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Introduction

The spillover of zoonotic influenza viruses into human populations and non-reservoir

hosts such as cows, seals, and other animals continues to pose a significant threat to

global public health. The emergence of strains like H5N1, H5N6, and H7N9 has not only

disrupted societies but also tested—and at times overwhelmed—public health systems

worldwide. With a growing human population, encroachment into wildlife habitats,

climate change, and intensified human-animal interactions, the frequency and impact of

zoonotic spillovers is expected to increase. To counter this looming threat, it is essential

that we move beyond traditional, reactive approaches and adopt a robust, forward-looking

preparedness strategy.

A key pillar in combating zoonotic influenza outbreaks is the One Health approach,

which recognizes the interdependence of human, animal, and environmental health. This

approach must form the foundation of any preparedness plan.

Key strategies under the one-health approach to mitigate zoonotic influenza outbreaks.

Surveillance and early detection

Effective surveillance is vital for early detection and timely containment of zoonotic

influenza outbreaks. Advancements in genomic sequencing, digital health systems, and

data-sharing platforms have enabled real-time monitoring of viral mutations and disease

burden, as evidenced during the COVID-19 pandemic. Possas et al., advocate for a shift

from reactive approaches to a globally coordinated surveillance system which utilizes our
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advancements in technology. This is particularly relevant given the

potential emergence of high-lethality influenza pandemics without

available vaccines. Such surveillance systems must be integrated

across veterinary, agricultural, and public health sectors. Early

warning signals from poultry, swine, or wild birds can offer critical

lead time for human health systems to prepare and respond.

For instance, a case study in India advocates the importance of

integrating surveillance within existing public health frameworks.

Abdulkader et al., detailed a comprehensive model in the Indian

state of Tamil Nadu that combines clinical and epidemiological

data with molecular diagnostics for effective early detection

and response.

Similarly, a retrospective study by Zhou et al., on H5N6

outbreaks in Sichuan, China (2014–2024) highlights the

importance of environmental surveillance in live poultry

markets, farms, and migratory bird habitats, noting that human

cases although rare were often fatal due to delayed treatment

and co-morbidities.

Risk assessment and modeling of
transmission

Each zoonotic spillover—regardless of its initial scale—

warrants rigorous risk assessment and modeling to forecast

its trajectory within human populations and ecosystems. Islam

et al., examined H5N1 transmission patterns in Bangladesh’s

domestic duck farming systems, highlighting the need for tailored

surveillance and control strategies. Integrating local and national

data sources, as shown by Li et al., ensures accurate assessment of

non-seasonal influenza activity.

Modeling tools have also emerged as essential components

of early warning systems. Perramon-Malavez et al., introduced

a simplified tool adapted from the Moving Epidemic Method

(MEM), predicting epidemic thresholds 6–7 days in advance

for Influenza using the Effective Potential Growth (EPG) index.

Jato-Espino et al., presented a spatial indicator system integrating

ecological, environmental, and socio-economic data to identify

high-risk transmission zones and support targeted interventions.

Controlling transmission

Once human infections begin, transmission can be curtailed

through two major approaches: (1) Isolation and quarantine, and

(2) Vaccination campaigns. Isolation and quarantine, especially in

the early stages of outbreaks, remain effective in the absence of

vaccines. Kim et al., used machine learning to simulate the spread

of MERS-CoV and found that targeted quarantining of cases and

contacts outperformed mass isolation strategies in both efficiency

and effectiveness. A strategy that could be extrapolated to zoonotic

influenza outbreak. Once vaccines become available, population-

wide immunization is the most efficient strategy. Xie et al.,

recommend optimizing vaccination site placements by minimizing

queue times—a crucial lesson from the COVID-19 experience.

Long wait times can deter participation and erode public trust.

In addition, computational advances have enabled the

development of broadly protective vaccine antigens, as discussed

by Possas et al., offering hope for variant-proof vaccine designs

for Influenza.

Public awareness and education

Public awareness is central to both prevention and control.

Understanding zoonotic transmission pathways and the

importance of vaccines is critical to public cooperation. Jia et

al., highlight that low influenza vaccine coverage in children is

often due to structural and informational gaps. They advocate for

better parental education, easier access to vaccines at local clinics,

and public awareness campaigns. Zhang et al., demonstrated that,

even with low vaccination rates among children in Shanghai’s

Minhang District, vaccination efforts still prevented 6–17% of

influenza cases and had substantial indirect benefits. This stresses

the importance of community engagement and education in

achieving high coverage and reducing disease burden.

To confront the growing threat of zoonotic influenza outbreaks,

we must embrace a paradigm shift from reactive to proactive

preparedness. By integrating the One Health approach across

surveillance, modeling, transmission control, and public education,

we can build resilient systems capable of early detection, rapid

response, and sustainable prevention. Global health security hinges

on our ability to anticipate and adapt. Coordinated action,

investment in research, surveillance infrastructure and inclusive

public health strategies will be vital. Our preparedness today will

determine our resilience tomorrow.
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Toward One Health: a spatial 
indicator system to model the 
facilitation of the spread of 
zoonotic diseases
Daniel Jato-Espino 1*, Fernando Mayor-Vitoria 1, 
Vanessa Moscardó 1, Fabio Capra-Ribeiro 1,2 and 
Leticia E. Bartolomé del Pino 1

1 GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, 
Spain, 2 School of Architecture, College of Art and Design, Louisiana State University, Baton Rouge, LA, 
United States

Recurrent outbreaks of zoonotic infectious diseases highlight the importance of 
considering the interconnections between human, animal, and environmental 
health in disease prevention and control. This has given rise to the concept of One 
Health, which recognizes the interconnectedness of between human and animal 
health within their ecosystems. As a contribution to the One Health approach, this 
study aims to develop an indicator system to model the facilitation of the spread of 
zoonotic diseases. Initially, a literature review was conducted using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 
to identify relevant indicators related to One Health. The selected indicators 
focused on demographics, socioeconomic aspects, interactions between animal 
and human populations and water bodies, as well as environmental conditions 
related to air quality and climate. These indicators were characterized using 
values obtained from the literature or calculated through distance analysis, 
geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-
Making (MCDM) techniques, specifically the Entropy and Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to 
combine the indicators and create a composite metric for assessing the spread 
of zoonotic diseases. The final indicators selected were then tested against 
recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong 
positive correlation was identified. Therefore, the proposed indicator system can 
be valuable in guiding the development of planning strategies that align with the 
One Health principles. Based on the results achieved, such strategies may prioritize 
the preservation of natural landscape features to mitigate habitat encroachment, 
protect land and water resources, and attenuate extreme atmospheric conditions.

KEYWORDS

geographic information system, multi-criteria decision-making, green infrastructure, 
indicators, one health, systematic literature review

1. Introduction

Zoonotic diseases pose a significant public health concern, with over 70% of emerging 
diseases being transmitted from animals to humans and 60% of human infectious diseases being 
shared with animals (1). This means that zoonotic diseases have played a role in recent outbreaks, 
including Ebola and coronavirus pandemics, as well as in well-known foodborne illnesses. These 
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diseases can be  transmitted not only through direct contact with 
animals or vectors, or the ingestion of animal products, but also 
through the consumption of contaminated vegetables grown in areas 
where domestic or wild animal manure or irrigation water is used (2).

The transmission of zoonotic diseases is a complex and 
multifactorial process, making it difficult to manage and predict due 
to the interconnected elements involved. Therefore, an 
interdisciplinary approach is necessary; focusing not only on disease 
surveillance but also on the development of predictive models (3).

The concept of One Health is crucial for today’s sustainable 
human development. One Health is “an approach that recognizes 
people’s health, closely connected to the health of animals and our 
shared environment” (4). The recurrence of outbreaks of emerging 
and re-emerging zoonotic diseases has emphasized the importance of 
the One Health approach, which acknowledges the interconnectedness 
of human, animal, and environmental health (5, 6). Achieving One 
Health requires a comprehensive understanding of the complex 
interactions and feedback between these systems and the identification 
of interventions that can promote positive outcomes for all (7). 
However, measuring progress toward One Health goals remains 
challenging, and various initiatives have employed different indicator 
systems to address this issue (8–10).

There is an ongoing debate on the most effective way to measure 
progress toward One Health goals (11–14), but there is a clear 
relationship between contagious diseases and spatial configurations 
and conditions (15, 16). The exponential growth of human population 
has disrupted the interface between humans, animals, and the 
environment through increased urbanization and the expansion of 
livestock and agricultural areas (17). These processes lead to the 
fragmentation of wildlife habitats that increase interspecies friction 
and the spread of pathogens. For example, it has been argued that 
certain infectious diseases are exacerbated by factors such as rapid 
urbanization, large migrant workers populations, climate change, 
ecological changes, and policies like deforestation (18).

Spatial assessment of disease susceptibility or transmissibility is 
crucial for the One Health approach as it helps identify areas where 
zoonotic diseases are more likely to occur and spread. Understanding 
the relationship between different spatial configurations and the 
spread of pathogens is essential to reduce the transmission of 
infectious diseases (17, 19, 20). However, it is a complex and 
challenging subject.

The number of publications examining the relationship between 
spatial configuration and the spread of infectious diseases increased 
from 100 in 2000 to over 700 publications in 2017 (20). This highlights 
the growing interest in this field and the motivation behind conducting 
a systematic literature review to better understand what had been 
done previously.

Previous research has addressed this issue from different 
perspectives. There is a general trend toward interdisciplinary 
strategies (17), although the focus has often been on program 
implementation rather than contextual research (21). More 
specifically, the analysis diverges in multiple directions. The interest in 
modeling methodologies has been of particular interest, but different 
approaches have been taken. Some authors have incorporated census 
data, land use information, and population mobility into their model 
design (22), while others have examined multiple cases to understand 
how mathematical models can generate robust evidence and shape 

effective public health policies at local and global levels (23). Recent 
research shows a notable trend toward automation and the 
development of more complex models.

Significant research has attempted to understand how proximity 
to Green Infrastructure (GI), which refers to a network of natural and 
semi-natural areas, can help improve human health (24). Other 
studies have focused on zoonoses related to ecosystems, assessing 
their impact on human health while examining the existing evidence 
of ecological responses to global changes (25). Recent studies have 
emphasized the need for a holistic approach within the concept of One 
Health to predict and prevent future pandemics (26, 27). Some models 
have considered different spatial conditions (28), while others have 
focused on specific species (29). An important percentage analyzed 
specific outbreaks in detail (e.g. (30–33),). In these cases, the 
proliferation of Geographic Information Systems (GIS) has 
contributed to a better understanding of the role of space in pathogen 
spillover (34, 35). For more details, refer to (36–39).

In general, the study of previous research has provided insights 
into the strong relationship between the spread of diseases and various 
spatial conditions. However, we could not find any studies specifically 
addressing how these spatial conditions could represent susceptibility 
or weaknesses that contribute to the faster, stronger, or broader spread 
of zoonotic diseases. Apart from the previously mentioned approaches, 
some authors have worked on developing indicators to better 
understand One Health conditions (8, 9, 40), but they used qualitative 
research based on binary logic, were conducted at the regional/
national scale, or were somehow not holistic and complex enough to 
capture all the conditions prevailing in the area. In other words, to 
address a given area using the One Health framework, holistic tools to 
assess its spatial susceptibility need to be developed.

This research helps to fill this knowledge gap by developing a 
spatial indicator system that models the facilitation of zoonotic 
diseases spread, providing insights into a region’s contribution to 
One Health. The proposed indicator system takes a multidimensional 
approach for One Health, incorporating indicators of human, 
animal, and environmental health, as well as their interactions. 
We  apply this indicator system to the region of Valencia, Spain, 
which exhibits diverse ecosystems and land uses including 
agriculture, urban areas, and natural areas. The novelty of this 
research lies in the development of a practical tool for measuring a 
region’s contribution to One Health.

As mentioned earlier, One Health requires collaboration among 
different sectors and stakeholders (41–43). This case study aims to 
provide policymakers, researchers, and practitioners with a practical 
tool for monitoring progress toward One Health goals and identifying 
areas for intervention and improvement. Furthermore, our study seeks 
to evaluate the usefulness and validity of the proposed indicator 
system by comparing its results with infectious disease records in the 
case study area and assessing the potential role of GI in achieving 
One Health.

This document is structured as follows: first, we  review the 
literature on One Health and indicator systems. Second, we describe 
the methodology employed to develop the indicator system and apply 
it to the region of Valencia, Spain. Third, we present the results of our 
case study and evaluate the utility and validity of the proposed 
indicator system. Finally, we discuss the implications of our findings 
and provide recommendations for future research.
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2. Materials and methods

The steps for designing and applying the proposed indicator 
system are depicted in Figure 1. A systematic literature review was first 
conducted to gain insights into the breadth of prior research on using 
indicators for One Health goals. The outcomes of the literature review 
were used to select a list of indicators that encompassed aspects related 
to animal, human, and environmental health. GIS and Multi-Criteria 
Decision-Making (MCDM) methods were employed to characterize, 
weight, and aggregate the shortlisted indicators. This resulted in a 
composite index that reflects the contributions of a region’s spatial 
context to One Health. These index values were then compared with 
the area covered by GI to assess its impact on One Health.

2.1. Selection of indicators

The indicators were selected based on the results of a literature 
review conducted according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) statement (44). 
The literature review aimed to answer the research question: are there 
any indicators or metrics that have been consistently used to address 
One Health issues? Finding an answer to this question should result 
in a set of indicators ranked by their frequency of use in previous 
research. The inclusion criteria for the review were as follows:

	•	 The publications are original research articles.
	•	 The articles are indexed in the Scopus, Web of Science or 

PubMed databases.

	•	 The year of publication of the documents is equal to or later 
than 2004.

	•	 The articles are published in English.

Review articles, conference papers, and books were excluded 
from the eligible items to focus on original research contributions 
that utilized indicators to address the One Health initiative. The 
search included the Scopus, Web of Science, and PubMed 
databases because of their extensive journal coverage, temporal 
range, and relevance to medical research, respectively (45). The 
time frame was limited to 2004 onwards, aligning with the year 
when the term One Health was coined (46, 47). The documents 
had to be written in English because of its consideration as the 
language of science (48).

The search query included the terms “one health,” and either 
“indicator*” or “metric*” in the title, abstract, or keywords of the 
documents. Additional specific terms related to different facets of the 
One Health concept, particularly those with spatial implications, were 
also incorporated into the search query. Eq. (1) presents the search 
query used in the Scopus database.

TITLE-ABS-KEY [“one health” AND (“indicator*” OR  
“metric*”)] AND [“agricultur*” OR “air” OR “biodiversity”  
OR “climate change*” OR “disease*” OR “ecologic*” OR  
“ecosystem*” OR “epidemi*” OR “food” OR “forest*” OR  
“habitat” OR “land use*” OR “livestock” OR “pollution”  
OR “population” OR “soil” OR “urban*” OR “warming”  
OR “water” OR “wildlife”] AND LIMIT-TO (DOCTYPE,  
“ar”)] AND [LIMIT-TO (PUBYEAR, 2022–2004)  
AND LIMIT-TO (LANGUAGE, “English”].�

(1)

FIGURE 1

Components of the indicator system to measure the facilitation of the spread of zoonotic diseases.
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The results from the databases were combined to eliminate 
duplicates. Aside from the fields returned directly from the query 
(authors, year, title, abstract, and keywords), a few others were added 
manually to gather more specific information. One of these fields was 
used to track the reasons for discarding initially eligible articles. This 
could be for a variety of reasons, including the article being a review 
that is not labeled as such, misinterpretation of search query terms 
(e.g., “one’s health” instead of “one health”), or the absence of suggested 
indicators. Invalid documents could be identified through reading the 
abstracts or full texts.

Six additional fields were related to the dimensions of One Health. 
Three fields indicated whether articles emphasized animal, human, or 
environmental health, while the other three fields recorded the specific 
terms used for each dimension. Two binary fields were included to 
indicate whether the articles considered GI and whether they had a 
spatial component. Another pair of fields compiled the indicators 
proposed in the papers and derived from reading them.

The screened documents were processed to generate frequency 
counts from the words contained in some fields, particularly keywords, 
and indicators, as well as the binary data on the dimensions of One 
Health and the presence of GI and spatial approaches. After 
reclassification and standardization, this analysis revealed the main 
trends found in the articles and created a hierarchy of the most 
frequently recurring indicators for modeling One Health.

2.2. Processing of indicators

Due to the orientation of the study on the role of spatial planning 
in the facilitation of zoonotic disease spread, the indicators were 
designed in a way that allowed them to be  characterized using 
GIS. This involved applying geoprocessing tools to conduct spatial 
analyses regarding densities, distances, or algebraic operations. The 
resulting maps were then used to calculate descriptive statistics (mean 
or sum) per administrative unit through zonal calculations.

The outputs of this characterization process enabled the creation 
of a matrix of m  indicators assessed with xij values across n  
administrative units. This arrangement resembles an MCDM problem, 
where multiple alternatives are evaluated depending on a set of criteria 
(49). MCDM problems broadly consist of two steps: weighting of 
criteria (indicators) and assessment of alternatives (administrative 
units) across the weighted criteria (50). Given the multiple branches 
that stem from the concept of One Health, the selection of indicators 
aimed to capture different aspects of environmental, human, and 
animal health.

2.2.1. Weighting of indicators
The weighting of indicators was performed using the Entropy 

Method (EM), which was proposed by Zeleny (51) to objectively 
calculate the weights of criteria in decision-making processes. The 
importance of a criterion is assumed to be proportional to the amount 
of information it provides about the alternatives. The idea is to give 
more weight to the criterion that can better discriminate the other 
options, i.e., the criterion that shows greater diversity when evaluating 
the other options. The higher the entropy (E jj), the lower the 
diversity (1− E j).

In this study, the EM was employed to determine the weights of 
indicators based on their differentiation. Indicators that exhibited 

more distinct values across the administrative units contained more 
information and had lower entropy (52). This implies large weights for 
indicators with low entropy values and vice versa. For example, if all 
administrative units had very similar values (e.g., from 0.5 to 0.6) 
regarding a particular indicator, that indicator would be given a low 
weight. Conversely, if another indicator exhibited a wide range of 
values (e.g., from 0.1 to 0.9) across the administrative units, it would 
be assigned a higher weight.

To enable a proper comparison of the index dimensions within 
the decision-making matrix a max-min transformation was applied 
to normalize the values xij of the m  indicators across the n  
administrative units, as shown in Eq. (2). Transformation ensured that 
the indicator values were on a comparable scale.
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where max x j  and min x j are the maximum and minimum values 
among the alternatives for indicator j . The entropy E j of each 
indicator was determined from the normalized values rij as formulated 
in Eq. (3).
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those indicators that contain more information, the weights wj were 
computed as defined in Eq. (4).

	

w
E

m E
w j mj

j

j
m

j j

m
j=

−

−
= = …( )

= =∑
∑

1
1 1

1 1
, , , ,

	

(4)

2.2.2. Ranking of administrative units
Once the weights were determined, the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) (53) was utilized 
to aggregate them and generate a composite measure of each 
administrative unit’s contribution to One Health. Here, TOPSIS was 
used to evaluate the proximity of a set of alternatives (administrative 
units in this case) to an ideal solution in terms of One Health.

The ideal administrative unit represents a theoretical scenario 
with the best scores for all the indicators related to the facilitation 
of zoonotic disease spread. In practice, this scenario is highly 
unlikely, as it should usually be the case that the highest values of 
the indicators are distributed over several administrative units. 
Therefore, TOPSIS calculates the distance between these real 
solutions and the ideal solution through a series of steps. Again, 
the first one was to normalize the decision-making matrix. In this 
case, a vector normalization as shown in Eq. (5) is proposed for the 
TOPSIS method (54).
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The weights wj yielded by Eq. (4) were then multiplied by the 
normalized values rij  in Eq. (5) to result in a set of normalized 
weighted values vij. These were in turn used to determine the positive 
(A+) and negative (A−) ideal solutions through Eqs. (6) and (7), 
respectively.
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where J  and ′J  represent indicators that are beneficial and 
harmful to the spread of zoonotic diseases, respectively. The distances 
(di+  and di−) from the actual administrative units to these ideal 
solutions were calculated by applying Eqs. (8) and (9).
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Finally, the Relative Closeness (RCi) from the administrative units 
to the ideal solution was computed using Eq. (10). The higher the 
value of RCi , the more susceptible the administrative unit is to 
zoonoses (the less it contributes to One Health), and vice versa.
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2.3. Correlation between the number of 
infectious diseases and Green 
Infrastructure

The validity of the values of RCi  obtained from Eq. (10) was 
assessed by comparing them with the records of infectious disease 
counts in the case study area. This comparison was conducted using 
Pearson’s r  correlation coefficient (55) since both variables were 
quantitative (continuous). The presence of a statistically significant 
association was determined at a significance level (α ) of 0.05. 
Therefore, the proposed indicator system was considered valid if it 
exhibited a strong positive correlation with the infectious disease 
count, and the value of p obtained from Pearson’s r was less than α .

Moreover, the results were also analyzed in terms of their 
relationship with Green Infrastructure (GI). The potential benefits of 
GI for the three pillars of One Health have been discussed in previous 

literature (24). GI can be defined as “a strategically planned network 
of natural and semi-natural areas with other environmental features 
designed and managed to deliver a wide range of ecosystem services. 
It incorporates green spaces (or blue if aquatic ecosystems are 
concerned) and other physical features in terrestrial (including 
coastal) and marine areas” (56).

The correlation between One Health and GI was determined by 
the correlation coefficient between these values of RCi  and the area 
covered by GI in each administrative unit. The latter was determined 
based on the following classes in the Corine Land Cover (CLC) (57): 
1.4 (artificial, non-agricultural vegetated areas), 2 (agricultural areas), 
3.1 (forest), 3.2 (shrub and/or herbaceous vegetation associations), 4 
(wetlands), and 5.1 (inland waters). These categories allowed for 
differentiation between artificial (class 1.4) and natural and semi-
natural (classes 2, 3.1, 3.2, 4, and 5) GI.

3. Results and discussion: a case study 
in the Valencian Community (Spain)

The indicator system was tested in the 33 counties of the Valencian 
Community as shown in Figure  2. The Valencian Community is 
located in eastern Spain and has a predominantly Mediterranean, arid, 
and semi-arid climate. Regions with Mediterranean ecosystems, like 
the Valencian Community, are known to experience high levels of 
environmental degradation due to biophysical factors such as 
wildfires, drought, erosion, as well as social factors such as tourism, 
urbanization, and deforestation (58, 59).

In terms of biophysical factors, it is noteworthy that 17% of the 
forest area in the region has experienced at least one wildfire, 29% 
suffers from serious erosion problems, and 46% is at risk of 
desertification. In addition, the effects of climate change significantly 
affect the regularity of precipitation, which can have implications for 
areas prone to desertification (58, 60).

Concerning social factors, the region is characterized by a 
dominance of the service sector, which accounts for more than 65% 
of total employment, and tourism activities, such as real estate, 
gastronomy, and transportation, which have an employment rate of 
over 12% and contribute 15% to the GDP (61, 62). In particular, the 
Valencian Community has cultivated a tourism model focused on 
second homes linked to construction that has resulted in serious 
environmental impacts, high space requirements, and an 
unsustainable approach (63).

All these activities have been boosted by lax political guidelines 
and favorable economic incentives, leading to land degradation (58) 
(EVR, 2020). Thus, insufficient budgetary resources further contribute 
to the challenge of meeting the goal of recovering 15% of degraded 
ecosystems. Besides, other studies indicate that the Valencian 
Community has primarily focused on reforestation projects with 
limited impact on biodiversity, while neglecting medium and long-
term-ecological restoration projects (64, 65).

3.1. Selection of indicators

The systematic literature review conducted following the PRISMA 
statement produced the results presented in Figure 3, which shows the 
number of records removed at each step. The search query formulated 
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in Eq. (1) initially returned 463 records from the three databases 
considered. This number gradually decreased through the different 
steps of the PRISMA statement until a final number of 99 articles was 
obtained for data analysis.

The extraction of information from these articles allowed for the 
identification of several indicators that could potentially influence the 
spread of diseases impacting human, animal, and environmental 
health. The vast majority of these indicators were not used as direct 
metrics to model spatial facilitation of disease spread but were instead 
discussed as factors that may affect One Health. Table 1 compiles the 
list of indicators extracted from the review and provides the main 
references that supported their use as surrogates for aspects that go 
against the One Health concept (9, 14, 40, 66–161).

Certainindicators were discarded due to limited data availability, 
low frequency, and/or the impossibility to characterize them spatially. 
Based on the frequency of the indicators found to be valid, the list in 

Table 2 was compiled for subsequent calculations. The first subset of 
indicators (from I1 to I8) focused on population demographics (either 
human or animal) and socioeconomic aspects such as health facility 
density, education level, and financial resources. Another group 
consisted of indicators related to land use (from I9 to I13). The 
interactions between animal and human populations and water bodies 
were addressed in the indicators ranging from I13 to I18. The final 
group of indicators pertained to environmental conditions, including 
air quality (I19 and I20) and climate (I21 and I22).

The rationale behind the influence of these indicators on One 
Health is outlined below. The impact of Antimicrobial Resistance 
(AMR) and its implications for One Health has been linked to reduced 
accessibility to adequate healthcare and human health (I1) as well as 
veterinary (I2) professionalism (83). Moreover, high population 
densities (I3, I6, I7 and I8) can contributeto the spread of zoonotic 
diseases and increased intra-interactions within and between 

FIGURE 2

Situation map of the Valencian community and geographical extent of its counties.
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populations and ecosystems (81). In the case of human populations, 
factors such as poverty (I5) can support the evolution of pathogen life 
cycles, while education (I4) can aid in controlling global zoonotic 
pathogens (75).

The impact of agriculture (I9) is associated with freshwater, which 
serves as a common drinking source for wildlife (69), as reflected in 
I17. Agricultural runoff can be  a source of pollution, especially if 
antibiotics are utilized in farming practices (68). The use of 
agrochemicals in agriculture contributes to reduced biodiversity and 
promotes mutation among microbial populations in soil and water 
bodies (I13) (162). Other forms of anthropogenic land use changes 
such as deforestation (I10) are linked to the increased adaptability of 
disease vectors and the creation of the conditions for increased 
interactions at the wildlife-human interface (163). I11 and I12 relate to 
aspects like the role of hunted animals as carriers of bacteria with 
specific resistance traits (92) and livestock movement as a contributing 
factor to the emergence of zoonotic diseases (164).

Increased global connectivity between humans and animals 
(either livestock or wildlife; I14 and I16) has been identifiedas a source 
of acceleratedand exacerbated AMR (70). Surface water (streams, 
rivers, lakes, and ponds) used as drinking water for dairy cattle can 
serve as a source of pathogens (72) (I18), posingbilateral implications 
for farm animals and humans (I15) due to the dissemination and 
maintenance of resistance genes in the environment (165).

The impact of air pollution (I19 and I20) is indirect as it stems 
from its contribution to biodiversity decline (166), which in turn has 
been argued to increase human exposure to zoonotic pathogens (167). 
Moisture resulting from precipitation (I21) results in dense vegetation 
that provides suitable conditions for vector proliferation (168). Floods 
caused by heavy rainfall also increase the risk of waterborne diseases 

(169). Temperature (I22) is proportional to vector distribution and 
disease risk too. High temperatures promote increased activity of 
mosquitoes, ticks, and sandflies, while they can lead to the migration 
of rodents into human habitats (170, 171).

3.2. Processing of indicators

Some indicators in Table 2 were obtained directly as single values 
per administrative unit, while others were available as either vector 
(point or polygon) or raster layers. These data had to be processed to 
express them as a single value per administrative unit. The indicators 
in point format were processed to obtain densities per county. Instead, 
polygon data were used to determine the proportion of the area 
corresponding to the indicators covered by the counties.

The indicators related to the interactions between point and 
polygon layers (I14, I16, and I17) were determined through a three-
step process: transform the point layer into a raster using a Kernel 
density function (shape = quartic, radius = 25 km), calculate the 
interaction of the gridded density and the polygon layer by 
multiplication, and aggregate the values per county by taking the 
median of the interaction values per raster unit into a 
polygon layer.

Apart from these general procedures, two indicators required 
specific calculations. Deforestation (I10) was determined based on the 
variations in class 3.1 (Forests) in the 2006, 2012, and 2018 CLC maps 
in the Valencian Community. The CLC map was also used to 
characterize water and soil pollution (I13), which was computed by 
assigning scores depending on the land cover classes (172).

Figure 4 shows various steps in the processing of indicators as an 
example. Figure  4A depicts the location of health and veterinary 
centers in the study area, which were used to obtain their density per 
county (I1 and I2). Figure 4B applies the aforementioned scores for 
water and soil pollution to the different land covers in the study area. 
Figures 4C,D represent the presence of wild animals and livestock 
areas in the region along with the human population values per 
county, which were the inputs used to characterize I14 and I15. The 
values per county for each indicator considered (I1-I22) are provided 
as Supplementary material.

3.2.1. Weighting of indicators
The application of the EM algorithm according to Eqs. (2)–(4) 

resulted in the weights shown in Figure 5. These weights indicate the 
importance of various indicators for this study. Some indicators were 
found to have reduced importance (weights less than 0.025 out of 1): 
including healthcare facilities (for humans or animals), temperature, 
and NOx concentration, deforestation, hunting territory, and water 
and soil pollution. According to the EM principle, these variables are 
not sufficiently discriminatory among the counties in the Valencian 
Community, indicating that most counties are relatively homogeneous 
in relation to these indicators.

Instead, the indicators related to human and animal populations 
and their interactions obtained the highest weights. In particular, the 
presence of wildlife and humans was identified as the two most 
important indicators. This highlights the significance of distinct 
habitats and the risks associated with phenomena such as urban 
sprawl. The next most important indicators were also aligned with this 
focus, involving domestic and farm animals and their interactions 

FIGURE 3

Number of records retained and removed after each step of the 
systematic literature review.
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with wildlife, humans, and water bodies, with the latter also being 
represented by precipitation. The ozone uptake by wheat was also 
identified as an important environmental indicator due to its impact 
on food safety.

Apart from the rationale behind them, all of these indicators with 
the highest weights exhibited spatial variability among the counties in 
the study area. In addition, they accounted for the three dimensions 
of One Health. Among them, animal-related variables were the most 
important (I6-I8, I14-I18), followed by those focused on humans (I3, 
I14, and I15) and the environment (I17, I20, and I21).

3.2.2. Ranking of administrative units
The use of Eqs. (5)–(10) following the steps of the TOPSIS method 

resulted in the map shown in Figure 6A. The results are consistent 
with the significance of indicators associated with humans and wildlife 

(Figure 5), as well as the distribution of these populations (Figure 4A). 
According to this map, the primary focus of disease spread is observed 
in the county of València (Figure  2), where the region’s capital is 
situated, highlighting the implications of population movement in 
this area.

The second county in the ranking of zoonotic disease susceptibility 
was el Baix Segura, located in the southern of the Valencian 
Community. Although the human population density is not as high 
in this county, it attained the highest scores in terms of wildlife-
livestock-water interactions. Instead, counties in the western and 
northern regions exhibited lower susceptibility. As can be seen from 
the results provided as Supplementary material, these counties only 
obtained high scores in indicators of lesser importance (Figure 5), 
such as illiterate population (I4), average income per consumption 
unit (I5), or hunting territory (I12).

Overall, the results presented in Figure 6A are instructive in terms 
of indicating hotspots linked to susceptibility to infectious diseases. 

TABLE 1  List of proposed or derivable indicators from the systematic 
literature review on metrics used to address One Health.

Indicators proposed or 
derivable

Reference(s)

Crops; Agriculture (66–68)

Hunting spaces, human-wildlife interface; and 

crops-animals-water interface

(69–71)

Exposure of farm animals to water pollution (72–74)

Income per capita; access to water supply (40, 75)

Wildlife population (76, 77)

Soil pollution (78, 79)

Cardiovascular diseases; diabetes (80)

Poverty; livestock movement; and population 

density

(75, 81, 82)

Climate change; extreme weather, healthcare 

facilities; and education

(83, 84)

Hiking trails; parks (85)

Seabirds (86–88)

Social inequalities (70)

Domestic animals (89, 90)

Animal bites (91)

Habitat overlap; wildlife-livestock interactions (92)

Deforestation (75, 93)

Bird migration (71)

Dog abandonment (94, 95)

Sewage water (96, 97)

Rainfall, temperature; humidity; and air 

pollution

(98–101)

Farm outbreaks; rural areas (102)

Human-livestock interface (103–105)

Human-bird interface (106)

Insects-farms interface (107)

None (at least in the terms that can be useful 

for this study)

(9, 14, 72, 108–161)

TABLE 2  List of indicators to model spatial susceptibility to zoonotic 
diseases.

ID Indicator Type Format

I1 Density of health centers (no./km2) Cost Point

I2 Density of veterinary centers  

(no./km2)

Cost

Point

I3 Human population density (no./km2) Benefit Value

I4 Share of illiterate population (%) Benefit Value

I5 Average income per consumption unit 

(€)

Cost

Value

I6 Density of domestic animals (/km2) Benefit Value

I7 Density of farm animals (no./km2) Benefit Value

I8 Density of wild animals (no./km2) Benefit Point

I9 Agricultural land (%) Benefit Polygon

I10
Deforestation (%) Benefit Polygon

I11 Livestock (%) Benefit Polygon

I12
Hunting territory (%) Benefit Polygon

I13
Water and soil pollution (score) Benefit Polygon

I14
Humans * Wild animals (score) Benefit Polygon/Point

I15
Humans * Livestock (score) Benefit Polygon

I16
Wild animals * Livestock (score) Benefit Point/Polygon

I17
Wild animals * Water bodies (score) Benefit Point/Polygon

I18
Livestock * Water bodies (score) Benefit Polygon

I19
Average concentration of NOx (μg/m3) Benefit Grid polygon

I20
Average concentration of POD6 wheat 

(mmol/m2)

Benefit Grid polygon

I21
Total precipitation (mm) Benefit Raster

I22 Mean temperature (° C) Benefit Raster
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The indicator system based on the EM and TOPSIS methods enables 
the derivation of discriminative results, highlighting substantial 
differences between the most critical counties and the others. 

Consequently, this facilitates the implementation of strategies to 
strengthen One Health through measures aimed at safeguarding the 
interface between humans, animals, and the environment.

FIGURE 4

Processing of indicators before their calculation per county (A) Health and veterinary centers (I1 and I2); (B) Water and soil pollution (I13); 
(C) Interaction between human population and wildlife (I14); and (D) Interaction between human population and livestock (I15).
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3.3. Correlation between the number of 
infectious diseases and green infrastructure

The Valencian Animal Identification Registry (RIVIA in 
Spanish) provides a report on the cases notified in 2021 for the 
following diseases: Leishmaniosis, Ehrlichiosis, Dirofilariosis, 
Leptospirosis, Toxoplasmosis, and Babesiosis. Figure  6B shows 
how these cases are distributed across the counties in the 
Valencian Community.

Figure 7A demonstrates that the value of Pearson’s r  obtained 
between disease density (number of records per county area) and the 
values of RCi  was 0.72 (value of p < 0.05). This strong and positive 
correlation coefficient reinforces the effectiveness of the proposed 
indicator system in representing a region’s susceptibility to the 
emergence of infectious diseases.

A similar analysis was carried out to examine the relationship 
between RCi and the proportion of artificial (Figure 6C) and natural 
and semi-natural GI (Figure 6D) in the study area. Again, the p values 
were below the significance level of 0.05 in both cases, while the values 
of Pearson’s r obtained were 0.78 (Figure 7B) and − 0.73 (Figure 7C), 
respectively. These results indicate that more developed and urbanized 
counties exhibit a higher susceptibility to the emergence of infectious 
diseases, while the presence of natural and semi-natural areas may 
contribute to the One Health initiative.

4. Discussion

The results obtained in this study address some key demands in 
the field of landscape epidemiology, including the incorporation of 
spatial interactions between individuals and environmental gradients 
in large-scale studies (173). Spatial dimensions such as distances 
between humans, animals, and environments have been found to 
be associated with both directly and indirectly transmitted infectious 
diseases (174). Overall, the spatial processing of indicators proposed 
in this study aligns with these premises.

The results are also consistent with the notion that urbanization 
contributes to increased encounters with wildlife, leading to challenges 
in infectious disease epidemiology due to amplified and faster spread 
(175). Although the interface between human and wildlife populations 
(I14) carries moderate weight, wild animals (I8) and human population 
(I3) were identified as the two most important indicators according to 
Figure 5.

Other authors have emphasized that land urbanization, rather 
than population urbanization is a key driver of infectious disease 
morbidity and mortality (176). This does not necessarily contradict 
the results obtained in this study but underscores the importance of 
using appropriate metrics. Population density goes beyond population 
size by considering how the accumulation of people and animals can 
facilitate disease transmission.

FIGURE 5

Weights obtained for the proposed indicators using the Entropy Method (EM).

17

https://doi.org/10.3389/fpubh.2023.1215574
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jato-Espino et al.� 10.3389/fpubh.2023.1215574

Frontiers in Public Health 11 frontiersin.org

Urbanization promotes the occurrence of zoonoses through 
demographic growth and density, socioeconomic inequalities, increased 
movement of people and animals, and land use change (177). All these 
factors are included in the list of indicators presented in Table 1. The 
results in Figure 7 would be supported by this line of thought, since 

considering these aspects together correlates positively with the number 
of infectious diseases and the presence of natural and semi-natural GI, 
while correlating negatively with artificial GI in more urbanized areas.

The role of GI is linked to biodiversity, which is a crucial factor to 
consider when pursuing One Health goals. Zoonotic pathogens are 

FIGURE 6

(A) Susceptibility to zoonoses according to the indicator system; (B) Infectious disease density (cases/km2); (C) Proportion of artificial GI (%); and 
(D) Proportion of natural and semi-natural GI (%).
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more likely to originate from specific taxa that often reproduce due to 
human influences, i.e., in urbanized areas lacking biodiversity values 
(167). This may explain the lower susceptibility to infectious diseases 
in counties with higher proportions of natural and semi-natural 
GI. Notably, the provision of suitable habitats for vector and zoonotic 
reservoir populations is one of the regulating ecosystem services 
supported by GI (178).

Therefore, the results of the indicator system can support the 
development of planning strategies aimed at promoting the principles 
of One Health. Strategies could focus on the implementation of 
natural GI, as the presence of these areas showed a negative correlation 
with zoonoses. Preserving and/or restoring natural landscape features 
can help minimize habitat encroachment, improve land and water 
quality, and mitigate extreme atmospheric conditions. Instead, 
artificial green spaces, commonly found in urban areas, showed a 
positive correlation with zoonoses. This is associated with urban 
sprawl and its effects on increased interactions between populations 
through greater movement of people, animals, and wildlife between 
developed and undeveloped areas.

Although these conclusions stem from validated results, this 
investigation had some limitations that constrain its impact. First, the 
data used to characterize certain indicators were site-specific, which 
hampers the usability of the indicator system in other parts of the 
world where such data may be  lacking. Second, the methodology 
behind the indicator system could benefit from automation, which 
would result in a web-based application where users only need to 
input the data to obtain the composite metric of zoonotic disease 
susceptibility, while calculating the GIS and MCDA tasks would be in 
the background. Finally, this indicator system may have limitations in 
modeling diseases transmitted by vectors such as ticks or mosquitoes, 
whose distribution and survival are influenced by complex dynamics 
determined by climatic and seasonal factors, as well as by the presence 
of specific hosts, with certain conditions being favorable for some 
species but not for others (179, 180).

5. Summary and concluding remarks

This research consisted of the development, application, and 
validation of an indicator system to model spatial susceptibility to 

zoonotic disease facilitation, thus providing an indirect measurement 
of contributions to the One Health initiative. The study focused on the 
counties of the Valencian Community (Spain) as a case study. The 
methods used to achieve this goal included a systematic literature 
review, the combination of GIS and MCDM techniques, and the use 
of statistical testing.

The systematic literature review resulted in the identification of 22 
spatial indicators that encompassed population, land use, and 
atmospheric variables. These indicators represented the risks 
associated with direct or indirect interactions at the interfaces between 
humans, wildlife, livestock, and ecosystems, thereby addressing the 
three pillars of the One Health approach: human, animal, and 
environmental health.

Processing these indicators using GIS and MCDM methods 
resulted in a composite metric for zoonotic disease susceptibility. The 
results showed that the indicators concerning human and animal 
populations and their interactions are the most important ones, 
underlining the relevance of controlling urban sprawl to mitigate 
habitat encroachment. The impact of urbanization was also further 
supported by the county level analysis, with the highest susceptibility 
to zoonotic diseases observed in the county corresponding to the 
capital and most populated city in the region.

This trend was confirmed by the strong positive correlation between 
the results of the indicator system and the presence of artificial 
GI. Conversely, the association with natural and semi-natural GI 
exhibited an opposite relationship, underscoring the importance of 
these areas for habitat preservation and biodiversity protection, thus 
aligning with the principles of One Health. The validity of these findings 
was verified by comparing the results of the indicator system with the 
records reported in the Valencian Community in 2021, showing a 
strong positive correlation. Therefore, the indicator system is proposed 
as a tool for implementing the principles of the One Health approach 
when designing strategies for better public space planning.
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FIGURE 7

Correlation coefficient between the results of applying the indicator system to the Valencian Community and (A) Infectious disease density reported in 
2021 (cases/km2); (B) Proportion of artificial GI (%); and (C) Proportion of natural and semi-natural GI (%).
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Waterfowl are considered to be  natural reservoirs of the avian influenza virus 
(AIV). However, the dynamics of transmission and evolutionary patterns of AIV 
and its subtypes within duck farms in Bangladesh remain poorly documented. 
Hence, a cross-sectional study was conducted in nine districts of Bangladesh 
between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 
and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades 
circulating in domestic duck farms. The oropharyngeal and cloacal swab samples 
were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes 
using rRT-PCR. The exploratory analysis was performed to estimate AIV and its 
subtype prevalence in different production systems, and multivariable logistic 
regression model was used to identify the risk factors that influence AIV infection 
in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum 
clade credibility (MCC) tree and the maximum likelihood method to determine 
the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was 
detected in 40% (95% CI: 33.0–48.1) of the duck farms. The prevalence of AIV was 
highest in nomadic ducks (39.8%; 95% CI: 32.9–47.1), followed by commercial 
ducks (24.6%; 95% CI: 14.5–37.3) and backyard ducks (14.4%; 95% CI: 10.5–19.2). 
The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0–25.7). 
The multivariable logistic regression model revealed that ducks from nomadic 
farms (AOR: 2.4; 95% CI: 1.45–3.93), juvenile (AOR: 2.2; 95% CI: 1.37–3.61), and 
sick ducks (AOR: 11.59; 95% CI: 4.82–32.44) had a higher risk of AIV. Similarly, the 
likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3–
115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong 
to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has 
been evolving silently since 2015 and forming at least nine subgroups based on 
>90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in 
Bangladesh by the end of the year 2020, which was genetically similar to viruses 
detected in wild birds in Japan, China, and Africa, indicating migration-associated 
transmission of an emerging panzootic clade. We  recommend continuing AIV 
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surveillance in the duck production system and preventing the intermingling of 
domestic ducks with migratory waterfowl in wetlands.

KEYWORDS

avian influenza, HPAI H5N1, waterfowl, risk factors, phylogeny, 2.3.2.1a, 2.3.4.4b, 
zoonotic

1. Introduction

The avian influenza virus (AIV) has garnered increased attention 
recently because of its impact on productivity, commerce, and human 
health. The highly pathogenic avian influenza (HPAI) H5N1 virus has 
been linked to poultry epidemics and occasional human infections 
worldwide (1). In Bangladesh, the epidemic of H5N1 in poultry was 
reported for the first time in 2007. Since then, the disease has spread 
throughout the country, with 585 H5N1 outbreaks reported until the 
end of 2020 (2–4). In contrast, the first human case of H5N1 was 
detected through exposure to slaughtered poultry in Bangladesh on 
May 22, 2008 (5). AIV is now considered to be endemic and some 
recent research has identified a high percentage of AIV in birds from 
farms and live bird markets (LBM) including peri-urban and rural 
settings (6–9). Waterfowl from the order of Anseriformes (including 
ducks, geese, and swans), are distributed worldwide due to aquatic 
habitats and are considered one of the major natural reservoirs for 
AIV (10, 11). Other than domestic duck species, migratory waterfowl 
stopover for a few days to several weeks to rest at foraging areas 
(wetlands and lakes) along their migratory routes (10, 12). The AIV 
can spread to and from domestic duck populations due to the length 
of stay and wetland of both domestic and migratory duck populations, 
and the asymptomatic nature of infected individuals increases the 
likelihood that the virus will spread to other species (13). When an 
infected duck defecates in a specific wetland or waterbody, the AIV 
enters the environment and infects other ducks easily while they 
access the same areas. Although AIV has been replicated in the 
respiratory tract, we cannot overlook the fecal shedding of the AIV 
(14). Consequently, wetlands and water bodies can become 
contaminated with AIV through the defecation of infected birds, 
therefore, transmission of the virus is more likely when a significant 
number of birds roost on a small wetland (15). This evidence can 
be corroborated by another study in which the authors recovered the 
virus from the lake surface, where many different duck species graze 
(16). So, the high AIV titer in feces, the stability of the virus in the 
water, and the higher number of positive cloacal than tracheal samples 
suggest the virus persists in duck populations through fecal-oral 
transmission (17). Therefore, the present study is conducted to 
estimate the prevalence and risk factors of AIV in domestic ducks 
under different rearing systems and landscapes.

Bangladesh is an agriculture-based country where the total 
livestock population comprises around 311.8 million chickens and 
63.85 million ducks throughout the country (18), which are housed 
in over 53 thousand commercial broiler farms, 18 thousand 
commercial layer farms, and 6.5 thousand commercial duck farms, 
whereas in rural settings on an average, each household rears 6.8 
chickens and ducks in backyard systems for their consumption or 
even commercial activity (19, 20). Furthermore, Bangladesh is also 

known as a riverine country due to its numerous transboundary 
rivers, suitable habitats, and wetlands that attract millions of migratory 
birds of 244 species each winter (October to March) and allow them 
to intermingle with resident aquatic wild birds and domestic ducks 
(21, 22). Ducks are typically raised for household and commercial 
production in Bangladesh using nomadic or semi-scavenging systems. 
Consequently, domestic ducks have frequent access to wetlands and 
interact closely with various migratory bird species, which may 
facilitate the evolution and emergence of novel strains of AIV and 
eventually lead to widespread outbreaks of the virus. The reservoir 
duck species are able to shed and transmit the virus from the 
respiratory and intestinal tracts, showing few or no symptoms of the 
disease. Therefore, understanding the epidemiology of the origin and 
circulation pattern of H5N1 in the duck population in Bangladesh is 
deemed a priority.

The AIV RNA prevalence in domestic ducks in parts of 
Bangladesh has been previously documented as 0.9–89% (23–25), 
whereas the dominant AIV subtypes were H5 and H9 in ducks (26). 
Furthermore, since the first detection of HPAI H5N1 viruses, various 
clades, including 2.2.2, 2.3.2, 2.3.4.2 (27, 28), 2.3.2.1a (29, 30), and 
2.3.4.4 (31) clade of H5N6, have been identified in Bangladesh. 
Besides, the novel reassortant H5N1 clade 2.3.2.1a has already been 
isolated from the LBMs in Bangladesh, having a close relatedness to 
the virus isolated from birds sampled in one of the four regions of this 
country (32). Furthermore, during the last 3 years, clade 2.3.4.4b of the 
H5N1 virus has recently spread to domestic poultry and wild birds 
widely in Europe, Africa, Asia, and America, leading to the loss of over 
33 million domestic birds (33). On the other hand, northwest Spain 
encountered an outbreak of 2.3.4.4b H5N1 in Minks (34). Also, this 
clade of H5N1 was also detected in mammals like harbor porpoises in 
Sweden (35) and dolphins, Sea lions, Sanderlings, Pelicans, and 
Cormorants in Peru (36). There have been 893 sporadic human 
A(H5N1) cases reported from 21 countries since 1997, and eight of 
those cases have been caused by clade 2.3.4.4b since 2022, which raises 
the possibility of a pandemic (37, 38). Both nomadic and backyard 
ducks are reared in a free scavenging system in Bangladesh, sharing 
open wetlands with large numbers of migratory waterfowl, and other 
wild birds and transmission of HPAI H5N1 may occur easily where 
the migratory birds are considered one of the potential routes for 
introducing new clades of HPAI H5N1  in Bangladesh (39). The 
surveillance of AIV in ducks from different production systems and 
patterns of AIV and subtype circulation within these systems are not 
well documented. Molecular characterization and evolutionary 
dynamics of HPAI H5N1 in the duck population are crucial. Therefore, 
we conducted this study to know the prevalence of AIV and their 
subtypes H5 and H9, risk factors, and phylodynamics of H5N1 clades 
circulating in domestic ducks in the different production systems 
in Bangladesh.
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2. Methodology

2.1. Ethical approval

The study protocol was approved by the ethics committee of 
Chattogram Veterinary and Animal Science University (CVASU) 
bearing the number CVASU/Dir(R&E) EC/2019/126(1) and CVASU/
Dir(R&E)EC/2020/191/7.

2.2. Study design and site selection

Bangladesh currently has three duck production systems: nomadic 
farms, backyard farms, and commercial farms. Nomadic duck farming 
is a traditional approach to duck production where the ducks are kept 
in a free-range habitat and are allowed to roam and feed in various 
regions (40). In the backyard farming system, household ducks are 
kept overnight near or within the farmer’s house and travel only over 
a short distance for scavenging (27), and in the commercial farming 
system, ducks are kept in total confinement (41). Considering the 
duck farming patterns, we  conducted a cross-sectional study and 
purposive sampling to find out AIV, H5, and H9 subtype prevalence 
as well as risk factors among ducks in different production systems 
from 2019 to 2021 in Bangladesh. The study sites were selected based 
on duck density, the presence of wetlands, and migrating waterfowl. 
Data on the distribution of migratory bird staging areas in Bangladesh 
was obtained from the literature (42, 43). Additionally, the duck 
density data were gathered from the Bangladesh agriculture census 
2019 (44). Figure 1 depicts the nine selected districts of Bangladesh, 
namely Dhaka, Faridpur, Cumilla, Kushtia, Meherpur, Moulovibazar, 
Sylhet, Sirajganj, and Rajshahi, which represent the wide spectrum of 
duck-rearing practices across the country. The sampling of nomadic 
ducks from Sylhet and Moulovibazar represented the wetland habitats 
of Haor basin (45), while Kushtia, Meherpur, and Sirajganj were 
considered as Jamuna floodplains (46). In wetlands, domestic ducks 
and migratory birds share foraging habits and intermingle. 
Consequently, backyard ducks were also sampled in wetlands areas. 
In addition, backyard ducks were sampled from Dhaka, Cumilla, and 
Faridpur. The samples of commercial duck farms were collected from 
Cumilla, Dhaka, Kushtia, Meherpur, Rajshahi, and Sylhet (Figure 1).

2.3. Sample and data collection procedure

We sampled a total of 522 ducks from 171 farms, with 270 ducks 
coming from 127 backyard farms, 61 ducks from 11 commercial farms, 
and 191 from 33 nomadic farms. The samples were collected from both 
sick and healthy ducks, and common signs observed in sick ducks were 
torticollis, lack of coordination, leg paralysis, and sudden death, which 
have also been associated with H5N1 symptoms in previous studies 
(24, 47). Pooled oropharyngeal with cloacal swabs were collected from 
each duck by an experienced field veterinarian while causing the birds 
as little distress as possible. The biological specimens were collected by 
wearing appropriate personal protective equipment like coveralls, 
gloves, and other safety equipment. Immediately after sampling, the 
swabs sticks were placed into a 1.8 ml cryovial containing 1 mL viral 
transport medium (VTM). Each vial was marked using a unique 
identification number and placed in the portable dry shipper before 
transport to the laboratory. In the lab, all the samples were stored at 

–80°C freezer until further laboratory evaluation. A pre-tested 
questionnaire and face-to-face interview were used to collect all 
biosecurity-related data, that could potentially be a risk factor.

2.4. Virological testing

The viral RNA was extracted from the pooled swab samples 
(oropharyngeal and cloacal) using a KingFisher Flex 96-well robot 
(Thermo Scientific, Waltham, MA) and the MagMAX 96 AI/ND Viral 
RNA Isolation Kit (Ambion, Inc. Austin, TX) in accordance with the 
manufacturer’s instructions. Real-time reverse transcriptase PCR 
(rRT-PCR) was used in conjunction with reference primers and 
probes to detect the presence of the AIV (InfluA) Matrix (M) gene in 
viral RNA, as described by the CDC and Spackman (48, 49). Then, 
InfluA (M-gene) positive samples were examined with specific 
subtypes primers of H5, H7, and H9 as previously described (49, 50). 
The samples were considered as AIV positive for the M-gene if the 
cycle threshold (Ct) was less than 40 and as H5, H7, and H9 positive 
if Ct < 37 (51). Samples that tested positive for the M gene but negative 
for H5, H7, and H9 were classified as A/untyped.

2.5. H5N1 sequencing

The viral RNA was extracted using QIAamp viral RNA minikit 
(Qiagen). The influenza segments were amplified following the protocol 
described by Zhou et al. (52). After amplification, PCR amplicons were 
visualized by agarose gel electrophoresis, followed by purification in an 
AMPure XP Bead. Subsequent nanopore sequencing libraries were 
prepared using Ligation Sequencing Kit (SQK-LSK109) and the Native 
barcoding approach. In 2019, the Sanger sequencing was deployed to 
amplify and subjected to partial sequencing of HA and NA genes of the 
2 H5N1 virus described by Hoffmann (53). In 2021, the final library 
was quantified in the Qubit 1× dsDNA High Sensitivity Assay Kit 
(Invitrogen) with a Qubit 4 fluorometer (Invitrogen) and loaded onto 
the FLO-MIN106D flow cell on an Oxford Nanopore MinION MK 1C 
platform. Raw fast5 reads were base called by real-time base-calling 
with Guppy 4.3.4, released with MinKNOW software with the fast base-
calling mode, and subsequent analyses were performed in the 
appropriate bioinformatics tools. The HA and NA segments of H5N1 
sequences were submitted to GenBank under the accession numbers 
from OQ430759 to OQ430762 and OQ423229 to OQ423237.

2.6. Statistical analysis

The frequency, percentage, and univariate value of p were 
computed at the socio-demographic level of the duck farmer, along 
with duck-rearing practices in different production systems and 
landscapes. A descriptive analysis was computed to determine the 
prevalence of AIV, H5, and H9 according to the different factors at the 
individual bird and flock levels. The cross-tabulation and chi-square 
tests were performed to identify the risk factors between AIV and 
H5N1 with different bird-level risk factors. Furthermore, the risk 
factors that were determined as significant at univariate analysis were 
forwarded to multivariable logistic regression. The likelihood ratio 
(Wald test) with a value of p of ≤0.05 was used to identify the primary 
risk factor. The results were presented as Adjusted Odds Ratios (AOR), 
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95% confidence intervals, and values of p. The data generated from 
this study were stored in MS Excel 2021 and checked the data integrity 
in MS Excel. We used RStudio version 4.1.2 for statistical analysis. 
We  used “lme4” and “tidyverse” packages for the analysis in R 
software. The ArcGIS1 software was used to create a duck density map 
and to visualize the spatial distribution of migratory waterfowl staging 
areas and duck farming sites of studied districts (Figure  1). The 
district-level administrative shape file was retrieved from freely 
available DIVA-GIS2 (54).

1  https://www.arcgis.com

2  https://www.diva-gis.org/gdata

2.7. Bayesian phylogenetic analysis of H5N1 
viruses

To identify the clade diversity of H5N1 viruses circulating 
among ducks in Bangladesh, On January 1, 2023, all accessible 
HA gene sequences of A/H5N1 HPAIs found in Bangladesh from 
ducks with full-length HA sequences were retrieved from the 
GISAID Epiflu database (55). The HA sequences of H5N1 from 
2007 to 2022, were retrieved from GISAID and NCBI and then 
the artifacts sequence were removed. A Maximum Clade 
Credibility (MCC) tree using the Bayesian Markov Chain Monte 
Carlo approach was generated using the temporal information of 
the sequence data to estimate the evolution of H5N1 viruses in 

FIGURE 1

Map locating the site selected for investigating AIV risk analysis among duck farms in Bangladesh (2019–2021). Green triangles represent backyard 
duck farms, brown triangles represent commercial duck farms, and red triangles represent nomadic duck farms chosen for sampling in this study. Bird 
symbols denote districts that have migratory bird staging areas. The intensity of the color gradient shows the density of ducks in a district.
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Bangladesh (BEAST 1.10.4) (56). The uncorrelated lognormal 
clock model with the Bayesian Skyline tree prior was used with 
10 million generations (57). The gamma-distributed rate 
variation among sites with four rate categories (HKYþG) (58) was 
used. The sampling frequency was 1,000. We visualized the MCC 
trees in FigTree v1.4.4.3 To identify the phylogenetic relationships 
of the seven H5N1 viruses sequenced in this study, the maximum 
likelihood method was used. For each gene segment of HA and 
NA, we used BLAST best matches to select the relevant sequences. 
TIM + F + G4 model for HA segments and K3Pu + F + G4 for NA 
segments was chosen by minimum BIC values using IQ-Tree 
(59). For each tree, we  used 1,000 bootstrap replicates for 
generating the trees. The maximum likelihood tree was also 
visualized using Figtree v1.4.4.

3  http://tree.bio.ed.ac.uk/software/figtree/

3. Results

3.1. Prevalence of AIV, H5, H9, and  
A/Untyped in ducks and farming types

AIV prevalence for the overall sampled duck was 24.9% (130/522) 
(95% CI: 21.3–28.9) (Figure  2). Across the farming system, AIV 
prevalence was highest in the nomadic duck (76/191) (39.8%; 95% CI: 
32.9–47.1) followed by commercial (15/61) (24.6%; 95% CI: 14.5–
37.3) and backyard duck (39/270) (14.4%; 95% CI: 10.5–19.2). The H5 
prevalence was prominent in nomadic ducks (37/191) (19.4%; 95% 
CI: 14.0–25.7). There was no H9 subtype found in commercial and 
nomadic ducks but in two backyard ducks (1.6, 95% CI: 0–8.8) 
(Figure 2). None of the sample was positive for H7.

On the other hand, AIV prevalence for the overall duck farm was 
40.4% (69/171) (95% CI: 33.0–48.1%), backyard farm was 29.1% 
(37/127) (95% CI: 21.4–37.9), the commercial farm was 63.6% (7/11) 
(95% CI: 30.8–89.1), and the nomadic farm was 75.8% (25/33) (95% 
CI: 57.7–88.9) (Figure 3). The H5 subtype was higher (14/33) (42.4%; 

FIGURE 2

Bangladesh duck level InfluA (M gene), H5, H9, and A/Untyped prevalence with 95% confidence interval during 2019–2021.

FIGURE 3

Duck farm level InfluA (M gene), H5, H9, and A/Untyed prevalence with 95% confidence interval in Bangladesh (2019–2021).
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TABLE 1  Cross table with chi-square analysis between AIV and bird-level factors of duck Bangladesh isolates (2019–2021).

A positive (%) 95% CI Value of p H5 positive (%) 95% CI Value of p

Farming system

Backyard 39 (14.4) 10.5–19.2 <0.01 19 (7.0) 4.3–10.8 <0.01

Commercial 15 (24.6) 14.5–37.3 1 (1.6) 0–8.8

Nomadic 76 (39.8) 32.8–47.1 37 (19.4) 14.0–25.7

Age

Adult 50 (16.1) 12.2–20.6 0.01 22 (7.1) 4.5–10.5 0.01

Juvenile 80 (37.9) 31.3–44.8 35 (16.6) 11.83–22.31

Sex

Female 115 (24.7) 20.8–28.9 0.86 52 (11.2) 8.5–14.4 0.78

Male 15 (26.8) 15.8–40.3 5 (8.9) 3.0–19.6

Health condition

Healthy 100 (20.6) 17.1–24.5 <0.01 28 (5.8) 3.9–8.2 <0.01

Sick 30 (83.3) 67.2–93.6 29 (80.6) 64.0–91.8

Value of p < 0.05; statistically significant.

95% CI: 25.5–60.8) in the nomadic farming system. In backyard 
farming, the prevalence of H5 and A/Untyped subtypes on farms were 
similar (18/127) (14.2%; 95% CI: 8.6–21.5) (Figure 3).

3.2. Association of AIV and its subtypes 
with migratory waterfowl interface

We found evidence of an association between AIV subtypes and 
migratory waterfowl present in that area. A/H5 and A/Untyped were 
significantly associated with the presence of migratory waterfowl 
(Figure 4).

3.3. Risk factor for the circulation of AIV in 
ducks

We had four variables to check for association with AIV and H5. 
The farming system, age, and health condition were significantly 

associated with AIV and H5. Among the farming system, the 
nomadic system had a higher prevalence for AIV (39.8%; 95% CI: 
32.8–47.1%) and H5 (19.4%; 95% CI: 32.8–47.1), whereas backyard 
and commercial were less positive. Juvenile age group birds were 
significantly more positive than adults, and sick birds were the most 
affected by AIV (83.3%; 95% CI: 67.2–93.7) and H5 (80.6%; 95% CI: 
64.0–91.8) (Table 1). The sick ducks developed neurological signs 
including uncoordinated gait circling and torticollis at the terminal 
stage, digestive symptoms (whitish feces, fecal attached to the 
plumage and cloaca) and respiratory distress, dilated pupils and 
followed by death.

In the multivariable logistic regression model, we found three 
variables as significant risk factors for AIV and one risk factor for A/
H5. The nomadic farming system had 2.39 times (95% CI: 1.45–3.93) 
higher odds of affecting AIV than backyard farming (p = 0.01). 
Compared to adults, juvenile ducks had 2.22 times (95% CI: 1.37–
3.61) odds of having AIV (p = 0.01). The AIV detection in sick ducks 
(the ducks displayed dilated pupils and white feces remained on the 
plumage surrounding the cloaca and neurologic symptoms include an 

FIGURE 4

Prevalence of InfluA and its subtypes with migratory waterfowl contact in Bangladesh during 2019–2021.
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uncoordinated gait, tremors, and torticollis) was 11.59 times (95% CI: 
4.82–32.44) more likely (p < 0.01) than healthy birds (Table  2). 
We found health conditions to be a significant risk factor for H5. The 
odds of H5 detection in sick birds were 46.5 times (95% CI: 18.7–
130.3) more likely than healthy ones (p < 0.01) (Table 2).

3.4. Bayesian phylogenetic analysis of the 
evolution of H5N1 clades in Bangladeshi 
ducks

The Bayesian phylogenetic tree (Figure 5) indicates that clade 
2.3.2.1a has been circulating in ducks in Bangladesh since 2011. In 
2015, the novel reassortant of the clade 2.3.2.1a H5N1 virus was 
discovered in ducks (Figure 5). The majority of H5N1 viruses detected 
in waterfowl are novel reassortant of clade 2.3.2.1a. Seven H5N1 
sequences were identified as belonging to the emerging panzootic 
clade 2.3.4.4b (Figure 5). Sequences from this emerging clade clustered 
with white-tailed eagles from Japan (Hokkaido), geese from China 
(Hunan), and chickens and ducks from Africa (Nigeria and Benin). 
These sequences share a similarity of between 98.65 and 98.97% with 
H5N1 viruses of clade 2.3.4.4b from Japan and a similarity of 99.30% 
with viruses from China. This new clade may have been introduced to 
Bangladesh by the end of 2020 (Figure  5). Figure  6 shows clade 
2.3.2.1a has been silently evolving among ducks, and based on 
posterior probability >90%, and that the clade has formed at least nine 
subgroups among ducks in Bangladesh. Currently, only subclade R9 
of clade 2.3.2.1a is circulating in ducks in Bangladesh.

3.5. Maximum likelihood phylogenetic 
analysis of HA and NA sequences of H5N1 
viruses isolated in ducks in Bangladesh

Figures 7, 8 present the maximum likelihood phylogenetic trees 
of HA and NA gene segments of H5N1 viruses sequenced in this 
study. Five H5N1 viruses were detected in 2021 and the two viruses in 
2019 belonged to the newly reassorted clade 2.3.2.1a. However, they 
clustered in different groups within this clade. The two virus sequences 

TABLE 2  Risk factors of AIV and A/H5 circulation in individual ducks from the different production systems in Bangladesh (2019–2021).

A (M gene) A/H5

AOR (95% CI) Value of p AOR (95% CI) Value of p

Farming system

Backyard Reference Reference

Commercial 1.3 (0.6–2.7) 0.51 0.2 (0–1.1) 0.14

Nomadic 2.4 (1.5–3.9) <0.01 1.3 (0.6–2.7) 0.56

Age

Adult Reference Reference

Juvenile 2.2 (1.4–3.6) <0.01 1.7 (0.8–3.5) 0.18

Health condition

Apparently healthy Reference Reference

Sick 11.6 (4.8–32.4) <0.01 46.5 (18.7–130.3) <0.01

Value of p < 0.05; statistically significant.

FIGURE 5

Bayesian phylogenetic tree of H5 HA viruses of diverse clades in 
Duck in Bangladesh. Taxon labels with blue color indicate the viruses 
found in ducks under this study, and taxon labels with green color 
indicate those reassorted H5N1 viruses detected as clade 2.3.4.4b.
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FIGURE 6

Bayesian phylogenetic tree of H5 HA viruses of diverse clades along with subgroups based on >90% posterior probability in Duck in Bangladesh. Taxon 
labels with red color indicate the viruses found in ducks under this study, and taxon labels with green color indicate those reassorted H5N1 viruses 
detected as clade 2.3.4.4b. Each colored box indicates a subgroup.

from 2019 have clustered together. The maximum likelihood tree of 
HA also shows that the viruses we detected in duck hosts are similar 
to those found in chickens. BAIV-570 and BAIV-404 have clustered 
within a group with virus sequences obtained from chicken (Bootstrap 
value>95%).

4. Discussion

4.1. Prevalence and risk factors of AIV and 
subtypes in the different duck production 
systems

The high prevalence of AIV with the H5N1 subtype in nomadic 
ducks compared to backyard and commercial ducks was consistent 
with the other study conducted by Khatun et  al. (60), reported a 
higher prevalence of AIV in ducks reared in the hoar (wetland) region 
where the nomadic system is prevalent. This is because of the higher 
density of migratory birds in the hoar area, with a possible most 
increased interaction between the native duck and migratory bird 
species (61). Previous studies in Bangladesh detected AIV with 
H5N1 in both domestic and migratory ducks in wetland areas where 
domestic ducks and migratory birds shared the same feeding habitats 
in wetlands (62, 63).

Furthermore, the farm-level prevalence of AIV was also higher in 
nomadic ducks, supported by Hasan et al. (61) because the grazing 
land ecosystem is a critical factor for the circulation and spread of 
AIV. Concerning risk factors, there is a significant association among 
different farming systems, which is also supported by Henning et al. 
(64) reported that the birds that used to scavenge are most frequently 
affected. Juvenile ducks were mostly affected by both AIV M-gene and 
H5 subtype, which was supported by Strurm-Ramirez et al. (65). Our 
study revealed that the farming system significantly impacts the 
presence of AIV in ducks. The odds of AIV have been observed to 
be greater in ducks from nomadic farms than in backyard ducks. As 
low-lying areas with vast bodies of water are a favorable environment 
for raising nomadic ducks, and they have more interaction with 
migrating waterfowl than a backyard or commercial ducks, previous 
studies have shown that nomadic ducks are more susceptible to the 
AIV (66, 67). Our study also showed that juvenile ducks are more 
likely to be infected by AIV than adult ducks. A study in Canada also 
reported a higher detection rate of AIV in juvenile ducks than in adults 
(68). Adult birds presumably have acquired immunity or an enhanced 
immune response, but juvenile birds are immunologically more naive, 
rendering them more vulnerable to viral infection than adult birds (69).

Our study also showed that detecting AIV and A/H5 is higher in 
sick ducks than in apparently healthy ducks. Previous studies in 
Bangladesh and other countries have reported similar results for ducks 
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and poultry birds (2, 70–73). Even though ducks can secrete large 
quantities of a deadly virus without manifesting any outward signs of 
disease, H5N1 can cause the birds to have breathing difficulties such 

as gaping (mouth breathing), nasal snicking (coughing sound), 
sneezing, gurgling, or rattling. Since AIV causes bird sickness, the 
detection rate of AIV and H5 is higher in sick ducks (74–76).

FIGURE 7

Maximum likelihood tree of HA sequences of H5N1 viruses in Bangladesh. Taxon labels with blue color indicate the viruses found in ducks under this 
study, and taxon labels with red color indicate those reassorted H5N1 viruses detected as clade 2.3.4.4b.
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FIGURE 8

Maximum likelihood tree of 6 NA sequences of H5N1 viruses. Taxon labels with blue color indicate the viruses found in ducks under this study, and 
taxon labels with red color indicate those reassorted H5N1 viruses detected as HA clade 2.3.4.4b.

4.2. Phylodynamic of multiple clades of 
H5N1 viruses in duck farms

According to our study, multiple H5N1 virus clades are 
spreading in Bangladesh. Our study shows that two clades of H5N1 
viruses are now circulating among ducks in Bangladesh. These two 
clades, 2.3.2.1a and 2.3.4.4b, of H5N1 viruses in ducks, have also 
been detected in nearby countries such as India and China (77, 78). 
Our study shows that clade 2.3.2.1a has been detected in ducks 
since 2011 and has become endemic in ducks in Bangladesh. 
Similar to our findings, other studies reported that this clade 
reassorted, resulting in a new subclade in 2015 (79). According to 
Barman et  al. (32), this novel reassortant clade 2.3.2.1a virus 
emerged in Bangladesh via reassortment with LPAI viruses 

transmitted by migrating birds. Despite vaccination of commercial 
chicken farms in Bangladesh, Clade 2.3.2.1a HPAI has caused 
ongoing outbreaks in Bangladesh since 2011. Our study also shows 
that viruses of clade 2.3.2.1a have created at least nine subgroups 
within ducks based on >90% posterior probability. This suggests 
that the virus of this clade is silently evolving, and ducks may play 
an important role in the emergence of new clades in Bangladesh. 
Prior studies have also shown that clade 2.3.2.1a HPAIs are 
circulating in LBMs and domestic ducks in Bangladesh, where they 
play an important role in the maintenance and development of new 
reassortant viruses (25, 80).

The findings of the phylogenetic study also revealed that clade 
2.3.4.4b was introduced to Bangladesh by the end of 2020. Cui 
et al. (33) also reported that one H5N1 virus from Bangladesh 

34

https://doi.org/10.3389/fpubh.2023.1168613
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Islam et al.� 10.3389/fpubh.2023.1168613

Frontiers in Public Health 11 frontiersin.org

clustered with Chinese viruses within the 2.3.4.4b clade. Since its 
emergence in the Netherlands in October 2020, H5N1 viruses with 
the clade 2.3.4.4b HA gene have spread to several countries in 
Europe, Africa, Asia, and North and South America (81, 82). On 
the other hand, in China, Between September 2021 and March 
2022, H5N1 viruses bearing the HA clade 2.3.4.4b were discovered 
in wild birds and domestic poultry (33). Our study shows that 
seven viruses clustering within the 2.3.4.4b clade have similarities 
with viruses from Japan and China. So, it might be possible that 
migratory birds of the Central Asian flyway may influence the 
transmission of this novel clade in Bangladesh. Though the H5N1 
viruses with clade 2.3.4.4b have only been detected in Ducks in 
Bangladesh, this clade has been detected in wild birds and 
domestic Anseriformes and Galliformes in other countries (83–
85). On the other hand, this clade has also caused outbreaks in 
minks in Spain (86). More than 50 thousand mink were killed and 
their carcasses destroyed, and it was assumed that wild birds may 
have played a major role in the transmission of the virus (34). This 
virus has also been detected in harbor porpoises in Sweden (35) 
and dolphins, sea lions, sanderlings, pelicans, and cormorants in 
Peru (36), along with 8 human cases since 2022 (37). It is extremely 
alarming because the H5N1 virus is known to spread poorly 
among mammals; humans almost exclusively contract it from 
infected birds. However, it has since been established that the 
2.3.4.4b outbreak in minks spread throughout a tightly-knit 
mammalian population (87). Given that the virus has already been 
introduced to Bangladesh, it is likely that this clade may also 
spread to chickens and other poultry through ducks and wild 
birds. As a result, there is a danger of transmission among humans 
as well as the possibility of a pandemic. We recommend carrying 
out a thorough risk analysis so that decision-makers may fully 
comprehend the risks connected to AIV and H5N1 outbreaks, the 
possible effects of the epidemic, and the steps that can be done to 
prevent or mitigate the disease’s transmission.

5. Conclusion

This study demonstrates that H5N1 circulating in all three duck 
farming production systems and nomadic farms poses a higher risk 
of AIV infection than those from residential or commercial farms. 
Age and health of ducks influence the risk of AIV and H5N1 
infection in populations of ducks. Clades 2.3.2.1a and 2.3.4.4b of 
H5N1 are circulating in Bangladeshi waterfowl. The duck farmer 
should receive appropriate training to enhance farm biosecurity 
practices in order to prevent the spread of AIV. Enhanced AIV 
surveillance is necessary for both domestic and migratory 
waterfowl, with a focus on Anseriformes production systems, to 
analyze the genetic diversity of H5N1 viruses and to determine the 
evolution of the virus at high-risk interfaces between domestic 
ducks and migratory birds.
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The potential for influenza viruses to cause public health emergencies is great. 
The World Health Organisation (WHO) in 2005 concluded that the world 
was unprepared to respond to an influenza pandemic. Available surveillance 
guidelines for pandemic influenza lack the specificity that would enable 
many countries to establish operational surveillance plans. A well-designed 
epidemiological and virological surveillance is required to strengthen a country’s 
capacity for seasonal, novel, and pandemic influenza detection and prevention. 
Here, we  describe the protocol to establish a novel mechanism for influenza 
and SARS-CoV-2 surveillance in the four identified districts of Tamil Nadu, India. 
This project will be carried out as an implementation research. Each district will 
identify one medical college and two primary health centres (PHCs) as sentinel 
sites for collecting severe acute respiratory infections (SARI) and influenza like 
illness (ILI) related information, respectively. For virological testing, 15 ILI and 10 
SARI cases will be  sampled and tested for influenza A, influenza B, and SARS-
CoV-2 every week. Situation analysis using the WHO situation analysis tool will 
be  done to identify the gaps and needs in the existing surveillance systems. 
Training for staff involved in disease surveillance will be  given periodically. To 
enhance the reporting of ILI/SARI for sentinel surveillance, trained project staff 
will collect information from all ILI/SARI patients attending the sentinel sites 
using pre-tested tools. Using time, place, and person analysis, alerts for abnormal 
increases in cases will be generated and communicated to health authorities to 
initiate response activities. Advanced epidemiological analysis will be  used to 
model influenza trends over time. Integrating virological and epidemiological 
surveillance data with advanced analysis and timely communication can enhance 
local preparedness for public health emergencies. Good quality surveillance data 
will facilitate an understanding outbreak severity and disease seasonality. Real-
time data will help provide early warning signals for prevention and control of 
influenza and COVID-19 outbreaks. The implementation strategies found to 
be  effective in this project can be  scaled up to other parts of the country for 
replication and integration.
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situation analysis

OPEN ACCESS

EDITED BY

Debdutta Bhattacharya,  
Regional Medical Research Center (ICMR), India

REVIEWED BY

Martyn Regan,  
The University of Manchester, United Kingdom  
Tanveer Rehman,  
Regional Medical Research Center (ICMR), India

*CORRESPONDENCE

Rizwan S. Abdulkader  
 sarizwan1986@gmail.com

RECEIVED 08 June 2023
ACCEPTED 04 August 2023
PUBLISHED 17 August 2023

CITATION

Abdulkader RS, Potdar V, Mohd G, Chadwick J, 
Raju MK, Devika S, Bharadwaj SD, Aggarwal N, 
Vijay N, Sugumari C, Sundararajan T, Vasuki V, 
Bharathi Santhose N, Mohammed Razik CA, 
Madhavan V, Krupa NC, Prabakaran N, 
Murhekar MV and Gupta N (2023) Protocol for 
establishing a model for integrated influenza 
surveillance in Tamil Nadu, India.
Front. Public Health 11:1236690.
doi: 10.3389/fpubh.2023.1236690

COPYRIGHT

© 2023 Abdulkader, Potdar, Mohd, Chadwick, 
Raju, Devika, Bharadwaj, Aggarwal, Vijay, 
Sugumari, Sundararajan, Vasuki, Bharathi 
Santhose, Mohammed Razik, Madhavan, Krupa, 
Prabakaran, Murhekar and Gupta. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE  Study Protocol
PUBLISHED  17 August 2023
DOI  10.3389/fpubh.2023.1236690

38

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1236690﻿&domain=pdf&date_stamp=2023-08-17
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1236690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1236690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1236690/full
mailto:sarizwan1986@gmail.com
https://doi.org/10.3389/fpubh.2023.1236690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1236690


Abdulkader et al.� 10.3389/fpubh.2023.1236690

Frontiers in Public Health 02 frontiersin.org

Introduction

Acute respiratory infections (ARI) are the most common 
infectious diseases worldwide and cause significant morbidity and 
mortality (1). Almost 4 million people die from ARIs every year, of 
which 98% are due to lower respiratory tract infections (LRI) (2). 
Influenza viruses cause a significant proportion of these infections 
(3–5). The economic loss due to respiratory infections caused by 
influenza viruses was estimated to be between US$71 and US$167 
billion annually (6). The potential of influenza viruses to cause public 
health emergencies in society, evidenced by several incidents in the 
past, such as the Spanish flu of 1918, the Asian influenza of 1957, the 
Hong Kong influenza of 1968 and the H1N1 pandemic of 2009, 
cannot be overstated (7–10).

International committees convened by the World Health 
Organization (WHO) had found that the world was unprepared to 
respond to an influenza pandemic. The International Health 
Regulations 2005 require that each member state develop and 
maintain capabilities to detect, assess, and report disease events 
nationally and internationally to the WHO within 48 h of confirmation 
(11). However, reviews of national pandemic planning indicate that 
surveillance systems are often inadequate to support current 
preparedness strategies (12–16), especially in low-and middle-income 
countries (LMIC) like India and the available surveillance guidelines 
for pandemic influenza lack the specificity that would enable many 
countries to establish operational surveillance plans (17, 18). Also, the 
WHO has proposed a global influenza strategy 2019–2030, which 
focuses on improving global research and innovation to fill the gaps 
in our current knowledge about the transmission and host response 
of the influenza viruses, strengthen the influenza surveillance and 
pandemic preparedness and to expand the seasonal influenza 
prevention and control policies (19).

A routine sentinel surveillance system for influenza will gather 
data that can aid healthcare policy makers and providers in making 
decisions regarding program management and patient care (18). In 
India, influenza-like illness (ILI) and severe acute respiratory infection 
(SARI) surveillance are only partially implemented as part of the 
National Integrated Disease Surveillance Programme (IDSP). There 
are several pitfalls in the existing surveillance system. Lack of 
information sharing between surveillance reporting units and 
feedback from higher centres, combined with poor reporting quality 
and lack of epidemiological information crucial to identify and 
responding to outbreaks, result in poor disease surveillance and 
pandemic preparedness. Moreover, information on the current 
knowledge, practice and problems associated with the existing 
influenza surveillance system is scarce and it should be assessed to 
address problems and formulate solutions in order to get quality data 
for enhanced public health response (20, 21).

Recently, a strong need to include more epidemiological 
information to complement the virological data (18) for better 
understanding the influenza epidemiology and it severity has been 
emphasized globally (22–24). In the long run, establishment of a 
model for influenza and related infections surveillance will guide 
national approaches to optimal vaccination policies and appropriate 
allocation of healthcare resources (25). Previous studies have 
highlighted the need for a strong surveillance system to enhance and 
strengthen a country’s capacity to detect and prevent seasonal, novel, 
and pandemic influenza (17).

There are several variations of influenza surveillance systems 
across the developed world. Most of these nations follow the WHO 
guidance for influenza surveillance (virological surveillance, primary 
care surveillance and hospital surveillance) (18). For example, the 
European influenza surveillance network (EISN) by European Centre 
for Disease Prevention and Control (ECDC) is responsible for the 
combined epidemiological and virological surveillance for influenza 
in European Union countries. Moreover these systems are 
complemented by initiatives like Influenzanet and EuroMOMO 
project for community surveillance and mortality surveillance, 
respectively (26, 27). The U.S. WHO Collaborating Laboratories 
System and National Respiratory and Enteric Virus Surveillance 
System (NREVSS) are responsible for the virological surveillance in 
US whereas the outpatient illness and hospital surveillance are 
monitored by the ILINet and FluSurv-NET, respectively (28). In 
developing countries, on the other hand, there are very few examples 
of such organized systems of surveillance for influenza (29–31).

Globally, the number of countries conducting routine influenza 
surveillance has increased over the last decade (32). Lessons from 
existing surveillance systems suggest that countries need to set up a 
robust surveillance system with components in both hospital and 
community settings and include epidemiologic and virologic aspects 
of data collection. Another important recommendation is to use data 
for action, especially as a tool for early detection and response to 
outbreaks (27, 28, 33, 34). However, it is also true that setting up 
developed countries’ style systems can be very resource intensive and 
impractical for low-and middle-income countries like India. For 
example, countries like China and Malaysia have tried to set up 
surveillance systems but lack some components of influenza 
surveillance, such as sentinel surveillance in primary care, 
non-medically attended surveillance, mortality surveillance and 
integration with the routine health system (31).

Keeping these lessons in mind, we have incorporated some lessons 
from the ongoing global surveillance programs. In our proposed 
surveillance, we  will be  incorporating joint virologic and 
epidemiologic surveillance at primary care and sentinel hospital levels. 
This will also be integrated into the existing routine health systems to 
ensure sustainability. In order to ensure this integration, staff of the 
routine health care system will be regularly trained to carry out the 
surveillance activities and perform advanced data analysis for 
informing policy and action. Another important addition to the 
project is the mortality and disability surveillance which will 
be  performed for both ILI and SARI cases. Since routine health 
systems are already burdened with several other priorities, we will 
integrate surveillance for influenza with other major pathogens such 
as SARS-CoV-2. Finally, we  will be  selecting sentinel sites which 
represent different climatic and geographical conditions.

Tamil Nadu is the 11th largest state situated in the southern part 
of India. The State is divided into 32 districts and estimated to have a 
population of over 7.21 crores which accounts for approximately 
5.94% of India’s total population (35). According to National Centre 
for Disease Control—India, Tamil Nadu state reported 2,827 cases and 
25 deaths associated with influenza A (H1N1) compared to 13,202 
cases and 410 deaths in the entire country during 2022 (36). However, 
these figures are likely to be gross underestimates of the actual burden 
since there is no on-going robust surveillance system for influenza in 
India. In order to address these circumstances, a well-designed 
epidemiological and virological surveillance is required to understand 
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local influenza epidemiology, detect and respond to outbreaks, 
establish disease burden, detect mutants and identify emerging new 
strains. In this paper, we present a study protocol for establishing a 
novel integrated influenza surveillance model in Tamil Nadu, India.

Study objectives

This project aims to develop a model of strengthened ILI/SARI 
surveillance for the country through the following objectives 
(Figure 1).

Objective 1: to establish influenza and SARS-CoV-2 surveillance 
in four identified districts of Tamil Nadu, India.

Objective 2: to strengthen the hospital-based epidemiological ILI/
SARI surveillance in the identified districts of Tamil Nadu with the 
following sub-objectives

	•	 Identify the gaps and strengthen the existing ILI/
SARI surveillance.

	•	 Develop the capacity of the surveillance system for undertaking 
advanced epidemiological analysis of surveillance data.

Materials and methods

This project will be carried out as implementation research in four 
selected districts of Tamil Nadu (Figure  2). One medical college 
hospital and two primary health care centres (PHCs) will be selected 
in each district to establish prospective sentinel surveillance, from 
which the SARI and ILI-related information will be  collected, 
respectively. We chose primary care centres as sentinel sites for mild 
to moderate infections which will be captured under the influenza-like 
illness (ILI) definition and medical colleges as sentinel sites for severe 

infections which will fall under the severe acute respiratory infections 
(SARI) case definition. The number of districts and health care 
facilities selected for this study was based on available financial 
resources and the need for optimal geographical representation. The 
intended time period for completing this project will be 3 years.

Methods for objective 1

Study design
We will adopt a prospective sentinel surveillance approach.

Study setting
We will select one medical college hospital and two PHCs in each 

district to collect information related to SARI and ILI, respectively.

Study population
We will include all ILI/SARI patients of all age groups attending 

the selected healthcare facilities.

Study definitions
A case with an acute respiratory infection accompanied by a fever 

of ≥38°C and cough with onset within the last ten days will 
be  considered as ILI. A case with an acute respiratory infection 
accompanied by a fever of ≥38°C, and cough with onset within the 
last ten days requiring hospitalization will be considered SARI.

Samples size
All patients attending the identified healthcare facilities will 

be  included for epidemiological surveillance. The number of 
nasopharyngeal samples to be tested was determined based on several 
factors, including the available testing budget, the capacity of the 
laboratory, manpower available and the population size under 
surveillance. We have decided to collect 10 SARI and 15 ILI samples 

FIGURE 1

Schematic representation of objectives and activities of the model for integrated influenza surveillance in Tamil Nadu, India (MIST) project.
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per site per week. This will lead to a collection of 1,300 samples per 
year for three years (total of 5,200 samples). This sample size was 
considered appropriate to determine the current strains of viruses 
circulating in the community in a given week. The total budget 
available for testing samples will be  equally allocated to the four 
project sites. The primary purpose of virological testing was to inform 
the public health decision makers of the nature of the outbreak, if any, 
and the emergence of any novel or unknown strains and not as a part 
of clinical diagnostic requirement.

Study tool
A pre-tested and structured case reporting form (CRF) will 

be utilized to collect information from ILI and SARI cases. The CRF 
will collect personal characteristics, comorbidity status, current 
illness, factors contributing to the illness, clinical features, treatment 
given, and outcomes (Supplementary material).

Laboratory procedures for virological testing
Clinical specimens, including nasal, throat, and combined nasal/

throat swabs, will be  collected and preserved in 2–3 mL of viral 
transport medium (VTM), stored at 4°C, and transported to the 
laboratory within 4 h. Real-time polymerase chain reaction (RT-PCR) 

method will be used for molecular analysis of the samples (SARS-
CoV-2 and influenza) using a multiplex assay kit containing three 
primer/probe sets (influenza A, influenza B, SARS-CoV-2) targeting 
the RNA of influenza A, influenza B, and SARS-CoV-2. The primers/
probes will detect influenza A viruses from a conserved region of the 
matrix (M1) gene and influenza B virus from the non-structural gene 
(NS2). The influenza A positive samples will further be subtyped for 
A (H3N2) and A (H1N1)pdm09, and influenza B positive samples for 
Yamagata and Victoria (B/Y, B/V). Positive clinical specimens will 
be  shipped to the referral lab earmarked by the sentinel lab for 
isolation and genetic characterization for SARS-CoV-2 and influenza 
novel variants. All laboratory procedures will be performed following 
standard operating procedures (Figure 3).

Data collection and analysis plan
Trained project staff will collect samples for testing and 

epidemiological information. Separate CRFs (Annexure 1) will 
be used for ILI and SARI-related data collection which includes 
demographic, clinical, hospitalization, management & outcome 
details. The collected data will be  entered into the REDCap 
platform and analysed weekly for quality and completeness. 
District and pathogen-wise data analyses will be  carried out 

FIGURE 2

Location of the districts included in the model for integrated influenza surveillance in Tamil Nadu, India (MIST) project.
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weekly and reported to the appropriate authorities. A real-time 
dashboard will be developed, maintained, and shared with the 
authorities for displaying the total number of SARI/ILI cases 
enrolled and trends in test positivity for influenza viruses A & B 
and SARS-CoV-2 by week, age group and district. Analysed data 
will be expressed as frequency/proportion in the case of categorical 
variables and as the mean and standard deviation in the case of 
continuous variables.

Quality assurance
The project site laboratories will undergo periodic inspections to 

ensure testing quality. An external quality assurance system will 
be  established through the laboratory at the National Institute of 
Virology, Pune. A periodic check for the quality of the data entered 
will be  carried out, and daily and weekly review meetings will 
be conducted for the project staff to ensure proper data collection 
and reporting.

Methods for objective 2

Objective 2.1. Situation analysis of surveillance 
systems

The surveillance for ILI and SARI is a critical component of the 
public health response to these diseases. However, implementing ILI/
SARI surveillance has many challenges, such as inadequate resources, 
lack of standardization, and insufficient manpower and training. To 
identify these gaps and challenges, we will conduct a situation analysis 
of the ILI/SARI surveillance system in the study districts.

Study design
We will adopt a mixed-methods approach.

Study setting
We will conduct the study in the selected health facilities of the 

study districts.

Study population
All personnel involved in ILI/SARI surveillance in the selected 

facilities will be included in the study.

Sampling and sample size
One medical college each from the government and private 

sectors, one district hospital, two sub-district hospitals, a sample of 
PHCs, two private hospitals and one microbiology laboratory (one 
each from the government and private sectors) will be selected by 
convenience. In addition to these, we will interview the personnel of 
the district and state surveillance units.

Study tools
We will use interview guides for carrying out in-depth interviews 

with study participants and observation check-lists for health facilities 
based on the components of the WHO situation analysis tool (37) 
(Supplementary material).

Data collection and analysis plan
We will describe the current status of the surveillance system in 

terms of the availability of human resources and facilities, data 
collection process, analysis of samples, reporting methods and the 
training requirements from the facility checklist and in-depth 
interviews. We will interview the nodal person involved in the ILI/
SARI surveillance at different levels, collect information regarding 
their views and challenges on ILI/SARI surveillance, and obtain their 
recommendations to improve it. Quantitative variables will 
be  expressed in mean and SD and frequencies and percentages. 
Qualitative data will be  transcribed into English, and a thematic 
analysis will be carried out.

Strategies for strengthening the surveillance 
system

Based on the situation analysis, we will identify the existing gaps 
in the surveillance system. We  will advocate for strengthening 
identified laboratories by optimizing logistics supply, training testing 

FIGURE 3

Schematic representation of laboratory procedures in the model for integrated influenza surveillance in Tamil Nadu, India (MIST) project.
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staff regularly, and implementing an enhanced data management 
system. These measures will be  implemented in the identified 
laboratories within the project districts, bolstering their 
overall capacity.

We will develop and share with the district health authorities the 
surveillance manuals, standard operating procedures (SOPs) for data 
collection, sample collection, sample transport, data collection tools, 
and data analysis format. Nodal persons will be  identified in the 
concerned departments to ensure sustained collaboration and 
undertake required initiatives whenever required. SOPs will also 
be  developed for information exchange and regular meetings of 
stakeholders to ensure sustained collaboration between the concerned 
departments. Periodic reports will be sent to district and state officials 
to coordinate response activities to ensure the effectiveness of the ILI/
SARI surveillance.

Objective 2.2. Develop the capacity of the 
surveillance system for analysis of 
surveillance data

To enhance the effectiveness of the ILI/SARI surveillance system, 
we need to develop the capacity within the system for routine analysis 
of surveillance data. To achieve this, we will train the district and state-
level staff involved in ILI/SARI surveillance for epidemiological data 
collection, collation, analysis, and reporting. We  will utilise the 
situation analysis results to develop training sessions targeting the 
knowledge gap within the disease surveillance system. These training 
sessions will be designed to address and bridge any existing gaps in 
their understanding and expertise. The training program will 
be conducted in batches of 20 members at state headquarters until all 
personnel are trained.

By providing this training, we  aim to empower the staff to 
efficiently and effectively analyse surveillance data, enabling the 
concerned authorities to make data-driven decisions and take 
proactive measures to control the spread of infectious diseases.

Ethics statement

The study protocol has been approved by the Institutional Human 
Ethics Committee (IHEC) of all the participating sites. The study 
participants will be  given details of the study objectives and data 
collection methods. Age-appropriate written informed consent will 
be obtained. Complete confidentiality and anonymity of the identifiers 
and information collected will be maintained. Personal identifiers will 
be available only in the data collection proforma and not used during 
the analysis or publication/dissemination. Biological samples such as 
nasal/nasopharyngeal swabs will be  collected and tested as per 
standard laboratory procedures. During follow-up, if any participant 
requires medical attention, they will be referred to the appropriate 
hospital for further management.

Discussion

Implementing an integrated approach for collecting virological 
and epidemiological surveillance data, combined with the 

potential of advanced analysis, could strengthen the country’s 
efforts for preparedness during public health emergencies (28, 38, 
39). Good quality historical surveillance data can be  used to 
understand better and answer critical questions such as the 
severity and seasonality of outbreaks and help compare trends 
between various regions of the country and even between different 
countries (40).

India has faced several epidemics and pandemics in the past (7). 
However, because of the lack of communication and coordination 
in surveillance, it is practically impossible to predict and prepare 
for any pandemic occurring in the future. Laboratory detection for 
the viruses is the only way to confirm the diagnosis of a particular 
respiratory viral infection, as all respiratory viral infections have 
overlapping symptoms (41). This project will use the existing Virus 
Research Diagnostic Laboratory (VRDL) network labs attached to 
the study site for the lab confirmation of influenza and SARS-
CoV-2. This will strengthen the existing surveillance and help 
administer timely antiviral treatment to patients to reduce the 
duration of symptoms and prevent transmission to others (3). Also, 
epidemiological data collection of ILI/SARI cases will help provide 
specific disease transmission and impact indicators. This 
surveillance model and its outputs will provide the health system 
with valuable tools for conducting advanced analysis of surveillance 
data and detect warning signals of potential outbreaks in a timely 
manner. These capabilities greatly enhance the development of 
prevention and control policies, including the implementation of 
effective vaccination strategies and specific non-pharmacological 
interventions such as mask mandates, quarantine and isolation 
measures. By leveraging the insights derived from this model, the 
health system will be empowered to make more informed decisions 
and optimize their approaches for mitigating the spread of influenza 
and other respiratory viruses.

The strategies adopted in this project have several strengths. First, 
we base our interventions on the situation analysis of the existing ILI/
SARI surveillance system to identify the needs and gaps. Based on 
these findings we will develop “plug-ins” in the existing surveillance 
system to further strengthen it. Second, real-time data analysis and 
presenting it in the form of an easily accessible dashboard will help 
provide early warning signals and guide strategies for prevention and 
control. Lastly, we will train the staff involved in disease surveillance 
with standard definitions for ILI/SARI for correctly identifying and 
reporting ILI/SARI cases from the community as part of situation 
analysis and training.

There are a few limitations in this implementation project. 
We intend to test only for influenza A, influenza B and SARS-CoV-2. 
Other dominant respiratory viruses like respiratory syncytial virus 
(RSV) which may cause severe disease among high-risk groups 
(HRGs) are not included in the testing algorithm (42, 43). Since the 
surveillance method used here is of the sentinel type, we will miss 
cases occurring outside the catchment areas of the sentinel sites (44).

Ethics statement

The studies involving humans were approved by Institutional 
Human Ethics Committee, ICMR—National Institute of 
Epidemiology. The studies were conducted in accordance with the 
local legislation and institutional requirements. Written informed 
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Coverage and impact of influenza 
vaccination among children in 
Minhang District, China, 2013–
2020
Zhaowen Zhang 1†, Liming Shi 2,3†, Nian Liu 1, Biyun Jia 1, 
Kewen Mei 1, Liping Zhang 1, XuanZhao Zhang 1, Yihan Lu 2,3, 
Jia Lu 1* and Ye Yao 2,3*
1 Minhang Center for Disease Control and Prevention, Shanghai, China, 2 School of Public Health, Fudan 
University, Shanghai, China, 3 Key Laboratory of Public Health Safety of Ministry of Education, Fudan 
University, Shanghai, China

Background: Young children have a great disease burden and are particularly 
vulnerable to influenza. This study aimed to assess the direct effect of influenza 
vaccination among children and to evaluate the indirect benefit of immunizing 
children.

Methods: The influenza vaccination records for all children born during 2013–
2019 in Minhang District and surveillance data for reported influenza cases were 
obtained from the Minhang CDC. 17,905 children were recorded in the vaccination 
system and included in this study. Descriptive epidemiology methods were used 
for data analysis, including an ecological approach to estimate the number of 
influenza cases averted by vaccination and linear regression to estimate the 
reduction in influenza cases in the general population per thousand additional 
childhood vaccination doses.

Results: During the study period, the annual vaccination coverage rate ranged 
from 10.40% in 2013–2014 to 27.62% in 2015–2016. The estimated number 
of influenza cases averted by vaccination ranged from a low of 0.28 (range: 
0.23–0.34) during 2013–2014 (PF: 6.15%, range: 5.11–7.38%) to a high of 15.34 
(range: 12.38–18.51) during 2017–2018 (PF: 16.54%, range: 13.79–19.30%). When 
increasing vaccination coverage rate by 10% in each town/street, a ratio of 7.27–
10.69% cases could be  further averted on the basis of observed cases. In four 
selected periods, the number of influenza cases in the general population was 
most significantly correlated with the cumulative childhood vaccination doses in 
the prior 2–5  months, and the reduction in influenza cases ranged from 0.73 to 
3.18 cases per thousand additional childhood vaccination doses.

Conclusion: Influenza vaccination among children is estimated to have direct 
effects in terms of averted cases and might provide an underlying indirect benefit 
to the general population. Vaccination coverage in high-coverage areas should 
be further expanded to avert more influenza cases.
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1. Introduction

Seasonal influenza is an infectious respiratory disease caused by 
influenza viruses and poses substantial morbidity and mortality 
annually (1). Young children have a great disease burden and are 
particularly vulnerable to influenza. It was estimated that 109.5 
million influenza virus infections occurred worldwide in 2018 among 
children under 5 years of age (2). The highest influenza notification 
rates in Australia were observed among children aged 0–4 years (111 
cases per 100,000 population compared with a total rate of 60 cases 
per 100,000 population) (3). The attack rate was highest among 
children aged 0–4 years (31.9%) for the 2015–2016 season in Beijing, 
China (4). Children have been identified as the main spreaders in 
influenza transmission. It was estimated that 40–48% of the 
secondary cases exposed to a child sick with influenza in the 
household are attributable to transmission from the child (5). In 
influenza B outbreaks, children aged 0–4 years had the highest 
estimated relative risk (6). Thus, relieving the disease burden among 
children will decrease the opportunity for influenza transmission 
to others.

Influenza vaccination is considered the most effective means of 
preventing influenza and can significantly reduce the risk of influenza 
and serious complications among vaccinated people (7, 8). An 
estimated 4.4 million illnesses and 58,000 hospitalizations were 
prevented due to influenza vaccination during the US 2018–2019 
influenza season (9). Vaccinating children can protect them directly 
and is presumed to interrupt influenza transmission in the general 
population, which indirectly protects susceptible contacts (10). A 
cluster randomized controlled trial revealed that immunizing children 
aged 36 months to 15 years with inactivated influenza vaccine 
produced a protective effectiveness of 61% against confirmed 
influenza illness among unimmunized residents of communities (11). 
The Chinese Center for Disease Prevention and Control (Chinese 
CDC) has recommended annual seasonal influenza vaccines to 
be administered to children aged 6–59 months (12). However, because 
influenza vaccines are not included in the National Immunization 
Program (NIP) in most areas of China, vaccination coverage among 
children is relatively low (13). Influenza vaccination coverage among 
children aged under 5 years was estimated to range from 12 to 32% in 
China during 2009–2012 (14, 15).

Different models have been used to evaluate the impact of 
influenza vaccination on averted influenza-associated events (16–22). 
Averted events were defined as the difference between observed events 
and projected events in the absence of vaccination (23). Backer et al. 
developed a stochastic transmission model to estimate an average of 
13% infections, 24% hospitalizations, and 35% deaths averted in the 
Netherlands (24). Zhang et al. used a dynamic transmission model to 
assess the impact of vaccinating school-going children in Beijing, 
China for the 2013–2016 seasons (19). Although these methods can 
take some factors into account, such as indirect effects, loss of 
immunity, and influenza activity variations between seasons, a series 
of parameters need to be  estimated, and heavy computations are 
needed. Kostova et al. originally proposed a method to estimate the 
direct effect of influenza vaccination in terms of averted events in the 
US 2005–2011 seasons (21), and this method was then used and 
developed by some other researchers (18, 22, 25, 26). This method 
estimates the averted influenza cases and prevented fraction using 
three parameters: number of observed cases, vaccination coverage, 

and vaccine effectiveness. These measures to evaluate vaccine impact 
are easy to understand and interpret.

The objective of this study was to assess the direct effects of 
influenza vaccination among children by estimating the number of 
averted cases and prevented fractions, and to estimate the indirect 
effects by quantifying the relationship between cumulative vaccination 
doses among children and influenza cases in the general population.

2. Methods

2.1. Study design and population

In this study, based on multiyear vaccination records and 
surveillance data, we  give observational evidences on direct and 
indirect effects of immunizing children. Children living in Minhang 
District, including permanent and nonpermanent residents, are 
registered on the National Immunization Program (NIP) system. The 
vaccination records of these children include demographic 
information such as age and sex and vaccination information such as 
vaccine type and vaccination time.

2.2. Data sources

2.2.1. Vaccination data
We extracted the influenza vaccination records from July 2013 to 

June 2020 from the Minhang Center for Disease Prevention and 
Control (Minhang CDC) NIP system. One record was excluded due 
to a date of birth outside of the study period and 9 records were 
removed for their inaccurate vaccination dates. Finally, a total of 
170,915 children who were born between January 2013 and December 
2019 were enrolled in this study. Depending on the time pattern, 
we defined one vaccination year as being from July 1st to June 30th 
the next year. Thus, there were 7 vaccination years in this study from 
2013–2014 to 2019–2020.

2.2.2. Surveillance data
We obtained the surveillance data of confirmed influenza cases 

during 2016/01–2020/01 from the Minhang CDC Notifiable Infectious 
Diseases Reporting Information System, with missing data from April 
to November 2018. This dataset included age, sex, residential address, 
time of influenza onset, time of diagnosis, and flu types.

2.2.3. Influenza incidence data
The monthly statistics of influenza in Shanghai during 2013–2018 

were downloaded from the China CDC’s public health science data 
center (27). Influenza incidence by age group was used to estimate the 
number of observed influenza cases among children due to a lack of 
surveillance data before 2016 and missing data in 2018.

2.2.4. Vaccination coverage
According to the China Technical Guidelines for Influenza 

Vaccines (12), children aged over 6 months can receive influenza 
vaccines. Yearly vaccination coverage (VC) was calculated using the 
vaccination data from the Minhang CDC by dividing the number of 
actually vaccinated children by the total population of children who 
met the vaccination criteria during the same period.
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2.2.5. Vaccine effectiveness
Influenza vaccine effectiveness (VE) varies widely in different 

seasons and influenza types and subtypes (28–30). Therefore, in this 
study, VE was assumed to be at a moderate level of 60%. We also 
performed a sensitivity analysis by adjusting the VE in an interval of 
+/− 10%. The results of the sensitivity analyses were presented as 
ranges of the estimated averted influenza cases to indicate uncertainties.

2.3. Averted influenza cases estimation 
method

To assess the impact of influenza vaccination on children, 
we estimated the number of averted influenza cases in two steps. First, 
the number of influenza cases among children during 2013–2018 was 
estimated by multiplying the monthly influenza incidence in each age 
group by the number of children who met the criteria for vaccination 
in that month. Yearly influenza cases were calculated by adding the 
monthly estimations together (details available in the supplementary 
file). The averted influenza cases were the difference between the 
expected influenza cases if there were no vaccinations given (N) and 
the observed burden with vaccination (n). The number of averted 
influenza cases (NAC) was then estimated using the following formula 
(22, 25):

	

( )
( )

−
−
⋅ ⋅

⋅1
n VE VC

NAC = N n =
VE VC

where n is the observed influenza cases, and VC and VE represent 
vaccination coverage and vaccine effectiveness, respectively.

The number of averted cases depends not only on VC and VE 
during that season but also on the influenza epidemic intensity, i.e., 
seasons with high epidemic intensity will result in a higher number of 
averted cases (21). Therefore, we estimated the prevented fraction 
(PF) as:

	 ( )
NACPF =

NAC + n

a relative term measuring the impact of vaccination (22).

2.4. Statistical analysis

A chi-square test was performed to compare different features 
between vaccinated and unvaccinated groups. Pearson’s correlation 
analysis was performed between cumulative vaccination doses and 
influenza cases. Statistical analyses were performed in R language 
(version 4.1.3, R Core Team, Vienna, Austria).

2.5. Ethics statement

The study was reviewed and approved by the Institutional Review 
Board of the Minhang Center for Disease Control and Prevention. The 
number of the ethical letter regarding this study is EC-P-2020-010. 

Informed consent was waived for this study because it involved the 
use of surveillance data and no potentially identifiable human data 
were presented.

3. Results

During the study period, 170,915 children who resided in 
Minhang and were born between January 2013 and December 2019 
were registered in the NIP system. Of these, 78,027 (45.65%) 
received at least one dose of influenza vaccine during the study 
period. The vaccination coverage rate among children with 
permanent residency was significantly higher than that among 
children with nonpermanent residency (47.45% vs. 43.85%, 
p < 0.001) (Supplementary Table S1). From 2013–2014 to 2015–2016, 
the annual influenza vaccination coverage rate increased nearly 
3-fold from 10.40 to 27.62% (Table 1). The coverage rate rebounded 
to 27.57% after a slight fluctuation in 2016–2017. However, a sharp 
decline occurred in the following years, and vaccination coverage fell 
to 14.16% in 2018–2019 and 18.13% in 2019–2020. From the 
perspective of monthly trends, the peak vaccination period was from 
September to February the next year, with a minor period in August 
and March (Supplementary Figure S1). There were rare vaccinations 
in other months, except in 2019–2020. The vaccination coverage in 
each town was computed according to the children’s residential 
addresses on the records. During the study period, the lowest 
vaccination coverage rate was 6.11% on Pujin Street in 2016–2017, 
and the highest was 44.26% on Jiangchuan Street in 2017–2018 
(Table  2). The mean coverage rates in each town over the study 
period ranged from 10.39 to 33.46%. The mean coverage rate in 
Minhang District during the study period was 21.93%, and the 
coverage rates of seven towns/streets were below the mean (Table 2). 
The coverage rates in Qibao Town, Meilong Town, Pujin Street, and 
Zhuanqiao Town were always below the average in each vaccination 
year, and the coverage rates in Meilong Town, Pujiang Town, and 
Pujin Street were 6 times below the lower quantile. In contrast, the 
coverage rates in Jiangchuan Street, Maqiao Town, and Xinhong 
Street were always higher than the yearly average.

Due to insufficient surveillance data compared to vaccination 
data, the number of influenza cases among registered children 
between 2013–2014 and 2017–2018 was estimated using incidence 
data and vaccination data (Supplementary Table S2). As newborn 
children continued to join the study cohort, the population of children 
and estimated number of influenza cases both increased substantially, 
from 24,652 and 4.27 in 2013–2014 to 126,054 and 77.41 in 2017–
2018, respectively (Table 1 and Supplementary Table S2). Influenza 
vaccination prevented an average of 5.52 (range: 4.46–6.65) cases per 
year during the 5 years (Table 3). The largest number of averted cases 
occurred during 2017–2018, when 15.34 (range: 12.38–18.51) 
influenza cases were prevented by vaccination, corresponding to a 
prevented fraction of 16.54% (range: 13.79%-19.30). The year with the 
lowest number of averted events was 2013–2014, when 0.28 (0.23–
0.34) cases were averted, with a prevented fraction of 6.15% (5.10–
7.4%). The largest prevented fraction was 16.58% (range: 13.82–
1.32%) in 2015–2016 when the vaccination coverage rate was the 
highest. Sensitivity analysis was also performed to test the influence 
of vaccination coverage on averted cases and prevented fractions 
(Supplementary Table S3). When vaccination coverage increased by 
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TABLE 3  Predicted impact of vaccination among children from 2013–2014 to 2017–2018.

2013–2014 2014–2015 2015–2016 2016–2017 2017–2018

Vaccination coverage 10.40% 22.94% 27.62% 24.16% 27.57%

Estimated number of observed influenza cases 4.27 10.13 26.51 29.99 77.41

Estimated number of averted influenza cases 

(+/− 10%VE) †

0.28

(0.23–0.34)

1.62

(1.31–1.94)

5.27

(4.25–6.35)

5.08

(4.12–6.10)

15.34

(12.38–18.51)

Prevented fraction

(+/−10%VE)††

6.15%

(5.11–7.38%)

13.79%

(11.45–16.07%)

16.58%

(13.82–19.32%)

14.49%

(12.08–16.90%)

16.54%

(13.79–19.30%)

The number of averted influenza cases among children was estimated using three parameters: number of observed influenza cases, vaccination coverage, and vaccine effectiveness. The number 
of observed cases was estimated using incidence data in Shanghai and the number of children in vaccination records. Vaccine effectiveness was assumed to be 60%. The results of sensitivity 
analyses with an interval of +/− 10% VE were presented as ranges of uncertainties. †Number of averted influenza cases (NAC), computed as 

n VC VENAC
1 VC VE
⋅ ⋅

=
− ⋅

, where n: observed 
influenza cases, VC, vaccination coverage; VE, vaccine effectiveness. ††Prevented fraction (PF), calculated as PF

NAC

n NAC
=

+
, where NAC, number of averted influenza cases, n, observed 

influenza cases.

10%, the mean averted cases per year increased from 5.52 (range: 
4.46–6.65) to 8.22 (range: 6.54–10.05), with an average improvement 
of 6% in the prevented fraction.

The impact of improving vaccination coverage in each town/street 
was also estimated by the ratio of the difference in the number of 
averted cases when increasing the vaccination coverage rate by 10% to 

TABLE 1  Yearly vaccination coverage rates in Minhang District from 2013–2014 to 2019–2020.

Year
Number of vaccinated 

children
Number of vaccination 

doses

The population of 
children in the same 

period

Vaccination coverage 
rates

2013–2014 2,563 4,670 24,652 10.40%

2014–2015 11,690 21,932 50,961 22.94%

2015–2016 19,984 37,156 72,356 27.62%

2016–2017 24,267 36,733 100,427 24.16%

2017–2018 34,757 54,208 126,054 27.57%

2018–2019 21,111 30,912 149,098 14.16%

2019–2020 30,991 40,930 170,915 18.13%

One vaccination year is defined as July 1st to June 30th in the following year. The study period was divided into 7 consecutive vaccination years from 2013–2014 to 2019–2020. Children aged 
6 months and older could meet the criteria for receiving the influenza vaccine, and all children who met the criteria composed the population of children in the same period. Vaccination 
coverage was calculated by the number of vaccinated children divided by the population of children in the same period in each vaccination year.

TABLE 2  Annual and mean vaccination coverage rates in each town/street in Minhang District from 2013–2014 to 2019–2020.

Town/Street
2013–

2014 (%)
2014–

2015 (%)
2015–

2016 (%)
2016–

2017 (%)
2017–

2018 (%)
2018–

2019 (%)
2019–

2020 (%)

Mean 
coverage 

rate

Huacao Town 10.53† 22.96 37.87 33.02 44.22 18.87 25.99 27.64

Qibao Town 6.29†† 20.68 23.33 18.85 27.65 10.67 14.71 17.45

Hongqiao Town 14.18 22.35 30.17 27.39 27.40 18.94 22.78 23.32

Xinzhuang Town 9.33 28.16 35.24 35.84 37.50 19.24 21.48 26.68

Meilong Town 9.11 15.95 19.58 16.34 19.04 8.33 11.14 14.21

Zhuanqiao Town 7.11 19.24 25.96 21.21 24.05 11.83 19.31 18.39

Maqiao Town 20.15 35.26 42.32 35.43 39.48 22.13 19.77 30.65

Wujing Town 14.79 32.08 29.09 23.15 20.11 13.39 14.22 20.98

Pujiang Town 11.71 14.20 9.28 7.62 16.13 5.89 7.89 10.39

Xinhong Street 19.89 34.85 40.70 41.59 40.33 21.85 33.87 33.30

Gumei Street 6.67 18.90 31.16 23.79 16.61 11.76 14.54 17.63

Pujin Street 6.12 16.95 8.03 6.11 12.64 10.88 16.46 11.03

Jiangchuan Street 14.67 35.53 42.94 39.89 44.26 23.89 33.01 33.46

Vaccination coverage rates from 2013–2014 to 2019–2020 in each town/street were calculated according to children’s residential addresses. The mean coverage rate is the average coverage rate 
of that town/street from 2013–2014 to 2019–2020. †Gray shading indicates that the vaccination coverage rate is below the mean in that column. ††Underscoring indicates that the vaccination 
coverage rate is below the lower quartile in that column.
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observed cases (Table  4). The ratio was significantly positively 
correlated with the original vaccination coverage rate (r = 0.99, 
p < 0.001). The mean ratio in each area ranged from 7.27% on Pujin 
Street to 10.69% on Jiangchuan Street. Using a regression model, an 
original vaccination coverage rate of 31.53% was predicted to obtain 
a ratio of 10% when coverage was increased.

Confirmed influenza cases in the general population in Minhang 
District from January 2016 to January 2020 with missing data from 
April to November 2018 are presented in Figure  1. The peak of 
influenza mainly arose in the winter months, with an exception in 
the summer of 2017. To quantify the relationship between the 
decrease in influenza cases in all age groups and the cumulative 
vaccination doses in prior or identical months, four time periods 
when the case counts declined were selected: January–June 2016, 
December 2016–June 2017, January–March 2018, and February–
June 2019. The most correlated results between the number of 
influenza cases in the selected periods and the cumulative 
vaccination volume in that vaccination year were summarized 
(Table 5). The number of influenza cases from January to June 2016 
was most strongly correlated with cumulative vaccination doses 
5 months before, with a correlation coefficient of −0.99. There was a 
time lag of 3 months between cases in both of the periods, December 
2016 to June 2017 and February to June 2019, and the most 
correlated cumulative vaccination doses, of which correlation 
coefficients were − 0.98 and − 0.94, respectively. The number of cases 
from January to March 2018 was completely negatively correlated 
with cumulative vaccinations 2 months before. Regressions on the 
influenza cases and cumulative vaccination doses in most correlated 
months were conducted to estimate the reduction in influenza cases 
per thousand additional vaccinations (Table  5). An estimated 
reduction of 3.18 cases occurred from December 2016 to June 2017 
with 1,000 additional vaccinations from September 2016 to March 
2017, which was the greatest reduction estimated. The smallest 
reduction was 0.73 cases from January to June 2016, with 1,000 
additional vaccinations from August 2015 to January 2016. The 
estimated case reductions climbed upward in the first 2 years and 

then fell to a moderate level in the following 2 years, which equaled 
1.55 and 1.69 per 1,000 additional vaccinations, respectively.

4. Discussion

The aim of this study was to explore whether influenza vaccination 
among children could provide direct effects in themselves and indirect 
effects in the general population by using surveillance data of the 
vaccination records for children born between 2013 and 2019, and of 
the reported influenza cases between 2016 and 2020.

There were several findings arising from the present study. First, 
the influenza vaccination rate was suboptimal among children in 
Minhang considering the goal of 75% coverage proposed by the WHO 
recommendation (31). Second, the vaccination program could 
provide direct protections to children as an average fraction of 13.15% 
of potential influenza cases was estimated to be averted. Third, the 
indirect effects provided by inoculating children were observed as a 
strong negative correlation between the cumulative number of 
influenza vaccinations and the number of cases with time lags. Finally, 
improving the vaccination coverage rates in higher coverage areas 
were estimated to be associated with more averted cases.

In this study, the annual influenza vaccination coverage among 
children in the vaccination records ranged from 10.40 to 27.62%, with 
a mean coverage of 20.71%. This vaccination coverage of influenza in 
Minhang was lower than that reported in other studies. A study 
revealed that the coverage was 59.15% among children at high risk of 
influenza in the United States (32), and similarly, a coverage of 58.28% 
was documented in the United Kingdom according to WHO Data 
Portal (33). In China, a meta-analysis found that the pooled influenza 
vaccination coverage was 28.4% for children aged 6 months to 5 years 
(13). There may be  several reasons that contributed to the low 
coverage rate. First, the supply of influenza vaccines available to young 
children in the study period was insufficient. Second, the vaccination 
procedure is cumbersome. Regardless of the history of influenza 
vaccination, children need to be  vaccinated before the influenza 

TABLE 4  The ratio of the difference in NAC to observed cases with a 10% increase in vaccination coverage.

Town/Street 2013–2014 (%) 2014–2015 (%) 2015–2016 (%) 2016–2017 (%) 2017–2018 (%)

Huacao Town 7.32 8.68 10.90 10.09 12.11

Qibao Town 6.91 8.40 8.72 8.18 9.29

Hongqiao Town 7.70 8.6 9.65 9.26 9.26

Xinzhuang Town 7.19 9.36 10.44 10.54 10.83

Meilong Town 7.16 7.86 8.26 7.90 8.20

Zhuanqiao Town 7.00 8.22 9.06 8.46 8.81

Maqiao Town 8.32 10.44 11.72 10.47 11.18

Wujing Town 7.75 9.94 9.49 8.70 8.33

Pujiang Town 7.42 7.67 7.19 7.03 7.88

Xinhong Street 8.28 10.38 11.41 11.58 11.34

Gumei Street 6.95 8.18 9.80 8.78 7.93

Pujin Street 6.90 7.97 7.07 6.89 7.51

Jiangchuan Street 7.72 10.49 11.85 11.26 12.11

NAC represents the number of averted cases, computed as n VC VENAC
1 VC VE
⋅ ⋅

=
− ⋅

. The difference in NAC was calculated using the formula when increasing the VC by 10%. The observed cases 

were distributed according to the proportion of qualified children in each town/street. The ratio was calculated as the difference in NAC divided by the observed cases.
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FIGURE 1

Monthly vaccination doses and influenza cases from July 2015 to January 2020 and the fitted regression line. (A) Monthly number of vaccination doses 
and influenza cases from July 2015 to January 2020. The left y-axis represents the number of vaccination doses per month. The right y-axis represents 
the number of reported influenza cases per month. The vaccination doses among children are shown by a red line. The number of notified influenza 
cases is shown by a blue bar, with data unavailable before January 2016 and data missing from April to November 2018; (B) Influenza cases from 
January to June 2016 fitted with cumulative vaccination doses from August 2015 to January 2016; (C) Influenza cases from December 2016 to June 
2017 fitted with cumulative vaccination doses from September 2016 to March 2017; (D) Influenza cases from January to March 2018 fitted with 
cumulative vaccination doses from November 2017 to January 2018; (E) Influenza cases from February to June 2019 fitted with cumulative vaccination 
doses from December 2018 to March 2019.

season each year. Otherwise, children aged 6 months to 3 years need 
to receive two doses of influenza vaccine with an interval of more than 
4 weeks (34). In addition, parents tend to regard influenza vaccines as 
being of little importance and refuse to pay out-of-pocket (35), as they 
are not included in the national immunization program in China. 
Consequently, parents do not prioritize immunizing their children 
with influenza vaccines in the absence of an influenza epidemic.

Despite the comparatively low vaccination coverage, this study 
identified the direct protective effects of inoculating children by an 

average estimation of 13.51% of averted cases. The impact of influenza 
vaccination programs varied across the influenza seasons, ranging 
from 6.15 to 16.58%. This result is higher compared to a study 
conducted in Suzhou, China, that reported an average prevented 
fraction of 7% over five seasons (17). The difference may attribute to 
higher vaccination coverage rate of 21% in this study than 9% in the 
latter. Similarly, a research reported an average prevented fraction of 
53% when coverage rate reaching 46% (19). However, the number of 
averted cases was estimated to be low, even close to zero in 2013–2014. 
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This reflected the low number of influenza cases that year and that few 
cases can be prevented when the underlying incidence is low (21). 
Since the number of influenza cases were based on the statistics of 
influenza incidence from the China CDC, it may underestimate the 
real burden. As the sample submitted for confirmed diagnosis and 
influenza subtyping is usually a nasopharyngeal swab or serum 
specimen, and collecting these samples is an invasive, sometimes 
painful experience, children and even parents are reluctant to 
cooperate. In addition, infected children with mild symptoms 
generally choose to receive treatment in clinics or community health 
centers that are not included in the infectious disease reporting 
system. Therefore, reported childhood cases are inpatients with 
serious symptoms to a large extent. As a result, the estimations in this 
study can be regarded as the number of severe cases.

Due to the lack of reliable evidence of VE in Shanghai and the 
wide variations in VE, simulated vaccine effectiveness was used in this 
study. A meta-analysis study reported pooled vaccine effectiveness 
against types of influenza ranging from 43 to 69% in pediatric age 
groups (28). To assess the benefit of vaccination, the influenza vaccine 
was assumed to have a moderate effectiveness of 60% in our study, and 
the results of the sensitivity analyses of VE were presented as ranges 
of estimates to indicate uncertainties. Compared to the upper limit of 
the uncertainty range, the increment in vaccination impact estimates 
was larger when improving VC by 10%. As VE varies across seasons, 
populations, age groups, and products (36), it is more beneficial to 
focus on measures aiming to improve vaccination coverage.

This study also measured the influence of increasing the 
vaccination coverage rate in each town/street by the ratio of the 
difference in NAC to observed influenza cases. The ratio represented 
what fraction of cases could be further averted on the basis of observed 
cases when increasing the vaccination coverage rate by 10%. The 
observed cases were proportional to the number of children who met 
the criteria for vaccination in each area. The results indicated that a 
larger proportion of influenza cases can be averted in areas of higher 
coverage than in lower coverage areas when increasing the coverage 
rate. Thus, areas with high vaccination coverage should further 
increase the rates to avoid more influenza cases and even establish 
herd immunity. In this simulation, Jiangchuan, Maqiao and Xinhong 
received more benefits than other areas from the increase in coverage. 
We also calculated a threshold of 31.53% of the original vaccination 
coverage to achieve a 10% ratio.

This study quantified the relationship between influenza cases in 
the general population and cumulative vaccination doses among 
children from two aspects. First, a strong negative correlation was 

observed, which implied underlying indirect protection provided by 
vaccinating children. This is consistent with previous studies, in which 
statistically significant indirect protection by inoculating children was 
found ranging from 24 to 61% (11, 37, 38). The time lag between 
cumulative vaccination doses and influenza cases ranged from 2 to 5 
months, with a median of 3 months. The two periods with complete 
surveillance data were found in a three-month gap, while the 
remaining periods with incomplete surveillance data had a time lag of 
two and 5 months. Incomplete data may have contributed to the 
variations in time lags. Second, we  estimated the reduction in 
influenza cases in the general population per thousand additional 
vaccinations among children. The estimated reduction increased from 
0.73 cases to 3.18 cases in the first two periods and then fell to a 
moderate level of 1.55 and 1.69 cases. The mismatch between the 
vaccine strain and circulating viruses may have resulted in the small 
estimated reduction in influenza cases from January to June 2016 
(39, 40).

This study described the trend in influenza vaccination coverage 
among children from a spatiotemporal perspective for 7 consecutive 
years in Minhang District. The method to estimate averted cases used 
in this study has been widely used to evaluate the impact of influenza 
vaccination (18, 21, 22, 25). However, this is the first study to apply 
this method to estimate the impact of influenza vaccination among 
children in China. Compared to other estimation models, this method 
involved fewer intensive computations and easily interpretable results. 
The relationship between influenza cases and cumulative vaccination 
doses was quantified to explore the underlying benefit provided by the 
vaccination of children.

There were some limitations in this study. First, we could not 
stratify children’s age to calculate age-specific influenza vaccination 
coverage rates. As newborn infants were enrolled in this cohort 
successively, the coverage rate was computed by the number of 
vaccinated children divided by the total number of children who were 
eligible for vaccination in one vaccination year. Second, the number 
of influenza cases among children from 2013 to 2018 was estimated 
using influenza incidence data in Shanghai multiplied by the number 
of children in vaccination records rather than the surveillance data. 
The difference in influenza incidence among children between 
Shanghai and Minhang may have introduced an underestimation or 
overestimation in later estimations. Third, the method used did not 
consider the indirect effects of the vaccination program and thus 
presented a more conservative estimate of the impact. Moreover, the 
annual averted cases could only be  estimated within limited age 
groups, as we used the vaccination data of a birth cohort. Finally, 

TABLE 5  Relationship between cumulative vaccination doses and influenza cases.

Surveillance periods Vaccination periods r† p value b††

16/01–16/06 15/08–16/01 −0.99 < 0 001. − × −
7 26 10

4
.

16/12–17/06 16/09–17/03 −0.98 < 0 001. − × −
3 18 10

3
.

18/01–18/03 17/11–18/01 −1.00 0.01 − × −
1 55 10

3
.

19/02–19/06 18/11–19/03 −0.94 0.02 − × −
1 69 10

3
.

Four surveillance periods in which the number of influenza cases decreased were selected. Correlation analyses were conducted between the number of influenza cases in surveillance periods 
and the number of cumulative vaccination doses in prior or identical months in the same vaccination year. Only the most correlated results for each period are listed here. Then, the reduction 
in influenza cases per additional vaccination dose was estimated by the regression coefficient between the number of influenza cases and cumulative vaccination doses. †r, Pearson’s correlation 
coefficient. ††b, regression coefficient, represents the estimated reduction in influenza cases per additional vaccination dose.
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we did not have VE data specifically for Minhang District for the study 
period, and the simulated level may not reflect the real effectiveness 
of the influenza vaccine.

The current study suggests that influenza vaccinations among 
children could offer both direct and indirect protections, which 
emphasize the importance of increasing influenza vaccination 
coverage to reduce influenza morbidity. These results provide easily 
interpretable evidence for childhood vaccination to public health 
recommendations and can be  particularly useful in countries 
including China currently developing influenza vaccination policies.

5. Conclusion

In summary, the current study identified the distribution of 
influenza vaccination coverage in Minhang District on a 
spatiotemporal scale. Vaccination coverage in high-coverage areas 
should be further expanded to avert more influenza cases and even to 
establish herd immunity. In low-coverage areas, a threshold of 31.53% 
was estimated to maximize the benefit of vaccinations. Vaccinations 
among children averted an average of 13.51% of influenza cases per 
year. The results of quantifying the relationship between cumulative 
vaccination doses and influenza cases indicated that the influenza 
vaccine program among children was strongly correlated with 
influenza activities and might provide underlying indirect protection 
to the general population.
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Introduction: Bronchiolitis, mostly caused by Respiratory Syncytial Virus (RSV), 
and influenza among other respiratory infections, lead to seasonal saturation at 
healthcare centers in temperate areas. There is no gold standard to characterize 
the stages of epidemics, nor the risk of respiratory infections growing. We aimed 
to define a set of indicators to assess the risk level of respiratory viral epidemics, 
based on both incidence and their short-term dynamics, and considering 
epidemical thresholds.

Methods: We used publicly available data on daily cases of influenza for the 
whole population and bronchiolitis in children <2  years from the Information 
System for Infection Surveillance in Catalonia (SIVIC). We  included a Moving 
Epidemic Method (MEM) variation to define epidemic threshold and levels. 
We  pre-processed the data with two different nowcasting approaches and 
performed a 7-day moving average. Weekly incidences (cases per 105 population) 
were computed and the 5-day growth rate was defined to create the effective 
potential growth (EPG) indicator. We performed a correlation analysis to define 
the forecasting ability of this index.

Results: Our adaptation of the MEM method allowed us to define epidemic 
weekly incidence levels and epidemic thresholds for bronchiolitis and 
influenza. EPG was able to anticipate daily 7-day cumulative incidence by 4–5 
(bronchiolitis) or 6–7 (influenza) days.

Discussion: We developed a semi-empirical risk panel incorporating the 
EPG index, which effectively anticipates surpassing epidemic thresholds for 
bronchiolitis and influenza. This panel could serve as a robust surveillance 
tool, applicable to respiratory infectious diseases characterized by seasonal 
epidemics, easy to handle for individuals lacking a mathematical background.
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respiratory infections, epidemic, levels, threshold, effective potential growth, 
epidemic indicators, bronchiolitis, influenza
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1 Introduction

Lower respiratory tract infections (LRTIs) are a significant global 
health burden, causing substantial morbidity and mortality worldwide. 
According to the Global Burden of Disease (GBD) Study 2019, LRTIs 
were responsible for approximately 2.5 million deaths and around 500 
million infections globally in 2019 (1–3). LRTIs affect individuals of 
all ages but disproportionately impact children under 5 years of age 
and older adults. In the former age group, acute LRTIs are a leading 
cause of morbidity and mortality, with Respiratory Syncytial Virus 
(RSV) and Influenza Viruses (IVs) being the two most common 
causes (4).

The RSV causes approximately 70% of bronchiolitis, a seasonal 
LRTI that is particularly critical in children under 2 years, with 3.5 
million hospitalizations and almost 1% of deaths among admitted 
children, mostly infants <6 months (4). Bronchiolitis is mostly 
contagious 5 days after infection, and it is associated with respiratory 
distress, wheezing, apnea, fever, and nasal flaring, although these 
symptoms are correlated with the severity of the disease and age (5). 
Similarly, seasonal influenza, caused by IVs, is responsible for a 
significant burden of LRTIs in children under 5 years, with an 
estimated 120,000 deaths annually (6). Nonetheless, adults, 
particularly those with underlying medical conditions, adults over 
60 years of age, and pregnant women (7) are the most affected. The 
World Health Organization (WHO) describes influenza’s clinical 
manifestations as fever, dry cough, headache, muscle and joint pain, 
severe malaise, sore throat, and a runny nose (7). Although seemingly 
mild, according to the Centers for Disease Control and Prevention 
(CDC), IVs are responsible for an estimated 9–45 million cases, 
140,000–810,000 hospitalizations, and 12,000–61,000 deaths annually 
in the United  States (8–10). Moreover, influenza has a shorter 
incubation period and is mostly contagious between 48 h and 6 days 
from infection (11).

In Catalonia, a region with about 7.6 million population in Spain, 
bronchiolitis and influenza are also significant health concerns for 
patients and healthcare providers (12). Between 10,000 and 15,000 
children under two years get infected with RSV seasonally (13), 
similar to the values that the peak number of total weekly infections 
of influenza reaches (14). Given the high incidence and substantial 
morbidity and mortality associated with bronchiolitis and influenza, 
conducting effective surveillance of these viral infections is crucial. 
Surveillance can inform public health interventions and guide the 
allocation of resources to reduce the burden of these infections, 
including vaccination campaigns, infection control measures, and 
appropriate clinical management of patients. Besides, it can guide and 
comfort healthcare providers during the epidemics.

Epidemic indicators are used to guide surveillance in public health 
domains, some of them are computed empirically and others are 
estimated from model parameters, such as the well-known 
reproduction number (R) (15). Due to the nature of this work, mostly 
empirical indicators will be described, such as incidence, one of the 
most commonly used. Incidence measures the disease occurrence in 
a population, and it is often expressed as the number of cases per 
100,000 population over a specific period. The CDC also uses 
cumulative hospitalization incidence and admissions, in addition to 
deaths, infection fatality ratio and pediatric deaths, to monitor 
influenza (16–18). Other organizations such as the European Centre 
for Disease Prevention and Control (ECDC) monitor laboratory data 

to detect variants of the viruses circulating or compute the percentage 
of positive tests for respiratory viral infections (RVIs). In addition, 
they use sentinel groups to estimate the epidemic incidence levels that 
a disease achieves, in different countries (19). Another useful measure 
is the growth rate of the epidemic, which is defined as the relative 
change in cumulated infections from 1 week to the next. Similarly, the 
empirical reproduction number is used to estimate and monitor the 
average number of infections that a single individual triggers. Usually 
computed from mathematical mechanistic models, the empirical 
reproduction number is a good measure of the stage of an epidemic, 
and several studies have been made to improve the calculation of this 
indicator while reducing complexity avoiding complicated models 
(20–22). This range of indicators helps us to identify potential 
outbreaks and track the progression of the disease over time, as was 
evident during the COVID-19 pandemic (23).

In the present study, we aim to define a set of semi-empirical 
indicators to assess the risk level of seasonal respiratory epidemics, 
based on both incidence and their dynamics, and considering 
epidemical thresholds. We base this risk evaluation system on our 
previously developed method for monitoring COVID-19 (23, 24). By 
limiting the use of models, we intend to provide a precise surveillance 
and short-term forecasting tool for healthcare or public health 
professionals without an expertise in mathematical epidemiological 
modeling, not to design immediate control plans, but to assist 
decisions on the relocation of health resources or simply to provide 
direct knowledge of the current and short-term expected burden.

2 Materials and methods

2.1 Data collection

We used publicly available data on daily clinical diagnoses of 
influenza for the whole Catalan population and bronchiolitis in 
children less than 2 years old, from 1st September 2014 to 31st March 
2023. We obtained the data from the Information System for Infection 
Surveillance in Catalonia (SIVIC) (25) of the Health Department of 
Catalonia, a database that contains information on clinical diagnoses 
in Primary Healthcare, usually mostly without microbiological 
confirmation. However, previous studies showed that clinical 
diagnoses data are a good proxy of the epidemiological dynamics of 
respiratory diseases like influenza, because their results have been 
representative of laboratory confirmed diagnoses and sentinel systems 
but entail a shorter delay, as demonstrated by Aguilar Martín et al. 
(26). We used data from children <2 years for assessing bronchiolitis 
because this is the main age group affected by this disease. Otherwise, 
influenza is not only focused on a determined age group and can have 
an impact among the general population.

2.2 Data pre-processing

In this study, we  divided the data pre-processing into three 
different stages: two of nowcasting and one of smoothing 
(Supplementary material). The first nowcasting approach is to account 
for the delayed notification or report in medical databases, while the 
second one is to consider the differences in data reporting (i.e., 
influenza cases) depending on whether the day of the week is a 
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working day or a holiday. Finally, to the pre-processed data 
we  performed a smoothing 7-day moving average. To facilitate 
understanding of the two nowcasting methods, we provide a more 
extensive explanation in the following subsections. The aim of this 
extensive pre-processing is to extract the global dynamics of the 
diseases by clearing out all the noise present within them. 
Notwithstanding that, the rest of the study could be implemented 
simply smoothing the data. Note that all processes and analyses were 
done using Python and the codes for this paper are available in https://
github.com/BIOCOM-SC/cloud-of-codes.

2.2.1 Nowcasting delayed reporting or 
notifications

There is a well-described problem when working with medical 
diagnostic databases, data are constantly being updated and the true 
number of infections for a certain day can only be verified after some 
period of time. However, the general agreement is to use these data 
after 1 month since being reported, once it has consolidated (27). In 
this regard, we had been downloading the SIVIC database each week 
since the beginning of 2021. We  performed a week-to-week 
comparison of the daily reports in the different databases and 
ascertained that while records were generally coherent after 30 days 
from their entry, the most recent registers were still being updated. 
With a retrospective analysis, we intended to define the percentage of 
data completion for the last 30 entries in the database, and use them 
to weight the data into a more accurate approximation of the real 
number of cases.

Since the reporting methods in Catalan healthcare changed 
substantially during the pandemic, we focused our process only in 
the datasets downloaded in mid-October, November and 
December 2022. These datasets were considered consolidated, 
being more than three months old by the end of the study period. 
Additionally, their reporting pattern was closer to the ongoing and 
pre-pandemic ones than that of 2021. We decided to take records 
after 30 days from entry as ground truths (consolidated data) and 
iteratively compute the percentage of completion of each day from 
October to December 2022, ending up with thirty 30-last days 
iterations. Thereafter, we averaged the results to obtain the mean 
percentage of completion per each of the days, which we named 
reporting weights:
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In Eq. 1, ω j states for the normalized percentage of completion, Ci 
is the number of cases reported in a day and Ci + 30 the number of cases 
reported for the same day but 30 days later. The reporting weights in 
Eq. (2) (ωr ) are constructed as the average ω j for all iterations 
performed. In our case, Nrepetitions = 30 since we started computing ω j 
from 20/10/2022 to 20/11/2022 and ended at the iteration from 
20/11/2022 to 20/12/2022.

Finally, we estimated the daily cases for the last month since the 
day the data is downloaded from SIVIC as:
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r
( ) = = …ω , , ,1 30
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In Eq. (3), Ci
i( ) states for the estimated diagnoses in the 30 days 

previous to the last update of the database. Former works share this 
approximation (24, 28, 29).

To end the pre-processing and smooth the data of bronchiolitis 
infections, we apply to Ci

i( ) a cumulative 7-day moving average filter, 
while the influenza series undergo the weekly pattern correction 
detailed in the next subsection.

2.2.2 Nowcasting weekly patterns
SIVIC data followed a weekly pattern, Mondays having 

approximately double the cases of weekends or holidays 
(Supplementary material). However, bronchiolitis cases usually follow 
a highly stochastic nature thus their pattern of report is not stable nor 
avoidable. Hence, this approach can only be applied when an evident 
pattern is present like in the influenza diagnoses.

The main process comprises labeling every day in the study period 
as Monday (1), Tuesday (2), Wednesday (2), Thursday (2), Friday (2), 
Saturday (3), Sunday (3) or Holiday (3) as stated by the working 
calendar in Catalonia for each year. Therefore, we created three groups 
of days, the regular working days from Tuesday to Friday, the 
weekends and festivities when the healthcare centers only attend 
emergencies, and Mondays when all non-urgent cases occurring in 
weekends are finally attended. In addition, days after a festivity are 
labeled as Mondays (1) to capture the same effect as described.

Afterwards, we took daily windows of 7-days from the start to the 
end of the study period and computed the weights per type of day as 
the difference between the raw number of diagnoses reported in 
SIVIC and the daily filtered number of diagnoses with a 7-day moving 
average (MM7), that is:

	
δ j

C j
CMM j

for j=
( )
( )

=
7

1 2 3, , ,

	
(4)

In Eq. (4), δ j are the weights computed for Mondays (j = 1), 
regular workdays (j = 2) and weekends and festivities (j = 3) in a certain 
7-days window. C states for the raw daily reports in SIVIC and CMM7 
for the 7-day moving mean of C. The j index indicates that to compute 
a certain weight, we only consider the cases of its kind. We saved all 
the iterative computations per type of day and graphically observed a 
time-varying pattern in which stochasticity was reduced when 
epidemic peaks were reached. Therefore, we took the weights per kind 
of day as the median among the intervals in which the values were 
more stable, which were detected with a signal processing algorithm 
detecting local maxima, as displayed as an example in Figure  1. 
We decided to take the median value instead of the average to account 
for instability.

However, we wanted to account for the stochasticity present in the 
data. Hence, instead of using a constant weight value we  used a 
random Gaussian distribution in which the aforementioned computed 
weights are the mean of the distribution, but its standard deviation is 
inversely proportional to the recorded number of diagnoses, ensuring 
that negative weights are avoided. Consequently, the more daily cases, 
i.e., the closer to the epidemic peak, the more the final weight 
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resembles the average. Besides, we only apply this modification when 
CMM7 are over 100 influenza infections, when fluctuations are low 
enough to have a signal-to-noise ratio large enough to make the 
computation of weights reliable.

Finally, we  applied the weekly reporting pattern to the daily 
estimated diagnoses Ci

i( ) that we already computed in order to obtain 
more balanced data:

	
D

C
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i

j
= = =

( )

δ
, , ,     1 2 3

	
(5)

In Eq. (5), D represents the final weighted diagnoses. We based 
this approach on the work of Català et al. (18, 23) and Villanueva et al. 
(30). Further information can be found in the Supplementary material. 
To end the pre-processing and smooth the data of influenza infections, 
we apply to D a cumulative 7-day moving average filter.

2.3 Epidemic levels

To define epidemic levels, we employed a novel approach based 
on the Moving Epidemic Method (MEM) which is used in European 
institutions such as the ECDC (31, 32). But first, we  needed to 
compute the weekly incidence for each disease and set an epidemic 
threshold from which to compute these stages.

From the pre-processed dataset, we  measured the weekly 
incidence of bronchiolitis and influenza computing the number of 
daily diagnoses per 105 population (<2 years and all Catalonia 
respectively) and resampling them to weekly frequency. To determine 
the start of the epidemic, we used the first derivative of daily diagnoses. 
The first derivative represents the rate of change of the number of 
reported cases with respect to time. By looking at a certain value of the 
derivative, we can identify the day when the number of reported cases 
started to increase rapidly. We set this value to a three-fold increase in 
the number of reported cases over a single day. We then looked for the 
number of cases reported that day from 2014 to 2019 and averaged 
them. The exclusion of pandemic years is deliberate to avoid skewing 

the result. Once we found the epidemic threshold, we selected the 
epidemy as the first and last days when we are over this boundary.

With the epidemy delimited, we computed an average epidemy 
among the pre-pandemic ones and calculated the 25th, 50th, 75th and 
95th percentiles of cases. The number of cases up to the threshold 
represent the basal level of the epidemy, from the threshold to the 25th 
percentile correspond to a very low level of the epidemy, from the 25th 
to the 50th percentile indicates a low level, from 50th to 75th signifies 
a medium level, from 75th to 95th represents a high level and above 
the 95th constitutes very high epidemic levels. Since with this method 
we obtain epidemic thresholds for weekly incidence, we divide the 
values obtained by 7 to also have the daily incidence levels. This whole 
process has been coded in R and is available in (33).

2.4 Epidemic indicators

In the present work, we used four different epidemic indicators: 
the daily incidence of disease, the weekly growth rate, the semi-
empirical reproduction number and the Effective Potential Growth 
(EPG) (24). All of them are computed from the pre-processed datasets.

2.4.1 Daily incidence
To calculate the daily incidence of bronchiolitis and influenza, 

we took the daily number of diagnoses weighted and filtered with a 
cumulative 7-day moving average and computed cases per 100,000 
population as:
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In Eq. (6), Ii
influenza states for the daily incidence of the disease, Di 

represents the pre-processed number of infections in a day and Pi the 

FIGURE 1

Value of the weight of Monday for its iterative calculations historically (blue, left axis). In orange and referred to the right axis, the time series of 
influenza diagnoses. Delimited in red, are the zones where the median weight value has been computed. Red crosses indicate the peaks detected.
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general number of inhabitants of Catalonia. Regarding Eq. (7), 

Iibronchiolitis  represents the daily incidence of bronchiolitis, Ci
i( ) the

 

pre-processed number of infections in a day and Pi the number of 
infants <2 years in Catalonia. The population has been considered 
constant intra-yearly but variable inter-annually.

2.4.2 Weekly growth rate
To assess the weekly growth rate, we  first define the weekly 

incidence as previously explained, resampling daily incidence to 
weekly frequency. With this, we define the weekly growth rate as the 
percentage of more (or less) cases reported in a week compared to the 
previous week:

	
µ

ϕ
ϕj
j

j
for j all weeks in the study period= =

−1

,     

	
(8)

In Eq. (8), ϕ j  stands for the weekly growth rate, obtained from 
ϕ j  that represents the weekly incidence of disease in a certain week. 
The higher the weekly growth rate, the faster the disease is spreading.

2.4.3 Effective reproduction number
The effective reproduction number (R) is an estimation of the 

average number of infections produced by a single infected individual 
over their infectious period. It is computed taking into account the 
generation time, which is defined as the average interval between the 
infection of an individual and the infection of its secondary cases. It 
usually corresponds to the infectious period. For influenza, the 
generation time is between γ  = 2 and γ  =6 days. For bronchiolitis, the 
generation time is in the order of γ  = 5 days. This index is usually 
computed through the equations of mathematical mechanistic models 
such as the Susceptible-Infected-Recovered (SIR) model (34). 
However, it has undergone several redefinitions to enable alternative 
(rough) estimations without detailed knowledge of specific disease 
characteristics or the need to solve complex equations (20–22). When 
the effective reproduction number has temporal resolution, it can 
be used to predict disease dynamics and evolution. An R > 1 means the 
number of new infections is increasing while R < 1 indicates that the 
new infections have decreased over the generation time.

In this work, we define a semi-empirical reproduction number (ργ), 
as the ratio of new cases with respect to cases γ  days ago, with γ  the most 
contagious period of the disease that also corresponds to the time 
between cases, and filtered with a 3-day moving mean:

	
ργ

γ γ γ

i i i i

i i i

D D D
D D D

for i N days=
+ +
+ +

= …− +

− − − − +

1 1

1 1

1, , ,

	
(9)

In Eq. (9) the semi-empirical reproduction number is presented, 
with N the number of days of the study period, D the filtered and 
pre-processed diagnoses either of bronchiolitis (Eq. (3) or of influenza 
(Eq. (5), and γ = 5 both for bronchiolitis and influenza. We decided to 
use γ = 5 for influenza after analyzing the robustness of the results 
obtained for γ = 2  to γ = 6 days, which is the interval that literature 
proposes as time between infections. Since the resulting ργ , especially 
for bronchiolitis, were strongly fluctuating, we decided to apply a 
7-day moving mean filter to smooth the effects of the stochasticity of 
certain diagnostic reports.

From all possible estimations of the reproduction number, 
we decided to use the semi-empirical ργ , from now on ρ5, (Eq. (9) due 
to its simplicity. Our aim is not to find the most accurate reproduction 
number, but an estimate that allows us to make a good monitoring of 
the dynamics of the epidemic. We intend for professionals without 
mathematical background to understand epidemic dynamics and 
indicators, hence so we applied the Occam’s Razor Principle.

2.4.4 Effective potential growth
The Effective Potential Growth (EPG) is based on the one defined 

for COVID-19 (24). EPG is an epidemic index that combines the 
incidence level and the incidence trend into a single parameter, and it 
has shown to be a useful risk indicator for the monitoring of COVID-
19. In this work, we  defined it as the product of the daily 7-day 
cumulated incidence of infections (A7) by the corrected semi-
empirical reproduction number (ργ ). Since the time t = 7 for A7 and 
the generation interval are different, the reproduction number has to 
be corrected as:

	 ρ ργ γ γ
c

t
= ( ) 	 (10)

	 EPG A
c

= 7·ργ 	 (11)

We defined in Eq. (10) the corrected semi-empirical reproduction 
number, with t = 7 and γ = 5 in our particular case. In Eq. (11) 
we presented the EPG index as the product of A7 and the ργ c

, from 
now on ρ′5, afore introduced. The semi-empirical reproduction 
number is an estimation of how many new infections generates one 
infected individual. EPG amplifies or narrows the weekly incidence 
according to whether there has been an increase (ρ′ > ⇒ >5 71 EPG A )  
or decrease (ρ′ < ⇒ <5 71 EPG A ) in cases over the last γ  days. In this 
way, the rate of growth is considered when looking at the weekly 
incidence of infections and we can anticipate a threshold crossing of 
the epidemic. Hence, the EPG can be interpreted as a forecaster of 
trend changes, the anticipation of which needs to be determined. 
However, EPG is not a predictor of incidences, but of the dynamic 
changes in the evolution of an epidemic, anticipating the level of risk 
to which we are going to be exposed.

The EPG has an advantage over using ρ5 or A7 alone in that it is 
more easily interpretable for healthcare or public health professionals. 
It presents, in incidence terms, the effects of the reproduction number 
on the evolution of the epidemic. In addition, it can be combined with 
risk levels to provide a short-term snapshot.

2.5 Measure of anticipation

The objective of creating a monitoring and risk panel for RVIs is 
not only to assess the current epidemiological situation but to be able 
to forecast how the course of events will unfold. Subsequently, 
we performed a Pearson correlation analysis for EPG to determine its 
suitability and anticipation to the surpassing of epidemic levels. For 
that, we analyzed how influenza and bronchiolitis incidences correlate 
and what lag they have with their EPG sequences globally, for their 
whole series, but also for each of their seasons separately. In Figure 2, 
you can see a representation of this process, and further visualizations 
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can be  found in the Supplementary material. Keeping EPG intact 
(dark purple line), we move forward or backwards A7 (light brown 
lines) and compute the Pearson correlation among both signals. That 
way, the anticipation of EPG to A7 can be  computed, since that 
number of days will correspond to the strongest correlation coefficient.

We also looked at how many days EPG advances the different 
epidemic levels, computing the difference in days when a certain 
threshold is reached.

3 Results

3.1 Epidemic levels and threshold

After performing the extensive pre-processing, we obtain smooth 
visualizations of daily number of diagnoses of bronchiolitis and 
influenza throughout the study period. With them, we have been able 
to compute daily and weekly incidence of disease, allowing us to 
define epidemic stages. The resulting computations of daily and 
weekly epidemic incidence threshold and levels for influenza and 
bronchiolitis are collected in Table 1. Furthermore, weekly thresholds 
are represented in Figures  3, 4, for influenza and bronchiolitis 
respectively, together with their weekly incidences.

These results suggest that when we have a weekly incidence of 
9/27 or a daily incidence of 1/4 for influenza/bronchiolitis, we can 

consider the epidemic wave to have started and we will remain at very 
low numbers of infections until we cross the low epidemic thresholds, 
after which we should already observe effects at the level of occupancy 
in health care facilities.

We can notice from Figures 3, 4 the disappearance of influenza 
when the COVID-19 pandemic spread in March 2020, until mid-2022 
when a small epidemic occurred. Meanwhile, diagnoses of 
bronchiolitis were reported in winter 2020 and two consecutive 
relatively small epidemics in 2021, both during summer and winter, 
surpassing the epidemic thresholds defined but not reaching very 
high levels.

Nonetheless, as Figure 4 shows, the latter epidemic of bronchiolitis 
has been the historically greatest appearing 1 month earlier. As 
concerning influenza, in Figure 3 we can ascertain that we are still 
moving toward a new “normal” seasonality. The latter epidemic wave 
of influenza was advanced also 1 month from previous seasons, and 
actually consisted of two different outbreaks, the first one mainly 
corresponding to influenza A and the subsequent to mainly influenza 
B viruses (35).

On another note, these visualizations allow us to contrast the 
nature of both diseases. Bronchiolitis is of a highly stochastic nature, 
partially because it affects a smaller population (only children) and 
because the disease can be caused by several viral agents creating 
plateaus before and after the epidemic peak, which is mostly caused 
by RSV. On the other hand, influenza presents a smoother signal, both 
because the number of daily diagnoses is higher and because in 
Catalonia only two different strains of influenza viruses, A and B, are 
widespread (32).

Comparing Figures  3, 4, the distance between the low and 
medium epidemic thresholds is narrower for bronchiolitis than for 
influenza, as an effect of that previously described plateau present in 
the bronchiolitis infections data. This indicates that for bronchiolitis, 
the epidemic thresholds defined might only be  useful from the 
medium threshold, when the clear epidemic wave started before the 
pandemic. Besides, we  still have to be  cautious with the levels 
calculated since there are still many unknowns about how future 
epidemics of influenza and bronchiolitis will unfold in Catalonia after 
COVID-19.

3.2 Effective potential growth

With a correlation coefficient higher than 0.98, we found that the 
EPG anticipates weekly influenza incidence by 6 to 7 days and 
bronchiolitis by 4 to 5 days. In Figure 5 we provide the results of the 
correlation analyses for both diseases.

FIGURE 2

Examples of A7 and EPG computed for season 2022–2023 of 
bronchiolitis, and the process on how to compute the days of delay 
between both time series peaks.

TABLE 1  Epidemic threshold and levels of daily and weekly incidence for influenza and bronchiolitis diseases.

Level Daily Weekly

Influenza 
(diagnoses/105)

Bronchiolitis 
(diagnoses/105)

Influenza 
(diagnoses/105)

Bronchiolitis 
(diagnoses/105)

Threshold 1 4 9 27

Low 3 13 21 89

Medium 8 20 53 141

High 20 36 138 250

Very high 31 65 214 453
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It is noteworthy that the EPG effectively predicted the incidence 
of bronchiolitis and influenza almost a week in advance, maintaining 
strong correlation coefficients even during and after the pandemic. 
During the first epidemic following the SARS-CoV-2 outbreak, it 
experienced only a slight decrease in predictive ability, losing 1–2 days 
of anticipation. However, the 2020–2021 epidemic period should 
be  excluded from the analysis due to the negligible incidence of 
influenza and the low occurrence of bronchiolitis cases.

We also looked at how many days EPG anticipates the different 
epidemic levels, and the results are collected in Table 2.

Notice that not all columns in Table 2 are filled. That is because 
not all epidemic seasons reach all the different thresholds, some of 
them only achieve medium levels of incidence. In addition, the 
robustness of EPG in influenza anticipation is palpable when 
compared to the results for bronchiolitis, a consequence of the nature 
of the data used, with much less daily diagnoses than influenza. Hence 
the bronchiolitis reports present and therefore can cause artifacts 
leading to less robust results, presented as >10 days. For the same 
reason, for bronchiolitis, only EPG anticipating high and very high 

risks should be  considered, since lower incidences still present 
reporting variability that adds noise to the metric. Medium risk is also 
faithfully anticipated, but one should be cautious as to read the results 
because artifacts appear in some seasons as a result of the plateaus 
occupying these incidence ranges, plateaus caused by the many viruses 
that can produce bronchiolitis before the RSV predominates.

For further insight into the results, we  present the historical 
diagnoses, incidences, ρ5 and EPG measurements in Figures 6, 7 for 
influenza and bronchiolitis, respectively.

Once again, the stochastic nature of epidemic medical records is 
ascertained, in particular when looking at the estimated reproduction 
numbers ρ5. In addition, we see how before an epidemic peak there is 
a raise of ρ5 up to 3, which means that a large number of contagions 
are taking place.

The similarity between the incidence of diagnoses and the EPG 
for both diseases can be corroborated, as well as the slight advancement 
of EPG, and how it reaches incidences higher than the equivalent 
weekly diagnoses, due to prompt growths in infections. This way, it 
indicates the risk of growth of an epidemic.

FIGURE 3

Weekly influenza cases per 100,000 inhabitants in Catalonia. From bottom to top, the epidemic threshold (black), the low (green, stars), medium 
(yellow, squares), high (red, triangles) and very high (maroon, diamonds) epidemic levels are also displayed.

FIGURE 4

Weekly bronchiolitis cases per 100,000 inhabitants <2  years in Catalonia. From bottom to top, the epidemic threshold (black), the low (green, stars), 
medium (yellow, squares), high (red, triangles) and very high (maroon, diamonds) epidemic levels are also displayed.

61

https://doi.org/10.3389/fpubh.2023.1307425
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Perramon-Malavez et al.� 10.3389/fpubh.2023.1307425

Frontiers in Public Health 08 frontiersin.org

TABLE 2  Number of days in which EPG advances the reaching of the different epidemic thresholds with respect to A7.

Bronchiolitis

Season
Threshold

Low Medium High Very high
2014–2015 >10 9 6 6
2015–2016 7 >10 7 10
2016–2017 7 >10 7 9
2017–2018 5 9 6 8
2018–2019 6 9 >10 6
2019–2020 >10 >10 7 >10
2020–2021 9 - - -
2021–2022 0 5 >10 >12
2022–2023 0 6 >10 4

Influenza

Season
Threshold

Low Medium High Very high
2014–2015 8 3 8 8
2015–2016 >10 >10 10 7
2016–2017 7 6 7 –
2017–2018 5 5 6 8
2018–2019 >10 8 6 9
2019–2020 >10 6 7 –
2020–2021 – – – –
2021–2022 9 5 – –
2022–2023 0 >10 – –

For (top) bronchiolitis and (bottom) influenza diseases.

FIGURE 5

Pearson correlation coefficient among A7 and EPG, for the different lags applied to A7, for (top) influenza and (bottom) bronchiolitis, and the different 
epidemic seasons, each corresponding to a different color.
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3.3 Risk diagrams

To assist the visualization of EPG to better interpret it, we plotted 
the so-called risk diagrams (24) in which we have ρ′5 in front of A7 
and a shaded background in a color scale representing the different 
epidemiological levels defined: dark green for very low or basal level, 
light green for low, yellow for medium, red for high and maroon for 
very high weekly incidence levels. To enhance readability and assist all 
readers, we have incorporated distinct symbols in our presentation. 
We  differentiate between very low and low levels by “*,” low and 
medium levels by a square, medium and high levels by triangles and 
high and very high levels by diamonds. The growth/decrease threshold 
(ρ′5 = 1) is shown as a dotted line. Each dot in the plot depicts an EPG 
value for the corresponding A7 and ρ5 in a certain day, and the dashed 
line joins two consecutive days. The more separated the points, the 
greater the increase or decrease in incidence (horizontal direction) or 
growth rate (vertical direction). The day the epidemic threshold is 
crossed initially is drawn as a blue dot and the final day of the epidemy, 
when we cross that value again, is in red. The x-axes are limited to only 
show A7 incidences above the weekly epidemic threshold. An example 
of risk diagram can be found in Figure 8 but the complete set of risk 
diagrams for all epidemic seasons during the period of study can 
be found in the Supplementary material.

The risk diagrams allow us to anticipate the evolution of an 
epidemic in a very straightforward way. If we  have an influenza 
incidence of 50 cases per 105 inhabitants but we are above the dotted 

line that separates growth from decrease, we expect that the number 
of active cases will continue to increase, following the pattern of the 
last 5 years. On the other hand, if the same incidence is located below 
the dotted line, it will not. Then, the color scale helps us to define 
where we are in the epidemic, whether we are at low (dark and light 
green), medium (yellow) or high (bright and dark red) 
incidence values.

3.4 Surveillance table

To enhance and simplify surveillance of respiratory diseases in 
Catalonia, and facilitate the visualization of the epidemiological 
indicators, we  have developed an automatized control panel, as 
depicted in Figure 9, that displays the weekly incidence rates for the 
previous and current weeks, the growth rates for the previous and 
current weeks, and the EPG. These data are updated daily and the 
weekly incidence rates and growth rates are calculated by grouping the 
reported diagnoses over the last 7 days. In Figure 9 we represented the 
panel at 5th December 2022, when the epidemic of bronchiolitis started 
vanishing and the influenza wave started to increase.

The last three columns present a color scale such that Current 
week growth rate (%) is green if it is lower than the previous week 
one, orange if it is the same and red if it is higher; Semi-empirical 
reproduction number ρ5 is green when below 1, orange if equal to 1, 
and red if greater than 1; and EPG (diagnoses per 100,000 population) 

FIGURE 6

From top to bottom, the daily diagnoses (left) and daily diagnoses per 100,000 population (right, pointed), ρ5 rate and EPG (weekly) infections per 
100,000 population, for influenza.
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is white if the epidemic threshold is not surpassed, dark green if 
we are in very low level, green for low level, yellow for medium 
level, orange for high level and maroon for very high level. In 
Figure 9, we observe that we are in a period where the bronchiolitis 

epidemic is over and we are slowly decreasing incidence, although 
maintained in high incidences, while at the height of the flu 
epidemic, with a high number of infections and moving toward 
greater incidences.

FIGURE 8

Risk diagrams for season 2019–2020 for influenza (left) and bronchiolitis (right). They show ρ′5 with respect to A7 starting from the cyan point and 
finishing at the red point. The background colors correspond to EPG values classified by the epidemic levels. Very low (dark green) and low (light 
green) levels are separated by “*”, low and medium (yellow) levels by a square, medium and high (red) levels by triangles and high and very high 
(maroon) levels by diamonds.

FIGURE 7

From top to bottom, the daily diagnoses (left) and daily diagnoses per 100,000 population (right, pointed), ρ5 rate and EPG (weekly) infections per 
100,000 population, for bronchiolitis.
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4 Discussion

We redefine an epidemic indicator named Effective Potential 
Growth (EPG) that potentially anticipates changes in weekly epidemic 
incidence by 4 to 5 days for bronchiolitis and 6 to 7 days for influenza 
disease. This index, together with a semi-empirical reproduction 
number, the weekly changes in incidences and growth rates, are the 
core of the epidemic surveillance panel we  developed based on 
previous work that showed how this approach could work for 
COVID-19 monitoring (23).

Since the SARS-CoV-2 pandemic, the need for epidemiological 
surveillance of infectious diseases, especially respiratory diseases, 
became evident, as airborne transmission is highly effective (36). 
Several countries already have established publicly available epidemic 
surveillance systems and outbreak risk indicators, such as the USA 
(37), UK (38), Canada (39), Australia (40), and even Spain, in 
particular Catalonia (25). Nonetheless, we have not found any that 
anticipate the evolution of an epidemic wave targeting a general public 
without a strong mathematical background. Mathematical modeling 
of infectious diseases is highly dependent on the quality of the 
epidemiological data available, and requires expertise to produce and 
understand the models’ results and parameters. Even though being the 
most accurate way of forecasting infectious diseases, models can 
be counter intuitive for medical practitioners or policy makers, who 
may require of previous formation in the topic. That is why EPG can 
be a support index for very short-term forecasting, since it shows in 
advance when the different epidemic thresholds will be achieved and 
can anticipate by almost a week the epidemic peak. This information 
is given in incidence terms, which is a common measure of the state 
of a disease in both public health policy and in medical settings. In 
addition, we introduce the visualization of EPG in a risk diagram, 
which can give an illustration of the state of the epidemic in a very 
straightforward manner. Besides, this epidemiological indicator could 
be  introduced in mathematical models to enhance their 
prediction capability.

We have also shown that, with a proper pre-processing of the data, 
and taking into account the weekly differences in reporting, the 
epidemic waves of influenza and bronchiolitis have had clearly defined 
thresholds in the last decade, at least in the Catalan healthcare system. 
These thresholds are particularly robust to different analyses that deal 
with data reporting fluctuations and, even in the case of bronchiolitis 
data, where more artifacts are present, they provide an accurate 
picture of its short-term evolution. Indeed, when the number of 
weekly cases reaches a certain threshold with a certain weekly growth, 
a large wave of cases appears in subsequent weeks systematically. For 
future surveillance, this can be a crucial input to warn the health care 
system a few weeks in advance of the increase in workload.

Certainly, our proposed scheme has some limitations and the EPG 
indicator is more robust for influenza than for bronchiolitis, in 
particular until the medium level threshold. That is due to the 
stochastic nature of bronchiolitis data, as stated before, and because of 
the plateau present in its epidemic waves. Nonetheless, in most cases 
we  are able to anticipate the change in epidemic threshold by 
approximately a week in advance. Another limitation is the simplicity 
of the calculation of the effective reproduction number, which might 
not be  accurately describing the epidemic dynamics. However, is 
within the error that we  accept in exchange for simplicity of 
interpretation, and we observe that it performs adequately. We could 
also use it in an anticipatory way, but this is not the objective of this 
work, since its output is more complex to interpret than that of the 
incidence, which is why we rely on the EPG.

In addition, currently, hospitalizations are not publicly available, 
which restricts us to using only primary healthcare data. With hospital 
admissions, further information could be introduced in our risk panel, 
such as the severity of the infections by a certain disease, including the 
ratio of people admitted to the hospital versus clinical diagnoses in 
primary healthcare, or the percentage of Intensive Care Units (ICUs) 
occupied. From these data, other risk indicators could be designed, 
such as an ICU-increase associated risk indicator. Besides, data on 
mortality could also be a good indicator of the sternness of the disease, 
but these data are not provided in a daily manner in our region. 
Additionally, preprocessing medical records is a hard task and there is 
not a standardized way to do so, yet. The bronchiolitis diagnoses’ 
stochasticity limits both our preprocessing and predictions abilities 
with the disease.

Nevertheless, the availability of centralized databases with 
primary care clinical diagnoses has been enhanced by the pandemic, 
thus providing a rapid way to monitor the evolution of an epidemic. 
The panel of semi-empirical indicators that we have presented can 
be easily incorporated to such databases due to their empirical nature, 
thus becoming a simple and useful tool to help on the management 
and surveillance of such epidemic episodes. Our proposed 
preprocessing methodology allowed us to work with smoother and 
more reliable data and the defined monitoring panel is the only one to 
our knowledge using mostly empirical data to construct forecasting 
indicators, with concept and visualization easy to understand for 
healthcare practitioners and the general public.

Data availability statement
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FIGURE 9

Capture of the risk panel for seasonal epidemics in Catalonia, as of 5th of December 2022.
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Introduction: Mitigating the spread of infectious diseases is of paramount

concern for societal safety, necessitating the development of e�ective

intervention measures. Epidemic simulation is widely used to evaluate the

e�cacy of such measures, but realistic simulation environments are crucial

for meaningful insights. Despite the common use of contact-tracing data

to construct realistic networks, they have inherent limitations. This study

explores reconstructing simulation networks using link prediction methods as

an alternative approach.

Methods: The primary objective of this study is to assess the e�ectiveness

of intervention measures on the reconstructed network, focusing on the 2015

MERS-CoV outbreak in South Korea. Contact-tracing data were acquired, and

simulation networks were reconstructed using the graph autoencoder (GAE)-

based link prediction method. A scale-free (SF) network was employed for

comparison purposes. Epidemic simulations were conducted to evaluate three

intervention strategies: Mass Quarantine (MQ), Isolation, and Isolation combined

with Acquaintance Quarantine (AQ + Isolation).

Results: Simulation results showed that AQ + Isolation was the most e�ective

intervention on the GAE network, resulting in consistent epidemic curves due

to high clustering coe�cients. Conversely, MQ and AQ + Isolation were highly

e�ective on the SF network, attributed to its low clustering coe�cient and

intervention sensitivity. Isolation alone exhibited reduced e�ectiveness. These

findings emphasize the significant impact of network structure on intervention

outcomes and suggest a potential overestimation of e�ectiveness in SF networks.

Additionally, they highlight the complementary use of link prediction methods.

Discussion: This innovative methodology provides inspiration for enhancing

simulation environments in future endeavors. It also o�ers valuable insights

for informing public health decision-making processes, emphasizing the

importance of realistic simulation environments and the potential of link

prediction methods.
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MERS-CoV, link prediction, network-based models, interventions, graph autoencoder
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1 Introduction

The spread of infectious diseases is an issue of paramount

societal significance. As evidenced by the profound impact of

the recent COVID-19 pandemic, the failure to effectively prevent

or mitigate disease transmission can result in substantial social

and economic costs. Therefore, it is imperative for the safety

of society to uncover the fundamental mechanisms underlying

infectious diseases and devise preventive measures accordingly.

Collaborative efforts across various academic disciplines have been

directed toward this goal. Insights from fields such as medicine,

pharmacy, biology, engineering and sciences, and even social

sciences play a crucial role in enhancing our understanding

of disease transmission dynamics. Of particular importance is

understanding how individuals engage in physical interactions, as

disease transmission is intricately linked to the types and patterns

of human contacts. Consequently, there have been concerted efforts

to quantitatively describe and analyze human contacts within the

context of disease transmission. One of the representatives has

been network models (1, 2). Infected cases and their contacts were

represented as nodes and links, respectively, on a network, and

the network was analyzed to obtain insights into the transmission

process (3, 4). In addition, a network can offer an environment

for epidemic simulations, allowing for the acquisition of new

knowledge not possible with compartmental model simulations (5).

Contact-tracing data can be conducive to generating environments

for epidemic simulations. The transmission dynamics of a network

highly depends on the network structure, and networks generated

based on real human behaviors can provide opportunities to build

more realistic models of transmission dynamics in the literature (6–

9) than the theoretical models of networks such as random (10, 11),

small-world (12, 13), and scale-free (SF) (14, 15) networks.

However, using empirical contact-tracing data for epidemic

simulation has limitations (16, 17). One theoretical limitation arises

from the fact that individuals have numerous social relationships,

but only a portion of these relationships result in actual contacts

in practice. In other words, the contacts that individuals make

represent only a subset of the many possibilities within their

social connections. When conducting simulations, we essentially

explore artificial scenarios where social relationships could have

played out differently from the real world. Therefore, the network

environments used in simulations should reflect the range of

possibilities within these relationships, rather than replicating a

single, actual realization. Conducting simulations on a contact-

tracing network may involve exploring artificial scenarios based

on a specific realization, which can pose logical challenges.

Another limitation is of an empirical nature. Real-world data,

including contact-tracing data, are inherently affected by noise.

Contact information can be collected through various means,

such as self-reports, cell phone location tracking, or third-party

observations. However, noise originating from human errors or

technical inaccuracies can result in missing nodes or links within

contact-tracing networks. This missing or inaccurate data can

affect the reliability and accuracy of simulations that rely on

such data. Therefore, using empirical contact-tracing data for

epidemic simulations has limitations related to both theoretical

considerations, where simulations explore artificial scenarios based

on partial realizations, and empirical issues, including noise and

missing data inherent in real-world contact-tracing information.

Researchers and modelers need to be aware of these limitations

and consider them when using such data for epidemiological

simulations.

The aforementioned limitations can be complemented by

network reconstruction (18). Network reconstruction entails

generating a network from another network that has missing or

spurious links in its observed status (19). It can be considered as

correcting errors in network data because the observed network

topology is compared with the theoretical models of network

evolution (20). Among many, link prediction (LP) is a promising

network reconstruction technique (21–23). LP entails estimating

the probability of connecting two nodes that are currently not

connected based on the linkage patterns and node features. Several

techniques, including matrix factorization, the stochastic block

model (24), DeepWalk (25), node2vec (26), and LINE (27), have

been used for LP. Recently, advanced techniques in graph neural

networks (GNNs) have been actively employed for LP, and the

prediction accuracy has been significantly improved in various

domains. Since the notion of GNN was initially devised (28),

various learning models in the graph domain have been developed

(29–31). Convolutional neural networks in the computer vision

domain have been redefined for graph data and developed in

parallel as convolutional GNNs (ConvGNNs) (29, 30). Recent

studies have increased the capabilities and expressive power of

ConvGNNs in various practical applications, such as antibacterial

discovery (31), fake news detection (32), traffic prediction (33), and

recommendation systems (34).

Based on the above considerations, in this study, we reconstruct

networks from real-world contact-tracing data and perform

epidemic simulations on them. In particular, we examine how

the network structure impacts the transmission dynamics and the

effectiveness of intervention strategies. As a case study, we consider

the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

transmission in South Korea, 2015. Most existing studies onMERS-

CoV focused on its epidemic characteristics and demonstrated its

super-spreading events (35–37). Some other studies analyzed the

contact-tracing data, but their networks were confined only to

confirmed cases (38, 39), single hospitals (40), or regions without

large-scale outbreaks (41). Thus, their contact networks were of

limited use for epidemic simulations. Another study extracted

the parameter of an SF network from MERS-CoV contact-tracing

data and generated a simulation environment with it, but the

contact network itself was not used for simulation (42). In this

study, we construct simulation environments using reconstructed

networks and examine the dynamics of the epidemic within these

environments. Simulation involves utilizing a network generated

through graph autoencoder-based link prediction (GAE network),

and a scale-free (SF) network is employed for comparative

analysis. Then, we conduct epidemic simulations to assess

three intervention strategies: Mass Quarantine (MQ), Isolation,

and Isolation combined with Acquaintance Quarantine (AQ +

Isolation).

The remainder of this article is organized as follows. Section

2 introduces the empirical contact network of the 2015 MERS-

CoV transmission in South Korea and demonstrates the network

reconstruction for simulation environments. Section 3 presents

the simulation procedure, and Section 4 describes the simulation

Frontiers in PublicHealth 02 frontiersin.org69

https://doi.org/10.3389/fpubh.2024.1386495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2024.1386495

results. The implications, and limitations of this study are discussed

in Section 5. Finally, the conclusions are given in Section 6.

2 Materials and methods

2.1 Reconstructing the empirical contact
network by link prediction

2.1.1 Empirical contact network
The data for the 2015 MERS-CoV outbreak was obtained

from the websites of the Korea Centers for Disease Control and

Prevention (KCDC) and the Ministry of Health and Welfare of

South Korea (43). These data included information on confirmed

cases and their contacts. A network was created from this

information, which consisted of 33,093 nodes and 33,090 links, with

186 confirmed cases represented as red nodes and the individuals

who had close or casual contact with them represented as blue

nodes. Figure 1 shows this contact network.

2.1.2 Link prediction using graph autoencoder
The generated contact network lacks some links between nodes

due to some missing information in the data. Thus, the contact

network was reconstructed by LP using a graph autoencoder.

The graph autoencoder is a neural network model for learning

interpretable latent representations of graph-structured data based

on an autoencoder (44). In the graph autoencoder framework for

LP, the encoder employs a graph convolutional network (GCN)

incorporating node features for the latent embedding of each node.

Then, the decoder computes the distance between two nodes in

the given node embeddings, from which the occurrence of an edge

between the two nodes is predicted (see Figure 2 for the model

architecture).

Formally, for a graphG = (V ,E) defined by a set of nodeV and

a set of edges E between nodes, the encoder maps nodes v ∈ V with

node features xv ∈ R
n to latent embedding vectors zv ∈ R

d with

Equation (1):

ENC :V × R
n
→ R

d

(v, xv) 7→ zv.
(1)

Employing the decoder for a pair of node embeddings (zu, zv)

will estimate a graph-structured similarity score S[u, v] between

nodes u and v. The objective of the encoder and decoder is to

minimize the reconstruction loss such that Equation (2),

DEC(ENC(u),ENC(v)) = DEC(zu, zv) ≈ S[u, v]. (2)

For LP, the similarity score between nodes can be considered as

representing whether nodes are neighbors or not; this means that

node embeddings zu and zv are close in the embedding space if they

are linked. The links in the contact network stand for the contact

from confirmed cases to other individuals, and individuals in the

same cluster may have more contacts with each other than with

those in other clusters (the visualization of the contact network in

Figure 1 shows the cluster structure). Thus, the cluster, as well as

infection status, was used as node features to predict links between

nodes using a graph autoencoder. A label propagation algorithm

(45) was used for cluster analysis on the contact network, and 61

clusters were detected.

Our GCN model for the encoder has two graph convolution

layers with a 256-dim hidden layer and 128-dim latent embedding

space. A simple inner product was used for the decoder, which

could provide a score as the probability of internode link

occurrence, and the sigmoid function was used as the activation

function. The model was trained for 500 iterations using an Adam

optimizer with a learning rate of 0.005. The reconstructed networks

were obtained from the ensemble of 10 trained models. Next, two

types of networks were generated. First, a pair of nodes whose

similarity score was >0.995 was connected by links; we name this

network GAE. Second, as an extended version, a pair of nodes

whose similarity score was >0.95 (lower than that of GAE) was

connected by links; we name this network GAE_ex as we extend

GAE. A similarity score of 0.95 was selected to attain a 99.99%

accuracy in recovering existing links. Reducing the similarity score

further did not lead to a significant improvement in accuracy. A

score of 0.995 was employed for 0.95 networks when they were

deemed excessively large (almost twice larger in edges). Increasing

the similarity score results in the prediction of additional links.

When viewed as a generative model for situations where the

original contact network is unavailable, it becomes essential to

generate a network of an appropriate scale for practical use.

We validate the accuracy of our graph encoder model in

generating results that closely match the actual contact network.

It is worth noting that GAE_ex, generated by our graph encoder

model, reconstructs the contact network with an accuracy of

99.99% (missing only three edges out of the existing 33,090

edges) and generates 211,778 new possible edges. Similarly, GAE

reconstructs the contact network with an accuracy of 98.92%

(missing 359 edges out of the existing 33,090 edges) and generates

111,536 new possible edges. Subsequently, both GAE_ex and

GAE are finalized by adding missing edges, likely aiming to

enhance the completeness of the reconstructed networks. Both

GAE_ex and GAE demonstrate effectiveness in reconstructing the

contact network, with GAE_ex achieving slightly higher accuracy in

capturing existing edges, while GAE generates fewer new possible

edges. Therefore, we have selected these two networks for our

simulation network.

2.1.3 Properties of reconstructed networks
In this section, we analyzed the characteristics of the networks

reconstructed using the graph autoencoder before running the

simulations. We opted for the scale-free network for comparative

purposes. By conducting simulations on both types of networks,

we aimed to illustrate the differences in disease spread within the

reconstructed networks compared to the well-understood scale-

free network. We chose the scale-free network because it has been

more commonly employed in the literature than other models,

such as the random-network model, making it more suitable for

meaningful comparisons. First, we fitted the degree distribution of

the GAE network to the power-law distribution, and found that

the scale parameter was 2.19. We then used this parameter to

Frontiers in PublicHealth 03 frontiersin.org70

https://doi.org/10.3389/fpubh.2024.1386495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2024.1386495

FIGURE 1

The empirical contact network of the 2015 MERS-CoV transmission in South Korea. The red and blue nodes denote 186 confirmed cases and their

contact nodes (a total of 33,093), respectively.

FIGURE 2

The model architecture of a graph autoencoder.

generate a scale-free network using the configuration model (46).

The main properties of the scale-free, GAE, and GAE_ex networks

are outlined in Tables 1, 2 and Figures 3, 4.

We compare the properties of networks generated using a

graph autoencoder (GAE), an extended version of the GAE

(GAE_ex), and a scale-free (SF) model. The average degree of

GAE_ex is found to be significantly greater than that of GAE and

SF in Table 1. All three networks have similar degree distributions,

with few nodes having much greater degrees than others as

shown in Figure 3A. GAE and GAE_ex have higher average

clustering coefficients than SF, indicating that the reconstructed

networks have a highly clustered structure similar to those found in

real-world social networks (47). Additionally, while SF hadmultiple

disconnected components (a total of 44 connected components),
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TABLE 1 Basic characteristics of two reconstructed contact networks and scale-free (SF) network.

Nodes Edges Avg.
degree

Connected
components

Avg. shortest
path length

Avg. clustering
coe�cient

SF 31,091 132,372 8.5151 44 3.3481 0.1037

GAE 33,093 144,626 8.7406 1 3.4727 0.4825

GAE_ex 33,093 244,868 14.7988 1 3.3386 0.7275

TABLE 2 Comparison of centrality indexes among two reconstructed contact networks and scale-free (SF) network.

Degree centrality Closeness centrality Betweenness centrality Eigenvector centrality

Avg. Cent(%) Avg. Cent(%) Avg. Cent(%) Avg. Cent(%)

SF 0.000274 17.6450 0.301515 42.8943 0.000075 4.91e-8 0.002145 46.0836

GAE 0.000264 25.4405 0.291004 37.7405 0.000075 6.87e-8 0.002006 29.8501

GAE_ex 0.000447 25.4282 0.301885 37.0357 0.000071 3.01e-8 0.002044 22.4648

FIGURE 3

Basic characteristics of two reconstructed contact networks and scale-free (SF) network. (A) Degree distributions, (B) distribution of shortest path

lengths, (C) clustering coe�cient distributions per degree, and (D) clustering coe�cient distributions.
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FIGURE 4

Distributions of centrality indexes of two reconstructed contact networks and scale-free (SF) network. (A) Degree centrality distribution, (B) closeness

centrality distribution, (C) betweenness centrality distribution, and (D) Eigenvector centrality distribution.

GAE and GAE_ex were fully connected. The average shortest

path length for all three networks is short (see Figure 3B and

Table 1), making them small-world networks. However, SF is found

to have a larger diameter than GAE and GAE_ex, indicating

that some pairs of nodes in SF are connected by larger hops.

The reconstructed networks, GAE and GAE_ex, exhibit greater

variation in the average clustering coefficients per degree when

compared to the SF network (as shown in Figures 3C, D). This

suggests that the connections among the neighbors of nodes with

similar degrees are more varied in GAE and GAE_ex than in

SF. Additionally, even though the average degrees of GAE and

SF are similar, their distributions of average clustering coefficients

differ.

Furthermore, Table 2 and Figure 4 present average centrality

and centralization index using four different centrality measures

in the three networks. Average centrality reflects the characteristics

of each node in the network, while the centralization index

assesses the distribution of centrality. A higher centralization

index suggests a more centralized network, while a lower index

indicates a more evenly distributed centrality (see distributions of

centrality in Figure 4). Specifically, the average degree centrality

for GAE_ex is 0.00044, which is twice as high as that of the

GAE and SF networks presented in Table 2. This indicates that,

on average, nodes in the GAE_ex network have approximately

twice as many connections compared to nodes in the GAE and

SF networks. For the other three centrality measures, there are

no significant differences between the SF and GAE networks.

Closeness centrality, which measures how well-connected a node

is to all other nodes, shows similar low values in both networks.

Eigenvector centrality, indicating the level of influence of nodes

within their respective networks, is similar for nodes in both

networks, and it suggests a relatively low level of influence

on average. Betweenness centrality, which assesses the role of

nodes as intermediaries or bridges between others, also shows

similar low values for nodes in both the SF and GAE networks,

indicating a limited intermediary role on average. In summary,

the analysis of these centrality measures suggests that while the

average degree centrality differs significantly between GAE_ex and

the other networks, the other three centrality measures (closeness,

eigenvector, and betweenness centrality) do not reveal significant

distinctions between the SF and GAE networks. This implies that,

in terms of these specific centrality metrics, the networks share
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similarities in how nodes are connected and their roles within the

network.

2.2 Simulation model

We employed agent-based simulations on the generated

networks as reported in Kim et al. (42). The simulations were

based on the SEIR model, where each agent (node) was assigned

one of four epidemiological statuses: susceptible (S), exposed (E),

infected (I), and recovered (R). The simulation assumed that when

a susceptible agent comes into contact with an exposed or infected

agent, it has a probability of becoming infected with a transmission

rate of β with below Equation (3):

β = 1− (1− β0)
n (3)

In the simulations, an infection was generated when a

susceptible individual came into contact with an exposed or

infected individual, with a transmission probability determined by

the transmission rate constant, β given above. The transmission

rate was modeled as a function of the number of neighbors in the

network and a baseline transmission constant, β0. The simulations

also accounted for the incubation and infectious periods, which

were modeled as gamma probability density functions with means

of 1/κ and 1/γ days and standard deviations of σκ and σγ days,

respectively. The parameters used in the model were estimated

from confirmed cases data from the Korean Centers for Disease

Control and Prevention (KCDC) (43) and are listed in Table 3.

At the initialization phase of each simulation run, all agents,

except an index case (the first infected agent), are set to be S status,

and the predetermined index case is set to be I status. The index

case is selected among the agents (nodes) with a sufficient number

of links; an outbreak does not occur when the index agent is too far

from the hub (when a node with a small degree is selected as the

index case). Based on the preliminary experiments, the threshold

of degree for selecting an index case was set to 100. The number of

agents with more than 100◦ was 232 (out of 31,901) in SF, 80 (out

of 33,093) in GAE, and 109 (out of 33,093) in GAE_ex; the index

case for each simulation run is randomly chosen among them.

The intervention strategies in our research were developed

based on an extensive review of existing literature on mathematical

models of disease transmission (48–51). Previous studies have

incorporated a variety of intervention measures into their models,

with a specific focus on social distancing as a key strategy.

Social distancing aims to reduce the chances of contact between

individuals and has been a major topic of research in disease

modeling (52, 53). In our study, we initially emphasized the

“Mass Quarantine” strategy, which involves quarantining a certain

percentage of the population (53). This strategy serves as an

abstraction of real-world measures that restrict social activities,

such as store closures and changes in public transportation

operations.We selected a parameter of 10% for this strategy, guided

by prior research (54).

We also introduced an “Isolation” strategy, which isolates

individuals who have tested positive for the infection. This

approach is conceptually similar to targeted social distancing, as

TABLE 3 Model parameters and their values.

Parameter Description Value References

S Susceptible

individual

– –

E Exposed individual – –

I Infected individual – –

R Recovered

individual

– –

N Total population

size

31,091 –

T Total simulation

time

100 day –

β0 Background

transmission

constant

0.002 Estimated

n A number of

infected neighbors

– –

β Transmission rate β =

1− (1− β0)
n

(42)

1/κ Mean incubation

period

8.7 (42)

σκ Standard deviation

of the incubation

period

16 (42)

1/γ Mean infectious

period

21 (42)

σγ Standard deviation

of the infectious

period

76 (42)

it specifically targets infected individuals (52). While it may seem

unrealistic to isolate all infected individuals, it was observed during

the 2015 MERS-CoV outbreak and the early stages of the COVID-

19 pandemic in South Korea, where infected individuals voluntarily

isolated at home or were hospitalized under government guidance.

Implicitly, the first two strategies were included for the purpose

of comparison to assess the effectiveness of our third strategy:

“Isolation and Acquaintance Quarantine (AQ + Isolation).” This

approach involves quarantining individuals who have had close

and effective contact with infectious individuals. We selected a

parameter of 50% for this strategy, informed by previous research

findings.

These intervention strategies are central to our study, allowing

us to evaluate and compare their effectiveness in controlling disease

spread. Specifically, the following three intervention strategies were

investigated in terms of their effectiveness. Mass Quarantine (MQ):

quarantining 10% of randomly chosen agents from S and E statuses;

Isolation: isolating all agents from I status; and Isolation combined

with Acquaintance Quarantine (AQ + Isolation): isolating all

confirmed cases (individuals from I status) and quarantining 50%

of randomly chosen agents from all agents who had effective

contact with infected individuals. The intervention began on day

10 in each simulation run. Owing to the stochastic nature of agent-

based models, all simulations were run 1,000 times, and their

epidemic outputs were obtained.
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FIGURE 5

Daily incidences on three contact networks: (A) scale-free (SF), (B) GAE, and (C) GAE_ex [for each plot, 50 realizations of incidence are displayed with

the mean (black curve). Each row shows the results for four distinct intervention strategies; top rows with a much larger peak size are the results with

no intervention].

3 Results

3.1 The impacts of intervention strategies
and di�erent network structure

In this section, we investigate the impact of different network

structures and intervention strategies on epidemic outputs. First,

we present epidemic curves of MERS-CoV transmission dynamics:

daily incidence in Figure 5 and cumulative incidence in Figure 6.

The columns of the figures show the dynamics of three network

structures: (a) SF (green), (b) GAE (blue), and (c) GAE_ex (red).

Meanwhile, the rows show the dynamics for four intervention

scenarios: No intervention, MQ, Isolation, and AQ + Isolation.

Owing to the stochastic nature of our agent-based epidemic

model, each result displays 50 realizations with the mean (black

curve).

The first row of Figure 5 shows the impact of different network

structures in the absence of interventions; it indicates that the

outbreak gets worse in the order of SF, GAE, and GAE_ex, the

peak size gets larger in that order (around 100, 200, and 300,

respectively), and the peak time occurs earlier in GAE and GAE_ex

(around day 30) than in SF (around day 60), attributable to the

shortest path length (see Figure 3B). In addition, larger variances

in the epidemic curve are observed in GAE (blue) and GAE_ex

(red) than in SF (green), attributable to the larger variance in degree

distributions and their clustering coefficients (Figures 3A, C).

Next, the impact of the three intervention strategies is shown

from the second to the last rows in Figure 5, which indicates that
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FIGURE 6

Cumulative incidences on three contact networks: (A) scale-free (SF), (B) GAE, and (C) GAE_ex [for each plot, 50 realizations of incidence are

displayed with the mean (black curve). Each row shows the results for four distinct intervention strategies; top rows with a much larger peak size are

the results with no intervention].

the daily incidence gets larger in the order of SF, GAE, and GAE_ex

for all intervention strategies. In addition, from the second row,

MQ reduced incidence in SF much more dramatically than in GAE

and GAE_ex, attributable to the average and variance of clustering

coefficients being much smaller in SF than in GAE and GAE_ex

[recall that the average clustering coefficient is 0.1037, 0.4825,

and 0.7275 for SF, GAE, and GAE_ex, respectively (Table 1), and

see variances in Figure 3C]. Further, these results suggest that the

most effective intervention is AQ + Isolation in all three network

structures (see the bottom panels), with the earliest peak time and

smallest peak size in all three networks. Besides, for AQ + Isolation,

the most dramatic reduction of incidence was observed in SF than

in GAE and GAE_ex. Isolation is the least effective in all network

structures because only infected individuals are isolated without

any contact-tracing and quarantine. The effectiveness of the three

interventions is further described in Figure 7.

The results in Figure 6 show that, as in daily incidence in

Figure 5, the variances of the cumulative incidences were larger in

GAE andGAE_ex than in SF regardless of the intervention strategy;

the 50 realization curves are less centered around the black mean

curve in GAE and GAE_ex than in SF. Notably, for Isolation, the 50

realization curves generated bimodal results in GAE and GAE_ex:

the black mean curves are placed between high and low cumulative

incidences. These detailed epidemic outputs are further explored in

the next subsection.

Finally, the incidence dynamics are compared with actual

MERS-CoV incidence data and the number of quarantined

individuals in the simulations. Figure 7 shows the averaged
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FIGURE 7

Daily incidences displayed with MERS-CoV data in vertical bar (top row), and the corresponding daily quarantined individuals (bottom row). (A) Mass

Quarantine (MQ), (B) Isolation, and (C) Acquaintance Quarantine (AQ) + Isolation.

FIGURE 8

Cumulative infected (top row) and quarantined individuals (bottom row) under di�erent intervention scenarios and on di�erent networks (for each

intervention, the result of 1,000 runs is shown). (A) SF, (B) GAE, and (C) GAE_ex.
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FIGURE 9

Peak size (top row), peak time (middle row), and epidemic duration (bottom row) under di�erent intervention scenarios and on di�erent networks

(for each intervention, the result of 1,000 runs is shown). (A) SF, (B) GAE, and (C) GAE_ex.

dynamics (mean of 1,000 realizations) of incidences on the three

networks with actual MERS-CoV incidence data (histogram) at

the top panels and the number of quarantined individuals at the

bottom panels. Each column in the figure shows the results for

the MQ, Isolation, and AQ + Isolation intervention strategies. The

results in the figure suggest that MQ requires the maximum level

of quarantine at the beginning for all three networks. In addition,

although a similar number of individuals are quarantined under all

networks, MQ is the most effective strategy for SF than GAE and

GAE_ex (see green curves). Obviously, AQ + Isolation is the most

effective intervention strategy for incidence reduction in all three

networks (see the epidemic curves in the top panel). This strategy

combines contact-tracing with quarantine; thus, much fewer people

than in the MQ intervention are quarantined but much fewer

people are infected.

3.2 The impacts of three network on
various epidemic outputs

In this subsection, the mean, median, and distributions of 1,000

simulation runs are summarized in terms of five epidemic outputs.

The final size (cumulative incidence) and the total number of

quarantined individuals for each network structure for different

intervention strategies are presented in Figure 8. In addition, the

peak size, peak time, and epidemic duration are summarized in

Figure 9.

Figure 8 shows that the final size gets larger in the order of SF,

GAE, and GAE_ex. Notably, the variances are smaller in SF than

in GAE and GAE_ex. In addition, there are weak bi-modes in GAE

andGAE_ex. For instance, for No intervention, SF showsmean and

median of around 5,000, respectively, with a very small variance.
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FIGURE 10

Distributions of secondary cases under di�erent intervention scenarios and on di�erent networks.

Meanwhile, GAE shows median and mean around 6,000 and 4,000,

respectively (most of the results are around 6,000 and some are

around 100), and GAE_ex shows median and mean around 9,000

and 8,000, respectively (most of the results are around 9,000 and

some are around 100). The impacts of the three intervention

strategies are distinct on the final size distributions. Again, there

is a very small variance in SF and weak bi-modes in GAE and

GAE_ex, which can be explained by the distributions of index cases

and clustering coefficients (Figure 3D).

Comparing the effectiveness of MQ and AQ + Isolation, both

intervention strategies dramatically reduced the final size in SF

(the first panel at the top row of Figure 8). However, the total

quarantine size significantly differed; MQ quarantined around

25,000 individuals, whereas AQ + Isolation quarantined only

2,000 individuals (the first panel at the bottom row of Figure 8).

Thus, AQ + Isolation can be a more effective strategy than

MQ in SF. This is also the case in GAE and GAE_ex because

similar patterns are observed. Although the means of cumulative

quarantined individuals are similar in all three networks, the overall

effectiveness of SF and GAE are quite different.

In Figure 9, the impacts of intervention strategies on different

networks are compared in terms of the peak size, peak time, and

epidemic duration. The results in the first row show that the peak

size is the largest under No intervention and the second largest

for Isolation in all networks. AQ + Isolation shows the smallest

peak size in all networks. Peak size manifested a small variance
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FIGURE 11

Log-log plots of distributions of secondary cases in Figure 10. (A) SF, (B) GAE, and (C) GAE_ex.

in SF and weak bi-modes in GAE and GAE_ex, as the final size

did in Figure 8; the mean and median are almost the same in SF,

whereas they are quite different in GAE and GAE_ex. The results

in the second row show that the mean and median of peak time

distributions for all intervention strategies are very similar in GAE

and GAE_ex. In addition, the mean, and median of SF are in

the order of No intervention, Isolation, MQ, and AQ + Isolation,

attributable to the shortest path (Figure 3B). The results in the third

row suggest that the impacts of interventions are very different

among networks. Under No intervention, outbreaks lasted about

180 days in SFwith a very small variance. However, outbreaks lasted

about 150 days in GAE and GAE_ex with very large variances.

Notably, epidemic duration is longer for Isolation than for the other

two intervention strategies in SF.

Finally, we investigate the impacts of the three intervention

strategies on the distributions of secondary cases in each network

structure. The mean distribution of 1,000 simulation runs is

presented in Figure 10. An outbreak can be considered a super-

spreading event when its distribution of secondary cases exhibits

a large degree of heterogeneity. Each panel illustrates the type of

intervention strategy and the maximum number of secondary cases

by a single infected individual (denoted by Max). In fact, during

the MERS-CoV outbreak in South Korea in 2015, a single patient

infected 79 other individuals, referred to as a super-spreader (42).

The results in Figure 10 suggest that Isolation is the least effective

strategy to prevent super-spreading events on all networks. For

instance, Max = 57 in SF, which is worse thanMax = 38 in GAE and

GAE_ex. AQ + Isolation showed the lowest level of heterogeneity

in the secondary cases, with Max of 22, 26, and 24 in SF, GAE,

and GAE_ex, respectively. Furthermore, Figure 11 provides a log–

log representation of Figure 10, allowing for a comparison of the

secondary cases for three interventions across various network

configurations. This analysis verifies that Isolation alone (depicted

by the red curves) consistently yields the highest values, signifying

its limited effectiveness, while AQ + Isolation (indicated by the

yellow curves) consistently exhibits the lowest values, highlighting

its superior effectiveness across all network structures.

4 Discussions

We have employed an innovative graph autoencoder technique

to recreate the contact network using real-world contact-tracing

data. This marks the first utilization of such an approach for

reconstructing networks based on contact-tracing data derived

from the 2015MERS-CoV outbreak in South Korea. We conducted

a comparative analysis between the reconstructed networks and

a scale-free network (SF) concerning the effectiveness of various

intervention strategies. Furthermore, we explored the influence

of network structure on epidemic outcomes, including peak size,

final size, incidence, and cumulative incidence. The study’s findings

revealed that the severity of outbreaks followed the order of

SF, GAE, and GAE_ex. Moreover, GAE and GAE_ex exhibited

higher variances in both incidence and cumulative incidence

compared to SF.

We also evaluated the impact of different intervention

strategies, such as mass quarantine (MQ) and acquaintance

quarantine (AQ) + isolation, on epidemic outputs in simulations

on different networks. First, the results showed that MQ was

found to be an equally effective strategy as AQ + isolation in the

SF network. However, the study found that although the average

shortest paths were similar in the three networks, the SF network

was less influenced by hub nodes and had a wider distribution

of shortest paths. We found that the effectiveness of MQ and

AQ+Isolation in the SF network was excessively good, which is

attributed to the low clustering coefficient of SF. The low clustering

coefficient means that the SF network is less dense, which makes it

more sensitive to interventions like MQ and AQ+Isolation.

Moreover, isolation was the least effective strategy in SF. This is

due to the shortest path length and isolation of confirmed cases only
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which do not take pre-symptomatic cases into account. The Scale-

free network is a type of network structure that is often used to

model the spread of infectious diseases with a long tail distribution.

This means that a small number of individuals (referred to

as “super-spreaders”) are responsible for a large proportion of

transmission. However, it has been found that this structure can

lead to over estimations of the impact of interventions, as they may

not be able to effectively target the super-spreaders.

It is important to note that the peak time of the outbreaks

in the GAE and GAE_ex networks did not differ significantly

when comparing the results of no intervention to those of the

various intervention strategies. This is because the high clustering

coefficients in GAE and GAE_ex lead to similar peak times.

This is because nodes with low clustering coefficients do not

typically experience outbreaks, while outbreaks are likely to occur

in nodes with high clustering coefficients. Thus, outbreaks in GAE

and GAE_ex spread uniformly throughout the network, which is

different from the SF network, where the clustering coefficients

and shortest path lengths are different. This trend is due to

the unique characteristics of the GAE and GAE_ex networks,

which are more similar to the contact networks found in hospital

settings, specifically, emergency rooms in South Korea, and have

higher clustering coefficients which implies higher density in most

emergency rooms of hospitals in South Korea (55).

This study has several limitations worth noting. Firstly, it

does not comprehensively explore the influence of index cases

on the outbreak of the epidemic. In our simulations, index cases

were randomly chosen from nodes with a sufficient number

of connections. However, selecting super-spreaders identified

in the contact-tracing data as index cases might produce

different outcomes. Additionally, we refrained from conducting

comparisons with other reconstruction methods. Analyzing our

graph auto encoder approach alongside alternative link prediction

models like Exponential Random Graph Model (ERGM) (56)

and Bayesian statistical models (57) might have provided valuable

insights into the effectiveness of our model. Furthermore, our study

highlights a high clustering coefficient in the reconstructed network

due to the concentrated distribution of emergency rooms in South

Korea. This observation may not be applicable to other regions.

Additionally, since our study utilized contact-tracing data from

the 2015 MERS-CoV outbreak in South Korea, the generalizability

of our findings is limited. Utilizing contact-tracing data from

other outbreaks could lead to more universally applicable results.

Moreover, future research could explore the impact of population

mobility, as it is widely recognized that mobility plays a significant

role in disease transmission (58). Incorporating mobility into

simulation models could offer valuable insights.

5 Conclusions

We employed an innovative graph autoencoder technique to

reconstruct the contact network using real-world contact-tracing

data. This marks the first instance of utilizing such an approach to

reconstruct networks based on contact-tracing data from the 2015

MERS-CoV outbreak in South Korea, which were subsequently

employed in epidemic simulations. Our investigation focused on

five key epidemic outcomes, conducting a comparative analysis

of various network structures and intervention strategies. Our

findings underscore the significant impact of network structures

on epidemic outcomes, emphasizing the variable effectiveness of

intervention strategies across different contexts. These findings

carry significant implications for tailoring precise intervention

measures in response to disease outbreaks.

Our results reveal substantial differences in the impacts

of various network structures on epidemic outputs: outbreaks

were more extensive in the scale-free network, a widely used

theoretical model for epidemic simulation, compared to the

reconstructed network generated by the link prediction method.

Consequently, the effectiveness of intervention strategies can vary

depending on the network structure: intervention measures on

the reconstructed network were found to be less effective than

those on the scale-free network. These results suggest a potential

overestimation of intervention impact in scale-free networks, while

our reconstructed network offers a more realistic assessment of

intervention effectiveness. In this study, we opted for a scale-free

network structure due to its suitability for meaningful comparisons

compared to other models such as random networks. However, it

is crucial to acknowledge the limitations associated with scale-free

networks, as discussed earlier. Thus, to account for potential biases

in our analysis, we emphasize the importance of recognizing the

increased risk of overestimation when utilizing scale-free networks,

as their structure may influence intervention outcomes. Therefore,

the consideration of networks constructed through alternative

methods, such as small-world networks or spatial networks, may

introduce variability in the results (1, 14).

The utilization of networks reconstructed through link

prediction methods proves to be a valuable asset for conducting

epidemic simulations. In the specific context of the 2015 MERS-

CoV outbreak in South Korea, this study leveraged this approach

to reconstruct the contact-tracing network, aiming to evaluate

the effectiveness of intervention strategies. We anticipate that this

innovative methodology will inspire future endeavors aimed at

enhancing simulation environments, providing valuable insights

to guide the decisions of public health authorities. Moreover, it

has the potential to stimulate further research to enhance the

realism of simulation environments through data-driven network

reconstruction methods.
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Enhancing mass vaccination 
programs with queueing theory 
and spatial optimization
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Background: Mass vaccination is a cornerstone of public health emergency 
preparedness and response. However, injudicious placement of vaccination sites 
can lead to the formation of long waiting lines or queues, which discourages 
individuals from waiting to be  vaccinated and may thus jeopardize the 
achievement of public health targets. Queueing theory offers a framework for 
modeling queue formation at vaccination sites and its effect on vaccine uptake.

Methods: We developed an algorithm that integrates queueing theory within a 
spatial optimization framework to optimize the placement of mass vaccination 
sites. The algorithm was built and tested using data from a mass dog rabies 
vaccination campaign in Arequipa, Peru. We  compared expected vaccination 
coverage and losses from queueing (i.e., attrition) for sites optimized with our 
queue-conscious algorithm to those used in a previous vaccination campaign, 
as well as to sites obtained from a queue-naïve version of the same algorithm.

Results: Sites placed by the queue-conscious algorithm resulted in 9–32% less 
attrition and 11–12% higher vaccination coverage compared to previously used 
sites and 9–19% less attrition and 1–2% higher vaccination coverage compared 
to sites placed by the queue-naïve algorithm. Compared to the queue-naïve 
algorithm, the queue-conscious algorithm placed more sites in densely 
populated areas to offset high arrival volumes, thereby reducing losses due 
to excessive queueing. These results were not sensitive to misspecification of 
queueing parameters or relaxation of the constant arrival rate assumption.

Conclusion: One should consider losses from queueing to optimally place mass 
vaccination sites, even when empirically derived queueing parameters are not 
available. Due to the negative impacts of excessive wait times on participant 
satisfaction, reducing queueing attrition is also expected to yield downstream 
benefits and improve vaccination coverage in subsequent mass vaccination 
campaigns.

KEYWORDS

mass vaccination, One Health, queueing theory, rabies, spatial optimization, zoonosis, 
emergency preparedness, facility location
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1 Introduction

The expeditious and equitable distribution of vaccinations and 
other health services is a cornerstone of public health emergency 
preparedness. Queues, or waiting lines, result from scarce or 
misallocated resources and volatility in traffic and service patterns; 
they can hinder the delivery of critical services and thereby jeopardize 
the achievement of public health targets. Not only can long queues 
deter people from waiting to receive essential health services, they can 
erode individuals’ trust in health systems in certain contexts (1, 2) and 
can thus discourage participation in future programs. Long wait times 
was a major structural barrier to testing for COVID-19 during the 
early phase of the pandemic (3), and poor planning in some 
jurisdictions resulted in people waiting hours at some mass COVID-19 
vaccination sites (4–6). Moreover, excessive queueing during 
pandemic emergencies also poses health risks, as long wait times may 
increase exposure to infectious pathogens (7), underscoring the need 
for safe and efficiently managed healthcare settings (8, 9).

Queueing theory is a branch of applied mathematics that offers 
a valuable framework for studying the behaviors and effects of 
waiting lines or queues (10). In brief, queueing models aim to 
capture how a customer population moves through a queueing 
system via a series of processes dictated by probabilistic rates: 
arriving at a service site, receiving service, waiting in a queue if the 
server is busy, or leaving the queue before service is rendered when 
waiting times exceed a customer’s willingness to wait. Queueing 
theory is foundational to operations research and has been applied 
to many facets of healthcare operations, including the triage process 
in emergency care departments (11), staffing needs in operating 
rooms (12), hospital bed management (13, 14), and outpatient 
scheduling (15). Additionally, it has been applied to COVID-19 
vaccine distribution and capacity planning (7, 16–20), as well as the 
containment of disease outbreaks, bioterrorist attacks, and other 
public health emergencies (21–24).

Mass dog vaccination campaigns (MDVCs) are held annually in 
Arequipa, Peru to address the re-emergence of dog rabies in the region 
(25); they have important parallels with early pandemic vaccination 
and testing programs in that success depends, in part, on strategically 
placing and optimally allocating resources across a discrete number 
of fixed-location facility sites (26). While the World Health 
Organization (WHO) and Pan American Health Organization 
(PAHO) recommend a minimum vaccination coverage of 70–80% 
sustained over multiple years to achieve control and eventual 
elimination of rabies, the MDVCs in Arequipa, which have relied on 
convenient or ad hoc placement of fixed-location vaccination sites, 
have continually fallen short of this goal (27, 28).

We have previously developed a data-driven strategy to 
optimize the placement of fixed-location MDVC sites and found 
that spatially optimized vaccination sites improves both overall 
vaccination coverage and spatial evenness of coverage (28). 
However, optimization that addresses spatial accessibility without 
considering queueing is likely to result in an uneven volume of 
arrivals across facility sites, which may result in long waiting lines 
(28). Here, we  incorporate queueing theory into our existing 
spatial optimization framework to improve dog rabies vaccine 
uptake by accounting for both the spatial accessibility of MDVC 
sites and losses resulting from dog owners who refuse to wait for 
service in the face of excessive queue lengths (i.e., queueing 

attrition). We compare the performance of our queue-conscious 
algorithm to the queue-naïve algorithm in terms of expected 
vaccination coverage and queueing attrition and evaluate the 
sensitivity of our results to misspecification of queueing parameters 
and the assumption of a constant arrival rate within our 
queueing model.

2 Materials and methods

2.1 A queueing model for MDVCs

We modeled queueing, vaccination, and attrition at each 
MDVC vaccination site according to an M/M/1 system with first-
in-first-out (FIFO) service (Figure  1). The M/M/1 system is a 
widely used queueing model for single server systems and assumes 
that customer arrivals occur according to a Poisson process, and 
job service times are independent and identically distributed (iid) 
exponential random variables that are independent of the arrival 
process and queue length. Applied to MDVCs, the M/M/1 
queueing model assumes that dogs arrive with their owners to a 
vaccination site according to a Poisson process with arrival rate λ, 
meaning that the interarrival times are iid and follow an 
exponential distribution with parameter λ. The service times (i.e., 
the time it takes for a dog to get vaccinated) are iid exponential 
with parameter μ, such that the average service time is equal to 1/μ. 
The system is assumed to be  FIFO, meaning that dogs are 
vaccinated in the order that their owners join the queue. Only one 
dog can get vaccinated at a time, as there is only one vaccinator per 
site, and dogs are assumed to leave the system as soon as they 
get vaccinated.

The service rate μ was assumed to equal 30 h−1 in accordance with 
the empirical observation that it takes 2 min on average to vaccinate 
a dog. The arrival rates were assumed to vary across MDVC sites and 
were determined as follows. First, the MDVC participation probability 
function described above was applied to all households falling within 
an MDVC site’s catchment (i.e., all houses closest to the given MDVC 
site in terms of travel distance) to determine the probability that each 
household would participate in the MDVC if the house were 
inhabited and owned dogs. To obtain the total number of dogs 
arriving at MDVC site s, these participation probabilities were 
summed and scaled by the habitability rate, household-dog-
ownership rate, and average number of dogs per dog-owning 
household (57, 40%, and 1.86, respectively); these estimates were 
derived from household surveys administered following previous 
MDVCs, and the survey methodology has been described previously 
(25). The total number of arrivals was then divided by the total 
operation time for the MDVC site to obtain λs, the arrival rate 
for site s.

A dog enters the queueing system at site s after it arrives at the site 
and its owner elects to join the vaccination queue. However, some 
owners may decline to join the queue if they judge the queue to be too 
long. This first form of attrition is known as balking and was modeled 
by modifying the arrival rate λs so that it decreases by a discouragement 
factor e-αn/μ < 1 (10). The modified arrival rate λs,n captures the rate that 
owners join the queue after accounting for those that balk and is 
given by:
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/

, ·n
s n se α µλ λ−= 	 (1)

Where n is the number of dogs that are currently in the 
system (waiting in queue or being vaccinated), μ is equal to the 
service rate, and α is a parameter that scales with balking 
propensity (10).

The other form of attrition, known as reneging, occurs when an 
owner who has already joined the queue loses patience and exits the 
queue before their dogs are vaccinated. We  modeled reneging by 
modifying the service rate μ to capture all those leaving the system - 
both those leaving after vaccination and those who renege. This exit 
rate μn is equal to:

	 ( )1 ·n nµ µ β= + − 	 (2)

Where the second term captures the rate that each of the present 
n – 1 dogs in queue are reneging, and β scales with reneging propensity 
(29). Note that in Equations 1, 2, above, the rates of attrition (both 
balking and reneging) increase with the queue length n  – 1, 
as expected.

In order to calculate the expected number of dogs vaccinated 
during an MDVC, we need to find a closed-form expression for the 
vaccination rate at a given vaccination site that accounts for losses due 
to attrition. The derivation of these closed-form equations can 
be found in Supplementary Text A, and are based on the stationary 
distribution of the queueing model, i.e., on ,s np , the probability of 

finding n dogs in the queueing system at MDVC site s with arrival 
rate λs:
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where ( )zΓ  denotes the gamma function, i.e., ( ) ( )1 !n nΓ = −  for 
any integer 0n >  and ( ) 1z tz t e dt− −Γ = ∫  interpolates the factorial 
function to non-integer values, and ps,0 is a normalizing constant 
given by:
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The expected rate that dogs are vaccinated at site s is then equal to:

	
( ), , ,

0 1
1s s n s n s n

n n
v p p nλ β

∞ ∞

= =
= − −∑ ∑

	
(5)

where the first term is equal to the rate that dog owners join the 
queue after accounting for balking, and the second term is equal to the 

FIGURE 1

An M/M/1 first-in-first-out queueing model for an MDVC vaccination site. (A) Illustrates the processes captured by the queueing model, with the forms 
of queuing attrition highlighted by the red boxes. (B) Shows the transition-state diagram for the queueing model, where states, depicted by circles, are 
defined by the number of dogs in the system, and transitions between states, depicted with curved arrows, are labeled by their corresponding 
transition rates.
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rate that dog owners renege and thus leave the queue before their dogs 
are vaccinated. The expected number of dogs vaccinated during an 
MDVC is thus equal to:

	 ∈
= ∑ s

s S
V v t

	
(6)

Where S is the set of all selected vaccination sites and t is equal to 
the total operation time, which is assumed to be  the same for all 
MDVC sites.

In addition to the closed-form equations for the expected behavior 
of the MDVC queueing system, which were derived assuming the 
system had reached steady state (Equations 3–6), we also conducted 
stochastic simulations to study the behavior of the system in the 
absence of such assumptions. Simulations were conducted for low- 
and high-attrition parameter regimes (low: α = 0.01 and β = 0.02; 
high: α = 0.1 and β = 0.1) and for a range of arrival rates (0.5–37.5 
dogs/h in increments of 0.5 dogs/h). Low- and high-attrition 
parameter regimes were chosen to represent the high and low range 
of feasible values based on our observations of balking and reneging 
at MDVC sites. An MDVC site operates for four weekend days (over 
two weekends) for about 4 h per day (t = 16 total hours). To mimic 
these conditions, a single simulation consisted of four independent 
four-hour-long trials (days), each initialized with no dogs in the queue 
at time zero; the number of dogs vaccinated each day was summed 
across the 4 days to obtain the total dogs vaccinated at an MDVC site. 
The simulation was run for 1,000 iterations per set of parameter 
values, and the simulation results were compared to the expected 
number of dogs vaccinated as determined via the closed-form 
equations to see how well the two approximated each other.

2.2 Optimizing the location of vaccination 
sites

We optimized the placement of MDVC sites for the Alto Selva 
Alegre district of Arequipa; no more than 20 sites can operate in this 
region during a campaign due to resource constraints, and 70 locations 
have been approved by the Ministry of Health for use as feasible 
MDVC sites (Figure 2) (28). We determined the optimal placement of 
k = 20 sites among these 70 candidate sites by maximizing the 
expected number of households participating in the MDVC (and 
hence the total dogs vaccinated). To determine the number of 
participating households, we  first used a fixed-effects Poisson 
distance-decay function that links a household’s travel distance to 
their nearest vaccination site and their probability of participating in 
an MDVC (henceforth referred to as the “MDVC participation 
probability function”); this function was fit previously using survey 
data (28). We assumed that participating households travel to their 
closest MDVC site, and we used the MDVC participation probability 
function to estimate the number of households that are expected to 
arrive at each site. We divided the number of arrivals by the total 
operation time for an MDVC site (i.e., 16 h) to calculate the arrival 
rate λs at each site s. Then, for queue-conscious optimization, 
we  estimated the number of dogs vaccinated at each site using 
Equation 5, which accounts for attrition resulting from queue 
formation due to high arrival rates. Queue-naïve optimization, in 

contrast, assumes that all arriving dogs get vaccinated and thus does 
not account for queueing-related losses. The objective function (total 
vaccinated dogs) was then calculated by summing the number of dogs 
vaccinated at each site.

We performed queue-conscious and queue-naïve optimization by 
implementing a hybrid recursive interchange-genetic algorithm 
(Supplementary Text B and Supplementary Figures S1, S2). The 
recursive interchange portion of our algorithm is similar to Teitz and 
Bart’s (30) solution to the p-median problem that solves the facility 
location problem by minimizing the average distance traveled by all 
households to their nearest site, but instead of minimizing average 
travel distance, our algorithm aims to maximize the expected number 
of households participating in the MDVC, which allowed our queue-
conscious optimization algorithm to simultaneously account for travel 
distance and queue-length-dependent attrition rates.

The general steps of the recursive interchange algorithm are 
as follows:

	 1	 Select a random subset of 20 vaccination sites and use the 
MDVC participation probability function to determine the 
expected arrival rate λ at each site.

	 2	 Calculate the expected number of dogs vaccinated at each site 
and sum across all sites to calculate the total number of 
dogs vaccinated.

	 3	 Exchange one selected site with all non-selected candidate 
locations and keep the one that maximizes the number of 
dogs vaccinated.

	 4	 Repeat step 3 with remaining sites to obtain a locally optimized 
set of sites.

	 5	 Perform steps 1–4 over 1,000 iterations, initializing each 
iteration with a different random subset of sites.

An animation showing a single iteration of the recursive 
interchange algorithm can be viewed in the Supplementary materials. 
The recursive interchange algorithm was repeated over 1,000 iterations 
to increase performance, as the algorithm does not guarantee a 
globally optimal solution. Performance was further enhanced by 
combining the recursive interchange algorithm with a genetic 
algorithm that “mates” parental sets output by the recursive 
interchange algorithm, mimicking natural selection by introducing 
crossover and mutation and ultimately producing new starting sets on 
which to repeat the recursive interchange algorithm. The cycling 
between the recursive interchange and genetic algorithms was 
repeated until the expected number of dogs vaccinated did not 
increase over two subsequent rounds of optimization (stopping 
condition). A full description of the hybrid algorithm can be found in 
the Supplementary Text B.

MDVC sites were optimized under three scenarios: no attrition 
(α = β = 0), low attrition (α = 0.01, β = 0.02), and high attrition 
(α = 0.1, β = 0.1). Note the no-attrition scenario is the least realistic, 
as some degree of balking and reneging is expected to occur in the real 
world. The low- and high-attrition queue-conscious solutions were 
compared to the queue-naïve solution obtained under the assumption 
of no attrition (i.e., all dogs that arrive get vaccinated) to determine 
how the incorporation of queueing behaviors impacted the amount of 
dogs lost to attrition and the total vaccination coverage, which was 
calculated as the proportion of dog-owning households that are 
expected to participate in the MDVC. Additionally, the 
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queue-conscious solutions were compared to the locations of actual 
sites used in the 2016 MDVC to evaluate how the performance of sites 
placed by the queue-conscious algorithm compared to a real-world 
baseline (28). Note that although the queue-naïve solution to the 
location problem was obtained assuming no attrition, its performance 
was assessed under the assumption of a low- or high-attrition 
parameter regime. Additionally, the optimized sites were mapped 
along with their catchments to compare how site placement varied 
between the queue-conscious and queue-naïve solutions.

2.3 Sensitivity analyses

To determine how our results may have been impacted by 
misspecification of α and β, we considered four possible scenarios for 
true balking and reneging propensities. In addition to the low- and 
high-attrition scenarios discussed previously (α = 0.01/β = 0.02 and 
α = 0.1/β = 0.1, respectively), we considered two additional scenarios 

for true balking and reneging propensities: (1) low balking and high 
reneging (α = 0.01, β = 0.1) and (2) high balking and low reneging 
(α = 0.1, β = 0.02). We applied the low- and high-attrition solutions to 
these four scenarios to evaluate performance (in terms of number of 
vaccinations and losses to attrition) for situations in which α and β are 
correctly and incorrectly specified. For each scenario and queue-
conscious solution applied, performance was evaluated using the 
number vaccinated and losses to attrition achieved by the queue-naïve 
solution as a benchmark.

The optimization methods detailed above rely on the use of the 
closed-form equations for the queueing system, which assumes a 
constant arrival rate λ. We considered how this assumption impacted 
our results by allowing λ to vary in a step-wise manner to approximate 
time-varying arrival rates that have been observed in the field 
(Supplementary Figure S3). Four time-varying arrival densities were 
considered: (a) a steep unimodal peak density, (b) a wide unimodal 
density that is skewed right, (c) a wide unimodal density that is 
skewed left, and (d) a bimodal density distribution 

FIGURE 2

Potential vaccination site locations in Alto Selva Alegre. The boundaries of Alto Selva Alegre are depicted by the solid, black line. Candidate MDVC sites 
(N = 70) are indicated by red diamonds, and the locations of houses are shaded brown.
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(Supplementary Figure S4). Eight total scenarios were considered, 
representing all combinations of the four time-varying arrival 
densities and low- and high-attrition parameter regimes. Queueing 
simulations were performed for each scenario, and natural splines 
were used to summarize the behavior of the system over a range of 
arrival rates (Supplementary Text C and Supplementary Figure S5). 
Once again, the performance of the low- and high-attrition solutions 
were assessed for each scenario, using performance under the queue-
naïve solution as a benchmark. Additionally, the different 
non-constant arrival rate densities were compared to the baseline 
assumption of a constant arrival rate to determine how this 
assumption impacted estimations of the number of vaccinations and 
losses to attrition.

3 Results

3.1 Queue-conscious optimization for 
MDVCs

As expected, the amount of balking and reneging was greater for 
higher arrival rates and for higher α and β values, representing greater 
attrition propensity (Figure 3). Although the closed-form expression 
for the expected number of vaccinations (Equation 6) was derived 
under steady-state assumptions, the results of the stochastic 
simulations closely approximated results obtained using Equation 6 
across a range of arrival rates for both high- and low-attrition 
parameter regimes (root mean square percentage error < 2% for both 
regimes; Supplementary Figure S6). Thus, Equation 6 was used as the 
objective function in the hybrid algorithm that was used to optimize 
MDVC site placement.

Compared to the queue-naïve algorithm, the queue-conscious 
algorithm favored a more even distribution in the number of arrivals 
across all selected sites (Figure 4). The queue-conscious algorithm 
“flattens” the distribution of arrivals by placing more sites in densely 
populated areas to divide the higher vaccination workload across 
more vaccinators and placing fewer sites in less populous areas 
(Figure 5). This difference in site distribution is expected, because too 
many arrivals at a site result in the formation of long queues and more 
losses from balking and reneging; these losses are accounted for 
(penalized) by the queue-conscious algorithm but not by the queue-
naïve algorithm, which assumes that all arrivals get vaccinated. This 
difference between the queue-naïve and queue-conscious algorithms 
also results in the queue-naïve algorithm yielding more arrivals, as it 
maximizes the number of participating households simply by 
maximizing the number of arrivals.

Within the low-attrition system (α = 0.01, β = 0.02), vaccination 
sites that were placed using the queue-conscious algorithm achieved 
an expected vaccination coverage of 57.2% compared to 56.4% 
achieved by the queue-naïve algorithm (Table 1 and Figure 4). The 
amount of queueing attrition (i.e., the expected number of dog owners 
balked or reneged) was also lower for sites placed using the queue-
conscious algorithm: 596 vs. 733 for the queue-naïve algorithm, 
representing a 19% reduction. Trends were similar for the high-
attrition system (α = 0.1, β = 0.1), in which the queue-conscious 
algorithm improved the expected vaccination coverage from 47.2 to 
48% and reduced queueing attrition by 9% from 1,727 to 1,566. 
Queue-conscious optimization resulted in markedly superior 

performance when compared to that of historic MDVC sites, 
increasing expected vaccination coverage from 50.9 to 57.2% in the 
low-attrition regime and from 43.2 to 48% in the high-attrition 
regime; it also decreased queueing attrition by 32% (from 882 to 596) 
and 9% (from 1,721 to 1,566) in the low- and high-attrition regimes, 
respectively (Table 1 and Supplementary Figure S7).

3.2 Sensitivity analyses

These results were robust to misspecification of α and β, and the 
performance varied only slightly between the high- and low-attrition 
solutions for all combinations of α and β considered (Figure 6). When 
the true values of α and β are low (α = 0.01 and β = 0.02), 
overestimating these parameters in the optimization did not result in 
a substantial loss in the number of dogs vaccinated compared to the 
correctly optimized solution (82 vs. 84 more dogs vaccinated beyond 
the queue-naïve solution). Similarly, when the true values of α and β 
are high (α = β = 0.1), underestimating these parameters in the 
optimization did not markedly impact the number of dogs vaccinated 
compared to the correctly optimized solution (83 vs. 85 more dogs 
vaccinated beyond the queue-naïve solution). Moreover, applying the 
low- and high-attrition solutions resulted in a similar number of dogs 
vaccinated when the true value of α is low and the true value of β is 
high and vice-versa (Figure 6A). The high-attrition solution resulted 
in a greater reduction in queueing attrition than the low-attrition 
solution for all four attrition scenarios, though both solutions resulted 
in substantially fewer losses compared to the queue-naïve solution 
(Figure 6B). Taken together, these results demonstrate that the queue-
conscious algorithm outperforms the queue-naïve algorithm even in 
the presence of mis-specified queueing parameters.

The superior performance of the queue-conscious algorithm 
compared to the queue-naïve algorithm was also robust to relaxation 
of the constant arrival rate assumption. For all four time-varying 
arrival densities and attrition regimes, both low- and high-attrition 
solutions substantially outperformed the queue-naïve solution in 
terms of the numbers vaccinated and lost to attrition 
(Supplementary Figure S7). Interestingly, with the exception of arrival 
density D under a low-attrition regime, for which the low- and high-
attrition solutions yielded roughly equal numbers of vaccinations, the 
high-attrition solution outperformed the low-attrition solution in 
terms of the numbers vaccinated. The high-attrition solution also 
resulted in less queueing attrition than the low-attrition solution for 
all scenarios considered. In addition, non-constant arrival rates 
resulted in more queueing attrition and fewer dogs vaccinated 
compared to an otherwise equivalent scenario where the constant 
arrival rate assumption is met (Supplementary Figure S8).

4 Discussion

We developed an optimization algorithm that integrates 
queueing theory into a spatial optimization framework to improve 
the placement of mass vaccination sites. We applied our algorithm 
to the MDVC in Arequipa, Peru by simultaneously minimizing 
travel distance to MDVC sites and queueing attrition resulting from 
large arrival volumes at some sites. Our queue-conscious algorithm 
decreased queueing attrition by 9–32% and increased expected 
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vaccination coverage by 11–12% compared to actual sites used in a 
previous MDVC and decreased queueing attrition by 9–19% and 
increased expected vaccination coverage by 1–2% compared to a 
queue-naïve version of the same algorithm. MDVC site 
optimization that accounted for queueing placed more vaccination 
sites in densely populated areas to even out the number of expected 
arrivals across sites, and sensitivity analyses revealed that 
accounting for queueing resulted in improved MDVC performance, 
even in the absence of accurate parameter estimates. Moreover, the 
expected gains in vaccination coverage do not capture the indirect 

gains from reduced queueing and increased MDVC participant 
satisfaction, which is likely to improve turnout in 
subsequent campaigns.

Longer wait times have been negatively associated with patient 
satisfaction in a variety of healthcare contexts, and patients report 
being less likely to repeatedly patronize a medical practice with long 
wait times compared to one with shorter wait times (1, 31, 32). For 
dog rabies vaccination, individuals who must wait a long time before 
receiving vaccinations for their dogs may be far less likely to participate 
in subsequent vaccination campaigns. Furthermore, considering the 

FIGURE 3

Realized trials of the stochastic queueing model. Each trial of the stochastic queueing simulation represents a single four-hour day at an MDVC site. 
The gray-shaded portion of each plot tracks the queue length over the four-hour period, and the colored shapes in the white portion of each plot 
tracks the occurrences of balking (red triangles), reneging (red diamonds) and vaccination (blue circles). The number of balking events (B), reneging 
events (R), and vaccinations (V) are reported for each trial. Trials are shown for two different α/β parameter regimes (low: α = 0.01, β = 0.02 and high: 
α = 0.1, β = 0.1) and two different arrival rates (15 and 30 dogs per hour).
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evidence of social contagion around vaccines (33–37), dog owners 
could share their negative experiences waiting at an MDVC site with 
friends and neighbors, discouraging them from participating. The 
reduction of attrition resulting from well-placed vaccination sites may 
pay dividends in improving turnout and vaccination coverage in 
subsequent MDVCs; this is particularly important for dog rabies 
elimination, which requires sustained high levels of vaccination year 
after year (38–40).

We assumed that owners arrived with their dogs to MDVC sites 
at time-invariant rates. The rationale behind this assumption was 
twofold: (1) it ensured tractability of the queueing equations, and 
(2) it was unclear how to specify a non-constant arrival rate in the 
face of heterogeneity in the trajectory of rates observed at MDVC 
sites (Supplementary Figure S3). Our sensitivity analysis indicated 
that the queue-conscious solutions outperformed the  
queue-naïve solutions even when arrival rates varied over time 
(Supplementary Figure S7). We also found that non-constant arrival 
rates resulted in more queueing attrition and fewer dogs vaccinated 
than the baseline assumption of a constant arrival rate 
(Supplementary Figure S8). This result can be explained by the fact 
that a time-varying arrival density leads to swells of arrivals during 

peak intervals, when queue lengths would escalate and cause 
attrition to spike.

Surprisingly, the high-attrition solution performed as well as or 
better than the low-attrition solution for all time-varying arrival 
scenarios, even those in which the true attrition rates were low 
(Supplementary Figure S7). This result can be explained by the spikes 
in attrition that accompany time-varying arrival rates but are not 
captured by the low-attrition solution, which are obtained under the 
assumption of a constant arrival rate. As a result, even when α and β 
are low, the expected vaccination rate is higher with the high-attrition 
solution, as it favors a more even distribution in the number of arrivals 
across vaccination sites (compare top vs. bottom rows of Figures 4, 5). 
These results suggest that applying MDVC optimization in the real 
world is as much an art as it is a precise science. Even if the “true” 
balking and reneging rates could be determined, it may be beneficial 
to slightly overestimate these parameters to offset the reality of 
non-constant arrival rates.

The queue-conscious algorithm we employed decreases queue 
lengths across the study area, but some queueing is inevitable. 
Attrition can be  minimized further by improving the waiting 
experience for queueing dog owners (41, 42). In the context of 

FIGURE 4

Arrivals histograms for sites selected by queue-naïve and queue-conscious optimization compared to actual sites used in the 2016 MDVC assuming 
low- and high-attrition parameter values. The height of each stacked bar represents the expected number of dogs that arrive at a selected vaccination 
site. Bars are subdivided by color according to whether dogs ultimately get vaccinated (blue) or are lost to attrition, either through balking (dark red) or 
reneging (light red). The text above the bars gives the total number of arrivals, total losses to attrition, and overall vaccination coverage achieved for 
each set of sites. Top row shows results assuming a low-attrition parameter regime, and bottom row shows results for a high-attrition parameter 
regime. The number of dogs vaccinated and the number of dogs lost to attrition for all situations were determined using Equation 6 and the equations 
outlined in the electronic Supplementary Text A.
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FIGURE 5

Locations of MDVC sites selected by the queue-naïve vs. queue-conscious algorithm for the low- and high-attrition systems. The locations of selected 
vaccination sites are indicated by white circles that are labeled and scaled according to the expected number of arriving dogs, which were calculated 
using Equation 6. Top row shows results for the low-attrition system, and bottom row shows results for the high-attrition system. Houses in the study 
area are small dots colored according to their catchment, representing the area in which a MDVC site is the closest site for houses in terms of travel 
distance. Areas in which the queue-conscious algorithm placed a higher density of vaccination sites compared to the queue-naïve algorithm are 
indicated by ellipses with solid lines, and areas in which the queue-conscious algorithm placed one fewer site are indicated by ellipses with dotted 
lines.

TABLE 1  Performance of vaccination sites placed by queue-naïve and queue-conscious optimization compared to actual sites used in 2016 for low- 
and high-attrition parameter regimes.

Parameter 
regime

Placement type Expected 
arrivals, n

Losses to 
attrition, n (%)

Households 
vaccinated, n (%)

Est. vaccination 
coverage, %

Low attrition Actual sites 6,381 882 (13.8) 5,499 (86.2) 50.9

Low attrition Optimized, queue-naïve 6,825 733 (10.7) 6,092 (89.3) 56.4

Low attrition
Optimized, queue-

conscious
6,771 596 (8.8) 6,175 (91.2) 57.2

High attrition Actual sites 6,381 1721 (27.0) 4,660 (73.0) 43.2

High attrition Optimized, queue-naïve 6,825 1727 (25.3) 5,098 (74.7) 47.2

High attrition
Optimized, queue-

conscious
6,771 1,566 (23.1) 5,205 (76.9) 48.0

Losses to attrition and total vaccinated are expressed as the number of households lost or vaccinated, as well as a percentage of arriving households. The estimated vaccination coverage was 
calculated as the proportion of dog-owning households that are expected to participate in the MDVC.
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MDVCs, accommodations should be made for aggressive dogs, whose 
presence in a queue can cause other owners to balk or renege. Some 
vaccinators may choose to deviate from FIFO principles and vaccinate 

aggressive dogs first regardless of when they arrive to remove them 
from the queue more quickly. This strategy should be explained clearly 
to the owners present as violations of FIFO are generally perceived as 
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FIGURE 6

Sensitivity of results to misspecification of balking and reneging parameters. Panels a-b illustrate how misspecification of α and β impacts the expected 
number of dogs vaccinated (A) and the number of dogs lost to attrition (B). The performance of the low- and high-attrition solutions are provided with 
the queue-naïve solution acting as a benchmark; thus (A) shows the additional number of dogs vaccinated beyond the expected number achieved 
with the queue-naïve solution, and (B) shows the reduction in attrition compared to the queue-naïve solution. Bars outlined in bold represent 
scenarios in which the balking and reneging parameters are correctly estimated in the optimization. (C) Provides a legend with the values of α and β for 
the four balking/reneging scenarios considered.
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unfair (42, 43). MDVC participant satisfaction should be prioritized 
wherever possible, as it impacts whether individuals will continue to 
participate in future MDVCs. Other behavioral interventions that can 
minimize queueing attrition are messaging and incentives to flatten 
out the arrival rate. Field observations show arrival peaks, longer 
queue lengths, and greater attrition at midday 
(Supplementary Figure S3). Attrition during these peaks can 
be mitigated by communicating about shorter wait times early in the 
morning or incentivizing early arrivals by rewarding a limited quantity 
of “doorbuster” prizes (e.g., dog food or dewormer medication).

The expected vaccination coverage achieved by our 
optimization of fixed-location vaccination sites (57 and 48% for the 
low- and high-attrition scenarios, respectively) falls short of the 
70–80% threshold recommended by World Health Organization 
(38) and Pan American Health Organization (44). This gap can 
be met, in part, by combining fixed-location vaccination sites with 
door-to-door vaccination in areas with low penetration by the 
fixed-location campaign. This two-pronged approach has been 
leveraged successfully in other MDVCs (45, 46) as well as 
pandemic-era COVID-19 vaccination programs (47, 48). A benefit 
of combining door-to-door vaccination with fixed-point 
vaccination is the ability to target high-risk or underserved areas, 
which not only increases total vaccine uptake but also promotes 
vaccine equity. We  have previously found that the queue-naïve 
algorithm increases the spatial evenness of vaccine coverage, a 
dimension of vaccine equity, even though it does not explicitly 
optimize for spatial equity (28). By placing more vaccination sites 
in more populous areas and limiting the placement of sites in less 
populous ones, the queue-conscious algorithm inadvertently 
decreases the spatial equity of fixed-point vaccinations compared 
to the queue-naïve algorithm, which is a limitation of the queue-
conscious approach. In many Latin American cities, including 
Arequipa, the less populous peri-urban areas also coincide with 
areas of greater socioeconomic disadvantage (25, 26); thus, it is 
crucial for peri-urban areas to be  prioritized by door-to-door 
campaigns following the deployment of fixed-point vaccination 
sites to ensure vaccine equity. Disadvantaged groups face the 
greatest barriers in accessing health services and are thus least able 
to travel to vaccination sites and wait for service (49–51). They 
might benefit the most from this combined approach.

There are other limitations of our study. The balking and reneging 
parameters α and β were not estimated from data but selected to 
model two hypothetical parameter regimes that fell within the 
upper and lower bounds of values that could feasibly capture real-
world dynamics. While this lack of empirical estimation is a study 
limitation, our sensitivity analyses also indicated that the performance 
of our optimization algorithm was robust to misspecification of these 
parameters. In addition, the MDVC participation probability 
function that was used to optimize vaccination site locations included 
distance to the nearest site as a sole predictor and did not consider 
other household-level factors such as socioeconomic status (SES) or 
local environment factors such as urban/peri-urban status. Future 
studies can investigate how travel distance to MDVC sites affect 
MDVC participation among different household SES levels and 
across urban and peri-urban areas to derive a more nuanced MDVC 
participation function. Doing so can also be a means of promoting 
vaccine equity; for example, if future investigations revealed that 
marginalized groups are less able to travel long distances to 

participate in the MDVC, then the algorithm using this “updated” 
function would favor placing more sites near marginalized 
populations. Additionally, deviations from a constant arrival rate in 
the real world may impact the generalizability of our results, though 
our sensitivity analyses suggested that the superior performance of 
the queue-conscious algorithm was robust to relaxation of the 
constant arrival rate assumption. Finally, our algorithm assumed that 
all MDVC sites were operated by a single vaccinator (i.e., M/M/1). As 
a result, the algorithm tended to place multiple, adjacent single-
vaccinator sites in highly populous areas. There are generally 
efficiency gains associated with multi-server (i.e., multi-vaccinator) 
queueing systems (where multiple vaccinators serve a single queue) 
compared to single-server systems with designated queues (10). 
However, pooling vaccinators (i.e., placing k vaccinators across fewer 
than k sites) may also lead to performance loss, as reducing the 
number of sites could result in longer queues, which may increase 
perceived waiting times and result in greater attrition (52); reducing 
the number of sites may also increase travel distances for some dog 
owners and thus decrease their probability of participation. A 
possible extension of our work would be to examine the tradeoff 
between gains from pooling vaccinators and losses due to slightly 
longer travel distances and potentially longer queue lengths.

In summary, our spatial optimization framework that incorporates 
expected losses from queueing offers insights for current vaccine-
preventable disease programs and for future pandemic preparedness 
efforts. We  maximized the total vaccine uptake by enhancing the 
spatial accessibility of vaccination sites while mitigating excessive 
queue lengths to reduce losses due to queueing attrition. We found that 
explicitly modeling queueing behavior, even with imprecise parameter 
estimates, led to gains in vaccination coverage and fewer losses to 
attrition than optimization that ignores the effects of queueing. 
Combined with door-to-door outreach and targeted media campaigns, 
rational placement of fixed-point vaccination sites is expected to bring 
vaccine uptake closer to threshold levels recommended for the control 
and eventual elimination of dog rabies. Considering the impact of 
excessive wait times on other vaccination campaigns, including the 
early rollout of the COVID-19 vaccine, our spatial optimization 
framework that explicitly considers queueing attrition can be broadly 
adopted to support other mass vaccination programs.
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Objective: The objective is to examine the epidemiology and clinical features of 
human cases infected with H5N6 avian influenza in Sichuan Province from 2014 
to 2024, and to offer guidance for the prevention and management of human 
infections with H5N6 avian influenza.

Methods: Epidemiological survey reports of H5N6 avian influenza cases in 
Sichuan Province from 2014 to 2024 were compiled, and the epidemiological 
context and characteristics of 16 human cases infected with H5N6 avian 
influenza in the province were summarized and analyzed using descriptive 
epidemiological methods.

Results: From 2014, when the initial human case ofH5N6 infection was 
documented in Sichuan Province, to 2024, there have been 16 human cases of 
H5N6 avian influenza in the region, resulting in 12 fatalities and a case fatality 
rate of 75%. The instances were predominantly located in the Chengdu Plain, 
eastern Sichuan, and southern Sichuan.

Conclusion: Human instances of H5N6 avian influenza in Sichuan Province 
exhibit no discernible periodicity, and entail significant fatality rates. It is essential 
to enhance the early diagnosis and treatment of avian influenza cases in medical 
facilities, prioritize farmers with preexisting conditions who have been in contact 
with deceased poultry, conduct influenza virus testing promptly, and administer 
antiviral medications at the earliest opportunity. Simultaneously, we  must 
effectively engage in public awareness and education for the populace, manage 
poultry scientifically, and prevent direct contact with deceased poultries.
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1 Introduction

The initial human instance of H5N6 influenza was documented 
in Sichuan Province in 2014, with a resurgence occurring in 2021. By 
December 31, 2024, there had been 16 documented cases of human 
infection with H5N6 avian influenza (1). Avian influenza viruses 
(AIVs) are zoonotic and provide a continual public health risk globally 
(2). The World Organization for Animal Health characterizes avian 
influenza as a highly transmissible illness resulting from several 
subtypes that persistently develop, impacting poultry, avian species, 
mammals, and, on occasion, humans (3).

The influenza virus is a single-stranded Ribonucleic Acid (RNA) 
virus categorized into types A, B, C, and D based on antigenic 
variations in the matrix protein and nucleoprotein (4). The avian 
influenza virus is classified as type A (5). The avian influenza virus 
mostly affects avians and sometimes humans. The incubation time for 
human infection with avian influenza typically ranges from 2 to 
5 days, but the incubation period for H5N6 spans from 1 to 13 days, 
averaging 4.3 days (6). H5N6 avian influenza is a severe respiratory 
illness. The severity of avian influenza virus infection in humans can 
vary from asymptomatic or moderate flu-like symptoms to severe 
respiratory infections, including pneumonia, multiple organ failure, 
or death (7, 8). The severity of the sickness is contingent upon the 
subtype of the avian influenza virus responsible for the infection and 
the physical state of the afflicted individual (9).

While the majority of documented human H5N6 cases have 
transpired in China, isolated instances of H5N6 viruses have also been 
detected in poultry and wild avifauna throughout other Southeast 
Asian nations, including Vietnam and Laos, underscoring the regional 
dissemination of the virus (10, 11). The H5N6 virus emerged from the 
reassortment of H5N1 and H5N2 with H6N6 viruses. The 
hemagglutinin (HA) gene is classified under the H5 evolutionary 
lineage 2.3.4.4, although its neuraminidase (NA) gene is derived from 
the H6N6 strain commonly seen in Asian poultry (12, 13). The 
preliminary reassortment event likely transpired in ducks, who serve 
as primary hosts for viral amalgamation owing to their vulnerability 
to various influenza subtypes (14). Following the introduction of the 
H5N6 virus, genetic reassortment transpired with low pathogenic 
avian influenza viruses, leading to the selection and evolution of 
dominant genotypes (G1, G2, G1.1, G1.2) (13). The reassortment 
events increased the adaptability and transmissibility of the H5N6 
virus. Recent research in Sichuan Province identified new triple 

reassortant H5N6 strains, including genes from H5N8, H6N6, and 
H9N2, underscoring continuous genetic evolution (15, 16). Moreover, 
H5N6 viruses have been identified in animals including pigs, cats, and 
wild birds, suggesting their capacity for interspecies transmission (17).

The H5N6 avian influenza virus continues to represent a significant 
risk to both poultry and humans (18). A conceptual framework for the 
dissemination of H5N6 is illustrated in Figure  1. Current reports 
indicate that, as of April 30, 2025, all documented H5N6 infections 
originated from China, with the exception of a single case identified in 
Laos (19). Sichuan Province is the inaugural location where H5N6 was 
identified globally. This can be  elucidated from the following 
perspectives: (1) Ecological characteristics: Sichuan Province features 
a diverse terrain with basins, mountains, and plateaus. The climatic 
classifications encompass subtropical to cold zones, primarily 
comprising subtropical humid and high-cold climates. This habitat 
may facilitate the proliferation and dissemination of avian influenza 
viruses; Sichuan serves as a crucial water supply in the upper sections 
of the Yangtze and Yellow Rivers, boasting abundant wetland and forest 
resources that attract numerous migratory birds. Nevertheless, 
migratory birds may have viruses, heightening the danger of cross-
regional transmission of avian influenza (20). (2) Agricultural 
attributes: Sichuan is a significant rice cultivation region, necessitating 
substantial water resources. The mixed farming model of rice 
cultivation and poultry is prevalent, enhancing the likelihood of 
interaction between poultry and people; live poultry markets and 
poultry farming are widespread in rural Sichuan, with mixed farming 
practices present in certain regions. This approach elevates the 
likelihood of viral reassortment in avian species and its transfer to 
humans (21). (3) Population characteristics: Sichuan possesses a 
significant rural demographic, with rural inhabitants exhibiting a lack 
of awareness regarding avian influenza, hence enhancing the danger of 
outbreaks (22). (4) Additional factors: AIVs are primarily spread 
among birds, poultry, and people via migratory bird movements, 
poultry farms, and transactions in live poultry markets (22, 23). Wild 
birds serve as natural reservoirs for avian influenza and may 
disseminate the genetic material of all influenza A virus strains (24). 
China acts as a significant transit hub for worldwide migratory 
avifauna. China has three major international migration routes, with 
two traversing Sichuan Province: the Central Asian Migration Route 
and the East Asian-Australasian Migration Route (25–27). Two of the 
three migration routes in China, namely the central and western routes, 
traverse the Sichuan Basin, where the East Asian-Australasian 

FIGURE 1

A conceptual framework for the dissemination of H5N6.
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Migration Route intersects with the Central Asian Migration Route 
(28, 29). Sichuan Province has emerged as a significant stopover 
location for several migrating birds, owing to its elevated wetland 
habitats, diverse wetland ecosystems, and vertical migration pathways 
(Figure 2). Consequently, the species variety of wild avifauna is greater 
(30, 31). Migratory birds typically migrate from March to May during 
spring and from September to November in fall (32, 33).

The primary risk factors for avian influenza infection in poultry 
farms are wild birds and associated environments, unprotected water 
sources, and vulnerable animals (34, 35). Fecal-oral transmission 
constitutes the primary pathway for avian influenza dissemination in 
poultry, with the virus expelled in elevated titers via feces (36, 37). In 
regions where poultry farming land coincides with migratory bird 
pathways, there exists a conduit for the transmission and interchange 
of viruses between domesticated fowl and wild avians (38). A 
significant flow of viruses transpires between poultry and adjacent 
wild birds, potentially resulting in antigenic drift and antigenic shift, 
finally culminating in the modification of the avian influenza virus 
(39). The altered novel virus may possess an enhanced capacity to 
infect animals, including humans. While the transmission pathway 
and infection mechanism of the avian influenza virus in mammals 
remain ambiguous, data indicates that several mammalian species 

have been infected with the virus (40, 41). Future hazards of avian 
influenza pandemics may arise from frequent genetic recombination 
and interspecies transmission, necessitating more effective measures 
to mitigate the risk posed by AIVs (2).

The ecological and geomorphological variety, agricultural structural 
attributes, and demographic features of Sichuan Province have 
collectively fostered an environment conducive to the proliferation of 
avian influenza viruses. This publication analyses and categorizes human 
cases of H5N6 avian influenza identified in Sichuan Province throughout 
the years to serve as a reference for the prevention and management of 
human avian influenza. We further suggested evidence-based solutions 
to enhance the surveillance system, particularly at high-frequency 
interaction places between people and poultry, and to priorities 
preventative interventions for high-risk groups.

2 Methods

2.1 Patients

The cases were individuals infected with the influenza A(H5N6) 
virus reported in Sichuan Province from January 1, 2014, to April 30, 

FIGURE 2

Key time intervals in H5N6 cases, Sichuan Province, 2014–2024.
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2025. The case data were obtained from the infectious illness 
monitoring and reporting system and case survey reports of the China 
Disease Prevention and Control Information System. The primary 
information encompassed age, gender, employment, domicile, onset 
time, hospitalization duration, medical history, poultry exposure 
history, specimen collection, and laboratory test findings etc. The data 
were derived from epidemiological surveys and laboratory testing 
performed by medically trained investigators and physicians, after 
patient consent. Sichuan Province has implemented a sentinel hospital 
monitoring network including all cities since 2009. Each sentinel 
hospital gathers 10–40 specimens of influenza-like cases weekly and 
does nucleic acid testing for the influenza virus. No mild cases of 
H5N6 avian influenza have been identified to yet.

2.2 Environmental monitoring

According to the Technical Guidelines for the Prevention and 
Control of Influenza of Human Infection of Animal Origin, all cities 
(21) within the province are implementing external environmental 
surveillance for avian influenza. Two or more locations are designated, 
encompassing live poultry market, Family poultry farm, Poultry 
processing plants, Wild migratory bird habitat, with monitoring 
conducted monthly (42). A minimum of 10 specimens are gathered 
monthly, totaling 120 specimens each city year.

2.3 Research methods

Real-time Quantitative PCR was employed to identify influenza 
virus nucleic acid in environmental samples from confirmed patients 
and probable exposure locations. The case definition and monitoring 
techniques have remained unchanged over the past decade. A case is 
characterized by the isolation of the avian influenza virus from an 
individual’s respiratory secretions or other pertinent materials, or the 
detection of the virus using nucleic acid testing or deep sequencing. In 
Sichuan Province, case confirmation mostly relies on positive nucleic 
acid test findings and associated clinical signs. Close contacts were 
identified as those who interacted with cases and personnel who failed 
to implement adequate protective measures throughout the diagnosis 
and treatment of cases; this includes individuals who had close contact 
with cases from 1 day prior to the start of symptoms to the initiation of 
isolation. We  gathered patients’ medical records and performed 
verification, monitoring, and medical assessment in compliance with the 
Technical Guidelines for the Prevention and Control of Animal-Origin 
Influenza in Human Infection. Close contacts were monitored according 
to the comprehensive range of activities from the day preceding the 
commencement of the case until isolation treatment or death. Close 
contacts encompass: medical personnel who inadequately safeguarded 
themselves while diagnosing and treating suspected, clinically 
diagnosed, or confirmed cases, as well as other individuals who attended 
to these cases; individuals residing with or having close interactions with 
suspected, clinically diagnosed, or confirmed cases from 1 day prior to 
the onset of the illness until isolation treatment or death; and additional 
individuals requiring management following an on-site investigation.

In order to more accurately represent the central trend and 
variations, we employed box plots to emphasize the distribution of 
three distinct time periods: (a) time from onset to hospitalization, (b) 

time from hospitalization to commencement of treatment, and (c) 
time from treatment to outcome.

2.4 Statistical analysis

The monitoring data were compiled using Excel 2019, and the 
descriptive epidemiological approach was employed to examine the 
outcomes of human infections with H5N6 avian influenza. The 
statistical analysis software employed was R version 4.2.1. Owing to 
the exceedingly limited sample size of our study (e.g., survival group 
n = 4), the p value may not accurately represent the genuine difference; 
hence, the effect size is illustrated through the confidence interval. 
Continuous variables are expressed as mean ± SD (95% CI), with 
group differences indicated by the mean difference via Welch’s t test; 
categorical variables are represented as proportions % (95% CI), with 
group differences denoted by the proportion difference using the 
Newcombe-Wilson method. Data visualization and visuals were 
created using the VS Code editor and the Python programming 
language, using relevant libraries like Matplotlib 3.5.1 and 
Seaborn 0.11.2.

3 Results

3.1 Demographic distribution

Table 1 presents the fundamental details of the 16 instances. The 
male-to-female ratio among the patients was 1:1, and the case fatality 
rate was 75%; the median age was 54.5 years (IQR: 27–75); the 
occupational distribution predominantly consisted of farmers, 
accounting for 12 cases (75%). Of the 16 patients, 12 (75%) had 
preexisting conditions, while 4 cases (25%) were previously healthy. 
The case fatality rate for patients with underlying conditions was 
83.33%, above that of individuals without such conditions, which 
was 50.00%.

3.2 Geographical allocation

Figure 3 illustrates 16 instances of human infection with H5N6 
avian influenza identified in Sichuan Province between 2014 and 2024. 
The instances were predominantly located in the Chengdu Plain, as 
well as eastern and southern Sichuan. Nanchong and Dazhou had the 
highest incidence, with 3 instances apiece; followed by Chengdu and 
Bazhong, each with 2 cases; and Deyang, Leshan, Luzhou, Yibin, 
Ziyang, and Zigong, each with 1 case.

3.3 Onset and treatment

Figures 4, 5 illustrate the timings of the three critical nodes: “onset 
to hospitalization,” “hospitalization to treatment,” and “treatment to 
outcome” for the 16 patients, along with the disparities in the 
distribution of these three indicators between the mortality group and 
the survival group. The median duration from beginning to 
hospitalization was 4 days (range: 0–13 days), suggesting that while 
some patients were treated promptly, others had significant delays. The 
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median duration from hospitalization to the initiation of antiviral 
medication was 3 days (range: 1–10 days), indicating a potential delay 
in commencing treatment post-hospitalization. The median period 
from therapy to result was 6 days (range: 1–11 days), reflecting 
variability in illness regression.

The findings on the duration from beginning to hospitalization 
indicated that the median disparity between the mortality group and 
the survival group was minimal, with a significant overlap in 
distribution, predominantly concentrated between 5 to 10 days. The 
analysis of the duration from hospitalization to the initiation of 
antiviral therapy indicated that the survival cohort commenced 
treatment more uniformly and somewhat sooner, whereas the timing 
of treatment initiation in the mortality cohort exhibited greater 
variability, with notable delays in certain instances. The duration from 
antiviral therapy to outcome was shorter in the mortality group, 
suggesting fast disease progression. The duration from antiviral 
therapy to discharge/recovery in the survival cohort was comparatively 
prolonged, aligning with the clinical recovery trajectory. Our findings 
indicated a tendency of differences between the mortality group and 
the survival group; however, none achieved statistical significance, 
likely attributable to the limited sample size impacting statistical 
power. The occurrence of delayed treatment and subsequent quick 
mortality in the deceased cohort is noteworthy and will be further 
examined in a larger sample in the future.

3.4 Poultry exposure

Table 2 presents the poultry exposure history associated with 
the patients. Following epidemiological research and laboratory 

analysis, 10 of the 16 patients exhibited a history of contact with 
deceased poultry, representing 62.5%; 12 cases, or 75.00%, tested 
positive for H5N6 or H5 subtypes in chicken specimens at their 
residences. A total of 203 close connections of the 16 patients were 
identified, and all close contacts received health monitoring for a 
minimum of 10 days. No anomalies were identified during the 
health monitoring period, and no influenza virus was discovered in 
respiratory specimens at the commencement and conclusion of 
the monitoring.

3.5 Environmental monitoring

Environmental monitoring in Sichuan Province is conducted in 
line with the Sichuan Provincial Avian Influenza Environmental 
Monitoring Program. Every city gathers a minimum of 10 poultry-
related samples monthly. Sampling stations are designated in regions 
with elevated exposure concerns, including poultry drinking water, 
faeces, and areas of intense poultry operations. The gathered 
specimens are preserved at 4°C, dispatched to the laboratory within 
48 h, and the viral nucleic acid assay is finalized within 1 week. 
Between 2019 and 2024, 14,397 external environmental samples were 
collected, of which 1,362 tested positives for the H5 subtype, resulting 
in a positivity rate of 9.46%. Figure  6 illustrates the monthly 
distribution of positive test results for the H5 subtype. The months 
with the highest number of H5 positive samples are July, October, and 
December. Figure  6 provide the sources of H5 positive samples, 
respectively. Among the monitored sites, the poultry slaughter board 
(400 instances) and the sewage used for washing poultry (300 cases) 
exhibited the highest number of positive samples; regarding sample 

TABLE 1  Basic information on human infections of H5N6 avian influenza in Sichuan Province from 2014 to 2024.

Characteristics Deceased (n = 12)
(95% CI)

Survived (n = 4)
(95% CI)

Between-group 
difference (95% CI)

Age (year, mean ± SD) 52.8 ± 15.7 (42.3–63.2) 55.8 ± 7.9 (44.9–66.6) Δ-3.0 (−20.1–14.1)

Gender n (%)

 � Female 3 (25.0%, 5.5–57.2%) 2 (50.0%, 6.7–93.3%) Δ-25.0% (−64.1–14.1%)

 � Male 9 (75.0%, 42.8–94.5%) 2 (50.0%, 6.7–93.3%) Δ25.0% (−14.1–64.1%)

Occupation n (%)

 � Farmer 9 (75.0%, 42.8–94.5%) 3 (75.0%, 19.4–99.4%) Δ0.0% (−48.1–48.1%)

 � Others 3 (25.0%, 5.5–57.2%) 1 (25.0%, 0.6–80.6%) Δ0.0% (−48.1–48.1%)

Time Intervals (days, mean ± SD)

 � Onset to hospital admission 5.4 ± 4.3 (2.6–8.3) 3.3 ± 1.5 (0.9–5.6) Δ2.1 (−2.3–6.5)

 � Hospital admission to ICU entry 1.6 ± 1.2 (0.8–2.4) 3.0 ± 2.2 (0.0–6.5) Δ-1.4 (−3.9–1.1)

 � Onset to diagnosis 11.2 ± 6.5 (6.9–15.4) 9.5 ± 4.4 (2.7–16.3) Δ1.7 (−6.1–9.5)

 � Hospital admission to initiation of antiviral 

treatment

2.1 ± 3.0 (0.1–4.1) 1.3 ± 0.5 (0.0–2.5) Δ0.8 (−1.8–3.4)

Interventions

 � ECMO* use (%) 33.3 (9.9–65.1) 25.0 (0.6–80.6) Δ8.3 (−34.1–50.7)

 � Antiviral treatment use (%) 83.3 (51.6–97.9) 100.0 (39.8–100.0) Δ-16.7 (−44.4–11.0)

Exposure history

 � Contact with sick/dead poultry (%) 58.3 (27.7–84.8) 75.0% (19.4–99.4%) Δ-16.7% (−54.1–20.7%)

* ECMO: Extracorporeal Membrane Oxygenation.
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sources, the live poultry market recorded the most positive samples 
(303 cases).

4 Discussion

The cases identified in Sichuan Province placed second, 
constituting 17.39% of all H5N6 cases. Prior research indicates that 
the death rate for human infections with H5N6 avian influenza can 
reach 55.4%, predominantly affecting older individuals, with a median 
age of around 51 years (9). Our study findings support this perspective. 
The case fatality rate for human infections with H5N6 avian influenza 
in Sichuan Province was 75%, with a median age of 54.5 years. The 
initial human infection strain in Sichuan Province in 2014 (A/
Sichuan/1/2014) was a reassortant of H5N1 and H6N6, with its HA 
gene classified under Clade 2.3.4.4 (1). The HA gene of the strain 
predominant in Guangdong Province is classified within Clade 2.3.4.4, 
but the origin of the NA gene is intricate. In contrast to the strain in 
Sichuan Province, the strain in Jiangsu Province has a V100A 
mutation in the PB1-F2 protein (43, 44). The H5N6 strain isolated in 
early Europe (Germany A/duck/Germany/AR844/2007) has minimal 
pathogenicity, with its HA gene classified under Clade 2.2.1, distinct 
from the evolutionary lineage of highly pathogenic strains in Asia (45).

The primary route of transmission of AIVs often occurs in wild 
birds (46). AIVs and genetic pieces can sustain viral genetic variety via 
the dissemination of wild birds (47). Sichuan Province serves as a 
significant nexus in the migratory pathway of avian species in western 
China, boasting a diverse array of bird species. The China Bird 
Watching Record Center1 reports that Sichuan Province is the second 
most species-rich area in the nation, with 699 species documented. 
This establishes the conditions for the dissemination and genetic 
recombination of AIVs among various wild bird species (46). The 
capacity of viruses to traverse species boundaries is generally 
restricted, and AIVs cannot swiftly multiply in humans directly (48). 
Nonetheless, avian transmission may indirectly elevate the risk of 
human infection, particularly in regions exhibiting significant genetic 
variety of the virus, where variants capable of circumventing barriers 
may be more prone to emergence (49). Despite the seldom positive 
tests for the H5 subtype in specimens gathered from wild bird habitats 
in Sichuan Province, the unique ecological attributes may still 
be linked to the elevated occurrence of H5N6 infections. The virus’s 
genetic variety may be perpetually augmented by transmission by 

1  http://www.birdreport.cn

FIGURE 3

Geographical distribution of human infections with H5N6 avian influenza in Sichuan Province, 2014–2024.
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migrating birds, leading to Sichuan Province having one of the highest 
incidences of H5N6 case reports in the nation. Future collaborative 
ecological-epidemiological investigations are necessary to further 
substantiate the causal link.

Avian influenza is a secondary transmission pathway via 
poultry farms and associated transportation networks (50). The 
cumulative monthly case distribution exhibited a bimodal pattern 
in winter and summer, aligning with the H5 positivity distribution 
results seen in our external environment. The winter peak may 
result from low temperatures facilitating the prolonged survival of 
the avian influenza virus in external environments, such as feces, 
whereas the summer peak may stem from a decrease in poultry 
immunity under high-temperature and high-humidity conditions, 
hence triggering the epidemic (36, 51). Results from environmental 
monitoring indicate that live poultry markets are the primary 
source of avian influenza virus detection. Poultry slaughtering 
boards and washing wastewater are the two sample classes with the 
highest number of positive specimens, indicating a significantly 
elevated risk of viral transmission during poultry slaughtering and 
washing processes (52). The affirmative identification of cage 
surface and fecal samples indicates that the transportation of live 
poultry and fecal contamination remain significant transmission 
pathways, and inadequate sanitation of transport cages may result 
in cross-regional transmission (52). The prevalence of positives on 
family poultry farm and natural migratory bird habitats is 
comparatively low, maybe because to the limited size of breeding or 
inadequate monitoring of migratory bird habitats. Despite the low 

incidence of positive detections, the potential for farmed poultries 
to interact with wild birds may facilitate viral mutation and 
recombination (53).

The investigation’s findings indicated that contact with deceased 
poultry or their feces was the primary mode of infection for the case, 
succeeded by exposure to live poultry markets. The eastern and 
southern districts of Sichuan Province exhibit a substantial volume of 
poultry breeding and commerce, facilitating the maintenance and 
dissemination of the virus to a considerable degree (54). Temporary 
market closures in Guangdong, Shanghai, and other regions have 
markedly diminished the probability of H7N9 pandemic spread (55). 
The epidemic was contained after Guangdong halted live poultry 
trading during the Spring Festival in 2015, and the Xuhui District of 
Shanghai has not reported any human infection cases since the 
permanent closure of its live poultry market in 2013, demonstrating 
that prolonged closure can effectively impede the virus’s transmission 
(50, 56). Nevertheless, owing to inadequate law enforcement and the 
populace’s love for live poultry in Nanjing and other locales, illicit 
commerce has persisted despite several prohibitions, undermining the 
efficacy of preventative and control measures (57). This indicates that 
market closure regulations must be  supplemented by rigorous law 
enforcement and public education initiatives. In rural regions, altering 
entrenched consumption patterns or constrained resources poses 
challenges for policy implementation. Future interventions in live 
poultry markets will necessitate a more adaptable approach (50, 55).

Chickens and ducks constituted the predominant species among 
the deceased poultry with whom the cases had contact, reflecting the 

FIGURE 4

Avian migration corridors and key habitats in Sichuan.
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prevalent breeding practices in Sichuan Province. The high-density 
breeding might have resulted in frequent interactions among birds, 
facilitating the fast transmission of the virus through feces, respiratory 
secretions, and other means (58). It is important to recognize that 
migrating birds may interact with the environments around farms 
throughout their migration paths, potentially introducing wild diseases 
to chicken populations. Should wild viruses exchange genetic material 
with AIVs in poultry, new strains potentially more transmissible to 
humans may emerge (46). Of the cases with positive specimens 
identified in the market, 85.7% (6/7) of the samples from domestic fowl 
were positive. This indicates that the virus might be spread indirectly 
via environmental contamination, necessitating an expansion of the 
monitoring parameters for the external environment in the future. In 
2021, the market conditions for cases in Bazhong and Zigong were 
unexamined or the outcomes were indeterminate; nonetheless, the 
home specimens yielded positive findings, suggesting inadequate 
testing coverage. In 2022, a case in Nanchong City had no history of 
exposure; yet, house specimens tested positive, suggesting the existence 
of an unidentified transmission chain. In the future, it is essential to 
address surveillance deficiencies and explore the potential for 
asymptomatic poultry to harbor the virus.

Individuals with preexisting conditions, pregnant women, and 
other demographics are at elevated risk of severe illness and mortality 
due to zoonotic avian influenza (59). Epidemiological survey data 
from 16 cases in Sichuan Province indicated a significant prevalence 

of underlying disorders, with just 3 instances lacking such conditions, 
of which 2 were successfully treated. The cure rate for individuals 
without comorbidities was much superior to that of those with 
comorbidities. Individuals infected with H5N6 in Sichuan Province 
typically have a tendency to postpone medical intervention following 
the commencement of the illness. The box plot results indicate 
significant disparities in the time of treatment across various instances, 
implying the absence of a cohesive and standardized protocol to 
govern the commencement timing of antiviral therapy. This may 
occur due to their frequent misidentification as typical colds in the 
first phases of the illness. The mean duration from the beginning of 
symptoms to hospital admission was 4.6 days, surpassing the advised 
treatment duration for antiviral medications against influenza (60). 
The elevated case fatality rate of human H5N6 virus infections in 
Sichuan Province is mostly attributable to delayed diagnosis and 
treatment. The majority of patients reside in rural regions and initially 
pursue medical care at primary healthcare facilities or self-medicate, 
leading to lost chances for early intervention. Simultaneously, as 
human infections with avian influenza are few, medical institutions 
have limited exposure to such cases, resulting in a deficiency of 
experience in early detection. The duration from beginning to 
diagnosis is prolonged, hence hindering the prompt administration of 
anti-influenza medications.

During the 10-day monitoring period for close contact tracking, 
no abnormal symptoms were observed, and all respiratory specimens 

FIGURE 5

Timeline of “Onset to Hospital,” “Hospital to Treatment,” “Treatment to Outcome” of human cases of avian influenza H5N6 in Sichuan Province, 2014–
2024.
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TABLE 2  Environmental exposure history of H5N6 avian influenza cases in Sichuan Province from 2014 to 2024.

Year Region Live 
Poultry 
Market 

Exposure

Positive 
specimens 
detected in 
the market

Diseased 
or dead 
birds in 

and around 
your 

residence

Exposure 
to 

diseased 
or dead 

birds

Consumption 
of diseased or 

dead birds

Types of 
sick and 

dead 
birds

Positive avian 
specimens in 

residential 
environment

2014 Nanchong1 Yes No Yes Yes Yes Chicken, 

Duck, Goose

Yes

2021 Chengdu1 Yes Yes No No No — No

2021 Bazhong1 No Untested Yes Yes No Chicken, 

Duck, Goose

Yes

2021 Dazhou1 Yes Yes# Yes Yes Yes Chicken, Duck Yes#

2021 Dazhou2 Yes Yes Yes Yes Unknown Chicken, Duck Yes#

2021 Yibin Yes Yes Yes Yes Yes Chicken Yes#

2021 Zigong Unknown Untested Yes Yes Yes Chicken, Duck Yes

2021 Leshan Unknown Untested Yes Yes Yes Chicken Yes

2021 Luzhou Unknown Yes Yes Yes Yes Chicken, Duck Yes

2022 Nanchong2 No No No No No — Yes

2022 Chengdu2 Yes Yes No No No — No

2022 Deyang No No No Yes No Chicken No

2023 Nanchong3 Yes Yes Yes Yes No Chicken, 

Goose

Yes

2023 Dazhou3 No Yes# No No No — Yes#

2023 Bazhong2 Yes Yes No No No — No

2023 Ziyang Yes Yes No No No — Yes

* a for farm exposures, # for positive detections of H5 only.

FIGURE 6

Pie chart of sample sources and locations for testing positive for subtype H5. (A) Environmental sample distribution; (B) Specimen type distribution; 
(C) Monthly distribution of positive samples.
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tested negative, indicating that the H5N6 avian influenza virus is not 
yet capable of human-to-human transmission, consistent with the 
characteristic difficulty AIVs have in overcoming the “bird-to-
human” transmission barrier (9, 61). H5N6 strains exhibit a 
pronounced affinity for the α2-3 sialic acid receptor (SAα2-3Gal), 
prevalent in the respiratory and gastrointestinal systems of avian 
species (62). While several strains exhibit partial affinity for human-
like α-2,6-linked sialic acid receptors in  vitro, their binding rate 
remains markedly inferior to that of influenza viruses adapted to 
humans. In comparison to other avian influenza viruses (such as 
H7N9 and H5N1), H5N6 strains predominantly remain exclusive to 
avian receptors and seldom propagate in clusters (62, 63). Certain 
mutations indicate that H5N6 may possess the capability to adapt to 
certain animals. The E627K mutation in the PB2 gene can augment 
the virus’s replication capacity in mammalian cells, while the 
HA-T160A mutation may result in the elimination of glycosylation 
sites, hence enhancing the virus’s evasion of host protection (64, 65). 
The existing receptor binding range and gene mutation pattern 
collectively provide the constraints on human-to-human 
transmission, and the critical location (HA-Q226L/G228S) remains 
unmutated. Consequently, the immediate pandemic threat posed by 
the H5N6 virus is quite minimal (66, 67). The significant diversity of 
the virus and its strong connection to chicken markets will persist in 
necessitating enhanced viral surveillance and interdisciplinary 
collaboration to mitigate possible pandemic threats. Despite the 
virus’s now restricted transmissibility among individuals, ongoing 
surveillance of its genetic alterations is essential.

Currently, China lacks an avian influenza immunization initiative 
for high-risk populations. Nevertheless, several nations have previously 
used these techniques on an international scale. In 2024, Finland 
initially revealed intentions to immunize persons at occupational risk 
of avian influenza, including veterinarians and laboratory technicians 
(68). In 2025, Canada announced the acquisition of 500,000 doses of 
the human avian influenza vaccine, distributing them to high-risk 
populations, including laboratory personnel, close connections, and 
agricultural workers (69). These initiatives underscore the potential of 
vaccination as a crucial preventative measure for humans in the future, 
and tailored vaccination efforts for high-risk populations may also 
be executed in China thereafter.

The limitation of our analysis is that 16 cases insufficiently 
represent the whole risk profile of the province, necessitating the 
integration of additional epidemiological data about subtypes and 
locations. Considering our limited sample size, a non-significant 
p-value does not inherently indicate an absence of practical or 
therapeutic significance; rather, we must interpret these findings with 
care. Future research should integrate data from other locations to 
enhance statistical power and the generalizability of the findings. 
Nucleic acid testing has only been performed on environmental 
samples; research such as viral load measurement, genetic identification 
of isolates, and comparative study of viral sequences between poultry 
and human cases have not yet been done. Subsequent experiments may 
be undertaken to investigate the kinetics of viral transmission.

In the short term, we intend to enhance our findings by offering 
specific policy recommendations that might directly inform public 
health policy. We  propose the implementation of advanced 
surveillance systems focused on regions with substantial chicken 
supply and closeness to live poultry markets, alongside systematic 
monitoring of wild bird populations and poultry farms, while also 

tracking human cases. These tools will facilitate the early detection of 
epidemics and inform targeted interventions. Furthermore, 
we  endorse the development of explicit and succinct risk 
communication materials aimed at vulnerable populations and 
healthcare professionals, as well as the use of several communication 
channels to guarantee extensive distribution. We advocate for the 
creation of clinical management algorithms to assist healthcare 
professionals in the timely identification and treatment of H5N6 
infections, highlighting the importance of early antiviral therapy for 
high-risk populations and the use of extracorporeal membrane 
oxygenation (ECMO) in severe instances. Prolonged investigation for 
forthcoming developments, we advocate for the establishment of 
targeted vaccination initiatives for high-risk populations, regular 
disinfection procedures for poultry farms and live poultry markets, 
and cost-effectiveness assessments to identify the most economically 
viable strategies for preventing outbreaks and alleviating social 
repercussions. The integration of human and animal monitoring 
systems is still constrained, and mechanisms for direct data sharing 
with agricultural authorities have not been completely realized. In 
light of the rise in instances, further study will incorporate additional 
socio-demographic characteristics, socio-economic status, and health 
literacy levels. We also promote the enhancement of interdepartmental 
data connectivity to bolster early warning systems and augment the 
surveillance of avian influenza under the “One Health” plan.

5 Conclusion

Sichuan Province has a significant prevalence of H5N6, 
and the cases with elevated fatality rates are of considerable concern. 
The infection risk of avian influenza in the province is mostly associated 
with exposure to live poultry markets, contact with deceased poultry, 
and environmental contamination, with chickens and ducks serving as 
the principal hosts. The province serves as a migratory habitat for avian 
species. In the future, it may be essential to disrupt the transmission 
chain through comprehensive interventions involving “wild 
birds-live poultry trading markets-breeding areas-households,” and to 
address the threat of potential avian influenza variants by enhancing 
environmental monitoring and virus traceability research.
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Background: Influenza A (Flu A) and Influenza B (Flu B) are major contributors to

seasonal epidemics, causing significant morbidity and mortality worldwide.

Understanding their epidemiological trends is essential for optimizing

prevention and control strategies.

Objective: This study aims to analyze the epidemiological trends of Flu A and Flu

B, compare hospital-based and national surveillance data, and evaluate the

impact of COVID-19 on influenza transmission to provide scientific evidence

for influenza control measures.

Methods:We analyzed influenza positivity rates from Sichuan Jinxin XinanWomen

and Children Hospital data (HD) and Chinese National Influenza Center (CNIC)

between 2019 and 2024. Temporal trends, subtype distributions, and the effects of

non-pharmaceutical interventions (NPIs) were assessed.

Results: Influenza activity exhibited significant temporal variations. In HD, the

highest cumulative positivity rate of Flu A + Flu B was observed in 2023 (31.9%),

whereas the lowest rate occurred during the COVID-19 pandemic (2020–2022),

with a nadir in 2021 (2.0%). Flu A remained the predominant subtype in HD except

in 2021, whereas CNIC data showed a relatively higher proportion of Flu B.

Weekly positivity rates displayed distinct seasonal trends in CNIC data but not in

HD. A comparative analysis of pre-pandemic (2019), pandemic (2020–2022), and

post-pandemic (2023–2024) phases indicated that NPIs had a stronger

suppressive effect on Flu A than on Flu B.

Conclusion: Hospital-based and national influenza surveillance data showed

heterogeneity in subtype proportions, seasonal trends, and pandemic-related

impacts. These findings underscore the importance of integrating multiple
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surveillance sources for a comprehensive understanding of influenza dynamics.

Enhancing vaccine coverage, implementing targeted public health interventions,

and optimizing resource allocation are crucial for mitigating the influenza burden

in the post-pandemic era.
KEYWORDS

influenza A, influenza B, epidemiology, non-pharmaceutical interventions, COVID-19
Introduction

Influenza, commonly known as the flu, is an acute viral respiratory

disease caused by infection with influenza viruses, primarily seasonal

influenza A (Flu A) and B (Flu B) viruses (Uyeki, 2021; Bi et al., 2024).

These viruses circulate globally, leading to seasonal epidemics that

significantly impact public health (Uyeki et al., 2022). Hospitalization

rates are particularly elevated among vulnerable populations, including

children, the elderly, and individuals with underlying health conditions

(Thomas, 2023). The elderly population, particularly those aged 65 and

older, experiences the highest mortality rates (approximately 90%) due

to influenza (Mi et al., 2025). It is estimated that seasonal influenza

causes between 290,000 and 650,000 deaths worldwide each year (Cozza

et al., 2021). Studying the epidemiological trends of influenza can

provide valuable insights for future prevention and control measures.

In China, influenza remains a significant public health concern.

The epidemiological trends of Flu A and Flu B in the Chinese

population exhibit a certain pattern. Overall, Flu A infection rates

are generally higher than those of Flu B, with Flu A peaking during

the winter and early spring months (December to March of the

following year). In contrast, Flu B tends to peak later, sometimes

emerging at the end of winter or in spring (Huang W-J. et al., 2022;

Lei et al., 2022; Xie et al., 2024; Qu et al., 2025). In recent years, the

COVID-19 pandemic has influenced influenza transmission

patterns. Non-pharmaceutical interventions (e.g., mask-wearing,

social distancing) led to a decline in influenza activity in certain

years (Feng et al., 2021; Huang Q-M. et al., 2022). However, as

control measures eased, Flu A and Flu B circulation gradually

rebounded (Zhang et al., 2024; Cowling et al., 2020).

Existing studies may lack long-term surveillance data for

specific regions (Hammond et al., 2022; Soudani et al., 2022;

Langer et al., 2023). While the National Influenza Center provides

nationally representative data, it does not include detailed analyses

of case positivity rates in regional healthcare facilities. Additionally,

influenza transmission patterns may have been disrupted during the

COVID-19 pandemic and subsequent recovery period, yet research

on this impact remains limited.

Here we analyzed the trends in Flu A and Flu B positivity rates at

Sichuan Jinxin Xinan Women and Children Hospital from 2019 to

2024 and compared them with data from the Chinese National

Influenza Center (CNIC). Our findings revealed notable

heterogeneity between hospital data (HD) and CNIC influenza
02110
surveillance data in terms of influenza subtype proportions, seasonal

fluctuations, and the impact of COVID-19, highlighting the potential

limitations of relying on a single data source for assessing influenza

dynamics. Additionally, we examined influenza trends across the pre-

pandemic, pandemic, and post-pandemic periods and found that non-

pharmaceutical interventions (NPIs) during COVID-19 had a stronger

suppressive effect on Flu A than on Flu B. These findings underscore

the need for enhanced influenza vaccine coverage, precise surveillance,

and adaptive resource allocation in the post-pandemic era, particularly

in response to Flu B’s seasonal peaks and the risk of mixed

influenza outbreaks.
Materials and methods

HD data collection

Virus detection reagents and instruments
FluA and FluB antigens were detected using a colloidal gold-based

influenza antigen detection kit (Product Registration Number:

National Medical Device Registration Certificate Number:

20143401922) manufactured by InTec (https://www.asintec.com/

product/30). This rapid immunochromatographic assay utilizes a

double-antibody sandwich principle. The test strip is pre-coated

with monoclonal antibodies targeting the nucleoproteins of FluA

and FluB at detection zones A and B, respectively, and with goat

anti-mouse IgG antibodies in the control zone (C). If viral antigens

are present in the sample, they bind to colloidal gold-labeled

antibodies, forming antigen-antibody complexes that migrate

along the nitrocellulose membrane and produce visible color

bands, allowing for qualitative detection of FluA and FluB.

Sample collection and processing
Sample type: Throat swabs were collected from patients with

influenza-like illness (ILI) at Sichuan Jinxin Xinan Women and

Children Hospital from 2019 to 2024. The swabs were gently rubbed

against the posterior pharyngeal wall and bilateral tonsils, rotated, and

held in place for 10 seconds to ensure sufficient sample collection.

Sample preservation: Immediately after collection, swabs were

immersed in the provided lysis buffer (0.01 M phosphate-buffered

solution, pH 7.2 ± 0.2), stirred thoroughly 10 times, and squeezed

against the tube wall to release the antigens. Samples were tested
frontiersin.org

https://www.asintec.com/product/30
https://www.asintec.com/product/30
https://doi.org/10.3389/fcimb.2025.1603369
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2025.1603369
within 2 hours of collection to avoid degradation, and repeated

freeze-thaw cycles were avoided.

Detection procedure
Reagent preparation: Prior to testing, unopened reagent kits were

equilibrated to room temperature (15–30°C). Once opened, test

cassettes were used within 1 hour to prevent moisture interference.

Sample application:

A micropipette was used to transfer 80 mL (approximately 2–3

drops) of the lysed sample solution into the sample well of the

test cassette.

A timer was started, and the test was incubated at room

temperature for 10–15 minutes before result interpretation.

Results read beyond this time frame were considered invalid.

Result interpretation:

Positive: A red band appeared in detection zone A (FluA) and/

or B (FluB), with a visible control band (C).

Negative: Only the control band (C) appeared, with no visible

bands in zones A or B.

Invalid: No control band (C) appeared, indicating a failed test

requiring retesting.

This study was approved by the Ethics Committee of Sichuan

Jinxin Xinan Women and Children Hospital.
CNIC data collection

Influenza surveillance data were obtained from CNIC, which

systematically collects and reports influenza activity across China.

The dataset includes weekly influenza positivity rates and subtype

distributions from sentinel hospitals and laboratories nationwide.

For this study, we extracted relevant data from the CNIC database

covering the period from 2019 to 2024. Data were accessed through

official CNIC (https:// ivdc.chinacdc.cn/cnic/zyzx/lgzb/

202411/t20241115_302662.htm).
Statistical analysis

Data were analyzed using GraphPad Prism 9.0. Group differences

were assessed using the Kruskal-Wallis test followed by Dunn’s

multiple comparison test. Bar graphs were presented as mean ± SD

and generated using GraphPad Prism 9.0. Polar coordinate plots were

created by https://www.bioinformatics.com.cn, an online platform

for data analysis and visualization. A p-value of <0.05 was

considered statistically significant.
Results

Influenza positivity rates in HD and CNIC
from 2019 to 2024

We analyzed the positivity rates of Flu A and Flu B in HD from

2019 to 2024 and found that the highest cumulative positivity rate of
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Flu A + Flu B was observed in 2023 (31.9%), followed by 2019

(25.0%) and 2024 (18.4%). In contrast, the cumulative positivity rates

were recorded during the COVID-19 pandemic period, with 2020 at

10.3%, 2021 at 2.0%, and 2022 at 11.4%, indicating a substantial

decline during the peak pandemic years and a gradual rebound

thereafter. Flu A was the predominant subtype in the cumulative

positivity rates (Figures 1A, C). Additionally, an analysis of influenza

surveillance data from CNIC during the same period revealed a

slightly different trend. The cumulative positivity rates of Flu A + Flu

B, ranked from highest to lowest, were as follows: 2019 (20.8%), 2023

(17.8%), 2022 (15.0%), 2024 (12.5%), 2020 (5.9%), and 2021 (5.8%).

Notably, the proportion of Flu B appeared to be slightly higher in the

CNIC dataset compared to HD (Figures 1B, C). Further analysis of

the weekly average positivity rates in HD revealed that Flu A

maintained an average of approximately 10% in 2019, 2023, and

2024, while in 2020 and 2021, the average dropped to around 1%,

with a moderate increase observed in 2022 (approximately 5%). For

Flu B, the average positivity rate was 6.1% in 2019, with significantly

lower rates (p<0.05) observed in the subsequent years (Figure 1D).

Analysis of CNIC data revealed that the weekly average positivity rate

for Flu A peaked in 2023 at 14.7%, followed by 11.6% in 2019, with

the lowest rate observed in 2021 (<0.1%). For Flu B, lower average

positivity rates were noted in 2020 (1.5%) and 2023 (1.3%), while in

other years, the rates exceeded 4% (Figure 1E). In addition, we

compared the average positivity rates of Flu A and Flu B between

the HD and CNIC datasets from 2019 to 2024. The results showed

that there were no statistically significant differences in the average

positivity rates of Flu A between HD and CNIC. For Flu B, however,

the positivity rates in CNIC were significantly higher than those in

HD in both 2021 (p<0.01) and 2022 (p<0.0001) (Figure 1F).
Proportional analysis of influenza A and B
positivity rates in HD and CNIC datasets

Analysis of influenza data from both HD and CNIC revealed

notable differences in the positivity rates of Flu A and Flu B. To

further investigate the relationship between these subtypes among

positive cases, we examined their respective proportions. In the HD

dataset, Flu A predominated in all years except 2021, with its

proportion exceeding 80% in 2019, 2022, 2023, and 2024

(Figure 2A). Conversely, in the CNIC dataset, only in 2023 did

Flu A’s proportion surpass 80%. Notably, in 2021, Flu B accounted

for an overwhelming 99.87% of positive cases (Figure 2B).
Weekly trends in influenza A and B
positivity rates in HD and CNIC datasets
(2019–2024)

To investigate the annual trends in Flu A positivity rates, we

analyzed their weekly variations from 2019 to 2024. In the HD

dataset, no distinct seasonal patterns were observed in Flu A

positivity rates during this period (Figure 3A). Conversely, the

CNIC data exhibited more defined seasonal trends, with notable
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FIGURE 1

Analysis of influenza A and B positivity rates in HD and CNIC datasets. (A) Cumulative positivity rates of influenza A and B in HD. This figure illustrates
the cumulative positivity rates of influenza A (Flu A) and influenza B (Flu B) cases in the HD (hospital data) over the study period. (B) Cumulative
positivity rates of Flu A and Flu B in CNIC data. This figure illustrates the cumulative positivity rates of Flu A and Flu B cases in the CNIC (Chinese
National Influenza Center) dataset over the study period. (C) Polar plot of Flu A and Flu B positivity rates in HD and CNIC data from 2019 to 2024.
This figure presents a polar plot comparing the positivity rates of Flu A and Flu B in both HD and CNIC datasets over the period from 2019 to 2024.
(D) Bar chart of average weekly positivity rates for Flu A and Flu B in HD data. This figure presents a bar chart depicting the average weekly positivity
rates of Flu A and Flu B cases within the HD. (E) Bar chart of average weekly positivity rates for Flu A and Flu B in CNIC data. This figure presents a
bar chart depicting the average weekly positivity rates of Flu A and Flu B cases within the CNIC dataset. (F) Comparison of average positivity rates of
Flu A and Flu B between HD and CNIC datasets, shown as paired bars by year. ** indicates p<0.01; ****indicates p<0.0001.
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peaks occurring during the first 15 weeks and the last 10 weeks of

2019, 2023, and 2024 (Figure 3B).

Similarly, we analyzed the weekly variations in Flu B positivity

rates across different years. In the HD dataset from 2022 to 2024,
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Flu B positivity rates peaked during the initial 10 weeks and the final

10 weeks of each year (Figure 4A). The CNIC data exhibited a

comparable pattern, with significant peaks in Flu B positivity rates

occurring within the first and last 10 weeks of the year (Figure 4B).
FIGURE 2

Proportions of influenza A and B cases among influenza-positive cases in HD and CNIC datasets. (A) Pie chart depicting the proportion of influenza
A and B cases among influenza-positive cases in HD. (B) Pie chart depicting the proportion of influenza A and B cases among influenza-positive
cases in CNIC data. HD, hospital data; CNIC, Chinese National Influenza Center.
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Impact of the COVID-19 pandemic on
influenza positivity rates in HD and CNIC
datasets

Studies have suggested that the COVID-19 pandemic has

influenced influenza transmission patterns. To explore this

hypothesis, we analyzed influenza data from HD and CNIC,

categorizing the periods based on COVID-19 control measures

into pre-pandemic (Pre, 2019), pandemic (Pan, 2020–2022), and

post-pandemic (Post, 2023–2024) phases. Our analysis revealed a

significant decrease in the cumulative positivity rates of Flu A and

Flu B during the Pan period in both HD and CNIC datasets
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(Figures 5A, B). Specifically, the positivity rates of Flu A in both

HD and CNIC declined markedly during the Pan phase. In HD, Flu

B positivity rates were lower in the Pan period compared to the Pre

and Post phases. However, in the CNIC dataset, Flu B positivity

during the Pan phase was higher than in the Post phase (Figure 5B).

Further analysis of the average weekly positivity rates indicated

that, in HD, both Flu A and Flu B had significantly lower values

during the Pan period compared to the Pre and Post periods. In the

CNIC dataset, Flu A followed a similar trend, while Flu B showed no

significant difference between the Pan and Post periods. Notably, in

both HD and CNIC datasets, Flu B positivity rates were significantly

higher in the Pre phase compared to the Post phase (Figure 5C).
FIGURE 3

Weekly distribution of influenza A testing samples and positivity rates in HD and CNIC datasets. (A) Weekly distribution of influenza A testing samples
and positivity rates in HD. (B) Weekly distribution of influenza A testing samples and positivity rates in CNIC. HD, hospital data; CNIC, Chinese
National Influenza Center.
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Examining the proportions of Flu A and Flu B among

influenza-positive cases, we found that in HD, Flu A dominated

during the Pre, Pan, and Post periods, consistently accounting for

over 80% of cases. In contrast, within the CNIC dataset, although

Flu A had a higher proportion during the Pre and Post phases, it

remained below 80%. Notably, during the Pan period, Flu B became

the predominant pathogen, comprising 58% of influenza-positive

cases (Figure 5D).
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Discussion

In this study, we analyzed the trends in Flu A and Flu B

positivity rates from 2019 to 2024 at Sichuan Jinxin Xinan

Women and Children Hospital and compared them with national

surveillance data from the CNIC. Our findings revealed significant

heterogeneity between local and national datasets in terms of

influenza subtype distribution, seasonal patterns, and the impact
FIGURE 4

Weekly distribution of influenza B testing samples and positivity rates in HD and CNIC datasets. (A) Weekly distribution of influenza B testing samples
and positivity rates in HD. (B) Weekly distribution of influenza B testing samples and positivity rates in CNIC. HD, hospital data; CNIC, Chinese
National Influenza Center.
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FIGURE 5

Analysis of influenza A and B positivity rates in HD and CNIC datasets during the Pre, Pan, and Post COVID-19 periods. (A) Bar charts depict the
cumulative positivity rates of influenza A and B in HD and CNIC datasets during the pre-pandemic (Pre), pandemic (Pan), and post-pandemic (Post)
COVID-19 periods. (B) Heatmap depicting the positivity rates of influenza A and B in HD and CNIC datasets during the Pre, Pan, and Post COVID-19
periods. (C) Bar charts depicting the weekly average positivity rates of influenza A and B in HD and CNIC datasets during the P Pre, Pan, and Post
COVID-19 periods. (D) Pie charts depicting the proportions of influenza A and B cases among influenza-positive cases in HD and CNIC datasets
during the Pre, Pan, and Post COVID-19 periods. HD, hospital data; CNIC, Chinese National Influenza Center. ns indicates no significant; ** indicates
p<0.01; ****indicates p<0.0001.
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of the COVID-19 pandemic. Notably, the suppression of influenza

activity during the pandemic period was more pronounced for Flu

A than for Flu B, with Flu B emerging as the dominant subtype in

the CNIC dataset. Additionally, we observed a resurgence of

influenza positivity rates in 2023, underscoring the need for

strengthened post-pandemic surveillance and vaccination

strategies. These findings highlight the importance of integrating

both local and national data to obtain a comprehensive

understanding of influenza dynamics and inform targeted public

health interventions.

We found that both HD and CNIC data indicated that Flu A

was the predominant type in 2019, with an average positivity rate

exceeding 10%. This finding is consistent with results from multiple

studies. A study in Yichang, a subtropical city in China, found an

overall influenza virus positive rate of 16.6% among 8693 ILI cases,

with a higher positive rate for Flu A (10.6%) than Flu B (5.9%) (Zhu

et al., 2020). Another study in China, focusing on the period 2014-

2018, reported an overall positive rate of 17.2% among 1,890,084 ILI

cases, with Flu A detected in 62% of cases and Flu B in 38% (Zhu

et al., 2023). In Cameroon, a study spanning from 2009 to 2018

indicated an influenza virus positivity rate of 24.0% among 11,816

participants with ILI (Monamele et al., 2020). These results suggest

that before the COVID-19 pandemic, Flu A was the dominant

strain of influenza.

The outbreak of the COVID-19 pandemic led to significant

changes in influenza transmission patterns. A study reported that

during the 2020–2021 influenza season, the global incidence of Flu

A and B declined dramatically to just 0.0015 and 0.0028 times pre-

pandemic levels (Lampejo, 2022). In the United States, reported

influenza cases dropped sharply to only 1,899 during the 2020–2021

season, compared to millions of cases in previous years (Shaghaghi

et al., 2021). Time-series analyses also indicate changes in influenza

prevalence in China during the pandemic. One study found that

during the 2020–2021 influenza season, the proportion of

influenza-positive samples in southern China fell to 0.7%,

whereas in previous seasons, this proportion ranged from 11.8%

to 21.1% (Cao et al., 2023). From February 2020 to January 2021,

the influenza positivity rate in China dropped to 0.2%, representing

a significant decline compared to the same period in 2019 (Lei et al.,

2020). The Chinese government established a Joint Prevention and

Control Mechanism on January 2020, marking the beginning of its

comprehensive response to the COVID-19 outbreak. This

mechanism facilitated the rapid implementation of NPIs,

including travel restrictions, quarantine measures, and public

health campaigns aimed at educating the population about the

virus (Deng and Grépin, 2024). On January 2023, China officially

transitioned from a Class A to a Class B infectious disease

management approach, signaling the end of the dynamic zero-

COVID policy (Ge, 2023). This is why we defined 2019 as the Pre

period, 2020–2022 as the Pan period, and 2023–2024 as the Post

period in our study. In our study, HD results showed that during the

COVID-19 pandemic, the influenza positivity rate dropped from

approximately 25% before the outbreak to below 10%. After the

pandemic, it rebounded to pre-pandemic levels. Similar findings

were also observed in the CNIC data. These changes may be
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attributed to the stringent public health measures implemented to

control the spread of COVID-19, such as lockdowns, social

distancing, and mask mandates, which inadvertently reduced the

transmission of influenza viruses. These non-pharmaceutical

interventions significantly lowered influenza incidence during the

2020–2021 flu season (Chan et al., 2020; Itaya et al., 2020).

An important finding in our study is that, compared to Flu A,

the COVID-19 pandemic appeared to have a lesser impact on Flu B.

Our results show that, in 2021, Flu B was the dominant influenza

type in both HD and CNIC data. While the limited sample size in

HD might raise concerns about the reliability of the results, the

CNIC dataset, which included over 400,000 tested samples, showed

a similar pattern, with Flu B accounting for 99.87% of positive cases.

This phenomenon had not been observed in previous studies. In the

comparative analysis of the Pre, Pan, and Post periods, we also

found that in the Pan period, Flu B accounted for more than 50% in

the CNIC data, and in the Post period, the average positive rate for

Flu B was slightly lower (though not statistically significant). During

the COVID-19 pandemic, we observed that Influenza B (Flu B)

replaced Influenza A (Flu A) as the predominant type of influenza.

We speculate that this shift may be attributed to the

following reasons:

The COVID-19 pandemic led to a significant decline in Flu A

cases, with reports from many regions indicating that A/H1N1 and

A/H3N2 strains were nearly eliminated. In contrast, Influenza B—

particularly the Victoria lineage—persisted and even became

dominant (Chang et al., 2023; Zhou et al., 2023); Compared to

Influenza B, preventive measures such as social distancing and

mask-wearing may have been more effective in reducing the

transmission of Influenza A, allowing Influenza B to thrive (Wan

and Zhang, 2022); The COVID-19 pandemic significantly altered

the competitive dynamics of influenza viruses. As the prevalence of

Flu A declined, Flu B filled the epidemiological niche and became

increasingly prominent in the influenza landscape (Zeng

et al., 2024).

Additionally, our study revealed discrepancies between HD and

CNIC data. For example, an analysis of the weekly average Flu A

positivity rate in the most recent year (2024) showed that the HD

Flu A positivity rate was significantly higher than that of CNIC (p =

0.0008). Similar differences can also be observed in the figures from

our study, highlighting the necessity of monitoring influenza trends

at both the regional level and within individual centers.

Furthermore, a comparative analysis between regional data and

national influenza center data is crucial for understanding the

characteristics of influenza epidemics and optimizing prevention

and control strategies.

This study has several limitations that warrant further

discussion. First, our dataset is derived from a single tertiary

maternal and pediatric hospital in Chengdu, which may introduce

selection bias. The patient population is primarily composed of

children and women of childbearing age, who may have different

healthcare-seeking behaviors, immune status, and vaccination

coverage compared to the general population. Consequently, our

findings may not be fully representative of the broader community,

limiting the generalizability of the results. In our previous work on
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respiratory pathogen epidemiology in this hospital, we observed

similar demographic limitations, emphasizing the need for caution

when extrapolating hospital-based findings to population-level

inferences (Li et al., 2025). Second, while national data from the

Chinese National Influenza Center (CNIC) was used for

comparison, a lack of transparency regarding critical surveillance

parameters—such as catchment population size, geographic

coverage, case definition, and laboratory protocols—limits our

ability to draw direct comparisons between the HD and CNIC

datasets. These system-level differences could contribute to the

observed discrepancies in influenza subtype prevalence and

seasonality. Third, vaccination coverage was not captured in the

HD dataset, and reliable population-level estimates were not

available. This presents a critical gap, as influenza vaccination is

known to influence both individual susceptibility and transmission

dynamics (Alexander et al., 2004). Without such data, we cannot

assess whether the observed patterns were influenced by differential

vaccine uptake, particularly in vulnerable populations such as

children or the elderly. Fourth, changes in healthcare-seeking

behavior during and after the COVID-19 pandemic may have

influenced testing patterns and positivity rates. For example,

reduced outpatient visits during the pandemic may have led to

under-detection of mild influenza cases, while heightened

awareness of respiratory symptoms in the post-pandemic period

may have led to increased testing (Li et al., 2024). These shifts could

introduce temporal bias in surveillance data. Fifth, our study

focused exclusively on influenza positivity rates and did not

include clinical outcomes such as hospitalization rates, ICU

admission, or disease severity. These indicators would provide

important context regarding the public health burden of influenza

across different time periods and viral subtypes (Caini et al., 2018).

Lastly, environmental and behavioral changes due to non-

pharmaceutical interventions (NPIs) varied significantly across

regions and time, potentially influencing the transmission

dynamics of different influenza subtypes in ways not fully

captured by surveillance data. Future studies should incorporate

multi-center data with diverse population profiles, standardized

surveillance protocols, individual-level clinical and vaccination

data, and longitudinal follow-up to improve the accuracy,

comparability, and public health relevance of influenza

epidemiological assessments. Addressing these limitations will be

crucial for optimizing influenza control strategies and improving

our preparedness for future respiratory virus outbreaks.

In conclusion, our study reveals significant temporal variations

in influenza activity, with notable differences in subtype distribution

and seasonal trends between hospital-based and national

surveillance data. The impact of COVID-19-related non-

pharmaceutical interventions was more pronounced on Flu A

than Flu B, highlighting the differential sensitivity of influenza

subtypes to public health measures. These findings underscore

the importance of integrating multiple surveillance sources

for a comprehensive understanding of influenza dynamics.

Strengthening vaccination coverage and adaptive public health
Frontiers in Cellular and Infection Microbiology 10118
strategies will be essential for mitigating the influenza burden in

the post-pandemic era.
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Exploring influenza vaccination 
coverage and barriers to influenza 
vaccine uptake among preschool 
children in Fuzhou in 2022: a 
cross-sectional study
Haimei Jia 1*, Wenyan Gao 1, Xun Huang 1, Qinghua Wang 1, 
Yonghan Huang 1, Liang Chen 2, Desi Zheng 3, Yinchuan Zhang 4 
and Lifei Xu 5

1 Fuzhou Center for Disease Control and Prevention, Affiliated with Fujian Medical University, Fuzhou, 
China, 2 Gulou District Center for Disease Control and Prevention, Fuzhou, China, 3 Fuqing Center for 
Disease Control and Prevention, Fuzhou, China, 4 Minqing County Center for Disease Control and 
Prevention, Fuzhou, China, 5 Yongtai County Center for Disease Control and Prevention, Fuzhou, 
China

Background: Children are vulnerable to influenza virus due to their developing 
immune systems, particularly children aged 6 months-5 years (preschool 
children). To improve the uptake of influenza vaccine in preschool children, it 
is important to determine the influencing factors of Chinese parents/guardians’ 
(P/Gs) intention and behavior for children to receive. We  implemented an 
investigation to determine coverage of influenza vaccination in preschool 
children and the influencing factors of being vaccinated against influenza 
among preschool children in Fuzhou.

Methods: This is a cross-sectional study. Using a hierarchical approach, based 
on the coverage of influenza vaccination in preschool children, the 12 districts/
counties in Fuzhou were divided into two levels. In each level, two urban districts 
and two counties were selected, including 2 randomly selected vaccination 
clinics and 2 kindergartens. A standardized anonymous questionnaire was used 
to collect information on P/Gs. Chi-square testing and multivariate logistic 
regression were used to analyze factors that may be associated with influenza.

Results: The coverage rate of influenza vaccination was 7.38% among preschool 
children in 2022  in Fuzhou City. A total of 8,768 guardians completed the 
questionnaire. 54.70% of the responders had received at least one dose of 
flu. Only 23.56% of the P/Gs involved were able to correctly list the influenza 
clinical feature. Higher education status had higher coverage (p-values < 0.05). 
Multivariate analysis showed birth order [odds ratio (OR) = 0.76, 95% confidence 
interval (CI): 0.63, 0.92], medical insurance [OR = 1.42, 95% CI: 1.22, 1.65], 
occupation [OR = 0.84, 95% CI: 0.75, 0.93], average monthly household income 
≥ 10,000 [OR = 0.66, 95% CI: 0.56, 0.79], vaccine prices > 200 [OR = 1.66, 95% 
CI: 1.41, 1.97], and total duration of each vaccination session [OR = 0.49, 95% CI: 
0.42, 0.58] were associated with flu vaccination.

Conclusion: Influenza vaccination coverage among preschoolers was low, and 
parental/guardian knowledge regarding influenza prevention was inadequate. 
Enhanced awareness, vaccine understanding, and recommendation policies 
correlated with higher coverage. Authorities should implement sustainable 
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financing and incentives to ensure access and affordability, while promoting 
education to convert vaccination intentions into actual uptake.

KEYWORDS

influenza, preschool children, parental attitudes, influenza vaccination coverage, 
questionnaire survey

Introduction

Influenza remains a major cause of morbidity, mortality, and 
economic burden worldwide each year. There are approximately 1 
billion cases of influenza worldwide each year, of which 3 to 5 million 
are severe cases, resulting in 290,000–650,000 deaths globally (1). 
Children are relatively immunologically naive to influenza virus, 
leading to increased morbidity on infection (2). Among children 
under 5 years globally, there were an estimated one hundred million 
influenza virus episodes, and results in a substantial burden on health 
services worldwide (3). Lai et  al. (4) indicated that the average 
economic burden of children due to influenza-like illness was 1,647 
yuan (237.2 dollars) per episode, and the indirect economic burden 
due to the loss of caregivers’ labor time also was fairly large. The 
estimated overall attack rate in China was reported to be approximately 
5.5% in all age groups, with the highest attack rate observed in 
0–4 years old preschool children (31.9%). However, influenza 
vaccination coverage among children in China is low, remaining at 
approximately 25% (5).

World Health Organization (WHO) and European Union targets 
for immunization rates for at-risk populations are 75% (6). Both the 
Advisory Committee on Immunization Practices and Chinese Center 
for Disease Control and Prevention were simultaneously 
recommending universal influenza vaccination for preschool children 
(between the ages of 6 and 59 months), as well as those with high-risk 
conditions (7, 8). Vaccinating children against influenza could not 
only protect children themselves but also protect the whole 
community and reduce influenza incidence in the general 
population (9).

Parents/guardians (P/Gs) are the primary decision-makers for 
all family behaviors, it is critical to understand the factors that 
influence P/Gs’ intentions to vaccinate their children. Low MSF’s 
article showed that P/Gs’ willingness to vaccinate is a strong 
predictor of child influenza vaccination (10). Thus, a 
comprehensive survey of P/Gs is warranted to assess vaccination 
willingness and identify potential determinants influencing their 
decision-making.

In order to better control the influenza prevalent among 
preschool children, Fuzhou Health Commission and Fuzhou 
Center for Disease Control and Prevention provide health 
reminders and recommend getting vaccinated against influenza 
each year. However, the actual vaccination willingness of preschool 
children and the factors influencing their vaccination remain 
unclear. During 2022 through 2023, we  conducted a field 
investigation to evaluate the knowledge, attitudes of P/Gs regarding 
this influenza vaccination, and assess their status of influenza 
vaccination. This study was designed to identify factors affecting 
influenza vaccination among preschool children and provide 
evidence increasing influenza vaccination rates among 
preschool children.

Methods

Study design and setting

Data on influenza vaccinations of children aged 6 months-5 years 
(preschool children) in 2022 were obtained from the Fujian Province 
Immunization Information System, which contains vaccination data 
for all citizens living in Fuzhou. Population data used in this study 
were obtained from the China Information System for Disease 
Control and Prevention.

Setting and subjects

Fuzhou area is made of 12 urban districts (counties). Based on the 
coverage of influenza vaccination in preschool children, the 12 
districts/counties in Fuzhou were divided into two levels A and B (A: 
high coverage rate > 8.0%; B: low coverage rate < 8.0%) In each level, 
two urban districts and two counties were selected, including 2 
randomly selected vaccination clinics and 2 kindergartens. There was 
no specific influenza vaccination campaign during the investigation 
period. At least 2,700 P/Gs of preschool children were investigated in 
each level. P/Gs who were unwilling to participate in the study and 
children with contraindications of influenza vaccines were excluded.

Data collection

A standardized anonymous questionnaire designed specifically 
for the study was used to collect information, including fundamental 
demographic details concerning the infants and their families (sex, 
age, household composition, education status of the P/Gs, health 
status of children, health insurance status, P/Gs occupation, average 
monthly household income, birth information of children), influenza 
vaccination status of children, health-related beliefs and attitudes to 
influenza vaccination knowledge to influenza and influenza 
vaccination, and the demand for vaccination services (trust and 
satisfaction with vaccination staff, schedule of clinics, medical service 
environment). The questionnaire was distributed by investigators, 
filled in, and retrieved immediately at the field.

Data analysis

Knowledge of influenza and influenza vaccination: Assign 1 point 
to each question, 1 point for correct answers, and 0 points for errors, 
the total score is 14. The scores were categorized into three groups: 0–5 
unknown, 6–10 general know, 11–14 good know, with a hierarchy 
describing the respondent’s state of knowledge. We  established a 
database for analysis with SPSS version 26.0. Coverage of influenza 
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vaccination, demographics, knowledge about influenza and influenza 
vaccination, and health-related beliefs and attitudes to influenza 
vaccination were analyzed descriptively. Chi-square testing and 
multivariate logistic regression were used to analyze factors that may 
be associated with influenza vaccination. We used a 2-tail p-value (p) 
significance level of 0.05.

Results

Vaccination rates for flu in Fuzhou

Data obtained from the Fujian province immunization information 
system showed the total coverage of influenza vaccination (at least one 
dose) among preschool children in 2022 was 7.38%. The coverage was 
between 4.38–10.76% among 12 urban districts (counties). The coverage 
of influenza vaccination in preschool children among A (8.77%) was 
higher than in level B (6.10%) (p < 0.05).

Demographic characteristics

A total of 8,768 P/Gs were surveyed, their median age was 33 years 
(range: 20–99), and most participants were mothers (81.23%). 
According to occupational categorization, 45.02% of the respondents 
were enterprises and institutions, 59.39% were three-year college/
university, and 61.54% had legal holidays.

7.80% (684) were 6–11 months children, 20.78% (1,822) were 
between 1–2 years, 71.42% (6,262) were 3–6 years, 52.16% (4,573) 
were males. 51.45% of these were from the second birth, 90.81% had 
health insurance. Demographics and other characteristics are 
illustrated in Table 1.

Knowledge regarding influenza

Almost all of the respondents (97.54%) answered they knew the 
flu, however, 23.56% of the P/Gs involved were able to correctly list 
the influenza clinical feature. And the percentage with correct 
knowledge of transmission mode, complication, and the 
infectiousness of influenza were 94.66, 93.68, and 91.97%, 
respectively (Figure 1).

31–40 years old P/Gs had better knowledge about influenza than 
younger P/Gs and older P/Gs (24.40, 21.86, and 23.52%, respectively, 
p < 0.05). When we  compared the education status, there were 
differences among P/Gs, 28% of P/Gs with Three-year college/
university and above had answered correctly, which was higher than 

TABLE 1  Demographic characteristics of parents/guardians and children.

Variable Levels
Number of 

respondents
Percent 

%

Parents/guardians

Age group (years)
20-30 2,598 29.63

31-40 5,290 60.33

>41 880 10.04

Fill the 

questionnaire

Mother 7,123 81.23

Father 1,385 15.80

Grandparents 138 1.57

Other 122 1.39

Occupation Enterprises and public 

institutions
3,947 45.02

Self-employed/farmer 1,599 18.24

Unemployed/other 3,222 36.75

Education level Middle school or 

below
1,273 14.52

High school 2,261 25.79

Three-year college/

university
4,944 56.39

Master and above 290 3.31

Average monthly 

household 

income (RMB)

<3,000 870 9.92

3,000-4,999 2,344 26.73

5,000-9,999 3,379 38.54

≥10,000 2,175 24.81

Rest according to 

legal holidays

Yes 5,396 61.54

Occasional overtime 2,389 27.25

Frequent overtime 983 11.21

Transportation to 

the Vaccination 

Clinic

Walking 1,065 12.15

Bicycle 104 1.19

Motorcycle/electric 

vehicle
4,089 46.64

Public transportation 301 3.43

Self-driving 3,209 36.60

One-way 

inoculation time 

(minutes)

<30 7,540 85.99

30-60 1,143 13.04

>60 85 0.97

Children

Age group 6-11 months 684 7.80

1-2 years 1,822 20.78

3-6 years 6,262 71.42

Gender Male 4,573 52.16

Female 4,195 47.84

Birth order First 3680 41.97

Second 4511 51.45

Third or more 577 6.58

Variable Levels
Number of 

respondents
Percent 

%

Common cold Often 1220 13.91

Infrequent 6011 68.56

Seldom 1537 17.53

Medical 

insurance

No 806 9.19

Purchased 7962 90.81

TABLE 1  (Continued)

(Continued)
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those with a high school education (19.46%) and middle school or 
below (13.12%; p < 0.05) (Table 2).

Influenza vaccination and vaccination rates 
for flu

Figure 2 showed almost P/Gs knew the flu vaccine (95.38%), and 
knew that it protects against the flu (88.50%). However, only 1.49% P/
Gs and 2.74% P/Gs answered “YES” about the safety and effectiveness 
of the influenza vaccine. When asked about the source of knowledge 
of flu vaccine, the main source of information about flu was 
vaccinators (55.34%), followed by Center for Disease Control and 
Prevention (CDC) (47.57%), and social media (47.67%).

Table 3 showed that almost all of P/Gs were willing to vaccinate 
against influenza (90.02%), main reasons for refusing the flu vaccine 
were concerns about the safety (47.20%), not effective (36.69%), no 
knowledge of vaccines (31.77%), and adverse reactions have occurred 
of the influenza vaccine (13.87%).

Factors associated with influenza uptake

Among preschool children respondents, 4,796 (54.70%) had 
received at least one dose of flu vaccine (Table 4).

The coverage rate of preschool children was no significant 
difference between strata A and B (56.33 and 55.50%, p > 0.05). 
20–30 years old (60.70%) have higher vaccination rate for their children 
than 31–40 years old (51.63%) and older P/Gs (55.45%) (p < 0.05). The 
higher the education level of parents, the higher the flu vaccination rate 
of their children (the detailed data are in Tables 5, p < 0.05). The P/Gs 
working in state enterprises and public institutions (57.36%) had 
higher coverage for their children than self-employed/farmer (52.66%) 
and unemployed/other occupations (52.45%, p < 0.05). However, when 
we compared the household income, it showed the lower household 
income had higher coverage rate (p < 0.05). Total duration of each 
vaccination session < 30 min (58.72%) had a higher vaccination rate 
than 30–60 (52.66%) and > 60 (39.77%, p < 0.05) (Table 5).

Summary of children characteristics is shown in Table  5. 
1–2 years old had higher vaccination rate than 6–11 months and 
3–6 years old (65.86, 60.53, and 50.81%, respectively, p < 0.05). 
Furthermore, the first-born child had a higher vaccination rate 
than second-born and born later (58.40, 52.76, and 46.27%, 
respectively, p < 0.05). The coverage of preschool children with 
medical insurance was higher than that of children without (55.53 
and 46.53%, respectively, p < 0.05).

FIGURE 1

Respondents’ answers about influenza knowledge.

TABLE 2  Main reasons influencing respondents’ knowledge of influenza.

Variable Levels
The rate of 

correct 
answer (%)

χ2 p

Hierarchy A 23.29 0.38 0.54

B 23.86

P/Gs age 20–30 21.86 6.21 0.04

31–40 24.40

>41 23.52

Education 

level

Middle school or below 13.12 152.75 0.00

High school 19.46

Three-year college/

university
27.97

Master’s degree and above 26.21
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The multivariate analysis of factors influencing flu vaccination 
showed that children’s birth order, medical insurance, P/G’s occupation, 
average monthly household income, vaccine prices, and total duration 
of each vaccination session were associated with flu vaccination.

Children birthed third or late [odds ratio (OR) = 0.76, 95% 
confidence interval (CI): 0.63, 0.92]; medical insurance [OR = 1.42, 

95% CI: 1.22, 1.65]; P/Gs occupation [OR = 0.86, 95% CI: 0.76, 
0.98 and OR = 0.84, 95% CI: 0.75, 0.93]; average monthly 
household income ≥ 10,000 [OR = 0.66, 95% CI: 0.56, 0.79]; 
acceptable vaccine prices > 200 [OR = 1.66, 95% CI: 1.41, 1.97]; 
total duration of each vaccination session > 60 min [OR = 0.49, 
95% CI: 0.42, 0.58] (Table 6).

Discussion

Our study showed the total coverage of influenza vaccination (at 
least one dose) among preschool children in 2022 was 7.38%. The 
coverage was between 4.38–10.76% among 12 urban districts 
(counties). 31–40 years old P/Gs had better knowledge about influenza 
than younger P/Gs and older P/Gs (24.40, 21.86, and 23.52%, 
respectively, p < 0.05), but almost P/Gs were unaware of the safety and 
effectiveness of the influenza vaccine. This investigation showed 

FIGURE 2

Respondents’ answers about influenza vaccine knowledge.

TABLE 3  Attitude toward influenza illness and influenza vaccine.

Variable Levels Number of 
respondents

Percent 
%

Willingness 

to vaccinate

Yes 7,893 90.02

No 875 9.98

Reasons for 

reluctance to 

vaccinate 

(N = 875)

No time 59 6.74

Self-payment required 153 17.49

No knowledge of 

vaccines
278 31.77

Worried about the safety 413 47.20

Not effective 321 36.69

Poor physical of children 158 18.06

Other 138 15.77

Adverse 

reaction 

(N = 4,796)

No 4,131 86.13

Fever 370 7.71

Redness, swelling and 

pain at the vaccination 

site

340 7.09

Hard nodules at the 

vaccination site
191 3.98

Rash 83 1.73

Other 120 2.50

TABLE 4  Vaccination rates in districts/counties in this study sample.

Variable Levels
Vaccination 

n (%)
Average 
rate %

A level Fuqing City 1,216 (52.60) 56.33

Jinan District 461 (54.24)

Taijiang District 477 (58.24)

Yongtai County 356 (60.24)

B level Gulou District 465 (57.20) 55.50

Cangshan District 520 (65.16)

Minhou County 932 (51.04)

Minqing County 369 (48.62)

Total Fuzhou City 4,796 (54.70) 54.70
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TABLE 5  Univariate analysis of factors influencing influenza vaccination.

Factors Category Vaccination rate (%) β p OR (95% CI)

Hierarchies A 56.33

B 55.50 −0.02 0.69 0.94 (0.90, 1.07)

Fill the questionnaire Mother 54.43

Father 54.87 0.02 0.76 1.02 (0.91, 1.14)

Grandparents 64.49 0.42 0.02 1.52 (1.07, 2.16)

Other 57.38 0.12 0.52 1.13 (0.79, 1.62)

Age group (years) 20–30 60.70

31–40 51.63 −0.37 0.00 0.69 (0.63, 0.76)

>41 55.45 −0.22 0.01 0.81 (0.69, 0.94)

Education level Middle school or below 52.71

High school 52.10 −0.02 0.73 0.98 (0.85, 1.12)

Three-year college/university 56.01 0.13 0.04 1.14 (1.01, 1.29)

Master and above 61.38 0.36 0.01 1.43 (1.10, 1.85)

Occupation Enterprises and public institutions 57.36

Self-employed/farmer 52.66 −0.19 0.00 0.83 (0.74, 0.93)

Unemployed/other 52.45 −0.20 0.00 0.82 (0.75, 0.90)

Average monthly household income 

(RMB)

<3,000 57.59

3,000-4,999 57.00 −0.02 0.76 0.98 (0.83, 1.14)

5,000-9,999 53.42 −0.17 0.03 0.85 (0.73, 0.98)

≥10,000 53.06 −0.18 0.02 0.83 (0.71, 0.98)

Rest according to legal holidays Yes 56.60

Occasional overtime 52.74 −0.16 0.00 0.86 (0.78, 0.94)

Frequent overtime 49.03 −0.30 0.00 0.74 (0.64, 0.85)

Transportation Walking 59.72

Bicycle 71.15 0.51 0.02 1.66 (1.07, 2.59)

Motorcycle/electric vehicle 54.83 −0.20 0.00 0.82 (0.71, 0.94)

Public transport 54.15 −0.23 0.08 0.80 (0.62, 1.03)

Self-driving 52.38 −0.30 0.00 0.74 (0.65, 0.85)

One-way inoculation time (minutes) <30 55.16

30–60 52.49 −0.11 0.09 0.90 (0.79, 1.02)

>60 43.53 −0.47 0.03 0.63 (0.41, 0.96)

Acceptable vaccine prices (RMB) ≤50 49.15

50–100 53.33 0.17 0.01 1.18 (1.05, 1.33)

100–200 58.01 0.36 0.00 1.43 (1.27, 1.61)

>200 59.50 0.42 0.00 1.52 (1.30, 1.74)

Total duration of each vaccination session <30 58.72

30–60 52.66 −0.25 0.00 0.78 (0.72, 0.85)

>60 39.77 −0.77 0.00 0.46 (0.39, 0.55)

Total score Unknown 55.00

General know 57.31 0.00 0.99 1.00 (0.71, 1.41)

Good know 53.87 −0.03 0.88 0.97 (0.69, 1.37)

Children’s characteristics

Gender Male 54.65

Female 54.76 0.00 0.92 1.00 (0.92, 1.09)

(Continued)
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TABLE 6  Multivariate analysis of the impact of influenza vaccination.

Factors Category β p OR (95% CI)

Birth order First

Second −0.11 0.02 0.89 (0.81, 0.98)

Third or more −0.27 0.01 0.76 (0.63, 0.92)

Medical insurance No

Purchased 0.35 0.00 1.42 (1.22, 1.65)

Age group (years) 20–30

31–40 −0.30 0.00 0.74 (0.67, 0.82)

>41 −0.10 0.22 0.90 (0.77, 1.06)

Education level Middle school or below

High school −0.07 0.33 0.93 (0.81, 1.08)

Three-year college/university 0.03 0.69 1.03 (0.89, 1.19)

Master and above 0.29 0.05 1.33 (1.00, 1.77)

Occupation Enterprises and public institutions

Self-employed/farmer −0.15 0.02 0.86 (0.76, 0.98)

Unemployed/other −0.18 0.00 0.84 (0.75, 0.93)

Average monthly household income 

(RMB)

<3,000

3,000–4,999 −0.16 0.05 0.85 (0.72, 1.00)

5,000–9,999 −0.36 0.00 0.70 (0.59, 0.82)

≥10,000 −0.41 0.00 0.66 (0.56, 0.79)

One-way inoculation time (minutes) <30

30–60 −0.04 0.54 0.96 (0.84, 1.09)

>60 −0.27 0.23 0.76 (0.49, 1.19)

Acceptable vaccine prices (RMB) <50

50–100 0.22 0.00 1.25 (1.11, 1.41)

100–200 0.43 0.00 1.54 (1.36, 1.73)

>200 0.51 0.00 1.66 (1.41, 1.97)

Total duration of each vaccination 

session

<30

30–60 −0.24 0.00 0.79 (0.72, 0.86)

>60 −0.71 0.00 0.49 (0.42, 0.58)

TABLE 5  (Continued)

Factors Category Vaccination rate (%) β p OR (95% CI)

Age group 6–11 months 60.53

1–2 years 65.86 0.23 0.01 1.26 (1.05, 1.51)

3–6 years 50.81 −0.40 0.00 0.67 (0.57, 0.79)

Birth order First 58.40

Second 52.76 −0.23 0.00 0.80 (0.73, 0.87)

Third or more 46.27 −0.49 0.00 0.61 (0.51, 0.73)

Cold condition Often 55.82

Infrequent 54.17 −0.07 0.29 0.94 (0.83, 1.06)

Seldom 55.89 0.00 0.97 1.00 (0.86, 1.17)

Medical insurance No 46.53

Purchased 55.53 0.36 0.00 1.44 (1.24, 1.66)
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children’s age, birth order, medical insurance, P/G’s age, occupation, 
average monthly household income, overtime work, transportation, 
vaccine prices, and total duration of each vaccination session were 
associated with flu vaccination.

Data obtained from the Fujian Province Immunization 
Information System showed the total coverage of influenza vaccination 
(at least one dose) among preschool children in 2022 was 7.38%, 
which is far below Germany (40%) (11), and England (48%) (12) who 
provide specialized and effective policy support for vaccination. 
Currently, influenza vaccination in Fuzhou operates solely on a 
voluntary, self-paid basis without any complementary support 
measures such as government subsidies or insurance coverage. This 
suggested deficiencies in establishing or implementing influenza 
vaccine policies for Fuzhou.

This investigation showed 54.70% children had received at least 
one dose of the influenza vaccine, which was far below the WHO’s 
target of 75% and domestic of 28% (13) flu vaccination coverage. 
However, almost P/Gs (90.02%) were willing to have their children 
vaccinated against the flu, which suggested they knew it’s good to get 
vaccinated. If all P/Gs implemented the “Willingness,” children can 
be protected against flu through vaccination. In this study. Higher-
degree of parental had higher influenza vaccination rates among 
preschoolers. Larson HJ’s article indicated that parental education 
level is a significant predictor of vaccine uptake (14). P/Gs with high 
education are more likely to vaccinate their children against influenza 
(15). However, European study reported that lower influenza 
vaccination rates among highly educated individuals in Ireland, Italy, 
and Spain (16). This discrepancy may be attributed to cultural and 
cognitive differences across regions. Extensive research has established 
that P/Gs knowledge significantly influences childhood influenza 
vaccination rates (17–19). Enhancing parental understanding of 
influenza may consequently improve vaccination rates among 
children. Our research showed only 1.49% P/Gs and 2.74% P/Gs 
answered “YES” about the safety and effectiveness of the influenza 
vaccine, indicating a substantial gap in influenza- and vaccine-related 
knowledge. When asked about the source of knowledge of flu vaccine, 
the main source of information about flu was vaccinators (55.34%), 
followed by CDC (47.57%), and social media (47.67%). So vaccinators 
must provide strong advice and vaccine knowledge to P/Gs who visit 
vaccination clinics. Above results showed influenza coverage among 
preschool children was low, good knowledge of influenza and 
influenza vaccine were linked to improved immunization coverage. 
These hinted that there was still a lack of publicity about influenza.

In addition to knowledge, the convenience and feasibility of 
influenza vaccination are also important influencing factors. 
Multivariate regression analyses showed that extended vaccination 
time negatively impacted compliance (β = −0.71, p < 0.05). The 
vaccination rate was higher among the respondents who could 
be  vaccinated within 30 min. This disparity may reflect logistical 
challenges P/Gs face when coordinating clinic visits with children’s 
schedules. Distance between outpatient clinic and home also affect the 
convenience of vaccination (p < 0.05). Furthermore, parental 
occupational constraints and overtime status were identified as 
additional barriers, Goldman (20) and Ding’s (21) articles show that 
it is more difficult for P/Gs to coordinate the time of vaccination for 
children and their work leading to low vaccination.

Furthermore, some P/Gs also showed dissatisfaction with the 
vaccination process, including difficulties in making vaccine 

appointments, long queues, and cumbersome processes. These 
findings suggest current influenza vaccination procedures in 
Fuzhou create accessibility barriers. If individuals perceive the 
process of getting vaccinated to be complicated or cumbersome, 
they may be less likely to seek it out or delay it (22, 23). To boost 
children influenza vaccination coverage, public health authorities 
should prioritize service optimization through streamlined 
scheduling systems, extended clinic hours, digital appointment 
platforms, and strengthen cooperation with the school authorities 
(getting vaccinated before the flu season or strengthening the 
promotion of flu vaccination in schools).

Our results showed there was a significant inverse correlation 
between household income and influenza vaccination rates (β = −0.41, 
p < 0.05), which coincides with previous findings that vaccination rates 
among children tend to be higher in families with lower economic status 
(24). This phenomenon may be attributed to the greater perceived cost-
effectiveness of immunization for economically disadvantaged families, 
where disease prevention represents a more substantial economic 
benefit. Health insurance coverage among preschool children is 
significantly associated with increased influenza vaccination uptake 
(p < 0.05). In addition, Fuzhou’s self-funded vaccination policy makes 
socially and economically disadvantaged groups have the burden of 
vaccination. The price of vaccines is an important deterrent to 
vaccination behavior. Comparative analyses of vaccination policies 
reveal that regions implementing free vaccination programs, such as 
Beijing and Hong Kong, achieve significantly higher coverage rates. 
Comparative analyses of vaccination policies reveal that regions such as 
Beijing (25) and Hong Kong (26), which implement free vaccination 
policy achieved significantly higher coverage rates than Fuzhou. 
Empirical evidence from national policy evaluations confirms that free 
vaccination policies yield the highest coverage rates, followed by medical 
insurance reimbursement systems (27, 28). These findings underscore 
the critical role of policy interventions and financial support 
mechanisms in enhancing vaccination uptake. In order to 
comprehensively increase influenza vaccine coverage among school-
aged children in Fuzhou, we recommend implementing comprehensive 
strategies including: (1) establishment of free or subsidized vaccination 
programs, (2) integration with existing healthcare insurance systems, 
and (3) development of targeted initiatives for vulnerable populations.

Our study had a few limitations. First, the data on vaccination were 
self-reported, and not verified by immunization certificate, document, 
or serological testing. Second, the survey is a self-administered 
questionnaire by the respondents, we relied on respondents to fill out 
the questionnaire themselves to complete the survey, which may have 
limited a small percentage of P/Gs from responding.

In conclusion, our study offers valuable insights into the 
determinants influencing Chinese P/Gs’ willingness to vaccinate 
influenza vaccine for their children. The findings demonstrate that 
as factors such vaccine knowledge, medical insurance, occupation, 
household income, overtime work, transportation, vaccine prices, 
and total duration of each vaccination session play a pivotal role in 
shaping P/Gs’ intentions to influenza vaccine. Public health 
campaigns and educational initiatives should emphasize the 
benefits associated with the influenza vaccine. First, public health 
authorities should establish sustainable financing mechanisms and 
incentive programs to ensure vaccine accessibility and affordability, 
health and education departments can do a good job of health 
education on influenza and vaccination in advance, improve the 
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corresponding cognitive level of the target population, convert 
vaccination intentions into actual uptake. These integrated 
measures, when implemented prior to influenza seasons, could 
significantly improve vaccination rates among preschool children, 
thereby establishing herd immunity and reducing influenza-
related morbidity.
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Highly Pathogenic Avian Influenza (HPAI) viruses, particularly H5N1 and H7N9, 
have long been considered potential pandemic threats, despite the absence of 
sustained human-to-human transmission. However, recent outbreaks in previously 
unaffected regions, such as Antarctica, suggest we may be shifting from theoretical 
risk to a more imminent threat. These viruses are no longer limited to avian 
populations. Their increasing appearance in mammals, including dairy cattle and 
domestic animals, raises the likelihood of viral reassortment and mutations that 
could trigger a human pandemic. If such a scenario unfolds, the world may face 
a crisis marked by high transmissibility and lethality, without effective vaccines 
readily available. Unlike the COVID-19 pandemic, when vaccines were rapidly 
developed despite inequities in access, the current influenza vaccine production 
model, largely reliant on slow, egg-based technologies, is insufficient for a fast-
moving outbreak. While newer platforms show promise, they remain in early 
stages and cannot yet meet global demand, which alerts to the urgent need for 
accelerating vaccine and drug development, especially universal vaccines, next-
generation vaccine platforms designed to provide broad, long-lasting protection 
against a wide spectrum of HPAI virus subtypes and strains. Here we propose a 
paradigmatic shift toward a more integrated, digitalized One Health surveillance 
system that links human, animal, and environmental data, especially in high-
risk spillover regions. We underscore that Artificial Intelligence can revolutionize 
pandemic preparedness strategies, from improving early detection to speeding 
up vaccine and drug development and access to medical care, but should not 
be considered a stand-alone solution.
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Introduction

Infections with zoonotic influenza viruses, including Highly 
Pathogenic Avian Influenza (HPAI) viruses pose a significant threat 
to global public health in scenarios where viruses could acquire the 
ability to transmit efficiently among humans and cause a pandemic. 
Particularly concerning are the avian influenza strains, such as H5N1 
and H7N9, which can be, transmitted from birds to humans, with 
high case fatality rates (1), even considering that most of H7N9 
zoonotic infections result from LPAI (Low Pathogenic Avian 
Influenza) viruses and not from HPAI viruses (2, 3). In addition, avian 
influenza viruses can mutate or reassort, potentially leading to more 
transmissible or lethal variants. Although to date there is no evidence 
of sustained human-to-human transmission of avian influenza 
viruses, this possibility of mutation or reassortment is concerning and 
requires urgent global strategies for preparedness (4, 5).

Understanding the epidemiological behavior of avian influenza 
viruses, the mechanisms underlying zoonotic spillover, and the 
potential public health ramifications of a highly lethal pandemic 
scenario is imperative for global preparedness. From a knowledge 
governance perspective, this calls for the urgent implementation of 
robust, integrated surveillance systems that encompass poultry farm 
environments, sylvatic animals, and human populations with high 
exposure risk. These systems must be  complemented by the 
development and equitable distribution of rapid, point-of-care 
diagnostic tools and by the strategic deployment of 
non-pharmaceutical interventions aimed at slowing viral transmission 
in the absence of immediate pharmacological solutions.

In addition, we  highlight the importance of international 
collaboration, risk communication, and equity considerations in 
resource allocation during vaccine and drug shortages (6). By 
addressing the unique challenges of this worst-case scenario, the 
article aims to contribute to a more resilient global preparedness 
framework, supported by quality data and Artificial Intelligence, 
capable of managing unprecedented public health crises. In a previous 
publication we emphasized the critical need for urgent and sustainable 
investments in vaccine innovation and global preparedness. The 
results of our publication warn that a future pandemic caused by avian 
influenza viruses could unfold in the absence of effective vaccines, 
given current technological and logistical limitations (7).

Key barriers include restricted access to vaccine patents, reliance 
on slow and labor-intensive egg-based production methods, and the 
insufficient advancement and technological limitation of the current 
mRNA platforms and universal influenza vaccine technologies. These 
challenges are particularly alarming in the context of viral evolution 
and adaptation within farmed animals and their human handlers, 
which heightens the risk of zoonotic spillover and widespread 
outbreaks. This potential vaccine gap underscores the urgent need for 
a comprehensive global pandemic preparedness framework. Such a 
model must prioritize the integration of genomic and antigenic 
surveillance within a unified One Health approach, while also 
fostering robust public-private partnerships and scaling up investment 
in innovative vaccine platforms. These efforts are essential not only for 
controlling highly pathogenic and low pathogenicity avian influenza 
viruses but also for anticipating and mitigating other emerging 
zoonotic threats (8).

Our article underscores the need for developing a universal 
influenza vaccine to reduce the risk of future pandemics, advocating 

for stronger international coordination led by organizations like 
World Health Organization (WHO) and Pan American Health 
Organization (PAHO) to improve vaccine accessibility and efficacy. 
Universal highly pathogenic avian influenza (HPAI) vaccines refer to 
next-generation vaccine platforms specifically designed to provide 
broad, long-lasting protection against a wide spectrum of HPAI virus 
subtypes and strains. Unlike conventional influenza vaccines that 
require frequent updates to match circulating strains, universal HPAI 
vaccines aim to target highly conserved viral regions—such as the 
hemagglutinin (HA) stalk domain, internal proteins (like NP and 
M1), or T-cell epitopes—that are less prone to antigenic drift and shift. 
By focusing on these conserved viral components, universal vaccines 
have the potential to induce cross-protective immune responses, 
reducing the need for strain-specific reformulation and offering a 
more effective tool for pandemic preparedness and control of both 
known and emerging HPAI variants (9, 10). Such vaccine candidates 
may utilize diverse platforms, including recombinant proteins, viral 
vectors, or mRNA technologies, and are under active investigation in 
both animal and early-phase human studies. Universal HPAI vaccines 
represent a critical innovation pathway toward overcoming the 
logistical and scientific limitations of current egg-based or strain-
specific vaccines, especially in rapidly evolving outbreak scenarios 
(11, 12).

In this article we examine the epidemiological dynamics of HPAI 
and LPAI viruses, zoonotic spillover pathways, and societal and 
healthcare implications of a highly lethal pandemic. We emphasize the 
necessity of robust One Health surveillance systems, innovative 
vaccine technologies, international collaboration, and the role of 
Artificial Intelligence (AI) in bolstering preparedness and 
response mechanisms.

Epidemiological scenario: potential routes 
of zoonotic spillover

Avian influenza viruses, including HPAI viruses, are characterized 
by their ability to mutate rapidly, spreading and enabling them to 
adapt to new hosts. The primary zoonotic transmission routes include 
direct contact with infected birds and animals, exposure to 
contaminated environments, like faeces, etc., and the preparation of, 
and consumption of undercooked poultry (meat or other animal 
products). Further human activities, such as intensive farming and 
wildlife trade, amplify the risk of spillover events, events (by increasing 
the instances of human-animal interactions).

Avian influenza presents a critical global health threat, as indicated 
in Table 1. According to WHO, from January 1 2003 to December 12, 
2024, 954 confirmed human cases of HPAI influenza A (H5N1) virus 
infection were reported across 24 countries, with 464 fatalities. Cases 
and fatalities related to other HPAI viruses are indicated in Table 1. 
While the global trend has been a decline in H5N1 human cases since 
2015, recent reports (13, 14) indicate an increasing number of new 
human infections. For instance, as of January 6, 2025, the United States 
had reported 66 confirmed human cases of H5N1 since 2024, with one 
fatality. Historically, cattle were not considered natural hosts for 
H5N1, however recent cases (such as in the US in 2024) indicate that 
the virus can infect dairy cows, particularly spreading their mammary 
glands. In addition, in January 2025, a human case of H5N1 was 
detected in England, the second symptomatic case in the UK.
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It is important to note that although human cases have been 
relatively low, H5N1 has been spreading extensively among bird 
populations and has recently been increasingly detected in several 
mammalian species, including dairy cows and wild animals. For 
example, in the United  States, since 2022, the United  States 
Department of Agriculture Animal and Plant Health Inspection 
Service has reported HPAI A (H5N1) virus detections in more than 
200 mammals (15).

Emerging evidence suggests that certain HPAI strains, particularly 
from clade 2.3.4.4b, have acquired mutations that may enhance their 
capacity to infect mammals. Among these, changes in the PB2 gene—
such as E627K and D701N—have been identified as key molecular 
markers that improve viral replication efficiency in mammalian hosts. 
Although these mutations have been detected in sporadic cases, 
particularly in mammals exposed to infected birds, there is no 
conclusive evidence of sustained mammal-to-mammal transmission 
to date. Nonetheless, the detection of such adaptations underscores 
the need for heightened genomic surveillance at the human–animal 
interface, where the potential for zoonotic spillover is greatest.

Another critical genetic determinant in the adaptation of avian 
influenza viruses to mammalian hosts is the PB2 gene, which encodes 
one of the three polymerase subunits essential for viral replication. 
Specific mutations in PB2, notably E627K and D701N, have been 
repeatedly associated with enhanced viral replication efficiency at the 
lower temperatures found in the mammalian respiratory tract (16). 

These mutations can significantly increase the virulence and 
transmissibility of HPAI viruses in mammals, including humans. 
Studies following experimental infections and epidemiological 
investigations of zoonotic cases have consistently highlighted PB2 
mutations as key markers for assessing pandemic potential. The 
capacity of these mutations to facilitate cross-species transmission 
underlines the importance of incorporating PB2 surveillance into 
global risk assessment frameworks for avian influenza viruses.

The transition of H7N9 from low pathogenic avian influenza 
(LPAI) to highly pathogenic avian influenza (HPAI) is marked by the 
acquisition of a polybasic cleavage site in the hemagglutinin (HA) 
protein, leading to increased virulence in poultry (17). However, this 
change does not necessarily enhance transmissibility or severity in 
humans. Notably, both LPAI and HPAI H7N9 strains have been linked 
to severe human infections, with case fatality rates around 40% (18).

HA cleavage site and receptor binding specificity
While the polybasic cleavage site facilitates systemic spread in 

avian hosts by enabling HA cleavage by ubiquitous proteases, human 
pathogenicity is more influenced by receptor-binding specificity and 
host factors than by the cleavage site alone.

Residue 226 mutation and receptor affinity
The Q226L amino acid substitution in the hemagglutinin (HA) 

protein shifts receptor-binding preference from avian-type (α-2,3-linked 

TABLE 1  Zoonotic avian viruses: main characteristics and key concerns.

Viral subtype HPAI/LPAI primary hosts Main outbreaks Key concerns

H5N1

Poultry, wild birds, mammals (4)

Worldwide, the detection of A 

(H5N1) viruses in non-avian species, 

such as marine and terrestrial 

mammals (both domestic and wild), 

has increased in recent years (47)

1997 (Hong Kong) (48); 2003-Present 

(global) (49)

Human infections (over 890 confirmed 

human cases and more than 460 deaths as 

of 2024) (1, 4, 28, 50), pandemic potential, 

increased transmission to mammals, risk 

of viral reassortment in mammals

H5N6

Poultry, wild birds (51)

Aquatic poultry (ducks and geese) 

and migratory birds (52)

2014-Present (China, Southeast Asia) (53)

Sporadic human cases (at least 84 

confirmed human cases and 33 deaths 

reported globally by 2024) (54), possible 

reassortment with other flu viruses (52)

H5N8 Poultry, wild birds (51)
2014-Present (Europe, Asia, Africa) (51, 55, 

56)

Highly contagious in birds, occasional 

mammal infections (no confirmed human 

cases to date, but multiple mammal 

infections in seals and foxes reported) (57, 

58)

H7N9 Poultry (59) 2013–2019 (China) (59)

Mutations increasing human infectivity, 

pandemic potential. Over 1,500 

laboratory-confirmed human cases and at 

least 615 deaths reported during 

epidemics (59, 60)

H10N3 Poultry, wild birds (61, 62) 2021 (China) (63)

Limited human infections (only 1 

confirmed human case as of 2024), needs 

monitoring (63, 64)

H9N2 Poultry, wild birds (65) Ongoing (Asia, Middle East) (63, 65)

Reassortment potential with other flu 

viruses. More than 90 sporadic human 

cases reported with low case fatality rate 

(66)

Sources: elaborated by the authors based on Refs. (1, 4, 28, 47–66).
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sialic acids) to human-type (α-2,6-linked sialic acids), potentially 
increasing the risk of zoonotic transmission (19–21). Importantly, this 
substitution in the H7 HA does not eliminate affinity for avian receptors, 
allowing the virus to infect both avian and human hosts.

However, it is important to note that H1N1 viruses, including the 
1918 pandemic strain and the 2009 H1N1 strain, do not follow this 
receptor-binding model. Structural and functional assessments of the 
1918 virus indicate that its HA adapted for human transmission through 
distinct mechanisms rather than solely relying on the Q226L mutation 
(22). Previous studies, such as those by Gamblin et al. (23) have analyzed 
receptor binding affinity for the 1918 virus, providing insights into its 
human adaptation. Additionally, research on ferret-transmissible H5N1 
viruses has examined similar receptor-binding changes, further 
informing our understanding of zoonotic transmission (24, 25).

Implications for zoonotic transmission
While the Q226L mutation may facilitate initial cross-species 

transmission, additional mutations are likely required for sustained 
human-to-human transmission. While the acquisition of a polybasic 
cleavage site is a defining feature of HPAI viruses and enhances their 
pathogenicity in birds, it does not necessarily correlate with increased 
or decreased zoonotic risk. Both LPAI and HPAI strains have 
demonstrated the capacity to cause severe disease in humans under 
certain exposure conditions. Continuous surveillance of these 
mutations is crucial to assess their impact on transmissibility 
and pathogenicity.

Zoonotic risks and mortality rates

In Figure  1, we  compare the main high-risk HPAI subtypes 
considering zoonotic risks and mortality rates. The classification of 

zoonotic risk for HPAI viruses is based on factors such as the 
frequency and severity of human infections, potential for human-
to-human transmission, and genetic characteristics of the virus. 
While there is not a universally standardized 1-to-5 scale, various 
health organizations assess these risks to inform public 
health responses.

The scores calculated in Figure  1 are scientifically based. 
We supported our classification of zoonotic risks based on two sources 
(26, 27). We supported our classification of zoonotic risks based on 
two sources, The Public Health Agency of Canada and WHO. The first 
one classifies certain influenza A virus subtypes, including H5N1, 
H5N6, and H7N9, as Risk Group 3 Human Pathogens due to their 
significant potential to cause serious human or animal disease (27). 
Similarly, WHO conducts risk assessments for specific HPAI and LPAI 
strains. In a 2022 assessment, the WHO evaluated the zoonotic risk of 
the A(H5N1) clade 2.3.4.4b viruses (28–30), considering factors like 
human cases, virus spread in wild and domestic animals, and genetic 
mutations. In Figure 1 we provide an indication of these zoonotic risks 
according to mortality rates, considering the possibility of overestimate 
of mortality rate due to underestimation of the number of 
infections especially.

These assessments, while not always presented on a numerical 
scale, provide a framework for scoring the relative zoonotic risks of 
different HPAI subtypes.

Accelerating HPAI vaccine innovation and 
development: technological gaps

Innovative approaches to vaccine development are urgently 
needed and key points include addressing technological development 
and production challenges to overcome technological gaps. Current 

FIGURE 1

Zoonotic risks and mortality rates for the main HPAI viral subtypes. Source: elaborated by the authors based on World Health Organization (26) and 
Public Health Agency of Canada. Government of Canada (27).
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egg-based vaccine production is slow and difficult to scale in an 
emergency, especially during an HPAI virus outbreak that could lead 
to massive animal culling. While mRNA technology shows promise, 
questions remain about the duration, breadth of protection and 
scalability (31). Due to these constraints, our previous study (7) 
provided evidence indicating that vaccine development for HPAI is 
lagging, with very few active patents and limited advancements in 
universal vaccines. This scenario hampers the global capacity to 
respond effectively to a potential pandemic. Substantial investment in 
universal influenza vaccines is crucial to address the limitations of 
current technologies.

In addition to the technological barriers previously discussed, a 
critical challenge in HPAI vaccine preparedness is the antigenic 
mismatch between stockpiled vaccines and the strain that causes a 
future outbreak. This scenario is increasingly likely given the 
accelerated antigenic drift and shift observed in H5Nx viruses. For 
example, while clade 2.3.4.4b viruses currently dominate outbreaks in 
Europe and North America, regions of Asia are still reporting 
circulation of other clades such as 2.3.2 and 2.3.3. This geographic 
heterogeneity in dominant clades increases the risk that existing 
vaccine stockpiles, often produced against earlier strains, will have 
reduced efficacy if deployed during a novel outbreak elsewhere. 
Moreover, regulatory and manufacturing timelines for updating avian 
influenza vaccines lag behind the pace of viral evolution, further 
compounding this gap. This underscores the urgency for next-
generation HPAI vaccines that offer broader cross-clade protection, 
such as those targeting conserved viral epitopes or using novel 
platforms like mRNA and recombinant technologies (32, 33).

Broadly neutralizing antibodies: recent 
findings for potential universal flu vaccine

A recent breakthrough study by researchers from the University 
of Pittsburgh, in collaboration with the NIH Vaccine Research Center, 
demonstrated that monkeys pretreated with a moderate dose of the 
broadly neutralizing antibody MEDI88521 were universally protected 
against HPAI viruses. In addition to confirming the antibody’s efficacy 
in preventing serious adverse health outcomes, the scientists 
established the minimum serum concentration required for protection 
in primate models (34) for further development of universal HPAI 
vaccines. For instance, deep learning approaches have been used to 
predict antigenic drift in H5N1 hemagglutinin variants, helping 
researchers anticipate viral escape mutations (35). Similarly, support 
vector machines and random forest algorithms have been applied to 
forecast epitope binding affinity and immunogenicity, enabling more 
targeted vaccine design (36). Recent studies have also demonstrated 
the use of neural network-based models to optimize mRNA vaccine 

1  MEDI8852 is a fully human monoclonal antibody that targets the highly 

conserved stem region of influenza A hemagglutinin (HA), offering robust 

protection in preclinical models of H5N1and H7N9, even when administered 

up to 72 h post-exposure, and outperforming oseltamivir in key measures of 

survival and disease severity. It neutralizes all 18 subtypes of influenza A, 

including both Group I (H5N1) and Group II (H7N9) strains (67).

sequences for enhanced expression and immunogenicity, which could 
be adapted for influenza vaccines in the future (37).

Pandemic preparedness and AI: enhancing 
genomic surveillance, knowledge 
governance and sustainability

Artificial Intelligence (AI) has begun to reshape the landscape of 
pandemic preparedness, particularly by enhancing the speed and 
precision of epidemiological surveillance and knowledge governance. 
In vaccine development, machine learning models can predict 
antigenic properties, simulate immune responses, and optimize 
candidate selection, accelerating preclinical pipelines (38, 39). In 
parallel, AI-powered epidemic intelligence systems can process 
diverse unstructured data—from genomic databases to wildlife 
surveillance—to detect abnormal patterns and emerging threats 
before they affect human populations.

These advances are especially relevant for HPAI, where rapid viral 
evolution and zoonotic spillover require integrated early warning 
systems. AI algorithms can assimilate real-time inputs from genomic 
sequencing, environmental monitoring, animal health records, and 
social behavior to anticipate outbreak hotspots. This predictive 
capacity enables health authorities to issue early alerts and prioritize 
surveillance resources more effectively.

Artificial Intelligence (AI) is emerging as a revolutionary tool, 
reshaping public health with advancements in analyzing and 
preventing future pandemic scenarios. Additionally, AI supports 
robust genomic and antigenic surveillance. Genomic analysis allows 
tracking of mutations and reassortments that enhance virulence or 
transmissibility, while antigenic assays assess how well existing 
immune responses recognize evolving HPAI strains. Integrating both 
approaches is critical to guide vaccine updates and antiviral strategies.

Beyond surveillance, AI offers transformative applications across 
operational domains of pandemic preparedness. When adequately 
designed and integrated within resilient health systems, AI can 
significantly enhance outbreak forecasting, optimize allocation of 
medical resources, and support rapid diagnostics. For example, deep 
learning models have been deployed to predict regional outbreak 
hotspots based on climatic and migratory bird data, as demonstrated 
during H5N1 outbreaks in Southeast Asia (40). AI-driven decision 
support systems have also been used to optimize stockpiling and 
distribution of antiviral medications and personal protective 
equipment in real-time emergency settings (41). Additionally, 
AI-powered diagnostic tools using image recognition and molecular 
data processing have accelerated point-of-care detection of avian 
influenza strains in field conditions (42). These efforts must also 
be grounded in the One Health framework, requiring international 
coordination and data sharing across human, animal, and 
environmental health domains to ensure comprehensive risk 
assessment (7, 26).

Designing AI to revolutionize pandemic 
preparedness

Artificial Intelligence (AI) is emerging as a revolutionary tool 
in public health, with its potential to analyze vast amounts of data, 
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identify trends, and enable informed decision-making. For HPAI, 
AI could help identify conserved viral epitopes across multiple 
subtypes, guiding the rational design of universal or broadly 
protective vaccines. Recent studies have used machine learning 
models to predict conserved B-cell and T-cell epitopes in H5N1 
and H7N9 hemagglutinin and neuraminidase proteins, 
accelerating preclinical evaluation of cross-protective candidates 
(35, 43). In pharmacological pipelines, AI-based virtual screening 
platforms have been applied to search large chemical libraries for 
molecules with predicted binding affinity to influenza polymerase 
and neuraminidase targets, significantly reducing lead compound 
identification time (6). Notably, deep learning frameworks have 
also been used to repurpose existing antiviral drugs against 
emerging HPAI strains by predicting off-target antiviral 
activities (44).

One of the most critical roles of AI is accelerating vaccine and 
drug discovery. For HPAI, AI can help identify conserved viral 
epitopes across subtypes, guiding development of universal or broadly 
protective vaccines. In pharmacological pipelines, it can screen large 
chemical libraries to identify potential antiviral compounds, reducing 
the time from discovery to clinical testing. Inclusive governance, 
characterized by equitable decision-making and transparent data 
sharing across countries and regions, is fundamental to effective global 
pandemic preparedness. This includes open access to viral genomic 
sequences, real-time epidemiological reporting, and collaborative use 
of AI-driven surveillance platforms to ensure timely detection and 
response to HPAI threats (45).

AI also facilitates strategic decision-making in resource-
constrained scenarios. Algorithms can integrate epidemiological data, 
health system capacity, and demographic variables to prioritize 
vaccine allocation, deploy health workers, and anticipate regional 
surges in infection. Logistics systems enhanced by AI can ensure 
timely distribution of critical supplies such as PPE, antivirals, and 
ventilators, especially in underserved areas.

Moreover, AI can support integration of epizootic surveillance 
with immunization efforts. By linking real-time data from wildlife 
and livestock with mutation tracking, AI enables targeted 
containment and adaptive vaccination strategies. This is crucial to 
prevent the emergence of vaccine-resistant strains or hidden 
transmission pathways.

However, the success of AI depends on high-quality data inputs, 
inclusive governance, and ethical frameworks. It must be implemented 
as part of a broader transdisciplinary preparedness strategy, not as a 
stand-alone solution. AI’s greatest value lies in its ability to support 
rapid, data-driven action within a collaborative, globally 
coordinated response.

Beyond early warning and surveillance, AI also provides valuable 
tools for accelerating vaccine and drug development, optimizing 
resource-allocation, and integrating epizootic surveillance systems.

	 1	 Accelerating vaccine and drug development

For HPAI, AI could help identify structurally conserved regions 
of viral proteins across multiple strains, supporting the development 
of vaccines that offer broad protection. In drug discovery, AI can 
analyze vast libraries of chemical compounds to identify potential 
antiviral candidates, drastically reducing the timeline from research 
to deployment.

	 2	 Optimizing resource allocation

In a pandemic scenario marked by high lethality and scarce 
resources, AI supported by quality data could assist policymakers in 
making data-driven decisions about resource distribution. AI models 
could help a timely response to a broad range of indicators, such as 
population density, healthcare infrastructure, and disease transmission 
patterns to prioritize vaccine allocation, to deploy healthcare 
personnel, and to optimize hospital capacities.

AI-based logistics systems can predict areas likely to experience 
surges in cases, enabling timely delivery of critical supplies like 
personal protective equipment and ventilators. This proactive 
approach could ensure that even resource-limited regions are 
adequately supported.

	 3	 Integrating epizootic surveillance and immunization

AI can play a critical role in supporting an integrated “big data” 
monitoring system that combines epizootic surveillance and 
immunization, if vaccines are not available. This integrated system can 
be a powerful tool to prevent and contain outbreaks, identifying viral 
circulation, monitoring mutations, and detecting early infections in 
domestic and wild birds. This information is essential for guiding 
targeted immunization programs and adjusting vaccine formulations 
to match emerging strains. Molecular diagnostics and genomic 
sequencing enhance the ability to track viral evolution, while 
international cooperation through organizations such as the World 
Organization for Animal Health (WOAH) and the Food and 
Agriculture Organization (FAO) facilitates data sharing and 
coordinated responses. Without comprehensive vaccine-oriented 
surveillance, immunization efforts may become ineffective due to the 
emergence of vaccine-resistant variants or undetected transmission 
routes. This AI strategy alongside stringent biosecurity measures and 
global cooperation, including geo-politically sensitive routes, is 
essential to mitigating the threat of HPAI and preventing 
future pandemics.

Conclusion

Global epidemiological reports indicate that we might be entering 
a new era of Avian Flu, with the H5N1 strain spreading more rapidly 
among mammals. Although cases have been linked to infected wild 
birds and livestock farms, the virus is now spreading not only among 
birds and domestic animals, but increasingly infecting mammals.

Indeed, H5N1 viruses have been found in both wild and captive 
mammals, and they can sometimes cause fatalities as well as severe 
illness. Additionally, H5N1 detections in domestic cats are gaining 
attention. The US Department of Agriculture’s Animal and Plant 
Health Inspection Service reports that the HPAI H5N1 strain was 
found in a domestic cat in Colorado State on 2025/01/31 (15). Notably 
the B3.13 strain of the Eurasian 2.3.4.4b clade H5N1 virus has been 
spreading in animals not historically attributed as reservoirs for the 
HPAI virus (46). In relation to human infection, the World Health 
Organization (WHO) reported from 24 countries that between 2003 
(beginning) and 2024 (2024/12/12), there were 954 human cases of 
H5N1, resulting in 464 fatalities, or 48.6% of the total zoonotic cases 
from avian influenza viruses (26).
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A possible extreme scenario, in which a mutated strain becomes 
highly transmissible among humans, would create a global health 
crisis marked by significant morbidity and mortality. Preparing for a 
potential HPAI pandemic requires a multifaceted transdisciplinary 
approach that addresses epidemiological, technological, and 
societal challenges.

The possible absence of an effective HPAI vaccine for human in a 
highly lethal pandemic scenario, contrasting with rapid vaccine 
development in the COVID-19 pandemic, highlights the urgency of 
accelerating investment in innovative solutions and equitable global 
strategies. By leveraging AI strategies, fostering international 
collaboration and strengthening innovation funding mechanisms, the 
global health community can build a more resilient and sustainable 
innovation governance system capable of responding to 
unprecedented crises.

What is needed is a shift toward faster action and a coordinated, 
inclusive strategy that prioritizes preparedness before a next pandemic 
begins. The time to act is now.
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