ± 0.97 0.36 ± 0.17 0.049

Filifactor alocis ATCC 35896 1.88 ± 0.43 0.77 ± 0.24 0.007

Atopobium rimae 0.68 ± 0.31 0.00 ± 0.00 0.039

Lower in AB in OTU level

Capnocytophaga_uncultured bacterium 0.26 ± 0.11 1.82 ± 0.67 0.027

Veillonella_uncultured bacterium 0.20 ± 0.09 1.42 ± 0.61 0.040

Desulfobulbus_Unclassified 0.24 ± 0.13 0.61 ± 0.22 0.019

Leptotrichia_uncultured bacterium 0.12 ± 0.04 0.55 ± 0.19 0.034

Abundance cutoff was set at 0.1%, some below 0.1% were not shown in the table.

between the AB and HC groups and it could not be classified
at the species level. In contrast, Streptococcus spp., Actinomyces
spp., Lautropia spp., Neisseria spp., and Veillonella spp. were
the dominant species in the PC group compared with those
in the AB group at the patient level, and their abundance was
significantly lower in the AB group than in the HC group at
the group level.

Specific Bacteria Associated With
Periodontitis at the Group Level
We also compared the bacterial abundance between the
PO and HC groups at the group level to determine if
our data were consistent with well-known periodontitis-
associated bacteria. At the genus level, 23 genera including
genus Porphyromonas, Treponema 2, Tannerella, Fretibacterium,
Prevotella 1, Filifactor, Dialister, and Desulfobulbus were
significantly higher in the PO group than in the HC
group, whereas 17 genera including Streptococcus, Bacteroides,
Veillonella, Bergeyella, and Kingella were lower in the PO
group than in the HC group (Supplementary Table S4).
At the OTU level, the abundance of 29 OTUs including
P. gingivalis, P. intermedia, Treponema spp., T. forsythia,
F. alocis, and P. heparinolytica were higher in the PO
group than in the HC group. The results were partly
concordant with a previous study about the periodontal red
and orange complex (Newman et al., 2015). In contrast,
the abundance of 23 OTUs including Streptococcus spp. and

B. neonati were lower in the PO group than in the HC group
(Supplementary Table S5).

DISCUSSION

Oral periodontal abscess is an oral infective, painful disease
that can spread (Yoneda et al., 2011; Herrera et al., 2014; Sato
et al., 2016), and it is a valuable potential sign of undiagnosed
type 2 diabetes (Alagl, 2017). Several studies have identified
the dominant microbiota by culture-based diagnostic methods
(Newman and Sims, 1979; Jaramillo et al., 2005; Xie et al.,
2014). In the present study, considering the heterogeneity of
dominant opportunistic bacteria in different patients, a patient
level analysis between abscess and healthy periodontium was
made, which showed that P. gingivalis, and Prevotella spp.
including P. intermedia were found to be dominant in the abscess
of some patients compared to those of healthy periodontium
based on 16S rDNA metagenomic sequencing. Compared to
the findings of our previous culture-based study, our study
confirmed that Prevotella spp., and especially P. intermedia, is the
dominant species in human periodontal abscess (Xie et al., 2014).

However, this study differs from the traditional culture-based
method in the following aspects. First, the culture method usually
detects the most abundant bacterium, but the second or the
third most abundant bacteria can be neglected. For example, in
abscess samples from two patients, P. gingivalis W83 was the
most dominant bacterium, and the abundance was 39.4 and
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FIGURE 2 | Microbial community bar plot at the genus level with cluster tree. Each line shows the results of the bacterial community of one sample. Different
bacterial taxonomies at the genus level (cutoff was set as 1%; some below 1% were shown as “others”) are shown in different colors on the right. The hierarchical
cluster diagrams in all samples based on the community composition (based on the algorithm of Bray–Curtis) is shown on the left. Red color indicates that the
specimen is in the AB group. Green color indicates that the specimen is in the pocket (PO) group. Yellow color indicates that the specimen is in the healthy control
(HC). Blue color indicates that the specimen is in the patient control (PC).

28.5%, respectively. Furthermore, the second highest abundant
bacterium in both samples was Fusobacterium spp., for which
abundance was only 12.3 and 17.9%, respectively, which could
be neglected in the culture method. Second, the metagenomic
sequencing method can detect unculturable bacteria and is not
restricted to medium selectivity or addictive antibiotics. For
example, in one abscess sample, the dominant bacterium was
Treponema 2 spp. (Table 2), which is unculturable. In addition,
the major dominant bacterium identified in the present study
was P. gingivalis, which was not detected in some by the culture
method (Newman and Sims, 1979; Jaramillo et al., 2005; Xie et al.,
2014). This might be attributed to medium selectivity or addition
of selective antibiotics that inhibit this bacterium.

Porphyromonas gingivalis is a member of periodontal red
complex (Socransky et al., 1998; Newman et al., 2015), which is
the most predominant bacterial cluster detected in subgingival
plaque, and can induce the production of interleukin-1 in
macrophages (Saito et al., 1997) and trigger polyclonal B-cell

activation (Champaiboon et al., 2000) associated with bleeding on
probing and alveolar bone loss (Socransky et al., 1998). Moreover,
it might be associated with several general dysfunctions including
cardiovascular disease (Kozarov et al., 2005), rheumatoid arthritis
(Berthelot and Le Goff, 2010), Alzheimer’s disease (Dominy
et al., 2019), and conception in women (Paju et al., 2017).
Prevotella spp. including P. intermedia is a member of the
periodontal orange complex (Newman et al., 2015), the second
most predominant bacterial cluster detected in subgingival
plaque, in addition to being recognized pathogens of periodontal
infection. In a study by Jaramillo et al. (2005), the most frequent
subgingival bacterium was Fusobacterium spp. (75%), followed
by P. intermedia and P. nigrescens (60%), as well as P. gingivalis
(51%). In partial agreement of the results of our previous study
that P. intermedia is the most prevalent bacterium in periodontal
abscess (Xie et al., 2014), in the present study, the second
and third most dominant bacteria were Prevotella spp. and
P. intermedia (25%).
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FIGURE 3 | Relative abundance of genera in the AB group. Each column represents a sample in the AB group. The genera were sorted in descending order of
average abundance in abscess samples. Different bacterial taxonomies at the genus level are shown in different colors on the bottom. Abundance cutoff in this bar
graph was set at 1%; some below 1% were shown as “others.”

Like brain, lung, and pyogenic liver abscesses, which are
caused by multiple kinds of bacteria (Brook, 2009; Webb et al.,
2014; Yazbeck et al., 2014), periodontal abscess is more complex
than previously thought. In the present study, seven of 20 samples
had three or more OTUs with an abundance greater than 10%,

and most OTUs were opportunistic bacteria, suggesting pathogen
heterogeneity and bacterial co-infection in periodontal abscess
diseases. Abscess occurs in a site that inhabits multiple normal
and opportunistic bacteria, which are symbiotic and promote
abscess formation (Newman et al., 2015). The significantly
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TABLE 4 | Mean relative abundance of OTUs with significant statistical difference between AB and HC groups at group level.

OTUs AB (Mean ± SE, %) HC (Mean ± SE, %) p-value

Higher in AB

Porphyromonas gingivalis W83 13.64 ± 3.25 0.09 ± 0.04 < 0.001

Treponema 2_Unclassified 3.91 ± 0.86 0.75 ± 0.30 < 0.001

Prevotella intermedia 2.94 ± 1.31 0.17 ± 0.07 0.022

Treponema 2_uncultured bacterium 2.74 ± 1.62 0.46 ± 0.19 0.003

Porphyromonas_uncultured organism 2.63 ± 0.81 0.00 ± 0.00 < 0.001

Treponema 2_uncultured Treponema sp. 2.25 ± 0.58 0.08 ± 0.03 < 0.001

Streptococcus constellatus subsp. constellatus 1.98 ± 0.93 0.09 ± 0.05 0.006

[Eubacterium] brachy 1.95 ± 1.32 0.15 ± 0.07 0.018

Fretibacterium_Unclassified 1.90 ± 0.64 0.20 ± 0.09 0.004

Filifactor alocis ATCC 35896 1.79 ± 0.42 0.05 ± 0.03 < 0.001

Prevotella 1_Unclassified 1.77 ± 0.87 0.01 ± 0.01 0.003

Rikenellaceae RC9 gut group_uncultured bacterium 1.53 ± 0.99 0.00 ± 0.00 0.006

[Eubacterium] nodatum 1.37 ± 0.37 0.03 ± 0.02 < 0.001

Tannerella forsythia KS16 1.34 ± 0.52 0.05 ± 0.03 0.005

Prevotella heparinolytica 1.10 ± 0.83 0.00 ± 0.00 0.022

Eubacterium saphenum ATCC 49989 0.59 ± 0.27 0.02 ± 0.01 0.002

Parvimonas_uncultured bacterium 0.46 ± 0.23 0.02 ± 0.01 < 0.001

Defluviitaleaceae UCG-011_Unclassified 0.29 ± 0.14 0.03 ± 0.02 0.002

Rikenellaceae RC9 gut group_Unclassified 0.23 ± 0.07 0.00 ± 0.00 < 0.001

Clostridiales vadinBB60 group_Unclassified 0.22 ± 0.08 0.01 ± 0.01 0.003

Pseudoramibacter alactolyticus 0.19 ± 0.09 0.00 ± 0.00 0.016

Phocaeicola abscessus 0.18 ± 0.09 0.00 ± 0.00 0.001

Moryella_uncultured bacterium 0.15 ± 0.11 0.00 ± 0.00 0.002

Family XIII_uncultured bacterium 0.15 ± 0.05 0.01 ± 0.01 0.001

Mycoplasma hyosynoviae 0.12 ± 0.06 0.00 ± 0.00 0.006

W5053_uncultured bacterium 0.12 ± 0.07 0.00 ± 0.00 0.009

Flexilinea_Unclassified 0.11 ± 0.04 0.01 ± 0.00 0.003

Bulleidia_Unclassified 0.10 ± 0.09 0.00 ± 0.00 0.009

Lower in AB

Streptococcus_uncultured bacterium 3.42 ± 1.40 13.21 ± 2.24 < 0.001

Streptococcus_Unclassified 0.56 ± 0.25 6.23 ± 1.78 < 0.001

Veillonella_uncultured bacterium 0.29 ± 0.12 4.35 ± 1.38 < 0.001

Actinomyces_uncultured bacterium 0.44 ± 0.10 3.20 ± 1.21 0.001

Neisseria_Unclassified 0.11 ± 0.06 2.98 ± 1.16 0.001

Capnocytophaga_uncultured bacterium 0.26 ± 0.11 2.94 ± 0.96 < 0.001

Prevotella 7_uncultured bacterium 0.79 ± 0.49 2.03 ± 0.60 0.005

Lautropia_uncultured bacterium 1.52 ± 1.47 1.68 ± 0.66 0.005

Gemella_uncultured bacterium 0.81 ± 0.58 1.63 ± 0.47 < 0.001

Leptotrichia_uncultured bacterium 0.12 ± 0.04 1.45 ± 0.34 < 0.001

F0332_uncultured bacterium 0.01 ± 0.01 1.13 ± 0.60 0.005

Granulicatella_uncultured bacterium 0.06 ± 0.02 0.81 ± 0.18 < 0.001

Selenomonas 3_uncultured bacterium 0.06 ± 0.05 0.81 ± 0.28 0.011

Blastomonas_uncultured bacterium 0.00 ± 0.00 0.52 ± 0.23 0.006

Ruminococcaceae UCG-014_uncultured bacterium 0.00 ± 0.00 0.45 ± 0.23 0.006

Kingella_uncultured bacterium 0.00 ± 0.00 0.44 ± 0.20 < 0.001

Delftia_Unclassified 0.00 ± 0.00 0.29 ± 0.13 0.011

Flavobacterium_Unclassified 0.04 ± 0.02 0.25 ± 0.08 0.011

Brevundimonas_uncultured bacterium 0.01 ± 0.01 0.24 ± 0.07 0.002

Aggregatibacter_uncultured bacterium 0.00 ± 0.00 0.22 ± 0.11 0.012

Ralstonia_Unclassified 0.00 ± 0.00 0.18 ± 0.06 0.012

Lachnoanaerobaculum_uncultured bacterium 0.01 ± 0.00 0.14 ± 0.05 0.009

Abundance cutoff was set at 0.1%, some below 0.1% were not shown in the table.
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dominant bacteria in the abscess were also diverse in different
patients and the difference between the abscess and the pocket
remains unknown.

To the best of our knowledge, the bacteria in the periodontal
abscess and periodontal pocket were compared for the first
time. Periodontal abscess might represent acute exacerbation
of periodontitis that is favored by changes in the subgingival
microbiota, with an increase in bacterial virulence or a decrease
in host defense (Herrera et al., 2014), resulting in the disruption
of chronic phase (pocket) homeostasis and conversion to
the acute phase (abscess). It is noteworthy that only two
OTUs, F. alocis and A. rimae, were significantly higher in
abundance in the AB group than in the PO group at the
group level, indicating that they could be associated with
the exacerbation of chronic periodontitis to acute periodontal
abscess, although bacterial abundance and diversity were highly
similar between the AB and PO groups. F. alocis is a Gram-
positive anaerobic rod, which is now suggested to be a new
periodontal pathogen (Schlafer et al., 2010; Aruni et al., 2015;
Camelo-Castillo et al., 2015) with unique properties such as
resistance to oxidative stress (Aruni et al., 2011), the ability
to cause chronic inflammation (Fine et al., 2013), and the
capacity to trigger apoptosis of gingival epithelial cells (Moffatt
et al., 2011). In the present study, consistent with the findings
of previous studies that F. alocis is positively associated
with periodontitis, F. alocis was found to be more abundant
in periodontal pockets than in the healthy periodontium.
Furthermore, it was more abundant in periodontal abscess than
in the pocket, suggesting that it is a potential, acute abscess-
related, periodontal pathogen. A. rimae is an anaerobic, Gram-
positive, rod-shaped bacterium, which has been suggested to be
an endodontic abscess-related microorganism (Tennert et al.,
2014; George et al., 2016). In the present study, A. rimae
was found to be more significantly abundant in the abscess
than in the pocket and healthy periodontium of the same
patient. However, it has been reported that A. rimae is more
prevalent in healthy subjects (Kumar et al., 2003), suggesting
its role in periodontitis formation, which is complex and
requires further study.

The bacteria associated with periodontitis have been well
investigated previously (Liu et al., 2012; Wang et al., 2013).
In the present study, the finding that the abundance of
29 OTUs including P. gingivalis, P. intermedia, T. forsythia,
and F. alocis was higher in the PO group than in the HC
group was largely in agreement with the findings of previous
studies (Liu et al., 2012; Wang et al., 2013). These data
further strengthen the reliability of this study to investigate the
opportunistic pathogens and dominant microbiota associated
with periodontal abscess.

Meanwhile, there were some limitations to our study.
First, only the V4–V5 region, and not the full-length gene,
was sequenced, which might result in some unclassified
OTUs like Streptococcus_Unclassified at the species
level. Second, different bacterial databases could lead to
differences in detected species, which requires further
comparisons with previously published studies to confirm
the suitability of the present research. Third, the present

study did not quantify the bacterial loads in samples, and
quantitative research will be more helpful in unraveling the
relationship between the severity of periodontal abscess and
certain bacteria.

In conclusion, we used 16S rRNA-based metagenomics to
characterize the bacterial profile of periodontal abscess in
humans and compared it with the corresponding periodontal
pocket and healthy periodontium. The results showed that the
bacterial composition of periodontal abscess is more complex
and mainly involves bacterial co-infections. Further, P. gingivalis,
P. intermedia, and Prevotella spp. were the predominant bacteria
in human periodontal abscesses. Two species, F. alocis and
A. rimae, were found to be positively associated with abscess
formation, although their bacterial abundance and diversity
in periodontal abscess and periodontal pockets were highly
similar. Recognition of the bacterial profile of periodontal abscess
might reveal new strategies for the diagnosis, surveillance, and
treatment of periodontal abscess, including the accurate use of
antibiotics and probiotics.
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Staphylococcus haemolyticus is one of the most significant coagulase-negative

staphylococci, and it often causes severe infections. Rapid strain typing of pathogenic

S. haemolyticus is indispensable in modern public health infectious disease control,

facilitating the identification of the origin of infections to prevent further infectious

outbreak. Rapid identification enables the effective control of pathogenic infections,

which is tremendously beneficial to critically ill patients. However, the existing strain typing

methods, such as multi-locus sequencing, are of relatively high cost and comparatively

time-consuming. A practical method for the rapid strain typing of pathogens, suitable for

routine use in clinics and hospitals, is still not available. Matrix-assisted laser desorption

ionization-time of flight mass spectrometry combined with machine learning approaches

is a promising method to carry out rapid strain typing. In this study, we developed a

statistical test-based method to determine the reference spectrum when dealing with

alignment of mass spectra datasets, and constructed machine learning-based classifiers

for categorizing different strains of S. haemolyticus. The area under the receiver operating

characteristic curve and accuracy of multi-class predictions were 0.848 and 0.866,

respectively. Additionally, we employed a variety of statistical tests and feature-selection

strategies to identify the discriminative peaks that can substantially contribute to strain

typing. This study not only incorporates statistical test-based methods to manage the

alignment of mass spectra datasets but also provides a practical means to accomplish

rapid strain typing of S. haemolyticus.
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INTRODUCTION

Staphylococcus haemolyticus is one of the most significant
species among the coagulase-negative staphylococci (CoNS),
whose main ecological niches are skin and the human and
animal mucous membranes (Becker et al., 2014). They are
often the causative agents of septicemia, peritonitis, otitis, and
urinary tract infections. In particular, the multidrug resistance,
the early acquisition of resistance to methicillin, and various
glycopeptide antibiotics by this species has troubled patients
for many years (Froggatt et al., 1989; Hiramatsu, 1998). Strain
typing of pathogenic S. haemolyticus forms an important part
of the response to modern public health infectious disease
outbreaks (MacCannell, 2013). For example, an outbreak of
S. haemolyticus had been reported to be the cause of burn
wound infections after a serious explosion event in Taiwan
during June 2015 (van Duin et al., 2016; Chang et al., 2018).
Rapid typing of S. haemolyticus facilitates the identification of
the origin of infection, and allows rapid infection control when
patients are critically ill. Consequently, a cost effective and rapid
identification strategy that targets strain typing issues is essential
and needs to be incorporated in routine clinical microbiology
laboratory practices.

Whole-cell matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS) is widely
used in clinical microbiology laboratories worldwide. This is
because MALDI-TOF MS allows rapid, reliable, and cost-
effective identification of bacterial species (Vrioni et al., 2018;
Wang et al., 2018c). The MALDI-TOF mass spectrum contains
extensive information regarding the matter that constitutes
microorganisms. In addition to the identification of bacterial
species, MALDI-TOF MS has the potential to allow strain
typing and/or antibiotic resistance profiling with high accuracy
when machine learning methods are also implemented (Croxatto
et al., 2012; Mather et al., 2016). Compared to the other
strain typing methods, such as pulse-field gel electrophoresis
and multi-locus sequence typing (MLST), analysis by MALDI-
TOF MS to determine strain type is advantageous owing to its
lower cost and rapid turn-around-time (Wang et al., 2018b).
Strain typing via MALDI-TOF MS is promising; however,
the subtle differences in MALDI-TOF MS spectra of different
strains has hindered the introduction of this type of analysis
in a clinical context in the absence of incorporation of
computational methods (Sandrin et al., 2013; Camoez et al.,
2016). Numerous methods have been developed in recent years
to overcome this drawback in strain typing by MALDI-TOF
spectrum analysis. The visual examination of a MALDI-TOF
pseudo-gel or spectrum to pinpoint strain-specific peaks has
been implemented by some research groups (Wolters et al.,
2011; Josten et al., 2013). Visual examination of the MALDI-
TOF MS is easy in practice, but the analytical accuracy is
highly dependent on the operator. Inter-batch and/or intra-
batch analytical variation is extremely likely. Moreover, visual
examination of a MALDI-TOF MS or pseudo-gel is labor-
intensive. Analyzing complex proteomic data, such as those
obtained by MALDI-TOF MS, by visual examination often does
not attain the appropriate level of precision, adequate objectivity,
and/or a high enough throughput.

With the rapid advancements in artificial intelligence,
machine learning-based methods have been implemented to
identify classifiers when facing such classification problems
(Mather et al., 2016; Wang et al., 2018b). More specifically,
the logistic regression (LR), support vector machine (SVM),
the decision tree (DT), the random forest (RF), and k-nearest
neighbor (KNN) approaches have been widely implemented to
build classifier model systems. In recent years, the application
of machine learning-based methods in the field of medicine
has received considerable attention, and several studies have
demonstrated that the use of artificial intelligence to analyze
complex data in medical practice is apposite and promising
(Shameer et al., 2018; Hannun et al., 2019). Specifically, machine
learning-based classifiers allowing professional diagnosis of
retinopathy (Gulshan et al., 2016), can be used to analyze
electrocardiography data (Hannun et al., 2019), and have been
used to predict the prognoses of diseases (Wang et al., 2016;
Yu et al., 2016; Lin et al., 2018). In addition to image analysis,
applying machine learning-based methods to proteomic studies,
specifically MALDI-TOF MS investigations, has assisted in
attaining high accuracy in strain type prediction and/or strain
antibiotic resistance (Wang et al., 2018a,b,c). Machine learning-
based methods are able to utilize the signal intensities of specific
peaks in their predictions, and this provides additional and more
improved information than those obtained by the traditional
method based on the presence or absence of peaks (Walker
et al., 2002; Wolters et al., 2011; Lasch et al., 2014). In addition
to providing robust prediction accuracy, machine learning-
based methods, when analyzing MALDI-TOF MS, are also able
to generate sets of discriminative peaks that are essential for
accurate prediction. These specific sets of discriminative peaks
can be used to pinpoint the possible combinations of molecules
that are responsible for the various strain types and the variation
in drug resistance profiles (Vrioni et al., 2018).

As mentioned previously, slight differences in MALDI-TOF
MS results among different strains should be considered critical
in preprocessing the spectral data. Specifically, the determination
or extraction of representative features is essential before
constructing the classifiers. Yet, little research is being done
to develop a definitive strategy to solve such issues, not to
mention incorporating statistical tests. In this study, we first
developed a statistical test-based strategy for dealing with the
alignment issue for the MALDI-TOF MS according to the mass-
to-charge ratio (m/z) values, and further considered the signal
intensity to construct the classification models. Various machine
learning algorithms were trained and validated with the aim
of discriminating the ST3, ST42, and various other STs of S.
haemolyticus. We also investigated the discriminative peaks that
are central to strain typing of S. haemolyticus with MALDI-TOF
MS. This approach will not only be beneficial in rapid outbreak
control for S. haemolyticus infection but also provide a definite
strategy for preprocessing the spectral data.

MATERIALS AND METHODS

Bacterial Isolates
A total of 254 unique S. haemolyticus isolates had been collected
at Chang Gung Memorial Hospital, Linkou branch, Taiwan. The
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period of collectionwas between June andNovember 2015, which
was the period when a significant number of burn patients were
admitted to the hospital. The isolates were stored at −70◦C until
use. This was a retrospective study investigating the relation
between MS spectrum and microbial strain typing. No diagnosis
or treatment was involved by the study. Waiver of informed
consent was approved by the Institutional Review Board of
Chang Gung Medical Foundation (No. 201600049B0).

Analytical Measurement of MALDI-TOF MS
To carry out the analysis, we cultivated the isolates on blood
agar plates (Becton Dickinson, MD, USA) initially in a batch
manner. The isolates were cultured in 5% CO2 incubator for
16 h. We then conducted the analytical measurements required
forMALDI-TOFMS followingmanufacturer’s instructions. First,
we picked a single colony from a blood agar plate and spread
it onto a steel target plate as a thin film (Bruker Daltonik
GmbH, Bremen, Germany). One µl of 70% formic acid (Bruker
Daltonik GmbH, Bremen, Germany) was then applied onto the
steel target plate followed by drying in room air. One µl of
matrix solution (Bruker Daltonik GmbH, Bremen, Germany)
was then added. After the sample preprocessing, a MicroFlex LT
mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany)
using a linear positive model was used for data acquisition. For
each batch, a Bruker Daltonics Bacterial test standard (Bruker
Daltonik GmbH, Bremen, Germany) was analyzed to allow
calibration. The sampling setting of the laser shot was 240 shots
(20Hz) for each isolate. The MALDI-TOF MS spectra were
analyzed using Biotyper 3.1 software (Bruker Daltonik GmbH,
Bremen, Germany). The analytical range of each spectrum
was 2,000-20,000 m/z. S. haemolyticus identification was set
at high confidence (score > 2 in the reports of Biotyper
3.1 software). Furthermore, FlexAnalysis 3.3 (Bruker Daltonik
GmbH, Bremen, Germany) was also implemented to acquire
the numerical spectra data which derived from MALDI-TOF
MS. Specifically, the original signals were smoothed by Savitzky-
Golay algorithm and their baselines were subtracted by the top
hat method. Meanwhile, some thresholds that were adopted
to extract reasonable peaks were setup as explained below:
signal-to-noise ratio was 2, relative intensity and minimum
intensity were both 0, maximal number of peaks was 200,
peak width was 6, and height was 80%. On the basis of the
single measurements, we hypothesized that strain typing of S.
haemolyticus is possible when the variability issue is handled
using information engineering technology.

Multilocus Sequence Typing of
S. haemolyticus
We defined the strain typing of S. haemolyticus by sequencing
seven housekeeping genes, namely arc, SH1200, hemH, leuB,
SH1431, cfxE, and RiboseABC (Panda et al., 2016). The
sequencing results of these genes were used to assign the sequence
types of S. haemolyticus throughout the present analysis using the
MLST database (https://pubmlst.org/shaemolyticus/) powered
by the BIGSdb genomics platform (Jolley et al., 2018).

MS Data Preprocessing for Classifiers
Construction
Several computational tools have been developed for the
preprocessing and extraction of features from MS data (Wong
et al., 2005; Mantini et al., 2007; Gibb and Strimmer, 2012).
More specifically, spectral data preprocessing would transform
a set of raw spectra into a numerical table which include
mass-to-charge (m/z) states with associated intensity for each
isolate. Generally, m/z values with adequate intensities are
considered as the fingerprint signatures when using spectral
data, and these can be extracted to build up models for
discriminating different subgroups. Note that a peak has an m/z
value. As a result, a valuable analysis would highly depend on
the appropriate use of preprocessing techniques. The MS data
derived from FlexAnalysis 3.3 were of high quality, but their
resulting peaks were not aligned within the dataset. Meanwhile,
the aforementioned tools lack of specific information about
the reference spectrum when implementing the alignment of
peaks. Therefore, we developed a statistical test-basedmethod for
determining the reference spectrum within a given dataset, then
further realizing the alignment of the peaks.

The reference spectrum should be capable of discriminating
between different subgroups within a dataset. Consequently, we
mainly focused on determining what pattern of peaks in the
reference spectrum can indicate the differences among different
groups in this study. For each spectrum, we first rounded each
m/z value to the nearest whole number, and then all peaks that
occurred were used to form a set of named candidate peaks set
(CPS). The peaks in CPS were then sorted into ascending order.
After a tolerance value is suggested, each adjacent peak in the CPS
is either lower than or is equal to the given tolerance value; in such
circumstances, the one with the higher difference in occurring
ratio is retained. The difference in occurring ratio for m/z= k, in
Dalton (Da), is defined below.

Dk =
1

3
{|
x1

n1
−

x2

n2
| + |

x1

n1
−

x3

n3
| + |

x2

n2
−

x3

n3
|},

where x1, x2, and x3 are the counts that are aligned to m/z
= k, and n1, n2, and n3 are the number of isolates for ST3,
ST42, and other ST types, respectively. For example, suppose
that the tolerance value is 1 Da, and the CPS = (2428 Da, 2429
Da, 2435 Da, 2436 Da, 2437 Da, 2450 Da) with D2428 = 0.053,
D2429 = 0.090, D2435 = 0.080, D2436 = 0.094, D2437 = 0.076,
and D2450 = 0.120, then the final m/z values, 2429 Da, 2436 Da,
and 2450 Da, are then used to create the representative peaks set
(RPS), which has an ascending order. In other words, the RPS
is the reference spectrum and feature set used to construct the
classification models.

To analyze the common peaks across the datasets given
in this study, we employed Fisher’s exact test (Raymond and
Rousset, 1995) to determine a tolerance value for constructing
the RPS due to relatively small sample sizes. For each tolerance
value, there are three p-values determined by comparing ST3
and ST42, ST3 and other ST types, and ST42 and other ST
types. As mentioned previously, the reference spectrum should
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be capable of discriminating between different subgroups within
a dataset, and the tolerance value could be adopted according
to its ability of separating these three groups. Therefore, the
tolerance value was selected based on the obtained reference
spectrum that would produce the largest number of p-values
that were less than 0.001. We then further adopted the repeated
5-fold cross validation to demonstrate the efficiency of the
determined tolerance value. Note that the determination of CPS
and RPS was based on the training data when the repeated 5-fold
cross validation was used. In other words, the repeated 5-fold
cross validation was implemented here to simulate an external
validation for evaluation of the performance in the determination
of the reference spectrum. The flowchart of preprocessing is
shown in Figure 1.

After determining the RPS, the alignment of the m/z with
intensity is another critical part of the process, whereby the
strength of signal at a specific m/z is determined. Therefore, in
these circumstances, it is straightforward tomove the specificm/z
value of an isolate to the closest one in the RPS. As the tolerance
value increases, more than one m/z values might be aligned to
the same specific m/z in the RPS. In this situation, the intensity
with the minimum distance between its own m/z and the specific
m/z, is preserved. Hence, duplication problems can be solved.
For instance, if both m/z = 2530 Da and m/z = 2535 Da in a
spectrum are aligned to 2532 Da, which is a member of the RPS,
the intensity of the m/z = 2530 Da is used for representing the
strength of signal at 2532 Da. Supplementary Figure 1 illustrates
how this alignment takes place.

Development of Machine Learning-Based
Classifiers
In this study, we implemented four machine learning methods;
multiple logistic regression (MLR), support vector machine
(SVM) learning, decision tree (DT) learning, and random forest
(RF) learning, to construct the strain type classifiers for S.
haemolyticus using R software (version 3.5.1, R Foundation
for Statistical Computing, https://www.r-project.org/). MLR is a
basic parametric model used in dealing with the present types of
classification problems. The primary objective of SVM is to find
a hyperplane that is able to segregate different classes of data and
therefore it is commonly used to solve classification problems.
DT and RF are both non-parametric tree-based strategies. Owing
to the small size of data, the unsophisticated structure of DT can
help us interpret the important features of the data more clearly.
On the other hand, RF can provide evaluation metrics for the
features and thus is able to identify the important features used
during the model construction.

The glmnet package (Friedman et al., 2010) of R was applied
during this study to construct the MLR model. More specifically,
the MLR model can be defined as

P(G = k|X = x) =
exp(β0k + βT

k
x)

∑K
j=1 exp(β0j + βT

j x)

where K is the number of levels of the response variable, and G=
(1, 2, . . . , K) is the set of levels. Note that this parameterization
is not estimable due to identical probabilities. However,

regularization is able to deal with this. Hence the MLRmodel can
be obtained by maximizing the penalized log-likelihood

max
{β0j ,βj}K1 ∈RK(p+1)

{
1

N

N
∑

i=1

log pgi (xi)− λ

K
∑

j=1

Pα(βj)}

where pj(xi) = P(G = j|xi), and gi ǫ (1, 2, . . . , K) is the
ith response. Therefore, MLR-based classifiers are able to be
constructed by adopting this package.

The SVM classifier was built using the e1071 package (Chang
and Lin, 2011). In this package, the multi-class problem is
approached via the “one-against-one” approach (Knerr et al.,
1990). Consequently, there are K(K-1)/2 classifiers that are
needed to be constructed for K classes. In this study, the SVM-
based classifier was required to construct three classifiers due to
the presence of three classes.More precisely, the training data was
used to form the ith and jth classes and was able to deal with the
following two-class classification problem.

max
wij , bij , ξ ij

{
1

2
(wij)

T
wij + C

∑

t

(ξ ij)t}

subject to

(wij)
T
φ(xt)b

ij ≥ 1− ξ ij, if xt in the ith class,

(wij)
T
φ(xt)b

ij ≤ −1+ ξ ij, if xt in the jth class,

ξ ij ≥ 0.

Following this, a voting strategy is adopted, the class with
the maximum number of votes is considered to be the most
probable one.

The DT-based classifier was implemented using the caret
package (Therneau and Atkinson, 2018) of R. Specifically,
the package mainly provides classification and regression trees
(CART). Furthermore, the randomForest package (Liaw and
Wiener, 2002) of R was also employed in this study to construct
a random forest-based classifier. The package mainly provides
an R interface using a Fortran program developed by Breiman
(2001). Ensemble learning and bagging are the two important
concepts used when creating the random forests. Furthermore,
a random forest is a classifier consisting of a collection of tree-
structured classifiers (Breiman, 2001). Therefore, according the
voting results, we should be able to obtain the prediction for
a specific data-set. In addition, RF provided the functions, that
allow the evaluation of the effect of features during model
construction. The mean decrease in accuracy and mean decrease
in node impurity are provided by randomForest package (Liaw
and Wiener, 2002). Note that the impurity is defined as

I(p) = 1−
J

∑

i=1

p2i

where pi is the probability of correct classification.
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FIGURE 1 | Flowchart of preprocessing of spectral data given that the tolerance value is 5. The incidence ratio was determined by the number of the isolates among

the CPS. Dk was defined as the total difference between the incidence ratios.

In addition to the aforementioned multiclass classification
approaches, we also adopted these methods when examining
binary classification in order to better distinguish ST3 and
ST42. The same package was implemented for this process,
but in this case using the binary option. For instance,
logistic regression (LR) was used to construct the binary
classification model using the glmnet package (Friedman et al.,
2010). Similarly, for SVM, DT, and RF, the same packages
were adopted.

Statistical Analysis
It is important to note that we were concerned not only
with the frequency of the peaks, but also with the intensity
of a specific peak among the multiple spectra, which is also
a critical in discriminating these three groups. Therefore,

in order to compare differences in intensities of specific
peaks among these three groups, the Kruskal–Wallis test
(Kruskal and Wallis, 1952) and Kendall’s tau coefficient
(Kendall, 1938) were both adopted as part of this study.
Moreover, to obtain the ability of an individual peak to
distinguish between the three groups, the area under the
receiver operating characteristic curve (AUC) was taken into
consideration. Note that to deal with multi-class performance
evaluation, the pROC package (Robin et al., 2011) in R
was implemented in order to obtain an estimation for the
multi-class AUC (Hand and Till, 2001). When comparing the
difference between two independent samples, the Wilcoxon
rank-sum test was employed, and it was also implemented to
compare cross validation performance. To find the optimal
cut-off points for each ROC curve during binary classification,
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the OptimalCutpoints package (López-Ratón et al., 2014)
was applied.

Evaluation Metrics of the Classifiers
To evaluate the performance of the classifiers constructed by
the aforementioned machine learning methods, the stratified
5-fold cross validation technique was implemented. The first
procedure of the stratified 5-fold cross validation splits the
dataset into 5 groups, preserving the percentage of data for
each class. Then, one group is left as the testing dataset,
while the remaining groups form the training dataset. The
classification model was built according to the training dataset
and was evaluated using the testing dataset. Note that each group
was a testing dataset. Consequently, we obtained 5 prediction
performances for these 5 groups. The average accuracy and
the AUC among the five testing sets were determined in order
to compare the performance when constructing the multiclass
classifiers. As a result, the AUC was calculated by using the
pROC package (Robin et al., 2011) in R. By way of contrast, we
used sensitivity, specificity, accuracy, and AUC when evaluating
the binary classification performance. More specifically, suppose
that the class of ST42 is labeled as 1, these metrics are defined
as follows:

SN =
TP

TP + FN

SP =
TN

FP + TN

ACC =
TP + TN

TP + TN+FP + FN
,

where TP means the true positives and refers to the number of
ST42 that were correctly predicted by the classifier, TN means
true negatives and refers to the number of ST3 that were correctly
predicted by the classifier, FP means false positives and refers
to the number of ST42 that were incorrectly predicted by the
classifier, and FN means false negative and refers to the number
of ST3 that were incorrectly predicted by the classifier.

Feature Selection Strategies
In addition to applying the importance evaluation from RF,
we also developed two strategies, the stepwise strategy and the
forward strategy, to find the peaks that needed to be considered
as classifiers. More specifically, these two strategies were adopted
when constructing the multi-class RF-based classifiers in order
to obtain the peaks that are essential when distinguishing these
three groups.

FIGURE 2 | Distribution of the dataset. (A) Pie chart showing the distribution of dataset. (B) Number of identified peaks in each group.
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The stepwise strategy starts initially with a specific peak, such
as the one with the largest AUC, the largest absolute value of
Kendall’s tau coefficient, and so on. Further, the next peak to be
selected must attain the largest AUC or accuracy when combined
with the currently selected peak(s) among those peaks that have
not been selected. The process is then repeated until the AUC or
the accuracy does not increase anymore.

When using the forward strategy, the peaks must be sorted
into a specific order. For example, the peaks can be sorted by their
AUCs in the descending order. Then the forward strategy would
follow this order to adding new peaks if the new one is able to
increase the AUC or accuracy. Otherwise, the peak will not be
regarded as a helpful feature when constructing the classifier, and
thus will be discarded.

FIGURE 3 | Proportion of significance for different tolerance values. Fisher’s exact test was employed to examine the difference between two different ST types. The

p-values were derived by the average of three p-values.

FIGURE 4 | Mass spectra before and after peak alignment. The left panel is the number of spectra appearing the specific peaks under the original signal of the mass

spectra and the right panel is after the alignment strategy with tolerance value 5.
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FIGURE 5 | Boxplot of the accuracy and AUC for the repeated 5-fold cross

validation when the tolerance value is 5.

The sensitivity of both these strategies is dependent on the
selection of the initial peak. In other words, the first selected
peak will affect different peak combinations and thismay produce
different performances. Moreover, different criteria are likely
also to result in different combinations. In this study, both
AUC and the accuracy are two of the major concerns when
building themulti-class classifiers. On the other hand, the balance
between the sensitivity and specificity also needs to be taken into
consideration. Nevertheless, the major aspects of the evaluation
still are dependent on the AUC and the accuracy.

RESULTS

Summary Statistics of Spectra Data
Among the 254 isolates used in the present study, 62 isolates
were ST3, 145 isolates were ST42, and 47 isolates were neither
ST3 nor ST42 and formed a separate group of strains. The
details of the other ST types show in Supplementary Table 1.
Given that we aimed to develop and validate a rapid S.
haemolyticus strain typing tool, we designed the classes based
on the local epidemiology, whereas ST3 and ST42 accounted for
the majority of strains. In clinical practice, the developed tool
would provide preliminary strain typing information, notifying
clinical physicians if the isolate of interest is of the major ST

types. When the isolate of interest is classified by the model as a
major ST type, outbreaks from the origin should be suspected and
further investigation could be initiated immediately. As noted,
this classification was determined by the local epidemiology of S.
haemolyticus in Taiwan. Figure 2 demonstrates the data statistics
and the distribution of number of peaks identified for each group.
On an average, the number of peaks identified in the range 2,000
Da to 17,000 Da was 76.48, with a standard deviation of 13.46.
More specifically, the average number of peaks identified for
ST3 was 77.03, while that of ST42 was 77.68, and the number
of peaks identified for the other ST types was 72.04. Although
the number of peaks identified for the other ST types seemed to
be lower than that for the other two strains, the Kruskal-Wallis
rank sum test did not show a significant difference between the
three groups (p = 0.0586). When spectra signal intensity was
examined, the average (standard deviation) normalized intensity
across the three groups was 0.16 (0.18). The average normalized
intensity of ST3 was 0.13 (0.16), while that of ST42 was 0.17
(0.19), and that of the other group of ST types was 0.18 (0.18).
The normalized intensity of ST3 seemed to be lower than that of
other two groups and the result of the Kruskal-Wallis rank sum
test also showed that there were significant differences between
these three groups (p < 0.0001).

Determination of Tolerance Value
In the previous section, we have described the strategy
for determining the RPS using Fisher’s exact test. Figure 3

demonstrates the proportion of significance for different
tolerance values. More specifically, the proportion of significance
was determined by the number of occurring significance. Note
that the significance here indicates that the p-value of Fisher’s
exact test is <0.0001. When the tolerance value is 5, the
proportion of significance is highest. The spectra with and
without preprocessing is shown in Figure 4. In addition, Figure 5
demonstrates the performance of the 5-fold cross validation
repeated 100 times. Specifically, there were 500 independent
tests of ACCs and AUCs for evaluating whether the tolerance
value was robust enough. These results implied that the tolerance
value was adequate for further analysis. The AUC of different
classifiers under different tolerance values, which are shown
in Figure 6, demonstrated that the AUC was able to attain a
value of 0.8 with a low standard deviation for the tolerance
value of 5. Therefore, we used a tolerance value 5 for the
feature selection because of its robustness. Table 1 shows the
mean ± standard deviation of the accuracy and AUC values for
the 5-fold cross validation using the different machine learning
methods. Wilcoxon rank sum test was then used to compare
their performances. It should be noted that the p-value next to
the accuracy/AUC column is from the Wilcoxon rank sum test
results and this was employed to compare the accuracy/AUC
when using the MLR method on the test data during 5-fold cross
validation. Furthermore, we also found that the RF values tended
to be robust due to the presence of a lower standard deviation
compared to other methods for the different tolerance values
present in Figure 5. Hence the feature selection strategies, when
implemented to find important features, used RF. It should be
noted that the number of peaks in RPS was 583 for a tolerance
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FIGURE 6 | Performance of different classifiers. Mean and standard deviation AUC of the 5-fold cross validations for the different tolerance values using different

machine learning methods.

TABLE 1 | Performance of 5-fold cross validation.

Accuracy p-value AUC p-value

MLR 0.819 ± 0.028 – 0.808 ± 0.074 –

SVM 0.858 ± 0.029 0.0937 0.839 ± 0.060 0.5476

DT 0.840 ± 0.046 0.4005 0.804 ± 0.012 0.6905

RF 0.866 ± 0.014 0.0196 0.848 ± 0.037 0.3095

Mean ± standard deviation accuracy and AUC of the 5-fold cross validations for the

multiclass classifications using different machine learning methods when the tolerance

value is 5. The p-values were derived by comparing with MLR. MLR, multiclass logistic

regression; SVM, support vector machine; DT, decision tree; RF, random forest.

value of 5 and thus it was these 583 features that were used
to construct the multi-class classifiers used to discriminate the
three groups.

Results of Feature Selection Strategies on
RF-Based Classifiers
Table 2 demonstrates the results of the two feature strategies
when RF was used to construct the classification models. The
forward strategy was highly dependent on the order of inclusion
of the features. On the other hand, the starting peak in the
stepwise strategy was critical. Both these strategies demonstrated
that a reduction in the number of features appeared to increase
the accuracy or AUC. In other words, the selected peaks were

found to be highly correlated with S. haemolyticus and were able
to distinguish between the three groups of ST strains.

A total of 10 models were constructed by adopting different
feature selection strategies and selecting different peaks. We
next identified the peaks that were selected in more than five
models and these were regarded as discriminative peaks. Table 3
shows the occurrence and proportions of these discriminative
peaks. From this table it can be seen that the ST42 isolates
almost always present the peaks 4999 and 6496, explicitly they
were present in over 90% of samples. However, neither ST3
nor ST42 ever presented the peak 5635. In addition, Figure 7
presents the whole spectral incidence for the three groups, and
specifically focuses on the area from 4700 to 7100 Da, which
allows closer observation of the behavior of the discriminative
peaks. Specifically, the red bars show the differences between
these three groups that seem to be critical to constructing the
classifiers. When considering the intensity, Table 4 presents the
means and standard deviations of the normalized intensities of
the discriminative peaks. Since the incidence tends to be small,
and the normalized intensity is between 0 and 1, the average
values also tend to be low. Nevertheless, some peaks still showed
strong intensity. For example, peaks 6781, 6496, and 4999 still
have relatively large intensity values. The Kruskal-Wallis test was
employed to test difference among the three groups and when
there was a difference between two groups, the p-value tended
to be lower. Hence the p-values in Table 4 are very small. It
should be noted that these discriminative peaks are the ones that
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TABLE 2 | Performance of feature selection.

RF

Strategy Start up # peaks Accuracy AUC p-value

Stepwise AUC 21 0.918 ± 0.024 0.921 ± 0.025 0.0079

Kendall’s tau 26 0.906 ± 0.008 0.897 ± 0.049 0.2222

KW 20 0.902 ± 0.030 0.917 ± 0.042 0.0952

IMP 27 0.910 ± 0.008 0.926 ± 0.020 0.0079

Forward AUC 18 0.897 ± 0.032 0.896 ± 0.026 0.0952

Kendall’s tau 35 0.901 ± 0.024 0.893 ± 0.047 0.2222

FE 25 0.902 ± 0.023 0.898 ± 0.035 0.0556

KW 26 0.906 ± 0.031 0.902 ± 0.061 0.2222

IMP-ACC 22 0.882 ± 0.032 0.864 ± 0.059 0.7533

IMP-GINI 28 0.874 ± 0.034 0.836 ± 0.037 0.5476

No 583 0.866 ± 0.014 0.848 ± 0.037 -

Mean ± standard deviation accuracy and AUC of the 5-fold cross validation of RF

using different numbers of peaks selected by the forward and stepwise feature selection

strategies using different orders of peaks and the corresponding performance using

RF. AUC, area under the curve; FE, Fisher’s exact test; KW, Kruskal-Wallis test; IMP-

ACC, importance measure calculated by mean decreased accuracy using RF; IMP-GINI,

importance measure calculated by mean decreased impurity using RF.

TABLE 3 | Number of occurrence peaks (proportions) and average p-values using

the Fisher’s exact test for the discriminative peaks.

Peak Type 3 Type 42 Others p-value

4673 40 (0.645) 5 (0.034) 5 (0.106) 0.022

5129 49 (0.790) 25 (0.172) 18 (0.383) 0.001*

4999 62 (1.000) 138 (0.952) 35 (0.745) 0.035

5635 0 (0.000) 0 (0.000) 12 (0.255) 0.333

6466 31 (0.500) 3 (0.021) 23 (0.489) 0.333

2499 52 (0.839) 59 (0.407) 33 (0.702) 0.035

3390 15 (0.242) 107 (0.738) 27 (0.574) 0.015

3411 20 (0.323) 70 (0.483) 1 (0.021) 0.015

5036 43 (0.694) 43 (0.297) 17 (0.362) 0.157

6496 30 (0.484) 136 (0.938) 15 (0.319) 0.039

6781 21 (0.339) 129 (0.890) 26 (0.553) 0.011

*Indicated that the p < 0.01.

are often selected using the various different feature selection
strategies shown in Table 2. Moreover, the boxplots in Figure 8

can be used to demonstrate the distribution of intensities among
the different ST types. According toTable 3, the intensity in event
of a lower incidence tends to be smaller. This can also be seen in
Figure 8 for peaks such as 4674 and 4659.

Classifier for Discriminating ST3 and ST42
Table 5 shows the performance of the classifiers used to
distinguish ST3 and ST42. Since the majority of data available
was for ST42, the specificity of these classifiers tended to be
higher. Even so, the AUCs among the different classifiers also
showed impressive results. In both Figures 7, 8, it can be seen
that the incidence and intensities are evidently different for some
specific peaks.

DISCUSSION

This is a study that focused on the strain typing of S. haemolyticus
based on the MALDI-TOF MS utilizing statistical tests and
machine learning methods simultaneously. Specifically, the
Fisher’s exact test was employed to determine the reasonable
tolerance values on preprocessing the spectra data. We have
not only constructed machine learning-based classifiers that
allow for different feature selection strategies, but have also
employed statistical tests to compare the performance of the
various discriminative peaks related to the different ST types. The
rapid identification of S. haemolyticus strain types will facilitate
the identification of origins of infection and will also provide
critically-ill patients with substantial benefits because it will allow
for rapid infection control. Additionally, further exploration of
the discriminative peaks will allow the identification of each
corresponding peptide. Such findings should provide clinically
valuable information pertaining to the different subtypes of
S. haemolyticus.

Previous studies used “type templates” for each ST type based
on the incidence of specific peaks in their MALDI-TOF MS
spectra in order to handle the issue of peak shifting; furthermore,
log-transformed intensity was used to represent corresponding
signal strength for each peak (Wang et al., 2018a,b). These studies
also used the signals with the highest incidence probability in
a local region (± 5 m/z) as the center of each peak feature.
In other words, determining the local region was based on the
incidence probability without the adoption of any statistical tests.
In this study, we used statistical analysis and also measured
the performance of classifiers. Such an approach involving
measurement of the tolerance value is an excellent approach for
dealing with the peak shift problem present when using spectral
data. As the tolerance value increases, the number of peaks in the
RPS decreases, and vice versa. The reason is that a larger tolerance
value may lead to the alignment of more discriminative peaks
with the same specific peak. In contrast, a lower tolerance value
results in a paucity of data. Specifically, in these circumstances,
much less data can be aligned to the same specific peak, which
produces a reduced amount of training data and eventually
results in poor performance. In such circumstances we used
both Fisher’s exact test, and an evaluation of the variation
in performance of different classifiers with different tolerance
values. In short, the variation among different classifiers and
tolerance values was taken into consideration and this increased
the robustness of our model. When the tolerance value was 5,
the significance value was the largest and the standard deviation
among the 5-fold cross validation analysis tended to be lower.
Therefore, we used 5 as the final tolerance value when creating
the RPS using 583 peaks.

There are a variety of machine learning methods that can
be used for modeling different types of data. In this study,
we adopted a number of relatively uncomplicated models to
construct the classifiers. These uncomplicated methods are
readily interpreted, which makes interpretation of the peak
results easier and allows the initiation of further investigations
into specific peaks simpler. Multinomial logistic regression
is a generalized logistic regression model that is used for
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FIGURE 7 | Overview of processed MS data. Occurrence proportions among the three groups over the range from 2,000 to 17,000 Da and zoomed in for the range

4,900 to 7,100 Da. The red areas include peaks 4548, 4673, 4999, 5036, 5129, 5635, 6466, 6496, and 6781, which are the important peaks when constructing the

RF-based classifiers.

handling multi-class problems and is one of the most common
parametric statistical models. Our major concern in adopting
the multinomial logistic regression model was multicollinearity.
When the dependency among different independent variables
is high, the estimators can be misinterpreted, and this may
increase the prediction bias (Myers and Myers, 1990). Although
the performance of MLR, as shown in Table 1, tended to be
lower than other methods, the estimation of the parameters
does seem to provide some information about the discriminative
peaks. In other words, the estimators of the MLR were able
to reveal which peaks potentially correlated with different ST
types. It should be noted that a consideration of the standard
errors of these estimators is an important reference point that
can be used to avoid the multicollinearity effects. This is because
there are few restrictions on the use of non-parametric methods
such as SVM, DT, and RF. Their primary weakness is the
time required for training the model when they use large scale

datasets. However, this was not an issue in this study due to the
relatively limited amount of data. Consequently, the performance
of the non-parametric methods was better than that of MLR.
Furthermore, the performance of RF was more robust than other
methods. This is possibly due to two of the essential concepts
of RF, namely ensemble learning and bagging. Previous studies
also have reported the various advantages of RF (Boulesteix et al.,
2012). In this study, we have also demonstrated that RF not only
provides the highest accuracy and AUC, but it also retains the
lower standard deviation.

Only a slight variation at the bacterial subspecies level is
observed when they are compared using mass spectra (Lasch
et al., 2014; Wang et al., 2018b). Nevertheless, until now, no
studies have been able to identify the discriminative peaks when
discriminating the different ST types of S. haemolyticus based
on MALDI-TOF MS spectral data. Therefore, we used a variety
of different strategies in order to identify the discriminative
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peaks that are very likely to be highly related to the different
ST types. An exploration of the discriminative peaks is highly
dependent on the feature selection strategy and the machine

TABLE 4 | Means (standard deviation) and p-values using the Kruskal–Wallis test

for the discriminative peaks.

Peak Type 3 Type 42 Others p-value

4673 0.052 (0.049) 0.003 (0.026) 0.011 (0.032) <0.001*

5129 0.209 (0.200) 0.031 (0.094) 0.094 (0.150) <0.001*

4999 0.769 (0.307) 0.350 (0.236) 0.455 (0.427) <0.001*

5635 0.000 (0.000) 0.000 (0.000) 0.126 (0.266) <0.001*

6466 0.145 (0.185) 0.003 (0.025) 0.118 (0.155) <0.001*

2499 0.151 (0.120) 0.057 (0.083) 0.222 (0.207) <0.001*

3390 0.030 (0.062) 0.132 (0.110) 0.103 (0.111) <0.001*

3411 0.024 (0.040) 0.054 (0.065) 0.002 (0.011) <0.001*

5036 0.115 (0.102) 0.032 (0.082) 0.076 (0.109) <0.001*

6496 0.108 (0.151) 0.338 (0.210) 0.089 (0.174) <0.001*

6781 0.065 (0.119) 0.247 (0.162) 0.108 (0.126) <0.001*

*Indicated that the p < 0.01.

learning method. It is important to note that the performance
of RF is relatively robust and that it is also less time-consuming
during training; in these circumstances, we largely adopted
feature selection using RF for this study. The stepwise strategy
is similar to the brute force method when used to find the
best combinations for the classifiers. Consequently, the results
of the stepwise strategy are generally better than those of the
forward strategy. Furthermore, there is only one model that did
not include peak 4673, which strongly supports peak 4673 as a
discriminative peak. In addition, peak 5129 was not selected by
two models, as shown in Figure 8, indicating that the normalized
intensities across the three groups for this peak are apparently
different. In addition, both Figure 8 and Table 3 show that the
occurrence ratio is also significantly different across the three
groups. Specifically, ST42 rarely presented peaks 4673 and 5129,
while ST3 usually presented peaks at m/z 4673 and 5129. Further
experiments are needed to identify the peptides corresponding to
these peaks.

Although the machine learning-based classifiers has
demonstrated impressive performance in this study for
distinguishing different ST types of S. haemolyticus, there are

FIGURE 8 | Boxplots for the normalized intensity for the discriminative peaks.
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TABLE 5 | Performance of binary classifier.

Sensitivity Specificity Accuracy AUC

LR 0.890 ± 0.062 0.968 ± 0.044 0.913 ± 0.045 0.919 ± 0.051

SVM 0.931 ± 0.055 0.983 ± 0.037 0.947 ± 0.032 0.969 ± 0.021

DT 0.938 ± 0.037 0.904 ± 0.032 0.928 ± 0.033 0.919 ± 0.024

RF 0.951 ± 0.031 1.000 ± 0.000 0.966 ± 0.022 0.972 ± 0.020

Mean ± standard deviation sensitivity, specificity, accuracy, and AUC of 5-fold cross

validation for binary class classification using different machine learning methods when

tolerance value is 5. LR, logistic regression; SVM, support vector machine; DT, decision

tree; RF, random forest.

still some limitations. One major concern is that subspecies
composition of the microbial strains may differ in different
bacterial populations or in different regions of the world. In
such circumstances the construction of machine learning-based
classifier-based method might break down because these
groups have different discriminative peaks for these subspecies.
Even so, the machine learning-based classifier approach, in
conjunction with the associated statistical tests, still provides a
novel framework for analyzing MALDI-TOF MS data. Another
critical issue that has been identified in the previous studies
is the reproducibility of the mass spectra when MALDI-TOF
MS is being used in bacterial typing (Walker et al., 2002;
Wolters et al., 2011; Croxatto et al., 2012; Sandrin et al., 2013).
There are a variety of factors involved in the reproducibility
of the mass spectra and these include sample processing
and specimen type (Josten et al., 2013; Sandrin et al., 2013;
Mather et al., 2016). As of yet no standard protocol has been
proposed for strain typing by MALDI-TOF MS. Nevertheless,
a standard protocol should be optimized and specified for
each species in order to achieve a robust performance when
strain typing (Walker et al., 2002; Sandrin et al., 2013).
The College of American Pathologists accreditation and
proficiency test has been conducted for years to ensure the
performance and quality standards of personnel and tests at
Chang Gung Memorial Hospital, Linkou Branch. Therefore,
on the basis of previous qualified MALDI-TOF MS workflow
and data used here, the constructed classification models
used in this study are readily available for S. haemolyticus
strain typing.

Our study has demonstrated a method of developing robust
classifiers for discriminating different ST types of S. haemolyticus
based on MALDI-TOF MS data. The multi-class classifier
demonstrated an AUC of 0.848 and accuracy of 0.886 when

discriminating these three groups. If we only consider binary
classification for ST3 and ST42, the AUC reaches an excellent
discrimination power of 0.972. The constructed classifiers were
able to provide instant information when identifying the origin
of infection, which will allow rapid infection control. As a
result, we believe that we have hereby developed a cost effective
and rapid identification method for the strain typing of S.
haemolyticus. This provides a great opportunity for further
improvement of this new protocol and its introduction into
routine clinical microbiology laboratory practices in order to
attain rapid infection control. Furthermore, the explicit strategy
for the determination of representative peaks before constructing
the classifiers provides some indications for those who are
interested in further analysis of spectra data.
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Gut microbiota has been shown to have an important influence on host health.
The microbial composition of the human gut microbiota is modulated by diet and
other lifestyle habits and it has been reported that microbial diversity is altered in
obese people. Obesity is a worldwide health problem that negatively impacts the
quality of life. Currently, the widespread treatment for obesity is bariatric surgery.
Interestingly, gut microbiota has been shown to be a relevant factor in effective
weight loss after bariatric surgery. Since that the human gut microbiota of normal
subjects differs between geographic regions, it is possible that rearrangements of
the gut microbiota in dysbiosis context are also region-specific. To better understand
how gut microbiota contribute to obesity, this study compared the composition of
the human gut microbiota of obese and lean people from six different regions and
showed that the microbiota compositions in the context of obesity were specific to
each studied geographic location. Furthermore, we analyzed the functional patterns
using shotgun DNA metagenomic sequencing and compared the results with other
obesity-related metagenomic studies, we observed that microbial contribution to
functional pathways were country-specific. Nevertheless, our study showed that
although microbial composition of obese patients was country-specific, the overall
metabolic functions appeared to be the same between countries, indicating that different
microbiota components contribute to similar metabolic outcomes to yield functional
redundancy. Furthermore, we studied the microbiota functional changes of obese
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patients after bariatric surgery, by shotgun metagenomics sequencing and observed
that changes in functional pathways were specific to the type of obesity treatment. In
all, our study provides new insights into the differences and similarities of obese gut
microbiota in relation to geographic location and obesity treatments.

Keywords: human gut microbiota, bariatric surgery, obesity, functional redundancy, metagenomic, functional
convergence

INTRODUCTION

It has been established that the composition of human gut
microbiota greatly influences human health (Carding et al.,
2015, reviewed by Hall et al., 2017). Although the microbiota
composition of each individual is relatively stable across adult
life, it varies widely between individuals (Lozupone et al., 2012;
Kolde et al., 2018). It has been observed that the human gut
microbiota is primarily dominated by the phyla Firmicutes and
Bacteroidetes (Zhernakova et al., 2016), with lesser contribution
from Actinobacteria, Proteobacteria and Verrucomicrobia (Qin
et al., 2010). Nevertheless, the microbiota composition differs
geographically, primarily based on a variety of factors including
host genetics, dietary habits, age, geographic location and lifestyle
(Yatsunenko et al., 2012; Chilton, 2014; Nishijima et al., 2016;
Fujio-Vejar et al., 2017; Gupta et al., 2017). To date, most of the
studies on human gut microbiota have focused on populations
from North America and Europe and although several of studies
have demonstrated associations between microbiota alterations
and diseases, including obesity, the specific contribution of these
alterations to treatment response and how they differ across
geographic locations still need to be envisioned.

Worldwide, obesity has nearly tripled since 1980 (Stevens
et al., 2012). Information published by the World Health
Organization (2016) shows that more than 1.9 billion adults,
18 years and older, have a body mass index (BMI) above 25 kg/m2

among which, over 650 million have a BMI > 30 kg/m2, hence
classifying them as obese. Overweight and obesity are defined
as abnormal or excessive fat accumulation due to environmental
and genetic factors (Angelakis et al., 2012). While overweight
individuals haves a BMI range between 25 and less than 30 kg/m2,
obesity is classified by BMI as: obesity grade 1 (30 to 35 kg/m2),
grade 2 (35 to 40 kg/m2) and grade 3 (40 to 60 kg/m2) (NHLBI
Expert Panel, 1998). Diverse studies have associated obesity with
altered gut microbiota and reduced functional potential (Ley
et al., 2006; Turnbaugh et al., 2006; Tremaroli and Backhed, 2012;
Karlsson et al., 2013; Le Chatelier et al., 2013; Damms-Machado
et al., 2015; Haro et al., 2016; Medina et al., 2017), which can be
partially reversed after surgical intervention (Palleja et al., 2016).
It has been originally observed that the relative abundance of
Firmicutes and Bacteroidetes can be altered in obese patients,
where an over-representation of Firmicutes is observed, in
contrast to their lean counterparts (Ley et al., 2006; Turnbaugh
et al., 2009; Million et al., 2012; Walters et al., 2014; Kasai et al.,
2015; Haro et al., 2016). These taxonomic differences between
lean and obese subjects may contribute to the development
and perpetuation of obesity in several ways, including fat
storage, regulation of energy metabolism, energy extraction from

short chain fatty acids, increased low-grade inflammation and
altered bile acid metabolism (Qin et al., 2012; Karlsson et al.,
2013; Khan et al., 2016). However, a recent study focusing
on the meta-analysis of previously published data using forest
machine learning models showed no significant differences in gut
microbiota composition between obese and healthy individuals
(Sze and Schloss, 2016). Nevertheless, further research is required
to unravel the exact role of gut microbiota composition in
obesity context, and the factors, including geographical location,
that may have an influence on not only differential microbial
abundance but also long-term patient outcome.

Gastric surgical procedures, commonly known as bariatric
surgery, have been successful in mediating long-term weight loss
and reducing the incidence of related comorbidities (Sjöström,
2008; Eldar et al., 2011). Roux-en-Y gastric bypass (RYGB) is
one of the most common bariatric surgery procedures in the
United States (Smoot et al., 2006), where a small stomach pouch
is connected to the proximal jejunum to directly bypass food
to the small intestine, resulting in restrictive and malabsorptive
nutrient intake (Tice et al., 2008; Tran et al., 2016). Another
common bariatric surgery is sleeve gastrectomy (SG), where a
significant portion of the stomach is removed to decrease its
volume, leading to a significant reduction in the amount of
food consumed (Gumbs et al., 2007). Since their invention, a
number of studies have observed changes in obesity-associated
microbiota and functional gene richness following different
types of bariatric surgery (Zhang et al., 2009; Graessler et al.,
2013; Kong et al., 2013; Tremaroli et al., 2015; Shao et al.,
2016; Ilhan et al., 2017; Medina et al., 2017; Murphy et al.,
2017). Specific changes following surgical intervention include an
increase in Proteobacteria (Escherichia coli, Enterobacter spp.),
changes in Bacteroides and Prevotella abundance, accompanied
by an increase in Akkermansia and a decline in Clostridium
genus, and global changes in Firmicutes/Bacteroidetes phyla
ratios (Zhang et al., 2009; Furet et al., 2010; Li et al., 2011;
Kong et al., 2013; Damms-Machado et al., 2015; Louis et al.,
2016; Palleja et al., 2016; Ilhan et al., 2017; Medina et al., 2017).
These microbial changes following bariatric surgery have shown
to mediate different outcomes and, interestingly, such changes
appear to depend on the type of surgery performed (Ilhan et al.,
2017; Medina et al., 2017; Murphy et al., 2017). Specifically,
metagenomic studies following RYGB showed an increase in
pathways involving aerobic respiration and glutathione transfer
and metabolism (Palleja et al., 2016). Both observations were
in agreement with the increase in Proteobacteria phylum
abundance, driven by facultative anaerobes, such as E. coli,
as a result of lower gastric acid exposure during stomach
transit. In the same study, the authors found an increase in
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the pathways that degrade putrescine to succinate to produce
gamma-aminobutyric acid (GABA) as a byproduct. GABA is
known to act on receptors in the hypothalamus to promote
satiety and, additionally, is thought to promote GLP-1 release, a
positive regulator of GABA production by pancreatic beta-cells,
which provides further involvement of this pathway following
RYGB (Palleja et al., 2016). In addition, a complementary study
conducted 9 years after RYGB intervention showed that bacterial
rearrangements were stable in the long run and surgically altered
microbiota promoted reduced fat deposition in recipient mice
(Tremaroli et al., 2015).

In this study, we compared the gut microbiota composition
and functional patterns of obese subjects from Chile with
published data from Italy, Denmark, United States, France,
and Saudi Arabia, in order to better understand the microbiota
contribution to obesity. We found obese subjects to show
geographic specificity in regards to relative microbiota
abundance, similar to what has been previously observed in
healthy individuals. Interestingly, the gut microbiota of obese
patients did not display differential enrichment of functional
pathways between countries, indicating that the geography-
specific microbial compositions converge to perform similar
functions in obese individuals. Furthermore, this study analyzed
the metagenomic profiles of Chilean patients subjected to gastric
bypass and sleeve gastrectomy and observed changes in the
functional capacity of gut microbiota after surgery. Specifically,
we identified Akkermansia muciniphila as one of the bacteria
that drives the change in metabolic pathways after surgical
intervention for obesity in Chilean patients.

MATERIALS AND METHODS

Sample and DNA Raw Data Collection
DNA raw data sequences from the stool of obese and lean
subjects were obtained from studies carried out in Chile (Medina
et al., 2017; Thomson et al., 2019), Italy (Tremaroli et al., 2015),
Denmark (Palleja et al., 2016), United States (Ilhan et al., 2017),
France and Saudi Arabia (Yasir et al., 2015), described in Table 1
and Supplementary Table S1. In addition, 12 DNA stool samples
from Chilean obese patients before and after treatment obtained
from a previous study (Medina et al., 2017) were sequenced
using shotgun metagenomics. All experiments were conducted in
accordance with the Declaration of Helsinki and approved by the
Ethics Committee of the Faculty of Medicine, Pontifical Catholic
University of Chile (n◦ 15-337).

Taxonomic Profiling From 16S rDNA
Gene Amplicon Sequencing
Raw data of DNA sequences belonging to different studies
were downloaded from ENA-EMBL or SRA-NCBI databases
(Supplementary Table S1). To access the microbiota taxa and
abundance, in this study we re-analyzed all raw data sequences
using Microbiome Helper v2.3 OVA pipeline (Comeau et al.,
2017). Briefly, MiSeq paired-end sequences were joined using
PEAR (Zhang et al., 2014). Joined sequences were filtered
by quality and length, in which demultiplexing and barcode

depletion were performed using Microbiome Helper and QIIME
v1.9.1 scripts (Caporaso et al., 2010; Navas-Molina et al., 2013;
Comeau et al., 2017). Chimera sequences were filtered using
the Vsearch tool (Rognes et al., 2016). Operational taxonomic
units (OTUs) were picked by open-reference command and
defined by clustering at 3% divergence (97% similarity) using
the GreenGenes database release 08-2013 as reference (DeSantis
et al., 2006; McDonald et al., 2012). Diversity analyses were
performed using QIIME v1.9.1 scripts under Microbiome
Helper v2.3 environment. The sequencing depth for even sub-
sampling and maximum rarefaction depth was at least 10000
counts/sample, regard the minimum value obtained after OTU-
picking for each data set (Supplementary Table S2). Predictive
metagenomic functional profiling of microbial composition were
performed using PICRUSt (Langille et al., 2013), following
the instructions provided in their Metagenomic Prediction
Tutorial. KEGG Orthology analyses were performed using
the “ko_to_pathway_map” PICRUSt database to identify the
enrichment of metabolic pathways.

Taxonomic abundance and metagenomic prediction tables
were exported to R environment (R Core Team, 2013) for
statistical analysis and figures were represented using the package
LSD Lots of Superior Depictions (Schwalb et al., 2011). Volcano
plots were constructed using the adjusted FDR p-value obtained
from the unpaired t-test comparisons and the fold change of each
condition. The taxonomic processed data obtained from QIIME
and the metadata for the raw data files used in this study are
exhibited in Supplementary Table S2.

The PICRUSt functional prediction was validated comparing
the KEGG Orthology abundances obtained with the Uniref90
metagenomic abundances from the HUMAnN2 output. For
this, the metagenomic Uniref90 table was converted to KEGG
Orthology using the script humann2_regroup_table from
HUMAnN2 (Abubucker et al., 2012). Both KEGG Orthology
datasets were merged by row and normalized using quantile
normalization to compare linear dependence between each data
set using Pearson and pairwise Spearman rank correlation in the
R environment (R Core Team, 2013).

Functional Annotation and Metagenomic
Profiling of Fecal DNA
A total of 12 DNA stool samples were sequenced using the
Illumina HiSeq next-generation sequencing platform carried
out at Genoma Mayor (Universidad Mayor, Chile) with an
output of 2 × 100 pb and 20 × 106 paired-end reads per
sample. The raw data produced from DNA sequencing in
this study were stored at the ENA-EMBL database under the
accession number PRJEB29060. To evaluate the taxa abundance
and metagenomic composition, all metagenomic raw sequences
were analyzed in parallel using the Microbiome Helper v2.3
environment following the metagenomics SOP v2 tutorial.
This pipeline allowed the calculation of microbiota abundance
using functions from MetaPhlAn2 (Truong et al., 2015) and
functional profile using HUMAnN2 (Abubucker et al., 2012).
DNA sequence quality control was performed using KneadData
(McIver et al., 2018), in which low quality sequences were
first removed by Trimmomatic (Bolger et al., 2014), followed
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TABLE 1 | Description of studies used in this work.

Study Country Methodology N◦ lean subjects N◦ obese subjects DOI

Medina et al., 2017 Chile 16S rDNA Amplicon 0 19 doi: 10.7717/peerj.3443

Thomson et al., 2019 Chile 16S rDNA Amplicon 28 0 doi: 10.1017/S0007114519001570

Yasir et al., 2015 France 16S rDNA Amplicon 12 16 doi: 10.1038/nutd.2015.3

Yasir et al., 2015 Saudi Arabia 16S rDNA Amplicon 9 9 doi: 10.1038/ismej.2017.71

Ilhan et al., 2017 United States 16S rDNA Amplicon 10 15 doi: 10.1038/ismej.2017.71

Medina, this study Chile Shotgun metagenomics 0 6 This study

Palleja et al., 2016 Denmark Shotgun metagenomics 0 13 doi: 10.1186/s13073-016-0312-1

Tremaroli et al., 2015 Italy Shotgun metagenomics 0 7 doi: 10.1016/j.cmet.2015.07.009

by the application of Bowtie2 to screen out the contaminant
DNA sequences mainly from human and viruses (Langmead
and Salzberg, 2012). Both programs were run simultaneously for
all samples using the GNU Parallel tool to repeat concatenate
the entire process for each data set (First and Job, 2011).
The paired-end files were merged using the script provided
by the Microbiome Helper pipeline and then taxonomic and
functional profiling were performed using MetaPhlAn2 and
HUMAnN2, respectively. Gene family and pathway abundances
were normalized for each sample and represented as a percentage.
The resulting tables were exported to the R environment (R Core
Team, 2013) for statistical analysis and figure representation.
Metadata sets used for DNA shotgun sequencing to obtain
stratified and unstratified metagenomic profiles are listed in
Supplementary Table S3.

Data Comparison and Statistical
Analysis
Statistical analyses were conducted using the R environment
(R Core Team, 2013) version 3.4.4 (2018-03-15). Before
calculations between countries, data sets were scaled
proportionally, and using the R package preprocessCore
(Bolstad, 2019), quantile normalization was performed to reduce
batch effects between data belonging to different sources as was
previously used for genome-wide analyses (Sun et al., 2011; Guo
et al., 2014; Fei et al., 2018). For differential analysis of group
variance between lean and obese microbiota abundance, we used
Canonical Correspondence Analysis (CCA, a.k.a. constrained
correspondence analysis) and Adonis tests, in which both were
calculated using the R package vegan (Oksanen et al., 2018). The
Adonis test was used for permutational multivariate analysis of
variance using distance matrices, in which samples were fitted
to linear models to calculate the whole compositional variability
taking into account different sources of variation as well as
the interactions between them. Spearman’s rank correlation
analyses were used to assess taxa abundance or functional
abundance associations between the samples groups. To analyze
differences in group means between lean and obese microbiota
abundance, we applied Wilcoxon sum rank test with FDR
adjustment utilizing the Benjamini Hochberg (BH) method. This
was performed using the R command p.adjust(), in which we
considered tests with FDR < 0.05 to be significant. In order to
identify differentially enriched biomarkers among the compared
groups, we applied the LEfSe analytic method using the online

interface Galaxy1 (Segata et al., 2011). Statistical differences
between the KEGG Orthology abundances were calculated
using the unpaired t-test and adjusted by BH FDR as described
above. –log10 FDR was plotted against log2 ratio of each country
in respect to Chile and represented using the R package LSD Lots
of Superior Depictions (Schwalb et al., 2011).

RESULTS

Gut Microbial Diversity Is Specific to
Geographic Locations
The composition and function of the human gut microbiota
represent one of most important factors involved in obesity
and its treatment (Ley et al., 2006; Tremaroli and Backhed,
2012; Karlsson et al., 2013; Le Chatelier et al., 2013; Damms-
Machado et al., 2015; Medina et al., 2017). It has been previously
established that the human gut microbiota displays pronounced
differences between individuals residing in distinct geographic
locations (Yatsunenko et al., 2012; Fujio-Vejar et al., 2017;
Gupta et al., 2017). It is therefore of great interest to compare
the microbial diversity of obese individuals from different
geographical locations around the world. In this line of research,
this study compared the gut microbial diversity of obese and
lean subjects from Chile (Medina et al., 2017; Thomson et al.,
2019) with data published by other studies in different regions
around the world, namely United States (Ilhan et al., 2017),
France and Saudi Arabia (Yasir et al., 2015), described in
Table 1. Taxonomic microbiota abundance were collected by
sequencing the 16S rDNA hypervariable regions V3–V4 or V4–
V5 using the Illumina MiSeq platform (Supplementary Table
S1), and raw data was processed as described in materials
and methods. Taxonomic abundance comparisons at the genus
level from the data obtained showed significant diversity in
microbiota composition in lean people as previously reported
(Yatsunenko et al., 2012; Nishijima et al., 2016; Fujio-Vejar
et al., 2017; Gupta et al., 2017), but also is country specific
in gut microbiota of obese subjects. Specifically, data variance
analysis using CCA and Adonis tests showed significant
differences (p-value < 0.05) in the gut microbiota composition
between Chile, United States, France, and Saudi Arabia,
in which the lean and obese microbiota were clustered

1http://huttenhower.sph.harvard.edu
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by country (Figures 1A,B). Utilizing a different approach,
pairwise Spearman rank correlation, we further demonstrated
that the taxonomic abundance correlation of obese gut
microbiota differed between countries (Supplementary Figure
S1A). Nevertheless, although obese microbiota composition
is clustered by country, there is significant inter-individual
variability between subjects, indicated by high dispersion
patterns observed in data variance analyses (Figure 1). In
this regard, although some proximity is observed between
France and Saudi Arabia microbiota, CCA and Adonis test
variance analyses between the two countries shows a significant
statistical difference (Supplementary Figure S1B). In all, these
comparisons indicate that the microbiota compositions of obese
patients and lean subjects were specific to each analyzed
geographic location and displayed significant differences between
countries. Comparing taxonomic abundance of obese individuals
with their lean counterparts from the same country we
observed significant differences by multivariate variance analyses
for Chile, France, and Saudi Arabia (CCA p-value < 0.05);
however, no statistically significant differences were observed
for United States (Supplementary Figure S2). Wilcoxon sum-
rank tests showed significant differences (FDR < 0.05) between
lean and obese microbiota in Chile and France data sets,
but not in United States and Saudi Arabia. Interestingly,
although CCA showed clustering by country in both cases,
France and Chile shared some genus changes between lean
and obese microbiota (Megasphaera, Veillonella, Adlercreutzia
and Lachnospira) (Supplementary Table S2). In addition,
heatmap clustering by complete linkage method and the
stacked bar plot of taxonomic abundances showed differential
patterns not only between obese and lean subjects, but also
between countries, which again highlights our observation

that taxonomic microbial distribution is specific to each
country (Figure 2).

Next, using the PICRUSt tool (Langille et al., 2013) designed
to infer the functional patterns from taxonomic profile, we
compared predicted KEGG Orthology (KO) enrichment of obese
subjects from United States, France, and Saudi Arabia with
the KO obtained from the obese Chilean data as reference
in order to identify potential functional differences. Here, we
observed significant differences (FDR < 0.05) in enriched
pathways for all the countries studied with respect to Chile
(Figure 3). Downregulated pathways in Saudi Arabia displayed
an enrichment in translation and energy metabolism, whereas
the United States and France showed a downregulation in
membrane transport. For upregulated pathways, United States
showed a specific enrichment in cellular processing and
signaling and amino acid metabolism, whereas France and
Saudi Arabia were found to enrich in pathways involving
membrane transport (Supplementary Figure S3). In summary,
the differences observed by functional prediction suggested that
the human gut metagenome of obese subjects, like their healthy
counterparts (Yatsunenko et al., 2012), may differ according to
the geographical location.

Metagenomic Variations Across Regional
Location in the Context of Obesity
Our initial analysis utilizing 16S rDNA amplicon sequencing
showed marked differences between the compositions of the gut
microbiota of obese subjects from different countries, therefore,
to further validate our initial observation, we analyzed stool
samples of 6 Chilean pre-treatment obese patients obtained
from a previous study (Medina et al., 2017) by shotgun DNA

FIGURE 1 | Taxonomic abundance comparison at genus level from 16S rDNA sequencing. Constrained Correspondence Analysis (CCA) and Adonis test were
performed to assess the variance in microbiota profiles at the genus level in lean (A) and obese (B) subjects. Vectors represent quantitative explanatory variables
with confidence circles depicted for each country. Corresponding p-values are shown for each analysis and p-value < 0.05 was considered statistically significant. x-
and y-axis show CCA1 and CCA2 components, respectively. Green, blue, brown and red points indicate individuals from France, United States, Saudi Arabia, and
Chile, respectively.
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FIGURE 2 | Heatmap clustering and stacked bar plot of taxonomic abundances of lean and obese subjects at genus level. (A) Taxonomy abundance at genus level
between obese and lean subjects were clustered using complete linkage method. Values indicate abundance of microbiota at the genus level. (B) Average taxonomy
abundance at genus level were represented as stacked bar plot to of lean and obese subject of each country. x-axis depicts percentage of abundance of each
taxonomy. Dark and light blue represent obese and lean subjects, respectively. Red, blue, green, and brown represent individuals from Chile, United States, France,
and Saudi Arabia, respectively.

FIGURE 3 | Volcano plot of KEGG Orthology abundances obtained from metagenomic simulation. Fold change of United States (A), France (B), and Saudi Arabia
(C) of KO abundance with regard to Chile are plotted against –log10 of FDR. Dotted lines in the x-axis denotes a two-fold change, while dotted lines in the y-axis
delimit a FDR value of 0.05.

sequencing in order to dissect the contribution of metabolic
functional changes and microbiota compositions. Additionally,
we compared the results obtained from the Chilean cohort with
similar studies carried out from patients in Italy (Tremaroli et al.,
2015) and Denmark (Palleja et al., 2016), described in Table 1.
All raw data were analyzed using the Metagenomic SOAP v2
from Microbiome Helper (Comeau et al., 2017) as described
in “Materials and Methods.” First, we compared the functional
composition of obese subjects from Chile (n = 6), Italy (n = 7) and
Denmark (n = 7) before any medical intervention utilizing CCA,
Adonis tests and pairwise Spearman rank correlation. Initially,
we performed an unstratified analysis, which corresponds to
the analysis of metabolic pathway enrichment without taking

into account microbial composition, and observed no statistically
significant differences between the three countries using CCA
analysis and Adonis tests (p-value > 0.05), in which the variance
plot displayed little dispersion between the samples from different
countries (Figure 4A). Furthermore, the pairwise Spearman
rank correlation showed overall good correlation between the
samples of all datasets (Figure 4B). Hence, in contrast to
PICRUSt prediction, these results showed that the overall
microbial functionality had no differences between obese subjects
belonging to different world regions. Subsequently, we performed
a stratified data analysis, a type of analysis that distinguishes
the functional contribution of each bacterial species to the
overall metabolic pathways. Interestingly, stratified data, unlike
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unstratified analysis, showed significant dispersion between the
countries (Figure 4C), and no correlation between datasets
was observed (Figure 4D), indicating that individual microbial
metagenomic contribution to overall functional pathways is
different between countries, in agreement with functional
inferences obtained by PICRUSt (Figure 3). Also, we use
the Spearman rank correlation values obtained to compare
statistically into-countries and cross-country associations in
both unstratified and stratified data, finding no statistical
differences between Spearman values (p-value FDR adjusted
of 0.75 and 1, respectively). Utilizing linear discriminant
analysis (LDA) to quantify phylogenetic and functional diversity,
pathways over 1.5 LDA score were found to be differentially
enriched between countries in both stratified and unstratified
approaches (Figure 5). In addition, we validated the PICRUSt
functional prediction comparing KEGG Orthology obtained with
HUMAnN2 output from metagenomic data using Pearson and
pairwise Spearman rank Correlation, with both showing linear
dependence between 3590 common KEGG Orthology families
(Supplementary Figure S4 and Supplementary Table S5), which
proved the relationship between in silico predictions and our
biological findings as was previously demonstrated by PICRUSt
authors (Langille et al., 2013). Altogether, these results suggested
that microbial contribution to functional pathways was country-
specific, indicating that there was redundancy in the functions
of these distinct microbial species found in obese subjects from
different countries, in which different microbiota components
contribute to obtain similar metabolic outcomes.

Furthermore, microbial taxonomy abundance data obtained
from shotgun DNA sequencing showed that Chilean microbiota
composition from obese subjects was different compared to
Italian and Danish cohorts (Tremaroli et al., 2015; Palleja
et al., 2016). CCA analysis and Adonis tests showed significant
differences between the microbiota of analyzed subjects at species
level (Supplementary Figure S5A), which strengthens our
previous observations obtained from the 16S rDNA sequencing
taxonomic comparison at genus level (Figure 1B). In addition,
LDA analysis showed differences in species abundance between
the three microbial datasets species with and LDA scores higher
than 2, reinforcing the observation that the microbiota under
dysbiosis has different compositions specific to each geographical
location (Supplementary Figure S5B).

Gut Microbiota Functionality Changes
Following Bariatric Surgery in Chilean
Subjects
Several studies have shown that the regulation of energy and fat
storage is influenced by intestinal microbes, and this composition
may contribute to obesity (Qin et al., 2012; Karlsson et al., 2013).
In this regard, it has been reported that human gut microbiota
composition varies between obese patients who underwent
different types of surgical intervention (Zhang et al., 2009; Furet
et al., 2010; Schloss, 2016; Ilhan et al., 2017; Medina et al., 2017;
Murphy et al., 2017). Moreover, several of these studies describe
functional changes after treatment and its prevalence across time
(Tremaroli et al., 2015; Palleja et al., 2016). More specifically, they

report an increase in Proteobacteria abundance and facultative
anaerobes, such as E. coli, and an enrichment in microbial
pathways involving aerobic respiration, glutathione and gamma-
aminobutyric acid metabolism. Similarly, in a previous study
from our laboratory using Chilean obese patients, we observed
significant changes in the human gut microbiota, and these
changes were specific to the type of surgery performed (Medina
et al., 2017). Here, utilizing the same cohort, we performed
shotgun DNA sequencing of stool samples before and after
surgical intervention in order to analyze changes in taxonomic
composition (Medina et al., 2017). Although no statistical testing
was performed due to insufficient cohort number (n = 2
for each group), our results suggested that the two kinds of
bariatric surgery mediated different rearrangements of functional
pathways. We found stratified and unstratified functional
changes of several folds, 6 months following either Roux-en-Y
gastric bypass (RYGB) or sleeve gastrectomy (SG) interventions
(Figure 6). More specifically, unstratified functional changes
were more pronounced in RYGB–treated patients compared to
SG-treated patients, represented by higher data variance with an
increase in log2 fold change (Figures 6B,D). Functional changes
in unstratified RYGB data suggested an increase in pathways
related with acetyl-CoA biosynthesis, trehalose degradation,
GABA shunt and phospholipid remodeling. Contrastingly,
changes observed in SG intervention included an increase in
metabolic pathways such as fatty acid β-oxidation, TCA cycle
and acetyl-CoA biosynthesis (Supplementary Table S4). Top
stratified functional changes after RYGB were mainly driven
by A. muciniphila, E. coli, Bacteroides vulgatus, Eubacterium
siraeum and Streptococcus salivarius, while in SG functional
changes were driven by Bacteroides cellulosilyticus, S. salivarius,
Eubacterium eligens, Lactococcus lactis, Alistipes finegoldii, E. coli
and A. muciniphila (Supplementary Table S4). Altogether, these
results suggested that bariatric surgery in Chilean patients also
caused functional rearrangement in microbiota, in concordance
to previous metagenomic studies (Graessler et al., 2013;
Tremaroli et al., 2015; Palleja et al., 2016), and these changes
appeared to be specific to the surgery performed.

DISCUSSION

Obesity is a world-wide health problem whose global prevalence
has increased at an accelerated rate since 1980 (Stevens et al.,
2012). It has been previously described that the composition
and functionality of human gut microbiota plays a crucial
role in mediating both disease and recovery following medical
intervention (Turnbaugh et al., 2006; Tremaroli and Backhed,
2012; Karlsson et al., 2013; Le Chatelier et al., 2013; Damms-
Machado et al., 2015). This study compared the gut microbiota
compositions of obese subjects from Chile with previously
published data from the United States, France, and Saudi Arabia
using 16S rDNA Illuminia MiSeq, as well as from Italy and
Denmark using Illumina HiSeq shotgun metagenomics, and
found that the microbiota composition differs significantly
between obese and lean subjects from these different countries,
showing country-specific clustering. It has previously been
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FIGURE 4 | Stratified and unstratified functional profiles of obese gut microbiota from three different countries. Unstratified (A,B) and stratified (C,D) analyses of
obese gut microbiota abundance for Chile (red), Italy (blue) and Denmark (green). Scatterplots (A,C) represent CCA and Adonis test analysis, and heatmap (B,D)
represent pairwise Spearman rank correlation of functional microbial abundance between countries.

described that a number of factors can modulate the composition
of intestinal microbiota, one of which is geographic origin
(reviewed by Rojo et al., 2017). A previous study compared
the microbiota composition of a group of healthy subjects
from France with Saudi Arabia by 16S rDNA sequencing and
suggested that the dietary habits of different regions or countries
can generate changes in intestinal microbiota (Yasir et al.,
2015). This idea was reinforced by other studies suggesting that
different types of diets directly change microbiota composition
(Wu et al., 2011; Fava et al., 2013). In fact, mice subjected to
obesogenic diets displayed significant functional and taxonomic
modifications in their gut microbiota (Tran et al., 2019). Other
studies show that genetics play a secondary role compared to

environmental factors (Gupta et al., 2017; Jones et al., 2018;
Rothschild et al., 2018). However, twin studies revealed more
highly correlated microbiota compositions between monozygotic
twins than dizygotic twins (Goodrich et al., 2014). Given
subjects belonging to close location have less genetic variance
than subjects from distant regions, this may also contribute
to the differences in microbiota composition observed between
geographical origins.

Our work attempted to indicate the need for the global study
of human microbiota for a proper assessment of the microbial
contribution in respect to geographic distribution. In this
context, we compared the taxonomic gut microbiota abundance
of lean and obese at genus level using multivariate variance
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FIGURE 5 | Linear discriminant analysis (LDA) effect size (LEfSe) of metabolic pathways. Unstratified (A) and stratified (B) functional enrichment analyses from
microbiome of obese subjects belonging to Chile (red, n = 6), Denmark (green, n = 7) and Italy (blue, n = 7). Pathways with LDA scores higher than 1.5 (A) or 2 (B)
are shown. For stratified functional enrichment (B), unmapped/unintegrated reads are denoted as the bacterial taxa in which the pathways belong to.

FIGURE 6 | MA Plots for stratified and unstratified functional changes after bariatric surgery in Chilean patients. (A,B) Gastric bypass and (C,D) sleeve gastrectomy
stratified (A,C) and unstratified (B,D) functional changes 6 months post-surgery. Values are expressed as mean (x-axis) and fold change (y-axis), and represented as
log2 values. Dotted lines denote a two-fold change.
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analysis and non-parametric mean comparison. Although, using
Wilcoxon rank test, we found different statistical changes
in France and Chile gut microbiota, this was, however, not
the case for United States and Saudi Arabia. Our results
suggest a country-specific signature for both lean and obese
microbiota. Nevertheless, we cannot discard the possibility
that our observations may be influenced by technical and
methodological factors. First, it is known that non-parametric
tests have less chance of detecting a true effect where one
exists (Whitley and Ball, 2002). Hence, utilizing a different
statistical approach to analyze differences in variance (CAA
and Adonis test) between lean and obese subjects in France,
Chile, and Saudi Arabia, the subsequent results support the
notion that obese versus lean microbiota is different between
countries. Second, we cannot discard that this observation may
be relatively influenced by the methodology differences between
studies and also may be confounded by large interpersonal
variation. A meta-analysis of the association between differences
in the microbiome and obesity status made between 10 published
studies found that is difficult to classify a subject as obese by
its microbiota composition, suggesting the possibility that each
individual has their own bacterial signatures (Sze and Schloss,
2016). Another meta-analysis that compared lean and obese
subject from five published studies also found that signatures
of obesity were not consistent between studies, as just one of
the 5 studies analyzed showed diversity differences between
lean and obese subject (Walters et al., 2014). Nevertheless,
the authors declared that it was possible to assess differences
between lean and obese subjects when they changed the
method to identify OTUs (from “close reference” to “pick de
novo”) or used supervised learning tools to categorize subjects
according to lean and obese states with considerable accuracy
(Walters et al., 2014). Altogether, these observations suggest that
geographical differences between lean and obese subjects requires
additional validation using an international cohort that not only
takes into account confounding factors but maintain the same
experimental design.

Our study performed a functional inference analysis based
on the data obtained by 16S rDNA sequencing and observed
significant differences in KEGG Orthology enrichment in
samples obtained from France, United States, and Saudi Arabia
compared to Chile. These results suggested the microbial
differences observed were associated with changes in functional
pathways, however, this kind of analysis was unable to
differentiate the microbial contribution of each microorganism
species to the identified functional pathways. Therefore, a
more detailed comparison of metagenomic DNA sequencing
data was used, which was obtained using the HiSeq platform
to analyze stool samples of obese patients from Chile, Italy
and Denmark. First, we performed an unstratified analysis,
a type of metabolic pathway enrichment analysis without
taking into account microbial contribution, and revealed that
the functionality in obesity context did not show statistical
differences (in both CCA and Adonis testing) between patients
from Chile, Italy and Denmark, suggesting that gut microbiota
metabolic pathways do not change according to geographic
origin. Conversely, using a stratified approach that could

identify specific microbial composition and their individual
contribution to metabolic pathways, significant differences
between countries were identified, in agreement with our
initial PICRUSt metabolic inference, because both methods
takes in account taxonomic composition to assess metabolic
pathways abundance. Altogether, our observations indicate while
overall metabolic functions do not change, microbial functional
contribution to obesity are specific to each country.

Although the lack of differences observed in metagenomic
unstratified analysis may be due to small cohort numbers, our
comparisons suggest that the gut microbiota of obese patients
from different countries have functional convergence, where the
same essential metabolic functions are carried out by related
and unrelated bacterial species. Nevertheless, it is not surprising
that bacterial compositions of obese individuals differ between
counties due to both genetic and environmental factors, as
previously described by others (reviewed by Gupta et al., 2017),
however, our observations relating to convergent metabolic
functions provide new insights into how the gut microbiota
shape common disease phenotypes. The concept of intestinal
functional redundancy has been previously explored, in which
taxonomic diversity appears to be irrelevant for the inference
of functional traits (reviewed by Moya and Ferrer, 2016; Rojo
et al., 2017). One such example was demonstrated by the Human
Microbiome Project Consortium (Huttenhower et al., 2012),
where the authors observed the microbial metabolism to remain
constant across individuals over time despite high variability in
composition. One possible explanation of microbial functional
redundancy can be due to the evolutionary convergence of
unrelated taxa, in which variable combinations of species from
different phyla can at least partially fulfill the metabolic functions
of another, resulting in different species of bacteria behaving
similarly (Moya and Ferrer, 2016; Rojo et al., 2017).

Bariatric surgeries have become a frequent choice of treatment
for obesity patients over the last years, being SG the most frequent
procedure in the world (Angrisani et al., 2017; reviewed by
ASMBS, 2018). Several studies have shown that the intestinal
microbiota composition changes following surgical intervention
and these changes vary between patients who have undergone
different kind of surgical intervention such as RYGB, SG and
laparoscopic adjustable gastric banding (LAGB) (Tremaroli et al.,
2015; Palleja et al., 2016; Ilhan et al., 2017; Medina et al., 2017).
One of the limitations of our metagenomic study after bariatric
surgery is our small cohort number (n = 2 for each group),
and therefore, further studies with larger cohort are required
to confirm that different treatments mediate differentially
metagenomic rearrangements. However, this study suggest that
the microbial functionality of patients changed 6 months
following surgical treatment. In agreement with previous studies,
it also observed specificity in the changes regarding to the type
of surgery performed, where functional changes were mainly
mediated by A. muciniphila, E. coli, B. vulgatus, E. siraeum and
S. salivarius after RYGB, and by B. cellulosilyticus, S. salivarius,
E. eligens, L. lactis, A. finegoldii, E. coli and A. muciniphila species
after SG. Although it is impossible to determine from this study
whether the microbiota composition changes were a consequence
of dietary changes or weight modification, our results not only
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hint at a microbiota signature for different bariatric surgeries,
but also suggest the need for further microbiota meta-
analyses at world-wide levels to study metabolic disorders
such as obesity.

A common key factor in obesity is the low abundance of
A. muciniphila (Schneeberger et al., 2015; Palleja et al., 2016;
Medina et al., 2017; Seck et al., 2018), a mucin-degrading
bacterium that resides in the human gut mucus layer and whose
abundance in healthy subjects represents 3–5% of the residential
microbial community (Derrien et al., 2004). Interestingly, it
has been shown that A. muciniphila prevents inflammation and
adipose tissue alterations in mice (Schneeberger et al., 2015).
The administration of A. muciniphila grown under mucin-
depleted conditions is effective in reducing obesity and improve
intestinal barrier integrity in obese mice (Shin et al., 2019),
controls fat mass storage and glucose homeostasis in obese
and type 2 diabetic mice (Everard et al., 2013), and it has
been previously described that bariatric surgery improves its
abundance (Damms-Machado et al., 2015; Tremaroli et al., 2015;
Palleja et al., 2016; Medina et al., 2017). Furthermore, overweight
and obese individuals with higher A. muciniphila abundance
is associated with a healthier metabolic status compared with
lower abundance (Dao et al., 2016). Therefore, the enrichment
of A. muciniphila provides a possible therapy in the treatment
of obesity, and this possibility has been explored in a recent
study (Sheng et al., 2018). Here, we identified A. muciniphila
as one of the bacteria that drove the changes in metabolic
pathways after surgical intervention of Chilean obese patients,
an important observation considering that gut microbiota of
healthy Chilean subjects has high abundance of Verrucomicrobia
bacteria, including A. muciniphila (Fujio-Vejar et al., 2017).
Further studies to understand the underlying mechanisms
involving A. muciniphila as a target of bacto-therapy to treat
obesity are required.

Our results, together with previously published studies,
highlight the need to consider region-specific analysis
of the gut microbiota in order to fully understand the
bacterial basis for the development of such diseases as
obesity and the response to surgical and non-surgical
treatment, opening to the possibility that probiotic
development to treat different kinds of dysbiosis should be
country-specific.

CONCLUSION

This study identified significant differences in the human gut
microbiota of obese patients from around the world, and found
that functional dissimilarities were mediated by differences
in taxonomic microbiota composition, which were region-
specific, rather than alterations in metabolic pathways. This
indicates the presence of functional metabolic redundancy
between the microbiota of obese patients despite the bacterial
differences and geographic origin. Furthermore, functional
changes in gut microbiota following bariatric surgery were
observed to be specific to the type of treatment received,

providing new insights into the role of the gut microbiome in
treatment strategies.
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