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Editorial on the Research Topic

Advances in Multi-Scale Analysis of Brain Complexity

In neuroscience, a defining but elusive question regarding the human brain is its astonishingly
structural and functional complexity. This complexity arises from the interaction of numerous
neuronal circuits that operate over a wide range of temporal and spatial scales, enabling the
brain to adapt to the constantly changing environment and to perform various high-level mental
functions. Such dynamical and functional adaptability is often reduced during the aging process
and considerably impaired in patients with neuropsychiatric diseases, leading to rigid, fixed, or
on the opposite, unpredictable behaviors. Recently, attempts have been made to apply concepts
adopted from complexity science to more fully understand complex brain functions as indicated
by the signals from the brain and their implications on human behavior. Therefore, this Research
Topic, “Advances in Multi-Scale Analysis of Brain Complexity,” is devoted to the research of brain
complexity at multiple spatial and temporal scales and its role in neuropsychiatric diseases.

In this Research Topic, a significant portion of focus was on the multi-scale analyses of brain
complexity in Alzheimer’s disease (AD), which is a progressive brain disorder with gradual memory
loss that correlates to cognitive deficits in the elderly population. Importantly, the complexity
analysis of brain signal, such as an electroencephalography (EEG), could be a marker for disease
severity. Fan et al. applied machine learning algorithms to classify the different stages of AD using
the complexity analysis of scalp EEG signals with an accuracy of 80% in differentiating normal and
mild cognitive impairment (MCI). The study further found that temporal and occipitoparietal brain
regions were more discriminative with regard to classifying severe AD cohort vs. normal controls,
which could be a marker for evaluating the severity of AD (Fan et al.). Niu et al. applied multiscale
entropy analysis in resting-state fMRI data from the Alzheimer’s disease neuroimaging initiative
database. They found that both MCI and AD patients had significant reductions in the complexity
of resting-state fMRI signals compared to healthy controls, and AD patients also demonstrated
lower complexity than that of the MCI subjects (Niu et al.). Grieder et al. investigated alterations
of functional connectivity and brain signal complexity within the default mode network (DMN)
in 15 mild Alzheimer’s disease patients as compared to 14 controls. Their findings suggested
that cognitive decline in Alzheimer’s disease is reflected by decreased brain signal complexity in
DMN nodes, which might further lead to disrupted DMN functional connectivity (Grieder et al.).
These findings support the notion that the multi-scale analysis of brain signal complexity may
provide a functional or imaging marker of cognitive impairments in the neurodegenerative disease.
Interestingly, Eagleman et al. applied brain signal complexity using 1/f power law scaling as well
as measures of complexity from non-linear dynamics in geriatric patients that carry increased
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risk for adverse cognitive outcomes after anesthesia. This study
found that both spectral and complexity measures are capable
of capturing subtle differences in EEG activity with anesthesia
administration—differences which future work may reveal to
improve geriatric patient monitoring (Eagleman et al.).

Another focus of this Research Topic was in the developing
brain. Hasegawa et al. used magnetoencephalography (MEG) to
study special populations, the infant. Their analyses revealed time
scale-dependent developmental trajectories based onMEG signal
complexity. Specifically, MEG signal complexity predominantly
increased from 5 to 15 months of age at higher temporal
scales, whereas the complexity at lower temporal scales was
constant across age, except in one infant who showed decreased
complexity. The results of this pilot study may serve to further
our understanding of the longitudinal changes in the neural
dynamics of the developing infant brain (Hasegawa et al.).
On the other hand, Smith et al. examined the relationship
between the resting-state networks entropy and integrity in
patients with autism spectrum disorder (ASD) and typically
developing (TD) individuals from the Autism Brain Imaging
Data Exchange (ABIDE) cohort. They found that complexity
of resting-state fMRI signal within resting-state networks
significantly distinguished ASD from TD, and the level of brain
signal complexity was associated with ASD symptom severity.
Importantly, they found that imbalanced brain connectivity and
dynamics at the network level coincides with their decoupling
in ASD, suggesting a link between changes in brain signal
dynamics and network decoupling in the pathologic conditions
(Smith et al.). Furthermore, Hager et al. explored how non-
linear brain dynamics change during motor resonance, which
is often used to study social interaction deficiencies in ASD.
This paper performed an elegant experiment in an adult
population and found that the desynchronization of the mu
wave during motor resonance results in a local increase of mu
entropy in sensorimotor areas, potentially reflecting a release
from alpha inhibition. This release from inhibition may be
mediated by the baseline complexity in the mu band. These
findings suggest that dynamical complexity and network analysis
of EEG may provide a useful addition for future studies of
motor resonance by incorporating measures of non-linearity
(Hager et al.).

Brain signal complexity is also implicated in sleep physiology.
Hou et al. investigated whether lower complexity of brain
waves at the pre-sleep state can facilitate sleep initiation
and further improve sleep quality. The study based on
polysomnographic recordings from Sleep Heart Health Study
identified that lower complexity before sleep onset is associated
with decreased sleep latency, indicating a potential facilitating
role of reduced pre-sleep complexity in the wake-sleep transition
(Hou et al.).

Additionally, there are increasing interests in studying
brain signal complexity and its relationship with genetic
polymorphisms. For example, brain-derived neurotrophic
factor (BDNF) is a widely expressed neurotrophin
in the brain and is crucial to neural plasticity. The
BDNF Val66Met single-nucleotide polymorphism is

associated with mood, stress, and pain conditions. In this
Research Topic, Low et al. found that brain complexity
alterations were associated with the interactions of
BDNF Val66Met polymorphism and menstrual pain
experience, suggesting that pain experience preponderantly
affects the effect of BDNF Val66Met polymorphism on
brain complexity.

An important, yet overlooked issue in non-linear analysis
of brain signal dynamics is the choice of parameters in these
non-linear methods. For example, there are several parameters
that need to be determined when estimating the entropy of
brain signal, and the choice of parameter may affect the
reliability of entropy estimates. Yang et al. illustrate a general
strategy for selecting entropy parameters to reduce the bias of
entropy estimates in resting-state fMRI signals. In this paper,
they present a minimizing error approach to reduce the bias
of entropy estimates in resting-state fMRI data. The strategy
explored a range of parameters that minimized the relative
error of entropy of resting-state fMRI signals in cerebrospinal
fluids where minimal physiologic information was present, and
applied these parameters to calculate entropy of resting signals
in gray matter regions. This strategy may help minimize the
error of entropy estimates for future studies on the non-
linear analysis of relatively short resting-state fMRI signals
(Yang et al.).

Finally, an important question is: what are the physiologic
mechanisms of brain signal complexity? Billings et al.
proposes to represent resting-state fMRI signal as multiple
processes occurring over multiple time scales, which could
potentially implicate in the physiological mechanisms of
brain signal complexity. Importantly, Wang et al. investigated
the neurophysiological underpinnings of the complexity of
electrophysiology and resting-state fMRI signals and their
relations to functional connectivity. They found that regional
neural complexity and network functional connectivity may
be two related aspects of the brain’s information processing—
the more complex the regional neural activity, the higher
functional connectivity this region has with other brain
regions. Wang et al. propose that the complexity of regional
neural signals may serve as an index of the brain’s capacity of
information processing—increased complexity may indicate
greater transition or exploration between different states of
brain networks, thereby indicating a greater propensity for
information processing.

Overall, this Research Topic focuses on the theoretic and
quantitative analysis of brain complexity in normal mental
functions, as well as how it changes with neuropsychiatric
diseases by using electrophysiological recordings or functional
brain imaging data. These studies can provide a novel
computational approach for extracting the fundamental features
of the human brain. We anticipate that these approaches
will provide better characterization of the heterogeneity of
neuropsychiatric diseases and will highlight a subset of
dynamical brain markers that will lead to translational research
utilizing these complexity methods for understanding complex
brain functions.
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Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been

introduced as indices of the complexity of electrophysiology and fMRI time-series across

multiple time scales. In this work, we investigated the neurophysiological underpinnings

of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional

connectivity (FC). MSE and FC analyses were performed on simulated data using

neural mass model based brain network model with the Brain Dynamics Toolbox, on

animal models with concurrent recording of fMRI and electrophysiology in conjunction

with pharmacological manipulations, and on resting-state fMRI data from the Human

Connectome Project. Our results show that the complexity of regional electrophysiology

and fMRI signals is positively correlated with network FC. The associations between MSE

and FC are dependent on the temporal scales or frequencies, with higher associations

between MSE and FC at lower temporal frequencies. Our results from theoretical

modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity

and network FC may be two related aspects of brain’s information processing: the

more complex regional neural activity, the higher FC this region has with other brain

regions; (2) MSE at high and low frequencies may represent local and distributed

information processing across brain regions. Based on literature and our data, we

propose that the complexity of regional neural signals may serve as an index of the brain’s

capacity of information processing—increased complexity may indicate greater transition

or exploration between different states of brain networks, thereby a greater propensity

for information processing.

Keywords: multiscale entropy (MSE), complexity, BOLD fMRI, electrophysiology, functional connectivity (FC)
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BACKGROUND

Neural Complexity

Complexity is a key feature characterizing the behavior of
physiological systems of a living organism (Lipsitz, 2004). The
brain, an information processing system with 10–100 billion
neurons and ∼1014 synapses, exhibits the highest degree of
complexity among all organs in the human body. In recent years,
interest in understanding the dynamics of neural signals and
their relation to information processing has increased steadily
(Garrett et al., 2013). Neural complexity can be framed as the
range, or capacity, of the brain to explore alternative states
(Honey et al., 2007; Ghosh et al., 2008; Shew et al., 2009; Friston
et al., 2012). Regions of the human brain, indeed systems of
neurons, are known to organize transiently into functionally-
connected networks for brief periods—from tenths of a second to
seconds—only to become reorganized moments later as elements
of networks with different functions. These dynamics are readily
made visible using EEG (Tucker et al., 1986; Bullmore and
Sporns, 2009; Betzel et al., 2012), fMRI (Allen et al., 2014;
Barttfeld et al., 2015), among other measurement tools, when
coupled with time series analytic methods such as independent
components analysis (ICA) (Bell and Sejnowski, 1995; Beckmann
and Smith, 2004; Smith et al., 2012). This flexibility of rapid
transition implies not only a low energy barrier between states,
but also a relatively wide repertoire of quasi-stable states that
can self-organize rapidly. The brain’s fluid movement among
different states has been conceptualized by Friston et al. (2012),
who argue that a characteristic feature of the brain is its
tendency to wander, or not settle into any particular state. It is
posited that systems engaging in greater transition or exploration
between different states (i.e., a higher level of complexity) have
greater potential and propensity for information processing
(McDonough and Nashiro, 2014).

An important parameter defining complex or chaotic
systems is the self-similar or “fractal” behavior across multiple
measurement scales, and the tendency of the frequency spectra
showing an inverse power-law (1/fn–like) scaling pattern. Scale-
free activity is present at almost every temporal and spatial
scale in the brain (He et al., 2010); it has been observed in
neuronal spike trains (Gisiger, 2001; Takahashi et al., 2004),
neurotransmitter release (Lowen et al., 1997), spontaneous local
field potential (LFP) (Leopold et al., 2003; Milstein et al.,
2009), electrocorticography (ECoG), resting state fMRI (rs-fMRI)
(Zarahn et al., 1997; Wang et al., 2003; Bullmore et al., 2004), and
in fluctuations of human cognitive and behavioral performance

(Gilden, 2001). For instance, neuronal populations exhibit a
type of activity termed neuronal avalanches, characterized by
the occurrence of bursts of activity that, despite their wide
variation in sizes and durations, still follow precise statistical
properties according to a power law (Plenz and Thiagarajan,
2007; Petermann et al., 2009; Ribeiro et al., 2010).

Figure 1 shows data from our lab using wavelet based entropy
analysis (Smith et al., 2015) of rs-fMRI data from the globus
pallidus internus (GPi), GPi LFP, and primary motor ECoG
signals recorded during surgical implementation of deep brain
stimulation (DBS) in a patient with Parkinson’s disease (PD).

FIGURE 1 | Time courses (left) and corresponding power spectra (solid lines)

and entropy (symbols) results of BOLD fMRI from GPi and GPi LFP and

primary motor ECoG signals in a PD patient.

All modalities exhibit a general power-law behavior in their
power spectrum. Entropy across all modalities shows similar

behavior with increasing trends toward low frequencies. In
addition, similar “small world” topological structure of brain
networks has been observed from micro- and meso-scopic
circuits to large scale brain networks (Bassett and Bullmore, 2006;
Valverde et al., 2015) as well as in EEG microstate sequences
(Van De Ville et al., 2010). The nearly ubiquitous power-law
behavior suggests that the brain operates near states of self-
organizing criticality (SOC), providing many desirable features
in optimizing the brain’s computational capabilities including
sensory input processing, information transfer, and storage (Bak
et al., 1987; Plenz and Thiagarajan, 2007; Ribeiro et al., 2010). The
fact that such scale-free spatial and temporal pattern “replicates”
itself across different modalities and measurement scales also
offers a unique opportunity to bridge cellular and circuit level
recordings with systems level brain imaging—a major goal of the
BRAIN initiative (Alivisatos et al., 2012).

Quantification of Neural Complexity
People have been interested in understanding and characterizing
self-organizing systems since the 1950s, and have developed
basic principles like center manifold theorem (Carr, 1981)
and synergistic treatment of high-dimensional self-organizing
systems, such as the brain (Ginzburg and Landau, 1950),
as well as the slaving principle (Haken, 1983) to highlight
the role of endogenous fluctuations. These fluctuations model
the dynamics attributable to fast (stable) modes that become
enslaved by the slow (unstable) modes, which determine the
macroscopic behavior. The time constants of these macroscopic
dynamics are necessarily greater (or slower) than those
of the underlying microscopic dynamics. Importantly, these
endogenous fluctuations follow the scale free (power-law)
distribution (Friston et al., 2011).

During the past few decades, a variety of measures derived
from the fields of nonlinear statistics and information theory
have been developed to describe the dynamics of physiological
systems (Goldberger, 1996). Nonlinear dynamic analysis using
fractal dimension (FD) and Hurst exponent (H) can be used to
quantify the complexity of biological signals (Natarajan et al.,
2004; Di Ieva et al., 2015). The complexity of real-world time
series of finite length, however, cannot usually be estimated with
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reasonable precision. For the analysis of such typically short,
and noisy, time series Pincus introduced approximate entropy
(ApEn) as a family of non-linear statistics to quantify regularity
in physiological finite length time series (Pincus, 1991). ApEn,
and its variants (e.g., sample entropy or SampEn) (Richman
and Moorman, 2000), measure the conditional probability that
runs of patterns that are similar for m contiguous observations
remain close on subsequent incremental comparisons (m+1).
Higher ApEn values indicate generally that the process is
less predictable (or more complex). Subsequently, multi-scale
entropy (MSE) analysis (Costa et al., 2002) was developed to
more accurately differentiate complex processes from random
fluctuations, by calculating the entropy of a signal at multiple
time scales. In MSE analyses, a series of entropy values are
calculated on coarse-grained time series that are constructed
by averaging the original time series over a range of scales.
Systems with 1/f power spectra exhibit constant entropy over
various time scales (due to their fractal properties), whereas
random noise shows a marked decrease in entropy at longer
time scales (as random fluctuations are smoothed out). To date,
ApEn, SampEn, and MSE have been applied successfully to
biological signals such as cardiac electric activity (ECG), blood
pressure, respiratory patterns, hormonal release, electromyogram
(EMG), and brain electric activity (EEG), to distinguish healthy
function from disease, and to predict the onset of adverse
health-related events (Kaplan et al., 1991; Pincus and Keefe,
1992; Ryan et al., 1994; Schuckers and Raphisak, 1999; Abásolo
et al., 2005; Pincus, 2006; Szaflarski et al., 2012; Takahashi,
2013).

Functional MRI based on the blood oxygen level-dependent
(BOLD) contrast (Ogawa et al., 1990; Kwong et al., 1992) is one
of the most widely used methods for noninvasive monitoring of
the temporal dynamics of brain physiology (e.g., cerebral blood
flow) and neuronal activity (see review Cohen and Bookheimer,
1994). Functional connectivity (FC) analysis has revealed that
multiple regions of the brain, even structurally distant, are
employed in parallel during both task and rest conditions (Biswal
et al., 1995; Raichle et al., 2001; Damoiseaux et al., 2006).
Recent fMRI and electrophysiological studies suggest that FC
may exhibit dynamic changes within time scales of seconds
to minutes (i.e., non-stationary processes; Chang and Glover,
2010). These non-stationary properties may not be captured
fully by linear statistical methods such as cross-correlation
analysis. We (Liu et al., 2013; Smith et al., 2014, 2015) and
others (Yang et al., 2013; Wang et al., 2014) have recently
explored the use of entropy measures as indices of the complexity
and regularity of BOLD fMRI time-series in healthy young
and elderly populations (see Figure 2) as well as in subjects
associated with genetic risks of dementia, subjects with ADHD
(Sokunbi et al., 2013) and schizophrenia (Takahashi et al.,
2010). Significant correlations between complexity measures and
functional connectivity across brain networks have also been
reported (McDonough and Nashiro, 2014). These emerging
studies support the validity of using entropy measures of rs-
fMRI to characterize the spontaneous fluctuations of brain
physiology and neuronal activities non-invasively at systems
level.

FIGURE 2 | (A) Mean MSE images of 5 volunteers at scales 1, 4, 7, and 10;

note greater gray and white matter contrast in higher MSE scales (i.e., lower

temporal frequencies). (B) Average gray matter MSE for 8 young and 8 aged

volunteers at 4 scales with greater age differences at higher scales (p < 10−4).

Plotted error bars are four standard errors of the respective means, and

approximately the size of the symbols (With permission from Smith et al.,

2014).

Relationship Between Neural Complexity
and FC
Although initial data showed promising results, the
neurophysiological basis of complexity (MSE) of
electrophysiology and fMRI signals as well as their relations to
functional connectivity (FC) remain unclear. The complexity
of fluctuating neural activity has been linked to the probability
of neuronal firing, and to the likelihood of synchrony between
brain regions. It has been postulated that more predictable
signals (less neural complexity) facilitate phase relationships
between brain regions, thus increasing the probability of
synchrony, and information exchange across distributed brain
regions. In contrast, the opposite is expected with more irregular
signals (greater neural complexity; Ghanbari et al., 2015).
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The degree of synchrony across brain regions may also differ
between the fine and coarse time scales that are associated with
different levels of neural complexity (McDonough and Nashiro,
2014). Coarse time scales may reflect long-range interactions
across distributed neural populations, while fine time scales
may reflect interconnectivity among local neural populations
(Vakorin et al., 2011; McIntosh et al., 2014). The purpose of this
conceptual analysis paper is to investigate neurophysiological
basis of complexity (MSE) of electrophysiology and fMRI
signals, and to test the hypotheses on the relations between
complexity and FC through the following perspectives: (1)
theoretical simulations of network dynamics with the neural
mass model (NMM) based brain network modeling, (2)
animal models with concurrent recordings of fMRI and
electrophysiology data in conjunction with pharmacological
manipulations, and (3) MSE and FC analyses of rs-fMRI
data with high spatiotemporal resolutions acquired with
multiband echo-planar imaging (EPI) sequences of the Human
Connectome Project (Feinberg et al., 2010; Moeller et al.,
2010).

THEORETICAL MODELING

Large-Scale Brain Network Models
Theoretical modeling has unique strength for understanding and
potentially predicting the complex behavior of brain networks
under different experimental or behavioral conditions. Since the
Hodgkin–Huxley model developed in the 1950s to explain the
causes of single neuron spikes, biophysical models for large-scale
brain activity have been developed to understand perception and
behavior, as well as the determinants of large-scale neuroimaging
data. As summarized by a recent review (Breakspear, 2017),
there are primarily two types of models to describe collective
dynamics of neuronal ensemble (e.g., a cortical column),
including the Fokker–Planck equation (FPE) that assumes
uncorrelated neuronal activities within an ensemble; and NMM
that assumes strong coherence of neuronal activities within an
ensemble which is biologically more meaningful (Breakspear,
2017).

As description of a local population of interacting
neurons, NMMs can be integrated into mesoscopic circuits,
and macroscopic systems to form so called “ensemble of
ensembles”—large-scale brain network models (BNMs).
BNMs integrate NMMs with research findings of complex
brain networks (Jirsa et al., 2010; Mejias et al., 2016),
since dynamics within each NMM results from both local
population activity and influences of other NMMs, and
here the coupling of NMMs is informed by anatomical
connectivity such as the primate CoCoMac and diffusion
MRI-based data (i.e., structure-functional model). This
feature makes BNMs a favorable tool in simulation studies
aimed to understand and interpret resting-state fMRI data.
Indeed, existing modeling work in primates combined
a static skeleton of structural connectivity with regional
neural dynamics, signal transmission delays, and noise to
understand the emerging properties of large-scale brain
networks (Honey et al., 2007, 2009; Ghosh et al., 2008; Deco
et al., 2009).

Simulation of Neural Complexity and FC
In this work, the Brain Dynamics Toolbox (https://github.com/
breakspear/bdtoolkit) was used for simulation that includes
NMM based BNMs (Heitmann and Breakspear, 2017). The
NMM describes local populations of densely interconnected
inhibitory and excitatory neurons whose behaviors are
determined by voltage- and ligand-gated membrane channels.
Sodium and calcium channels display a nonlinear sigmoid-
shaped graph of voltage-dependent conductance. Potassium
channel conductance is modeled in a more complex manner,
exponentially relaxing toward its voltage-dependent state. A
medium-scale (mesoscopic) array (BNM) is then constructed
from these local nonlinear populations by introducing long-
range pyramidal connections, mimicking glutamate-induced
synaptic currents. Spatiotemporal patterns arise through
reentrant excitatory–excitatory feedback (Breakspear et al.,
2003). Activity in the system arises purely from nonlinear
instabilities (and noise can also be added). Oscillations are hence
spontaneous and self-organizing.

We used CoCoMac (Honey et al., 2007) as structural
connectivity matrix and set all physiologically measurable
parameters within their accepted ranges to generate dynamically
plausible behavior (Breakspear et al., 2003), while ensuring
different nodes wouldn’t stay synchronized because of too strong
coupling. For each node, a simulated spike train with 10,000
data points was generated, and coarse-grained time series were
constructed by averaging the original time series over scales of 2–
400, respectively. MSE at each scale was calculated as the Sample
Entropy (SampEn) of the corresponding time series, defined as
the log likelihood of m+1-length patterns matching within a
tolerance threshold r, provided they were matching for the first
m points (Richman and Moorman, 2000; Smith et al., 2014). We
used pattern lengthm= 3 and patternmatching threshold r= 0.2
for simulated data with a length of 10,000 data points and low
noise. The mean MSE was then generated across the full scale as
well as across 5 frequency bands (delta, theta, alpha, beta, and
gamma), respectively.

Functional connectivity (FC) was computed by Pearson
correlations between spike train time series of all pairs of
network nodes. The relationship between MSE and FC of
nodal spike trains was investigated by repeated simulations
(total 50) while randomly varying excitatory-to-excitatory
connectivity (Aee) which represents the strength of long-
range FC. For each simulation we randomly picked an Aee
value between 0 and 0.55 to generate spike trains using the
BNM. A random noise with additive volatility of 0.001 was
included in the spike train time course. Cross-correlations
between the mean MSE and FC measures were calculated to
estimate their associations across the whole CoCoMac and its 5
modules, respectively (see below). Figure 3 shows our modeling
parameters and simulated neural spike trains and FC matrix
based on the CoCoMac (Honey et al., 2007). The simulated
neural spike train of one node (solid curve) exhibits a pattern
of synchronization—desynchronization with the rest nodes
(gray curves). The FC matrix clearly demonstrates 5 modules
of functionally connected networks, which is highly consistent
with the partition of CoCoMac into 5 structural modules
(corresponding to frontal/orbitofrontal, inferior temporal,
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frontal/superior temporal, prefrontal/motor/somatosensory, and
occipital/visual/prefrontal regions; Harriger et al., 2012).

Both MSE and FC increase with larger Aee in the whole
CoCoMac as well as its 5 modules (r ≥ 0.78, p ≤ 0.001,
Figures S1, S2). As a result, significant positive correlations (r
≥ 0.56, p≤ 0.001) between FC and MSE were observed in
the whole CoCoMac as well as its 5 modules by randomly
varying Aee (Figure 4A). In the above analyses assuming
a sampling rate of 200Hz, MSE was averaged across the
time scale of 1–400 corresponding to temporal frequency of
0.5–200Hz. We also calculated averaged MSE of different
frequency bands (delta, theta, alpha, beta, gamma) and the
results are displayed in Figure 4B. There is a trend of
decreasing associations between MSE and FC from the theta
(4–7Hz), alpha (8–15Hz), beta (16–31Hz), to gamma (32–
200Hz) band. In fact, for alpha, beta and gamma bands there
is an inverted U-shaped relationship between MSE and FC,
which is best fit by a quadratic function (see Figure 4B).
For the delta band, we calculated MSE over the full (0.5–
4Hz) and a narrower range (2.7–4Hz) to match the time
points for averaging of the rest frequency bands, and the
narrower band of high delta frequencies showed the highest
correlation between MSE and FC (r = 0.79) among all frequency
bands.

In addition, we performed simulations without added random
noise. As expected, the MSE values became smaller and the
FC larger. Nevertheless, the increasing trend of MSE and FC
with larger Aee as well as their positive correlations remain
unchanged.

ANIMAL EXPERIMENT WITH
CONCURRENT ELECTROPHYSIOLOGY
AND MRI

For this section, we reanalyzed concurrent electrophysiology
and MRI data acquired in rats at 9.4T (Jaime et al., 2017).
The purpose of the original study was to understand the
neurophysiological basis of spontaneous rs-fMRI fluctuations
and FC through cross-frequency phase-amplitude coupling
(PAC) between concurrently recorded local field potential
(LFP) and BOLD signals in the striatum at resting state
and by agonizing the AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) receptors within the ventral tegmental
area (VTA). All experimental procedures were approved by
the NIDA-IRP Animal Care and Use Committee. Silicon-
based MRI-compatible microelectrode arrays (NeuroNexus)
were implanted into the left striatum in rats (N = 8),
and a microinjection cannula was implanted above the
VTA for AMPA microinjections to modulate VTA neuronal
activity and connected striatum areas. After 1-week recovery
from surgery, rats underwent repeated concurrent fMRI and
electrophysiological recording experiments on a Bruker 9.4T
scanner. A single shot GE-EPI sequence (TR = 1,500ms, TE
= 15ms, matrix = 64 × 64, FOV = 1.92 × 1.92 cm2, 5 ×

0.3mm slices) was used to acquire BOLD data for ∼60min
(7.5min per epoch). MR gradient and RF induced artifacts on

FIGURE 3 | Model parameters for NMM based brain network modeling,

simulated neural spike train of one node (solid curve) and rest nodes (gray

curves) and resultant FC matrix with 5 modules.

LFP were corrected as described in Jaime et al. (2017). The timing
of each artifact segment was identified based on concurrently
acquired slice trigger signal from the scanner. Each 60ms LFP
segment immediately following the trigger signal had high-
amplitude (up to ±5V) fast changing signals. These segments
were replaced by linear interpolation. The linearly interpolated
segments were then replaced by cubic-spline interpolation of the
data from 35ms before and 35ms after the artifact segments.
Finally, LFP data were low-pass filtered to 100Hz and down-
sampled to 50Hz for final MSE analysis. Repeated fMRI/LFP
data were recorded pre and post microinjection of AMPA (1µl,
100µM) in VTA. MSE was calculated for both LFP and fMRI
data (pattern length m = 2, matching threshold r = 0.5, scale
= 1–40 for LFP and 1–10 for BOLD time series). FC of fMRI
data was calculated using ventral striatum as the seed area.
ANOVA was then applied to detect brain regions with significant
mean MSE and/or FC changes by AMPA injection. Cross-
correlations were calculated betweenmeanMSE of LFP and fMRI
in ventral striatum as well as FC of fMRI within the ventral
striatum cluster showing significant FC changes following AMPA
injection.

Figures 5A,B show MRI of electrode positions and clusters
with significant mean MSE and FC changes due to AMPA
injection in animal experiment. As shown in Figures 6A,B, both
mean MSE of LFP (recorded at electrode tip) and FC of BOLD
fMRI (within ventral striatum cluster) decrease following AMPA
injection, with a significant correlation (r = 0.505, p < 0.001)
between the two measures (calculated with partial correlation
controlling effect of animals). All metrics return to baseline
at 37.5min post AMPA with overshoot afterwards. We also
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FIGURE 4 | (A) Positive correlations between mean MSE and FC of whole CoCoMac and 5 modules (p < 0.001). MSE was averaged across the time scale of 1 to

400 corresponding to temporal frequency of 0.5–200Hz. (B) Associations between frequency band dependent MSE and FC of the whole CoCoMac. MSE was

averaged within the delta (broad 0.5–4Hz and narrow 2.7–4Hz), theta (4–7Hz), alpha (8–15Hz), beta (16–31Hz), gamma (32–200Hz). Each data point (total 50) was

generated with mean MSE and FC values simulated with a random excitatory-to-excitatory connectivity (Aee) value (0–0.55) as well as adding random noise. Fitted

linear and quadratic functions are also plotted in each sub-figure.

calculated MSE of different frequency band of LFP and the
results are listed in Table 1. Consistent with simulation results
shown in Figure 4B, there is a trend of decreasing associations
between MSE and FC from the theta, alpha, beta, to gamma
band. In addition, MSE of BOLD fMRI (0.04–0.07Hz) in ventral
striatum shows a trend of decreasing followed by signal recovery
in response to AMPA injection (Figure 6C), which is significantly
correlated with that of fMRI FC (r = 0.43, p= 0.0005).

HUMAN FMRI WITH HCP SMS EPI
SEQUENCES

We analyzed resting state fMRI (rs-fMRI) data of 20 subjects
from the HCP database (Van Essen et al., 2013). These
participants were unrelated to each other, relatively healthy
individuals that were free of a prior history of significant
psychiatric or neurological illnesses, but could have a history of
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FIGURE 5 | (A) The electrode and clusters with significant fMRI MSE changes

due to AMPA injection are shown on gradient echo (GRE) images of rat brain.

The cluster in the ventral striatum is used as seed for FC; (B) Clusters with

significant FC changes in response to VTA AMPA injection. The ventral

striatum cluster (red) was used for calculation of mean FC.

smoking, heavy drinking, or recreational drug use without having
experienced severe symptoms. All participants gave written
informed consent as approved by the Washington University in
St. Louis institutional review board.

Data were acquired at 3T with TR/TE = 720/33ms,
multiband-factor 8, FA = 52◦, gradient-echo EPI readout and
2mm isotropic resolution (Smith et al., 2013a). For each subject
two sessions of rs-fMRI were analyzed with phase encoding from
left to right (LR) and right to left (RL), respectively. Datasets were
preprocessed according to HCP minimal preprocessing pipeline
(Glasser et al., 2013). Additionally we regressed out physiological
noise (white matter and cerebrospinal fluid signal fluctuations
calculated as average signal fluctuations within eroded tissue
probability maps) and motion parameters (3 translations and
3 rotations as well as their first derivatives). Preprocessed data
was submitted to a group independent component analysis
(GIFT toolbox; Calhoun et al., 2001) and four components were
selected, which represent the Default Mode Network (DMN),
Left and Right Executive Control Networks (L-/RECN), and the
Salience Network (SAL).

For all nodes within these networks we computed FC between
all nodes using conventional Pearson correlations. Second, MSE
was calculated for 40 temporal scales (pattern length m = 2,
matching threshold r = 0.5; McDonough and Nashiro, 2014;
Smith et al., 2014). This allowed comparing FC to signal
complexity at different temporal frequencies. Results from the
LR and RL phase encoded rs-fMRI sessions were averaged for
each subjects and the following tests were performed: (i) To
test for potential relations between the local signal dynamics
(MSE) and network coherence (FC) we correlated the overall
network FC with overall network MSE across scales to identify

a global association between network connectivity and network
complexity. The overall network measures were computed by
means of averaging across all node-to-node connections for FC
and all nodes’ MSE, respectively; (ii) We correlated MSE to the
average FC of each node to identify the frequency range where
MSE correlates to nodal connectivity.

On the network level, we found that the overall network
FC is inversely related to the overall network MSE at higher
temporal frequencies (0.347–0.694Hz) across subjects while
positively correlated to MSE at lower temporal frequencies
(0.020–0.087Hz; Figure 7). This result was found to be
consistent for all four networks representing higher cognitive
functions as well as when combining all nodes of all networks
into a whole-brain network. This finding is consistent with
previous reports (McDonough and Nashiro, 2014) and the
theory that higher-frequency oscillations originate from smaller
local neuronal populations, whereas low-frequency oscillations
encompass larger long-range neuronal populations. Hence while
MSE at higher frequencies represents local processing the
association between FC and low frequency MSE represents
the information transfer between distributed nodes of the
network.

A more detailed analysis at the nodal level of the relationship
between nodal MSE and the single node connectivity within the
networks (average connectivity to all other nodes) revealed that
the nodal signal complexity is positively correlated to average
FC of a network node at low frequencies (0.020–0.087Hz;
Figure 8), similar to the pattern we observed at the network
level. This finding suggest that the higher the complexity at a
given node at low frequencies the more it is integrated into the
network. Again this is in line with the theory that MSE at low
frequencies might be related to information transfer between
nodes of a network. Interestingly some nodes show very strong
associations: for example the posterior cingulate cortex (PCC)
in the DMN and the dorsal anterior cingulate cortex (dACC)
in the SAL. We hypothesize that these areas represent hub
areas in the respective networks that orchestrate the flow of
information within these systems since their nodal complexity
dominates the network’s functional connectivity. This further
indicates that complex and thus less regular signals in network
nodes could allow for a more dynamic network reconfiguration
and explorations of different FC states, and that network hub
areas lie at the center of such reconfigurations and facilitate the
information exchange between separate networks (Yang et al.,
2013).

Last but not the least, conventional FC analysis often
uses a band-pass filter limiting the frequency range from
0.001 to 0.1Hz since this frequency range dominates long-
range connections (Cordes et al., 2001). While higher
frequencies are often contaminated by noise, there is
increasing evidence that high frequency fMRI fluctuations
also contribute to FC (Niazy et al., 2011; Smith et al., 2013b),
especially since the advent of multiband fMRI acquisitions
with sub-second temporal resolutions. Here we provide
further evidence that the low-frequency fMRI fluctuations
is strongly related to the long-range connectivity commonly
investigated, while the MSE of high-frequency fMRI fluctuations
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FIGURE 6 | (A) MSE of LFP recorded at electrode tip (close to ventral striatum); (B) BOLD FC using ventral striatum as a seed; (C) MSE of BOLD fMRI (0.04–0.07Hz)

in ventral striatum following VTA AMPA injection in 8 animals. Each scan is 7.5min and scan 1 is baseline. FC is averaged within the ventral striatum cluster shown in

Figure 5B.

TABLE 1 | Correlations between MSE of different frequency band of LFP and FC

of BOLD fMRI signals (calculated with partial correlations controlling for effect of

animals).

Frequency band (Hz) R-value P-value

Delta (1.25–4) 0.454 <0.001

Theta (4–7) 0.56 <0.001

Alpha (7–13) 0.545 <0.001

Beta (13–25) 0.505 <0.001

Gamma (25–50) 0.444 <0.001

may represent local signal processing that shows inverse
correlations with FC. Our data suggest that high frequency
fMRI fluctuations may also contribute to understanding the
dynamic organization of brain networks in rs-fMRI (Cabral
et al., 2017).

DISCUSSION

Complexity Analysis of Brain Signals
The self-similarity of neural signals across both temporal
and spatial scales has been consistently observed in EEG,
MEG, and fMRI studies of healthy volunteers, characterized
by a power law of two-point correlation function (reviewed
by Turkheimer et al., 2015). This observation indicates that
a complex system such as the brain operates close to a
critical point between two extreme states, one of excessive
cortical integration, where long-range correlations dominate

the dynamics of the system, and the other of complete
segregation where activity is locally constrained. It has been
suggested in brain models that operating at a point near
criticality maximizes the dynamic range, sensitivity, and response
time of networks to incoming information and is therefore
ecologically advantageous (Beggs, 2008; de Arcangelis and
Herrmann, 2010; Urban et al., 2012; Moretti and Munoz,
2013).

In electrophysiology, transient periods of synchronization of
neuronal activities, typically mediated by gamma oscillations,
are separated by moments of de-synchronization that mark the
transition between perception and response (Rodriguez et al.,
1999). Recent fMRI studies have shown that the temporal
variation of FC is non-stationary with dynamic changes within
time scales of seconds to minutes, and an rs-fMRI scan is
characterized by frequent transitions between a repertoire of
reoccurring short-term connectivity patterns termed “FC states”
(Chang and Glover, 2010; Hutchison et al., 2013a,b; Allen
et al., 2014). Such dynamic changes of reoccurring microstate
sequences have also been observed in EEG (Van De Ville et al.,
2010). There is evidence that temporal variability of FC and/or
microstates is associated with behavioral performance, and may
be affected by conscious and behavioral states (Thompson et al.,
2013a,b; Barttfeld et al., 2015; Elton and Gao, 2015).

Based on such theory, characterizing the complexity of
neural signals may indicate the brain’s capacity for information
processing, i.e., increased complexity of regional neural signals
may indicate greater transition or exploration between different
states of brain networks, thereby a greater propensity for
information processing (McDonough and Nashiro, 2014;
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FIGURE 7 | (Top) Networks and their nodes as identified from group ICA displayed in a three dimensional rendering of the brain. [DMN, Default Mode Network;

LECN, left executive control network; RECN, right executive control network]. (Bottom) Correlation between a network global FC and their MSE across all frequency

scales. While network FC shows negative correlations between MSE and FC at higher frequencies (fine scales) there is indication that this relationship reverses at mid-

to low-frequencies. This is in line with the view that MSE at high frequencies represents more local processing independent from other nodes whereas MSE at lower

frequencies represents the information transfer between distributed nodes.

FIGURE 8 | (A) Correlation between a region’s average FC to all other nodes within the respective resting state network (RSN) and its MSE across all frequency

scales. (B) Same analysis but all four RSNs were combined into one global network. Only significant correlations (p < 0.05) are depicted. Static FC shows positive

correlations between MSE and FC mid to low frequencies there.

Turkheimer et al., 2015). In this sense, model-free statistical
metrics such as MSE are well suited for characterizing the non-
stationary dynamic changes in neural signals across multiple
measurement scales.

Relationship Between Neural Complexity
and Network FC
In this paper, we investigated the relations between neural
complexity (as measured by MSE) and network FC through
theoretical simulations, animal models, and human rs-fMRI
data. Both simulation and animal experiment showed positive
correlations between MSE of regional neural signals (LFP
and/or fMRI) and network FC. In human rs-fMRI, the positive

association between MSE of regional fMRI signals and network
FC is observed at low temporal frequencies (0.020–0.087Hz).

The overall positive association between MSE of regional
neural signals and network FC may counter the intuition that
more complex neural signals interfere with phase relationships
between network nodes, thereby decreasing overall FC.
Nevertheless, our observation is consistent with the hypothesis
that FC ismediated by a dynamic series of reoccurring “FC states”
leading to an increased overall FC (averaged over a few minutes)
with a greater level of regional neural complexity. Furthermore,
our simulation and animal data showed a trend of decreasing
associations between MSE and FC from the theta, alpha, beta, to
gamma band. In rs-fMRI data, we observed positive associations
between complexity and FC at low temporal frequencies
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(0.020–0.087Hz), and negative correlation between complexity
and FC at high temporal frequencies (0.347–0.694Hz). This
is consistent with the theory that coarse time scales or lower
temporal frequencies may reflect long-range interactions across
distributed neural populations, while fine time scales or higher
temporal frequencies may reflect interconnectivity among local
neural populations (Vakorin et al., 2011; McIntosh et al., 2014).
Hence MSE at high and low temporal frequencies may represent
local and distributed information processing across nodes of the
network respectively.

Another observation from our study is that the overall
relationship between neural complexity and network FC is
replicated across measurement scales from electrophysiology
to fMRI, as well as across network scales such as the whole
CoCoMac and its 5 modules, the 4 major human resting
brain networks and their combined whole-brain network. This
observation adds to increasing evidence of scale-invariant
processes observed across a number of modalities such as
electrophysiology, EEG, structural and functional MRI, as well as
the hypothesis on the elementary spatial brain motif underlying
computations across spatially organized neuronal ensembles
(Turkheimer et al., 2015). Our data may also be interpreted in
the context of non-equilibrium steady state (NESS) dynamics,
self-organized criticality (SOC) and slowing (Stam and de
Bruin, 2004; Shin and Kim, 2006; Kitzbichler et al., 2009).
Critical slowing means that some modes of SOC systems decay
slowly, compared to the stable fast modes, and show protracted
correlations over time which are linked with the emergence of
the intrinsic brain networks. This plausible interpretation may
provide a link between the underlying neural complexity and the
emergent large-scale functional connectivity. Overall, our results
from dynamic network modeling, animal models, and human rs-
fMRI suggest that characterizing the complexity of neural signals
across spatial and temporal scales provides a valuable approach,
alone or in conjunction with FC, to elucidate the mechanisms
of local signal processing and relation to information transfer
within functionally connected brain networks.

Potential Applications of Complexity
Analysis
We expect potential applications of brain complexity analysis in
the following areas: (1) Probing the excitatory/inhibitory (E/I)
balance of regional neuronal populations; (2) Characterizing
conscious and behavioral states including sleep, anesthesia, and
vegetative states; (3) Diagnosing neurological disorders such as
epilepsy and dementia.

The complexity of local signal fluctuations has been
hypothesized to be sensitive to the coordinated firing of
neuronal clusters, where increased excitability causes more
irregular/complex activity and increased inhibition more
regular/predictable patterns (Homayoun and Moghaddam,
2007; Haider and McCormick, 2009). Hence, quantifying the
complexity of dynamic brain signals using non-linear statistics
such as MSE may provide a unique and innovative approach to
probe the underlying neuronal fluctuations and the E/I balance.
In particular, electrophysiology and fMRI recording may be

combined with noninvasive neuromodulation techniques such
as transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) to manipulate the regional E/I
state while observing concomitant changes in neural complexity
(Liang et al., 2014).

The brain operates at a point near criticality between
incoherence and synchrony that facilitates its fluid transition
across a repertoire of quasi-stable states. Such self-organizing
capability of the brain is affected by conscious and behavioral
states including sleep, anesthesia, and vegetative state.
Recently, complexity analysis has been successfully applied as a
consciousness test by calculating the perturbational complexity
index (PCI) of TMS induced EEG response (Massimini et al.,
2005; Casali et al., 2013; Casarotto et al., 2016). The PCI exploits
the common video compression algorithm (e.g., MPEG) to
estimate the compressibility of TMS elicited EEG response. For
spontaneous neural signals over relatively long measurement
periods (e.g., minutes), MSE and its variants may be more
suitable for characterizing conscious and behavioral states
compared to PCI that was designed for transient responses.

MSE analysis may also have clinical value for diagnosing
neurological disorders such as epilepsy and dementia.
Epileptic seizures are characterized by relatively large-scale
synchronization of the EEG signal into high amplitude and
stereotyped bursts, reflecting the recruitment of millions of
neurons to fire together in a patterned manner. In other
words, epilepsy is an abnormal, and toxic, self-organizing
state of the brain that may benefit from complexity analysis
(Engel et al., 1998). Other neurologic and psychiatric disorders
such as dementia and schizophrenia are characterized by
abnormal E/I balance and network FC, therefore are suitable
for complexity analysis. Indeed, recent studies reported reduced
entropy measures of rs-fMRI and functional near-infrared
spectroscopy (fNIRS) in subjects with mild cognitive impairment
and Alzheimer’s disease which are correlated with cognitive
performance (Wang et al., 2017; Li et al., 2018). Several of these
potential applications are also showcased in this special research
topic.

Limitations and Caveats of Complexity
Analysis
Complexity analysis of electrophysiology and fMRI is still in its
infancy. Several issues remain to be addressed before it can be
reliably applied to basic neuroscience and clinical applications:
(1) Key parameters such as pattern length m and matching
threshold r have been empirically determined in existing studies.
We used m of 3 and r of 0.2 for simulated data with more data
points and less noise, and m of 2 and r of 0.5 for experimental
data with shorter time series and higher noise. It may be
possible to adaptively determine these parameters based on the
estimated noise level in the data (Smith et al., 2015); (2) The
test-retest repeatability of MSE analysis needs to established;
and (3) Quality control and preprocessing steps of the data are
also key to reliable MSE analysis. Our experience is that MSE
of electrophysiology data is more reliable than that of fMRI
due to higher signal-to-noise ratio (SNR) and sampling points.
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Nevertheless, recent development of simultaneous multislice
(SMS) or multiband imaging allows high spatial and temporal
resolution fMRI that is ideally suited for MSE and other
complexity analysis. While community interest in complexity
analysis is growing high, it can be difficult for the researchers
to obtain high quality, validated, and accessible tools to perform
the computationally complex analyses they require. To date,
PhysioToolkit (https://physionet.org/physiotools/) (Goldberger
et al., 2000) is the most comprehensive library of software
for physiologic signal processing and analysis, including novel
methods based on statistical physics and nonlinear dynamics
(e.g., entropy), and analysis of non-equilibrium and non-
stationary processes. However, PhysioToolKit was designed
primarily for analyzing physiologic recordings from a single or
a few channels (e.g., ECG), and therefore does not have the
capability to handle high volume 4D neuroimaging data such as
fMRI and EEG. Existing neuroimaging software packages such as
EEGLAB, SPM, and FSL, on the other hand, lack specificmodules
for nonlinear complexity analysis. Our group has developed
the Complexity Toolbox (http://www.fil.ion.ucl.ac.uk/spm/ext/#
Complexity) as the first systematic and comprehensive software
package dedicated to complexity analysis of neuroimaging data.
The current version includes four metrics: Approximate Entropy
(ApEn), Sample Entropy (SampEn), Multi-Scale Entropy (MSE),
and Cross-ApEn for the analysis of fMRI. Further development
includes wavelet based MSE and MSE of dynamic FC, as well
as complexity analysis of neurophysiology data such as EEG and
ECoG.

CONCLUSION

Our results from theoretical modeling, animal experiment and
human fMRI suggest that (1) Regional neural complexity and
network FC may be two related aspects of brain’s information
processing: the more complex regional neural activity, the higher

FC this node has with rest network nodes; (2) MSE at high and
low frequencies may represent local and distributed information
processing across nodes of the network. Based on literature
and our data, we propose that the complexity of regional
neural signals may provide an index of the brain’s capacity
of information processing—increased complexity may indicate
greater transition or exploration between different states of
brain networks, thereby a greater propensity for information
processing.

AUTHOR CONTRIBUTIONS

DW, KJ, Y-FZ, and YY contributed to the conceptualization of
this paper. KJ, CF, YQ, and HL contributed data analysis. DW,
KJ, Y-FZ, and YY contributed to the drafting of the manuscript.

ACKNOWLEDGMENTS

This work was partially supported by the Intramural Research
Program of the National Institute on Drug Abuse, the National
Institutes of Health (NIH). Data from the Human Connectome
Project, WU-Minn Consortium (Principal Investigators: David
Van Essen and Kamil Ugurbil; 1U54MH091657) were funded by
the 16NIH Institutes and Centers that support the NIH Blueprint
for Neuroscience Research; This work was also supported by NIH
grant (UH2-NS100614). The authors are grateful to Drs. Michael
Breakspear and Stewart Heitmann for their help with the Brain
Dynamic Toolbox. The authors are also grateful to Dr. Robert X.
Smith for his contribution of Figure 1.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00352/full#supplementary-material

REFERENCES

Abásolo, D., Hornero, R., Espino, P., Poza, J., Sanchez, C. I., and De La Rosa, R.

(2005). Analysis of regularity in the EEG background activity of Alzheimer’s

disease patients with approximate entropy. Clin. Neurophysiol. 116, 1826–1834.

doi: 10.1016/j.clinph.2005.04.001

Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., and

Yuste, R. (2012). The brain activity map project and the challenge of functional

connectomics. Neuron 74, 970–974. doi: 10.1016/j.neuron.2012.06.006

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.

(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.

Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality:

an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384.

doi: 10.1103/PhysRevLett.59.381

Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., and Dehaene, S. (2015).

Signature of consciousness in the dynamics of resting-state brain activity. Proc.

Natl. Acad. Sci. U.S.A. 112, 887–892. doi: 10.1073/pnas.1418031112

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist

12, 512–523. doi: 10.1177/1073858406293182

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent

component analysis for functional magnetic resonance imaging.

IEEE Trans. Med. Imaging 23, 137–152. doi: 10.1109/TMI.2003.8

22821

Beggs, J. M. (2008). The criticality hypothesis: how local cortical networks might

optimize information processing. Philos. Trans. A Math. Phys. Eng. Sci. 366,

329–343. doi: 10.1098/rsta.2007.2092

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.

doi: 10.1162/neco.1995.7.6.1129

Betzel, R. F., Erickson, M. A., Abell, M., O’donnell, B. F., Hetrick, W.

P., and Sporns, O. (2012). Synchronization dynamics and evidence for a

repertoire of network states in resting EEG. Front. Comput. Neurosci. 6:74.

doi: 10.3389/fncom.2012.00074

Biswal, B., Yetkin, F. Z., Haughhton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-

planar imaging. Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.19103

40409

Breakspear, M. (2017). Dynamic models of large-scale brain activity.Nat. Neurosci.

20, 340–352. doi: 10.1038/nn.4497

Breakspear, M., Terry, J. R., and Friston, K. J. (2003). Modulation of

excitatory synaptic coupling facilitates synchronization and complex dynamics

in a biophysical model of neuronal dynamics. Network 14, 703–732.

doi: 10.1088/0954-898X_14_4_305

Frontiers in Neuroscience | www.frontiersin.org 11 May 2018 | Volume 12 | Article 35218

https://physionet.org/physiotools/
http://www.fil.ion.ucl.ac.uk/spm/ext/#Complexity
http://www.fil.ion.ucl.ac.uk/spm/ext/#Complexity
https://www.frontiersin.org/articles/10.3389/fnins.2018.00352/full#supplementary-material
https://doi.org/10.1016/j.clinph.2005.04.001
https://doi.org/10.1016/j.neuron.2012.06.006
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1073/pnas.1418031112
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1109/TMI.2003.822821
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.3389/fncom.2012.00074
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1038/nn.4497
https://doi.org/10.1088/0954-898X_14_4_305
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Brain Complexity and Functional Connectivity

Bullmore, E., Fadili, J., Maxim, V., Sendur, L., Whitcher, B., Suckling,

J., et al. (2004). Wavelets and functional magnetic resonance

imaging of the human brain. NeuroImage 23(Suppl. 1), S234–S249.

doi: 10.1016/j.neuroimage.2004.07.012

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Cabral, J., Kringelbach, M. L., and Deco, G. (2017). Functional connectivity

dynamically evolves on multiple time-scales over a static structural

connectome: models and mechanisms. Neuroimage 160, 84–96.

doi: 10.1016/j.neuroimage.2017.03.045

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using independent

component analysis. Hum. Brain Mapp. 14, 140–151. doi: 10.1002/hbm.1048

Carr, J. (1981). Applications of Centre Manifold Theory. New York, NY: Springer-

Verlag.

Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R.,

et al. (2013). A theoretically based index of consciousness independent

of sensory processing and behavior. Sci. Transl. Med. 5:198ra105.

doi: 10.1126/scitranslmed.3006294

Casarotto, S., Comanducci, A., Rosanova, M., Sarasso, S., Fecchio, M.,

Napolitani, M., et al. (2016). Stratification of unresponsive patients by an

independently validated index of brain complexity. Ann. Neurol. 80, 718–729.

doi: 10.1002/ana.24779

Chang, C., and Glover, G. H. (2010). Time-frequency dynamics of resting-

state brain connectivity measured with fMRI. Neuroimage 50, 81–98.

doi: 10.1016/j.neuroimage.2009.12.011

Cohen, M. S., and Bookheimer, S. Y. (1994). Localization of brain function

using magnetic resonance imaging. Trends Neurosci. 17, 268–277.

doi: 10.1016/0166-2236(94)90055-8

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz,

C. H., et al. (2001). Frequencies contributing to functional connectivity in the

cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22, 1326–1333.

Costa, M., Goldberger, A. L., and Peng, C. K. (2002). Multiscale entropy

analysis of complex physiologic time series. Phys. Rev. Lett. 89:068102.

doi: 10.1103/PhysRevLett.89.068102

Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith,

S. M., et al. (2006). Consistent resting-state networks across healthy subjects.

Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.0601417103

de Arcangelis, L., and Herrmann, H. J. (2010). Learning as a phenomenon

occurring in a critical state. Proc. Natl. Acad. Sci. U.S.A. 107, 3977–3981.

doi: 10.1073/pnas.0912289107

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kötter, R. (2009). Key role of

coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci.

U.S.A. 106, 10302–10307. doi: 10.1073/pnas.0901831106

Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., and Martin-Landrove, M.

(2015). Fractals in the neurosciences, part II: clinical applications and future

perspectives. Neuroscientist 21, 30–43. doi: 10.1177/1073858413513928

Elton, A., and Gao, W. (2015). Task-related modulation of functional connectivity

variability and its behavioral correlations. Hum. Brain Mapp. 36, 3260–3272.

doi: 10.1002/hbm.22847

Engel, J., Pedley, T. A., and Aicardi, J. (1998). Epilepsy : A Comprehensive Textbook.

Philadelphia, PA: Lippincott-Raven.

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S.,

Gunther, M., et al. (2010). Multiplexed echo planar imaging for sub-

second whole brain FMRI and fast diffusion imaging. PLoS ONE 5:e15710.

doi: 10.1371/journal.pone.0015710

Friston, K., Breakspear, M., and Deco, G. (2012). Perception and self-organized

instability. Front. Comput. Neurosci. 6:44. doi: 10.3389/fncom.2012.00044

Friston, K. J., Li, B., Daunizeau, J., and Stephan, K. E. (2011). Network discovery

with DCM. Neuroimage 56, 1202–1221. doi: 10.1016/j.neuroimage.2010.12.039

Garrett, D. D., Samanez-Larkin, G. R., Macdonald, S. W., Lindenberger, U.,

McIntosh, A. R., and Grady, C. L. (2013). Moment-to-moment brain signal

variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev.

37, 610–624. doi: 10.1016/j.neubiorev.2013.02.015

Ghanbari, Y., Bloy, L., Christopher Edgar, J., Blaskey, L., Verma, R., and

Roberts, T. P. (2015). Joint analysis of band-specific functional connectivity

and signal complexity in autism. J. Autism Dev. Disord. 45, 444–460.

doi: 10.1007/s10803-013-1915-7

Ghosh, A., Rho, Y.,McIntosh, A. R., Kötter, R., and Jirsa, V. K. (2008). Noise during

rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput.

Biol. 4:e1000196. doi: 10.1371/journal.pcbi.1000196

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56.

doi: 10.1037/0033-295X.108.1.33

Ginzburg, V. L., and Landau, L. D. (1950). On the theory of superconductivity. Zh.

Eksp. Teor. Fiz. 20:1064.

Gisiger, T. (2001). Scale invariance in biology: coincidence or footprint

of a universal mechanism? Biol. Rev. Camb. Philos. Soc. 76, 161–209.

doi: 10.1017/S1464793101005607

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl,

B., Andersson, J. L., et al. (2013). The minimal preprocessing

pipelines for the human connectome project. Neuroimage 80, 105–124.

doi: 10.1016/j.neuroimage.2013.04.127

Goldberger, A. L. (1996). Non-linear dynamics for clinicians: chaos

theory, fractals, and complexity at the bedside. Lancet 347, 1312–1314.

doi: 10.1016/S0140-6736(96)90948-4

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,

R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components

of a new research resource for complex physiologic signals. Circulation 101,

E215–E220. doi: 10.1161/01.CIR.101.23.e215

Haider, B., andMcCormick, D. A. (2009). Rapid neocortical dynamics: cellular and

network mechanisms. Neuron 62, 171–189. doi: 10.1016/j.neuron.2009.04.008

Haken, H. (1983). Synergistics: An Introduction, Non-Equilibrium Phase Transition

and Self-Organisation in Physics, Chemistry and Biology. Berlin; Heidelberg:

Springer Verlag.

Harriger, L., van Den Heuvel, M. P., and Sporns, O. (2012). Rich club organization

of macaque cerebral cortex and its role in network communication. PLoS ONE

7:e46497. doi: 10.1371/journal.pone.0046497

He, B. J., Zempel, J. M., Snyder, A. Z., and Raichle, M. E. (2010). The temporal

structures and functional significance of scale-free brain activity. Neuron 66,

353–369. doi: 10.1016/j.neuron.2010.04.020

Heitmann, S., and Breakspear, M. (2017). Handbook for the Brain Dynamics

Toolbox. Brisbane, QLD: QIMR Berghofer Medical Research Institute.

Homayoun, H., and Moghaddam, B. (2007). NMDA receptor hypofunction

produces opposite effects on prefrontal cortex interneurons and pyramidal

neurons. J. Neurosci. 27, 11496–11500. doi: 10.1523/JNEUROSCI.2213-07.2007

Honey, C. J., Kötter, R., Breakspear, M., and Sporns, O. (2007). Network structure

of cerebral cortex shapes functional connectivity on multiple time scales. Proc.

Natl. Acad. Sci. U.S.A. 104, 10240–10245. doi: 10.1073/pnas.0701519104

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli,

R., et al. (2009). Predicting human resting-state functional connectivity

from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.

doi: 10.1073/pnas.0811168106

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013a). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., and Menon, R.

S. (2013b). Resting-state networks show dynamic functional connectivity in

awake humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177.

doi: 10.1002/hbm.22058

Jaime, S., Gu, H., Sadacca, B. F., Stein, E. A., Cavazos, J. E., Yang, Y., et al. (2017).

Delta rhythm orchestrates the neural activity underlying the resting state BOLD

signal via phase-amplitude coupling. Cereb. Cortex doi: 10.1093/cercor/bhx310.

[Epub ahead of print].

Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G., and McIntosh, A. R. (2010).

Towards the virtual brain: network modeling of the intact and the damaged

brain. Arch. Ital. Biol. 148, 189–205.

Kaplan, D. T., Furman, M. I., Pincus, S. M., Ryan, S. M., Lipsitz, L. A., and

Goldberger, A. L. (1991). Aging and the complexity of cardiovascular dynamics.

Biophys. J. 59, 945–949. doi: 10.1016/S0006-3495(91)82309-8

Kitzbichler, M. G., Smith, M. L., Christensen, S. R., and Bullmore, E. (2009).

Broadband criticality of human brain network synchronization. PLoS Comput.

Biol. 5:e1000314. doi: 10.1371/journal.pcbi.1000314

Frontiers in Neuroscience | www.frontiersin.org 12 May 2018 | Volume 12 | Article 35219

https://doi.org/10.1016/j.neuroimage.2004.07.012
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1126/scitranslmed.3006294
https://doi.org/10.1002/ana.24779
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/0166-2236(94)90055-8
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0912289107
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1177/1073858413513928
https://doi.org/10.1002/hbm.22847
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.3389/fncom.2012.00044
https://doi.org/10.1016/j.neuroimage.2010.12.039
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1007/s10803-013-1915-7
https://doi.org/10.1371/journal.pcbi.1000196
https://doi.org/10.1037/0033-295X.108.1.33
https://doi.org/10.1017/S1464793101005607
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/S0140-6736(96)90948-4
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1016/j.neuron.2009.04.008
https://doi.org/10.1371/journal.pone.0046497
https://doi.org/10.1016/j.neuron.2010.04.020
https://doi.org/10.1523/JNEUROSCI.2213-07.2007
https://doi.org/10.1073/pnas.0701519104
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1002/hbm.22058
https://doi.org/10.1093/cercor/bhx310
https://doi.org/10.1016/S0006-3495(91)82309-8
https://doi.org/10.1371/journal.pcbi.1000314
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Brain Complexity and Functional Connectivity

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M.,

Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human

brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U.S.A.

89, 5675–5679. doi: 10.1073/pnas.89.12.5675

Leopold, D. A., Murayama, Y., and Logothetis, N. K. (2003). Very slow activity

fluctuations inmonkey visual cortex: implications for functional brain imaging.

Cereb. Cortex 13, 422–433. doi: 10.1093/cercor/13.4.422

Li, X., Zhu, Z., Zhao, W., Sun, Y., Wen, D., Xie, Y., et al. (2018). Decreased resting-

state brain signal complexity in patients with mild cognitive impairment

and Alzheimer’s disease: a multi-scale entropy analysis. Biomed. Opt. Exp. 9,

1916–1929. doi: 10.1364/BOE.9.001916

Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., et al.

(2014). Revealing the brain’s adaptability and the transcranial direct current

stimulation facilitating effect in inhibitory control by multiscale entropy.

Neuroimage 90, 218–234. doi: 10.1016/j.neuroimage.2013.12.048

Lipsitz, L. A. (2004). Physiological complexity, aging, and the path to frailty. Sci.

Aging Knowl. Environ. 16:pe16. doi: 10.1126/sageke.2004.16.pe16

Liu, C. Y., Krishnan, A. P., Yan, L., Smith, R. X., Kilroy, E., Alger, J. R., et al.

(2013). Complexity and synchronicity of resting state blood oxygenation level-

dependent (BOLD) functional MRI in normal aging and cognitive decline. J.

Magn. Reson. Imaging 38, 36–45. doi: 10.1002/jmri.23961

Lowen, S. B., Cash, S. S., Poo, M., and Teich, M. C. (1997). Quantal

neurotransmitter secretion rate exhibits fractal behavior. J. Neurosci. 17,

5666–5677. doi: 10.1523/JNEUROSCI.17-15-05666.1997

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G.

(2005). Breakdown of cortical effective connectivity during sleep. Science 309,

2228–2232. doi: 10.1126/science.1117256

McDonough, I. M., and Nashiro, K. (2014). Network complexity as a

measure of information processing across resting-state networks: evidence

from the human connectome project. Front. Hum. Neurosci. 8:409.

doi: 10.3389/fnhum.2014.00409

McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu,

A., and Protzner, A. B. (2014). Spatiotemporal dependency of age-

related changes in brain signal variability. Cereb. Cortex 24, 1806–1817.

doi: 10.1093/cercor/bht030

Mejias, J. F., Murray, J. D., Kennedy, H., and Wang, X. J. (2016). Feedforward and

feedback frequency-dependent interactions in a large-scale laminar network of

the primate cortex. Sci. Adv. 2:e1601335. doi: 10.1126/sciadv.1601335

Milstein, J., Mormann, F., Fried, I., and Koch, C. (2009). Neuronal shot noise

and Brownian 1/f2 behavior in the local field potential. PLoS ONE 4:e4338.

doi: 10.1371/journal.pone.0004338

Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., et al.

(2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration

using partial parallel imaging with application to high spatial and temporal

whole-brain fMRI.Magn. Reson. Med. 63, 1144–1153. doi: 10.1002/mrm.22361

Moretti, P., and Muñoz, M. A. (2013). Griffiths phases and the stretching of

criticality in brain networks. Nat. Commun. 4:2521. doi: 10.1038/ncomms3521

Natarajan, K., Acharya, U. R., Alias, F., Tiboleng, T., and Puthusserypady, S. K.

(2004). Nonlinear analysis of EEG signals at different mental states. Biomed.

Eng. Online 3:7. doi: 10.1186/1475-925X-3-7

Niazy, R. K., Xie, J., Miller, K., Beckmann, C. F., and Smith, S. M. (2011).

Spectral characteristics of resting state networks. Prog. Brain Res. 193, 259–276.

doi: 10.1016/B978-0-444-53839-0.00017-X

Ogawa, S., Lee, T.M., Kay, A. R., and Tank, D.W. (1990). Brainmagnetic resonance

imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci.

U.S.A. 87, 9868–9872. doi: 10.1073/pnas.87.24.9868

Petermann, T., Thiagarajan, T. C., Lebedev, M. A., Nicolelis, M. A., Chialvo,

D. R., and Plenz, D. (2009). Spontaneous cortical activity in awake

monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. U.S.A. 106,

15921–15926. doi: 10.1073/pnas.0904089106

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.

Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.6.2297

Pincus, S. M. (2006). Approximate entropy as a measure of

irregularity for psychiatric serial metrics. Bipolar Disord. 8, 430–440.

doi: 10.1111/j.1399-5618.2006.00375.x

Pincus, S. M., and Keefe, D. L. (1992). Quantification of hormone pulsatility

via an approximate entropy algorithm. Am. J. Physiol. 262, E741–E754.

doi: 10.1152/ajpendo.1992.262.5.E741

Plenz, D., and Thiagarajan, T. C. (2007). The organizing principles of neuronal

avalanches: cell assemblies in the cortex? Trends Neurosci. 30, 101–110.

doi: 10.1016/j.tins.2007.01.005

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and

Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.

U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Ribeiro, T. L., Copelli, M., Caixeta, F., Belchior, H., Chialvo, D. R., Nicolelis, M. A.,

et al. (2010). Spike avalanches exhibit universal dynamics across the sleep-wake

cycle. PLoS ONE 5:14129. doi: 10.1371/journal.pone.0014129

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using

approximate entropy and sample entropy. Am. J. Physiol. Heart Circul. Physiol.

278, H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., and Varela, F.

J. (1999). Perception’s shadow: long-distance synchronization of human brain

activity. Nature 397, 430–433. doi: 10.1038/17120

Ryan, S. M., Goldberger, A. L., Pincus, S. M., Mietus, J., and Lipsitz, L. A. (1994).

Gender- and age-related differences in heart rate dynamics: are women more

complex than men? J. Am. Coll. Cardiol. 24, 1700–1707.

Schuckers, S. A. C., and Raphisak, P. (1999). Distinction of arrhythmias

with the use of approximate entropy. Comput. Cardiol. 26, 347–350.

doi: 10.1109/CIC.1999.825978

Shew, W. L., Yang, H., Petermann, T., Roy, R., and Plenz, D. (2009). Neuronal

avalanches imply maximum dynamic range in cortical networks at criticality. J.

Neurosci.29, 15595–15600. doi: 10.1523/JNEUROSCI.3864-09.2009

Shin, C. W., and Kim, S. (2006). Self-organized criticality and scale-free

properties in emergent functional neural networks. Phys. Rev. E 74:045101.

doi: 10.1103/PhysRevE.74.045101

Smith, R. X., Jann, K., Ances, B., and Wang, D. J. (2015). Wavelet-based regularity

analysis reveals recurrent spatiotemporal behavior in resting-state fMRI. Hum.

Brain Mapp. 36, 3603–3620. doi: 10.1002/hbm.22865

Smith, R. X., Yan, L., and Wang, D. J. (2014). Multiple time scale

complexity analysis of resting state FMRI. Brain Imaging Behav. 8, 284–291.

doi: 10.1007/s11682-013-9276-6

Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J.,

Douaud, G., et al. (2013a). Resting-state fMRI in the human connectome

project. Neuroimage 80, 144–168. doi: 10.1016/j.neuroimage.2013.05.039

Smith, S. M., Miller, K. L., Moeller, S., Xu, J., Auerbach, E. J., Woolrich,

M. W., et al. (2012). Temporally-independent functional modes of

spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109, 3131–3136.

doi: 10.1073/pnas.1121329109

Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller,

K. L., et al. (2013b). Functional connectomics from resting-state fMRI. Trends

Cogn. Sci. 17, 666–682. doi: 10.1016/j.tics.2013.09.016

Sokunbi, M. O., Fung, W., Sawlani, V., Choppin, S., Linden, D. E.,

and Thome, J. (2013). Resting state fMRI entropy probes complexity

of brain activity in adults with ADHD. Psychiatry Res. 214, 341–348.

doi: 10.1016/j.pscychresns.2013.10.001

Stam, C. J., and de Bruin, E. A. (2004). Scale-free dynamics of global

functional connectivity in the human brain. Hum. Brain Mapp. 22, 97–109.

doi: 10.1002/hbm.20016

Szaflarski, J. P., Altaye, M., Rajagopal, A., Eaton, K., Meng, X., Plante,

E., et al. (2012). A 10-year longitudinal fMRI study of narrative

comprehension in children and adolescents. Neuroimage 63, 1188–1195.

doi: 10.1016/j.neuroimage.2012.08.049

Takahashi, K., Koyama, Y., Kayama, Y., Nakamura, K., and Yamamoto, M. (2004).

Is state-dependent alternation of slow dynamics in central single neurons

during sleep present in the rat ventroposterior thalamic nucleus? Neurosci. Res.

48, 203–210. doi: 10.1016/j.neures.2003.10.015

Takahashi, T. (2013). Complexity of spontaneous brain activity in mental

disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 258–266.

doi: 10.1016/j.pnpbp.2012.05.001

Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T.,

Takahashi, K., et al. (2010). Antipsychotics reverse abnormal EEG

complexity in drug-naive schizophrenia: a multiscale entropy

analysis. Neuroimage 51, 173–182. doi: 10.1016/j.neuroimage.2010.0

2.009

Thompson, G. J., Magnuson, M. E., Merritt, M. D., Schwarb, H., Pan, W. J.,

McKinley, A., et al. (2013a). Short-time windows of correlation between

Frontiers in Neuroscience | www.frontiersin.org 13 May 2018 | Volume 12 | Article 35220

https://doi.org/10.1073/pnas.89.12.5675
https://doi.org/10.1093/cercor/13.4.422
https://doi.org/10.1364/BOE.9.001916
https://doi.org/10.1016/j.neuroimage.2013.12.048
https://doi.org/10.1126/sageke.2004.16.pe16
https://doi.org/10.1002/jmri.23961
https://doi.org/10.1523/JNEUROSCI.17-15-05666.1997
https://doi.org/10.1126/science.1117256
https://doi.org/10.3389/fnhum.2014.00409
https://doi.org/10.1093/cercor/bht030
https://doi.org/10.1126/sciadv.1601335
https://doi.org/10.1371/journal.pone.0004338
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1186/1475-925X-3-7
https://doi.org/10.1016/B978-0-444-53839-0.00017-X
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1073/pnas.0904089106
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1111/j.1399-5618.2006.00375.x
https://doi.org/10.1152/ajpendo.1992.262.5.E741
https://doi.org/10.1016/j.tins.2007.01.005
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1371/journal.pone.0014129
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1038/17120
https://doi.org/10.1109/CIC.1999.825978
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1103/PhysRevE.74.045101
https://doi.org/10.1002/hbm.22865
https://doi.org/10.1007/s11682-013-9276-6
https://doi.org/10.1016/j.neuroimage.2013.05.039
https://doi.org/10.1073/pnas.1121329109
https://doi.org/10.1016/j.tics.2013.09.016
https://doi.org/10.1016/j.pscychresns.2013.10.001
https://doi.org/10.1002/hbm.20016
https://doi.org/10.1016/j.neuroimage.2012.08.049
https://doi.org/10.1016/j.neures.2003.10.015
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.1016/j.neuroimage.2010.02.009
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Brain Complexity and Functional Connectivity

large-scale functional brain networks predict vigilance intraindividually and

interindividually. Hum. Brain Mapp. 34, 3280–3298. doi: 10.1002/hbm.22140

Thompson, G. J., Merritt, M. D., Pan,W. J., Magnuson,M. E., Grooms, J. K., Jaeger,

D., et al. (2013b). Neural correlates of time-varying functional connectivity in

the rat. Neuroimage 83, 826–836. doi: 10.1016/j.neuroimage.2013.07.036

Tucker, D. M., Roth, D. L., and Bair, T. B. (1986). Functional connections

among cortical regions: topography of EEG coherence. Electroencephalogr.

Clin. Neurophysiol. 63, 242–250. doi: 10.1016/0013-4694(86)90092-1

Turkheimer, F. E., Leech, R., Expert, P., Lord, L. D., and Vernon, A. C.

(2015). The brain’s code and its canonical computational motifs. From

sensory cortex to the default mode network: a multi-scale model of brain

function in health and disease. Neurosci. Biobehav. Rev. 55, 211–222.

doi: 10.1016/j.neubiorev.2015.04.014

Urban, A., Rancillac, A., Martinez, L., and Rossier, J. (2012). Deciphering

the neuronal circuitry controlling local blood flow in the cerebral cortex

with optogenetics in PV::Cre transgenic mice. Front. Pharmacol. 3:105.

doi: 10.3389/fphar.2012.00105

Vakorin, V. A., Lippé, S., and McIntosh, A. R. (2011). Variability of brain signals

processed locally transforms into higher connectivity with brain development.

J. Neurosci. 31, 6405–6413. doi: 10.1523/JNEUROSCI.3153-10.2011

Valverde, S., Ohse, S., Turalska, M., West, B. J., and Garcia-Ojalvo, J. (2015).

Structural determinants of criticality in biological networks. Front. Physiol.

6:127. doi: 10.3389/fphys.2015.00127

Van De Ville, D., Britz, J., and Michel, C. M. (2010). EEG microstate sequences in

healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U.S.A.

107, 18179–18184. doi: 10.1073/pnas.1007841107

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil,

K., et al. (2013). The WU-Minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Wang, B., Niu, Y., Miao, L., Cao, R., Yan, P., Guo, H., et al. (2017). Decreased

complexity in Alzheimer’s disease: resting-state fMRI evidence of brain

entropy mapping. Front. Aging Neurosci. 9:378. doi: 10.3389/fnagi.2017.

00378

Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., and Detre, J. A. (2003).

Arterial spin labeling perfusion fMRI with very low task frequency. Magn.

Reson. Med. 49, 796–802. doi: 10.1002/mrm.10437

Wang, Z., Li, Y., Childress, A. R., and Detre, J. A. (2014). Brain entropy mapping

using fMRI. PLoS ONE 9:e89948. doi: 10.1371/journal.pone.0089948

Yang, A. C., Huang, C. C., Yeh, H. L., Liu, M. E., Hong, C. J., Tu, P.

C., et al. (2013). Complexity of spontaneous BOLD activity in default

mode network is correlated with cognitive function in normal male

elderly: a multiscale entropy analysis. Neurobiol. Aging 34, 428–438.

doi: 10.1016/j.neurobiolaging.2012.05.004

Zarahn, E., Aguirre, G. K., and D’esposito, M. (1997). Empirical analyses of BOLD

fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis

conditions. Neuroimage 5, 179–197. doi: 10.1006/nimg.1997.0263

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018Wang, Jann, Fan, Qiao, Zang, Lu and Yang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 May 2018 | Volume 12 | Article 35221

https://doi.org/10.1002/hbm.22140
https://doi.org/10.1016/j.neuroimage.2013.07.036
https://doi.org/10.1016/0013-4694(86)90092-1
https://doi.org/10.1016/j.neubiorev.2015.04.014
https://doi.org/10.3389/fphar.2012.00105
https://doi.org/10.1523/JNEUROSCI.3153-10.2011
https://doi.org/10.3389/fphys.2015.00127
https://doi.org/10.1073/pnas.1007841107
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.3389/fnagi.2017.00378
https://doi.org/10.1002/mrm.10437
https://doi.org/10.1371/journal.pone.0089948
https://doi.org/10.1016/j.neurobiolaging.2012.05.004
https://doi.org/10.1006/nimg.1997.0263
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


CORRECTION
published: 30 July 2018

doi: 10.3389/fnins.2018.00539

Frontiers in Neuroscience | www.frontiersin.org 1 July 2018 | Volume 12 | Article 539

Approved by:

Frontiers in Neuroscience Editorial

Office,

Frontiers Media SA, Switzerland

*Correspondence:

Danny J. J. Wang

jwang71@gmail.com

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 11 July 2018

Accepted: 17 July 2018

Published: 30 July 2018

Citation:

Wang DJJ, Jann K, Fan C, Qiao Y,

Zang Y-F, Lu H and Yang Y (2018)

Correction: Neurophysiological Basis

of Multi-Scale Entropy of Brain

Complexity and Its Relationship With

Functional Connectivity.

Front. Neurosci. 12:539.

doi: 10.3389/fnins.2018.00539

Correction: Neurophysiological Basis
of Multi-Scale Entropy of Brain
Complexity and Its Relationship With
Functional Connectivity

Danny J. J. Wang 1*, Kay Jann 1, Chang Fan 1, Yang Qiao 2,3, Yu-Feng Zang 2, Hanbing Lu 3

and Yihong Yang 3

1 Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of

Southern California, Los Angeles, CA, United States, 2Department of Psychology, Center for Cognition and Brain Disorders,

Hangzhou Normal University, Hangzhou, China, 3Neuroimaging Research Branch, National Institute on Drug Abuse, National

Institutes of Health, Baltimore, MD, United States

Keywords: multiscale entropy (MSE), complexity, BOLD fMRI, electrophysiology, functional connectivity (FC)

A correction on

Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship
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Complexity analysis of resting-state blood oxygen level-dependent (BOLD) signals using
entropy methods has attracted considerable attention. However, investigation on the
bias of entropy estimates in resting-state functional magnetic resonance imaging (fMRI)
signals and a general strategy for selecting entropy parameters is lacking. In this paper,
we present a minimizing error approach to reduce the bias of sample entropy (SampEn)
and multiscale entropy (MSE) in resting-state fMRI data. The strategy explored a range of
parameters that minimized the relative error of SampEn of BOLD signals in cerebrospinal
fluids where minimal physiologic information was present, and applied these parameters
to calculate SampEn of BOLD signals in gray matter regions. We examined the effect
of various parameters on the results of SampEn and MSE analyses of a large normal
aging adult cohort (354 healthy subjects aged 21–89 years). The results showed that a
tradeoff between pattern length m and tolerance factor r was necessary to maintain the
accuracy of SampEn estimates. Furthermore, an increased relative error of SampEn was
associated with an increased coefficient of variation in voxel-wise statistics. Overall, the
parameters m = 1 and r = 0.20–0.45 provided reliable MSE estimates in short resting-
state fMRI signals. For a single-scale SampEn analysis, a wide range of parameters was
available with data lengths of at least 97 time points. This study provides a minimization
error strategy for future studies on the non-linear analysis of resting-state fMRI signals
to account for the bias of entropy estimates.

Keywords: complexity, sample entropy, multiscale entropy, bias, resting-state fMRI

INTRODUCTION

Since the inception of the resting-state blood oxygen level-dependent (BOLD) technique from
functional magnetic resonance imaging (fMRI) (Biswal et al., 1995), an essential question emerged:
What are the characteristics of the temporal dynamics of these seemingly noisy and spontaneous
BOLD oscillations (Fox and Raichle, 2007)? The first piece of evidence is from the exhibition
of 1/f frequency distribution of BOLD signals (Zarahn et al., 1997; Fox et al., 2007), which is
an ubiquitous feature of the complex system (Schlesinger, 1987; Zang, 1991; Goldberger, 1996;
Goldberger et al., 2002a), and has been observed in other neurophysiologic signals (Linkenkaer-
Hansen et al., 2001; Stam and de Bruin, 2004). In complex systems, the 1/f noise is likely to
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arise from underlying oscillatory components operating at
multiple time scales and is distinct with uncorrelated randomness
(Zang, 1991; Hausdorff and Peng, 1996; Goldberger et al.,
2002a); thus, using the entropy measure to assess the complexity
of seemingly noisy physiologic data may provide hints for
understanding the dynamics of a physiologic system (Pincus,
1991; Richman and Moorman, 2000), and for delineating
the dynamical changes in physiologic systems of healthy and
pathologic states (Costa et al., 2002; Goldberger et al., 2002b;
Lipsitz, 2002; Peng et al., 2009).

To develop a systemic approach for quantifying temporal
dynamics of brain signal data in healthy and pathological states,
we have proposed a loss of brain complexity hypothesis (Figure 1)
to study mental and brain function in normal and pathological
conditions (Yang and Tsai, 2013). The hypothesis is intuitively
based on the observation that behavioral symptoms observed
in patients often follow the pattern of order or randomness,
and can be summarized as follows: (1) the complexity of a
brain reflects its ability to adapt and function in an ever-
changing environment, (2) brain operates across multiple scales
of space (i.e., brain regions) and time (i.e., temporal changes),
hence the complexity of brain oscillations is also multiscale and
hierarchical, and (3) aging and a wide class of mental illness
appear to reduce the adaptive capacity of the brain. Thus, loss of
brain complexity may be a generic, defining feature of pathologic
brain.

FIGURE 1 | Flow chart of analyses. Functional imaging data were
preprocessed and BOLD signal in every gray matter and CSF voxels was
extracted for subsequent SampEn/MSE analysis. The evaluation of SampEn
of BOLD signal is twofold. First, we evaluated the validity of SampEn
calculation using a variety of combinations of parameters m, r, and Scale
Factors. Second, we evaluated the relative error of BOLD signal using a
minimization strategy. Finally, we applied the obtained parameters to study the
effect of age in SampEn of gray matter voxels and evaluated the consistency
of SampEn in a given brain region.

A variety of entropy measures has been applied to study
the brain complexity by measuring temporal dynamics of fMRI
signals. Some of these studies have used Shannon entropy (de
Araujo et al., 2003; Leite and Mandeville, 2006; Goni et al.,
2011; Tobia et al., 2012) and related families (Sturzbecher et al.,
2009) to quantify the activated patterns of BOLD signals in
various fMRI task experiments. For resting-state fMRI signals,
a Wavelet entropy has been applied to study the resting-
state complexity in schizophrenia (Bassett et al., 2012), and
recently, we and others introduced multiscale sample entropy
(MSE) to study the complexity of resting-state fMRI signals
of normal aging (Yang et al., 2013a; Siero et al., 2014), the
effect of genetic polymorphism on resting-state fMRI complexity
(Yang et al., 2014), the characteristics of BOLD signals in
various brain regions (McDonough and Nashiro, 2014), and
psychosis (Yang et al., 2015; Hager et al., 2017). Other studies
have also applied single-scale approximate entropy (ApEn)
(Sokunbi et al., 2011; Liu et al., 2013) or sample entropy
(SampEn) to study the resting-state fMRI signals of normal
aging (Sokunbi, 2014), attention deficit hyperactivity disorder
(Sokunbi et al., 2013), and schizophrenia (Sokunbi et al.,
2014).

Among these entropy methods, SampEn and a related family,
MSE, have attracted considerable attention because of their
simplicity and the advantage of being less dependent on the
time series length than ApEn. However, abundant results of
entropy analyses of resting-state fMRI signals also come with
the inconsistency of parameter selection for entropy calculation.
The calculation of SampEn requires a tolerance factor r (typically
a fraction of the standard deviation, SD, of a given signal) to
determine the number of matches of data points using a pattern
length m. Selections of m in SampEn are sometimes based
on theoretical calculations for ApEn which suggest that 10m

points should be sufficient, although 20m–30m points would be
preferable for an accurate estimate (Pincus and Goldberger, 1994;
Kirchner et al., 2012). However, there was no definite guideline to
choose these parameters (Gow et al., 2015).

Generally, the selection of these parameters in fMRI studies
have been based on maximizing the between-group difference
in entropy estimates (Sokunbi et al., 2013, 2014; Yang et al.,
2013a; Sokunbi, 2014), prior SampEn reports on other signals
(Siero et al., 2014), or the conceptual notion that a sufficient
pattern length was required to capture underlying dynamics
(McDonough and Nashiro, 2014). Consequently, a variety of
parameters have been reported, including m = 1, r = 0.35 (Yang
et al., 2013a, 2014, 2015; Hager et al., 2017), m = 2, r = 0.3 (Siero
et al., 2014; Sokunbi, 2014), m = 2, r = 0.32 (Sokunbi et al.,
2014), m = 2, r = 0.46 (Sokunbi et al., 2013), or m = 2, r = 0.50
(McDonough and Nashiro, 2014).

The selection of SampEn parameters based on the approach
of maximizing the between-group difference likely varies among
studies and is not guaranteed to be more free from error or bias
(McDonough and Nashiro, 2014). A general strategy for selecting
SampEn parameters in resting-state fMRI signals is lacking.
Although Lake et al. (2002) stated that one of the advantages
of SampEn is its consistency, and that if one record showed
lower SampEn than another with one set of m and r values,
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then it would also show lower SampEn with different parameters;
however, the problems in the selection of SampEn parameters are
not trivial because the bias of SampEn has not been explored in
previous fMRI studies, and errors may influence neuroimaging
studies because of the relatively short BOLD signals and large
volume of brain voxels to be analyzed.

In the study of physiologic time series such as heart rate,
we will observe a variance of entropy estimates that results
from different physiologic conditions, age, sex, or the error of
entropy estimate itself. Likewise, the temporal dynamics of BOLD
signal across brain voxels is associated with local post-synaptic
potentials in gray matter and action potentials in white matter
(Gawryluk et al., 2014). However, such neuronal-related variance
of entropy measures from BOLD signal in gray matter may be
also contaminated by non-neuronal hemodynamic responses or
the error of entropy calculation. Therefore, minimizing the error
of entropy estimate could potentially maximize the reliability
and consistency of quantification of neuronal-related entropy in
BOLD signal.

In accordance with Lake et al. (2002) to minimize the bias of
entropy calculation in heart rate, this study developed a generic
strategy to minimize the relative error of SampEn calculation for
resting-state fMRI signals. A range of parameters was examined
to minimize the relative error of SampEn in cerebrospinal fluids
(CSFs) that had minimal physiologic information, and then the
appropriate SampEn parameters with low relative error were
determined for use in gray matter regions. We investigated the
effect of various parameters on the results of SampEn and MSE in
a large normal aging cohort of resting-state fMRI datasets.

MATERIALS AND METHODS

Participants
This study cohort comprised 354 healthy Han Chinese adult
participants recruited from communities in Northern Taiwan
(age range: 21–89 years; male/female: 185/169) (Table 1). The
participants were selected from a larger cohort (502 subjects
at the time of this study) based on a continuing effort of the
Healthy Aging Project (Yang et al., 2013a, 2014) conducted
in accordance with the Declaration of Helsinki. Approval was
received from the institutional review board at Taipei Veterans
General Hospital. Because we previously demonstrated that older
subjects with Apolipoprotein-E (APOE) ε4 genotype had reduced

TABLE 1 | Normal aging cohort characteristics.

Age group
(year)

No. of
subjects

Females (%) Total gray matter
volume (cm3)

20–29 65 32 (49.2) 651 ± 55

30–39 46 23 (50.0) 624 ± 60

40–49 47 27 (57.4) 575 ± 47

50–59 61 35 (57.4) 574 ± 59

60–69 66 40 (60.6) 524 ± 48

70–79 28 9 (32.1) 475 ± 52

80–89 41 3 (7.3) 447 ± 45

BOLD complexity compared with APOE ε4 non-carriers (Yang
et al., 2014), we did not include any APOE ε4 carriers in this
study.

Each participant was evaluated by a trained research assistant
using a mini-international neuropsychiatric interview to exclude
those with Axis I psychiatric disorders (Sheehan et al., 1998).
Older participants (age >59 years) were further assessed using
the Clinical Dementia Rating (CDR) scale (Hughes et al., 1982)
to exclude those with dementia (CDR > 0). The overall exclusion
criteria for all participants consisted of the following: (a) the
presence of dementia; (b) the presence of Axis I psychiatric
disorders, such as schizophrenia, bipolar disorders, or unipolar
depression; and (c) a history of neurological conditions, such as
head injury, stroke, or Parkinson’s disease.

Image Acquisition and Processing
Functional magnetic resonance imaging was performed at
National Yang-Ming University by using a 3.0T Siemens MRI
scanner (Siemens Magnetom Tim Trio, Erlangen, Germany)
equipped with a 12-channel head coil. The scanning protocol
was consistent with our prior reports (Yang et al., 2013a, 2014,
2015). For resting-state image scanning, T2∗-weighted images
with BOLD contrast were measured using a gradient echo-planar
imaging (EPI) sequence (repetition time TR = 2,500 ms, echo
time TE = 27 ms, FOV = 200 mm, flip angle = 77◦, matrix
size = 64 × 64, voxel size = 3.44 mm × 3.44 mm × 3.40 mm).
For each run, 200 EPI volume images were acquired along
the AC–PC plane. Structural T1 images were acquired with
the 3D magnetization-prepared rapid gradient echo sequence
(3D-MPRAGE; TR = 2,530 ms, TE = 3.5 ms, TI = 1,100 ms,
FOV = 256 mm, flip angle = 7◦). T1 images were segmented to
estimate the total gray matter volume for each subject.

Resting-state fMRI data were preprocessed and analyzed
using SPM8 (Wellcome Department of Imaging Neuroscience,
London, United Kingdom) implemented in MATLAB
((MathWorks, Natick, MA, United States). The fMRI images
were slice-time corrected, realigned, and normalized into the
standard stereotaxic space of the Montreal Neurological Institute
(MNI) EPI template, and resampled to a 3-mm cubic voxel.
Covariates of the fMRI time series were regressed out, including
the time courses of six head motion, white matter, and CSF.
To avoid introducing distortions in the time series data, no
global signal regression was performed (Murphy et al., 2009;
Anderson et al., 2011). All participants included in this study
exhibited a maximum displacement of less than 1.5 mm at
each axis and an angular motion of less than 1.5◦ for each axis.
The first five data points (12.5 s) in any fMRI time series were
discarded because of the instability of the initial fMRI scanning,
leaving 195 data points in the final data. Temporal low-pass
filtering (0.01–0.08 Hz) was performed to reduce the influence of
high-frequency noise from physiologic confounders.

Sample Entropy and Multiscale Entropy
Analysis
SampEn (Richman and Moorman, 2000) was developed to reduce
the bias of a related family, ApEn (Pincus, 1991), and has a
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closer agreement with theoretical estimations than ApEn. Briefly,
SampEn is defined by the negative natural logarithm of the
conditional probability that a data set of length N, having
repeated itself within a tolerance of r (similarity factor) for m
points (pattern length), will also repeat itself for m + 1 points
without allowing self-matches (Richman and Moorman, 2000).
In practice, the number of matches of pattern length m within a
tolerance of r was defined as B, and A was defined as the subset
of B that also matched pattern length m + 1. Thus, SampEn was
estimated by the negative natural logarithm of the ratio CP = A/B
that SampEn =−log CP.

SampEn is a measure of regularity based on a single and
shortest time scale (Richman and Moorman, 2000; Lake et al.,
2002). Such a single-scale entropy measure produces higher
values of entropy to uncorrelated noise, which is presumed
to convey less information than 1/f noise (Goldberger et al.,
2002a,b). Consequently, the MSE analysis (Costa et al., 2002)
was introduced to estimate the entropy on multiple time scales
based on the notion that complex dynamics typically arise from
multiple time scales and that a generic approach to measure
global complexity must account for the multiple time scales in
a given physical system (Zang, 1991; Fogedby, 1992). The MSE
calculation can be summarized in three steps: (1) construct a
coarse-grained time series according to a range of scale factors,
(2) quantify the SampEn of each coarse-grained time series, and
(3) examine the MSE profile by using a range of scales. The length
of each coarse-grained time series is equal to the length of the
original time series divided by the scale factor. For Scale 1, the
time series was simply the original time series.

A General Strategy for Selecting
Parameters for the SampEn/MSE
Analysis of fMRI Signals
As mentioned, three parameters were involved in the
SampEn/MSE analysis, including the pattern length m, tolerance
factor r, and the time scale factor. In principle, a sufficient
pattern length m and a small r value is ideal for capturing
underlying dynamics when the irregularity of a given signal is
increased (Pincus, 1991). However, in practice, the confidence
of the SampEn estimation was dependent on the number of
pattern matches for lengths m and m + 1 (i.e., A and B). The
stringent criteria for a large m and small r resulted in fewer
pattern matches, and thus increased the statistical variation in
calculating CP (i.e., A/B) and SampEn. By contrast, a relaxed
criterion for a small m and large r resulted in more pattern
matches in both A and B, thus causing the SampEn value to be
close to 0 and reducing the ability of SampEn to discriminate
dynamical processes (Lake et al., 2002).

Lake et al. (2002) proposed a general strategy to appropriately
select m and r by (a) selecting m by using the autoregressive
(AR) model order for a given signal and (b) minimizing the
relative error of the SampEn calculation. In their study, the
relative error of SampEn was estimated theoretically and applied
to 200 randomly selected cardiac R-R interval time series
(4096 data points). However, such a theoretical estimation is
computationally exhausting and is unlikely to be practical for use

with large amounts of resting-fMRI BOLD signals. Therefore, we
adopted Lake et al.’s (2002) principle but used a straightforward
strategy.

Empirically, the SampEn of BOLD signals can be computed
directly in all brain voxels and the variance of SampEn can
subsequently be estimated. However, the SampEn variance in
gray matter contains not only error but also critical information
related to neuronal signal dynamics. A direct minimization of the
SampEn variance in the gray matter region will likely reduce the
ability of SampEn to discriminate brain processes. By contrast,
BOLD signals in CSFs have been considered as a nuisance
and are routinely regressed out for contaminating gray matter
BOLD signals (Biswal et al., 1995, 1997). Furthermore, recent
reports showed that CSF signals exhibited the characteristics of
uncorrelated noise (Wu et al., 2012; McDonough and Nashiro,
2014), thus opening the possibility of using CSF BOLD signals
as the random control to minimize the bias of SampEn and to
determine appropriate SampEn parameters.

Therefore, a general strategy was developed to explore a
range of parameters that minimized the relative error of SampEn
of BOLD signals in CSFs; the obtained parameters were then
applied to study the SampEn of BOLD signals in gray matter.
This minimization strategy considers the distinct BOLD signal
properties between CSFs and gray matter and is presumed to be
consistent across studies; thus, problems in prior approaches that
maximize the between-group difference of entropy estimates in
gray matter regions are avoided. In addition, a selection of pattern
length m may be beneficial by studying the AR model order of
the underlying structure of BOLD signals in gray matter, which
is the primary brain region with functional relevance. However,
we decided that this approach was less critical because the
ability of SampEn to capture underlying dynamics is dependent
not only on the pattern length m, but also on the tolerance
factor r. Therefore, the selection of m and r in this study
should be primarily based on minimizing the relative error of
SampEn.

Adopting the methods proposed by Lake et al. (2002), we
defined the relative error of SampEn as the 95% confidence
interval (CI) of the SampEn estimate relative to the SampEn
value. A relative error of 0.05 corresponds to a 95% CI that is
10% of the SampEn estimate (Lake et al., 2002). This relative
error can be empirically estimated by calculating the mean and
SD of SampEn of BOLD signals in all CSF voxels in a subject (i.e.,
1.96× σSampEn

SampEn /2). This relative error metric is approximately
the same as the coefficient of variation (CV), which is a measure
of the dispersion of SampEn distribution. Because of short BOLD
data (195 data points compared to 4096 RR intervals in Lake et al.,
2002), we aimed for a relative error no higher than 0.1, which was
approximately 10% of the CV value in SampEn estimates.

Statistical Analysis
A flow chart of analysis involved in this paper was shown in
Figure 1. Briefly, functional imaging data were preprocessed
and BOLD signal in every gray matter and CSF voxels was
extracted for subsequent SampEn/MSE analysis. The evaluation
of SampEn of BOLD signal is twofold. First, we evaluated the
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validity of SampEn calculation using a variety of combinations
of parameters m, r, and Scale Factors. The validity of
SampEn indicated if a SampEn value can be derived from
short BOLD signal using a given set of parameters. Second,
we evaluated the relative error of BOLD signal using the
aforementioned minimization strategy. Finally, we applied the
obtained parameters to study the effect of age in SampEn/MSE
of gray matter voxels and evaluated the consistency of SampEn in
a given brain region.

The relative error was obtained from the CSF region of
each subject, and a median value of the relative error of all
subjects was reported for a given m and r. A CSF mask
provided by a REST toolbox that contained 121 CSF voxels
(3 mm × 3 mm × 3 mm) (Song et al., 2011) was used in this
study. To maintain the consistency of fMRI signal characteristics
across all brain voxels, we used postprocessed BOLD image
data and normalized each BOLD time series for a zero mean
and unit SD before conducting the SampEn/MSE analysis.
We assess the relative error of SampEn for a wide range of
combinations of m and r, and to examine the effect of BOLD
data length (coarse-grained BOLD time series by various scale
factors) on the relative error of SampEn. We also examined the
AR model order for all gray matter voxels in the entire study
cohort.

After determining a range of appropriate parameters for
SampEn/MSE analyses, we applied these parameters to the
SampEn calculation of BOLD signals in all gray matter voxels
in each subject. A general linear model (GLM) controlling the
effect of sex and total gray matter volume on SampEn was used
to examine the primary effect of age on BOLD SampEn data. We
used the GLM separately for the BOLD SampEn data of each scale
factor, as well as for the overall average SampEn across all scale
factors. We also compared the results of the GLM using various
sets of SampEn parameters and evaluated the CV of t-statistics
across gray matter voxels in a given brain region as a proxy of the
consistency of SampEn calculation. Significant brain clusters with
peak coordinates in the MNI space were reported if the p-value
corrected for the family-wise error rate was less than 0.05 at the
cluster level.

RESULTS

Characteristics of the SampEn/MSE
Analysis
Figure 2A illustrates the coarse-graining of the BOLD time series
in the MSE analysis. The coarse-graining averaged the data points
within non-overlapping windows of increasing lengths of Scale
Factors 1–5. SampEn for each scale factor was estimated from
the coarse-grained time series. Figures 2B,C show the profile
of SampEn from Scale Factors 1 to 5 averaged across all gray
matter and CSF voxels in the entire study cohort, from using
SampEn parameters reported in prior studies (m = 1, r = 0.35
and m = 2, r = 0.50). The mean SampEn across various scales
revealed a consistent pattern with distinct parameters of m and
r, but the 95% CI of SampEn increased with increasing scale
factors.

The Valid Parameters for the
SampEn/MSE Analysis in BOLD Signal
First, we examined how data length and selection of parameters
m and r could result in invalid SampEn estimates due to the
absence of pattern matches in BOLD signals. The absence of
pattern matches could be due to short data length (i.e., lack of
sufficient data sample for finding a match), large pattern length
m (i.e., lack of the recurrence of complex pattern), or small r (i.e.,
unable to find a match within a narrow similarity criterion). We
performed the experiment by calculating SampEn in CSF BOLD
signals using a variety of combinations of m, r and Scale Factors.

Figure 3 shows the percentage of SampEn estimation failures
that were caused by the absence of pattern matches in CSF
BOLD signals. The percentage was calculated based on the CSF
voxels with invalid SampEn estimates relative to all CSF voxels in
the entire study cohort. The results showed that more stringent
combinations of m and r (i.e., higher m and lower r) and
shorter BOLD signals resulted in a higher percentage of invalid
SampEn estimates. Ideally, a combination of m and r should be
selected only when the BOLD signals of all voxels have valid
SampEn estimates. Therefore, a range of combinations of m and
r, including m = 1 and r ≥ 0.20, m = 2 and r ≥ 0.35, m = 3 and
r ≥ 0.60, and m = 4 and r ≥ 0.75, was free for invalid SampEn
calculation.

Estimation of the Relative Error of the
SampEn/MSE Analysis
As aforementioned, the minimization of the relative error
of SampEn was performed in CSF BOLD signals that
contained minimal physiologic information and exhibited
the characteristics of uncorrelated noise. The relative error of
SampEn was empirically estimated by calculating the mean
and SD of SampEn of BOLD signals in all CSF voxels in every
subject. The relative error measured the dispersion of SampEn
distribution in CSF regions, thereby provide a metric to evaluate
the bias of SampEn estimates because the variance of entropy in
CSF BOLD signal is presumably consistent across CSF voxels.

Figure 4 shows the color map of the relative error of SampEn
calculation in CSF BOLD signals. The lower SampEn relative
error indicates a higher consistency (i.e., lower variation) of
SampEn among the CSF voxels. We set the criteria for the
selection of m and r to have a relative error lower than 0.1. For
Scale 1 (BOLD length = 195 time points), the acceptable range
of m and r was m = 1, 0.05 ≤ r ≤ 0.70, m = 2, 0.25 ≤ r ≤ 0.80,
m = 3, 0.35 ≤ r ≤ 0.80, and m = 4, 0.55 ≤ r ≤ 0.80. For Scale 2
(BOLD length = 97 time points), the acceptable range of m and
r was m = 1, 0.10 ≤ r ≤ 0.80, and m = 2, 0.40 ≤ r ≤ 0.80. For
Scale 3 (BOLD length = 65 time points), the acceptable range
of m and r was m = 1, 0.15 ≤ r ≤ 0.80. For Scale 4 (BOLD
length = 48 time points), the acceptable range of m and r was
m = 1, 0.30 ≤ r ≤ 0.35. For Scale 5 (BOLD length = 39 time
points), there was no error rate of SampEn below 0.1 for any m
and r.

For the average relative error of Scales 1–5, the only range
with an acceptable SampEn error was m = 1, 0.20 ≤ r ≤ 0.45.
The optimal m and r in this range was m = 1, r = 0.30 (relative
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FIGURE 2 | Illustration of a multiscale sample entropy (SampEn; MSE) analysis. (A) Coarse-graining of a BOLD time series from a gray matter voxel of an individual
was performed by averaging the data points within non-overlapping windows of increasing lengths of Scale Factors 1–5. Sample entropy for each scale factor was
estimated from the coarse-grained time series. (B) Mean and 95% CI of MSE profiles across Scale Factors 1–5 from (left) all gray matter voxels and (right) all CSF
voxels of the entire study cohort (354 subjects). The parameters for SampEn calculation were pattern length m = 1 and tolerance factor r = 0.35. (C) The same
analysis as (B) but with distinct SampEn parameters (m = 2, r = 0.50). The strategy was to explore a range of parameters that minimized the relative error of SampEn
of BOLD signals in CSFs where minimal physiologic information was present, and to apply these parameters to calculate the SampEn of BOLD signals in gray matter
regions.

error = 0.087). When m≥ 2, the minimum error rate was beyond
0.1 for m = 2, r = 0.55 (relative error = 0.128) and m = 3, r = 0.70
(relative error = 0.162). When m ≥ 4, the minimum error rate
was beyond 0.2.

For comparison, we chose three sets of parameters with
increasing levels of relative error: m = 1, r = 0.35 (relative
error = 0.089), m = 2, r = 0.50 (relative error = 0.129), and
m = 3, r = 0.70 (relative error = 0.162). The first two chosen
sets of parameters were consistent with prior reports (Sokunbi
et al., 2013; Yang et al., 2013a; McDonough and Nashiro, 2014)
and were close to the minimum of relative error for a given m.
Although the AR model order suggested a choice of m ≥ 3, the
error rate for m ≥ 3 was beyond the acceptable error rate.

Effect of Entropy Parameters on the
SampEn/MSE Analysis of BOLD Signals
in Normal Aging Data
Figure 5 shows the voxel-wise correlation between age and
MSE using the GLM to control the effect of sex and total gray
matter volume on MSE values. The GLM was used separately
for SampEn parameters of m = 1, r = 0.35; m = 2, r = 0.50;
and m = 3, r = 0.70. For all three parameters, visual inspection
of MSE brain topography suggested a similar pattern of brain
regions with negative correlations between age and MSE. The
results from parameters m = 2, r = 0.50, and m = 3, r = 0.70
showed larger brain clusters with negative correlations between
age and MSE than parameter m = 1, r = 0.35.

Table 2 summarizes the statistical results by using the
average MSE value of Scales 1–5. The results from the three
parameters showed the same brain regions with significant
negative correlations between age and MSE values, including
the right and left parahippocampus and right and left superior
temporal pole. Although the largest brain clusters and the
strongest peak t value were found in the results of using m = 2,
r = 0.50, there was no significant difference in the mean t
value when comparing the t statistics of the same brain regions
examined by using various parameters. Furthermore, the CV of
t statistics within a given brain region was lower in the results
of using m = 1, r = 0.35 than those in the results of using the
other parameters, suggesting a higher consistency of brain voxels
identified by SampEn using m = 1, r = 0.35. We averaged the
MSE value within identified brain clusters; Figure 6 shows the
scattered plots with a consistent pattern of correlation between
age and the average MSE using various parameters.

DISCUSSION

We systemically evaluated the relative error of SampEn in a wide
range of pattern length m, tolerance factor r, and various time
scales. The strategy was to minimize the relative error of SampEn
in CSFs where minimal physiologic information was present, and
determine appropriate SampEn parameters to be used in gray
matter regions. Our estimations provided an array of parameters
m and r in various scales of BOLD signals with relative errors

Frontiers in Neuroscience | www.frontiersin.org 6 June 2018 | Volume 12 | Article 39828

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00398 June 11, 2018 Time: 17:15 # 7

Yang et al. Entropy Parameters in fMRI Signals

FIGURE 3 | Percentage of estimation failure for sample entropy (SampEn) because of the absence of pattern matches in CSF BOLD signals. The percentage was
calculated based on the CSF voxels with invalid SampEn relative to all CSF voxels in the entire study cohort. The percentage was compared with those of various
combinations of m and r across all scale factors with different BOLD signal lengths. The more stringent combinations of m and r (i.e., higher m and lower r) and
shorter BOLD signals resulted in a higher percentage of invalid SampEn estimations. Ideally, the choice of m and r should have valid SampEn estimations in all voxels.

below 0.1. In general, a tradeoff between m and r was necessary
to maintain the accuracy of SampEn calculation. In other words,
an increased m value had to accompany an increased r value to
maintain an acceptable error level in short fMRI time series.

For comparison, we chose m = 1, r = 0.35; m = 2, r = 0.50;
and m = 3, r = 0.70 with increasing levels of error to evaluate
the effect of SampEn parameters on the resting-state fMRI
entropy analysis of a normal aging cohort. Qualitatively, the
results from these three parameters consistently showed that the
same brain regions had a significant negative correlation between
age and SampEn at various time scales. These brain regions
included the parahippocampus and superior temporal pole at
both hemispheres. Quantitatively, m = 1, r = 0.35 resulted in
smaller but more consistent brain clusters in terms of the CV
value of t statistics. Larger brain clusters but also a reduced
consistency of t statistics were shown in the results of using
m = 2, r = 0.50, and m = 3, r = 0.70. These results suggested
that an increased error of SampEn had a negative impact on the
quantitative results of voxel-wise statistics, despite the qualitative
results being the same in a large cohort. We expect that the
adverse impact of such error on qualitative results will become
apparent in a smaller dataset.

Overall, the parameters m = 1, r = 0.20–0.45 provided reliable
MSE estimates for most scale factors, and the minimum error
was found at m = 1, r = 0.30 for MSE analysis. For a single-scale
SampEn analysis, a wide range of parameters is available with data
lengths of at least 97 time points. We suggest that future studies

on the complexity analysis of resting-state fMRI signals account
for the relative error of SampEn. Our minimization strategy
can also be generalized to other time domains and non-linear
measures for fMRI data.

Strategies for Selecting SampEn and
MSE Parameters
Few strategies exist for assessing the parameters of ApEn,
SampEn, and even MSE analyses, and most of these strategies
were developed for ApEn. In general, statistical estimates of
conditional probabilities become less reliable as m increases,
and the loss of system dynamics information also increases as
r increases (Pincus and Goldberger, 1994). The early study of
ApEn in cardiac R-R intervals established a guideline for selecting
parameters of data length ≥100, m ≤ 3, and r = 0.1–0.25 of SD
of input data (Pincus and Goldberger, 1994). Many studies have
arbitrarily adopted the parameter m = 2, r = 0.1–0.2 to ApEn,
SampEn, and MSE analyses (Costa et al., 2002; Alcaraz et al.,
2010; Yentes et al., 2013).

These commonly used parameters were typically applied to
signals with slower dynamics such as heart rate; hence, some
studies have suggested that these parameters are inappropriate
for signals with faster dynamics, and proposed to use r values
that maximize the ApEn value (Chen et al., 2005; Chon et al.,
2009). However, this maximum entropy approach was shown to
be invalid for SampEn estimates (Castiglioni et al., 2013).
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FIGURE 4 | Color map of the relative error of sample entropy (SampEn) of CSF BOLD data for appropriate selection of m and r. The SampEn relative error was
defined in accordance with Lake et al. (2002) based on the 95% CI relative to the average SampEn in all CSF voxels; thus, the metric indicated the consistency of
the SampEn calculation. A lower SampEn relative error indicated a higher consistency of SampEn. For example, a SampEn relative error value of 0.05 corresponds
to a 95% CI, which is 10% of the average SampEn estimate. In this study, the goal was to minimize the relative error of SampEn in CSF BOLD signals because they
exhibit characteristics of uncorrelated randomness and contain minimal physiologic information. The median value of the SampEn relative error for the entire study
cohort is shown in color with various combinations of m, r, and scale factors.

FIGURE 5 | Voxel-wise correlation between age and multiscale entropy using a general linear model (GLM) to control the effect of sex and total gray matter volume.
The GLM was used separately for sample entropy parameters of m = 1, r = 0.35; m = 2, r = 0.50; and m = 3, r = 0.70.
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TABLE 2 | Regions showing significant correlation of age with multiscale entropy in the normal aging cohort.

Brain regiona BA MNI coordinates (mm) Volume (mm3)b Peak t Mean t CV

x y z

m = 1, r = 0.35

Parahippocampus R 12 −30 0 1,404 −3.65 −3.27 0.039

Parahippocampus L −21 −30 −12 1,404 −3.81 −3.35 0.052

Superior temporal pole R 38 42 −3 −15 2,781 −3.99 −3.46 0.057

Superior temporal pole L 38 −42 18 −21 2,943 −3.99 −3.40 0.054

m = 2, r = 0.50

Parahippocampus R 21 −30 −21 4,725 −3.84 −3.39 0.057

Parahippocampus L −21 −30 −15 5,994 −4.62 −3.63 0.098

Superior temporal pole R 38 42 12 −18 6,588 −4.58 −3.62 0.102

Superior temporal pole L 38 −36 9 −21 5,157 −4.40 −3.52 0.084

m = 3, r = 0.70

Parahippocampus R 18 −36 −6 2,268 −3.71 −3.33 0.045

Parahippocampus L −9 −27 6 4,239 −4.00 −3.40 0.068

Superior temporal pole R 38 42 0 −15 4,374 −4.60 −3.58 0.100

Superior temporal pole L 38 −36 9 −21 2,565 −4.01 −3.37 0.091

aL, left; R, right; BA, Brodmann area; CV, coefficient of variation. bVolume was computed from cluster size (3 mm × 3 mm × 3 mm voxel). All results had p-value less
than 0.05 corrected for multiple comparisons using familywise error.

Lake et al. (2002) proposed a minimizing error approach for
SampEn and found that m = 3, r = 0.2 was optimal for the cardiac
R-R intervals at 4,096 time points. Lake et al.’s (2002) study also
demonstrated a wide range of parameters with SampEn estimates
that were within the acceptable error range, such as r = 0.1–0.8 for
m = 1, and r = 0.2–0.5 for m = 2. These findings emphasized the
advantage of SampEn for maintaining low error and consistency
in a wide range of parameters.

Another approach is to maximize the differential ability of the
entropy estimates for a certain dataset, such as finding optimal
SampEn parameters to predict the termination and outcome
of atrial fibrillation (Alcaraz et al., 2010). We and others also
used similar approaches to maximize the ability of SampEn to
differentiate the BOLD MSE between the older subjects with low
and high cognitive scores (Yang et al., 2013a), and to differentiate
healthy and ill subjects in various populations (Sokunbi et al.,
2013, 2014; Yang et al., 2013b).

An obvious shortcoming of this approach is that the
choices of parameters will be dependent on study populations.
Furthermore, maximizing the between-group difference does not
guarantee that those parameters are more free from error or
bias (McDonough and Nashiro, 2014). The minimizing error
approach we adopted from Lake et al. (2002) can eliminate the
problems of the maximizing between-group difference approach.

Is a Larger Pattern Length m Superior to
a Smaller m to Capturing Signal
Dynamics?
Our results showed that there was no substantial difference in
brain regions detected by SampEn or MSE analyses using m = 1,
2, or 3. This observation contradicted the results of the AR model
and the long-standing idea that a choice of a larger m is superior
to smaller m because it provides a more detailed reconstruction

of system dynamics (Pincus and Goldberger, 1994; Groome
et al., 1999; Lake et al., 2002). This notion formed when the
development of entropy measures was influenced by the theories
of phase space and embedding dimensions (Takens, 1981), and
the empirical evidence for the notion was based on a relatively
long time series (such as 4,096 data points in Lake et al., 2002),
which allowed sufficient statistics of complex dynamics. Our
findings suggested that this notion was compromised in short
time series because a small m (i.e., m = 1) was as sufficient to
capture the dynamics of short BOLD signals as m = 2 or 3.
These results are similar to a prior report that a small m = 1 was
sufficient to detect atrial fibrillation in short heartbeat time series
(Lake and Moorman, 2011). Furthermore, we found that the
effect of chosen parameters primarily reflected the SampEn error
and quantitative results of brain clusters, suggesting that the effect
of error in entropy estimates may outweigh the importance of
selecting m and r for the reconstruction of underlying dynamics
in short time series.

The choice of m = 1 and r = 0.35 in our data did not prevent the
use of different parameters from other resting data with higher
scanning volumes. For long resting-state fMRI time series (e.g.,
1,200 time points) such as those from the Human Connectome
Project (Van Essen et al., 2013), we suggested that the parameter
m = 2, r = 0.50 may be too relaxed (McDonough and Nashiro,
2014), and we anticipate that m = 2 or 3 (according to the AR
model) and r < 0.5 may help to uncover subtle dynamics in long-
term resting data that are not otherwise apparent.

Time Series Length Constraints on
Selecting Pattern Length m in SampEn
A critical but often overlooked parameter in entropy estimates
is the time series length constraints. The accuracy of entropy
estimates is dependent on the data length to accrue sufficient
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FIGURE 6 | Scattered plots of correlation between age and multiscale entropy (MSE) based on the average sample entropy (SampEn) with various parameters
calculated in the four brain regions identified in Table 2.

statistics. Such data length constraints limit the selection of
pattern length m because a large m will increase the chance of
bias in entropy calculation. The theoretical work of time series
length constraints on selecting m has been documented in ApEn
that A time series with a length of at least 10m to 20m is necessary
to obtain reliable ApEn estimates (Pincus and Goldberger, 1994).
SampEn was developed to improve the consistency of entropy
estimates in various data lengths (Richman and Moorman, 2000),
and is therefore less vulnerable to time series length constraints
than ApEn. However, Richman and Moorman (2000) also found
that SampEn was unreliable for data lengths below 100 time
points when using m = 2 (i.e., but the time series length effect with
m = 1 was not tested). One recent study suggested that both ApEn
and SampEn are extremely sensitive to parameter choices for
short data sets ≤200 time points (Yentes et al., 2013). Because of
the similarity between SampEn and ApEn, we adopted the same
theoretical criteria of ApEn to estimate the time series length and
pattern length m in the MSE analysis of short BOLD signals (Yang
et al., 2013a).

While such a strategy may be questionable (Sokunbi, 2014),
our results of relative error of SampEn in various scale factors
may validate its reliability. The maximum pattern length m with

a relative error below 0.1 for each scale factor was: m = 4 for
Scale 1 (195 time points), m = 2 for Scale 2 (97 time points),
m = 1 for Scales 3 and 4 (65 and 48 time points, respectively),
and no pattern length m was able to maintain a relative error
below 0.1 for Scale 5 (39 time points). The pattern of these
results clearly suggested that SampEn was not subject to the
theoretical constraints of ApEn (10m–20m) for data with at least
195 time points (i.e., m can be up to 4 in Scale Factor 1 with
195 time points). However, in a much shorter time series below
97 time points, the choices of pattern length m of SampEn may
resemble that of ApEn and may be vulnerable to time series
constraints.

Our results suggested that at a data length of approximately 97
time points, an r value larger than 0.4 was required for m = 2
to maintain a relative error below 0.1; this result was similar
to the experimental data collected by Richman and Moorman
(2000), using a data length 100 time points. Hence, although a
resting-state fMRI study using single-scale SampEn may have
a wide range of m and r available in short time series of at
least 97 data points (Figure 3), the MSE analysis with a coarse-
graining procedure has to consider these time series length
constraints.
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Effect of Normal Aging on Resting-State
Brain Complexity
The normal aging data presented in this study were used as
an attempt to improve our previous study (Yang et al., 2013a),
which did not consider the between-age-group difference in the
MSE analysis of the effect of gray matter volume loss in older
people. Although we briefly studied this issue when examining
the effect of APOE ε4 on MSE complexity (Yang et al., 2014),
that study was based on younger and older groups and cannot
be generalized to the adult lifespan. After regressing out the effect
of age-related linear decline in total gray matter volume on MSE,
the parahippocampus and superior temporal pole still showed a
significant decline in MSE with increasing age, suggesting that
a volume-independent functional change occurred in these two
brain areas. Because both areas had neuropathologic changes
caused by normal aging and Alzheimer’s disease (Arnold et al.,
1994; Mitchell et al., 2002), whether a reduced MSE in these areas
can be explained by the accumulation of neurofibrillary tangles
warrants further.

Limitations
This study was subject to certain limitations. First, the
minimization strategy focused exclusively on the CSF region.
Some studies have suggested that white matter also exerts some
influences through noise (Liu et al., 2013; Siero et al., 2014).
Second, neuronal activity is not always associated with changes
in cerebral blood flows (Huo et al., 2014); thus, additional
studies are required to examine the extent of neuronal activity
that contributes to the complexity of BOLD fMRI data. Third,
the removal of physiologic noise may be improved by a more
advanced approach, such as component-based noise correction
method (Behzadi et al., 2007). Future study is also warranted to
explore the relationship between the bias of entropy calculation
and mitigation of physiologic noise. Fourth, the relative error
used in Lake et al. (2002) was consistent with the CV. We used
a similar metric, but because our study showed that a CV with a
threshold of 10% was approximately the same as a relative error
of 0.1, using a CV to judge the bias of SampEn in future studies
directly might be easier for interpretation. Finally, MSE is not
merely a calculation of SampEn on multiple time scales (Peng
et al., 2009). The substantial difference between MSE and single-
scale SampEn in distinguishing complexity and irregularity
was beyond the scope of this study and warrants a systemic
investigation, using normal aging and disease population data.

CONCLUSION

We developed a general strategy to study the bias of
the SampEn/MSE analysis of resting-state fMRI data and

comprehensively examined the effect of various parameters on
the relative error of SampEn estimates. Our results addressed the
problems in the maximizing between-group difference approach
and revealed a range of appropriate parameters that can be used
in future resting-state fMRI studies with various data constraints.
Finally, we expect that the bias minimization strategy can be
generalized to other method of quantifying temporal dynamics
of BOLD signal and improve the consistency of these methods to
study abnormal brain activity in various brain diseases.
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The infant brain shows rapid neural network development that considerably influences
cognitive and behavioral abilities in later life. Reportedly, this neural development
process can be indexed by estimating neural signal complexity. However, the precise
developmental trajectory of brain signal complexity during infancy remains elusive. This
study was conducted to ascertain the trajectory of magnetoencephalography (MEG)
signal complexity from 2 months to 3 years of age in five infants using multiscale
entropy (MSE), which captures signal complexity at multiple temporal scales. Analyses
revealed scale-dependent developmental trajectories. Specifically, signal complexity
predominantly increased from 5 to 15 months of age at higher temporal scales, whereas
the complexity at lower temporal scales was constant across age, except in one infant
who showed decreased complexity. Despite a small sample size limiting this study’s
power, this is the first report of a longitudinal investigation of changes in brain signal
complexity during early infancy and is unique in its application of MSE analysis of
longitudinal MEG data during infancy. The results of this pilot study may serve to further
our understanding of the longitudinal changes in the neural dynamics of the developing
infant brain.

Keywords: infant development, magnetoencephalography (MEG), multiscale entropy, complexity, longitudinal
change

INTRODUCTION

Infancy is a period of remarkable neural development in the brain that is reflected by increasing
cognitive and behavioral capacities for external circumstances or internal changes in later life (Cao
et al., 2017). Recent advances in neuroimaging devices and analysis techniques have been used
to visualize the development of brain functions. The human brain is a complex system that is
characterized by its astonishing signal variability, which operates over a wide range of temporal
and spatial scales. This brain signal variability facilitates learning and optimal environmental
adaptation to the changing demands of a dynamic environment (Faisal et al., 2008). This
complexity also conveys important information about neural system dynamics and their alterations
(reviewed in Stam, 2005; Garrett et al., 2013; Takahashi, 2013).

Abbreviations: MEG, magnetoencephalography.
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An entropy-based approach, multiscale entropy (MSE)
analysis, has been proposed to estimate the physiological signal
complexity on multiple temporal scales using coarse-graining
procedures (Costa et al., 2005). This extension to multiple time
scales enables the capture of long-range temporal correlations in a
time series. MSE has been successfully applied in the investigation
of developmental changes in brain signal complexity from
infancy through adolescence and into adulthood (McIntosh et al.,
2008; Lippe et al., 2009; Polizzotto et al., 2015; Takahashi et al.,
2016). However, no study has explored the longitudinal changes
in brain signal complexity during the early stages of development
despite the significant importance of examining within-subject
developmental trajectories (Giedd et al., 1999; Sowell et al.,
2004; Shaw et al., 2008). This is due to the large variance in
the developmental pattern during infancy (Landa et al., 2012),
a period in which developmental disorders frequently emerge
(Bolton et al., 2012; Lemcke et al., 2013).

We characterized the trajectory of brain signal complexity
of typically developing infants, aged 5 to 36 months, using
MSE applied to MEG. MEG is suited for measuring the infant
brain because it offers a non-invasive and quiet environment
during measurement. Additionally, MEG allows the mother to
accompany the infant to provide encouragement and comfort, as
well as enabling her to decide whether the experiment should be
paused or continued. Furthermore, in the assessment of signal
complexity, MEG can directly measure brain magnetic fields in
the cortex with high temporal resolution (Kikuchi et al., 2011;
Yoshimura et al., 2012; Takahashi et al., 2016).

METHODS

Data for the present study were obtained from an ongoing
longitudinal study of infants. In this study, we analyzed five
infants (one female and four males) who were 36 months of
age at the time of analysis. They were recruited from Kanazawa
University at 1 month old, and follow-up examinations and MEG
experiments were conducted once a month (ideally every month).
Participants had no history of developmental problems at the
time of the latest measurement.

All mothers agreed to their infant’s participation in the
study and had full knowledge of the experimental nature of
the research. Written informed consent was obtained prior to
participation. The study was approved by the Ethics Committee
of the Kanazawa University Hospital, and all procedures were
performed in accordance with the Declaration of Helsinki.

EXPERIMENTAL PROCEDURE

Magnetoencephalography data were recorded using a 151-
channel Superconducting Quantum Interference Device
(SQUID) whole-head coaxial gradiometer MEG system for
children (PQ 1151 R; Yokogawa/KIT, Kanazawa, Japan) installed
at the MEG Center of Ricoh Company, Ltd. (Kanazawa, Japan).
During recording, the participant lay supine on a bed in a
magnetically shielded room (Daido Steel, Nagoya, Japan) with

his or her head inside the MEG system helmet. The infant’s
mother and one research member remained in the shielded
room to keep the infant comfortable and encourage the infant
to maintain a steady body position when necessary. The infants
were carefully monitored using a video monitoring system to
assess their compliance with the instructions and to record
any notable artifacts, such as head motion, inappropriate head
position. Before recording, infants or their mother selected a
video program according to their preference from a number
of video programs (e.g., popular Japanese animations and TV
programs). All infants viewed silent video programs projected
onto a screen throughout the recording session to promote a
consistent state and attention. MEG recordings were conducted
every month when possible.

DATA ANALYSIS

Magnetic fields were sampled at 2000 Hz per channel (bandpass
filter 0.16–200 Hz). Offline analysis was performed using
a BrainVision Analyzer 2 (Brain Products GmbH, Gilching,
Germany) and MATLAB (the MathWorks Inc., Natick, MA,
United States). The raw MEG data were resampled at 500 Hz
with 1.5–60-Hz bandpass and 60-Hz notch filters. MEG data were
segmented for 5 s (2500 data points: 5 s × 500 Hz). Artifacts
such as eye movements, blinks, cardiac activities, and muscle
activities were visually identified and excluded from analyses. The
children’s head movements were video monitored throughout
the session. At the epoch selection stage, clear head motion
artifacts were eliminated by confirmation of head motion in
the videos at the time of the MEG artifacts by an MEG expert
who was blinded to the identity of the subjects. Contaminated
data were also eliminated by an MEG expert who was blinded
to the identity of the subjects. A minimum of 50 segments
were recorded for each subject. Finally, we randomly selected
50 segments (i.e., a 250 s recording period) from all artifact-free
segments of each recording. For each subject, MSE values were
calculated separately for each of the selected segments and were
then averaged into a single value as the mean MSE.

MSE ANALYSIS

Multiscale entropy analysis quantifies the complexity of a time
series using different time scales (Costa et al., 2002). For the
extension to multiple time scales, the original MEG time series
{x1, x2, . . ., xN} is coarse-grained to {y1(τ), y2(τ), . . ., yN/τ (τ)} by
the temporal scale τ with non-overlapping windows as follows.

yj (τ) = (1/τ)
jτ∑

i = (j−1)τ+1

xi, 1 ≤ j ≤ N/τ.

The complexity of each scale can be measured through the
calculation of sample entropy (SampEn), which assesses the
predictability of a time series. The SampEn was calculated for
each series {y1(τ), y2(τ), . . ., yN/τ(τ)}. The SampEn is the negative
of the logarithmic conditional probability that two sequences of
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m consecutive data points that are mutually similar (within a
given tolerance r) will remain similar at the next point (m + 1)
in the dataset (N), where m is the space of the dimension and
r is the effective filter for measuring the consistency of a time
series (Richman and Moorman, 2000). Considering the MEG
time series {x1, x2, . . ., xN} as observations of a stochastic variable
x, the dynamic SampEn is defined as

hsample (r, m, N) = − loge [Cm+1 (r) / Cm (r)],

where Cm (r) = {number of pairs (i, j) with |zmi − zmj | < r,
i 6= j}/{number of all probable pairs, i.e., (N − m + 1) (N − m)}.
Therein, z = y (τ); zm is a vector of an m sample time series of
(N − m) length, and |zmi − zmj | denotes the distance between
points zmi and zmj . In this study, we used m = 2 and r = 0.2.
SampEn values were computed for 1–20 scales that correspond
to 2–40 ms (Temporal scales in ms = tau ∗ 1000 ms/sampling
frequency).

POWER SPECTRAL ANALYSIS

Along with MSE calculations, spectral power analysis was
performed for each epoch that was used for the MSE calculation
as a comparative MSE analysis. We calculated the spectral density
(amplitude) using a fast Fourier transform. A Hamming window
was applied to each epoch for spectral power analysis.

SURROGATE ANALYSIS

We derived surrogate data using a Fourier transformation to the
MEG data to detect non-linearity in the MEG data (Vakorin and
McIntosh, 2012; Grandy et al., 2016). Specifically, the time-series
of each epoch was Fourier transformed, and then its phase was
randomized and applied to an inverse Fourier transform. Using
10 types of seeds for randomization, we derived 10 surrogate
data per epoch and then calculated an average value among their
SampEn values of surrogate data. We compared the SampEn
values for the original time series to the SampEn values for the
surrogate data.

RESULTS

Figure 1 shows the averaged (across all sensors into a single value)
developmental trajectory of the spectral power (Figure 1, upper
panels) and MSE (Figure 1, lower panels) across five infants
aged from 5 to 36 months old. All infants demonstrated an
increase in the MSE value with age. The Jonckheere-Terpstra
test was used to test for an age-related trend in MSE values,
and statistically significant age-related trends were identified
for coarse time scales (31–40 ms, scales: 16–20) (TJT = 459.0,
standard error = 34.8, z = 5.6, p < 0.001). Figure 2 shows
the averaged developmental trajectory in each time scale bin
(Figure 2A) and the topography of MSE values across different
ages (Figure 2B). A more detailed examination of our results
revealed that the remarkable increase in MSE identified for

longer time scales (31–40 ms, scale: 16–20) was predominantly
observed at ages up to 15 months and was found across brain
regions (Figure 2). After 15 months of age, this increase tended
to slow. However, the power spectral analysis also showed an
increase in power in the theta and alpha bands. This increase
was more prominent after 15 months of age, while the MSE
change was more prominent during the earlier infancy periods.
Regarding the shorter time scales (2–10 ms, scale: 1–5), the
developmental trajectory of MSE varied across subjects. For
instance, some infants showed constant MSE values across
development, whereas one infant showed a gradual decrease
(Figure 1, bottom panels).

In the surrogate analysis, we found region- and scale-specific
entropy alterations in the surrogate data, which may suggest
an inherent non-linearity in the MEG data (data not shown).
Specifically, in the surrogate data, the SampEn increased near the
frontal and temporo-occipital regions. Interestingly, this region-
specific SampEn alteration was more prominent for smaller
temporal scales (less than 20 ms) and was frequently identified
during early infancy (5–10 months of age).

DISCUSSION

The neurodevelopmental trajectory of infancy has received much
attention because infancy is a critical period of brain development
in which cognitive and behavioral abilities are enhanced (Cao
et al., 2017) and neurodevelopmental disorders, such as autism
spectrum disorder (ASD), are predicted to develop. This is the
first longitudinal investigation of how brain signal complexity,
which represents neural system dynamics, changes during
infancy. The analysis revealed scale-dependent developmental
trajectories of MEG signal complexity. Specifically, we found
an increase in signal complexity for longer time scales, whereas
the changes in complexity varied across infants for shorter time
scales.

Many studies have investigated age-related signal complexity
changes from late childhood into adulthood. Polizzotto et al.
(2015) examined the MSE of resting-state EEG results in healthy
subjects aged 8–22 years old. They reported an age-related
increase in entropy in lower scales and a decrease in entropy for
higher scales. McIntosh et al. (2008) calculated MSE changes in
EEG during a face recognition visual memory task in children
(8–15 years old) and young adults (20–33 years old). They
found an age-related increase in EEG complexity that was
significantly correlated with the accuracy of task performance.
This observation was replicated by the same group using MEG
(Misic et al., 2010), confirming the characteristic shape of the
MSE curve and its prominent task-dependent increase during
development. We have also demonstrated an age-related increase
in MEG signal complexity. However, enhanced complexity was
identified in children with ASD, particularly in earlier childhood
(Takahashi et al., 2016). Compared to the changes that occur
during the period from childhood to adolescence, brain signal
complexity during infancy has been addressed by few studies.
Lippe et al. (2009) investigated EEG signal complexity in response
to visual and auditory stimulation in children ranging from

Frontiers in Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 56638

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00566 August 13, 2018 Time: 8:29 # 4

Hasegawa et al. Developmental Trajectory of the Infant Brain

FIGURE 1 | Array plot showing the developmental trajectory of spectral power (top panels) and MSE (bottom panels) for each infant and their average (X-axis, age,
months; Y-axis, frequency and time scales).

FIGURE 2 | (A) Each line shows the trajectory of the averaged MSE value across different time scales in 8 age bins (1–5, 6–10, 11–15, 16–20, 21–25, 26–30,
31–35, and 36–40 months of age). (B) Topography of the MSE value at a coarse time scale of 40 ms (scale = 20) across 7 age bins (5, 10, 15, 20, 25, 30, and 35
months of age).

1 month to 5 years of age. They found a task-dependent increase
in EEG complexity with aging. However, these studies were based
on a cross-sectional study design. Despite the small number of
subjects, a unique aspect of this study is that we longitudinally
investigated the development of MEG complexity during infancy.

In these contexts, our study provides the longitudinal
underpinnings for the concept of significant shifts in brain
signal complexity with aging (Garrett et al., 2013). Notably, for
higher scales, we captured a robust developmental MSE profile
across infants and across MEG sessions despite conditional

inconsistencies (i.e., selected videos, emotions, or physical
conditions), which may indicate the potential usefulness of MSE
as a reliable and clinically useful trait biomarker of the infant
brain. For instance, we have demonstrated a linear age-related
increase in complexity at higher scales across 40–110 month-
old children (Takahashi et al., 2016). Additionally, enhanced
brain signal variability was observed in children with ASD, which
was conformed for younger children. On the other hand, Bosl
et al. (2011) examined resting-state EEG complexity by MSE in
typically developing infants and infants with a high risk of ASD
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across the ages of 6–24 months, and they found consistently
lower EEG complexity at higher scales in the high-risk group,
particularly at 9–12 months of age. These inconsistent results may
be attributed to the different age ranges of these two previous
studies on children with ASD.

Considering biological background, the observed rapid
increase in MEG complexity in the high time scale (i.e., lower
frequency range) at approximately 5–15 months old might
demonstrate the development of long-range network-related
cognitive processing. Given that long-range communication
between multiple brain areas is driven by slow waves (i.e., theta
and beta waves) (Wang, 2010), MEG complexity in a high
time scale (i.e., lower frequency range) may be useful and a
non-invasive biomarker of brain maturation in infants. Pujol
et al. (2006) assessed myelination from birth to 3 years of
age in children’s brains using three-dimensional MRI imaging.
Intriguingly, this volumetric study demonstrated that a period
of rapid myelination started after the 5th month and reached
the mature appearance by the 18th month, and the study
revealed the relationship with vocabulary acquisition in children.
This period of rapid myelination is almost the same as the
period in which we observed a rapid change in the present
study.

However, contrary to the developmental trajectory for higher
scales, the developmental trajectory of MSE for lower scales
is diverse across infants, and the reason for this difference
remains unclear. Lippe et al. (2009) reported a rapid increase
in complexity at lower scales, especially during the early
stage of infancy (1–2 months old vs. 2–8 months old) that
is followed by a gradual increase. This may suggest the
possibility that complexity at lower scales (corresponding to
≤16 ms) saturates by 8 months of age. This may partially
explain our finding of a constant complexity value across
age after 5 months of age at lower scales. Theoretically,
SampEn at finer (i.e., lower) time scales is based on wider
frequencies, whereas coarser (i.e., higher) time scales are based
on narrower frequencies (i.e., high frequency is filtered out).
Signal variabilities in different frequencies must be reflected by
differences in time scale. Therefore, a frequency-specific role
in the differentiation of cognitive processing (Fries, 2015) and
differences in maturational speed (Uhlhaas et al., 2009) may
underlie these contradictory findings between the results from
high and low time scales.

Surrogate analysis showed a region- and scale-specific increase
in surrogate data compared to that in MSE from original data,
which may suggest an inherent non-linearity in the MEG data.
Furthermore, the developmental trajectory of the spectral power
and MSE differed. Specifically, an increase in the power spectral
seemed to be prominent after 12 months of age, whereas an

increase in MSE emerged from early infancy until 15 months of
age. Therefore, we assume that the enhancement in MSE with
development may be associated with non-linear processes and
may be independent of spectral power. In addition, as the outputs
of neuronal networks are produced by interactions due to both
local dense interconnectivity and sparse long-range excitatory
projections (Friston et al., 1995), the resulting dynamics could be
expected to operate at multiple scales.

Some potential limitations of the present study must be
considered. First, despite frequent MEG recording, we were
only able to follow five infants, which precluded statistical
evaluation. Second, we did not correct for cognitive behavioral
or psychological assessments, which might strengthen our
claims. Third, the confounding influence of head motion
cannot be excluded from potentially influencing the MSE
results. Finally, as a technical consideration, the recent
advent of cortical source localization techniques was not
applied due to difficulties in performing MRI on infants.
Although several limitations must be considered, our
findings for the examination of MEG signal variability
using MSE may add another dimension to the previously
identified neural dynamics of development and may provide
useful biomarkers for typically and abnormally developing
brains.
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Consciousness in Geriatric Patients
Under Anesthesia?
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While geriatric patients have a high likelihood of requiring anesthesia, they carry an
increased risk for adverse cognitive outcomes from its use. Previous work suggests this
could be mitigated by better intraoperative monitoring using indexes defined by several
processed electroencephalogram (EEG) measures. Unfortunately, inconsistencies
between patients and anesthetic agents in current analysis techniques have limited
the adoption of EEG as standard of care. In attempts to identify new analyses that
discriminate clinically-relevant anesthesia timepoints, we tested 1/f frequency scaling
as well as measures of complexity from nonlinear dynamics. Specifically, we tested
whether analyses that characterize time-delayed embeddings, correlation dimension
(CD), phase-space geometric analysis, and multiscale entropy (MSE) capture loss-of-
consciousness changes in EEG activity. We performed these analyses on EEG activity
collected from a traditionally hard-to-monitor patient population: geriatric patients on
beta-adrenergic blockade who were anesthetized using a combination of fentanyl and
propofol. We compared these analyses to traditional frequency-derived measures to
test how well they discriminated EEG states before and after loss of response to verbal
stimuli. We found spectral changes similar to those reported previously during loss of
response. We also found significant changes in 1/f frequency scaling. Additionally, we
found that our phase-space geometric characterization of time-delayed embeddings
showed significant differences before and after loss of response, as did measures of
MSE. Our results suggest that our new spectral and complexity measures are capable of
capturing subtle differences in EEG activity with anesthesia administration—differences
which future work may reveal to improve geriatric patient monitoring.

Keywords: anesthesia, geriatric, electrophysiology (EEG), propofol, fentanyl, nonlinear dynamics, multiscale
entropy, 1/f
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INTRODUCTION

About 50% of geriatric patients aged 65 and older will require
anesthesia for a surgical procedure at some time in their
remaining years (Kim et al., 2015). It has been suggested that
geriatric patients have an increased risk of dementia, delirium,
and neurocognitive dysfunction after exposure to anesthetic
agents (Avidan and Evers, 2011; Chen et al., 2013; Strøm et al.,
2014; Purdon et al., 2015a; Yang and Fuh, 2015). Given this
potential risk, several investigators have suggested that geriatric
patients may benefit from maintenance at lighter anesthetic levels
(Lindholm et al., 2009; Kalkman et al., 2011; Strøm et al., 2014;
Petsiti et al., 2015), which may reduce the risks of developing
dementia (Chen et al., 2014). However, a downside of light
anesthesia is the possibility that a patient may not be unconscious
during the procedure. It is estimated that 1–2 out of every
1000 patients undergoing general anesthesia for surgery are
insufficiently anesthetized, and yet are immobilized and unable
to respond (Bischoff and Rundshagen, 2011). There would be
tremendous advantage in the ability to titrate an anesthetic dose
accurately to balance an improved medical outcome against the
risk of intraoperative awareness.

Electroencephalogram (EEG) signals, especially from
the frontal cortex, exhibit stereotypical responses to some
anesthetics. For example, loss of consciousness (LOC) correlates
with a transition from low amplitude, high frequency EEG
waveforms to high amplitude, low frequency patterns, resembling
the transition to sleep. In anesthesia, low frequency delta (∼1–
4 Hz) rhythms are replaced gradually by burst suppression
patterns as patients transition to deeper surgical planes of
anesthesia (Pilge et al., 2014). Since the 1990s, several monitoring
devices have been developed to capitalize on these EEG frequency
domain transitions (Fahy and Chau, 2018). Unfortunately, the
resultant measures are inconsistent as EEG changes depend on
the anesthesia and the patient (Akeju et al., 2015; Purdon et al.,
2015a,b).

In particular, geriatric patients pose a unique challenge
for electrophysiological monitoring because brain activity (as
measured with EEG) attenuates with advancing age (Akeju
et al., 2015; Purdon et al., 2015b; Lee et al., 2017). This
makes it difficult to quantify the frequency changes between
awake and anesthetized states accurately in individual patients.
None of the EEG intraoperative monitoring methods account
for the differences that exist in the geriatric population. In
addition, geriatric surgical patients are often medicated with beta-
adrenergic blockers (beta-blockers). Beta-blockers may hide the
cardiovascular signs of inadequate anesthesia (tachycardia and
hypertension) (Ghosh et al., 2008), and geriatric patients treated
with beta-blockers may require less anesthesia (Zaugg et al.,
2003; Ghosh et al., 2008). Importantly, beta-blockers themselves
can cause changes in the EEG activity, and thus are likely to
cause problems with anesthetic depth monitoring (Johansen,
2001; Zaugg et al., 2003; Ghosh et al., 2008). The result is that
EEG monitoring has not been adopted as standard of care.
The development of efficacious, anesthetic- and patient-invariant
EEG processing techniques could mitigate this and provide a
better way to monitor patients and improve outcomes. Thus, in

the current study, we analyzed EEG data collected from geriatric
patients who received beta-blockers for at least 24 h prior to
surgery, and who were subsequently anesthetized with fentanyl
and propofol.

Fentanyl and propofol are used in combination routinely
to obtain balanced anesthesia for induction during surgical
procedures. Fentanyl is a potent opioid that decreases the
intensity of response to intubation and provides general pain
relief during surgical procedures. Administration of fentanyl
correlates with a shift in the EEG pattern from high frequency,
low amplitude to low frequency, high amplitude (Scott et al.,
1985). Propofol has been shown to increase frontal EEG activity
in the alpha (8–14 Hz) and slow (0.1–1 Hz) bands after LOC
(Gugino et al., 2001; Feshchenko et al., 2004; Purdon et al., 2013;
Akeju et al., 2014). This change in activity occurs in both young
and elderly patients (Purdon et al., 2015a); however, the reduction
in amplitude with age causes more subtle differences in spectral
characteristics with anesthesia onset, which may not be detected
by modern EEG monitoring devices (Purdon et al., 2015b).

A potentially more sensitive spectral measure of anesthetic
depth might be 1/f. Electrophysiological signals demonstrate 1/f -
like frequency scaling (He, 2011): the power declines relative to
increases in frequency composition. Importantly, this measure
has demonstrated sensitivity to the electrophysiological brain
state changes associated with sleep (Bédard et al., 2006). Further,
1/f scaling in EEG changes with age (Voytek et al., 2015). To
our knowledge, 1/f frequency scaling has not been tested on EEG
protocols that include anesthesia.

In addition to spectral measurements, previous studies
have demonstrated that complexity measures from nonlinear
dynamics correlate with anesthetic depth (Watt and Hameroff,
1988; Widman et al., 2000; van den Broek et al., 2006; Walling
and Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Structural changes in time-delayed embeddings (attractors) of
EEG signals have been reported in both rodents (MacIver and
Bland, 2014) and humans (Watt and Hameroff, 1988; Widman
et al., 2000; Walling and Hicks, 2006; Eagleman et al., 2018).
The awake attractors appear in 3D as spheroids, and then flatten
to ellipsoids with LOC (Watt and Hameroff, 1988; Walling and
Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Previous work has quantified these attractor changes using the
correlation dimension (CD) (Grassberger and Procaccia, 1983;
Widman et al., 2000; Walling and Hicks, 2006) and a phase-
space geometric fit called the ellipse radius ratio (ERR), which
fits the attractor with an ellipsoid solid of revolution, and then
reports the ratio of the lengths of the minimum and maximum
symmetry axes (Eagleman et al., 2018). Another complexity
measure, multiscale entropy (MSE), has also been reported to
correlate well with existing anesthetic depth measures (Li et al.,
2010; Liu et al., 2015). In the current study, we tested whether
these complexity measures could distinguish between subtle
changes in EEG activity occurring before and after LOC.

We performed a retrospective analysis of data collected
from geriatric patients (aged 65 and older) who were on beta-
adrenergic blockers at least 24 h prior to surgery. Patients were
anesthetized with fentanyl and propofol. We identified and
analyzed 20 s clips of frontal EEG from before and after loss
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of response to verbal commands (LOR, considered here as loss
of consciousness). We compared frequency-derived measures, as
well as complexity measures, of the EEG signal in the before-and-
after clips to identify measures that discriminated between the
two states.

MATERIALS AND METHODS

Study Protocol
All procedures took place under an approved protocol from the
Stanford School of Medicine Administrative Panel on Human
Subjects in Medical Research (ClinicalTrials.gov, NCT00938782).
The database consisted of 67 surgical patients all older than
65 years of age. Patients underwent anesthesia for non-cardiac
procedures classified as status 1–3 by the American Society
of Anesthesiologists. All patients in the original study were
receiving beta-adrenergic treatment for a minimum of 24 h
preoperatively and received their medication prior to surgery.
We reviewed the database retrospectively and analyzed data
under a separate Stanford-approved IRB. Out of the 67 patients,
28 patients were used for analysis (details of selection below).
These 28 patients had an average age of 76 (± 6) years and
included 18 males and 10 females. They had an average body
mass index (BMI) of 27.3 (± 4.7). The healthy BMI range for
patients aged 65 and older has been suggested as 23 to 30
(Porter Starr and Bales, 2015). Our analysis included 8 patients
with a BMI greater than 30 and 5 patients with a BMI less
than 23.

The surgical procedures and anesthetic administration have
been described in detail previously (Drover et al., 2011).
Briefly, patients were induced with fentanyl (1–3 mcg/kg),
propofol (1–2 mg/kg), and muscle relaxant (if required) using
either rocuronium (0–1 mg/kg) or vecuronium (0.1 mg/kg).
After intubation, sevoflurane in oxygen with 50–60% nitrous
oxide was initiated and used to maintain anesthesia. Medical
staff recorded significant clinical events including induction,
anesthetic administration and dosage, LOR to verbal commands,
and time.

The average time of fentanyl use prior to LOR was
2.1 ± 1.6 min. With propofol, the average before LOR was
1.0 ± 0.6 min. A total of 6 patients received muscle relaxant
before LOR. One patient received vecuronium 0.7 min before
LOR, and 5 patients received rocuronium an average of 5.2 min
before LOR. A total of 14 patients received muscle relaxant
within a 4 min window following LOR. Three patients received
vecuronium and 11 received rocuronium, both an average of
0.8 min following LOR. In addition, 18 patients were started on
sevoflurane in oxygen with 50–60% nitrous oxide an average of
1.7 min following LOR.

EEG Recording and Preprocessing
Electroencephalogram recordings were acquired using a SedLine
Legacy EEG monitor (Masimo, Irvine, CA, United States). The
manufacturer’s standard adhesive electrode was attached to the
patient prior to starting the anesthetic, as per the manufacturer’s
instructions. EEGs were recorded at approximately F7 grounded

to Fpz and referenced to ∼1 cm above Fpz (Figure 1A). Data
was digitized at 250 Hz. Records of the surgical events including
time stamps of start of induction, LOR to verbal stimuli, and
administration and dosages were de-identified and then used for
analysis. The EEG recordings were de-trended, and notch filtered
using a second-order Butterworth Infinite Impulse Response
(IIR) filter to remove 60 and 120 Hz noise prior to analysis.
Additionally, a second-order Butterworth IIR filter was used to
remove a 78.125 Hz impedance measurement pulse generated by
the EEG monitor system.

We identified each subject’s 20 s pre-LOR and post-LOR EEG
clip via a two-step algorithm which was a mix of exclusion and
inclusion criteria (Figure 1A). First, three of the authors (SLE,
DRD, and MBM) visually inspected the EEG traces, spectrums,
processed spectrograms to identify EEG periods containing burst
suppression or artifacts (exclusion criteria). Second, given the
fundamentally imprecise metric of LOR, from these remaining
clips we used the clips most temporally-distant from the LOR
timepoint (within a 2 min window) to obtain the clips most
representative of pre-LOR and post-LOR (inclusion criteria).
From the original 67 patients, 28 were selected who had LOR
timestamps and artifact and noise free EEG clips for at least 20
continuous seconds before and after LOR.

Spectral Analyses
To visualize the spectral changes that occurred in our clips
before and after LOR, we performed multitaper spectral analysis
on the 20 s clips during pre and post LOR period using the
MATLAB Chronux toolbox (Figure 1B; Mitra and Bokil, 2008).1

Specifically, we used a time-bandwidth product of 5 with 9
tapers, limited the frequency ranges calculated to 0 to 50 Hz,
and computed the theoretical error range at the 95% confidence
interval. Power values were expressed in decibels.

To give an example of the temporal profile of the spectral
changes that occurred during the windows surrounding the LOR
transitions, we computed a normalized spectrogram (Figure 1C).
We calculated the Fourier transform using Hann windows with
half window overlaps. We then cutoff the frequencies above
50 Hz, converted the magnitude to decibels (dB), and scaled the
spectrogram output by its maximum magnitude.

We calculated the spectral edge frequency (i.e., the frequency
bounding 95% of the power from above) and total power using
multitaper spectral analysis (Mitra and Bokil, 2008) without
limiting the frequency range to below 50 Hz. We calculated the
percentage of total power for individual frequency bands per
condition. The percentage of total power was used because of
prior reports of significant changes in total power with exposure
to anesthetics. The ranges we used for the frequency bands were
as follows: delta: 0.1 to 4 Hz; theta: 4 to 8 Hz; alpha: 8 to 14 Hz;
beta: 14 to 30 Hz; and gamma: above 30 Hz (Gugino et al., 2001;
Purdon et al., 2013). To test whether we observed similar changes
in before and after clips compared to other studies, we calculated
the slow frequency component (0.1–1 Hz) separately.

To determine whether 1/f characteristics change before and
after LOR, we fit each patient’s spectral power to c/fα , where α and

1http://chronux.org/
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FIGURE 1 | Characterizing loss of response (LOR) using electroencephalogram (EEG) analysis. (A) EEGs were recorded from F7 during induction with propofol and
fentanyl anesthesia in geriatric patients receiving beta-adrenergic blockade. We selected continuous artifact-free 20 s clips from before (red) and after (blue) patients
lost response to verbal commands. (B) We analyzed these clips using multitaper spectral analysis. In this patient (PT09) an increase in lower frequencies and a
decrease in higher frequencies from before to after LOR can be observed. (C) To view the dynamics of the spectral changes through time we plotted a normalized
spectrogram starting 2 min before LOR to 2 min after LOR. We can see the increase in lower frequencies and decrease in higher frequencies coordinates well with
the LOR timestamp. (D) We tested several complexity measures of time-delayed embeddings (attractors). An awake attractor (red) looks less ellipsoidal than the
anesthetized attractor (blue). (E) One method we used to quantify change in attractors before and after LOR is by fitting the attractor with an ellipsoid solid of
revolution. We then calculate the ratio of the minimum and maximum radii.
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c were free parameters representing the quickness of frequency
decay and an arbitrary constant, respectively. We determined α

and c for each patient by minimizing the L2 norm of the residuals
between predicted and actual values.

Multiscale Entropy
As complex signals often have meaningful relationships at
multiple timescales, we used MSE to characterize the relationship
and complexity of the EEG time series. MSE utilizes an algorithm
that calculates a traditional entropy metric at several timescales
(Costa et al., 2002). In this case, we used sample entropy as our
multiscale metric (Pincus, 1991) as it has been shown to extract
meaningful complexity differences in a variety of physiological
signals (Costa et al., 2003; Bian et al., 2009; Liu et al., 2013). We
calculated MSE using custom MATLAB (The MathWorks, Inc.)
scripts.

Characterization of Dynamical Attractors
Correlation Dimension
We constructed three-dimensional time-delayed embeddings
(attractors) of the EEG signal before and after LOR using
an 8 ms delay (Figure 1D) as previously described (Watt
and Hameroff, 1988; Walling and Hicks, 2006; MacIver and
Bland, 2014; Eagleman et al., 2018). We chose this delay as
we observed shape changes in attractors when plotted at this
timescale. We tested whether the CD captured this shape change
with LOR. CD is used to determine the non-integer (fractal)
dimensionality of irregular objects (e.g., a point cloud in our
case) as described previously (Grassberger and Procaccia, 1983;
Widman et al., 2000; Walling and Hicks, 2006). We also tested
whether significant differences in CD could be observed when
we increased the dimensionality of the embeddings from 3D
to 5D.

We tested whether the embedding delay of the attractor
impacted the estimate of the CD value. To estimate the optimal
delay for creating the attractors we calculated the first zero-
crossing of the autocorrelations of the pre-LOR and post-LOR
signals. This is the first time lag that the EEG signal differs
maximally with itself. We used this value to set our maximum
range of embedding delays and tested multiple delays between the
shortest time window (shifting the EEG by 1 point) to the largest
(set by the autocorrelation zero crossing). We tested delays of 4,
8, 12, 52, 100, 500, 1000, 1500, 2000, and 2500 ms. We tested these
delays for both 3D and 5D time-delayed embeddings. We tested
whether a trend existed between embedding delay and CD using
the Spearman correlation.

Ellipse Radius Ratio
We constructed three-dimensional time-delayed embeddings, as
described above (Figure 1D). We quantified this shape change by
fitting the three-dimensional attractor to an ellipsoidal solid of
revolution (Figure 1E; Khachiyan, 1980; Eagleman et al., 2018).
The lengths of the symmetry axes of the ellipsoid were calculated
and the ratio of the minimum and maximum axes (which we term
the ellipsoid radius ratio, ERR) was used to quantify the shape
change. A radius ratio of 1 implies a sphere, while smaller ratios
imply more strongly ellipsoidal shapes.

Similar to the CD, we tested also whether the ERR was
changed by the embedding delay time. We created time delayed
embeddings using the same delays as were used to calculate the
CD. We tested whether a trend existed between embedding delay
and ERR using the Spearman correlation statistic.

Correlations Between EEG Measures
and Effect Size of EEG Measures
To test whether our EEG measures correlated with patient age or
body-mass index (BMI), we calculated the Spearman correlation
statistic between the change in ERR (LORpost–LORpre) at the
shortest delay (4 ms) with corresponding patient ages and BMIs.
We did the same for the MSE results.

To test whether our EEG measures correlated with each other
or with spectral changes, we calculated the Spearman correlation
statistic between the changes in these measures before and after
LOR. Specifically, we tested the correlation between changes in
ERR and MSE as well as between ERR or MSE and percentage
of power change (LORpost–LORpre) in the individual frequency
bands that we measured (delta, theta, alpha, beta, and gamma).
For the change in ERR, we chose the values calculated at the
shortest delay (4 ms) as these showed the most significant changes
before and after LOR.

We calculated a paired-data Cohen’s D on our EEG measures
before and after LOR for the novel spectral (1/f ) and complexity
(MSE and ERR phase space analysis) measures that showed
significant differences before and after LOR. We also calculated
Cohen’s D for the percentage of power in each of the frequency
bands (delta, theta, alpha, beta, and gamma) for comparison.

Statistics
We corrected significance values for multiple univariate statistical
comparisons within a particular analysis type, by using the
Holm-Bonferroni method—a sequentially-rejective procedure
(Holm, 1979). Specifically, we corrected p values for pre vs
post metrics within each of the following analyses: (1) the
power percentage across all 5 frequency bands (delta, theta,
alpha, beta, gamma), (2) the CD across all 10 embedding
delays, (3) the ERR across all 10 embedding delays, and (4)
the correlation of MSE, ERR, and frequency band power.
We report our results as medians (25, 75 percentiles), and
significance values (p) are calculated from Wilcoxon Signed Rank
Tests.

RESULTS

Spectral Analyses
We performed multitaper spectral analysis to quantify the
changes that occur before and after LOR (Figure 2A). To
compare our measures to previous reports, we computed a
common spectral measure that correlates with anesthetic depth:
the spectral edge frequency. We also tested whether total power
differed from before and after LOR. We did not observe a
significant change in spectral edge frequency before and after
LOR (Figure 2B, pre-LOR 14.1 Hz [9.6, 19.4], post-LOR 13.0 Hz
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FIGURE 2 | Spectral characteristics before and after loss of response (LOR). (A) Example of multitaper spectrum from four patients pre- (red) and post- (blue) LOR.
Note the increases in alpha and decrease in gamma activity following LOR. The shaded region represents the 95% confidence interval. We computed several
standard spectral measures pre- and post-LOR. (B) Spectral edge frequency has been shown to correlate with anesthetic depth; however, we did not observe a
significant difference. (C) We observed a significant increase in alpha activity after LOR (p = 0.015 corrected). (D) We observed a significant decrease in gamma
activity after LOR (p = 0.03 corrected).

[11.1, 17.6], p = 0.64). We did not observe a significant difference
in total power before and after LOR (pre-LOR 35.2 dB [33.0,
36.2], post-LOR 34.6 dB [32.8, 36.3], p = 0.21).

To determine the changes in frequency bands, we calculated
the changes in delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–
14 Hz), beta (14–30 Hz), and gamma (above 30 Hz) ranges.
Significant differences were found for alpha (Figure 2C) and
gamma (Figure 2D), and all spectral results are summarized in
Table 1. Similar to previous reports, we observed a significant
increase in alpha from before to after LOR. In addition, we
observed a significant decrease in gamma power from before
to after LOR. In a separate analysis, we separated out the slow
(0.1–1 Hz) frequency component from the EEG signal to see
if the percentage of slow activity changed before to after LOR.
We did not observe a significant difference in this frequency
band (pre-LOR 48.6% [37.6, 62.9], post-LOR 54.3% [34.0, 64.4],
p = 0.57).

To determine whether 1/f characteristics change before and
after LOR, we fit each patient’s spectral power to c/fα (Figure 3A).
Overall, 71% of the patients showed an increase in the value
of α from pre-LOR to post-LOR (Figure 3B). This difference
in α before and after LOR differed significantly from the null
hypothesis of no change (median change = 0.17, p < 10−3,
Figure 3C).

Characterization of Dynamical Attractors
We began by testing whether significant differences could
be observed in CD between 3D attractors plotted at an
8 ms embedding delay. We observed a similar flattening
of the attractor and more ellipsoidal shapes after LOR
(Figure 4A). We quantified the pre- to post-LOR changes
in 3D attractors using CD. We did not observe a significant
difference using this measure (Figure 4B). We also calculated
the CD for 5 dimensional attractors. Here again we did
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TABLE 1 | Summary of spectral changes from before and after loss of response
(LOR).

Frequency Percentage Percentage Significance

band of power of power value,

PRE LOR POST LOR corrected

Delta (0.1–4 Hz) 76.3% [66.5, 83.7] 74.1% [60.1, 82.8] 0.22

Theta (4–8 Hz) 4.8% [3.2, 7.1] 6.4% [4.3, 9.4] 0.34

Alpha (8–14 Hz) 5.3% [3.2, 7.7] 8.7% [5.1, 15.0] 0.015∗

Beta
(14–30 Hz)

3.8% [2.2, 5.3] 3.9% [2.8, 8.9] 0.26

Gamma
(>30 Hz)

0.6% [0.4, 2.6] 0.4% [0.3, 0.6] 0.03∗

Percentage of power in individual frequency bands are reported as medians [25,
75 percentiles]. Significance values reported are from Wilcoxon signed rank tests,
corrected for multiple comparisons. The ∗ indicates the percentage of power
change was significant at p < 0.05 corrected.

not observe a significant difference pre- and post-LOR
(Figure 4C).

We then tested our ERR with the 8 ms attractors before and
after LOR. We found a significant difference between pre- and
post-LOR (Figure 4D, p = 0.04 corrected).

To test the impact of the embedding delay on the attractor
calculations we chose multiple embeddings delays between the
smallest possible delay (4 ms, shifting the EEG by 1 point) and
the largest (set by the first zero-crossing of the autocorrelation).
We calculated the first zero-crossing for both the pre- and post-
LOR period to see if there was a difference. We did not find
a significant difference between the pre- and post-LOR values
(pre-LOR 1800 ms [1392, 2856], post-LOR 2176 ms [1664, 2480],
p = 0.35 corrected). Given these results, we decided to calculate
CD using the following embedding delays: 4, 8, 12, 52, 100, 500,
1000, 1500, 2000, and 2500 ms. The impact of embedding delay
on attractor shape is shown in Figure 5A. We did not observe a
significant difference at any delay for 3D or 5D CD calculations,
nor did we observe a significant correlation between CD and
embedding delay (Figure 5B).

We performed the same test of different embedding
delays with our ERR analysis. The ERR showed a significant
positive relationship with the difference in post-LOR–pre-LOR
conditions (Figure 5C, p = 0.04, Spearman correlation). This
relationship likely was driven by a reduction in the ERR between
the pre- and post-LOR states at short embedding delays: only
embedding delays of only 4 and 8 ms showed a significant
difference (p4 = 0.017 corrected, p8 = 0.04 corrected).

Multiscale Entropy
A MSE analysis between the pre-LOR and post-LOR conditions
revealed a scale-dependent change in sample entropy
(Figure 6A). Complexity decreased at short scale factors,
showing a statistically significant trend toward increasing at
medium scale factors (rspearman = 0.45, p < 10−3 percentile
permutation test). The difference in sample entropy between
post and pre conditions then showed a decreasing relationship
with a further increase in scale factor (rspearman = -0.31, p< 10−3

percentile permutation test). The initial decrease in complexity

FIGURE 3 | 1/f spectral changes occur with loss of response. We fit each
patient’s spectral power to c/fα , where α and c were free parameters
representing the quickness of frequency decay and an arbitrary constant,
respectively. Panel (A) shows these plots for three patients, before and after
LOC. (B) Values of α for each subject, pre-LOR and post-LOR. (C) Overall, we
observed that 71% of the patients show an increase in α after LOR.

at a scale factor of 1, which was not significantly different by
median (p = 0.48), likely resulted from sharp decreases in MSE
among several of the participants (Figure 6B).

Correlations Between EEG Measures
and Effect Size of EEG Measures
Spearman correlation revealed no significant relationship in our
ERR or MSE changes before and after LOR and with patient
age or BMI (Table 2). Spearman correlation between our ERR
(calculated at the shortest delay, 4 ms) and MSE changes before
and after LOR revealed that they are correlated with each
other (Table 3, r = 0.54, p = 0.0034 corrected). Additionally,
a significant correlation between ERR change and change in
percentage of gamma activity before and after LOR was observed
(r = 0.67, p = 0.00012 corrected). Significant correlations are also
observed between changes in MSE and changes in delta (r = -0.60,
p = 0.00084 corrected), alpha (r = 0.57, p = 0.0019 corrected),
beta (r = 0.74, p = 10−5 corrected) and gamma power (r = 0.64,
p = 0.00034 corrected). A summary of all of the measured values
before and after LOR can be found in Table 3.
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FIGURE 4 | Quantifying dynamical attractors before and after loss of response (LOR). (A) We created time-delayed embeddings (attractors) from 20 s continuous
clips. A shape change from thicker, less-ellipsoidal attractors before LOR (red) to flatter, more ellipsoidal attractors after LOR (blue) was observed and is shown here
for 6 patients. We quantified the difference in attractors using both correlation dimension and our ellipse radius ratio (ERR). (B) We did not observe a significant
difference in correlation dimension in 3 dimensions, nor did we observe a significant difference in correlation dimension in 5 dimensions (C). (D) We did observe a
significant difference in our ERR measure from before to after LOR (p = 0.04 corrected). The ∗ indicates significant difference between pre-LOR and post-LOR
measures at p < 0.05 corrected.

Cohen’s D values revealed medium effect sizes for both
complexity measures: sample entropy and ERR (Table 4,
DMSE = −0.55, DERR = −0.69). Cohen’s D values were also
sizeable for percentage of power differences before and after LOR
in alpha and gamma frequency bands (Table 4, D1/f = 0.68,
DAlpha = 0.61, DGamma = −0.55). The rest of the frequency bands
had small effect sizes (Table 4).

DISCUSSION

We found spectral results similar to those reported for propofol
anesthesia (Gugino et al., 2001; John et al., 2001; Purdon et al.,
2013, 2015a). Specifically, we saw increases in the percentage

of alpha activity and decreases in the percentage of gamma
activity with LOR. Conversely, we did not observe a significant
difference in the percentage of slow (0.1–1 Hz) frequency from
before to after LOR, nor did we observe a significant difference in
spectral edge frequency before and after LOR. This is likely due
to the overall reduced amplitudes of EEG signals in our elderly
patients (Purdon et al., 2015b), which reduces the magnitude of
the spectral changes. In addition, patients were sedated heavily
before they lost consciousness, so EEG changes were subtle.
Since we were doing a retrospective data analysis, we were
not able to control the initiation of maintenance anesthesia, so
some of our patients were on sevoflurane in oxygen with 50–
60% nitrous during the post-LOR timepoints. This may have
obscured a change in spectral edge frequency as nitrous oxide
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FIGURE 5 | Attractor shape changes are embedding delay dependent. (A) Attractors from PT02 shown at 4, 52, 1000, and 2500 ms. The shape change in the
attractor is not observed at higher embedding delays. We tested whether our attractor characterization analyses correlated with embedding delay. We computed
correlation dimension and ellipse radius ratio (ERR) at 10 different delays from 4 to 2500 ms. (B) No significant changes in correlation dimension were observed from
before to after LOR for any embedding delay nor was correlation dimension correlated with the embedding delay. Here we show results from the 3D correlation
dimension calculation. (C) We observed a significant correlation between the ERR and embedding delay (rspearman = 0.17, p = 0.04) and a significant difference in the
ERR between pre- and post-LOR for 4 ms and 8 ms delays (p4 = 0.017 corrected, p8 = 0.04 corrected). The ∗ indicates a significant difference between the
measured values before and after loss of response at that embedding delay at p < 0.05 corrected.

FIGURE 6 | Multiscale entropy reveals scale-dependent complexity change after loss of response. (A) Sample Entropy (SampEn) shows a decrease in complexity at
short scale factors which monotonically increases until medium scale (rspearman = 0.45, p < 10−3) and then decreases toward 0 (rspearman = −0.31, p < 10−3). Here,
the solid black line represents the mean. (B) At the shortest scale, the difference in SampEn between post-LOR and pre-LOR conditions is not significantly different
from chance as measured by the median, but is when measured by mean (p = 0.04, percentile permutation test).

maintains higher frequencies (Rampil et al., 1998). Sevoflurane,
on the other hand, causes similar changes in EEG activity
compared to propofol (Akeju et al., 2014; Purdon et al., 2015a).
Overall, these nuances between common clinical anesthetics
highlight the importance of developing new tools to better

distinguish anesthetic states using EEG (Eagleman and Drover,
2018).

One interesting spectral analysis not previously applied to
anesthesia EEG is the calculation of the 1/f frequency scaling.
We chose this measure as it distinguishes different brain states
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TABLE 2 | Summary of correlations between observed changes before and after
loss of response (LOR) and patient demographics.

Parameter 1 Parameter 2 Spearman’s
Rho

Significance
value,

uncorrected

ERR Age 0.10 0.60

ERR BMI 0.09 0.66

MSE Age −0.28 0.15

MSE BMI 0.22 0.25

The Spearman correlation between changes in the ellipse radius ratio (ERR,
calculated from the shortest delay 4 ms) and multi-scale entropy (MSE) values
before and after LOR (post – pre) with age and body-mass index (BMI) of patients
used in the analysis is reported here. No correlations were significant.

TABLE 3 | Summary of correlations between measured changes before and after
loss of response (LOR).

Parameter 1 Parameter 2 Spearman’s
Rho

Significance
value,

uncorrected

ERR MSE 0.54 0.0034∗

ERR Delta −0.24 0.22

ERR Theta 0.12 0.53

ERR Alpha 0.17 0.38

ERR Beta 0.29 0.13

ERR Gamma 0.67 0.00012∗

MSE Delta −0.60 0.00084∗

MSE Theta 0.51 0.0061

MSE Alpha 0.57 0.0019∗

MSE Beta 0.74 1.09e–05∗

MSE Gamma 0.64 0.00034∗

The Spearman correlation between changes in the ellipse radius ratio (ERR) and
multi-scale entropy (MSE) values before and after LOR (post-pre) is reported
here. Additionally, Spearman correlation between these values and the changes
in percentage of power in individual frequency bands (delta, theta, alpha, beta, and
gamma) before and after LOR (post–pre) are reported as well. The ∗ indicates the
correlation between the two parameters was significant at p < 0.05 corrected.

TABLE 4 | Summary of Cohen’s D for measured values before and after loss of
response (LOR).

EEG measure Cohen’s D

1/fα fit 0.68

SampEn −0.55

ERR −0.69

Delta −0.20

Theta 0.15

Alpha 0.61

Beta 0.34

Gamma −0.55

We calculated Cohen’s D (sign convention: post-pre) to quantify the effect sizes of
our EEG measures. We included all measures that showed significant differences
before and after LOR, and the standard frequency bands for comparison. ERR
value shown here is for the 4 ms delay.

(Bédard et al., 2006) and ages (Voytek et al., 2015). To our
knowledge, we have demonstrated the first observation of a
change in 1/f frequency scaling in EEGs in an anesthesia protocol.
1/f frequency scaling was sensitive to before and after LOR.

Previous studies reported differences in CD with anesthetic
depth (Widman et al., 2000; Walling and Hicks, 2006), but
our study differs in several important aspects. In these earlier
studies, patients were anesthetized with sevoflurane to deep
levels of anesthesia, but in our study, patients were anesthetized
with propofol and fentanyl; further, we limited our analysis to
20 s before and after LOR. Additionally, we used a unique
patient population consisting only of geriatric patients with beta-
adrenergic blockade. We determined that our CD results were
not based on embedding delay or differences between 3 and 5
dimensions.

There are several possibilities as to why we did not find
significant differences in CD before and after LOR. For
instance, the attractor might be better resolved with higher
sampling frequency. Additionally, brain activity might be better
represented in an even higher dimensionality embedding.
Changes in CD also may not be observable due to age-
related changes in complexity (Pierce et al., 2000; Müller and
Lindenberger, 2012; Sleimen-Malkoun et al., 2014). The other
possibility is that CD might not be sufficiently sensitive to detect
the changes that occur during before and after LOR.

We did observe a change in attractor shape similar to what has
been previously described (Watt and Hameroff, 1988; Walling
and Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Additionally, our phase-space analysis based on the geometry of
attractors showed significant differences before and after LOR
at very short delays (shifting the EEG signal by 1 or 2 points),
as previously reported (Eagleman et al., 2018). However, our
results demonstrate variability in our population. To determine
the source of this variation, better control and measurement of
the anesthetics administered in a prospective study is needed. We
noticed the magnitude of our results were reduced in the current
study compared to our recently published results (Eagleman et al.,
2018). This may be due to the current patient population being
more sensitive to anesthetics and thus more sedated at our pre-
LOR timepoint. We also tested the impact of the embedding delay
on our analysis to explore whether changes in EEG signals before
and after LOR existed at longer timescales. We found that shorter
delays better distinguished before and after LOR and results
were no longer significant when the signal was delayed by three
points. Visual inspection of the attractor shapes supports this
result. Further work is needed to elucidate whether calculations
performed in real-time can classify anesthetic depth adequately.

In addition, we tested whether another complexity measure,
MSE, could distinguish before- and after-LOR timepoints. We
noticed that MSE values appear to converge within a smaller
range in the post-LOR period. The distribution suggests that
there is one group of patients that show a large decrease in
this EEG measure with LOR, while another group does not.
The differences between the groups were outside the scope
of the current study; however, we plan to examine these
differences in the future in a well-controlled prospective study.
Additionally, previous reports that showed high correlation of
MSE with existing anesthetic depth measures (BIS index and
expert anesthesiologist assessment) used EEG data from the
entirety of the surgery (induction through recovery), which
exposed patients to deeper anesthetic levels than in our study
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(Liu et al., 2015). Thus, further testing of this analysis on more
clinically relevant timepoints is needed.

Since several EEG measures were applied here to an anesthetic
dataset including some that have not been explored much
previously (ERR), we calculated the Spearman correlation
between the changes in EEG measures before and after LOR.
We did this for the shortest delay of ERR, MSE, and the
percentage of all the individual frequency bands we included. We
found a significant correlation with the ERR and MSE values.
This is interesting because it suggests that the ERR change,
and thus attractor shape change, may be related to changes in
the complexity of the signal (revealed by reduction in MSE
with anesthesia onset). Additionally, a significant correlation
between ERR and MSE with the percentage of gamma change was
observed. These relationships are expected as both reductions
in gamma activity and reductions in entropy with anesthetic
administration have been previously reported (John et al., 2001;
Li et al., 2010). The change in MSE is also correlated with changes
in the percentages of delta, alpha, and beta power. This again is
expected given the ability of MSE to capture all of the spectral
changes observed with anesthesia onset (Li et al., 2010).

We tested the effect size of the EEG measures using Cohen’s D.
None of these measures had large effect sizes (> 1) indicating the
challenge with detecting subtle EEG changes in geriatric patients.
ERR and 1/f frequency scaling had the largest effect sizes, which
were medium in magnitude. This indicates that supplementing
complexity measures may improve geriatric patient monitoring.
However, further testing of these analyses on more clinically
relevant time points and on full EEG traces is needed to test this
idea.

As with any study involving EEG, muscle contamination is
a potentially important source of artifact. Three of the authors
visually inspected all of the EEG clips as well as the processed EEG
spectrum and spectrograms to ensure they were free of artifacts.
Activity from facial and neck muscles can appear 20 Hz and
above, and thus into the frequency ranges we used for analyses
(Shackman et al., 2009; Claus et al., 2012; Muthukumaraswamy,
2013); however, as we have reasoned previously (Eagleman
et al., 2018), it is important not to throw out higher frequency
activity, as it plays an important role in brain-state dynamics
(Muthukumaraswamy, 2013), especially in judging anesthetic
depth (Sleigh et al., 2001). The measures that we have used have
been tested in similar experimental paradigms on intracranial
recordings free from EMG contamination (Bédard et al., 2006;
MacIver and Bland, 2014; Voytek et al., 2015).

Since these results are only from retrospective analyses our
work is limited in several ways. We were not able to control the
timing of drug delivery (such as delivery of muscle relaxants);
several anesthesiologists with potentially diverse clinical practices
were involved, and consciousness measures were restricted to
the first loss of response to verbal commands. However, all
participating anesthesiologists were instructed to administer
anesthesia and a small number of adjuvant agents as per strict
protocol guidelines (Drover et al., 2011). Additionally, the
protocol of anesthetic and adjuvant agent administration in this
retrospective dataset is aligned with current clinical practice.
Thus, our results are relevant to current practices of balanced

anesthesia administration. Additionally, we tested whether any
of our measured results were correlated with patient age or
BMI and found no significant correlations. Future prospective
work will include several measures to better titrate our analysis
to anesthetic action. Collection of blood samples or exhaled
vapor can help us correlate results with anesthetic delivery more
accurately. Whenever possible, future work should control the
delivery of muscle relaxants and the initiation of maintenance
anesthetics to separate out the effects of individual anesthetic and
adjuvant agents on our measures. Additionally, our results need
to be tested on more clinically relevant timepoints, and alongside
spectral measures on full EEG traces instead of clips, to better
prepare our analyses for clinical application.

Nonetheless, we have observed significant differences before
and after LOR using several techniques in a traditionally hard-
to-monitor patient group. Future work will discern if these
results are useful supplemental tools to better guide physicians
in monitoring anesthetic depth in sensitive patient populations.
Development of better EEG analysis techniques will hopefully
encourage the wide adoption of EEG monitoring and improve
the standard of care.

CONCLUSION

We found that frontal spectral changes before and after
LOR in geriatric patients were limited to the alpha and
gamma ranges. Further, we showed that 1/f frequency scaling
differed before and after LOR. We tested the ability of several
measures from nonlinear dynamics, including CD, MSE, and
a geometric characterization of time-delayed embeddings, to
distinguish LOR timepoints. Among these, MSE and the
geometric characterization showed significant differences and
had comparable or greater effect sizes to standard frequency
measures. In the future, these results may enable the development
of better methods of quantifying anesthetic depth in geriatric
patients as they are able to significantly discriminate between the
subtle EEG changes that occur before and after loss of response.
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Alzheimer’s disease (AD) is characterized by progressive deterioration of brain function
among elderly people. Studies revealed aberrant correlations in spontaneous blood
oxygen level-dependent (BOLD) signals in resting-state functional magnetic resonance
imaging (rs-fMRI) over a wide range of temporal scales. However, the study of the
temporal dynamics of BOLD signals in subjects with AD and mild cognitive impairment
(MCI) remains largely unexplored. Multiscale entropy (MSE) analysis is a method for
estimating the complexity of finite time series over multiple time scales. In this research,
we applied MSE analysis to investigate the abnormal complexity of BOLD signals using
the rs-fMRI data from the Alzheimer’s disease neuroimaging initiative (ADNI) database.
There were 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and
29 AD patients. Following preprocessing of the BOLD signals, whole-brain MSE maps
across six time scales were generated using the Complexity Toolbox. One-way analysis
of variance (ANOVA) analysis on the MSE maps of four groups revealed significant
differences in the thalamus, insula, lingual gyrus and inferior occipital gyrus, superior
frontal gyrus and olfactory cortex, supramarginal gyrus, superior temporal gyrus, and
middle temporal gyrus on multiple time scales. Compared with the NC group, MCI
and AD patients had significant reductions in the complexity of BOLD signals and AD
patients demonstrated lower complexity than that of the MCI subjects. Additionally,
the complexity of BOLD signals from the regions of interest (ROIs) was found to
be significantly associated with cognitive decline in patient groups on multiple time
scales. Consequently, the complexity or MSE of BOLD signals may provide an imaging
biomarker of cognitive impairments in MCI and AD.

Keywords: multiscale entropy, Alzheimer’s disease, mild cognitive impairment, blood oxygen level-dependent
signals, dynamic complexity
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INTRODUCTION

Functional connectivity (FC) of spontaneous blood oxygen level-
dependent (BOLD) signals in functional magnetic resonance
imaging (fMRI) has become an important tool for probing
brain function changes in normal aging and neurodegenerative
diseases. However, relatively few studies have investigated the
temporal dynamics of BOLD signals and its relations with
pathologic changes in neurophysiology (Sporns et al., 2000;
Friston et al., 2003; Wu et al., 2012). As the most complex organ
of the human body, the human brain regulates multifaceted
actions with billions of neurons and synapses (Fox et al.,
2007). Therefore, the BOLD signals possess complex temporal
fluctuations, which could be imitated by nonlinear dynamical
processes (Soltysik et al., 2004; Stephan et al., 2008; Yan et al.,
2017).

Over the past few years, several statistical methods have
been applied to quantify the temporal dynamics of physiological
systems. A widely used non-linear statistical method is sample
entropy (SE) proposed by Richman and Moorman (2000). SE
improved approximate entropy (ApEn) proposed by Pincus
(1991), by resolving the problem of erratic results due to vector
self-matching. Many studies evidenced the effectiveness of SE in
the complexity analysis of time series data of biological systems
(Sokunbi et al., 2013, 2014). However, recent studies found that
neural signals in the brain possess correlations over a wide
range of temporal and spatial scales, stemming from long-range
interactions (Costa et al., 2005; Peng et al., 2009; Morabito et al.,
2012). Therefore, SE may not be adequate to fully capture the
complexity of neural signals by only calculating signal entropy
on a single scale.

The multiscale entropy (MSE) was proposed (Costa et al.,
2002) to investigate the dynamic complexity of a time
series across multiple temporal scales. Several studies have
demonstrated the efficacy of MSE for quantifying the complexity
of BOLD signals in aging (Yang et al., 2013; Smith et al.,
2014). Yang et al. (2013) employed MSE analysis to investigate
the complexity of BOLD signals between the younger and
older groups, and found significant decreases in MSE in older
subjects. Smith et al. (2014) explored the effect of healthy
aging on the entropy of resting-state fMRI (rs-fMRI) using
MSE analysis, and the results revealed enhanced contrast
between healthy young and aged volunteers at longer time
scales. However, the dynamic complexity of BOLD signals

in neurodegenerative diseases across multiple temporal scales
remains largely unexplored.

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive deterioration of cognitive and
behavioral function (Ballard et al., 2011). Mild cognitive
impairment (MCI) is a neurological disorder occurring before
the onset of early AD as an intermediate stage at a high risk
of developing AD (Petersen et al., 1999; Belleville et al., 2011).
A few studies found decreased complexity of BOLD signals in
AD by using single-scale entropy analysis (Liu et al., 2013; Wang
et al., 2017). However, the complexity alterations of BOLD signals
in MCI and AD patients across multiple time scales remain
unclear.

We obtained BOLD rs-fMRI data from the Alzheimer’s disease
neuroimaging initiative (ADNI1) database, including 30 normal
control (NC), 33 early MCI (EMCI), 32 late MCI (LMCI), and
29 AD subjects. MSE maps of the four groups across multiple
time scales were calculated and the clusters with significant MSE
differences were identified. We then examined the relationships
between MSE values and scores of cognitive assessments on all
time scales. Finally, we investigated the relationship between MSE
and gray matter volume (GMV) on all time scales.

MATERIALS AND METHODS

Participants
A total of 124 subjects were selected from ADNI-2 database,
including 30 NC subjects (aged 74.18 ± 5.96 years; 19 females;
education: 16.8± 2.0 years), 33 EMCI subjects (aged 72.01± 5.87
years; 16 females; education: 15.5 ± 2.4 years), 32 LMCI subjects
(aged 72.57 ± 8.16 years; 13 females; education: 16.5 ± 2.1
years), and 29 AD subjects (aged 72.33 ± 7.26 years; 18 females;
education: 16± 2.7 years). For each subject, there were cognitive
assessments including Mini-Mental State Examination (MMSE),
Clinical Dementia Rating (CDR), and Functional Activities
Questionnaire (FAQ). Table 1 summarizes the demographic and
clinical characteristics of the participants.

Data Acquisition and Data Processing
All subjects went through resting-state BOLD fMRI scans with
their eyes closed on a 3.0 T scanner (Philips Medical Systems)

1http://adni.loni.usc.edu/

TABLE 1 | Demographic and clinical characteristics of the participants.

NC EMCI LMCI AD p-value

Age (years) 74.18 ± 5.96 72.01 ± 5.87 72.57 ± 8.16 72.33 ± 7.26 0.505

Sex (M/F) 11/19 17/16 19/13 11/18 0.732

Education (years) 16.8 ± 2.0 15.5 ± 2.4 16.5 ± 2.1 16 ± 2.7 0.418

MMSE 28.9 ± 1.7 27.59 ± 2.02 26.96 ± 2.69 21.0 ± 3.5 <0.001

FAQ 0.14 ± 0.44 3.03 ± 4.50 4.07 ± 4.70 15 ± 7.47 <0.001

CDR 0 0.5 0.5 0.84 ± 0.23 <0.001

Data are given as the mean ± standard deviation (SD).
The p-values were obtained by one-way ANOVA.

Frontiers in Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 67756

http://adni.loni.usc.edu/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00677 September 27, 2018 Time: 19:7 # 3

Niu et al. Dynamic Complexity of Spontaneous BOLD Activity

using the following parameters: repetition time (TR) = 3000 ms;
echo time (TE) = 30 ms; slice thickness = 3.3 mm; flip angle = 80◦;
slice number = 48, and 140 time points.

Resting-state fMRI data were preprocessed using Statistical
Parametric Mapping (SPM122), Data Processing and Analysis
for (Resting-State) Brain Imaging (DPABI; Yan et al., 2016) and
the rs-fMRI Data Analysis Toolkit (REST 1.8; Song et al., 2011)
packages. The following steps were performed: removing the
first 10 time points; slice-timing correction; image realignment;
normalization to the Montreal Neurological Institute (MNI)
space (resampled into 3 mm × 3 mm × 3 mm voxels). The
linear trends of time courses were removed, and the effect of
nuisance covariates was removed by signal regression using
the global signal, the motion parameters, the cerebrospinal
fluid (CSF) and white matter (WM) signals. Temporal filtering
(0.01 Hz < f < 0.2 Hz) was applied. Finally, each voxel time
series was standardized to a mean of zero and standard deviation
of unity.

The analysis of the GMV was performed according to
the voxel-based morphometry (VBM) protocol using DPABI.
The VBM procedure involves the segmentation of the original
anatomic MRI images in gray matter (GM), WM, and CSF
tissues, followed by GM image normalization to templates
in stereotactic space to acquire optimized normalization
parameters, which were applied to the raw images. Finally, GM
images were smoothed using a 6-mm full-width at half-maximum
(FWHM) Gaussian kernel.

MSE Theory
Multiscale entropy is based on the theory of SE over a range of
scales and consists of two steps (Costa et al., 2002).

(1) The coarse-graining procedure of time series represents
the system dynamics on different scale factors. Given time series
{xi, i = 1, 2, . . . , N}, for the time scale l, the coarse-grained time
series {yl

} is calculated as follows:

yl
j =

1
l

jl∑
i=(j−1)l+1

xi, 1 ≤ j ≤ N/l (1)

The length of new time series is N/l. For scale 1, the new time
series corresponds to the original time series.

(2) The SE for each coarse-grained time series is calculated.
Sample entropy (Richman and Moorman, 2000) is calculated

as:
SE(m, r, N) = − ln

Pm+1(r)
Pm(r)

(2)

where m is the sequence length of time points to be compared, r
is the radius of similarity, N is the length of the time series, and P
is the probability that points falling within r.

Multiscale entropy consists of a set of SE values under multiple
time scales, which reflects the complexity of time series on
multiple scales. MSE can be used to compare the complexity of
different time series, based on the specific trend of SE changes
with scales (e.g., complex time series show constant entropy over

2http://www.fil.ion.ucl.ac.uk/spm

various time scales, while random noise shows a marked decrease
in entropy at longer time scales; Wang et al., 2018).

MSE Calculation
We used the Complexity Toolbox3 [Laboratory of Functional
MRI Technology (LOFT), Department of Neurology, University
of Southern California] to calculate MSE of rs-fMRI data.

Three parameter values were set for the calculation of MSE,
including pattern length m, distance threshold r, and time scale
l. The point to be made is that the r value is generally correlated
with the standard deviation of the original time series (Lu et al.,
2015). Various theoretical and clinical applications have indicated
that, m = 1 or 2 and r = 0.1–0.35 of the standard deviation
of the original sequence, provides reasonable statistical validity
for calculating SE (Richman and Moorman, 2000). Because no
rigorous standard exists for choosing the parameters to calculate
SE, prior studies on SE analysis of biomedical signals have shown
inconsistent selection of parameters. For example, studies of
fMRI used various parameters, including m = 1 and r = 0.35
(Yang et al., 2013), m = 2 and r = 0.30 (Smith et al., 2014),
m = 2 and r = 0.15 (Yang et al., 2011). In addition, different
parameters were also used in the studies of EEG, including
m = 2 and r = 0.15 (Catarino et al., 2011), m = 2 and r = 0.25
(Xiang et al., 2015), m = 1 and r = 0.25 (Escudero et al., 2006).
In this study, MSE was calculated for each BOLD time series
based on different parameter pairs: (m = 2, r = 0.15), (m = 2,
r = 0.25), (m = 2, r = 0.30), (m = 2, r = 0.35), (m = 1,
r = 0.25), and (m = 1, r = 0.35) across the range of scales from
1 to 6.

Statistical Analyses
For every time scale, one-way analysis of variance (ANOVA)
was used to assess differences in MSE maps of BOLD signals
among four groups (NC, EMCI, LMCI, and AD) using REST
1.8. For multiple comparison corrections, a stringent statistical
significance level was employed by setting a voxelwise threshold
of p < 0.001 and a cluster threshold of p < 0.05 with a Gaussian
random field (GRF) correction among four groups after adjusting
for age, sex, and education differences.

Then, fivefold cross-validation was used for regions of interest
(ROIs) analyses. We divided the data into five independent
subsets. For each fold, we used one subset for selective analysis
after using other four subsets for selection (ANOVA). According
to the peak MNI coordinates (X Y Z), we extracted the average
MSE and GMV by using DPABI toolbox to define ROIs and
the radius of the spheres at all scales (8 mm). For each ROI,
differences on MSE values among four groups at all scales were
compared using ANOVA using Statistical Package for Social
Sciences (SPSS 20.0) software. Bonferroni’s post hoc pairwise test
on ANOVA was performed.

Spearman’s correlation was used to assess the relationship
between MSE and MMSE, FAQ, CDR, and GMV for four groups
using SPSS 20.0 software.

3http://loft-lab.org/index-5.html
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RESULTS

Demographic and Clinical
Characteristics
Table 1 summarizes the demographic and clinical characteristics
of the participants. The p-values were obtained by one-way
ANOVA. The results indicated no difference in age, sex, and
education across four groups. Significant differences (p < 0.001)
among four groups were found on the MMSE, FAQ, and CDR
scores.

Parameter Selection for MSE Calculation
The comparison was made by calculating MSE using six different
parameter combinations (m, r). All subjects’ MSE maps were
calculated across time scales from 1 to 6. We performed the
one-way ANOVA on MSE maps of four groups on every time
scale. Based on the final results, the findings using m = 2 and
r = 0.35 as the optimal parameter were mainly reported in
this study. Previous study has shown that the accuracy of the
calculation results is least dependent on the sequence length N
when m = 2 (Smith et al., 2014). Other results are presented
in Supplementary Data Sheet 1. For m = 2 and r = 0.15, four
clusters were significantly different among the four groups across
multiple time scales on scale 2, scale 3, scale 4, and scale 6
(Supplementary Table S1 and Supplementary Figure S1). Five
clusters were found on scale 2, scale 4, and scale 6 when m = 2
and r = 0.25 (Supplementary Table S2 and Supplementary
Figure S2). For m = 2, r = 0.30 and m = 2, r = 0.35, similar results
were found and nine clusters showed significant differences on
scale 2, scale 4, scale 5, and scale 6 (Supplementary Table S3
and Supplementary Figure S3). For m = 1, r = 0.25 and m = 1,
r = 0.35, however, only one consistent cluster was found (left
middle occipital gyrus) on scale 1 and no difference was found on
the rest scales (Supplementary Tables S4, S5 and Supplementary
Figures S4, S5).

Significant Differences on MSE Among
the Four Groups
Using m = 2 and r = 0.35, the result is presented in Figure 1.
The detailed information is summarized in Table 2. Significant
differences (p < 0.001, GRF correction) were found on the MSE
maps among the four groups on scale 2, scale 4, scale 5, and
scale 6. We found no significant difference on scale 1 and scale
3. On scale 2, one cluster was found: right thalamus (THA.R).
On scale 4, one cluster was found: left superior frontal gyrus
(SFGdor.L). We found two clusters on scale 5: right lingual gyrus
(LING.R) and right insula (INS.R). For the scale 6, five clusters
were found: right superior temporal gyrus (STG.R), left middle
temporal gyrus (MTG.L), right olfactory cortex (OLF.R), left
inferior occipital gyrus (IOG.L), and right supramarginal gyrus
(SMG.R).

We also extracted the mean MSE of whole brain (WB),
GM, WM, and CSF using the corresponding masks on all time
scales. Then, one-way ANOVA was performed to examine the
differences among the four groups. The result is presented in
Supplementary Table S6. Only GM showed a trend of entropy

difference (F = 2.283, p = 0.083) among four groups on scale 6.
Figure 2 shows the mean entropy curve of GM across the scale
of 1–6 for four groups as well as the differences between each
pair of the four groups on scale 6 (p < 0.05, two-sample t-test,
uncorrected).

Time Scales Analysis on MSE From
Scale 1 to Scale 6
We extracted the average MSE of 9 ROIs over multiple time
scales. Figure 3 displays the MSE curve across scale 1 to 6 among
four groups (NC, EMCI, LMCI, and AD) for nine ROIs. Each
group exhibited a drop in SE values with increasing scale. SE
values on scale 1 showed no difference among the four groups for
nine ROIs. For scale 2, there were two ROIs (THA.R and OLF.R)
showing significant differences among four groups. SFGdor.L,
INS.R, and OLF.R showed significant differences on scale 3. For
scale 4, there were six ROIs (SFGdor.L, LING.R, INS.R, MTG.L,
OLF.R, and SMG.R) showing significant differences among four
groups. There were four ROIs showing significant differences
(LING.R, INS.R, and IOG.L) on scale 5. On scale 6, there were
six ROIs showing significant differences (THA.R, STG.R, MTG.L,
OLF.R, IOG.L, and SMG.R) among four groups. Specifically,
OLF.R showed significant differences on four time scales (scale
2, scale 3, scale 4, and scale 6).

Comparison of MSE Among the Four
Groups
Multiscale entropy values of nine ROIs at all scales were
compared among the four groups (NC, EMCI, LMCI, and AD)
using ANOVA, and for MSE of ROIs with significant differences
among the four groups, Bonferroni’s post hoc pairwise test on
ANOVA was performed. Figure 4 displays the comparison of
MSE of nine ROIs at different scales between any two groups.
The results showed that, compared with NC subjects, patient
groups demonstrated reduced complexity. Specifically, the AD
group showed lower complexity than the NC group for all ROIs.

Compared with the NC group, the EMCI subjects had
significantly reduced MSE of BOLD signals in INS.R. The LMCI
subjects showed significantly decreased MSE in eight of the nine
ROIs except THA.R. Compared with the EMCI group, the LMCI
group showed decreased MSE in SFGdor.L while the AD group
showed decreased MSE in three ROIs (THA.R, MTG.L, and
OLF.R). In addition, THA.R had lower complexity in the AD
group than that in the LMCI group.

Relationships Between MSE and Clinical
Measurements
We performed Spearman’s correlations between MSE values
and the clinical measurements (MMSE, FAQ, and CDR) in
patient groups (MCI and AD). After corrections for multiple
comparisons, significant correlations were found.

Figure 5 shows the scatter plots between MSE values of BOLD
signals and clinical measurement scores (MMSE, FAQ, and CDR)
in patient groups in the significantly correlated brain regions.
On scale 2, MMSE was positively correlated with the complexity
of BOLD signals in THA.R (r = 0.354, p = 0.006). SFGdor.L
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FIGURE 1 | Surface-rendered images showed the differences between the control and patient groups after adjusting for age, sex, and education. The regions
showed significantly different brain regions among the four groups on scale 2, scale 4, scale 5, and scale 6. See Table 2 for a complete list of these regions
(threshold p < 0.001, GRF corrected).

TABLE 2 | Characteristics of the brain regions those were significantly different among the four groups across multiple time scales.

Scale Brain Region AAL.Abbr Peak MNI (X, Y, Z) Cluster voxels Voxel F-value

Scale 2 Thalamus THA.R ( 0, −9, 0) 120 8.817

Scale 4 Superior frontal gyrus SFGdor.L (−18, 54, 42) 81 7.043

Scale 5 Lingual gyrus LING.R (15, −51, −9) 82 7.948

Insula INS.R (33, −12, 6) 78 9.807

Scale 6 Superior temporal gyrus STG.R (60, −18, 0) 153 12.274

Middle temporal gyrus MTG.L (−66, −18, −3) 95 8.258

Olfactory cortex OLF.R (6, 21, −12) 139 10.959

Inferior occipital gyrus IOG.L (−54, −69, −9) 203 7.434

Supramarginal gyrus SMG.R (60, −33, 27) 81 7.177

The location coordinates are those of the peak significance in each region (p < 0.001, GRF corrected).

exhibited the significant positive correlation (r = 0.293, p = 0.030)
between the MSE values and MMSE scores on scale 4. The four
ROIs (INS.R, STG.R, IOG.L, and SMG.R) exhibited significant
positive correlations (r > 0.283, p < 0.048) between MSE and
MMSE scores on scale 6. Some trend correlations were also
found (p < 0.05, uncorrected) and the results are shown in
Supplementary Table S7.

As shown in Figure 5, the MSE values of THA.R exhibited
significant negative correlations (r = −0.344, p = 0.006) with the
FAQ scores on scale 2. OLF.R exhibited significant correlations
(r = −0.291, p = 0.042) between FAQ scores and MSE values
of BOLD signals in patient groups on scale 6. SFGdor.L,
LING.R, INS.R, and IOG.L exhibited trend correlations (p < 0.05,
uncorrected) between FAQ scores and MSE values on multiple
time scales (Supplementary Table S8).

After corrections for multiple comparisons, MSE values of
THA.R exhibited the significant negative correlation with the
CDR scores on scale 2 (r = −0.303, p = 0.024) and scale 3
(r = −0.286, p = 0.042). LING.R showed the significant negative
correlation between CDR scores and MSE values on scale 5
(r =−0.331, p = 0.012) and MSE values of SMG.R were negatively
correlated with CDR scores on scale 6 (r = −0.312, p = 0.018;
Figure 5). In addition, SFGdor.L, INS.R, STG.R, OLF.R, and
IOG.L exhibited trend correlations (p < 0.05, uncorrected)
between CDR scores and MSE values on multiple time scales.
Supplementary Table S9 summarizes the correlation results
between CDR scores and MSE values of BOLD signals in patient
groups.

We also performed Spearman’s correlations between MSE
values and the clinical measurements (MMSE, FAQ, and CDR)
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FIGURE 2 | (A) MSE curve across scale factor 1–6 in gray matter (GM) for four groups. Each point represents group average SE. (B) Mean SE values of GM in the
NC, EMCI, LMCI, and AD subjects on scale 6. Significant differences between each pair of the four groups (p < 0.05, two-sample t-test, uncorrected) are indicated.
The error bar represents the standard error of MSE within the group. ∗ indicates p < 0.05.

FIGURE 3 | MSE curve across scale factor 1–6 for four groups. Each point represents group average SE. The error bar represents the standard error of MSE within
the group. ∗ indicates p < 0.05. ∗∗ indicates p < 0.05. ∗∗∗ indicates p < 0.001.

for each group (NC, EMCI, LMCI, and AD). After corrections for
multiple comparisons, for the NC group, SMG.R exhibited the
significant negative correlation (r = −0.516, p = 0.048) between
MSE values and FAQ scores on scale 5. No correlation was

found between MSE values and MMSE, FAQ, and CDR scores
in the EMCI group on all scales. For the LMCI group, MSE
values of STG.R were positively correlated (r = 0.512, p = 0.030)
with MMSE scores and MSE values of MTG.R and IOG.L were
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FIGURE 4 | Mean SE values of the nine ROIs in the NC, EMCI, LMCI, and AD subjects on four time scales. Significant differences between pairs of groups after
Bonferroni correction (p < 0.05) are indicated. The error bar represents the standard error of MSE within the group. ∗ indicates p < 0.05. ∗∗ indicates p < 0.01. ∗∗∗

indicates p < 0.001.

negatively correlated (r < −0.485, p < 0.048) with FAQ scores.
STG.R exhibited the significant negative correlation(r = -0.488,
p = 0.048 between MSE values and CDR scores in the AD group.
Some trend correlations were also found (p < 0.05, uncorrected)
and the results are shown in Supplementary Tables S11–S14.

Relationships Between MSE and GMV
We extracted the average GMV values of nine ROIs for
four groups. Then, we explored the relationships between the
MSE and the GMV in patient groups. After corrections for
multiple comparisons, no significant correlation was found
between the complexity of BOLD signals and GMV values. But
the LING.R exhibited trend positive correlations (r > 0.209,
p < 0.043, uncorrected) between the MSE and the GMV in
patient groups on four time scales (scale 3, scale 4, scale 5,

and scale 6). STG.R exhibited a positive correlation (r = 0.203,
p = 0.050, uncorrected) between the MSE and the GMV on
scale 6 and MTG.L showed a positive correlation (r = 0.235,
p = 0.023, uncorrected) on scale 5. The results are presented in
Supplementary Table S10.

Correlation analyses for each group (NC, EMCI, LMCI, and
AD) were also performed between the MSE and the GMV
on all time scales. After corrections for multiple comparisons,
no significant correlation was found between the complexity
of BOLD signals and GMV values in the NC, EMCI, and
LMCI groups. Only SFGdor.L showed the significant positive
correlations in the AD group on scale 6. Some brain regions
exhibited trend positive correlations (p < 0.05, uncorrected)
between MSE values and GMV values in each group and the
results are presented in Supplementary Tables S11–S14.
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FIGURE 5 | Significant correlations between MSE of blood oxygen level-dependent (BOLD) signals and clinical measurement scores (MMSE, FAQ, and CDR) in
patient groups (p < 0.05, corrected). r is the Spearman correlation coefficient, and p indicates the level of statistical significance.

DISCUSSION

In this study, we employed MSE analysis to assess the complexity
of BOLD activity in AD and MCI patients from scale 1 to 6. We
discovered that the spontaneous BOLD signals of nine clusters
had significant differences among four groups on four time scales.
The significant MSE differences were mainly detected in the
occipital, frontal, temporal, limbic, and parietal lobes, which were
significantly correlated with clinical measurements in patient
groups from scale 2 to 6. These results suggest that the complexity
analyses using MSE of BOLD signals can provide information on
the temporal dynamics of neural signals across multiple scales
that are relevant to the cognitive impairments in MCI and AD.

The MSE Differences Among Four
Groups on Multiple Time Scales
This study found that MSE of BOLD activity exhibited significant
contrasts among four groups on four time scales (scale 2, scale

4, scale 5, and scale 6; Figure 1), mainly distributed in the
occipital lobe (IOG.L and LING.R), frontal lobe (SFGdor.L
and OLF.R), parietal lobe (SMG.R), temporal lobe (STG.R
and MTG.L), limbic lobe (INS.R), and the subcortical region
(THA.R). In the MSE analysis for nine ROIs over all time scales,
we found that three ROIs (SFGdor.L, INS.R, and OLF.R) had
significant differences on scale 3 (Figure 3). This means that
more useful information was found on multiple time scales.
This is consistent with previous reports using MSE analysis on
rs-fMRI and EEG signals that detected differences in entropy
on multiple time scales (Mizuno et al., 2010; Liu et al., 2013;
Yang et al., 2013; Mcbride et al., 2014; Smith et al., 2014;
Michalopoulos and Bourbakis, 2017). Particularly, as Figure 1
demonstrates, five clusters showed significant differences on
scale 6. More significant differences were found among the four
groups with increasing scales. As can be seen from Figure 3,
six ROIs showed prominent differences among the four groups
on scale 4 and 6. Based on the mechanism of MSE analysis,
at the shortest scale, the entropy is dominated by the high

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 67762

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00677 September 27, 2018 Time: 19:7 # 9

Niu et al. Dynamic Complexity of Spontaneous BOLD Activity

frequency fluctuations from random noise (Wang et al., 2018).
By filtering out these random fluctuations, the contrast in
entropy becomes larger at longer time scales (Smith et al.,
2014).

In this study, each of the nine ROIs was observed on a
single scale. In the process of calculating MSE, the key step is
to coarse-grain the time series to reflect the system dynamics on
different time scales, which means that, MSE mainly calculates
the complexity of high frequencies at low scales, while the
complexity of low frequencies is calculated at large scales. Our
results showed that different brain regions displayed differences
at different frequencies. Consisted with our result, Wang et al.
(2018) investigated the neurophysiological underpinnings of
complexity (MSE) of fMRI signals and their relations to FC
and the results showed that the associations between MSE
and FC were dependent on the temporal scales or frequencies
It has been proposed that each frequency band is generated
by different mechanisms and relates to different physiological
functions, higher frequency oscillations are confined to a small
neuronal space, whereas lower frequencies may reflect long-
range interactions (Buzsáki and Draguhn, 2004; Zuo et al.,
2010). More recently, studies on rs-fMRI have hypothesized that
frequency-dependent effects in different brain regions which
reflect different synaptic and functional characteristics that are
affected by the progression of cognitive impairment (He et al.,
2010; Yu et al., 2013; Wang et al., 2016; Zhou et al., 2016).
Hence, we propose that the observed complexity changes on
different time scales might represent different region or network-
dependent neuropathophysiological mechanisms in MCI and
AD.

We also analyzed the complexity of WB, GM, WM, and
CSF on all time scales. Only GM showed a trend of entropy
difference (F = 2.283, p = 0.083) among four groups on scale 6.
Many studies on the complexity analysis of rs-fMRI data found
global complexity differences in aging (Yang et al., 2013; Sokunbi
et al., 2015) and AD (Liu et al., 2013; Wang et al., 2017). Smith
et al. (2014) found greater age-related decline in average GM
complexity of rs-fMRI at longer time scales, and Liu et al. (2013)
found mean complexity of rs-fMRI in GM and WM decreased
with normal aging. Thus, the complexity of global brain activity
may decrease with age. For AD-related cognitive decline, Liu
et al. (2013) found that mean ApEn of GM showed a significant
positive correlation with MMSE scores in the cohort of familial
AD subjects, and Wang et al. (2017) found significant differences
(p < 0.05) in permutation entropy (PE) of GM and WM across
the four groups of ADNI data. Possibly due to differences in
data samples and complexity analysis methods, the MSE analysis
used in this study was only able to reveal a trend of entropy
difference (p = 0.083) among four groups in GM as well as
decreased complexity in the AD and LMCI groups compared to
that of the NC group at the statistical threshold of uncorrected
p < 0.05. In contrast, we found highly significant MSE differences
(p < 0.001, GRF corrected) in several brain regions on multiple
time scales. This is not surprising as the pathological process of
AD first affects the network of temporal, frontal, and parietal
regions before progressing to the whole GM and brain level.
Different complexity analyses may have different sensitivities in

detecting global and regional changes of neural complexity with
AD progression. This question awaits further investigation in
future studies.

Decreased Complexity and Cognitive
Decline in Patient Groups
Using the post hoc pairwise test on ANOVA, reduced complexity
in the AD group was detected in all ROIs compared with the NC
group (p < 0.05, Bonferroni corrected). In addition, MSE also
showed strong sensitivity in differentiating NC from EMCI (one
ROI), NC from LMCI (eight ROIs), EMCI from LMCI (one ROI),
EMCI from AD (three ROIs), and LMCI from AD (one ROI).
As can be seen from Figure 4, the complexity of BOLD signals
in most ROIs showed a gradually decline from NC to EMCI to
LMCI and to AD. Previous complexity studies of fMRI signals
also consistently reported reduced complexity in AD patients
compared to matched control subjects (Liu et al., 2013; Wang
et al., 2017). Liu et al. (2013) reported decreased complexities in
STG, MTG, and SMG in familial AD. Some of brain regions, such
as SFGdor, MTG, and IOG, were also reported in our previous
study using PE method to analyze the complexity of the same
ADNI dataset (Wang et al., 2017).

We performed correlation analyses between complexity of
BOLD signals in these brain regions with significant MSE
differences and cognitive function scores (MMSE, FAQ, and
CDR). These three clinical measurements provide quantitative
assessments of cognitive function and are widely used (Ciesielska
et al., 2016; Kaur et al., 2016; Kim et al., 2017). Higher scores
of MMSE indicate higher aptitude of cognition; low functional
performance is related to higher FAQ scores and the presence
of dementia is indicated by higher CDR scores. Our correlation
results showed that the average MSE of some brain regions was
significantly positively correlated with the MMSE scores and
significantly negatively correlated with FAQ scores and CDR
scores in patient groups (p < 0.05, corrected). This means that
lower MMSE and higher FAQ and CDR scores were observed in
MCI and AD patients who exhibited lower MSE in some brain
regions. Particularly, THA.R exhibited significant correlations
between MSE values and three clinical measurement scores
(MMSE, FAQ, and CDR) on scale 2. The MSE values of SMG.R
showed significant correlations with the MMSE and CDR scores
on scale 6. Previous fMRI studies suggested that THA and
SMG are closely related to cognitive dysfunction in healthy
aging and AD (Mevel et al., 2011; Yang et al., 2013; Xiaoying
et al., 2014; Raczek et al., 2017). Studies found that activity in
THA is associated with spatial working memory and memory
processing (Jankowski et al., 2013; Saalmann and Kastner, 2015;
Štillová et al., 2015; Hallock et al., 2016), and SMG is mainly
involved in language perception, phonological processing and
verbal working memory and processing (Hartwigsen et al.,
2010; Kheradmand et al., 2013; Deschamps et al., 2014). In
addition, as can be seen from Figure 5, significant correlations
between MSE and cognitive measurements were dependent on
the temporal scales. For example, we observed THA.R showed
associations between complexity and MMSE at high temporal
frequencies, and SMG.R exhibited significant correlations at low
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temporal frequencies. The results showed that different brain
regions displayed correlations at different frequencies and once
again corroborated the MSE theory that high and low temporal
frequencies may represent region or network-dependent different
neuropathophysiological mechanisms (Buzsáki and Draguhn,
2004; Zuo et al., 2010).

Potential Physiological Underpinnings of
Altered Complexity in Patient Groups
It has been suggested that physiological diseases are associated
with a loss of complexity in healthy systems (Lipsitz, 2004;
Pincus, 2010). AD is a neurodegenerative disorder characterized
by dementia and cognitive decline (Querfurth and Laferla, 2010).
The brain regions that we found to have reduced complexity
play important roles for cognitive functions. For example, the
lingual gyrus is believed to play a role in the analysis of logical
conditions and encoding visual memories. The superior temporal
gyrus is involved in social cognition processes and middle
temporal gyrus is mainly involved in the recognition of known
faces and episodic memory (Bigler et al., 2007; Acheson and
Hagoort, 2013). Some fMRI experiments have found proof that
the superior frontal gyrus is involved in self-awareness, sensory
system, and social cognitive processes (Goldberg et al., 2006). The
altered complexity of these brain regions in patient groups may be
associated with deterioration of brain function in these important
networks.

Further, AD is characterized by the presence of neuritic
plaques and neurofibrillary tangles, accompanied by widespread
cortical neuronal loss, and loss of connections between brain
systems (Sankari, 2010). This may degrade cortical and sub-
cortical connections, leading to cognitive and behavioral
disturbances. Many studies have reported that disrupted FC in
the AD group in THA, SFGdor, INS, STG, MTG, IOG, and SMG
(Zhang et al., 2009; Wang et al., 2010; Dennis and Thompson,
2014). Thus, this degeneration of both local and long-range
connections disrupts the functional coherence of brain activation,
decreasing the complexity of spontaneous brain activity.

In addition, we examined the relationships between MSE
and GMV in patient groups. After corrections for multiple
comparisons, no significant correlation was found between the
complexity of BOLD signals and GMV. But LING.R, STG.R,
and MTG.L exhibited trend positive correlations (p < 0.05,
uncorrected) between the MSE and the GMV in patient groups.
Many studies have also reported GM atrophy in these brain
regions in MCI and AD (Busatto et al., 2003; Karas et al., 2004;
Guo et al., 2010; Möller et al., 2013). In our previous study, we also
found that the complexity of these brain regions was related to
GMV and was associated with glucose metabolism (Wang et al.,
2017). More pathologies of AD may lead to lower complexity of
brain regions still requires further study.

Comparison of SE, PE, MSE, and
Multiscale PE
Sample entropy solved the problem of vector self-matching in the
ApEn defined by the Heaviside function and has been widely used
(Pincus, 1991; Richman and Moorman, 2000). PE is different

from SE, as PE calculates the probability of a symbolic sequence
of points in the phase space and the entropy value in the form of
Shannon information entropy (Bandt and Pompe, 2002). Many
researchers prefer to use SE and PE to study the complexity
of time series and obtain findings on a single scale (Sokunbi
et al., 2013; Berger et al., 2017; Wang et al., 2017; Aktaruzzaman,
2018). Compared with PE and SE, MSE and multiscale PE (MPE)
investigate the dynamic complexity of time series data across
multiple temporal scales, not only at the original time scale of 1
(Costa et al., 2002; Aziz and Arif, 2005; Ouyang et al., 2013).

In this study, we found significant complexity differences
among four groups on multiple temporal scales, especially on
longer time scales, due to MSE’s capability to average out short
time scale fluctuations (Smith et al., 2014; Yan et al., 2017). Thus,
compared with SE, researchers performed MSE for complexity
analysis obtained richer and more comprehensive information
in aging and neurodegenerative diseases (Humeauheurtier, 2016;
Shang, 2017). Our previous research investigated the abnormal
complexity of BOLD signals in MCI and AD patients using
PE analysis (Wang et al., 2017). Then, we also applied MPE
to the same dataset, but no significant difference was found
on longer scales (p < 0.005, GRF correction). Some studies
demonstrated that PE had better anti-noise performance and
thus, compared with SE, we got supplementary information in
detecting differences among four groups on scale 1 (Bandt and
Pompe, 2002; Nicolaou and Georgiou, 2012; Wang et al., 2017).
The coarse-grained procedures in MPE with large scale factors
may result in short data length, while PE requires more time
points to contain more states of the reconstructed sequence
(Bandt and Pompe, 2002). This may be the reason that we did
not detect the significant PE difference at longer time scales. As
a consequence, for our dataset, MPE had better performance at
short time scales, while MSE could provide more information on
multiple time scales. In the future, we will perform and compare
SE and PE analysis across multiple time scales on more rs-fMRI
datasets to further our understanding on this issue.

Limitation
A limitation of this study is the short BOLD time series used
for MSE analysis which may lead to potentially erratic entropy
estimation (Costa et al., 2002; Yang et al., 2013). In this study, we
performed the parameter selection for MSE calculation by using 6
different parameter pairs based on previous studies, not all of the
parameter pairs. The results of m = 2 and r = 0.35 were mainly
reported in this study. The selection of parameters may be related
to particular datasets, and different datasets may have different
optimal parameters.

CONCLUSION

Multiscale entropy is a powerful tool to quantify the nonlinear
information of a time series over multiple time scales through
the SE algorithm. This study applied MSE analysis to investigate
the abnormal complexity of BOLD signals across multiple time
scales in MCI and AD patients. Enhanced MSE differences were
detected among four groups which were significantly correlated
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with clinical assessments in patient groups at multiple temporal
scales. The MCI and AD patients demonstrated lower complexity
than normal controls and AD patients showed lower complexity
than MCI. These findings indicate that MSE of spontaneous
BOLD signals may provide an imaging marker of cognitive
impairment in MCI and AD.
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Alzheimer’s disease (AD) is a progressive brain disorder with gradual memory loss that

correlates to cognitive deficits in the elderly population. Recent studies have shown the

potentials of machine learning algorithms to identify biomarkers and functional brain

activity patterns across various AD stages using electroencephalography (EEG). In this

study, we aim to discover the altered spatio-temporal patterns of EEG complexity

associated with AD pathology in different severity levels. We employed the multiscale

entropy (MSE), a complexity measure of time series signals, as the biomarkers to

characterize the nonlinear complexity at multiple temporal scales. Two regularized logistic

regression methods were applied to extracted MSE features to capture the topographic

pattern of MSEs of AD cohorts compared to healthy baseline. Furthermore, canonical

correlation analysis was performed to evaluate the multivariate correlation between

EEG complexity and cognitive dysfunction measured by the Neuropsychiatric Inventory

scores. 123 participants were recruited and each participant was examined in three

sessions (length = 10 seconds) to collect resting-state EEG signals. MSE features were

extracted across 20 time scale factors with pre-determined parameters (m= 2, r = 0.15).

The results showed that comparing to logistic regression model, the regularized learning

methods performed better for discriminating severe AD cohort from normal control,

very mild and mild cohorts (test accuracy ∼ 80%), as well as for selecting significant

biomarkers arcoss the brain regions. It was found that temporal and occipitoparietal brain

regions were more discriminative in regard to classifying severe AD cohort vs. normal

controls, but more diverse and distributed patterns of EEG complexity in the brain were

exhibited across individuals in early stages of AD.

Keywords: Alzheimer’s disease, EEG, complexity analysis, pattern recognition, LASSO

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive loss of
memory and cognitive dysfunctions. Despite of many efforts, the pathological mechanism of AD
progression still remains unsettled. In recent decades, the emerging field of interdisciplinary studies
between computational cognitive and data sciences has enabled data-driven knowledge discovery
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systems for investigating multivariate patterns based on large-
scale, complex brain data. More specifically, advances of machine
learning techniques have contributed to the clinical science by
not only improving the automated diagnostic/predictive tools,
but also enhancing the understanding of pathological mechanism
underlying AD progression. In the past years, there were studies
to demonstrate the capability of machine learning algorithms in
addressing the sophisticated patterns using various brain data,
e.g., electroencephalography (EEG) and magnetic resonance
imaging (MRI). Trambaiolli et al. (2011) identified the bipolar
peaks of EEG signals as biomarkers for differentiating AD,
mild cognitive impairments (MCI) and early dementia patients.
Casanova et al. (2011) found that most informative voxels
in structural MRI data locate in the gray and white matter
tissues, which can discriminate patients from cognitive normal
subjects accurately using large-scale regularization. Other studies
encouraged the utilization of an integrative EEG biomarkers
derived from various sources in order to provide predictive
models with diverse and comprehensive information (Poil et al.,
2013; Triggiani et al., 2017).

Among modern neuroimaging modalities, EEG as a non-
invasive, inexpensive technique has drawn extensive attentions
for investigating nonlinear dynamics of neuronal brain functions.
It was reported that AD progression can be characterized by the
reduced complexity in EEG signals, which is hypothesized to be
related to the loss of neurons and possible connectivity caused by
pathological aging process. A recent and comprehensive review is
refered to Dauwels et al. (2010). In this study, we used Multiscale
Entropy (MSE) for estimating the nonlinear complexity of EEG
signals across multiple temporal scales (Costa et al., 2002).
Previous studies investigatedMSE as a measure of complexity for
understanding AD pathology using univariate (Escudero et al.,
2006; Park et al., 2007) and multivariate EEG dynamics (Labate
et al., 2013). It was reported that the decreased complexity in
short-time scale and increased complexity in long-time scale
distinguish AD patients from normal controls (Mizuno et al.,
2010; Yang et al., 2013). A recent study (Azami et al., 2017)
also indicated the potentials of the second-order MSE features
for characterizing EEG changes with AD progression. Moreover,
correlation was found between MSE features from various brain
regions and multiple neuropsychiatric symptoms, particularly
in temporal and occipitoparietal electrodes (Yang et al., 2013).
Since the previous study only assessed the bivariate correlation,
we extend to investigate the relationships in a multivariate
feature space by applying canonical correlation analysis (CCA)
(Hotelling, 1936). CCA is a multivariate technique that is capable
to capture multiple causes and effects to further investigate the
relationship between MSE and neuropsychiatric symptoms.

One of the most challenging tasks for understanding AD
pathology is to characterize the biomarkers and associated
patterns that differentiate different AD severity levels.
Considering the pathological aging of the brain is a highly
heterogeneous process, the generalizability in many existing
research studies is limited by the small sample size, large
individual variability, and high-dimensional data structure.
While most state-of-the-art machine learning algorithms
suffered from over-fitting data and produced poor generalized

prediction results, regularized learning methods attempt to
address this over-fitting issue by adding a regularization term
(called L1-norm or L2-norm) to the cost function. Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)
is a classic method that builds a regression model of correlating
input variables (MSE features in this study) to the prediction
outcome (severe AD or not) while posing a penalty on the
number of non-zero coefficients of input variables (L1-norm
feature selection). Later, Elastic net (ENet) was proposed by
combining L1-norm and L2-norm for the purpose of addressing
several drawbacks of LASSO, including the group effect among
input variables in addition to feature selection. The flexibility
and variability of regularization methods allow one to develop
variants for specific purposes (Tibshirani et al., 2005; Bach, 2008).
Specifically, the interpretability/stability of feature selection is
desired for providing scientific insights, since consistent feature
selection across different samples and individuals is more likely
to suggest a meaningful pattern (Fan and Chou, 2016). Stability
selection (Meinshausen and Bühlmann, 2010) is thus proposed
based on the combination of feature selection method and
repeated subsampling. For the cost of computational resources,
the stability selection aims to provide a statistical control on the
error rate of feature selection in a sparse dataset.

Based on the general concept of stability selection approach,
the present study intends to provide a stability-based feature
selection and identify important EEG biomarkers using the
frequency of selection across multiple replicates in cross
validation. The objective of our study is two fold. On one hand,
we are interested in characterizing the functional brain activities
with varying temporal scales that best discriminate severity levels
of AD groups and normal controls based on EEG complexity.
On the other hand, we aim to profile the topolographic map
of EEG biomarkers for various AD severity and investigate the
multivariate correlation patterns to cognitive dysfunctions.

2. MATERIALS AND METHODS

2.1. Participants
One hundred and twenty-three participants were recruited from
theDementia Clinic at the Neurological Institute, Taipei Veterans
General Hospital in Taiwan. The diagnosis for AD was based
on the criteria of the National Institute of Neurological and
Communicative Disorders and the Stroke/Alzheimer’s Disease
and Related Disorders Association (McKhann et al., 1984).
All patients had received neurological examinations, laboratory
tests, EEG monitoring, and neuroimaging evaluation during the
diagnostic process. Our study was approved by the Institutional
Review Board of Taipei Veterans General Hospital to conduct
retrospective analysis of the patients’ clinical and EEG data.
We excluded patients who had other conditions that caused
secondary dementia, such as vascular dementia, Parkinson’s
disease, hypothyroidism, vitamin B12 deficiency, syphilis, and
prior history of major psychiatric illness (e.g., major depression,
bipolar disorder, or schizophrenia). The participants were
categorized into four groups according to their severity of
dementia, assessed by the Clinical Dementia Rating (CDR) scale
(Morris, 1993). In the following sections, we refer to these groups
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as HC (healthy control; N = 15), AD1 (very mild, CDR = 0.5;
N = 15), AD2 (mild, CDR = 1; N = 69), and AD3 (moderate to
severe, CDR= 2; N = 24).

2.2. EEG Data Acquisition and
Pre-processing
A routine EEG recordings were performed on all participants
(Nicolet EEG, Natus Medical, Incorporated, San Carlos, CA,
USA) in the EEG examination room at the Neurological Institute
of Taipei Veterans General Hospital. The EEG recording protocol
began with a 5-min habituation to the examining environment,
followed by three consecutive sessions of 10–20 s with the eyes
closed and then open, and a session of photo stimulation, while
only the eye closed data was used in the present study. The
recordings were performed using the international 10–20 system
of 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, and O2) with linked ear reference, 256 Hz
sampling rate and filtered at 0.05 Hz high-pass, 70 hZ low-pass
and notch filter of 60 Hz, and impedance below 3 k�. Vigilance
was monitored by the EEG technician, who alerted patients when
signs of drowsiness appeared in the tracings. Vertical eyeball
movement was detected from electrodes placed above and below
the right eye, while the horizontal eyeball movement was detected
from electrodes placed at the left outer canthus. EEG signals were
preprocessed to remove the linear trend and visually inspected to
ensure there were no eye movement artifacts. The EEG signals
were exported in European Data Format and were processed
using MATLAB 2016b (Mathworks, Inc.).

2.3. Multiscale Entropy Analysis (MSE)
In this study, we employed MSE (Costa et al., 2002) to measure
the nonlinear complexity of EEG signal. Let us consider a single-
channel EEG signals with length = N, denoted by {x1, x2, ....xN}.
MSE provides an estimate of the sample entropy over multiple
time scales in two steps: (1) the construction of coarse-grained
time series based on various scale factors, denoted by τ , and (2)
the estimation of sample entropy for each time scale. In the first
step, the range of τ need to be pre-defined as a set of increasing
integers starting from 1. (i.e., [1, 2, ... T]). For each possible
value of τ , the corresponding coarse-grained time series yj(τ )
is obtained by applying a non-overlapping sliding window with
length = τ and taking the average of all values in each window,
represented by the following equation (1 ≤ j ≤ N/τ ):

yj(τ ) =
1

τ

jτ
∑

i=(j−1)τ+1

xi. (1)

If we denote M as the largest integer such that M ≤

N/τ , the coarse-grained time series is then rewritten as
{y1(τ ), y2(τ ), ..., yj(τ ), ...yM(τ )}.

In the second step, the sample entropy (Richman and
Moorman, 2000) is calculated for each coarse-grained time series
as a function of τ . To calculate the sample entropy for a time
series with length = M, two parameters need to be determined:
the pattern length m and the similarity criterion r. Within
the coarse-grained time series {y1(τ ), y2(τ ), ..., yj(τ ), ...yM(τ )},

we denote a vector of pattern length = m as Ym(k) =

{yk(τ ), yk+1(τ ), ..., yk+m−1(τ )}. Accordingly, the total number of
pairs of vectors that satisfy D(Ym(k),Ym(l)) < r(k 6= l) is
denoted by Nm. The sample entropy I(τ ) for this time series with
parameters τ and r is defined as:

I(τ , r) = − log
Nm+1

Nm
. (2)

In this study, we use m = 2 and r = 0.15, and the range of
scale factors is [1, 20] by following our previous work (Yang et al.,
2013). Figure 1 shows the averaged raw EEG signals, spectral
power and MSE scores across all groups; a cross-over is observed
in the MSE curves with the increasing scale factors. In short-time
scales (≤ 8), lower MSE features are observed from the severe
AD group comparing to normal controls, but in long-time scales
(> 8) an opposite pattern is observed.

2.4. Hybrid Machine Learning Model for
Classification and Biomarker Identification
The objective of applying machine learning model to analyze
the MSE features of EEG signals is two-fold: first, we intend
to discriminate between control group and AD groups (AD1,
AD2, and AD3) by performing a binary classification task in
a one-to-one manner (exhaust all the possible combination of
pairs). Second, we aim to examine the multivariate correlation
patterns between MSE features and dementia symptoms rated
by clinicians based on The Neuropsychiatric Inventory (NPI)
(Cummings et al., 1994). After extracting MSE features from
19-channel EEG device using 20 scale factors, 380 (= 19 ×

20) dimensions were obtained for the feature space. The
machine learning model may be over-fitted in training with
the relatively less samples on this high dimensional feature
space. Therefore, regularization learning methods are employed
to perform classification tasks between different AD/HC groups
while reducing the dimensionality of trained model. A logistic
regression (LR) model is trained and fitted with a penalization
on the number of features with non-zero coefficients. As a result,
an automatic feature selection is performed by forcing some
features to yield zero coefficients. In the following subsections, we
present two classic types of regularized LR models. Furthermore,
we implement canonical correlation analysis, a unsupervised
learning method, for inferring the correlations among two sets
of variables.

2.4.1. L1-Norm and L2-Norm Regularized Learning

Methods
The original form of LASSO is a linear regression model
with a penalty term that controls the number of non-zero
coefficients for all variables. In a classification problem, LASSO is
reformulated with the cost function of LR, which is rewritten as
the following problem (Tibshirani, 1996; Friedman et al., 2001):

max
β0 ,β

{

N
∑

i=1

[yi(β0 + βTxi)− log(1+ eβ0+βTxi )]− λ

p
∑

j=1

|βj|

}

,

(3)
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FIGURE 1 | An illustration of general distribution for each group, including (A) raw EEG signals, (B) spectral powers, and (C) MSE on channel F8 for all groups. These

curves show that MSE curves are more distinguishable than EEG signals and spectral powers in overall, and the trend with increasing scale factors in the MSE curve

of each AD group is different.

where f (xi) = β0 + βTxi and yi are the prediction and target
class for the ith sample respectively.

∑p
j=1 |βj| is also known as

L1-norm penalty that controls the shrinkage with corresponding
parameter λ selected via nested cross-validation.

However, LASSO attempts to addresses cluster information of
correlated variables, which is referred to as grouping effect. It
only selects one and drops the other variables when fitted with
a group of related variables (Zou and Hastie, 2005). In this study,
this grouping effect is observed among MSE features extracted
from the same electrode; however, we may want to keep multiple
correlated MSE variables in our model in order to characterize
the correlation in spatial patterns of functional brain activity.
Therefore, we used ENet, a variation of LASSO, to account for
this grouping effect (Zou and Hastie, 2005). Similar to Equation
(3), ENet is formulated with a penalty term but in a different
format:

λ

p
∑

j=1

[

(1− α)‖βj‖ + α|βj|

]

, (4)

where α is a trade-off parameter that controls the balance
between L1-norm and L2-norm. As α approaches 1, the sparsity
of solution will increase such that α = 1 is equivalent to LASSO.
On the other hand, α = 0 is equivalent to ridge regression.
As α approaches 0, the algorithm tends to encourage group
selection of correlated features and stabilize the solution path.
In our study, we choose the α = 0.7 for ENet as a empirical
choice.

2.4.2. CCA Between MSE and Cognitive Declines
In our study, we used CCA for analyzing the multivariate
correlation patterns between MSE features and cognitive decline
symptoms related to dementia. The NPI scores includes 12
symptoms: delusions (DEL), hallucinations (HAL), agitation
(AG), dysphoria (DEP), anxiety (ANX), apathy (APA), irritability
(IRR), euphoria (EUP), disinhibition (DIS), aberrant motor
behavior (ABE), night-time behavior disturbances (NIG), and
appetite and eating abnormalities (APP). CCA (Hotelling, 1936)
is a multivariate analysis approach for finding the relationship

FIGURE 2 | An illustration of canonical correlation analysis. The objective is to

find a linear combination (projection) of set X and Y , or the rotated canonical

space, by maximizing the linear correlation between the two sets of new

canonical variables U and V (ρ = 1 in our case). In our study, we have MSE

features as set X and the scores of 12 symptoms from NPI scale as set Y .

between two sets of variables, X and Y, with the objective to
maximize the Pearson correlation based on projections on new
subspaces of X and Y. Figure 2 illustrates the cencept. The new
feature space is constructed by canonical variables set U and V,
which correspond to original MSE and symptoms rating scales.
CCA is formulated as follows:

argmax
u∈Rp ,v∈Rq

uTXTYv
√

(uTXTXu)(vTYTYv)
, (5)

where X is a n × p matrix that represents n samples in p-
dimensional space;Y is a n×qmatrix that represents n samples in
q-dimensional space;X and Y are two sets of paired variables that
correspond to n samples. This problem is solved as a generalized
eigen-decomposition problem.

2.4.3. Model Validation and Biomarker Identification
The evaluation of overall performance uses the following three
metrics: (1) accuracy indicates the ratio of correctly classified
patients in the entire sample; (2) sensitivity indicates the ratio
of correctly identified AD patients; and (3) specificity indicates
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the ratio of correctly identified normal controls, defined as
follows:

Accuracy =
TN+ TP

TN+ TP+ FP+ FN
, (6)

Sensitivity =
TP

TP+ FN
, (7)

Specificity =
TN

TN+ FP
, (8)

where TP= true positive, TN= true negative, FP= false positive,
and FN = false negative. In particular, normal control group
is treated as the negative class in the classification task of this
study. If two groups are both AD patients, the less severe group is
defined as the negative class. We reported the accuracy of both
training and test set to show the potential risks of overfitting,
indicated by the gap between training and testing accuracy.

The classifier will be impacted by the imbalanced data during
training phase, and the trained model is usually more biased to
the majority class. The Receiver Operating Characteristic (ROC)
analysis is thus employed for performance evaluation. The area
under ROC curve (or AUC) is used as an alternative metric
without bias from the selection of threshold parameter (e.g.,
cut-point) in binary classification of logistic regression.

In addition, we use a leave-one-subject-out cross-validation
design to minimize the bias introduced by sample variability.
That is, the generalization error is estimated by leaving out
samples collected from in the three sessions of one participant for
testing and training the model on remaining samples. Validation
repeats for all participants as testing samples. Furthermore, the
importance of EEG biomarkers was assessed by overall selection
frequency in all iterations.

3. RESULTS

3.1. Classification for AD Severity
Table 1 presents the classification performances of three
algorithms. AD groups are considered as the target class. ENet
classifier with α = 0.7 (Enet 0.7) yields the best accuracy for
classification tasks of HC vs. AD2 and AD1 vs. AD2, and LASSO
classifier performs better in discriminating HC vs. AD1, AD1 vs.
AD3, and AD2 vs. AD3. Neither model is able to classify AD1
vs. AD2 given the low specificity, although the AUC achieved
∼ 0.7. From the feature selection perspective, grouping effect
is accounted for in ENet, which allows for multiple selection
among correlated MSE features. This property, considering the
high correlation among EEG biomarkers, may better describe
the topological patterns for brain activity. Finally, LR with no
regularization performed 100% accurate for the training tasks,
but the model has poor generalizability because of low test set
accuracy and AUC, which indicates the over-fitting issue. All the
above results show that the regularized learning methods provide
insights about EEG biomarkers with lower risks of over-fitting
than LR models.

3.2. Multivariate Correlation Between MSE
and Cognitive Declines
The structure coefficients in canonical variables for all channels
and symptoms are presented in Figure 3. These structure
coefficients can be interpreted as the loadings of each original
variables (MSE features and cognitive declines) projected into
the canonical space. In Figure 3, the left panel shows the
coefficients of symptoms and right panel shows the absolute
values of coefficients for MSE features across all channels.
These figures describe how the MSE features and cognitive
symptoms contributed to all canonical variables, which suggests
a multivariate correlation pattern between clinician’s rating and
functional brain activity. Our study focus on canonical variables
1–6, since they have higher coefficients of MSE features. For
example, in canonical variable 1, the combination of symptoms
IRR, DIS, ANX and ABE is associated with channels P3,
O1, O2 and central electrodes in short-term complexity, but
associated with the frontal area in long-term complexity. In
canonical variable 2, the combination of DIS, DEL and APA is
associated with central-frontal region. In canonical variable 3,
the combination of symptoms DEP, ANX, AG, APA and APP
with is associated with frontal region. Canonical variables 4
and 5 present a similar correlation pattern between symptoms
ANX, EUP, and APP, and frontal region, but with different signs
(positive and negative). Canonical variable 6 presents a positive
functional correlation between temporal regions with HAL and
AG, but a negative correlation with DIS and IRR. We noted that
most significant coefficients are assigned to low time factors (1–
4), while very few non-zero coefficients are distributed in frontal
regions for higher (5–8) time factors. In addition, canonical
variables 7–12 yield relatively small coefficients comparing to
canonical variables 1–6.

3.3. Topological Patterns of EEG Changes
Associated With AD Severity
Figures 4, 5 display the frequency distribution of selected MSE
features in all EEG channels across the brain regions. In the
classification tasks of HC vs. AD1 and HC vs. AD2, the selected
MSE features were concentrated in the low scale factors (1-4)
and distributed diversely from frontal-central to temporal and
occipital regions. In contrast, in the classification task of HC
vs. AD3, a relatively consistent selection of channels was shown
across subjects, mainly in channels T5, T6, O1, and O2.

4. DISCUSSION

4.1. Classification Results
In overall, we found the AD3 is most differentiable from any
other groups, including both patients and controls. This result
suggested a significant change in EEG complexity of moderate
to severe AD patients comparing to early stage dementia.
Furthermore, the mild AD patients can be discriminated from
other groups in a moderate accuracy, indicating the presence of
alteration in EEG dynamics can be captured (∼ 70% accuracy). In
contrast, none of our developedmodels can discriminate between
control and very mild AD patients. However, the classification
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TABLE 1 | Summary of classification performances for all classification tasks among three methods LASSO, Enet, and LR.

Method Group Sensitivity (%) Specificity (%) Test accuracy (%) Train accuracy (%) AUC

LASSO HC vs. AD1 40.54 43.40 42.22 51.72 0.45

HC vs. AD2 86.44 28.00 69.05 87.55 0.64

HC vs. AD3 88.71 69.09 79.49 95.61 0.83

AD1 vs. AD3 90.48 72.22 82.05 96.49 0.87

AD2 vs. AD3 47.19 84.21 72.40 80.80 0.71

AD1 vs. AD2 87.64 31.08 71.03 84.74 0.69

Enet (α = 0.7) HC vs. AD1 43.90 44.90 44.44 51.72 0.47

HC vs. AD2 86.59 28.77 69.84 87.15 0.64

HC vs. AD3 87.30 68.52 78.63 96.49 0.83

AD1 vs. AD3 88.89 70.37 80.34 100.00 0.86

AD2 vs. AD3 46.67 84.13 72.04 82.25 0.71

AD1 vs. AD2 88.20 32.43 71.83 86.75 0.70

LR HC vs. AD1 56.10 55.10 55.56 100.00 0.54

HC vs. AD2 83.66 20.20 58.73 100.00 0.53

HC vs. AD3 68.85 46.43 58.12 100.00 0.61

AD1 vs. AD3 71.64 52.00 63.25 100.00 0.64

AD2 vs. AD3 32.00 79.22 58.06 100.00 0.56

AD1 vs. AD2 17.53 81.94 57.14 100.00 0.49

None of LR models has achieved 60% accuracy, so they are considered as ineffective models with no highlights. LASSO outperforms the other two methods for tasks HC vs. AD3, AD1

vs. AD3, and AD2 vs. AD3. Enet outperforms for tasks HC vs. AD2 and AD1 vs. AD2. The LR performs worst in all tasks. Bold highlights the best performances with accuracy at least

60%.

task of AD1 vs. AD3 yields the best accuracy (82.05%) using
the LASSO classifier). This may imply that participants with
less mild AD share very much complexity in common with
healthy controls. In contrast, the classification task of HC vs.
AD3 only yields accuracy = 79.49%. Although the classification
performances in overall are not significantly high, our purpose
is to utilize regularization methods to identify the brain activities
patterns measured by nonlinear features of EEG collected from
subjects including normal controls and AD cohorts at different
severity levels. Limited by the inevitable data quality issues
of EEG signals, the present study did not overemphasize the
importance of accuracy because the models may learn false
patterns as the result of achieving high performances on a noisy
dataset. Instead, our study is focused on developing a robust

model and providing scientific insights about a consistent pattern
of EEG biomarkers across different individuals.

4.2. Functional Activity Patterns From
Feature Selection of Regularization Models
From the classification task of HC vs. AD3, the LASSO classifier
consistently selects MSE features from right temporal region
across all folds in cross-validation. This findingmay be consistent
with prior studies that Alzheimer’s disease is associated with rapid
decline in the volume of medial temporal lobe (Jobst et al., 1994).
It is possible that the atrophic changes in severe AD could result
in prominent changes in functional brain activity so machine
learning algorithm can consistently detect the difference between
healthy elderly and patient with severe AD.

On the other hand, our results present thatmajor changes with
the progress to severe AD occur in occipital and parietal regions,

in particular the right hemisphere with lower scale factors (1–
4 and 5–8) and left hemisphere with higher scale factors (13–16
and 17–20). However, the classification task of HC vs. AD2 and
HC vs. AD1 yields a unstable classification performances, and the
selected channels are diversely distributed across different brain
regions. This uncertainty may reflect the heterogeneous course
of the disease observed in very early and mild AD. In other
words, we should expect higher individual variability among
patient from AD1 and AD2 comparing to AD3, and thus leads
to a varying feature selection solution depending on the different
partitioning of subsamples in cross-validation.

AD is known to have an insidious course of onset, with the
functional decline leading the structural deficit during the course
of illness. Previous studies of machine learning of AD focused

mainly on structural brain imaging data, such as ADNI (Frisoni
et al., 2010). Few studies have used functional brain activity
data to classify AD. Therefore, our results may implicate in the
early screening of AD in the future application using functional
brain data. Our future directionmay includemore considerations
for stabilizing the feature selection procedure across subjects
during early developmental stages of AD. Variables from different
sources, e.g., age, gender, spectral features, network metrics,
asymmetry, synchrony patterns, can be introduced to build
a more comprehensive model for classifying AD and normal
control cohorts.

4.3. Neurological Insights for AD
Progression
In our study, the regularization learning algorithms enable the
discovery of meaningful associations between the model/feature
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FIGURE 3 | Structural coefficients of canonical variables reformed from MSE and cognitive dysfunction symptoms. We decide to focus on the first six canonical

variables because they yielded higher coefficients in the MSE features.

selection and the spatial/temporal functional brain activity
patterns. Specifically, in the cross-validation, we assumed the
frequency of being selected for each electrode/brain region
and scale factor implies how much it accounts for the
between-group differentiation. Our findings suggested the

posterior brain regions as the most impacted areas from
cognitive declines following dementia, which is consistent with
previous quantitative EEG studies (Yang et al., 2013). The
electrodes picked by regularized learning algorithm in our
study also have some overlap with EEG biomarkers using a
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FIGURE 4 | The frequency distribution of MSE features selected by LASSO across brain regions. The plotted values are the ratio of being selected in cross validation

for each electrode and scale factors; we categorize the 20 scale factors (MSE features) into 5 bins; the plotted value for each bin is the maximal frequency within the

bin. For instance, if scale factors 1, 2, 3, and 4 computed using channel O1 is selected in 30, 50, 70, and 90% of all replications in cross-validation, the value assigned

to channel O1 will be 0.9 for the scale factors 1–4.

multivariate extension of MSE in a recent study (Azami et al.,
2017).

In addition, the multivariate correlation patterns obtained by
CCA in our study suggest the grouped symptoms can provide
rich information associated with MSE. We observed a collection
of functional correlations of central parietal and left occipital

brain regions with symptoms such as ABE and IRR, and a
group of negative correlations between frontal regions with
ANX, EUP, and APP. The sleep changes (reflected in NIG) were
found associated with short-term complexity in occipitoparietal
electrodes, which is consistent as reported by Yang et al. (2013).
Our study further validated the potential of complex patterns of
clustered neuropsychiatric symptoms that may be associated with
EEG complexity in various regions at short- and long-term time
scales.

4.4. Limitations and Future Work
The present study still has a few limitations. First, EEG data
segments used in this study are relatively short (10 s), and
therefore may not be able to provide long-term complexity
information. Moreover, the number of trials is limited; to
compromise this shortcoming, we collected multiple sessions
for each participant in order to extend the sample size. Finally,
since each channel was considered individually during feature
extraction and classification, the interaction between electrodes
may not be fully presented in our current dataset; the future
workmay consider connectivity patterns to give a comprehensive
view of EEG alterations with AD progress. Furthermore, a
multi-variate MSE (MMSE) analysis, proposed by Ahmed and
Mandic (2011), that accounts for spatio-temporal dynamic brain
patterns, i.e., both within-and cross-channel dependencies, will
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FIGURE 5 | The frequency distribution of MSE features selected by Elastic Net (alpha = 0.7) across brain regions.

be investigated and integrated in machine learning models in our
AD study.

5. CONCLUSION

In this study, we examined the functional brain activity
patterns in varying AD severity levels with a contrast to
normal controls. MSE was used as a measure of nonlinear
dynamic to represent the signals complexity using 10 seconds
of resting EEG. Regularized logistic regression was applied
to this supervised machine learning problem, in which we
trained leave-one-subject-out cross-validated model with the
MSE features for a comparison between AD cohorts and
normal controls. We demonstrated∼80% classification accuracy
between severe AD cohorts and normal controls and found
that the long-term complexity of EEG signals decreases with

the severity of AD. Moreover, cognitive function declines
can be analyzed in combination with the original MSE
features to indicate the integrated correlation patterns of
dementia symptoms and EEG complixity alternations. These
findings relate neurological changes associated with different
AD severity to the state-of-the-art assessment scales. On the
other hand, regularized learning methods showed the capability
for automatic selection of significant EEG biomarkers. Our
future work will explore the integrative patterns including EEG
complexity, synchrony and functional connectivity in this AD
research direction.
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The human resting-state is characterized by spatially coherent brain activity at a low
temporal frequency. The default mode network (DMN), one of so-called resting-state
networks, has been associated with cognitive processes that are directed toward the
self, such as introspection and autobiographic memory. The DMN’s integrity appears
to be crucial for mental health. For example, patients with Alzheimer’s disease or other
psychiatric conditions show disruptions of functional connectivity within the brain regions
of the DMN. However, in prodromal or early stages of Alzheimer’s disease, physiological
alterations are sometimes elusive, despite manifested cognitive impairment. While
functional connectivity assesses the signal correlation between brain areas, multi-scale
entropy (MSE) measures the complexity of the blood-oxygen level dependent signal
within an area and thus might show local changes before connectivity is affected.
Hence, we investigated alterations of functional connectivity and MSE within the DMN
in fifteen mild Alzheimer’s disease patients as compared to fourteen controls. Potential
associations of MSE with functional connectivity and cognitive abilities [i.e., mini-mental
state examination (MMSE)] were assessed. A moderate decrease of DMN functional
connectivity between posterior cingulate cortex and right hippocampus in Alzheimer’s
disease was found, whereas no differences were evident for whole-network functional
connectivity. In contrast, the Alzheimer’s disease group yielded lower global DMN-MSE
than the control group. The most pronounced regional effects were localized in left
and right hippocampi, and this was true for most scales. Moreover, MSE significantly
correlated with functional connectivity, and DMN-MSE correlated positively with the
MMSE in Alzheimer’s disease. Most interestingly, the right hippocampal MSE was
positively associated with semantic memory performance. Thus, our results suggested
that cognitive decline in Alzheimer’s disease is reflected by decreased signal complexity
in DMN nodes, which might further lead to disrupted DMN functional connectivity.

Frontiers in Neuroscience | www.frontiersin.org 1 October 2018 | Volume 12 | Article 77078

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00770
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00770
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00770&domain=pdf&date_stamp=2018-10-23
https://www.frontiersin.org/articles/10.3389/fnins.2018.00770/full
http://loop.frontiersin.org/people/487312/overview
http://loop.frontiersin.org/people/79899/overview
http://loop.frontiersin.org/people/565/overview
http://loop.frontiersin.org/people/73555/overview
http://loop.frontiersin.org/people/289557/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00770 October 23, 2018 Time: 12:45 # 2

Grieder et al. Default Mode Complexity in Alzheimer

Additionally, altered entropy in Alzheimer’s disease found in the majority of the scales
indicated a disturbance of both local information processing and information transfer
between distal areas. Conclusively, a loss of nodal signal complexity potentially impairs
synchronization across nodes and thus preempts functional connectivity changes. MSE
presents a putative functional marker for cognitive decline that might be more sensitive
than functional connectivity alone.

Keywords: multi-scale entropy, complexity, functional connectivity, resting-state fMRI, default mode network,
Alzheimer’s disease, cognitive decline

INTRODUCTION

Brain activity during the human resting-state shows spatially
coherent patterns at a low temporal frequency (Biswal et al.,
1995; Raichle et al., 2001). Blood-oxygen level dependent (BOLD)
resting-state functional MRI (rs-fMRI) revealed these so-called
resting state networks (RSN), consisting of spatially segregated
brain regions that are intrinsically co-activated and deactivated
across time. The idea is widely accepted that these highly
correlated brain regions are functionally connected, and the
connectivity strength is represented by the correlation coefficient
between given areas. Moreover, it has been shown that the RSNs
or the functional connectivity (FC) are altered in subgroups of
patients. In particular, FC appears to be related to disease severity
or cognitive decline in dementia and normal aging (Petrella et al.,
2011; Agosta et al., 2012; Brier et al., 2012).

The most widely studied RSN is the default mode network
(DMN), which has been associated with mind wandering,
autobiographic memory, future thinking, and introspection (for
review, see Buckner and Carroll, 2007; Buckner et al., 2008).
The core brain regions of the DMN are medial prefrontal
cortex (MPFC), posterior cingulate cortex (PCC), left and right
inferior parietal lobes (IPL), and left and right hippocampi (Hipp,
Buckner et al., 2008). The DMN’s integrity appears to play an
important role for the health of mind, since DMN disruptions
have been reported in schizophrenia spectrum disorder (Bluhm
et al., 2007; Garrity et al., 2007), depression (Wise et al., 2017),
autism (Padmanabhan et al., 2017; Hogeveen et al., 2018),
and Alzheimer’s disease (Jones et al., 2011; Cha et al., 2013).
Specifically in Alzheimer’s disease, disease progression severity
has been associated with reduced DMN FC, as compared to
age-matched controls (Lustig et al., 2003; Greicius et al., 2004;
Zhang et al., 2010; Zhou et al., 2010). Furthermore, the temporal
anti-correlation between task-positive (i.e., RSNs resembling
functional networks engaged during task execution) and the
task-negative RSN (increased activity in absence of a task, i.e.,
DMN), normally found in healthy subjects, is attenuated in
progressed stages of AD (Fox et al., 2005; Weiler et al., 2017).
This inability to switch between the task-positive RSNs and the
DMN is hypothesized to be related to cognitive impairment in
AD. Moreover, Koch et al. (2012) have corroborated the DMN’s
relevance in AD by demonstrating the diagnostic power of DMN
connectivity strength to separate AD from healthy controls, while
the prediction of mild cognitive impairment (MCI) was less
obvious.

Despite the prospects of RSN-FC as a marker of cognitive
decline, FC is an average measure of correlation between brain
areas during a few minutes of fMRI scanning. FC has limited
capability in characterizing the dynamic reorganization and
regional activity of complex brain networks. Hence, assessing the
dynamic properties of connections (network edges) between and
within areas (network nodes) of the brain is a necessary step to
further understand the normal brain function during resting state
as well as putative disruptions of the functional organization in
the course of a disease.

Non-linear statistical approaches have been applied for
quantifying the regularity of biological signals such as
approximate entropy (ApEn) or its variant sample entropy
(SampEn; Pincus, 1991; Richman and Moorman, 2000; Liu et al.,
2013; Sokunbi, 2014). When applied to several coarse-sampled
scales from the original time series, SampEn can be extended to
multi-scale entropy analysis (MSE; Costa et al., 2002). Smith et al.
(2014) showed that healthy aging is associated with decreased
MSE mainly in DMN regions such as middle temporal gyrus,
MPFC, angular gyri, middle and superior medial frontal cortex,
and Hipp. Smith et al. (2015) in a later study further showed
that MCI is associated with reduced MSE in areas of the DMN.
Such findings were confirmed by studies that reported a positive
relationship between cognitive decline in familial AD and whole
brain ApEn as well as regional entropy in precuneus, lateral
parietal cortex, precentral gyrus, and paracentral gyrus (Liu et al.,
2013; Wang et al., 2017). These preliminary studies suggest that
MSE of rs-fMRI may provide a marker of cognitive decline in
aging and dementia.

The purpose of the present study was to compare MSE of the
DMN between a group of patients with mild AD and a group of
age matched controls. We examined the added value of including
a metric of regional (nodal) dynamics (MSE) to the inter-regional
connectivity (edges) assessed with FC. We further tested the
relation of MSE alteration and cognitive decline assessed by
the mini-mental state examination (MMSE) as well as Boston
Naming Task (BNT) scores. We expected generally lower MSE
values in AD as compared to matched controls. More detailed
hypotheses about regional DMN-MSE changes in AD were not
made, since there is no comparable study available for hypothesis
generation. However, we predicted a positive correlation between
MSE and MMSE, which is in accordance with Liu et al. (2013).
With focus on the standard FC analysis, we anticipated reduced
FC in AD compared to HC, because most studies reported FC
decreases in AD (Cha et al., 2013).
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MATERIALS AND METHODS

Participants
All participants provided written informed consent according
to a protocol approved by the Regional Ethics Committee
of Stockholm, Sweden, in accordance with the Declaration of
Helsinki. Only native speakers of Swedish were included and
exclusion criteria were the presence of medical or psychiatric
disorders (other than dementia), intake of drugs affecting the
nervous system, or any contraindications for MRI procedures.
Fourteen healthy elderly control (HC) participants (aged 62–
73 years) were included into data analysis after exclusion of
one participant due to excessive movement artifacts in the MR-
images. The mild Alzheimer’s disease (AD) group consisted of 15
patients (aged 53–83) after discarding two artifact-contaminated
data-sets (Table 1). The patients were recruited at the Memory
Clinic of the Geriatric Department at Karolinska University
Hospital in Huddinge, Sweden. Hence, their diagnosis was
performed by expert clinicians and were in accordance with the
ICD-10 criteria. The patients with AD included in this study
underwent a standard clinical procedure which consisted of
examinations such as structural neuroimaging, lumbar puncture,
blood analyses, and a neuropsychological assessment. Further
inclusion criteria for all patients were a Global Deterioration
Scale smaller than 6 (i.e., moderate dementia, or milder) and
the Cornell Depression Scale below 8. Controls were screened
with a neuropsychological test battery, comprised MMSE and
BNT.

Image Acquisition and Preprocessing
Data were acquired on a 3T Siemens Magnetom Trio
MR Scanner (Siemens AG, Erlangen, Germany). GE
EPI fMRI BOLD was recorded with 26 transversal
slices; 3.0 × 3.0 in-plane and 4 mm slice thickness;
TR/TE = 1600/35 ms, FA 90◦; FoV = 240 × 240 mm;
matrix = 92 × 92, 400 volumes acquired in 10 min 40 s.
A structural T1-weighted MPRAGE was recorded with
176 sagittal slices, 0.9 × 0.9 in-plane and 1 mm slice
thickness, TR/TE = 1900/2.57 ms; FoV = 230 × 230 mm;
matrix = 256 × 256.

TABLE 1 | Demographics and descriptive statistics.

HC (n = 14) AD (n = 15) HC-AD

Mean (SD) Mean (SD) U p-Value

Age, years 67.5 (3.5) 67.3 (8.6) 95.5 n.s.

Gender (F:M) 10:4 8:7

Education, years 13.3 (3.0) 12.9 (3.0) 103.0 n.s.

MMSE (max 30) 28.8 (0.9) 25.0 (3.8) 16.5 <0.001

BNT (max 60) 53.7 (3.7) 45.8 (6.6) 30.5 0.001

GDS n/a 2.9 (0.8)

CDS n/a 1.3 (1.2)

Group-wise statistics were performed using the non-parametric Mann–Whitney
U-test.

Preprocessing of fMRI data involved motion-realignment,
linear drift correction (detrending), regression of motion (six
motion parameters and first derivatives; Power et al., 2014)
and physiological noise (WM and CSF signal fluctuations
extracted from T1 image based tissue probability masks from
SPM Dartel segmentation; Chang and Glover, 2009; Birn
et al., 2014) followed by co-registration of functional to
individual structural images and normalization to MNI standard
space and final smoothing with a Gaussian Kernel (FWHM
6 mm).

Data Analysis
Data analysis was based on predefined parcellated regions of
interest (ROIs) selected from a functional connectivity atlas
(Shirer et al., 2012) delineating the DMN. As explained in
the introduction, the DMN undergoes pathology characteristic
structural and functional alterations related to cognitive decline
in AD. We selected the DMN nodes in medial prefrontal cortex
(MPFC), posterior cingulate cortex (PCC), left and right inferior
parietal lobes (L-IPL/R-IPL) as well as left and right hippocampi
(L-Hipp/R-Hipp). Average BOLD signal fluctuations from all
these ROIs were extracted from the individual subjects’ fMRI data
and submitted to further analyses.

Multi-Scale Entropy (MSE) Computation
Entropy was computed for each ROI after averaging the signal
fluctuations across all voxels within the respective ROI. We
employed sample entropy (SampEn, Richman and Moorman,
2000; Smith et al., 2014) to compute complexity at each scale
with pattern matching threshold r = 0.2 and pattern length
m = 2 (Smith et al., 2014; Sokunbi, 2014; Li et al., 2018).
Scales were created by coarse sampling of the original time
series data into 40 scales; i.e., scale 1 is the original time series
and 2 is created by averaging every two consecutive, non-
overlapping time points, and similarly for all other scales n the
time series was subsampled as averages of n consecutive non-
overlapping time points. To identify the scales with reliable
entropy values, we statistically compared SampEn at each scale
against 0. MSE is the average across all scales considered (Costa
et al., 2002; Smith et al., 2014). We further calculated the global
DMN complexity as mean MSE across all scales and all nodes.
Comparison of entropy between the AD and HC group was
performed by two-sample, one-sided t-test (significance level
p < 0.05) on nodal and global DMN level (scales 1–10, 0.625–
0.063 Hz).

Functional Connectivity (FC) Analysis
Seed-to-Seed functional connectivity between every ROI
pair was calculated by the Pearson correlation between
the average ROI signal fluctuations. For group comparison
we considered node-to-node connectivity as well as global
DMN connectivity, which was defined as mean FC across
all node-to-node correlations (upper-triangle in cross
correlation matrix). Comparison of FC between the AD
and HC group was performed by two-sample, one-sided t-test
(significance level p < 0.05) on node-to-node and global DMN
level.
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Relationship Between MSE, FC, and
Cognitive Impairment (MMSE)
First, we calculated the Pearson correlation between DMN
FC and DMN-MSE at scales 1–20 (0.625–0.031 Hz) across
all participants to elucidate the relationship between network
complexity and connectivity. To examine potential associations
of MSE with cognitive abilities, partial Pearson correlation
coefficients were assessed, corrected for age and gender.
Concretely, the global DMN-MSE (MSE averaged across scales
1–10; 0.625–0.063 Hz) was correlated with the MMSE reflecting
a general measure of mental health as well as the BNT
score mirroring semantic memory retrieval. Unfortunately, no
utilizable episodic memory score was available for statistical
analysis. Furthermore, we also performed the same correlations
with nodal MSE and the neuropsychological tests, for DMN
nodes showing significant MSE alteration in the AD group.

RESULTS

Functional Connectivity (FC)
There were no significant DMN-FC differences between the
groups. This was true for whole DMN FC, which is the
averaged FC across all node-to-node correlations, as well as for
individual node-to-node connections (Figure 1). However, FC

to the hippocampal nodes appeared reduced (non-significant,
Figure 1). Using one-sided t-test assuming that FC is lower in
AD than controls we found a significantly reduced connection
between PCC and R-Hipp (t = 1.90, p = 0.034).

Multi-Scale Entropy (MSE)
The validity analysis for entropy at every scale revealed that
for scales 1–20 (0.625–0.031 Hz) we observed a complex
behavior of signal fluctuations (Supplementary Figure 1). This
is comprehensible since our fMRI comprised 400 volumes and
thus coarse sampling at scales 20 and above would produce very
short time-series for MSE computation (20 time-points at scale
20) which renders it unreliable. Therefore, for further analysis we
restricted entropy values to scales 10 and below to ascertain that
entropy values are reliable.

Network and Nodal MSE Differences
We found significantly lower global network level DMN-MSE
(t = −1.81, one-sided p = 0.041) in AD as compared to HC.
Figure 2A displays the entropy for DMN at each scale. On a
nodal level and across all scales, we found reduced MSE for
R-Hipp (t = −1.87, p = 0.036, Figure 2B) and a trend for MPFC
(t = −1.42, p = 0.083). Detailed analysis of effects for all nodes
separated for different scales revealed that the effects for entropy
are most pronounced in L-Hipp and R-Hipp which showed

FIGURE 1 | (A) Nodes delineating the default mode network. (B) Functional Connectivity diagram displaying the correlations between the nodes of the DMN in
control and Alzheimer’s disease groups. Significant difference in the R-Hipp/PCC edge for one-sided t-test is marked in red and with asterisk (Red: MPFC, blue:
PCC, yellow: L-IPL, cyan: R-IPL, green: L-Hipp, purple: R-Hipp).
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FIGURE 2 | (A) Box-plot of entropy values at each scale for whole DMN in HC
and AD. (B) Box-plot of mean MSE within each node of the DMN. Red
horizontal bars with red asterisks above boxes indicate significant differences
between patients and controls. Generally, AD had reduced entropy within the
DMN and specifically the right hippocampus showed decreased MSE on a
nodal level.

consistently reduced entropy for most scales (Supplementary
Figure 2). We further found some effects at single scales in
MPFC, PCC and R-IPL.

Correlation Between MSE and FC or
MMSE
Across all scales there was a significant positive association
between network connectivity and entropy, with significant
effects in the AD group in scales 1 and 2 (0.63–0.31 Hz) and in
the control group in scale 16 (0.039 Hz, Figure 3A). Moreover,
the global DMN-MSE correlated significantly with MMSE in AD
patients (r = 0.65, p = 0.032), but not with the BNT. In contrast,
nodal MSE of the R-Hipp showed no association with the MMSE,
but with the BNT (r = 0.67, p = 0.033, Figure 3B). Thus,
the lower cognitive abilities of the AD group were associated
with a lower overall DMN-MSE, and their declined semantic
memory performance was related to a decreased nodal MSE in
the R-Hipp. Note that correlational analyses using nodal MSE
was only performed with the R-Hipp, because as elucidated in
the previous section, this was the only DMN node that yielded a
significant MSE change in the AD group across all scales.

DISCUSSION

In this study, we investigated rs-fMRI signal complexity in DMN
nodes in cohorts of mild AD and HC. We additionally compared
the outcome of the MSE analysis with the results of the more
commonly applied FC analysis.

Functional Connectivity
First of all, the standard FC analysis did not yield any compelling
results. As outlined in the introduction, DMN alterations in
AD have been reported repeatedly, yet only moderate to severe
disease stages appear to produce reliable results (Buckner et al.,
2008; Brier et al., 2012; Cha et al., 2013; Gardini et al., 2015).
In the case of our mild AD sample, we merely found indices
of reduced FC, mainly between R-Hipp and PCC, and even to
a lower magnitude between L-Hipp and PCC, and R-IPL and
MPFC (Figure 1). Studies that showed reduced FC of the PCC in
AD have raised the hypothesis that cortical hubs such as the PCC
are prone to functional deterioration due to their relatively high
resting metabolism that is no longer maintained as a consequence
of amyloid deposition, which co-occurs in these hubs (Buckner
et al., 2005; Sorg et al., 2007; Vlassenko et al., 2010; Franciotti
et al., 2013). Notwithstanding the consistency with the literature
of the observed FC results indicating lower connectivity in AD,
we did not find reduced DMN network FC, nor were the FC
differences we observed statistically significant on a robust level.

Multi-Scale Entropy
In contrast, the AD group showed a lower global DMN-MSE, as
compared to HC. This confirmed our hypothesis and implied that
the DMN-related signal fluctuation was less complex in AD than
HC, which is in line with a previous report about whole brain
MSE (Liu et al., 2013). Similarly, Wang et al. (2017) reported
lower rs-fMRI-derived complexity in AD than MCI and HC, and
Li et al. (2018) found reduced fNIRS-signal complexity in DMN-
nodes in AD as compared to controls. By inspecting the DMN-
MSE at each scale (Figure 2A), we observed a trend of decreasing
entropy with increasing scale in AD. In the HC group, there was
an entropy increase from scales 1–4, followed by a decrease from
scales 5–10. This distinct pattern between patients and controls
might reflect a disturbed local functional integrity in AD, as it
has been proposed that smaller scales (i.e., higher frequencies)
are related to intra-regional processing, whereas larger scales (i.e.,
lower frequencies) are thought to be closely associated with inter-
regional FC (Vakorin et al., 2011; McDonough and Nashiro, 2014;
McIntosh et al., 2014; Wang et al., 2018). The statistical analysis
of DMN-MSE revealed a significant MSE-reduction in AD at
both scales 4 and 9, supporting that mild AD is characterized
by a disturbance of signal complexity (i.e., entropy), which is
associated with local and distal information processing. With
regard to the mean MSE for each DMN node, we found a
significant AD-related decrease in the R-Hipp. This is different
to the findings of Wang et al. (2017), who reported decreased
complexity in AD in other brain regions (only MPFC of the
DMN regions, among others). However, they used permutation
entropy analysis (as compared to SampEn in the current study)
and the patients with AD they included in the study were
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FIGURE 3 | (A) Correlation between DMN-FC and DMN-entropy at scales 1–20. The left panel depicts correlations for all subjects, the middle panel for the controls,
and the right panel for the Alzheimer’s disease group. Red asterisks mark scales that showed a significant correlation coefficient. (B) The left panel shows a
scatterplot of the significant positive correlation between global-level DMN entropy (scales 1–10) and MMSE score. The right panel shows the significant positive
correlation between R-Hipp entropy (scales 1–10) and BNT score (both panels include patients with AD only).

cognitively more impaired than those in this study (MMSE
21 vs. 25).

To this point, we can recapitulate that the main results of the
current study were a decreased global DMN-MSE in mild AD, a
constant reduction of entropy with increasing scales in AD, and
a mean-MSE group comparison that showed decreased R-Hipp
MSE in AD compared to HC. While these findings fit well into
literature and our hypothesis, thoroughly elucidating the MSE
differences between AD and HC for each DMN-node for each
scale was more challenging.

With reference to Supplementary Figure 2, we identified
the MPFC, L-Hipp, and R-Hipp as nodes with decreased MSE
in AD in all significant scales. In MPFC and R-Hipp, the
differences were located in fine scales, which indicated a local
processing disturbance as circumscribed above. In the L-Hipp,
significant differences were found at scales 4–8 (except scale 6).
We interpreted this as a deterioration of hippocampal processing
in general. Our view is supported by studies that described
the Hipp (predominantly left-lateralized) as a crucial region
for AD not only as an atrophy hot spot, but also with regard
to its functional role in episodic and semantic memory, both

of which are affected in AD (Burianova et al., 2010; La Joie
et al., 2014). Hence, the decreased entropy in the L-Hipp at
the smaller scale 4 might be related to the impaired episodic
memory encoding. On the other hand, the attenuated entropy
found in the larger scales (i.e., 5, 7, and 8) might mirror
a disconnection of the L-Hipp within episodic and semantic
networks (Allen et al., 2007). Two additional DMN-nodes,
namely the PCC and R-IPL, presented a more complicated image.
Increased entropy was found at scale 8 in the R-IPL, whereas
at scale 2, MSE was reduced. This pattern might have reflected
a discrepant change of signal processing at local and network
level. As outlined before, the PCC serves as a hub and has
been found to be vulnerable to functional change in AD. It
occurred thus unexpected to find increased MSE in scale 3,
while neighboring scale 4 showed the opposite. There is some
evidence from EEG, which, however, is on a different temporal
scale, that increased complexity might also be related to cognitive
decline in AD (Mizuno et al., 2010). In our view, future research
on MSE is needed in order to resolve such findings. Finally,
the L-IPL did not evince significant changes at any particular
scale.
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Correlation Between Complexity,
Connectivity, and Cognitive Decline
In order to investigate the potential link between FC and MSE,
we correlated the DMN-MSE at each scale with FC. As can
be seen in Figure 3A, correlations were positive throughout
the scales. Two peak correlations at scales 1/2 and 16 could
be observed. Group-wise correlation uncovered that the second
peak in slow frequency entropy was significant only in HC,
whereas in AD, this relationship did not reach significance. In
contrast, the AD group showed significant associations with
higher frequency entropy and FC. Note that from scales 5–20, the
corresponding frequencies range from 0.125 to 0.031 Hz which
are commonly associated with the low frequency fluctuations of
functional connectivity networks (Damoiseaux et al., 2006; De
Luca et al., 2006; Shehzad et al., 2009). However, the second
peak suggests that not only slow but also fast processes influence
FC. Accordingly, even in the higher frequency spectrum of
BOLD signal some physiologic information is contained. This
aligns with the hypothesis of distinct information contained in
high vs. low frequency MSE where the former represents local
processing while the latter reflects information transfer between
areas and both are critical properties of distributed processing
within cortical networks.

Changes of FC as well as entropy measures have been found to
accompany cognitive changes related to healthy aging or disease
(Jones et al., 2011; Brier et al., 2012; Liu et al., 2013). The positive
correlation between global DMN-MSE and the MMSE score in
our AD cohort is in accordance with these previous findings
and our predictions. This result also corroborated previous
studies suggesting that a high signal complexity in general, or
particularly in the DMN, is important for cognitive functionality
(Sokunbi et al., 2011; Yang et al., 2013). Interestingly, BNT scores
correlated positively specifically with the R-Hipp, but not for
example with the global DMN-MSE. As discussed above, the
hippocampus has been found to play a role in semantic memory
retrieval, which endorses our finding. Moreover, La Joie et al.
(2014) proposed that the R-Hipp might be a crossroad between
episodic and semantic memory networks. Thus, we not only
found supporting evidence for the findings of these studies,
but additional indication that apart from the well described FC
alterations in the R-Hipp in AD, the local information processing
is disturbed, which is associated with an impaired memory
performance.

Limitations
The main limitation of the present study is the small sample
size (15 AD, 14 HC). This should be taken into account when
interpreting the findings. Considering the mild disease state of
the AD group, the small MSE and FC effects were statistically
underpowered to apply a correction for multiple comparisons.

We feel that despite the small sample size, we could show that
MSE is sensitive enough to find differences between HC and
mild AD. For a first proof of concept study, we highlighted
the usefulness of MSE as a new characteristic for BOLD signal
fluctuations in AD.

CONCLUSION

We found DMN-MSE in AD was reduced as compared to
matched controls and that MSE is related to FC as well as
cognitive abilities. Our results further suggest that cognitive
decline in AD is reflected by decreased signal complexity in
network nodes, which might further lead to disrupted DMN-
FC. We hypothesize that a loss of nodal (i.e., right hippocampal)
signal complexity potentially impairs synchronization across
nodes and preempts FC changes. Thus, MSE presents a putative
functional marker for cognitive decline that might be more
sensitive than FC in mild AD.
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Background: EEG mu-desynchronization is an index of motor resonance (MR)

and is used to study social interaction deficiencies, but finding differences in

mu-desynchronization does not reveal how nonlinear brain dynamics are affected during

MR. The current study explores how nonlinear brain dynamics change during MR.

We hypothesized that the complexity of the mu frequency band (8–13Hz) changes

during MR, and that this change would be frequency specific. Additionally, we sought

to determine whether complexity at baseline and changes in complexity during action

observation would predict MR and changes in network dynamics.

Methods: EEG was recorded from healthy participants (n = 45) during rest and during

an action observation task. Baseline brain activity was measured followed by participants

observing videos of hands squeezing stress balls. We used multiscale entropy (MSE) to

quantify the complexity of the mu rhythm during MR. We then performed post-hoc graph

theory analysis to explore whether nonlinear dynamics during MR affect brain network

topology.

Results: We found significant mu-desynchronization during the action observation

task and that mu entropy was significantly increased during the task compared to

rest, while gamma, beta, theta, and delta bands showed decreased entropy. Moreover,

resting-state entropy was significantly predictive of the degree of mu desynchronization.

We also observed a decrease in the clustering coefficient in the mu band only and a

significant decrease in global alpha efficiency during action observation. MSE during

action observation was strongly correlated with alpha network efficiency.

Conclusions: The current findings suggest that the desynchronization of the mu wave

during MR results in a local increase of mu entropy in sensorimotor areas, potentially

reflecting a release from alpha inhibition. This release from inhibition may be mediated

by the baseline MSE in the mu band. The dynamical complexity and network analysis of

EEG may provide a useful addition for future studies of MR by incorporating measures

of nonlinearity.

Keywords: motor resonance, complexity, network connectivity, EEG, mu suppression
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INTRODUCTION

There has been great interest in the idea of neural mirroring–
neural simulation of the actions and experiences of others
while observing them–as a central process contributing
to action understanding and experience sharing. Using
electroencephalogram (EEG) to record the desynchronization
of the mu wave (8–13Hz) over sensorimotor regions is gaining
popularity as a measure of neural simulation (e.g., Cheng et al.,
2008; Pineda and Hecht, 2009; Gutsell and Inzlicht, 2010; Perry
et al., 2010; Fabi and Leuthold, 2017; Li et al., 2017), including in
the clinical setting (Oberman et al., 2008, 2013; Fan et al., 2010;
Mitra et al., 2014; Minichino et al., 2016). Several researchers
have used mu desynchronization to investigate impaired social
and emotional processing in disorders like schizophrenia and
autism (Oberman et al., 2005; McCormick et al., 2012; Horan
et al., 2014; Brown et al., 2016). However, studies using mu
desynchronization during action observation, have relied solely
on measuring attenuation of the mu power spectrum. Utilizing
the Fast Fourier transform (FFT) to obtain the average power
of pre-selected frequency components or the Morlet wavelet
transform to obtain frequency information at a specific moment
in time, can only provide information on power spectrum
changes and fails to address potentially important changes to
nonlinear brain dynamics. The current study measured changes
to neural complexity and network connectivity that occur during
action observation, and sought to assess how these changes are
related to, and might supplement, the linear changes observed in
the mu power spectrum.

Viewing the actions of another person triggers neural
representations similar to when actually performing the same
action (di Pellegrino et al., 1992; Rizzolatti and Craighero, 2004;
Rizzolatti, 2005), and such motor resonance (MR) is thought to
transform visual information about the action including basic
intentions into knowledge (Rizzolatti et al., 2009; Liu et al., 2016).
EEG mu desynchronization is considered a valid measure of MR
(see Fox et al., 2015 for a meta-analysis and Hobson and Bishop,
2016, for a critical perspective). The mu-rhythm can be picked up
over the sensorimotor cortex at central electrodes (C3, C1, CZ,
C2, and C4 electrodes), and its desynchronization is correlated

with activation in areas thought to be part of the human
mirror system, including the dorsal premotor cortex, the primary
somatosensory cortex, and the inferior parietal lobe (Perry and
Bentin, 2009; Arnstein et al., 2011; Yin et al., 2016). Since the
decrease in mu amplitude during mu desynchronization occurs
because the number of synchronously active neurons firing
at a frequency of 8–13Hz decreases during action and action
observation (Lopes da Silva, 1991), the underlying nonlinear
patterns of activity should becomemore complex (non-randomly
varying), and may provide information on the adaptability of
a system or network of connections to a stimulus (McIntosh
et al., 2008; Manor et al., 2010; Vakorin et al., 2011). Such
nonlinear patterns contain information that is not accessible
by spectral measures (Meyer-Lindenberg et al., 1998; Abásolo
et al., 2006; Park et al., 2007; Mizuno et al., 2010), and the
current study is a novel investigation of EEG signal during action
observation.

A promising approach to analyzing nonlinear dynamics in
the brain is multi scale entropy (MSE), which measures entropy
over multiple time scales inherent in a time series (Costa et al.,
2002). Sample entropy of each coarse-grained time series serves
as an index of signal complexity by evaluating the occurrence
of repetitive patterns. Thus, using MSE analysis in this study
allows us to extract meaningful information about the changes
to nonlinear dynamics that occur in the EEG signal during action
observation. Moreover, changes in entropy indexed using MSE,
are likely to indicate, to some degree, a change in the neural
underpinnings of connectivity (Friston et al., 1995; Sporns et al.,
2000; Takahashi et al., 2010). To validate this assumption, we also
measured changes in connectivity across the scalp using graph
theoretical analysis and tested their link to changes in entropy.
More specifically, we used global efficiency and the cluster
coefficient (graph theoretical measures), to provide information
on local and global changes to functional connectivity that result
from local changes in nonlinear dynamics.

In sum, the first goal of the current study was to capture
changes in the complexity of the signal measured over the
sensorimotor area during MR using MSE analysis. The second
goal was to determine how resting state MSE relates to mu
desynchronization duringMR. Resting-state complexity has been
previously used as a predictor for risk of developing ASD
(Bosl et al., 2011), as well as predicting cognitive function in
Alzheimer’s disease (Mizuno et al., 2010). The finding by Mizuno
et al. (2010), suggests that complexity at rest can predict one’s
adaptability to a future “engaged” or active state. Along the same
lines, we expected the level of resting MSE measured in the
mu frequency band, to be predictive of the amount of decrease,
if any, in the mu power spectrum during action observation.
The final goal of the study was to assess whether MR changes
network communication in the gamma, beta, alpha, theta, and
delta bands, and its relationship to the MSE measured over the
sensorimotor area.

THE CURRENT RESEARCH

We measured MR during action observation, using mu
desynchronization, as part of a larger study that tested how
perceptions of warmth and competence of target individuals
affect MR. Participants first viewed personality ratings of varying
combinations of the warmth and competence of a target
person followed by a short video of ostensibly that person
performing an action. We collapsed the action observation
data across all warmth and competence conditions to assess
mu desynchronization, MSE change, and network changes. We
hypothesized that the level of MSE (average entropy across
all scale factors) measured in the mu frequency band would
increase during action observation relative to baseline, and
that an increase would be linked to mu desynchronization,
such that stronger desynchronization would be associated with
a larger increase in MSE. Additionally, we tested whether
changes to MSE during action observation was frequency-
band specific by analyzing change in the MSE values in four
other frequency bands (gamma, beta, theta, and delta). We

Frontiers in Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 75888

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hager et al. Complexity During Motor Resonance

hypothesized that the level of baseline MSE would predict the
degree of mu desynchronization, thereby being a determinant
of adaptability during action observation. Finally, we used graph
theory analysis to assess the effect of mu desynchronization on
network communication by analyzing global efficiency in the five
mentioned frequency bands, and the cluster coefficient over the
sensorimotor area, respectively.

METHODS

Participants
Participants (n = 66) right-handed undergraduate college
students had normal or corrected vision, and the ability to read
and write fluently in English. Participants were all right-handed
to ensure analogous cortical responses to videos of right hands
performing simple motor activities.

All participants provided informed consent and participated
in the research for course credit or financial compensation.
Participants were excluded due to equipment failure resulting
in too many non-functioning electrodes (cutoff of 5 non-
functioning electrodes; N = 4), excessive EEG artifacts in the C3
electrode (N = 12; such as blinks, electromyogram (EMG), line
noise, and visible signal drift), and visually excessive frontal alpha
activity (N = 4) which suggests a participant might be sleeping,
leading to a final sample of 45 participants (mean age = 18.814,
SD= 0.958; 33 female).

Procedure
The experimental protocol and data acquisition procedure were
approved by the Brandeis Institutional Review Board. After
EEG setup was complete, participants were asked to repeatedly
squeeze a stress ball using their right hand for 15 s while we
filmed their hand. This both created a baseline for brain activity
during actual hand movement and reinforced the cover story
that participants would be watching videos previously recorded
from other participants. Participants then underwent a measure
of baseline neural activity for which they sat completely still, first
with their eyes closed for 1.5min, then open for 1.5min, then
while watching a video of white noise for 1min. The baseline
recorded with eyes open was used to calculate the complexity of
the mu rhythm at rest.

Following the baseline recording, participants were told that
they would be taking a personality test. The test required them
to rate themselves on a list of adjectives related to warmth and
competence. They were then told that nine other people had
previously taken the same test and had their hand movement
recorded. EEG was recorded while participants viewed the action
videos following the warmth and competence information.
Finally, participants filled out a demographic questionnaire, were
debriefed, thanked, and dismissed.

Action Observation Task
The task consisted of 135 trials. During each trial, participants
were first presented with a video of white noise for 2,000–
2,300ms followed by a fixation cross for 500ms. They then
viewed a screen with a target’s name (e.g., “Participant A”), a
simple silhouette andwarmth/competence scores (e.g., “Warmth:

High, Competence: Low”) for 4,000ms, followed by a video
of what was ostensibly that person’s hand squeezing a yellow
stress ball for 2,000ms at the rate of approximately one squeeze
per second (see Figure 1 for a depiction of a typical trial). Each
hand was always paired with the same identity; all hands were
White and with an even gender split (five female). The task was
split into two blocks of∼15min in length divided by a short break
of a duration determined by the participant.

EEG Recording and Processing
EEG was recorded from 32 active electrodes embedded in a
stretch-lycra cap (ActiCap, BrainProducts GmbH, Munich,
Germany) arranged per the 10–20 system with the impedances
kept below 10 k�. The EEG was digitized at 500Hz using
BrainAmp amplifiers and BrainVision recorder software
(BrainProducts GmbH, Munich, Germany) with an initial
reference at FCz. The data was then re-referenced offline
using the Reference Electrode Standardization Technique to
standardize the reference of scalp EEG recordings to a point at
infinity that, being far from all possible neural sources, acts like a
neutral virtual reference (Yao, 2001; Dong et al., 2017). To avoid
corrupting the raw data, we manually extracted segments of
artifact-free EEG data by visually identifying and then removing
vertical eye movements, blinks, muscle activity, and other artifact
sources. From 40,000 data points, we extracted at least 20,000
artifact-free data points from the resting state task, and from
14,000 data points we extracted at least 12,000 artifact-free data
points from the action observation task. For each of the 2-s
action observation segments, we then computed the integrated
power in the 8–13Hz range using a Fast Fourier Transform
(FFT) performed at 0.2 s intervals with an overlap of 0.25 s (using
a Hamming window with 25% overlap). Finally, we averaged the
segments over all trials and calculated Mu desynchronization
scores with the following formulas: (ln

(

µtask power

)

−

ln(µpre−task resting power))/ ln(µpre−task resting power)
∗100.

Multiscale Entropy (MSE) Analysis
MSE analysis (Costa et al., 2002, 2005) was developed to estimate
sample entropy in multiple time scales by using a coarse-graining
procedure. MSE analysis uses sample entropy (SE) because it
provides greater consistency and is less dependent on a given
signal length compared with other entropy methods (Richman
andMoorman, 2000). MSE calculation can be summarized in the
following three steps: (a) constructing coarse-grained time series
per different scale factors (SF); (b) quantifying the SE of each
coarse-grained time series; and (c) examining the sample entropy
profile over a range of scales. Per this method, the length of each
coarse-grained time series is equal to the length of the original
time series divided by the SF. For Scale 1, the time series is merely
the original time series.

TheMSE analysis of EEG signal has been described previously
(Catarino et al., 2011) using parameters of m = 2, r = 0.15,
and a SF up to 40. In this study, we used m = 2, r = 0.15
standard deviation (SD), N = 14,000 data points and SF of 20
for resting state, and N = 14,000 data points and SF of 20 for the
action observation task.We N/SF = 14,000/20= 700 data points,
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FIGURE 1 | Depiction of a typical task trial.

which is enough to obtain a reliable estimation of the SE values
(Richman and Moorman, 2000).

Using the MSE of resting-state EEG signal as the reference, we
classified MSE profiles into three types: (1) increased complexity
(i.e., increased entropy in all scales), (2) reduced complexity
toward regularity (i.e., decreased entropy in all scales), or (3)
reduced complexity toward randomness (i.e., increased entropy
in fine scales followed by decay in entropy as the scale factors
increase; Yang et al., 2015). The random type of MSE profile
quantifies uncorrelated randomness that cannot be fully captured
by single-scale entropy.

Network Analysis
We used the first 2 s from the eyes-open baseline and the
first of seven segments from the action observation task, for
analysis. We then calculated the respective phase coherences
(rPCs) for every electrode pair to obtain network measures
(please see Figure 2 for a graphical illustration of the procedure).
The method used for obtaining the rPC is the phase-locking
index (Tass et al., 1998). Once the rPC values between all
the electrode-pairs were calculated, we obtained an undirected
and weighted network by regarding each electrode as a node
and the rPC values as the weight between two corresponding
nodes. Then we considered two network measures, clustering
coefficient (CC; Rubinov and Sporns, 2010) and global efficiency
(GE; Rubinov and Sporns, 2010) to investigate the topological
characteristics of the network. Based on graph theory, in the
undirected and weighted network with n nodes in a nodes’
set N, CC of a node j is obtained by the ratio of geometric
mean of triangles around the node to the maximum possible
number of the connections between all the neighbors of the node,
as

CCj =
1

kj(kj − 1)

N
∑

i,m=1

(wijwimwjm)
1/3 , (1)

where

kj =

N
∑

i=1

wij (2)

is the weighted degree of node j, wij are connection weights
which are normalized between 0 and 1 for all i and j
related to edges (i, j), and N is the number of all nodes.
Importantly, the clustering coefficient can indicate the degree
of local interconnectedness of a node and applied to evaluate
the local structure of a graph (Rubinov and Sporns, 2010;
Miraglia et al., 2017; Wang and Tao, 2017). The average value
of all nodes’ CC (denoted as aver_CC in this paper) is the
average clustering coefficient CC over all nodes, as expressed in
Equation (1).

The global efficiency that allows the existence of isolated
points is the reciprocal of the shortest path, and not only reflects
the global traffic capacity and integration, but also evaluates
the performance of the graph effectively (Achard and Bullmore,
2007). The definition of global efficiency (denoted as GE) is given
in Equation (3):

GE =
1

N(N − 1)

N
∑

i,j,i6=j

1

dij
, (3)

The shortest weighted path length between node i and j is defined
as Equation (2):

dij =
∑

auv∈gi
w
←→ j

f (wuv) , (4)

where f is a map (e.g., an inverse) from weight (wuv) to length,
and gij is the shortest weighted path between node i and j
(Rubinov and Sporns, 2010).
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FIGURE 2 | The multi-step illustration of the procedure for extracting networks’ measures from EEG time series to sub-network. To be noted, the EEG series given in

this graph are the 10th subject’s resting state data set and the electrode Fp1, F7, and O2 are shown as an example of the phase synchronization coefficients

computed between two electrodes in the alpha band. Additionally, the graph is fully connected. Abbreviation: rPC: respective phase coherence.

Statistical Analysis
Statistical analyses were carried out using R version 3.3.2 (R
Core Team, 2016). We set the alpha significance value at .05 and
confirmed the normal distribution of the MSE values using the
Kolmogorov–Smirnov normality test and by examining skewness
and kurtosis values, for the (C3, C4, CZ, F3, F4, FZ, P3, P4,
PZ, O1, O2, and OZ) electrodes. We found all MSE scores to
be normally distributed. To determine the complexity score of
the mu signal, we calculated the average sample entropy across
all scale factors. All analyses were performed on a subset of
electrodes reflecting neural activation in the sensorimotor cortex
(C3, C4, and CZ as a control), which have been shown to produce
the strongest mu signal, and frontal (F3, FZ, and F4), parietal
(P3, PZ, and P4), and occipital (O1, OZ, and O2) areas as control
regions. Repeated measures ANOVAs were carried out using the
“car” package (Fox et al., 2012). Collapsing across the original
experimental task conditions, we averaged MSE and mu power
across all warmth/competence conditions to collapse the data
into a single motor observation condition. We used Bonferroni
correction to control for multiple comparisons, for 12 electrode
comparisons the corrected p-value= 0.05/12= 0.004.

RESULTS

Mu Desynchronization
We confirmed that significant mu desynchronization had
occurred in our region of interest using a series of one
sample t-tests on desynchronization scores obtained from

electrodes C3 [t(44) = −5.209, p < 0.001, d = 0.759] and
C4 [t(44) = −3.117, p = 0.003, d = 0.465], and that no
significant alpha desynchronization occurred in the occipital
electrodes O1 [t(44) = −0.421, p = 0.676], Oz [t(44) = 0.043,
p = 0.966], or O2 [t(44) = 1.526, p = 0.134]. These findings
suggest that we indeed picked up mu desynchronization due
to MR and not changes in alpha related to attentional shifts.
Additionally, we performed a 3-way repeated measures ANOVA
with Mu/alpha desynchronization as the dependent variable,
and electrode centrality [frontal (F3, F4, Fz), central (C3, C4,
Cz), parietal (P3, P4, Pz), and occipital (O1, O2, and Oz)
electrodes], and electrode lateralization (left, central, right) as
the within-subject factors. We found a significant main effect of
lateralization [F(2, 88) = 40.733, p < 0.001], no effect of centrality
[F(3, 132) = 1.152, p = 0.331], and a significant interaction
effect between lateralization and centrality [F(6, 264) = 37.557,
p < 0.001]. Unpacking the interaction using simple effects, we
found significantly more desynchronization at the C3 electrode
compared to posterior P3, [F(1, 44) = 9.133, p = 0.004], Pz [F(1,
44) = 32.023, p < 0.001], P4, [F(1, 44) = 40.321, p < 0.001],
occipital, O1, [F(1, 44) = 42.602, p< 0.001], Oz, [F(1, 44) = 18.302,
p < 0.001], and O2, [F(1, 44) = 28.230, p < 0.001], and frontal,
Fz [F(1, 44) = 28.161, p < 0.001], F4 [F(1, 44) = 30.646,
p < 0.001], F3 [F(1, 44) = 28.336, p < 0.001] electrodes, further
confirming that mu-desynchronization was region specific. An
additional one sample t-test was performed to check for beta
desynchronization and no significant beta desynchronization was
found [t(44) = –1.101, p = 0.277]. In sum, these findings suggest

Frontiers in Neuroscience | www.frontiersin.org 5 October 2018 | Volume 12 | Article 75891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hager et al. Complexity During Motor Resonance

that desynchronization of mu was primarily localized to the C3
electrode–our region of interest.

Multiscale Entropy (MSE) Analysis
To test for changes in entropy in the mu frequency band during
MR, we performed a paired t-test on our electrode of interest
(C3). We found average entropy to be higher during the task
(mean = 1.057, SD = 0.097) compared to rest [mean = 1.004,
SD = 0.129, t(44) = 3.524, p = 0.001, d = 0.525], indicating
increased complexity of the mu signal. To determine whether
entropy change during MR was frequency-band specific, we
performed a series of paired t-tests on the five frequency
bands (gamma = 30–60Hz, beta = 13–30Hz, alpha = 8–13Hz,
theta = 4–8Hz, and delta = 1–4Hz) between rest and task.
After Bonferroni correction, we found significant changes in
entropy for all frequency bands, as shown in Figure 3. Gamma
(baseline, m = 0.936, SD = 0.085; task, m = 0.846, SD = 0.106)
[t(44) = 5.892, p < 0.001, d = 0.878], beta (baseline, m = 1.352,
SD = 0.073; task, m = 1.311, SD = 0.073) [t(44) = 3.279,
p = 0.002, d = 0.489], theta (baseline, m = 1.124, SD = 0.051;
task, m= 1.029, SD= 0.071) [t(44) = 7.636, p< 0.001, d= 1.138],
and delta (baseline, m = 0.704, SD = 0.041; task, m = 0.626,
SD = 0.063) [t(44) = 8.307, p < 0.001, d = 1.238] all showed
a decrease in entropy for task compared to rest. These findings
indicate that complexity change has a unique increase in the
alpha band while all other frequencies showed a significant
decrease in complexity.

To determine whether MSE change in the alpha band during
MR was region specific, we performed a 3-way repeated-
measures ANOVA with average entropy as the dependent
variable, and condition (resting vs. task) and electrode (C3, C4,
Cz, F3, F4, Fz, P3, P4, Pz, O1, O2, and Oz) as the within-subject
factors. We found significant main effects for electrode [F(11,
484) = 10.981, p < 0.001], condition [F(1, 44) = 8.791, p = 0.005],

and an interaction between condition and electrode [F(11,
484)= 2.003, p= 0.026]. To unpack the interaction, we performed
pairwise comparisons for each electrode showing significant
increases in average entropy in the C3 [F(1, 44) = 12.468,
p < 0.001, η2p = 0.220] and C4 [F(1, 44) = 17.953, p < 0.001, η2p
= 0.290] electrodes. This finding suggests that changes in MSE
in the Mu frequency band between baseline and task only occur
in the bilateral sensorimotor area, with no changes to occipital
regions with alpha activity.

To determine whether entropy change in the alpha band
during MR was dependent on the SF, we performed a 3-
way repeated-measures ANOVA with entropy as the dependent
variable, and condition (resting vs. task) and SF (1 through
20) as the within-subject factors. A significant condition by SF
interaction effect was found [F(19, 798) = 15.397, p < 0.001].
This finding indicates that the sample entropy curves of each
condition presented a different slope as the scale factor increased.
Although the difference between conditions is not noticeable
for smaller scale factors, the curves for both conditions become
distinguishable for higher scale factors, representing greater
differences in sample entropy at higher scale factors.

To determine whether complexity of the mu signal predicts
MR, we used multiple linear regression models to examine the
relationship between MR and baseline entropy. Using general
linear hypothesis testing on mu desynchronization scores, the
best model fit was found for model 1 with a significant regression
equation [F(1, 43) = 11.73, p = 0.001, with an R2 of 0.214], as
shown in Table 1. The model indicates that resting state entropy
is significantly predictive ofMR such that higher baseline entropy
predicts less mu desynchronization, indicating less MR.

Efficiency Analysis
To explore the relationship between network efficiency and MR,
we performed a 3-way repeated measures ANOVA with global

FIGURE 3 | Complexity profiles of the raw signal and all frequency bands for baseline and task.
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efficiency as the dependent variable, and condition (resting vs.
observation), and frequency band (gamma, beta, alpha, theta,
delta) as the within-subject factors. We found a significant main
effect for frequency [F(4, 176) = 64.452, p < 0.001, η2p = 0.593]

and condition [F(1, 44) = 5.723, p = 0.021, η2p = 0.113] and
no significant interaction effect for condition and frequency
[F(4, 176) = 0.934, p = 0.446]. We decided to perform pairwise
comparisons for each frequency band to determine whether
global efficiency modification was frequency specific during MR.
The analysis revealed a significant decrease in efficiency in the
alpha [F(1, 44) = 15.509, p < 0.001, η2p = 0.260] frequency
band only. These findings indicate that global efficiency decreases
during action observation in the alpha network only. As shown in
Figure 4, alpha connectivity was reduced in frontal, central and
parietal areas.

To explore the relationship between the cluster coefficient
over the sensorimotor area and MR, we performed pairwise
comparisons for the alpha frequency band. A significant decrease
in the CC was shown in the alpha band [t(44) = 2.879, p = 0.006,
d= 0.439] during the task condition. These findings indicate that
the local efficiency over the C3 electrode decreases during action
observation in the mu frequency band.

TABLE 1 | Parameter estimates, approximate p-values, and associated

goodness-of-fit statistics for a series of models depicting the relationship between

mu desynchronization scores (as an index of motor resonance) and complexity of

the mu rhythm.

Predictor Model 1

ß(SE)

Model 2

ß(SE)

Model 3

ß(SE)

Intercept −77.88*** (19.29) −41.90 (29.16) −4.929 (7.597)

C3 resting complexity 65.17** (19.03)

C3 task complexity 27.95 (27.43)

Baseline Mu power −3.839 (3.708)

MODEL FIT STATISTICS

R2 0.214 0.024 0.024

RMSE 15.98 17.82 17.81

DF 43 43 43

***p < 0.001, **p < 0.01. RMSE, root mean square error; SE, standard error of the mean;

DF, degrees of freedom.

Finally, to determine whether there is a relationship between
complexity change, measured as the percent change in entropy
from baseline to task, and percent change in task efficiency in
the alpha band, we performed a simple correlation, finding that
there is a significant negative relationship between entropy and
global efficiency during the task [t(43) = −2.653, p = 0.011,
r = −0.375] suggesting that there may be a direct relationship
between efficiency change and complexity change.

DISCUSSION

The change in amplitude in the mu frequency band over the
sensorimotor area, resulting from the observation of object-
oriented actions, has been used as a marker of MR (Fox et al.,
2015). The intention of this study was to explore how nonlinear
brain dynamics change during MR, and how these changes are
related to the linear changes observed in the mu power spectrum.
We found that MSE measured from the C3 electrode over the
sensorimotor area during action observation, increases in the
mu frequency band only. At the same time, the MSE of the
raw signal and other frequency bands decreases in response
to action observation. These findings confirm our hypothesis
that a decrease in the mu power spectrum results in increased
complexity in that same frequency band, and the increase is
frequency specific. We did not predict decreased complexity
in the other frequency bands and this phenomenon should be
addressed in future studies. The respective decrease in global
efficiency in the alpha band during MR, may indicate greater
local information processing due to a release from so-called
alpha inhibition. The increased complexity in the mu band and
decreased global alpha efficiencymay underlie an increase to local
functional integration (Sporns et al., 2000). Further supporting
the link between increased complexity and MR, we found that
larger decreases inmu power are associated with greater increases
to the MSE of that signal.

Oscillations within specific frequency bands h ave been
considered to be associated with information processing (Başar
et al., 2001; Ghanbari et al., 2015), and our findings suggest that
information processing increases in the mu band during MR.
Interestingly, Ghanbari et al. (2015) found a significantly negative
relationship between change in alpha connectivity and change in

FIGURE 4 | Network changes: Resting alpha network connectivity (Left) Alpha network connectivity during action observation (Right). To be noted, the graphs

presented are from the 10th subject.
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MSE in patients with ASD, but no such relationship in the healthy
controls. We did not find any significant relationship between
complexity change and network efficiency change, confirming
this finding for healthy controls. It is important to note, that
the decrease in entropy within the other frequency bands does
not necessarily indicate a reduction in information processing
(McDonough and Nashiro, 2014), but instead may reflect that
the flow of information in the sensorimotor area being mainly
regulated by the alpha band during action observation.

Interestingly, the differences in the alpha complexity profiles
of rest and task condition appear to be mainly in the higher
time scales. Greater entropy at high scale factors are believed
to capture long-range temporal correlations (Bhattacharya et al.,
2005). Bhattacharya et al. (2005) found that neurons that showed
long-range correlations also showed statistically significantly
correlated firing, suggesting that the presence of long-range
correlations indicates a memory of the firing pattern. The
decrease in long-range correlations in the mu band reflects we
found, may therefore reflect greater non-random variability in
the underlying neuronal firing patterns, and therefore greater
complexity.

Can EEG Complexity Predict Motor
Resonance?
We expected MSE measured in the mu band over the
sensorimotor area to increase during action observation due to
less synchronous firing, reflecting an increase of the non-random
variability within the underlying patterns of activity. Our analyses
confirmed this hypothesis showing that a greater percent increase
in MSE from baseline to action observation in the mu band
was significantly associated with a greater decrease in the mu
power spectrum, indicating greater MR. We also hypothesized
that resting MSE measured in the mu band would predict
decreases in the mu power spectrum during action observation,
reflecting adaptability. Complexity may be a reflection of the
adaptability to a constantly changing environment (Hager et al.,
2016), and it may be that the level of MSE at rest predicts the
adaptability to information processing when viewing an action.
Specifically, we found that higher levels of resting MSE in the
mu band were predictive of less mu desynchronization during
action observation. This finding suggests that measuring signal
complexity in the mu band at rest may have the potential to serve
as a predictor of adaptability to a stimulus intended to trigger mu
desynchronization.

EEG Network Changes
The observed increase in MSE during action observation was
related to a decrease in global efficiency of the alpha network.
If the role of the alpha rhythm is indeed inhibitory (Klimesch

et al., 2007; Jensen and Mazaheri, 2010; Klimesch, 2012), this
finding may suggest that signal complexity measured in the mu
band in the sensorimotor area acts as a mediator of release
from alpha inhibition. We found decreased network efficiency
in the alpha band during MR, and no change in the gamma,
theta, and delta bands. The reduced global efficiency in the
alpha band suggests a reduction in the exchange of information
across the brain in that band. Klimesch (2012), posited that
the magnitude of alpha desynchronization reflects the degree of
cortical activation because lower alpha power releases inhibition,
and we found a stronger relationship between MSE and mu
desynchronization when global alpha efficiency was lower during
action observation. Since alpha oscillations are associated with
inhibiting neural networks (Klimesch et al., 2007; Jensen et al.,
2014), our finding of increased complexity in themu band during
mu desynchronization and decreased global alpha network
efficiency, may indicate decreased alpha inhibition during action
observation; an unattainable observation when looking at the
power spectrum alone.

CONCLUSIONS

Our current study suggests that the desynchronization of mu
over the sensorimotor area during the observation of an object-
oriented action results in previously unexplored changes to
nonlinear brain dynamics. The degree to which MSE measured
in the mu band increases during action observation, may be
related to individual differences in basal complexity leading to
a dampening of local alpha and global alpha inhibition. Our
findings suggest that increased complexity in the sensorimotor
area reflects an increase of local information capacity, thus
enabling successful processing of stimulus-related information,
by triggering a decrease in alpha inhibition. These findings
encourage future incorporation of measures of nonlinearity into
analysis of MR to improve understanding of how the brain
processes information.
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The field of brain connectomics develops our understanding of the brain’s intrinsic

organization by characterizing trends in spontaneous brain activity. Linear correlations

in spontaneous blood-oxygen level dependent functional magnetic resonance imaging

(BOLD-fMRI) fluctuations are often used as measures of functional connectivity (FC), that

is, as a quantity describing how similarly two brain regions behave over time. Given the

natural spectral scaling of BOLD-fMRI signals, it may be useful to represent BOLD-fMRI

as multiple processes occurring over multiple scales. The wavelet domain presents a

transform space well suited to the examination of multiscale systems as the wavelet basis

set is constructed from a self-similar rescaling of a time and frequency delimited kernel.

In the present study, we utilize wavelet transforms to examine fluctuations in whole-brain

BOLD-fMRI connectivity as a function of wavelet spectral scale in a sample (N = 31)

of resting healthy human volunteers. Information theoretic criteria measure relatedness

between spectrally-delimited FC graphs. Voxelwise comparisons of between-spectra

graph structures illustrate the development of preferential functional networks across

spectral bands.

Keywords: resting state, functional magnetic resonance imaging, functional connectivity, wavelet packet

transform, mutual information, clustering

INTRODUCTION

The advent of functional magnetic resonance imaging (fMRI) offers an unprecedented view into
normal brain function (Ogawa et al., 1990; Bandettini, 2012). One of the earliest uses of fMRI was to
localize areas of the brain involved in experimentally defined tasks. Changes in blood-oxygen level
dependent (BOLD) signals were statistically compared between task and control states (Belliveau
et al., 1991). However, these task-related activations account for relatively small deviations (5–10%)
from baseline metabolism (Raichle and Mintun, 2006). Biswal et al. (1995) analyzed the structure
of the BOLD signal’s spontaneous fluctuations to discover that temporal correlations in the low-
frequency BOLD signal demarcate the same regions of the brain as activated during certain tasks.
Mapping networks of “functional connectivity” (FC) based on intrinsic BOLD correlations has
since become a powerful tool for neuroscience research. Among normal adults, contiguous brain
networks (visual network, somatomotor network, cerebellar network, etc.) and networks composed
of multiple disconnected regions (the default mode network, the dorsal attention network, etc.) are
non-invasively identified through FC-fMRI (Fox et al., 2005; Vincent et al., 2008; Smith et al., 2009;
Yeo et al., 2011).
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Spontaneous BOLD fluctuations have been shown to match
a 1/f-type scaling of frequency, f , to power spectral density, S:
S
(

f
)

∝ 1/f γ (He, 2014). The spectral exponent, γ , has a
value of between 0.5 and 1 in BOLD data (Bullmore et al., 2004;
Herman et al., 2011). The physiological significance of 1/f-type
scaling of brain signals is hotly debated. Conceptually, natural
1/f-type systems emerge as large-scale realizations of many
granular and self-similar details. For instance, the 1/f-distributed
BOLD signal has been demonstrated to be a convolution of
discrete neural signaling events with a hemodynamic response
function (Logothetis et al., 2001). Some authors discount
multispectral features from 1/f-type signals as “scale-free”
organization—that is, the 1/f-type scaling indicates that a finite
set of properties describes the systems structures at all scales
(Goldberger et al., 2002; Mandelbrot, 2013). Other authors point
to fluctuations in the spectral exponent across brain regions
and between task and rest conditions as an indication that
variance in the multispectral evolution of brain signals bears
useful information (He et al., 2008; He, 2011, 2014). The
fact of the BOLD signal’s mean and deviant 1/f-type structure
motivates domain transformation that model spectral variability
(Medda et al., 2016; Bielczyk et al., 2017; Billings, 2017; Shakil
et al., 2017).

Perfectly scale-free systems may be constructed via
tessellations of self-similar fractals. Wavelet transforms offer
theoretically optimal domains for investigating 1/f-type signals
because of the self-similarity properties of some wavelet basis
sets (Ciuciu et al., 2012). For instance, multispectral wavelet
filters may be constructed by simply dilating and translated
a compactly supported kernel (a wavelet function, ψ). Such
continuous wavelet transforms facilitate a time-frequency
signal decomposition across a continuous range of scales
(Grossmann and Morlet, 1984; Kronland-Martinet et al., 1987;
Billings and Keilholz, 2018). Orthonormal wavelet bases (ψ,
and the scaling functions, φ) may also be constructed to afford
a discrete segmentation, and a perfect reconstruction, of an
input signal across multiple resolutions (Daubechies, 1988,
1992). Since their development, wavelets have become an
important tool in fMRI analysis (Bullmore et al., 2004). Several
methodological studies have shown the usefulness of combining
wavelet filtering with various connectivity metrics to better
characterize FC networks (Achard and Bullmore, 2007; Sato
et al., 2007; Chang and Glover, 2010; Eryilmaz et al., 2011; Guo
et al., 2012; Schröter et al., 2012). These and other methods have
been extended into investigations of fMRI based biomarkers
for neurological diseases such as addiction (Salomon et al.,
2012; Lam et al., 2013), depression (Salomon et al., 2011; Meng
et al., 2013), Parkinson’s (Skidmore et al., 2011), Alzheimer’s
(Supekar et al., 2008; Wang et al., 2013), and schizophrenia
(Alexander-Bloch et al., 2010; Bassett et al., 2012).

Abbreviations: FC, functional connectivity; fMRI, functional magnetic resonance

imaging; FC-fMRI, functional connectivity of functional magnetic resonance

imaging data; TR, repetition time; LFF, low-frequency fluctuations (0.01–0.1Hz);

MFF, mid-frequency fluctuations (0.1–0.2Hz); WPT, wavelet packet transform;

DiPj, indices for the wavelet decomposition depth (D) i and position (P) j; HC,

hierarchical clustering; VI, variation in information.

The present study seeks to characterize the BOLD signal’s
functional connectivity across multiple spectral scales. The study
is motivated by findings from multiple sources citing patterns in
FC-fMRI organization at in frequency bands within and beyond
the habitually sampled low-frequency fluctuation (LFF) range
(0.01–0.1Hz). For instance, Kalcher et al. (2014) demonstrated
large FC network variations among tissue types and gray-matter
seed-regions when tissues and ROIs were filtered into different
passbands (<0.1Hz; 0.1–0.25Hz; 0.25–0.75Hz; 0.75–1.4Hz).
Wu et al. (2008) showed that cortical networks tend to organize
in the frequency range between 0.01 and 0.06Hz while limbic
networks organize between 0.01 and 0.14Hz. Chang and Glover
(2010) showed that the frequency band harboring maximal
correlation strength within the default mode network changed
over time. Billings et al. (2017) mapped these multispectral
fluctuations onto a 2-dimensional neighborhood embedding.
The present study uses a series of data-driven techniques to
observe how BOLD FC networks differ across a multiscale
wavelet bases.

MATERIALS AND METHODS

Data Acquisition
Neuroimaging data were downloaded from the 1000 Functional
Connectomes Project website (Milham, 2013), specifically, the
Enhanced Rockland Sample Multiband Imaging Test-Retest Pilot
Dataset uploaded by the Nathan Kline Institute for Psychiatric
Research (Nooner et al., 2012; Nathan Kline Institute for
Psychiatric Research, 2013). This dataset was chosen as it was one
of the first to make use of multiband imaging (Feinberg et al.,
2010) to produce BOLD scans with short repetition times (TR =

0.645 s). Study data were derived from 32 individuals randomly
chosen from the database (n. female = 22, n. right handed = 31,
n. no handedness= 1, mean age= 44 y, std. age= 18 year). One
volunteer’s data was excluded after becoming corrupted during
preprocessing.

Each volunteer’s dataset consisted of whole-brain BOLD-
weighted functional scans acquired on a 3T Siemens Magnetome
TriTom (multiband EPI; TR 645ms; TE 30ms; 40 slices; FOV
22.2 cm × 22.2 cm; 3mm isotropic voxels; 900 images). A 32-
channel anterior/posterior head coil facilitated multiband EPI
imaging at high temporal resolution. An MPRAGE scan was
acquired to facilitate alignment (TR 1900ms; TE 2.52ms; 176
slices; FOV 25 cm× 25 cm; 1mm isotropic voxels).

Preprocessing
A series of preprocessing steps were carried out over the
entire data set to bring data points into temporal and spatial
alignment. These steps were conducted using revision 6,470 of
the Statistical Parametric Mapping MATLAB toolbox (Friston
et al., 2011). Slice timing mismatches were corrected per each
slice’s multiband acquisition time. Within-scan images were
realigned to correct for movement between repetitions. Each
scan’s mean realigned image was co-registered to the volunteer’s
structural image. Structural images were segmented into 5 tissue
classes: gray matter, white matter, cerebrospinal fluid (CSF),
bone, and soft tissue. A warping matrix was evaluated and
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used to normalize each scan from subject space to MNI space.
Images were smoothed by an 8 × 8 × 8mm Gaussian kernel.
Volunteer images were realigned to the group mean of the
functional images. A gray-matter mask was applied to all images.
Voxels included in the mask were required to have at least a
50% probability of containing gray matter across all volunteers.
Finally, motion terms were regressed from voxel time-series.

Multispectral Decomposition, the Wavelet

Packet Transform
The wavelet packet transform (WPT) is a generalization
of domain transforms utilizing orthonormal wavelet bases
(Daubechies, 1988; Coifman and Wickerhauser, 1992; Coifman
et al., 1992). The WPT is conducted via iterative convolutions of
an input signal, x(t), with paired high-pass and low-pass filters,
h and g. The filters are quadrature mirrors of one another and
divide the input into orthogonal subbands. Successive filtering
operations produce trees of wavelet packet coefficients over
d ∈ [0, 1, 2, . . . ,∞] sets of 2d evenly segmented subbands.
Application of the WPT filtering schema d times is called the
decomposition’s “depth.” The set of “positions,” p ∈ [0, . . . , 2d],
denote frequency ranges of packets at depth d. The zeroth
depth is the space of the broadband signal. Each of the
zeroth positions is a fully low-pass filter of variable width.
The range of each packet’s passband is roughly equivalent to
[

p
(

fs
2

)

2d
,
(p+1)

(

fs
2

)

2d

]

(Hz), where fs is the sampling frequency.

In the present study, the filtered data existing at depth di and
position pj is given the shorthand notation “DdiPpj.” Thus,
the D2P0 signal is quarter-band signal covering the lowest
frequencies, and the D2P3 signal is the quarter-band signal
covering the highest frequencies.

For the present study, we generated a filterbank from
Daubechies’ 7-tap wavelet. The Daubechies family of wavelets
offers the highest number of vanishing moments, or taps, for
a given support width. Increasing the number of taps sharpens
the filter edges in the Fourier domain at the cost of increased
filter length (i.e., blurring in the time domain). Daubechies’ 7-
tap wavelet produces short duration filters with good spectral
separation. Each voxel signal was filtered into packet coefficients
at all positions of WPT depths 0 through 6, generating a total
of 127 subbands. For more details on WPT theory and usage,
the reader is referred to Supplemental Figure S1, the works of
Coifman (Coifman et al., 1992), Daubechies (Daubechies, 1988,

1992), Mallat (Mallat, 1989, 1999), and Meyer (Meyer, 1993), as
well as the technical notes of Misiti et al. (2013).

Data Structure
Reorganization of individual datasets for multi-subject
hierarchical clustering was performed by concatenating the
coefficients of a single wavelet packet, voxel-by-voxel, from all
brain voxels, and from all volunteers, into spectrally-delimited
group-level datasets.

Hierarchical Clustering (HC)
HC organizes a collection of data into distinctive groups through
a deterministic algorithm. First, a distance metric, S1

(

i, j
)

, is

calculated between all i and j indices of voxel signals. In the
present study, we followed the practice of defining functional
connectivity via the Pearson correlation distance over real valued
wavelet coefficients. Voxels and/or clusters of voxels are then
clustered together, beginning with the closest voxels/clusters, and
continuing until only a single cluster exists. After each clustering
step, an updated distance metric, the linkage distance, S2

(

a, b
)

,
is calculated between all clusters a and b. For the present study,
the linkage distance is defined as the average of the correlation
distances between voxels in each cluster:

S2
(

a, b
)

=
1

(nanb)

na
∑

i=1

nb
∑

j=1

S1
(

i ∈ a, j ∈ b
)

. (1)

Variables na and nb are the number of voxels contained within
clusters a and b. Further details on hierarchical clustering may be
found in Supplemental Figure S2.

FC Networks Clustered Against

Dendrogram Inconsistencies
An HC map’s hierarchy may be visualized by plotting successive
links as a dendrogram. For the dendrograms of the present
study, voxels are ordered along the abscissa, and the linkage
distance numbers the ordinate axis. Horizontal lines are plotted
between clusters joined at a given linkage distance. Vertical
lines measure the linkage distance between ‘successive clusters.
Voxels are ordered along the abscissa in such a way as to
minimize the length of each horizontal link. This arrangement
results in the most related clusters being arranged adjacent
to one another along the abscissa, i.e., the order of voxels
along the abscissa is a linear projection of cluster similarity.
A pictorial description of this process may be found in
Supplemental Figure S2.

Concrete clusterings are produced by pruning links between
intermediate clusters in the HC dendrogram. One method of
dendrogram pruning identifies a threshold linkage distance that
demarcates a specified number of clusters. For this study, the
choice of how to prune the HC map was informed by calculating
the inconsistency value of each link in the HC map. The
inconsistency value of each link quantifies the relative change in
linkage distance(s) between each link and up to g − 1 previous
links. The higher the inconsistency value, the more dissimilar
are the elements connected at that particular link relative to the
elements connected beneath that link (Zahn, 1971). Small values
for the variable g bring the inconsistency algorithm to focus on
locally inconsistent links in the HC map. Alternatively, larger
values of g will search the area below each link to provide a more
globally representative assessments of cluster inconsistency. For
a given HC map, the kth link’s inconsistency value is calculated
as Y4

(

k
)

=
(

z
(

k
)

− Y1

(

k
))

/Y2

(

k
)

. Where Y1

(

k
)

is the mean

of the linkage distances for the kth link and the first g − 1 links
beneath it. The quantity Y2

(

k
)

is the standard deviation of the kth

set of linkage distances. The quantity z(k) is the linkage distance
of the kth link. Having set the g-value to perform either a local
(g = 2) or a global search (g ≫ 2), we select a threshold level
of inconsistency values above which to remove all of the most
inconsistent links, and all of their dependents. By pruning the
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HC tree along natural cleavage points, natural clusterings may be
better resolved.

Quantifying FC Network Similarity
We utilized a mutual information-based criterion to compare
parcellations of FC networks. Specifically, we use Marina Meila’s
normalization for mutual information between clusterings called
the variation in information (VI) (Meilǎ, 2007):

VI
(

C′,C′′
)

=
[

H
(

C′
)

− I
(

C′,C′′
)]

+
[

H
(

C′′
)

− I
(

C′,C′′
)]

.(2)

Here, H is the entropy of a clustering, H (C) =

−
∑k

i=1 P (i) log2P (i), with P (i) the probability, |Ci|

n , of
choosing a voxel from the ith cluster in C from all n
voxels. The term I is the mutual information between
clusterings, I

(

C′,C′′
)

=
∑k

i=1

∑l
j=1 P

(

i, j
)

log2
P(i,j)

P(i)P(j)
, where

P
(

i, j
)

=
|C′

i∩C
′′
j|

n . The first term in equation (2) may be thought
of as how much information is lost when going from clustering
C’ to C”. The second term is then how much information is left
to be gained when going from C’ to C” (Wagner and Wagner,
2007).

Voxelwise Comparisons of FC Networks
One important question to ask when comparing multispectral
realizations of FC networks is how specific brain regions
contribute to whole-brain network variability. The approach used
in the present study characterized voxelwise connectivity as the
degree of overlap between each voxel’s nearest neighbors, as
expanded between spectrally delimited FC graphs. Specifically,
the Jaccard distance compared how similar the nearest 5% of
correlating voxels are in each subband network:

JDvw =
#
[(

vj 6= wj

)

∩
((

vj 6= 0
)

∪
(

wj 6= 0
))]

#
[(

vj 6= 0
)

∪
(

wj 6= 0
)] . (3)

The Jaccard distance quantifies the percentage of binary elements
that differ between sets v and w. Results were reported as the
average voxel-wise Jaccard distance across volunteers. Analysis
was limited to the D6P1 (12–24 mHz), D5P1 (24–48 mHz), D4P1
(48–97 mHz), D5P4 (97–121 mHz), D5P5 (121–143 mHz), and
D4P3 (141–194 mHz) packets because potentially divergent FC
networks were consistently produced by packets in these ranges
(see Discussion and Results). Each packet graph was compared to
the graph constructed from wideband BOLD images. Wideband
images were generated from the inverse WPT of only the six
aforementioned packets (coefficients from other packets were set

to zero before taking the inverse).

RESULTS

Functional Connectivity Maps Across

Spectra
To understand the overall variation of FC-fMRI networks across
spectra, Figure 1 displays their cross-sectional views. Owing
to space limitations, only a subset of packet networks are
shown. Displayed packets follow the discrete wavelet transform
schema, a multiresolution filter bank spanning the full spectral

FIGURE 1 | Illustrates the similarities and differences between functional

connectivity networks across spectra. Each clustering contains 355 ± 4

clusters (see Supplemental Figure 3). Coloration is a projection from each

cluster’s location on its dendrogram onto a 1D colorbar (see

Supplemental Figure 2).

range without overlap. Each subband network was realized as
a clustering with 355 ± 4 clusters. The number of clusters was
derived upon consultation with the inconsistency values across
packets (g >> 2, for a global search). These data are provided in
Supplemental Figure S3.

Both similarities and differences exist in the networks
produced within each subband. Whereas FC networks in the
LFF range possess many of the networks expected from previous
studies—including a default mode network, a somatomotor
network, frontal and visual networks, etc.—such networks
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become less defined at frequencies above 0.2Hz. Rather, these
frequencies produce FC networks with increased segmentation
among midbrain and brainstem regions, and with reduced
segmentation among cortical regions. A category of mid-
frequency fluctuations (MFF) (0.1 – 0.2Hz) displays a mixture of
increased midbrain/brainstem segmentation with some cortical
segmentation (e.g., the bilateral angular gyri of the default mode).
DC frequency information also resembles known cortical brain
networks; however, the networks appear blurred by comparison
to networks constructed with LFF’s.

Variation in Information (VI) Across Spectra
We can quantify the relatedness between spectrally delimited
functional connectivity networks by assessing the VI between
clusterings. A triangle plot of inter-spectral FC BOLD
network VI distances is provided in Supplemental Figure S4.
These distances are used in a hierarchical clustering
(Supplemental Figure S5). Links were quantified via the
“average” linkage metric. The plots in Figure 2 show the results
from pruning the dendrogram in two ways. Part A of the figure
shows a coarse clustering from pruning the link having the single
highest local inconsistency value (g=2). Part B of the figure
shows a finer clustering that removes the first inconsistency value
(g>>2) between any two packets in the LFF range.

Part A of the figure shows that the single largest jump

in linkage distance occurs when connecting the D5P4 and
D5P5 packets. This is an indication that sharp differences exist
between FC networks above and below approximately 0.12Hz.
Alternatively, if inconsistency values are stabilized by averaging

FIGURE 2 | Plots hierarchical clusterings of the similarities between functional

connectivity networks across spectra. The distance metric was variation in

information between concrete clusterings (Intermediate results are provided in

Supplemental Figures 3, 4). To better assess the decomposition’s natural

segmentation, the dendrogram was pruned at a coarse scale (A) and at a fine

scale (B) (Associated dendrograms are displayed in Supplemental Figure 5).

Overall, networks segment into passbands. Sub-bands containing DC

frequencies self-associate. Granular differences among high frequency

packets are likely artifactual owing to increased noise at high frequencies.

the change in linkage distances over a large number of previous
links (g>>2), FC networks are shown to segment into a
multiresolution filterbank of passbands (i.e., the set of wavelet
packets in the first position of each depth). In both clusterings,
FC networks containing DC frequencies form a separate group.

Taken as a whole, FC networks appear to segment into at least
four types when drawing from different spectral components: (1)
networks of 0.01 to 0.1Hz LFF’s, (2) networks of >0.2Hz high-
frequency fluctuations, (3) networks of 0.1–0.2Hz MFFs, and (4)
networks of DC frequency fluctuations. Additional varieties of
FC networks may exist within finer passbands in the LFF and
MFF ranges.

Voxelwise Connectivity Between Spectra
A good way to assess differences between multispectral FC-fMRI
networks is to observe differences in the group membership of
individual voxels. To this end, we calculated Jaccard distances
between the nearest neighbors (via correlation) of each voxel,
in each spectral subband, vs. the correspond voxel from
wideband filtered images. Slice representations of voxelwise
network comparisons are shown in Figure 3. A series of
tables detailing the 20 regions with the most similar and
the least similar connectivity patterns from each subband
are provided in Supplemental Tables 1–6. Histograms of the
mean Jaccard distances are provided in Supplemental Figure S6.
Supplemental Figure S7 displays standard deviations of Jaccard
distances for reference.

Regions showing marked similarity across spectra include
many areas of the cerebral cortex, including, the intracalcerine
cortex, the lateral occipital cortex, the lingual gyrus, precuneous,
precentral gyrus, frontal pole, and post-central gyrus. LFFs
from the D5P1 packet (0.24 and 0.48Hz) show the strongest
voxelwise similarity with the spectral average (mean JD ∼=

0.5). Networks produced by frequencies above and below the
D5P1 band show less similar voxelwise correlation in cortical
regions. Additionally, these spectra show many differences in the
correlation neighborhood of voxels in regions of the midbrain,
basal ganglia, and the temporal lobe, including, the globus
palladus, the thalamus, the hippocampus, the caudate, and the
temporal pole. The most extreme deviations from the spectral
average are observed from MFF packets above 0.12Hz. The
mean voxelwise Jaccard distance is ∼0.8 for packets D5P5
(121–143 mHz) and D4P3 (141–194 mHz). The the mean
JD is ∼0.6 for the four other lower frequency packets (see
Supplemental Figure S6).

DISCUSSION

It is common practice in fMRI studies to band-pass filter signals
to the LFF range (Biswal et al., 1996; Murphy et al., 2013).
The present study confirms the utility of this practice while
providing insights into its limitations. Figure 2A Demonstrates
that the connectivity structure of BOLD fluctuations can form a
homogenous LFF group. But this LFF group structure is seen as
homogenous only relative to a sharp change in network structure
occurring at ∼0.12Hz. An alternative perspective which takes
more information about the evolution of each cluster into
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FIGURE 3 | Identifies similarities and differences in voxelwise functional

connectivity graphs among selected sub bands. Variations are relative to the

mean across the six sub bands. Cool colors indicate voxels sharing similar

functional connectivity graphs. Warm colors demarcate dis-similarly connected

voxels. Data histograms are provided in Supplemental Figure 6. Images

displaying data standard deviations are provided in Supplemental Figure 7.

The supplemental tables provide neuroanatomical labels for the most similar

and dissimilar regions.

account (Figure 2B) demonstrates that LFF networks may form
two distinct networks before differences in an MFF network
are observed. A look at the associate dendrogram shows that
both ways to segment networks in the 0.01–0.2Hz range may
be equally valid (Supplemental Figure S6). Indeed, the LFF and
MFF networks cluster together later in the dendrogram. Similar
trends are observed in previous studies using images from
the same volunteers but with different EPI parameter choices
(Billings, 2017).

While heterogeneous network properties across spectra are
often observed in electroencephalographic measurements (Lu
et al., 2007; Mantini et al., 2007), the presence of multispectral
network diversity in the BOLD signal is only recently beginning
to emerge. Zuo et al. (2010) and Xue et al. (2014) observed

differential activation patterns in slow-4 (0.027–0.073Hz ∼

D5P1) vs. slow-5 (0.01–0.027Hz ∼ D6P1) FC-fMRI activity.
Similarly, Thompson and Fransson (2015) demonstrated that
the centers of graph-theoretic hubs in cortical networks are
frequency dependent.

Having oversampling multispectral BOLD FC clusterings, the
present study selected a set of 6 passbands with potentially
distinct network properties (Figure 3). From these 6 passbands,
it appeared that a subband of the LFF range—the D5P1 packet
network—was very similar to the wideband average. As found by
Wu et al. (2008), networks in higher (MFF) frequencies tended
to hold unique connectivity structures in limbic regions, e.g., the
orbitofrontal cortex, hippocampus, and temporal pole. Indeed,
as MFFs and high frequency fluctuations acquire increased
differentiation among brain stem and midbrain regions, they
appear to lose some expected connectivity structures in
cortical regions (Figure 1). Notwithstanding, Boubela et al.
(2013) observed prototypical resting-state networks in BOLD
data sampled above 0.25Hz. Kalcher et al. (2014) confirmed
the presence of long-range functional connectivity at high
frequencies from rapid TR BOLD data.

At the low end of the LFF frequency range (0.01–0.024Hz,
D6P1 packet) cortical networks were similar to the wideband
average. By comparison, DC frequency networks appear blurred.
The blurring is likely from a noise source as DC frequency
networks structures are surprisingly similar despite the presence
of any higher frequency information. Birn et al. (2013) noted
that longer scans increase test-retest reliability of FC studies.
Methods from the present study may be adapted to investigate if
and how very slow brain rhythms (< 0.01Hz) coordinate unique
functional networks.

The present study observed that FC networks establish the
appearance of limbic MFF networks and cortical LFF networks.
Hypothetically, this is an indication that slow cortical dynamics
emerge from rapid information exchange among deeper brain
structures. If this is the case, then the difference maps in Figure 3

may show the accumulation of rapid (>0.12Hz) limbic activity
into slow (0.024 and 0.048Hz) cortical structures. Alternatively,
MFF BOLD signaling could be a kind of structured noise.

The presence of noise confounds is the chief concern limiting
the interpretation of study results. The gray-matter mask of
the present study included any voxel having at least a 50%
probability of containing gray matter in all volunteer images.
Some voxels were thereby included from outside gray matter
(e.g., from cerebrospinal fluid, white matter, and extra-cerebral
tissues). For instance, in Figures 1, 3, voxels at the edges of
gray matter regions appear to segment into their own clusters.
Some anatomical locations labeled in the supplemental tables
mark points in these clusters. Better segmentation of gray matter
regions may remove these confounds. None-the-less, the smooth
transition from limbic to cortical network types as brain rhythms
slow was observed in pairwise correlations between very many
gray matter voxels.

Observations of multispectral variability in brain FC are
contrary to the expectation that 1/f-type systems are scale-
free. There are, however, other interpretations that admit to
the simultaneous presence of 1/f-type power spectral densities
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alongside unique multiscale structures. Namely, unique large-
scale structures may be emergent properties of multiscale
granular activities. In the case of the brain, very many binary
action potentials must somehow sum to become a lifetime
of thoughts and feelings. Theoretically, the capacity for a
system to share information across scales is a measure of the
system’s complexity (Wolfram, 2002). Natural complex systems
like the brain must simultaneously build large-scale structures
from granular processes and fine-tune multiscale functions with
subband information. The unique information bearing capacity
of both granular and coarse measures of natural complex
systems should therefore encourage FC-fMRI studies to leverage
multispectral basis transforms (Billings and Keilholz, 2018).
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Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically,

whose chaotic, dynamic, complex, and dissipative nature implies that non-linear

approaches could uncover some mechanism of sleep. Based on well-established

complexity theories, one hypothesis in sleep medicine is that lower complexity of brain

waves at pre-sleep state can facilitate sleep initiation and further improve sleep quality.

However, this has never been studied with solid data. In this study, EEG collected

from healthy subjects was used to investigate the association between pre-sleep

EEG complexity and sleep quality. Multiscale entropy analysis (MSE) was applied to

pre-sleep EEG signals recorded immediately after light-off (while subjects were awake)

for measuring the complexities of brain dynamics by a proposed index, CI1−30. Slow

wave activity (SWA) in sleep, which is commonly used as an indicator of sleep depth or

sleep intensity, was quantified based on two methods, traditional Fast Fourier transform

(FFT) and ensemble empirical mode decomposition (EEMD). The associations between

wake EEG complexity, sleep latency, and SWA in sleep were evaluated. Our results

demonstrated that lower complexity before sleep onset is associated with decreased

sleep latency, indicating a potential facilitating role of reduced pre-sleep complexity in

the wake-sleep transition. In addition, the proposed EEMD-based method revealed an

association between wake complexity and quantified SWA in the beginning of sleep

(90min after sleep onset). Complexity metric could thus be considered as a potential

indicator for sleep interventions, and further studies are encouraged to examine the

application of EEG complexity before sleep onset in populations with difficulty in sleep

initiation. Further studies may also examine the mechanisms of the causal relationships

between pre-sleep brain complexity and SWA, or conduct comparisons between normal

and pathological conditions.
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INTRODUCTION

Sleep medicine has been increasingly recognized as an important
discipline in recent decades; however, the current limitations
of electroencephalography (EEG)-based sleep analysis and
quantification may have led to ongoing controversy. Sleep is a
complex physiological process that involves functions of every
organ system at different levels. Alternative metrics have been
proposed, aiming to provide insights into the dynamics of
sleep. In sleep medicine, EEG is one of the most frequently
recorded biological signals, but it is mainly used as the basis
for scoring sleep stages in sleep laboratories and clinics, as
sleep is classified as either rapid-eye-movement (REM) sleep or
non-REM (NREM) sleep (including sleep stages N1, N2, and
N3). Owing to the non-linear and dynamic features of EEG,
non-linear approaches may lead to better understanding of the
profound complexity of sleep.

Non-linear dynamics theory provides new opportunities for
understanding the behavior of EEG (Acharya et al., 2005).
Previously, EEG has been used tomark features of sleep (He et al.,
2005; Janjarasjitt et al., 2008; Yeh et al., 2013; Abeysuriya et al.,
2014), and it has been reported that nonlinearity depends on
sleep stage (Shen et al., 2003). Recently, studies have increasingly
used non-linear methods to investigate the nature of brain
activities during sleep (Ma et al., 2018), but there are still
limitations in the existing literature. The full advantages of non-
linear approaches have yet to be determined (Ma et al., 2018).

According to the complexity theories, somewhat higher
complexity is associated with relatively improved health
conditions and greater chances of survival (Costa et al., 2002a,
2005), while a reduction in or loss of complexity is often
associated with imbalance or disturbed physiological conditions,
usually implying disease or aging (Goldberger et al., 2002). In
many studies, complexity-based metrics of the dynamics of a
physiological system have demonstrated better prognostic power
(Mejaddam et al., 2013; Lin et al., 2014; Vandendriessche et al.,
2014; Moshirvaziri et al., 2016; Chiu et al., 2017; Ma et al.,
2017). The complexity theories also suggest that different levels
of complexity can indicate whether a system is under stress or
relatively relaxed (Costa et al., 2002a, 2005; Goldberger et al.,

2002). In a novel application of complexity theory, Casali et al.
found that measuring complexity can provide a reliable way
to discriminate the level of consciousness in single individuals
during wakefulness, sleep, and anesthesia, as well as in patients
who had emerged from coma and recovered a minimal level
of consciousness (Casali et al., 2013). When complexity is used
in the evaluation of sleep, studies have shown that complexity
indices (e.g., entropy) decrease as sleep gets deeper, and reach
their lowest level when slow wave sleep (SWS) occurs (Ma
et al., 2018). Moreover, Abásolo et al. found that activated brain
states—wakefulness and REM sleep—are characterized by higher
complexity compared with NREM sleep (Abásolo et al., 2015).
Based on these well-established theories and previous studies,
investigating the sleep-related temporal structure of brain activity
based on measures such as multi-scale entropy (MSE) (Costa
et al., 2002a, 2005), the perturbational complexity index (Casali
et al., 2013), or Lempel-Ziv complexity (Abásolo et al., 2015)

should provide insights that go beyond those obtained with
conventional techniques for signal analysis.

In sleep medicine, one question that remains unsolved is
whether the complexity of brain waves in the pre-sleep state or
during sleep latency can determine or predict sleep quality. In
fact, most people with insomnia complain of being unable to
fall asleep because they cannot switch off their “racing” mind
(Lichstein and Rosenthal, 1980; Espie et al., 1989; Harvey, 2000).
Under high mental load, the sense of urgency about falling asleep
adversely affects sleep onset latency (Ansfield et al., 1996). Since
stressful brain activities always show higher complexity, we can
reasonably hypothesize that lower complexity of brain waves
at pre-sleep status can facilitate sleep initiation, reduce sleep
latency, and further lead to a high quality of sleep characterized
by sufficient deep sleep or SWS.

Slow wave sleep SWS is defined as the state in which large-
amplitude, low-frequency waves are dominant and it occurs
when delta rhythm is dominant in the EEG signal. Slow
wave activity (SWA), which is equivalent to delta activity
and encompasses components of the EEG signal in the
frequency range of ∼0.5–4.5Hz, is considered to be one of
the most important functional EEG parameters during sleep
(Brunner et al., 1990; Peter Achermann and Borbély, 2011).
Under physiological conditions, SWA is commonly used as a
quantitative measure of NREM sleep dynamics and an indicator
of sleep depth or sleep intensity (Borbély and Achermann, 1999);
Olivier et al. (2010). Fast Fourier transform (FFT) analysis is
the most popular method for quantifying SWA. However, it
has intrinsic limitations in capturing the underlying dynamics
of brain oscillations (Ma et al., 2018). First, FFT analysis takes
complex EEG oscillations, composed of sine waves with different
frequencies (Campbell, 2009), and decomposes them into
frequency component bands, such as beta, alpha, theta, and delta.
However, it has long been known that brain oscillation is not
a linear combination of these arbitrary frequency components,
a property called “nonlinearity” (Bedard et al., 2006). Second,
FFT analysis assumes that none of these frequency components
changes in amplitude or shape as time evolves, which is clearly
against what has been observed in complex brain oscillations,
a property called “nonstationarity” (Campbell, 2009). In recent
years, ensemble empirical mode decomposition (EEMD) has
been adopted to solve this problem (Wu and Huang, 2005).
EEMD is an adaptive and noise-assisted data analysis method
that is based on local characteristics of the data, requiring no
predefined basis. EEMD decomposes an original non-linear and
non-stationary signal into a series of simple intrinsic mode
functions (IMFs), and has the advantage that every IMF can be
physically meaningful via the quantification of the instantaneous
amplitude and frequency (Wang et al., 2012). EEMD has become
popular for analyzing EEG signals in recent years (Chen et al.,
2010, 2014; Kuo et al., 2011; Bizopoulos et al., 2013; Al-Subari
et al., 2015a,b; Kanoga and Mitsukura, 2015; Bai et al., 2016;
Zeng et al., 2016; Gotz et al., 2017; Hassan and Bhuiyan, 2017).
Employing EEMD to quantify SWA might lead to additional
findings.

Therefore, the aim of the present study was to examine
whether the complexity of brain waves in the pre-sleep state
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is associated with sleep quality. We hypothesized that lower
complexity of brain waves before sleep may play a potential
facilitating role in wake-sleep transition and improve the
subsequent sleep depth. To this end, the MSE method was
applied to EEG signals recorded during the first 5min after light-
off, when the participants were still awake. Sleep latency was
determined by manual scoring, and sleep depth was quantified
by SWA using an EEMD-based approach or traditional FFT
analysis.

METHODS

Overnight Polysomnography (PSG)
Overnight polysomnography (PSG) data obtained from the
Sleep Heart Health Study-1 (SHHS-1) were used in this study.
The SHHS was a multi-center cohort study implemented by
the National Heart Lung and Blood Institute to determine
the cardiovascular and other consequences of sleep-disordered
breathing, and its characteristics have been described in detail
elsewhere (Quan et al., 1997; Redline et al., 1998). Unattended
overnight PSG was performed with a portable PS-2 system
(Compumedics, Abottsville, Australia). Sensors were placed and
equipment was calibrated during an evening home visit by a

certified technician. Data collection included C3/A2 and C4/A1
EEGs, sampled at 125Hz; right and left electrooculograms;
a bipolar submental electromyogram; thoracic and abdominal
excursions (inductive plethysmography bands); airflow (detected
by a nasal-oral thermocouple (Protec, Woodinville, WA); finger
pulse oximetry (Nonin, Minneapolis, MN) sampled at 1Hz;
electrocardiogram sampled at 125Hz; body position (mercury
gauge sensor); and ambient light (on/off, by a light sensor
secured to the recording garment). After equipment retrieval, the
data were forwarded to a central reading center (Case Western
Reserve University, Cleveland, OH) for scoring according to a
standard protocol. Finally, every 30 s epoch was scored (Thomas
et al., 2007). The polysomnographic methods, scoring protocol,
and quality assurance procedures were as previously described
(Quan et al., 1997; Redline et al., 1998; Thomas et al., 2007).

Sleep variables derived from visual scoring were calculated for
each participant, including: total sleep time (TST) (time spent
asleep between sleep onset and light-on); wake time after sleep
onset (WASO, total amount of time awake after falling asleep);
and the duration of each sleep stage, calculated as a percentage
of TST. Sleep latency, defined as the period from light-off to the
first three consecutive epochs of stage N1 sleep or an epoch of any
other stage, was also computed.

Subjects
The study included 103 healthy subjects who met the inclusion
criteria: (1) no usual daily alcohol intake; (2) no benzodiazepines
or non-tricyclic antidepressants intake within 2 weeks of the
SHHS-1 visit; (3) no history of diabetes; (4) no history of stroke;
(5) no hypertension status based on second and third blood
pressure readings or current treatment with anti-hypertensives;
(6) no self-reported hypertension; (7) no self-reported sinus
trouble; (8) no coronary angioplasty, heart failure, heart attack,
pace maker, or stroke; (9) apnea–hypopnea index, representing

the number of apnea and hypopnea events with ≥3% oxygen
desaturation per hour of sleep, of <5; (10) the entire recording
was scored, and scoring started before light-off and ended after
light-on; (11) no more than 30min of the sleep period had either
lost or unscorable EEG, respiratory, or oximetry data; (12) the
time spent on sleep was no less than 50% of the total time spent
in bed; (13) at least one epoch during each sleep stage, i.e., REM,
N1, N2, and N3; (14) sleep latency no less than 5min. See the
Supplementary Material for identifiers of the included subjects,
which were created by the National Sleep Research Resource team
for easier matching with file downloads.

The Theory of Multiscale Entropy (MSE)
MSE was introduced by Costa et al. (2002a,b); Costa et al. (2005)
to quantify the complexity of biologic systems. Entropy-based
methods characterize uncertainty about a source of information
and the probability distribution of the samples drawn from it.
The entropy increases with the degree of disorder and reaches its
maximum in completely random systems. However, an increase
in the entropy may not always be associated with an increase in
dynamical complexity. For instance, a randomized time series
has higher entropy than the original time series, although the
process of generating surrogate data destroys correlations and
degrades the information content of the original signal. This
inconsistency may be related to the fact that widely used entropy
measures are based on single-scale analysis and do not take into
account complex temporal fluctuations. Therefore, MSE has been
proposed as a method for assessing complexity by measuring the
entropy inherent in a time series over multiple time scales.

The procedures involved in calculating MSE have been well
reviewed (Costa et al., 2002a,b, 2005) and can be summarized
in the following three steps (Yang et al., 2013): (1) construction
of a coarse-grained time series according to a scale factor; (2)
quantification of the sample entropy of each coarse-grained time
series; and (3) examination of the sample entropy profile over
a range of scales. The length of each coarse-grained time series
is equal to the length of the original time series divided by the
scale factor. For scale 1, the time series is simply the original
time series. Sample entropy is defined by the negative natural
logarithm of the conditional probability that a dataset of length
N, having repeated itself within a tolerance r (similarity factor)
form points (pattern length), also repeats itself form+ 1 points,
without allowing self-matches (Richman and Moorman, 2000).

One requirement in the calculation of sample entropy is
to determine the pattern length m and similarity factor r. In
this study, we set m to 2 and r to 0.15 × SD, where SD
is the standard deviation of the analyzed time series. As 30
scales were considered and the entropy on each scale does not
necessarily have a specific physiological meaning, a complexity
index, called CI1−30, was additionally employed in the current
study. CI1−30 was defined as the mean value of the entropies
from scale 1 to scale 30, as in many other published studies
(Vieira et al., 2017). CI1−30 provides insight into the integrated
complexity of the system over the time scales of interest. See
the Supplementary Material for the MATLAB code for MSE
analysis.
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The Theory of EMD and EEMD
Empirical mode decomposition (EMD) is an adaptive data
analysis method based on local characteristics of the data,
requiring no predefined basis. The details of the method can be
found in the work of Huang (2000).

In the EMD approach, the targeted data x(t) is decomposed in
terms of IMFs, cj, i.e.,

x (t) =
∑n

j=1
cj + rn (1)

where rn is the residue of data x(t) after n number of IMFs
have been extracted. IMFs are simple oscillatory functions
with varying amplitude and frequency. In practice, the EMD
is implemented through a sifting process that uses only local
extremes, and the process stops when the residue, rn, becomes a
monotonic function from which no more IMFs can be extracted
(Huang, 2000).

However, mode-mixing, defined as any IMF consisting of
oscillations of dramatically disparate scale, can be caused by
intermittency of the driving mechanisms and obstructs the
true physical interpretations (Wu and Huang, 2005). Therefore,
EEMD was developed to alleviate this drawback, making use
of the facts that adding noise to the data can provide a
uniformly distributed reference scale, and the means of the
corresponding IMFs of different white noise series are likely
to cancel each other out. The detailed steps for EEMD are
(Wu and Huang, 2005): (1) add a white noise series to
the targeted data; (2) decompose the data with added white
noise into IMFs based on EMD; (3) repeat step (1) and
step (2), but with different white noise series each time; and
(4) obtain the (ensemble) means of corresponding IMFs of
the decompositions as the final result. The MATLAB code
for EEMD was shared by RCADA (http://rcada.ncu.edu.tw/
research1.htm).

A Hilbert transform can then be used to calculate the
instantaneous frequency of the IMFs (Feldman and Braun, 1995).
For a IMF c(t), one can define its Hilbert transform ĉ (t) and
analytic signal z (t) as shown in Equation (2) and (3), respectively.

ĉ (t) =

∫ +∞

−∞

c (τ ) h (t − τ) dτ =
1

π

∫ +∞

−∞

c (τ )

t − τ
dτ (2)

z (t) = c (t) + i× ĉ (t) = A(t)ei∅(t) (3)

Here, ∅(t) is the instantaneous phase (IP) of c(t). The
instantaneous frequency f (t) is the derivation of IP and t shown
in Equation (4):

f (t) =
1

2π

d∅(t)

dt
(4)

The Computation of SWA Based on EEMD
Both FFT and EEMD were used for the decomposition of the
EEG signal into its constituent frequency components. Once the
original EEG signal x(t) was decomposed to n number of IMFs
(denoted as ci) and a residue based on EEMD, a different way to

measure SWA (denoted as EEMD-SWA) could be proposed, as
shown in Equation (5).

EEMD− SWA =
∑l

i=k
std(ci)/

∑n

i=1
std(ci) (5)

In Equation (5), function std(ci) refers to the standard derivation
of IMF ci, and the parameters k and l are determined by the orders
of the IMFs that fall into the frequency range of SWA, according
to the instantaneous frequency range of each IMF. Thus, EEMD-
SWA actually reflects the relative power of slow waves in the
signal.

Framework of the Current Research
In this study, EEG signals from derivation C3/A2 was imported
into MATLAB for offline analysis. For each subject, two key time
points were identified, light-off and sleep onset. Figure 1 briefly
shows the analysis protocol. The first 5min EEG immediately
after light-out was analyzed by MSE.

On the other hand, SWA was calculated at the beginning
of sleep episodes (90min after sleep onset) and over the whole
night’s sleep after sleep onset, respectively. EEMD were applied
to each 30 s EEG epoch in each time scope. As each 30 s EEG
epoch is a time series with 3750 data points, the values of EEMD-
SWA for all the epochs in each duration were calculated and
averaged, resulting in two metrics, denoted as EEMD-SWA90

and EEMD-SWAall, for each participant. For comparison, the
traditional FFT-based evaluation of SWAwas applied in a similar
way and resulted in another two metrics, denoted as FFT-
SWA90 and FFT-SWAall, respectively. In the calculation of FFT-
SWA90 and FFT-SWAall, power spectral density was estimated
via the period-gram procedure with direct current filtering and
Hamming windowing. SWA for each 30 s epoch was calculated
by taking the power in the 0.5–4.5Hz range as a percentage of the
total signal power in the frequency range (0.5–62.5Hz). See the
Supplementary Material for the MATLAB code for FFT-SWA.

Then, the correlations between the proposed complexity
index CI1−30 and sleep latency, EEMD-SWA90, EEMD-SWAall,
FFT-SWA90, and FFT-SWAall, were evaluated to investigate the
associations between EEG complexity and proposed measures
during the wake-sleep transition and overall sleep. When
sleep pressure accumulates, slow brain waves gradually become
significant or dominant, which may be in line with a decline in
EEG complexity. Inspired by this hypothesis, we investigated the
association between brain wave complexity and sleep pressure
during pre-sleep wakefulness. Theta activity (4–8Hz), which
is generally considered as a marker for the build-up of sleep
pressure (Fattinger et al., 2017), was thus measured by averaging
the FFT-based relative power (percentage of the power in the
frequency range 0.5–62.5Hz, denoted as Ptheta in this study) for
all the 30 s EEG epochs in the first 5min after light-off, the same
time course as that used for the MSE analysis.

We further analyzed whether early SWA in sleep can be
predicted by the pre-sleep EEG complexity using median
split subgrouping, where we divided the subjects by ranked
SWA into top 50% vs. bottom 50% groups according to
EEMD-SWA90 or FFT-SWA90. Such a strategy of median
split has an enormous popularity in consumer research,
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FIGURE 1 | Schematic diagram of the timeline regarding EEG analysis.

psychology, and numerous other fields (Iacobucci et al.,
2015a,b). For instance, Nordström et al. investigated whether
age is a suicide risk factor for each sex by median split
(Nordström et al., 2010). In addition to that, the subgrouping
in the current study provided us an intuitive way to
investigate the statistical difference in the values of sample
entropy between the two groups over multiple time scales,
making a meaningful complementation to CI1−30 used in
regressions.

Statistical Analyses
SPSS version 19.0 (IBM SPSS Statistics, NY, United States) and
MATLAB (MathWorks R2014a, Inc., Natick, MA, United States)
were used for the statistical analyses. The demographics and
sleep variables derived from visual scoring were reported as mean
with standard deviation if data were normally distributed, and as
median with lower and upper quartiles otherwise. Comparisons
of the demographics and sleep variables between subgroups from
the median split were assessed by chi-square test for categorical
variables and unpaired t-test or two-sided Wilcoxon rank sum
test for continuous ones. A p < 0.05 was considered statistically
significant.

Since sleep may vary with age and sex, and high body mass
index (BMI) is a strong risk factor for sleep disorders (Hou et al.,
2016), these three variables were included as covariates in the
statistical test for correlation between pre-sleep EEG complexity
and sleep latency, as well as subsequent sleep quality. General
linear models (GLM) were thus employed for the statistical
analyses in SPSS 19.0 between CI1−30 and sleep latency, EEMD-
SWA90, EEMD-SWAall, FFT-SWA90, FFT-SWAall and Ptheta,
controlling age, gender, and BMI.

For each scale in the MSE analysis, the statistical difference
in the sample entropy between the EEMD-SWA90 top 50% and
bottom 50% groups, as well as between the FFT-SWA90 top 50%

and bottom 50% groups, were investigated by covariance analysis,
controlling age, gender, and BMI. The false discovery rate (FDR)
procedure was included for multiple testing.

RESULTS

Modes Analyses From EEMD
In practice, there are three parameters that should be determined
for the application of EEMD: the ratio of the standard deviation
of the noise to the target data (denoted by ε), the number of
prescribed IMFs (denoted by NI), and the number of ensemble
members (denoted by NE). In this study, ε was set to 0.1, NI
to 7, and NE to 200. Figure 2 shows a typical result of EEMD
on a 30 s EEG epoch derived from a subject in the current
study.

Further estimation of the frequency range of IMFs was
performed on all epochs in the current study according to
Equations (2–4). For each IMF signal, Table 1 lists its frequency
range, which uses two quartiles, the 2.5 and 97.5 centiles, and
leaves 5% of normal outside the “normal range.” As shown
in Table 1 and Figure 2, the IMF1 decomposition was mainly
associated with the brain beta rhythm (13–30Hz), while IMF2
decomposition was associated with the alpha rhythm (8–13Hz),
IMF3 decomposition with the theta rhythm (4–8Hz), and IMF4,
IMF5, IMF6, and IMF7 decompositions with the delta rhythm
(<4Hz). Therefore, in this study, we set the values of k, l, n in
Equation (5) to be 4, 7, and 7, respectively.

Demographics and Sleep Variables Derived

From Visual Scoring
As shown in Table 2, the sample had a median age of 57 years
and mean BMI of 25.6 kg/m2. A majority of the participants
were identified as being of normal weight (BMI: 18.5–25 kg/m2)
or overweight (BMI: 25–30 kg/m2). The standard PSG scoring
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FIGURE 2 | The EEMD results of a 30 s EEG signal derived from a 69-years-old woman (subject ID in SHHS-1 is 200301). x(n) is the original EEG signal, ci (i =

1,2,…,7) are the IMFs, and r7 is the residual part of data x(n) after 7 IMFs were extracted.

TABLE 1 | Frequency range in seven IMFs of EEMD.

Signal Frequency

range (Hz)

Associated

brain rhythm

IMF1 25.2 [20.2–38.1] beta

IMF2 12.1 [10.3–16.9] alpha

IMF3 6.3 [5.5–8.8] theta

IMF4 3.5 [2.8–4.9] delta

IMF5 2.1 [1.3–3.5] delta

IMF6 1.5 [0.6–3.5] delta

IMF7 1.1 [0.3–3.9] delta

The frequency range is expressed as median [the 2.5 centile - the 97.5 centile].

results revealed that the mean TST was 371min, while the
percentages of scored sleep stages N1, N2, N3, and REM sleep
were ∼ 4, 55, 20, and 21%, respectively. These results are
consistent with the general sleep architecture in adults (Berry,
2012).

The demographic characteristics were balanced between the
top and bottom 50% groups, with no significant differences
regarding age, gender, or BMI. Sleep variables for the EEMD-
SWA90 top 50% and bottom 50%, as well as for the FFT-SWA90

top 50% and bottom 50%, are also shown in Table 2. Between
the groups divided by EEMD-SWA90, significant differences were
found between REM sleep and SWA. However, for the FFT-
SWA90 top 50% and bottom 50% groups, in addition to the
quantified SWA, WASO, N1, N2, and N3 also showed significant
between-group differences. For studied measures (Table 2), no
significant differences were found between the two partitions

when the same grouping rules (top 50% vs. bottom 50%) were
applied.

Association Between EEG Complexity and

Sleep Measures
As shown in Table 3, GLM revealed a significant positive
correlation between CI1−30 and sleep latency (r = 0.328, p =

0.001), indicating that higher complexity level was moderately
associated with prolonged sleep latency.

In the regression model, where we adjusted for age, gender,
and BMI, EEMD-SWA90 showed a statistical trend for a weak
correlation with CI1−30 (r = −0.190, p = 0.06), whereas
no association was found between FFT-SWA90 and CI1−30.
However, for the whole-night data, no correlation was found
between CI1−30 and EEMD-SWAall or FFT-SWAall. Furthermore,
the GLM model, controlling age, gender, and BMI, revealed a
significant positive correlation (r = 0.373, p = 0.0001) between
Ptheta and CI1−30.

When sample entropies on scales 1–30 were compared
between the EEMD-SWA90 top 50% and bottom 50% groups,
significant differences (controlled by the FDR procedure) were
found on all the chosen scales, except that of scale 1. As presented
in Figure 3, the group with the higher EEMD-SWA90 in sleep
showed a reduced complexity of pre-sleep brain dynamics. When
the FFT-SWA90 top 50% and bottom 50% groups were compared,
as shown in Figure 4, a similar negative correlation was observed,
but significant differences (p < 0.05) between the two groups
were found only on the short time scales (scales 2–9). However,
after FDR controlling, no significant differences remained for any
of the 30 scales, indicating that the EEMD-based method might
provide a more robust way to measure SWA.
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TABLE 2 | Demographics and sleep variables derived from visual scoring.

All EEMD-SWA90 FFT-SWA90

N = 103 top 50% N = 52 bottom 50% N = 51 top 50% N = 52 bottom 50% N = 51

Gender 19M/84F 6M/46F 13M/38F 7M/45F 12M/39F

Age (years) 57.3 ± 11.4 58.8 ± 11.9 55.8 ± 10.8 57.6 ± 11.9 57.0 ± 11.0

Body mass index (kg/m2) 25.6 ± 4.1 25.8 ± 4.3 25.3 ± 4.0 25.6 ± 4.3 25.6 ± 4.0

Total sleep time (min) 370.5 ± 58.6 379.6 ± 58.2 361.1 ± 58.0 380.8 ± 61.2 360.0 ± 54.3

Wake after sleep onset (min) [20.5,62.5] [19.0,55.8] [22.9,69.9] [18.3,52.0] [25.8,67.9]*

Stage N1 sleep (%) [2.6,5.2] [2.6,4.7] [2.5,5.3] [2.4,4.2] [2.7,5.7]*

Stage N2 sleep (%) 54.9 ± 10.9 53.1 ± 9.3 56.8 ± 12.2 51.8 ± 9.0 58.2 ± 11.9*

Stage N3 sleep (%) 20.3 ± 11.8 21.4 ± 11.3 19.1 ± 12.2 23.3 ± 11.2 17.2 ± 11.6*

REM sleep (%) [16.7,24.6] [18.8,25.4] 19.4 ± 5.3* 21.2 ± 4.9 19.8 ± 5.9

Sleep latency (min) [10.0,34.0] [8.3,29.3] [10.5,34.4] [8.0,29.3] [10.6,34.4]

Slow wave activity (%) 0.744 ± 0.046 0.635 ± 0.086* 0.752 ± 0.037 0.626 ± 0.078*

Descriptive statistics were reported as mean ± standard deviation if data are normally distributed and as median [lower quartile, upper quartile] otherwise. The symbol ‘*’ indicates

significant difference (p < 0.05, unpaired t-test in the case of normally distributed data or two-sided Wilcoxon rank sum test in other case) between values of the bottom 50% and the

corresponding top 50% group.

TABLE 3 | Correlations between pre-sleep EEG complexity or demographics and sleep measures in GLM models.

Dependent

Independent CI1−30 Age Gender BMI

R P R P R P R P

Sleep Latency 0.328 0.001 0.074 0.434 0.080 0.398 −0.059 0.541

EEMD-SWA90 −0.190 0.060 0.024 0.805 0.065 0.513 0.009 0.931

FFT-SWA90 −0.165 0.103 −0.035 0.729 0.029 0.771 −0.093 0.358

EEMD-SWAall −0.017 0.863 −0.058 0.561 0.009 0.930 0.202 0.046

FFT-SWAall 0.063 0.529 −0.123 0.220 −0.051 0.607 0.125 0.217

Ptheta 0.373 0.0001 −0.021 0.822 0.071 0.449 0.095 0.316

R, correlation coefficient; P, probability.

FIGURE 3 | Complexity indices (sample entropy, mean ± SD) on scale 1–30 in groups classified by the rank of EEMD-SWA90 (top 50% vs. bottom 50%). The symbol

‘*’ indicates significant difference between groups (p < 0.05, covariance analysis, controlling the age, gender, and BMI). After the procedure of FDR, the significant

differences all remained.
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FIGURE 4 | Complexity indices (sample entropy, mean ± standard deviation) on scale 1–30 in groups classified by the rank of FFT-SWA90 (top 50% vs. bottom 50%).

The symbol ‘*’ indicates significant difference between groups (p < 0.05, covariance analysis, controlling the age, gender and BMI). However, after the procedure of

FDR, none of the significant differences remained.

DISCUSSION

In this study, we examined the associations among wake EEG
complexity, sleep latency, and the subsequent SWA quantities
during early sleep and over the entire night. Our results revealed
a positive correlation between the complexity during the 5min
wakeful EEG and sleep latency. Such complexity also showed a
statistical trend for a weak and negative correlation with EEMD-
SWA at the beginning of sleep (90min after sleep onset). Our
results suggest that the lower complexity of brain waves in the
pre-sleep state may facilitate sleep initiation and reduce sleep
latency.

As mentioned in the Introduction, high mental load and
urgency to fall asleep increase sleep onset latency (Ansfield et al.,
1996) and may lead to non-restorative and unsatisfying sleep,
especially in patients with mental disorders or with sleep-onset
insomnia, that is, difficulty in sleep initiation. Existing evidence
suggests that the manipulation of pre-sleep cognitive activity
can lead to changes in sleep onset latency (Ansfield et al., 1996;
Nelson and Harvey, 2003; Wuyts et al., 2012). Therefore, future
studies are encouraged to examine the complexity before sleep
among such populations and to investigate whether interventions
that reduce brain wave complexity can assist in promoting restful
sleep and improved sleep quality by increasing SWA. In addition,
as previously introduced, when a system is under stress or
relatively relaxed, levels of complexity can be an appropriate
indicator (Costa et al., 2002a, 2005; Goldberger et al., 2002). In
recent years, some studies used complexity measures to quantify
or evaluate the relaxation states (Aftanas and Golocheikine, 2002;
Natarajan et al., 2004). Therefore, we can assume that complexity
measures may be useful to examine relaxation interventions
such as meditation, slow-paced breathing, music therapy, and
cognitive therapy. Effective approaches might be expected to
reduce pre-sleep brain complexity and therefore improve sleep
quality.

Although in adults, a pronounced increase of theta activity
has often been found during the course of sleep deprivation
(Aeschbach et al., 1997, 1999; Finelli et al., 2000; Strijkstra et al.,
2003; Fattinger et al., 2017), we observed a counterintuitive link
between EEG complexity and theta activity during wakefulness
in the studied population with normal sleep rather than sleep
deprivation. Owing to the counteraction of the circadian process,
a linear function with a superimposed 24 h sine wave is generally
fitted to theta power and time awake (Åkerstedt and Gillberg,
1990; Finelli et al., 2000). In this way, theta activity may not
increase within a session until extreme sleepiness is encountered
(Åkerstedt and Gillberg, 1990; Finelli et al., 2000). Aeschbach
et al. investigated the influence of the circadian pacemaker
and of the duration of time awake on EEG (Aeschbach et al.,
1999). They found that the theta rhythm was exhibited a
minimum of 1 h after the onset of melatonin secretion (the
clock time of melatonin onset in Aeschbach’s study ranged
from 22:05 to 22:43), indicating evident dissociation, as the
circadian maximum of theta activity appeared to be delayed
with respect to the maximum of sleep propensity. In our study,
72 out of 103 participants reported their clock time for light-
off in the range of 22:05–23:43, however, it is still lack of

evidence tomake clear the association between sleep pressure and
EEG complexity before nocturnal sleep in normal populations.
The association between complexity/MSE and sleep-wake
regulation is therefore not straightforward and deserves further
investigations.

We also analyzed SWA over the entire night for each subject.
However, those whole-night results showed significantly weaker
correlations with wake complexity compared with SWA90. As
it is well-recognized that SWA exhibits a global declining trend
over the course of the night and its level in the first non-REM
episode increases as a function of prior waking (Achermann
et al., 1993), which may indicate the reason why the observed
association only present between pre-sleep EEG complexity and
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SWA in early sleep rather than the whole night. Nonetheless, it
would be worth investigating the dynamic changes in pre-sleep
complexity and SWA through the entire night, and examining
the potential causal relationship in future work. As mentioned
above, most of the previous studies of EEG complexity focused
on analyses of entropy for each sleep stage, showing a trend
of decreasing complexity as sleep becomes deeper (Ma et al.,
2018). Non-linear features, including complexity indices, may
provide assistance in automatic sleep classification, but, more
importantly, studies are encouraged to break the boundaries of
limitation to expand the application of non-linear approaches,
so that we can better understand the sleep dynamics (Ma
et al., 2018). A further step would be to study the complexity
differences between normal and pathological conditions, and
investigate whether abnormal sleep can be predicted by the first
few minutes of pre-sleep EEG recording while a subject is still
awake. It would also be of value to determine the potential
mechanisms of pre-sleep EEG complexity and sleep-wake
transitions and overall sleep quality. Again, we encourage broad
applications of such complexity-based approaches in future
studies.

Regarding the methodology, the groups defined by FFT-
SWA90 showed significant differences regarding manually scored
sleep parameters (e.g., WASO, N1, N2, N3), while the differences
were not significant when groups were defined by EEMD-SWA90.
One possible reason is that both manual scoring and FFT spectral
analysis are based on the wave morphology and feature waves.
However, for revealing the underlying association between wake
complexity and quantified sleep SWA, the proposed EEMD-
basedmethod had better performance than traditional FFT-based
spectral analysis. GLM revealed a weak correlation between pre-
sleep EEG complexity and EEMD-SWA during the first 90min
of sleep. Furthermore, when we split the participants into two
groups according to the values of EEMD-SWA90, the sample
entropies at almost all time scales exhibited significant differences
between the two groups, suggesting that waking EEG complexity
can distinguish between lower and higher groups of SWA
after sleep onset quantified by the EEMD approach. However,
when SWA was measured using a traditional way such as FFT,
any association between waking complexity and sleep SWA
was insignificant. Owing to the non-linear and non-stationary
characteristics of EEG signals during sleep, there would be a
drifting of the frequency ranges of the EEG components for
each individual. In this situation, as demonstrated in the current
study, compared with the frequency band fixed method, a data
adaptive approach such as EEMD to measure SWA would be
more sensitive to the underlying dynamics of sleep and better able
to uncover its mechanisms.

One strength of this study was that we used an existing
database and included a reasonably large number of subjects
provided by the freely available database (SHHS) to test
our hypothesis. Meanwhile, limitations of this study include
that associations measured at the population level may not
reflect associations at the individual level, and that the study
is prone to confounding by other factors. In our study,
82% of the participants were female, which may limit the
generalizability of our finding, given that hormonal changes

during the menstrual cycle or in peri-menopausal transition
may affect sleep (Mallampalli and Carter, 2014; Jehan et al.,
2015). However, no such information was provided for the
participants in the database. Future studies with prospective
designs are strongly encouraged. In addition, the PSG data
provided in SHHS-1 were collected from two scalp-placed
electrodes: C3 and C4. Since each brain region is associated with
different EEG feature waves, future studies are encouraged to
perform such complexity and SWA analyses using multiple EEG
montages.

In conclusion, lower complexity before sleep onset is
associated with a decline of sleep latency and higher SWA
after sleep onset, suggesting that reduced complexity of brain
waves may improve sleep quality. The application of complexity
measures is important to extend our knowledge of sleep. Future
studies are encouraged to explore the complexity before sleep
among subjects with sleep disorders, to determine its relationship
with the efficacy of interventional approaches or for developing
screening tools for use with short-term pre-sleep EEG. Although
the current study elucidated the association between wakeful
brain complexity and nocturnal sleep quality in the healthy
population, future investigations should focus on patients with
sleep disorders. We would like to encourage interdisciplinary
efforts to address this research question.
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The irregularity and uncertainty of neurophysiologic signals across different time scales

can be regarded as neural complexity, which is related to the adaptability of the nervous

system and the information processing between neurons. We recently reported general

loss of brain complexity, as measured by multiscale sample entropy (MSE), at pain-

related regions in females with primary dysmenorrhea (PDM). However, it is unclear

whether this loss of brain complexity is associated with inter-subject genetic variations.

Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin in the brain

and is crucial to neural plasticity. The BDNF Val66Met single-nucleotide polymorphism

(SNP) is associated with mood, stress, and pain conditions. Therefore, we aimed to

examine the interactions of BDNF Val66Met polymorphism and long-term menstrual

pain experience on brain complexity. We genotyped BDNF Val66Met SNP in 80 PDM

females (20 Val/Val, 31 Val/Met, 29 Met/Met) and 76 healthy female controls (25 Val/Val,

36 Val/Met, 15 Met/Met). MSE analysis was applied to neural source activity estimated

from resting-state magnetoencephalography (MEG) signals during pain-free state. We

found that brain complexity alterations were associated with the interactions of BDNF

Val66Met polymorphism and menstrual pain experience. In healthy female controls,

Met carriers (Val/Met and Met/Met) demonstrated lower brain complexity than Val/Val

homozygotes in extensive brain regions, suggesting a possible protective role of Val/Val

homozygosity in brain complexity. However, after experiencing long-term menstrual pain,

the complexity differences between different genotypes in healthy controls were greatly

diminished in PDM females, especially in the limbic system, including the hippocampus

and amygdala. Our results suggest that pain experience preponderantly affects the effect

of BDNF Val66Met polymorphism on brain complexity. The results of the present study

also highlight the potential utilization of resting-state brain complexity for the development

of new therapeutic strategies in patients with chronic pain.

Keywords: BDNF Val66Met polymorphism, primary dysmenorrhea, brain complexity, multiscale entropy,

magnetoencephalography, chronic pain
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INTRODUCTION

Chronic pain can be considered as “pain that persists for
a given length of time,” where the length of time is
determined by common medical experience (Merskey and
Bogduk, 2002), and have pronounced female predominance
(Mogil, 2012). Primary dysmenorrhea (PDM) indicates “pain
withmenstruation not associated with a well-defined pathology”1

and is classified as chronic pelvic pain syndrome (IASP,
2011). It has a prevalence of 45–95% among reproductive age
females (Berkley, 2013; Iacovides et al., 2015). Most importantly,
dysmenorrhea early in life often co-occurs with many chronic
pain syndromes later in life, linking its susceptibility to the
development of chronic pain conditions (Berkley, 2013) and
marking the assaults of central sensitization on dysfunctional
pain modulatory system (Nijs et al., 2015).

Long-term PDM serves as a genuine model to study clinical
pain with its natural cyclic painful (menstruation) and pain-
free (periovulatory) states (Wei et al., 2016a). Structural and
functional brain alterations are reported in PDM females
(PDMs), including hypotrophic and hypertrophic changes in
gray matter volume (Tu et al., 2010, 2013; Liu et al., 2016),
white matter microstructural alterations (Liu J. et al., 2017),
maladaptive descending pain modulatory system (Wei et al.,
2016a), shift of functional connectivity between resting-state
networks (Wu et al., 2016; Liu P. et al., 2017), increased theta
activity (Lee et al., 2017), and loss of brain complexity (Low
et al., 2017) in brain regions related to sensory, affective, and
cognitive dimensions of pain. Notably, genetic polymorphisms
have been implicated to contribute to inter-subject variations in
susceptibility tomenstrual pain (Lee et al., 2014;Wei et al., 2016b,
2017), inviting more studies of neuroimaging genetics in PDM.

Brain-derived neurotrophic factor (BDNF) is the most
expressed neurotrophin in the brain, especially in the cerebral
cortex and hippocampus (Binder and Scharfman, 2004; Tapia-
Arancibia et al., 2004). BDNF has pleiotropic roles in the central
nervous system, including neurogenesis, neuronal growth,
maturation, survival, synaptic plasticity, and microarchitectural
integrity (Park and Poo, 2013; Bathina and Das, 2015). It is a
driving force behind neural plasticity and protects neuronal cells

upon adverse circumstances (Bathina and Das, 2015), such as
stress or pain. BDNF is considered as a pain modulator given its
participation in activity-dependent synaptic plasticity within the
pain modulatory circuitry (Merighi et al., 2008; Haas et al., 2010;
Caumo et al., 2016; Generaal et al., 2016).

Human BDNF gene at chromosome 11p14.1 displays a
variety of polymorphisms. The replacement of Valine (Val) by
Methionine (Met) at codon 66, namely BDNF Val66Met single-
nucleotide polymorphism (rs6265), is considered to disrupt
normal trafficking of BDNF and consequently reduces activity-
dependent secretion of BDNF and BDNF activity in Met carriers
(Egan et al., 2003). Animal studies reported that spike-timing-
dependent plasticity in the pyramidal neurons of the infralimbic

1This statement has been reproduced with permission of the International

Association for the Study of Pain R© (IASP). The statement may not be reproduced

for any other purpose without permission.

medial prefrontal cortex was absent in BDNF Met/Met mice,
suggesting that BDNF Val66Met polymorphism strongly affect
synaptic transmission (Pattwell et al., 2012). The BDNFMet allele
has been reported to associate with deleterious effects on brain,
such as smaller regional brain volumes (Pezawas et al., 2004),
higher vulnerability in white matter structural connectivity
(Park et al., 2017), and potentially greater susceptibility to
various neurological and mood disorders (Notaras et al., 2015).
Studies of the effects of BDNF Val66Met polymorphism on
pain also predominantly report impaired pain modulation or
augmented pain responses in Met carriers, including migraine
(Cai et al., 2017), chronic musculoskeletal pain (Generaal et al.,
2016), chronic abdominal pain (Reddy et al., 2014), electrical
stimulation for trigeminal pain (Di Lorenzo et al., 2012),
intracutaneous pain in chronic low back pain patients (Vossen
et al., 2010), and esophageal visceral pain (Vasant et al., 2011).
However, our understanding of the role of BDNF genetic variants
in recurrent menstrual pain is still limited.

Previous BDNF Val66Met polymorphism studies in PDM
observed a significant main effect of BDNF genotype on
anxiety level in PDM group, in which Met/Met PDMs scored
higher in anxiety compared with Val-carrier PDMs during
menstrual phase (Lee et al., 2014). The authors suggested
that BDNF Val66Met polymorphism is modestly associated
with the supraspinal modulation of menstrual pain-laden
emotional processing. On the other hand, resting-state functional
connectivity study in PDM (Wei et al., 2016b) revealed that
Val/Val PDMs engaged functional connectivity between pain
modulatory region and sensory regions, suggesting adaptive pain
modulation, while Met/Met PDMs rigidly engaged functional
connectivity between pain modulatory region and limbic
structures, implying maladaptive pain modulation underlying
pain chronicity. Together, BDNF Val66Met polymorphismmight
affect spontaneous low-frequency BOLD signal oscillations
differently in individuals with or without long-term menstrual
pain experience.

The irregularity and unpredictability (uncertainty) of a
system’s output signal across varying temporal scales can
be regarded as the system’s complexity (Costa et al., 2002).
Neural complexity, the complexity of the nervous system,
could represent the capacity or dynamical range of information
processing in the brain, the richness of information available in
the nervous system, or adaptability or resilience of the nervous
system (Tononi et al., 1994; Nakagawa et al., 2013; McDonough
and Nashiro, 2014; Wang et al., 2018). Neural complexity might
reflect the brain’s tendency to wander (itinerancy) among all
alternative states of neuronal transients, and as a characterization
of the “flexibility of rapid transitions” (Friston, 2000, 2001;
Friston et al., 2012; Wang et al., 2018). Loss of complexity is often
reported in neuropsychiatric diseased and aged groups; increased
complexity has been seen in recovery conditions and healthy
groups (Yang and Tsai, 2013; Hager et al., 2017).

Complexity is non-linear and complex to define but is often
computationally quantified with entropy measurements. Sample
entropy, proposed by Richman and Moorman (Richman and
Moorman, 2000), is a well-defined index of complexity and has
been applied to brain activity (Yao et al., 2013; Wang et al., 2014,
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2017; Lebedev et al., 2016; Li et al., 2016; Zhou et al., 2016; Jia
et al., 2017; Nelson et al., 2017; Chang et al., 2018; Song et al.,
2018). It is noteworthy that multiscale entropy (MSE) analysis
(Costa et al., 2002, 2005; Yang and Tsai, 2013; Courtiol et al., 2016)
calculates a series of sample entropy over multiple time scales,
which captures the temporal complexity characteristcs of time-
series neural signals from microscopic to macroscopic aspects.
Recently, MSE analysis has also been applied to brain signals
(Heisz and McIntosh, 2013; Yang et al., 2013; Courtiol et al.,
2016), pain (Sitges et al., 2010; Valencia et al., 2016; Liu Q. et al.,
2017), and PDM studies (Kuo et al., 2017; Low et al., 2017). By
applyingMSE analysis on resting-state magnetoencephalography
(MEG) signals acquired from PDMs during pain-free state,
we observed a general loss of regional complexity in PDMs
at brain regions related to chronic pain, including the limbic
circuitry, default mode network, sensorimotor network, and
salience network (Low et al., 2017). Our findings implicated the
assaults of long-term menstrual pain on brain complexity and
adaptability. However, it is unclear whether this loss of brain
complexity in PDMs is associated with genetic variations.

Long-term menstrual pain is a chronic stressor to PDMs
that might affect the secretion levels of BDNF and subsequent
BDNF functions in an activity-dependent manner. Given the
loss of brain complexity in PDMs and the effects of BDNF
Val66Met polymorphism on mood and resting-state functional
connectivity in PDMs, we aimed to examine the interactions of
BDNF Val66Met polymorphism and long-term menstrual pain
experience on brain complexity. We hypothesized that there
might be genotype-specific complexity differences in healthy
controls, and such complexity differences might be affected by
long-termmenstrual pain especially in pain- and emotion-related
brain circuits.

METHODS

Participants
The participants were a subset of the participants from our
multimodal imaging genetics (magnetic resonance imaging and
magnetoencephalography) and behavioral studies of PDM at
Taipei Veterans General Hospital in Taiwan (Lee et al., 2014;
Wei et al., 2016a; Wu et al., 2016; Low et al., 2017) who were
eligible for neuroimaging studies. Written informed consent
form and psychological inventories were approved by the ethics
committee of Institutional Review Board of Taipei Veterans
General Hospital, Taiwan. Before the study, all participants who
were assessed for eligibility signed the written informed consent
form. Studies were conducted in accordance with the Declaration
of Helsinki.

The inclusion criteria for PDMs were (1) 20 to 30 years
old Taiwanese (Asian) females; (2) 27 to 32 days of regular
menstrual cycle; (3) right-handedness assessed by the Edinburgh
Handedness Inventory; (4) menstrual pain history longer than
half year; (5) averaged menstrual pain rating within the last
6 months of experiment was higher than four out of ten
using verbal numerical rating scale (0 = no pain, 10 = worst
imaginable pain); (6) no pelvic pathologies examined using pelvic
ultrasonography and diagnosed as PDM by gynecologist. We

excluded volunteers with (1) organic pelvic diseases; (2) pituitary
gland pathologies; (3) history of neurological or psychiatric
disorders; (4) history of brain surgery or trauma; (5) history
or immediate plans for pregnancy or childbirth; (6) history
of using medications or supplements of hormonal therapy
including oral contraceptives, central-acting medication, or
Chinese herbal medicine within the last 6 months of experiment;
(7) claustrophobia; (8) contraindications to magnetic resonance
imaging. Also, no painkillers were used 24 h before the
experiment. Healthy female controls (CONs) had the same
inclusion and exclusion criteria except they had no lower
abdominal pain during the menstrual period.

Genotyping
Whole blood was collected during the inception stage and stored
in 4mL EDTA tubes at 4◦C refrigerator. DNA was extracted
using the Puregene kit following the manufacturer’s guidelines
(Gentra Systems, Inc., Minneapolis, MN, USA). Genotyping
was conducted using commercial TaqMan single-nucleotide
polymorphism assays (Applied Biosystems, Inc., Foster City, CA,
USA). The polymerase chain reaction amplification protocol was
as follows: 10 µL; 50◦C (2min), 95◦C (10min), 40 cycles of
92◦C (15 s), and 60◦C (1min). Fluorescence measurements were
done using the ABI HT7900 (Applied Biosystems, Inc.). Allele
calling was performed by the SDS 2.2 software package (Applied
Biosystems, Inc.). Two independent technicians blinded to the
participants’ personal information assigned the genotypes.

Demographic Data, Pain Experiences, and
Psychological Characteristics
Demographic data included age, body mass index (BMI), and
handedness. Menstrual features included age at menarche, years
of menstruating, and averaged menstrual cycle length. All
participants completed the Chinese version of Basic Personality
Inventory (BPI; Wu et al., 1999) to assess their personality
traits. There are several scale clusters in the BPI, including the
personal emotional adjustment scale cluster (depression, anxiety,
and hypochondriasis scales), which is of particular interest of
this study. The IQOLA SF-36 Taiwan Standard Version 1.0 (SF-
36; Tseng et al., 2003) was used to assess long-term physical
and mental quality of life. Since emotional perception and pain
chronification can be exacerbated by anxiety and depression
and both have been linked to PDM, anxious and depressive
moods were investigated using Chinese versions of Spielberger
State-trait Anxiety Inventory (STAI; Ma et al., 2013), Beck
Depression Inventory (BDI-IA; Beck et al., 1979), and Beck
Anxiety Inventory (BAI; Lin, 2000). We also studied pain
catastrophizing cognitive style, which is the negative appraisal
style of pain, using the Chinese version of Pain Catastrophizing
Scale (PCS; Yap et al., 2008).

Menstrual pain experiences were evaluated only in PDMs
using the Chinese version of McGill Pain Questionnaire (MPQ;
Melzack, 1975, 1983) and verbal numerical rating scale (VNRS).
MPQ classifies four categories of qualities of pain, including
sensory, affective, evaluative, and miscellaneous. MPQ scores are
calculated as the sum of the rank values of the words chosen,
summing up to a pain rating index (PRI) for each category. The
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MPQ present pain index (PPI), based on a 0-to-5 intensity scale
(0 = no pain, 1 = mild, 2 = discomforting, 3 = distressing,
4 = horrible, 5 = excruciating), was used as the indicator of
menstrual pain intensity. VNRS is a verbal report of menstrual
pain intensity rated from 0 to 10 (0 = not at all, 10 = the worst
imaginable pain). PDMs recalled different aspects of their overall
menstrual pain experiences over the last 6 months, yielding
recalled MPQ scores and recalled pain scores.

Data Acquisition
Resting-State MEG Signals Acquisition
Three-minute eye-closed resting-state MEG signals were
recorded using a whole-head 306-channel neuromagnetometer
(Vectorview, Elekta Neuromag, Helsinki, Finland) comprising
102 triple sensors (two orthogonal planar gradiometers and one
magnetometer at each triple-set) at Taipei General Veterans
Hospital, Taiwan. Electrooculography (EOG) was recorded
using two vertical and two horizontal electrodes to be used for
rejection of epochs coinciding with blinks and excessive eye
movements with an amplitude cut-off of 600 µV. Locations
of three anatomical landmarks (nasion and two bilateral pre-
auricular points) were identified with a three-dimensional
digitizer (Isotrak 3S10002, Polhemus Navigation Sciences,
Colchester, Vermont USA) to align MEG coordinate system
with MRI coordinate system. Four head position indicator (HPI)
coils were used to trace the position of subject’s head in the
MEG system. The online sampling rate was 1,000Hz, and online
bandpass filter was between 0.03 and 330Hz with a 60Hz notch
filter. Signals exceeding 6,000 fT/cm were rejected. MEG signals
recorded from 204 planar gradiometers were further analyzed;
MEG signals recorded from 102 magnetometers were excluded
from further analyses due to their susceptibility to distant noises.
Participants sat comfortably in a magnetically shielded room
(Euroshield, Eura, Finland) with heads covered by the helmet
and were instructed to relax, eliminate eye movements, and focus
only on their breathing (Low et al., 2017).

Structural MRI Images Acquisition
T1-weighted brain images were acquired using a 3 Tesla
magnetic resonance imaging (MRI) scanner (Magnetom Trio
Tim, Siemens, Erlangen, Germany) at National Yang-Ming
University, Taiwan with 12-channel head coil and standard three-
dimensional magnetization-prepared rapid gradient-echo (3D
MP-RAGE) sequence. The parameters were as follows (Low et al.,
2017): TR = 2530ms, TE = 3.03ms, TI = 1,100ms, flip angle =
7◦, field-of-view (FOV) = 224 × 256 mm2, number of slices =
192, matrix size= 224× 256, thickness= 1mm.

Brain Region Parcellation
A total of 90 cortical regions (45 regions in each hemisphere)
were defined using the automated anatomical labeling (AAL)
template (Tzourio-Mazoyer et al., 2002) with a spatial resolution
of 1 × 1 × 1mm provided in MRIcro freeware (Rorden and
Brett, 2000). We first normalized the Montreal Neurological
Institute (MNI) template to individual’s MRI images using
IBASPM (Individual Brain Atlases using Statistical Parametric
Mapping; Alemán-Gómez et al., 2006). The AAL template

was subsequently transformed into individual space using the
estimated deformation field. Hence, parcellation of 90 brain
regions in the individual brain was obtained, and voxel-wise
source analyses (section Source Analyses) and MSE calculations
(section Multiscale Sample Entropy) were carried out in each
brain region. The purpose of this procedure was to avoid
interpolation of functional activity and thus preserved the
precision of MSE statistical analysis in individual space. Finally,
eight resting-state networks based on literature were discussed,
including the limbic, default mode, salience, sensorimotor,
executive control, attention, visual processing, and auditory
processing networks (Low et al., 2017).

Source Analyses
MEG signals from each participant were preprocessed before
voxel-wise source reconstruction. The signals were segmented
into non-overlapping epochs of 8 s (Low et al., 2017). Artifact
rejection threshold was set to 2,000 fT/cm, and EOG rejection
threshold was set to 250 µV. Any epoch with amplitude larger
than these thresholds was excluded, resulting in around 14 eight-
second epochs remained. Signal space projected MEG signals
were subsequently band-pass filtered within 0.5–90Hz (Low
et al., 2017) and with a notch filter of 55–65Hz. Zero-mean
adjustment was also applied.

After co-registering the coordinate systems between
individual’s MRI volume and MEG device, the source activity
was estimated with an isotropic resolution of 4mm. Maximum
contrast beamformer (MCB) was used for brain source
calculation (Chen Y. S. et al., 2006). To estimate source activity
yv (t) at each location v, a spatial filter wv was applied to the
MEG recordingsm(t):

yv (t) = wT
vm(t). (1)

For each location, wv was obtained by minimizing variance in
the output signal yv (t) with the unit-gain constraint wT

v lv = 1,
where lv is the lead field vector. The details of the calculation can
be found in our recent report (Kuo et al., 2017). Source activity of
all voxels in every brain region was used in the following analysis.

Multiscale Sample Entropy
Multiscale sample entropy (MSE) was proposed to measure
the complexity with multiple time scales (Costa et al., 2002)
by applying the sample entropy (SE) method (Richman and
Moorman, 2000) to different time scales. First, the coarse-grained
time series zv

τ = [ zv
τ (1) , zv

τ (2) , . . . , zv
τ (N/τ)] of the

original time series yv =
[

yv (1) , yv (2) , . . . , yv (N)
]

with N
sample points was obtained for each scale factor τ (τ was set from
1 to 100 in this study; Low et al., 2017):

zv
τ
(

k
)

=
1

τ

∑k×τ

i=(k−1)τ + 1
yv (i), 1 ≤ k ≤

N

τ
. (2)

Then the SEmethod was applied to each zv
τ . In the SE algorithm,

a set of vector gi withm elements can be defined as follows (m=

2 in this study; Low et al., 2017):

gi = [ zv
τ (i) , zv

τ (i+ 1)],where i = 1, . . . ,N − 2. (3)
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For each i, the absolute difference between gi and gj (1 ≤ j ≤

N − 2 and j 6= i) was calculated, and c
g
τ , the number of

the difference smaller than r, was determined. Here, the value
r was set as 0.25×standard deviation of the signal yv (t) (Low
et al., 2017). Then, the extended vectors withm+1 elements were
defined as follows:

hi = [ zv
τ (i) , zv

τ (i+ 1) , zv
τ (i+ 2)],

where i = 1, . . . ,N − 3, (4)

and chτ was determined by the same means. Finally, MSE for time
scale τ can be calculated as:

MSEτ = − ln
chτ

c
g
τ

. (5)

The MSE value of each voxel was calculated and then averaged
within each region. Figure 1 illustrates examples of MEG signals
at different representative time scale factors (τ ) in one region (the
left amygdala) from one representative subject in each group.

Statistical Analyses
There were two between-group factors in this study: group (PDM
and CON) and BDNF Val66Met genotype (Val/Val, Val/Met,
and Met/Met). Statistical analyses of genotypes, demographic
data, psychological characteristics, and correlation analyses
were performed in IBM SPSS Statistics. Statistical analyses of
multiscale sample entropy were performed in Matlab.

BDNF Genotype Distributions and Allele Frequency
The Hardy-Weinberg equilibrium of the BDNF Val66Met
genotype distributions and allele frequency were tested using
chi-square tests of goodness-of-fit (p < 0.05). The associations
between BDNF genotype and PDM were tested using chi-
square tests of independence (p < 0.05) under SPSS binary
logistic regression test, in which PDM (group) was treated as
the dependent (outcome) variable, genotype as the categorical
predictor variable, and Val/Val, Val/Met, or Val carriers as the
reference groups.

Demographic Data, Pain Experiences, and

Psychological Characteristics
Descriptive and normality tests (Shapiro-Wilk test, p < 0.05,
two-tailed) were first examined by group before any inferential
statistical tests (Ghasemi and Zahediasl, 2012). As many of
the demographic and psychological scores were not normally
distributed, we used non-parametric inferential statistical tests.
Group difference of each genotype was tested using Mann-
Whitney U tests (p < 0.01, two-tailed). Genotype differences in
each group were tested using Kruskal-Wallis H tests (p < 0.01,
two-tailed) for continuous data and chi-square tests (p < 0.01)
for categorical data. As there is no corresponding nonparametric
two-way ANOVA test, significant group and genotype main
effects and group × genotype interactions were tested using
two-way ANOVAs (p < 0.01, two-tailed). Post-hoc pairwise
comparisons were performed using Dunn-Bonferroni adjusted p
< 0.01 (two-tailed).

Multiscale Sample Entropy
For the averagedMSE value in each brain region, the main effects
and interactions of group and genotype were tested using two-
way ANOVA (Bonferroni-adjusted p < 0.05, two-tailed). Due to
possible errors induced by the above-mentioned normalization
procedure (section Brain Region Parcellation), we excluded the
brain regions that contained <10 voxels. We focused on testing
the post-hoc planned pairwise comparisons between groups for
each genotype and comparisons between genotypes for each
group using permutation tests (iterations= 5000, p< 0.005, two-
tailed). We also tested post-hoc planned comparisons using the
more conservative Bonferroni-correction (Bonferroni-adjusted p
< 0.05, two-tailed).

MSE of the brain regions that showed significant group
differences in the same genotype group (Val/Val: PDM vs.
CON; Val/Met: PDM vs. CON; Met/Met: PDM vs. CON) were
termed as “pain-associated regional MSE.” MSE of the brain
regions that showed significant genotype differences (Val/Val
vs. Val/Met, Val/Val vs. Met/Met, Val/Met vs. Met/Met) in the
same group were termed as “BDNF-associated regional MSE.”
To examine the effect sizes of pain-associated regional MSE and
BDNF-associated regional MSE, standardized effect sizes were
calculated using Cohen’s d (Cohen, 1988) with an online effect
size calculator (Wilson and Lipsey, 2001).

Correlations Between Regional MSE and

Psychological Characteristics
Correlations between PDMs’ menstrual pain
experiences/psychological characteristics and pain-associated or
BDNF-associated regional MSE were examined using Spearman
correlation analysis (p < 0.01, two-tailed).

RESULTS

BDNF Val66Met Genotype Distributions
and Allele Frequency
Genotype distributions of BDNF Val66Met (rs6265) in the CON
group, PDM group, and all participants were in Hardy-Weinberg
equilibrium (p > 0.05; Table S1). The number of participants
in each genotype subgroup were as follows (Table 1): Val/Val
CONs = 25, Val/Met CONs = 36, Met/Met CONs = 15, Val/Val
PDMs = 20, Val/Met PDMs = 31, Met/Met PDMs = 29.
PDMs differed sub-significantly from CONs in BDNF Val66Met
genotype distributions (p = 0.071) and allele frequency (p =

0.066); there was a trend of excessive Met allele in PDMs than
in CONs (Table 1).

Table 2 shows the odds ratios of PDM. Treating Val carriers
(Val/Val and Val/Met) as the reference group, the odds ratio
for Met/Met was statistically significant [(Met/Met PDMs x Val-
carrier CONs)/(Val-carrier PDMs x Met/Met CONs)]. Treating
Val/Val or Val/Met individually as the reference group, the odds
ratios for Met/Met were also statistically significant. In contrast,
when treating Met carriers (combining Met/Met and Val/Met
as one group) or Val/Met as case (exposed group) with Val/Val
as reference group, the odds ratios for Met carriers or Val/Met
were not significant. These results implied that the odds of PDM

Frontiers in Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 826121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Low et al. BDNF Val66Met, PDM, and Brain Complexity

FIGURE 1 | Examples of MEG signals at different representative time scale factors (τ ) in one region (the left amygdala) from one representative subject in each group.

TABLE 1 | BDNF Val66Met (rs6265) genotype distributions and allele frequency.

Genotype (n, %) χ
2 p Allele frequency χ

2 p

Val/Val Val/Met Met/Met Val allele Met allele

PDM

(n= 80)

20 (35.0%) 31 (38.8%) 29 (36.6%) 5.28 0.071 44.40% 55.60% 3.38 0.066

CON

(n= 76)

25 (32.9%) 36 (47.4%) 15 (19.7%) 56.60% 43.40%

Significant differences were tested using chi-square tests (p < 0.05). PDM, primary dysmenorrhea patients; CON, healthy female controls; BDNF, brain-derived neurotrophic factor;

Val/Val, Valine/Valine; Val/Met, Valine/Methionine; Met/Met, Methionine/Methionine.

were at least 2.25 higher in Met/Met homozygous females than in
Val-carrier females.

Demographic, Pain Experiences, and
Psychological Characteristics
For demographic data and menstrual features, no significant
main effects of group and genotype, and no interactions
of group and genotype were found (Table S2). Thus,
post-hoc pairwise comparisons were not performed on
demographic information. Among the three genotypes in
PDMs, there were overall no differences in their menstrual
pain experiences except the menstrual pain history (p = 0.006;
Table S3), though post-hoc pairwise comparison revealed
no significant difference in menstrual pain history between
genotypes.

For psychological characteristics, there were consistently
significant main effects of group but no main effects of
genotype and no group× genotype interactions. PDMs reported
significantly lower quality of life and higher personal emotional
adjustment problems than those in CONs (Table S4). PDMs also
scored higher in negative mood (depression and anxiety) and
negative cognitive style to pain (pain catastrophizing) compared
to CONs (Table 3).

Multiscale Sample Entropy
In this study, we focused on the interactions of BDNF

Val66Met polymorphism and long-term menstrual pain.
Significant group by genotype interactions were found in

brain regions including the hippocampus, amygdala, insula,

thalamus, putamen, superior temporal pole, supramarginal

Frontiers in Neuroscience | www.frontiersin.org 6 November 2018 | Volume 12 | Article 826122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Low et al. BDNF Val66Met, PDM, and Brain Complexity

TABLE 2 | Associations of different BDNF Val66Met genotypes with PDM.

Reference Case Odds ratio 95% CI χ
2 p-value

Val/Val Met/Met 2.42 1.03–5.69 4.142 0.042*

Val/Met Met/Met 2.25 1.02–4.93 4.125 0.042*

Val carrier Met/Met 2.31 1.12–4.78 5.248 0.022*

Val/Val Met carrier 1.47 0.73–2.95 1.183 0.277

Val/Val Val/Met 1.08 0.50–2.30 0.036 0.849

*Significant odds ratios were tested using chi-square tests (p < 0.05). PDM,

primary dysmenorrhea patients; CI, confidence interval; Val/Val, Valine/Valine; Val/Met,

Valine/Methionine; Met/Met, Methionine/Methionine; Val carrier, Val/Val and Val/Met; Met

carrier, Met/Met and Val/Met.

gyrus, superior temporal gyrus, and others (Table 4 and
Figure 2).

Specifically, we tested planned comparisons of BDNF
Val66Met genotypes and groups (Figure 3). For BDNF-
associated regional MSE differences (between-genotype
differences in each group) in CONs (Figure 3A and Table S5),
MSE values were all larger in Val/Val CONs than in Val/Met
CONs and Met/Met CONs. In PDMs (Figure 3A and Table S6),
MSE values were also mostly larger in Val/Val PDMs than in
Val/Met PDMs and Met/Met PDMs, except in the left amygdala.
Val/Val PDMs manifested significant larger regional MSE in
the left posterior cingulate gyrus (PCC) than in Val/Met PDMs
and Met/Met PDMs, a phenomenon which was not found in
the CON group. We also noticed that in both PDM and CON
groups, regional MSE values in the left Heschl’s gyrus were all
larger in Val/Val than in Val/Met and Met/Met groups.

For pain-associated regional MSE (between-group differences
of the same genotype; Figure 3B and Table 5) in Val/Val
individuals, MSE values were found to be lower in the right
hippocampus and left amygdala in Val/Val PDMs than in
Val/Val CONs. On the other hand, in Met/Met individuals, pain-
associated regional MSE values were found to be larger in the left
amygdala, left superior temporal pole, and right calcarine sulcus
in Met/Met PDMs than in Met/Met CONs.

MSE profiles of six subgroups (Val/Val, Val/Met, andMet/Met
in PDMs and CONs) in the right hippocampus (Figure 4), one
of the most interested regions in our studies, were depicted from
time scale factors τ = 1 to 100 for visual comparisons. Overall,
Val/Met and Met/Met genotype groups had lower regional MSE
thanVal/Val group in both PDMandCONgroups. At coarse time
scales, the differences between Val/Val and Met carriers (Val/Met
and Met/Met) were large in CONs, but such differences were
diminished in PDMs. Same observations held for those in the left
amygdala.

Correlations Between BDNF-Associated or
Pain-Associated Regional MSE and
Psychological Characteristics
Correlation results were summarized into different resting-state
networks and different categories of psychological characteristics
(Figure 5 and Table S7). We found that significant correlations
in Met/Met group and PDM group mainly emerged in the

subcortical regions (such as amygdala, hippocampus) and
sensorimotor regions (such as thalamus), whereas significant
correlations in Val/Val group and CON group emerged largely
in the cortical regions (such as middle temporal gyrus, superior
temporal gyrus, fusiform gyrus) and some of the subcortical
regions (such as hippocampus). Also, after long-term menstrual
pain, the correlations found in CONs were reversed or
diminished in PDMs. MSE values in the amygdala showed trends
towards negative correlations with both depression and anxiety
scores in Met/Met CONs but were positively correlated to those
in Met/Met PDMs (Figure 5A). On the other hand, MSE values
in the hippocampus were also negatively correlated to depression
scores in Met/Met CONs but positively correlated to those in
Met/Met PDMs (Figure 5B), and were negatively correlated to
anxiety scores in Met/Met CONs but positively correlated to
those in Val/Val PDMs.

In PDMs, correlations between pain experiences and regional
MSE mainly emerged in the Val/Val group but absent in
the Val/Met or Met/Met groups. In Val/Val PDMs, pain
chronification (menstrual pain history, PDM onset, menstrual
pain duration) experiences were negatively correlated with MSE
values. The younger the PDM onset age, or the longer the
PDM history/duration, the lower the MSE in the limbic regions
including the amygdala (Figure 5C), thalamus, and posterior
cingulate gyrus. In contrast, pain intensity experiences (pain
score, pain rating indexes) were mostly positively correlated with
MSE in the thalamus (Figure 5D) and Heschl’s gyrus.

DISCUSSION

In this study, we used multiscale sample entropy analysis, a
powerful tool that quantifies non-linear dynamics in time-
varying signals, to investigate whether inter-subject genetic
variation interacts with long-term menstrual pain experience to
affect brain complexity. First, we found that BDNF Val66Met
polymorphism (Met/Met homozygosity) is a potential genetic
risk factor associated with primary dysmenorrhea, which is in
line with previous studies (Lee et al., 2014; Wei et al., 2016b).
Second, our findings indicate that long-term menstrual pain
experience alters the effects of BDNF Val66Met polymorphism on
brain complexity. By comparing brain complexity in females of
different genotypes with or without menstrual pain, we revealed
a characteristic tendency. There was considerable genotype-
specific complexity differences in CONs, where Met-carrier
(Val/Met and Met/Met) CONs showed extensive lower brain
complexity compared to Val/Val CONs. However, the complexity
differences were remarkably diminished in PDMs, implying the
assaults of chronic recurrent pain on brain complexity. Third,
we observed pain-associated brain complexity alterations in the
limbic regions, especially the hippocampus and amygdala, in
females with same BDNF Val66Met genotype.

In our recent study (Low et al., 2017), we categorized
female participants according to menstrual pain experience to
have a general understanding of brain complexity alterations
in PDM. In this study, we further categorized all participants
according to BDNF Val66Met genotypes together with menstrual

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 826123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Low et al. BDNF Val66Met, PDM, and Brain Complexity

TABLE 3 | Results of negative mood (anxiety and depression) and negative cognitive style to pain (pain catastrophizing) stratified by group and BDNF Val66Met genotype.

PDM (n = 80) CON (n = 76) Group main effect (F) Genotype main

effect (F)

Group x

Genotype

interaction (F)

Between-group (p)

ANXIETY

BAI (0–63)

Val/Val 7.25 (7.3) 3.04 (3.0) F (1,150) = 17.23** F (2,150) = 0.85 F (2,150) = 0.29 0.082

Val/Met 5.94 (5.6) 2.94 (2.5) 0.008*

Met/Met 7.07 (5.6) 4.27 (3.7) 0.101

Genotype (p) 0.659 0.511

STAI total score (40–160)

Val/Val 82.16 (17.3) 66.16 (9.90) F (1,143) = 23.14** F (2,143) = 1.37 F (2,143) = 0.74 < 0.0005*

Val/Met 81.23 (16.0) 71.62 (12.6) 0.012

Met/Met 84.31 (15.8) 74.60 (14.6) 0.049

Genotype (p) 0.732 0.123

State anxiety (20–80)

Val/Val 37.55 (9.1) 30.88 (5.8) F (1,149) = 13.27** F (2,149) = 1.43 F (2,149) = 0.36 0.003*

Val/Met 37.65 (8.5) 33.08 (9.1) 0.063

Met/Met 39.14 (8.2) 35.33 (7.7) 0.164

Genotype (p) 0.571 0.199

Trait anxiety (20–80)

Val/Val 45.05 (8.7) 35.28 (5.1) F (1,143) = 27.82** F (2,143) = 0.57 F (2,143) = 1.08 < 0.0005*

Val/Met 43.43 (8.7) 37.50 (6.8) 0.003*

Met/Met 44.50 (9.2) 39.27 (7.9) 0.056

Genotype (p) 0.772 0.244

DEPRESSION

BDI (0–63)

Val/Val 7.80 (8.1) 3.52 (3.4) F (1,150) = 4.65 F (2,150) = 2.12 F (2,150) = 1.40 0.078

Val/Met 5.48 (5.6) 3.56 (5.3) 0.044

Met/Met 6.93 (6.3) 6.87 (6.2) 0.950

Genotype (p) 0.614 0.084

PAIN CATASTROPHIZING

PCS total score (0–52)

Val/Val 16.80 (9.1) 4.88 (6.8) F (1,146) = 44.47** F (2,146) = 0.65 F (2,146) = 0.50 < 0.0005*

Val/Met 16.94 (13.3) 8.03 (9.0) 0.003*

Met/Met 19.04 (9.4) 5.20 (7.8) < 0.0005*

Genotype (p) 0.570 0.271

Helplessness (0–16)

Val/Val 7.30 (4.2) 2.12 (2.8) F (1,146) = 44.47** F (2,146) = 0.65 F (2,146) = 0.50 < 0.0005*

Val/Met 7.87 (6.0) 3.61 (4.6) 0.001*

Met/Met 8.46 (4.8) 2.33 (3.8) < 0.0005*

Genotype (p) 0.711 0.422

Magnification (0–24)

Val/Val 2.65 (2.1) 1.24 (1.9) F (1,146) = 21.03** F (2,146) = 0.41 F (2,146) = 0.29 0.011

Val/Met 3.10 (3.1) 1.48 (1.8) 0.031

Met/Met 3.39 (2.1) 1.27 (1.9) 0.001*

Genotype (p) 0.460 0.602

Rumination (0–12)

Val/Val 6.85 (4.0) 1.52 (2.6) F (1,146) = 56.14** F (2,146) = 0.07 F (2,146) = 1.96 < 0.0005*

Val/Met 5.97 (4.7) 2.94 (3.3) 0.006*

Met/Met 7.18 (3.9) 1.60 (2.4) < 0.0005*

Genotype (p) 0.454 0.145

Significance main effects of group, genotype, and group x genotype interactions were tested using two-way ANOVAs (p < 0.01, two-tailed). *p < 0.005, **p < 0.00001. Significant

between-group within-genotype planned comparisons were tested using Mann-Whitney U-tests (p < 0.01, two-tailed). Significant between-genotype differences in each group

(“Genotype”) were tested using Kruskal-Wallis H tests (p < 0.01, two-tailed). Score ranges are bracketed after each item name. Data are presented as mean (SD). PDM, primary

dysmenorrhea patients; CON, healthy female controls; Val/Val, Valine/Valine; Val/Met, Valine/Methionine; Met/Met, Methionine/Methionine; STAI, Spielberger state-trait anxiety inventory;

BAI, Beck anxiety inventory; BDI, Beck depression inventory; PCS, pain catastrophizing scale.
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TABLE 4 | Significant interactions of BDNF Val66Met genotype and group.

Brain region L/R τ Group x Genotype interaction (F) Bonferroni-adjusted (p)

Limbic regions

Hippocampus R 79,91 3.32, 3.45 0.034, 0.039

Amygdala L 78,84,88,91 3.62∼5.75 0.004∼0.029

R 85 3.97 0.021

Putamen L 79 3.50 0.033

Superior temporal pole L 94 3.24 0.042

Middle temporal pole L 78,98 3.30, 3.95 0.021, 0.040

Salience network

Insula L 88 3.50 0.033

Sensorimotor network

Thalamus L 73 3.16 0.045

Supramarginal g L 79,80 3.48, 3.59 0.030, 0.033

R 65,66,76,82,88,89 3.07∼3.79 0.025∼0.049

Auditory network

Superior temporal g L 92 3.17 0.045

Visual network

Calcarine L 83 3.30 0.040

Fusiform g L 87,94 3.21, 3.30 0.040, 0.043

SOG R 96 3.84 0.024

MOG L 86,92,98 3.15∼3.41 0.026∼0.046

IOG L 74,77,80,87,90,92 3.12∼4.97 0.008∼0.047

Significant differences were tested using two-way ANOVAs (Bonferroni-corrected p < 0.05, two-tailed). L, left hemisphere; R, right hemisphere; g, gyrus; SOG, superior occipital gyrus;

MOG, middle occipital gyrus; IOG, inferior occipital gyrus.

pain experience. It is noted that Met allele frequencies of
BDNF Val66Met polymorphism vary markedly across global
populations, ranging from 0 to 72% (Petryshen et al., 2010)
with higher frequency in Asian populations (more than 40%)
and lower frequency in European populations (around 20%).
Hence, the population genetic distribution of BDNF Val66Met in
Asians allows us to recruit adequate Met-carrier participants to
delineate genuine inter-subject genetic variation, as seen in our
between-genotype MSE differences. We advise that combining
Met carriers (Val/Met and Met/Met) or Val carriers (Val/Met
and Val/Val) as one single genotype group, due to the paucity
of Met/Met or Val/Val homozygotes, could overlook subtle yet
informative genotype-specific changes at the brain level.

Our results demonstrated that the alterations of MSE in
PDMs were majorly clustered on large time scales (τ = 50–
100), including interactions above scales 73 (Table 4), pain-
associated differences above scale 78 (Table 5), BDNF-associated
differences above scale 50 (Tables S5, S6), and correlations
above scale 50 (Table S7). Time scales in MSE are reported to
have some correspondences with signal frequencies (Mizuno
et al., 2010; Courtiol et al., 2016). Coarse-graining procedure
in MSE analysis resembles applying low-pass filtering or down-
sampling procedure to the original time-series signal. According
to Nyquist-Shannon’s sampling theorem, sample entropy value
at scale factor τ could reveal the irregularity of the signal under
the frequency of (fs/τ )/2Hz (Courtiol et al., 2016), where fs is
the sampling frequency of the original signal. Given a sampling
rate around 1000Hz in the current study, SE values at time scales

20/50/75/100 might reveal the irregularity of the signal under
25/10/6.7/5Hz. Our findings of large-scale MSE alterations in
PDMs implicate that the resting-state neural complexity altered
by the interactions of long-term menstrual pain and BDNF
Val66Met polymorphism emerged approximately below theta
and alpha frequency bands. Moreover, different brain regions
exhibited different patterns of alterations, such as the limbic
regions (<theta band), the sensorimotor regions (<alpha band),
and the default mode network regions (<beta band). These are
in line with previous studies, which reported alterations of theta
oscillations at limbic regions in PDMs (Lee et al., 2017) and
spectral alterations in low frequencies (theta and alpha bands)
in chronic pain patients (Pinheiro et al., 2016; Ploner et al.,
2017). Thus, MSE could be an important method to explore brain
complexity and neural adaptability alterations.

The findings of MSE differences between BDNF Val66Met
genotypes in healthy female controls support our hypothesis of
genotype-specific complexity differences. Regional MSE values
in Met-carrier CONs (Val/Met and Met/Met) were extensively
lower at different brain regions compared with those in Val/Val
individuals (Figure 3A). In healthy conditions, BDNF Val/Val
homozygotes might serve a protective role on neural complexity,
whereas Met allele(s) (Val/Met or Met/Met) might lead to lower
neural complexity, implying a defective role of Met allele on
the overall brain complexity in healthy females. One common
explanation is the “neurotrophic model” that the replacement of
Val by Met variant disrupts intracellular trafficking, distribution,
and activity-dependent BDNF secretion at synapses in Met
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FIGURE 2 | Significant group by genotype interactions on brain complexity in regions, including the left amygdala and right hippocampus. Significant planned

comparisons labeled in the figure (*) were tested using permutation tests (iterations = 5000, p < 0.005, two-tailed). Box plots with 25th (Q1), 50th (median), 75th (Q3)

percentiles are demonstrated; the largest and smallest values within 1.5 times the interquartile range (IQR) are plotted as whiskers. Colors: BDNF Val/Val (red), Val/Met

(green), and Met/Met (black). PDM, primary dysmenorrhea patients; CON, healthy female controls; Val/Val, Valine/Valine; Val/Met, Valine/Methionine; Met/Met,

Methionine/Methionine; τ , time scale factors.

carriers (Egan et al., 2003; Chen et al., 2004). As neural
complexity might reflect neuronal transients or flexible rapid
transitions between neuronal microstates (Friston, 2000; Wang
et al., 2018), we reason that Met carriers displayed a general
loss of brain complexity compared with Val/Val homozygotes.
This result is in line with previous resting-state fMRI study (Wei
et al., 2016b) that healthy females with different BDNF Val66Met
genotypes engaged larger variations in functional connectivity
within the descending pain modulatory system. Without the
influence of long-term pain experience, healthy individuals might
preserve more substantial viability and flexibility in neural
dynamics.

However, in PDMs, the between-genotype complexity
differences in healthy females was greatly diminished
(Figure 3A). This finding suggests that three genotype
groups in PDMs demonstrated a less resilient brain system
after the experience of long-term menstrual pain. BDNF
contributes to the sensitizing capacity of the pain pathways
from peripheral nociceptors, spinal level, to brain level, and is
cardinally involved in central sensitization of pain (Nijs et al.,
2015). Individuals with a single Val allele might “preserve,”
at least to some extent, the neural complexity compared
to Met carriers. In Val/Val PDMs but not in Met-carrier
PDMs, the shorter the PDM history or duration was, the

higher the neural complexity was preserved (close to those
in Val/Val CONs) in pain-related regions (including the
amygdala, thalamus, and posterior cingulate gyrus). These
results suggest that the protective role of Val/Val homozygosity
with respect to pain chronification is preserved in PDMs and
only substitution of both alleles (as in Met/Met PDMs) might
lead to loss of complexity in relatively more regions, which
might reflect maladaptive neural plasticity upon long-term pain
insults.

On the other hand, between-group comparisons of the same
genotype (Figure 3B) revealed that neural complexity in the
limbic regions (hippocampus, amygdala) was affected by long-
term menstrual pain experience in a genotype-specific manner.
From our recent study (Low et al., 2017), we learned that the
complexity of the hippocampus and amygdala was generally
lower in PDMs than in CONs. In the current study, in the
hippocampus, Val/Val CONs (the reference group) had the
highest regional MSE values and there was no difference among
the three genotype subgroups in PDMs. This result suggests
that complexity in the hippocampus might be vulnerable to
long-term menstrual pain regardless of genotype. Moreover, the
hippocampal MSE values were negatively correlated to anxiety
and depressive scores in Met/Met CONs but positively correlated
in Met/Met PDMs and Val/Val PDMs (Figure 5B), implying
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FIGURE 3 | MSE differences between BDNF Val66Met genotypes and between groups. (A) BDNF-associated regional MSE differences in each group

(“Between-genotype”). Complexity differences between different genotypes in CONs was greatly diminished in PDMs. Regional MSE values were mostly lower in

Val/Met and Met/Met than in Val/Val genotype except in the left amygdala in PDMs. Colors of sphere: Val/Met < Val/Val (blue), Met/Met < Val/Val (blue), Val/Met <

Met//Met (blue), Met/Met > Val/Val (red). Size of sphere represents count of scale factors that showed significant MSE differences. (B) Pain-associated regional MSE

differences in females with the same genotype (“Between-group”). Colors of sphere: PDM < CON (blue), PDM > CON (red). Val/Val, Valine/Valine; Val/Met,

Valine/Methionine; Met/Met, Methionine/Methionine.

possible maladaptive neuroplasticity after the experience of long-
term menstrual pain. This speculation is in accordance with
the findings in animal study, in which stressful environment
leads to increased anxiety-related behaviors in BDNF Met/Met
mice but not in wild-type mice (Chen et al., 2004). In other
words, the effect of chronic pain experience (environmental
stress) might preponderantly affect the effect of BDNF Val66Met
polymorphism on brain complexity.

Interestingly, in the amygdala, Met/Met PDMs showed
higher regional MSE values compared with Val/Val PDMs and
Met/Met CONs, suggesting that the complexity in the amygdala
might be modulated differently by long-term menstrual pain

in specific genotype. From the patterns of altered neural
complexity observed in the amygdala and hippocampus in
PDMs, we speculate the relationships lie between the amygdala,
hippocampus, hypothalamus–pituitary–adrenal axis (HPA axis)
system, and BDNF. Evidence from cellular to human studies
indicates that pain and stress activate the HPA axis. The amygdala
and hippocampus may play important yet distinct roles in the
HPA axis (Smith and Vale, 2006; Weidenfeld and Ovadia, 2017).
BDNF also substantially participates in the regulation of HPA
axis activity (Naert et al., 2011). Under stressful environment,
hippocampal atrophy and decreased BDNF secretion were found
in mice (Chen Z. Y. et al., 2006). In depressive individuals,
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TABLE 5 | Pain-associated (between-group) regional MSE differences.

Brain region L/R Count τ p-value t-score Cohen’s d

Val/Val: PDM < CON (Count = 2)

Limbic regions

Hippocampus* R 1 91 0.0016 −3.41 −1.024

Amygdala* L 1 78 0.0026 −2.98 −0.894

Met/Met: PDM > CON (Count = 4)

Limbic regions

Amygdala L 2 84,91 0.0007,

0.001

3.34,

3.75

1.063,

1.193

Superior temporal pole L 1 94 0.0036 3.00 0.953

Visual network

Calcarine s R 1 83 0.0046 2.83 0.899

Significant planned comparisons tested for whole brain using permutation tests (iterations

= 5000, p < 0.005, two-tailed). * represents significant brain regions that also survived

under stricter correction (Bonferroni-adjusted p < 0.05, two-tailed). PDM, primary

dysmenorrhea patients; CON, healthy female controls; Val/Val, Valine/Valine; Met/Met,

Methionine/Methionine; L, left hemisphere; R, right hemisphere; s, sulcus.

decreased level of BDNF leads to hippocampal atrophy and
prefrontal cortex atrophy (Duman and Monteggia, 2006).
Neuronal morphology studies in rats reveal that exposure to
chronic stress leads to hippocampus atrophy but amygdala
hypertrophy (Vyas et al., 2002). Both acute and chronic stress
trigger opposite effects and different temporal profiles on BDNF
levels in the amygdala (BLA) vs. hippocampus (CA3) in rats
(Lakshminarasimhan and Chattarji, 2012). Thus, chronic stress
leads to contrasting patterns of neuronal dendritic remodeling
in the hippocampus and amygdala that results in dysregulation
of HPA axis (Vyas et al., 2002), which are consistent with our
results. Atrophy of the hippocampus causes a loss of hippocampal
inhibitory control over the HPA axis, whereas hypertrophy of the
amygdala causes a gain in excitatory control over the HPA axis.
Our results indicate that the hippocampus might be vulnerable
to long-term menstrual pain regardless of BDNF Val66Met
genotypes, whereas amygdala might be affected by different
BDNF Val66Met genotypes, implicating a genetic mechanism
of variation in brain complexity related to chronic pain.
Alternatively, we speculate that the dissociation pattern between
the hippocampus and amygdala could be a manifestation of
system damping; an adaptive and coping mechanism to relieve
the brain from overloaded limbic information while maintaining
the pain salience and harmful signal detection. These findings
suggest that MSE-brain complexity could be a more sensitive
measurement of neurodynamics in comparison to conventional
functional connectivity observed in fMRI to reflect the central
responses to brain stress (i.e., painful insults).

There is a lack of direct evidence of the association between
BDNF or BDNF Val66Met polymorphism and neural complexity
(as measured by MSE). A clinical case study of a single autism
spectrum disorder patient reported electroconvulsive therapy-
induced changes of EEG complexity and increased serum BDNF
concentrations during and after therapy (Okazaki et al., 2015);
yet, the authors did not offer an adequate explanation for the
underlying association between BDNF level and EEG complexity.
Nevertheless, we speculate a possible link between BDNF and

complexity from several points based on the neurobiological
functioning of BDNF (Sasi et al., 2017). First, BDNF may be
a key mediator and modulator of functional synaptic plasticity,
such as activity-induced long-term potentiation and long-term
depression (Park and Poo, 2013; Benarroch, 2015). Second,
BDNF is also reported to increase the morphology or complexity
of dendritic arbors, spines, and microarchitectural integrity,
thereby influences structural plasticity (Tolwani et al., 2002;
Cohen-Cory et al., 2010; Park and Poo, 2013). Third, both
functional and structural plasticity reflect changes in synaptic
strength that change in short and long terms. These changes
are non-linear and non-stationary and are embedded in time-
varying activities of neuronal populations. Therefore, quantifying
the irregularity or unpredictability of these activities or synaptic
dynamics might shed light on the complexity of the neural
system.

From our resting-state regional MSE findings, the effects of
BDNF Val or Met alleles might be far beyond simple deleterious
or protective. We recognized that BDNF genetic polymorphism
and BDNF protein have complex actions/regulations in the
brain that could not be simplified to a single or unifying
explanation based on our resting-state brain complexity study at
this stage. Other confounding factors, such as age, gender (Stefani
et al., 2012), environmental factors, sample size, ethnicity,
and phenotype assessment, might also result in controversial
findings in BDNF genetic studies (Hong et al., 2011; Notaras
et al., 2015; Tsai, 2018). Moreover, it is still an ongoing debate
whether the Met allele of BDNF Val66Met might serve as a
deleterious role on brain structures, performances, or health
(Autry and Monteggia, 2012; Tingting et al., 2014; Benarroch,
2015; Notaras et al., 2015). Part of these studies was carried
out in healthy individuals to avoid possible confounding factors
such as illness, medication, or genetic risk factors associated
with certain diseases (Harrisberger et al., 2014). For example,
a study from healthy Chinese population reported larger gray
matter volume in Met/Met homozygotes (Liu et al., 2014),
although the underlying mechanism remains elusive. Therefore,
for individuals who experience chronic recurrent pain or long-
term illnesses, the pain or stress might lead to maladaptive neural
plasticity or adaptive coping strategy in different BDNF Val66Met
carriers due to the activity-dependent manner of BDNF, and
might come to different conclusions.

Associating genetic variation and chronic recurrent pain
with brain complexity may assist in the understanding of
individual neural resilience/susceptibility to pain chronification.
Moreover, from the polygenic etiology view, it is implausible
that BDNF is the single gene mediating menstrual pain while
gene-gene interactions and epigenetic modulations have their
profound contributions on chronic pain development (Denk
and McMahon, 2012; Bai et al., 2017). We speculate that
epigenetic modulations of long-term menstrual pain on BDNF
genotypes might better explain our findings. However, to
investigate the epigenetic modulations of genetic polymorphism,
relevant technologies and tools are required (Weinhold, 2006),
and further investigations are needed to fully comprehend the
contribution of epigenetic processes to chronic pain states.

There are several limitations in this brain complexity genetic
study. First, we only focused on BDNF Val66Met genetic
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FIGURE 4 | MSE profiles in the right hippocampus. Colors: BDNF Val/Val (red), Val/Met (green), Met/Met (black). Lines: PDMs (solid), CONs (dashed). (A) MSE profiles

of six subgroups from fine to coarse scales across τ = 1 to 100. (B) MSE profiles from τ = 1 to 50 in PDM group. (C) MSE profiles from τ = 1 to 50 in CON group.

(D) MSE profiles from τ = 51 to 100 in PDM group. (E) MSE profiles from τ = 51 to 100 in CON group. PDM group is illustrated on the left and CON group on the

right. Val/Val, Valine/Valine; Val/Met, Valine/Methionine; Met/Met, Methionine/Methionine; τ , time scale factors.

polymorphism; there was no information of BDNF gene
expression, BDNF protein levels, or cortisol levels to test for their
associations with brain complexity. Second, other pain-related
genetic polymorphisms, such as BDNF rs2049046 and G-712A
reported in migraine studies (Azimova et al., 2013; Sutherland
et al., 2014) or OPRM1 A118G reported in PDM study (Wei
et al., 2017), might also be potential candidates of genetic
modulators of chronic pain-sculpted brain complexity. Finally,
most neuroimaging genetic studies encounter the problem of

small sample sizes compared to traditional genetic studies. Our
PDM study samples were particularly limited by challenges
of data acquisition of different neuroimaging modalities on
the same day, rigorous inclusion/exclusion criteria, and a
high exclusion rate. Nevertheless, 156 participants (80 PDMs
and 76 CONs) were recruited in the present study, which
was relatively large in neuroimaging studies. Future studies
are invited to test the neuroimaging genetic results in brain
complexity.
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FIGURE 5 | Significant correlations between regional MSE and pain-related psychological characteristics. (A) Correlations between MSE in the left amygdala (τ = 91)

and depression (BDI score). (B) Correlations between MSE in the right hippocampus (τ = 91) and depression score (BDI score). (C) Correlations between MSE in the

left amygdala (τ = 78) and pain history. (D) Correlations between MSE in the right thalamus (τ = = 58) and recalled menstrual pain index. Spearman rho (p < 0.05,

two-tailed). Significant correlations are plotted as solid lines; correlations that are not significant are plotted as dashed lines. Colors: BDNF Val/Val (red), Val/Met

(green), and Met/Met (black). Shapes: PDMs (circle), CONs (triangle). MSE, multiscale sample entropy; Val/Val, Valine/Valine; Val/Met, Valine/Methionine; Met/Met,

Methionine/Methionine; PDM, primary dysmenorrhea patients; CON, healthy female controls; BDI, Beck depression inventor; McGill pain questionnaire; PPI, present

pain index; y, year; τ , time scale factors.

CONCLUSIONS

Applying MSE analysis to time-varying MEG signals provides
valuable information about neural complexity. We found that
PDMs exhibited a general loss of brain complexity in pain-
related regions and BDNF Val66Met polymorphism is involved
in the complexity differences in a genotype-specific manner.
Overall, the BDNF Val/Val homozygosity might serve as
a protective role that preserves the brain complexity. Our
results suggest that pain experience preponderantly affects the
effect of BDNF Val66Met polymorphism on brain complexity,
particularly those in the limbic circuits (hippocampus and
amygdala), implicating gene-environment interaction on brain
complexity.
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Background: Two approaches to understanding the etiology of neurodevelopmental

disorders such as Autism Spectrum Disorder (ASD) involve network level functional

connectivity (FC) and the dynamics of neuronal signaling. The former approach has

revealed both increased and decreased FC in individuals with ASD. The latter approach

has found high frequency EEG oscillations and higher levels of epilepsy in children with

ASD. Together, these findings have led to the hypothesis that atypical excitatory-inhibitory

neural signaling may lead to imbalanced association pathways. However, simultaneously

reconciling local temporal dynamics with network scale spatial connectivity remains a

difficult task and thus empirical support for this hypothesis is lacking.

Methods: We seek to fill this gap by combining two powerful resting-state functional MRI

(rs-fMRI) methods—functional connectivity (FC) and wavelet-based regularity analysis.

Wavelet-based regularity analysis is an entropy measure of the local rs-fMRI time series

signal. We examined the relationship between the RSN entropy and integrity in individuals

with ASD and controls from the Autism Brain Imaging Data Exchange (ABIDE) cohort

using a putative set of 264 functional brain regions-of-interest (ROI).

Results: We observed that an imbalance in intra- and inter-network FC across 11

RSNs in ASD individuals (p = 0.002) corresponds to a weakened relationship with RSN

temporal entropy (p= 0.02). Further, we observed that an estimated RSN entropy model

significantly distinguished ASD from controls (p = 0.01) and was associated with level of

ASD symptom severity (p = 0.003).

Conclusions: Imbalanced brain connectivity and dynamics at the network level

coincides with their decoupling in ASD. The association with ASD symptom severity

presents entropy as a potential biomarker.

Keywords: complexity, resting-state, fMRI, connectivity, dynamics, Autism Spectrum Disorders
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Smith et al. Spatiotemporal Brain Imbalance in ASD

INTRODUCTION

Autism spectrum disorder (ASD) impacts the neurodevelopment
of networks underlying social function and communication
as well as sensorimotor abilities (APA, 1994). ASD has been
linked to imbalanced functional connectivity (FC) in the brain
(Jeste, 2011). FC measures synchronous neuronal signaling and
has been used to identify several resting-state networks (RSNs)
(Greicius et al., 2004; Seeley et al., 2009). Studies have reported
intra- and inter-network FC among several RSNs to be either
reduced (Villalobos et al., 2005; Welchew et al., 2005; Kana
et al., 2006, 2007; Kleinhans et al., 2008; Uddin et al., 2013) or
increased (Anderson et al., 2011; Supekar et al., 2013; Uddin
et al., 2013) in ASD. Most work has focused on intra-network FC
for specific RSNs. Notably, several studies have reported that the
Default Mode Network (DMN), a set of brain regions that exhibit
increased activity in the absence of an external stimuli (Raichle
andMacLeod, 2001), exhibits both increased and decreased FC in
ASD (Jann et al., 2015). However, research focused on a specific
network is inherently limited at delineating the mechanisms of
brain disruption at the global level. A growing number of reports
have also shown that inter-network FC is also strongly impacted
in ASD (Belmonte et al., 2004; Courchesne et al., 2007; Rudie
et al., 2013; Cerliani et al., 2015).

Imbalance of excitation and inhibition within neural
microcircuitry may impair the formation of intra- and inter-
network connections that typify the segregation of RSNs
during typical neurodevelopment. Hyper-excitability (elevated
excitation/inhibition balance) has been hypothesized (E/I
hypothesis) as an underlying mechanism for behavioral deficits
in ASD (Rubenstein and Merzenich, 2003; Chao et al., 2010;
Vattikuti and Chow, 2010; Yizhar et al., 2011). However,
reconciling cortical dynamics with spatial network connectivity
remains a difficult task. Resting-state functional MRI (rs-fMRI)
is a widely used method offering a balance between temporal
and spatial resolution. The rs-fMRI time series signal represents
intrinsic blood oxygen level dependent (BOLD) activity that is
correlated with neuronal activation (Logothetis et al., 2001).
Evidence of spontaneous BOLD fluctuations suggests that
stochastic processes govern neuronal activity (He et al., 2010).

However, most studies investigate brain connectivity using
FC analysis (e.g., mean intra- and inter-network correlations)
which carries little information about the dynamic structure
typifying neuronal activity. The relationship between FC and
brain dynamics in ASD is not well-understood.

Recently, non-linear statistical measures based on
approximate entropy (Pincus, 1991) and sample entropy
(Richman and Moorman, 2000; Costa et al., 2002) have been

used to investigate the dynamic structure and complexity of
the brain by characterizing the recurring patterns of temporal

fluctuations (Smith et al., 2014). A time series containing many
repetitive patterns has relatively small entropy. Conversely,

a time series containing few repetitive patterns has a higher
entropy. Entropy studies have shown changes in dynamics in
aging (Liu et al., 2012; Yang et al., 2013a), Alzheimer’s disease
(Yang et al., 2013b), schizophrenia (Takahashi et al., 2010), and
depression (Pei-Shan Ho et al., 2018). Here we investigate the

relationship between FC and brain dynamics at the network
level using a recently developed wavelet-based regularity analysis
(Smith et al., 2015). This approach to assess network dynamics is
based on noise estimation capabilities of the wavelet transform
to measure recurrent temporal pattern stability within the
rs-fMRI signal across multiple temporal scales. The method
consists of performing a stationary wavelet transform (SWT) to
preserve signal structure, followed by construction of “lagged”
subsequences to adjust for correlated features, and finally the
calculation of sample entropy across wavelet scales based on an
“objective” estimate of noise level at each scale.

Previous applications of wavelet-based regularity analysis
showed the DMN, the most ‘active’ areas of the brain at rest
(De Luca et al., 2006), exhibited higher rs-fMRI signal entropy
than rest of the brain (Smith et al., 2015). This suggested
increased rs-fMRI signal activity is characterized by not only
increased amplitudes, but alsomore complex trajectories through
a diverse array of temporal patterns. Further investigation
of wavelet-based regularity suggested it may be sensitive to
neurobiological changes that underscore cognitive dysfunction.
Specifically, widespread entropy differences in the DMN and
executive control networks were detected between individuals
with mild cognitive impairment and healthy controls. Taken
together, these observations suggest wavelet-based regularity
analysis is a promising measure of the rs-fMRI signal’s dynamic
structure.

Leveraging the spatial resolution of rs-MRI, we use machine
learning tomodel the FC-entropy relationship across cortical and
subcortical RSNs. We hypothesized that FC measures would be
associated with RSN entropy in both ASD and TD participants.
However, per the E/I hypothesis, we expected the FC-entropy
relationship to be significantly weaker in ASD participants.

METHODS

Participants
Resting-state fMRI (rs-fMRI) and structural imaging data of 85
individuals with ASD and 163 matched controls from multiple
sites of the ABIDE data set (Di Martino et al., 2014) were
included in this study for a total of N = 248 individuals.
Inclusion criteria were: (A) a T1-weighted structural MRI
image, (B) a resting-state functional MRI (rs-fMRI) with full
cortical coverage, (C) a full-scale IQ > 100, and (D) a mean
framewise displacement (FD)(Power et al., 2012) of >0.10mm.
Additionally, individuals for a site were included if a total
of at least 7 ASD and 7 control participants met the above
inclusion criteria. Demographic information is summarized in
Table 1. Details of acquisition, informed consent, site-specific
protocols, specific diagnostic criteria for each data set can be
found at the ABIDE website http://fcon_1000.projects.nitrc.org/
indi/abide/index.html. Institutional Review Board approval was
provided by each site.

MRI Data Analysis
Structural MRI
T1-weighted structural images were transformed to standard
Montreal Neurological Institute (MNI) 2mm space using the
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TABLE 1 | Eighty-five individuals with ASD (18.0 yrs, 76 male, IQ = 117,

FD = 0.065) and 163 TD children (17.4 yrs, 132 male, IQ = 115.8, FD = 0.064).

Demographics (Mean ±

SD)

Controls (n = 163) ASD (n = 85) P-value

Age (years) 17.4 ± 8.0 18.0 ± 10.2 0.84

Sex (% male) 81 89

IQ 115.8 ± 9.0 117 ± 11.3 0.76

Motion (mm) 0.064 ± 0.02 0.065 ± 0.02 0.70

ADOS-G (score) NA 10.1 ± 5.4

suite of tools available in the FMRIB software library (FSL)
5.0.9 (http://www.fmrib.ox.ac.uk/fsl/). First, skull stripping was
performed using the brain extraction tool [BET (Smith, 2002)].
Second, a 12 degrees-of-freedom affine transform from the brain
extracted structural image to the MNI 2mm reference image
using FMRIB’s linear image registration tool (FLIRT) (Jenkinson
et al., 2002). The computed affine transform was applied to the
original (non-brain extracted) structural image. Finally, non-
linear warping was applied to the linearly registered original
structural image using the FMRIB’s non-linear image registration
tool (FNIRT) (Andersson et al., 2007). Tissue segmentation was
performed using FMRIB’s automated segmentation tool (FAST)
(Zhang et al., 2001). White matter and ventricle masks were
created for later use in rs-fMRI nuisance regression. Visual
inspection was performed at each stage for each individual
to ensure successful brain extraction, tissue segmentation, and
normalization.

Resting-State Functional MRI (rs-fMRI)
The rs-fMRI data were pre-processed as follows. First, correction
for rigid body head motion was conducted using motion
correction FLIRT (MCFLIRT) (Jenkinson et al., 2002) (default
parameters, with final sinc interpolation). Second, an individual’s
mean rs-fMRI image was aligned with their structural image via
a 7 degree-of-freedom affine registration using FLIRT, and the
transformation was applied to all volumes in the time series.
Frames with excessive motion were identified and scrubbed
(Power et al., 2012) if the framewise displacement exceeded
0.3mm. Individuals with >10% of their frames flagged for
scrubbing were excluded. The mean framewise displacement of
controls (FD= 0.064) was not significantly different (W = 7,135,
p = 0.74; Table 1) compared to ASD participants (FD = 0.065)
as determined by the Wilcoxon rank-sum test. The time series
was band-pass filtered removing >0.1 and <0.01Hz. Lastly,
voxel times series were linear detrended, and reduction of
spurious variance was implemented by linear regression of
nuisance waveforms derived from head motion (including
motion derivatives) and ROI extracted time series in white
matter, cerebrospinal fluid (CSF), and global signal. White matter
and CSF time series were obtained similar to Chang and Glover
(2009) by reverse-normalizing 6mm spheres at MNI coordinates
(26, −12, 35) and (19, −33, 18), respectively, to the native space
of each individual. Individual specific white matter and ventricle
masks were used to ensure no signal of interest in gray matter

was included. Spatially smoothing was performed at the end with
a 7mm FWHMGaussian filter.

Functional Connectivity Principal

Components Analysis
An intra- and inter-network-wise method for analyzing
distributed connectivity patterns was employed. Our analyses
focused on a putative set of 264 functional regions-of-interest
(ROIs) previously organized into 11 RSNs (Power et al., 2011).
ROIs were defined as 10mm diameter spheres whose center
coordinates are given in MNI atlas space (Power et al., 2011).
For each individual, we computed a 264 × 264 FC matrix by: (i)
MNI atlas transformation of the pre-processed functional data,
(ii) computation of the mean voxel time series within each ROI,
(iii) and computation of the pairwise correlation between all ROI
time series.

Data reduction was performed in two steps to isolate a
metric of distributed FC changes. First, using each ROI’s RSN
designation (Power et al., 2011), we computed the average intra-
and inter-network correlation for each RSN yielding a reduced
11 × 11 matrix for each individual. The 11 intra-network and
11×(11−1)

2 = 55 inter-network averages (total of 11 + 55 = 66)
were compiled for all N = 248 individuals into a single 248× 66
matrix M. Second, a principal component analysis (PCA) of the
matrixMwas performed by singular value decomposition (SVD):

M = UAVT. (1)

PCA is a simple eigenvector-based multivariate analysis that
reveals the internal data structure in a way that best explains
its variance. A single PCA including both control and ASD
individuals provides a set of components common to both
groups. This avoids the latent root and vector problem
(Krzanowski, 1979) that occurs when separate PCAs are
performed for each group. The principal components cn =

UA were obtained by projection of the RSN averages onto the
principal vectors V . The primary component, c1, was selected.
c1-values vary along the primary vector V1. Variation along this
vector explained 29% of the inter-individual RSN variance.

Wavelet-Based Regularity Analysis
We computed the entropy, H, of the mean rs-fMRI time series
for the same 264 ROIs used in the FC analysis using a previously
developed wavelet-based regularity analysis (Smith et al., 2015).
This approach is sensitive to, in addition to any non-linear
structure, the presence of intrinsic non-stationary processes (i.e.,
how variable the moments of the signal distribution are over
time) within the rs-fMRI signal (Chang and Glover, 2009). Non-
stationary structure is preserved with high fidelity across multiple
scales using the SWT using the WaveLab850 toolbox (Buckheit
et al., 2005). The time series noise level is estimated from
the highest frequency subband using wavelet-based de-noising
schemes (Donoho and Johnstone, 1994; Donoho, 1995; Chang
et al., 2000) and used to tune sensitivity to the entropy of the
intrinsic signal. The regularity with which rs-fMRI signal patterns
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recur is measured with Sample Entropy (Pincus, 1991):

H (m, r, Nm) = − log

(

Cm+1 (r)

Cm (r)

)

, (2)

where recurrence probability of m-length subsequences within a
tolerance distance r is given by:

Cm (r) =
1

2

Nm
∑

q,p6=q

2(r)

Nm (Nm − 1)
. (3)

Nm is the number of subsequences, 2 is the Heaviside function,
and r = r0σ + t is the distance threshold for pattern similarity
that depends on a scaling r0 of the time series standard deviation
σ and a scale-dependent threshold t based on the BayesShrink
approach (Chang et al., 2000). Patterns were constructed from
time-delayed points to account for the serial correlations present
in rs-fMRI data. Pattern lengths were kept small to increase the
total number of patterns and improve the statistical power. In
this study, patterns of length m(+1)= 1(2) were compared using
a distance threshold of r0 = 0.2. The distance threshold, r0,
was selected using a procedure described previously (Smith et al.,
2015). The entropy was computed for a range of thresholds,
0.1–0.3 with 0.05 increments. The r0-value the maximized the
range of observed entropy values across all individuals was
selected. The mean entropy across two scales (0.031–0.063 and
0.063–0.13Hz) for each of the 11 RSNs was obtained for each

individual. The dyadic wavelet scales are based on the number
of time points. Here, the scales most sensitive to the 0.01–0.10Hz
frequency band, where most slow-wave neuronal activity occurs,
were selected.

Patterns containing one or more flagged frames were removed
from consideration. Specifically, a binary time series for each
individual equal in length to the rs-fMRI frames. Time points
equaled one if a frame was flagged for excessive motion. A SWT
was applied to this binary series. For each scale, m-length patterns
were formed using the same parameters to form patterns for the
rs-fMRI series. If any value in these patterns equal one, then the
corresponding rs-fMRI pattern is removed from the wavelet-base
regularity analysis.

Multilinear Regression Model
ASD and controls were pooled together and a multilinear
regressionmodel was used to evaluate the relationship between c1
(FC PCA scores) and RSN entropies,H. Specifically, we modeled
c1 as:

c1 = XHβ + ε, (4)

where XH is the 248 × 11 matrix of network entropies for
the 11 RSNs for all 248 individuals (both ASD and control),
β are the model coefficients to be estimated, and ε are the
residuals to be minimized. Importantly, no information about
group membership (i.e., ASD or control) has been explicitly
passed to the model.

FIGURE 1 | Principal component analysis (PCA) reveals imbalance in functional connectivity (FC) across cortical and subcortical resting-state networks (RSN). (A)

Primary PCA vector, V1, is positively weighted by the intra- and inter-network FC among several RSNs including the sensorimotor (SM, SM-lat), visual (VIS), auditory

(AUD), dorsal attention (DAN), ventral attention (VAN), and cingulo-opercular (CO). Conversely, the intra- and inter-network FC of the default mode (DMN), salience

(SAL), fronto-parietal (FP), and subcortical (SUB) RSNs are negatively weighted. (B) Violin and box plots of the primary PCA component score distributions for controls

(gray) and individuals with autism spectrum disorders (ASD; green). Horizontal black line denotes significant difference (p = 0.002).
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Elastic net regularization was performed to avoid overfitting
using the “glmnet” package (Friedman et al., 2010) within the
R statistical computing language (R Core Team, 2017). Elastic
net regularization is a common machine learning approach
to building linear models that combines L1 (lasso; Tibshirani,
1996) and L2 (ridge; Tikhonov et al., 1995) regularization. L1
regularization tends to produce sparse solutions by selecting
predictors strongly correlated with the outcome and zeroing
out the remaining. L2 regularization is suited to deal with high
collinearity among predictors. Estimated coefficients, β̂ , from
elastic net regularization are formulated as:

β̂ = min
β

(

‖c1 − XHβ‖2 +
λ

2

[

(1− α) ‖β‖22 + 2α ‖β‖1
]

)

(5)

where λ is a model complexity parameter, and α is a tradeoff
between L1 (α = 1) and L2 (α = 0) regularization. β̂values
represent the importance of certain RSN entropies over others.
Model validation was performed using 10-fold cross validation.
A grid search for the minimum mean squared error (MSE) was
performed across λ and αvalues.

Statistical Analyses
FC PCA score and entropy model distributions for ASD and
control individuals were compared using theWilcoxon rank-sum
test. A post-hoc linear regression analysis was used to test for an
interaction of entropy model estimates, c1H = XH β̂ , by group

(i.e., ASD vs. controls) in predicting c1: c1 = γ0 + γ1G+ γ2c1H +

γ3Gc1H + εr . Here γi are the regression coefficients, G is a binary
variable representing ASD individuals or controls, and εr are the
regression residuals. The regression coefficient γ3 measures the
entropymodel by group interaction and characterizes the relative
model performance between groups. The associations between
c1 and c1H with the individuals’ ADOS-G severity scores (Lord
et al., 2000) (for individuals with available scores) were computed
using a Pearson correlation. The mean age difference between
ASD and controls was 0.6 years, and not statistically significant
(W = 6,816, p = 0.66; Table 1). As such, age was not included as
a regressor to avoid loss of statistical power in detecting entropy
related group differences.

RESULTS

Imbalance in Functional Connectivity
We observed a distributed set of intra- and inter-network
FC. The brain networks that exhibit the most inter-individual
variation were evaluated by principal component analysis of
functional connectivity matrices for ASD and control groups.
The primary PCA vectorV1 (Figure 1A) is positively weighted by
the intra- and inter-network FC among several RSNs including
the sensorimotor (SM, SM-lat), visual (VIS), auditory (AUD),
dorsal attention (DAN), ventral attention (VAN), and cingulo-
opercular (CO). Conversely, the intra- and inter-network FC of
the default mode (DMN), salience (SAL), fronto-parietal (FP),

FIGURE 2 | Resting-state network (RSN) entropy is a stronger predictor of functional connectivity (FC) for TD compared to ASD. (A) Model coefficients determined

from elastic net method show sensory networks (SM, SM-lat, VIS, AUD, SUB) are positively weighted, while higher order cognitive networks (DMN, SAL, CO, DAN,

VAN, FP) are negatively weighted. (B) Scatter plot showing the relationship between FC (PCA primary component projections) and entropy model for control

(diamonds) and ASD (circles) individuals. The model was significantly weaker in predicting FC in ASD compared to controls (p = 0.02). (C) Box plot of entropy model

distributions for control (gray) and ASD (green) groups. Horizontal black line denotes significant difference (p = 0.01).
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and subcortical (SUB) RSNs were negatively weighted. FC PCA
scores, c1, significantly differed between ASD and control groups
(Figure 1B;W = 5,846, p= 0.04).

Imbalance in Brain Entropy
To evaluate whether this imbalance in intra- and inter-network
FC in ASD individuals corresponds to dynamical changes, the
mean entropy for each of the 11 RSNs were included as predictors
to model FC PCA scores (c1) of all individuals. First, we observed
that a combination of most RSNs (Figure 2A) reliably predicted
c1. The minimumMSE computed from a 10-fold cross validation
was 11.4 ± 7.2% of c1 variance, and was observed for α = 0.15.
The DMN exhibited the strongest weighting, but interestingly,
estimated model coefficients (β̂), for sensory networks (SM,
SM-lat, VIS, AUD, SUB) were positively weighted, while higher
order cognitive networks (DMN, SAL, CO, DAN, VAN, FP)
were negatively weighted. Second, in a post-hoc linear regression
analysis that included binary variable representing group (i.e.,
ASD vs. controls), we observed an interaction of group with
c1H in predicting c1 (Figure 2B; γ3 = 0.82, t = 2.3, standard
error= 0.35, p= 0.02). Lastly, we observed c1H were significantly
different for ASD compared to controls (Figure 2C; W = 5,628,
p= 0.02).

FIGURE 3 | Entropy model predicts autism diagnostic observation

schedule-generic (ADOS-G) severity score. Entropy model was negatively

associated with ADOS-G severity scores (r = −0.31, p = 0.003).

Severity Score Association
Lastly, we found a significant negative association between the
estimated model predictors (c1H) and severity scores based on
the AutismDiagnostic Observation Schedule-Generic (ADOS-G;
Figure 3; r = −0.31, p = 0.003). However, no association was
observed between c1 and ADOS-G severity scores.

DISCUSSION

Our findings revealed distributed alterations in FC across
multiple RSNs in ASD individuals. Alterations in FC were
characterized by negatively weighted sensory and positively
weighted cognitive RSNs, suggesting an imbalance of intra- and
inter-network FC in ASD. Linear modeling of these alterations
in FC revealed a significant association with alterations in
brain dynamics, as measured by the time series entropy of
multiple RSNs. We observed the observed FC imbalance in
ASD individuals was mirrored by a similar imbalance in
brain dynamics. Specifically, alterations in brain dynamics were
characterized by positively weighted sensory and negatively
weighted cognitive RSNs. Alterations in the brain dynamics were
further associated with level of symptom severity in individuals
with ASD.

Our results provide insight into the impact that ASD has
on the intra- and inter-network FC balance among several
RSNs. Previous studies have reported hypo-connectivity in the
VIS (Villalobos et al., 2005), SM (Mostofsky et al., 2009), and
DAN/VAN (Belmonte et al., 2010) networks. Conversely, hyper-
connectivity of the salience (Uddin et al., 2013) and subcortical
(Padmanabhan et al., 2013; Jann et al., 2015) networks have also
been reported. Consistent with these reports, we find imbalanced
FC may be a whole-brain phenomenon distributed across
multiple RSNs. Further, the imbalanced FC largely discriminated
sensory from cognitive networks. Sensory networks primarily
develop early during childhood while cognitive networks
continue to develop into early adulthood (Somerville et al.,
2010; Petanjek et al., 2011). Altered segregation of cognitive
networks (as indexed by stronger inter-network connectivity)
may reflect the atypical developmental trajectories (e.g., delayed
or incomplete pruning process) seen in ASD (Penzes et al.,
2011).

There is rapidly growing literature on the relationship between
FC and brain dynamics (Hutchison et al., 2013a,b; Allen
et al., 2014; Laumann et al., 2017). Here we found that, when
taken together, the dynamics of 11 RSNs reliably predicted
their engagement of distributed pattern of FC. The strongest
contributors to the entropy model were the DMN, SM, and
SAL networks. We note, the SM and SAL contributions to
both the primary PCA vector and the entropy model were
strong, and in both cases opposing each other. This suggests that
changes in network dynamics largely follow local FC changes.
This is consistent with histological studies reporting disorganized
pyramidal cells, consistent with focal cortical dysplasia, extend
across many cortical columns in such a fashion that impedes
coordinated signaling to other regions in ASD (Casanova, 2007;
Schmitz and Rezaie, 2008; Mosconi et al., 2009; Casanova et al.,
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2013). Conversely, the DMN was a small contributor to the
primary PCA vector, but was the largest contributor to the
entropy model. This may reflect the tremendous heterogeneity
that characterizes ASD (Courchesne et al., 2011). Specifically,
both hypo- and hyper-connectivity have been reported within
the DMN in individuals with ASD (Raichle and MacLeod, 2001),
suggesting these opposing effects may have averaged each other
out.

Overall, our results indicate FC and entropy provide
complementary information regarding the spatiotemporal
organization of the brain. Similar to FC, the entropy model
discriminated sensory from cognitive networks. Interestingly our
entropy model—rather than FC—was significantly associated
with ASD symptom severity. Specifically, the time series signals
in the negatively weighted cognitive networks (e.g., DMN,
SAL) become less repetitive with increasing symptom severity,
suggesting increased excitatory behavior. Conversely, the time
series signals in the positively weighted sensory networks (e.g.,
SM, SUB) become more repetitive with increasing symptom
severity. This may suggest increased inhibitory signaling

associated with repetitive behaviors in ASD (Lombardo et al.,
2016). Taken together, these findings point to entropy as a
sensitive measure of the hypothesized excitation and inhibition
imbalance underlying ASD behavioral deficits (Rubenstein and
Merzenich, 2003; Chao et al., 2010; Vattikuti and Chow, 2010;
Yizhar et al., 2011) and may serve as a potential biomarker.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of each sites Institutional Review Board.
The protocol was approved by each sites Institutional Review
Board. All subjects gave written informed consent in accordance
with the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

RS, KJ, MD, and DW contributed to the conceptualization of

this paper. RS contributed data analysis. RS, KJ, MD, and DW
contributed to the drafting of the manuscript.

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.

(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.

Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal,

T. J., Cariello, A. N., et al. (2011). Functional connectivity magnetic

resonance imaging classification of Autism. Brain 134, 3742–3754.

doi: 10.1093/brain/awr263

Andersson, J., Jenkinson, M., and Smith, S. (2007). Non-linear Registration aka

Spatial Normalisation. Internal Technical Report TR07JA2. Oxford: Oxford

Centre for Functional Magnetic Resonance Imaging of the Brain, Department

of Clinical Neurology, Oxford University. Available online at: www.fmrib.ox.

ac.uk/analysis/techrep for downloading

APA (1994). Diagnostic, and Statistical Manual of Mental Disorders. Washington,

DC: American Psychiatric Association.

Belmonte, M. K., Allen, G., Beckel-Mitchener, A. B., Boulanger, L.

M., Carper, R. A., and Webb, S. J. (2004). Autism and abnormal

development of brain connectivity. J. Neurosci. 24, 9228–9231.

doi: 10.1523/JNEUROSCI.3340-04.2004

Belmonte, M. K., Gomot, M., and Baron-Cohen, S. (2010). Visual attention in

Autism families: ‘unaffected’ sibs share atypical frontal activation. J. Child

Psychol. Psychiatry 51, 259–276. doi: 10.1111/j.1469-7610.2009.02153.x

Buckheit, J., Chen, S., Donoho, D., and Johnstone, I. (2005). Available online at:

www.stat.stanford.edu:80/wavelab/

Casanova, M. F. (2007). The neuropathology of Autism. Brain Pathol. 17, 422–433.

doi: 10.1111/j.1750-3639.2007.00100.x

Casanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F.,

Elnakib, A., et al. (2013). Focal cortical dysplasias in Autism spectrum

disorders. Acta Neuropathol. Commun. 1:67. doi: 10.1186/2051-5960-

1-67

Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., and Keysers,

C. (2015). Increased functional connectivity between subcortical and cortical

resting-state networks in Autism Spectrum Disorder. JAMA Psychiatry 72,

767–777. doi: 10.1001/jamapsychiatry.2015.0101

Chang, C., and Glover, G. (2009). Effects of model-based physiological noise

correction on default mode network anti-correlations and correlations.

Neuroimage 47, 1448–1459. doi: 10.1016/j.neuroimage.2009.05.012

Chang, S., Yu, B., and Vetterli, M. (2000). Adaptive wavelet thresholding for

image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546.

doi: 10.1109/83.862633

Chao, H. T., Chen, H., Samaco, R. C., Xue, M., Chahrour, M., Yoo, J., et al. (2010).

Dysfunction in GABA signalling mediates Autism-like stereotypies and Rett

syndrome phenotypes. Nature 468, 263–269. doi: 10.1038/nature09582

Costa, M., Goldberger, A., and Peng, C. K. (2002). Multiscale entropy

analysis of complex physiologic time series. Phys. Rev. Lett. 89: 068102.

doi: 10.1103/PhysRevLett.89.068102

Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau,

C., Hallet, M. J., et al. (2011). Neuron number and size in prefrontal cortex of

children with Autism. JAMA 306, 2001–2010. doi: 10.1001/jama.2011.1638

Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J.

A., Kennedy, D. P., et al. (2007). Mapping early brain development

in Autism. Neuron 56, 399–413. doi: 10.1016/j.neuron.2007.

10.016

De Luca, M., Beckmann, C. F., Stefano, N., Matthews, P. M., and Smith,

S. M. (2006). fMRI resting state networks define distinct modes of long-

distance interactions in the human brain. Neuroimage 29, 1359–1367.

doi: 10.1016/j.neuroimage.2005.08.035

Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,

et al. (2014). The Autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in Autism. Mol. Psychiatry 19,

659–667. doi: 10.1038/mp.2013.78

Donoho, D. (1995). De-noising by soft-thresholding. IEEE Trans. Inform. Theor.

41, 613–627. doi: 10.1109/18.382009

Donoho, D., and Johnstone, I. (1994). Ideal spatial adaptation via wavelet

shrinkage. Biometrika 81, 425–455. doi: 10.1093/biomet/81.3.425

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for

generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

doi: 10.18637/jss.v033.i01

Greicius, M., Srivastava, G., Reiss, A., and Menon, V. (2004). Default-

mode network activity distinguishes Alzheimers disease from healthy aging:

evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642.

doi: 10.1073/pnas.0308627101

He, B. J., Zempel, J. M., Snyder, A. Z., and Raichle, M. E. (2010). The temporal

structures and functional significance of scale-free brain activity. Neuron 66,

353–369. doi: 10.1016/j.neuron.2010.04.020

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013a). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., and Menon, R.

S. (2013b). Resting-state networks show dynamic functional connectivity in

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 869140

https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/brain/awr263
www.fmrib.ox.ac.uk/analysis/techrep
www.fmrib.ox.ac.uk/analysis/techrep
https://doi.org/10.1523/JNEUROSCI.3340-04.2004
https://doi.org/10.1111/j.1469-7610.2009.02153.x
www.stat.stanford.edu:80/wavelab/
https://doi.org/10.1111/j.1750-3639.2007.00100.x
https://doi.org/10.1186/2051-5960-1-67
https://doi.org/10.1001/jamapsychiatry.2015.0101
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1109/83.862633
https://doi.org/10.1038/nature09582
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1001/jama.2011.1638
https://doi.org/10.1016/j.neuron.2007.10.016
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1109/18.382009
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1016/j.neuron.2010.04.020
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Smith et al. Spatiotemporal Brain Imbalance in ASD

awake humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177.

doi: 10.1002/hbm.22058

Jann, K., Hernandez, L. M., Beck-Pancer, D., McCarron, R., Smith, R. X., Dapretto,

M., et al. (2015). Altered resting perfusion and functional connectivity of

default mode network in youth with Autism Spectrum Disorder. Brain Behav.

5:e00358. doi: 10.1002/brb3.358

Jenkinson, M., Bannister, P. R., Brady, J. M., and Smith, S. M. (2002).

Improved optimisation for the robust and accurate linear registration

and motion correction of brain images. Neuroimage 17, 825–841.

doi: 10.1006/nimg.2002.1132

Jeste, S. S. (2011). The neurology of Autism Spectrum Disorders. Curr. Opin.

Neurol. 24, 132–139. doi: 10.1097/WCO.0b013e3283446450

Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., and Just, M. A.

(2006). Sentence comprehension in Autism: thinking in pictures with decreased

functional connectivity. Brain 129, 2484–2493. doi: 10.1093/brain/awl164

Kana, R. K., Keller, T. A., Minshew, N. J., and Just, M. A. (2007).

Inhibitory control in high-functioning Autism: decreased activation and

underconnectivity in inhibition networks. Biol. Psychiatry 62, 198–206.

doi: 10.1016/j.biopsych.2006.08.004

Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin,

R., Johnson, L. C., et al. (2008). Abnormal functional connectivity in

Autism spectrum disorders during face processing. Brain 131, 1000–1012.

doi: 10.1093/brain/awm334

Krzanowski, W. J. (1979). Between-groups comparison of principal components.

J. Am. Stat. Assoc. 74, 703–707. doi: 10.1080/01621459.1979.10481674

Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C., Adeyemo,

B., et al. (2017). On the stability of BOLD fMRI correlations. Cereb. Cortex 27,

4719–4732.

Liu, C. Y., Krishnan, A. P., Yan, L., Smith, R. X., Kilroy, E., Alger, J. R., et al.

(2012). Complexity and synchronicity of resting state blood oxygenation level-

dependent (bold) functional MRI in normal aging and cognitive decline. J.

Magn. Reson. Imaging 38, 36–45. doi: 10.1002/jmri.23961

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157. doi: 10.1038/35084005

Lombardo, M. V., Lai, M.-C., Auyeung, B., Holt, R. J., Allison, C., Smith, P., et al.

(2016). Unsupervised data-driven stratification of mentalizing heterogeneity in

Autism. Sci. Rep. 6:35333. doi: 10.1038/srep35333

Lord, C., Risi, S., Lambrecht, L., Cook, E. H. Jr., Leventhal, B. L., DiLavore, P. C.,

et al. (2000). The Autism diagnostic observation schedule-generic: a standard

measure of social and communication deficits associated with the spectrum

of Autism. J. Autism Dev. Disord. 30, 205–223. doi: 10.1023/A:1005592

401947

Mosconi, M. W., Kay, M., D’Cruz, A.-M., Seidenfeld, A., Guter, S., Stanford,

L. D., et al. (2009). Impaired inhibitory control is associated with higher-

order repetitive behaviors in Autism Spectrum Disorders. Psychol. Med. 39,

1559–1566.

Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo,

B., and Pekar, J. (2009). Decreased connectivity and cerebellar activity

in Autism during motor task performance. Brain 132, 2413–2425.

doi: 10.1093/brain/awp088

Padmanabhan, A., Lynn, A., Foran, W., Luna, B., and O’Hearn, K. (2013). Age

related changes in striatal resting state functional connectivity in Autism. Front.

Hum. Neurosci. 7:814. doi: 10.3389/fnhum.2013.00814

Pei-Shan Ho, S., Chemin L., Guan-Yen c., Ho-Ling, L., Chih-Mao, H., Tatia Mei-

Chun L., et al. (2018). “Complexity analysis of resting state fMRI signals in

depressive patients,” in 2017 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (Jeju Island), 3190–3193.

Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E., and Woolfrey, K. M.

(2011). Dendritic spine pathology in neuropsychiatric disorders.Nat. Neuro 14,

285–293. doi: 10.1038/nn.2741

Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B., Rakic, P.,

et al. (2011). Extraordinary neoteny of synaptic spines in the human

prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 108, 13281–13286.

doi: 10.1073/pnas.1105108108

Pincus, S. (1991). Approximate entropy as a measure of system complexity.

Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.

6.2297

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S.

E. (2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. Neuroimage 59, 2142–2154.

doi: 10.1016/j.neuroimage.2011.10.018

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

R Core Team (2017). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: https://

www.R-project.org/

Raichle, M. E., and MacLeod, A. M. (2001). A default mode of brain

function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682. doi: 10.1073/pnas.98.

2.676

Richman, J. S., and Moorman, J. (2000). Physiological time-series analysis

using approximate entropy and sample entropy. Am. J. Physiol.

Heart Circ. Physiol. 278, 2039–2049. doi: 10.1152/ajpheart.2000.278.6.

H2039

Rubenstein, J. L., and Merzenich, M. M. (2003). Model of Autism: increased ratio

of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267.

doi: 10.1034/j.1601-183X.2003.00037.x

Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L., Dennis, E.

L., Thompson, P. M., et al. (2013). Altered functional and structural

brain network organization in Autism. Neuroimage Clin. 2, 79–94.

doi: 10.1016/j.nicl.2012.11.006

Schmitz, C., and Rezaie, P. (2008). The neuropathology of Autism:

where do we stand? Neuropathol. Appl. Neurobiol. 34, 4–11.

doi: 10.1111/j.1365-2990.2007.00872.x

Seeley, W. W., Crawford, R., Zhou, J., Miller, B., and Greicius, M. (2009).

Neurodegenerative diseases target large-scale human brain networks. Neuron

62, 42–52. doi: 10.1016/j.neuron.2009.03.024

Smith, R. X., Jann, K., Ances, B., andWang, D. J. J. (2015).Wavelet-based regularity

analysis reveals recurrent spatiotemporal behavior in resting-state fMRI. Hum.

Brain Mapp. 36, 3603–3620. doi: 10.1002/hbm.22865

Smith, R. X., Yan, L., and Wang, D. (2014). Multiple time scale complexity

analysis of resting state fMRI. Brain Imaging Behav. 8, 284–291.

doi: 10.1007/s11682-013-9276-6

Smith, S. M. (2002). Fast robust automated brain extraction.Hum. Brain Mapp. 17,

143–155. doi: 10.1002/hbm.10062

Somerville, L. H., Jones, R. M., and Casey, B. J. (2010). A time of change: behavioral

and neural correlates of adolescent sensitivity to appetitive and aversive

environmental cues. Brain Cogn. 72, 124–133. doi: 10.1016/j.bandc.2009.07.003

Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy,

L. E., et al. (2013). Brain hyperconnectivity in children with Autism and

its links to social deficits. Cell Rep. 5, 738–747. doi: 10.1016/j.celrep.2013.

10.001

Takahashi, T., Cho, R., Mizuno, T., Kikuchic, M., Takahashi, T. M. K., and

Wada, Y. (2010). Antipsychotics reverse abnormal EEG complexity in drug-

naive schizophrenia: a multiscale entropy analysis. Neuroimage 51, 173–182.

doi: 10.1016/j.neuroimage.2010.02.009

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. B 58, 267–288.

Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., and Yagola, A. G. (1995).

Numerical Methods for the Solution of Ill-Posed Problems. Boston, MA: Kluwer

Academic Publishers. doi: 10.1007/978-94-015-8480-7

Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein,

C., et al. (2013). Salience network-based classification and prediction of

symptom severity in children with Autism. JAMA Psychiatry 70, 869–879.

doi: 10.1001/jamapsychiatry.2013.104

Vattikuti, S., and Chow, C. C. (2010). A computational model for cerebral cortical

dysfunction in Autism Spectrum Disorders. Biological Biol. Psychiatry 67,

672–678. doi: 10.1016/j.biopsych.2009.09.008

Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., and Müller,

R.-A. (2005). Reduced functional connectivity between V1 and

inferior frontal cortex associated with visuomotor performance in

Autism. Neuroimage 25, 916–925. doi: 10.1016/j.neuroimage.2004.

12.022

Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-

Cohen, S., et al. (2005). Functional disconnectivity of the medial

Frontiers in Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 869141

https://doi.org/10.1002/hbm.22058
https://doi.org/10.1002/brb3.358
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1097/WCO.0b013e3283446450
https://doi.org/10.1093/brain/awl164
https://doi.org/10.1016/j.biopsych.2006.08.004
https://doi.org/10.1093/brain/awm334
https://doi.org/10.1080/01621459.1979.10481674
https://doi.org/10.1002/jmri.23961
https://doi.org/10.1038/35084005
https://doi.org/10.1038/srep35333
https://doi.org/10.1023/A:1005592401947
https://doi.org/10.1093/brain/awp088
https://doi.org/10.3389/fnhum.2013.00814
https://doi.org/10.1038/nn.2741
https://doi.org/10.1073/pnas.1105108108
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuron.2011.09.006
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1034/j.1601-183X.2003.00037.x
https://doi.org/10.1016/j.nicl.2012.11.006
https://doi.org/10.1111/j.1365-2990.2007.00872.x
https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/10.1002/hbm.22865
https://doi.org/10.1007/s11682-013-9276-6
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/j.bandc.2009.07.003
https://doi.org/10.1016/j.celrep.2013.10.001
https://doi.org/10.1016/j.neuroimage.2010.02.009
https://doi.org/10.1007/978-94-015-8480-7
https://doi.org/10.1001/jamapsychiatry.2013.104
https://doi.org/10.1016/j.biopsych.2009.09.008
https://doi.org/10.1016/j.neuroimage.2004.12.022
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Smith et al. Spatiotemporal Brain Imbalance in ASD

temporal lobe in Asperger’s syndrome. Biol. Psychiatry 57, 991–998.

doi: 10.1016/j.biopsych.2005.01.028

Yang, A. C., Huang, C. C., Yeh, H. L., Liu, M. E., Hong, C. J., Tu,

P. C., et al. (2013a). Complexity of spontaneous BOLD activity in

default mode network is correlated to cognitive Function in normal

male elderly: a multiscale entropy analysis. Neurobiol. Aging 34, 428–438.

doi: 10.1016/j.neurobiolaging.2012.05.004

Yang, A. C., Wang, S.-J., Lai, K.-L., Tsai, C. F., Yang, C. H., Hwang,

J. P., et al. (2013b). Cognitive and neuropsychiatric correlates of

EEG dynamic complexity in patients with Alzheimer’s disease. Prog.

Neuropsychopharmacol. Biol. Psychiatry 47, 52–61. doi: 10.1016/j.pnpbp.2013.

07.022

Yizhar, O., Fenno, L. E., Prigge,M., Schneider, F., Davidson, T. J., O’Shea, D. J., et al.

(2011). Neocortical excitation/inhibition balance in information processing

and social dysfunction. Nature 477, 171–178. doi: 10.1038/nature10360

Zhang, Y., Brady, M., and Smith, S. M. (2001). Segmentation of brain

MR images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57.

doi: 10.1109/42.906424

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer SA and handling editor declared their shared affiliation at time

of review.

Copyright © 2018 Smith, Jann, Dapretto and Wang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 869142

https://doi.org/10.1016/j.biopsych.2005.01.028
https://doi.org/10.1016/j.neurobiolaging.2012.05.004
https://doi.org/10.1016/j.pnpbp.2013.07.022
https://doi.org/10.1038/nature10360
https://doi.org/10.1109/42.906424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Advances in Multi-Scale Analysis of Brain Complexity
	Table of Contents
	Editorial: Advances in Multi-Scale Analysis of Brain Complexity
	Author Contributions

	Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity
	Background
	Neural Complexity
	Quantification of Neural Complexity
	Relationship Between Neural Complexity and FC

	Theoretical Modeling
	Large-Scale Brain Network Models
	Simulation of Neural Complexity and FC

	Animal Experiment with Concurrent Electrophysiology and MRI
	Human FMRI with HCP SMS EPI Sequences
	Discussion
	Complexity Analysis of Brain Signals
	Relationship Between Neural Complexity and Network FC
	Potential Applications of Complexity Analysis
	Limitations and Caveats of Complexity Analysis

	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Correction: Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity
	A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals
	Introduction
	Materials and Methods
	Participants
	Image Acquisition and Processing
	Sample Entropy and Multiscale Entropy Analysis
	A General Strategy for Selecting Parameters for the SampEn/MSE Analysis of fMRI Signals
	Statistical Analysis

	Results
	Characteristics of the SampEn/MSE Analysis
	The Valid Parameters for the SampEn/MSE Analysis in BOLD Signal
	Estimation of the Relative Error of the SampEn/MSE Analysis
	Effect of Entropy Parameters on the SampEn/MSE Analysis of BOLD Signals in Normal Aging Data

	Discussion
	Strategies for Selecting SampEn and MSE Parameters
	Is a Larger Pattern Length m Superior to a Smaller m to Capturing Signal Dynamics?
	Time Series Length Constraints on Selecting Pattern Length m in SampEn
	Effect of Normal Aging on Resting-State Brain Complexity
	Limitations

	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study
	Introduction
	Methods
	Experimental Procedure
	Data Analysis
	Mse Analysis
	Power Spectral Analysis
	Surrogate Analysis
	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Do Complexity Measures of Frontal EEG Distinguish Loss of Consciousness in Geriatric Patients Under Anesthesia?
	Introduction
	Materials and Methods
	Study Protocol
	EEG Recording and Preprocessing
	Spectral Analyses
	Multiscale Entropy
	Characterization of Dynamical Attractors
	Correlation Dimension
	Ellipse Radius Ratio

	Correlations Between EEG Measures and Effect Size of EEG Measures
	Statistics

	Results
	Spectral Analyses
	Characterization of Dynamical Attractors
	Multiscale Entropy
	Correlations Between EEG Measures and Effect Size of EEG Measures

	Discussion
	Conclusion
	Author Contributions
	Funding
	References

	Dynamic Complexity of Spontaneous BOLD Activity in Alzheimer's Disease and Mild Cognitive Impairment Using Multiscale Entropy Analysis
	Introduction
	Materials and Methods
	Participants
	Data Acquisition and Data Processing
	MSE Theory
	MSE Calculation
	Statistical Analyses

	Results
	Demographic and Clinical Characteristics
	Parameter Selection for MSE Calculation
	Significant Differences on MSE Among the Four Groups
	Time Scales Analysis on MSE From Scale 1 to Scale 6
	Comparison of MSE Among the Four Groups
	Relationships Between MSE and Clinical Measurements
	Relationships Between MSE and GMV

	Discussion
	The MSE Differences Among Four Groups on Multiple Time Scales
	Decreased Complexity and Cognitive Decline in Patient Groups
	Potential Physiological Underpinnings of Altered Complexity in Patient Groups
	Comparison of SE, PE, MSE, and Multiscale PE
	Limitation

	Conclusion
	Alzheimer's Disease Neuroimaging Initiative
	Author Contributions
	Funding
	Supplementary Material
	References

	Topological Pattern Recognition of Severe Alzheimer's Disease via Regularized Supervised Learning of EEG Complexity
	1. Introduction
	2. Materials and Methods
	2.1. Participants
	2.2. EEG Data Acquisition and Pre-processing
	2.3. Multiscale Entropy Analysis (MSE)
	2.4. Hybrid Machine Learning Model for Classification and Biomarker Identification
	2.4.1. L1-Norm and L2-Norm Regularized Learning Methods
	2.4.2. CCA Between MSE and Cognitive Declines
	2.4.3. Model Validation and Biomarker Identification


	3. Results
	3.1. Classification for AD Severity
	3.2. Multivariate Correlation Between MSE and Cognitive Declines
	3.3. Topological Patterns of EEG Changes Associated With AD Severity

	4. Discussion
	4.1. Classification Results
	4.2. Functional Activity Patterns From Feature Selection of Regularization Models
	4.3. Neurological Insights for AD Progression
	4.4. Limitations and Future Work

	5. Conclusion
	Author Contributions
	Funding
	References

	Default Mode Network Complexity and Cognitive Decline in Mild Alzheimer's Disease
	Introduction
	Materials and Methods
	Participants
	Image Acquisition and Preprocessing
	Data Analysis
	Multi-Scale Entropy (MSE) Computation
	Functional Connectivity (FC) Analysis
	Relationship Between MSE, FC, and Cognitive Impairment (MMSE)

	Results
	Functional Connectivity (FC)
	Multi-Scale Entropy (MSE)
	Network and Nodal MSE Differences
	Correlation Between MSE and FC or MMSE

	Discussion
	Functional Connectivity
	Multi-Scale Entropy
	Correlation Between Complexity, Connectivity, and Cognitive Decline
	Limitations

	Conclusion
	Data Availability
	Author Contributions
	Funding
	Supplementary Material
	References

	Measuring Brain Complexity During Neural Motor Resonance
	Introduction
	The current research
	Methods
	Participants
	Procedure
	Action Observation Task
	EEG Recording and Processing
	Multiscale Entropy (MSE) Analysis
	Network Analysis
	Statistical Analysis

	Results
	Mu Desynchronization
	Multiscale Entropy (MSE) Analysis
	Efficiency Analysis

	Discussion
	Can EEG Complexity Predict Motor Resonance?
	EEG Network Changes

	Conclusions
	Author Contributions
	Funding
	References

	Disentangling Multispectral Functional Connectivity With Wavelets
	Introduction
	Materials and Methods
	Data Acquisition
	Preprocessing
	Multispectral Decomposition, the Wavelet Packet Transform
	Data Structure
	Hierarchical Clustering (HC)
	FC Networks Clustered Against Dendrogram Inconsistencies
	Quantifying FC Network Similarity
	Voxelwise Comparisons of FC Networks

	Results
	Functional Connectivity Maps Across Spectra
	Variation in Information (VI) Across Spectra
	Voxelwise Connectivity Between Spectra

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Complexity of Wake Electroencephalography Correlates With Slow Wave Activity After Sleep Onset
	Introduction
	Methods
	Overnight Polysomnography (PSG)
	Subjects
	The Theory of Multiscale Entropy (MSE)
	The Theory of EMD and EEMD
	The Computation of SWA Based on EEMD
	Framework of the Current Research
	Statistical Analyses

	Results
	Modes Analyses From EEMD
	Demographics and Sleep Variables Derived From Visual Scoring
	Association Between EEG Complexity and Sleep Measures

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity
	Introduction
	Methods
	Participants
	Genotyping
	Demographic Data, Pain Experiences, and Psychological Characteristics
	Data Acquisition
	Resting-State MEG Signals Acquisition
	Structural MRI Images Acquisition

	Brain Region Parcellation
	Source Analyses
	Multiscale Sample Entropy
	Statistical Analyses
	BDNF Genotype Distributions and Allele Frequency
	Demographic Data, Pain Experiences, and Psychological Characteristics
	Multiscale Sample Entropy
	Correlations Between Regional MSE and Psychological Characteristics


	Results
	BDNF Val66Met Genotype Distributions and Allele Frequency
	Demographic, Pain Experiences, and Psychological Characteristics
	Multiscale Sample Entropy
	Correlations Between BDNF-Associated or Pain-Associated Regional MSE and Psychological Characteristics

	Discussion
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Imbalance of Functional Connectivity and Temporal Entropy in Resting-State Networks in Autism Spectrum Disorder: A Machine Learning Approach
	Introduction
	Methods
	Participants
	MRI Data Analysis
	Structural MRI
	Resting-State Functional MRI (rs-fMRI)

	Functional Connectivity Principal Components Analysis
	Wavelet-Based Regularity Analysis
	Multilinear Regression Model
	Statistical Analyses

	Results
	Imbalance in Functional Connectivity
	Imbalance in Brain Entropy
	Severity Score Association

	Discussion
	Ethics Statement
	Author Contributions
	References

	Back Cover



