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Editorial on the Research Topic 


Molecular mechanisms and therapeutic strategies in inflammation


Inflammation is a fundamental physiological response of the body to injury and infection, orchestrated by dynamic regulation across multilayered genetic, epigenetic, and cellular signaling networks to restore internal homeostasis. Acute inflammation helps to defend against pathogen invasion and repair tissue damage. However, if the inflammatory response fails to resolve properly or becomes dysregulated, it may develop into chronic inflammation. Persistent or aberrantly activated inflammation has been closely associated with the pathogenesis and progression of numerous major diseases, including cardiovascular diseases, autoimmune diseases, neurodegenerative disorders, cancer, and sepsis (1, 2). In-depth exploration of the molecular mechanisms of inflammation, cellular heterogeneity, and their regulatory networks has thus become a forefront of life sciences and medical research.

The inflammatory microenvironment encompasses various immune and non-immune cells, including neutrophils, macrophages, T cells, endothelial cells, and fibroblasts. These cells interact through chemokines, cytokines, and diverse receptor signaling pathways, working together to initiate, amplify, and resolve inflammation (3). During the acute phase, neutrophils directly engage in phagocytosis and elimination of pathogens, while macrophages subsequently mediate the clearance and repair of the microenvironment. In the chronic phase, the accumulation of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and other immunosuppressive cells can prevent excessive inflammatory reactions but may also result in immune dysfunction, tissue injury, and even fibrosis (4). Molecular biomarkers related to inflammation have become increasingly important in disease classification, prognosis monitoring, and the field of precision medicine. In recent years, emerging technologies that integrate single-cell sequencing and multi-omics analyses have enabled researchers to dissect the inflammatory microenvironment from multiple dimensions, including cellular subpopulations, gene expression, and spatial localization (5, 6).

New strategies targeting the inflammatory response are continually being developed, including pro-resolving mediators, cytokine inhibitors, immune cell therapies, and combination multi-target approaches (7). Several key studies in this Research Topic demonstrate significant advances in this field. Feng et al. explored the protective role of muscone in the development of chronic obstructive pulmonary disease (COPD) by establishing a mouse COPD model, finding that muscone significantly improved lung function, upregulated anti-inflammatory cytokines including IL-38, while inhibiting pro-inflammatory factors such as CXCR3, IFN-γ, IL-17A, and RORγt, providing a new therapeutic perspective for inflammatory regulation in COPD. Chen et al. investigated the effects of autologous platelet-rich plasma (PRP) treatment in patients with chronic endometritis (CE), demonstrating that PRP significantly reconstructed the uterine local immune microenvironment by reducing the proportions of CD8+ T cells, CD56+ NK cells, Foxp3+ Treg cells, and T-bet+ Th1 cells, while upregulating endometrial receptivity-related genes, thereby improving pregnancy outcomes (8). Guo et al., through a review of skin-homing T cells in recurrent episodes of atopic dermatitis, elucidated the key mechanisms of lymphocyte skin homing in disease recurrence, providing new intervention targets for chronic inflammatory skin diseases. With advances in single-cell sequencing and transcriptome analysis, Liu et al. revealed the mechanistic roles of sialylation-related genes CD19 and GPR65 in sepsis-induced acute respiratory distress syndrome, identifying CD14 monocytes as the key cell type (9), while Yang et al. comprehensively analyzed diagnostic biomarkers and immune cell infiltration features in sepsis through machine learning and bioinformatics techniques, identifying CD40LG as a key gene and target of the Chinese medicine Xuebijing. Additionally, Hao et al. investigated the role of mitophagy-related genes in acute myocardial infarction and ischemic cardiomyopathy, finding significant differences in the TGFβ pathway between high and low-risk groups, and validating RPS11 as an important diagnostic biomarker. Collectively, these studies advance the development of early warning, stratified diagnosis, and personalized treatment strategies for inflammation-related diseases, providing a solid foundation for clinical translation and disease prevention.

Research on the molecular mechanisms and therapeutic strategies of inflammation stands at a pivotal stage of rapid transformation. The application of single-cell and multi-omics technologies continues to fuel innovation in understanding disease mechanisms, diagnosis, and intervention strategies. The collection of cutting-edge studies presented in this Research Topic demonstrates significant advances in our understanding of inflammatory processes across different disease contexts. We anticipate that these findings will promote deep integration between basic and clinical research in inflammatory diseases, foster the development of innovative therapeutic approaches, and ultimately achieve precision treatment, benefitting a broader patient population.
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Aquaporins (AQPs), a family of membrane proteins that facilitate the transport of water and small solutes, have garnered increasing attention for their role in sepsis, not only in fluid balance but also in immune modulation and metabolic regulation. Sepsis, characterized by an excessive and dysregulated immune response to infection, leads to widespread organ dysfunction and significant mortality. This review focuses on the emerging roles of aquaporins in immune metabolism and their potential as therapeutic targets in sepsis, with particular attention to the modulation of inflammatory responses and organ protection. Additionally, it explores the diverse roles of aquaporins across various organ systems, highlighting their contributions to renal function, pulmonary gas exchange, cardiac protection, and gastrointestinal barrier integrity in the context of sepsis. Recent studies suggest that AQPs, particularly aquaglyceroporins like AQP3, AQP7, AQP9, and AQP10, play pivotal roles in immune cell metabolism and offer new therapeutic avenues for sepsis treatment. In the context of sepsis, immune cells undergo metabolic shifts to meet the heightened energy demands of the inflammatory response. A key adaptation is the shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, where pyruvate is converted to lactate, enabling faster ATP production. AQPs, particularly aquaglyceroporins, may facilitate this process by transporting glycerol, a substrate that fuels glycolysis. AQP3, for example, enhances glucose metabolism by transporting glycerol and complementing glucose uptake via GLUT1, while also regulating O-GlcNAcylation, a post-translational modification that boosts glycolytic flux. AQP7 could further contributes to immune cell energy production by influencing lipid metabolism and promoting glycolysis through p38 signaling. These mechanisms could be crucial for maintaining the energy supply needed for an effective immune response during sepsis. Beyond metabolism, AQPs also regulate key immune functions. AQP9, highly expressed in septic patients, is essential for neutrophil migration and activation, both of which are critical for controlling infection. AQP3, on the other hand, modulates inflammation through the Toll-like receptor 4 (TLR4) pathway, while AQP1 plays a role in immune responses by activating the PI3K pathway, promoting macrophage polarization, and protecting against lipopolysaccharide (LPS)-induced acute kidney injury (AKI). These insights into the immunoregulatory roles of AQPs suggest their potential as therapeutic targets to modulate inflammation in sepsis. Therapeutically, AQPs present promising targets for reducing organ damage and improving survival in sepsis. For instance, inhibition of AQP9 with compounds like HTS13286 or RG100204 has been shown to reduce inflammation and improve survival by modulating NF-κB signaling and decreasing oxidative stress in animal models. AQP5 inhibition with methazolamide and furosemide has demonstrated efficacy in reducing immune cell migration and lung injury, suggesting its potential in treating acute lung injury (ALI) in sepsis. Additionally, the regulation of AQP1 through non-coding RNAs (lncRNAs and miRNAs) may offer new strategies to mitigate organ damage and inflammatory responses. Moreover, AQPs have emerged as potential biomarkers for sepsis progression and outcomes. Altered expression of AQPs, such as AQP1, AQP3, and AQP5, correlates with sepsis severity, and polymorphisms in AQP5 have been linked to better survival rates and improved outcomes in sepsis-related acute respiratory distress syndrome (ARDS). This suggests that AQP expression could be used to stratify patients and tailor treatments based on individual AQP profiles. In conclusion, AQPs play a multifaceted role in the pathophysiology of sepsis, extending beyond fluid balance to crucial involvement in immune metabolism and inflammation. Targeting AQPs offers novel therapeutic strategies to mitigate sepsis-induced organ damage and improve patient survival. Continued research into the metabolic and immune functions of AQPs will be essential for developing targeted therapies that can be translated into clinical practice.
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1 Background

Sepsis represents a prevalent complication in Intensive Care Units across Germany and the United States (1), with persistently high mortality due to its complex immunological nature. In the United States septic conditions accounts for more than $22 billion (11.2%) of total US hospital costs in 2017 (2). Incidence and mortality of sepsis differ among the regions worldwide. Incidence reaches from 158/100 000 population in 2015 in Germany (3) to 780/100000 population in Sweden (4) For patients with clearly documented sepsis (including severe sepsis), the mortality rates from 2010 to 2015 fell from 26.6% to 23.5%, while for those with severe sepsis alone, the rates decreased from 47.8% to 41.7%. in Germany (5). These figures are comparable to the rates in England (6) but significantly higher than those in the USA (15%) and Australia (18.4%) (7, 8).The absence of predictive biomarkers specific to this syndrome prevents tailored individual therapies based on patients’ immune status. Aquaporins (AQPs) are potential biomarkers due to their significant roles in inflammation, particularly in sepsis, as evidenced by experimental and association studies (9–11). AQPs are emerging as promising candidates in sepsis research due to their significant roles in inflammation and immune responses (12). Experimental and association studies indicate that AQPs are not merely transport proteins; their dysregulation is observed in immune and epithelial cells when exposed to infectious and inflammatory stimuli (13). Recent findings have firmly established the involvement of AQPs in inflammatory processes, particularly since several AQP isoforms are expressed in both innate and adaptive immune cells (14). They play crucial roles in phagocytic functions and specific immune processes such as cell activation and migration (15, 16).

The recognition of AQPs in inflammation enhances our understanding of the complex mechanisms governing host-pathogen interactions. As such, AQPs represent potential therapeutic targets for modulating edema, cell migration, and the release of inflammatory cytokines and mediators (17, 18).

Aquaporins are a family of membrane proteins that facilitate the transport of water across biological membranes. They are integral to maintaining water balance in cells and tissues. As described, Aquaporins are essential for water homeostasis in all organisms (19). These proteins are known for their remarkable ability to transport water selectively and efficiently (20). Aquaporins play critical roles in various physiological processes, including kidney water conservation, brain water balance, and secretion of cerebrospinal fluid (19).

AQPs comprise a group of 13 membrane proteins crucial for regulating cellular water, salt fluxes, and the transport of small solutes like glycerol, urea, and carbon dioxide (17). Water-selective AQPs play roles in transepithelial fluid transport, cell migration, brain edema, and neuroexcitation (17), while aquaglyceroporins are involved in cell proliferation, adipocyte metabolism, and epidermal water retention. Table 1 illustrates the various families of aquaporins. The objective of this study is to provide an update on the potential contributions of aquaporins (AQPs) to the pathomechanisms of sepsis, based on the current literature findings (21).



Table 1 | the different AQP subfamilies and their permeability according to (22).

[image: Table categorizing aquaporins by subfamily: Classical AQPs (green): AQP0-6, permeable to water, hydrogen peroxide, carbon dioxide, ammonia, urea, glycerol, nitrate. Aquaglyceroporins (blue): AQP3, 7, 9, 10, permeable to water, glycerol, urea, hydrogen peroxide, ammonia, arsenite, lactate, purine, pyrimidine. Superaquaporins (orange): AQP11, 12, permeable to water, hydrogen peroxide, glycerol. Aquaammoniaporin (red): AQP8, permeable to water, ammonia, glycerol, hydrogen peroxide.]
In conclusion, aquaporins exert a significant influence on the pathophysiology of sepsis, affecting fluid balance, organ function and the inflammatory response. Further research is required to fully explore the potential of targeting aquaporins as a therapeutic strategy. The following paragraph will delineate the role of aquaporins in various organ systems.




2 The significance of aquaporins in various organ systems during sepsis



2.1 Aquaporins in whole blood of septic patients

Aquaporins (AQPs) play a crucial role in the immune response, with various isoforms implicated in different immune cell types and inflammatory conditions. The AQP expression analysis in whole blood samples from septic patients might reveal valuable AQP biomarkers in sepsis. Our research analyzed those samples of septic patients and revealed that AQP9 is the most abundantly expressed aquaporin in blood, followed by AQP3, AQP5, and AQP1 (Figure 1). In contrast AQP10, AQP7 and AQP8 very only expressed in a small amount in whole blood (Figure 1) (23). The different expression in whole blood could be related to different amount of blood cells, as e.g. AQP9 is mostly expressed in high abundant neutrophils (24) and AQP3 in the second most present T-cells (25, 26). Furthermore, the expression of these aquaporins was observed to undergo varying changes between day 1 and day 8 of sepsis (23).

[image: Gradient triangle with green at the top transitioning to orange at the bottom. To the right, a vertical list reads: AQP9, AQP3, AQP5, AQP1, AQP10, AQP7, AQP8.]
Figure 1 | amount of AQP expression in whole blood from high (AQP9) to low amount (AQP8).

The expression of aquaporins is subject to differential regulation in immune cells (as illustrated in Table 2 and Figure 2), and this is further influenced by the presence of inflammatory stimuli (10, 27).



Table 2 | Distribution of aquaporins different immune cells (HPA: humanproteinatlas.org).

[image: Table listing AQPs and their detection in immune cells. AQP0, AQP4, AQP12A, and AQP12B are not detected. AQP1, AQP3, AQP9 show various types of immune cell presence. AQP6, AQP7B, and AQP10 have very low detection in specific cell types. References are listed as HPA with some specific articles noted for certain AQPs.]
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Figure 2 | The following schematic overview, created with BioRender, depicts the expression of aquaporin (AQP) in various immune cells.

It has been demonstrated that activated B and T lymphocytes express AQP1, AQP3, and AQP5, whereas immature dendritic cells (DCs) predominantly express AQP3 and AQP5. This expression correlates with the activation and proliferation of these cells (13). In leukocytes, the expression of AQP1 and AQP9 is increased following activation or stimulation with lipopolysaccharide (LPS), a component of bacterial cell walls. Furthermore, in cases of ICU-acquired sepsis and SIRS, there is a notable alteration in the expression of AQP1 and AQP9 in leukocytes, which may play a role in cellular responses and plasma membrane dynamics under inflammatory conditions (30–32). Furthermore, studies have demonstrated that LPS administration results in increased AQP1 expression and decreased AQP5 mRNA levels in THP-1 cells, underscoring the existence of isoform-specific responses in the context of inflammation (27). It is noteworthy that elevated AQP5 mRNA expression has been linked to unfavorable outcomes in sepsis patients, underscoring its potential as a prognostic marker (33).

Similarly, stimulation with lipopolysaccharide (LPS) has been observed to upregulate AQP3 in monocytic THP-1 cells, which are a model for studying macrophage activation and inflammation. Inhibition or silencing of AQP3 in these cells has been demonstrated to attenuate LPS-induced priming and reduce the production of inflammatory cytokines such as IL-6, pro-IL-1β, and TNF-α, indicating its involvement in Toll-like receptor 4 (TLR4) signalling (34).

In primary human macrophages and neutrophils, AQP9 is highly expressed and increases at both the transcript and protein levels following LPS stimulation, indicating its role in innate immune response modulation (34). AQP9, in particular, demonstrates augmented expression in activated polymorphonuclear leukocytes during systemic inflammatory response syndrome (SIRS) and infective endocarditis (32, 35). In dendritic cells (DCs), AQP9 is markedly expressed and markedly upregulated by LPS (Figure 2). However, the blockade of AQP9 in mice with induced colitis only partially reduces DC inflammatory responses (36). AQP9 plays a regulatory role in neutrophil migration and is associated with sepsis survival. AQP9 regulates neutrophil migration and affects sepsis survival In leukocytes, AQP9 is located at the cell edge and is thought to be involved in motility, lamellipodium extension and stabilisation, and changes in cell volume that facilitate migration towards chemoattractants (37). A further study demonstrated that the AQP9-G-quadruplex forming sequence containing long non-coding RNA (lncRNA) axis plays a pivotal role in the exacerbation of sepsis by promoting neutrophil activation and neutrophil extracellular trap (NET) release (38). It can therefore be concluded that aquaporins have specific functions in immune cells (Figure 2).




2.2 Aquaporins in sepsis-associated encephalopathy

Aquaporins (AQPs) play an important role in several aspects of sepsis-associated encephalopathy (SAE), a devastating complication of sepsis characterised by vasogenic cerebral oedema and cognitive impairment. In the context of SAE, AQPs, in particular AQP4, have been implicated in several pathological mechanisms.

During septic encephalopathy, AQP4 is upregulated in response to cerebral inflammation mediated by neutrophil infiltration, exacerbating cerebral oedema (39–41) (Figure 3A). SAE is also associated with astrocytic inflammation involving AQP4. AQP4 is upregulated in the peripheral blood of SAE patients and in the brain tissue of a mouse model in which AQP4 deletion can reduce cognitive impairment by activating astrocytic autophagy and inhibiting neuroinflammation. In addition, AQP4 knockout seem to reduce Ca2+ accumulation and downregulated voltage-gated, type 8, alpha subunit channels in astrocytes, thereby inhibiting the Peroxisome proliferator-activated receptor gamma pathway and providing neuroprotection (42). This upregulation of AQP4 can be attenuated by dexamethasone, primarily through tumour necrosis factor alpha (TNF-α) regulation, although the use of corticosteroids in sepsis remains controversial and is recommended under certain conditions (43–45).
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Figure 3 | This figure illustrates the updated roles and expressions of aquaporins in differentiated organs in sepsis. (A) AQP4 is upregulated in the brain during sepsis; (B) AQP1 expression increases in cardiac cells; (C) AQP1, AQP8, and AQP9 are present in bronchiolar epithelial cells, while AQP5 is in alveolar epithelial cells, with all their expressions reduced in sepsis; (D) AQP2 is localized to the apical and subapical regions of collecting duct principal cells, with reduced expression in sepsis; (E) AQP8 expression decreases in hepatocytes during sepsis; (F) AQP3 seems to be decreased in intestinal cells. This figures has been modified and adapted from the following sources (90):and (21).

Elevated ammonia levels in SAE, due to non-hepatic hyperammonemia, contribute to increased AQP4 expression in astrocytes, leading to cognitive impairment (46). Fecal microbiota transplantation in animal models has shown promise in reducing ammonia levels and improving neurological outcomes by modulating AQP4 expression via the gut-brain axis (46). Furthermore, in sepsis-induced delirium (SID), AQP4 expression in astrocytes is elevated, with exosomes carrying AQP4 proteins potentially serving as biomarkers for SID (47).

In contrast a rat CLP-model showed that SAE led to impaired cerebral blood flow, alterations in grey and white matter structure, and changes in glial cell morphology without causing widespread blood-brain barrier breakdown, accompanied by reductions in neuronal cyclooxygenase-2 (COX-2) and aquaporin-4 (AQP4) expression in cortical regions and increased perivascular COX-2 expression (48).

In experimental models of sepsis, AQP4 deletion attenuates learning and memory impairment by reducing neuroinflammation, activating astrocytic autophagy, and downregulating proinflammatory cytokines (42). It was found that inhibiting LncRNA-5657 with shRNA reduced neuronal degeneration and inflammatory markers, including aquaporin 4, metallopeptidase-9, and TNF-alpha levels in the hippocampus, suggesting its potential protective role against septic brain injury (49). Additionally, studies investigating endotoxemia-induced encephalopathy have identified increased AQP4 expression in the hippocampus, suggesting its involvement in the pathogenesis of cognitive dysfunction (45, 50).

Overall, AQP4 appears to be a crucial mediator in the pathophysiology of sepsis-associated encephalopathy, involved in brain edema, cognitive impairment, and potentially serving as a target for therapeutic intervention in clinical settings.




2.3 Aquaporins in cardiac dysfunction in sepsis

Cardiac dysfunction in sepsis arises from a combination of factors including systemic inflammation, cardiodepressive mediators, endothelial and mitochondrial dysfunction, hypovolemia, microcirculatory disturbances, bacterial toxins, oxidative stress, and neurohormonal dysregulation (51). It has been found that endotoxin administration impairs cardiac function and induces the expression of gelsolin, AQP1 and iNOS, with ageing having a negative effect on gelsolin induction and cardiac performance; in aged mice, increased levels of AQP1, iNOS and phosphorylated STAT3 were associated with greater cardiac dysfunction in response to endotoxic stress (52). In addition, cardiac expression of AQP1, P53 and P21 was significantly increased in LPS-treated rats (53). In another study, reduced H19 and AQP1 expression, coupled with increased miR-874 levels, were observed in sepsis patients, a lipopolysaccharide (LPS)-treated mouse model and in cell culture. The results suggest that H19 acts as a ceRNA for AQP1 by sequestering miR-874, highlighting its potential as a therapeutic target for mitigating sepsis-induced myocardial dysfunction (54).In a bacterial endotoxin-induced mouse model, deletion of aquaporin 9 (AQP9) improved survival and reduced oxidative stress. A novel AQP9 inhibitor, RG100204, was found to attenuate cardiac dysfunction as well as renal dysfunction and hepatocellular injury in a cecal ligation and puncture (CLP) model of sepsis. RG100204 significantly reduced cardiac dysfunction even when administered 3 hours after the onset of sepsis, highlighting AQP9 as a promising drug target for the treatment of sepsis-induced cardiac dysfunction (55). In conclusion, it can be stated that AQP1 and, to a lesser extent, AQP9 appear to be of particular importance in the context of septic cardiac dysfunction (Figure 3B).




2.4 Aquaporins in lung injury

Acute lung injury (ALI), a severe complication of sepsis often progressing to acute respiratory distress syndrome (ARDS), is associated with high in-hospital mortality (56). A number of aquaporins (AQPs) are expressed in the lungs, with AQP1 and AQP5 being particularly prevalent in vascular endothelial cells (Figure 3C), alveolar type I cells, and bronchial epithelial cells. In contrast, AQP8 and AQP9 are expressed to a lesser extent (57).

In general, AQP1 and AQP5 are of great importance in the context of regulating fluid transport and inflammation in ALI. Their expressions and functions vary depending on the specific type and location of lung injury. These insights into the pathophysiology of ALI may inform therapeutic strategies aimed at mitigating lung injury and improving clinical outcomes (58). Furthermore, the interaction between brain-derived neurotrophic factor (BDNF) and AQP5 indicates the potential for a novel mechanism that could mitigate lung damage in septic conditions by inhibiting excessive autophagy in alveolar epithelial cells (59).

Studies in septic patients have demonstrated increased AQP3 and AQP5 expression in the alveolar septum during diffuse alveolar damage (60). Conversely, experimental sepsis induced by cecal ligation puncture (CLP) in rats has been linked to decreased Aqp5 expression in lung tissue, which can be mitigated by treatments like emodin and regulated by microRNAs miR-96 and miR-330 (61–63). Similarly, Aqp1 expression decreases following exposure to lipopolysaccharide (LPS) in rat lungs, a reduction that can be counteracted by therapies such as hydrogen-rich saline and parenteral vitamin C, known for their protective effects in sepsis-related lung injury (11, 64). Experimental ALI models utilising insults such as LPS, ventilation, hyperoxia and hydrochloric acid (HCl) have demonstrated an increase in AQP1 expression. Conversely, mechanical ventilation with high tidal volume has been observed to result in a reduction in pulmonary AQP1 levels, which can impact fluid balance and the development of lung oedema (65). Another study using a CLP-induced sepsis rat model, myocyte enhancer factor overexpression was found to alleviate acute lung injury by up-regulating AQP1 expression. This effect suggests AQP1 modulation as a potential therapeutic strategy for sepsis-induced ALI (66). In addition, it was demonstrated that AQP1 expression is decreased in HUVEC cells, stimulated with the inflammatory factor Tumor Necrosis Factor Receptor Superfamily, Member 11b (TNFRSF11B) (67).

AQP5, highly expressed in alveolar epithelial cells, is significantly impaired after prolonged exposure to hyperoxia, highlighting its role in maintaining water movement and preventing pulmonary edema (68).

In models of inflammatory pancreatitis, there is a reduction in the expression of Aqp1 and Aqp5 in the lung, whereas Aqp8 and Aqp9 remain unaffected. The traditional Chinese medicine Dai-Huang-Fu-Zi-Tang has been demonstrated to be effective in upregulating Aqp1 and Aqp5 and in attenuating inflammation in these scenarios (69).

Further substances have been demonstrated to modulate AQP expression in lung tissue. Emodin treatment has been shown to improve sepsis-induced lung pathology by upregulating AQP and tight junction expression, reducing inflammatory cytokines, and inhibiting pulmonary apoptosis. These findings suggest that emodin may have therapeutic potential in the treatment of sepsis-induced ALI (70). The traditional Chinese formula Da-Cheng-Qi decoction has been demonstrated to suppress the TLR4/NF-κB signalling pathway, increase AQP1 and AQP5 protein expression, and inhibit inflammatory cytokine production. These effects may contribute to the alleviation of inflammatory reactions in ALI (71). Dexamethasone pretreatment at various concentrations has been demonstrated to attenuate lipopolysaccharide (LPS)-induced suppression of cell proliferation, thereby reducing the LPS-induced reduction of aquaporin 5 (AQP5) expression and apoptosis in neonatal type II alveolar epithelial cells (72). anshinol treatment in a rat sepsis model has been demonstrated to significantly increase AQP5 mRNA expression and reduce inflammatory cytokines IL-6 and TNF-α. This suggests a protective effect on lung tissue by upregulating AQP5 through the inhibition of inflammatory pathways (73). Another study explored the impact of miR-34b-5p on sepsis-induced injury in human renal tubular epithelial cells, revealing that elevated miR-34b-5p levels in septic acute kidney injury (AKI) patients correlated with inflammation and apoptosis through downregulation of AQP2, a direct target of miR-34b-5p, exacerbating injury when overexpressed and mitigated by inhibiting miR-34b-5p or enhancing AQP2 expression Another study investigated the influence of miR-34b-5p on sepsis-induced injury in human renal tubular epithelial cells. The findings indicated that elevated miR-34b-5p levels in septic acute kidney injury (AKI) patients were associated with inflammation and apoptosis through the downregulation of AQP2, a direct target of miR-34b-5p. This resulted in an exacerbation of injury when miR-34b-5p was overexpressed and a mitigation of injury when miR-34b-5p was inhibited or AQP2 expression was enhanced (74). Furthermore, the antioxidant Ss-31 was observed to reduce AQP3 expression and ROS levels, thereby improving vascular permeability and enhancing the survival of rats with sepsis. These findings indicate that modulation of AQP3 and inhibition of ROS by Ss-31 may represent promising strategies for the treatment of sepsis-induced pulmonary complications (75). In conclusion, the regulation and expression of aquaporins, particularly AQP1 and AQP5, play a critical role in fluid transport and inflammatory responses in acute lung injury (ALI). Variations in AQP expression depending on the type and location of lung injury provide valuable insights into potential therapeutic strategies for mitigating sepsis-induced lung damage. Further research on modulating AQP expression could lead to improved clinical outcomes in patients with ALI and sepsis.




2.5 Aquaporins in acute kidney injury

Approximately 50% of sepsis patients develop acute kidney injury (AKI), which is associated with high mortality rates (76). AQP1 is highly expressed in the kidney and facilitates water reabsorption in the proximal tubules, the thin descending limb of Henle, and the descending vasa recta. In contrast, AQP2, AQP3, and AQP4 are localised to the principal cells of the connecting tubules and collecting ducts, which are crucial for maintaining body water homeostasis and urine concentration (77). In AKI mainly AQP1 and AQP2 seems to be involved (Figure 3D). The expression of AQP1 is markedly elevated in renal tissue and heart tissue of rats subjected to LPS-induced AKI, but exhibits a reduction in the lung and small intestine. This suggests that AQP1 may serve as a promising novel diagnostic biomarker for septic AKI (53). Additionally, miR-144-3p upregulation was linked to the downregulation of aquaporin-1 (AQP1), which may impact renal function during systemic inflammation induced by lipopolysaccharide (LPS) (78). AQP1 plays a role in the protection against LPS-induced acute kidney injury (AKI) by promoting M2 macrophage polarization, which involves PI3K activation. AQP1 thus modulates immune responses and indicates PI3K as a pivotal pathway in AQP1-mediated macrophage polarization during sepsis-induced AKI (79).

This conclusion is supported by other analyses using an LPS-induced HK-2 cell model of septic acute kidney injury, which demonstrated that AQP1 plays a cytoprotective role. The overexpression of AQP1 in HK-2 cells resulted in the attenuation of the LPS-induced reduction in cell viability, increase in apoptosis, and upregulation of proinflammatory cytokines and chemokines. This was achieved by the inhibition of the p38, p53 and ERK1/2 pathways, which suggests AQP1 as a potential therapeutic target for sepsis-induced acute kidney injury (80, 81).

Further AKI is associated with downregulated Aqp2 expression through the NF-κB pathway in a CLP mouse model. Pretreatment with a continuous erythropoietin receptor activator (CERA) or α-lipoic acid has been demonstrated to preserve Aqp2 expression and protect against sepsis-induced AKI. Conversely, propofol pretreatment, but not post-treatment, has been shown to prevent Aqp2 downregulation and protect renal function during endotoxemia (21). n a porcine model of sepsis-induced AKI, treatment with human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) resulted in a reduction in the expression of Aqp2 in the renal medulla, indicating a protective effect on renal function. Treatment with hUC-MSCs may protect against endothelial and tubular injury through the TLR4/NF-κB signalling pathway (82).




2.6 Aquaporins in liver injury

The liver plays many roles in sepsis and is also a target for sepsis-induced injury. A growing body of evidence from studies conducted to date indicates that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play a pivotal role in the occurrence and development of sepsis-related liver injury (77). Septic shock and its toxins can cause hypoxic hepatitis, cholestasis due to altered bile metabolism and acute liver injury (83). In cholestasis, downregulation of AQP8 by TNF-α after LPS stimulation reduces water permeability in hepatocytes, impairing bile formation and exacerbating cholestasis (84). In addition, AQP8 can modulate hepatocellular mitochondrial function by altering water transport (85). AQP1, typically localized to portal venules, hepatic arterioles, and bile ducts in normal liver and early-stage primary biliary cirrhosis (PBC), is aberrantly overexpressed in proliferating bile ductules and arterial capillaries in advanced PBC, potentially contributing to angiogenesis, fibrosis, and the progression of portal hypertension (86). In another study, adenoviral delivery of the human AQP1 gene into rat livers improved LPS-induced cholestasis by normalising bile flow, biliary bile acid excretion and serum bile acid levels (Figure 3E). Although it did not alter protein expression of the canalicular bile salt export pump, hAQP1 expression enhanced its transport activity and restored canalicular cholesterol content, suggesting a potential therapeutic approach for sepsis-associated cholestatic diseases (87).




2.7 Sepsis induced intestinal injury

Intestinal injury occurs in sepsis, where the barrier function is frequently compromised, leading to increased permeability, bacterial and endotoxin translocation, and further intensification of the systemic inflammatory response (88). Not much is known about aquaporins in intestinal injury. In a septic mouse model induced by cecal ligation and perforation (CLP), sepsis caused intestinal injury with disrupted mucosal structure, increased intestinal ischemia–reperfusion injury, increased plasma diaminooxidase (DAO) and intestinal-type fatty acid-binding (FABP2) protein levels, and decreased AQP3 and occludin expression. Oral glycerol administration partially restored intestinal morphology, decreased intestinal ischemia–reperfusion injury, decreased DAO and FABP2 levels, upregulated occluding and AQP3 expression and improved survival compared to untreated septic mice. These findings suggest a protective role for AQP3 in sepsis-induced intestinal injury and the potential of glycerol as a surrogate for AQP3 to improve intestinal barrier function and survival (89) (Figure 3F).





3 Polymorphisms in aquaporin genes

In recent years, single-nucleotide polymorphisms (SNPs) in aquaporin genes have been linked to various pathological conditions, highlighting their significant clinical value (91–93). Notably, the -1364 A/C (rs3759129) polymorphism in the promoter region of the AQP5 gene has been extensively studied by our group in the context of sepsis (10). The initial investigation sought to ascertain the correlation between the AQP5 promoter -1364A/C polymorphism and 30-day survival in patients with severe sepsis. The findings revealed a notable increase in survival rates among patients with combined AC/CC genotypes, in comparison to those with AA genotypes. This observation remained consistent even after adjusting for various clinical covariates. The findings emphasize the potential prognostic significance of AQP5 expression variations in severe sepsis, underscoring the role of AQP5 channels in influencing patient outcomes (9). Furthermore, we demonstrated that the C-allele of the AQP5-1364A/C polymorphism, which is associated with decreased AQP5 expression and improved outcomes in sepsis, is linked to higher promoter methylation of AQP5 in neutrophils, monocytes, and lymphocytes in both septic patients and healthy controls. Furthermore, decreased AQP5 promoter methylation was correlated with increased AQP5 expression in cell-line models, indicating that AQP5 promoter methylation may serve as a crucial mechanism in genotype-dependent AQP5 expression regulation. This suggests that AQP5 promoter methylation may represent a potential target for interventions in sepsis (94). In patients with sepsis, elevated methylation levels at the cytosine site nt-937 within the AQP5 promoter are linked to augmented AQP5 mRNA expression and are predictive of an elevated risk of mortality within 30 days. This indicates that epigenetic regulation of AQP5 via NF-κB binding at nt-937 is of pivotal importance in influencing the outcome of sepsis, thereby underscoring the potential prognostic significance of AQP5 promoter methylation in septic patients (95). Aqp5 knockout (KO) mice exhibited significantly higher survival rates post-LPS injection compared to wild-type (WT) mice, indicating that Aqp5 deficiency exerts a protective effect in sepsis. Furthermore, AQP5 expression and the AQP5 -1364A/C polymorphism were observed to regulate immune cell migration, with neutrophils from individuals with the AA genotype demonstrating earlier and more precise migration compared to those with AC/CC genotypes. This suggests that AQP5 plays a role in modulating immune responses and survival outcomes in sepsis (96).

We also examined the association between complications in septic patients and the AQP5 -1364A/C polymorphism. Here we investigated the association between the promoter polymorphism and major adverse kidney events in septic patients, as well as its impact on 90-day survival. The results demonstrated that individuals with AC/CC genotypes exhibited a reduced incidence of major adverse kidney events in comparison to those with AA genotypes. Furthermore, C-allele carriers demonstrated enhanced 90-day survival rates. Subsequent multiple proportional hazard analysis substantiated the association between AC/CC genotypes and a diminished risk of mortality within 90 days, thereby corroborating the AQP5 -1364A/C polymorphism as an independent prognostic factor in sepsis, with implications for precision medicine (97). In acute respiratory distress syndrome (ARDS) caused by bacterial pneumonia, the AQP5 -1364A/C promoter polymorphism’s C-allele was linked to reduced pulmonary inflammation and improved 30-day survival rates, offering potential insights for characterizing and treating ARDS on an individualized basis. This finding highlights the impact of AQP5 genotype on inflammation and prognosis in ARDS, suggesting a significant advancement in understanding and managing this condition (98). The association between the AQP5 promoter -1364A/C polymorphism and AKI in patients with pneumonia-induced acute respiratory distress syndrome (ARDS) were examined. Results show that while the incidence of AKI upon admission did not differ between genotypes, by day 30, the AA genotype had a significantly higher prevalence of AKI compared to AC/CC genotypes. Moreover, the AA genotype was identified as an independent risk factor for AKI persistence, indicating that AQP5 genotype may influence AKI development and resolution beyond fluid balance considerations in ARDS (99).

Furthermore, a polymorphism in the AQP3 gene was examined. There was an association between AQP3 polymorphism (rs17553719) and expression with survival outcomes in sepsis patients. Results showed that the CC genotype was linked to decreased 30-day survival, higher AQP3 mRNA expression, and elevated IL-33 concentration, suggesting a potential role of AQP3 in sepsis prognosis (100). Polymorphisms in AQP genes could therefore influence the disease progression in sepsis.




4 Aquaporins in inflammasome activation

The role of AQPs in inflammasome activation has been described intensively in other reviews (21, 29). The inflammasome, crucial in the immune response, is found in macrophages and neutrophil granulocytes and recognizes various pathogen antigens. The NLRP3 inflammasome, upregulated in sepsis, triggers the release of IL-1β, dependent on cell pH and facilitated by aquaporin-mediated water influx in macrophages (101). The movement of water by AQPs appears to be a pivotal factor in unifying the activators of the NLRP3 inflammasome. The absence of AQP1 in a mouse model of acute lung injury resulted in a reduction in IL-1β release and neutrophilic inflammation, which serves to underscore the role of AQPs as a danger signal for NLRP3 activation. AQP3, which is highly expressed in THP-1 cells, plays a role in the rapid changes in cell volume and the activation of the inflammasome in response to stimuli such as reswelling, nigericin, and ATP. The increased expression of AQP3 serves to amplify these responses, while its peroxiporin activity has been observed to enhance intracellular ROS and inflammasome activation. Furthermore, AQP4 resulted in a reduction of NLRP3, caspase-1, and IL-1β proteins in the treatment group, indicating the inactivation of the inflammasome (102). Furthermore, the absence of AQP5 was observed to facilitate NLRP3 inflammasome activation via the generation of reactive oxygen species (ROS). The inhibition of ROS or the blockade of the NLRP3 inflammasome was observed to markedly diminish the extent of damage and pyroptosis in AQP5-deficient lacrimal gland epithelial cells (103).




5 Potential role of aquaporins in immune metabolism

The term “immunometabolism in sepsis” denotes the intricate interplay between the immune system and the body’s metabolic processes during the course of sepsis. Immune cells undergo metabolic alterations during sepsis in order to rapidly provide energy and materials for defense responses. These involve increased glycolysis and changes in fatty acid and amino acid utilization, which occur during the proinflammatory phase of sepsis (104). Similar to tubular epithelial cells (TECs), immune cells in sepsis may undergo a profound metabolic transformation, transitioning from oxidative phosphorylation (OXPHOS) to a predominance of aerobic glycolysis. Within this metabolic realignment, the majority of pyruvate generated through glycolysis avoids mitochondrial entry and is instead converted into lactate—a process catalyzed by lactate dehydrogenase (LDH). This strategic metabolic adaptation is crucial, as it supports increased ATP production through glycolysis to meet the elevated energy demands imposed by the septic challenge (105). Aquaporins (AQPs), particularly those involved in glycerol transport, play a crucial role in enhancing glycolysis during sepsis by ensuring the availability of key substrates and supporting the increased metabolic demands of cells. Specifically, aquaglyceroporins such as AQP3, AQP7, AQP9, and AQP10 facilitate the transport of glycerol across cell membranes (Table 1). In sepsis, the body’s need for energy surges, leading to the upregulation of these AQPs. Especially AQP3 and AQP1 seem to be upregulated in immune cells after inflammatory stimulus (106). It is known that AQP3 and AQP9 can influence gluconeogenesis by transporting glycerol into the cell (107). The glycerol transported into cells is converted into glycerol-3-phosphate (G3P) by glycerol kinase, and then into dihydroxyacetone phosphate (DHAP), an intermediate in the glycolytic pathway (108) (Figure 4). This process directly feeds glycerol into glycolysis, enhancing its flux and thereby increasing ATP production.
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Figure 4 | Possible role of AQPs in immune metabolism in sepsis: AQP3 and AQP9 facilitate the influx of glycerol into cells, which is converted to glycerol-3-phosphate by glycerol kinase 2 and then to dihydroxyacetonephosphate (DHAP) by glycerol-3-phosphate dehydrogenase 1. DHAP is incorporated into glycolysis and could increase glycolysis and lactate production. Lactate leads to increased expression of AQP1. In addition, AQP3 can also transport H2O2 (reactive oxygen species; ROS), which increases HIF-1 alpha expression and nuclear translocation, which in turn increases AQP3 and glucose transporter type 1 (GLUT1) expression. Increased glycolysis further increases AQP3 expression via SP1 through the hexosamine biosynthetic pathway.

Furthermore, during sepsis, hypoxia-inducible factor 1-alpha (HIF-1α) triggers the upregulation of glucose transporter 1 (GLUT1), enhancing glucose uptake into cells (104). AQP3 supports this process by facilitating the transport of glycerol, which complements glucose metabolism (Figure 4). Additionally, elevated levels of O-GlcNAcylation, a post-translational modification of proteins that occurs during sepsis, further increase glucose uptake via GLUT1 and regulate glycerol transport through AQP3. This dual availability of glucose and glycerol ensures rapid glycolysis, meeting the high energy demands of immune cells (106, 109).

AQP7 also plays a significant role in metabolic regulation by influencing lipid metabolism and glycerol availability. In sepsis, increased intracellular glycerol levels or active AQP7 expression could enhance p38 signaling, which is associated with the upregulation of glycolysis and nitric oxide production. This metabolic flexibility might allow immune cells to adapt to the energy demands of the septic environment (110).

The interaction between glycolysis and glycerol metabolism is crucial in sepsis. For instance, glycerol processed through glycolysis can enter the pentose phosphate pathway (PPP), which is important for producing NADPH and ribose-5-phosphate, essential for biosynthesis and redox balance in immune cells. AQP1, although primarily known for water transport, is upregulated by glycolysis (Figure 4), may also indirectly influence glycolysis by regulating glucose availability and interacting with other metabolic pathways, including those involving lactate and hydrogen ion (H+) transport, which are byproducts of glycolysis (111).

In summary, aquaporins contribute to the increased glycolysis observed in sepsis by facilitating glycerol transport, supporting glucose uptake, and interacting with various metabolic signaling pathways. This enhancement of glycolysis ensures that immune cells have sufficient energy to respond to infection and maintain cellular function under the stress of sepsis.




6 Aquaporins as potential drug targets in sepsis

Aquaporins may be useful drug targets in sepsis. For example, we recently showed that methazolamide and furosemide reduced AQP5 expression in REH cells, with methazolamide also reducing immune cell migration. However, only methazolamide pre-treatment showed potential to reduce LPS-induced AQP5 expression, suggesting it may be useful in sepsis prophylaxis (112). AQP9, found in hepatocytes and leukocytes, is being investigated as a potential target to reduce mortality in septic shock. Aqp9 knockout (KO) mice showed prolonged survival and reduced inflammation compared to wild-type (WT) mice after LPS-induced endotoxic shock. KO mice exhibited reduced production of pro-inflammatory nitric oxide (NO) and superoxide anion (O2-), as well as reduced levels of iNOS and COX-2, which was attributed to impaired NF-κB p65 activation in various tissues. Blocking AQP9 with HTS13286 in FaO cells also prevented LPS-induced inflammation, suggesting a role for AQP9 in early phases of endotoxic shock via modulation of NF-κB signalling. These findings highlight AQP9 as a promising target for the development of new therapies against endotoxemia (113). In a study, the novel AQP9 inhibitor RG100204 was shown to normalise oxidative stress and improve survival in mouse models of sepsis. RG100204 reduced cardiac and renal dysfunction, decreased activation of the NLRP3 inflammasome pathway and reduced myeloperoxidase activity in lung tissue, suggesting that AQP9 is a potential drug target for polymicrobial sepsis (55). Another study investigated the role of FGD5-AS1 in sepsis and LPS-induced inflammation and showed that FGD5-AS1 overexpression increased AQP1 and decreased miR-133a-3p expression, subsequently reducing inflammatory cytokines such as TNF-α, IL-6 and IL-1β. Dual-luciferase reporter and miRNA pull-down assays confirmed that FGD5-AS1 acts as a competitive endogenous RNA for miR-133a-3p on AQP1, suggesting that overexpression of FGD5-AS1 may inhibit the inflammatory response in sepsis (114). Another study investigated the relationship between AQP1, miRNA-874 and lncRNA H19 in LPS-induced sepsis. It was found that H19 and AQP1 expressions decreased while miR-874 expression increased in sepsis samples, mouse models and cardiomyocytes. H19 acted as a competitive endogenous RNA (ceRNA) for AQP1 by regulating miR-874, reversing LPS-induced inflammatory responses and myocardial dysfunction, suggesting H19 as a potential therapeutic target for sepsis-associated myocardial dysfunction (54). The development of aquaporin (AQP) inhibitors faces significant challenges, particularly due to potential off-target and side effects. Many putative AQP modulators reported in literature have failed to show consistent activity upon retesting (115). This inconsistency is often attributed to the limitations of assays used, such as oocyte swelling or calcein fluorescence, which are prone to artifacts (116). Apparent inhibition of osmotic swelling may result from factors unrelated to AQPs, such as changes in cell volume regulation or the activity of non-AQP ion or solute transporters. Common inhibitors of ion transport processes, like bumetanide or acetazolamide, may alter resting cell volume, further complicating the assessment of true AQP inhibition (117). The complexity of identifying specific AQP inhibitors is compounded by the structural characteristics of AQPs and their high abundance in cell membranes. In some cases, reported inhibitors, such as loop diuretics or antiepileptics, have confused the literature due to their lack of specificity and inability to be confirmed in subsequent studies (115). For example, AER-270, a claimed selective AQP4 inhibitor, showed only partial inhibition in mouse and human models, and its effects may be due to its role as an NF-κB inhibitor rather than directly targeting AQP4 (118, 119). This highlights the need to thoroughly evaluate off-target effects, as inhibitors may influence pathways beyond AQPs. This underscores the critical need to better understand these unintended interactions to develop more selective and effective AQP inhibitors in the future (120). Further development of AQP-targeted therapeutics requires well-designed, large-scale functional screens to identify true small-molecule inhibitors. Additionally, targeting AQP signaling pathways or intracellular trafficking, as seen with vasopressin receptor antagonists like vaptans, may offer alternative therapeutic approaches. Nonetheless, off-target effects remain a significant concern, underscoring the need for careful validation in future studies (17, 116). It is possible that another potential drug under investigation, phloretin, may be able to interfere with AQPs. In vitro studies have shown that inhibition of AQP9 with phloretin can reduce mortality, inflammatory responses and organ damage in sepsis models (38).




7 Conclusion

AQPs are emerging as crucial players in sepsis, influencing various organ systems. Their roles in immune cell activation, fluid regulation, and inflammatory processes make them attractive therapeutic targets. In sepsis, AQP1, AQP4, AQP5, and AQP9 have been shown to significantly affect organs like the brain, heart, lungs, kidneys, and liver. For example, AQP4 plays a key role in SAE by contributing to cerebral edema, while AQP1 and AQP9 are implicated in myocardial injury and ALI. Modulating these AQPs shows potential to alleviate organ damage and improve patient outcomes.

Therapeutic strategies have been developed to target these proteins. Dexamethasone and traditional Chinese medicines have shown potential in reducing cardiac and pulmonary damage. Specific inhibitors such as HTS13286 and RG100204 targeting AQP9 have demonstrated promise in reducing inflammation, improving survival, and mitigating organ dysfunction in sepsis models. These approaches highlight the therapeutic potential of modulating AQPs in sepsis-related complications like ALI, SAE, and AKI, which affects around 50% of sepsis patients.

However, the development of AQP inhibitors faces significant challenges due to potential off-target effects. Many inhibitors reported in the literature have shown inconsistent activity, often complicated by nonspecific interactions with other ion transporters or signaling pathways. Future research must focus on refining these inhibitors, exploring alternative pathways such as intracellular trafficking, and conducting large-scale screening to discover more selective and effective therapeutic options.

In summary, AQPs represent promising biomarkers and therapeutic targets in sepsis, especially in modulating inflammation and organ injury in critical systems such as the brain, heart, lungs, kidneys, and liver. However, the complexity of their inhibition and the risk of off-target effects necessitate further investigation into selective therapeutic approaches.
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Introduction

Cancer-associated fibroblasts (CAFs) are a diverse group of cells that significantly contribute to reshaping the tumor microenvironment (TME), and no research has systematically explored the molecular landscapes of senescence related CAFs (senes CAF) in NB.





Methods

We utilized pan-cancer single cell and spatial transcriptomics analysis to identify the subpopulation of senes CAFs via senescence related genes, exploring its spatial distribution characteristics. Harnessing the maker genes with prognostic significance, we delineated the molecular landscapes of senes CAFs in bulk-seq data. We established the senes CAFs related signature (SCRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms to precisely diagnose stage 4 NB and to predict prognosis in NB. Based on risk scores calculated by prognostic SCRS, patients were categorized into high and low risk groups according to median risk score. We conducted comprehensive analysis between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single cell level. Ultimately, we explore the biological function of the hub gene JAK1 in pan-cancer multi-omics landscape.





Results

Through integrated analysis of pan-cancer spatial and single-cell transcriptomics data, we identified distinct functional subgroups of CAFs and characterized their spatial distribution patterns. With marker genes of senes CAF and leave-one-out cross-validation, we selected RF algorithm to establish diagnostic SCRS, and SuperPC algorithm to develop prognostic SCRS. SCRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and clinic variables. We stratified NB patients into high and low risk group, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a different mutation landscape, and an enhanced sensitivity to immunotherapy. Single cell analysis reveals biologically cellular variations underlying model genes of SCRS. Spatial transcriptomics delineated the molecular variant expressions of hub gene JAK1 in malignant cells across cancers, while immunohistochemistry validated the differential protein levels of JAK1 in NB.





Conclusion

Based on multi-omics analysis and ML algorithms, we successfully developed the SCRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular landscapes of senes CAF and clinical utilization of SCRS.





Keywords: pan-cancer analysis, neuroblastoma, cancer-associated fibroblasts, senescence, multi-omics analysis, machine learning, prognostic prediction





Introduction

Neuroblastoma (NB), a common extracranial solid tumor in children, presents both challenges and opportunities for innovative diagnostics and treatment plans (1). While NB accounts for only 6-10% of pediatric tumors, it is responsible for up to 12-15% of cancer-related deaths in children (2). The prognosis for NB patients varies significantly: patients with low to intermediate-risk disease experience a 5-year event-free survival (EFS) exceeding 80%, whereas the high-risk group, comprising about half of all cases, faces a 5-year EFS of merely 50% (3). Researchers often employ the International Neuroblastoma Staging System (INSS) for diagnosis. Patients over one year of age with metastatic disease are typically classified as INSS Stage 4 NB, with a 5-year EFS of approximately 50% (4).

NB growths exhibit remarkable diversity and heterogeneity, with neoplastic cells engaging in complex dialogues with their surrounding microenvironment, creating an intricate biological system (5). Among the various cellular populations within the tumor milieu, cancer-associated fibroblasts (CAFs) have emerged as a dominant and numerous group (6), attracting considerable scientific interest recently. The nuanced interplay between CAFs, stromal elements, and immune components critically shapes the restructuring of the tumor microenvironment. This process encompasses the formation of new blood vessels, alterations to the extracellular scaffold, and mechanisms for evading immune detection (7). Notably, most current therapeutic approaches, including those targeting the immune system and cytotoxic agents, have largely neglected the pivotal role of CAFs. Our grasp of how CAFs interact with other tumor milieu constituents remains inadequate for developing robust treatment protocols. Additional investigation is essential to enhance our comprehension of these relationships and lay the groundwork for potent clinical interventions.

Cellular senescence, a distinctive state acquired by stromal elements like CAFs, confers unique immunomodulatory capabilities (8). This condition can be induced by diverse stressors, including oncogene activation, DNA-damaging agents, and oxidative imbalance, all converging on persistent genomic injury signaling (9). The subsequent activation of p53/p21 and p16/Rb tumor suppressor cascades leads to an irreversible halt in cell division, functioning as a potent intrinsic defense against malignant transformation. The extrinsic effects of senescence are mediated by senescence-associated secretory phenotypes (SASP), encompassing context-specific extracellular matrix components, growth modulators, cytokines, and immunological messengers (10). Senescent stromal cells have been proved to play a role in SASP-mediated alterations of the milieu in chronic inflammatory and fibrotic conditions, cancer included. In liver cancer models, for instance, senescence of activated hepatic stellate cells limited scarring by reducing matrix deposition and enhances immune-mediated clearance through increased IL6 and IFNγ production, promoting natural killer cell and macrophage activity (11). Contrastingly, in squamous carcinoma studies, IL6 secretion of senescent fibroblasts leads to granulocyte infiltration and impaired CD8+ T-cell function (12). Thus, SASP composition varies greatly depending on context, with senescence capable of exerting both tumor-promoting and tumor-suppressing influences within the tumor microenvironment (8). However, the therapeutic mechanisms of senescence related CAFs (senes CAFs) in NB remain poorly understood, with limited research on senes CAFs related genes and their prognostic and diagnostic value for NB patients.

The landscape of medical research is experiencing a profound shift, propelled by cutting-edge bioinformatics tools. Novel approaches in gene expression analysis, genetic variation mapping, and high-resolution single cell studies are reshaping our understanding of disease mechanisms. These methodologies, particularly when applied to the study of senes CAFs in NB, offer unprecedented insights into potential therapeutic avenues. Leveraging multiple machine learning algorithms (13), our goal was to establish a novel model based on senes CAFs related genes for identifying INSS 4 NB patients, evaluating the efficacy of immunotherapy, and predicting patient outcomes, by utilizing extensive multi-omics sequencing data.





Materials and methods




Source data

Analyzing the bulk-seq data, we obtained five transcriptome datasets of NB: GSE49710 and GSE85047 sourced from GEO database, TARGET-NB from TARGET database, and E-MTAB-8248 and E-MTAB-179 from ArrayExpress database. We utilized the log2 (x+1) algorithm to normalize transcriptomic data, and conducted the combat function of the “sva” R package to solve batch effects (14). After excluding patients with incomplete follow-up data, we incorporated 1617 patients in total. We used the GSE49710 cohort as the training cohort to develop both prognostic and diagnostic signatures, contrastingly, the remaining four cohorts served as validation cohorts. Comprehensive patient information in bulk-seq cohorts was listed in Supplementary Table S1. Moreover, scRNA-seq datasets of NB (GSE137804, GSE192906 and GSE140819) were acquired from the GEO database, with detailed clinic information of NB patients in GSE137804 included in Supplementary Table S2. Another NB scRNA-seq cohort was download from https://www.neuroblastomacellatlas.org/. There is no requirement for ethical approval or patient consent, as the bioinformatics data in our analysis is publicly available. The general workflow of our study was illustrated in Supplementary Figure S1A. For pan-cancer single cell data, GSE176078, GSE203612, GSE138709, GSE142784, GSE166555, GSE181919, GSE149614, GSE131907, GSE184880, GSE215120 and GSE139829 datasets were sourced from the GEO database for analysis. The scRNA-seq data of PRAD from Chen et al. were downloaded from http://www.pradcellatlas.com/. Genes related to senescence were sourced from Molecular Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/cards/FRIDMAN_SENESCENCE_UP.html). This search identified 77 senescence related genes, detailed in Supplementary Table S3.





Single cell analysis of senescence related CAFs

For pan-cancer scRNA-seq data, raw gene expression matrices were loaded into a Seurat object and read into R software via Seurat R package (15). We removed low-quality cells according to criteria of >40,000 UMI per cell, <500 genes per cell, >5,000 genes per cell and >20% mitochondrial genes. For scRNA-seq data retrieved from inDrop platform, we filtered out cells with UMI counts >40,000, gene counts <200, gene counts >5000, and mitochondrial gene count >20%. Doublets were excluded by DoubletFinder R package (16). The “Harmony” R package was used to remove technical batch effects while keeping biological variance after batch consolidation (17). The local inverse Simpson’s Index (LISI) was utilized to evaluate corrections of batch effects (17). For analysis of NB, scRNA-seq data of GSE137804 was loaded as Seurat object via “Seurat” R package (15). We performed quality control to delete low-quality cells with feature counts above 7500 or below 300, or mitochondrial counts above 20%. The function FindVariableFeatures was used to identify the top 2000 genes with most cell variants (18), at which PCA was conducted. The FindClusters function was employed to identify different clusters at a resolution of 0.5. We performed the RunUMAP function to reduce dimensions and manually annotated major cell types based on canonical markers (5). With the makers of CAF subtypes previously reported (19, 20), various clusters of CAFs were identified. Obtaining markers of CAF subtypes was performed with the criteria of log2FC >0.25 and p value <0.05 by the FindAllMarkers function, illustrated in Supplementary Table S4. Seven single cell scoring algorithms (AUCell in “AUCell” R package, Ucell in “Ucell” R package, ssGSEA and GSVA in “GSVA” R package, singscore in “singscore” R package, AddModuleScore and PercentageFeatureSet in “Seurat” R package) were applied to perform enrichment scoring and pinpoint senescence related cell type (15, 21–23), visualized by the “irGSEA” R package (https://chuiqin.github.io/irGSEA/index.html). Functional enrichment analysis via GO and KEGG database in scRNA data was conducted by “ClusterGVis” R package (https://github.com/junjunlab/ClusterGVis). To explore the specific subgroup preferences of CAF subpopulations, we calculated the odds ratios (OR) via the computational method of Zhang et al. (24). A numeric vector, predicting cellular status from least (1.0) to most (0.0) differentiated was generated from the RNA matrix by “CytoTRACE” R package (25). The “slingshot” and “Monocle3” R package was utilized to infer cell lineages and pseudotime states (26, 27).





Spatial transcriptomics analysis

To explore biological landscapes of CAFs in pan-cancer spatial transcriptomics (ST) resolution, we sourced ST slide data of various cancer types form 10x database (https://www.10xgenomics.com/cn/datasets), as well as GSE176078, GSE179572, GSE203612 and GSE181300 from GEO database. To accurately acquire the cell composition at each spot on the 10x ST slide, deconvolution analysis was applied (28), which is based on ST and scRNA-seq data, with particular consideration given to the corresponding tumor type. We first obtained scRNA-seq data of various samples with the same tumor type in Tumor Immune Single-cell Hub 2 (TISCH2) (29), and then constructed a comprehensive scRNA-seq reference library. Ensuring the reliability of analysis, we applied strict quality control measures to the scRNA-seq data according to numbers of expressed genes, counts of UMI, and percentage of mitochondrial RNA. In terms of screening parameters, we refer to the relevant studies of sRNA-seq data sources to ensure the scientific and accurate screening criteria. We then constructed a signature score matrix via computing the average expressions of the top 25 specifically expressed genes of various cell types in each site’s scRNA reference. Subsequently, by get_enrichment_matrix and enrichment_analysis in the “Cottrazm” R package (30), we successfully generated the enrichment score matrix, which can provide a powerful support for subsequent cell composition analysis. The enrichment score for each cell type is visualized using the SpatialFeaturePlot function via “Seurat” R package. If the score of Malignant cells in the microregion is 1, the Malignant group is defined. If it is 0, the Normal group is defined; otherwise, the Mixed group is defined. Wilcoxon Rank Sum Test was utilized to assess the statistical difference in gene expression between the three predicted areas. Meanwhile, to obtain the spatial coordinates of CAFs, we performed combined analysis of the scRNA-seq data and ST data via CellTrek R package (31) with its default parameters. We used the run_kdist function to calculate the spatial k-distance between different CAF subtypes and cell subpopulations.





Establishing models via integrative machine learning algorithms

Utilizing marker genes of senes CAF with prognostic value, we established senes CAF related signature (SCRS) for diagnosing INSS stage 4 NB and predicting prognosis in NB. We unified 10 prognostic machine learning (ML) methods, involving random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalized boosted regression modeling (GBM), and survival support vector machine (survival-SVM) for prognosis prediction. Subsequently, 12 diagnostic ML procedures were applied, such as random forest (RF), Lasso, Ridge, elastic net (Enet), stepwise Glm, GlmBoost, LDA, partial least squares regression for Glm (plsRglm), GBM, XGB, SVM and Naives Bayes for the diagnosis of stage 4 NB among all NB patients. A total of 101 prognostic ML methods and 113 predictive ML algorithms were trained within the training cohort, via the leave-one-out cross-validation (LOOCV) framework to establish the prognostic and diagnostic models. Models with fewer than five genes were removed. GSE49710 cohort served as the training set, while GSE85047, TARGET-NB, E-MTAB 8248 and E-MTAB 179 cohorts served as testing sets. The concordance index (C-index) and the average area under the curve (AUC) was calculated in each ML combination across the five sets (13). AUC, Area under precision-recall curve (PRAUC), accuracy, sensitivity, specificity, precision, cross-entropy, Brier scores, balanced accuracy and F1 Score, calculated by “mlr3” R package, were used to select the best diagnostic model (32). We employed precision-recall curve (PRC) to evaluate the performance of classification models in handling imbalanced datasets. Logarithmic loss, recall and decision calibration were utilized to select the best prognostic model, among the top five prognostic models with the highest C-index, via “mlr3proba” R package (33). Risk scores were retrieved with a linear combination method for each prognostic ML combination by including gene expression data from multiple feature selection patterns. Likewise, the most powerful diagnostic model was utilized to calculate the possibility of stage 4 NB.





Model verification in precision, stability and reliability

Comprehensive validation methods were carried out to validate the superior precision, stability, and replicability of SCRS. With the prognostic SCRS, patients were divided into high or low-risk groups by the median risk score from the training set. Validations was performed based on Kaplan-Meier (KM) survival methods and a log-rank test, with the “survival” and “survminer” R packages. For the diagnostic model, a confusion matrix was utilized to test accuracy of SCRS by “cvms” R package. Receiver Operating Characteristic (ROC) curves, calibration curves and decision curve analysis (DCA) were applied to assess the precision, differentiation, and clinic utility of both diagnostic and prognostic SCRS. Subsequently, we compared the predictive power of the prognostic signature with conventional clinic features in time-dependent ROC curves. Moreover, univariate and multivariate Cox analysis were used to confirm the independent predictive advantage of SCRS.





Consensus clustering analysis of senescence related CAF makers

With altogether 16 model genes in diagnostic and prognostic SCRS, we performed unsupervised clustering analysis in three NB cohorts (GSE49710, E-MTAB 8248, and TARGET-NB). We used the “ConsensusClusterPlus” R package and the k-means algorithm, which involved 1,000 repetitions and sampled 80% of the total data in each instance, to explore the molecular landscapes of senescent myofibroblast makers (34). Principal components analysis (PCA) was performed to depict the heterogeneity between clusters. The effectiveness of clustering analysis was appraised by comparing differences in clinicopathological characteristics and gene expression levels between clusters, utilizing the “ComplexHeatmap” R package. Moreover, survival analysis was employed to illustrate survival outcome disparities between clusters.





Function enrichment analysis

Differentially expressed genes (DEGs) were identified from two clusters divided by consensus molecular clustering and from two risk groups categorized by prognostic SCRS. DEGs were discovered with the “limma” R package, by a False-discovery rate (FDR) threshold of <0.05 and an absolute log2fold change (FC) of >1. The function enrichment of DEGs was performed in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms with the “clusterprofiler” R package (35). Gene set variation analysis (GSVA) was conducted by KEGG terms with “GSVA” R package (23), based on the “h.all.v7.4.symbols.gmt” gene set from MSigDB. Gene set enrichment analysis (GSEA) was applied to explore the molecular pathways associated with different clusters and risk groups (36), with a threshold of p < 0.05 and Normalized Enrichment Score (NES) > 1.





Delineating tumor microenvironment and immune subtypes

We utilized several immune calculation algorithms by the “IOBR” R package and the single sample gene set enrichment analysis (ssGSEA) to assess the immune infiltration levels between groups and clusters by “wilcox” test (37–45). Immune cell marker genes for ssGSEA were sourced from literature (46). Next, the correlation analysis was applied in the Spearman method to reveal the relation between SCRS risk scores, model gene expressions, and immune cell infiltrations. Further, utilizing immune function marker genes, we performed ssGSEA to compare the immune function level between risk groups with “wilcox” test (47). Subsequently, ssGSEA was employed to assess the seven steps of cancer immunity cycle, with marker genes in Tracking Tumor Immunophenotype (TIP) (http://biocc.hrbmu.edu.cn/TIP/) (48). Lastly, we appraised the gene expression levels of immune checkpoint genes in two risk groups. We conducted immune subtype analysis which could identify immune response subtypes and predict immunotherapy reactions (49). Five immunological patterns were revealed in GSE49710 cohort, covering wound healing (C1), IFN-gamma dominant (C2), inflammatory (C3), lymphocyte depleted (C4) and TGF-β dominant (C6). We then compared the proportions of immunological subtypes between groups and clusters.





Mutational landscape between clusters and groups

Obtaining the somatic mutational data in cBioPortal database (https://www.cbioportal.org/), we appraised the mutational types and frequencies of SCRS model genes with “maftools” R package (50). Moreover, we analyzed the tumor mutation burden (TMB) via calculating the aggregate count of somatic mutations per megabase (MB) within the exonic region of the human genome. Gene mutations were stratified into two types namely synchronous or nonsynchronous mutation. The latter comprised Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense, Nonsense, Nonstop, Splice_Site, and Translation_Start_Site aberrations. Key mutation regions were identified from the copy number variation (CNV) data in cBioPortal database by GISTIC 2.0 (51). Besides, the gene frequency of somatic CNV was visualized in “bubble plot”, while the chromosomal location of gene mutation was visualized in “circle plot” via “RCircos” R package (52).





Evaluation of immunotherapy and chemotherapy responsiveness

To assess effects of SCRS to forecast immunotherapy response, we compared immune dysfunction and exclusion (TIDE, http://tide.dfci.harvard.edu/) scores between risk groups. Subsequently, we utilized submap algorithm to evaluate immunotherapy responsiveness of patients based on an immunotherapy cohort (53, 54). Meanwhile, we assessed the power of SCRS to predict responses to immunotherapy in immunotherapy datasets (IMvigor210, GSE78220, GSE135222, and GSE91061). Lastly, we acquired the sensitivity to chemotherapy drugs of human cancer cell lines in Cancer Therapeutics Response Portal (CTRP, https://portals.broadinstitute.org/ctrp) database and Profiling Relative Inhibition Simultaneously in Mixtures (PRISM, https://depmap.org/portal/prism/) database. Cell line which is more responsive to a chemotherapy agent could get a lower AUC, which help explore potential therapeutics for high-risk patients (55).





Single cell analysis of model genes

Six scRNA scoring algorithms were utilized to assess the specific enriched cells of SCRS model genes. We utilized the ‘Scissor’ R package to pinpoint the particular cell populations responsible for SCRS status variations (56), which capitalizes on both aggregate data and phenotypic data, enabling the autonomous selection of cell subpopulations from single-cell datasets, attributing to distinct phenotypes. Pseudotime trajectory analysis was conducted by “Monocle” and “Monocle3” R package, depicting maps of development trajectories devoid of preexisting knowledge about differentiation commencement (27, 57). We used “InferCNV” R package to determine CNVs of neuroendocrine (NE) cells, Schwann cells, endothelial cells, and fibroblasts, referred to T cells, B cells, monocytes and macrophages (58). “CellChat” and “NicheNet” R package was utilized to explore intercellular communication networks in high-SCRS and low-SCRS cells, respectively (59, 60). Subsequently, we utilized “pySCENIC” (version 0.11.2) with Python (version 3.7) to explore enriched transcription factor (TF) and regulon activities of each cell type, which build TF regulatory network and identify steady cell state (61).





Pan-cancer analysis of hub gene

We performed pan-cancer analysis by “TCGAplot” R package to reveal the commonalities and disparities in genomic and cellular modifications of SCRS hub gene across various cancer types, focusing on gene expression, tumor mutation burden (TMB), microsatellite instability (MSI), immunological microenvironment, and prognosis value (62). We compared gene expression in tumor and normal samples by “wilcox” test and paired samples t-test. Spearman correlation analysis was performed to reveal associations between expression of hub gene and immune infiltrations. Immune cell ratio data was obtained in The Immune Landscape of Cancer (https://api.gdc.cancer.gov/data/b3df502e-3594-46ef-9f94-d041a20a0b9a), and immune score was calculated by ESTIMATE method.





Immunohistochemistry staining

To verify the different expressions of JAK1 between stage 4 and other NB samples, as well as its prognostic value, we performed immunohistochemistry (IHC) staining in tissue samples from 24 tissue specimens of stage 4 NB and 16 NB tissue specimens of other stages. The study was approved by the ethics committee of Children’s Hospital of Chongqing Medical University. NB tissues were paraffin-embedded and sectioned into 4 mm slices. After dewaxing, hydration, and antigen retrieval, the samples were incubated overnight at 4°C with primary antibody: Anti-JAK1 (Proteintech, Cat No: 66466-1-Ig). Subsequent steps included incubation with a Goat anti-Rabbit IgG secondary antibody (ZENBIO, China), DAB staining (ZENBIO, China), and blocking. Staining was observed under a microscope. Each sample was evaluated for staining intensity (0: none, 1: mild, 2: moderate, 3: strong) and the percentage of positive cells (0: 0%, 1: 1–25%, 2: 26–50%, 3: 51–75%, 4: 76–100%). The final IHC score was the sum of intensity and percentage scores.






Results




Establishment of pan−cancer single cell transcriptome atlas of CAFs

To construct a pan-cancer single-cell and spatial transcriptomics landscape, we downloaded pan-cancer scRNA-seq data from GEO database of 13 prevalent cancer types, along with ST data from 10x website and GEO database. The cancer types of scRNA-seq data that we retrieved from database involved: breast cancer (BRCA), colorectal cancer (CRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), cholangiocarcinoma (CHOL), ovarian cancer (OVCA), prostate adenocarcinoma (PRAD), head and neck squamous cell carcinoma (HNSC), neuroblastoma (NB), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), uveal Melanoma (UVM) and uterine corpus endometrial carcinoma (UCEC) (Supplementary Figure S1B). To diminish the batch effects among different scRNA-seq datasets, we independently analyzed each dataset and annotated cells with canonical markers of major cell types. We extracted CAFs from each scRNA-seq dataset and merged them into a Seurat object to establish an integrated scRNA-seq dataset of pan-cancer CAFs. After quality control (Supplementary Figure S1C) and batch effect correction by Harmony (Supplementary Figure S1D), a total of 35,048 cells in the pan-cancer scRNA-seq data were remained for the following analysis. We next explored the heterogeneity of CAFs in pan-cancer landscape and identify seven CAF subpopulations, as well as pericytes and smooth muscle cells (SMCs) (Figure 1A). To evaluate Harmony for batch effect removement, we calculated local inverse Simpson’s Index (LISI) of four batch correction methods, indicating well batch correction after Harmony, as well as the superior ability of batch correction in Harmony algorithm (Supplementary Figure S1E).
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Figure 1 | CAF heterogeneity in pan-cancer and identification of senescence related CAFs. (A) Visualizing the distribution of CAF subpopulations by UMAP plot in pan-cancer landscape. (B) Visualizing each CAF subtype’s marker genes by Manhattan map. (C) GO enrichment analysis showed each CAF subtype’s top 3 functional terms. (D) Six scRNA scoring algorithms visualized the senescence enriched scores of each CAF subpopulations by UMAP plot. (E) AUCell scoring algorithms indicated that senescence related CAFs had the highest senescence score. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F) Visualizing marker genes of each CAF subtype by dotplot. (G) Cell type proportions of each CAF subpopulation across several cancer types. (H) Heatmap showing the ORs of CAF subtypes in each cancer type. (I) CytoTRACE scores were visualized with boxplot. (J) Monocle3 were used to perform pseudotime analyses to infer cellular differentiation states in CAF subpopulations. (K) Slingshot were used to perform pseudotime analyses to infer dynamics of lineage specification. (L) Scatter plot showing the regulon specificity scores (RSSs) in each CAF subtype via SCENIC analysis. The top 5 regulons are highlighted.





CAF heterogeneity and identification of senescence related CAF in pan−cancer

In pan-cancer CAF atlas (Figure 1A), we annotated the CAF subpopulation which highly expressed chemokines (CCL19, CCL21 and CXCL2, Figure 1B) as inflammatory CAF (iCAF), likely to the previously reported iCAFs (63). A CAF subpopulation which highly expressed extracellular matrix (ECM) remodeling genes (MMP11, CTHRC1 and COL1A2, Figure 1B) was annotated as matrix CAF (mCAF), resemble the previously reported mCAFs in cancer data (64). To reveal the molecular landscape of senescence in CAF, we utilized six scRNA scoring algorithms and senescence geneset to conduct enrichment scoring, investigating senescence related CAF subset with the highest enrichment scores of senescence-related genes (Figures 1D, E). Finally, we discovered senescence related CAF (senes CAF) subset which ranked first in senescence enrichments scores among all CAF subpopulations (Figure 1E; Supplementary Figure S1F), as well as highly expressed senescence related genes retrieved from MSigDB database (OPTN, RAB31 and IFI16, Figure 1F). Moreover, we found a CAF subset highly expressed MHC-II-associated antigen presentation genes (HLA-DRA, HLA-DRB1 and CD74, Figure 1F), which we annotated it as antigen presenting CAF (ap CAF) (65). Then, we observed a CAF subpopulation which was associated with glycolytic process and ATP generation from ADP in GO BP terms (Figure 1C), annotating it as metabolic CAF (meta CAF) which was similar to previous research (66). Subsequently, a CAF subpopulation which highly expressed cycle-related genes (CENPF, NUSAP1, and PTTG1, Figure 1F) was annotated as proliferative CAF (prolif CAF), consistent with previous pan-cancer research (67). Besides, we annotated progenitor like CAF (pro CAF) subtype with marker genes of IGF1, OGN and GSN (Figure 1F) (68). We utilized top marker genes of each CAF subtype to perform GO (Figure 1C) and KEGG (Supplementary Figure S1G) functional enrichment analysis, which further verified our CAF annotation results. In pan-cancer CAF landscape, we found different CAF subtypes displayed significantly different preferences of cancer types (Figures 1G, H). We found that iCAFs and mCAFs were most abundant in CAF subpopulations, while iCAFs were preferred in LUAD, whereas mCAFs were preferred in OVCA (Figures 1G, H). And we observed that senes CAFs, were preferred in UCEC and HNSC (Figure 1H). The diverse cellular characteristics of CAF subtypes stem from their varied origins, including both tissue-resident fibroblasts and pericytes (69). We utilized CytoTRACE analysis to discover that prolif CAFs owned highest CytoTRACE scores, inferring a possibility to occur in the earlier state of prolif CAFs (Figure 1I). With prolif CAFs set as the start point, we used Monocle3 (Figure 1J) and slingshot (Figure 1K) respectively to conclude differentiation lineages and pseudotime scores among CAF subtypes, revealing the complexity and heterogeneity of CAF differentiation. Meanwhile, we explored the differentially essential motifs within the subtypes of CAFs through SCENIC analysis (Figure 1L), with TCF12 motif associated with ECM remodeling ranked highly in mCAFs (70), as well as interferon regulatory factors (IRF) family associated with inflammaging enriched in senes CAFs (71).





Pan-cancer spatial distribution characteristics of CAF subtypes

CellTrek is a computational tool designed to map individual cells directly to the corresponding spatial positions in tissue sections by integrating scRNA-seq and ST data (31). Unlike traditional ST deconvolution techniques, this method transfers ST coordinates to single cells, enabling resolution at the single-cell level. We utilized CellTrek on high-quality scRNA-seq and ST datasets across various cancer types to reconstruct spatial single-cell atlases, involving CRC and CRC liver metastasis (72), as well as BRCA (73), BRCA brain metastasis (74), OVCA (73) and LIHC (75) (Figures 2A–H). Remarkably, even in the absence of corresponding scRNA-seq data from the same patient, the ST datasets were largely represented by scRNA-seq data through co-embedding analysis (Supplementary Figure S1H). From left to right, the first figure depicts the spatial distribution of various cell types by RCTD deconvolution analysis in tumor tissue section (Figures 2A–H). The second figure displays the spatial characteristics of malignant areas, mixed areas and normal areas divided by Cottrazm analysis, indicating the spatial distribution of tumor border and tumor immune barrier in tumor tissue section (Figures 2A–H). The third figure reveals the spatial positions of CAF subtypes in tissue sections by CellTrek mapping analysis, which demonstrates an abundant infiltration of various CAF subpopulations and spatial existence of senes CAFs in tumor microenvironment (Figures 2A–H). For the fourth figure, we calculated the spatial k-distance between all major cell types and all CAF subtypes in every tumor tissue section, suggesting that CAF subpopulations exhibit the minimum spatial k-distance among themselves (Figures 2A–H). For major cell types, we observed that senes CAF exhibit close spatial k-distance to endothelial cells, especially in CRC liver metastasis (Figure 2B) and OVCA (Figure 2E), while senes CAF also show close spatial k-distance to B cells in CRC (Figure 2A) and LIHC (Figure 2G).
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Figure 2 | Spatial distribution characteristics of CAFs in CRC (A), CRC liver metastasis (B), BRCA (C), BRCA brain metastasis (D), OV (E, F), LIHC (G, H). From left to right: First: Spatial distribution of various major cell types by RCTD deconvolution analysis in tumor tissue section. Second: Spatial characteristics of malignant areas, mixed areas and normal areas divided by Cottrazm analysis. Third: Spatial cell charting of CAFs in each tissue section using CellTrek. Fourth: CellTrek calculated the average k-distance from different cell types to senes CAFs in each tissue slice.





Single-cell analysis of major cell types in NB

In the GSE137804 scRNA cohort, we finally retrieved 172,564 cells after proper quality control (Supplementary Figure S2A). We performed “harmony” algorithm for batch effect removement, with a fine correction before and after integration (Supplementary Figure S2B). Based on cell markers in literature, we manually annotated 10 major cellular subtypes, including NE cells, T cells, B cells, NK cells, endothelial cells, macrophages, monocytes, Schwann cells, fibroblasts, and plasmacytoid DC cells (Figure 3A), with subpopulation of macrophages, fibroblasts, B cells and T cells illustrated respectively (Figure 3A). Figure 3B depicted top 5 marker genes of every major cell type. We visualized top marker genes of each major cell type in heatmap (Figure 3C), and utilized GO and KEGG terms to functionally annotated each major cell type, which further verified our single cell annotation (Figure 3C). We utilized “Dimplot” to visualize expression levels of several marker genes (CD79A for B cells, PHOX2B for NE cells, COL1A1 for fibroblasts, CD7 for T cells, SPP1 for macrophages and LYZ for monocytes, Figure 3D). Figure 3E demonstrated the different cell proportions in NB patients of INSS stage 1, 3, 4 and 4S, respectively, with NE cells predominating. Figure 3F depicted UMAP view of each cell subsets (top) and cell density (bottom) showing cell distribution across four stages. Downsampling was applied for four tissue groups. High relative cell density is shown as bright magma.
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Figure 3 | Single cell sequencing analysis of NB tumor samples. (A) Visualizing the distribution of 10 major cell populations as well as subpopulations of four major cell types in the TME by UMAP plot. (B) Visualizing top 5 marker genes of each major cell type by Manhattan map. (C) Visualizing marker genes of each major cell type by heatmap, as well as enrichment analysis results of each major cell type by GO and KEGG. (D) Visualizing six representative marker genes of major cell types by UMAP plot. (E) The different cell proportions in different INSS stages. (F) UMAP view of each cell subsets (top) and cell density (bottom) in different INSS stages.





Single-cell analysis of senescence related CAF in NB

We subset 3105 fibroblasts and created a new Seurat object for the following scRNA analysis. Supplementary Figure S2C showed a well quality control of fibroblast subtypes and Supplementary Figure S2D displayed a fine correction of batch effects with Harmony. Based on CAF markers retrieved from literature review (20, 68), we manually annotated 10 CAF subtypes in NB single cell data, namely myofibroblasts (ACTA2, TAGLN, MYH11), proliferative CAF (MKI67), matrix CAF (POSTN, COL3A1), inflammatory CAF (CFD, C3), tumoral CAF (TMEM158), heat-shock protein CAF (HSP90AA1), reticular CAF (CCL19, CCL21), antigen-presenting CAF (CD74, HLA-DRA, HLA-DRB1), vascular CAF (NOTCH3), and interferon CAF (IL32) (Figure 4A; Supplementary Figure S2E). Figure 4B depicted top 5 marker genes of every major cell type. Figure 4C illustrated different compositions of CAF subtypes in different INSS stages. Previous literature has reported about senescent myofibroblasts that localize near tumor ducts and accumulate with tumor progression (76), so we utilized seven scRNA scoring algorithms to conduct enrichment scoring and discover senescence related CAF subset, which highlighted myofibroblasts closely associated with senescence (Figure 4D). Ranking results of single cell scoring confirmed that myofibroblasts were enriched in senescence and could possibly be identified as the senes CAFs (Figure 4E; Supplementary Figure S2F). We have included additional three independent scRNA-seq datasets of NB in our analysis to discover the consistent findings (Supplementary Figures S2G, H). We visualized top marker genes of each CAF subtype in heatmap (Figure 4F), and utilized GO and KEGG terms to functionally annotated each cell type, which further verified our annotation (Figure 4F). Interestingly, marker genes of iCAFs were enriched in aging, shedding light on its potential associations with senescence. With the FindAllMarkers function, we identified 1088 significant senescence related CAF markers with a criterion of absolute log2 (fold change) > 0.25 and p-value (Padj) < 0.05 (Supplementary Table S4). To sum up, we succeeded in identifying senes CAF subtype, namely myofibroblasts, which is significantly related to senescence. In CAF landscape of NB, different CAF subtypes exhibited different preferences of INSS stages (Figure 4G). Subsequently, we utilized CytoTRACE and pseudotime analyses to infer cellular differentiation states and dynamics of lineage specification. Heat-shock protein CAF owned highest CytoTRACE scores, with a likelihood to occur in the earlier state (Figure 4H). Setting heat-shock protein CAF as the beginning, we then utilized Monocle3 (Figure 4I) and slingshot (Figure 4J) respectively to infer several differentiation lineages among CAF subtypes, which showed a relatively senescent state of senes CAF. Moreover, we analyzed the differentially essential motifs within the subpopulations of CAFs with SCENIC analysis (Supplementary Figure S2I), with motif SRF, highly associated with cellular senescence, expressed in senes CAFs (77).
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Figure 4 | Identification of a distinct CAF subtype namely myofibroblasts which were most associated with senescence. (A) Visualizing the distribution of 10 manually annotated CAF subpopulations by UMAP plot. (B) Visualizing each CAF subtype’s marker genes by Manhattan map. (C) Cell proportion of each CAF subtype in different INSS stages. (D) Seven scRNA scoring algorithms visualized the senescence enriched scores of each CAF subpopulations by UMAP plot. (E) AUCell scoring algorithms indicated that myofibroblasts had the highest senescence score. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F) Visualizing marker genes of each CAF subtype by heatmap, as well as enrichment analysis results of each CAF subtype by GO and KEGG. (G) Heatmap showing the ORs of CAF subtypes in each INSS stage. (H) CytoTRACE scores were visualized with boxplot. (I) Monocle3 were used to perform pseudotime analyses to infer cellular differentiation states in CAF subpopulations. (J) Slingshot were used to perform pseudotime analyses to infer dynamics of lineage specification.





Development and validation of diagnostic SCRS

We performed batch removements across five NB cohorts, with PCA plots visualizing the well behaviors of batch correction (Supplementary Figure S3A). Marker genes of senes CAF were used for feature selection and model development. Ultimately, 13 marker genes with diagnosis significance were involved in the development of diagnostic ML model, while 8 marker genes with prognosis significance were used for establishment of prognostic ML model (Supplementary Figure S3B). We performed 101 prognosis ML combinations and 113 predictive ML combinations based on LOOCV framework, to select the best ML combination (Supplementary Figure S3C). The model with the highest AUC was established with RF in feature selection and model development, scoring the top average AUC (0.862) in five cohorts (Figure 5A). AUC of every ML combination was computed in every test cohort (Supplementary Table S5). We utilized Area under precision-recall curve (PRAUC), accuracy, sensitivity, specificity, precision, cross-entropy, Brier scores, balanced accuracy, F1 Score and precision-recall curve (PRC) to reveal that RF model is the best diagnostic model with superior performance (Supplementary Figures S3D, E). In GSE49710 cohort (Figure 5B) and E-MTAB 8248 cohort (Figure 5C), confusion matrix exhibited a fine precision of SCRS with RF model. ROC curves in five datasets displayed a fine discrimination of SCRS (Figure 5D). We calculated AUC of SCRS, clinic variable and logistic regression (LR) model including clinic variables and SCRS, showing that SCRS and LR model outperformed (Figure 5E). Calibration curves in five datasets displayed well alignments between SCRS predicted possibility and observed possibility (Figure 5F), indicates that the model’s probability estimates are reliable and well-calibrated, as it ensures that the risk estimates provided by the model can be trusted to reflect the true likelihood of patient outcomes. DCA curves revealed the great clinical benefit of SCRS and LR model, outperforming other clinic factors (Figure 5G). We visualized the diagnostic LR model with nomogram to help clinical decision-making (Figure 5H). We obtained feature importance of 11 model genes finally selected by RF, which revealed that hub gene EPN2 was the most powerful in RF algorithm (Figure 5I).
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Figure 5 | Construction and validation of the diagnostic SCRS to diagnose INSS 4 NB. (A) A total of 113 kinds of diagnostic models via a leave-one-out cross-validation framework and further calculated the AUC values of each model. (B) Confusion matrix of the diagnostic SCRS in the training cohort GSE49710. (C) Confusion matrix of the diagnostic SCRS in the validation cohort E-MTAB 8248. (D) ROC curves of the diagnostic SCRS in five cohorts (GSE49710, E-MTAB 8248, TARGET, GSE85047 and E-MTAB 179). (E) ROC curves of the diagnostic SCRS, the logistic regression model and clinical variables in GSE49710 cohort. (F) Calibration curves of the diagnostic SCRS in five cohorts (GSE49710, E-MTAB 8248, TARGET, GSE85047 and E-MTAB 179). (G) DCA curves of the diagnostic SCRS, the logistic regression model and clinical variables in GSE49710 cohort. (H) Visualizing the logistic regression model via nomogram. (I) The feature importance visualization of 11 variables selected by RF, which formed the final diagnostic model.





Utilizing prognostic SCRS to predict prognosis in NB

The ML combination with the highest C-index was constructed by SuperPC in feature selection and model development, obtaining the highest average C-index (0.763) in five cohorts (Figure 6A). C-index of every ML combination was computed in every test cohort (Supplementary Table S6). Logarithmic loss, recall and decision calibration were computed to reveal that SuperPC model had the best performance in calibration and precision (Supplementary Figure S3F). In GSE85047 dataset, the low-risk patients had a longer overall survival (OS) and progression-free survival (PFS) than the high-risk patients (Figures 6B, C). ROC curves in 1-, 3- and 5-year OS displayed fine specificity in SCRS (Figure 6D). AUC values of 3-year OS indicated that SCRS and cox regression model including SCRS and clinic factors were more discriminative to predict prognosis than other clinic factors (Figure 6E). Time dependent ROC curves revealed that SCRS and cox regression model behaved better than common clinic factors in discriminative ability (Figure 6F). Calibration curves (Figure 6G) and DCA curves (Figure 6H) demonstrated that SCRS is powerful in accuracy and clinical benefit, which implies that using the SuperPC model to guide clinical decision-making would result in more effective identification of patients. Multivariate Cox regression analysis indicated that SCRS risk score was an independent prognosis variable in GSE85047 cohort (P < 0.001) (Figure 6I). We utilized univariate cox regression to depict the prognosis value of each model gene (Figure 6J). We visualized the feature importance of 8 model genes chosen by SuperPC, with CKS2 being the most influential (Figure 6K). These metrics of model evaluation consistently proved that SCRS exhibited precision and robustness in model performance.
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Figure 6 | Development and verification of the prognostic SCRS to predict prognosis in NB. (A) A total of 101 kinds of prognostic models via a leave-one-out cross-validation framework and further calculated the C-index of each model. (B) Kaplan-Meier survival curves of OS for high-risk and low-risk groups of NB patients in GSE85047 cohort. (C) Kaplan-Meier survival curves of PFS for high-risk and low-risk groups of NB patients in GSE85047 cohort. (D) ROC curves of 1-, 3- and 5-year OS of the prognostic SCRS in GSE85047 cohort. (E) AUC values of 3-year OS of the prognostic SCRS, the cox regression model and clinical variables in GSE85047 cohort. (F) Time dependent ROC curves of the prognostic SCRS, the cox regression model and clinical variables in GSE85047 cohort. (G) 1-, 3- and 5-year calibration curves of the prognostic SCRS in GSE85047 cohort. (H) DCA curves of the prognostic SCRS, the cox regression model and clinical variables in GSE85047 cohort. (I) Forest plot visualized the outcome of multivariate Cox regression analysis involving the prognostic SCRS and clinical variables. (J) Results of univariate cox regression analysis of 8 variables in SCRS. (K) The feature importance visualization of 8 variables in SuperPC algorithm.





Function enrichment and gene expression landscape

Further explorations were undertaken to elucidate the underlying mechanism of SCRS model genes. PCA showed significant division between two risk groups, split by prognostic SCRS (Figure 7A). Utilizing DEGs sourced from differential analysis between two risk groups, we employed function enrichment analysis through GO and KEGG databases, which revealed that DEGs were enriched in outer kinetochore in GO terms, and were enriched in DNA replication in KEGG terms (Figures 7B, C). GSEA discovered that Ribosome and Motor proteins were elevated in high-risk patients, and cell adhesion molecules were decreased in high-risk patients (Figures 7D, E). Then, GSVA with”h.all.v7.4.symbols.gmt” gene set in MSigDB website demonstrated that high-risk patients were elevated in myc_targets_v1, and decreased in hedgehog_signaling (Figure 7F). The diverse expressions of SCRS model genes and the variation of clinic factors between two risk groups were obvious (Figure 7G). The hub gene JAK1 expressed significantly lower in high-risk patients, exhibiting significant protective prognosis value. Spearman correlation analysis indicated tight relations (correlation p value < 0.001) across SCRS model genes (Figure 7H). Utilizing CNV data to plot, we displayed that INPP4B had the highest somatic CNV frequency in diagnosis model genes, and VGLL4 had the highest somatic CNV frequency in prognosis model genes (Figures 7I, J). Moreover, we portrayed the loci of mutations within SCRS model genes on the chromosome (Figure 7K).
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Figure 7 | Functional enrichment analysis and landscape of SCRS model genes in GSE49710 cohort. (A) PCA analysis plot of high-risk group and low-risk group. (B, C) GO and KEGG enrichment analyses of DEGs among two risk groups. (D-F) GSEA and GSVA analyses of DEGs among two risk groups. (G) Differences in the expression of model genes and differences in the clinical variables of NB patients among the two risk groups. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (H) Molecular interaction network plot visualized the correlations among expressions of model genes and their prognostic prediction value. Significantly positive and negative correlations are shown as red and blue lines, respectively. The color and size of the nodes indicate the type of model genes and P values from Cox regression. (I, J) The CNV mutation frequency of the diagnostic model genes and the prognostic model genes. (K) Chromosome position and alteration of all model genes.





Implications of SCRS with tumor immune microenvironment

To assess the discrimination of prognostic SCRS in immune infiltration, we analyzed the immune cell abundance in two groups using eight immune algorithms. We used “ComplexHeatmap” R package to revealed the significantly lower immune cell infiltrations in high-risk patients (Figure 8A). Meanwhile, the spearman correlation method showed associations between immune cell abundances and SCRS risk scores, as well as relationships between immune cell abundances and model gene expressions (Figure 8B). Additionally, low-risk patients had higher expression profiles of immune checkpoint genes, prompting a sensitivity to immunotherapy (Figure 8C). Moreover, ssGSEA based on immunological function signatures revealed that the low-risk group was significantly more infiltrated in immune cells (Figure 8D). Besides, ssGSEA results of six key steps in cancer immunity cycle was significantly higher in low-risk patients (Figure 8E). The spearman correlation method showed inverse associations between immune function levels and SCRS risk scores (Figure 8F). We utilized top 10 maker genes of myofibroblasts and conducted ssGSEA to obtain immune abundance of senescence related myofibroblasts. Then we conducted spearman correlation analysis to reveal tight relations (correlation p value < 0.001) across immune cells and CAFs in TME, as well as their cox p value (Figure 8G). Given the well-established diverse metabolic inclinations and dependencies (78), we acquired various metabolic pathways in KEGG terms to explore associations between risk scores and cancer metabolic pathways, which revealed underlying metabolic functions of SCRS (Figure 8H).
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Figure 8 | Analysis of the TME in different risk groups in GSE49710 cohort. (A) Differences in immune infiltration status between two risk groups were evaluated by eight immune algorithms. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B) Heatmap visualized the correlation between different immune cells and risk scores and the relationship between different immune cells and expressions of model genes. (C) The differences of expressions of immune checkpoint related genes between two risk groups. (D) The differences of immune function scores calculated by ssGSEA analysis between two risk groups. (E) The differences of cancer immunity cycle scores based on ssGSEA analysis between two risk groups. (F) The correlations between risk scores and immune function scores in bubble plot. (G) Molecular interaction network plot visualized the correlations among immune cell and CAFs in TME and their prognostic prediction value. (H) The correlations between risk scores and metabolic related pathways based on GSVA analysis of KEGG terms were displayed in butterfly plot.





Assessment of the gene mutational profiles

We demonstrated the landscapes of somatic mutation in high-risk patients (Figure 9A) and low-risk patients (Figure 9B) with mutational information in TARGET cohort. High-risk patients owned more tumor mutation burden (TMB) than low-risk patients with no significance (Figure 9C). Meanwhile, TMB was positively related to SCRS risk scores according to spearman correlation analysis with no significance (Figure 9D). Then, we classified patients of TARGET cohort into high TMB and low TMB subgroup based on median TMB. Survival analysis revealed that high-risk patients with low TMB showed the shortest OS and EFS, and low-risk patients with high TMB showed the longest EFS, with significance (Figures 9E, F).
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Figure 9 | Landscape of somatic mutation, CNVs, immunotherapy and chemotherapy between high-risk and low-risk groups. (A, B) Visual summary displayed common genetic alterations in the high-risk and low-risk groups in TARGET cohort. (C) Tumor mutation burdens between high-risk and low-risk groups in TARGET cohort. (D) Spearman correlation between SCRS risk scores and TMB scores in TARGET cohort. (E, F) Comprehensive survival analysis on OS and EFS based on two risk groups and two TMB groups in TARGET cohort. (G) Violin diagram illustrated the variance in TIDE scores between high-risk and low-risk groups in GSE49710 cohort. (H) Kaplan-Meier survival analysis delineated the OS rates for patients categorized into high-risk and low-risk groups in IMvigor cohort. (I) The TIDE algorithm predicted response to immunotherapy between high-risk and low-risk groups in E-MTAB 8248 cohort. (J) Comprehensive submap analysis predicted response to immunotherapy between high-risk and low-risk groups in E-MTAB 8248 cohort. (K) Box diagram depicted the disparity in SCRS risk scores among immunotherapy patients in the IMvigor210, GSE78220, GSE135222, and GSE91061 immunotherapy cohorts. (L) Correlation study and differential drug response analysis of CTRP-derived pharmaceuticals and PRISM-derived pharmaceuticals to explore potential drugs for high-risk NB patients. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.





Responsiveness of immunotherapy and potential therapeutic targets

Utilizing TIDE and submap method, the responsiveness of immunotherapy was assessed in high-risk and low-risk patients. In GSE49710 dataset, high-risk group showed higher TIDE scores, higher TIDE dysfunction and exclusion scores, which is prone to exhibit immune escape during immunotherapy (Figure 9G). In IMvigor210 dataset, low-risk patients responsive to immunotherapy showed the longest OS, while high-risk patients not responsive to immunotherapy owned the shortest OS, with significance (Figure 9H). Meanwhile, in E-MTAB 8248 dataset, low-risk patients were more likely to respond to immunotherapy (Figure 9I). Subsequently, submap method revealed that low-risk group were more responsive to CTLA4 inhibitors (p = 0.007) and not responsive to PD1 inhibitors (Figure 9J). Subsequently, we compared therapy effects in four immunotherapy datasets between risk groups, which revealed that patients responsive to immunotherapy had lower risk scores, with significance (Figure 9K). Ultimately, to discover novel chemotherapy agents for high-risk patients identified by SCRS, we forecasted the medicine reaction utilizing drug sensitivity data sourced in CTRP and PRISM. By cross correlating the two pharmacogenomics datasets, we triumphantly obtained five possible medicines or compounds (BI-2536, GSK461364, SB-743921, ispinesib and talazoparib), which exhibited therapeutic effectiveness in high-risk patients (Figure 9L).





Identifying SCRS model genes associated clusters

To deeply explore the expression profiles of SCRS model genes, GSE49710, E-MTAB 8248 and TARGET-NB were involved to perform consensus molecular clustering. We used SCRS model genes to perform unsupervised clustering analysis in every dataset, which revealed k = 2 with outstanding discrimination (Figure 10A). Meanwhile, PCA displayed indispensable disparities between two clusters (Figure 10B). Then, survival analysis showed that the cluster 2 had shorter OS (Figure 10C) and EFS (Figure 10D), with significance. Next, the expression landscapes of SCRS model genes and the clinic variables between two clusters were significantly different (Figure 10E). Using DEGs obtained between two clusters, we employed function enrichment analysis to found that DEGs were enriched in negative T cell selection in GO, and were enriched in ABC transporters in KEGG (Figures 10F, G). GSEA demonstrated that biosynthesis of cofactors was elevated in cluster 2, and NK-kappa B signaling pathway were decreased in cluster 2 (Figures 10H, I). GSVA, with “h.all.v7.4.symbols.gmt” gene set in MSigDB, demonstrated that cluster 2 was elevated in myc_targets_v2, and decreased in hedgehog_signaling (Figure 10J). Subsequently, we utilized eight immune infiltration methods to appraise the immunological infiltration variations in two clusters, as well as depicting Cox P value of every cell type (Figure 10K).

[image: A composite image includes multiple panels labeled A through K, displaying various bioinformatics data analyses for datasets GSE49710, E-MTAB-8248, and TARGET. Panel A shows heatmaps of hierarchical clustering. Panel B presents scatter plots of PCA analysis. Panels C and D include Kaplan-Meier survival curves. Panel E is a heatmap of gene expression data with annotations. Panel F depicts a network diagram. Panel G presents a bar chart of pathway analysis. Panels H and I display GSEA plots. Panel J shows a bar chart of gene frequency. Panel K is a detailed heatmap of differentially expressed genes.]
Figure 10 | Consensus clustering analysis of SCRS model genes related clusters in three NB cohorts (GSE49710, E-MTAB 8248, TARGET). (A) Consensus matrixes of NB patients for k = 2. (B) PCA analysis of two clusters. (C, D) Kaplan-Meier survival analysis of OS and EFS between two clusters. (E) ComplexHeatmap of the distribution of SCRS model genes and clinical variables in the two clusters in GSE49710 cohort. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F, G) GO and KEGG enrichment analysis indicated significant enrichment of pathways in cluster 2. (H-J) GSEA and GSVA analyses of DEGs among two clusters. (K) Differences in the proportion of various kinds of immune cells calculated by eight immune algorithms in two clusters. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.





Model comparisons and immune subtypes

To validate the superior prognostic prediction ability of SCRS, we gathered gene coefficients of 39 released public NB prognosis signatures. Then, we compared C-index of every prognostic signature with SCRS in five NB datasets. Ultimately, we revealed that SCRS outperformed most of previous signatures in five datasets in prediction performances (Figure 11A), which qualified SCRS as a meaningful NB prognostic signature. Moreover, we demonstrated the relationships between risk groups, clusters and clinic factors via “sankey plot” (Figure 11B). After defining immunological subtypes of patients in GSE49710, we found significant differences of respective proportions of immunological subtypes between risk groups and clusters, indicating more wound healing (C1) subtype in high-risk patients and cluster 2 (Figure 11C). Comparisons of clinical factors between two risk groups revealed that low-risk patients showed longer prognoses and better clinic status in GSE49710 cohort (Figure 11D).
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Figure 11 | Model comparisons and landscape of two risk groups and two clusters. (A) C-index comparison analysis between the prognostic SCRS and 39 published signatures in GSE49710, E-MTAB 8248, TARGET, GSE85047, E-MTAB 179 and meta-cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B) Sankey diagram of distributions in two clusters and two risk groups with different clinical variables and survival outcomes. (C) Differences in the proportion of five immune subtypes between two clusters and two risk groups. (D) Circular pie chart visualized the proportion difference of clinical indices and immune subtypes between two risk groups in GSE49710 cohort.





Single-cell scoring, scissor algorithm and pseudotime trajectory

Verifying the risk-stratify ability of SCRS in single cell landscape, we calculated the SCRS enrichment scores via scRNA scoring algorithms, which revealed that higher-SCRS cells were mostly abundant in NE cells (Figures 12A, B). To elucidate the cellular origins supporting high-SCRS clinical manifestations, we employed the “scissors” R package to make correlations between bulk-seq data and scRNA data, which independently singles out cells having remarkable alignment with the desired phenotype. We labeled high-SCRS and low-SCRS states of patients as our foremost phenotypes, thus enabling the thorough detection of 2120 high-SCRS cells (scissors+ cells) and 1875 low-SCRS cells (scissors- cells) (Figures 12C, D). The SCRS values of scissors+ cells were significantly higher than scissors- cells and other cell types (Figures 12D, E), which indicated successful discovery of scissors+ cells representing diverse SCRS status. Subsequently, we performed pseudotime trajectory analysis via Monocle 2 algorithm to explore the temporal sequences of cellular differentiation in NE cells, fibroblasts, Schwann cells and endothelial cells, with part of NE cells being poorly differentiated (Figures 12F, G). We utilized SCRS scores calculated by singscore and Ucell algorithm to divided cells into high-SCRS and low-SCRS according to median SCRS score. Comparisons of pseudotime scores revealed that high-SCRS NE cells had an earlier differentiation trajectory than low-SCRS NE cells, which indicated that immature NE cells scored higher SCRS points (Figures 12H–J). Additionally, setting NE cells as differentiation starting point in Monocle 3 algorithm, we verified that immature NE cells scored higher SCRS points, which could serve as malignant cells (Figure 12K).
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Figure 12 | Exploration of SCRS model genes in GSE137804 scRNA-seq cohort. (A) Single cell scoring results of SCRS model genes based on six scRNA scoring algorithm in UMAP plot. (B) Comparisons of single cell scoring results of SCRS model genes based on AUCell scoring algorithm. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (C) Visualization of high-SCRS cells (Scissor+ cells) and low-SCRS cells (Scissor- cells) in NB cells. (D) Visualization of high-SCRS cells (Scissor+ cells) and low-SCRS cells (Scissor- cells) in UMAP plot with other cell types. (E) Comparisons of single cell scoring results of SCRS model genes among Scissor+ cells and Scissor- cells based on AUCell scoring algorithm. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F, G) Pseudotime trajectory analysis in NB cells, fibroblasts, endothelial cells and Schwann cells via Monocle 2 algorithm (Cells are colored according to cell types, pseudotime, and states). (H-J) Pseudotime trajectory analysis based on Monocle 2 algorithm revealed significant differences of pseudotime scores between high-SCRS cells and low-SCRS cells (Cells are colored in single cell scoring results and high-SCRS or low-SCRS groups). (K) Pseudotime trajectory analysis based on Monocle 3 algorithm revealed significant differences of pseudotime scores between high-SCRS cells and low-SCRS cells.





Verification of SCRS via inferCNV, cell communication and SCENIC

Validating the power of SCRS in single cell level, we used inferCNV analysis to explore the clone structures of four cell types mentioned above, which indicated that NE cells with chromosome 17q gain were probably malignant cells, while high-SCRS cells owned more CNVs (Figures 13A, B). In cell chat analysis, we utilized “circle plot” to display the communication frequencies and communication strengths between every cell type, as well as the integrative cell chatting networks in high-SCRS cells and low-SCRS cells (Figure 13C). We visualized the cell chat landscapes in high-SCRS cells, and demonstrated over-expressed ligand-receptor pairs and communication profiles between B cells, myeloid cells, Schwann cells and fibroblasts in high-SCRS cells (Figures 13D, E). Distinct cell types would generate dissimilar contributive cues affecting the total, inbound and outbound signals among high-SCRS and low-SCRS cells, with macrophages, monocytes, Schwann cells, fibroblast, and endothelial cells noting exceptional significance (Figures 13F, G; Supplementary Figure S3G). The cellular communication between CAF subtypes holds significant biological importance, we then explore the communication network of CAF subpopulations in NB and pan-cancer landscape (Supplementary Figure S3H). We calculated the correlations between the hub gene of senes CAFs and cell-cell communication strength, finding a significant association between JAK1 and communication strength of CAF subtypes in NB, which offered a research value of JAK1 in modulating cellular communication (Supplementary Figure S3I). Meanwhile, we assessed the association among regulon (TFs and target genes) activities and cell types in high-SCRS and low-SCRS cells via SCENIC, revealing that regulons of SMARCA4 and PBX3 were more active in high SCRS cells (Figure 13H), and regulons of VEZF1 and PDLIM5 were more active in low SCRS cells (Figure 13I).
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Figure 13 | The landscape of CNV, cell-cell communication, transcriptional regulons in GSE137804 scRNA-seq cohort. (A, B) Significant differences of CNVs in NE cells, fibroblasts, Schwann cells and endothelial cells in high-SCRS cells and low-SCRS cells. (C) Circle diagrams showed the interaction strength and numbers between each cell type in high-SCRS cells and low-SCRS cells. (D) Bubble chart showed differences in communication signals between high-SCRS cells and low-SCRS cells. Bubble size represents P value generated by the permutation test, and the color represents the possibility of interactions. (E) Chord chart showed overexpressed ligand–receptor interactions in high-SCRS cells. (F) Heatmap showed the efferent or afferent contributions of all signals to different cell types in low-SCRS cells (left) and high-SCRS cells (right). (G) Dot plot showed dominant senders and receivers in low-SCRS cells (left) and high-SCRS cells (right). The X and Y axes are the total outgoing or incoming communication probabilities associated with each cell group, respectively. The size of the dots is positively related to the number of inferred links (both outgoing and incoming) associated with each cell block. The colors of the dots represent different cell groups. (H) SCENIC analysis indicated significant regulons in high-SCRS cells and TF rank plots of each cell type. (I) SCENIC analysis indicated significant regulons in low-SCRS cells and TF rank plots of each cell type.





Pan-cancer landscape and spatial transcriptomics analysis of hub gene

Interestingly, we revealed that hub gene JAK1, with favorable prognosis value in NB, was abundant in oncological research value, which has been proved as oncogene in breast cancer and non-small cell lung cancer (79). Therefore, we conducted pan-cancer analysis to explore the heterogeneity of JAK1expression in tumor and normal samples in 33 cancer types (Figure 14A). Besides, the links between JAK1 and TMB, MSI, immune cells, and immunological scores underscored importance of JAK1 in TME, immune cell invasions, and immune checkpoints (Figures 14B–F). The protective prognostic value of JAK1 was seen in KIRC, similar to NB. The risky prognostic value of JAK1was seen in LUSC (Figure 14G). Furthermore, we conducted pan-cancer spatial transcriptomics analysis to comprehensively explore the expressions of JAK1 in malignant cells and malignant spots. In tumor types of BRCA, CRC, HNSC, CESC, GIST, KIRC, LUSC and OVCA (Figures 14H, I; Supplementary Figures S4A–F), hub gene JAK1 solidly exhibited positive correlations with the abundance of malignant cells across eight cancer types, while expressing higher in malignant areas than in normal areas in multiple spatial transcriptomics slides, indicating the underlying oncogenic role of JAK1. Interestingly, hub gene JAK1 abnormally exhibited negative correlations with the abundance of malignant cells in LIHC spatial transcriptomics slide, while expressing lower in malignant areas than in normal areas (Figure 14J). This result suggests a unique functional role for JAK1 in this particular cancer type, which highlights the complexity of cancer biology and the importance of context in gene function.
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Figure 14 | Pan-cancer analysis and spatial transcriptomics analysis of hub gene JAK1. (A) Differential expressions of JAK1 in tumor and normal samples across 33 tumor types. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B, C) Correlation analysis between expressions of JAK1 and TMB/MSI scores. (D, E) Correlation analysis between expressions of JAK1 and immune cell proportions/immune scores calculated by ESTIMATE and CIBERSORT. (F) Correlation analysis between expressions of JAK1 and immune checkpoint genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (G) Cox regression analysis of JAK1 in multiple tumor types. (H-J) Pan-cancer spatial transcriptomics analysis of JAK1 in BRCA, CRC and LIHC. Left one: Each dot is a microregion of spatial transcriptome sequencing, and a different color represents a different cell type. Left two: Spatial feature plots of malignant, mixed and normal areas via “Cottrazm” analysis. Left three: Spatial feature plots of gene expression of JAK1. Left four: Spearman correlation analysis calculated the correlations between one cell count and another cell count, and between cell count and gene expression in all spots. Left five: The horizontal coordinate is the different microregion types, and the vertical coordinate is the average expression of JAK1. Wilcoxon Rank Sum Tests assessed the significance of statistical differences.





Immunohistochemistry of hub gene

Our bioinformatics analysis has revealed that three hub genes, which were both diagnostic model genes as well as prognostic model genes in SCRS, were expressed significantly lower in stage 4 NB (Figure 15A) and were protective prognosis genes (Figure 15B) in GSE49710 cohort. To validate the elevated protein levels of JAK1 in other stages NB tissues compared to stage 4 NB tissues, as well as its protective prognosis value, we conducted IHC staining to corroborate our bioinformatics findings (Figure 15C). Our scoring results showed that protein levels of JAK1 was significantly higher in other stages NB tissues than stage 4 NB tissues (Figure 15D). Subsequently, we categorized 40 NB patients into high and low expression groups based on their median IHC scores of JAK1. Survival analysis indicated that patients with high JAK1 expression had better OS than those with low JAK1 levels, without significance (p = 0.15, Figure 15E).

[image: A series of images and charts related to cancer analysis in neuroblastoma:  A. Three box plots comparing levels of JAK1, DYNC1I2, and VGLL4 genes between INSS stage 4 and other stages with significant p-values.  B. Three survival probability plots for all-cause mortality related to high and low levels of JAK1, DYNC1I2, and VGLL4, showing lower survival for the high levels.  C. Four panels displaying histological images of neuroblastoma tissue from different INSS stages (1, 2, 3, 4, 4S).  D. Box plot comparing IHC scores of JAK1 between INSS stage 4 and other stages with a significant p-value.  E. Kaplan-Meier plot for overall survival based on high and low JAK1 IHC groups, with the number at risk displayed.  ]
Figure 15 | Experimental validation of hub gene JAK1 by Immunohistochemistry. (A) Different expressions of three hub genes (JAK1, DYNC1I2 and VGLL4) in INSS stage 4 tumors and other INSS stages tumors in GSE49710 cohort. (B) Protective prognosis value of three hub genes (JAK1, DYNC1I2 and VGLL4) illustrated by K-M curves in GSE49710 cohort. (C) Representative IHC staining pictures of INSS 1, 2, 3, 4 and 4S tumor samples. (D) Protein levels of JAK1 in INSS stage 4 tumors and other INSS stages tumors via IHC scores. (E) K-M curves of high-JAK1 group and low-JAK1 group.






Discussion

Neuroblastoma (NB), primarily diagnosed in children below the age of five, holds significant responsibility for around 15% of tumor-associated fatalities in pediatric settings (80). The diagnosis and therapeutic strategies are complicated due to the unique clinical manifestations and molecular characteristics of NB (81). In severe disease with advanced stages, complete surgical tumor removal becomes increasingly difficult. This is largely because the tumor engulfs and destructs the neurovascular structure subsequent to expansive growth. Moreover, advanced stages are typically associated with potentially severe conditions like recurrent relapse, remote metastasis and drug resistance. Consequently, this results in notably unfavorable outcomes for those grappling with NB (82). This challenging context has called the urgent need to develop more effective individualized treatment regimens, find new therapeutic targets, and reduce long-term drug side effects for NB patients.

The complex biological background and diverse clinic characteristics of NB pose huge challenges for doctors and clinicians. Advances in high-throughput sequencing methodologies has prompted the unveiling of unique prognostic and diagnostic markers, thus enabling more precise estimations of patient outcomes and personalized treatment approaches. Previous studies on senescence have focused on mechanisms, functions and treatment innovations, our research aims to explore the biological and clinical roles of senescence related CAFs (senes CAFs) in NB. We have systematically gathered a detailed list of senescence-related genes for thorough investigation. Through a comprehensive bioinformatics analysis combining both scRNA and bulk-seq, we successfully identified a distinct CAF subtype namely senes CAF, as well as numerous critical marker genes of senes CAF. Subsequently, we were able to construct senes CAF centric predictive models based on marker genes with great prognosis value, referred to SCRS, employing integrated machine-learning techniques. SCRS demonstrated its proficiency for accurately diagnosing stage 4 NB and projecting the prognosis for NB patients, showcasing an impressive ability to foresee immunotherapy responses and to categorize patients into high or low risk across various factors, such as immune microenvironment, mutational landscapes, chemotherapy responsiveness, and single-cell resolution. Moreover, we distinguished two distinct NB subtypes via consensus clustering, each characterized by valuable senes CAF marker genes, which shed light on molecular landscape of senes CAF in NB.

Machine earning (ML) serves as an essential tool in our research, utilizing sophisticated algorithms to automatically manage expansive and varied datasets. Its optimal operation lies in predictive tasks where it identifies significant patterns (83). We relied on an integrated ML framework to establish a consensus SCRS using the expression patterns of senes CAF marker genes, aiming at diagnosing stage 4 NB and forecasting NB prognosis. A total of 101 prognosis algorithms and 113 diagnosis algorithms were implemented in the train set according to LOOCV framework. Further corroborations in another four datasets disclosed that the most effective prognosis algorithm was SuperPC in feature selection and model construction, and the most reliable diagnosis algorithm was RF in feature selection and model development. The robustness of this unified method lies within its capacity to assemble multiple ML algorithms, and that results into creating models with persistent diagnosis or prognosis abilities. This method simplifies the model for functional and translational use by reducing the dimensionality of numerous variables. The performance of SCRS was validated by confusion matrix, time-dependent ROC curves, AUC values, calibration curves, and DCA curves, all of which accentuate its supremacy over other clinic factors. In addition, a meta-analysis of C-index indicated that prognostic SCRS retained highest precision and robustness across external validation datasets, indicating its significant prospects in clinic use and helping decision-making.

With the risk-stratify ability of prognostic SCRS, it allowed us to discover the biological discrepancies and genetic mechanisms between two risk groups. Notable biological diversity was observed between two risk groups in terms of immune microenvironment, responsiveness to immunotherapy, somatic mutations, and chemotherapy sensitivity. We conducted a functional enrichment analysis with DEGs between two risk groups, which revealed that the key differences were primarily concentrated in areas like spermatogenesis, oocyte meiosis, and cell cycle. NB could potentially be the result of aberrant development of neural crest stem cells, which is linked to mis-regulation of differentiation, morphogenesis, and cell cycle. The migratory pathways of neural crest stem cells correspond to tumoral locations of INSS stage 4S and 4 NB, encompassing adrenal gland, liver, and bone marrow. It’s noteworthy that most malignant tumors have been discovered to retain stem cells or precursor-like cells with stem cell features, which are linked to impact of genetic and epigenetic alterations on differentiating and mature cells (84). We perform function enrichment analysis to reveal a possibility of SCRS model genes being implicated in development of NB tumor cells, which could potentially affect the signals and pathways associated with differentiation and maturation.

Immunotherapy extends survival prospects for patients with malignant tumors, providing potential encouragement for those afflicted with this debilitating disease. Our analysis of the interactions between SCRS and TME exposed a negative association between SCRS risk scores and the majority of immune cells and immunologically regulatory genes. Function enrichment analysis pointed towards an elevation of immunoregulatory function levels in low-risk group. Hence, low-risk group often display symptoms consistent with “immune activity” or “hot tumor”, which is typified by increased infiltration of various immunocytes. Significantly, past research underlines that increased presence of immune cells in tumor microenvironment often correlates with better prognoses for NB, suggesting promising capacity to hamper cancer progression. This conjecture was also verified in four immunotherapy bulk-seq datasets, supporting the viewpoint that SCRS was a promising prediction signature for immunotherapy effectiveness.

Subsequently, we performed single cell analysis to thoroughly explore the underlying biological functions of SCRS model genes. Utilizing six distinct single-cell scoring algorithms, we were able to vividly illustrate the expression landscapes of SCRS model genes at individual cell levels, demonstrating substantial infiltration in malignant NE cells. We utilized bulk-seq datasets to categorize samples into two markedly different phenotypes, namely high-SCRS and low-SCRS. The Scissor algorithm was then implemented to map concerned phenotypes into the scRNA data, aiming at pinpointing the cells most tightly related to high or low SCRS profile. Consequently, the low and high SCRS statuses were respectively represented by the Scissor- cells and Scissor+ cells, showing significant distinctions in terms of senescence. We further initiated pseudo-time analysis and employed the inferCNV method individually in high-SCRS and low-SCRS cells, which elicited remarkable disparities in cell maturation and mutational landscapes across two SCRS categories. We found that cells displaying elevated SCRS scores were predominantly immature and malignant cells, supporting the aptitude of SCRS for risk stratification. Additionally, biological differences were highlighted in the cellular interaction and transcriptional regulon networks in two SCRS groups, contributing to a more comprehensive comprehension of cancer microenvironment and cancer heterogeneity, based on cell chat analysis and SCENIC algorithm.

Janus kinase 1 (JAK1) is a critical player in various cellular processes, including inflammation, immune response, and oncogenesis, due to its central role in the JAK-STAT signaling pathway (85). Subsequently, based on spatial transcriptomics analysis, we found expression of hub gene JAK1 was positively correlated to the proportions of malignant cells in spatial transcriptomics spots in most cancer types excluding LIHC, indicating its malignant phenotypes and heterogeneity in pan-cancer levels. Interestingly, we utilized “Cottrazm” to combine spatial transcriptome data with HE staining images and single cell transcriptome data, mapping the cancer boundary region linking malignant and non-malignant regions in cancer tissue accurately. Unlike the protective role of JAK1 in NB, we revealed that JAK1 expressed significantly higher in malignant area than in mix area or normal area, indicating its huge abundance in tumor cells at spatial dimension in most adult tumors. In LIHC, JAK1 might interact with other signaling pathways in liver cells that result in tumor suppression. For instance, it could activate STAT proteins that induce the expression of genes responsible for cell cycle arrest or apoptosis, thereby inhibiting cancer cell growth and survival (86).

Our SCRS can be conveniently replicated using PCR detective techniques, which is feasible for broader clinic application and utilization. Sequencing the genome or transcriptome of NB patient samples obtained from biopsies or surgeries could serve as a routine diagnostic tool to inform treatment strategies. With this data integrated into SCRS, clinicians could accurately stage INSS 4 NB, assess prognosis, and design tailored treatments for patients facing distant metastasis and challenging outcomes. Nevertheless, it’s important to note some limitations within our study. Initially, our study was carried out retrospectively, with sequencing data and relevant clinical info gathered from public archives, which needs a large-scale, multi-center prospective validation. And the lack of details therapy procedures, metastasis organs, and recurrence data could potentially influence our findings. Secondly, the characteristics of JAK1 in NB have not been conclusively identified, therefore further research involving additional tumor samples, and more in vitro or in vivo experimental investigations are required to explore their biological roles within NB. At last, our present methodology of model development, which depends entirely on transcriptome sequencing, could gain significantly from integrative analysis of multi-omics and multi-modal data. This well-rounded integration analysis enables a more thorough understanding of molecular mechanism and physiological process, refining the reliability and precision of the prediction models. The inclusion of multi-omics and multi-modal data introduces a bevy of variables to the analysis, which is imperative for more intricate artificial intelligence models. Hence, deep learning, a specialized field within machine learning, possesses the unique ability to independently identify crucial classification features. This option isn’t readily available with conventional machine learning techniques, which require manual selection and input of such features. Consequently, the adoption and deployment of novel deep learning algorithms, alongside the insightful benefits afforded by multi-omics and multi-modal data integration, denote a powerful strategy for progressing personalized medicine for NB patients.





Conclusion

For the first time, we have been successful in developing senes CAFs related signatures to accurately diagnose INSS stage 4 NB and predict prognosis in NB, thanks to a wealth of machine learning algorithms. After multiple validations in model performance, immune microenvironment, mutational landscapes, immunotherapy, chemotherapy, single cell resolution and spatial transcriptomics analysis, SCRS has demonstrated both stability and potency in outcome prediction, making it a remarkable prediction model in NB. Furthermore, we revealed hub gene JAK1 with huge impact in SCRS, which showed heterogeneous prognosis value in pan-cancer landscapes, suggesting potential research opportunities associated with senes CAFs.
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Supplementary Figure 1 | (A) The workflow chart of our study. (B) Visualizing the distribution of various cancer types by UMAP plot in pan-cancer landscape. (C) Quality control of CAF subtype in pan-cancer scRNA-seq cohort. (D) Harmony algorithm reduced the batch effects between each cancer type. (E) Boxplot showing the local inverse Simpson’s Index (LISI) of fibroblasts before and after batch correction. (F) Five scRNA scoring algorithms visualized the senescence enriched scores of each CAF subpopulation. (G) KEGG enrichment analysis showed each CAF subtype’s top 3 functional terms. (H) UMAP plots showing the co-embedding results of scRNA-seq and ST data using CellTrek.

Supplementary Figure 2 | (A) Quality control of each major cell type in GSE137804 scRNA-seq cohort. (B) Harmony algorithm reduced the batch effects of each sample in GSE137804 scRNA-seq cohort. (C) Quality control of each subtype in CAF subpopulations. (D) Harmony algorithm reduced the batch effects of each sample in CAF subpopulations. (E) UMAP plot showed the expression profiles of marker genes. (F) Six scRNA scoring algorithms visualized the senescence enriched scores of each CAF subpopulation. (G) Visualizing the distribution of major cell type and CAF subpopulations by UMAP plot in other NB datasets. (H) scRNA scoring algorithm of AUCell ranking visualized the senescence enriched scores of each CAF subpopulation. (I) Scatter plot showing the regulon specificity scores (RSSs) in each CAF subtype via SCENIC analysis. The top 5 regulons are highlighted.

Supplementary Figure 3 | (A) PCA plots visualized the well corrections after batch removement in five bulk-seq cohorts. (B) Acquisition of diagnostic and prognostic senescence-related genes via intersection of genes with diagnosis or prognosis value in four bulk-seq cohorts. (C) The flowchart to schematically explain the algorithmic pipeline of machine learning algorithm integration. (D) The performance of five ML models in terms of Area under precision-recall curve (PRAUC), accuracy, sensitivity, specificity, precision, cross-entropy, Brier scores, balanced accuracy and F1 Score in five bulk-seq cohorts. (E) The precision-recall curves (PRC) in two bulk-seq cohort. (F) Logarithmic loss, recall and decision calibration of top 5 prognostic machine learning models in five bulk-seq cohorts. (G) The combined heatmap shows the results after NicheNet analysis of high-SCRS cells and low-SCRS cells. (H) Circle diagrams showed the interaction strength and numbers between each CAF subtype in high-SCRS cells and low-SCRS cells in NB and pan-cancer landscape. (I) The spearman correlations between the hub gene of senes CAFs and cell-cell communication strengths in NB and pan-cancer landscape.

Supplementary Figure 4 | Pan-cancer spatial transcriptomics analysis of JAK1 in HNSC (A), CESC (B), GIST (C), KIRC (D), LUSC (E) and OVCA (F). Left one: Each dot is a microregion of spatial transcriptome sequencing, and a different color represents a different cell type. Left two: Spatial feature plots of malignant, mixed and normal areas via “Cottrazm” analysis. Left three: Spatial feature plots of gene expression of JAK1. Left four: Spearman correlation analysis calculated the correlations between one cell count and another cell count, and between cell count and gene expression in all spots. Left five: The horizontal coordinate is the different microregion types, and the vertical coordinate is the average expression of JAK1. Wilcoxon Rank Sum Tests assessed the significance of statistical differences.


References
	1. Tsubota, S, and Kadomatsu, K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. (2018) 372:211–21. doi: 10.1007/s00441-018-2796-z
	2. Kholodenko, IV, Kalinovsky, DV, Doronin, II, Deyev, SM, and Kholodenko, RV. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res. (2018) 2018:7394268. doi: 10.1155/2018/7394268
	3. Irwin, MS, Naranjo, A, Zhang, FF, Cohn, SL, London, WB, Gastier-Foster, JM, et al. Revised neuroblastoma risk classification system: A report from the children’s oncology group. J Clin Oncol. (2021) 39:3229–41. doi: 10.1200/JCO.21.00278
	4. Brodeur, GM, Pritchard, J, Berthold, F, Carlsen, NL, Castel, V, Castelberry, RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. (1993) 11:1466–77. doi: 10.1200/JCO.1993.11.8.1466
	5. Dong, R, Yang, R, Zhan, Y, Lai, HD, Ye, CJ, Yao, XY, et al. Single-cell characterization of Malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell. (2020) 38:716–733.e6. doi: 10.1016/j.ccell.2020.08.014
	6. Xu, M, Zhang, T, Xia, R, Wei, Y, and Wei, X. Targeting the tumor stroma for cancer therapy. Mol Cancer. (2022) 21:208. doi: 10.1186/s12943-022-01670-1
	7. Chhabra, Y, and Weeraratna, AT. Fibroblasts in cancer: Unity in heterogeneity. Cell. (2023) 186:1580–609. doi: 10.1016/j.cell.2023.03.016
	8. Faget, DV, Ren, Q, and Stewart, SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. (2019) 19:439–53. doi: 10.1038/s41568-019-0156-2
	9. Frey, N, Venturelli, S, Zender, L, and Bitzer, M. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat Rev Gastroenterol Hepatol. (2018) 15:81–95. doi: 10.1038/nrgastro.2017.146
	10. Hernandez-Segura, A, de Jong, TV, Melov, S, Guryev, V, Campisi, J, and Demaria, M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. (2017) 27:2652–2660.e4. doi: 10.1016/j.cub.2017.07.033
	11. Krizhanovsky, V, Yon, M, Dickins, RA, Hearn, S, Simon, J, Miething, C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. (2008) 134:657–67. doi: 10.1016/j.cell.2008.06.049
	12. Ruhland, MK, Coussens, LM, and Stewart, SA. Senescence and cancer: An evolving inflammatory paradox. Biochim Biophys Acta. (2016) 1865:14–22. doi: 10.1016/j.bbcan.2015.10.001
	13. Liu, Z, Liu, L, Weng, S, Guo, C, Dang, Q, Xu, H, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6
	14. Leek, JT, Johnson, WE, Parker, HS, Jaffe, AE, and Storey, JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. (2012) 28:882–3. doi: 10.1093/bioinformatics/bts034
	15. Satija, R, Farrell, JA, Gennert, D, Schier, AF, and Regev, A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. (2015) 33:495–502. doi: 10.1038/nbt.3192
	16. McGinnis, CS, Murrow, LM, and Gartner, ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. (2019) 8:329–337.e4. doi: 10.1016/j.cels.2019.03.003
	17. Korsunsky, I, Millard, N, Fan, J, Slowikowski, K, Zhang, F, Wei, K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. (2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0
	18. Butler, A, Hoffman, P, Smibert, P, Papalexi, E, and Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. (2018) 36:411–20. doi: 10.1038/nbt.4096
	19. Ma, C, Yang, C, Peng, A, Sun, T, Ji, X, Mi, J, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. (2023) 22:170. doi: 10.1186/s12943-023-01876-x
	20. Cords, L, Tietscher, S, Anzeneder, T, Langwieder, C, Rees, M, de Souza, N, et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun. (2023) 14:4294. doi: 10.1038/s41467-023-39762-1
	21. Andreatta, M, and Carmona, SJ. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. (2021) 19:3796–8. doi: 10.1016/j.csbj.2021.06.043
	22. Foroutan, M, Bhuva, DD, Lyu, R, Horan, K, Cursons, J, and Davis, MJ. Single sample scoring of molecular phenotypes. BMC Bioinf. (2018) 19:404. doi: 10.1186/s12859-018-2435-4
	23. Hänzelmann, S, Castelo, R, and Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7
	24. Zheng, L, Qin, S, Si, W, Wang, A, Xing, B, Gao, R, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. (2021) 374:abe6474. doi: 10.1126/science.abe6474
	25. Gulati, GS, Sikandar, SS, Wesche, DJ, Manjunath, A, Bharadwaj, A, Berger, MJ, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. (2020) 367:405–11. doi: 10.1126/science.aax0249
	26. Street, K, Risso, D, Fletcher, RB, Das, D, Ngai, J, Yosef, N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. (2018) 19:477. doi: 10.1186/s12864-018-4772-0
	27. Cao, J, Spielmann, M, Qiu, X, Huang, X, Ibrahim, DM, Hill, AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. (2019) 566:496–502. doi: 10.1038/s41586-019-0969-x
	28. Cable, DM, Murray, E, Zou, LS, Goeva, A, Macosko, EZ, Chen, F, et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. (2022) 40:517–26. doi: 10.1038/s41587-021-00830-w
	29. Han, Y, Wang, Y, Dong, X, Sun, D, Liu, Z, Yue, J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. (2023) 51:D1425–d1431. doi: 10.1093/nar/gkac959
	30. Xun, Z, Ding, X, Zhang, Y, Zhang, B, Lai, S, Zou, D, et al. Reconstruction of the tumor spatial microenvironment along the Malignant-boundary-nonmalignant axis. Nat Commun. (2023) 14:933. doi: 10.1038/s41467-023-36560-7
	31. Wei, R, He, S, Bai, S, Sei, E, Hu, M, Thompson, A, et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol. (2022) 40:1190–9. doi: 10.1038/s41587-022-01233-1
	32. Lang, M, Binder, M, Richter, J, Schratz, P, Pfisterer, F, Coors, S, et al. mlr3: A modern object-oriented machine learning framework in R. J Open Source Software. (2019) 4:1903. doi: 10.21105/joss.01903
	33. Sonabend, R, Király, FJ, Bender, A, Bischl, B, and Lang, M. mlr3proba: an R package for machine learning in survival analysis. Bioinformatics. (2021) 37:2789–91. doi: 10.1093/bioinformatics/btab039
	34. Wilkerson, MD, and Hayes, DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3. doi: 10.1093/bioinformatics/btq170
	35. Yu, G, Wang, LG, Han, Y, and He, QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. (2012) 16:284–7. doi: 10.1089/omi.2011.0118
	36. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. (2005) 102:15545–50. doi: 10.1073/pnas.0506580102
	37. Zeng, D, Ye, Z, Shen, R, Yu, G, Wu, J, Xiong, Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975
	38. Newman, AM, Liu, CL, Green, MR, Gentles, AJ, Feng, W, Xu, Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015) 12:453–7. doi: 10.1038/nmeth.3337
	39. Yoshihara, K, Shahmoradgoli, M, Martínez, E, Vegesna, R, Kim, H, Torres-Garcia, W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612
	40. Finotello, F, Mayer, C, Plattner, C, Laschober, G, Rieder, D, Hackl, H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34. doi: 10.1186/s13073-019-0638-6
	41. Li, B, Severson, E, Pignon, JC, Zhao, H, Li, T, Novak, J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. (2016) 17:174. doi: 10.1186/s13059-016-1028-7
	42. Charoentong, P, Finotello, F, Angelova, M, Mayer, C, Efremova, M, Rieder, D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. (2017) 18:248–62. doi: 10.1016/j.celrep.2016.12.019
	43. Becht, E, Giraldo, NA, Lacroix, L, Buttard, B, Elarouci, N, Petitprez, F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-016-1070-5
	44. Aran, D, Hu, Z, and Butte, AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1
	45. Racle, J, de Jonge, K, Baumgaertner, P, Speiser, DE, and Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. (2017) 13:6. doi: 10.7554/eLife.26476
	46. Jia, Q, Wu, W, Wang, Y, Alexander, PB, Sun, C, Gong, Z, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. (2018) 9:5361. doi: 10.1038/s41467-018-07767-w
	47. Barbie, DA, Tamayo, P, Boehm, JS, Kim, SY, Moody, SE, Dunn, IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. (2009) 462:108–12. doi: 10.1038/nature08460
	48. Xu, L, Deng, C, Pang, B, Zhang, X, Liu, W, Liao, G, et al. TIP: A web server for resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575–80. doi: 10.1158/0008-5472.CAN-18-0689
	49. Thorsson, V, Gibbs, DL, Brown, SD, Wolf, D, Bortone, DS, Ou Yang, TH, et al. The immune landscape of cancer. Immunity. (2018) 48:812–830.e14. doi: 10.1016/j.immuni.2018.03.023
	50. Mayakonda, A, Lin, DC, Assenov, Y, Plass, C, and Koeffler, HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56. doi: 10.1101/gr.239244.118
	51. Mermel, CH, Schumacher, SE, Hill, B, Meyerson, ML, Beroukhim, R, and Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. (2011) 12:R41. doi: 10.1186/gb-2011-12-4-r41.
	52. Zhang, H, Meltzer, P, and Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinf. (2013) 14:244. doi: 10.1186/1471-2105-14-244
	53. Jiang, P, Gu, S, Pan, D, Fu, J, Sahu, A, Hu, X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8. doi: 10.1038/s41591-018-0136-1
	54. Roh, W, Chen, PL, Reuben, A, Spencer, CN, Prieto, PA, Miller, JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. (2017) 9(379). doi: 10.1126/scitranslmed.aah3560
	55. Yang, C, Huang, X, Li, Y, Chen, J, Lv, Y, and Dai, S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform. (2021) 22(3). doi: 10.1093/bib/bbaa164
	56. Sun, D, Guan, X, Moran, AE, Wu, LY, Qian, DZ, Schedin, P, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol. (2022) 40:527–38. doi: 10.1038/s41587-021-01091-3
	57. Qiu, X, Hill, A, Packer, J, Lin, D, Ma, YA, and Trapnell, C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. (2017) 14:309–15. doi: 10.1038/nmeth.4150
	58. Tirosh, I, Venteicher, AS, Hebert, C, Escalante, LE, Patel, AP, Yizhak, K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. (2016) 539:309–13. doi: 10.1038/nature20123
	59. Jin, S, Guerrero-Juarez, CF, Zhang, L, Chang, I, Ramos, R, Kuan, CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088. doi: 10.1038/s41467-021-21246-9
	60. Browaeys, R, Saelens, W, and Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. (2020) 17:159–62. doi: 10.1038/s41592-019-0667-5
	61. Aibar, S, González-Blas, CB, Moerman, T, Huynh-Thu, VA, Imrichova, H, Hulselmans, G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. (2017) 14:1083–6. doi: 10.1038/nmeth.4463
	62. Liao, C, and Wang, X. TCGAplot: an R package for integrative pan-cancer analysis and visualization of TCGA multi-omics data. BMC Bioinf. (2023) 24:483. doi: 10.1186/s12859-023-05615-3
	63. Chen, Z, Zhou, L, Liu, L, Hou, Y, Xiong, M, Yang, Y, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. (2020) 11:5077. doi: 10.1038/s41467-020-18916-5
	64. Liu, C, Zhang, M, Yan, X, Ni, Y, Gong, Y, Wang, C, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci Adv. (2023) 9:eadd8977. doi: 10.1126/sciadv.add8977
	65. Elyada, E, Bolisetty, M, Laise, P, Flynn, WF, Courtois, ET, Burkhart, RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discovery. (2019) 9:1102–23. doi: 10.1158/2159-8290.CD-19-0094
	66. Wang, Y, Liang, Y, Xu, H, Zhang, X, Mao, T, Cui, J, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discovery. (2021) 7:36. doi: 10.1038/s41421-021-00271-4
	67. Galbo, PM Jr., Zang, X, and Zheng, D. Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. (2021) 27:2636–47. doi: 10.1158/1078-0432.CCR-20-4226
	68. Chen, B, Chan, WN, Xie, F, Mui, CW, Liu, X, Cheung, AHK, et al. The molecular classification of cancer-associated fibroblasts on a pan-cancer single-cell transcriptional atlas. Clin Transl Med. (2023) 13:e1516. doi: 10.1002/ctm2.v13.12
	69. Lavie, D, Ben-Shmuel, A, Erez, N, and Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat Cancer. (2022) 3:793–807. doi: 10.1038/s43018-022-00411-z
	70. Tang, X, Hou, Y, Yang, G, Wang, X, Tang, S, Du, YE, et al. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. (2016) 23:132–45. doi: 10.1038/cdd.2015.78
	71. Franceschi, C, Garagnani, P, Parini, P, Giuliani, C, and Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. (2018) 14:576–90. doi: 10.1038/s41574-018-0059-4
	72. Wu, Y, Yang, S, Ma, J, Chen, Z, Song, G, Rao, D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discovery. (2022) 12:134–53. doi: 10.1158/2159-8290.CD-21-0316
	73. Barkley, D, Moncada, R, Pour, M, Liberman, DA, Dryg, I, Werba, G, et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet. (2022) 54:1192–201. doi: 10.1038/s41588-022-01141-9
	74. Sudmeier, LJ, Hoang, KB, Nduom, EK, Wieland, A, Neill, SG, Schniederjan, MJ, et al. Distinct phenotypic states and spatial distribution of CD8(+) T cell clonotypes in human brain metastases. Cell Rep Med. (2022) 3:100620. doi: 10.1016/j.xcrm.2022.100620
	75. Liu, Y, Xun, Z, Ma, K, Liang, S, Li, X, Zhou, S, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. (2023) 78:770–82. doi: 10.1016/j.jhep.2023.01.011
	76. Belle, JI, Sen, D, Baer, JM, Liu, X, Lander, VE, Ye, J, et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discovery. (2024) 14:1324–55. doi: 10.1158/2159-8290.CD-23-0428
	77. Guo, Y, Zhou, A, Zhang, Y, Chen, Y, Chen, Y, Gao, Y, et al. Serum response factor activates peroxidasin transcription to block senescence of hepatic stellate cells. Life Sci. (2023) 328:121824. doi: 10.1016/j.lfs.2023.121824
	78. Kim, J, and DeBerardinis, RJ. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. (2019) 30:434–46. doi: 10.1016/j.cmet.2019.08.013
	79. Shien, K, Papadimitrakopoulou, VA, Ruder, D, Behrens, C, Shen, L, Kalhor, N, et al. JAK1/STAT3 activation through a proinflammatory cytokine pathway leads to resistance to molecularly targeted therapy in non-small cell lung cancer. Mol Cancer Ther. (2017) 16:2234–45. doi: 10.1158/1535-7163.MCT-17-0148
	80. Gurney, JG, Severson, RK, Davis, S, and Robison, LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. (1995) 75:2186–95. doi: 10.1002/1097-0142(19950415)75:8<2186::AID-CNCR2820750825>3.0.CO;2-F
	81. Aygun, N. Biological and genetic features of neuroblastoma and their clinical importance. Curr Pediatr Rev. (2018) 14:73–90. doi: 10.2174/1573396314666180129101627
	82. Bhatnagar, SN, and Sarin, YK. Neuroblastoma: a review of management and outcome. Indian J Pediatr. (2012) 79:787–92. doi: 10.1007/s12098-012-0748-2
	83. Goecks, J, Jalili, V, Heiser, LM, and Gray, JW. How machine learning will transform biomedicine. Cell. (2020) 181:92–101. doi: 10.1016/j.cell.2020.03.022
	84. Ratner, N, Brodeur, GM, Dale, RC, and . Schor, NF. The “neuro” of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol. (2016) 80:13–23. doi: 10.1002/ana.24659
	85. Hosseini, A, Gharibi, T, Marofi, F, Javadian, M, Babaloo, Z, and Baradaran, B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol. (2020) 235:5903–24. doi: 10.1002/jcp.v235.9
	86. Wehde, BL, Rädler, PD, Shrestha, H, Johnson, SJ, Triplett, AA, and Wagner, KU. Janus kinase 1 plays a critical role in mammary cancer progression. Cell Rep. (2018) 25:2192–2207.e5. doi: 10.1016/j.celrep.2018.10.063




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2024 Li, Luo, Liu and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




REVIEW

published: 10 December 2024

doi: 10.3389/fimmu.2024.1493214

[image: image2]


Immunoadjuvant therapy in the regulation of cell death in sepsis: recent advances and future directions


Md. Monirul Islam 1,2, Eizo Watanabe 1*, Umme Salma 1, Masayuki Ozaki 1, Takayuki Irahara 1, Subaru Tanabe 1, Ryusuke Katsuki 1, Dai Oishi 1 and Naoshi Takeyama 1


1 Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan, 2 Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram, Bangladesh




Edited by: 

Pengpeng Zhang, Nanjing Medical University, China

Reviewed by: 

Cong Zhang, The First People’s Hospital of Foshan, China

Chenglong Zhu, Second Military Medical University, China

*Correspondence: 

Eizo Watanabe
 eizow@aichi-med-u.ac.jp


Received: 08 September 2024

Accepted: 18 November 2024

Published: 10 December 2024

Citation:
Islam MM, Watanabe E, Salma U, Ozaki M, Irahara T, Tanabe S, Katsuki R, Oishi D and Takeyama N (2024) Immunoadjuvant therapy in the regulation of cell death in sepsis: recent advances and future directions. Front. Immunol. 15:1493214. doi: 10.3389/fimmu.2024.1493214



Sepsis is characterized by a concomitant early pro-inflammatory response by immune cells to an infection, and an opposing anti-inflammatory response that results in protracted immunosuppression. The primary pathological event in sepsis is widespread programmed cell death, or cellular self-sacrifice, of innate and adaptive immune cells, leading to profound immunological suppression. This severe immune dysfunction hampers effective primary pathogen clearance, thereby increasing the risk of secondary opportunistic infections, latent viral reactivation, multiple organ dysfunction, and elevated mortality. The types of cell death include apoptosis (type I programmed cell death), autophagy (type II programmed cell death), NETosis (a program for formation of neutrophil extracellular traps (NETs)) and other programmed cell deaths like pyroptosis, ferroptosis, necroptosis, each contributing to immunosuppression in distinct ways during the later phases of sepsis. Extensive apoptosis of lymphocytes, such as CD4+, CD8+ T cells, and B cells, is strongly associated with immunosuppression. Apoptosis of dendritic cells further compromises T and B cell survival and can induce T cell anergy or promote regulatory Treg cell proliferation. Moreover, delayed apoptosis and impaired neutrophil function contribute to nosocomial infections and immune dysfunction in sepsis. Interestingly, aberrant NETosis and the subsequent depletion of mature neutrophils also trigger immunosuppression, and neutrophil pyroptosis can positively regulate NETosis. The interaction between programmed cell death 1 (PD-1) or programmed cell death 1 ligand (PD-L1) plays a key role in T cell modulation and neutrophil apoptosis in sepsis. The dendritic cell growth factor, Fms-like tyrosine kinase (FLTEL), increases DC numbers, enhances CD 28 expression, attenuates PD-L1, and improves survival in sepsis. Recently, immunoadjuvant therapies have attracted attention for their potential to restore host physiological immunity and homeostasis in patients with sepsis. This review focuses on several potential immunotherapeutic agents designed to bolster suppressed innate and adaptive immune responses in the management of sepsis.
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Introduction

Sepsis is characterized by a dysregulated inflammatory host response to life-threatening infection, which can trigger circulatory shock, organ dysfunction, and ultimately, death (1). The hallmark of sepsis is a simultaneous, cytokine-mediated, early excessive pro-inflammatory response to infection that contributes to the recruitment and activation of innate and adaptive immune cells to the site of infection. Progression of sepsis leads to immune cell exhaustion by continuous encounters with pathogens and inflammatory signals with increased expression of immune checkpoint molecules like PD-1 and CTLA-4. The exhausted immune cells exert a compensatory anti-inflammatory response and undergo different types of massive cell death (2). The human body manages this through a negative feedback mechanism referred to as immunosuppression, which leads to immunoparalysis involving both the innate and adaptive immune systems. This profound immune dysfunction results in poor primary pathogen clearance and enhances the risk of secondary opportunistic infections, latent viral reactivation, multiple organ dysfunction, and increased mortality (3, 4). Despite numerous clinical trials focused on mitigating hyper-inflammation by blocking pro-inflammatory mediators (5, 6), no FDA-approved treatments have been approved to date, and sepsis remains a predominant cause of death among critically ill patients in most intensive care settings worldwide (7). While advances in treatment and supportive care have reduced mortality and improved overall survival in sepsis management, researchers have yet to elucidate various immunological aspects of the syndrome or identify novel, targeted therapeutics to reverse sepsis effectively. It is well established that cell death, a conserved mechanism in multicellular organisms, plays a vital role in responding to external injuries. Dysregulation of widespread programmed immune cell death, or cellular self-sacrifice, is now recognized as the primary pathological event in sepsis, leading to significant immunological suppression (8). These cell death mechanisms include apoptosis (type I programmed cell death), autophagy (type II programmed cell death), NETosis [a program for formation of neutrophil extracellular traps (NETs)] pyroptosis, ferroptosis, and necroptosis. An inadequate immune response resulting from cell death and subsequent aggressive immunosuppression has been identified as a significant contributor to sepsis pathogenesis (9, 10). Excessive apoptosis of splenic CD4+, CD8+ T, and B cells, coupled with reduced autophagy in CD4+ T cells, has been observed in patients with sepsis, thereby accelerating acquired immunodeficiency (11). Furthermore, apoptosis of dendritic cells in sepsis also compromises the survival of T cell and B cells and can induce a state of T cell anergy or promote regulatory T cell (Treg) proliferation (12). In addition, during sepsis, the major interferon-gamma (IFN-γ)- producing natural killer (NK) cells encounter immoderate apoptosis after a reduced number is present in the circulation, thus increasing the risk of secondary infection (13). Due to the inhibition of spontaneous apoptosis, neutrophils may undergo other types of cell death, including NETosis and pyroptosis (14). Excessive NETosis, followed by the depletion of mature neutrophils, heightens the risk of nosocomial infections and immune dysfunction. Investigators are actively trying to clarify the underlying inconsistencies in innate and adaptive immunity as well as the mechanisms of immunosuppression that contribute to the long-term prognoses in sepsis. Consequently, immunoadjuvant therapies have recently attracted considerable attention in sepsis management to restore host immunity. This review focuses on the dysregulation of immune cell death patterns induced by sepsis and the subsequent disruptions to immunity. In addition, we outline current potential therapeutic interventions, including interleukin (IL)-7, IL-15, IFN-γ, granulocyte-macrophage colony stimulating factor (GM-CSF), Fms-like tyrosine kinase-3 ligand, inhibition of programmed cell death protein 1(PD-1), programmed cell death ligand 1 (PD-L1), and other cell death checkpoints, as well as future directions for sepsis management.





Mechanism of immune cell deaths in sepsis

The prime mechanism of immune cell death in sepsis is a type I programmed cell death, apoptosis. To date, three pathways of apoptosis have been reported: the extrinsic (death receptor) pathway, the intrinsic (mitochondrial) pathway, and the perforin/granzyme pathway. The three pathways intersect into the common execution pathway initiated by activating the effector enzyme cysteinyl aspartate- specific protease (caspase)-3 (15). Tumor necrosis factor (TNF)-α, high mobility group box-1 protein (HMGB1), Fas ligand (FasL), heat shock, oxygen-free radicals, nitric oxide (NO), glucocorticoids, granzymes, and TNF-alpha-induced protein eight like-2 (TIPE2) are the triggers of apoptosis, on the contrary interleukin (IL)-1, IL-6, and granulocyte colony-stimulating factor (G-CSF) are the inhibitor of apoptosis (16). The extrinsic pathway of apoptosis involves interaction between TNF family-derived extracellular death ligands, e.g., FasL, TNF-α, and the corresponding death receptors that include Fatty acid synthetase receptor, FasR, TNFR1. The ligand-receptor binding induces the recruitment of cytoplasmic adaptor protein FADD for FasL/FasR and TRADD with the recruitment of FADD and RIP in the case of TNF-α/TNFR1. Currently, caspase-8 gets activated by forming a death-inducing signaling complex (DISC) through the association of FADD and procaspase-8 (17). Caspase-8 activation leads to the downstream execution phase of apoptosis. The intrinsic pathway involves a wide range of non-receptor-mediated stimuli, and the intracellular signal generated changes the inner mitochondrial membrane. This pathway is governed by anti-apoptotic versus pro-apoptotic Bcl-2 family members. Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, BAG, Mcl-1, and Bfl-1/A1 are anti-apoptotic proteins, and Bcl-10, Bak, Bax, Bim, Bik, Blk, Bmf, Bad, and Bid are pro-apoptotic protein. These proteins determine whether the cell will undergo cell death or skip the death process. The intrinsic and extrinsic pathways are associated, and the molecules involved in each pathway can impact each other.

NETosis is a novel cell death program distinct from apoptosis and necrosis (14). In NETosis stimulated neutrophil release, NETs, a web-like architecture composed of a DNA backbone decorated with anti-microbial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), and cathepsin G (18, 19). Although NETosis is a physiological process and essential part of the innate immune system to eliminate invading microbes, but the uncontrolled NETosis has a pathological role in numerous ways, attributed to sepsis, autoimmune, infectious, and non-infectious diseases that have attracted recent attention. NETosis occurs via two pathways: suicidal NETosis and vital NETosis. Suicidal NETosis is a lytic and slow cell death process, usually taking 2–4 h, whereas vital NETosis is a cell-death-independent non-lytic process that happens faster, within 5–60 min (20). To date, two different mechanisms, NADPH Oxidase 2 (Nox 2)-dependent and Nox 2-independent of NETosis, have been validated. Nox-dependent NETosis is triggered by inducers like PMA, LPS, and bacteria such as Pseudomonas aeruginosa, while agonists like calcium ionophores (A231128, ionomycin), uric acid crystals, certain microbes, and UV light trigger Nox-independent NETosis through the formation of different ROS, Nox-ROS and mitochondrial ROS, respectively (21). Different sets of kinases (MAPK, ERK, p38, and JNK) specific to both NETosis get activated, leading to transcriptional firing and activation of downstream pathways. In both types of NETosis ultimately nuclear membrane disintegrates, and NETs are expelled.

Pyroptosis is a caspase-1 (canonical pathway) or caspase-4/5/11(non-canonical pathway)-dependent proinflammatory programmed cell death process (22). The control form of this cell death is a part of innate immunity to actuate phagocytic immune cells and thus control pathogen infection. On the other hand, exaggerated pyroptosis results in a dysregulated host immune response and augments inflammatory injury, leading to organ dysfunction or septic shock. In the canonical pathway, intracellular pattern recognition receptors (PRRs) such as NLRP1B, NLRP3, NLRC4, recognize the stimulus signals of pathogens and activate caspase-1 protein through the association of pro-caspase-1, and adaptor protein ASC. In the non-canonical pathway, bacterial LPS directly bind and activate caspase-11/4/5 (23). At this point, gasdermin D gets activated, and pyroptosis occurs by rapid cell membrane disruption and release of proinflammatory mediators.

Autophagy, a type II programmed cell death, is an essential cellular process and a damaged protein or organelle degradation system necessary for cellular homeostasis. These regulated innate immune defense mechanisms act as cellular defense against oxidative stress and the elimination of pathogenic microorganisms and play a role in antigen presentation (24). Autophagy begins with the formation of a double-membrane vesicle called autophagosomes. Many signaling complexes and pathways participate in the initiation and maturation of the autophagy process.

Ferroptosis is a unique form of iron-dependent programmed cell death distinct from apoptosis, necrosis, and autophagy (25). In this process, lipid peroxides are generated from intracellular ROS and hydrogen peroxide (H2O2) by the action of iron and oxidize lipid membranes with polyunsaturated fatty acids (PUFAs) (26). At this stage, membrane damage begins followed by cell death. Innate and adaptive immune cells such as macrophages, T, and B cells undergo ferroptosis, reducing numbers and function. This cell death favors bacterial multiplication and dampens the body’s immune function, leading to sepsis (27).

Necroptosis, a novel form of programmed cell death, plays a significant role in the pathophysiology of sepsis. This death process is initiated by activating death receptors like TNF receptor 1 (TNFR1) (28). Then, the receptor-interacting protein kinase 1 (RIPK1) gets activated, which subsequently phosphorylates and activates RIPK3. The RIPK1-RIPK3-mixed kinase domain-like protein (MLKL) complex facilitates cell death by forming membrane pores. Staphylococcus aureus is responsible for nosocomial infection and sepsis (29). Staphylococcus aureus can also induce necroptosis of macrophages (30) and neutrophils (31) in host cells.





Role of immune checkpoint in sepsis

Immune checkpoints are specific membrane molecules and the key controllers of the immune system that balance immune homeostasis and limit excessive immune response. Immune checkpoints play a significant role in the pathophysiology of sepsis (32). Leukocytes (neutrophils, monocytes, natural killer cells, and dendritic cells) and lymphocytes (T and B cells) express checkpoint molecule PD-1 on their surface. PD-1 can interact with complementary ligand PD-L1 on the surface of antigen-presenting cells (APCs) such as monocytes, macrophages, and dendritic cells. Cell surface inhibitory immune checkpoint molecules include PD-1, PD-L1, PD-L2, cytotoxic T lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator (BTLA), lymphocyte activation-gene-3 (LAG-3) and T cell membrane protein-3 (TIM-3) and 2B4 (33). This review will focus on the PD-1/PD-L1 axis. During sepsis, both innate and adaptive immune cells become immunocompromised. PD-1/PD-L1 axis is involved in immune cell dysfunction and sepsis-induced immunosuppression (34). A few studies confirmed that increased PD-L1 expression on neutrophils and monocytes is linked to both pro- and anti-inflammatory cytokine levels, decreased phagocytic capacity, delayed apoptosis of neutrophils, and mortality in septic patients (34, 35). A recent study suggests that overexpression of NK cell PD-L1 is associated with increased sepsis severity (36). Increased levels of PD-1 expression in T cells have been reported to be associated with lymphopenia, T cell death, and increased mortality (37).





Sepsis-induced innate immune cell death

Sepsis markedly affects the lifespan, production, and function of the effector cells within the innate immune system, thereby disrupting homeostasis. The innate immune system, which serves as the body’s front line of defense, consists of neutrophils, monocytes and macrophages, dendritic cells, and other components. Sepsis induces marked losses of these innate immune cells through various cellular death pathways, contributing to immune suppression (Figure 1).
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Figure 1 | Overview of sepsis-attributed immunosuppression: Impairment of innate immune cell death pathways. In sepsis, alteration of cytokines (upregulated IL-1, IL-10) and reduced antigen presentation (downregulated HLA-DR) is marked. Sepsis slows neutrophil apoptosis and augments NETosis, autophagy, and pyroptosis, like cell deaths, resulting in an increase in the number of immature neutrophils, T cell proliferation inhibitory MDSCs, and the depletion of mature neutrophils. Monocytes and macrophages also encounter increased apoptosis, pyroptosis, autophagy, and NETosis-like cell death. Dendritic cells undergo extensive apoptosis, which induces a tolerogenic state. Unlike increased NETosis, DCs have less potential to undergo autophagy in sepsis. The PD-1/PD L-1 axis plays a significant role in the induction of all these cell death pathways. All these different cell death patterns contribute to immunosuppression in sepsis.

Neutrophils, the most abundant circulating leukocytes derived from bone marrow and primary responders to pathogen attack, typically undergo apoptosis within 24 hours of release (38). In sepsis, unlike the delayed apoptosis observed in lymphocytes, mature neutrophils exhibit several dysfunctions: release of immature neutrophils from bone marrow to circulation, reduced oxidative burst capacity, decreased cell migration, diminished complement activation, and impaired bacterial clearance. These factors contribute to the development of immune suppression and persistent inflammation, which may continue even after the disappearance of symptoms (9). This significant impairment of neutrophil functions increases the susceptibility of patients to nosocomial infections (39), ventilator-associated pneumonia (40), and other secondary infections (41). Experiments using a mouse model of sepsis have provided further support for these findings, demonstrating reduced neutrophil functions and increased risk of secondary Pseudomonas aeruginosa infection (42) and organ injury (43). Prolonged neutrophil survival is attributed to an imbalance between anti-apoptotic and pro-apoptotic signals. Notably, the activation of anti-apoptotic factors such as B-cell lymphoma-extra large (Bcl-xL), annexin A1, Bak, and myeloid cell leukemia-1 (MCL-1) is the primary cause of delayed neutrophil apoptosis (14, 44). In addition, certain neutrophil subsets (CD16hi, CD62Llow) exhibit suppressive properties by releasing large amounts of the immunosuppressive cytokine IL-10 (45), which is associated with delayed neutrophil apoptosis (46) and also suppresses T-cell proliferation (47). Furthermore, NF-kB-mediated inhibition of caspase-3 and caspase-9, along with impaired phosphorylation and inhibition of caspase-8 catalytic activity, also affects neutrophil apoptosis (48, 49). Overexpression of PD-L1 on septic neutrophils is strongly associated with delayed neutrophil apoptosis, and has been shown to drive lung injury and increase mortality in experimental sepsis, i.e., a cecal ligation and puncture (CLP) model (43). In sepsis, delayed apoptosis allows mature neutrophils to undergo other types of cell death, such as NETosis and autophagy (50, 51). Like NETosis, pyroptosis mediated by caspase-1/11, GSDMD is an essential physiological host defense mechanism. However, excessive neutrophil pyroptosis also contributes to sepsis (52). Overproduction of IL-1β and IL-18 through the classical caspase-1-dependent pathway increases the magnitude of the inflammatory response, suppresses immunity (53), and reduces survival rate (54). Consequently, marked depletion of neutrophils through various cell death pathways accelerates immunosuppression in sepsis.

Monocyte and macrophage apoptosis occurs during the progression of sepsis, potentially leading to immunosuppression and increasing host vulnerability to secondary infections or mortality. Apoptosis in monocytes may reprogram the immune system towards an anti-inflammatory, immunosuppressive response. These monocytes exhibit a reduced capacity to release pro-inflammatory cytokines, such as tumor necrosis factor (TNF), IL-1α, IL-6 and IL-12 against lipopolysaccharide (LPS) and other bacterial inducers, a phenomenon resembling ‘endotoxin tolerance’ that results in poor outcomes (55, 56). Interestingly, the same monocytes are capable of secreting significant levels of anti-inflammatory mediators, such as IL-1 receptor antagonist and IL-10, which correlate with increased rates of nosocomial infection and higher mortality (9). Also, impaired monocytes are linked to decreased antigen-specific lymphocyte proliferation (57). This endotoxin tolerance, along with increased susceptibility to nosocomial infections and elevated mortality, is associated with reduced HLA-DR expression on monocytes and macrophages, referred to as ‘anergy’ (58, 59). Moreover, reports have shown that expression of PD-L1 is increased on the monocytes of septic patients (60) and that this can be used as an independent predictor of mortality (61). In addition, studies have revealed a correlation between reduced monocyte activities and the levels of PD-1 on T lymphocytes (34). Macrophage pyroptosis also contributes to the pathology of septic disseminated intravascular coagulation (DIC) (62), with caspase-11-dependent pyroptosis playing a pivotal role in exacerbating damage and reducing survival (63, 64). Caspase-1-induced monocyte pyroptosis has also been noted in patients with post-traumatic sepsis (65). NETotic-like cell death and macrophage extracellular traps (METs) have also been observed in macrophages (66). Additionally, autophagy influences sepsis progression by affecting senescence, phagocytic capacity, and the activation of inflammatory cytokine release by macrophages (67). Thus, these excessive self-sacrificial processes may facilitate immunosuppression in sepsis.

Dendritic cells (DCs) are dynamic antigen-presenting cells (APCs) that link innate and adaptive immunity and contribute to pathogen recognition, immune response regulation, and inflammation (68, 69). Both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are highly susceptible to sepsis-induced apoptosis, resulting in significant depletion of DCs in patients with sepsis (70, 71). A study in mouse and other animal models of sepsis has investigated caspase-3-mediated apoptosis of DCs (16). In addition, recent reports have also confirmed the involvement of PD-1 in activating DC apoptosis (72, 73). This intense apoptosis and depletion of DCs not only increases susceptibility to nosocomial infections (74), but also diminishes their functional capabilities (75), resulting in reduced expression of CD40, CD 86, and HLA-DR, and increased section of IL-10 (76, 77). These alterations reflect the tolerogenic state of surviving DCs, which lose their ability to activate effector T cell responses, instead inducing either T cell anergy or Treg cell proliferation (12). Consequently, these immunosuppressive DCs fail to mount an immune response against subsequent bacterial challenges (78). In addition to apoptosis, pDCs can release NET-like extracellular traps (pETs) in response to bacterial infection (79). Furthermore, the loss of autophagy potential in DCs heightens the risk of sepsis (80).

Natural Killer Cells (NK cells) are innate lymphocytes that play a crucial role in coordinating innate and adaptive immune responses in sepsis and defense against pathogen attack (81). NK cells produce IFN-γ during microbial sepsis, and IFN- γ can activate macrophages (71). In sepsis, NK cells undergo extensive apoptosis, significantly decreasing their number in circulation (13). Thus, the low titer of IFN- γ increases the risk of secondary infection. Due to impaired cytokine secretion, the surviving and remaining NK cells cannot correctly induce an immune response against endotoxin. NK cells also lose cytotoxic function, which results in immune suppression (82).





Sepsis-induced adaptive immune cell death

The adaptive immune system consists of highly specialized lymphocytes, including T and B lymphocytes. These subpopulations of adaptive immune cells are also susceptible to sepsis-induced cell death. Persistent lymphopenia, a hallmark characteristic in patients with sepsis, is associated with an increased risk of nosocomial infection and a higher risk of mortality (Figure 2).
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Figure 2 | Sepsis-induced immunosuppression: impairment of adaptive immune cell death pathways. Upregulated IL-10 and downregulated CD8 and HLA-DR is notable in sepsis. B-cells undergo apoptosis in sepsis, resulting in a reduction of overall B-cell populations and impairment of the antigen-presenting role of B-cells. Sepsis causes excessive T-cell apoptosis, causing lymphopenia and ultimate immunosuppression. On the contrary, reduced T-cell autophagy in sepsis also contributes to immunosuppression. PD-1 and PD-L-1 play a vital role in this immunosuppression.

B cells are critical components of both innate and adaptive immunity, with multifunctional roles and diverse phenotypes. Different subpopulations of B cells have specific roles in immunity. For instance, B cells that are activated by pattern recognition receptors (PRRs), referred to as innate response activator (IRA) B cells, augment the antimicrobial response to clear bacteria and induce emergency myelopoiesis by producing GM-CSF and IL-3, respectively (83, 84). Sepsis induces apoptosis in B cells and reduces the diversity of B cell subtypes (85, 86). A growing body of evidence has revealed impaired B cell functions, including diminished antigen presentation to T lymphocytes (87), imperfect interactions with bacterial products (88), and increased secretion of IL-10 (89), which collectively suppress immune responses. Antibody-producing memory B cells, extracellular signal-regulated kinase (ERK)-activation-associated B cells, and CD5+ B1 cells are more susceptible to apoptosis compared to other B cell types (85, 86). Sepsis also reduces the number of naïve B cells, triggers B cell exhaustion (90), and impairs the production of IgM (91). While there is no strong evidence directly linking B cell pyroptosis to sepsis, studies using a caspase-1 knockout, IL-1 knockout, and IL-1/IL-18 double knockout mouse models suggest that caspase-1-dependent pyroptosis delays B lymphocyte apoptosis, potentially improving macrophage phenotype and survival rates (92). Further extensive investigation is required to elucidate the relationship between lymphocyte pyroptosis and sepsis.

T cells are the primary actors of the adaptive immune system. Sepsis triggers significant apoptosis of different T cell subsets (93). Specifically, marked apoptosis and reductions in CD4+ and CD8+ T lymphocytes occur in the early phase of sepsis (82, 94). This extensive cell death leads to lymphopenia, which is associated with immunosuppression following the acute resuscitation phase of sepsis. In patients with sepsis, apoptosis of T cells occurs via both intrinsic and extrinsic pathways (95). The interaction of PD-1 with PD-L1 plays a critical pathological role in the immunosuppression observed in sepsis (96). Patients exhibit elevated PD-1 and PD-L1 expression on CD4+ T cells, decreased lymphocyte proliferation, and increased IL-10 secretion (97). In addition, stimulatory molecules such as CD28 and HLA-DR are significantly downregulated in sepsis, reflecting the host’s impaired ability to combat pathogens. Research has shown that the interaction of PD-L1 on APC with PD-1 on T cells disrupts the positive costimulatory signaling of CD28, inhibits T cell proliferation, increases immune effector cell death, reduces cytokine secretion (such as IL-2 and IFN-γ), and ultimately impairs antigen clearance (98). Moreover, a deficiency in T cell autophagy in sepsis contributes to sepsis-induced immunosuppression and increased mortality (99). Another mechanism of immune impairment in the subacute phase of sepsis is T cell anergy (Figure 1), which is characterized by the inability of lymphocytes to recognize the cognate antigen, activate, proliferate, and produce cytokines (100). Guinault et al. demonstrated that an expression pattern of the three CD8+ T cell exhaustion markers (2B4, PD-1, and CD160) was strongly associated with the mortality of patients with sepsis (101). To date, there are no reports of lymphocytes releasing NET-like structures.





Collaboration and interplay among cell death pathways in sepsis

Among the various forms of cell death, apoptosis of immune cells is a central pathophysiological event responsible for sepsis-induced immunosuppression. On one hand, an increased propensity for apoptosis among B cells, T cells, macrophages, and dendritic cells leads to a tolerogenic nature of these cells and a significant reduction in their presence in circulation. On the other hand, delayed apoptosis in neutrophils facilitates alternative forms of cell death, such as autophagy, pyroptosis, and NETosis. Experimental murine models have revealed that sepsis also compromises T cell viability and function by suppressing autophagy and accelerating apoptosis (102). A growing evidence is uncovering the cross-talk among these different cell-death pathways. Notably, there is interaction between apoptosis and autophagy; the cleavage of autophagy-related protein 5 (Atg5) by the protease calpain induces mitochondria-mediated apoptosis through its binding to the anti-apoptotic protein Bcl-xL (103). In septic CD4-Cre/Atg5f/f mice, an increase in the apoptosis of CD+ T cells has been observed, accompanied by upregulation of the pro-apoptotic gene PDCD1 and downregulation of the anti-apoptotic gene BCL2 (102). Further research has demonstrated that decreased ATG5 expression levels are correlated with the severity of sepsis progression and mortality (104), suggesting that the inhibition of autophagy promotes immune cell apoptosis and immunosuppression. Other recent studies highlighted the close association between neutrophil autophagy pathways and increased NET formation in patients with septic-DIC (23, 105). Increased neutrophil autophagy has been noted in survivors of sepsis, and autophagy in healthy neutrophils may stimulate NETs (50). Additionally, autophagy and pyroptosis are inter-connected (106), as are pyroptosis and NETosis, with each having mutual effects. In patients and a mouse model with sepsis, the use of specific inhibitors against primary actors (PAD)2 has been shown to reduce NETosis and macrophage caspase 11-dependent pyroptosis. This inhibition of caspase 11 results in decreased release of inflammatory mediators, increased macrophage counts, enhanced bacterial clearance, and improved survival (107). Targeting GSDMD and PADs could therefore be promising in sepsis therapy, as it couples pyroptosis and NETosis. The ablation of caspase-1/11 in septic mice enhances neutrophil phagocytosis and the levels of inflammatory cytokines, which reflects improved immunity (53).





Why immunotherapy?

Recent extensive research has broadened our understanding of sepsis pathophysiology, evolving from the traditional view of early inflammation-driven pathology to encompassing concurrent immunosuppression. The discussions above confirm that immunosuppression in sepsis results from the extensive loss of both innate and adaptive immune cells through apoptosis, autophagy, NETosis, pyroptosis, ferroptosis, and necroptosis. Consequently, targeting a single cell death pathway and enhancing host immunity with immunomodulatory agents represents a promising therapeutic strategy to restore impaired host defenses. The following section of this review focuses on immunomodulatory agents aimed at enhancing immune cell function by modulating cell death pathways.





Current status of clinical therapies

Interleukin-7, primarily derived from stromal cells, is an indispensable hematopoietic cytokine crucial for T cell survival, proliferation, differentiation, and effector functions. It is also an attractive immunoadjuvant therapeutic molecule targeting adaptive immune irregularities in sepsis. Clinical trials have demonstrated that IL-7 is safe and well-tolerated, without inducing toxicities such as cytokine storms or exacerbating inflammation or organ dysfunction. Moreover, IL-7 can inhibit the massive apoptosis of immune-effector cells induced by sepsis and restore the production of IFN-γ, which is essential for the host’s response to invading pathogens (108). A recent clinical trial demonstrated that IL-7 therapy successfully restored depleted CD4+ and CD8+ effector cells by threefold to fourfold in patients with sepsis (109). This pluripotent cytokine can mitigate lymphocyte apoptosis by enhancing the expression of anti-apoptotic proteins such as Bcl-2, CD-28, boosting IFN-γ levels, and increasing TCR diversity, which are typically diminished in patients with sepsis (110, 111). Consequently, recombinant IL-7 therapy not only increases the numbers of CD4+ and CD8+ T cells, but it also reduces Treg cells in circulation, decreasing morbidity and mortality. Interestingly, when IL-7 is administered alongside antiretroviral therapy in patients with HIV exhibiting lymphopenia and immune suppression, it results in reduced PD-1 expression (112). We conclude that IL-7 immunostimulatory therapy, whether used individually or in combination, may represent a promising and potentially protective treatment option for sepsis-induced immunosuppression.

Interleukin-15 promotes the proliferation of memory CD8+ T cells, stimulates dendritic cells, and enhances B cell immunoglobulin production. In a mouse model of sepsis, IL-15 has been shown to attenuate sepsis-induced apoptosis of natural killer (NK) cells, dendritic cells, and CD8+ T cells by increasing the expression of the anti-apoptotic protein Bcl-2, and decreasing the expression of pro-apoptotic proteins Bim and PUMA (113). Additionally, IL-15 enhances IFN-γ production and improves survival in the cecal ligation and puncture (CLP) sepsis model. In cancer trials, the combination of IL-15 and anti-PD-1 therapy has demonstrated reduced IL-10 production and PD-1 expression on CD8+ T cell, augmenting anti-tumor activity (114). Given that IL-15 has shown toxicity in a previous animal study (115), it is important to determine the optimal dosage when employing it as an immunotherapeutic agent in sepsis. Further clinical trials are necessary to evaluate the synergistic potential of IL-15 with other immunotherapeutic agents.

IFN-γ is a key cytokine that is essential for the activation of innate immunity, which is necessary for the clearance of microbial pathogens. However, IFN-γ production is markedly decreased in sepsis. Recombinant IFN-γ therapy in protracted Staphylococcus aureus sepsis has been shown to increase monocyte HLA-DR expression and function, as well as enhance bacterial clearance, without any adverse effects (116). Similarly, INF-γ treatment in patients with invasive fungal infections has also been demonstrated to restore HLA-DR expression on leukocytes (117). Although IFN-γ therapy offers potential benefits in patients with sepsis exhibiting immunosuppression by reviving monocyte functions associated with reduced HLA-DR expression, there are no records of it ameliorating T cell defects. Interestingly, the combined application of IFN-γ therapy with the anti-PD-1 antibody, nivolumab, in fungal sepsis has shown promising in restoring immune function and eliminating infection (118). Immunoadjuvant adjunctive IFN-γ therapy, along with IL-7 and anti-PD1/PD-L1, could be beneficial for patients with sepsis, as it has proven impacts on enhancing CD4+ and CD8+ T cell functions.

Fms-like tyrosine kinase-3 ligand (Flt3L), a stem cell growth factor, acts on the class III tyrosine kinase receptor (Flt3R), which is typically expressed on hematopoietic progenitor cells and dendritic cell populations. Enhanced dendritic cell apoptosis and the subsequent impairment of T cell function are common in sepsis pathophysiology. Flt3L treatment has demonstrated effectiveness in promoting the growth and expansion of dendritic cells in both human (119) and mouse models (120). In addition, Flt3L therapy in models of burn injury and sepsis not only increases dendritic cell populations but also enhances neutrophil antimicrobial functions and improves survival (121). A recent study using a mouse model of burn injury and sepsis has shown that Flt3L treatment mitigates T cell depletion, restores CD28 expression on CD4+ and CD8+ T cells, and increases IFN-γ production by CD8+ T cells, thereby reducing organ injury markers and enhancing survival (122). Flt3L also suppresses PD-L1 expression on APCs, such as dendritic cells, macrophages and monocytes. A research group has revealed that Flt3 can mitigate oxidative stress and protect cardiomyocytes from apoptotic death through the regulation of Bcl-2 family proteins (123). Thus, Flt3 is hypothesized to reduce T cell apoptosis in sepsis. Further investigation is warranted to explore the synergistic potential of Flt3 therapy with other established therapeutics, such as IL-7, in the management of sepsis.

Granulocyte macrophage colony stimulating factor (GM-CSF), a hematopoietic growth factor, enhances the production of neutrophils and monocytes, enhances monocyte survival, and restores TNF production, thereby helping to prevent nosocomial infections and mitigate immunosuppression (124). GM-CSF therapy increases the expression of HLA-DR on monocytes, facilitates bacterial clearance, and contributes to more ventilation-free days and reduced stays in the intensive care unit (125). However, a meta-analysis by Bo et al. found no evidence supporting the routine use of G-CSF or GM-CSF in patients with sepsis (126).

PD-1 receptor system acts as a negative regulator of the immune response. In sepsis, there is an overexpression of inhibitory receptors PD-1 on B and T lymphocytes and PD-L1 and PD-L2 on epithelial cells, endothelial cells, and APCs. This overexpression leads to decreased cytokine secretion, increased apoptotic cell death, immunosuppression, and, eventually, deleterious outcomes. A high serum soluble form of PD-L1 (sPD-Ll) has also been detected in patients with sepsis, and is correlated with disease severity and poor clinical outcomes (127). The PD-1/PD-L1 axis, targeted by immune check point inhibitor antibodies, is gaining attention as an immunotherapeutic approach in sepsis due to its successful application in the treatment of infectious diseases and regression of advanced-stage cancers (128, 129). In addition, anti-PD-1/PD-L1 therapy has also been shown to increase the expression of CD28 on proliferating peripheral CD8+ T cells following treatment. Mice models and ex vivo clinical studies of patients with sepsis have shown that blockade of PD or PD-L1 plays a significant role in reversing immune defects caused by sepsis (130). Furthermore, anti-PD-L1 treatment has been shown to promote apoptosis in septic neutrophils in mice models (131). The immunosuppressive properties of septic neutrophils, monocytes, and macrophages can also be reversed by blocking either PD-1 or PD-L1 (34, 132). Additionally, treatment with anti-PD1 antibodies enhances DC survival in sepsis (72). An anti-PD-1 antibody nivolumab, i.e., immune checkpoint inhibitor has been evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics at the phase 1b (133) and the phase 1/2 study (134). Taken together, these findings suggest that targeting the PD-1/PD-L1 axis with immunoadjuvant therapy represents a promising approach to reverse sepsis-induced immunosuppression.

Autophagy has recently gained attention in the field of critical care due to its role in regulating cell apoptosis. Enhancing T cell autophagy may alleviate sepsis-induced immunosuppression by modulating apoptosis (102). Additionally, inhibiting NETosis represents another potential strategy for sepsis management. A recent study in rodent models of sepsis has shown that NET inhibition using Cl-amidine, a PAD4 inhibitor, is effective (135). Another study has demonstrated the inhibition of PAD4 and NETosis in both mice and humans using YW3-56 as an inhibitor (136). Moreover, disulfiram, an FDA-approved drug, targets GSDMD activation, blocking pyroptosis and NETosis, thereby improving survival in mice (137). Table 1 summarizes some preclinical treatments against immunosuppression in sepsis.



Table 1 | Preclinical treatments for immunosuppression during sepsis.
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Adverse reactions of immunotherapy

The main concern of immune therapy in sepsis is the risk of hyper-inflammatory response that can increase the severity of the disease, even death. An animal study reported that IL-15 immunotherapy has a toxic effect, causing liver injury and cachexia (115, 139). However, clinical trials of IL-7 and IFN-γ therapy showed no adverse reactions like cytokine storms or exacerbating inflammation and were well tolerated (108, 116). Although PD-1/PD-L1 is a promising therapy, PD-1 deficiency is also related to the occurrence of autoimmune diseases such as lupus-like syndromes, de novo type 1 diabetes, and dilated cardiomyopathy (140, 141). That is why the timing and duration of PD-1/PD-L1 blocking should be done with proper attention. In conclusion, patients’ immune status, optimal dosage, timing, and personalized approach should be considered before starting the clinical application of immunotherapy to avoid adverse reactions.





Conclusions and future directions

Immune cells employ mechanisms such as autophagy in B cells and T cells, as well as NETosis and pyroptosis in neutrophils and macrophages, initially to protect the host. However, when overactivated, these protective effects can become detrimental. Dysregulated immune cell death, including apoptosis, autophagy, NETosis, and pyroptosis, along with impaired immune status, contributes significantly to the pathophysiology of sepsis. To effectively address sepsis, it is imperative to explore other types of cell death and their underlying mechanisms. In addition, elucidating the cross-talk among apoptosis, autophagy, pyroptosis, and NETosis is necessary. These cell death processes augment inflammation, deplete immune cells, and lead to immunosuppression. Targeting, closely monitoring, and regulating these cell death mechanisms could offer a promising approach to treating patients with sepsis, ultimately improving survival. In this review, we have highlighted numerous immunoadjuvant therapeutic agents that possess significant potential to enhance suppressed immunity in sepsis. While immunotherapy represents a promising strategy against sepsis, the broad variations in immune status among patients must be carefully considered for clinical applications. Biomarker-guided stratification and a personalized approach for each patient are imperative. Furthermore, combination therapies may offer a higher success rate in countering immunosuppressive sepsis in the future.
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Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
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1 Introduction

Acute pancreatitis (AP) is a common condition in the digestive system, characterized by the abnormal activation of pancreatic enzymes that can lead to inflammation in the pancreas and surrounding organs (1). The annual incidence rate of AP varies from 4.9 to 73.4 per 100,000 individuals, depending on factors such as regional differences, variations in diagnostic criteria, and population demographics, with a rising trend (2, 3). For instance, higher incidence rates are often reported in Western countries due to lifestyle factors such as alcohol consumption and gallstone prevalence, whereas lower rates are observed in regions with different dietary and health risk profiles (4). Additionally, improvements in diagnostic techniques and greater awareness of the disease in recent decades have contributed to the rising trend in AP incidence globally (3, 5). While most patients experience mild symptoms, 20% to 30% may progress to severe acute pancreatitis (SAP), which often involves organ dysfunction. In SAP cases, the mortality rate can be as high as 20% to 40%, posing a significant threat to individuals’ lives and well-being (6). Pancreatic damage typically originates in acinar cells, the primary cell type of the exocrine pancreas, which leads to inflammation as a secondary process. AP is commonly associated with elevated levels of digestive enzymes in the blood, such as amylase and lipase, though these are not strict requirements for diagnosis. Premature activation of digestive enzymes (such as the conversion of trypsinogen to trypsin), formation of large vacuoles within acinar cells, and activation of inflammatory mediators are also key features of the disease. While hyperamylasemia is frequently observed, lipase elevation is considered more specific for diagnosing AP (7, 8). This includes the key transcription factor nuclear factor kappa B (NF-κB), which triggers the infiltration of inflammatory cells in the pancreas and systemic inflammatory response, leading to acinar cell death through apoptosis and necrosis (9). A significant body of research has explored the signaling pathways involved in these pathological processes, elucidating the structure of many molecules that mediate inflammatory responses (e.g., NF-κB, cytokines/chemokines, adhesion molecules, and novel protein kinase C subtypes) and cell death responses (e.g., cysteine enzymes) (10–12). However, other areas of AP research, such as the impact of damage to intracellular organelles like mitochondria, remain incompletely understood, warranting further investigation.

Recent studies have highlighted the importance of intracellular organelles, particularly mitochondria, in the progression of AP. Mitochondrial dysfunction, characterized by impaired ATP synthesis and increased production of reactive oxygen species (ROS), has been implicated in exacerbating pancreatic inflammation and cell death.

Activation of pattern recognition receptors (PRRs) in both immune and non-immune cells often trigger inflammation. These receptors can be activated not only by viruses and bacteria, known as microbe-associated molecular patterns or pathogen-associated molecular patterns, but also by endogenous molecules known as damage-associated molecular patterns (DAMPs) (13). Under normal conditions, DAMPs such as nucleic acids, ATP, and calreticulin are unable to stimulate PRRs due to limited access to subcellular regions where PRRs are located. During inflammation, however, changes in membrane permeability allow these molecules to activate PRRs and drive the inflammatory process (14). Various mitochondrial elements and metabolites can act as DAMPs, potentially triggering inflammatory responses upon their release into the cytosol or the external environment. Research has demonstrated that during AP, changes in membrane permeability of acinar cells and organelles result in mitochondrial DNA (mtDNA) being released and the NLRP3 inflammasome becoming activated, thereby driving inflammation (15).

Research on the pathophysiological mechanisms of AP has advanced, but the precise mechanism of cell damage during inflammation remains unclear, hindering effective clinical treatments. Mitochondria, as the primary energy producers in cells, play a crucial role in cellular homeostasis and survival. Dysfunctional mitochondria contribute to the pathogenesis of AP by disrupting ATP synthesis, increasing ROS production, and altering calcium homeostasis. Studies indicate that intracellular calcium overload in AP leads to mitochondrial dysfunction, disrupting ATP synthesis and causing acinar cell damage and necrosis, exacerbating inflammation (16–18). The severity of AP correlates with necrosis extent, with mitochondria influencing autophagy and apoptosis regulation. This review explores mitochondria’s physiological role in pancreatic function, emphasizing their dysfunction’s role in AP through mechanisms such as calcium overload, ATP depletion, oxidative stress, and membrane permeability changes. Additionally, it also discusses mitochondria-related signaling pathways in AP and proposes potential therapeutic strategies targeting mitochondrial dysfunction for improved AP diagnosis and treatment.




2 Mitochondria: structure, origin, and the role in cellular function and pathophysiology

Mitochondria are crucial organelles in eukaryotic cells, often recognized as the cell’s powerhouse due to their critical role in energy production. Structurally, they can be categorized into four distinct regions: the outer mitochondrial membrane (OMM), the mitochondrial intermembrane space, the inner mitochondrial membrane (IMM), and the mitochondrial matrix, each contributing to the organelle’s unique and complex functionality (19). These structures are integral to the mitochondria’s ability to support cellular functions, particularly in energy production through oxidative phosphorylation. Mitochondria are the primary sites for oxidative phosphorylation and ATP production within cells, providing energy for cellular activities (20). The tricarboxylic acid (TCA) cycle breaks down the carbon substrate of acetyl-CoA, derived from pyruvate, amino acids, and fatty acids, generating carbon dioxide and reducing NAD+ to NADH and FAD2+ to FADH2 (21) (see Figure 1). These molecules then serve as substrates for the respiratory chain, driving ATP production through oxidative phosphorylation. The activity of the rate-limiting enzyme in the TCA cycle is dependent on Ca2+, which aids mitochondria in adjusting to heightened cellular ATP demand.
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Figure 1 | Diagram of mitochondrial structure pattern of pancreatic acinar cells. Mitochondria can be categorized into four distinct regions: the OMM, the mitochondrial intermembrane space, the IMM, and the mitochondrial matrix. Mitochondria serve as the primary sites for oxidative phosphorylation and ATP production within cells, fueling cellular activities. I, complex I, NADH: ubiquinone oxidoreductase; II, complex II, succinate: ubiquinone oxidoreductase; III, complex III, ubiquinol: cytochrome c oxidoreductase; IV, cytochrome c oxidase; ATP, adenosine triphosphate; IMM, inner mitochondrial membrane; OMM, outer mitochondrial membrane.

Under normal conditions, Ca2+ accumulation in mitochondria remains stable. Ca2+ is released from the ER, triggering zymogen exocrine secretion and promoting ATP production in the mitochondria. However, the rise in cytoplasmic calcium ion concentration is brief as ATP-dependent calcium ion channels swiftly clear the cytoplasmic calcium ions. The sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCAs) move calcium ions into the ER, while plasma membrane Ca2+ ATPases (PMCAs) transport calcium ions out of the cell. Prolonged Ca2+ influx can result in intracellular calcium overload, leading to mitochondrial membrane damage, alterations in mitochondrial membrane potential, and decreased ATP production (22, 23). This disruption is particularly detrimental in the context of AP, where calcium overload accelerates mitochondrial injury and contributes to acinar cell death.

Mitochondria are also essential in producing reactive oxygen species (ROS), which are by-products of ATP generation and have various intracellular effects. Mitochondrial ROS (mitoROS), including reactive ions and molecules, such as superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (-OH), are produced by the electron transport chain in mitochondria. The generation of mitoROS primarily occurs in the mitochondrial respiratory chain during the electron transfer process. While these ROS participate in cell signaling and regulation under normal circumstances, excessive production or inadequate clearance can lead to cellular damage. Low ROS levels can promote cell proliferation. Kirova et al. discovered that mitoROS directly regulate cyclin-dependent kinase 2 (CDK2), targeting a specific conserved cysteine and disrupting the regulatory CDK-related phosphatase (KAP), thus influencing the cell cycle (24). However, elevated mitoROS levels have been linked to pathological conditions, such as pancreatitis, where excessive ROS production induces oxidative stress and triggers apoptosis pathways (25).

Moreover, mitochondria regulate intracellular calcium levels, and their strategic localization within the cell helps compartmentalize calcium signals. Disturbances in calcium homeostasis lead to mitochondrial calcium overload, which disrupts the mitochondrial membrane potential, decreases ATP production, and ultimately triggers acinar cell death through apoptosis and necrosis (26). Thus, the delicate balance between mitochondrial calcium regulation and ROS production is essential for cellular survival, and its disruption is a key driver of pancreatic cell injury in AP.

In pancreatic acinar cells, mitochondria are identified into three distinct groups: perigranular mitochondria at the granular and basolateral boundary, peripheral mitochondria in the basolateral zone near the plasma membrane, and perinuclear mitochondria surrounding the cell nucleus (27–29). These groups of mitochondria play specific roles in regulating intracellular Ca2+ homeostasis. Perigranular mitochondria prevent the diffusion of Ca2+ signals into the basal region, confining physiological Ca2+ signals to the apical region. Peripheral mitochondria supply ATP for Ca2+ pump-mediated uptake into the endoplasmic reticulum (ER) and are implicated in store-operated calcium influx. Perinuclear mitochondria act as a protective shield for the nucleus, protecting it from Ca2+ signal intrusion (30, 31). This spatial organization is essential for maintaining physiological Ca2+ dynamics in pancreatic cells, and its disruption is closely tied to mitochondrial dysfunction in AP.

One significant connection is seen in mitochondrial diseases such as Kearns-Sayre syndrome, where mitochondrial dysfunction directly links to recurrent episodes of pancreatitis, highlighting the impact of disrupted mitochondrial metabolism on pancreatic tissue (32). In AP, mitochondrial injury, particularly through calcium signaling dysregulation, leads to necrosis of pancreatic acinar cells. Calcium overload in mitochondria specifically contributes to necrotic injury, underscoring the importance of maintaining mitochondrial health to prevent acinar cell death (33). Central to this pathology is mitochondrial dysfunction, driving energy deficits and cellular necrosis. This is exacerbated in injured pancreatic acinar cells by impaired macroautophagy, hindering the critical process of clearing damaged mitochondria (34). Studies have emphasized that mitochondrial damage occurs early in the progression of AP, not only affecting the pancreas but also impacting organs like the lungs and jejunum, suggesting that mitochondrial dysfunction contributes to the systemic manifestations of the disease (35). In addition to mitochondrial dysfunction, disorders in calcium metabolism are crucial in promoting cell injury and necrosis in AP. The interplay between mitochondrial calcium overload and energy failure sets the stage for acinar cell death and tissue damage. Given the central role of calcium-mediated mitochondrial dysfunction in AP pathogenesis, therapeutic strategies targeting mitochondrial protection and calcium regulation have been proposed to mitigate disease severity (36). Emerging therapeutic approaches focusing on mitochondrial health offer new hope for AP treatment. Recent research suggests that the delivery of hypoxia-treated functional mitochondria to damaged pancreatic acinar cells by mesenchymal stem cells can alleviate metabolic dysfunction and reduce tissue injury (37). Additionally, mitochondria-targeted therapies, such as Kaempferol nanoparticles, have demonstrated potential in improving mitochondrial homeostasis and reducing inflammation in models of SAP (38).

The distribution of mitochondria within pancreatic ductal epithelial (PDE) cells is still not well understood. Electron microscopy studies in guinea pig PDE cells have shown that mitochondria are most densely packed in the cell’s apical portion (39). The functional importance of this localization remains currently unknown, but it could potentially support the energy requirements for ion secretion across the apical membrane of PDE cells.




3 Mitochondrial dysfunction in acute pancreatitis pathogenesis



3.1 Mitochondrial calcium overload

Calcium overload is a significant factor causing acute pancreatitis (AP) in pancreatic acinar cells. Calcium ions (Ca2+) serve as crucial second messengers in cells and act as essential cofactors for multiple digestive enzymes within acinar cells. Proper regulation of Ca2+ levels is vital for sustaining cell functions such as metabolism, proliferation, differentiation, apoptosis, and other cellular processes. The regulation of mitochondrial calcium homeostasis is primarily controlled by the mitochondrial calcium uniporter (MCU), which mediates the uptake of Ca2+ into the mitochondria. During pathological conditions such as AP, MCU becomes hyperactive, leading to excessive Ca2+ accumulation in the mitochondrial matrix, which overwhelms the mitochondria’s buffering capacity. This calcium overload promotes mitochondrial membrane depolarization, impairs ATP synthesis, and triggers cell death through necrotic pathways. A study by M. Chvanov et al. found that knocking out MCU influences mitochondrial Ca2+ dynamics but does not reduce the severity of experimentally induced AP. This suggests that while MCU facilitates mitochondrial Ca2+ uptake, its role in AP pathogenesis may involve compensatory mechanisms or other factors that mitigate its impact (40). Conversely, the mitochondrial Na+/Ca2+ exchanger (NCLX) functions to extrude excess Ca2+ from the mitochondria to prevent calcium overload. Impaired NCLX function has been shown to exacerbate mitochondrial calcium accumulation, further contributing to cellular injury and necrosis in AP (31). This balance between MCU-mediated calcium influx and NCLX-mediated efflux is critical in maintaining mitochondrial integrity and preventing calcium-induced mitochondrial dysfunction (41). Targeting MCU and NCLX to regulate mitochondrial calcium homeostasis presents a promising therapeutic avenue for mitigating mitochondrial dysfunction in AP.

Under physiological conditions, Ca2+ is predominantly stored in the ER, with cytosolic Ca2+ levels approximately 10,000 times lower than those in the extracellular fluid (42). Intracellular calcium levels are generally stable under normal conditions, but studies have shown an increase in intracellular Ca2+ during AP, which correlates with disease severity (43). In normal physiology, Ca2+ acts as a second messenger when released from the ER, triggering the exocrine secretion of zymogen granules (ZG) and promoting ATP production in mitochondria (23, 42). However, the rise in cytoplasmic calcium concentration is transient, as elevated Ca2+ is swiftly removed by two ATP-dependent calcium pumps: the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pumps Ca2+ back to the ER, while the plasma membrane Ca2+ ATPase (PMCA) expels Ca2+ out of the cell, ensuring intracellular calcium balance (44).

Under pathological conditions, factors such as alcohol, bile acids, and cholecystokinin stimulate the release of Ca2+ from the ER, resulting in intracellular calcium overload. This overload is primarily mediated by the inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) located on the ER membrane (see Figure 2) (45), evidenced that bombesin can enhance the gene expression of IP3Rs and RyRs, causing calcium overload, while docosahexaenoic acid can inhibit this process, thereby restoring normal calcium signaling within acinar cells (46). Sustained release of Ca2+ from the ER depletes calcium stores, triggering stromal interaction molecule 1 (STIM1) to detect the decrease in ER luminal Ca2+ levels and activate store-operated calcium entry (SOCE) channels to replenish calcium stores (47). Calcium release-activated calcium channel protein 1 (ORAI1) plays a crucial role in the SOCE channel. STIM1 is responsible for recruiting and activating ORAI1 to initiate the opening of the SOCE channel (47). The activation of this channel exacerbates calcium overload (48). The ORAI1 inhibitor (CM4620) can prevent acinar cell necrosis and reduce local and systemic inflammatory responses in both human pancreatic acinar cells and animal models of AP (49).
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Figure 2 | The roles of Ca2+ and ROS in mitochondrial pathways of apoptosis and necrosis in pancreatitis. (A) In pancreatic acinar cells, intracellular Ca2+ overload resulting from pathological Ca2+ signaling or inadequate clearance by ATP-dependent mechanisms is a major factor contributing to the development of acute pancreatitis. The regulation of Ca2+ signals in pancreatic acinar cells involves various Ca2+ channels, such as Ca2+ release channels like IP3Rs and RyRs on intracellular stores, SOCE on the cell membrane, and SERCA for refilling intracellular stores. (B) Ca2+ stimulate the opening of mitochondrial MPTP, resulting in a decrease in mitochondrial membrane potential, ATP depletion, and cell necrosis. ROS promote the release of cytochrome c through MOMP, leading to caspase activation and apoptosis. Additionally, Ca2+ itself can trigger the release of cytochrome c and induce cell apoptosis. Moreover, decreased ATP production inhibits caspase activation. Therefore, mitochondrial depolarization not only mediates necrosis but also restricts apoptosis in pancreatitis, elucidating the inverse relationship between acinar cell necrosis and apoptosis observed in experimental pancreatitis models. ATP, adenosine triphosphate; MOMP, mitochondrial outer membrane permeabilization; MPTP, mitochondrial permeability transition pore; IP3Rs, inositol 1,4,5-trisphosphate receptors; ORAI1, Orai calcium release-activated calcium modulator 1; PMCA, plasma membrane Ca2+ ATPase; ROS, reactive oxygen species; RyRs, ryanodine receptors; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; SOCE, store-operated Ca2+ entry channels; STIM1, stromal interaction molecule 1; TRPV4, transient receptor potential vanilloid 4.

Excessive intracellular Ca2+ levels trigger the opening of the mitochondrial permeability transition pore (MPTP), resulting in the loss of mitochondrial membrane potential and hindering ATP production (50). Consequently, perigranular mitochondria are unable to regulate the rise in apical Ca2+ concentration, leading to the propagation of local Ca2+ signaling across acinar cells (51). Reduced ATP production impairs the ability of SERCA and PMCA to eliminate cytoplasmic Ca2+, thereby perpetuating the escalation of intracellular Ca2+ levels. Prolonged Ca2+ overload induces alterations in mitochondrial membrane permeability, mitochondrial impairment, and ultimately, acinar cell necrosis through a destructive cycle.

In addition, ERCP, cholelithiasis, and other factors can also contribute to AP by triggering the Piezo1 channel in response to high pressure in the pancreatic duct, leading to an influx of Ca2+ (52). Piezo1, present in various tissues, is selective for Ca2+ and can be activated by mechanical pressure, playing a role in pressure-induced AP (53). Research indicates that the activation of Piezo1 channels results in a transient increase in Ca2+ levels in acinar cells, followed by the activation of the transient receptor potential vanilloid 4 (TRPV4), leading to sustained Ca2+ influx. Knocking out the TRPV4 gene in mice has been shown to prevent both Piezo1 agonist-induced and pressure-induced AP (54).

Given the pivotal role of calcium overload in the pathogenesis of AP, targeting calcium channels represents a promising strategy for early intervention. Understanding the intricate calcium signaling in pancreatic acinar cells can lead to the development of therapeutic approaches aimed at modulating calcium homeostasis to prevent or mitigate AP.




3.2 Mitochondrial ATP depletion

Mitochondria are essential for supplying energy for cellular functions through the synthesis of ATP. Dysfunction in mitochondria can result in ATP depletion, leading to various physiological dysfunctions that rely on ATP, such as ZG secretion, Ca2+ clearance, and autophagy. Continuous calcium influx can cause intracellular calcium overload, damaging the mitochondrial membrane, opening the MPTP, altering the mitochondrial membrane potential, and ultimately reducing ATP production (50). This decrease in ATP levels inhibits ATP-dependent transport mechanisms like SERCA and PMCA, preventing the removal of intracellular Ca2+ and resulting in sustained intracellular calcium overload (see Figure 2). This overload can activate digestive ZG, resulting in the pancreatic autodigestion.

Research has demonstrated that elevated levels of non-conjugated chenodeoxycholate (CDC) can lead to mitochondrial damage and ATP depletion, which in turn can directly hinder the secretion of pancreatic duct fluid and bicarbonate (HCO3−) (39). Studies have shown that supplementing ATP in vitro can prevent damage and dysfunction in acinar cells during AP (55, 56). Furthermore, the MPTP inhibitor cyclosporin A (CsA) and its derivative TRO40303 have been found to decrease acinar cell necrosis and mitochondrial damage, ultimately improving alcoholic AP by inhibiting the opening of MPTP (57). Moreover, early-stage supplementation of high-calorie nutritional support to boost ATP levels may provide a promising approach to mitigating disease progression (58).




3.3 Mitochondrial permeability transition pore dysfunction

The mitochondrial permeability transition (mPT) is a process that increases the permeability of the IMM in a Ca2+-dependent and cyclophilin D (CypD)-promoted manner, allowing molecules of approximately 1.5 kDa to pass through (59, 60). This phenomenon is regulated by the MPTP, a non-selective channel on the IMM that is sensitive to CsA. Activation of MPTP can occur in response to Ca2+ overload, ROS, and other stress signals, leading to cell death through necrosis or apoptosis.

The pore-forming structure of mPT is currently not well understood. Research has indicated that the channel of mPT may involve the voltage-dependent anion channel (VDAC) (61), pro-apoptotic Bcl-2 family members (Bax and Bak) (62–64), phosphate carrier (PiC) (65), and translocator protein (TSPO) (66). While the exact molecular mechanism of MPTP formation remains uncertain, recent studies suggest that mitochondrial F1F0-ATP synthase, ANT, and the matrix CypD play a role in promoting its transition to a pore-forming conformation (67–69).

MPTP exhibits two distinct opening states: transient and sustained. The transient opening of MPTP regulates various processes including mitochondrial Ca2+ efflux (70, 71), ROS signaling (72), cell metabolism (73), and the differentiation of neurons, cardiac muscle, and stem cells (74–76). This physiological process involves the rapid exchange of solutes between the cytoplasm and the mitochondrial matrix, which is crucial for cellular signaling. However, the balance of MPTP opening is delicate and highly regulated. While transient opening of the MPTP supports essential cellular functions, the sustained opening of the MPTP results in mitochondrial swelling and mitochondrial OMM rupture, leading to subsequent apoptosis and necrotic cell death (77). This process is associated with a series of pathologies. Firstly, the increased permeability of the mitochondrial membrane caused by the continuous opening of MPTP results in the disruption of membrane potential and interruption of electron transport, resulting in diminished ATP production. Insufficient ATP affects the energy supply of cells and exacerbates pancreatic cell dysfunction. Secondly, MPTP opening may increase ROS production. When MPTP opens, oxidative substances and free radicals in mitochondria can escape into the cytoplasm, triggering oxidative stress reactions and causing increased cell damage and inflammatory responses. Additionally, increased mitochondrial membrane permeability can activate apoptotic pathways. The release of apoptosis-related proteins such as Cytc from mitochondria into the cytoplasm upon MPTP opening activates the caspase family, ultimately triggering apoptosis (78, 79). Studies have indicated that in pancreatitis, MPTP opening and increased mitochondrial membrane permeability are crucial mechanisms leading to ATP depletion and cellular dysfunction (50). Finally, MPTP opening is linked to the mtDNA release during innate immunity (80). Research has demonstrated that oxidative stress can induce the release of mtDNA through MPTP in rat liver cells (81).

Increased mitochondrial membrane permeability is a significant contributor to the pathogenesis of pancreatitis. This phenomenon results in decreased energy production, elevated ROS levels, and initiation of apoptosis, ultimately exacerbating pancreatic cell injury and triggering inflammatory processes. Consequently, modulating alterations in mitochondrial membrane permeability could offer a promising therapeutic approach for managing pancreatitis.




3.4 Oxidative stress

Oxygen free radicals are significant contributors to the pathogenesis of various inflammatory diseases and are crucial in the oxidative stress (OS) mechanism of AP (82). OS occurs when the production of ROS outweighs the capacity of antioxidant defenses, leading to cell damage either directly or by modulating signaling pathways (83). Research has demonstrated that oxygen free radicals are essential in driving the development of AP in an in vivo model of experimental AP (56).

The generation of mitoROS primarily occurs during the electron transfer process of the mitochondrial respiratory chain (84). MitoROS production involves several key steps: (1) Complexes I, II, and III of the respiratory chain: Complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) on the IMM convert H+ to coenzyme Q, releasing electrons in the process. These electrons are then transferred to Cytc through complex III. (2) Cytc redox: Cytc passes on the electrons to complex IV of the respiratory chain. (3) Complex IV: Complex IV accepts the electrons and combines them with oxygen to produce water. However, some electrons may escape the respiratory chain during this process and react with molecular oxygen to generate O2- (85, 86). While O2- itself is relatively inactive, it can lead to the formation of more harmful ROS, such as hydrogen peroxide (H2O2) and hydroxyl radicals (-OH), through subsequent reactions.

In AP, the pancreas releases inflammatory mediators that place mitochondria under sustained high load, leading to damage to the mitochondrial respiratory chain. This dysfunction, along with the excessive accumulation of ROS, is key in the progression of the disease. The impaired mitochondria hinder the activities of MAPK and AKT, resulting in insufficient ATP production to sustain cellular functions and exacerbating ROS accumulation.

ROS is essential in regulating the inflammatory response in AP. This inflammatory response is a key pathological process in pancreatitis, and the overproduction of mitoROS can activate various inflammatory signaling pathways, including NF-κB and NLRP3 inflammasome. Activation of these pathways leads to increased inflammatory cytokines release, including TNFα and IL-1β, thereby perpetuating and exacerbating the inflammatory response (87). Furthermore, mitoROS are implicated in pancreatic cell damage and necrosis in AP. Mitochondrial dysfunction induced by pancreatitis leads to heightened production of mitoROS, causing elevated intracellular oxidative stress. The ROS generated during OS can directly harm cell membranes, nucleic acids, and proteins, ultimately triggering cell apoptosis and necrosis (88–90).

Studies have shown that in AP, mitoROS production initiates cell apoptosis and disrupts insulin secretion function by activating the apoptosis signal-regulated kinase 1 (ASK1) pathway (91). Additionally, mitoROS contribute to the development of pancreatic fibrosis in pancreatitis. The chronic progression of pancreatitis can result in pancreatic fibrosis, with excessive mitoROS production closely linked to fibrosis formation. MitoROS can enhance the activation of pancreatic stellate cells, prompting the synthesis of extracellular matrix and collagen deposition, thus altering pancreatic tissue structure and fostering fibrosis. Moreover, ROS may also affect the stability of mtDNA and the transmission of genetic information, influencing gene expression and function in pancreatic cells. MtDNA is vulnerable to direct attack by ROS, leading to oxidative damage and mutations that disrupt mitochondrial function. This further exacerbates the abnormal state of mitochondria and the generation of ROS, creating a vicious cycle. Studies have shown that in an AP model, mitochondrial function is impaired due to inflammatory reactions, resulting in a significant increase in intracellular ROS levels. These ROS can activate the NF-κB signaling pathway, promoting the production of inflammatory cytokines, leading to the persistence and exacerbation of inflammatory reactions (92). Additionally, excessive ROS production triggers mitochondrial membrane depolarization and the activation of apoptotic signals, causing necrosis and apoptosis of pancreatic cells (93).

The roles and impacts of mitoROS in pancreatitis are diverse. It plays a part in regulating inflammatory responses, causing pancreatic cell damage and necrosis, contributing to pancreatic fibrosis, and disrupting normal pancreatic function through effects on mitochondrial function and cellular gene expression. A comprehensive understanding of how mitoROS functions is crucial for uncovering the pathogenesis of pancreatitis and developing effective treatment approaches.




3.5 Impaired autophagy

Autophagy is a fundamental biological mechanism where lysosomes are used to break down macromolecules and damaged organelles. It is controlled by autophagy-related genes (Atg) (94). Through autophagy, cells can eliminate, recycle, and degrade various defective cytoplasmic contents, such as damaged organelles, denatured proteins, or lipids, to prevent ER stress and maintain protein synthesis. This process plays a crucial role in sustaining cell homeostasis (95, 96). Research has indicated that impaired autophagy is also a contributor for the pathogenesis of AP (97).

The process of autophagy involves several steps based on the pathways of substrates entering lysosomes, including macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Initially, upon cell stimulation by signals, the UNC-51-like kinase 1 (ULK1) complex is detached from and activated by the mammalian target of rapamycin complex 1 (mTORC1) through a cascade reaction, thereby initiating autophagy (98). Subsequently, the activated ULK1 complex recruits the Beclin1-Vps34 complex, resulting in the creation of double-layered intracellular membrane vesicles. These vesicles, containing various Atg-encoded proteins and ubiquitination receptors (such as p62), elongate with the help of microtubule-associated-protein light-chain-3-II (LC3-II), encapsulate waste products, and give rise to autophagosomes (99, 100). Finally, the autophagosomes merge with lysosomes, a process facilitated by lysosome-associated membrane proteins (LAMPs). Upon fusion, lysosomal cathepsins like CTSB and CTSL degrade and clear the waste material, allowing for recycling (101, 102).

Autophagy impairment in AP acinar cells is characterized by elevated autophagosome production and decreased lysosomal degradation, leading to heightened inflammatory cell infiltration, acinar cell necrosis, and apoptosis (103). Studies have shown that impaired autophagy contributes to acinar cell vacuolization and zymogen activation, triggering AP development (104). Lysosome-associated membrane protein-2 (LAMP-2), a lysosomal membrane protein abundant in pancreatic tissue, plays a crucial role in autophagosome-lysosome fusion (105). In an acute necrotizing pancreatitis rat model, decreased levels of LAMP-2 led to the accumulation of undegraded material in abnormally enlarged vacuoles within acinar cells, indicating impaired autophagy (106). Knockout of LAMP-2 hindered autophagosome-lysosome complex formation, resulting in the buildup of autophagosomes, limited zymogen granule degradation, and abnormal trypsinogen activation, exacerbating AP (107, 108). Additionally, knockout of Atg5 and Atg7 in mouse models of AP impaired autophagy and worsened the disease (109). LC3, the earliest autophagy marker identified, is closely linked to autophagosome abundance, serving as a key indicator of autophagy activity (110). Moreover, p62, a well-studied autophagy substrate, plays a critical role in mitochondrial clearance (111). The impairment of autophagy efficiency in AP can be observed through elevated levels of pancreatic autophagy markers LC3-II and autophagy substrate p62/SQSTM1, as well as an increase in ubiquitinated protein accumulation (112). Research indicates that in AP, interventions targeting the modulation of LC3 and p62/SQSTM1 expression can enhance autophagy and mitigate pathological harm to the pancreas (113, 114).

The process that selectively eliminates damaged mitochondria is known as mitophagy. Mitophagy plays a crucial role in the pathogenesis of pancreatitis by regulating cellular processes that include inflammation and cell death. Impairments in mitophagy may result in insufficient removal of damaged mitochondria, leading to exacerbated pathological responses in pancreatitis, such as a shift in the balance between apoptosis and necrosis, which are pivotal in determining the severity of pancreatitis (115). When mitochondria lose their membrane potential, it can trigger the onset of autophagy, particularly mitophagy, creating a harmful cycle (116).

Mitophagy is primarily regulated by several key pathways, including the PINK1/Parkin pathway, the Bnip3/Nix-mediated pathway, and the FUNDC1-mediated pathway. In the PINK1/Parkin pathway, PINK1 accumulates on the outer mitochondrial membrane when the membrane potential is lost, leading to the recruitment of the E3 ubiquitin ligase Parkin. Parkin ubiquitinates mitochondrial surface proteins, marking them for degradation via the autophagosome (117). This pathway plays a critical role in mitochondrial quality control, ensuring the removal of damaged mitochondria to maintain cellular homeostasis, especially in high-energy-demanding cells, such as neurons and acinar cells (118). Studies also highlight the role of the Bnip3 and Nix proteins in facilitating mitophagy by promoting the interaction between damaged mitochondria and the autophagy machinery (119). Furthermore, Bnip3 can suppress PINK1 cleavage, enhancing the accumulation of full-length PINK1, which is necessary for efficient Parkin recruitment and mitophagy activation (120). The FUNDC1-mediated mitophagy pathway, particularly active under hypoxic conditions, plays a critical role in maintaining mitochondrial homeostasis. FUNDC1 is a mitochondrial outer membrane protein that interacts with LC3 to facilitate the clearance of damaged mitochondria (121). Hypoxia and mitochondrial dysfunction trigger the dephosphorylation of FUNDC1, enhancing its interaction with LC3 and promoting mitophagy, which helps protect cells during stress conditions such as AP (122). Additionally, mitochondrial damage can trigger inflammatory responses, worsening the situation.

Therefore, suppressing the formation of autophagosomes can help mitigate damage caused by autophagy, decrease the activation of digestive enzymes, and provide some relief from AP (123). Pharmacological manipulation of autophagy presents a viable avenue for treating AP. Research indicates that IL-22 can mitigate autophagosome formation via the Beclin1 pathway, thus alleviating the severity of AP (124). The disaccharide trehalose has demonstrated enhanced autophagic efficiency and reduced pancreatic damage in animal models of AP, suggesting its potential as a therapeutic agent (2). Moreover, lycopene has shown promise in ameliorating AP severity in mice by modulating autophagy; however, further investigation is warranted to elucidate its mechanism of action and therapeutic efficacy in human pancreatitis (125). Notably, studies suggest that statins may lower the incidence of AP and enhance prognosis (126, 127). In a rat model of AP, simvastatin restored autophagic flux by promoting autophagosome-lysosome fusion, thereby mitigating mitochondrial damage and inflammatory responses (101). This further supports the notion that promoting complete mitophagic flux, rather than just the initiation of mitophagy, could be critical in mitigating pancreatic inflammation and damage in AP. Thus, understanding the specific mechanisms of mitophagy, particularly the regulation of PINK1/Parkin, Bnip3/Nix and FUNDC1 pathways, may lead to novel therapeutic targets in AP (128). Additionally, the balance mitophagy maintains between apoptosis and necrosis underscores its significance in the pathology of pancreatitis, particularly in relation to inefficient lysosomal function and autophagy impairment (115). Consequently, exploring the function and control of autophagy in AP, as well as developing interventions to restore autophagy in AP acinar cells, are poised to be pivotal areas of future research.




3.6 Mitochondrial regulation of cell death (apoptosis, necrosis and pyroptosis)

Besides supplying energy to cells, mitochondria regulate necrosis and apoptosis of acinar cells through changes in mitochondrial membrane permeability (MMP) (19). Excessive Ca2+ accumulation in acinar cells triggers the opening of the MPTP in the IMM, leading to loss of mitochondrial membrane potential, impaired ATP production, and eventual necrosis (see Figure 2). The Bcl-2 family proteins play a key role in mediating the release of Cytc and regulating apoptosis by controlling mitochondrial outer membrane permeability (MOMP) (129). During AP, both necrosis and apoptosis occur simultaneously in acinar cells.

Acinar cell death is a key pathological response in AP. Research has demonstrated that in animal models of AP, the severity is directly proportional to the extent of necrosis and inversely proportional to the level of apoptosis. Furthermore, inducing acinar cell apoptosis has been shown to decrease the severity of necrosis and AP, whereas inhibiting apoptosis with caspase inhibitors like XIAP can worsen necrosis (130). Hyperbaric oxygen therapy has been found to alleviate disease severity by promoting acinar cell apoptosis and reducing necrosis (131). Using isolated mitochondria and acinar cells, it was found that increased expression of the Bcl-2 protein can decrease pancreatic acinar cell necrosis by preventing mitochondrial depolarization and subsequent ATP depletion (132). Additionally, silencing the hypoxia-inducible factor 1α (HIF1α) gene can enhance intracellular energy balance by preserving mitochondrial homeostasis, reducing necrosis, and promoting apoptosis, ultimately mitigating the inflammatory response in AP (133).

Furthermore, mitochondrial dysfunction is recognized as a significant factor in the pyroptosis of pancreatic acinar cells during AP. Mitochondrial damage can result in elevated intracellular Ca2+ levels, which in turn induces OS within the cell. This OS may lead to cell membrane rupture and subsequent pyroptosis (134, 135). Lieberman et al. demonstrated that the N-terminal pore-forming fragment of Gasdermin D (GSDMD-NT) targets mitochondria; during the pyroptosis process, GSDMD-NT rapidly damages both IMM and OMM leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation and release of mitochondrial proteins and DNA from the matrix and intermembrane space (136). Research has indicated a reciprocal relationship between mitochondrial dysfunction and inflammasome activation. ROS released from mitochondria can activate the NLRP3 inflammasome, thereby facilitating the onset of pyroptosis. This process establishes a vicious cycle: mitochondrial damage leads to inflammasome activation, which in turn exacerbates mitochondrial damage (137, 138).

Recent research has identified that certain cytokines, such as IL-37, may exert a protective effect in cases of AP. IL-37 has been shown to inhibit the pyroptosis of damaged acinar cells, a mechanism that appears to be linked to its ability to inhibit the activation of the NLRP3 inflammasome. By specifically removing GSDMD from the pancreas, researchers demonstrated that the protective effect of IL-37 was neutralized, indicating that GSDMD plays a crucial role in the pyroptosis process (139). Additionally, drugs targeting pancreatic acinar cell pyroptosis, such as high-density lipoprotein (HDL) and apoA-I, have been found to inhibit both the activation of the NLRP3 inflammasome and pyroptosis in acinar cells (135). This suggests a novel therapeutic approach for the treatment of AP, potentially alleviating the condition by modulating the inflammatory response. Besides, cold-inducible RNA binding protein (CIRP) has been implicated in inducing mitochondrial dysfunction and pyroptosis in pancreatic acinar cells, indicating that blocking CIRP may represent an effective strategy for treating AP (140).




3.7 Mitochondrial dynamics imbalance

Mitochondrial dynamics involves the continuous fusion and fission processes that mitochondria undergo to regulate the shape, number, and distribution. This process is crucial for maintaining mtDNA, ATP production, calcium homeostasis, signal transduction, and apoptosis (141, 142). Imbalances in mitochondrial fission and fusion often result in structural changes and dysfunction within mitochondria. Abnormal mitochondrial fusion can cause fragmentation, while impairments in mitochondrial fission can result in the oversized mitochondria formation. These imbalances in mitochondrial dynamics can disrupt the intracellular environment, cause cellular damage, and even result in cell death. Mitochondrial fusion is primarily regulated by mitofusin-1/2 (MFN1/2) and optic atrophy 1 (OPA1), while mitochondrial fission is mainly controlled by dynamin-related protein 1 (DRP1) (see Figure 3) (143–146).
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Figure 3 | The changes of acinar cell mitochondrial dynamics in pancreatitis. Mitochondrial fusion and fission processes play a crucial role in promoting ATP production and maintaining quality control within the cell. Fusion involves the mixing of mitochondrial contents, while fission generates new healthy mitochondria and facilitates the removal of defective mitochondria through mitophagy. Mitochondrial fusion is primarily regulated by MFN1/2 and OPA1, while mitochondrial fission is mainly controlled by DRP1 regulation. Abnormal mitochondrial fusion can cause fragmentation (A), while disorders in mitochondrial fission can lead to the formation of oversized mitochondria (B). DRP1, dynamin-related protein 1; ER, endoplasmic reticulum; MFN1/2, mitofusin-1/2; OPA1, optic atrophy 1.

Mitochondrial dysfunction during AP development is characterized by disruptions in mitochondrial dynamics, as evidenced by variations in OPA1 and DRP1 expression and distinct ultrastructural features such as mitochondrial fission, elongation, and mitophagy (147). Research has shown that the TAK-242, a novel toll-like receptor 4 (TLR4) antagonist, can protect taurocholate-induced AP acinar cells in mice. TAK-242 was found to prevent changes in protein expression associated with mitochondrial dynamics. Specifically, the levels of OPA1 and MFN1 were elevated compared to the control group of normal mice, while DRP1 expression decreased. These results demonstrate that TAK-242 can enhance cellular function in AP by modulating mitochondrial dynamics and reducing taurocholate-induced cytotoxicity (148).




3.8 Mitochondrial DNA integrity and dysfunction

The role of mtDNA in pancreatitis spans several critical aspects, ranging from its contribution to the pathogenesis of the disease to its potential as a biomarker for diagnosing disease severity. Numerous studies have highlighted how mitochondrial dysfunction, often influenced by mtDNA alterations, can significantly impact the progression of pancreatitis.

Mutations and dysfunctions in mtDNA have been associated with various pancreatic diseases. For instance, a patient with Kearns-Sayre syndrome, a disorder linked to mtDNA-related mitochondrial dysfunction, experienced recurrent episodes of AP, underscoring the direct impact of mtDNA on pancreatitis (32). Furthermore, mitochondrial dysfunction, including impairments in mitochondrial network dynamics, cristae morphology, and mtDNA nucleoid structure, plays a crucial role in diseases like type 2 diabetes, which affect pancreatic β-cells by disrupting glucose sensing and regulation (149). Although these mechanisms are not directly linked to pancreatitis, they emphasize the broader role of mtDNA in maintaining pancreatic health.

Mitochondrial complex I deficiency has been shown to promote pancreatic α-cell proliferation in models of premature aging, suggesting that mtDNA mutations may have compensatory or pathogenic roles in pancreatic tissue (150). Additionally, VMP1-dependent selective mitophagy and mitochondrial fragmentation, driven by mtDNA, act as protective cellular mechanisms in pancreatitis, highlighting mtDNA’s involvement in cellular responses to the disease (147). Moreover, circulating mtDNA has emerged as a potential biomarker for predicting the severity of AP, indicating that its role extends beyond cellular functions to include disease diagnosis and prognosis (151). This is supported by evidence that mtDNA contributes to mitochondrial dysfunction and induces apoptosis in acinar cells, playing a key role in the pathogenesis of pancreatitis (152).

Beyond its pathogenic influence, mtDNA also plays a role in shaping the course of pancreatitis through mechanisms that regulate cell survival, such as balancing apoptosis and necrosis, which are pivotal in determining the severity of the disease (115). The balance between these processes highlights the critical importance of mitochondrial health in influencing the progression of pancreatic diseases. While numerous studies have identified genetic mutations in nuclear genes, including PRSS1, PRSS2, SPINK1, CFTR, CTRC, CASR, and CLDN2, which are strongly associated with different forms of pancreatitis (153, 154), studies have also explored the potential role of mitochondrial DNA (mtDNA) mutations in the disease’s pathogenesis. For example, the A3243G mutation in mitochondrial DNA, especially within the tRNALeu(UUR) gene, has been identified as a contributing factor to the increased prevalence of diabetes and notably recurrent pancreatitis within a selected familial grouping (155). This suggests that mtDNA mutations may predispose individuals to pancreatitis by impairing pancreatic β-cell function and exocrine regulation. Additionally, a case study reports the first case of chronic pancreatitis associated with mitochondrial encephalopathy, linked to the A8344G mtDNA mutation, highlighting the potential role of mitochondrial dysfunction in recurrent pancreatitis (156). Furthermore, the mtDNA nt7778 G-to-T polymorphism does not exacerbate cerulein-induced AP in mice but may accelerate the progression of autoimmune-like lesions after tissue damage, particularly in older mice, indicating its potential role for the polymorphism in autoimmune disease susceptibility following pancreatic injury (157).





4 Mitochondrial-related signaling pathways in acute pancreatitis

Mitochondrial dysfunction can cause the release of various components and products, which can trigger inflammatory responses when they accumulate in the cytoplasm or extracellular environment, potentially leading to cell death. Multiple signaling pathways that initiate inflammatory responses as a result of mitochondrial dysfunction have been discovered, particularly cyclic GMP-AMP synthase (cGAS) - Stimulator of Interferon Genes 1 (STING1) and inflammasome signaling pathways (see Figure 4) (158).
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Figure 4 | Mitochondria-related signaling pathways and acute pancreatitis. Stress stimulation or cell death leads to the release of mtDNA into the cytoplasm. This mtDNA can initiate various pro-inflammatory signaling pathways either through endosomally localized TLR9, cytoplasmic cGAS-STING, or cytoplasmic inflammasomes. TLR9 binds to mtDNA in endosomes, activating an NF-kB-dependent pro-inflammatory signaling cascade. cGAS detects mtDNA in the cytoplasm and triggers STING, located in the ER, resulting in an interferon response. Inflammasome activity dependent on mtDNA leads to caspase-1 activation or the production of pro-inflammatory IL-1 and IL-18 precursors. cGAS, cyclic GMP-AMP synthase; ER, endoplasmic reticulum; mtDNA, mitochondrial DNA; STING1, stimulator of interferon response cGAMP interactor 1; TLR9, Toll-like receptor 9.



4.1 cGAS–STING1 signaling pathway

The cGAS-STING is a molecular signaling pathway that involves two proteins: cGAS activated by mtDNA and STING1 (159). cGAS, a cytoplasmic double-stranded DNA (dsDNA) sensor protein, catalyzes the formation of cGAMP (160). Acting as a second messenger that triggers inflammatory responses, cGAMP activates STING1. When mitochondrial outer membrane permeability (MOMP) or other forms of mitochondrial dysfunction led to the entry of mtDNA into the cytoplasm, cGAS signaling is promoted, a process that is hindered by apoptotic caspases (161, 162). In situations where apoptotic caspase activation is limited, mtDNA tends to interact with cGAS and STING1, subsequently resulting in the initiation of type I interferon (IFN) response. Upon exiting the mitochondria, mtDNA can activate cGAS through pores formed by BCL-2 related proteins like BAX and BAK1, or through the permeability transition pore complex (PTPC). This activation leads to the promotion of the STING1 signaling pathway and the expression of inflammatory mediators such as IFN-β1, IL-6, and TNFα (163, 164). While this system usually prevents unnecessary cGAS activation in normal conditions, it retains the ability to trigger inflammatory responses when needed. Numerous studies have demonstrated that mtDNA can strongly induce inflammation via cGAS and STING1, particularly when apoptotic caspase activation is limited (165).

Upon activation, STING1 undergoes a conformational change and translocates to the Golgi apparatus, where it activates downstream kinases, including TBK1 (TANK-binding kinase 1) and IKK (IκB kinase). This results in the phosphorylation and activation of the transcription factors IRF3 and NF-κB (166, 167). Once activated, NF-κB translocates to the nucleus and promotes the transcription of genes encoding inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukins (e.g., IL-1β, IL-6), and chemokines (168). These mediators recruit and activate immune cells in the pancreas, exacerbating the inflammatory response. That is, the pathway induces a positive feedback loop by expressing adhesion molecules and receptors that enhance immune cell infiltration into the pancreas (169). This amplifies the local inflammatory response, potentially leading to pancreatic tissue damage and necrosis.




4.2 Inflammasome signaling pathway

MtDNA and ROS can induce inflammasome activation. In addition to serving as an effective cGAS stimulant, cytosolic mtDNA can trigger inflammasome activation (170). The inflammasome signaling pathway demonstrates that after being released from dysfunctional mitochondria, mtDNA and ROS activate caspase-1, leading to the secretion of IL-1β and IL-18 (171, 172). The electron transport chain (ETC) affects inflammasome activation independently of ROS, maintaining cellular ATP availability through phosphocreatine (173). Here, mtDNA and mitoROS act as the primary DAMPs for inflammasome activation, interacting at multiple nodes in the molecular mechanisms regulating regulated cell death (RCD), thereby significantly influencing RCD (174).




4.3 Other inflammatory pathways

Mitochondrial DNA and other mitochondrial components can also activate inflammatory responses through various PPRs (175). The Toll-like receptor family (TLR) is responsible for detecting a wide range of bacterial signatures to initiate innate immunity. TLR9 is primarily found in monocytes, macrophages, plasmacytoid dendritic cells, and B lymphocytes. While TLR9 is initially located on the ER in its inactive state, it recognizes DNA in endolysosomes (176, 177). TLR9 can interact with mtDNA in endosomes, leading to the initiation of an NF-κB -dependent pro-inflammatory signaling pathway (178).





5 Therapeutic strategies for mitochondrial damage in acute pancreatitis

Current research is exploring various strategies to protect mitochondrial function, including the use of mitochondrial pharmacoprotection and mitochondrial transplantation.



5.1 Mitochondrial transplantation

Mitochondrial transplantation (MT) involves injecting isolated mitochondria into damaged tissues or organs, or into the bloodstream, to provide therapeutic benefits. In cell culture, it refers to injecting isolated mitochondria for co-incubation with cultured cells to study the effects of mitochondrial transplantation (179, 180). In 2009, Mccully et al. initially documented the significant cardioprotective effect of injecting mitochondria into the ischemic region of the rabbit heart (181). Subsequently, mitochondrial transplantation technology has demonstrated therapeutic benefits in various tissue and organ injuries, including the heart, brain, nervous system, lungs, kidneys, liver, skeletal muscles, and skin, as well as in conditions such as inflammation and tumors (see Figure 5) (182–184).
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Figure 5 | The therapeutic strategies of mitochondrial transplantation. (A) Mitochondrial transplantation methods include two categories: direct transplantation and indirect transplantation. Purified mitochondria or vectors carrying mitochondria may be introduced into recipient cells via blood injection or through in situ injection. (B) Mitochondria derived from healthy cells are transplanted into damaged cells to enhance their function and promote the growth of the recipient cells. MSCs, Mesenchymal stem cells.

The mechanism of action of mitochondrial transplantation involves both internalization and non-internalization mechanisms (183). Internalization refers to the process of mitochondria entering cells, while the corresponding mechanism is known as internalization mechanism (185). The observation that the number of mitochondria entering cells is small yet the effects are rapid suggests the existence of a non-internalization mechanism, where mitochondria may not need to enter cells to exert their effects (186). Recent research supports that internalized mitochondria can trigger mitophagy through the PINK1-Parkin signaling pathway, a process that clears damaged mitochondria, promotes mitochondrial biogenesis, and restores ATP production. These effects enhance cellular energy metabolism and resilience, particularly in stress conditions (187). Therefore, the mechanism of mitochondrial transplantation action can be categorized into internalization and non-internalization mechanisms. The therapeutic efficacy of the internalization mechanism is rooted in the mitochondria’s ability to produce ATP, while the non-internalization mechanism is based on the idea that mitochondria can interact with specific substances on the cell surface to transmit information and stimulate cellular self-preservation (188, 189).

Mitochondrial transplantation has emerged as a promising therapeutic strategy for AP by addressing the critical role of mitochondrial dysfunction in disease pathogenesis. Mitochondrial dysfunction, a hallmark of AP, contributes to impaired energy metabolism, oxidative stress, and cellular injury, exacerbating disease progression (35). Early studies have identified mitochondrial impairment in pancreatic tissues during AP, underscoring the potential of targeted mitochondrial therapies to mitigate damage and improve outcomes. Recent advancements in mitochondrial transfer mechanisms have opened new avenues for treating AP. Research in vascular biology demonstrates that perivascular mesenchymal stem cells (MSCs) can transfer mitochondria to neighboring endothelial cells (ECs) via tunneling nanotubes (TNTs), enhancing bioenergetics and cellular recovery (187). Interestingly, this therapeutic effect does not rely on the functionality of transferred mitochondria but rather on their ability to trigger mitophagy, facilitating the removal of dysfunctional mitochondria and enhancing mitochondrial turnover.

Although mitochondrial transplantation has not been specifically reported in pancreatitis, it has shown therapeutic effects in improving liver damage and preventing liver fibrosis. In a mouse model of liver injury induced by CCl4, injecting mitochondria from healthy mouse livers intravenously can promote ATP generation, reduce free radical damage, significantly improve liver function, and prevent tissue fibrosis (190). Additionally, artificial mitochondrial transfer (AMT), involving the direct delivery of mitochondria into damaged cells, has shown potential in addressing the energy crisis caused by mitochondrial damage in pancreatic cells (191). Studies reveal that transplanted mitochondria, even when depolarized or mtDNA-free, can effectively trigger mitophagy, leading to enhanced cellular energy metabolism and survival (187, 191). This mechanism holds particular therapeutic relevance in AP, where mitochondrial dysfunction exacerbates acinar cell injury and inflammation.




5.2 Mitochondrial pharmacoprotection

Mitochondrial pharmacoprotection is a therapeutic strategy aimed at protecting against pancreatitis by modulating mitochondrial function and attenuating mitochondrial damage. Given the significant role of mitochondria in the pathogenesis of pancreatitis, pharmacological interventions targeting these organelles have the potential to reduce inflammatory responses, cellular damage, and disease progression. These medications include antioxidants, mitochondrial membrane permeability regulators, energy metabolism regulators, anti-inflammatory drugs and drugs for mitochondrial function repair (see Figure 6).

[image: Diagram illustrating cellular components and processes targeted by various inhibitors and regulators. Key elements include calcium ion channels, mitochondria with ATP production, reactive oxygen species (ROS), mitophagy, and cytokines like TNFα. Labels indicate inhibitors like ORAI1, MPTP, and antioxidants. Yellow boxes list examples of these regulators and inhibitors, such as CM4620, MitoQ, and CoQ10, highlighting their roles in cellular metabolism and protection.]
Figure 6 | Therapeutic strategies of mitochondrial pharmacoprotection. Mitochondrial pharmacoprotection is a therapeutic strategy aimed at protecting against pancreatitis by modulating mitochondrial function and attenuating mitochondrial damage. These medications include antioxidants, mitochondrial membrane permeability regulators, energy metabolism regulators, mitophagy regulators, anti-inflammatory drugs and drugs for mitochondrial function repair. Cys A, Cyclosporin A; CoQ 10, Coenzyme Q10; MPTP, mitochondrial permeability transition pore; ORAI1, Orai calcium release-activated calcium modulator 1; ROS, reactive oxygen species; SOCE, store-operated Ca2+ entry channels; TNFα, tumor necrosis factor-α.



5.2.1 Antioxidants

Mitochondrial dysfunction is frequently associated with elevated oxidative stress levels, leading to cellular damage and exacerbating the inflammatory response (192). Utilizing antioxidants, particularly those targeted specifically to mitochondria, can offer specialized protection to these organelles and shield them from oxidative stress-induced harm.

Mitochondria-targeted antioxidants, such as MitoQ and Tiron, are a type of drug that specifically target mitochondria to provide antioxidant effects and offer superior protection against mtDNA damage when compared to non-targeted antioxidants like resveratrol, curcumin, and N-acetylcysteine (193, 194). These antioxidants penetrate the mitochondrial phospholipid bilayer and neutralize ROS at the core source, and also have substantial protective effects against damage caused by AP. For instance, Epigallocatechin gallate (EGCG) derived from green tea can effectively decrease L-arginine-induced AP and subsequent lung injury in mice by inhibiting the activation of NLRP3 inflammasome (195). This protective mechanism is thought to involve the elimination of mitoROS and its oxidation product OX-mtDNA (196).

In addition to mitochondria-targeted antioxidants, vitamins also exhibit antioxidant properties and are inversely associated with AP (197). Vitamin B12, acting as an allosteric activator of cysteine-β-synthase (CBS), has been shown to decrease edema, inflammation, and necrosis in experimental pancreatitis. This beneficial effect may be attributed to vitamin B12-mediated enhancement of mitophagy, leading to repair of mitochondrial function (198). Lycopene, a potent antioxidant, has also been demonstrated to offer protection against AP (122). Research indicates that lycopene can mitigate oxidative stress via the JNK pathway and safeguard pancreatic acinar cells from injury (199). Furthermore, lycopene has been shown to have a protective effect in rat models of experimental AP induced by caerulein (200). However, the potential limitations of these agents, such as limited bioavailability and toxicity at higher doses, must be carefully evaluated in future studies.




5.2.2 Mitochondrial membrane permeability regulator

Regulation of MMP plays a crucial role in mitigating abnormal enzyme activation and mtDNA damage. Cyclosporin A, an immunosuppressant, effectively inhibits the opening of MPTP, thereby decreasing mitochondrial membrane permeability. For instance, experimental research has demonstrated the neuroprotective properties of cyclosporine A in alleviating brain damage in rats afflicted with acute necrotizing pancreatitis (201). However, despite its efficacy, cyclosporin A is known for its severe side effects, such as nephrotoxicity and immunosuppression, which limit its clinical application in treating pancreatitis.

Consequently, alternative MPTP inhibitors like TRO40303, which lack these severe side effects, are being investigated as more suitable therapeutic options. TRO40303, a novel MPTP inhibitor, interacts with mitochondrial extraporters, delaying MPTP opening independently of CypD, and reducing membrane potential loss and necrosis in pancreatic acinar cells, ultimately providing systemic protection in AP (57). Studies in murine and human pancreatic acinar cells demonstrated that TRO40303 significantly reduced mitochondrial membrane potential loss, cytosolic calcium overload, and necrotic cell death caused by pancreatic toxins, including taurolithocholate sulfate and cholecystokinin. In animal models of AP, TRO40303 decreased serum amylase, pancreatic trypsin, and inflammation scores, indicating its potential for broad protective effects in AP. Moreover, its ability to reduce mitochondrial dysfunction in experimental models of bile acid and alcohol-induced pancreatitis suggests it could be beneficial in preventing AP exacerbations due to mitochondrial injuries (57). Further studies are required to fully assess its efficacy and safety in clinical settings. However, the promising results obtained so far point toward TRO40303 as a viable candidate for mitochondrial-targeted pharmacotherapy in AP.

Furthermore, CypD inhibitors have shown promise in mitigating necrosis in both mouse and human acinar cells, improving the severity of AP by safeguarding mitochondrial integrity (202).




5.2.3 Calcium modulator

ORAI1, an essential component of the SOCE pathway, plays a crucial role in calcium influx, which is critical for cellular functions and the inflammatory response during pancreatitis. Calcium overload is a key factor in mitochondrial dysfunction and cellular injury in AP (203), making ORAI1 a valuable target for therapeutic intervention. Targeted inhibition of ORAI1 has emerged as a promising therapeutic approach to mitigate the effects of pancreatitis. By preventing excessive calcium influx through the SOCE pathway, ORAI1 inhibitors help maintain intracellular calcium balance, thereby reducing the risk of mitochondrial damage and acinar cell death.

In pancreatitis, the pathological rise in acinar cell cytosolic Ca2+ levels mediated by ORAI1 leads to mitochondrial dysfunction and cell death, exacerbating inflammation and tissue injury. The use of ORAI1 inhibitors, such as CM4620, GSK-7975A and CM_128, has been suggested as a therapeutic approach, effectively reducing cytosolic Ca2+ overload in pancreatic cells and mitigating the inflammatory response associated with pancreatitis (204, 205). Additionally, the strategy of inhibiting ORAI1 has been found to be significantly more effective when administered early after the onset of pancreatitis, underscoring the importance of timing in therapeutic intervention to maximize efficacy (205).

Furthermore, neutrophil-specific inhibition of the ORAI1 calcium channel reduced pancreatitis-associated acute lung injury, suggesting that targeting multiple cell types, including immune cells, is crucial for effectively treating the systemic complications of pancreatitis. This underscores the potential for ORAI1 inhibitors to address both pancreatic and systemic inflammation, such as pancreatitis-associated acute lung injury (206). The function of ORAI1 in SOCE and its subsequent impact on calcium influx has been further elucidated through the application of inhibitors like CM4620, which modulate both parenchymal and immune cell functions. By inhibiting ORAI1, CM4620 reduces acinar cell pathology and inflammatory responses, offering a dual-action approach that targets both tissue damage and immune-mediated inflammation (49). In addition to ORAI1, recent studies have identified the protein SARAF (SOCE-associated regulatory factor) as a protective regulator against excessive Ca2+ influx. SARAF degradation during pancreatitis leads to worsened disease severity, highlighting the delicate balance in calcium regulation mechanisms within acinar cells. Both ORAI1 and SARAF are integral to maintaining calcium homeostasis, with SARAF acting to modulate ORAI1 activity and prevent excessive SOCE (207). Moreover, ORAI1’s activity is also regulated by cholesterol, which inhibits its function and limits SOCE. Cholesterol depletion has been found to enhance ORAI1-mediated calcium influx, leading to increased degranulation and inflammatory mediator release. This complex interaction between cholesterol and ORAI1 suggests that lipid regulation may also play a role in modulating the severity of inflammatory responses in conditions like pancreatitis (208).




5.2.4 Energy metabolism regulator

Energy metabolism regulators can enhance the adaptability and antioxidant capacity of pancreatic cells by improving mitochondrial energy metabolism status. Coenzyme Q10, a key player in mitochondrial energy metabolism, has demonstrated a protective effect in treating pancreatitis. Research indicates that coenzyme Q10 can mitigate pancreatic damage and associated pulmonary complications by inhibiting inflammatory cytokines and inflammatory cell infiltration (209). Inorganic phosphate is essential for ATP production, and studies have revealed that phosphate supplementation can prevent experimental pancreatitis by enhancing mitochondrial function (210, 211).




5.2.5 Anti-inflammatory agents

Anti-inflammatory drugs have shown promise in protecting the pancreas by modulating mitochondrial function and reducing oxidative stress. However, the precise mechanisms by which these drugs exert their protective effects, particularly in relation to mitochondrial function, remain a subject of ongoing research and debate.

Some studies indicate that certain anti-inflammatory drugs may have direct effects on mitochondria. For instance, Tanshinone I, a Chinese herbal ingredient known for its anti-inflammatory and antioxidant properties, has been studied for its ability to mitigate mitochondrial damage, oxidative stress, and apoptosis in AP models (212, 213). Moreover, quercetin enhance mitochondrial bioenergetics and protect pancreatic β-cells from cholesterol-induced mitochondrial dysfunction, further mitigating inflammatory responses in pancreatitis (214). Similarly, aspirin, a widely used Nonsteroidal Anti-inflammatory Drug (NSAID), can uncouple oxidative phosphorylation in liver mitochondria, suggesting a direct mitochondrial interaction (215).

The primary mechanism by which anti-inflammatory drugs protect mitochondria in AP is likely indirect, through the reduction of overall inflammation. Inflammatory mediators, particularly cytokines, can significantly impair mitochondrial function. TNFα, a key inflammatory cytokine, has been linked to the clinical prognosis of AP (216). TNFα can directly damage mitochondria in pancreatic acinar cells, leading to ATP depletion and cell death (217). By reducing levels of these inflammatory mediators, anti-inflammatory drugs may indirectly preserve mitochondrial function. For example, TNFα inhibitors like Infliximab have been shown to reduce systemic inflammatory responses and decrease mortality in experimental pancreatitis (218). Some anti-inflammatory drugs have demonstrated specific mechanisms in protecting mitochondria. For instance, pentoxifylline has been shown to protect against mitochondrial damage in experimental pancreatitis by modulating glutathione levels and nitric oxide, showcasing its ability to attenuate inflammatory responses (219).

Anti-inflammatory drugs show promise in protecting pancreatic mitochondria during AP, but their precise mechanisms remain unclear. While some drugs may have direct effects on mitochondrial function, their primary benefit likely stems from reducing overall inflammation, which indirectly supports mitochondrial health. The complexity of AP models makes it challenging to isolate direct mitochondrial effects from broader cellular responses. Future research should focus on specifically measuring mitochondrial function parameters in response to anti-inflammatory treatments, distinguishing between direct and indirect effects, and examining the temporal relationship between mitochondrial changes and inflammatory marker reductions. Understanding these nuanced mechanisms is crucial for developing more targeted and effective therapeutic approaches for AP. Exploring potential synergies between traditional anti-inflammatory drugs and targeted mitochondrial therapies may open new avenues for treatment.




5.2.6 Drugs for mitochondrial function repair

Mitochondrial function repair aims to safeguard pancreatic cells from inflammatory and pathological processes by enhancing mitochondrial function, reducing oxidative stress, and mitigating cell damage. High-temperature requirement protein A2 (HtrA2/Omi) is a crucial mitochondrial protease involved in maintaining mitochondrial proteostasis. Research indicates that deoxyarbutin inhibits oxidative stress, restores impaired mitochondrial function, and ameliorates pancreatic damage through a pathway dependent on HtrA2/PGC-1α (220). Furthermore, diosgenin and its derivative dihydrodiosgenin exhibit protective effects on mitochondria by preventing mitochondrial depolarization, ATP depletion, ROS generation, and excessive inflammatory responses, thereby improving lung injury associated with AP (221).

Mitochondrial drug protection is a promising therapeutic approach for pancreatitis, aimed at safeguarding pancreatic cells from inflammation and damage by modulating mitochondrial function and reducing mitochondrial damage and oxidative stress. Compounds like cyclosporine A, N-acetylcysteine, coenzyme Q10, and tanshinone show potential for mitochondrial protection in pancreatitis. Nevertheless, additional research and validation are needed for the clinical implementation of mitochondrial drug protection in pancreatitis treatment.




5.2.7 Mitophagy regulator

Mitochondrial dysfunction and impaired autophagy are hallmarks of AP, contributing to the pathological damage in pancreatic acinar cells. Enhancing mitophagy has emerged as a promising therapeutic strategy to restore mitochondrial integrity, promote mitochondrial biogenesis, and improve ATP production, all of which are critical for pancreatic cell survival and function in AP.

Specific agents that regulate mitophagy have shown potential in addressing mitochondrial dysfunction in pancreatic tissue. For instance, melatonin, a well-known antioxidant, has demonstrated significant protective effects in various disease models. In polycystic ovary syndrome, melatonin enhances SIRT1 expression, inhibiting excessive PINK1/Parkin-mediated mitophagy and ameliorating mitochondrial dysfunction both in vitro and in vivo (222). While direct studies in AP are limited, these findings suggest melatonin’s potential in modulating mitochondrial quality control in pancreatic inflammation. In AP specifically, melatonin exhibits protective effects through its potent antioxidant, anti-inflammatory, anti-apoptotic, and anti-hyperlipidemic properties, improving both histological and biochemical parameters (223). Another promising approach involves the inhibition of mitoNEET, a key regulator of mitochondrial function. This inhibition enhances mitophagy by activating PINK1-Parkin signaling, promoting the clearance of dysfunctional mitochondria and maintaining cellular energy balance (224). Recent studies have highlighted the role of mitoNEET in pancreatic cells, offering insights into its potential relevance for AP. While mitoNEET induction in β-cells activates a Parkin-dependent mitophagy pathway that may impair glucose-stimulated insulin secretion, its induction in α-cells promotes anti-apoptotic effects and enhances insulin secretion, indirectly supporting β-cell function (225). These findings underscore the nuanced role of mitoNEET in maintaining pancreatic cell homeostasis and highlight its emerging importance in pancreatic research.

Other mitophagy regulators, such as probucol, offer distinct mechanisms by improving mitochondrial quality without relying on PINK1/Parkin pathways, highlighting its potential in lipid droplet regulation and mitochondrial protection (226). Similarly, isorhamnetin prevents mitochondrial dysfunction by reducing ROS generation, making it a promising candidate for severe AP treatment (227). Additionally, rapamycin, an mTOR inhibitor, enhances mitophagy and alleviates pancreatitis by restoring autophagy flux and reducing endoplasmic reticulum stress (228).

These findings collectively underscore the translational potential of mitophagy regulators from broader research contexts to specific applications in pancreatic inflammation.






6 Prospects and challenges of mitochondrial therapy in acute pancreatitis

Mitochondria have traditionally been recognized as key players in regulated cell death, with research indicating that the disruption of mitochondrial function and structure during this process is closely linked to the inflammatory response that helps maintain overall body balance. Dysregulated inflammatory responses triggered by mitochondrial components or products have been implicated in various human diseases. Many of these diseases can be managed clinically through therapeutic approaches that target inflammatory mediators or PPRs and their signaling pathways (229).

Mitochondrial therapy offers promising prospects in treating AP by targeting mitochondrial dysfunction to alleviate inflammation and cellular damage. Innovations such as mitochondria-targeted antioxidants (e.g., MitoQ, Tiron) have shown superior efficacy in neutralizing oxidative stress and protecting mitochondrial integrity. Mitochondrial transplantation has demonstrated therapeutic benefits in various organ injuries, suggesting its potential for restoring mitochondrial function in pancreatitis. Additionally, pharmacological interventions, including Cyclosporin A and energy metabolism regulators like Coenzyme Q10, show potential in preventing mitochondrial dysfunction and reducing cellular damage, making mitochondrial therapy a promising approach for improving outcomes in AP.

Although mitochondrial therapy shows promising potential for treating AP, several challenges need to be addressed, including optimizing delivery methods, maintaining mitochondrial viability during transfer, and evaluating long-term safety and efficacy (230). Moreover, extensive clinical trials are necessary to validate the efficacy and safety of these therapies. Navigating regulatory hurdles is crucial to facilitate their translation into clinical practice. Developing efficient delivery systems for targeted and sustained release of mitochondrial therapeutics poses a significant obstacle. Ensuring precise targeting to affected pancreatic cells without off-target effects is also critical. Furthermore, a comprehensive investigation into the pivotal role of mitochondrial dysfunction in the pathogenesis of pancreatitis and elucidation of the underlying molecular mechanisms are crucial for the diagnosis and treatment of AP.

Future research should focus on refining mitochondrial transplantation techniques, developing targeted delivery systems to enhance uptake by pancreatic cells, and exploring synergies with antioxidant or anti-inflammatory therapies. Additionally, rigorous validation in AP-specific animal models and clinical studies is essential to establish its therapeutic potential. By activating mitophagy, mitigating inflammation, and restoring cellular energetics, this strategy offers a novel paradigm in AP treatment. Continued advancements in mitochondrial transplantation techniques could pave the way for transformative interventions, providing new hope for patients suffering from this severe condition.




7 Conclusions

Mitochondria play a crucial role in the pathogenesis of AP, an inflammatory condition affecting pancreatic tissue. The development of AP is intricately linked to mitochondrial dysfunction, resulting in reduced ATP production, oxidative stress, and loss of mitochondrial membrane potential. This dysfunction causes an increase in mitoROS production, exacerbating cellular damage and inflammation. Furthermore, mitochondrial dysfunction can trigger apoptosis and necrosis by releasing proteins like Cytc into the cytoplasm. AP also induces mutations and oxidative damage in mitochondrial DNA, further compromising mitochondrial function and cellular metabolism. Therefore, exploring the involvement of mitochondria in AP is crucial for understanding the disease mechanism and identifying potential therapeutic targets. Future research efforts should focus on developing strategies to repair and protect mitochondrial function in order to enhance the effectiveness of treatments for AP.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.





Methods

This study first analyzed RNA- seq data from public databases of humans and mice, and in vitro cytology experiments were conducted to induce or inhibit the expression of SIRT1. In vivo, UC mice were treated with moxibustion and SIRT1 inhibitor EX-527 to confirm the changes in the transcription factors identified through analysis of the datasets.





Results

The results show that Treg/Th17 axis disruption is an important feature of UC. Differential gene expression and immune infiltration analysis showed that upstream transcription factors, including Forkhead box P3 (FOXP3), were significantly disrupted. In vitro cytology experiments, the results indicate that SIRT1 is activated in LPS induced inflammation, subsequently perturbing the Treg/Th17 immune balance axis. Finally, in vivo studies, the results have shown that administering EX-527 to inhibit SIRT1 leads to an increasing in FOXP3 expression and a decreasing in RORγt expression in UC colon tissue. In addition, the results indicate that traditional Chinese moxibustion can down regulate the expression of SIRT1, directly affecting the balance of Th17/Treg axis, and the combined use of EX-527 further improves the therapeutic effect of moxibustion.





Conclusion

Our research shows that inhibition SIRT1 can regulate Treg and Th17 immune balance axis. This finding indicates a new important potential target for the treatment of UC.
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Introduction

Ulcerative colitis (UC)is a chronic inflammatory disease that affects the colon and rectum, characterized by recurrent mucosal inflammation. This leads to symptoms including abdominal pain, diarrhea, hematochezia, and other gastrointestinal issues (1), significantly impacting patients’ quality of life and posing substantial socioeconomic challenges (2). Despite the unclear etiology, dysregulated immune responses, particularly disruptions in the Treg/Th17 axis, are implicated in UC’s pathogenesis (3, 4). Therapeutically, restoring immune homeostasis by modulating the Th17/Treg balance is considered promising. Regulatory T cells (Tregs) are known to produce anti-inflammatory factors and immunosuppressive molecules, which inhibit the activity of various immune cells and suppress excessive immune response, maintaining immune homeostasis (5). Contrarily, T helper type 17 (Th17) is a major inducer of autoimmunity, driving inflammation through the production of various inflammatory cytokines. However, the precise upstream mechanisms underlying the restoration of the Th17/Treg balance remain elusive.

T cell stability is illuminated through the analysis of transcriptional profiles arising from the interplay of competing transcription factor gradients. FOXP3, a forkhead-winged-helix family member, is vital for Treg specification and function, being constitutively expressed in these cells. Conversely, Th17 cell differentiation is governed by retinoic acid receptor-related orphan receptor gamma t (RORγt), an isoform of RORc. Th17 cells and Treg cells, derived from a common naive CD4 T cell precursor, contributing to the heterogeneity of T cells. Post-translational modifications of transcription factors are considered a common target for exogenous intervention measures. The balance of FOXP and RORγt can determine the direction of initial T cell differentiation towards Treg or Th17 lineages, and is crucial for maintaining functional homeostasis in multiple organs such as the intestine (6). Acetylation modification is one of the most fundamental and critical regulatory mechanisms for FOXP3 and ROR γ t (7, 8). Therefore, investigating acetylation modifications at the transcriptional level may provide valuable insights into the Treg/Th17 axis mechanism and identify potential therapeutic targets.

In this study, we firstly conducted a comprehensive analysis of transcriptome data from both UC patients and UC mice to confirm the alteration of Tregs and Th17 protein acetylation levels, besides, silencing information regulator 2 related enzyme 1(sirtuin1, SIRT1), an NAD-dependent deacetylase, has been demonstrated to mediate various physiological processes, including oxidative stress, DNA damage and repair, metabolism, cell proliferation, and apoptosis (9). Evidence once reported SIRT1 is the main modifying enzyme that mediates the differentiation of naive CD4+T cells. Tregs cells and Th17 cells are important subset of CD4+T cells, FOXP3 and RORγt are core transcription factors for Tregs cells and Th17 cells respectively, the expression of FOXP3 and RORγt can affect the differentiation of naive T cells. Thus, we hypothesis that colonic SIRT1 can rebalance the Treg/Th17 axis by mediating the expression of core transcription factor, including FOXP3for Tregs and RORγt for Th17 cells. Next, we carried out in vitro cell experiments to explore whether SIRT1 can influence Treg/Th17 axis through the acetylation level of FOXP3 and RORγt. Finally, as we previously reported that moxibustion is a potential effective therapy method for UC (10), we used EX-527 to inhibit SIRT1 when given moxibustion, aiming to observe the effect of moxibustion combine with SIRT1 intervention. We hope to elucidate the mechanisms of UC from the modification of Treg/Th17 axis as well as to provide a new clue for a new effective treatment combination of traditional Chinese medicine and drugs for UC.





Materials and methods




Acquisition and analysis of RNA-seq data

Datasets of GSE227407 (including 50 UC tissues & 21 normal tissues) and GSE87466 (3 UC tissues & 3 normal tissues) from Gene Expression Omnibus (GEO) database were selected for analysis (11, 12). Quality control of the transcriptomics data and subsequent analysis were conducted as previously described (12). Differential expression analysis used by GEO2R. To perform the GSEA enrichment analysis, the software Clusterprofiler was employed, utilizing gene sets derived from Gene Ontology (GO). the CIBERSORT and the immuCellAI database (http://bioinfo.life.hust.edu.cn/web/ImmuCellAI) was employed to assess the infiltration of immune cells in the normal and UC group.

The RNA-seq datasets GSE214695 in this study were sourced from GEO (including 6 UC tissues and 6 normal tissues) (13), (http://www.ncbi.nlm.nih.gov/geo/). The Seurat package (version 4.0) was employed for the comprehensive processing, stringent quality control of the acquired data, as well as for conducting the differential expression analysis. The software EdgeR was utilized, using a fold change threshold of 1.5 and a significance level of Padj < 0.05. The scores of acetylation gene-set enrichment analysis were calculated by UCell (14).

The basic characteristics of the GSE dataset provided with Table 1.



Table 1 | Basic characteristics of three UC datasets.

[image: Table displaying three datasets related to RNA research. Columns include Datasets, RNA type, Platform, Experiment type, Sample size, Sample source, Organism, and Year. Details are as follows: GSE214695 (RNA-seq, GPL18573) with 6 normal, 6 UC, and 6 CD samples from colonic mucosal tissue, Homo sapiens, 2023; GSE87466 (mRNA, GPL13158) with 21 normal and 87 UC samples from colonic mucosal tissue, Homo sapiens, 2018; GSE227407 (RNA-seq, GPL24973) with 3 normal, 3 UC, and 3 EAST36 samples from colon tissue, Mus musculus, 2023.]




Mice

C57BL/6J mice (weight 26 ± 1 g, age 8-10 weeks) were supplied by SJA Laboratory Co. Ltd. (Hunan, China) and housed in a setting with a controlled temperature (20°C ± 2°C) with free accessing to diet and drinking water. All animal studies were conducted in line with the guidelines outlined in the Guide for the Care and Use of Laboratory Animals. The Institutional Animal Care and Use Committee (IACUC) at Chengdu University of Traditional Chinese Medicine (No.2024004) approved all experimental procedures.





UC model inducing, moxibustion and EX-527 intervention

A 2.5% (w/v) DSS (43 kDa, MP Biomedicals) solution was used to provoke experimental colitis in mice for seven days. On the fifth day after DSS induction, the acupoints “Guan Yuan” (CV4) and “Zu San Li” (ST36) were chosen for the moxibustion. Specifically, throughout the treatment process, mice were secured in a customized apparatus that ensured full exposure of the “ST36”and “CV4” acupoints, the positioning of acupoints was based on the “Government Channel and Points Standard GB12346-90 of China” and “The Veterinary Acupuncture of China”, the specific acupoints location are as follows: The “ST36” is located laterally and posterior to the knee joint, approximately 2 mm below the fibular head. The “CV4” acupoint is situated in the lower abdomen, directly below the umbilicus by about 2 mm. During the moxibustion therapy, the moxa stick was consistently kept at a distance of 1.2-1.5 cm from the acupoints. Additionally, to control the temperature of the moxa and prevent skin burns, a thermometer was used throughout the procedure to maintain a constant temperature of 38°C ± 1°C. (Supplementary Figure S4). The control and DSS group mice were simply restrained without additional manipulation. Mice received daily moxibustion treatments lasting 15 minutes for a period of five days. In addition, SIRT1 inhibitor group received intraperitoneal injections of EX-527 (Abmole, USA) and administered at a dosage of 10 mg/kg daily for five successive days.





Assessment of disease activity index

The daily body weight, fecal viscosity, and fecal occult blood changes in mice were recorded and assessed in terms of the disease activity index (DAI). Briefly, DAI was summarized by scoring these parameters as follows (15): (1) weight loss (0, no loss. 1, 1%-5% loss. 2, 6%-10% loss. 3, 11%-15% loss. and 4, over 15% loss), (2) stool consistency (0, normal. 2, loose stools. 4, watery diarrhea), (3) stool occult blood (0, no blood. 2, slight blood. and 4, gross blood). The DAI score was determined with the following equation: DAI = (weight loss score + stool consistency score + stool occult blood score)/3.





Sample collection

After five days of moxibustion or EX-527 intervention, the experimental mice were euthanized under anesthesia, Blood samples were extracted from the eyeball. The length of the distal colon of the mice, measured from 1 cm above the anus to the rectum, was recorded. The distal colon tissues were processed by fixation with 4% paraformaldehyde, followed by embedding in paraffin and subsequent sectioning, or frozen at -80°C for further analysis.





Histological observation

HE staining was performed for histological observation. Morphological changes in the distal colon of all mouse group were observed under an optical microscope. We further used electron microscopy to characterize the ultrastructure of the distal colonic mucosal epithelium.





Immunofluorescence staining for confocal microscopy

FOXP3, RORγt, SIRT1, ZO-1 and Occludin were detected by confocal microscopy (TCS SP8, Leica, Germany). Paraffin sections were dewaxed, antigen repaired, incubated with bovine serum albumin (BSA), subsequently, the tissues were incubated overnight with 4°C primary antibodies specific to the proteins mentioned below: FOXP3,RORγt (Abcam, USA, used at 1: 200 dilution), SIRT1 (Proteintech, USA, used at 1: 200 dilution), Occludin (Proteintech, USA, used at 1: 200 dilution), ZO-1 (Proteintech, USA, used at 1:200 dilution). After washing, the slices were subjected to a 2-hour incubation at 37°C with the secondary antibody (Alexa Fluor 488, cy3, Bioss, China, diluted at 1:400 dilution). Five random areas were examined under the confocal laser scanning microscopy at 400× or 200× magnification.





Western blot analyses

After extracting the proteins from the distal colon, the total protein content was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), following this, the proteins were transferred to PVDF. Blocking of the membranes was carried out using 5% non-fat dry milk in Tris-buffered saline for a 2-hour period at room temperature. Primary antibodies against SIRT1(Proteintech, used at 1:3000 dilution) and β-tubulin (Proteintech, used at 1:5000 dilution) were incubated with the membranes at 4°C overnight. Subsequently, the membranes were incubated for 2 hours at room temperature with secondary antibodies conjugated to HRP. Protein bands were revealed by ECL developing solution. Finally, ImageJ software was used for analysis.





Fluorescein isothiocyanate–dextran permeability assay

The fluorescein isothiocyanate (FITC)-dextran permeability assay is commonly used to test the integrity of the intestinal barrier (Cani et al.,2008). The experimental procedures followed the established protocol. (Seifi et al.,2018). Before the experiment, mice had to be fasted for 4 hours. Subsequently, FITC-dextran (FD4; Sigma Aldrich) was administered to mice by gavage at a concentration of 600 mg/kg. Two hours later, blood was collected by extracting the eyeball and centrifuged at 4000 rpm for a duration of 10 min at 4°C. The plasma samples were protected from light and refrigerated at -80°C. FITC-dextran was diluted in phosphate-buffered saline to obtain standard solutions with concentrations ranging from 0.2 to 25 μg/mL, and 100 μL of diluted plasma samples, standard solutions, and blanks were transferred to black 96-well microplates. A fluorescence spectrophotometer (TECAN, Infinite M200) was used for the analysis, utilizing an excitation at 485 nm and emission at 528 nm. Finally, for each plasma sample, the FITC-dextran concentration was determined based on the standard curve.





Flow cytometry

Spleen tissues were mashed and strained through a cell filter to obtain a single-cell suspension. Erythrocyte lysis buffer was employed to eliminate red blood cells from the spleen and blood. The suspension was then incubated with FITC-conjugated CD25 (eBioscience, USA), FITC-conjugated CD4 (Southern Biotech), PE-conjugated FOXP3 (BD Biosciences, USA), and PE-conjugated IL-17A (BD Biosciences, USA) at 4°C for 20 minutes. To label intracellular antigens, fixation and permeabilization steps were performed to allow cytoplasmic antibodies to access the interior of the cells. Finally, the enumeration of CD4+IL-17A+ or CD25+Foxp3+ lymphocytes in blood, spleen, and primary CD4+ cells was conducted using the ZE5 (Bio-rad, USA) flow cytometer.





qRT-PCR

Total RNA was extracted from colon tissues with a total RNA extraction kit (TaKaRa,Kyoto, Japan). The concentration of RNA was measured, and complementary DNA (cDNA) was generated using a reverse transcription kit (TaKaRa, Shiga, Japan). The PCR setup was 20 μL, initiating with a denaturation step at 95°C for 5 minutes, followed by 40 cycles of denaturation at 95°C for 10 seconds and primer annealing at 60°C for 30 seconds. A melting curve was produced. The comparative expression levels of Foxp3 and RORγt mRNA in colon tissues were assessed using the 2-ΔΔCt method. The list of primer sequences is provided with Table 2.



Table 2 | Primers sequences.

[image: Table listing gene names and corresponding DNA sequences (5' to 3'). For Foxp3: Forward sequence is TCCCTCCACTCCACCTAAA, Reverse is CCTAATGCCTCCCAGAGC. For Rorγt: Forward is GAACTTGGGAACCAGAAC, Reverse is TGGCAATGTCTCTCGGAA. For β-actin: Forward is GGCGTATTCCCTCCATCG, Reverse is CCAGTTGGTAAACAGTGCATGT.]




Cell cultures

Colonic epithelial cells were extracted from the distal colon. The tissue was cut into small pieces and incubated with 1% type I and IV collagenase (Gibco, USA) for 20 minutes. Dulbecco’s Modified Eagle Medium/High glucose (DMEM) supplemented with 10% (v/v) fetal bovine serum (Gibco, USA) was added, and the cells were cultured in an environment consisting of 95% O2 and 5% CO2 in an incubator (Sanyo, Japan). For the subsequent experiments, the cells were passaged two or three times and seeded at a density of approximately 2 × 104 cells per well in 24-well plates and cultivated for a total of 24 hours. lipopolysaccharide (LPS) (Solarbio, China), EX-527 were added in plates and incubated for 24 hours then supernatant was collected, and the cells were fixed with 4% paraformaldehyde for subsequent experimental assessments. CD4+T cells were purchased from MeisenCTCC and cultured in 24-well plates with RPMI 1640 medium (Fisher Scientific) which containing 10% FBS and respectively co-culture with10 µM EX-527 and SRT1720 HCL(Selleck, USA)for 72 h and 24 hours, then supernatant was collected for further measurement.





Cytokine measurement

For in vivo serum collection, blood was obtained at indicated time points and allowed to clot for 40 minutes at room temperature. Subsequently, the samples were centrifuged at 2000g for 10 minutes at a 4°C environment. For in vitro experiments, the supernatants were centrifuged at 800g for 5 minutes then frozen at -80°C for further analysis. The levels of IL-10, TGF-β1, and TNF-α in the supernatant or serum were quantified using ELISA kits (MultiSciences, China), adhering to the provided instructions. The cytokine concentrations for each group were assessed based on the measured absorbance.





Statistical analysis

All analyses were conducted utilizing GraphPad Prism Software (GraphPad Software, La Jolla, CA, USA). All data in the figures are expressed as means ± SD. Statistical evaluations were conducted utilizing either one-way or two-way ANOVA, followed by multiple pairwise comparisons employing Tukey’s or Bonferroni’s post hoc tests for multiple hypothesis testing. Student’s t tests were used for comparison between two groups. The Kolmogorov-Smirnov method was used to assess the normal distribution and equal variances of the data, with p-values below 0.05, 0.01, and 0.001 deemed statistically significant.






Results




Disruption of the Treg/Th17 axis in UC patient colon is characterized by the altered core transcription factors

Inflammation is hallmark of UC. To delineate the inflammatory cellular profile within the colon of UC patients, we performed an extensive transcriptomic analysis on both human UC patients and UC mouse models. Our analysis revealed an enhanced infiltration of activated CD4+ memory T cells, B naive cells, T follicular helper cells, and macrophages (M0 and M1), as well as activated mast cells and neutrophils, within the colonic tissues of UC patients compared to healthy controls. In contrast, there was a notable decrease in the presence of resting CD4+ memory T cells, regulatory T cells, activated natural killer cells, macrophages (M2) and resting mast cells (Figures 1A, B).
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Figure 1 | Transcriptomic analysis of Tregs and Th17 cells in UC colon tissues. (A) The Percentage Bar Chart of immune cell abundance in UC patient samples. (B) The Box Plots of immune infiltration between the UC and healthy groups. (C) The Violin Plot Th17 cells and Tregs immune infiltration score in UC and healthy groups. (D) Heatmap of Treg marker genes in UC and healthy groups. (E) The raincloud plots of Tregs key transcription factor FOXP3 expression in UC and healthy groups. (F) Enrichment plots of Th17 cell associated pathways for gene set enrichment analysis(GSEA)HC, health control; UC, ulcerative colitis; Treg, regulatory T cells; TH17, T-helper 17. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001 vs. DSS group. HC, healthy control.

Evidences have implicated a disrupted Treg/Th17 axis in UC pathogenesis. Treg and Th17 cells, distinct subsets of CD4+ T cells, are critical for maintaining immune homeostasis and regulating inflammatory responses. In UC patients, our analysis of CD4+ T cells, Tregs, and Th17 cells within immune infiltrates revealed a significant increase in the CD4+ T cell immune score, a decrease in the Treg immune score, and an elevation of the Th17 cell immune score compared with healthy controls (Figures 1B, C). Utilizing the ImmuCellAI database, we examined the expression patterns of Treg marker genes. Our analysis revealed down regulation of key Treg markers, such as NFATC3 and PPM1, contrasted with upregulation of CCR3, FASLG, CD5, STAT5A, TTA, CTLA4, CD4, IL10RA, SIT1, CD28, and ICOS in UC patients. FOXP3, the core transcription factor for Treg differentiation, was markedly downregulated. (Figures 1D, E).

The balance between Treg and Th17 cells is crucial for immune system stability, and its disruption can result in immune dysregulation, potentially leading to inflammatory diseases or autoimmune disorders. We investigated whether the transcriptional profile of Th17 cells in the colon of UC mice recapitulates the observed changes. Our analysis in UC model mice uncovered a pronounced upregulation of gene sets associated with Th17 cell differentiation and Th17-mediated immune responses. Th17 cells, known for their role in the inflammatory cascade of autoimmune diseases and as primary producers of IL-17 (including IL-17A and IL-17F), displayed a significant upregulation of gene sets implicated in IL-17 production. Intriguingly, our results also demonstrated that moxibustion at acupoint ST36 resulted in the downregulation of these gene sets (Figure 1F), implying a potential therapeutic strategy for inhabited Th17 cell differentiation and IL-17 production in the UC mouse colon.





The expressions of FOXP3 and RORγt in Treg and Th17 cells of the UC mice colon are disrupted

FOXP3 and RORγt are essential transcription factors for Tregs and Th17 cells respectively. To confirmed our transcriptomic findings, we assessed the expression of FOXP3 and RORγt in the colonic tissues of DSS-induced UC mice model. Immunofluorescence studies revealed a decrease in FOXP3 expression and an increase in RORγt expression in the UC group. Similarly, the mRNA expression results reflected these changes, with an increased in Rorγt and a decline in Foxp3 mRNA levels in the colonic tissues of UC mice (Figure 2). These observations imply that aberrant transcription factor expression or functional disturbed in the UC colon may disrupt the Treg and Th17 cell-mediated immune balance, thereby exacerbating the immunopathological process.
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Figure 2 | The protein and mRNA expression levels of FOXP3 and RORγt in DSS-induced UC mice. (A) Immunofluorescence staining for FOXP3 (white arrow) in colonic tissue (400×, scale bars = 50 μm, n=4). (B) Immunofluorescence staining for RORγt (white arrow) in colonic tissue(40×, scale bars = 50 μm, n=4). (C, D) Relative mRNA expression of Foxp3 and Rorγt in colon tissue(n=3). Error bars = mean ± SD. **p < 0.01, ***p < 0.001.





SIRT1 is activated in LPS-induced inflammation and modulates the Treg/Th17 immune balance axis

Studies have demonstrated that abnormal levels of acetylation modification may play a crucial role in the pathological process of UC (16, 17). To further elucidate the transcriptional changes in UC colon, transcriptome data from UC patients were selected. Through integration, dimension reduction, and clustering analysis of the UC transcriptome data, we identified a total of 22 distinct clusters, by using CD4 molecules as markers, we successfully annotated CD4+ cells and found high expression levels in cluster 0 and cluster 13 (Figure 3A). Further investigation into the gene sets within these clusters revealed significant alterations, particularly a marked reduction in genes associated with protein acetylation modification in the colonic tissue of UC patients (Figures 3B, C). Evidence once reported post-translational modifications of acetylation is crucial in Th17 cells mediated inflammation (8). Histone acetylation modification is mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). By adding or removing acetyl groups to histones, they can regulate protein stability, enzymatic activity, and gene transcription, either directly or indirectly (18).
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Figure 3 | SIRT1 regulates the proportion of Th17 and Treg cells. (A) UMAP plots of clusters and the expression level of CD4 + cells in cluster 0 and cluster 13. (B) Enrichment plots of acetylation from GSEA in UC colon. (C) The pathway activity score of acetylation in colon tissue. (D, E) Immunofluorescence staining of SIRT1(white arrow) in LPS-induced colonic epithelial cell inflammation (400×, scale bars = 50 μm, n=4). Error bars = mean ± SD. (F) The expression level of TNF-α after exposure to LPS (50 μg/mL) and different concentrations of SIRT1 inhibitor (EX-527) (0–100 μM) for 24 hours (n = 4). Error bars = mean ± SD. (G) Immunofluorescence staining of SIRT1 (white arrow) in UC mice colon (400×, scale bars = 50 μm, n=4). (H) The percentage of CD25+FOXP3+T cells and CD4+IL-17A +T cells in peripheral blood after EX-527 intervention (n=3). Error bars = mean ± SD. *p< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. DSS group. DSS, dextran sulfate sodium salt; TNF-α, tumor necrosis factor; LPS, lipopolysaccharide; IL-10, interleukin 10; TGF-β1, transforming growth factor-β.

SIRT1 is an NAD+ dependent histone deacetylases involving in acetylation modification, which has been reported to participate in the progression of inflammation (19, 20). To investigate the role of SIRT1 in colonic inflammation, we isolated colonic epithelial cells for further in vitro experiment. The results show that in LPS-induced colonic epithelial inflammation, the expression of SIRT1-positive cells significantly increased (Figures 3D, E). To further clarify the influence of SIRT1 expression on inflammation, we co-cultured colonic epithelial cells with different concentrations of the SIRT1 inhibitor EX-527, the results showed that after inducing with LPS, the expression of TNF-α exhibited a significant decrease at different concentrations of SIRT1 inhibitor EX-527 (0 μM - 100 μM). Especially, at the concentration of 10 μM, the expression level of TNF-α was the lowest (Figure 3F).

Evidences of the imbalance of the Treg/Th17 immune axis contribute to the development of UC, meanwhile, SIRT1 also play a crucial role in regulating of T cell metabolism and functions (21), however, whether SIRT1 enables to affect the Treg/Th17 immune axis remain unknown. Despite their different functions, Th17 cells and pTreg cells arise from a common precursor cell, the naiveCD4 +T cells. Thus, in our experiments, by using naiveCD4+ T cells, we observed that at a concentration of 10 μM, the SIRT1 inhibitor EX-527, promoting the percentage of Treg and decrease the percentage of Th17 cells (Supplementary Figures S1A, B). The expression of the immunosuppressive cytokine TGF-β1 and IL-10 significantly increased. (Supplementary Figure S1C). Conversely, treatment with the SIRT1 activator SRT1720 revealed that SIRT1 activation decreased the proportion of Treg cells and increased the proportion of Th17 cells (Supplementary Figures S1D, E), which corresponded with a reduction in the expression of IL-10 and TGF-β1 (Supplementary Figure S1F). These findings indicate that upregulation of SIRT1 promotes inflammatory progression, whereas EX-527 can downregulate SIRT1 expression to mitigate the development of colitis.

In vivo, we also observed an increase in the expression of SIRT1 in the colonic tissue of UC mice (Figure 3H). To investigate the role of SIRT1 in colitis development, specifically its impact on the Treg/Th17 balance, we utilized EX-527 in subsequent in vivo studies. EX-527 was given at a dose of 10 mg/kg, based on the reported in previous studies (22, 23). In peripheral blood, we found the proportion of CD25+Foxp3+ T cells in the UC mice increased after inhibitor intervention, upon examination of CD4+IL-17A+ T cells in UC mice showed an increasing trend but without statistical significance (Figure 3G). In spleen, after inhibitor intervention, the proportions of CD4+IL-17A+ T cells in the UC mice decreased (Supplementary Figure S1J). Furthermore, we found the given of inhibitor lead to an increase expression of Foxp3 mRNA while decreased the expression of Rorγt mRNA expression in the UC colon tissues. These results strongly indicate that SIRT1 is closely related to the expression and activity of Foxp3+Treg and Rorγt +Th17 cells.





Moxibustion alleviated the symptoms of DSS-induced colitis in mice

Moxibustion, a Traditional Chinese Medicine treatment which was used in preclinical experiments and clinical trials, has shown significant efficacy in alleviating UC symptoms such as abdominal pain and diarrhea. To evaluate the therapeutic effect of moxibustion on UC, we assessed the body weight loss of UC mice, the results displayed DSS-induced UC mice exhibited significant weight loss on the 5th day, notably, after moxibustion treatment, the weight loss in UC mice was reduced (Figure 4A). Macroscopic evaluations of colonic inflammation included measuring the length of the colon and the weight of the spleen. In the UC mice, a decrease in colon length was observed (Figures 4B, C), while the spleen weight increased almost double times when compared to the Control group (Figures 4E, F). The hematochezia is a main symptom of UC diseases, thus we assessed the fecal occult blood testing (FOBT) in mice, the results showed moxibustion treatment significantly reduces the bleeding in UC mice (Figure 4D). The disruption of the intestinal barrier is commonly observed in UC (24). Therefore, we detected the intestinal mucosal permeability by testing blood FITC-dextran, the results revealed the intestinal permeability in UC mice significantly increased while moxibustion decreased the intestinal permeability in UC mice (Figure 4G). Meanwhile, the results of HE staining showed that in UC mice, the structure of colonic tissue disrupted, characterized by significant ulcerative sites, structural disorder, and of inflammatory cells. However, after moxibustion treatment, there was partial recovery in colon morphology, relief of disruption in mucosal and glandular structure, absence of noticeable ulcerative sites. (Figure 4H). These results shows that moxibustion can alleviate intestinal inflammation and promote the recovery of intestinal mucosal barrier function in UC mice.
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Figure 4 | Moxibustion alleviates colonic pathological damage in UC mice. (A) Changes in the daily initial body weight loss of mice in each group (n = 8). Error bars = mean ± SD. (B, C) Colonic length in different groups (n = 6). Error bars = mean ± SD. (D) fecal occult blood test in different groups (n = 6). (E, F) The changes in spleen volume and weight in mice. Error bars = mean ± SD. (G) Blood FITC-dextran concentration (n = 6). Error bars = mean ± SD. (H) Representative images of HE staining of the colon (200 x, scale bars = 100 μM, green arrow represent ulcerative site of colon). ###p < 0.001 vs. control group; **p < 0.01, ***p < 0.001 vs. DSS+Moxi group. FITC, fluorescein isothiocyanate; Con, control; Moxi, moxibustion. HE, hematoxylin-eosin.





Inhibition of SIRT1 facilitated moxibustion to restore the balance of Treg/Th17

Post-translational modifications (PTMs) of acetylation is crucial in Treg/Th17 axis mediated inflammation response (8). Previous studies demonstrated moxibustion is able to modulate the expression of STAT3, HIF-1α, RORγt and FOXP3 in UC mice, which contribute to the rebalancing of Th17/Treg axis (25, 26). To elucidate whether moxibustion affects the expression of FOXP3 and RORγt through modulation of PTMs and thereby regulates the balance of the Treg/Th17 axis, we proceeded with the following experiments. By utilizing pan-antibody assays, we first investigated the expression profiles of various PTMs, including acetylation, phosphorylation, ubiquitination, succinylation, crotonylation within the colonic tissues of UC mice, as well as the potential modulatory effects of moxibustion on these modifications. The results revealed that moxibustion exerted a regulatory effect on acetylation, predominantly characterized by a decrease in acetylation levels within the colonic tissues of UC mice, which was subsequently elevated after moxibustion treatment. This led us to hypothesize whether SIRT1 related pathways can promote or inhibit the role of moxibustion. We firstly assessed the changes of SIRT1 expression in the colonic tissue after moxibustion treatment. In UC mice, the expression of SIRT1 was increased, however, after moxibustion intervention, SIRT1 expression was found to be decreased (Figures 5A, B). Additionally, we measured the expression levels of FOXP3 and RORγt in colonic tissues. Immunofluorescence results indicated that compared to control group, FOXP3 expression decreased while RORγt expression increased. Notably, moxibustion treatment enhanced FOXP3 expression while reducing RORγt levels in the colons of UC mice (Figures 5D, E). These results provide compelling evidence that moxibustion treatment capable of regulating the expression of SIRT1, FOXP3 and RORγt.
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Figure 5 | Moxibustion downregulated the expression of SIRT1 in the colon and restored the ratio of Treg to Th17 cells. (A, B) Quantification of the western blot results of SIRT1 in colon tissue (n = 4-6). Error bars = mean ± SD. (C) Immunofluorescence staining of SIRT1 (white arrow) in colon tissue (400×, scale bars = 50 μM, n = 3). (D, E) Immunofluorescence staining for FOXP3/RORγt (white arrow) in colonic tissue (400×, scale bars = 50 μM, n = 4). (F-H) The percentage of CD25+FOXP3+ T cells and CD4+IL-17A + T cells in peripheral blood of after moxibustion and EX-527 intervention(n=4). Error bars = mean ± SD. (I, J) Relative mRNA expression of Foxp3 and Rorγt in colon tissue after moxibustion and EX-527 intervention (n=3). Error bars = mean ± SD. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared with DSS group. FOXP3, forkhead/winged helix transcription factor; RORγt, retinoid related orphan receptor gamma t; T cell, T lymphocyte cell.

To further clarify whether moxibustion can drive SIRT1 and subsequently impact the Th17/Treg axis, we examined the effects of moxibustion on Th17 and Treg cell proportions following SIRT1 inhibition. The expression of Foxp3 and Rorγt respectively reflect the expression of Treg cells and Th17 cells in the body. Our results showed the expression of Rorγt mRNA in the colonic tissues increased while the expression of Foxp3 mRNA decreased. However, after receiving moxibustion or inhibitor intervention, the expression of Rorγt mRNA decreased, and the expression of Foxp3 mRNA increased, the combined use of moxibustion and inhibitors can more effectively regulate the expression of Foxp3 and Rorγt mRNA (Figures 5I, J). In peripheral blood, we found the proportion of CD25+Foxp3+ T cells in the UC mice increased significantly after moxibustion intervention. Notably, the combined application of moxibustion and inhibitors resulted in a more pronounced increase in the proportion of Treg cells. Although there was a trend towards a decrease in CD4+IL-17A+ T cells following moxibustion, this change was not statistically significant. In contrast, the combined use of moxibustion and inhibitors resulted in a marked reduction in CD4+IL-17A+ T cells (Figures 5F–H). In spleen, it was also found that the proportion of CD4+IL-17A+ T cells in UC mice increased, while the inhibitor enforced the ability of moxibustion to decreased the proportion of CD4+IL-17A+ T cells. (Supplementary Figure S3). These results indicate that the expression of SIRT1 can be modulated by moxibustion, and in the context of SIRT1 inhibition, moxibustion significantly enhances the regulation of the Th17/Treg balance.





SIRT1 inhibitors enhance the therapeutic effects of moxibustion on intestinal barrier protection

To further investigated the contribution of the moxibustion to the observed responses mediated by SIRT1 inhibition, the inhibitors EX-527 was administered in vivo and the mice showed a reduction in the DAI (P < 0.001) and an increase in the colon length (P < 0.01) (Figures 6A–C). Meanwhile, we also found that UC mice exhibited a higher expression of TNF-α and IL-6, after moxibustion and EX-527 intervention, the levels of TNF-α and IL-6 significantly decreased (Figures 6E, F). The integrity of intestinal barrier is important for intestinal defense. The tight junctions (TJs) which including ZO-1 and Occludin both are important components of intestinal barrier. To identify the roles of SIRT1 in the pathogenesis of intestinal barrier, we observed the role of SIRT1 in TJs regulations. Electron microscopy results revealed that mice with UC exhibited disrupted intercellular junctional structures, mitochondrial swelling, and vacuolization, however, following the intervention of moxibustion and EX-527, the integrity of tight junctions (TJs) was restored, indicating a positive effect on the repair of intercellular connections and the improvement of mitochondria homeostasis (Figure 6G). Moreover, results demonstrated that the combination of moxibustion and EX-527 showed the most substantial reduction in plasma FITC-dextran content (Figure 6D). Additionally, we observed a decrease of ZO-1 and Occludin in the mucosal layer in UC mice, whereas moxibustion and EX-527 significantly increased their expression in the intestinal mucosal layer (Figures 6H, I). These findings provide evidences that EX-527 intervention enhances the protective effects of moxibustion on the integrity and function of the intestinal barrier in mice with UC.

[image: Bar graphs, images, and labeling detail an experiment examining treatments' effects on ulcerative colitis (UC). Graphs (A-F) show scores and levels of various markers, indicating UC severity and response to treatment (Control, DSS, EX527, DSS+Moxi, EX527+Moxi). Panel B displays colons from different treatment groups. Panel G depicts microscopic images of tissue structure. Panels H and I show fluorescent staining for proteins ZO-1 and Occludin, comparing expression across groups. Statistical significance is annotated with asterisks, and results illustrate the impact of treatments on UC indicators.]
Figure 6 | EX-527 enhances the protective effects of moxibustion on the intestinal barrier. (A) DAI score of UC mice after (n=6). Error bars = mean ± SD. (B, C) The length of colon after moxibustion and EX-527 intervention (n = 6). Error bars = mean ± SD. (D) Blood FITC-dextran concentration after moxibustion and EX-527 intervention (n = 3). Error bars = mean ± SD. (E, F) Concentration of IL-6 and TNF-α in different group (n = 3). (G) Electron microscopy images of cell tight junction (green arrows) in different group (scale bar= 1μM, 10000×, n=3). (H, I) Immunofluorescence staining of ZO-1 and Occludin (white arrow) in colon tissue after EX-527 and moxibustion intervention (scale bar=50μM, 400×, n=3). Error bars = mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared with the DSS group. ZO-1, zonula occludens-1; DAI, disease activity index.






Discussion

In this study, we report a significant reduction in protein acetylation levels in the colonic tissues of patients with UC, accompanied by an overactivation of Th17-mediated immune responses in the UC context. This alteration is likely linked to an abnormal of acetylation modifications. Through detailed investigations, we demonstrate that SIRT1, a key deacetylase, mediating the acetylation levels of the upstream core transcription factors RORγt and FOXP3 in Treg and Th17 cells, thereby influencing the differentiation of naive T cells into Th17 cells or Tregs (Figure 7). Notably, the inhibition of SIRT1 expression promotes Treg differentiation and enhances the secretion of anti-inflammatory cytokines, while concurrently suppressing Th17 differentiation and the release of pro-inflammatory cytokines.

[image: Illustration showing the process of moxibustion affecting RORγt and FOXP3 deacetylation by SIRT1 in a mouse model. A mouse is depicted with highlighted acupoints ST36 and CV4. Inset detail shows RORγt linked to Th17 and FOXP3 linked to Treg. Acetyl groups inhibit SIRT1, represented by scissors indicating deacetylation.]
Figure 7 | Moxibustion regulates the deacetylation of RORγt and FOXP3 by SIRT1. Moxibustion  at the ST36 and CV4 acupoints in UC mice can suppress the expression of SIRT1 in mouse colonic tissue, consequently restoring the Th17/Treg axis and mitigating inflammation by influencing the expression of the upstream core transcription factors  RORγt and FOXP3 in Th17/Treg cells respectively.

An imbalance between Tregs and Th17 is implicated in the pathophysiology of UC. In the active phase of UC, particularly in the context of Epstein–Barr virus infection, there is a marked decrease in the expression of Foxp3 in Tregs, which inversely correlates with serum C-reactive protein and Mayo score, suggesting their potential role in UC remission (27, 28), Tregs and Th17 cells, primarily found in the spleen and peripheral blood, are mobilized and transferred to intestinal ulcer sites at UC onset, particularly in Peyer’s patches and the spleen, leading to disrupted homeostasis of Treg and Th17 cells and further promoting inflammation and intestinal damage (29, 30).

Treg and Th17 cells both differentiate from CD4+T cells. The differentiation of Tregs and Th17 cells within distinct cytokine environments is crucial in the pathogenesis of conditions such as gastrointestinal and pulmonary disorders, as well as neurological diseases (31–34). FOXP3 and RORγt are essential transcription factors for Tregs and Th17 cells, respectively. The equilibrium between these factors is essential for the differentiation of naive T cells and for maintaining immune homeostasis across organs, including the gastrointestinal.

PTMs are crucial for regulating intracellular proteins and enabling rapid cellular responses to external signals. With over 600 types identified, acetylation stands out as a highly conserved modification affecting various biological processes, including transcription, signaling, protein stability, metabolism, and pathogen responses (35, 36).

Acetylation is a fundamental regulatory mechanism for both FOXP3 and RORγt, influencing T cell subset differentiation. Evidence indicates histone deacetylase (HDAC) can suppress RORγt transcription and the expression of RORγt-dependent genes. In vitro studies have shown that Th17 cells can be induced to express RORγt upon treatment with HDAC inhibitors such as Sodium butyrate and Apicidin (37). Conversely, applying these inhibitors during the differentiation of naive CD4 cells into Th17 cells results in reduced RORγt gene expression, suggesting that deacetylase inhibitors play a role in modulating RORγt expression at specific stages of T cell differentiation (8).

SIRT1, a member of the sirtuin family and a highly conserved NAD+ dependent deacetylase, acts as a post-translational regulator that mediated various biological processes, including cell aging and apoptosis, glucose and lipid metabolism, oxidative stress as well as involved in modulating inflammation (9, 38). In intestinal, SIRT1 can promote the onset and progression of inflammatory bowel disease(IBD), loss of Sirt1 can increase the number of Paneth cells and goblet cells and alleviate colitis (39). Meanwhile, SIRT1 has been found to have a pro-inflammatory effect on the generation and function of Th17 cells by promoting IL-17 production through the stabilization of RORγt (40). In our study, we found that SIRT1 is upregulated and the Th17/Treg axis is disrupted in UC mice. Treatment of UC mice with the SIRT1 inhibitor EX-527 resulted in increasing mRNA expression of FOXP3 in colonic tissues and a higher ratio of Treg cells. This may be related to potential links between SIRT1 deacetylation sites on FOXP3, including K31, K262, K267 and K142 (41, 42). Furthermore, the application of SIRT1 inhibitor EX-527 significantly reduced the mRNA expression levels of RORγt in Th17 cells, resulting in a decreased ratio of Th17 cells.

In addition, our research also indicates that moxibustion can effectively regulate the expression of SIRT1 in UC colon tissue. SIRT1 mediated deacetylation of RORγt and FOXP3 also participates in the mechanism of moxibustion. Inhibiting SIRT1 levels will promote the therapeutic effect of moxibustion. Moxibustion has been used since ancient China to treat diarrhea, abdominal pain and improving the quality of life in patients with IBD (43, 44). However, due to the unclear mechanism of moxibustion and the uncertain ideal therapeutic effect, its widespread application is limited. Our results indicate that combination using moxibustion and EX-527 have a positive therapeutic effect on DSS-induced UC mice, including improving the general condition of UC mice, alleviating UC symptoms, restoring lost body weight, increasing colon length, significantly reducing the DAI score and decreasing intestinal mucosal permeability. Furthermore, this joint application improves colonic tissue morphology, maintain the integrity of colonic mucosal barrier, and reduces mucosal edema and inflammatory cell infiltration, thereby providing therapeutic benefits for UC.

This study is a laboratory research and further clinical validation is necessary. In addition, it is unclear whether other deacetylases also play similar roles. Furthermore, SIRT1 has multiple functions, other pathways such as inflammatory pathways, insulin related pathways (45), mitochondrial (46) and oxidative stress (47) may also be involved and should be investigated in the future.





Conclusion

Our research shows that inhibition SIRT1 can improve UC by regulating FOXP3 and RORγt, which are upstream transcription factors of the Treg and Th17 immune balance axis. This finding indicates a new important potential target for the treatment of UC.
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Objectives

Genome-wide association studies (GWAS) have pinpointed several risk loci linked to thyroid cancer; however, the discovery of new plasma proteins implicated in immunosenescence continues to pose significant challenges. This study aims to uncover novel plasma proteins tied to aging, potentially contributing to thyroid cancer, utilizing diverse investigative methodologies.





Methods

In this research, we utilized an integrative omics approach to identify novel plasma proteins associated with immunosenescence in relation to the risk of thyroid cancer. Additionally, we performed meta-analyses to pinpoint loci and genes affected by pleiotropic effects. Finally, complementary results were obtained from an independent cohort analyzed at Chongqing Medical University Yongchuan Hospital and Bulk-RNA seq from GEO database.





Results

Causal analysis suggests that DNA methylation age acceleration as measured by the Hannum method increases the risk of thyroid cancer (OR: 1.126, 95% CI: 1.002-1.265, P=0.046). Subsequently, we conducted a meta-analysis on the relationship between Hannum DNA methylation age and thyroid cancer risk, which identified 138 potential risk loci through FUMA. Additionally, proteomics and transcriptomics collectively identified 6 potential targets related to immunosenescence and thyroid cancer. Subsequently, Bulk-seq results indicated differential expression of GFRA2 and LILRA2 genes in thyroid cancer. Finally, analyses from an independent cohort at the Second Affiliated Hospital of Chongqing Medical University also demonstrated high expression of LILRA2 in thyroid cancer patients.





Conclusions

This study identified novel plasma proteins associated with immunosenescence that may be linked to thyroid cancer development. These findings enhance our understanding of the immunosenescence-thyroid cancer link and support future diagnostic and therapeutic developments.
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Introduction

Thyroid cancer represents the most prevalent form of endocrine malignancy, with a global annual incidence of 15.7 cases per 100,000 people (1). Each year, approximately 567,233 new cases are diagnosed, and 41,071 fatalities are reported worldwide (2, 3). This type of cancer is subdivided into four main categories based on pathogenesis, histopathological characteristics, and clinical manifestations: differentiated, poorly differentiated, anaplastic, and medullary thyroid cancers. Of these, differentiated thyroid cancers are the most common, constituting about 80% of all cases and generally associated with a favorable prognosis (4). Given the substantial economic impact thyroid cancer imposes on patients (5), early detection and effective management are essential to mitigate its detrimental effects. Although traditional diagnostic methods are widely employed in clinical practice, their sensitivity remains suboptimal. In this context, plasma proteins have garnered significant attention as potential diagnostic biomarkers. As functional molecules within the body, plasma proteins typically exhibit alterations during disease onset and progression, particularly in the early stages of cancer. Consequently, plasma proteins hold promise as crucial tools for the early screening and diagnosis of thyroid cancer.

Aging, a complex and multifactorial process, leads to a generalized functional decline across all bodily organs and tissues. The question of whether aging stems from a single causal mechanism or multiple origins remains unresolved (6). Epigenetic clocks serve as precise aging markers, correlating with various diseases, including thyroid cancer, through the use of weighted linear combinations of CpGs and DNA methylation to estimate chronological age (7). Increasingly, research underscores a robust link between aging and the development of thyroid cancer, with studies also connecting DNA methylation to the aging process (8). Perhaps due to the important role metabolism plays in inflammation and aging (9–11). Therefore, examining the role of DNA methylation in thyroid cancer is crucial. While there is growing evidence that accelerated aging is linked to age-related diseases and conditions, some investigations report no association between epigenetic clocks and thyroid cancer (12).

Recent progress in transcriptomic and proteomic profiling has dramatically enhanced our ability to access gene products specific to tissues and circulating systems, relevant to both health and disease scenarios. However, linking gene transcript or protein abundance directly to phenotypes in observational studies may be prone to confounding or could indicate reverse causation (13). Integrating genetic data with transcripts, proteins, and phenotypic information enables the identification of distinct biomarkers as potential causal agents in diseases (14). For instance, Gusev et al. utilized single-nucleotide polymorphisms (SNPs) in cis to genetically infer transcripts and associate them with GWAS summary statistics for selected traits, thereby demonstrating causality via a transcriptome-wide association study (TWAS) (15). We have recently adapted this approach for proteome-wide association studies (PWAS), applying genetically imputed plasma proteome models integrated with transcriptomic data to explore potential therapeutic targets for thyroid cancer (16). Employing TWAS and PWAS as instrumental variable (IV) analyses, akin to two-sample MR, these genetic models are limited to the cis-regions of gene transcripts or proteins, helping to reduce confounding risks like horizontal pleiotropy through a focus on nearby genetic variants (17). Additionally, colocalization analyses address multiple causal variants in the same region, thus diminishing the potential for genetic confounding arising from linkage disequilibrium (18–20). In brief, in this study, we utilized an integrative omics approach that combines genomic, transcriptomic, and proteomic data to investigate the role of immune senescence in thyroid cancer risk. Initially, we conducted GWAS to identify genetic loci associated with thyroid cancer, providing a foundation for exploring the potential pleiotropic effects of aging on cancer susceptibility. We then applied Mendelian randomization to assess the impact of DNA methylation age acceleration, gaining insights into the epigenetic processes of aging and their potential influence on cancer risk. To further explore the molecular mechanisms, proteomics was used to identify plasma proteins differentially expressed due to immune senescence, shedding light on aging-related molecular changes and their role in tumor progression. Additionally, Bulk-RNA sequencing was utilized to examine gene expression changes in thyroid cancer tissues, revealing genes associated with aging and immune senescence. By integrating genetic, epigenetic, proteomic, and transcriptomic data, we developed a comprehensive framework to understand how aging and immune senescence influence thyroid cancer. This approach facilitates the identification of potential biomarkers for early detection and therapeutic targets, offering new opportunities to improve diagnosis and treatment strategies.

In our research, we executed a detailed omics pipeline analysis aimed at pinpointing potential drug targets linking aging and thyroid cancer. The methodology is outlined in Figure 1. Initially, we applied TWAS and PWAS to ascertain potential causal plasmas for aging and thyroid cancer, leveraging GWAS data. To corroborate our results, we performed external validation using an independent cohort from Chongqing Medical University Yongchuan Hospital, supplemented with Bulk-RNA sequencing data from the GEO database.

[image: A flowchart illustrating a study on the relationship between aging and thyroid cancer. It starts with statistical analysis, followed by a GWAS meta-analysis plot, and correlation analysis between proteomics and transcriptomics. The chart details SNP-transcription-protein relationships using a colorful table. A heatmap and bar graphs assess immune infiltration, concluding with a Venn diagram of PWAS and TWAS results, and a bar chart comparing mRNA levels of genes in normal vs. thyroid cancer samples.]
Figure 1 | The flowchart systematically described our study. ns indicates no significance, *P<0.05.





Materials and methods




Date source

The study design is shown in Figure 1. Genetic variants associated with the aging process were identified from an extensive meta-analysis in the GWAS Catalog. This analysis encompassed 34,710 individuals from 28 European cohorts, focusing on DNA methylation age acceleration measures including Hannum age acceleration (34,449 samples, 7,541,726 SNPs), PhenoAge acceleration (34,463 samples, 7,545,555 SNPs), and GrimAge acceleration (34,467 samples, 7,544,493 SNPs) (7). Similarly, genetic data pertaining to thyroid cancer were obtained from the same GWAS Catalog, derived from a large-scale prospective cohort study comprising over 459,000 European individuals (21). The gene expression matrix for thyroid cancer patients used in this study was sourced from the Gene Expression Omnibus (GSE27155), a database maintained by the National Center for Biotechnology Information.





Selection of instrumental variables

Initially, SNPs were filtered using Plink Software based on the following criteria: a P-value less than 5×10⁻⁸, a genetic distance of 10,000 kb, and a linkage disequilibrium parameter (r²) less than 0.01 from the GWAS focused on the aging process. Further, both the catalog and PhenoScanner databases were employed to determine if these SNPs had associations with known confounders, such as epigenetic age acceleration. Any SNP identified as linked to these confounders was excluded from our study (22).





Statistical analysis

In this study, the primary technique for deducing causal relationships was the inverse variance weighted (IVW) method. This method was implemented using fixed effects models in scenarios without horizontal multiplicity heterogeneity, and random effects models when such heterogeneity was evident. To enhance the robustness and validate the IVW results, several supplementary methodologies were employed, including MR-Egger, MR-PRESSO, the weighted median approach, and maximum likelihood estimation. Specifically, maximum likelihood estimation refines the estimation of causal effects by optimizing the likelihood function under the assumption of a linear relationship between the exposure and the outcome. Conversely, the MR-Egger method undertakes weighted linear regression on the exposure outcomes, adhering to the InSIDE assumption, which necessitates rigorous scrutiny of the instrument variables’ validity. Furthermore, the MR-PRESSO method plays a crucial role in identifying and rectifying horizontal pleiotropy, ensuring that the IVW estimates remain unbiased from pleiotropic influences. Collectively, these methods establish a comprehensive analytical framework, significantly bolstering the study’s ability to accurately establish causal connections (23–25).





Genetics risk score

To provide a thorough assessment of the association between alleles influencing exposure and the outcome, MR analyses were conducted bidirectionally using a weighted Genetic Risk Score (GRS) as IVs (26). This approach leveraged the same summary data as outlined previously in the study.





Pleiotropy and heterogeneity analysis

In this investigation, heterogeneity was assessed using Cochrane’s Q statistic derived from the IVW method, with a p-value less than 0.05 indicating statistical significance. For identifying directional pleiotropy, both the MR-Egger intercept and MR-PRESSO methods were utilized, considering a p-value below 0.05 as indicative of the presence of pleiotropy. Specifically, the MR-PRESSO method is tailored to address pleiotropy through a structured three-step procedure: detection of horizontal pleiotropy, correction by removing outlier SNPs, and evaluation of causal estimates pre- and post-correction to ascertain any substantial changes. Additionally, the robustness of our results was further validated using a leave-one-out approach, which gauges the impact of individual SNPs on the overall Mendelian Randomization analysis. This approach helps confirm that the causal inferences are not unduly influenced by any single SNP, thereby enhancing the reliability of the findings.





GWAS meta-analysis

To identify shared risk SNPs between aging and thyroid cancer, we conducted two cross-trait meta-analyses. The first was a GWAS meta-analysis performed using the Meta-analysis software. We then annotated the SNPs using ANNOVA and eqtl tools, and their potential risk loci were identified using FUMA, which helps pinpoint significant genetic associations and potential functional implications of the identified SNPs.





Proteome-wide association studies

We utilized the FUSION tool to carry out PWAS (27). FUSION assessed the influence of SNPs on protein levels through various predictive models, including top1, blup, lasso, enet, and bslmm. The model exhibiting the highest predictive accuracy was selected for subsequent analysis. For this chosen model, we calculated protein weights specific to tissues relevant to the Meta-GWAS. These weights were then integrated with the genetic effects, represented by GWAS z-scores, to perform the PWAS. This integration involved computing the linear sum of the products of z-scores and weights for the independent SNPs at each locus.





Transcriptome−wide association studies

We conducted a TWAS using the FUSION workflow, which incorporated tissue-specific weights relevant to Meta-GWAS (27). Our predictive models employed a range of methodologies. These models were aligned with LD reference data from the European ancestry cohort of the 1000 Genomes Project. This approach enabled a comprehensive analysis of how gene expression impacts Meta-GWAS phenotypes, facilitating a deeper understanding of genetic contributions to these traits.





Summary-data-based Mendelian randomization

To explore the impact of SNPs on the expression of potential drug targets and their role in the development of Meta-GWAS phenotypes, we employed Summary-data-based Mendelian Randomization (SMR) analysis. This technique combines summary statistics from GWAS with data from protein Quantitative Trait Loci (pQTL) and expression Quantitative Trait Loci (eQTL) within a Mendelian Randomization framework, allowing for the assessment of associations between gene expression levels and target phenotypes. We focused our SMR analysis on genes relevant to them that showed significant SNP-heritability enrichment. In this context, genome-wide significant SNPs were used as instrumental variables. To determine whether the observed associations were attributable to linkage rather than pleiotropy or direct causality, we utilized the Heterogeneity In Dependent Instruments (HEIDI) test. Additionally, the HEIDI-outlier test, a component of the SMR approach, was specifically applied to distinguish between causality and pleiotropy by analyzing the homogeneity of effects across multiple loci.





Evaluation of immune infiltration

In this study, many algorithms were used to calculate the immune infiltration (28).





Differentially expressed genes

Differentially expressed genes (DEGs) were used with ‘wilcox’ test, limma analysis, t-test (29–31).





Quantitative reverse−transcription polymerase chain reaction

In this study, we included three individuals diagnosed with thyroid cancer and three healthy subjects from Chongqing Medical University Yongchuan Hospital to undergo qPCR analysis (32, 33). We processed the collected blood by centrifuging it at 3,000 rpm for 10 minutes. After centrifugation, the supernatant serum was collected for mRNA extraction. Total RNA was extracted from the serum using the Trizol reagent (Life Technologies, USA). The extracted RNA was then converted to cDNA using the RevertAid First Strand cDNA Synthesis Kit (Fermentas, Canada). Amplification via PCR was conducted using the QuantiTect SYBR Green PCR Kit (Qiagen, Inc) on the ABI Prism 7000 detection system from Applied Biosystem (CA, USA). PCR amplification was carried out utilizing the QuantiTect SYBR Green PCR Kit (Qiagen, Inc) on the ABI Prism 7000 sequence detection system (Applied Biosystem, CA, USA). All experiments were conducted five times to ensure accuracy, and the specific primer sequences utilized are detailed in Table 1.



Table 1 | RT-qPCR primer sequences.

[image: Table displaying gene primers. For ACTB: forward primer is CATGTACGTTGCTATCCAGGC, reverse is CTCTTTAATGTCACGCACGAT. For GFRA2: forward primer is GGGCCTTTATGCTGGCATGAT, reverse is AGTCCCTGAGGAACTTCTCAC. For LILRA2: forward primer is CACTCATCAGACACGTAGGACCC, reverse is GTTCGAGTCATAAGCATAGACC.]





Results




Mendelian randomization statistical of DNA methylation accelerations and thyroid cancer

With IVW approach, we observed DNA methylation Hannum age acceleration correlated positively with thyroid cancer (OR:1.126, 95%CI: 1.002-1.265, P=0.046) (Figure 2). And the GRS results also suggest that DNA methylation Hannum age acceleration may be associated with the risk of thyroid cancer (Beta: 0.1185, SE: 0.049, P=0.017) (Figure 2). Additionally, pleiotropy and heterogeneity analysis reported no significant in this study. The MR-PRESSO results also indicated the absence of horizontal pleiotropy (P=0.159). This suggests that our analysis is robust and credible (Figure 2). Besides, funnel plot also confirmed that the causality between DNA Methylation Hannum age Accelerations and thyroid cancer was essentially unaffected by potential bias (Figure 2). Additionally, we did not find any significant correlation between other DNA Methylation Accelerations and thyroid cancer in relation to the thyroid (Figure 2).

[image: A: Forest plot displaying results of five MR methods. Red points indicate effect estimates, with horizontal lines for confidence intervals. P-values are listed for each subgroup. B: Scatter plot featuring genetic variants with horizontal and vertical error bars. Red and blue lines represent different regression models. C: Forest plot showing sensitivity analysis for genetic variants with horizontal lines for confidence intervals. D: Funnel plot illustrating MR method comparisons, with vertical reference lines for inverse variance weighted and MR Egger methods. E: Forest plot comparing two DNA methylation accelerations using multiple MR methods, with effect estimates and confidence intervals marked.]
Figure 2 | Mendelian randomization (MR) result in this study. (A) Forest plot for DNA Methylation Hannum age Accelerations and thyroid cancer. (B) Genetic Risk Score (GRS) plot for DNA Methylation Hannum age Accelerations and thyroid cancer. (C) Leave-one-out analysis for DNA Methylation Hannum age Accelerations and thyroid cancer. (D) Funnel plot for DNA Methylation Hannum age Accelerations and thyroid cancer. (E) Other forest plots for DNA methylation and thyroid cancer.





GWAS meta-analysis

Subsequently, we conducted a meta-analysis of DNA methylation Hannum age and thyroid cancer (Figure 3), and FUMA identified a total of 138 potential risk sites (Figure 3, Supplementary Table S1). Subsequently, ANNOVA annotation results showed that most SNPs were located in the intron region (Figure 3, Supplementary Table S2). Finally, eqtl also showed that 131 genes are involved in DNA methylation Hannum age, promoting the occurrence of thyroid cancer (Supplementary Table S3).

[image: Panel A shows a Manhattan plot with significant peaks at multiple chromosomes, especially around chromosome 10. Panel B displays a bar chart comparing proportions of various genomic features, highlighting intronic and intergenic regions as the most common. Panel C illustrates multiple bar charts detailing genomic loci sizes, number of SNPs, mapped genes, and genes physically located in loci. Color-coded bars and specific data points are used to convey distribution insights across various categories.]
Figure 3 | Meta-GWAS result in this study. (A) Manhattan plot for Meta-GWAS. (B) Potential risk loci from Meta-GWAS. (C) ANNOVA annotates the function of SNPs.





Search and validation of potential drug targets

PWAS analysis revealed a close association between 76 proteins and GWAS-meta in ARIC (Figure 4). In TWAS, 516 genes were also closely associated with GWAS-meta (Figure 4). To determine whether SNPs affect GWAS-meta through the modulation of gene and protein expression, we employed SMR. The smr results found that the SNP’s influence on 6 genes could be due to causal relationships rather than pleiotropy (Figure 4).

[image: Panel A and B display line graphs with labeled data points, showing gene expression trends with p-values indicated by color gradients. Panel C and D present Venn diagrams illustrating overlapping data between PWAS, TWAS, and SMR categories. Panel E contains a circular diagram depicting KEGG pathways with color-coded segments representing different pathway categories. Panel F is a table listing genetic variants, their beta values for exposure and outcome, associated genes, and proteins, with color coding for categories.]
Figure 4 | The results of the joint analysis of multiple omics in this study. (A) PWAS result in this study. (B) TWAS result in this study. (C) VNN result between PWAS and TWAS. (D) VNN result between PWAS and TWAS and SMR. (E) KEGG analysis of candidate genes. (F) The relationship between SNP regulated genes and proteins.





Association between the thyroid cancer and immune infiltration

To delve deeper into immune infiltration and characterize the immune landscape, we quantified the abundance of 22 types of immune cells in the microenvironment, as depicted in Figure 5. In thyroid cancer patients, we observed differential expression levels across several immune cell subgroups, including M2 macrophages, neutrophils, CD8 T cells, dendritic cells, fibroblasts, among others. This analysis provided insights into the unique immune profiles associated with thyroid cancer, highlighting specific cellular dynamics that may influence disease progression and therapeutic responses.

[image: Panel A displays a heatmap of gene expression levels across clusters, with blue to red indicating low to high expression. Panels B and C show box plots comparing scores for various cell types between clusters labeled as MAB and MAC. Clusters are color-coded with blue for MAB and red for MAC.]
Figure 5 | Association between thyroid cancer and immune infiltration. (A) Heatmap describing the immune infiltration landscape. (B) Boxplots describing the distribution of expression for the immune. (C) TME cells signatures (ns indicates no significance, *P < 0.05, **P < 0.01.





Expression levels of hub genes

In DEG analysis, significant changes were observed in the expression of GFRA2 and LILRA2 genes in patients with thyroid cancer. When comparing serum mRNA expression levels between individuals with thyroid cancer and healthy controls, β-actin levels were found to be similar across both groups. However, there was a notable increase in the mRNA levels of LILRA2 in the plasma of patients with thyroid cancer, with this difference reaching statistical significance (P<0.05). This suggests that an upsurge in transcriptome levels may influence the development of the nervous system, as illustrated in Figure 6.

[image: A three-part image related to thyroid cancer research. Panel A shows a Venn diagram with areas labeled for rank-sum test, candidate biomarkers, T-test, and Limma analysis. Panel B displays a bar graph comparing mRNA levels of ACTB, GFRA2, and LILRA2 between normal and thyroid cancer samples, indicating significant increases in GFRA2 and LILRA2 in cancer. Panel C includes two bar graphs showing higher levels of TNF-α and IL-1β in thyroid cancer compared to normal samples, with significant differences marked.]
Figure 6 | External validation of candidate genes. (A) Intersection with candidate genes under three different differential analysis methods. (B) QPCR results in candidate genes. ns indicates no significance, *P<0.05.






Discussion

In this study, we analysis using summary statistics from the GWAS Catalog to investigate the potential causal relationship between aging—specifically, epigenetic age acceleration as measured by DNA methylation Hannum age—and the risk of developing thyroid cancer. This investigation marks the first effort to assess how aging, quantified through changes in DNA methylation, may impact the likelihood of thyroid cancer onset. In addition, we further validated the above conclusion using an external queue to further demonstrate the relationship between the two.

To establish causal relationships from MR studies, it is crucial to assess biases stemming from potential violations of MR assumptions and to compare outcomes with observational studies to ensure the coherence of results. Thus, we compared our MR results with previous observational study outcomes to assess their reliability. Some studies reported that thyroid cancer may play a part in aging, subclinical and overt thyroid cancer are more common disorders in elderly, but the exact mechanism remains unclear (34, 35).

The direct relationship between aging and thyroid cancer is currently unclear, but we speculate it may be due to the following reasons. Firstly, aging is accompanied by the shortening of cell telomeres and the accumulation of DNA damage. Telomeres are the protective structures at the end of chromosomes, and their length gradually shortens during each cell division. When telomeres are shortened to a certain extent, cells enter an aging state or apoptosis. However, in some cases, telomere shortening can lead to chromosomal instability and increase the likelihood of carcinogenesis (36). In addition, as age increases, the efficiency of DNA repair mechanisms decreases, leading to the accumulation of DNA damage. This accumulated damage may lead to genetic mutations and the occurrence of cancer (36). Secondly, the decline in immune system function is also an important characteristic of aging. Immunosenescence describes the phenomenon of the immune system’s decline in function with age, including a decrease in the efficiency of immune monitoring (37). Immune surveillance is the process by which the body recognizes and clears abnormal cells. As immune function weakens, mutated cells in the body are more likely to evade immune system monitoring, thereby increasing the risk of cancer, including thyroid cancer. In addition, aging is accompanied by an increase in chronic inflammation, which is known as “inflammatory aging” (38). Chronic low-grade inflammation may contribute to the onset and progression of cancer through multiple pathways. The inflammatory microenvironment can facilitate tumor cell proliferation, angiogenesis, and metastasis, all of which are significant factors in the development of thyroid cancer (39).

In the context of thyroid cancer, the accelerated DNA methylation age might suggest that epigenetic alterations, which accumulate with age, could influence the initiation and progression of cancer. DNA methylation can regulate gene expression by silencing or activating specific genes. Changes in DNA methylation patterns could disrupt the normal function of genes involved in cell cycle regulation, apoptosis, and DNA repair, thereby contributing to cancer development. Additionally, as thyroid cancer is more common in older individuals, accelerated epigenetic aging could reflect the cumulative effect of environmental factors, lifestyle, and genetic predisposition, all of which might interact to promote tumorigenesis. In summary, the biological implications of DNA methylation age acceleration in thyroid cancer risk could be interpreted as a signal of underlying epigenetic changes that promote a pro-cancerous environment, accelerating disease progression. Further research could investigate the specific genes and pathways influenced by these methylation changes to better understand the mechanistic link between aging and cancer susceptibility. And, The findings of this study provide a novel perspective on the relationship between aging, immune senescence, and thyroid cancer, which could have significant clinical implications. The identification of DNA methylation age acceleration and the potential epigenetic markers associated with thyroid cancer risk offers new opportunities for early detection and risk stratification. For instance, the DNA methylation signatures identified in this study could potentially be used as biomarkers to assess individuals at high risk for thyroid cancer, particularly in older populations where the disease burden is higher. Implementing such biomarkers in routine clinical practice would enable earlier interventions, personalized surveillance, and potentially even preventive strategies for high-risk individuals.

While our study provides valuable insights into the causal relationship between aging and thyroid cancer, we acknowledge several limitations that may impact the interpretation and generalizability of our findings. First, although we have made efforts to minimize the influence of unmeasured confounding and reverse causality bias, these factors remain a potential concern, as they are inherent to observational studies. The applicability of our findings may be limited to populations of European descent, as genetic variants and their effects can differ across ethnic groups. This emphasizes the need for replication studies in diverse populations to confirm whether our conclusions hold true in non-European cohorts and to ensure their broader applicability. Another limitation of our study, which is common in MR research, is the potential for unobserved horizontal pleiotropy. Horizontal pleiotropy occurs when genetic variants influence multiple traits through pathways unrelated to the exposure of interest, which could bias the estimation of causal effects. While we employed sensitivity analyses to assess and minimize the impact of pleiotropy, the possibility of residual pleiotropic effects cannot be fully excluded. Future studies with more refined instruments or advanced statistical techniques to detect and account for horizontal pleiotropy could further strengthen the robustness of our findings. In summary, while we have made several efforts to mitigate potential biases in our study, further validation in diverse populations and with improved statistical methods is necessary to confirm the causal relationship between aging and thyroid cancer. These steps will enhance the credibility and generalizability of our conclusions, making them more applicable to broader clinical contexts.





Conclusion

In conclusion, our findings provide initial evidence suggesting a causal effect of the aging process on thyroid cancer.
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Adropin is a secreted peptide encoded by the energy homeostasis-associated gene (ENHO), located chromosome 9p13.3, with a conserved amino acid sequence across humans and mice. Its expression is regulated by various factors, including fat, LXRα, ERα, ROR, and STAT3. Adropin plays a critical role in glucose and lipid metabolism, as well as insulin resistance, by modulating multiple signaling pathways that contribute to the reduction of obesity and the improvement of blood lipid and glucose homeostasis. Additionally, it influences immune cells and inflammation, exerting anti-inflammatory effects across various diseases. While extensive research has summarized the regulation of cellular energy metabolism by adropin, limited studies have explored its role in immune regulation and inflammation. To enhance the understanding of adropin’s immune-modulating and anti-inflammatory mechanisms, this review synthesizes recent findings on its effects in conditions such as atherosclerosis, diabetes, fatty liver, non-alcoholic hepatitis, and inflammation. Furthermore, the review discusses the current research limitations and outlines potential future directions for adropin-related investigations. It is hoped that ongoing research into adropin will contribute significantly to the advancement of medical treatments for various diseases.
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1 Introduction

Adropin is a secreted peptide encoded by the energy homeostasis-associated gene (ENHO), with expression detected in various tissues, including serum, plasma, liver, kidney, heart, pancreas, small intestine, endothelial cells, and the brain (1–3). This peptide plays a pivotal role in reducing obesity and improving blood lipid and glucose homeostasis by regulating glucose and lipid metabolism, as well as insulin resistance (IR) (4–6). Its mechanism of action involves influencing the insulin metabolic pathway, including activation of the glucose transporter protein (GLUT) receptor and the phosphorylation of protein kinase B (AKT) (7). Additionally, adropin modulates lipid metabolism by regulating the expression of liver disease-related genes and peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of lipogenesis. Activation of PPARγ can reduce macrophage infiltration and inflammation in adipose tissue (2, 8). As a membrane-bound protein, adropin also regulates intercellular communication through molecular signaling. It activates the PI3K-AKT and ERK1/2 pathways via vascular endothelial growth factor 2 (VEGFR 2), upregulating endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) production, improving endothelial cell function, and decreasing endothelial permeability, which subsequently reduces TNF-α-related apoptosis (9). NO plays an essential immunomodulatory role by inhibiting the adhesion of monocytes and leukocytes to endothelial cells.

Although adropin’s role in regulating carbohydrate and lipid metabolism has been well-established, recent studies highlight its anti-inflammatory effects across multiple tissues (4, 10–12). Adropin influences macrophage polarization by modulating their cellular energy metabolism and protects Treg cells from reactive oxygen species (ROS)-induced apoptosis through its antioxidant properties (8). A deficiency in adropin can disrupt immune cell function and inflammatory pathways, impairing the immune system’s regulatory capacity and promoting inflammation (13). Therefore, adropin preserves immune system homeostasis and exerts anti-inflammatory effects in a variety of conditions, including atherosclerosis (9), diabetes (14–16), non-alcoholic fatty liver disease (NAFLD) (6, 17), non-alcoholic steatohepatitis (NASH) (10), and inflammatory bowel disease (18). As a promising target for treating immune and inflammation-related diseases, adropin holds significant therapeutic potential. This review summarizes recent advancements in the understanding of adropin’s role in inflammation and immune regulation in related diseases, offering insights to guide future research in this field.




2 Structure and function of adropin

Adropin is a newly discovered 76-amino acid polypeptide identified by Kumar et al. (2). The first 1-33 amino acids constitute a secreted signal peptide (2), while the biologically active region spans amino acids 34-76 (7). The N-terminal (amino acids 1-9) is cytoplasmic, the middle region (amino acids 9-30) spans the membrane, and the C-terminal (amino acids 30-76) is extracellular (19, 20). Adropin has a molecular weight of 4.499 kDa, and its encoding gene, ENHO, is linked to energy homeostasis and lipid metabolism, which is why it was named ENHO (2). The ENHO gene is located on chromosome 9p13.3 and consists of two exons and one intron (2). Notably, the amino acid sequence of adropin is 100% conserved across human, mouse, and rat species (21).

Extensive research has explored the functional role of adropin, particularly in mechanisms related to increased obesity, IR, and glucose and lipid metabolism (5, 22, 23). Studies indicate that adropin promotes glucose metabolism by enhancing glucose utilization in mice, a process involving the regulation of the insulin pathway (7). Furthermore, adropin is involved in lipid metabolism, including the reduction of serum total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDLC) levels (4). As a membrane-bound protein, adropin also regulates intercellular molecular communication and participates in disease development. Additionally, adropin has been found to influence immunity and inflammation, exerting anti-inflammatory effects across various tissues.




3 Regulation of adropin expression

Adropin is secreted and bound to cell membranes, where its expression is regulated by factors such as fat, liver X receptor alpha (LXRα), estrogen receptor alpha (ERα), and regulator of reprogramming (ROR). Kumar et al. discovered that adropin expression was significantly elevated in C57BL/6J mice on a high-fat diet (HFD) compared to controls. Conversely, fasting reduced adropin expression in these mice (2). Additionally, mice fed a high-fat, low-carbohydrate diet exhibited elevated adropin levels, while those on a low-fat and high-carbohydrate diet showed reduced adropin levels (24). These observations suggest that adropin expression is closely tied to dietary fat intake. LXR, a nuclear receptor, serves as both and a blood lipid and blood glucose sensor (25). Treatment with the LXRα agonist (GW3965) in diet-induced obese mice led to a reduction in Enho mRNA expression in the liver, indicating that liver ENHO activity is regulated by LXRα (2, 26). Another study highlighted that estrogen regulates liver adropin, with ovariectomized (OVX) mice treated with estrogen showing increased hepatic Enho expression, driven by estrogen-dependent binding of ERα to Enho (27). Furthermore, research has shown that Enho expression follows a rhythmic pattern in the liver of male mice, peaking during the dark phase when food consumption is at its highest. This expression is associated with the transcriptional activation of the circadian clock genes, RORα/γ (28).




4 Signaling pathways regulated by adropin

Adropin, a membrane-bound protein, plays a significant role in regulating intercellular communication (Figure 1). In the context of glycolipid metabolism, studies have demonstrated that adropin downregulates peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α) expression by inhibiting sirtuin 1, leading to the suppression of carnitine-palmitoyl transferase 1b (CPT 1b) and pyruvate dehydrogenase kinase 4 (PDK4). This cascade effectively gatekeeps fatty acid oxidation and glucose oxidation (29–31). In cardiomyocytes, adropin activates G-protein coupled receptor 19 (GPR19), triggering MAPK-mediated phosphorylation, which in turn downregulates the phosphorylation of PDK4 and pyruvate dehydrogenase (PDH) (32). Gao et al. showed that adropin reduces phosphatase and tensin homolog (PTEN) expression through the Notch signaling pathway in muscle tissue, potentially elevating the basal level of PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and enhancing insulin-induced Akt phosphorylation (7). On the other hand, Chen et al. observed that adropin treatment in HFD mice activates the AMPK pathway by inhibiting PP2A, thereby reducing hepatic glucose production in the context of IR (22). Furthermore, adropin stimulates lipoprotein lipase (LPL) gene expression in tilapia liver cells through the activation of cAMP/PKA and PLC/IP3/PKC cascades (33). In NASH mice, adropin was found to activate the Nrf2 signaling pathway, reducing ROS production in hepatocyte mitochondria and thereby protecting against liver damage (10).
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Figure 1 | Adropin regulates multiple signaling pathways. Adropin can upregulate the expression of eNOS through the VEGFR2/PI3K/AKT or VEGFR2/c-Src/ERK1/2 pathway, increase the release of NO, and improve endothelial cell function. Adropin can also reduce endothelial cell permeability by inhibiting the ROCK/MLC2 signaling pathway. Adropin can inhibit endothelial calcification by suppressing the JAK/STAT3 signaling pathway. Adropin may alleviate atherosclerosis by inhibiting EndoMT through the TGF-β/Smad2/3 signaling pathway. Adropin downregulates PTEN through the Notch signaling pathway and may increase the basal level of PI3K to increase insulin-induced AKT phosphorylation. Adropin can regulate the function of brain cells by modulating the NB3/Notch1 and AKT/CREB/BDNF pathways. Adropin can improve liver function by activating the Nrf2 pathway to reduce oxidative stress. Adropin also improves fat metabolism by regulating LPL via the cAMP/PKA and PLC/IP3/PKC pathways. In addition, Adropin reduces the expression of PGC-1α by inhibiting SIRT1, thereby downregulating Cpt1b and Pdk4 to regulate glucose oxidation. AKT, protein kinase B; α-SMA, alpha-smooth muscle actin; AMPK, AMP-activated protein kinase; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine monophosphate; CREB, cyclic AMP response element-binding protein; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; EndoMT, endothelial-mesenchymal transition; GPR19, G-protein coupled receptor 19; IP3, inositol trisphosphate;JAK, Janus kinase; LPL, lipoprotein lipase; MLC2, myosin light chain kinase; NB3, contactin 6;Nrf2,nuclear factor erythroid 2-related factor 2; PI3K, phosphatidylinositol-3 kinase; PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase kinase 4; PKC, protein kinase C; PLC, phospholipase C; PTEN, phosphatase and tensin homolog; PKA, protein kinase A; PGC-1α,peroxisome proliferator-activated receptor-gamma coactivator-1alpha; RhoA, ras homolog gene family member A; SIRT1, sirtuin 1; STAT3,signal transducer and activator of transcription 3; TGF-β, transforming growth factor beta.

In addition to its role in metabolism, adropin also influences vascular function. Research indicates that adropin reduces endothelial cell permeability by inhibiting the ROCK-MLC2 signaling pathway (34). Sato et al. found that adropin inhibits the proliferation of vascular smooth muscle cells (VSMCs) by downregulating the c-Src/ERK1/2 pathway, while simultaneously upregulating the PI3K-AKT pathway to enhance the expression of fibronectin and elastin, thus stabilizing atherosclerotic plaques and promoting vascular elasticity (8). Furthermore, adropin inhibits the osteogenic differentiation of vascular smooth muscle cells VSMCs and reduces vascular calcification by activating the JAK2/STAT3 signaling pathway (35). In ApoE–/–/Enho–/– mice, adropin administration mitigated atherosclerosis, likely through the suppression of endothelial-to-mesenchymal transition (EndMT) via TGF-β/Smad2/3 signaling cascade (36). Adropin’s effects extend to the central nervous system, where it functions as a membrane-bound protein that influences body activity and movement coordination via the NB3/Notch pathway. It plays a critical role in cerebellar development in mice (20). Additionally, adropin enhances spatial memory in rats by modulating the AKT/CREB/BDNF signaling pathway (37). In diabetic rats, adropin treatment reduces lung damage by inhibiting the RhoA/ROCK pathway, thereby alleviating apoptosis, inflammation, oxidative stress, and lung tissue fibrosis (38). These observations collectively highlight adropin’s broad spectrum of molecular activities and its essential role in both physiological and pathological processes throughout the body.




5 Adropin regulates immunity and inflammation



5.1 Adropin regulates immune cells

Macrophages, key components of the innate immune system, play an essential role in maintaining tissue homeostasis. Upon encountering various stimuli, macrophages become activated and polarized into distinct phenotypes with specific functions (39). M1 macrophages promote and sustain inflammation by secreting pro-inflammatory cytokines, while M2 macrophages have anti-inflammatory properties and aid in tissue repair (40, 41). The metabolism of these cells, particularly lipid metabolism, has a profound influence on their function (42). Studies have shown that the visceral adipose tissue is associated with macrophages in an inflammatory state, where pro-inflammatory macrophages infiltrate adipose tissue, contributing to inflammation and IR (43–45). Macrophages are key drivers of increased expression of inflammatory cytokines in adipose tissue (42), and the number of macrophages in this tissue positively correlates with fat content. The removal of adipose tissue can reduce whole-body inflammation (46, 47). The nuclear receptor PPARγ is more closely associated with lipogenesis and lipid storage, in contrast to PPAR-α and PPAR-β/δ, which primarily regulate fatty acid oxidation (48, 49). Recent research has shown that adropin can promote the repolarization of macrophages from the M1 phenotype to the M2 phenotype, improving the lipid metabolism in macrophages. This process is mediated by the activation of PPARγ (8). In endothelial cells, adropin reduces the inflammatory response of monocyte-derived macrophages by upregulating PPAR-γ expression (50). Dodd et al. further demonstrated that adropin reduces endothelial cell monolayer permeability and diminishes MCP-1-induced macrophage migration following exposure to cell-free hemoglobin (51). Additionally, adropin inhibits the differentiation of 3T3-L1 preadipocytes into mature adipocytes through the ERK1/2 and AKT pathways, reducing fat accumulation and macrophage infiltration, ultimately mitigating inflammation (Figure 2) (50). These findings suggest that adropin modulates macrophage polarization and function by influencing cellular energy metabolism pathways, particularly lipid metabolism.
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Figure 2 | Adropin regulates adipocytes and thereby reduces inflammation and immune response. Adropin promotes the expression of PPAR-γ by activating the ERK1/2 and AKT pathways, stimulating the proliferation of 3T3-L1 preadipocytes and inhibiting their differentiation into mature adipocytes. Excessive accumulation of mature adipocytes will secrete large amounts of TNF-α, MCP-1 and other cytokines, recruit macrophages, Tregs cells, cause immune cell infiltration and ultimately cause fat inflammation. AKT, protein kinase B; ERK1/2, extracellular regulated kinase 1/2; MCP-1, monocyte chemoattractant protein-1; PPAR-γ, peroxisome proliferator-activated receptor gamma; TNF-α, tumor necrosis factor alpha.

Treg cells play a pivotal role in regulating the inflammatory state of adipose tissue. In obesity, macrophage infiltration into adipose tissue triggers chronic inflammation. Adipocytes release cytokines such as TNF-α and MCP-1, which recruit both macrophages and Tregs, exacerbating adipose inflammation (52). Tregs are crucial for modulating immune-mediated inflammation. Studies have demonstrated a significant reduction in Treg numbers in adipose tissue, with immune dysregulation contributing to adipose inflammation in obese mice. Thus, Tregs are vital in maintaining metabolic homeostasis (53, 54). Gao et al. reported that adropin gene knockout in C57BL/6J mice resulted in reduced phosphorylation of eNOS (Ser1177) and Akt1 (Ser473) and a loss of Treg cells (12). Similarly, Chen et al. found that adropin deficiency aggravated Treg cell depletion and contributed to the development of fatty pancreas (FP) and type 2 diabetes mellitus (T2DM) in mice fed HFD (55). Additionally, studies indicate that elevated oxidative stress in the fatty liver induces Treg cell apoptosis, diminishing the liver’s Treg population and impairing the suppression of inflammatory responses (17, 56). Chen et al. demonstrated that adropin activates Nrf2 signaling in NASH, reducing ROS production in liver mitochondria. This mechanism likely protects mitochondrial function, mitigates oxidative stress and apoptosis, and thereby prevents liver damage and the progression of NASH (10). These observations suggest that adropin can mitigate ROS-induced Treg cell apoptosis by counteracting oxidative stress.

However, further research is needed to explore the regulatory effects of adropin on other immune cell types through distinct signaling pathways.




5.2 Adropin regulates inflammation

In addition to modulating inflammation through immune regulation, adropin also influences the expression of inflammatory factors, although the precise molecular mechanisms remain unclear. Chen et al. observed that in the NASH mouse model, adropin nuclear gene knockout led to increased expression of inflammatory markers, including F4/80, CD45, MCP-1, TNF-α, and IL-6, compared to wild-type mice (10). Furthermore, adropin treatment promoted endothelial cell proliferation, migration, capillary-like tube formation, reduced permeability, and mitigated TNFα-induced apoptosis (9). In addition, adropin treatment reduced the expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in methionine-choline-deficiency (MCD) diet-induced NASH mice (10). Other studies have demonstrated that adropin significantly decreased the mRNA expression of TNF-α, IL-6, and inducible NOS in the pancreatic tissue of diabetic rats (15). Collectively, these findings suggest that adropin possesses anti-inflammatory potential.





6 Adropin regulates inflammation and immune-related diseases

Adropin plays a significant role in the development of various metabolic diseases by regulating glucose oxidation, lipid metabolism, and IR. (6, 57). However, studies also indicate that adropin-mediated immune and inflammatory regulation is involved in the pathogenesis of several metabolic and non-metabolic diseases, such as atherosclerosis (36), diabetes (58), NAFLD (59), gastric ulcers (60), and inflammatory bowel disease (18) (Table 1, Figure 3).



Table 1 | The specific molecular mechanisms of Adropin regulating different diseases.
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Figure 3 | Adropin exerts anti-inflammatory effects in a variety of tissues. Adropin affects macrophage polarization by regulating cellular energy metabolism and inhibits ROS-induced apoptosis of Tregs cells by resisting oxidative stress. Therefore, it can maintain the negative regulation of the immune system and exert anti-inflammatory effects in atherosclerosis, fatty inflammation, non-alcoholic hepatitis, lung injury, inflammatory bowel disease, chronic renal failure, etc. IL-10, interleukin-10; IL-12, interleukin-12; NASH, non-alcoholic hepatitis; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha.



6.1 Atherosclerosis

In the cardiovascular system, atherosclerosis is a chronic inflammatory condition of the arteries. Research has shown that adropin can upregulate eNOS expression through the VEGFR2-PI3K-AKT or VEGFR2-ERK1/2 pathways, facilitating NO release, which improves endothelial cell function and promotes neovascularization (9). NO exerts an immunomodulatory effect by inhibiting the adhesion of monocytes and leukocytes to endothelial cells (61, 62). Moreover, adropin inhibits TNFα-induced THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs) and suppresses the inflammatory response in endothelial cells and monocytes/macrophages by preventing their interaction (9). Notably, in animal models of atherosclerosis, adropin was found to promote macrophage polarization from M1 to M2 by upregulating PPAR-γ, thus reducing monocyte/macrophage infiltration (8).




6.2 Acute pancreatitis-associated lung injury

AP-ALI is a severe complication associated with acute pancreatitis. Serum adropin levels are markedly reduced in the patients with AP-ALI. Studies using animal models of AP-ALI have shown that adropin gene knockout (Adro-KO) results in increased macrophage infiltration, fibrosis, and apoptosis in lung tissue. More importantly, adropin modulates the phosphorylation of PPARγ in lung macrophages, thereby promoting M2 polarization and attenuating the severity of AP-ALI (63).




6.3 Inflammatory bowel disease

Decreased serum adropin levels have been observed in 55 patients with inflammatory bowel disease compared to healthy controls (18). Adropin deficiency exacerbates the pathological phenotype in TNBS-induced colitis. primarily by disrupting the balance of macrophage phenotypic distribution within the colon and mesenteric tissues. This disruption results in an increased presence of M1 macrophages, contributing to the progression of colitis. Intervention with adropin in macrophages, coupled with RNA-seq and metabolomic analysis, revealed that adropin regulates the macrophage lipid metabolism via PPARγ, thereby promoting the repolarization of macrophages from M1 to M2 (64).




6.4 MPO-ANCA-related lung injury

Myeloperoxidase (MPO)-antineutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis often leads to life-threatening alveolar hemorrhage or fibrosis. In patients with MPO-ANCA-related lung injury, serum adropin levels were significantly lower than those in healthy controls. Investigation of the underlying mechanisms in animal models demonstrated that adropin knockout mice exhibited reduced phosphorylation of eNOS and AKT1, alongside a loss of Treg cells (12).




6.5 Colon cancer

Adropin also plays a role in cancer development. A recent study demonstrated that transfection of the ENHO gene into colon cancer (MC38) cells suppressed tumor growth in vivo while promoting an increase in M1 macrophages. Treatment with low- -dose adropin in isolated macrophages enhanced mitochondrial ROS-mediated inflammasome activation (65). Notably, while low doses of adropin stimulated macrophage antitumor activity, high doses had the opposite effect. This differential response may be attributed to low-dose adropin promoting glucose utilization, while high-dose adropin upregulates CPT1α expression in macrophages. Thus, varying concentrations of adropin within macrophages in cancer cells or tumor tissues may modulate CRC progression through distinct mechanisms (65).




6.6 NASH/NAFLD

Adropin treatment has been shown to mitigate liver cell damage in NASH and NAFLD by reducing inflammation and oxidative stress (10). For instance, Chen et al. reported that, in addition to decreasing liver lipid content, adropin treatment reduced the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in MCD diet-induced NASH mice (10), indicating its anti-inflammatory effects in NASH. Furthermore, adropin knockout (AdrKO) exacerbated hepatic steatosis, inflammation, and fibrosis, while adropin treatment alleviated these conditions by promoting the expression of Gclc, Gclm, and Gpx1, as well as increasing glutathione (GSH) levels in an Nrf2-dependent manner, thereby preventing NASH progression in mice (10). This suggests that adropin also contributes to the reduction of ROS production in liver mitochondria. Excessive ROS production has been shown to drive inflammation (74), and the activation of the NLRP3 inflammasome through ROS plays a key role in the progression of NASH (75, 76). Yang et al. demonstrated that exercise significantly reduced the expression of NLRP3 inflammasome components in NASH mice, decreased caspase-1 activity, normalized IL-1β production, and inhibited ROS overproduction, a process linked to adropin induction (66). Additionally, elevated oxidative stress levels in fatty liver can induce Treg cell apoptosis and reduce the number of Tregs in the liver, thereby diminishing their anti-inflammatory effects (17, 56). Thus, controlling oxidative stress can also mitigate inflammation. Notably, serum adropin levels were found to be reduced in patients with NAFLD (77), suggesting that adropin may also be involved in the development of NAFLD. Consistent with its action in NASH, adropin overexpression or treatment in NAFLD animal models has been shown to alleviate palmitic acid-induced oxidative stress in hepatocytes (78). Interestingly, Meda et al. observed that under HFD conditions, hepatic adropin induction was negatively correlated with the expression of lipogenic genes and fatty liver in female mice, with this effect being dependent on hepatic ERα (79). More importantly, female-specific induction of adropin under HFD enhances the liver’s response to oxidative stress, helping to counteract ROS production and the inflammatory processes that promote NAFLD progression (79).




6.7 Complications of diabetes

In the context of diabetic complications, Rizk et al. demonstrated that adropin treatment can inhibit the RhoA/ROCK pathway, apoptosis, inflammatory responses (IL-6, TNF-α), oxidative stress (malondialdehyde, 8-oxo-20 -deoxyguanosine, reduced glutathione, superoxide dismutase), and lung tissue fibrosis, thereby mitigating diabetic lung injury (38). This positions adropin as promising therapeutic agent for managing diabetes-related injuries. Additionally, Yu et al. found that adropin encapsulated in ROS-responsive nanocapsules improved renal lipotoxicity in diabetic mice, primarily by effectively controlling blood glucose and lipid levels. It also downregulated lipogenic proteins SEBP-1 and ADRP in diabetic nephropathy models, alleviating lipid deposition in renal tissue. Concurrently, adropin inhibited excessive ROS production, protecting mitochondria from damage and improving renal function (67). These observations underscore the critical role of adropin in modulating oxidative stress and its potential impact on the progression of diabetes.




6.8 Chronic renal failure

In rats with adenine-induced chronic renal failure, adropin treatment was shown to reduce the expression of several pro-inflammatory cytokines, including G-CSF (granulocyte colony-stimulating factor), IFN-γ, IL-4, IL-5, IL-10, IL-12, IL-17A, and GRO-α (growth-related oncogene-alpha) (68). Another study revealed that adropin treatment in chronic renal failure rat models also decreased renal damage markers such as NGAL (neutrophil gelatinase-associated lipocalin), TIMP-1, IL-17A, IL-33, MMP-2, and MMP-3, while increasing MMP-13 levels (69).




6.9 Obstructive sleep apnea

Notably, serum adropin levels were significantly reduced in individuals with obstructive sleep apnea, accompanied by elevated levels of soluble vascular adhesion protein-1 (sVAP-1) inflammatory markers (IL-6, TNF-α and high-sensitivity C-reactive protein), which were negatively correlated with epinephrine levels (70). However, the exact underlying mechanism remains to be fully elucidated.




6.10 Polycystic ovary syndrome

In patients with PCOS, adropin levels were found to be lower compared to controls, with serum adropin concentrations showing a significant negative correlation with TNF-α levels (71). This suggests that adropin may exert a protective effect against inflammation and the progression of chronic kidney injury in PCOS.




6.11 Others

Alterations in adropin levels have also been observed in several immune- and inflammation-related diseases. In multiple sclerosis, a chronic autoimmune disorder, serum adropin levels were markedly reduced (80). Similarly, in patients with rheumatoid arthritis and systemic lupus erythematosus, serum Adropin concentrations were significantly lower than those of healthy controls (72, 73). While the specific mechanisms remain unclear, these findings suggest that adropin could serve as a novel therapeutic target for autoimmune and inflammatory diseases.





7 Conclusion and future

Research on the physiological functions of adropin has been ongoing, revealing that adropin levels fluctuate in various physiological and pathological conditions. As a product of the ENHO gene, adropin plays a pivotal role in regulating energy metabolism, particularly in glucose and fatty acid homeostasis (28, 81). Furthermore, adropin has been implicated in cell communication and disease progression by modulating multiple molecular pathways, including NB-3/Notch (20), AKT/CREB/BDNF (37), and VEGFR2/PI3K/AKT (62). In addition, adropin contributes to the pathogenesis of several disorders by influencing immune function, inflammatory responses, and oxidative stress, primarily through the regulation of macrophage metabolism and the modulation of inflammatory cytokine expression. Insufficient adropin levels may lead to immune cell imbalances and elevated pro-inflammatory cytokines, which can impair the immune system’s negative feedback mechanisms, thereby facilitating the initiation of inflammatory processes (Zhang et al., 2020). However, the precise mechanisms underlying these effects remain incompletely understood.

As a relatively recent discovery among regulatory peptides, adropin presents fascinating potential, but both basic and clinical research still face numerous challenges. First, the pharmacokinetics of adropin in circulation remain largely unknown, and the efficacy of peptide hormone administration may be hindered by protein degradation. Furthermore, several aspects of adropin physiology remain unexplored. Second, while adropin expression is influenced by adiposity and various molecules, the specific regulatory mechanisms governing this relationship have yet to be defined. Third, emerging evidence underscores the close association between adropin and various inflammatory diseases, suggesting its involvement in the inflammatory processes of these conditions. Beyond promoting the secretion of inflammatory cytokines, adropin also appears to indirectly regulate the phenotype and biological behavior of immune cells. However, current research mainly focuses on its role in macrophages and Tregs, with insufficient details on the specific mechanisms involved, and little is known about its regulatory effects on other immune cell types. Fourth, clinical studies on adropin have largely been observational, showing correlations between plasma adropin levels and factors such as diet, disease presence, and metabolic parameters (e.g., obesity, coronary heart disease risk, and sex). However, the underlying mechanisms remain unclear. Finally, given that reduced plasma adropin levels are associated with several diseases, including diabetes, atherosclerosis, polycystic ovary syndrome, and multiple sclerosis, and correlate with disease progression, many researchers propose that adropin could serve as a serum biomarker. However, the clinical relevance of any new biomarker must be thoroughly assessed, ensuring that it is suitable for answering key clinical questions. Therefore, large-scale prospective studies involving well-defined populations are essential to establish adropin as a reliable biomarker for various diseases.

In future studies, the pharmacokinetics of adropin in the circulation needs to be further investigated, and the underlying regulatory mechanisms of adropin by molecules such as fat, LXRα, ERα, ROR, and STAT3 need to be further explored. Moreover, research on adropin’s role in regulating inflammation and immunity needs to be increased in order to further explore the mechanism. Clinical research must not only study the mechanism in depth, but also consider whether the therapeutic effect of adropin can be transferred to clinical research. Besides, future research should continue to explore other possible underlying functions of adropin and its analogs, and it is also very meaningful to further study its mechanism of action. Adropin-based treatments may become a new way to treat a variety of diseases.
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Adipose-derived mesenchymal stem cells (ADSCs) exhibit superior immunomodulatory properties and have broad therapeutic applications. They induce macrophage M2 polarization for anti-inflammatory responses. Exosomes derived from ADSCs (ADSC-EXOs) exhibit biological functions similar to those of ADSCs but can circumvent the limitations associated with cellular injection therapies. Potent anti-inflammatory substances contained in exosomes include the glycoprotein MFGE8, the cytokines such as prostaglandin E2, IL-6, and IGF, as well as non-coding nucleotides (miR-451a, miR-23, miR-30d-5p, let-7, lncRNA DLEU2, circRps5, Circ-Ptpn4, and mmu_ circ_0001359). The anti-inflammatory and immunomodulatory properties of these exosomes provide new perspectives for therapeutic approaches for graft inflammation, bone healing, acute lung injury, kidney stones, myocardial infarction, and diabetes-related diseases. This review summarizes the contents and functions of ADSC-EXOs, outlines their properties and the characteristics of macrophage phenotypes, and emphasizes their impact on macrophage polarization and their contribution to immune-related diseases.
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1 Introduction

Mesenchymal stem cells (MSCs) have substantial medical and biological value and have become a research hotspot in biomedicine due to their excellent immunomodulatory properties and wide range of applications (1). MSCs are multi-differentiated cells derived from various tissues, including bone marrow, umbilical cord blood, and adipose tissue (2). Among these, adipose-derived mesenchymal stem cells (ADSCs) are easily accessible, minimally invasive, and easy to culture, with substantial medical promise and development potential (3). Exosomes possess great potential for cell-free therapies as key mediators of intercellular communication (4, 5). ADSC-derived exosomes (ADSC-EXOs) play vital role in regulating macrophage M1/M2 polarization, mediating inflammatory responses, and modulating immune functions (6). The M1 and M2 macrophage phenotypes represent two extremes of activation states crucial to both the progression and recovery of inflammation in the body (7). M1 macrophages, representing the classically activated phenotype, contribute to tissue damage by releasing a wide range of cytokines and chemokines that trigger pro-inflammatory, anti-microbial, and tumorigenic activities. In contrast, M2 macrophages, which have an alternatively activated phenotype, exert anti-inflammatory, tissue regeneration and repair, angiogenic, and immunomodulatory effects (8). This article reviews the role of ADSC EXO in regulating macrophage M2 polarization and in the treatment of diseases such as bone healing, acute lung injury, kidney stones, fat graft survival and myocardial infarction (MI), which have been studied in recent years.




2 ADSC-EXOs

Extracellular vesicles are classified into different subtypes based on their diameter: exosomes (30–100 nm), microvesicles (100–1,000 nm), and apoptotic vesicles (1–5 μm) (9). Exosomes are important components of MSC secretion. MSC-derived exosomes are readily distinguishable by the presence of markers and proteins, including surface markers such as CD9, CD63, and CD81 of the tetraspanin family;, heat shock proteins (HSP60, HSP70, and HSP90), multivesicular bodies, biologically derived proteins (Alix and tumor susceptibility gene 101 [TSG101]), lipid-associated proteins, and phospholipases (10, 11). Notably, the phenotype and biological effects of exosomes may change depending on the type of MSCs source (12). MiRNAs are one of the major components of exosomes that are protected from RNAase attack by an exosomal lipid bilayer outside of the exosome (4). Among them, miR-155 and miR-146 are involved in physiological and pathological processes such as organism development, epigenetic regulation, and immune regulation, and miR-23b, miR-451, miR-223, miR-24, miR-125b, miR-31, miR-214, and miR-122 are involved in tumorigenesis and tumor progression (1).

ADSC-EXOs possess numerous medicinal and biological applications. They possess the advantages of being small in size, the ability to penetrate biological membranes (capillaries and the blood-brain barrier), low immunogenicity, and ease of storage (11). Currently available or developing separation techniques include ultracentrifugation-based separation, size-based techniques, precipitation techniques, immunoaffinity capture, and combinations of these techniques (4). Exosome production is simple and efficient, and they can be extracted from culture medium using approaches such as ultracentrifugation or produced on a large scale using specialized cell lines (13). Exosomes are easy to store, structurally stable, straightforward, unaffected by storage at -20°C for one week, and retain their activities during long-term storage at -80°C (14). Exosomes are safer, and in contrast their use avoids issues associated with MSC therapy, such as cell survival, regenerative capacity, immune rejection, and tumor differentiation (15). These factors provide a solid foundation for the commercial production of ADSC-EXOs and highlight their therapeutic value (16).




3 Macrophage polarization

Macrophages are important immune cells involved in infection prevention, tissue repair, angiogenesis, and immunomodulatory processes. They are also important contributors to the promotion and resolution of inflammation. Macrophages adopt two distinct functional phenotypes in response to different signals in various tissue microenvironments: classically activated macrophages (M1) and alternatively activated macrophages (M2) (17). Among these, M1 macrophages exhibit potent antimicrobial properties, high antigen-presenting capacity, and activate the Th1 response, leading to strong pro-inflammatory and antimicrobial effects, whereas M2 macrophages promote tissue repair and regeneration with an anti-inflammatory response relative to M1 (8).

Macrophage polarization and function are primarily regulated by a network of signaling molecules, transcription factors, epigenetic mechanisms, and post-transcriptional regulators (18). Typically activated by lipopolysaccharide (LPS) and Th1 cytokines (for example, IFN-γ and TNF-α), macrophages undergo M1 polarization, releasing various cytokines and chemokines (for example, TNF-α, IL-1α, IL-1β, IL-6, IL-12, CXCL9, and CXCL10), which then interact with unpolarized macrophages, creating a positive feedback loop (8, 9). The transcription factors studied and elucidated are the NF-κB (p65 subunit), STAT1, STAT5, IRF3, and IRF5. NF-κB and STAT1 are the two main transcription factors involved in M1 macrophage polarization (8). M2 polarization is controlled by downstream signals from cytokines such as IL-4, IL-13, IL-10, IL-33, and TGF-β (8, 19). Of these, cytokines (for example, IL-33 and IL-25) promote M2 activation by producing Th2 cytokines, and only IL-4 and IL-13 directly induce M2 activation (20). Key transcription factors regulating M2 gene expression include STAT6, IRF 4, JMJD 3, PPARδ, and PPARγ, and it is currently believed that the STAT6 pathway activates M2 macrophages (8). Two antagonistic pathways of arginine metabolism are responsible for the polarity of M1/M2 macrophages. M1 macrophages are associated with the iNOS pathway that uses arginine to produce citrulline and nitric oxide (NO), whereas M2 macrophages are associated with the arginase pathway that uses arginine to produce ornithine and urea (21).

M2 macrophages exert profound effects on tissue repair, cell growth, immune system regulation, inflammation, and apoptosis suppression. M2 macrophages can be divided into four subtypes: M2a, M2b, M2c, and M2d (8), each activated by different cytokines and transcription factors and displaying distinct secretions and effects. Among them, M2a macrophages are activated by IL-4 or IL-13, increasing the expression of IL-10, TGFβ, CCL17, CCL18, and CCL22, and enhancing endocytosis activity to promote cell growth and tissue repair (8). M2b macrophages are activated by immune complexes, Toll-like receptor (TLR) ligands, and IL-1β to release pro- and anti-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-10 to regulate the depth and breadth of the immune and inflammatory response (16).




4 How ADSC-EXOs regulate macrophage depolarization

Exosomes are one way in which ADSCs regulate macrophage polarization in a cell-contact-free manner. Many signaling pathways are involved in macrophage polarization, including the PI3K/AKT, AK/STAT, NF-κB, Wnt/β-catenin, and Notch signaling pathways (6, 22). Experiments have identified several proteins, DNAs, mRNAs, and miRNAs in ADSC-EXOs that regulate the polarization and function of M1/M2 macrophages (Figure 1).
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Figure 1 | Exosomes contain various substances involved in inducing macrophage polarization, such as glycoprotein, cytokine, RNA, and mtDNA. (by Figdraw).



4.1 Glycoprotein in ADSC-EXOs

MFGE8 is a glycoprotein that promotes the clearance of dead or apoptotic cells and exerts anti-inflammatory effects by promoting the polarization of M2 macrophages (23, 24). ADSC-EXOs have been demonstrated to be rich in MFGE8 (25). Integrin β3 is one of the known MFGE8 receptors, and the signaling pathway for this receptor is integrin β3/SOCS3/STAT3 (23). Activation of this pathway increases STAT-3 phosphorylation, thereby mediating macrophage reprogramming toward M2 polarization (25).




4.2 Cytokines in ADSC-EXOs

Cytokines in ADSC-EXOs also induce M2 macrophage polarization. Prostaglandin E2 (PGE2) is a soluble and important immunomodulatory cytokine (26). Treatment with PGE2-enriched ADSC-EXOs resulted in a decrease in gene expression of M1-characterized cytokines (iNOS, IL-6, and TNF-α) and an increase in gene expression of M2-characterized cytokines (IL-10, Arg-1, and CD206), as well as a shift of macrophages from M1-type to M2-type in a rat model of colitis (27). IL-6 also mediates macrophage polarization in ADSC-EXOs (28). IL-6 exposure upregulates IL-4 receptor expression and responses in macrophages, leading to STAT6 phosphorylation, which, in turn, directs M2 macrophage polarization (29, 30). Insulin-like growth factor (IGF) is a serum component structurally similar to the insulin B chain (31). ADSC-secreted IGF-2 pre-programs maturing macrophages (31). The secretion of pro-inflammatory cytokines such as IL-12, IL-17, and IL-1β was reduced, and PD-L1 expression was upregulated in treated macrophages (31). IGF-2 exhibits a metabolic commitment to oxidative phosphorylation of macrophages (OXPHOS) and significantly alters the distribution of H3K27ac in macrophages, with significant reductions in the promoters and enhancers (e.g., Mir155) of key regulators involved in macrophage M1 activation and enhancements in a number of genes, such as the macrophage inflammation inhibitor methyl-CpG-binding protein 2 (Mecp2) (31–33).




4.3 RNA in ADSC-EXOs

miRNAs are a family of short non-coding nucleotides that regulate target genes at the post-transcriptional level and are important components of MSC exosomes that regulate cell growth and metabolism (34, 35). miR-451a is a highly expressed miRNA in ADSCs that specifically binds to the macrophage migration inhibitory factor (MIF) mRNA 3′-UTR, thereby reducing the expression of the downstream target MIF (3, 36, 37). MIF is an endocrine immune molecule that limits macrophage activity in vivo, is involved in immune regulation, and has been experimentally demonstrated to promote the polarization of M1 to M2 macrophages; however, the underlying mechanism has not yet been elucidated (3). Experiments suggest that the direct target of miR-23 in exosomes is interferon regulatory factor 1 (IRF1), and that miR-23 inhibits IRF1 to inhibit M1 macrophage polarization (38). Exosomal miR-30d-5p can target the 3′-UTR of Beclin-1 and Atg5 at the mRNA level, significantly inhibiting Beclin-1 and Atg5 expression and driving macrophage polarization from M1 to M2 (39). Let-7, the first miRNA identified, has been demonstrated to be a negative regulator of the pro-inflammatory response induced by TLR4 stimulation (40). Exosome-derived Let-7c significantly reduces the expression of the transcription factor CCAAT/enhancer-binding protein (C/EBP)-δ that plays a key role in the regulation of TLR4 in macrophages, thereby inhibiting M1 macrophage polarization (41).

Long non-coding RNAs (lncRNAs) are RNA molecules that are more than 200 nucleotides in length compared with miRNAs (42). They play critical roles in the regulation of cellular activity and behavior (42). ADSC-EXOs affect macrophage polarization by delivering lncRNA DLEU2 (42). It regulates mRNA expression by targeting miRNAs, and DLEU2 promotes macrophage M2 polarization by regulating the miR-106a-5p/LXN axis (42).

ADSC-EXOs also carry a non-coding circular RNA (circRNA) produced from a post-spliced exon, which is a naturally occurring family of non-coding RNAs highly expressed in the eukaryotic transcriptome (43). circRps5 possesses a stable circular structure that binds to miR-124-3p and reduces its levels, thereby inhibiting M1 macrophage polarization (44). ADSC-EXOs also deliver circ-Ptpn4 that downregulates the expression of miR-153-3p targeting the Nrf2 3′-UTR, resulting in enhanced Nrf2 expression and macrophage conversion from M1 to M2 (43). Mmu_circ_0001359 also links alternatively activated macrophages to the M2 phenotype by upregulating miR-183-5p expression, thereby promoting the expression of the transcription factor FoxO1 (45).




4.4 ADSC-EXOs restore mitochondria

In terms of mitochondria and mtDNA, ADSC-EXOs increased mitochondrial mtDNA levels and restored the levels of key molecules related to mitochondrial biosynthesis and homeostasis (PGC-1α, TFAM, and Sirt1) as well as key molecules related to the mitochondrial respiratory chain (cox-15, NDUFV2, and ATP5d) and mitochondrial membrane potential. OXPHOS activity and ATP production were increased, and macrophage mitochondrial reactive oxygen species (mROS) stress caused by LPS stimulation was alleviated, restoring oxidative phosphorylation process and mitochondrial function (46). Exosome-mediated blunting of ROS generated after oxidative stress in macrophage mitochondria promotes activation of inflammatory pathways such as NF-κB (47, 48). ADSC-EXOs switch macrophages from the M1 pro-inflammatory phenotype to the M2 polarized anti-inflammatory phenotype. Additionally, cells selectively package the mitochondrial components of exosomes, actively preventing the packaging of pro-inflammatory oxidized mitochondrial materials into exosomes, which may act as damage-associated molecular patterns (46).




4.5 Other ways

ADSC-EXOs significantly activated the JAK/STAT6 signaling pathway in macrophages (49). The JAK/STAT6 signaling pathway is a typical pathway involved in macrophage M2 polarization (49). When IL-4/IL-13 binds to receptors located on the cell membrane, JAK1 is phosphorylated, which immediately activates STAT6; this, in turn, activates M2-like genes such as YM1, Arg1, Fizz1, IL-10, and MGL1, ultimately initiating M2 macrophage polarization (49–51). Additionally, ADSC-EXOs activate the S1P/SK1/S1PR1 signaling pathway in macrophages, inhibit the expression of NF-κB p65 and TGF-β1, polarize macrophage M2, and suppress inflammatory responses (52). ADSC EXOs contain phosphorylated STAT3. Direct delivery of p-STAT3 to macrophages results in its binding to STAT3-targeted DNA and promotes Arg-1 promoter/enhancer transcriptional activation, thereby promoting M2 polarization (53).





5 Applications of ADSC-EXOs to regulate macrophage polarization

Numerous successful ADSC-EXO therapy studies and technological explorations have been conducted in animal models over the past few years. This approach has been used experimentally with favorable results for graft inflammatory responses, bone healing, acute lung injury, esophageal stricture, kidney stones, myocardial infarction, and diabetes-derived diseases (Figure 2).
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Figure 2 | With the ability to induce macrophage polarization, mediate inflammatory responses, and regulate immunity, ADSCs offer new hope for bone healing, acute lung injury, esophageal stricture, kidney stones, myocardial infarction, and hindlimb ischemia caused by diabetes (by Figdraw).



5.1 Acute lung injury

Acute lung injury (ALI) can be caused by acute pneumonia, sepsis, severe trauma, acute pancreatitis, and other causative factors (46). ALI is typically associated with extensive airway inflammation, hypoxemia, and tissue disorganization due to pulmonary immune abnormalities and altered vascular permeability during this period; however, it still exhibits a high mortality rate (35–55%) after treatment (e.g., improvement of mechanical ventilation) and poses a great threat to human health (54–56). LPS is a known predisposing factor that induces innate immune cells to secrete inflammatory mediators, thereby causing lung injury (57). This process is characterized by the collapse of alveolar structures, thickening of alveolar septa, changes in membrane transparency, and the infiltration of large numbers of inflammatory cells (46). In the experiment, mitochondrial function and immune homeostasis of lung macrophages in the LPS-induced ALI mouse model were improved under ADSC-EXOs treatment (46). ADSC-EXOs transfer mitochondrial components (especially mtDNA) to stressed lung macrophages, increase mitochondrial DNA levels, mitochondrial membrane potential, OXPHOS activity, and ATP production, and alleviate LPS-induced macrophage mROS stress thereby inhibiting TLR signaling activation and M1 macrophage polarization (46). In this process, decreased release of IL-1β, TNF-α, and iNOS, along with increased relative levels of anti-inflammatory cytokines such as IL-10 and Arg-1 attenuate the inflammatory response (46). This study provides a new approach to the treatment of LPS-induced ALI and raises the question of whether ADSC-EXOs can be effective in viral pneumonia, bacterial pneumonia, and autoimmune lung injury, and whether the efficacy of ADSC-EXOs can be improved using a form of nebulization.




5.2 Bone healing

Traumatic bone defects are typically associated with inflammation (3). The most commonly used clinical method, autologous bone grafting, has significant limitations, such as large defect areas and donor site discomfort (58, 59). However, allogeneic bone grafts can cause immune rejection and infection (60, 61). With the development of material technology, biomaterial implantation has attracted widespread attention as a potential solution. However, studies have reported that it can induce an inflammatory response that affects bone metabolism and new bone formation, leading to implant failure (3, 61, 62). Therefore, new solutions are urgently required to promote effective bone healing and regeneration. Recent experiments have indicated that the immune system cells are closely linked to the skeletal system cells and cooperate with each other (3). Bone defects due to trauma and tumors are typically accompanied by peripheral inflammation and immune dysregulation, including acute ischemia and hypoxia, the release of pro- and anti-inflammatory factors, and abnormalities in cellular metabolism (3). Thus, regulation of macrophage M1/M2 polarization with immunomodulatory effects is important for traumatic bone defects. A model of skull defects in rats was successfully established, new bone formation is promoted in cranial defect areas (3). ADSC EXO enriched with miR-451a inhibited the expression of MIF, promoted the shift of macrophages from pro-inflammatory to anti-inflammatory, and inhibited the expression of inflammatory factors such as NO, TNF-α, and IL-6, ultimately suppressing the inflammatory response related to bone defects and accelerated the bone healing in the experiment (3). The application of GNP hydrogels offers a new approach to bone healing; however, the specific mechanism of miR-451a enrichment in ADSC-Exos to promote the process of macrophage M1-to-M2 transition by downregulating the expression of MIF still needs to be investigated more deeply to guide subsequent clinical applications.




5.3 Kidney stones

Kidney stone formation, one of the most common urinary tract diseases, is closely associated with genetic, environmental, and metabolic factors (63). Kidney stones can be categorized into different types based on their chemical composition. Calcium oxalate (CaOx) stones are the most common and exhibit a high recurrence rate (70–80% in the last 20 years), posing a major threat to the urinary system (38). Several studies have demonstrated that inflammation-induced damage to the renal tubular epithelial cells alters the structure and polarity of the cell membrane surface, thereby promoting calcium oxalate crystal adhesion and stone formation (64). Macrophages and their M1/M2 polarization phenotypes are central to CaOx stone formation (38). The pathogenesis of CaOx crystals involves the promotion of M1-type macrophage polarization that damages renal tubular epithelial cells and promotes the development of CaOx crystal deposition. In contrast, M2-type macrophages phagocytose CaOx crystals, enhance anti-adhesion capacity, and protect renal tubular epithelial cells (65, 66). In the hyperoxaluria rat model, renal tubular injury scores are significantly decreased in the treatment group (38). IRF1 expression is inhibited by treatment with miR-23-enriched ADSC-EXOs, blocking the polarization of M1 macrophages during CaOx stone formation and thereby inhibiting CaOx crystal deposition and renal tubular injury (38). In the process, the complexity of the etiology of kidney stone pathogenesis, together with the limitations of the experimental COM-induced mouse model of kidney stones raise the question of whether ADSC-EXOs might have universal applicability in treating CaOx kidney stones of all etiologies.




5.4 Fat graft survival rate

Fat grafting for reconstructive surgery possesses the advantages of low cost and easy accessibility, thus making it a common approach. The retention rate of fat grafts is an important measure of the success of the procedure (41). Macrophages play an important role in free oil removal, phagocytosis of dead cells and debris, and tissue inflammation. Therefore, an important link exists between macrophages and fat graft survival (41). In mouse models of fat grafting, inflammatory response reduces and survival of transplanted fat increases (41). In this process, the modulation of macrophage function and M1/M2 polarization by ADSC-EXOs plays an important role (67). The mechanism is that let-7c enriched in ADSC-EXOs downregulates the transcription factor C/EBP-δ, leading to a decrease in pro-inflammatory M1 macrophages and an increase in anti-inflammatory M2 macrophages (41). Changes in RF5, considered a key factor in M1 differentiation, were also observed experimentally: its effect on the C/EBPδ factor needs further investigation. In addition to let-7c, the impact of miR-let-7a, miR-let-7g, and miR-98 were also observed experimentally to affect the expression of C/EBP-δ; elucidating the details and mechanism of which await further future studies (41).




5.5 Esophageal stricture

Postoperative esophageal strictures are a major challenge following endoscopic submucosal dissection (ESD) for superficial esophageal neoplasms, with a high prevalence and limited effective treatment options (25). The main surgical treatment modalities are repeated endoscopic balloon dilatation and temporary stenting; however, these modalities can cause esophageal perforation and mediastinitis (68). Pharmacoprophylactic modalities, such as systemic administration or local injection of steroids (e.g., triamcinolone acetonide), may reduce their incidence; however, frequent use of steroids may cause adverse effects such as immunosuppression, diabetes mellitus, peptic ulcers, osteoporosis, and susceptibility to infection (69). Lai et al. demonstrated the feasibility and efficacy of MSC-EXOs for preventing esophageal strictures in a porcine ESD model (25). ADSC-EXOs contain MFGE8, for which integrin β3 is a known receptor. Activated integrin β3/SOCS3/STAT3 signaling pathway phosphorylates macrophage STAT-3, induces M2 macrophage polarization, and reduces the production of TGFβ1, playing an important role in fibrosis (25, 69). It was also observed that miR-148a-3p significantly promotes tissue angiogenesis by activating the EGFR/MAPK signaling pathway. The PI3K-Akt pathway, critically involved in cellular functions such as survival, proliferation, and migration, was the most highly enriched in the KEGG analysis. These are essential factors in mucosa treatment (25). Nonetheless, therapy requires further optimization of the dosage and duration of administration.




5.6 Myocardial infarction

MI is the most common disease, with acute MI being the most prevalent form (70). Acute and prolonged coronary ischemia and hypoxia can lead to myocardial necrosis and complications such as arrhythmias, aneurysms, cardiac rupture, and ultimately heart failure (71). Current treatment options include coronary artery bypass graft surgery, primary percutaneous coronary intervention, or the use of anti-remodeling drugs such as β-blockers and angiotensin-converting enzyme inhibitors (72). However, these are temporary solutions compared to heart transplantation, which is a permanent solution but has the disadvantages of a significant shortage of donor organs and the occurrence of post-transplant complications (73). Moreover, ADSCs have a promising therapeutic potential for MI (74). Several studies have reported that ADSC-EXOs exert anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-fibrotic effects, and can improve cardiac function (75, 76). In experiments applying OHA-PL hydrogel to treat a rat model of myocardial infarction, myocardial infarct area was reduced and left ventricular wall thickness was increased compared with the control group (74). In the experiment, we observed that ADSC EXOs scavenged intracellular and extracellular ROS, regulated macrophage polarization, reduced the infiltration of inflammatory cells, restored mitochondrial function, attenuated inflammation in the early stage of myocardial infarction, effectively reduced myocardial fibrosis and ventricular remodeling, promoted angiogenesis, and restored the electrophysiological function of the myocardium in the late stage of myocardial recovery. miR-125a in ADSC-EXOs, which regulates endothelial cell angiogenesis and promotes the formation of endothelial tip cells by inhibiting DLL4, is also a factor in the treatment (74). The exploration of the clinical application of the OHA-PL hydrogel is not yet complete. Its surgical application requires fundamental research and development to establish its in situ injection properties before this novel idea could be applied to treating other body tissues.




5.7 Diabetes-derived diseases

Diabetes can cause ischemia in the lower extremities leading to amputation and even death (44, 49). Chronic persistent hyperglycemia can lead to the accumulation of advanced glycation end products, tissue inflammation, and oxidative stress, triggering chronic inflammation of the vasculature and gradual destruction of blood vessels, resulting in vascular occlusion and tissue ischemia (49, 77, 78). The current clinical treatment primarily consists of pharmacological interventions and surgical hemodialysis; however, the prognosis is unsatisfactory (79). In T2DM limb ischemic mouse model, angiogenesis and blood perfusion are promoted, ADSCs significantly activate the JAK/STAT6 pathway in macrophages and induce macrophage M2 polarization (49). M2 macrophages exert anti-inflammatory effects and can initiate cellular autophagy programs to remove apoptotic cells, promote wound healing, tissue repair and regeneration, and promote angiogenesis that is important for the treatment of diabetic lower-limb ischemia (49). However, since the simple low ligation model of femoral artery in T2DM mice was used in the experiment, which is an acute process, and diabetic lower limb ischemia is a chronic process, the real efficacy still needs deeper research and demonstration. Meanwhile, it is obvious that not only the JAK/STAT6 signaling pathway and other signaling pathways are involved in macrophage M2 polarization, which needs further exploration.





6 Discussion

Classically and alternatively activated macrophages play important roles in tissue and cellular immune regulation. Experiments have indicated that MSCs promote M2 macrophage polarization. Follow-up studies demonstrated that MSCs induce M2 macrophage polarization via exosomes. ADSC-EXOs can regulate macrophage M1/M2 polarization and modulate tissue inflammation and immune response via the integrin β3/SOCS3/STAT3 pathway, the S1P/SK1/S1PR1 signaling pathway, and miRNAs. Possible upstream and downstream pathways as well as other mechanistic pathways merit further study (Table 1). An increasing number of miRNAs have been identified as playing crucial roles in the induction of macrophage polarization, suggesting that the study of these miRNAs and their upstream and downstream effects will emerge as a focal point for future research. MSC-derived exosomes do not trigger malignant transformation unlike responses observed after MSC injections. Therefore, ADSC-EXOs are expected to represent a new hope for treating challenging immune and inflammatory diseases. In recent years, research into the induction of macrophage polarization and its therapeutic applications has deepened, yielding positive results in animal experiments, such as those investigating autoimmune diseases and post-traumatic tissue repair, confirming the therapeutic and application value of ADSC-EXOs.



Table 1 | Therapeutic mechanisms of ADSC-EXOs.
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However, ADSC-EXOs face challenges and limitations before clinical application. The current experiments were conducted in cells and animals. Further preclinical experiments must be carried out before ADSC-EXOs could be used in humans. The adaptability of exosomes to different diseases needs to be further explored, demonstrating their curative potential in inflammatory or autoimmune diseases and whether they can show corresponding weakening properties in terms of resistance. Because the current experimental animal cycle is limited to short- and long-term animal experiments, further experiments and demonstrations are needed to observe long-term side effects and safety. It has been reported that exosomes have both cancer-promoting and-suppressing effects on cancer cells; these effects need to be studied in greater depth. Simultaneously, in existing studies, there is no in-depth research on using ADSC-EXOs regarding the concentration, dose, method, and maneuverability in different diseases and the negative and positive feedback generated under such variables. Questions regarding the optimal concentration for use in the treatment of specific diseases, the relationship between the dosage and efficacy of the drug at different levels of use, and the specific requirements for the use of ADSC-EXOs owing to the characteristics of particular diseases are yet to be answered. Although several formulations have been developed, such as nano-gel particles, chitosan/gel encapsulation, and OHA-PL hydrogels in the laboratory setting, additional clinical applications require different approaches, such as fat graft survival and bone healing. Other issues, such as the production, transport, and preservation of ADSC-EXOs, will need to be considered owing to their biological and physicochemical properties.

Key factors include the effect of different sources on the final efficacy, variations in productivity among different cells, and the effect of different storage conditions on the efficacy of exosomes. Nonetheless, the powerful anti-inflammatory and immunomodulatory functions of ADSC EXOs in influencing immune, mainly macrophage cell function, provide great hope for advancing the treatment of challenging human diseases and clinical medicine.
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Background

Muscone, a key component of musk, exhibits anti-inflammatory properties. However, its therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), remains largely unexplored. This study aimed to investigate whether Muscone could exert a protective effect in a mouse model of COPD in vivo.





Methods

A COPD animal model was established by exposing mice to cigarette smoke (CS) and administering lipopolysaccharide (LPS) intranasally. After 4 weeks, mice were treated daily with dexamethasone (DEX) or different doses of Muscone for 3 weeks. Mouse body weight, lung function, and histopathology were determined. Serum levels of cytokines (IL-38, IL-1β, IL-17, TGF-β, IFN-γ) were measured using ELISA and qRT-PCR. Lung expression of CXCR3, IFN-γ, IL-17A, and RORγt was assessed by immunofluorescence.





Results

The body weight of COPD mice was significantly lower than that of Muscone-treated COPD mice, consistent with decreased lung function, accompanied by reduced circulating and lung IL-38 levels. After Muscone administration, lung function was significantly improved, accompanied by upregulation of circulating and lung anti-inflammatory cytokines, including IL-38, in a dose-dependent manner, while the expression of pro-inflammatory cytokines was significantly reduced. Additionally, Muscone significantly inhibited the protein expression of CXCR3, IFN-γ, IL-17A, and RORγt in lung tissues of COPD mice.





Conclusion

This study demonstrates that Muscone improves lung function in mice with COPD, potentially through a mechanism that may involve the modulation of cytokine expression, including the potential upregulation of anti-inflammatory cytokines such as IL-38. The precise underlying mechanisms of Muscone’s therapeutic effects in COPD remain to be fully elucidated. Further research is needed to investigate the correlation between COPD lung pathophysiology and the specific effects of Muscone treatment, including a more detailed analysis of the balance between pro- and anti-inflammatory mediators in COPD animal models, particularly utilizing IL-38 GKO mice to further investigate the role of IL-38 in mediating the therapeutic effects of Muscone.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a major global health concern characterized by persistent airflow limitation and chronic inflammation (1, 2). The incidence and mortality rates of COPD are rising annually worldwide, emphasizing its significant public health impact (3). The pathogenesis of COPD involves complex mechanisms, including airway and lung inflammation, an imbalance between proteases and anti-proteases, an imbalance in oxidation and antioxidant processes, and reduced immune function (4, 5).

Regular smoking and exposure to environmental pollutants, such as dust particles and toxic gases, can induce inflammation within the body, contributing to the development of COPD (6, 7). Consequently, inhibiting the inflammatory response is a crucial therapeutic strategy for this condition.

Current COPD treatment often involves a combination of bronchodilators, corticosteroids, antibiotics, expectorants, antioxidants, and immunomodulators (8–14). However, multidrug therapy can lead to serious side effects due to complex pharmacokinetics (15). Therefore, there is an urgent need to develop novel, safe, and effective medications for COPD management.

Muscone, the primary component of musk, exhibits anti-inflammatory, anti-cancer, and anti-tumor properties (16–18). It modulates various cellular processes, including inflammation, apoptosis, and angiogenesis (19). Muscone has been shown to inhibit macrophage activation and improve ventricular remodeling after myocardial infarction (20). Furthermore, studies have demonstrated that muscone can suppress the activation of the NLRP3 inflammasome and NF-κB, resulting in reduced mRNA levels of inflammatory factors such as IL-1β, IL-6, and TNF (21, 22).

Inflammation plays a pivotal role in COPD pathogenesis (23). Exposure to harmful particles triggers immune responses in the respiratory tract, leading to the activation of immune cells and the release of pro-inflammatory cytokines, such as TNF, IL-6, IL-8, and MMPs. These mediators disrupt alveolar structure, leading to persistent inflammation and tissue damage, which ultimately contributes to COPD development (24–26). While IL-38, a member of the IL-1 family, exhibits anti-inflammatory properties, its specific role in COPD remains to be fully elucidated (27, 28).

The therapeutic potential of Muscone in inflammatory lung diseases, such as COPD, remains largely unexplored. This study aimed to investigate whether Muscone could exert a protective effect in a mouse model of COPD.





Methods




Mice

C57BL/6J male mice, aged 6 weeks (n=60), were procured from Spearfish Biotechnology Co. (Beijing). All animals were housed in a specific pathogen-free facility maintained at 22°C with 40-50% humidity, on a 12-hour light/dark cycle, and had ad libitum access to standard laboratory food. Ethical approval for this study was granted by the Animal Experimentation Ethics Committee of Gansu University of Traditional Chinese Medicine (approval number: SY2023-956). The mice were randomly assigned to either the COPD or normal group. The number of mice used was determined based on prior experimental knowledge and relevant publications. CS exposure was administered by research technicians who were blinded to the study conditions.





Establishment of COPD animal model

The COPD mouse model was established using the CS+LPS induction method. Age-and sex-matched 8-week-old male mice (n=10 per group) were randomly divided into six groups. The normal group was housed in a smoke-free environment, while the remaining mice underwent intra-tracheal instillation of LPS (7.5 μg in 50 μl of saline; L8880; Solar bio, China) on days 1 and 14. With the exception of days 1 and 14, the mice were placed in a smoke box (dimensions: 50 cm x 60 cm x 90 cm) for passive inhalation of cigarette smoke (Lanzhou brand cigarettes, tar: 13 mg; nicotine: 1.3 mg). The exposure regimen consisted of 10 cigarettes per hour, with each session lasting 2 hours (smoke concentration: 800-1000 ppm), and a ventilation interval of 15 minutes each hour. This procedure occurred twice daily, 6 days a week, concluding on week 4 (Figure 1). On week 5, one mouse from each group was sacrificed for pathological diagnosis to confirm the successful establishment of the model. To establish the COPD animal model, we used a combination of cigarette smoke exposure and LPS intra-tracheal instillation. Once COPD was established, both smoke exposure and LPS intra-tracheal instillation were stopped. To assess the effects of Muscone, the COPD animals were given Muscone via gavage, while the negative control group received normal saline and the positive control group was given DEX via gavage.

[image: Timeline of different treatments on mice groups over seven weeks. Groups include Normal, COPD, DEX with 3 milligrams per kilogram, and varying doses of Muscone at 1, 2, and 4 milligrams per kilogram. Treatments involve LPS at 7.5 micrograms and cigarette smoke exposure, followed by specific oral treatments. Each group concludes with sacrifice at week seven.]
Figure 1 | Timeline of the experimental protocol.





Dosing method

According to the literature method, mice in the treatment group received muscone intragastrically at dosages of 1, 2 and 4 mg/(kg/d) (29), while the positive control group was administered 3 mg/(kg/d) of DEX (30). Mice in the normal and COPD model groups were given equal amounts of saline by gavage. Each treatment group was administered once daily for 3 weeks starting at week 5. Notably, there were no fatalities during the administration period. The modeling and drug delivery process is illustrated in Figure 1.





Pulmonary function measurement

Lung function was assessed using a small animal spirometer at the end of week 7 (Best lab; Anirec2005; China), to which the mouse was connected and mechanically ventilated. The lung function test commenced once the respiratory rhythm of the mouse synchronized with that of the ventilator. An average breathing frequency of 150 breaths per minute was established. Various pulmonary function parameters were measured, including Inspiratory Time (Ti), Expiratory Time (Te), Peak Inspiratory Flow (PIF), Peak Expiratory Flow (PEF), Tidal Volume (TV), and Minute Ventilation Volume (MV). Following the lung function assessments, the mice were euthanized through blood collection via the abdominal aorta.





Lung preparation

The left lung tissues were then immediately fixed in 4% formaldehyde (Bio sharp, Hefei, China) for 48 hours. Paraffin sections (4μm) were prepared and stained with hematoxylin and eosin (H&E), and were also subjected to immunofluorescence staining, as described (31, 32). The right lung tissues from each group of mice were also removed and stored at -80°C for qRT-PCR.





Pulmonary histopathological analysis

For histopathological examinations, tissue sections were prepared as previously described (32). Briefly, lung tissues were fixed using 10% formalin, then embedded within paraffin, and then cut into 4-μm sections. Tissue sections were stained with H&E for histological analysis.





RNA extraction

Total RNA was extracted from the lungs using the following procedure: the trachea and lungs were resected, and the airways were carefully separated from the lung parenchyma with sterile forceps. The lungs were then snap-frozen and stored at -80°C. Subsequently, the tissue was thawed in sterile PBS (Solarbio, Beijing, China). Total RNA was extracted using Trizol reagent (Ambion, Texas, USA) in accordance with the manufacturer’s instructions and stored at -80°C.





Quantitative real-time PCR

RNA was reverse transcribed into cDNA strands using the PrimeScript™ RT Reagent Kit with gDNA Eraser (Yeasen, Shanghai, China). Quantitative reverse transcription PCR was conducted on the CFX96–C1000 system (Yeasen, Shanghai, China) utilizing the SsoFast™ EvaGreen® Supermix kit (Yeasen, Shanghai, China). Three replicate tests were performed for each sample, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was detected as an internal reference. Employing the 2−ΔΔCt method for quantitative analysis.

The PCR primers used in this study were as follows:

IL-38:

5’-CCAAAGGCTCCATGTGGTTG-3’ (forward)

5’-AGGAGGGCAAGGTTAATGG-3’ (reverse);

TNF:

5’ -CCCTCACACTCACAAACCAC-3’ (forward)

5’-ATAGCAAATCGGCTGACGGT-3’ (reverse);

IL-1β:

5’-TGGCAACTGTTCCTGAACTC-3’ (forward)

5’-AGTGATACTGCCTGCCTGAAG-3’ (reverse);

NLRP3:

5’-TGTCAGGATCTCGCATTGG-3’ (forward)

5’-AGTAAGGCCGGAATTCACC-3’ (reverse);

GAPDH:

5’-TGTTTCCTCGTCCCGTAG-3’ (forward)

5’-CAATCTCCACTTTGCCACT-3’ (reverse).

The real-time PCR results were analyzed using the Applied Biosystems 7500 Real-Time PCR System software (Applied Biosystems, CA, USA), and the fold change in cDNA expression of the target gene relative to the endogenous control (GAPDH) was calculated using the 2−ΔΔCt method.





Enzyme-linked immunosorbent assay

The mouse blood was centrifuged at 4°C, 3500 rpm for 10 min, and the serum was stored at-80 °C for ELISA detection. Commercial ELISA kits (CUS Ag, Wuhan, China) were used to measure the following analyses in duplicate from mouse serum samples, following the manufacturer’s instructions: IL-38 (ZC-10406), IL-1β (ZC-10247), IL-17 (ZC-10243), TGF-β (ZC-10401), IFN-γ (ZC-10280), VEGF (ZC-10379), and TNF (ZC-10225). Equal amounts of total protein were loaded into each well. Absorbance at 450 nm was measured using an Enspire enzyme marker (Perkin Elmer, Waltham, USA).





Immunofluorescence staining

The sections (4μm) were dew axed, rehydrated, and antigen retrieved as described (31, 32). Sections were permeabilized with 0.5% Triton X-100 for 15 min at room temperature (RT) and rinsed three times with PBST. The sections were blocked with normal goat serum (E-IR-R110) from the kit (Elabscience, Wuhan, China) for 30 min. Then stained with anti-CXCR3, anti-IL-17A (green fluorescence) and anti-IFN-γ, anti-RORγt (red fluorescence), where the dilutions of anti-CXCR3, anti-IL-17A, anti-IFN-γ, and anti-RORγt were 1:500, 1:100, 1:200, and 1:500, respectively (Abcam, London, UK), and incubated at 4°C overnight. The sections were incubated overnight. The sections were rinsed three times with PBST for 3-5 minutes each time. Diluted fluorescent labelled secondary antibodies were then added to the wet kit and incubated in the dark at RT for 60 min. DAPI stain (E-IR-R103) from the kit was added drop wise and the nuclei were stained for 5 min in the dark. Finally, anti-fluorescence quenching mounting solution (E-IR-R119) was applied to the slides, and then cover slides, making sure to avoid light exposure after secondary antibody incubation. The slides were imaged using a light microscope (Leica, Wetzlar, Germany).





Statistical analysis

All analyses were performed using GraphPad Prism 8 (San Diego, CA, USA). Normally distributed measurements are presented as mean ± standard deviation, with a t-test used for comparisons between two groups. For comparisons involving multiple groups, one-way ANOVA was performed, followed by Dunnett’s test for post-hoc multiple comparisons. Non-normally distributed measures are reported as M (P25, P75), with the Mann-Whitney U test used for comparing two independent samples. The Kruskal-Wallis H test was applied for comparisons among multiple groups. A P value < 0.05 was considered significant.






Results




General appearance of mice

Normal group animals showed shiny fur, even breathing, and normal activity during the entire experimental period. The COPD group animals displayed dull fur, partial hair loss, irritability, and a tendency to huddle together following CS+LPS treatment. In addition, these animals also showed fatigue and loud breathing. There was no death of animals during the entire experimental period. The sick appearance was much improved following DEX treatment, as well as muscone treatments.





Mouse weight and pulmonary dysfunction in COPD mice

Mice in each group gradually gained weight from modeling to drug administration (1-7 weeks) (Figure 2A). There was significant body weight (~18%) lost over 2 weeks COPD model (CS+LPS treatment) development, compared with the normal animals (Figure 2B). As expected, the body weight of of COPD animals wasn’t changing much immediately following DEX, Mus-L, Mus-M, or Mus-H individuals. Furthermore, the body weight of all the experimental animals was gradually increased toward week 6 (Figure 2C).

[image: Line and bar graphs showing body weight changes in different rat groups over seven weeks. Graph A shows line trends for Normal, COPD, Dex, Mus-L, Mus-M, and Mus-H groups. Error bars indicate variation. Graphs B and C are bar charts showing detailed weights at specific weeks, indicating significance levels with asterisks.]
Figure 2 | The body weight change of COPD mouse model (A-C). ****P < 0.0001, ***P < 0.001, **P < 0.01.

Although there was also gradual body weight gain over the following 5 weeks, the overall body weight was significantly lower (~15%) from the COPD animals, compared to that of the normal groups (p < 0.001) (Figure 2C). As expected, the body weight of the DEX treated COPD group seemed to be improved, from the second week of the treatment, and much noticeable at the week 3 post treatment (p < 0.001) (Figure 2C). Subsequently, the improvement of the body weight was only observed from the Mus-H treated COPD animals (p < 0.01) (Figure 2C), but not from Mus-L or Mus-M treatment.

There were significant increased nearly twofold Ti (p < 0.0001) (Figure 3A) and Te (p < 0.0001) (Figure 3B) increased from the COPD group compared to that in the normal group, a result that further validates the reliability of the COPD model. As expected, DEX could resure the increased Ti and Te in the COPD animals. Additionally, muscone could also resure Ti and Te in a dose dependent manner, particularly in the high dosage.

[image: Bar graphs A to F display respiratory function metrics for different conditions: Normal, COPD, DEX, Mus-L, Mus-M, and Mus-H. Measurements include Inspiratory Time (A), Expiratory Time (B), Peak Inspiratory Flow (C), Peak Expiratory Flow (D), Tidal Volume (E), and Minute Volume (F). Statistical significance is indicated by asterisks, with varying levels of significance shown: * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001).]
Figure 3 | Indicators of lung function i each group of mice (A-F). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.5.

Furthermore, there was a significant reduction in PIF (p < 0.001) (Figure 3C), PEF (p < 0.001) (Figure 3D), TV (p < 0.001) (Figure 3E) and MV (p < 0.001) (Figure 3F), were significantly reduced by ~50% in COPD group compared to the normal group. Such reduced MV, TV, PIF and PEF were partially restored following DEX treatment or with muscone, also in a dose dependent manner (See Table 1 for details).



Table 1 | Comparison of lung function indexes of mice in each group ([image: Black ribbon icon symbolizing remembrance or mourning.]  ± S, N = 10).

[image: A table comparing multiple respiratory parameters among different groups. Columns show parameters: Ti, Te, PIF, PEF, TV, and MV with respective units. Rows include groups: Normal, Model, DEX, Mus-L, Mus-M, Mus-H, each with sample size 10. Values are given with means and standard deviations, using symbols for statistical significance. Footnotes explain significance notation: compared to Normal (using ###), Model, and COPD (using *) with specific p-values.]




Muscone inhibits CS+LPS-induced lung injury in mice

The induction of COPD in the animals was confirmed using histopathology. Compared with the normal group (Figure 4A), the lung tissues of mice in the COPD group exhibited severe damage, including large numbers of infiltrating leukocytes, erythrocytes, and effusions in the interstitial tissues (Figure 4B). As expected, there was a noticeable histopathological improvement in the lungs of COPD animals following DEX treatment, with a reduction of infiltrating leukocytes and red blood cells by almost half, along with decreased fluid accumulation (Figure 4C). Muscone also reduced the severity of COPD in a dose-dependent manner, with higher doses showing better histopathological outcomes (Figures 4D–F).

[image: Histological images of lung tissue under different conditions. Panel A shows normal lung tissue with open alveolar spaces. Panel B shows lung tissue with COPD, featuring thickened walls and reduced alveolar space. Panel C displays lung tissue treated with dexamethasone, resembling normal tissue. Panels D, E, and F show lung tissue treated with varying doses of a substance labeled Mus-L, Mus-M, and Mus-H, with each showing degrees of alveolar structure changes. Each image includes a scale bar indicating a magnification of one hundred micrometers.]
Figure 4 | The pathological changes of lung in each group (A-F).





Muscone promoted mRNA expression of IL-38 in COPD mice

To determine the potential role of IL-38 in the development of COPD in response to the different treatments (Figure 5A), IL-38 mRNA was evaluated using qRT-PCR. Constitutive expression of IL-38 was significantly reduced by 90% in the lungs of mice in the COPD group compared with the normal group, which is consistent with the histopathology of the COPD model (p < 0.001). DEX treatment reversed this inhibition of IL-38 mRNA expression in the COPD lungs (p < 0.001). Similarly, IL-38 mRNA expression was also rescued in response to muscone treatment in a dose-dependent manner.

[image: Bar graphs labeled A to D compare different treatments and conditions on levels of IL-38, TNF, IL-1β, and NLRP3. Categories include Normal, COPD, DEX, and various doses of Mus. Statistical significance is indicated by asterisks, with more asterisks denoting higher significance.]
Figure 5 | The mRNA expression of IL-38, TNF, IL-lβ and NLRP3 in lung tissue of mice in each group (A-D). ****P < 0.0001, ***P < 0.001, *P < 0.5.





Muscone inhibits mRNA expression of TNF, IL-1β, and NLRP3 in COPD mice

To investigate the involvement of pro-inflammatory mediators, the expression of TNF, IL-1β, and NLRP3 mRNA in the lungs from the different treatment groups was assessed (Figures 5B–D). TNF mRNA expression was up-regulated nearly threefold in lung tissues of mice in the COPD group, supporting the establishment of COPD (p < 0.0001). However, after DEX treatment, the increase in TNF was significantly suppressed, with a reduction of approximately 60% (p < 0.0001). Additionally, muscone also reduced TNF expression in the lungs of COPD animals in a dose-dependent manner.

It was not surprising that the expression of the other two inflammatory mediators, IL-1β and NLRP3, was also upregulated in the lungs of COPD animals and could be inhibited by both DEX and muscone in a dose-dependent manner.





Effect of muscone on serum cytokines

To investigate the effect of muscone on inflammatory cytokines, we used ELISA to measure serum levels of IL-38 (Figure 6A), IL-1β (Figure 6B), IL-17 (Figure 6C), TGF-β (Figure 6D), IFN-γ (Figure 6E), VEGF (Figure 6F) and TNF (Figure 6G).

[image: Bar graphs A to G display levels of various cytokines and growth factors across six groups: Normal, COPD, DEX, Mus-L, Mus-M, and Mus-H. Graph A shows IL-38, B shows IL-1β, C shows IL-17, D shows TGF-β, E shows IFN-γ, F shows VEGF, and G shows TNF. Statistical significance is indicated by asterisks, with **** for p<0.0001 and ** for p<0.01. Differences in cytokine levels are evident between groups.]
Figure 6 | Inflammatory factor expression in serum of mice in each group (A-G). ****P < 0.0001, ***P < 0.001, **P < 0.01.

Serum IL-38 was significantly reduced by approximately 60% in COPD group, compared to that of the normal group (p < 0.0001) (Figure 6A). DEX almost restored completely the IL-38 from the COPD animals (p < 0.0001). Moreover, muscone was also able to restore the suppressed IL-38 in a dose dependent manner. Serum IL-1β, IL-17, TGF-β, IFN-γ, VEGF and TNF (Figures 6B–G), were significantly elevated by more than 2 times in the COPD group compared to the normal group (p < 0.0001). DEX treatment significantly reduced these mediators in the range of 50-80% compared to mice in the COPD group (p < 0.0001). Muscone treatment reduced the serum levels of pro-inflammatory cytokines in COPD animals in a dose-dependent manner.





Protein levels of CXCR3, IFN-γ, IL-17A and RORγt

To assess the effect of CS+LPS induction on inflammatory factors in mouse lungs, we examined signature inflammatory factor proteins such as CXCR3, IFN-γ secreted by Th1 cells and IL-17A and RORγt secreted by Th2 cells. The CXCR3 results showed that, compared with the normal group (Figure 7A), the expression of CXCR3 in the lungs of mice in the COPD model group significantly increased (Figure 7B). The expression of CXCR3 was reduced by nearly half after DEX treatment (Figure 7C), which showed a significant inhibitory effect. The effect of low-medium- and dose muscone was not as significant as that of the high-dose (Figures 7D, E), and the inhibitory effect of high-dose muscone on CXCR3 was basically the same as that of DEX (Figure 7F). Optical density analysis showed that the expression of CXCR3 in the lungs of mice in the COPD model group was about 2.5 times higher than that in the normal group (Figure 7G), which suggests that severe inflammatory responses accompany the development of COPD. The expression of IFN-γ, IL17A, RORγt in the lungs of animals with COPD and the changes after administration of IFN-γ, IL-17A, RORγt were similar to those of CXCR3 (Figures 8–10).

[image: Fluorescence microscopy images A-F show lung tissue samples labeled in green and blue under different conditions: Normal, COPD, DEX, Mus-L, Mus-M, and Mus-H. Red arrows indicate specific areas in each sample. Image G is a bar graph showing the integral optical density of CXCR3 across the samples. COPD shows the highest density, while the DEX condition is lower than COPD but higher than normal. The graph includes statistically significant differences marked with asterisks.]
Figure 7 | The expression of CXCR3 in lung tissue of mice in each group (A-G). ****P < 0.0001, *P < 0.5.

[image: Microscopic images (A-F) display lung tissue with different labeling intensities in blue and red, indicating varying conditions: Normal, COPD, and treated groups (DEX, Mus-L, Mus-M, Mus-H). Arrows point to specific areas of interest. Panel G presents a bar graph showing the integral optical density of IFN-gamma, with bars for each condition, highlighting significant statistical differences marked by asterisks.]
Figure 8 | The expression of IFN-γ in lung tissue of mice in each group (A-G). ****P < 0.0001.

[image: Fluorescent microscopy images (A-F) display lung tissue with varying conditions: Normal, COPD, DEX, Mus-L, Mus-M, and Mus-H. Stained areas indicate IL-17A presence, shown in green, with nuclei in blue. Image G presents a bar chart comparing the integral optical density of IL-17A across the conditions, with COPD showing the highest density. Statistical significance is marked with asterisks. Scale bar is 100 micrometers.]
Figure 9 | The expression of IL-17A in lung tissue of mice in each group (A-G). ****P < 0.0001, *P < 0.5.

[image: Microscopic images (A-F) show lung tissue samples labeled with antibodies, highlighted in red and blue, from different experimental groups: Normal, COPD, DEX, Mus-L, Mus-M, Mus-H. Arrows indicate specific cell markers. Adjacent to these is a bar graph (G) showing the integral optical density of ROR-γt across these groups, with statistical significance indicated by asterisks. Scale bar is 100 micrometers.]
Figure 10 | The expression of RORγt in lung tissue of mice in each group (A-G). ****P < 0.0001, ***P < 0.001, *P < 0.5.






Discussion

This study aimed to investigate the therapeutic effects of Muscone in a mouse model of COPD induced by CS + LPS. A COPD mouse model was established based on previous reports (33). In this study, Muscone was found to alleviate CS + LPS-induced weight loss and pulmonary dysfunction in mice. After two weeks of modeling, the mice exhibited noticeable signs of depression, reduced activity, and significant weight loss. From the third week, their weight began to increase slowly, but after Muscone administration, weight gain accelerated significantly.

Lung function, assessed by measuring parameters such as Ti, Te, MV, TV, PIF, and PEF, is crucial for evaluating COPD severity as it reflects pathological changes in the small airways and is more sensitive than morphological lung changes (34). Following Muscone intervention, lung function parameters significantly improved in COPD mice, indicating that Muscone effectively reversed lung function decline, improved airflow control, and ultimately mitigated emphysema. These findings are consistent with Zhong’s study (35), which reported that muscone improved lung function in patients with pulmonary heart disease.

Histopathological examination of the lungs of COPD mice revealed typical features of the disease, including widened alveolar septa, capillary proliferation and congestion, small areas of hemorrhage, infiltration of lymphocytes, plasma cells, and some neutrophils, partial alveolar collapse, and fusion of a few alveolar cavities. These findings reflect the complex airway and parenchymal changes associated with COPD. Compared to the COPD group, Muscone treatment significantly reduced these histopathological changes, suggesting a protective effect against COPD. This finding aligns with results from other studies (30, 36).

Inflammation plays a crucial role in the pathogenesis of COPD (37). Prolonged exposure to harmful particles triggers immune responses in the respiratory tract, leading to the activation of immune cells and the release of pro-inflammatory cytokines, such as TNF, IL-6, IL-8, and MMPs, which disrupt alveolar structure and contribute to the development of COPD (38).

This study observed reduced circulating and local levels of IL-38 in COPD mice, which were restored by DEX or high-dose Muscone treatment. While IL-38 has been shown to exhibit anti-inflammatory properties in other contexts, its specific role in COPD remains to be fully elucidated.

CS can stimulate alveolar macrophages to release pro-inflammatory cytokines (e.g., IL-1β, TNF) through autocrine and paracrine mechanisms, triggering more severe inflammatory responses by inducing the release of pro-inflammatory and pro-fibrotic cytokines (e.g., IL-17, TGF-β, IFN-γ, VEGF, NLRP3) from recruited neutrophils and T lymphocytes, further exacerbating pulmonary inflammation and fibrosis (39–42). This is consistent with other studies showing that the intensification of the inflammatory response significantly increases the expression levels of IL-1β, IL-17, TGF-β, IFN-γ, VEGF, TNF, and NLRP3 in serum or lung tissue (43). In this study, Muscone treatment significantly inhibited the protein expression of CXCR3, IFN-γ, IL-17A, and RORγt in lung tissues of COPD mice, suggesting a suppression of T cell and macrophage activation.

CXCR3 and IFN-γ are surface markers of Th1 cells, while IL-17A and RORγt are surface markers of Th17 cells. The expression of these markers is directly proportional to the degree of inflammation in COPD (44–47). In COPD patients, T cells in the peripheral airways exhibit an enhanced ability to express CXCR3 and IFN-γ (48), and increased IL-17A secretion from Th17 cells, along with its signature protein RORγt, is directly correlated with the severity of emphysema.

This study has a few limitations. First, only male mice were used to minimize the potential interference of female hormonal fluctuations. However, sex may influence drug response; therefore, we plan to extend the study in the future to include female mice or other populations in a follow-up to fully assess the effects of muscone. Second, the study focused on oral administration of Muscone, without considering potential therapeutic effects through other routes or its potential impact via the nervous system.





Conclusion

In summary, our study demonstrates that Muscone improves lung function in mice with COPD. Muscone treatment alleviated weight loss, improved lung function, and reduced histopathological changes in the lungs of COPD mice. While the data from our current study suggest a potential correlation between the upregulation of IL-38 and the downregulation of pro-inflammatory cytokines, we do not yet have definitive evidence in vivo and/or in vitro. This will be confirmed in our future studies.
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Atopic dermatitis (AD) is a chronic relapsing disease with complex pathogenesis. Among them, inflammation is one of the primary pathogenesis of AD. AD is characterized by infiltration of lymphocytes into the skin’s dermis, and the skin homing of lymphocytes plays an essential role in the recurrence of AD. Currently, there is more and more evidence to support this view. This article reviews the relevant role of T lymphocyte skin-homing-related molecules in the recurrence of AD to provide a reference for the cure of AD.




Keywords: atopic dermatitis, pathogenesis, T lymphocytes, skin-homing, recurrence




1 Introduction

Atopic dermatitis (AD), clinically characterized by recurrent episodes, dry skin, intractable itching, and chronic eczematoid lesions, is one of the most common chronic, inflammatory, and recurrent skin diseases (1, 2). The incidence of AD is high and increasing year by year (3). In 2019, the number of cases of AD worldwide was 171 million, an increase of 28.6% from 133 million cases in 1990 (4). At present, sudden recurrence or deterioration of symptoms (68% of AD patients) is one of the most challenging factors in the course of AD (5), and the main obstacle in AD research and treatment. The pathogenesis of AD is complex, involving the combined disruption and imbalance of many factors, such as microbial distribution, genetics, skin barrier, immune response, and so on (6–9). However, there is still controversy regarding how AD begins. There are mainly two hypotheses: “outside-in” (immune imbalance caused by epidermal skin barrier destruction) and “inside-out” (systemic inflammation triggers barrier dysfunction) (10). Studies have shown that the intensity of barrier damage and water deficit of non-pathological AD skin is closely related to the clinical severity of AD patients. This strongly suggests that the destruction of the steady state of the percutaneous permeability barrier is caused by induced dermatitis, which then triggers the tendency to induce AD recurrence (11). Patients with AD frequently relapse in areas where the primary lesions have receded after cessation of treatment and studies have also shown that there is a correlation between the mechanism of recurrence and local immune memory function (12). Therefore, the “inside-out” hypothesis may provide crucial insights into the mechanisms of AD recurrence.

AD is characterized by infiltration of multiple immune cells, primarily lymphocytes, into the dermis. After antigen exposure, naïve T cells differentiate into effector T cells capable of executing immune defense mechanisms. Most of these cells are transient and die after an immune response, but some still exist and differentiate into memory T cells. When AD relapses, the Effector Memory T Cells (TEM) circulating in the blood migrate rapidly to the skin (13). In this process, the lymphocytes circulating in the blood selectively cross the high endothelial venules, migrate directionally and enter peripheral organs or specific tissue regions. This phenomenon is called lymphocyte homing (14, 15). Current research on skin-homing memory T cells is mainly focused on TEM.

TEM leaves the vascular system to enter the dermis for homing and must cross the dermal microvascular endothelial cell “barrier”. This is a multi-step process that requires additional molecular interactions to mediate. The first step is composed of cutaneous lymphocyte-associated antigen (CLA), lymphocyte-associated antigen-1 (LFA-1), very late appearing antigen-4 (VLA-4), etc, as well as their ligands on the surface of vascular endothelial cells, such as E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and other interactions to achieve the adhesion and rolling of lymphocytes on high endothelial micro vessels (16). The second step is activated through the interaction of CCL17 (C-C chemokine ligand 17) and CCL27, with their receptors CCR4 and CCR10, where the lymphocytes ultimately lodge and cross the endothelium (17). The rapid homing of the CLA+ T cell immune response to the skin results in production of Th2 cytokines, further disrupting the skin barrier, leading to recurrence of AD (Figure 1). Clinical studies have shown that from the cessation of dupilumab treatment to 48 weeks after treatment, CLA+ T cells produced a significant increase in Th2-related cytokines, indicating that the recurrence process is closely related to CLA+ T cells (18). This article reviews the relevant role of TEM skin-homing-related molecules in the recurrence of AD, proving a reference for the cure of AD.

[image: Illustration of the skin structure showing a recurrent lesion and non-lesional skin. It highlights cellular processes involved in immune response, with arrows indicating movement. A legend identifies various cells, proteins, and cytokines, such as TEM, TRM, APC, antigens, and cytokines like IL-4, IL-5, and TNF-alpha. The illustration visually contrasts the damaged and non-damaged skin areas.]
Figure 1 | The role of TEM homing to the skin in AD recurrence. TEMs in blood vessels achieve adhesion and rolling of lymphocytes on high endothelial venules through the interaction of CLA, LFA-1, and VLA-4 molecules on their surface, as well as their ligands E-selectin family, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of vascular endothelial cells. Subsequently, CCR4 and CCR10 expressed on TEMs interact with CCL17 and CCL27 produced by keratinocytes. TEMs eventually stay and cross endothelial cells to achieve skin homing and produce cytokines, which further disrupt the skin barrier, leading to the recurrence of AD. In addtion, TRMs also participate in the immune response and produce cytokines during AD recurrence. In non-lesional skin, there is also a slight inflammatory response.




2 The adhesion molecules

Cell adhesion between TEM and vascular endothelial cells is an important early step in the recurrence of AD, which is mainly involved in CLA and integrin family.



2.1 CLA and E-selectin

CLA is a cell surface molecule induced by fucosyl transferase VII. It is a ligand of glycoprotein E-selectin that is expressed on the surface of most peripheral blood leukocytes. In the case of inflammation, CLA is expressed on 90% of TEM in the skin but not on naive T cells (19, 20). CLA+ T cells are T cells specific to skin homing, of which CD3+CD4+CD45RO+CLA+ T cells are the central infiltrating cells in AD lesions (21–23). When the lectin structural domain of E-selectin on endothelial cells recognizes CLA, CLA functions as an adhesion molecule (20), allowing T lymphocytes to enter the inflamed skin site by rolling across the vascular endothelium (24). The infiltration of huge amounts of CLA+ T cells in the skin of AD lesions (21) indicate that circulating CLA+ T cells can be used as a peripheral biomarker of AD (19).

The importance of circulating CLA+ T cells in dermatology depends on their ability to selectively migrate to the skin (homing) and their de-homing ability, suggesting that these CLA+ T cells may reflect the skin’s immune response (25). Efalizumab can improve the clinical symptoms of AD by blocking the interaction of homing adhesion molecules (26). During treatment, patients developed secondary CLA+ T cell increase, and the disease worsened after treatment is discontinued, indicating that T cell recycling/turnover between skin and blood is regular. In this case, TRM can migrate from the skin back to the blood (27), exhibit CLA+ Th2 characteristics and increased expression of GATA binding protein 3 and interleukin-13 (IL-13) (28). The de-homing characteristic of circulating CLA+ T cells increases the positive correlation between the phenotype and number of circulating CLA+ T cells and the severity of AD (29).




2.2 Integrin family

Integrins are a large family of widely expressed adhesion receptors interacting with cell surface homologous receptors and extracellular matrix components. Integrin affinity can be regulated by elements of the extracellular environment or by intracellular signals (30). During homing, lymphocytes stagnate on the vascular endothelium and migrate spontaneously in a rapid crawling mode to find the best extravasation locations (portals) (31). These portals are composed of endothelial cells with vertical microvilli-like protrusions rich in adhesion molecules, especially integrin ligands ICAM-1 and VCAM-1. LFA-1 and VLA-4 are members of integrin-type adhesion molecules involved in the adhesion and rolling process of lymphocyte extravasation during lymphocyte homing to the skin in AD (32).



2.2.1 Integrin LFA-1 and its ligand ICAM-1

ICAM-1 is a member of the immunoglobulin superfamily and is the primary ligand of LFA-1. It is enriched in nearly 43% of the portals on the vascular endothelium. Sending a signal to the nearby portal prepares endothelial cell connections to adapt to TEM passage, making these portals more suitable for TEM migration to achieve homing (31). The study found that the vascular endothelium in the dermis showed a strong signal of ICAM-1 in AD patients compared with normal people (33), indicating that ICAM-1 plays a vital role in the TEM homing of AD. The regulation of the interaction between CLA+ T cells and vascular endothelial cells to promote their adhesion by the ICAM-1/LFA-1 adhesion system is one of the mechanisms of transendothelial migration of CLA+ T cells (34). The effect of ICAM-1/LFA-1 on lymphocyte skin homing is not only found in AD but also other inflammatory diseases involving the up-regulation of cell adhesion molecules. The expression of adhesion molecules ICAM-1, VCAM-1, LFA-1, and VLA-4, which promote leukocytes to enter the inflammatory site, were up-regulated in microvascular endothelial cells and leukocytes in the poor healing of skin ulcers caused by chronic venous insufficiency (35). In follicular keratosis, when epidermal keratinocytes do not express ICAM-1, the expression of ICAM-1 is upregulated in the follicular epithelium adjacent to LFA-1-positive follicular cutaneous T-cell lymphoma cells. This suggests that the ICAM-1/LFA-1 interaction plays a vital role in the pathogenesis of hair follicle keratosis (36).

The interaction between LFA-1 and ICAM-1 is necessary for lymphocyte adhesion and migration and plays a vital role in antigen presentation in AD (37). Clinical trials of AD have shown that LFA-1 blockade can inhibit the presentation of allergen-specific Th2 cells by keratinocytes at doses present in vivo (38). Tsuyoshi Ohmura et al. (39) have also shown that preventive treatment can inhibit the development of AD-like lesions in mice, suggesting that anti-LFA-1 monoclonal antibodies may play a role by inhibiting antigen presentation.

The interaction between LFA-1 and ICAM-1 plays a vital role in the recurrence of AD. Many existing treatments can directly or indirectly down-regulate the level of ICAM-1 in AD. Anti-adhesion molecule therapy is becoming a new method for treating inflammatory skin diseases like AD.




2.2.2 Integrin VLA-4 and VCAM-1

VLA-4 is a member of the VLA subfamily, composed of α4 and β1 subunits, and is highly expressed in almost all lymphocytes (40). The interaction between VLA-4 and cytokine-induced VCAM-1 not only mediates the initial tethering of cells but also mediates the firm adhesion of cells to the inflammatory vascular wall and plays a vital role in the migration of lymphocytes, monocytes, and eosinophils to the inflammatory site (32). In vitro AD experiments, monoclonal antibodies that block the interaction of CLA/E-selectin or VLA-4/VCAM-1 can significantly inhibit the transendothelial migration of skin-homing T cells (41). Similar findings were also found in rats, where when the two integrins VLA-4 and LFA-1 were blocked, lymphocyte accumulation was almost entirely inhibited (42). Although VCAM-1 is involved in the transendothelial migration of skin-homing T cells in AD, studies have shown no correlation between the soluble VCAM-1 concentration and the clinical severity of AD patients (43, 44). Therefore, whether they are indicators of disease activity still needs to be determined.

The interaction between VLA-4 and cytokine-induced VCAM-1 is not only involved in cell adhesion and migration but may also be involved in the adhesion and interaction between T lymphocytes and activated fibroblasts in the chronic inflammatory state of the skin (45). Studies have found that VCAM-1 is also expressed on skin keratinocytes and dendritic cells (46). In some cases, VCAM-1 on these cells is up-regulated by cytokines such as IL-4, tumor necrosis factor-α, IL-1, and interferon-γ, suggesting that VLA-4/VCAM-1 may play a role in the interaction between mononuclear leukocytes and connective tissue during inflammation, and this process is partially regulated by cytokines (45).






3 Chemokines

Chemokines are small proteins that play a significant role in controlling leukocyte transport. According to the cystine motifs with different numbers of amino acids between cysteine residues, they are divided into four subgroups: CC, CXC, CX3C, and C. Chemokine receptor is subdivided in the same way, such as CCR1 ± 9, CXCR1 ± 5, and CX3CR1 (47). The interaction between chemokines and their receptors in the blood plays a vital role in mediating T cells’ firm adhesion in the activation and transport process, mediating the infiltration of circulating T cells to the periphery of inflammation (48). In addition to the CLA and integrin family mentioned above, chemokines represented by CCR4 and CCR10 are also involved in mediating skin T cell transport in inflammatory skin diseases such as AD, psoriasis, and allergic contact dermatitis (49, 50).



3.1 CCL17 and its receptor CCR4

CCL17 is a member of the CC chemokine family, which is synthesized by various skin-derived cells such as keratinocytes, activated macrophages, dendritic cells and endothelial cells, and binds to CCR4 receptor (51, 52). CCR4 is highly expressed in skin infiltrating lymphocytes (52) and preferentially expressed on circulating CD4+ memory T cells and regulatory T cells (47). Studies have shown that in vivo CCR4+ memory CD4+ lymphocytes migrate more to dermal inflammation than CCR4- lymphocytes (53), and keratinocytes in the skin venules and epidermis constitutively and induciblely express CCL17 (54). Therefore, CCL17 and CCR4 are important in lymphocyte-selective skin homing (50, 51), and both are synergistically involved in the interaction between TEM homing to the skin and the site of skin inflammation and vascular endothelium (55).

Wang et al. (56) found that T cells with CCR4+ and CCR10+ increased in the skin and draining lymph nodes of allergic contact dermatitis and were effectively attracted by their specific chemokines CCL17, CCL22, and CCL27 in vitro. Using in vivo imaging technology, it was found that T cells migrated to the inflammatory site 2 hours after administration. At the same time, systemic administration of anti-CCR4 ligand (CCL17 and CCL22) and CCR10 ligand (CCL27) comprehensive antibody can significantly inhibit T cell migration and skin inflammation. In AD patients and mouse models, CCL17 is produced by basal keratinocytes (47, 57), and CCL17 mRNA is present in the endothelial cells of the skin’s postcapillary venules (55). In addition, many studies have found that serum CCL17 levels in AD patients increased when the disease worsened, and the number of CCR4+CLA+ circulating lymphocytes also increased (47, 53, 58, 59). These results suggest that CCL17 and its receptor may be vital in recruiting AD skin-specific lymphocytes.

CCL17 has been shown to be associated with the severity of AD disease and has been described as a biomarker that reflects AD treatment (60). Therefore, inhibiting the binding of CCL17 to CCR4 may prevent Th2 cells from migrating to inflammatory tissues and make CCR4 and CCL17 a potential target for the treatment of AD. Recent studies have shown that CCR4 deletion or CCR4 antagonist can improve AD-like skin lesions in BALB/c mouse AD model (61, 62). Recently, RPT193, an oral small molecule CCR4 antagonist, inhibited the migration of Th2 cells derived from healthy human CD4+ T cells in an in vitro chemotaxis assay. In moderate to severe AD subjects, RPT193 improved clinical efficacy more than placebo (63). Nelly Frossard et al. (64) found in the experiments that GPN279 can effectively improve the skin barrier and physiological indicators of patients with mild to moderate AD (GPN279, a chemical neutralizing agent, was recently found to bind CCL17 with high affinity and effectively neutralize CCL17, thereby activating the CCR4 receptor expressed by Th2 cells). The above studies have shown the effectiveness and clinical potential of CCR4 and CCL17 in the treatment of AD. In recent years, inhibiting the combination of CCR4 and CCL17 is emerging as a new method for treating AD.




3.2 CCL27 and its receptor CCR10

CCL27 is a skin-specific CC chemokine, constitutively expressed by keratinocytes and fixed on the surface of dermal extracellular matrix and dermal endothelial cells. Together with CCR4, it is involved in mediating lymphocytes to cross vascular endothelial cells, and is significantly expressed in the lesions of inflammatory skin diseases such as human AD (65), contact dermatitis, and psoriasis. CCR10 is a receptor for CCL27. In human subjects, all blood CCR10+ T cells showed memory cell markers, co-expressed the skin-homing molecule CLA, and responded to the chemotaxis of CCL27 (66). The CCR10/CCL27 interaction mediates the recruitment of memory T cells to the skin and regulates the induction of antigen-specific skin inflammation in vivo (67). In early studies, it has been proven that keratinocytes of inflamed skin lesions of AD patients is positive for CCL27, with an increased level of serum CCL27, this increase is positively correlated to the severity of the disease (68). The chemotaxis and migration experiments of the AD mouse model showed that CCL27 promoted a greater degree of skin homing of T cells in diseased mice. Subcutaneous injection of neutralizing anti-CCL27 antibody to AD mice with early skin lesions can alleviate the clinical progression of inflammation with reduced infiltration of T cells and mast cells in the skin and down-regulation of inflammatory cytokines (69). The above studies suggest that the interaction between CCL27 and CCR10 is essential in promoting lymphocyte skin homing and hence AD recurrence. To further clarify the role of CCL27 and CCR10 in skin inflammation, Shinji Kagami et al. (70) found that although CCL27 alone is not enough to induce inflammation in the CCL27 transgenic AD mouse model, if inflammation shows a more robust Th2 shift response, the interaction between CCL27 and CCR10 will enhance skin inflammation, which may be produced by attracting Th2 cells expressing CCR4 into the skin. Therefore, CCL27 may be involved in the pathogenesis of skin diseases such as AD by regulating chronic allergic inflammation. In addition, CCL27 and CCR10 may be targets for developing new and selective treatments of inflammatory autoimmune skin diseases represented by AD.

Although the above CCL17/CCL27 and its receptor CCR4/CCR10 have been shown to be associated with the onset of a variety of skin allergies and inflammatory diseases, their regulatory effects on skin T cells in vivo are still unclear and sometimes controversial. In vivo, homing assay, functional blockade of CCL27 by anti-CCL27 monoclonal antibody prevented CCR4-deficient T cells from migrating to the site of skin inflammation but not in wild-type mice (58). Similarly, after treatment with CCR4 antagonists in AD model dogs, the clinical signs of some dogs (5/13) were partially inhibited (71). These studies suggest that there may be functional redundancy between CCR4 and CCR10. Interestingly, another study using anti-CCL27 monoclonal antibody alone was sufficient to prevent skin-specific T cell homing in wild-type AD mice (67), suggesting that CCR4 has no apparent redundancy and T cell transport to the skin only requires CCR10 to be achieved. However, the expression of CCR4 and CCR10 in CD4+ T cells from wild-type mice was directly compared under the same conditions. Some found that CCR4 deletion reduced the accumulation of memory CD4+ T cells in the skin by about 20 times, but CCR10 deletion did not produce any detectable effect. This study shows that the role of CCR10 in skin T cell immunity is unclear (72). Therefore, the regulatory impact of CCR4 and CCR10 on lymphocyte skin homing in vivo remains to be further studied. In any case, whether there is functional redundancy between CCR4 and CCR10 or not, blocking multiple pathways at the same time should be beneficial in the treatment of T cell-mediated skin diseases (49, 54).





4 Other related molecules and pathways

In addition to the above factors, cytokines are also involved in the homing of TEM in AD. Cytokines are the primary regulators of CLA expression and cytokine synthesis phenotype during memory T cell differentiation. To date, 32 ILs have been defined, some of which are involved in vascular regulation, play an important role in lymphocyte homing to the skin, and play a synergistic role in AD. IL-1 promotes the activation of dermal microvascular endothelial cells by up-regulating ICAM-1 or E-selectin (45). IL-4 can induce CCL17 and CCL22. IL-6 is produced by endothelial cells and acts on endothelial cells by activating IL-6 receptors. IL-6, as a general early pro-inflammatory mediator, is not limited to AD. IL-12 activates the influential up-regulation factor of CLA expression on T cells (73). IL-13 can induce CCL17 and CCL22, and the expression of IL-13 in skin-homing cells can be used as a marker of AD severity (23). IL-17 can induce the secretion of IL-1 and the up-regulation of CAMs such as ICAM-1 in dermal endothelial cells. The increase of TNF-α contributes to the up-regulation of chemokine expression, as well as the expression of adhesion molecules (E-Selectin, VCAM-1, and ICAM-1) produced by endothelial cells (45, 74). These cytokines are related to the skin homing of TEM and are closely related to the recurrence of AD.

Furthermore, available evidence suggests that the OX40-OX40L axis plays a crucial role in the pathogenesis of AD (75). OX40 is a co-stimulatory immune checkpoint molecule that promotes T cell differentiation and proliferation and the survival of multiple subsets of helper T cells by interacting with ligands (OX40L) on antigen-presenting cells (76). In addition, the OX40L/OX40 signaling axis can also increase the activity of OX40L cell types and increase the production of cytokines (77). More interestingly, studies have shown that increased OX40 expression is observed on skin homing T cells in AD patients (75), suggesting that the OX40-OX40L axis may play an important role in both TEM skin homing and in the recurrence of AD.




5 JAK/STAT pathway

The Janus kinase (JAK) signal transduction and activators of transcription (STAT) pathway (JAK/STAT pathway) is one of the essential pathways in inflammatory diseases such as AD (78). The JAK series includes JAK1, JAK2, JAK3 and TYK2, and the STAT series includes STAT1, STAT2, STAT3, STAT5A/B and STAT6. AD is known to be a biphasic T cell-mediated inflammatory disease, in which the acute phase is mainly driven by Th2 cells, and in the chronic phase, it is transformed into Th1, Th17 and Th22 cells (79). After homing to the inflammatory areas of the skin, TEM cells release cytokines including IL-4, IL-13, IL-31, etc. These cytokines, especially Th2 cytokines, are involved in the inflammatory response and itching in AD recurrence by activating the JAK/STAT pathway (80). The binding of IL-4 and IL-4R activates and phosphorylates JAK1 and JAK3, thereby activating STAT6 (81). As a key factor in the onset of AD, IL-4 and IL13 can promote Th2 cells to release inflammatory factors and recruit eosinophils and mast cells (82). Studies have shown that IL-4 is involved in the sensitization of itching by activating JAK1 (83). In addition, IL-4 and IL13 inhibit the production of antimicrobial peptides, thereby affecting skin barrier function and impairing the normal response of the skin to environmental pathogens (84). IL-31 is a pro-pruritus cytokine. After binding to receptors on eosinophils and keratinocytes (85), it signals through JAK1, JAK2, STAT1, STAT3 and STAT5 (86) to stimulate the secretion of pro-inflammatory cytokines and participate in the pathogenesis of atopic dermatitis. Therefore, treatment targeting the JAK-STAT pathway may reduce these signals and demonstrate therapeutic effects by blocking multiple immune pathways associated with AD. Local and systemic JAK inhibitors with different selectivity have emerged as potential therapeutic options for the treatment of AD (87).




6 Discussion

AD is a common chronic, inflammatory and recurrent skin disease characterized by infiltration of various immune cells, mainly lymphocytes, into the dermis. In this paper, by analyzing the research status of lymphocyte skin homing in AD, it is found that T cell homing to the skin plays a vital role in the recurrence of AD. The mediation of related molecules is indispensable in the process of skin-homing memory T cells migrating to the dermis. In the transendothelial migration of lymphocytes, CLA, integrin family LFA-1, VLA-4 and their ligands E-selectin, ICAM-1, and VCAM-1 on the surface of vascular endothelial cells are involved in mediating the adhesion and rolling process of skin-homing memory T cells (16). The interaction between chemokines CCL17 and CCL27 expressed on CLA+ T cells and their receptors CCR4 and CCR10 mediate T cells to stay and eventually cross vascular endothelial cells (17). Due to the critical role of related molecules in the recurrence of AD, directly or indirectly down-regulating the level of associated molecules in AD or inhibiting intermolecular binding to inhibit TEM homing is becoming a new method for the treatment of inflammatory skin diseases, namely AD. At the same time, the possible functional redundancy between molecules also suggests the necessity of blocking multiple pathways of treatment, providing a reference for the treatment of AD.

In addition to TEM, there are two other subtypes of memory T cells, Central Memory T cell (TCM) and Tissue Resident Memory T Cells (TRM). TCM mainly exists in blood circulation and stimulating lymphoid organ (88, 89), and is not involved in skin homing behavior in AD. In contrast, studies have shown that TRM also expresses skin-homing receptor CCR10 in AD (65, 90). In addition, TRM in AD patients can also secrete a variety of cytokines, including IL-4, IL-13, IL-17, IL-22, and IFN-γ, which play a key role in the persistent recurrent inflammatory response of AD (91–93). In AD patients, similar T cell receptor repertoires are found in both lesional and non-lesional skin, and this T cell receptor repertoire remains unchanged after four months of effective anti-inflammatory treatment. This indicates that TRM cells are present in both lesional and non-lesional skin (94). Recent studies have found that in the non-lesional skin of AD patients, compared with healthy skin, the expression of T cell-related mediators is increased, the expression of Th2/Th22/Th17-related genes is unbalanced, and the terminal differentiation process of keratinocytes is impaired (95–97). These changes indicate abnormal immune function and skin barrier dysfunction, respectively. Recent studies have found that local CD4+ TRM cells are vital in driving early inflammatory responses during AD recurrence. These cells may release specific cytokines and induce the expression of corresponding chemokines to coordinate the recruitment of neutrophils to the re-attack site on the skin (93). Despite these advances, the exact mechanism of TRM in AD remains to be further studied to provide new methods for the treatment of this intractable skin inflammatory disease.

In addition to T cells, other lymphocytes also have homing phenomena, which may be related to the mechanism of AD recurrence. NK cells also express CLA and other skin homing receptors (98). Recent studies have shown that the skin expression of NK cell markers NCAM-1/CD56 and Pan-granzyme is increased in AD, confirming that skin homing mainly occurs in severe AD (99). Granzyme may play a key role in the occurrence and persistence of AD inflammation by regulating the innate response (100). Despite these advances, the exact mechanism of action of these cells in AD remains to be further explored, with the hope of providing a new therapeutic approach for the treatment of this persistent skin inflammatory disease.
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Introduction

Acute myocardial infarction (AMI) is a critical condition that can lead to ischemic cardiomyopathy (ICM), a subsequent heart failure state characterized by compromised cardiac function.





Methods

This study investigates the role of mitophagy in the transition from AMI to ICM. We analyzed AMI and ICM datasets from GEO, identifying mitophagy-related differentially expressed genes (MRDEGs) through databases like GeneCards and Molecular Signatures Database, followed by functional enrichment and Protein-Protein Interaction analyses. Logistic regression, Support Vector Machine, and LASSO (Least Absolute Shrinkage and Selection Operator) were employed to pinpoint key MRDEGs and develop diagnostic models, with risk stratification performed using LASSO scores. Subgroup analyses included functional enrichment and immune infiltration analysis, along with protein domain predictions and the integration of regulatory networks involving Transcription Factors, miRNAs, and RNA-Binding Proteins, leading to drug target identification. 





Results

The TGFβ pathway showed significant differences between high- and low-risk groups in AMI and ICM. Notably, in the AMI low-risk group, MRDEGs correlated positively with activated CD4+ T cells and negatively with Type 17 T helper cells, while in the AMI high-risk group, RPS11 showed a positive correlation with natural killer cells. In ICM, MRPS5 demonstrated a negative correlation with activated CD4+ T cells in the low-risk group and with memory B cells, mast cells, and dendritic cells in the high-risk group. The diagnostic accuracy of RPS11 was validated with an area under the curve (AUC) of 0.794 across diverse experimental approaches including blood samples, animal models, and myocardial hypoxia/reoxygenation models.





Conclusions

This study underscores the critical role of mitophagy in the transition from AMI to ICM, highlighting RPS11 as a highly significant biomarker with promising diagnostic potential and therapeutic implications. 





Keywords: mitophagy, acute myocardial infarction, ischemic cardiomyopathy, machine learning, diagnostic model




1 Introduction

Acute Myocardial Infarction (AMI), a severe form of coronary heart disease, results from sudden coronary artery occlusion, leading to myocardial ischemia and necrosis (1). Annually, it accounts for about 7 million new cases and roughly half of cardiovascular deaths globally. Ischemic Cardiomyopathy (ICM), often following AMI or reflecting advanced coronary disease, involves myocardial fibrosis from prolonged ischemia, severely affecting heart function and causing about 70% of heart failure cases (2).

Despite improved AMI management increasing survival, ICM’s prevalence is rising. In Western countries, ICM’s one-year mortality rate is around 16%, with a five-year rate near 40%. Outcomes for AMI-induced ICM patients are generally worse, with an increased risk of severe cardiac events, compared to those with non-ischemic cardiomyopathy (3).To improve the treatment of AMI and reduce the incidence of subsequent ICM, it is crucial to explore the pathophysiological mechanisms of post-myocardial infarction, identify novel biomarkers for risk stratification, recognize high-risk patients, and discover potential therapeutic targets.

Mitochondria play a pivotal role in several cellular processes including signal transduction, redox balance, and energy conversion. Cardiomyocytes, which are among the cells with the highest mitochondrial content, can undergo mitophagy in response to various stressors such as nutrient deficiency, hypoxia, DNA damage, inflammation, or mitochondrial membrane depolarization (4, 5). This process selectively removes damaged mitochondria to maintain cellular homeostasis (6, 7). During ischemia-reperfusion (I/R) injury, mitophagy is beneficial as it clears defective mitochondria. Evidence indicates that mice deficient in Drp1(dynamin - related protein 1) or Parkin manifest impaired mitophagy and exhibit an enlarged myocardial infarction area subsequent to I/R injury (8, 9). Conversely, stress-induced activation of mitophagy can lead to excessive clearance of mitochondria, resulting in inadequate ATP (Adenosine Triphosphate) synthesis and ultimately precipitating cardiomyocyte apoptosis. In experimental models, inhibition of mitochondrial fission and mitophagy by knocking down Drp1 or Mff (mitochondrial fission factor) has led to dilated cardiomyopathy (10, 11). These findings highlight the necessity of mitophagy for normal heart function and suggest that excessive mitochondrial division may be detrimental to cardiac health. The pathophysiological mechanisms of mitophagy in AMI and ICM are still unclear, and it remains uncertain whether the extent of mitophagy affects the prognosis of these diseases. Further investigation of its regulatory mechanisms is of significant importance for the treatment of these diseases.

Machine learning algorithms are increasingly employed in bioinformatics analysis, capable of managing dynamic, voluminous, and complex datasets. These algorithms can detect trends and patterns potentially overlooked by human analysis, thereby significantly enhancing the reliability of diagnostic systems. Previous studies have applied machine learning to analyze and identify mechanisms and biomarkers for the development of ischemic heart failure following acute myocardial infarction (12). However, these studies often provide broad conclusions and do not specifically address mitophagy. In research conducted by ZhiKai Yang and colleagues, various machine learning algorithms were utilized to study differences in mitophagy between patient groups with acute myocardial infarction and stable coronary artery disease (13). While this research underscored the significant role of mitophagy in coronary artery disease, it did not address the subset of patients with the worst prognosis who progress from myocardial infarction to ischemic cardiomyopathy.

This study conceptualized AMI and ICM as stages of a single pathological process, using bioinformatics and machine learning to explore mitophagy’s role (Figure 1). We identified key mitophagy genes and signaling pathways influencing the transition from AMI to ICM, revealing potential biomarkers for diagnosis, risk stratification, and new insights into the treatment and prognosis of these cardiovascular conditions.

[image: Flowchart illustrating gene expression analysis in Acute Myocardial Infarction (AMI) and Ischemic Cardiomyopathy (ICM). It compares data from datasets GSE48060, GSE29532, GSE116250, and GSE46224. The analysis involves MRGs, differential analysis, and GSVA. MRDEGs lead to a PPI network, identifying hub genes, which undergo enrichment analysis using GO, KEGG, and Pathview. Expression analysis through mRNA-TF, mRNA-miRNA, mRNA-RBP, and mRNA-Drug follows. Logistic regression, SVM, and LASSO algorithms determine key genes for AMI and ICM, validated through model validation with high and low-risk groups. Final analyses include ssGSEA immune infiltration and GSEA.]
Figure 1 | Flow chart for the comprehensive analysis of MRDEGs. AMI, Acute Myocardial Infarction; ICM, Ischemic Cardiomyopathy; DEGs, Differentially Expressed Genes; MRGs, Mitophagy-Related Genes. MRDEGs, Mitophagy-Related Differentially Expressed Genes; SVM, Support Vector Machines; LASSO, Least Absolute Shrinkage and Selection Operator; ROC, Receiver Operating Characteristic; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis, PPI Network, Protein-Protein Interaction Network. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TF, Transcription Factor; RBP, RNA-Binding Protein.




2 Materials and methods



2.1 Data collection and processing

Using the R package GEOquery (14), we downloaded two datasets each for AMI [GSE48060 (15) and GSE29532 (16)] and ICM [GSE116250 (17) and GSE46224 (18)] from the GEO (19) database (https://www.ncbi.nlm.nih.gov/geo/). Comprehensive details are available in Supplementary Tables S1, S2. The R package sva (20) was utilized for batch correction and integration, producing the consolidated GEO datasets for AMI and ICM. The R package limma (21) facilitated normalization and standardization, followed by principal component analysis (22). Mitophagy-related genes (MRGs) were sourced from the GeneCards database (23) (https://www.genecards.org/) and the Molecular Signatures Database (MSigDB) (24) (https://www.gsea-msigdb.org/gsea/msigdb), yielding a total of 1633 unique MRGs (mitophagy-related genes) after merging and deduplication, as detailed in Supplementary Table S3.




2.2 Differentially expressed genes between AMI and ICM

The analysis of differential gene expression was carried out for both AMI and ICM using the limma package in R. After reviewing literature (25, 26) and testing various thresholds, we chose |logFC| > 0 and P < 0.05 to ensure robust results while maximizing the inclusion of as many biologically significant differentially expressed genes as possible. Genes with logFC above 0 and a p-value below 0.05 were categorized as up-regulated, whereas those with logFC below 0 and the same p-value threshold were categorized as down-regulated. Venn diagrams were employed to depict the overlap between up-regulated and down-regulated genes, and further intersections with MRGs (mitophagy-related genes) were analyzed to pinpoint MRDEGs (mitophagy-related differentially expressed genes).




2.3 Protein-protein interaction network construction and hub gene selection

The STRING database (27) (https://string-db.org/) facilitated the construction of a PPI network based on MRDEGs(mitophagy-related differentially expressed genes), employing a minimum interaction confidence score of 0.400(medium confidence). Interactions with a confidence score above this threshold are considered to be sufficiently supported by evidence, thereby filtering out potential false-positive results. The CytoHubba (28) plugin within Cytoscape (29) software applied five algorithms—Maximum Neighborhood Component (MNC), Maximal Clique Centrality (MCC), Edge Percolated Component (EPC), Degree, Closeness (30)—to compute scores for MRDEGs, selecting the top 20 MRDEGs. The intersection of results from these algorithms identified hub genes related to AMI and ICM. By performing multi-analysis screening using the STRING database and five algorithms in Cytoscape, the reliability of the results was enhanced, and errors that might arise from relying on a single algorithm were minimized.




2.4 Protein domain prediction and regulatory network construction

AlphaFoldDB (31) (https://alphafold.com) predicted and visually displayed the protein structures of hub genes, assessed by a Predicted Local Distance Difference Test (pLDDT) score ranging from 0 to 100. The regulatory network between the mRNA of 9 hub genes and 48 transcription factors (TFs) was predicted using the ChIPBase (32) database (http://rna.sysu.edu.cn/chipbase/). Potential interactions between mRNA and miRNAs, as well as mRNA and RNA-binding proteins (RBPs) (33), were screened using the StarBase v3.0 database (34) (https://starbase.sysu.edu.cn/), and the networks were visualized using Cytoscape software. This analysis included 4 hub genes and 27 miRNAs, as well as 10 hub genes and 43 RBPs. Furthermore, the Comparative Toxicogenomics Database(CTD) (35) (https://ctdbase.org/) was employed to identify potential drugs or molecular compounds associated with the hub genes. The mRNA-Drug regulatory network was constructed and subsequently visualized using Cytoscape software, comprising 8 hub genes and 15 drugs or molecular proteins.




2.5 Hub gene expression difference and correlation analysis

Expression levels of MRDEGs(mitophagy-related differentially expressed genes) in the Combined Datasets were compared using group comparison graphs. The Spearman algorithm analyzed the correlation of hub gene expressions, with the R packages igraph (36) and ggraph illustrating correlations and chord diagrams. Scatter plots by the ggplot2 R package displayed the strongest correlated hub genes.




2.6 Functional enrichment analysis of MRDEGs

Gene Ontology(GO) (37) and Kyoto Encyclopedia of Genes and Genomes(KEGG) (38) enrichment analysis of hub genes was performed using the R package clusterProfiler (39), electing results based on an adjusted p-value < 0.05. The Pathview R package (40) visualized the pathway enrichment analysis results.




2.7 GSEA and GSVA analysis

GSEA (41) (Gene Set Enrichment Analysis)analysis was executed on the combined datasets for AMI and ICM using the clusterProfiler package in R, with the following settings: seed value at 2023, a gene set size range from 10 to 500, and the gene set c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical Pathways]. The threshold for significance was set at a p-value below 0.05. Additionally, GSVA (42) (Gene Set Variation Analysis)was applied to all genes within the combined datasets of AMI and ICM, utilizing gene sets from MSigDB (24), adhering to the same p-value criterion for selection.




2.8 Diagnostic model construction

We utilized multiple machine learning algorithms, including Logistic Regression, Support Vector Machine (SVM) (43), and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, to identify key genes for constructing diagnostic models for AMI and ICM. This approach is grounded in several studies of significant scientific value in the field of bioinformatics (44, 45). The models were implemented using the R package glmnet, with parameters set.seed (500) and family=‘binomial’ (46).The key genes chosen from AMI and ICM to determine the RiskScore, employing coefficients obtained from LASSO regression analysis.

[image: Risk score equation showing the sum of the product of the coefficient of a gene and its mRNA expression level, indicating a formula for calculating a risk score based on gene expression.]	




2.9 Diagnostic model validation and key gene ROC curve analysis

ROC(Receiver Operating Characteristic) curves were plotted for the diagnostic models of AMI Key Genes and ICM Key Genes using the pROC package in R. Additionally, nomograms (47) illustrating the relationships between Key Genes were generated with the rms package in R. Calibration analysis was conducted to evaluate the precision and discriminatory capacity of the diagnostic models for AMI and ICM. Decision Curve Analysis (DCA) (48) for predicting clinical outcomes using AMI Key Genes and ICM Key Genes was performed using the ggDCA package in R. Moreover, Functional Similarity (Friends) analysis was carried out with the GOSemSim R package (49).




2.10 High- and low-risk group differential expression analysis, GSEA, GSVA

To enhance the reliability of our methodology, we drew upon the approach proposed by Zhang L et al. (50), and utilized mitophagy-related RiskScore to subgroup the AMI group for further in-depth analysis. Based on the formula outlined in section 2.8, we calculated the RiskScore for acute myocardial infarction (AMI) samples within the AMI Combined Datasets, utilizing the regression coefficients derived from the LASSO model specifically for AMI. The median RiskScore was instrumental in categorizing the samples into HighRisk and LowRisk groups. Samples with a risk score above the median were classified into the HighRisk group, while those with a risk score equal to or below the median were classified into the LowRisk group. A similar methodology was applied to determine the RiskScore for ischemic cardiomyopathy (ICM) samples in the ICM Combined Datasets, again using the LASSO regression coefficients pertinent to ICM. The samples were classified into HighRisk and LowRisk categories based on their median RiskScores. These two sets of high- and low-risk classifications will be utilized for subsequent subgroup analyses independently. Differential analysis was carried out with the limma package in R, with visualization of the results achieved through the ggplot2 and pheatmap packages in R.

GSEA (41) was conducted on AMI samples in the AMI Combined Datasets and ICM samples in the ICM Combined Datasets with clusterProfiler package in R. GSVA (42) was applied to the HighRisk and LowRisk groups of AMI and ICM samples, respectively. The same gene sets, parameters, and screening criteria were used as in previous analyses.




2.11 Immune infiltration analysis of HighRisk and LowRisk groups

Immune cell infiltration matrices were determined through single sample gene set enrichment analysis (ssGSEA) (51) for samples of AMI and ICM. Comparison graphs for the groups were created using ggplot2 to illustrate the variance in immune cell expression between the LowRisk and HighRisk groups in AMI and ICM. The detailed subgroup classification method can be found in section 2.10.




2.12 Validation of peripheral blood samples

The Ethics Committee of Shanghai East Hospital, affiliated with Tongji University, approved this study(Approval number 2024-175), which follows the Declaration of Helsinki guidelines. Once written informed consent was secured from all participants, peripheral blood samples were collected from six individuals each with diagnoses of AMI and ICM, and from six normal subjects.

Venous blood samples were collected into whole blood RNA preservation tubes (model ZXQX-10). After centrifugation and sedimentation, total RNA was extracted from peripheral blood mononuclear cells (PBMCs) employing the TransZol Up Plus RNA kit (TransGen, China). The integrity and purity of the extracted RNA were evaluated using the GEN5 microplate reader (biotek, USA). Quantitative real-time PCR (RT-qPCR) experiments were performed on the Q5 Real-Time PCR Detection System (Thermo, USA). Glyceraldehyde-3-phosphate dehydrogenase (GADPH) was used as the internal control to normalize the data. Relative expression levels of the target genes were determined using the 2-ΔΔCt method.




2.13 Experimental validation



2.13.1 Experimental animals

For the animal experiments, we obtained eight-week-old male C57BL/6 mice from Shanghai Lingchang Biotechnology Co. (Shanghai, China). The mice were housed under controlled conditions of temperature (23°C) and humidity (65%) with a 12/12-hour light/dark cycle. All experimental procedures were conducted in strict compliance with national regulations regarding animal welfare and ethics. The study was approved by the Ethics Committee of Shanghai East Hospital, associated with Tongji University.




2.13.2 Establishment of myocardial infarction model

Twenty-four mice were randomly assigned into two groups: Myocardial Infarction (MI) and Sham, with 12 mice in each group. In each group, six mice were randomly selected for histological staining and immunohistochemistry, while the remaining six were used for molecular analyses. Myocardial infarction was induced in the MI group by ligating the left anterior descending (LAD) coronary artery. Post-ligation, the myocardium exhibited a color change from bright red to pale, accompanied by a gradual weakening of contraction. Electrocardiographic (ECG) monitoring confirmed the successful establishment of the MI model, as indicated by ST-segment elevation and the presence of a J wave following the ST-segment. The Sham group underwent the same surgical procedure without LAD ligation. Cardiac function was assessed via echocardiography on the day following surgery.




2.13.3 Hematoxylin & eosin, masson staining, and immunohistochemistry

Hematoxylin and Eosin (HE) staining and Masson staining were performed on cardiac tissue sections using the respective kits (Beyotime, C0105M). These staining procedures were used to observe and analyze the morphological characteristics of the cardiac tissues. The heart tissue sections were deparaffinized, rehydrated, autoclaved with citrate buffer (pH 6.0) for 10 minutes for antigen repair, cooled to room temperature, and then sealed for 15 minutes with 3% H2O2 for endogenous peroxidase activity. Sections were washed with PBS (Phosphate - Buffered Saline) and blocked with 10% goat serum for 30 minutes. They were then incubated overnight at 4°C with a primary antibody (anti-RPS11 antibody, 1:200, Proteintech, 17041-1AP). The following day, biotinylated secondary antibody (1:500) and streptavidin-HRP(Horseradish Peroxidase) were incubated sequentially at room temperature for 30 minutes each after washing with PBS, and the nuclei were washed with PBS and stained with DAB(3,3’ - Diaminobenzidine tetrahydrochloride), and the nuclei were lightly post-stained with hematoxylin. The expression of RPS11 protein was indicated by a brownish-yellow signal, and the area and intensity of the positive signal were analyzed using Image-Pro Plus software.




2.13.4 RT-PCR

Total RNA was extracted from mouse heart tissues using Trizol reagent (Beyotime, R0016). The detailed methods, steps, and reagents follow those described in section 2.12, RT-PCR operations.




2.13.5 Establishment of the myocardial H/R model and detection of apoptosis rate by flow cytometry

In this study, H9c2 cardiomyocytes were selected and cultured at 37°C and 5% CO2 in sugar-rich DMEM(Dulbecco’s Modified Eagle Medium) medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). When the cells reached the logarithmic phase, they were divided into two groups according to the experimental requirements: the normoxic control group (the Control group) and the hypoxia-reoxygenation group (the H/R group). In the construction of the hypoxia-reoxygenation model, the cells in the hypoxia-reoxygenation group(the H/R group) were first placed in a three-gas incubator (1% O2, 5% CO2, 94% N2) with sugar-free DMEM instead of the conventional medium for a 4-hour hypoxia treatment; then the cells were replaced with the conventional medium (sugar-rich DMEM, 10% FBS, 1% P/S) and placed in the conventional medium at 37°C and 5% CO2 for a 4-hour reoxygenation. The cells of the normoxic control group (the Control group) were always cultivated in a conventional incubator without changing the culture medium. After the establishment of the model, the cells in each group were subjected to flow cytometry using the Annexin V-FITC/PI double staining kit (MCE,HY-K1073), and the apoptosis rate was analyzed according to the instructions of the kit.




2.13.6 Gene knockdown via plasmid transfection & western blot

To investigate the role of the RPS11 gene in the hypoxia/reoxygenation process of cardiomyocytes, H9c2 cardiomyocytes were divided into three groups in this experiment: Hypoxia-reoxygenation group (the H/R group), hypoxia-reoxygenation + RPS11 knockdown group (the H/R+siRPS11 group) and hypoxia-reoxygenation + empty vector control group (the H/R+siCON group). Knockdown transfection was performed 24 hours before hypoxia treatment with siRNA Transfection Reagent (Sigma-Aldrich, SITRAN-RO) according to the instructions. The cells in the H/R+siRPS11 group were transfected with the siRPS11 plasmid (MCE, HY-RS12221); the cells in the H/R+siCON group were transfected with the empty plasmid (siCON). Twenty-four hours after transfection, the cells were placed in a triple gas incubator for a 4-hour hypoxia treatment (1% O2, 5% CO2, 94% N2). The cells were shifted to a regular incubator following the replacement of the standard medium for a 4-hour reoxygenation phase at 37°C and no CO2. The anoxia treatment and reoxygenation methods were performed as described previously.

After modeling each experimental group, cellular protein samples were collected for Western blot assay. After the protein samples were lysed with RIPA (Radioimmunoprecipitation Assay Buffer) lysate, the total protein concentration was determined using the BCA (Bicinchoninic Acid) protein concentration assay kit (Thermo Fisher Scientific, USA), and the same amount of protein (30µg per well) was loaded onto an SDS-PAGE (Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis) gel for electrophoresis. After electrophoresis, proteins were transferred to PVDF (Polyvinylidene Fluoride) membranes (Millipore, USA), sealed with 5% skimmed milk powder for 1 hour at room temperature, and then incubated with primary antibodies (including anti-GAPDH (MCE, HY-P80137), anti-β-actin (MCE, HY-P80438), anti-RPS11 (Proteintech, 17041-1AP), anti-BNIP3(BCL2 protein-interacting protein 3) (MCE, HY-P80035), and anti-LC3II/I (Microtubule-associated protein 1 light chain 3 II/I) (Aladdin,Ab112877) separately at 4°C overnight. The membranes were treated as follows the next day: they were washed three times, for 10 minutes each, with PBST(Phosphate - Buffered Saline Tween), and then incubated for an hour with the secondary antibodies (HRP-marked). Protein signals were detected using the ECL(Enhanced Chemiluminescence) chemiluminescence kit (MACKLIN, E917966), and the grey levels of target proteins were analyzed using Image Lab software (Bio-Rad, USA) and normalized using GAPDH and β-actin as internal references. The experiment was repeated three times and the results were expressed as mean ± standard deviation.





2.14 Statistical analysis

This article’s data processing and analyses were performed with R software (Version 4.3.0). We assessed the statistical significance of continuous variables across two groups using the independent Student’s T-Test. For variables that did not follow a normal distribution, the Mann-Whitney U test (also referred to as the Wilcoxon Rank Sum Test) was utilized. The Kruskal-Wallis test was applied to analyze data involving three or more groups. Spearman’s correlation analysis determined the relationships among various molecules. All statistical tests were two-sided, and a p-value threshold of less than 0.05 was considered significant.





3 Results



3.1 Identification of differentially expressed genes

Batch effects were meticulously removed from AMI datasets GSE48060 and GSE29532, culminating in the creation of the AMI Combined Datasets (Figures 2A, B, E, F). In a similar manner, batch effects were eliminated from RPKM(Reads Per Kilobase of transcript per Million mapped reads)data for ICM datasets GSE116250 and GSE46224, producing the ICM Combined Datasets (Figures 2C, D, G, H).
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Figure 2 | Data set standardization, differential gene expression analysis. (A-H) Standardization and batch removal of AMI (A, B, E, F) and ICM (C, D, G, H) combined datasets. (I-O) Differential gene expression analysis for AMI (I, K) and ICM (J, L), with Venn diagrams illustrating down-regulated (M) and up-regulated genes (N), and common DEGs and MRGs (O).

Within the AMI Combined Datasets, a total of 1472 genes were identified as differentially expressed, encompassing 677 upregulated and 795 downregulated genes (Figures 2I, K). Concurrently, the ICM Combined Datasets revealed 7572 DEGs(differentially expressed genes), including 3557 upregulated and 4015 downregulated genes (Figures 2J, L).

A comparison of genes from both datasets showed that 429 genes were differentially expressed in both AMI and ICM, with 237 downregulated (Figure 2M) and 192 of these genes upregulated (Figure 2N). Additionally, 61 MRDEGs(mitophagy-related differentially expressed genes) were isolated through the intersection of the DEGs with genes related to mitophagy (Figure 2O), detailed further in Supplementary Table S4.




3.2 Building the PPI network and determining hub genes

Utilizing the STRING database, an interrelationship was established among 52 MRDEGs (mitophagy-related differentially expressed genes), forming a robust PPI network (Figure 3A). These genes were evaluated and ranked using five distinct algorithms within Cytoscape, leading to the identification of the top 20 MRDEGs (Figures 3B–F). A cross-analytical approach among these algorithms revealed 11 critical Hub Genes associated with both AMI and ICM: POLR2B, RPS11, MRPS5, METAP1, HNRNPA2B1, XRN1, GART, GFM1, TNPO1, LIG3, and AGK (Figure 3G).
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Figure 3 | PPI network and hub genes analysis. (A) PPI network from the STRING database of mitophagy-related differentially expressed genes (MRDEGs) calculated from STRING database. (B-F) PPI networks of the top 20 MRDEGs identified by five CytoHubba algorithms [MCC (Maximal Clique Centrality), MNC (Maximum Neighborhood Component), Degree, Closeness, EPC (Edge Percolated Component)]. (G) A Venn diagram of the top 20 MRDEGs.




3.3 Protein domain prediction and regulatory network construction

Protein structures for the 11 Hub Genes were predicted and visualized using AlphaFoldDB (Figures 4A–K). Nine of these genes demonstrated high structural confidence (pLDDT > 90) across their main domains: POLR2B, RPS11, MRPS5, METAP1, HNRNPA2B1, XRN1, GART, TNPO1, and AGK; the remaining two, LIG3 and GFM1, showed substantial confidence (70 < pLDDT < 90).

[image: Eleven molecular structures labeled A to K, each representing different proteins such as AGK and GART, visualized in blue with chains. Labeled L to O are network diagrams: mRNA-TF (L) links mRNA to transcription factors; mRNA-miRNA (M) shows connections with microRNAs; mRNA-RBP (N) involves RNA-binding proteins; mRNA-Drug (O) displays interactions with drugs. Each network highlights central nodes and connections.]
Figure 4 | Protein structure, regulatory network of hub genes. (A-K) Protein structures of hub genes. (L-O) Regulatory networks of hub genes: mRNA-TF (L), mRNA-miRNA (M), mRNA-RBP (N), mRNA-Drug (O).

The regulatory network was expanded to include 48 transcription factors linked to 9 Hub Genes, constructing an mRNA-TF network (Figure 4L, detailed in Supplementary Table S5). Moreover, regulatory networks involving 27 miRNAs binding to 4 hub genes and 43 RBPs associated with 10 Hub Genes were elucidated (Supplementary Table S5, Figures 4M, N, respectively). An mRNA-drug interaction network involving 8 Hub Genes and 15 drugs or molecular compounds was also constructed (Figure 4O, detailed in Supplementary Table S5).




3.4 Hub gene expression difference and correlation analysis

Substantial differences were detected in the expression levels of 9 Hub Genes between the AMI group and the control group, with genes AGK, GART, HNRNPA2B1, LIG3, METAP1, POLR2B, RPS11, TNPO1, and XRN1 showing statistically significant differences (p-value < 0.05) (Figures 5A, D). The most pronounced positive correlation was between GFM1 and AGK, showing a p-value less than 0.001 and a correlation coefficient (r-value) of 0.716 (Figure 5B), while the strongest negative correlation was noted between RPS11 and POLR2B, with an r value of -0.371 and a p-value less <0.001 (Figure 5C).
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Figure 5 | Differential expression and correlation analysis. Hub gene comparison in AMI dataset (A) and in ICM dataset (E). Correlation and chord plots of hub genes in AMI datasets (D) and ICM datasets (H). Correlation scatter plots between Hub Genes in AMI datasets (B, C) and in ICM datasets (F, G). (***p < 0.001, **p < 0.01, *p < 0.05, ns p >0.05).

When contrasting the ICM group with the control group, 10 Hub Genes revealed noteworthy distinctions in their expression levels, with statistical significance (p-value < 0.05): AGK, GART, HNRNPA2B1, LIG3, METAP1, MRPS5, POLR2B, RPS11, TNPO1, and XRN1 (Figures 5E, H). In this group, the strongest positive correlation was found between MRPS5 and HNRNPA2B1 (r-value = 0.645, p-value < 0.001, Figure 5F), while the most significant negative correlation was noted between RPS11 and POLR2B (r- value = -0.698, p-value < 0.001, Figure 5G).




3.5 Functional enrichment analysis

After converting the hub genes into gene IDs, comprehensive GO and KEGG analyses were performed. Key biological processes identified included the DNA biosynthetic process, the regulation of telomere maintenance via telomere lengthening, telomere maintenance via telomere lengthening, regulation of DNA biosynthetic process (Figures 6A–D, Supplementary Table S6). The KEGG pathway analysis further elucidated the relationship between Hub Genes and critical signaling pathways. These genes exhibited notable enrichment primarily in pathways such as Ribosome Pathway, the Antifolate Resistance, One Carbon Pool by Folate, RNA polymerase, and Base excision repair (Figures 6E, F, Supplementary Figure 1).
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Figure 6 | GO and KEGG enrichment analysis for hub genes. (A-E) GO and KEGG enrichment analysis for hub genes. (F) Visualization of the Ribosome pathway in the KEGG pathway enrichment analysis.




3.6 GSEA and GSVA

The GSEA highlighted that all genes in the AMI Combined Datasets were significantly associated with biological functions including regulation of cell death, inflammatory mediators, and their signaling pathways (Figures 7A, C–F, Supplementary Table S7). Similarly, genes in the ICM Combined Datasets were predominantly linked to inflammatory responses and pathways like Tgf Beta, Nfkb, among others (Figures 7B, G–J, Supplementary Table S8).
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Figure 7 | GSEA and GSVA analysis for AMI and ICM combined datasets. (A-J) GSEA of AMI and ICM combined datasets, detailing biological functions [(A) for AMI, (B) for ICM] and enrichment pathways [(C-F) for AMI, (G-J) for ICM]. (K-N) GSVA for AMI and ICM datasets, represented by heat maps [(K) for AMI, (M) for ICM] and group comparison maps [(L) for AMI, (N) for ICM]. (***p < 0.001, **p < 0.01, *p < 0.05, ns p >0.05).

In the GSVA, significant distinctions were noted in the enrichment of specific functions and pathways between the datasets. For the AMI Combined Datasets, notable pathways included Reactive Oxygen Species Pathway, Cholesterol Homeostasis, and Tgf Beta Signaling (Figures 7K, L, Supplementary Table S9). In the ICM Combined Datasets, numerous pathways demonstrated significant enrichment. By applying stringent criteria, including a p-value < 0.05 and ranking by logFC, we identified the top 10 pathways demonstrating positive enrichment as well as the top 10 pathways displaying negative enrichment. This selection includes pathways such as Unfolded Protein Response, E2f Targets, Spermatogenesis, Heme Metabolism, Peroxisome, and Myogenesis, among others (Figures 7M, N, Supplementary Table S10).




3.7 Confirmation of key genes through machine learning

For AMI, a logistic regression model utilizing 11 hub genes identified 10 significant contributors (Figure 8A). Additionally, an SVM(support vector machine) model highlighted 7 pivotal genes with minimal error rates and maximum accuracy (Figures 8B, C). Critical genes such as RPS11 and AGK were further affirmed through LASSO(Least Absolute Shrinkage and Selection Operator) regression, which refined the AMI diagnostic model to include 4 key genes: RPS11, METAP1, HNRNPA2B1, and AGK (Figures 8D, E). In ICM diagnosis, logistic regression, SVM, and LASSO models emphasized the diagnostic relevance of genes like MRPS5, METAP1, and HNRNPA2B1 (Figures 8N–R).
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Figure 8 | Diagnostic model and ROC curve analysis. Forest plots of hub genes included in the logistic regression model for AMI (A) and ICM (N). Visualization of genes with the lowest error rate [(B) for AMI, (O) for ICM] and highest accuracy [(C) for AMI, (P) for ICM] obtained by the SVM algorithm. Diagrams of variable trajectories and diagnostic models using the LASSO regression model for AMI (D, E) and ICM (Q, R). ROC curves for risk scores and key genes in AMI (F-J) and ICM (S-V) datasets. Nomograms, calibration curves, and decision curve analysis (DCA) plots for key genes in AMI (K–M) and ICM (W–Y).




3.8 Diagnostic value assessment

The ROC(Receiver Operating Characteristic) curve generated from the RiskScore of the diagnostic model for AMI demonstrated an AUC (Area Under the Curve) of 0.833 (Figure 8F), indicating high diagnostic accuracy. The ROC curve for the key gene RPS11 had an AUC value of 0.794, with other genes having AUC values between 0.5 and 0.7 (Figures 8G–J). The nomogram highlighted the significant contribution of RPS11 expression to improving the diagnostic utility of the AMI model over other factors (Figure 8M).

Similarly, the ICM diagnostic model showed high diagnostic accuracy with a risk score AUC of 0.996, and key genes MRPS5 (AUC 0.929), HNRNPA2B1 (AUC 0.877), and METAP1 (AUC 0.855) also demonstrating high diagnostic accuracy (Figures 8S–V). The nomogram indicated that the expression of MRPS5 notably enhances the diagnostic utility of the ICM model over other variables (Figure 8W). Calibration curve analysis and DCA(Decision Curve Analysis) showed that both AMI and ICM diagnostic models perform well with significant net benefits (Figures 8K, L, X, Y).

Analysis conducted via the Friends algorithm indicated that RPS11 is the gene proximate to the critical threshold (cut-off value = 0.60) in the context of AMI as depicted in Figure 9S. Similarly, HNRNPA2B1 emerges as the gene nearest to the critical threshold (cut-off value = 0.60) within ICM, as illustrated in Figure 9T. These findings suggest that each of these genes holds a significant role in the pathogenesis of AMI and ICM, respectively.
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Figure 9 | GSEA and GSVA for risk groups, friends analysis of AMI&ICM key genes. (A-G) GSEA for AMI high and low-risk groups, including volcano plots (A), heat maps (B), biological function mountain map (C) and enrichment pathways (D-G). (H-N) GSEA for ICM high and low-risk groups, including volcano plots (H), heat maps (I), biological function mountain map (J) and enrichment pathways (K-N). (O, P) GSVA analysis of AMI high and low-risk groups, illustrated by heat maps (O) and group comparison (P) maps. (Q, R) GSVA analysis for ICM high and low-risk groups, with corresponding heat maps (Q) and comparison maps (R). (S, T) Friends analysis of key genes in AMI (S) and ICM (T). (***p < 0.001, **p < 0.01, *p < 0.05, ns p >0.05).




3.9 GSEA for HighRisk and LowRisk groups

An analysis within the AMI samples identified 2504 DEGs(differentially expressed genes), meeting the criteria of having an |logFC |> 0 and a p-value < 0.05 between high and low-risk groups. The detailed subgroup classification method can be found in section 2.10. Among these DEGs, 1193 genes were upregulated, while 1311 were downregulated (Figures 9A, B). Subsequent GSEA revealed significant enrichment across various biological functions and signaling pathways including WNT5A-dependent internalization of FZD4, the Hedgehog signaling pathway, Wnt ligand biogenesis and trafficking, and ADORA2B-mediated production of anti-inflammatory cytokines (Figures 9C–G). The specific results of this analysis are documented in Supplementary Table S11.

Similarly, for ICM samples, 1875 DEGs (differentially expressed genes) met the established criteria, with 803 genes upregulated and 1072 genes downregulated (Figures 9H, I). The GSEA for these samples indicated significant enrichment in pathways associated with Oxidative Stress Response, IL1 and Megakaryocytes In Obesity, Photodynamic Therapy-induced NFkb Survival Signaling, and TGF-beta Receptor Signaling In Skeletal Dysplasias (Figures 9J–N), with comprehensive details provided in Supplementary Table S12.




3.10 GSVA for HighRisk and LowRisk groups

For AMI samples, GSVA differentiated the top 10 positively and negatively enriched pathways between HighRisk and LowRisk groups based on p-values less than 0.05 and logFC rankings (Figures 9O, P, Supplementary Table S13). The detailed subgroup classification method can be found in section 2.10. Validation via the Mann-Whitney U test reaffirmed the statistical significance (p-value < 0.05) of 10 pathways between the HighRisk and LowRisk groups, including pathways such as Myogenesis, KRAS Signaling Down, Epithelial-Mesenchymal Transition, Pancreas Beta Cells, Heme Metabolism, UV Response Down, Estrogen Response (Late and Early), TGF-beta Signaling, and Protein Secretion.

The analysis of ICM samples highlighted 12 pathways showing statistically significant differences between HighRisk and LowRisk groups (Figures 9Q, R, Supplementary Table S14), including pathways involved in P53 Pathway, IL6_JAK_STAT3 Signaling, TNFA Signaling Via NFKB, Hypoxia, and Spermatogenesis, KRAS Signaling Up, IL2_STAT5 Signaling, Coagulation.




3.11 ssGSEA for HighRisk and LowRisk groups

In AMI samples, ssGSEA analysis revealed distinct variations in the presence of six types of immune cells between the high and low-risk groups. Please refer to Section 2.10 for the detailed grouping method of high and low-risk subgroups. These included activated CD4+ T cells, CD56 bright natural killer cells, central memory CD4+ T cells, natural killer cells, Type 17 T helper cells, and Type 2 T helper cells, as illustrated in Figure 10A. Notably, the LowRisk group exhibited a substantial negative correlation between Type 17 T helper cells and activated CD4+ T cells(r-value = -0.579, p-value < 0.05) (Figure 10B), and similar trends were observed in the HighRisk group (Figure 10C). The gene AGK exhibited a significant positive association with activated CD4+ T cells in both risk groups, as shown in Figures 10D, E. Furthermore, the gene RPS11 shows a positive correlation with natural killer cells in the HighRisk group (Figure 10E).
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Figure 10 | Immune infiltration analysis for AMI and ICM risk groups using ssGSEA. (A-E) AMI risk group immune infiltration analysis: Immune cell comparison in LowRisk and HighRisk groups (A). Correlation of immune cell infiltration in HighRisk (B) and LowRisk (C) groups. Bubble plots of immune cell infiltration and Key Genes correlation in LowRisk (D) and HighRisk (E) groups. (F-J) ICM risk group immune infiltration analysis: Immune cell comparison in LowRisk and HighRisk groups (F). Correlation of immune cell infiltration in LowRisk (G) and HighRisk (H) groups. Bubble plots of immune cell infiltration and Key Genes correlation in LowRisk (I) and HighRisk (J) groups. (ns, p-value ≥ 0.05, *p-value < 0.05, **p-value < 0.01, ***p < 0.001).

For ICM samples, ssGSEA indicated significant variations in 10 types of immune cells, including activated CD4+ T cells, central memory CD8+ T cells, effector memory CD8+ T cells, activated dendritic cells, eosinophils, macrophages, memory B cells, mast cells, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Figure 10F). In the LowRisk group, regulatory T cells and macrophages demonstrated a marked positive association, with an r-value of 0.952 and a p-value less than 0.05 (Figure 10G); while in the HighRisk group, mast cells and MDSCs displayed a significant positive correlation (r-value = 0.936, p-value < 0.05) (Figure 10H). Moreover, the gene MRPS5 showed a notable negative association with activated CD4+ T cells in the LowRisk group (Figure 10I) and with memory B cells in the HighRisk group (Figure 10J).




3.12 Validation of findings via clinical samples and experiments

Key genes were validated in peripheral blood from three groups using RT-PCR. The results showed a significant statistical difference in RPS11 in the AMI group (p<0.05) and a significant statistical difference in MRPS5 in the ICM group (p<0.05) (Figures 11A–E).This suggests that different mitophagy genes are involved and play distinct roles in the AMI phase and the chronic phase of ICM. During the acute phase, the increased expression of RPS11 indicates its potential as a valuable diagnostic marker.
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Figure 11 | Validation results of experiment. (A-E) Key genes validated in peripheral blood from three groups using RT-PCR. (F-N) Validation of key genes in mice with myocardial infarction: electrocardiogram (K, L), cardiac ultrasound (I, J), HE staining (F, G), LVEF (H), and differences in the expression of mRNA levels of key genes, RPS11 (M) and MRP5 (N), between the MI and Sham groups. (**p < 0.01, *p < 0.05, ns p >0.05).

To further investigate their effect on MI (Myocardial Infarction), we induced MI mice and performed Electrocardiographic (ECG) monitoring (Figures 11K, L) and cardiac ultrasonography (Figures 11H–J) to assess cardiac function 48 hours after MI. Electrocardiogram results confirmed the successful establishment of the acute myocardial infarction model. Ultrasonography results showed a significant decline in heart function following acute myocardial infarction, consistent with the heart failure criteria of ischemic cardiomyopathy. Mice were raised until 28 days of post-ligation, at which point cardiac tissue was collected. At 28 days (4 weeks), the myocardial tissue had already undergone the acute inflammatory phase, with increased fibrosis and the initiation of myocardial remodeling, marking a critical stage that impacts subsequent heart function. We performed hematoxylin and eosin (HE) staining (Figures 11F, G) on the heart tissue of the mice to visualize the area of infarction as well as the surrounding area. Additionally, further RT-PCR analyses (Figures 11M, N) were conducted, which revealed that the expression of RPS11 was elevated in the infarcted mice group. The outcome of Masson staining (Figures 12A, B) showed that the myocardial tissue of the sham group was structurally intact, the cardiomyocytes were aligned and the collagen fibers in the interstitium were less stained and had a sporadic distribution, whereas the myocardial tissue of the infarct group was significantly damaged, with some areas of cardiomyocytes disorganized or broken, and the staining of collagen fibers in the fibrotic region was significantly increased (blue color).

[image: Histological images and graphs illustrating tissue samples and cellular analyses. Panels A and B show stained tissue sections with zoomed-in insets. Panels C to H display various tissue staining results. Panel I is a bar graph comparing mean gray values in tissue samples labeled SHAM and MI. Panel J is a bar graph showing cell apoptosis percentages in control and H/R conditions. Panels K and L depict cultured cells. Panels M and N are scatter plots of cell populations. Panel O shows Western blot results, while panels P to R present bar graphs of relative protein expression levels for RPS11, LC3II/I, and BNIP3.]
Figure 12 | Validation results of experiment. (A, B) Masson’s trichrome staining results of the Sham group (A) and the MI group (B). Fibrous tissue formation is observed in the infarct region of the MI group. (C-H) Immunohistochemical staining of RPS11 protein in the Sham group (C-E) and MI group (F-H). Notable brown RPS11 protein expression is observed in the MI group. (I) Comparison of relative RPS11 protein expression between the two groups in the immunohistochemical staining. (K, L) Light microscopy images of H9c2 cell morphology in the normoxic Control group (K) and hypoxia/reoxygenation (H/R) group (L). (J, M, N) Flow cytometry analysis of cell apoptosis in the normoxic Control group (M) and H/R group (N); (J) bar graph comparing apoptosis rates between the two groups. (O-R) Protein expression levels of RPS11, LC3II/I, and BNIP3 in the H/R group, H/R + RPS11 knockdown group (H/R+siRPS11 group), and H/R + empty vector control group(H/R+siCON group). Western blot images (O), and comparison of relative protein expression among the three groups: (P) RPS11, (Q) LC3II/I, and (R) BNIP3. (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).

Immunohistochemical staining of the animal model (Figures 12C–I) showed that the RPS11 protein was mainly distributed in the cytoplasm of the cells, and the positive signals were brownish-yellow in color. The positive expression of RPS11 in the infarct area was significantly increased in the MI group compared with the Sham group (p < 0.05). These findings suggest that RPS11 exhibits significant differential expression not only during the acute phase of myocardial infarction (AMI) but also in the transition from the acute to the chronic phase.

Observation under the light microscope showed that the morphology of H9c2 cardiomyocytes in the normoxic control group was intact and evenly arranged, and the nuclei were clear, while the cells in the hypoxia-reoxygenation group (the H/R group) showed the damage characteristics of rounding, crumbling, widening of gaps, and partial rupture and detachment (as shown in Figures 12K, L), indicating that hypoxia-reoxygenation treatment had significantly affected the morphology of cardiomyocytes.

Cell flow assay results (Figures 12M, N, J) showed that the apoptosis rate of cardiomyocytes in the H/R group was significantly higher than that in the Control group (P < 0.05).

Western blot results (Figures 12O–R) showed that the expression of RPS11, BNIP3(BCL2 protein-interacting protein 3), and the LC3II/I(Microtubule-associated protein 1 light chain 3II/I) ratio was significantly lower in the H/R+siRPS11 group than in the H/R group (p < 0.05). The expression of the internal control protein as an internal reference protein was not significantly different in the two groups (p > 0.05). The expression levels of the individual proteins in the H/R+siCON group did not differ significantly from those of the H/R group (p > 0.05).The myocardial hypoxia-reoxygenation model simulates the cardiac status of acute myocardial infarction patients following emergency revascularization in real-world settings, providing strong evidence for a comprehensive understanding of the mechanisms underlying the transition from AMI to ICM.





4 Discussion

AMI represents a severe coronary artery disease with high mortality and disability rates. Recently, ICM as a complication of AMI has escalated, posing a significant public health issue. The transition from AMI to ICM is multifactorial, but the exact mechanisms are not fully understood. Mitophagy is crucial for cardiovascular homeostasis, removing damaged mitochondria to maintain cardiac integrity. Deficient mitophagy is linked to myocardial infarction and diabetic cardiomyopathy. Excessive mitophagy, however, may deplete mitochondria, impair ATP production, and trigger inflammation and apoptosis. Hence, mitophagy’s pathophysiological implications in AMI and ICM are crucial for developing targeted therapies.

In the BP annotations of GO and KEGG analyses, we found that these 11 hub MRDEGs were predominantly enriched in DNA biosynthesis processes and its regulation, telomere maintenance via elongation mechanisms, among other biological processes. The mitochondrion, a highly complex organelle, possesses its own genetic material, DNA polymerase, and RNA polymerase, thereby constituting an autonomous and comprehensive protein synthesis system, characterized by distinctive fusion and fission dynamics. Mitochondria are capable of repairing damage through genomic DNA repair mechanisms and several mitochondrial-specific DNA repair pathways (52).

Subsequent SVM and LASSO regression analyses identified four key genes associated with AMI (RPS11, METAP1, HNRNPA2B1, AGK) and three linked to ICM (MRPS5, METAP1, HNRNPA2B1). Diagnostic models based on these genes, validated using ROC curves, showed substantial diagnostic accuracy (AUCs of 0.83 and 0.996). ROC curve analyses indicated that RPS11 had superior diagnostic utility among AMI genes (AUC 0.794), while MRPS5 demonstrated the highest efficacy in the ICM cohort (AUC 0.929).

The gene RPS11 encodes a member of the S17P family of the 40S ribosomal subunit, implicated in peptide chain elongation and mRNA activation subsequent to cap-complex and eukaryotic initiation factor (eIF) binding. While RPS11 has not been previously reported in cardiac diseases, other ribosomal proteins(RPS6) have been associated with cardiac conditions (53). The mitochondrial ribosomal protein MRPS5 represents a pivotal element of the mitochondrial translation mechanism. MRPS5’s functionality is intricately linked to cellular stress responses, wherein it disrupts mitochondrial structure and function by suppressing the expression of Klf15(Kruppel-like factor 15) through the l-phenylalanine/c-myc axis and the p-CREB/CREB(cAMP-response element binding protein) signaling pathway (54). Although research on these genes’ role in cardiovascular pathology is sparse, further investigation into their role in patient populations with AMI and ICM is imperative.

As two stages of disease, AMI and ICM exhibit both some similarities and distinct differences in terms of differentially expressed genes, activated signaling pathways, and immune cell involvement. Our analysis found that the TGF-β (Transforming Growth Factorβ) signaling pathway showed statistically significant differences in the GSVA analyses of AMI Combined Datasets, AMI HighRisk and LowRisk groups, and ICM HighRisk and LowRisk groups. This suggests that the TGF-β signaling pathway plays an important role in the regulation of acute myocardial infarction, the progression of ICM, and the transition from AMI to ICM.

The TGF-β (Transforming Growth Factorβ) signaling pathway relies on two main mechanisms, the Smad-dependent pathway and the non-Smad-dependent pathway, to achieve its biological functions. The role of TGF-β in Ischemic Cardiomyocytes remains controversial. In ischemia-reperfusion models, early administration of TGF-β1 has been shown to reduce cardiomyocyte apoptosis and infarct size through ERK1/2 (Extracellular signal-regulated kinase 1/2) activation (55). Vivo experiments using mice with cardiomyocyte-specific deletion of Tgfbr1(encoding TGF-β receptor 1, ALK5) or Tgfbr2(encoding TGF-β receptor 2) in non-reperfused MI models revealed that TGF-β signaling promotes left ventricular rupture by suppressing the transcription of genes encoding cardioprotective proteins such as IL-33(Interleukin-33), growth differentiation factor 15, and thrombospondin-4 (TSP4) (56). TGF-β also plays a key role in regulating inflammation, repair, and cardiac remodeling by inhibiting T helper 1 and cytotoxic T cell responses (57, 58) and inducing Treg cell differentiation. Meanwhile, TGF-β regulation of cardiac fibroblasts is critical for infarcted heart repair. Disruption of myofibroblast-specific SMAD3(Mothers Against Decapentaplegic Homolog 3) signaling impairs cardiac repair, inhibits integrin-mediated oxidative activity, and affects myofibroblast array formation, and SMAD3 deficiency is also associated with ventricular rupture and adverse remodeling (59). However, prolonged activation of TGF-β signaling may lead to increased fibrotic remodeling and diastolic dysfunction (60, 61). Therefore, dynamic regulation of the TGF-β pathway is required: early promotion of ECM (Extracellular Matrix) deposition via SMAD3 activation to prevent ventricular rupture and dilatation, and late inhibition of TGF-β-SMAD3 signaling to prevent excessive fibrosis and functional deterioration.

In the GSVA and GSEA analyses of ICM and its associated high- and low-risk groups, the TNFα(Tumor Necrosis Factor alpha)-mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathway and Photodynamic Therapy-induced NF-κB Survival signaling pathway were significantly enriched. The role of NF-κB in myocardial infarction and subsequent heart failure is complex. Moderate activation of NF-κB has been shown to protect heart tissue by reducing cell damage and apoptosis after myocardial infarction (62). Conversely, studies report elevated NF-κB activity in the hearts of heart failure patients, which declines significantly after treatment with a left ventricular assist device, leading to improved cardiac function (63). Hypoxia further complicates this pathway by inducing hypoxia-inducible factor 1α, which activates NF-κB, promoting cardiomyocyte apoptosis (64). NF-κB also drives inflammation by enhancing the expression of NLRP3(NOD-like receptor family pyrin domain containing protein 3) and caspase-1, which facilitate the maturation of IL-1β(Interleukin-1β) and IL-18(Interleukin-18). This, in turn, triggers both local and systemic inflammatory responses. In addition, NF-κB regulates the expression of other inflammatory factors, such as IL-1β, which amplifies the inflammatory response and drives structural remodeling and fibrosis in the heart, exacerbating the condition (65, 66). Thus, long-term activation of the NF-κB signaling pathway and the TNFα pathway suggests the persistence of systemic and local inflammatory responses, which play an important role in the deterioration of cardiac function in ischemic cardiomyopathy.

This investigation employed ssGSEA within HighRisk and LowRisk AMI groups, unveiling no significant disparities in neutrophil infiltration between the groups, yet highlighting differences in various T cells and natural killer (NK) cell infiltrations. Prior studies have documented the migration of CD8+ and CD4+ T cell populations to the damaged myocardium during the cardiac repair phase (67). Consistent with our findings, Matsumoto et al. reported that NK cells facilitate myocardial cell death and exacerbate cardiac remodeling post-MI through the NKG2D/NKG2DL(Natural - Killer Group 2, Member D/Natural - Killer Group 2D Ligand) interaction (68). Furthermore, within the LowRisk group, activated CD4+ T cells exhibited positive correlations with RPS11, METAP1, HNRNPA2B1, and AGK genes, particularly with AGK; Type 17 T helper cells displayed negative correlations with these MRGs(mitophagy-related genes). T lymphocyte subgroups demonstrate considerable heterogeneity in T cell functionality, antigen recognition, and responsiveness to cardiac injury. Our analysis suggests potential associations between various T cells and mitophagy, revealing contrasting expression trends of RPS11 with Type 17 T helper and with central memory CD4+ T cells in the LowRisk and HighRisk groups. In the high-risk group, RPS11 shows a positive correlation with Natural Killer cells. AGK consistently exhibited a significant relationship with activated CD4+ T cells across both risk groups. The consistent and contrasting expression patterns of these MRGs(mitophagy-related genes) associated with T cells in different risk groups merit further investigation to elucidate potential pathophysiological implications.

The ssGSEA analysis of the ICM HighRisk and LowRisk groups revealed differences in the infiltration patterns of ten distinct immune cell types. In the LowRisk group, regulatory T cells and macrophages demonstrated the most significant positive correlation. Additionally, the gene MRPS5 in the LowRisk group exhibited the most notable negative correlation with activated CD4+ T cells and, in the HighRisk group, the strongest negative correlation with memory B cells, Mast cells, Activated CD4+ T cells. Preliminary research into the depletion of B cell populations has indicated significant enhancements in myocardial recovery post-MI(Myocardial Infarction) (69). Nonetheless, the precise mechanisms or factors that orchestrate B cell activation in response to myocardial injury remain to be fully elucidated. This study is pioneering in proposing MRGs(mitophagy-related genes) associated with memory B cells, offering new insights into the mechanisms of B cell action in ICM.

This study constructed regulatory networks for the mRNA of hub MRDEGs with transcription factors (TFs), miRNAs, and RNA-binding proteins (RBPs) using multiple databases. The hub genes (HNRNPA2B1, METAP1, XRN1, TNPO1) were found to interact with twenty-seven miRNAs in the course of our study. miRNAs are capable of targeting mRNA to regulate key biological processes such as apoptosis, inflammation, fibrosis, and angiogenesis (70), thereby influencing the occurrence and progression of myocardial infarction (71, 72). Several miRNAs have been under consideration for their diagnostic capabilities and therapeutic applications (73). Elevated miR-1 (74)and miR-208 (75)are recognized as markers for the diagnosis of acute myocardial infarction (AMI). The role of miRNAs associated with mitophagy in diagnosis and prognosis is worth deeper exploration. Additionally, we constructed protein structures and integrated data from CTD databases to predict potential interactions with associated complexes. Valproic acid relates to HNRNPA2B1, MRPS5, and GART; acetaminophen to MRPS5 and TNPO1; and cyclosporine to HNRNPA2B1, LIG3, POLR2B, and TNPO1. These compounds, widely used clinically, suggest potential roles in modulating mitophagy and treating AMI and ICM.

We confirmed our findings through clinical samples and experiments both in animals and cell models. First, blood samples from patients with acute myocardial infarction (AMI) and ischemic cardiomyopathy (ICM) showed clear differences. In AMI patients, RPS11 levels were significantly higher, while MRPS5 levels were notably different in ICM patients. 28 days after myocardial infarction, the acute inflammatory edema phase had ended, and the early scar formation phase began, marking the initiation of myocardial remodeling (76). Moreover, during this stage, the regulation of various neurohumoral mechanisms plays a role in affecting cardiac weight, fibrosis, and cardiac output. This is a critical period for the transition from AMI to ICM (77, 78). This time point provides more accurate information for the study of long-term pathological changes and potential therapeutic targets. Therefore, we established a 28-day myocardial infarction animal model to observe the expression of RPS11. The results showed that RPS11 expression was not only upregulated at the mRNA level but also significantly increased in the infarcted area at the protein level, as revealed by immunohistochemistry. We then studied the role of RPS11 in a hypoxia/reoxygenation (H/R) cell model using H9c2 cardiomyocytes. In the myocardial hypoxia/reoxygenation model, this acute injury process triggers a series of cellular responses and can effectively simulate the physiological changes observed in clinical patients with acute myocardial infarction who undergo revascularization (such as thrombolysis or coronary intervention).In this model, we reduced the expression of RPS11 through gene knockdown and observed a subsequent decrease in the LC3II/I (Microtubule-associated protein 1 light chain 3 II/I)ratio and BNIP3 (BCL2 protein-interacting protein 3) expression.

Microtubule-associated protein 1 light chain 3 (LC3), also called Atg8(Autophagy - related 8) in mammals, goes through several steps: modification, activation, and translocation (79). Ultimately LC3 conjugates with the lipid phosphatidylethanolamine (79). After being lipidated, LC3 serves as a linker or scaffold (80). It binds proteins containing LIR(LC3 interaction region) motifs to the surfaces of the growing phagosome (81, 82). And the phagosome is released from the membrane (83). LC3 is essential for extending the phagosome membrane, expanding the phagosome, and facilitating the fusion of autophagosomes with lysosomes (81, 84). The alteration in the LC3II/I ratio is closely associated with the initiation and progression of mitophagy.BNIP3(BCL2 protein-interacting protein 3) is a protein located in the outer membrane of mitochondria (85). BNIP3 is a member of the Bcl-2 family (85).BNIP3 is activated in response to stressful conditions (e.g., hypoxia, oxidative stress, etc.), and can directly contribute to mitophagy (86, 87). It can also recruit damaged or unwanted mitochondria into autophagic vesicles by interacting with autophagy-related proteins such as LC3 (88). These results suggest that RPS11 may affect mitophagy by regulating BNIP3 levels. As part of the ribosome, Under conditions of oxidative stress, hypoxia, or other cellular damage, RPS11 can regulate the expression of mitophagy pathway proteins, thereby promoting mitophagy to help maintain cellular homeostasis. However, prolonged and sustained overexpression of RPS11 may lead to excessive mitophagy, resulting in excessive clearance of mitochondria, which can disrupt myocardial energy metabolism.

In our research, involving bioinformatics analyzing, clinical studying, and many experimental validations, we paid an attention to mitophagy and we presented the importance of RPS11 in the event of acute myocardial infarction (AMI) and its transition to ischemic cardiomyopathy (ICM). Beginning our investigation with mitophagy has allowed us to delve deeper, but was also potentially responsible for the lack of discovery of novel biomarkers and pathways. These novel developments may be a groundwork for future progress. In future investigations, we will continue with an unrestricted attitude to uncover additional possibilities. We plan to conduct a more comprehensive analysis and explore additional relevant pathways to enhance the depth and breadth of our study. Due to the current limitations in our research conditions, many meaningful and yet-to-be-validated works remain unfinished, such as miRNAs related to mitophagy genes. We plan to conduct further clinical trials in the future to clarify their practical application value.




5 Conclusion

We investigated the regulatory mechanisms of mitophagy throughout AMI and ICM, identified key genes associated with these processes, and established accurate diagnostic models. The findings provide a significant foundation and novel insights for the diagnosis, risk stratification, and identification of potential therapeutic targets for AMI and ICM.
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DEGs differentially expressed genes
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MRDEGs mitophagy-related differentially expressed genes

PPI Network Protein-protein Interaction Network
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KEGG Kyoto Encyclopedia of Genes and Genomes enrichment analysis
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RBP RNA-Binding Protein

SVM Support Vector Machine
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ROC Receiver Operating Characteristic
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DCA Decision Curve Analysis
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ATP Adenosine Triphosphate

H/R Hypoxia/Reoxygenation

HE Hematoxylin and Eosin

IHC Immunohistochemistry
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Introduction

Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers and precise therapeutic targets.





Methods

We screened out five gene expression datasets (GSE69063, GSE236713, GSE28750, GSE65682 and GSE137340) from the Gene Expression Omnibus. First, we merged the first two datasets. We then identified differentially expressed genes (DEGs), which were subjected to KEGG and GO enrichment analyses. Following this, we integrated the DEGs with the genes from key modules as determined by Weighted Gene Co-expression Network Analysis (WGCNA), identifying 262 overlapping genes. 12 core genes were subsequently selected using three machine-learning algorithms: random forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVW-RFE). The utilization of the receiver operating characteristic curve in conjunction with the nomogram model served to authenticate the discriminatory strength and efficacy of the key genes. CIBERSORT was utilized to evaluate the inflammatory and immunological condition of sepsis. Astragalus, Salvia, and Safflower are the primary elements of Xuebijing, commonly used in the clinical treatment of sepsis. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we identified the chemical constituents of these three herbs and their target genes.





Results

We found that CD40LG is not only one of the 12 core genes we identified, but also a common target of the active components quercetin, luteolin, and apigenin in these herbs. We extracted the common chemical structure of these active ingredients -flavonoids. Through docking analysis, we further validated the interaction between flavonoids and CD40LG. Lastly, blood samples were collected from healthy individuals and sepsis patients, with and without the administration of Xuebijing, for the extraction of peripheral blood mononuclear cells (PBMCs). By qPCR and WB analysis. We observed significant differences in the expression of CD40LG across the three groups. In this study, we pinpointed candidate hub genes for sepsis and constructed a nomogram for its diagnosis.





Discussion

This research not only provides potential diagnostic evidence for peripheral blood diagnosis of sepsis but also offers insights into the pathogenesis and disease progression of sepsis.
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Introduction

Sepsis, a life-threatening condition caused by a dysregulated host response to infection, remains a critical challenge in modern medicine (1). It is characterized by systemic inflammation and organ dysfunction, leading to high morbidity and mortality rates worldwide (2). Despite significant advancements in understanding its pathophysiology and improvements in clinical management, sepsis continues to impose a substantial burden on healthcare systems (3). Early diagnosis and effective treatment are often hindered by the heterogeneity of the condition and the lack of reliable biomarkers, underscoring the urgent need for innovative approaches to improve patient outcomes.

The complexity of sepsis lies in its multifaceted nature, involving intricate interactions between immune dysregulation, inflammatory cascades, and cellular dysfunction (4). Recent research has increasingly focused on identifying key molecular signatures and pathways that drive sepsis progression, with the aim of uncovering potential diagnostic markers and therapeutic targets (5). Advances in high-throughput sequencing technologies have revolutionized the study of sepsis by enabling comprehensive profiling of gene expression patterns, providing unprecedented insights into the molecular mechanisms underlying the disease (6). These technologies, combined with bioinformatics tools, have facilitated the analysis of large-scale datasets, revealing critical genes and pathways associated with sepsis pathogenesis (7).

The integration of machine learning algorithms has further enhanced the ability to analyze complex biological data, offering powerful tools for identifying robust biomarkers and predictive models (8). Techniques such as random forest, LASSO regression, and support vector machines have been employed to sift through vast amounts of genomic data, enabling the selection of key genes with diagnostic and prognostic potential (9). These approaches not only improve the accuracy of sepsis diagnosis but also pave the way for personalized treatment strategies by identifying patient-specific molecular profiles.

In parallel with these technological advancements, traditional Chinese medicine (TCM) has emerged as a promising complementary approach to sepsis management (10). Xuebijing, a traditional Chinese medicine injection widely used in clinical practice, is primarily composed of herbal ingredients such as safflower, salvia, and Astragalus (11). It is known for its effects in promoting blood circulation, removing blood stasis, clearing heat, and detoxifying (12). In recent years, Xuebijing has demonstrated significant efficacy in treating critical conditions such as sepsis, acute respiratory distress syndrome (ARDS), and multiple organ dysfunction syndrome (MODS) (13). Research indicates that Xuebijing exerts its therapeutic effects by inhibiting the release of inflammatory factors, improving microcirculation, and alleviating oxidative stress. For instance, a randomized controlled trial found that Xuebijing combined with conventional treatment significantly reduced the 28-day mortality rate in sepsis patients (14). Additionally, Xuebijing has shown potential in the treatment of COVID-19-related pneumonia, alleviating pulmonary inflammation and improving patient outcomes (15, 16). However, despite the positive results achieved in clinical applications, the specific mechanisms of action of Xuebijing require further in-depth research.

This study aims to bridge the gap between modern biomedical research and traditional medicine by exploring the molecular underpinnings of sepsis and the therapeutic potential of Xuebijing. By leveraging high-throughput sequencing, bioinformatics tools, and machine learning algorithms, we seek to identify key genes and pathways involved in sepsis pathogenesis. Furthermore, we aim to investigate the active components of Xuebijing and their molecular targets, integrating experimental validation to provide mechanistic insights. Our findings may not only advance the understanding of sepsis but also offer valuable insights into the development of personalized diagnostic and therapeutic approaches, ultimately improving outcomes for sepsis patients.





Methods




Gene expression datasets

The Gene Expression Omnibus (GEO) serves as a publicly accessible database for storing high-throughput gene expression data (https://www.ncbi.nlm.nih.gov/geo/), complete with tools for querying, downloading, and analyzing experiments as well as curated gene expression profiles. We scoured the GEO database using the keywords “Sepsis” [Mesh] AND “Expression profiling by array” [All Fields] AND “Homo sapiens” [porgn: txid9606]. Selection criteria included microarray datasets of whole-genome gene expression profiles from blood, with both sepsis and healthy samples. Each group had more than 12 samples. Ultimately, an in-depth examination was conducted on three distinct gene expression datasets. The specifics of these datasets are detailed in Supplementary Table S1. For the analysis, GSE69063 and GSE236713 were selected, while GSE28750, GSE65682 and GSE137340 served as the validation dataset.





Detection of differentially expressed genes

Convert the probe IDs of the three datasets to gene symbols. Then, combine the two datasets GSE69063 and GSE236713 into one training set, and use the ‘removeBatchEffect’ function from the ‘limma’ package (17) (version 3.60.3) to eliminate batch effects between the datasets. Using the “limma” package to analyze combined data, we screened out differentially expressed genes (DEGs) in the sepsis group as compared to the control group, and plotted a volcano plot to delineate them. In GEO, the adjusted P values were examined to address the potential for false-positive results. |log2FC|> 1 and the adjusted P value < 0.05 were deemed to be the cutoffs for DEGs. We selected the top 25 genes with the highest and lowest logFC respectively among all statistically significant differentially expressed genes to create a heatmap utilizing the pheatmap package (version 1.0.12) in R software.





Functional enrichment analysis

Gene Set Enrichment Analysis (GSEA) (18) serves as a computational method for assessing whether a specified group of genes exhibits a statistically notable, uniform disparity across two distinct biological conditions. This method pinpoints categories of genes or proteins that are excessively represented within an extensive collection of genes or proteins, potentially linking them to particular phenotypes and shedding light on intrinsic biological mechanisms. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a comprehensive database that amalgamates genomic, biochemical, and phylogenetic information to systematically analyze gene functions and understand high-level biological functions and utilities. Gene Ontology (GO) analysis classifies genes into structured groups according to biological mechanisms, cellular elements, and molecular functions. After converting the IDs of the differentially expressed genes, we use the enrichGO and enrichKEGG functions from the clusterProfiler package (19) (version 4.12.0) for GO and KEGG analyses, respectively.





Protein-protein interaction network

To explore further the molecular mechanisms underlying the onset and progression of sepsis, we selected differentially expressed genes with |log2FC| > 2. Using the STRING database (https://cn.string-db.org/), we analyzed the protein-protein interaction network to reveal the functions and mechanisms of proteins within cells, as well as the complex regulatory networks in biological systems. The PPI network was constructed based on empirically validated interactions, each having a cumulative score greater than 0.4.





The weighted gene co-expression network

Weighted Gene Co-expression Network Analysis (WGCNA) (20) serves as a systemic biology technique for uncovering correlation patterns between different genes in microarray or RNA-Seq datasets. This method discerns groups (modules) of genes that are closely correlated and connects these modules to distinct external characteristics. The main steps include data input and preprocessing, network construction, module detection, and relating modules to external traits. To link modules with clinical features, we calculated the Module Membership (MM) and Gene Significance (GS) values. MM values exceeding 0.8 and GS values over 0.2 signify strong connectivity within modules and significant clinical association. Extract all strongly associated genes from each module for subsequent analysis.





Identification and confirmation of diagnostic markers

We utilized three machine learning methods, including Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression, and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), to identify key biomarkers linked with sepsis. Random forest is an ensemble learning method that improves the generalization ability of the model by constructing 500 decision trees and performing voting or averaging. The seed is set to 19991018 to ensure reproducibility. The importance score of each feature is calculated based on the Gini index. For the random forest analysis, we used the “randomForest” package (version 4.7.1.1) in R.Lasso regression is a linear regression method used for feature selection and regularization. It introduces an L1 regularization term to penalize the complexity of the model, causing the coefficients of some unimportant features to become zero. The model is specified as a binary classification model with L1 regularization. It calculates 100 different λ values along the regularization path. Mean squared error (MSE) is used as the evaluation metric for cross-validation. Five-fold cross-validation is employed to select the optimal λ value. Genes with non-zero coefficients are selected. For the LASSO logistic regression analysis, we used the “glmnet” package (version 4.1.8) in R.SVM-RFE is a feature selection method based on support vector machines (SVM) that recursively eliminates the least important features to select the optimal feature subset. Five-fold cross-validation is used. When the number of features exceeds 100, half of the features are eliminated in each iteration. SVM-RFE achieves feature selection by selecting the feature subset with the lowest error rate. For the SVM-RFE analysis, we used the “e1071” package (21) (version 1.7.14) in R.





Molecular docking

The molecular structures of active ingredients were sourced from the PubChem database and subsequently imported into ChemBio3D 14.0 for spatial conformation adjustment of the active ingredients, energy optimization computations, and ultimately saved in the mol2 file format. Following processing with AutoDockTools 1.5.6, these files were converted and saved in pdbq format. The three-dimensional crystal structure of the target protein was obtained from the Uniprot database. Using Notepad2, the water molecules and organic substances were excised from the target protein. Subsequently, the protein was imported into AutoDockTools (version 1.5.6) to undergo hydrogenation, charge assignment, and atomic type assignment, culminating in the saving of a pdbqt format file. Molecular docking was executed with AutoDockVina, and the resultant docking images were generated using Pymol 2.6.





Clinical study on patients with sepsis

Between September 2024 and December 2024, a total of 12 patients with sepsis (age >18 years) were enrolled from the Department of Intensive Care Unit at Zhongnan Hospital of Wuhan University. The inclusion criteria for sepsis were based on the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3): suspected or confirmed infection, an acute increase of ≥ 2 points in the Sequential Organ Failure Assessment (SOFA) score, and evidence of organ dysfunction or tissue hypoperfusion. Being younger than 18 years of age, pregnant, or nursing, and having malignant tumors were all excluded from participation. Collect whole blood samples from 6 non-infected patients undergoing surgery in the Department of Anesthesiology at Zhongnan Hospital of Wuhan. We obtained the permission from the Ethics Committee of Zhongnan Hospital of Wuhan University, and participants gave their informed consent at the start of the research (the ethics batch number: 2024260k).





Isolation of PBMCs from whole blood

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples using density gradient centrifugation. Following the protocol described in previous literature, human peripheral blood was collected into anticoagulant tubes and gently inverted to prevent clotting. The anticoagulated whole blood was diluted 1:1 with PBS and mixed gently.

A 15 mL sterile centrifuge tube was filled with 4 mL of lymphocyte separation medium (Ficoll-Paque PLUS). The diluted whole blood was carefully layered on top of the separation medium, ensuring that the interface between the two layers remained intact and undisturbed. The tube was then placed in a horizontal rotor and centrifuged at 400 × g for 30 minutes at room temperature (with no brake). After centrifugation, the intermediate white layer (PBMCs) was carefully aspirated using a sterile pipette and transferred to a new 15 mL centrifuge tube. Ten milliliters of PBS were added, and the mixture was gently resuspended and centrifuged at 300 × g for 10 minutes at room temperature. The supernatant was discarded, and the PBMCs were resuspended in DMEM growth medium (Gibco, 11965118) containing 2% fetal bovine serum or in Cryostor CS10 (StemCell Technologies) for overnight storage at -80°C, followed by long-term storage in liquid nitrogen.





qRT-PCR analysis

Total RNA was derived from human PBMC using TRIzol reagent (Invitrogen, USA). The RNA was subsequently converted into cDNA through reverse transcription, utilizing the reverse transcription kit (produced by Takara, China). cDNA was used as a template for qPCR, with target gene primers and reference gene primers added. The reaction mixture was prepared adhered to the guidelines provided by the qPCR kit (Takara, China). Ultimately, the expression levels of the target gene were determined by analyzing the qPCR outcomes with the Bio-Rad CFX Maestro software. The sequences of the primers can be found in “Supplementary Table S2”.





Western blot

Human PBMCs were cultivated in DMEM medium supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin, within a regulated incubator atmosphere maintained at 37°C and 5% CO2. Protein extraction was performed using RIPA buffer, which included inhibitors for proteases and phosphatases, followed by protein quantification via the BCA method. Identical amounts of proteins were separated on SDS-PAGE gels and subsequently blotted onto PVDF membranes. The membranes were blocked with 5% non-fat milk in TBST, before being exposed to the anti-CD40LG antibody (abcam, ab2391) overnight at 4°C. Afterward, HRP-conjugated secondary antibodies were applied. Protein bands were detected by ECL and visualized with a chemiluminescence imager. ImageJ software was utilized to measure the intensity of the bands.





Cecal ligation and puncture induced sepsis model in mice

Male C57BL/6 mice (8 weeks old) were used to establish the sepsis model via cecal ligation and puncture (CLP). After anesthesia with 1.0% pentobarbital sodium injections intraperitoneally (35 mg/kg), a midline incision was made to expose the cecum. The cecum was ligated below the ileocecal valve and punctured twice with a 21-gauge needle. A small amount of fecal matter was extruded to ensure patency, and the cecum was then returned to the abdominal cavity. The incision was closed in two layers, and the mice were resuscitated with 1 ml of pre-warmed saline subcutaneously. Sham-operated mice underwent the same procedure without cecal ligation and puncture. Post-surgery, all mice were monitored closely for signs of sepsis. Flavonoids (5 mg/kg, obtained from Song Hui Laboratory) were administered via tail vein injection to evaluate their protective effects on sepsis-induced organ damage. Every experiment was carried out in accordance with NIH guidelines and approved by Wuhan University’s Animal Ethics Committee (ZN2021185).





Liver function-related index detection

Whole blood samples were left at room temperature for 2 hours and then centrifuged at 3000 rpm for 15 minutes at 4°C to obtain serum. Liver function tests were performed using an enzymatic colorimetric method, including alanine aminotransferase (ALT) (BioBASE 70111), aspartate aminotransferase (AST) (BioBASE 70910). Enzymatic colorimetric assay reagents were prepared according to the kit instructions. Samples and reagents were incubated at 37°C. The samples were loaded onto an automatic biochemical analyzer (Shandong Brocade Biotechnology Co., Ltd., BK-280) for automatic measurement. Absorbance values of each indicator were measured using a spectrophotometer. The concentrations of each liver function indicator were calculated based on the standard curve.





Concentration in bronchoalveolar lavage fluid

According to previous manufacturer’s protocol (22), lungs of mice were lavaged after experiment. Using a commercial bicinchoninic acid (BCA) protein assay kit (Beyotime, China), the proteins of BALF were quantified.





Assessment and correlation study of immune cells related to infiltration

The CIBERSORT website approximates the copiousness of 22 distinct immune cell varieties within composite cell populations by analyzing gene expression data. The immune cell infiltration matrix was obtained, as demonstrated by a p-value less than 0.05. Use the “ggplot2” (version 3.5.1) and “ggcorrplot” (version 0.1.4.1) packages to plot the heatmap of immune cell distribution and the correlation matrix of immune cell distribution, respectively. Finally, we conducted a correlation between pivotal genes and immune cells that have infiltrated the tissue.





Software tools

The analysis in this study was based on R version 4.4.0 and utilized the following key R packages and their versions: ggplot2 (version 3.5.1) for data visualization, limma (version 3.60.3) (17) for differential expression analysis, and WGCNA (version 1.72-5) (20) for weighted gene co-expression network analysis.





Statistical methods

All statistical tests were performed using GRAPHPAD 6.0c. Results are expressed as mean ± SD. Comparisons between the experimental and control groups were made using independent sample t-tests or one-way analysis of variance (ANOVA). A p-value of less than 0.05 was considered statistically significant.






Results




Screening of differentially expressed genes in sepsis

The procedure of this research is depicted in Figure 1, and the relevant information is provided in Supplementary Table S1. We combined the two datasets GSE69063 and GSE236713 into one training set, and use the ‘removeBatchEffect’ function from the ‘limma’ package to eliminate batch effects between the datasets (Supplementary Figure S1). We employed the “limma” package (17) (version 3.60.3) to identify differentially expressed genes (DEGs) with |log2FC| > 1 and an adjusted p-value < 0.05 as cutoffs, resulting in a total of 1443 genes, including 891 upregulated and 552 downregulated genes. We selected the top 25 genes with the highest and lowest logFC respectively among all statistically significant differentially expressed genes to create a heatmap (Supplementary Figure S2A) by using R software’s pheatmap package. A graphical representation, known as a volcano plot, was created to highlight the varying expression levels of the differentially expressed genes (DEGs). (Supplementary Figure S2B).

[image: Flowchart detailing a bioinformatics analysis process. It starts with two GEO databases, GSE69063 and GSE236713, which undergo merging and batch normalization. This leads to the identification of differentially expressed genes (DEGs). Subsequent steps include GSEA analyses, immune infiltration analysis by CIBERSORT, and machine learning algorithms determining robust DEGs. The DEGs undergo analyses via LASSO, RF, and SVM-RFE methods. Diagnostic markers (CD3E, CD40LG, LILRA5) are identified, followed by correlation analysis. Finally, ROC curve analysis and construction of a nomogram model and DCA analysis are performed.]
Figure 1 | The flowchart portraying the investigation procedure. GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; CIBERSORT, Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts; DEGs, Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-Protein Interaction; LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random Forest; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; ROC, Receiver Operating Characteristic Curve; DCA, Decision Curve Analysis.





GSEA

To study the relationship between genes and specific phenotypes in sepsis patients and healthy controls using GSEA, we identified potential biological processes. Through HALLMARK analysis, we found that the top-ranked terms were mostly related to antigen presentation, cell differentiation, immune response, and other processes. In sepsis patients, the signaling pathways for antigen processing and presentation, ribosome, ribosome biogenesis in eukaryotes, T cell receptor signaling pathway, as well as the differentiation of Th1 and Th2 cells, with all the adjusted p-values falling below 0.05. (Figure 2A)

[image: A set of five visual panels displays various bioinformatics analyses. Panel A presents a gene set enrichment analysis plot, showing running enrichment scores for different pathways. Panel B shows a horizontal bar chart depicting disease associations with q-values, such as primary immunodeficiency disease. Panel C features a circular plot, highlighting gene ontology distribution. Panel D is a circular network diagram correlating genes and pathways, with node size and color encoding significance. Panel E shows a protein-protein interaction network, illustrating connections among various proteins.]
Figure 2 | Functional and pathway enrichment assessment of DEGs. (A) GSEA evaluation; (B) DO examination; (C) GO enrichment evaluation; (D) KEGG pathway enrichment evaluation; (E) PPI network analysis. DEGs, Differentially Expressed Genes; GSEA, Gene Set Enrichment Analysis; DO, Disease Ontology; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-Protein Interaction.





Functional enrichment analysis of DEGs

Based on the findings from functional enrichment analysis, DEGs pertained to conditions including primary immunodeficiency disease, HIV infection, arteriosclerosis, oral diseases, and tuberculosis (Figure 2B). According to the output of GO enrichment analysis, DEGs are mainly associated with T cell differentiation, immune response activation of cell surface receptors, innate immune response activation signal transduction, immune receptor activity, and extracellular matrix-related functions. Figure 2C shows the enrichment results for these functions. The KEGG analysis is related to Th17 cell differentiation, Th1 and Th2 cell differentiation, T cell receptor signaling pathway, and Cytokine-cytokine receptor interaction (Figure 2D). Figure 2E shows the PPI network, in which core proteins such as CD5, CD3E, CD6, LCK, etc., play crucial roles in T cell activation and signal transduction.





Detection of co−expression gene modules within sepsis

In the training dataset, we applied WGCNA to identify gene modules extensively co-expressed across numerous genes. First, the samples from two datasets were divided into two groups: sepsis group and control group. A cutHeight of 114 was set to remove outliers (Figure 3A). Then, the minimum soft threshold with a scale-free topology model fit close to 0.9 was chosen, with 5 as the soft threshold power (β), for constructing biologically significant scale-free networks in the next step (Figures 3B, C). Through employing hierarchical clustering and dynamic branch cutting techniques to dissect gene dendrograms, we divided genes into 12 modules (Figure 3D). The modules of black, greenyellow, and pink exhibited a significant correlation with sepsis (Figure 3E, P < 0.05). We plotted scatter plots for all modules with p-values indicating significant differences (p < 0.05) (Supplementary Figure S3). Figures 3F–H show scatter plots for the three most significantly correlated modules. We extracted genes from all modules with threshold of membership > 0.8 and threshold of significance > 0.2. A total of 351 genes showed significant correlations with sepsis-related genes and module membership.

[image: Cluster analysis is shown with multiple graphs: A dendrogram for outlier detection; line charts for scale independence and mean connectivity; a module-trait heatmap; and scatter plots for gene significance across black, greenyellow, and pink modules.]
Figure 3 | Construction of weighted co-expression network datasets in pediatric sepsis. (A) Clustering dendrogram of 226 samples; (B, C) Evaluation of network topology for different soft thresholds (β); (D) Gene dendrograms derived from average linkage hierarchical clustering; (E) Module-trait correlations; (F) Scatterplot of GS for recurrence vs. MM in the black module; (G) Scatterplot of GS for recurrence vs. MM in the greenyellow module; (H) Scatterplot of GS for recurrence vs. MM in the pink module. GS, Gene Significance; MM, Module Membership.





Assessment and verification of diagnostic biomarkers

We used a Venn diagram to display the overlapping genes between DEGs and key modules identified by WGCNA, resulting in a total of 262 shared genes (Figure 4A). Three machine learning algorithms were applied to pinpoint characteristic genes: the SVM-RFE error rate graph indicates that when 89 genes are selected, the diagnostic error rate is the lowest (Figure 4B); Figure 4C shows the fitting process of the Random Forest algorithm. The RF accuracy graph indicates that when the number of feature genes is 84, the diagnostic accuracy is the highest (Supplementary Figure S2C). In the Random Forest model, the top 30 feature genes are ranked in descending order of importance (Figure 4D); LASSO regression was applied to identify 17 genes predictive of the outcome, following univariate statistical significance assessments. (Figures 4E, F). We extracted 12 feature genes (MS4A4A, AFF3, P2RY10, SIPA1L2, CD40LG, ST6GALNAC3, CD3E, LILRA5, KREMEN1, FCER2, CCNB2, HJURP) covered by all three machine learning algorithms, and illustrated their overlap with a Venn diagram (Figure 5A). Utilizing the “rms” package (version 6.8.1), we crafted nomogram models for the diagnosis of sepsis, leveraging the data from these 12 genes. (Figure 5B) Based on the decision curve analysis (DCA) outcomes, the Nomogram model yields superior clinical advantages (Figure 5C). In the training dataset, the AUC for all 12 feature genes exceeds 0.7, indicating their high predictive accuracy and suggesting their potential as clinical biomarkers (Figures 5D–F). In the GSE65682 validation group, all 12 core genes showed significant differences between the healthy control group and the sepsis group (Figures 6A–C). Except for FCRE2, the area under the ROC curve (AUC) for the remaining core genes was above 0.7(Figures 6D–F). In the three validation datasets, we selected genes with AUC greater than 0.7 and single-gene boxplot P-values less than 0.05 in each dataset to create a Venn diagram. We found that there were 7 overlapping genes, among which CD40LG was one (Figure 6G). Moreover, in the GSE137340 validation group, the levels of CD3E, CD40LG, FCER2, and P2RY10 expressions were markedly reduced in the sepsis group when contrasted with the control group (P < 0.05) (Supplementary Figure S5A). Conversely, the expression of CCNB2, HJURP, KREMEN1, LILRA5, and SIPA1L2 was significantly higher in the sepsis group (P < 0.05) (Supplementary Figure S5B). The remaining genes exhibited no substantial disparity when comparing the two groups. In the validation dataset, ROC curves were plotted for 12 genes (Supplementary Figures S5C–E). Except for MS4A4A, AFF3, and ST6GALNAC3, the AUC of the remaining genes’ curves was greater than 0.7. We used a Venn diagram to show overlapping genes (CD3E, CD40LG, LILRA5 and FCER2) with significant differences and an ROC curve area greater than 0.8 in the validation dataset (Supplementary Figure S5F). Similarly, in the GSE28750 dataset, we performed single-gene boxplot validation (Supplementary Figures S6AC–C) and ROC curve validation (Supplementary Figures S6DC–F) for the 12 core genes.

[image: Panel A shows a Venn diagram with overlapping circles labeled DEGs and WGCAN. Panel B displays a line graph of cross-validation error against model complexity. Panel C presents a graph of error rate versus number of trees. Panel D is a feature importance plot showing mean decrease in Gini index for various features. Panel E depicts a line graph of coefficients against log lambda, showing multiple lines. Panel F is a graph of mean-squared error against log lambda, featuring a U-shaped curve with error bars.]
Figure 4 | Identification of diagnostic markers through a comprehensive approach. (A) Venn diagram comparing key module genes with DEGs; (B) Biomarker screening via SVM-RFE; (C, D) Based on RF algorithm to screen biomarkers; (E) Varied colors indicate distinct genes; (F) Diagnostic marker screening employing the LASSO logistic regression algorithm. DEGs, Differentially Expressed Genes; WGCNA, Weighted Gene Co-Expression Network; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection Operator.

[image: Panel A is a Venn diagram showing the overlap of features selected by SVM, RF, and LASSO methods, with numbers indicating unique and shared features. Panel B is a nomogram displaying risk scores associated with various gene expressions. Panel C is a decision curve analysis graph showing the standardized net benefit across different threshold probabilities for various models. Panels D, E, and F are ROC curves for models featuring selected genes, displaying sensitivity and specificity values, with AUC scores noted for each gene.]
Figure 5 | Key Genes in Diagnosing Pediatric Sepsis. (A) A Venn diagram illustrates the overlap of diagnostic markers identified by the three algorithms; (B) A nomogram is employed to forecast the incidence of pediatric sepsis; (C) Decision Curve Analysis (DCA) plots; (D-F) The ROC curve for validating diagnostic effectiveness. DCA, Decision Curve Analysis; ROC, Receiver Operating Characteristic Curve; AUC, Area Under Curve.

[image: Multiple panels display data on gene expression and diagnostic performance. Panels A, B, and C are box plots comparing gene expression in healthy versus sepsis groups for various genes (e.g., CD40LG, ST6GALNAC3). Panels D, E, and F are ROC curves showing the specificity and sensitivity for different genes, with AUC values indicated. Panel G is a Venn diagram illustrating shared genes across three datasets: GSE137340, GSE28750, and GSE65682, with overlaps prominently marked.]
Figure 6 | Confirmation of pivotal genes. (A-C) A boxplot depicts the expression levels of key genes between the pediatric sepsis group and the control group in GSE65682 dataset; (D-F) The ROC curve for diagnostic efficacy validation in GSE65682. (G) A Venn diagram illustrates the overlapping genes with significant differences and AUC greater than 0.7 and single-gene boxplot P-values less than 0.05 in all validation sets.





Infiltration of immune cells results

As indicated by the CIBERSORT analysis, septic specimens generally exhibit an elevated prevalence of plasma cells, CD4+ T cells in the memory activated state, gamma delta T cells, M0 Macrophages, M2 Macrophages, and Neutrophils, as compared with normal controls (P < 0.05) (Figures 7A, B). However, B cells naive, B cells memory, T cells CD8, T cells CD4 naive, T cells CD4 memory resting, and NK cells resting are relatively lower in septic samples. Correlation analysis results indicate significant associations of CD3E, CD40LG, LILRA5 and FCER2 with various immune cells (Figures 7C–F). The Correlation analysis results of the remaining genes are shown in Supplementary Figure S4.

[image: Panel A shows a stacked bar chart of the proportion of various immune cells across samples, with different colors representing cell types. Panel B is a box plot comparing immunocell expressions between control and sepsis groups, with significant differences noted. Panels C to F display dot plots of correlation coefficients for genes CD3E, LILRA5, CD40LG, and FCER2 with specific immune cells, highlighting statistical significance. The data show variations in the immune response between control and sepsis conditions.]
Figure 7 | Evaluation, visualization, and correlation analysis of immune cell infiltration. (A) Boxplot and (B) Violin plot depicting the distribution of 22 distinct immune cell types. (C) Linkage between CD3E and infiltrating immune cells; (D) Linkage between LILRA5 and infiltrating immune cells; (E) Linkage between CD40LG and infiltrating immune cells; (F) Linkage between FCER2 and infiltrating immune cells. NK, natural killer. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns stands for non-significant.





Screening of therapeutic targets

Xuebijing, a traditional Chinese medicine injection composed of safflower, salvia, and Astragalus, is widely used for its ability to promote blood circulation, clear heat, and detoxify. It has shown significant efficacy in treating critical conditions such as sepsis, ARDS, and MODS, primarily by inhibiting inflammatory factors, improving microcirculation, and reducing oxidative stress. While clinical studies have demonstrated its potential to reduce mortality and alleviate conditions like COVID-19-related pneumonia, the precise mechanisms of Xuebijing’s action remain to be fully elucidated. Employing the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we discerned the chemical components found in the three herbs along with their corresponding target genes. We found that CD40LG is not only one of the 12 core genes we identified, but also a common target of the active components quercetin, luteolin, and apigenin in these herbs. Figure 8A illustrates the chemical structures of these active ingredients, and we extracted the common chemical structure of them—flavonoids (Figure 8B). The 3D binding model analysis of CD40LG with flavonoids shows a docking score of -6.263 kcal/mol, indicating strong affinity between the compound and the protein, as values more negative than -5 reflect good affinity (Figure 8C). Through docking analysis, we further validated the interaction between flavonoids and CD40LG, providing strong evidence for personalized sepsis treatment. To further substantiate the clinical applicability of the gene in practical scenarios and explore its roles in the pathogenesis of sepsis, we collected blood samples from both a healthy control group and a sepsis group with or without the administration of Xuebijing. We extracted PBMCs from blood samples and conducted WB and PCR experiments on them. At both gene and protein levels, CD40LG significantly decreased in sepsis patients without Xuebijing treatment compared to the healthy group, while CD40LG was partially rescued in sepsis patients with Xuebijing treatment (Figures 8D, E). Using the sham operation group as a control, we established a mouse sepsis model through cecal ligation and puncture (CLP) and administered flavonoids to a portion of the septic mice via tail vein injection. We observed the histological changes in the liver and lung tissues among different treatment groups. The results showed that CLP treatment exacerbated liver and lung injuries in mice, while flavonoid treatment effectively alleviated the histological changes in the liver and lung tissues (Figure 8F). Similarly, the changes in serum ALT and AST levels (Figure 8G) and BALF protein concentration (Figure 8H) among the three groups followed the same trend: CLP treatment significantly increased ALT, AST, and BALF protein concentrations, whereas flavonoid treatment significantly decreased these indices. These results indicate that flavonoids have a protective effect against CLP-induced tissue injury.

[image: Chemical structures and images are displayed in panels A to H, showcasing the study of flavonoids and their effects. Panel A presents chemical structures of quercetin, luteolin, and apigenin. Panel B illustrates a flavonoid structure. Panel C shows a molecular docking image with a score of -6.263 kilocalories per mole. Panel D shows a bar graph indicating CD40LG mRNA levels across different conditions. Panel E presents a protein expression analysis for CD40LG and GAPDH. Panel F includes liver and lung histology images comparing sham, CLP, and CLP plus flavonoids groups. Panels G and H show bar graphs of ALT, AST, and BALF protein levels with statistical significance marked.]
Figure 8 | Interaction between Flavonoids and CD40LG. (A) The chemical structures of quercetin. Luteolin and apigenin. (B) The chemical structure of flavonoids. (C) 3D Binding model analysis of CD40LG with flavonoids. (D) The relative expression of CD40LG mRNA in control (Con), sepsis, and Xuebijing-treated groups. (E) Western blot analysis of CD40LG and GAPDH protein expression in control (Con), sepsis, and Xuebijing-treated groups. (F) Liver tissue sections stained with hematoxylin and eosin (H&E), showing the liver and lung tissue structure of the sham operation group, cecal ligation and puncture (CLP) group, and CLP plus flavonoid treatment group. (G) Serum ALT and AST levels in different treatment groups. (H) Protein concentration in bronchoalveolar lavage fluid (BALF) in different treatment groups. (n=6). Data are presented as mean ± SD. Statistical significance is indicated as follows: ns (not significant), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns stands for non-significant.






Discussion

Sepsis frequently arises from combat-related wounds and trauma, characterized as a perilous organ dysfunction stemming from an erratic host reaction to infection. Additionally, it ranks as a principal factor contributing to mortality rates and heightened healthcare expenditures within contemporary intensive care settings (23). Sepsis represents an abnormal systemic response to ordinary infections, typically characterized by a preliminary hyper-inflammatory phase followed by an immunosuppressive phase, leading to multiple organ dysfunction (5, 24). In the early stage of sepsis, cytokines like tumor necrosis factor (TNF), interleukin-1β (IL-1β), and interleukin-6 (IL-6) mediate the inflammatory reaction, initiating the systemic inflammatory response syndrome (SIRS) (25). In the later stages of sepsis, the immune response becomes suppressed, manifesting as compensatory anti-inflammatory response syndrome (CARS) (26). Biomarkers of this phase include anti-inflammatory cytokines and changes in the distinguishing markers on the surfaces of monocytes and lymphocytes. Integrating a range of pro-inflammatory and anti-inflammatory biomarkers may potentially facilitate the early detection of patients susceptible to developing severe sepsis, even before the occurrence of organ dysfunction. This approach could allow for prompt supportive intervention, enhancing patient outcomes, decreasing mortality rates, and reducing healthcare expenditures (5). Many existing biomarkers, such as C-reactive protein (CRP) and procalcitonin (PCT), although elevated during inflammatory responses, lack specificity and are influenced by other inflammatory or infectious conditions. Some biomarkers do not show significant changes during the progression of sepsis, rendering it challenging to capture the dynamic fluctuations and severity of the condition. Identifying and validating new biomarkers for sepsis can significantly enhance early diagnosis and treatment efficacy, thereby improving patient prognosis (27).

While the precise mechanisms are yet to be fully understood, immunosuppression is regarded as a significant contributor to mortality in sepsis (23). The mechanisms of sepsis-induced immunosuppression are highly complex, involving various cellular and molecular pathways. Immune checkpoint proteins, such as PD-1 and CTLA-4, are upregulated in sepsis, leading to immunosuppression by inhibiting T cell activation and proliferation (28–31). Regulating the expression and function of these checkpoint proteins is a current research focus. Autophagy fulfills a dual function within sepsis; it can protect cells by clearing damaged organelles and proteins, but excessive autophagy may lead to immune cell death, exacerbating immunosuppression (32). Ferroptosis, a type of cell death dependent on iron and characterized by lipid peroxidation, may further impair immune responses by disrupting the integrity of immune cell membranes during sepsis (33, 34). During sepsis, immune cells such as T cells, B cells, and natural killer cells undergo significant apoptosis, leading to a marked decline in immune system function and reduced resistance to infection (35–39). The count of regulatory T cells (Tregs) escalates, and these cells modulate immune responses through the secretion of anti-inflammatory cytokines like IL-10 and TGF-β (40–42). Sepsis also causes dysfunction in immune cells, including antigen-presenting cells like dendritic cells and macrophages, impairing antigen presentation and T cell activation (43, 44). Studies have shown that targeting immunosuppression can reverse immune cell dysfunction, providing a theoretical basis for developing new immunotherapeutic strategies (37, 45–48).

The identification of novel biomarkers has not only improved the diagnosis and treatment outcomes of sepsis but also provided new research directions for studying the mechanisms of sepsis-induced immunosuppression (27, 49). Studies have found that the levels of BMP9 are significantly reduced in sepsis patients, and these levels are closely related to patient prognosis. BMP9 can serve not only as a prognostic biomarker but also has potential value as a therapeutic target (50).

Traditional treatments for sepsis, such as fluid resuscitation and broad-spectrum antibiotics, although somewhat effective, have drawbacks including fluid overload, antibiotic resistance, and disruption of the gut microbiota (51–53). Personalized treatment, which adjusts therapeutic strategies based on the patient’s specific conditions through methods like gene expression analysis, single-cell transcriptomics, and dynamic monitoring, is gaining importance in sepsis management due to its potential to reduce side effects and improve outcomes (54–59). Machine learning models can predict the occurrence and progression of sepsis based on patients’ gene expression data (60). Researchers have developed machine learning classification models based on preoperative transcriptomic features to predict postoperative sepsis (61). These models can help clinicians more accurately assess patient risk and formulate personalized treatment plans.

In this study, we utilized machine learning and bioinformatics to identify new diagnostic biomarkers for sepsis and conducted a comprehensive analysis of immune cell infiltration characteristics, affording novel pathways for delving deeper into the intricacies of sepsis-induced immunosuppressive mechanisms. We merged two datasets (GSE69063 and GSE236713) from the Gene Expression Omnibus and removed batch effects. Between the control and the sepsis groups, our research revealed a total of 1443 DEGs, including 891 upregulated and 552 downregulated genes. According to the results of GO enrichment analysis, differentially expressed genes are mainly associated with T cell differentiation, immune response activation of cell surface receptors, innate immune response activation signal transduction, immune receptor activity, and extracellular matrix-related functions. The KEGG analysis is related to Th17 cell differentiation, Th1 and Th2 cell differentiation, T cell receptor signaling pathway, and Cytokine-cytokine receptor interaction. We extracted 262 genes commonly covered by WGCNA and DEGs, and employed three distinct machine learning algorithms to screen and identify diagnostic biomarkers associated with sepsis.

The Random Forest algorithm is an ensemble learning method that relies on decision trees (62). It combines multiple decision trees to form a forest, improving accuracy for classification or regression tasks (63). Using the Bagging algorithm (Bootstrap aggregating), it generates multiple subsets by sampling with replacement from the training set and trains individual decision trees. Finally, the overall prediction result is obtained by averaging or majority voting (64). The Random Forest algorithm is capable of generating highly precise classifiers across diverse datasets, managing extensive input variables efficiently, and supporting parallel processing (63). LASSO is a widely used regression analysis method in statistics. Its core idea is to compress coefficients to achieve variable selection and complexity adjustment, thereby improving the predictive accuracy and interpretability of the model (65, 66). SVM-RFE is a wrapper-based feature selection method. It starts with all potential genes (or other predictor variables) and then iteratively removes them one by one, forming a backward elimination process. During every cycle, genes are sorted in accordance with their significance in relation to the target variable, allowing identification of the most relevant genes and simplifying the model to improve predictive performance (67). Finally, we extracted 12 genes common to three machine learning algorithms: MS4A4A, AFF3, P2RY10, SIPA1L2, CD40LG, ST6GALNAC3, CD3E, LILRA5, KREMEN1, FCER2, CCNB2, and HJURP, which were identified again as potential biomarkers by the validation gene set. CIBERSORT is a widely used computational method in immunology research. It is based on a linear regression model that quantitatively analyzes the proportions of various immune cell subtypes in tissues using gene expression data (68). By training on known immune cell characteristic gene expression profiles, CIBERSORT estimates the relative abundance of immune cell subpopulations in mixed cell samples (69). The variation in immune cell infiltration, encompassing diverse types of immune cells, appears to correlate with the onset and progression of sepsis (37). To acquire profound insight into the role of immune cell infiltration in this context, we employed CiberSort for analysis.

Xuebijing injection is a traditional Chinese medicine injection that has shown significant efficacy in the management of sepsis over the past few years (70). Xuebijing works by modulating the body’s abnormal responses, protecting vascular endothelial cells, and mitigating the interaction between the inflammatory and coagulation systems, thereby preserving the physiological functions of major organs. Its application in the treatment of COVID-19 has also shown certain efficacy. Research indicates that Xuebijing can suppress the cytokine storm caused by the coronavirus, improve the Pneumonia Severity Index (PSI) of patients, and increase the cure rate (71). In a multicenter randomized double-blind placebo-controlled clinical trial, the 28-day all-cause mortality rate for the Xuebijing group was markedly reduced compared to the placebo group (18.8% versus 26.1%), highlighting its efficacy in potentially lowering sepsis-related mortality (72). Additionally, Xuebijing can improve patients’ immune function and reduce the incidence of multiple organ dysfunction syndrome (MODS). These findings provide high-level evidence for the application of Xuebijing in sepsis treatment. Astragalus, Salvia, and Safflower are the main components of Xuebijing (73), commonly used in the clinical treatment of sepsis. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we identified the chemical constituents of these three herbs and their target genes. We found that CD40LG is not only one of the 12 core genes we identified, but also a common target of the active components quercetin, luteolin, and apigenin in these herbs. We extracted the common chemical structure of these active ingredients—flavonoids. Through docking analysis, we further validated the interaction between flavonoids and CD40LG, providing strong evidence for personalized sepsis treatment. To further validate the practical application value of the gene in clinical settings and explore its roles in the pathogenesis of sepsis, we collected blood samples from healthy individuals and sepsis patients with or without the administration of Xuebijing for PBMC extraction, followed by qPCR and WB. At both gene and protein levels, CD40LG significantly decreased in sepsis patients without Xuebijing treatment compared to the healthy group, while CD40LG was partially rescued in sepsis patients with Xuebijing treatment.

CD40LG, predominantly located on the surface of T cells, serves as a critical co-stimulatory molecule in immune system functions. By attaching to the CD40 receptor on B cells and additional antigen-presenting cells, it facilitates B cell activation, antibody synthesis, and modulation of inflammatory processes (74, 75). This interaction is essential for B cell activation, antibody production, and the regulation of inflammatory pathways. CD40LG plays a multifaceted role in disease mechanisms, particularly in immune regulation and inflammation. It is a powerful modulator of inflammatory pathways, promoting the build-up of inflammatory white blood cells in atherosclerotic plaques and driving the expression of inflammatory genes. Produced by activated T lymphocytes and platelets, CD40LG can be converted into a soluble variant known as sCD40L, which behaves similarly to cytokines. Both the membrane-bound and soluble forms participate in inflammatory reactions and various immune and vascular disorders. Soluble CD40L, chiefly released by platelets, has been linked to harmful transfusion reactions, including transfusion-related acute lung injury (TRALI) (76). Genetic mutations in the CD40LG gene lead to X-linked hyper IgM syndrome (XHIM), a condition marked by the absence of T cell-dependent humoral immunity and specific IgG antibodies (77). A multicenter, prospective study showed that sCD40L levels might play a role in sepsis, with circulating sCD40L levels in septic patients significantly higher than those in the control group, and non-survivors having higher sCD40L levels than survivors (78). This is inconsistent with our bioinformatics analysis results, which may be due to differences in sample types and sources used in different studies. In the study by Pastor E et al., the measurement was of soluble CD40 ligand (sCD40L) levels in serum, whereas our bioinformatics analysis was based on CD40LG gene expression levels in whole blood samples. Nevertheless, the important role of CD40LG in sepsis cannot be denied. Further in-depth mechanistic exploration of changes in CD40L levels in serum and whole blood is still needed. The reduction of CD40LG may be associated with immunosuppression in late-stage sepsis patients (23). The interaction between CD40LG and CD40 receptors on B cells and other antigen-presenting cells is vital to the immune response. The decrease in CD40LG inhibits this immune response. After treatment with Xuebijing, the expression of CD40LG increases, which may be due to the binding of flavonoids to CD40LG, enhancing its stability, and possibly through signal transduction, increasing the gene transcription and protein expression of CD40LG.

The CD40LG may serve as a novel biomarker for the diagnosis of sepsis and as an indicator for evaluating treatment efficacy and provides a new research direction for further studying the mechanisms of immunosuppression in sepsis. However, our study has the following limitations. Machine learning models may overfit training data during training, yielding suboptimal outcomes when faced with fresh data sets. If the selected genes perform well only in the training data but poorly in other datasets, using these genes as diagnostic markers may be unreliable. Additionally, CIBERSORT estimates the composition and abundance of immune cells based on transcriptome data, but gene interactions within the organism and overlapping gene expression between different cell types may affect the accuracy of individual gene expression levels. To mitigate overfitting in machine learning models, we enhanced generalization through expanded sample size, data augmentation, feature selection (e.g., LASSO, random forest), regularization (L1, L2), cross-validation, and ensemble learning (e.g., XGBoost) (79). Future work will focus on robust algorithms for high-dimensional/small-sample data, multi-omics integration, and transparent model training. For CIBERSORT’s gene expression overlap issue, we plan to develop single-cell-based deconvolution tools and integrate multi-modal data (e.g., epigenetics, proteomics) to improve cell type resolution (80). Bias correction tools and multivariate regression will address confounding factors, ensuring result reliability (81). Therefore, the results of this study still need validation using larger datasets and extensive experiments to determine their reliability. Through biological experiments, we have confirmed that flavonoids can benefit sepsis patients by affecting CD40LG. However, the underlying mechanisms of this effect require further investigation.

In summary, our research has identified twelve genes, including CD3E, CD40LG, LILRA5, and FCER2, as potential diagnostic markers for sepsis. Among these, we selected CD40LG, a target gene for the three main components of Xuebijing, as one of the core genes. Through biological experiments, we concluded that Xuebijing treatment might improve the prognosis of sepsis patients by affecting CD40LG, providing a new research direction for further studying the mechanisms of immunosuppression in sepsis.
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Background

Studies have shown that sialylation of C1 esterase inhibitors is crucial for their interaction with histones, and histone-C1 esterase inhibitor complexes are detected in acute respiratory distress syndrome (ARDS), suggesting a potential role of sialylation in ARDS. However, the specific function of sialylation in ARDS remains unclear. Therefore, this study aimed to investigate the mechanism of sialylation-related genes (SRGs) in sepsis-induced ARDS.





Methods

The ARDS related datasets (GSE32707, GSE66890, and GSE151263) were included in this study. Candidate genes were identified by implementing differential expression analysis and weighted gene co-expression network analysis (WGCNA). Subsequently, further selection by machine learning and expression assessment confirmed the key genes related to sialylation in sepsis-induced ARDS. Following this, the predictive ability of key genes as a whole for sepsis-induced ARDS was evaluated by creating a nomogram model. Afterwards, enrichment analysis, construction of regulatory networks, and drug prediction analysis were implemented to further understand the molecular mechanisms of action of key genes. Furthermore, single-cell RNA sequencing (scRNA-seq) data analysis was conducted to obtain key cells. Additionally, cell communication and pseudo-time analyses were implemented. In the end, the expression levels of the key genes were assessed by collecting clinical samples.





Results

CD19 and GPR65 were identified as key genes associated with sialylation in sepsis-induced ARDS. The constructed nomogram model demonstrated that CD19 and GPR65 as a whole exhibited robust predictive capability for sepsis-induced ARDS. Meanwhile, CD19 and GPR65 were also found to be significantly co-enriched in the apoptosis and B-cell receptor signaling pathway. In addition, some important regulators and drugs with targeting effects on key genes were predicted, such as NEAT1, OIP5-AS1, alprostadil, and tacrolimus. Further, the scRNA-seq data analysis identified nine cell types, among which CD14 monocytes (CD14Mono) was designated as the key cell. Importantly, GPR65 expression exhibited dynamic changes during differentiation of CD14Mono. Also, we found that CD19 was significantly up-regulated in ARDS group.





Conclusion

We identified CD19 and GPR65 as key genes associated with sialylation in sepsis-induced ARDS, highlighting CD14Mono as key cell type implicated in sepsis-induced ARDS. These findings offered theoretical support for understanding the mechanism of sialylation on sepsis-induced ARDS.





Keywords: sepsis-induced acute respiratory distress syndrome, sialylation, nomogram, single-cell RNA sequencing, key genes




1 Introduction

Acute Respiratory Distress Syndrome (ARDS) is characterized by acute inflammatory lung injury, with histological features including diffuse alveolar damage, pulmonary edema, hyaline membrane formation, alveolar hemorrhage, and inflammation (1). ARDS constitutes 10% of intensive care unit admissions, with more than 3 million cases reported annually worldwide, and is associated with significant morbidity and mortality rates (2). While various triggers, including pneumonia, aspiration, trauma, pancreatitis, and multiple blood transfusions, can induce ARDS, sepsis remains the predominant cause, responsible for 32% of ARDS cases (3). The current treatment modalities for ARDS primarily encompass mechanical ventilation, pharmacological therapy with glucocorticoids, oxygen therapy, supportive care, and positional therapy, among other strategies (1). Despite advancements in mechanical ventilation therapy that have notably decreased ARDS mortality rates, the rates remain high at 25-40%, and there are currently no targeted treatments or specific key genes for critically ill patients (4, 5). Considering ARDS is a highly heterogeneous syndrome with variations contingent upon the underlying cause, the identification of specific key genes is essential for the diagnosis and treatment of sepsis-induced ARDS.

Sialylation, a post-translational modification, is critical in immune cell function and inflammatory responses (6). This process is regulated by sialyltransferases, transporters, and neuraminidases, and it plays a critical role in maintaining cell-cell interactions. It is also associated with numerous diseases, including cancer, embryonic demise, and immune system abnormalities (7). Research indicates that the sialylation of C1 esterase inhibitor is crucial for its interaction with histones, and this binding can mitigate the adverse effects of lung injury. Moreover, histone-C1 esterase inhibitor complexes have been identified in bronchoalveolar lavage fluid from ARDS patients and various lung injury models, suggesting a potential role for sialylation in ARDS (8). Additionally, the activity of sialidase NEU1 may modulate the sialylation status of angiotensin-converting enzyme 2 (ACE2) and other host receptors, as well as the extent of lysosomal exocytosis, thereby influencing the susceptibility, infectivity, and transmission of SARS-CoV-2 (7). Although sialylation has been shown to be associated with ARDS, the specific mechanism of sialylation in ARDS needs to be further investigated.

Single-cell RNA sequencing (scRNA-seq) has advanced ARDS research by profiling individual cell gene expression, revealing rare cell subsets, transitional states, and complex cell-cell communication networks (9). Ye et al. developed iMLGAM, a machine learning and genetic algorithm framework for predicting immunotherapy responses using multi-omics data (10). Other studies identified a plasma cell signature predicting immunotherapy outcomes (11, 12) and a T-cell exhaustion-related feature predicting chronic infection or tumor prognosiss (13) In ARDS patients, sepsis-related cases show increased CD14 cells, while pneumonia-related cases have more cytotoxic cells and NK T cells, indicating significant immune cell heterogeneity (14). scRNA-seq has demonstrated broad application potential and important value in ARDS research. It not only reveals the complexity and heterogeneity of immune cells in ARDS but also provides a scientific basis for the development of therapeutic strategies.

This study utilized transcriptome and single-cell sequencing data pertaining to sepsis-induced ARDS from the GEO database to identify key genes associated with sialylation in sepsis-induced ARDS using a suite of bioinformatics approaches. Additionally, enrichment analysis, regulatory network construction, and drug prediction were performed to elucidate the mechanisms of action of these key genes in sepsis-induced ARDS. Furthermore, based on the cellular expression of key genes, critical cell types were identified, and a pseudo-time series analysis was conducted on these cells to assess the expression patterns of key genes throughout various stages of differentiation. The ultimate aim is to offer novel insights and references for the clinical management of sepsis-induced ARDS.




2 Materials and methods



2.1 Data extraction

ARDS-related transcriptome sequencing data (GSE32707 and GSE66890) and single-cell RNA sequencing (scRNA-seq) data (GSE151263) were gained by accessing the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), which were applied in this study. The GSE32707 dataset, which obtained based on the sequencing platform GPL10558, contained 144 blood samples, of which 18 blood samples from patients with sepsis-induced ARDS and 30 blood samples from patients with sepsis were selected for inclusion in this study. In particular, these blood samples were collected on the day of admission (day 0). The GSE66890 dataset, obtained based on the sequencing platform GPL6244, comprised 62 blood samples. Of these, 28 blood samples from patients with sepsis and 29 blood samples from patients with sepsis-induced ARDS were included in this study. Specifically, GSE32707 dataset was utilized as the training set while GSE66890 dataset was served as the validation set. The GSE151263 dataset consisted of peripheral blood mononuclear cell (PBMC) samples from three patients with sepsis-induced ARDS and four patients with sepsis, which were acquired based on sequencing platform GPL20301. Additionally, a total of 110 sialylation related genes (SRGs) were obtained through accessing Molecular Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb) (6).

First, the gene expression matrix was obtained through geoChina in the AnnoProbe package (v0.1.7). Subsequently, the obtained gene expression matrix was examined to check whether log2-standardization was required for it, so as to ensure the consistency and comparability of the data. If in the gene expression matrix, the 99th percentile was greater than 100, and the difference between the maximum and minimum values was greater than 50, while the first quartile (qx[2]) was greater than 0, and the first quartile was between 0 and 1, and the third quartile was between 1 and 2, then log2-standardization was carried out. Next, the corresponding GPL file was used for gene annotation operations in order to accurately identify the genes. Finally, the pre - processed data was saved and used for subsequent analysis.




2.2 Differential expression analysis

With the application of the limma package (v 3.54.0) (15), differential expression analysis was implemented between ARDS and sepsis in the GSE32707 dataset with the aim of identifying differentially expressed genes (DEGs) [P < 0.05 &|Log2 Fold Change (FC)| > 0.5]. In order to understand the distribution of DEGs as a whole, the ggplot2 package (v 3.4.1) (16) was employed to create a volcano plot, and the top 10 up-regulated and down-regulated genes sorted by log2FC were marked in the volcano plot. Subsequently, the ComplexHeatmap package (v 2.15.1) (17) was utilized to draw a heat map of the expression for these 20 DEGs.




2.3 Weighted gene co-expression network analysis

Based on the SRGs as the background gene set, the single-sample gene set enrichment analysis (ssGSEA) algorithm of the GSVA package (v 1.42.0) (18) was utilized to calculate the ssGSEA score for each sample in the GSE32707 dataset, followed by comparing the difference of these scores between the ARDS and sepsis groups by Wilcoxon test (P < 0.05).

Key module genes linked to SRGs were gained with the adoption of WGCNA using WGCNA package (v 1.70-3) (19). First, clustering analysis was adopted on all samples in the GSE32707 dataset. Through the clustering of the samples, it was determined whether there were outliers that needed to be filtered out to ensure the accuracy of the subsequent analysis. To ensure that the inter-gene interactions maximally conformed to the scale-free distribution, a soft threshold was determined for the data. The optimal soft threshold (β) was determined when the scale free topology model fit (R2) exceeded the threshold value of 0.85 and the mean value of the neighborhood function also gradually approached 0. Based on the determined optimal soft threshold (β), the minimum number of genes per gene module was set to 50 in accordance with the criteria of the hybrid dynamic tree cutting, thus clustering genes into different modules. The ssGSEA score of SRGs was used as a phenotypic trait, followed by calculating the correlation coefficient between the module and this score by Pearson correlation analysis. Modules with significant maximum positive and negative correlations were selected and defined as key modules [|correlation coefficient (cor)| > 0.3 & P < 0.05]. The genes in these key modules were defined as the key module genes.




2.4 Identification and functional analysis of candidate genes

The intersection of DEGs and key module genes was taken using VennDiagram package (v 1.7.1) (20) to gain genes linked to both sepsis-induced ARDS and sialylation, which were recorded as candidate genes. The signaling pathways associated with the candidate genes were investigated using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis via ClusterProfiler package (v 4.2.2) (21). A significance level of P < 0.05 was employed to determine the enrichment of these candidate genes in the signaling pathway. Subsequently, these candidate genes were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (http://www/string-db.org/), followed by the construction of a protein-protein interactions (PPI) network with the objective of probing their interactions at the protein level (medium confidence = 0.4).




2.5 Screening candidate key genes through three machine learning algorithms

Three machine learning algorithms were executed for these candidate genes to further confirm the candidate biomarkers, which comprised least absolute shrinkage and selection operator (LASSO), Boruta, and XGBoost algorithms. The LASSO regression analysis was performed using the glmnet package (v 4.1-4), with the parameter setting of family=binomial (22). Then, 10-fold cross-validation was applied, and the L1-penalty (lambda) was used to shrink less important genes to zero. The error rate was calculated for each lambda value, and the optimal lambda was identified. The genes whose regression coefficients were not penalized to zero were selected as the more important feature genes for the disease, and the best classification model was constructed. Boruta was a feature selection algorithm implemented through the Boruta package (v 7.0.0) (23), which randomly perturbed the order of each gene and evaluated the importance of each gene. Then, correlation screening was performed with the pValue parameter set to 0.01 to determine the relevance of the genes. The maximum number of iterations was set to 300, and the algorithm continued to screen and remove genes with lower relevance. Finally, when the iteration reached the maximum number of steps or other stopping criteria were met, such as no more genes being marked as lowly correlated, the remaining genes were considered the optimal feature genes. Next, the XGBoost algorithm was performed using the xgboost package (v 1.7.3.1) (24). The maximum number of iterations was set to 25, and eta was set to 0.3 to control the step size of weight updates during each iteration. Based on this, the model was trained, and the feature genes that made significant contributions to the model were identified by evaluating their importance as output by the algorithm. Furthermore, candidate key genes were obtained by taking the intersection of the feature genes selected by these three machine learning algorithms.




2.6 Identification of key genes and evaluation of their predictive ability for sepsis-induced ARDS

The expression levels of candidate key genes were evaluated between the ARDS and sepsis groups in both GSE32707 and GSE66890 datasets. Candidate key genes with consistent expression trends in both datasets and significant differences in gene expression levels between ARDS and sepsis groups were selected and defined as key genes for subsequent analysis (P < 0.05). Subsequently, the distribution of key genes was interrogated by implementing chromosomal localization and subcellular localization analyses. The difference was that the chromosomal localization analysis was performed using the RCircos package (v 1.2.2) (25), while the subcellular localization analysis was conducted using the Cell-PLoc 3.0 website (http://www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/). Afterwards, in order to determine whether the identified key genes were accurate for the prediction of sepsis-induced ARDS patients, the rms package (v 6.5-0) (26) was employed to construct a nomogram model of key genes in GSE32707 dataset. In the nomogram model, the key genes were scored separately, with each score corresponding to a specific key gene. The sum of the scores of these key genes determined the total point, which was then utilized to infer the incidence of sepsis-induced ARDS. Moreover, calibration curve and decision curve analysis (DCA) were adopted to evaluate the accuracy of the predictive capability of the nomogram model. Notably, calibration curve was plotted using rmda (v 1.6) (https://CRAN.R-project.org/package=rmda) and DCA was implemented employing ggDCA package (v 1.2) (https://rdrr.io/github/yikeshu0611/ggDCA/).




2.7 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was implemented in GSE32707 dataset to reveal the signaling pathways with significant enrichment of key genes. First, ARDS samples were categorized into high and low expression groups based on the median expression of key genes. Then, the high and low expression groups were subjected to differential expression analysis to identify DEGs (high vs low) and their corresponding log2FC. After that, these DEGs were sorted based on their log2FC, followed by conducting GSEA via ClusterProfiler package on the sorted DEGs (P.adjust < 0.05). The reference gene set utilized in this analysis was ‘c2.cp.kegg.v7.5.1.symbols.gmt’, which was gained from MSigDB. Besides, the GeneMANIA database (http://genemania.org) was applied to predict genes associated with key gene functions and the functions they were involved in.




2.8 Construction of regulatory networks and analysis of drug prediction

Regulatory factors that had regulatory relationships with key genes were predicted through the application of multiple databases with the objective of probing the regulatory mechanisms of key genes. Initially, the miRDB database (https://mirdb.org/) was employed for the prediction of microRNAs (miRNAs) that were regulatory factors of mRNAs, thereby obtaining pairs of miRNA-mRNA relationships. Subsequently, Encyclopedia of DNA Elements (ENCODE) database (https://www.encodeproject.org/) was utilized to predict long non-coding RNAs (lncRNAs) that exhibited regulatory associations with these identified miRNAs, resulting in the acquisition of pairs of miRNA-lncRNA relationships. By integrating the obtained sets of miRNA-mRNA and miRNA-lncRNA relationship pairs, a comprehensive lncRNA-miRNA-mRNA regulatory network was constructed and visualized using Cytoscape software (v 3.8.2) (27). Additionally, the Drug Signatures database (DSigDB) (https://dsigdb.tanlab.org/DSigDBv1.0/) was employed to predict drugs targeting key genes to explore the potential therapeutic effects of these drugs on sepsis-induced ARDS.




2.9 scRNA-seq data analysis

The scRNA-seq data analysis was performed in GSE151263 dataset to probe the expression of key genes at the cellular level. First, the scRNA-seq data were filtered using Seurat package (v 5.0) (28) to filter out cells with less than 300 genes and genes covered by less than 5 cells, followed by retaining the genes and cells that satisfied the following conditions, which contained 200 < nFeature < 3,000, nCount < 20,000, and mitochondrial percentage < 5%. Subsequently, multiple samples were integrated using IntegrateData and the filtered data were normalized using NormalizeData from the Seurat package, followed by the identification of 2,000 highly variable genes using the FindVariableFeatures function. Immediately following this, principal component analysis (PCA) was implemented to assess the distribution of 2,000 highly variable genes in the ARDS and sepsis groups. The data were normalized using the ScaleData function in Seurat package, and statistically significant principal components (PCs) were determined using the JackStrawPlot function. Afterwards, the cells were clustered using the Uniform manifold approximation and projection (UMAP) method (resolution = 0.4). Moreover, the obtained cell subpopulations were annotated using the singleR package (v 1.0.6) (29) to identify specific cell types. By the way, the distribution of annotated cell types in the ARDS and sepsis groups was visualized.




2.10 Cell communication and pseudo-time analyses

The CellChat package (v 1.6.1) (30) was employed for cell communication analysis in annotated cell types. Following the creation of cell chat objects, importation of ligand receptor data in CellChatDB.human, and preprocessing, cell communication networks were generated. Heat map and circle plot were utilized to visually represent the number and weight of interactions between different cell types, while bubble plot was constructed to demonstrate the probability of communication regulated by specific ligand-receptor pairs from certain cell populations to other cellular groups. Subsequently, the expression of key genes in different cell types was demonstrated by UMAP, followed by implementing Wilcoxon test to assess the differences in key gene expression between different cell types in ARDS and sepsis groups (P < 0.05). Cells with significant expression of key genes in both cell types between the two groups were selected and defined as key cells. Further, pseudo-time analysis was implemented on the key cells using the monocle package (v 2.22.0) (31) with the objective of exploring their differentiation status and the changes in the expression of key genes during their differentiation stages.




2.11 Reverse transcription quantitative polymerase chain reaction

To further verify whether the key genes identified through bioinformatics analysis exhibit
consistent expression patterns in clinical samples, the 5 sepsis-induced ARDS blood samples were
collected in Daping Hospital, Army Medical University. The blood samples obtained from 5 sepsis
patients were utilized as control samples. These blood samples were utilized to perform RT-qPCR. This study was approved by the Ethics Committee of the Daping Hospital, Army Medical University, Chongqing, China (#2019-112). All patients had signed an informed consent form. Total RNA of 10 samples was separated by the TRIzol (Ambion, Austin, USA) based on the manufacturer’s guidance. The inverse transcription of total RNA into cDNA was conducted using the SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) based on the producer’s indication. Subsequently, qPCR was carried out utilizing the 2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, China) under the direction of the manual. The primer sequences for PCR were tabulated in (Supplementary Table 1). The expression was uniformized to the internal reference GAPDH and computed employing the 2−ΔΔCt method (32).




2.12 Statistical analysis

Based on R software (v 4.2.2), the data were analyzed. The Wilcoxon test was utilized to assess the differences between different groups. The P value less than 0.05 was considered statistically significant.





3 Results



3.1 Recognition of DEGs and key module genes linked to SRGs

With the application of the limma package, 166 DEGs were selected in the GSE32707 dataset. Among them, 64 genes were notably up-regulated in the ARDS group, while 102 genes were notably down-regulated in the ARDS group (Figures 1A, B). The Wilcoxon test demonstrated that the ssGSEA score of SRGs was significantly down-regulated in the ARDS group compared to the sepsis group, suggesting that sialylation does have an effect on sepsis-induced ARDS (Figure 1C). Subsequently, key module genes linked to SRGs were gained through WGCNA. The clustering analysis results indicated that outlier samples were identified using a height of 100, resulting in the elimination of five samples classified as outliers (Figure 1D). Immediately thereafter, the optimal soft threshold (β) was chosen to be six based on the criteria that R2 exceeded 0.85 and the mean value of the adjacency function gradually approached zero (Figure 1E). After that, 14 gene modules were gained (Figure 1F). Furthermore, Meblue and Meblack were selected as key modules due to the fact that Meblue (cor = -0.67, P = 6.5 × 10-6) and Meblack (cor = 0.49, P = 0.0023) exhibited significant maximum positive and negative correlations with ssGSEA scores, respectively (Figure 1G). In these two key modules, 2,784 key module genes were obtained.

[image: (A) A volcano plot showing gene expression differences, with genes labeled in blue and red indicating significant downregulation and upregulation, respectively. (B) Heatmap displaying gene expression levels across samples colored by group and expression levels. (C) Box plot comparing ssGSEA scores between ARDS and Sepsis groups. (D) Dendrogram illustrating hierarchical sample clustering. (E) Plots of scale independence and mean connectivity versus soft threshold power. (F) Cluster dendrogram depicting gene modules with color-coded labels. (G) Bar chart showing module-trait relationships with correlation values and colors indicating the strength and direction.]
Figure 1 | Recognition of DEGs and key module genes linked to SRGs. *,  p < 0.05; (A) Volcano plot display of differentially expressed genes; (B) Heatmap display of differentially expressed genes; (C) Box plot of SRGs scores; (D) Sample clustering diagram; (E) Determination of soft threshold in WGCNA algorithm; (F) Cluster dendrogram; (G) Heatmap of the relationship between gene modules and traits.




3.2 Identification of seven candidate key genes

A total of 39 candidate genes were identified through crossing 166 DEGs and 2,784 key module genes (Figure 2A). KEGG results indicated that these candidate genes were remarkably enriched to six signaling pathways, including phagosome, apoptosis, and cellular senescence (P < 0.05) (Figure 2B). After excluding the discrete proteins, a PPI network comprising 19 nodes and 51 edges was generated. Notably, candidate genes such as CD19, GZMK, KLRD1, and EOMES exhibited enhanced interactions with other genes within this network (Figure 2C). When the lambda in the LASSO analysis was 0.0518339, 16 feature genes were identified (Figure 2D). Meanwhile, eight and 15 feature genes were identified by Boruta (Figure 2E) and XGBoost algorithms (Figure 2F), respectively. Furthermore, seven candidate key genes were identified by overlapping three parts of the feature genes obtained through these three machine learning algorithms, which contained PIK3CG, FCRLA, FCRL5, NKG7, CD19, GPR65, and PPM1K (Figure 2G).

[image: (A) Venn diagram showing overlap between WGCNA and DEGs with 2,745 unique to WGCNA, 127 unique to DEGs, and 39 shared. (B) Chord diagram linking genes to KEGG pathways, color-coded by log fold change. (C) Network plot illustrating gene interactions, colored by cluster. (D) Two plots: left showing binomial deviance vs. log lambda, right showing coefficient paths over log lambda. (E) Box plot of variable importance across different models, with outliers highlighted in red. (F) Bar chart from XGBoost displaying top genes by gain. (G) Venn diagram illustrating gene selection overlap across XGBoost, Lasso, and Boruta methods.]
Figure 2 | Identification of seven candidate key genes. (A) Candidate genes identification; (B) KEGG enrichment chord diagram; (C) Candidate genes PPI network; (D) Screening candidate key genes using LASSO regression analysis; (E) Boruta algorithm for identifying candidate key genes; (F) XGBoost for assessing the importance of feature genes in screening; (G) Venn diagram related to core genes.




3.3 The key genes with different distribution exhibited excellent predictive ability for sepsis-induced ARDS

The expression levels of these seven candidate key genes were assessed between the ARDS and sepsis groups in both GSE32707 and GSE66890 datasets. The results revealed that the expression trends of CD19 and GPR65 were consistent in both datasets, with CD19 being significantly upregulated in the SRDS group, while GPR65 was significantly downregulated (P < 0.05) (Figure 3A). Thus, CD19 and GPR65 were recorded as key genes associated with sialylation in sepsis-induced ARDS. Subsequently, the distribution of key genes was explored. Chromosomal localization results revealed that CD19 was located on chromosome 16, and GPR65 was situated on chromosome 14 (Figure 3B). Meanwhile, subcellular localization analysis demonstrated predominant cytoplasmic expression for both CD19 and GPR65 (Figure 3C). After that, the predictive ability of key genes as a whole for sepsis-induced ARDS was evaluated. A nomogram model was created based on CD19 and GPR65. Within this model, a higher total point demonstrated an increased probability of sepsis-induced ARDS (Figure 3D). The calibration curve demonstrated a close resemblance between the slope of the nomogram model and the ideal curve (P = 0.639), further emphasizing its predictive accuracy (Figure 3E). Additionally, the nomogram model exhibited a greater net benefit compared to a single key gene in DCA, highlighting its superior performance (Figure 3F).

[image: (A) Two box plots show gene expression for different groups in datasets GSE32707 and GSE66890, highlighting differences between ARDS and sepsis groups. (B) Circular plot visualizing genomic data. (C) Bar chart displaying mRNA localization for CD19 and GPR65. (D) Nomogram indicating points and risk assessment for ARDS based on CD19 and GPR65 expression. (E) Graph showing calibration curve for ARDS risk prediction with apparent, bias-corrected, and ideal lines. (F) Decision curve analysis displaying net benefit of risk thresholds for different variables.]
Figure 3 | The key genes with different distribution exhibited excellent predictive ability for sepsis-induced ARDS. *, p < 0.05; **, p < 0.01;  ***, p < 0.001, ns, not significant; (A) Training set key genes expression and validation set key genes expression; (B) Chromosomal localization map of key genes; (C) Subcellular localization prediction map; (D) Nomogram; (E) Calibration curve; (F) DCA curve.




3.4 Specific signaling mechanisms of CD19 and GPR65

GSEA was implemented to probe the specific signaling mechanisms of CD19 and GPR65 in sepsis-induced ARDS. The results demonstrated that among the significantly enriched top 5 pathways, high expression of CD19 and GPR65 was markedly co-enriched in oxidative phosphorylation, ribosome, Alzheimer’s disease, and Parkinson’s disease, whereas low expression of GPR65 was significantly enriched in olfactory transduction (P.adjust < 0.05) (Figures 4A, B). In addition, CD19 and GPR65 were significantly co-enriched in apoptosis, B-cell receptor
signaling pathway, NOD-like receptor signaling pathway and others (Supplementary Table 2). Additionally, top 20 genes associated with CD19 and GPR65 functions were predicted in the GeneMANIA database, such as CD81, CD22, CD79A, SYK, etc. Their common functions included B cell activation, lymphocyte differentiation, B cell receptor signaling pathway, etc (Figure 4C).

[image: Gene Set Enrichment Analysis visualizations for CD19 and GPR65 show rankings and enrichment scores across datasets for various KEGG pathways, including viral myocarditis and Alzheimer's disease. A network diagram depicts interactions and pathway functions, highlighting physical interactions, co-expression, and B cell signaling pathways.]
Figure 4 | Specific signaling mechanisms of CD19 and GPR65. (A) KEGG enrichment analysis of CD19-associated pathways. (B) KEGG enrichment analysis of GPR65-related pathways. (C) Co-expression network mapping of coregulated genes.




3.5 Multiple factors and drugs existed to modulate relationships with key genes

A lncRNA-miRNA-mRNA network containing 52 nodes and 85 edges was constructed by applying multiple databases for prediction. In this network, GPR65 expression was regulated by several factors, such as OIP5-AS1 regulated the expression of GPR65 through hsa-miR-300, hsa-miR-381-3p, hsa-miR-3150b-3p, hsa-miR-411-5p, and hsa-miR-577 (Figure 5A). Meanwhile, several other lncRNAs, including NEAT1, TUG1, H19, and SNHG1, exerted regulatory functions in the modulation of GPR65 expression. Subsequently, 36 drugs were found to target key genes. Among them, methyl methanesulfonate had target relationship with both CD19 and GPR65 (Figure 5B). Besides, some other important drugs were predicted, including alprostadil, tacrolimus, methotrexate, etc.
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Figure 5 | Multiple factors and drugs existed to modulate relationships with key genes. (A) Core ceRNA network diagram; (B) Key gene-drug relationship.




3.6 Nine cell types were annotated by scRNA-seq data analysis

There were 24,796 cells and 16,788 genes in the scRNA-seq data before quality control (QC) (Supplementary Figure 1A). Then, 20,290 cells and 14,008 genes were retained after quality control in the GSE151263 dataset (Supplementary Figure 1B). A total of 2,000 highly variable genes were identified, followed by labeling the top 10 highly variable genes (Supplementary Figure 1C). PCA results demonstrated a largely centralized distribution of ARDS and sepsis genes, with no significant outliers (Supplementary Figure 1D). Following this, the top 40 PCs were selected for subsequent analysis (Supplementary Figure 1E). After the reduced dimensional clustering analysis, 10 cellular taxa were obtained (Figure 6A). Furthermore, 9 cell types were identified through annotation, which contained CD14 monocytes (CD14Mono) (LYZ, CD14, and S100A9), CD4+ T (CD4T) cell (CCR7), natural killer T (NKT) cell (IL7R and CD3D), CD8T cell (CD8A and CD8B), B cell (CD79A and MS4A1), natural killer (NK) cell (NKG7 and GNLY), CD16 monocytes (CD16Mono) (MSA7 and FCGR3A), megakaryocyte (Mk) (PF4 and PPBP), monocytes B (MonoB) cell (HLA-DQA1) (Figure 6B). Of these, nine cell types were found in the ARDS group, while eight cell types were found in the sepsis group (Figure 6C). The expression of marker genes for these nine cell types was visualized by bubble plots (Figure 6D). Also, we found that there were significant changes in the proportion of NK, CD14Mono, and CD8T between ARDS and sepsis groups (Figure 6E).

[image: A series of data visualizations depicting UMAP plots and related diagrams for research analysis. Panels (A), (B), and (C) display UMAP plots colored by sample, cell type, and condition (ARDS, Sepsis), highlighting clustering patterns. Panel (D) is a dot plot showing features against cell identities, indicating expression levels and percentage expressed. Panel (E) is a stacked bar chart comparing cell type proportions between ARDS and Sepsis conditions.]
Figure 6 | Nine cell types were annotated by scRNA-seq data analysis. (A) UMAP dimensionality reduction clustering result plot; (B) Annotation of cell subpopulations; (C) The result of cell subpopulation distribution in two groups; (D) The expression of marker genes for these nine cell types was visualized by bubble plots; (E) Graph of cell proportions in different groups.




3.7 The key cells that communicated with other cells had different stages of differentiation

Cell communication analysis was implemented to probe the exchange of information between the nine cell types obtained by annotation. In both the ARDS (Figures 7A, B) and sepsis groups (Figures 7C, D), there was an increased number and intensity of interactions between CD14Mono and other cell types. Additionally, our findings demonstrated that the likelihood of cellular communication between NKT and Mk via MIF - (CD74+CXCR4) was significantly higher in the ARDS group compared to other groups (Figure 7E). Conversely, in the sepsis group, the probability of cellular communication between NKT and CD16Mono via MIF - (CD74+CXCR4) exhibited the highest magnitude (Figure 7F). Next, the expression levels of key genes were evaluated in cells obtained by annotation. The results demonstrated that CD19 was highly expressed in Mk and MonoB, while GPR65 was more widely expressed in almost all cell types (Figure 7G). Afterwards, the expression of key genes was compared in these cell types between the ARDS and sepsis groups. The results indicated that the expression levels of both CD19 and GPR65 were significantly different in CD14Mono between two groups (Figure 7H, Supplementary Figure 2). Therefore, CD14Mono was selected as the key cell.

[image: (A-D) Network diagrams depicting cell type interactions and interaction strengths among CD8T, NK, CD4T, B, CD14Mono, MonoB, CD16Mono, and Mk cell types. (E-F) Dot plots showing communication probabilities and significance levels across different target and source pairings. (G) UMAP plots comparing ARDS and sepsis samples for CD19 and GPR65 expression in various cell types. (H) Box plot comparing CD19 and GPR65 expression in CD14Mono cells between sepsis and ARDS, indicating upregulation and downregulation.]
Figure 7 | Communication between key cells and other cells and expression of key genes in different cells. *, p < 0.05; ****, p < 0.0001; (A, B) Chord diagram of differences in the number and intensity of cell-cell communication interactions among ARDS cell subsets; (C, D) Chord diagram depicting differences in the number and intensity of cell-cell communication interactions among sepsis cell subsets; (E) Bubble chart of ARDS cell communication; (F) Bubble chart of sepsis cell communication; (G) Expression of genes in different cells; (H) The expression levels of both CD19 and GPR65 were significantly different in CD14Mono between two groups.

The pseudo-time analysis was conducted for key cells. The findings revealed a temporal differentiation of CD14Mono from right to left, exhibiting five distinct states with state three being the predominant state throughout the observation period (Figure 8A). Furthermore, our results demonstrated a gradual differentiation of CD14Mono from the sepsis group towards sepsis-induced ARDS (Figure 8B). In addition, the expression levels of CD19 and GPR65 were evaluated at various stages of differentiation in CD14Mono. The findings demonstrated that CD19 expression remained relatively stable throughout the entire differentiation process of CD14Mono, whereas GPR65 expression exhibited a pattern characterized by an initial increase, followed by a decrease, and then another subsequent increase (Figure 8C).

[image: Graphs depicting pseudotime analysis and gene expression. Panel A shows data colored by pseudotime, state, and Seurat clusters on a UMAP plot. Panel B distinguishes ARDS and sepsis types. Panel C presents relative expression of CD19 and GPR183 across pseudotime with color-coded states and types.]
Figure 8 | Pseudo-time analysis of CD14Mono. (A) Temporal differences in cell differentiation, stages of cell differentiation and cell cluster; (B) Stages of cell cluster differentiation; (C) The expression levels of CD19 and GPR65 were evaluated at various stages of differentiation in CD14Mono.




3.8 Expression evaluation of key genes

The expression levels of the key genes in the ARDS and sepsis groups were assessed using RT-qPCR. The results demonstrated that the expression level of CD19 remained consistent with the public database, and its expression was significantly higher in the ARDS group, suggesting that the data from the public databases were reliable and that CD19 might serve as a potential biomarker. The expression trend of GPR65 remained consistent with the public database, yet it did not exhibit statistically significant differences in the sepsis and ARDS groups (P < 0.05) (Figure 9). This may be due to the small sample size in the PCR validation. These findings suggest that the role of GPR65 in sepsis and ARDS is complex, and further experimental validation and mechanistic studies are required.

[image: Bar graphs comparing relative levels of CD19 and GPR65 to GAPDH. The CD19 graph shows a significant increase in sepsis plus ARDS (acute respiratory distress syndrome) with p=0.0323. The GPR65 graph shows no significant difference between sepsis and sepsis plus ARDS with p=0.1656.]
Figure 9 | Expression evaluation of key genes. *, p < 0.05, ns, not significant;  (A) The expression level of CD19 was significantly higher in the ARDS group; (B) The expression level of GPR65 was higher in the sepsis group.





4 Discussion

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening condition characterized by heterogeneous etiologies (33). Among these, sepsis is the predominant cause, accounting for 32% of ARDS cases. Sialylation, a critical post-translational modification, significantly influences immune cell function and inflammatory responses (34). In ARDS, aberrant sialylation affects CD14 monocytes, which are key immune cells that express sialylated receptors. Dysregulated sialylation impairs the function of these monocytes, impacting their migration and ability to phagocytose pathogens. This dysfunction contributes to excessive inflammation and tissue damage. The underlying mechanism involves interactions between sialylated receptors and endothelial selectins. Emerging studies suggest that the sialylation of C1 esterase inhibitor may play a significant role in ARDS (35, 36). Additionally, sialylation can modulate the activity of cytokines and chemokines, thereby influencing the inflammatory cascade in ARDS. However, the specific role of sialylation in sepsis-induced ARDS remains to be fully elucidated. Therefore, investigating the potential biological functions of sialylation-related genes (SRGs) in sepsis-induced ARDS could provide deeper insights into its pathogenesis and offer valuable guidance for the diagnosis and treatment of patients with sepsis-induced ARDS.

In this study, we combined single-cell sequencing and transcriptome analysis to investigate the mechanisms of sialylation-related genes in sepsis-induced ARDS. We identified CD19 and GPR65 as key genes associated with sialylation in this context. The nomogram model we constructed demonstrated that CD19 and GPR65, when considered jointly, exhibited strong predictive power for sepsis-induced ARDS. Additionally, we found that CD19 and GPR65 were significantly enriched in pathways related to apoptosis and B-cell receptor signaling. Furthermore, we identified several important regulators and potential drug targets, including NEAT1, OIP5-AS1, alprostadil, and tacrolimus. Our scRNA-seq data analysis revealed nine distinct cell types, with CD14Mono emerging as the key cell type. CD14Mono exhibited extensive and intense communication with other cells and displayed various stages of differentiation. Notably, GPR65 expression underwent dynamic changes during the differentiation process of CD14Mono.

Our preliminary research indicates that CD19 and GPR65 are key sialylation-related genes in sepsis-induced ARDS, with CD19 upregulated and GPR65 downregulated in ARDS patients. CD19, a B-cell surface antigen and member of the immunoglobulin superfamily, is vital for B-cell development, proliferation, differentiation, and signaling (37–41). However, B cells can contribute to cytokine storms in severe infections, driving ARDS development (34, 42–45). Thus, CD19 may impact ARDS through its role in B cells. GPR65 (TDAG8), a proton-sensing G protein-coupled receptor, is involved in various biological functions. It has been shown to protect against LPS-induced acute lung injury and may influence ARDS pathology by modulating inflammatory mediator production and release, including cytokines like IL-6 (46). Furthermore, GPR65 may be involved in the pathological processes of ARDS by influencing the production and release of inflammatory mediators (47–50). Our study found significant upregulation of CD19 and downregulation of GPR65 in sepsis-induced ARDS patients, suggesting they could be new therapeutic targets for this condition.

This study shows that high expression of CD19 and GPR65 is significantly associated with pathways related to oxidative phosphorylation, ribosome function, apoptosis, B-cell receptor signaling, and NOD-like receptor signaling. These pathways are key in ARDS pathophysiology. Oxidative phosphorylation is modulated by mechanisms like MSC-EVs, ketone body metabolism, and S1PR3 inhibition (51). Ribosome-related genes are differentially expressed in sepsis-induced ARDS. Dysregulated apoptosis can worsen lung injury. Dysregulation of apoptotic processes can lead to excessive cell death, potentially exacerbating lung injury and impairing recovery from ARDS (52–55). BAP31 deficiency may improve ALI and ARDS by reducing neutrophil recruitment via the NF-κB pathway (56). NOD-like receptor signaling is involved in pathogen recognition and immune response modulation in ARDS. These findings suggest that sialylation plays a crucial role in sepsis-induced ARDS. However, previous phenotype classifications based on clinical markers were limited. Phenotype classification based on key gene functional analysis is necessary for precise treatment of sepsis-induced ARDS.

We also assessed the regulatory networks and drug predictions for sialylation-related genes (CD19 and GPR65). A lncRNA-miRNA-mRNA network with 52 nodes and 85 edges was constructed using multiple databases. Key lncRNAs regulating GPR65 expression include OIP5-AS1, NEAT1, TUG1, H19, and SNHG1. OIP5-AS1 worsens LPS-induced ALI/ARDS via the miR-223/NLRP3 axis (57), TUG1 reverses LPS-induced apoptosis and inflammation in macrophages (58, 59), and NEAT1 is linked to the inflammatory response in ARDS (60–63). Additionally, drugs like alprostadil, tacrolimus, and methotrexate were identified as targeting these key genes. Alprostadil protects against ARDS by inhibiting apoptosis and suppressing MAPK and NF-κB pathways (64–66), while tacrolimus can reverse ARDS (67). Further research on these lncRNAs and drugs is crucial for understanding the pathogenesis and developing treatments for sepsis-induced ARDS.

Single-cell RNA sequencing (scRNA-seq) has deepened our understanding of cellular heterogeneity and dynamics in ARDS. Our study identified nine distinct cell types, with CD14+ monocytes (CD14Mono) emerging as a key population. This aligns with recent scRNA-seq literature highlighting the critical role of CD14+ monocytes in ARDS pathogenesis. For instance, spatial transcriptomics has mapped immune-stromal interactions in lung niches, revealing immunosuppressive myeloid subsets that may parallel CD14Mono-mediated immune dysregulation (68). CD14-dependent pathways, potentially related to LPS, LBP, and sCD14 concentrations, have been implicated in pneumonia-related inflammation in ARDS. Changes in CD14+ monocytes may correlate with treatment outcomes in ARDS immunomodulatory therapies (69). Our computational analysis suggests novel interactions between CD14+ monocytes and other immune subsets, particularly through CD19 and GPR65. The identification of CD19 and GPR65 as modulators of monocyte behavior opens new avenues for precision immunology. Future studies should leverage AI-driven frameworks like iMLGAM to predict patient-specific responses to such interventions (10). Integrating these insights with spatial multi-omics and AI-driven analytics will be crucial for advancing ARDS therapeutics.




5 Conclusions

This study identified CD19 and GPR65 as key sialylation-related genes in sepsis-induced ARDS through bioinformatics analyses. A nomogram model was built to assess their predictive power for ARDS. Enrichment analysis, molecular regulatory network construction, and drug prediction were performed to explore their mechanisms. Single-cell sequencing revealed significant differences in CD19 and GPR65 expression in CD14Mono cells between ARDS and sepsis groups, with GPR65 showing an initial increase, then decrease, and a subsequent increase during differentiation. These findings offer new insights into ARDS diagnosis and treatment via sialylation, highlighting our ongoing commitment to monitor these mechanisms’ effects.
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Supplementary Figure 1 | (A) Violin plot before quality control; (B) Violin plot after quality control; (C) A total of 2,000 highly variable genes were identified, followed by labeling the top 10 highly variable genes; (D) Scatter plot of principal components for dimensionality reduction and clustering of single-cell sequencing data; (E) Scree plot of principal components for dimensionality reduction and clustering of single-cell sequencing data.
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Background

Chronic endometritis (CE) has been widely recognized as a potential cause of infertility, however, access to effective treatment is a formidable challenge due to the rudimentary understanding of the pathogenesis of persistent CE. Here, we aimed to analyze the impact of platelet-rich plasma (PRP) treatment on pregnancy outcomes and the endometrial microenvironment in patients with persistent CE.





Methods

A total of 89 infertility patients were selected, including 56 non-CE (as the control group) and 33 persistent CE. The persistent CE patients received an intrauterine infusion of PRP four times before embryo transfer. Immunohistochemistry staining and transcriptomic sequencing were used to investigate the uterine-specific role of PRP in patients with persistent CE.





Results

The implantation rate and clinical pregnancy rate were significantly increased in the cured CE group compared to the non-cured CE group. After PRP treatment, the proportions of endometrial CD8+ T cells, CD56+ NK cells, Foxp3+ Treg cells, and T-bet+ Th1 cells were significantly decreased in patients with persistent CE. Specifically, DEG analysis showed that genes implicated in endometrial receptivity-related and antimicrobial were upregulated and genes involved in the immune response processes were downregulated in cured CE patients after PRP treatment. Functional enrichment analysis suggested that the effects of changes in leukocyte chemotaxis-related genes played a critical role in the endometrial immune environment.





Conclusions

Autologous PRP treatment has been shown as a potentially successful therapy for improving pregnancy outcomes by reconstructing the uterine local immune microenvironment to improve endometrial receptivity in patients with persistent CE.
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Introduction

Chronic endometritis (CE) is a disease of persistent inflammation of the endometrium, characterized by abnormal infiltration of endometrial stromal plasma cells (1). It is frequently associated with infertility as it may reduce endometrial receptivity (2, 3). Numerous studies have shown that the most common causes of CE arise from infection with pathogenic micro-organisms, such as Escherichia coli, Streptococcus spp., Staphylococcus spp., Chlamydia, and some viruses (4, 5). Thus, oral antimicrobial regimes are considered to be the gold standard in the treatment of CE. It has been reported that antimicrobial agents eliminate endometrial stromal plasmacytes, but the endometrial or intrauterine microbial profile alterations of patients with CE remain unclear (6). Clinical evidence has confirmed that certain persistent CE patients do not respond satisfactorily to a wide spectrum of antibiotic treatments such as doxycycline, ciprofloxacin, ofloxacin, amoxicillin, josamycin, metronidazole, clavulanate, and minocycline, which are closely associated with pregnancy failure (7). Thus, there is a crucial need for specific and effective therapies to improve persistent CE patient outcomes.

Platelet-rich plasma (PRP) is a promising therapeutic modality in various medical cases, including osteoarthritis, ovarian dysfunction, and endometrial disorders. It has been introduced due to its antimicrobial and anti-inflammatory properties (8, 9). PRP is prepared by peripheral blood withdrawal following centrifugation to achieve a high concentration of platelets. Besides, PRP contains numerous growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and other cytokines, which exhibit a vital role in various biological processes, including cell proliferation, differentiation, angiogenesis, immunomodulation, regulation of and apoptosis (10–12). Such attributes underscore their potential application in assisted reproductive technology (ART), where they are believed to contribute to tissue repair and regeneration (10). In recent decades, valuable insights have been gained into the efficacy and safety of PRP in ART in a complex clinical situation characterized by limited treatment options (8). While PRP has been investigated for both ovarian rejuvenation and endometrial enhancement in ART, a recent randomized controlled trial has failed to demonstrate significant improvements in ovarian reserve or response (13). Of particular clinical relevance, current evidence suggests PRP may offer greater potential for endometrial augmentation, particularly in cases of thin or compromised endometrium. Currently, clinical studies have demonstrated the effectiveness of PRP combined with antibiotic treatments in improving the live birth rate and clinical pregnancy rate for RIF patients with CE during IVF-ET (14). Nevertheless, except for one case report (6), there is a lack of existing literature on the effectiveness of PRP monotherapy for patients with persistent CE, and the cellular and molecular mechanisms of PRP treatment for this condition are still unclear.

In this study, our first objective was to evaluate the efficacy of autologous PRP treatment in patients with persistent CE. We then analyzed the pregnancy outcomes of freeze-thaw embryo transfer (FET) in these patients. Additionally, considering the immunomodulatory properties of PRP, we aimed to investigate its effect on endometrial immune cells in patients with persistent CE. Furthermore, to understand the uterine-specific role of PRP in patients with persistent CE, we conducted gene expression profiling of human mid-secretory endometrium from patients with persistent CE before and after PRP treatment using RNA sequencing (RNA-seq).





Materials and methods




Subjects

This retrospective cohort study of infertile patients with accepted indications for IVF-ET who attended the Fertility Centers of Shenzhen Zhongshan Urology Hospital was conducted. All patients included in this study had tubal disorders or unexplained factors at their first IVF treatment. The period of recruitment of participants was from May 2022 to April 2024. The study was approved by the Investigation and Ethics Committee of the Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Approval No. SZZSECHU-2022013). Informed written consent was obtained from each patient before the endometrial biopsy. The inclusion criteria were: 1) age < 40 years; 2) regular menstrual cycling; 3) normal karyotypes; 4) negative serological tests for human immunodeficiency virus, syphilis, hepatitis B virus, and hepatitis C virus; 5) normal basal levels of hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) or progesterone (P), which were measured on the third day of the menstrual period; 6) normal uterine anatomical; 7) endometrial tissue biopsies were obtained during the mid-luteal phase of the menstrual cycle; 8) had a successful ovarian stimulation and subsequent embryo transfer. To reduce the study bias, we excluded factors that may affect the morphology and function of the endometrium and pregnancy outcomes. Thus, patients were excluded from the study if they: 1) had endometriosis, polycystic ovary syndrome, adenomyosis, or leiomyoma; 2) couples with male infertility; 3) had autoimmune diseases (including antiphospholipid syndrome, systemic lupus erythematosus, autoimmune thyroid disease, Sjogren syndrome, etc). All the patients’ information, including their age, body mass index (BMI), basal hormone levels, infertility type, number of embryos transferred, transferred embryo type, embryo quality, and previous pregnancy outcomes, were collected from the central database of our hospital on July 1, 2024. No one was pregnant when the endometrium samples were collected during the mid-luteal phase.





Endometrial biopsy and diagnosis of chronic endometritis

All endometrial biopsies were taken by using an endometrial curette (Gynetics, Lommel, Belgium) during the mid-luteal phase (LH days 7-9). The specimens were incubated overnight with 10% neutral buffered formalin at room temperature and then embedded in paraffin wax. All endometrial samples from patients before and after PRP treatment were used to detect endometrial immune cells by immunohistochemistry. Among 20 participants with cured CE after PRP treatment, three patients’ endometria were carried on RNA-seq before and after PRP treatment.

The diagnosis of CE was based on the author’s previous study (2), which was defined as more than three high-power fields (HPF; magnification ×200) with five or more CD138+ plasma cells per HPF. The diagnosis of persistent CE was based on three or more separate menstrual cycles of consecutive CD138+ plasma cells at the mid-luteal phase. Fewer than five CD138+ or no plasma cells per HPF in each of the 30 randomly selected HPFs indicated the absence of CE (non-CE).





Immunohistochemistry staining and image analysis

Endometrial tissues were fixed with 10% neutral buffered formalin overnight, and then dehydrated and embedded in paraffin. Paraffin sections (4 μm) were prepared, dewaxed, hydrated, and the endogenous peroxides were quenched with 3% H2O2. After heat-mediated antigen retrieval, the slides were incubated with monoclonal antibodies presented in Supplementary Table 1. After incubation with prediluted HRP-conjugated secondary antibodies (Typing, China), the sections were exposed to DAB and counterstained with hematoxylin. All immunohistochemistry staining was performed on a Leica Bond III automated immunostainer (Leica Microsystems, Bannockburn, IL).

Quantitative analysis of endometrial immune cells was performed using an Olympus SLIDEVIEW VS200 system (Olympus, Tokyo, Japan). First, the slides were scanned at lower magnification, and then images of 30 random images per section were captured in high-power fields (HPFs; magnification ×200). All immune cell populations from each panel were characterized and quantified with the use of the cell segmentation and phenotype cell tool of the HALO Analysis software (Indica Labs, Corrales, NM, USA) under the supervision of the same pathologist. The concentration of each immune cell population was assessed as a percentage of all endometrial cells in each of 30 randomly selected HPFs (magnification ×200).





Treatment

In this study, patients with CE were treated with antibiotics starting from the first day of menstruation, which included 100 mg of doxycycline hydrochloride orally twice daily and 400 mg of metronidazole orally once daily for 14 days. To observe the effect of treatment, the endometrium was collected again after 7 days of antibiotic treatment (during the next mid-luteal stage) for immunohistochemical staining of CD138+ cells. Patients treated successfully (fewer than five CD138+ or no plasma cells per HPF in each of 30 randomly selected HPFs) for CE after one cycle of antibiotic treatment were eligible for subsequent FET. If the outcomes showed that patients were still positive for CD138, they would receive a second course of antibiotic treatment with 500 mg of levofloxacin orally twice daily and 400 mg of metronidazole (Gold Day Pharmaceutical Co.) orally once daily for 14 days (15). If patients consistently had three or more cycles of CD138+ plasma cells in the endometrium, they would be administered PRP treatment in the subsequent menstrual cycle after antibiotic treatment. The endometrium was retaken during the mid-luteal stage.

The PRP was prepared from autologous blood using a 2-step centrifugation by a modified method (16). Briefly, 8.5 mL of peripheral blood was drawn into ACD-A tubes and centrifuged at 190 g for 10 min. The buffy coat layer and the plasma layer were collected and transferred to a new tube to be centrifuged again at 800 g for 15 min. Finally, 1.0 mL of PRP with a good concentration (4~8 times baseline peripheral blood levels) was obtained and stored at 4°C for 1 h or less until infusion. Autologous PRP was infused in the uterine cavity with an intrauterine insemination catheter on the 8–9 days of the menstrual cycle and the process was repeated four times for 12 days, once every 3 days. Patients who were recruited to the control group did not receive any antibiotic or PRP treatment.





Endometrial preparation and embryo transfer protocol

Patients who received a FET cycle were treated with GnRH agonist and hormone replacement therapy (HRT) before embryo transfer. In Brief, 3.75 mg of Leuprorelin Acetate Microspheres (Ipsen, France) was injected during the mid-luteal phase of the menstrual cycle, 29 days after initiating the hormone replacement protocol as in HRT. When the endometrial thickness reached 7 mm, 40 mg of oral dydrogesterone (Duphaston; Abbott, Netherlands) and 90 mg of vaginal progesterone (Crinone; Merck, Germany) were taken daily for luteal support, after 4 or 6 days, the cleavage-stage embryos or blastocysts were transferred.

Embryos were vitrified and thawed by using the conventional method. The available blastocysts were defined as high-quality (AA, AB, BA, BB) or medium-quality (AC, CA, BC, CB) blastocysts (17), used for transfer on day 5 after fertilization under the guidance of ultrasound. Cleavage embryos were transferred into the uterus 3 days after oocyte retrieval. A serum HCG assay was performed on day 11 (if blastocyst was transferred) or day 13 (if cleavage embryo was transferred) after the embryo was transferred, and continued until 12 weeks of gestation for pregnant patients (4).





Pregnancy outcome measures

The outcome measures assessed were implantation rate, β-hCG positive rate, clinical pregnancy rate, and miscarriage rate. The clinical pregnancy rate was defined as the observation of a gestational sac on ultrasound 4–5 weeks after embryo transfer. The implantation rate was defined as the number of gestational sacs observed on ultrasound scanning divided by the number of embryos transferred. A miscarriage was defined as a clinical pregnancy that was lost before 20 weeks of gestational.





RNA-sequencing and gene expression quantification

NEBNext® UltraTM RNA Library Kit for Illumina® (NEB, USA) was used to examine the whole-genome expression profiles of three patients before and after PRP treatment. Total RNA was isolated using Trizol reagent according to the manufacturer’s procedure (Invitrogen, Carlsbad, CA, USA). Poly (A) RNA is purified from 1μg total RNA using Dynabeads Oligo (dT)25-61005 (Thermo Fisher, CA, USA) using two rounds of purification. Then the poly(A) RNA was fragmented into small pieces using a Magnesium RNA Fragmentation Module (NEB, cat. e6150, USA). The cleaved RNA fragments were reverse-transcribed to create the cDNA by SuperScript™ II Reverse Transcriptase (Invitrogen, cat. 1896649, USA). An A-base is then added to the blunt ends of each strand, preparing them for ligation to the indexed adapters. Each adapter contains a T-base overhang for ligating the adapter to the A-tailed fragmented DNA. After the heat-labile UDG enzyme (NEB, cat.m0280, USA) treatment of the U-labeled second-stranded DNAs, the ligated products were then amplified to sequence on the Novaseq 6000 platform. The average insert size for the final cDNA library was 300 ± 50 bp.

All sequencing data were Trim Galore (v2.8) to remove the primers and low-quality bases with default parameters. The trimmed reads were aligned to the GRCh38 reference genome with STAR software (v2.7.5c) with the default settings. After mapping, raw counts were achieved by using featureCounts software (v2.0.1). Then, the different expression genes were analyzed using the DESeq2 R package (v1.44.0). Gene ontology analysis was analyzed via ClusterProfiler R package (v4.12.2). The results of all analyses are visualized with ggplot2 (v3.5.1).





Statistical analysis

All statistical analyses and graphical representations were performed using SPSS 26.0 (IBM Corp., USA) and GraphPad Prism 6 (GraphPad Software, Inc., USA). The Kolmogorov-Smirnov test was used to examine the distribution of continuous variables. The continuous variables with normal distribution were shown as mean ± standard deviation (mean ± SD) and analyzed by the Wilcoxon rank-sum test. The median (interquartile range) [M (P25, P75)] has been reported for continuous variables with a non-normal distribution. The categorical variables were shown as numbers and percentages and were analyzed using chi-square or Fisher’s exact tests. The paired-sample test was used to compare the differences between before and after PRP treatment data. For normally distributed variables, paired t-tests were utilized, while for non-normally distributed variables, the Wilcoxon rank-sum test was applied to the paired samples. In all comparisons, a two-tailed P values < 0.05 were considered statistically significant.






Results

In this study, 964 patients who underwent IVF-ET cycles were enrolled between May 2022 and April 2024 (Figure 1). 27.1% (261/964) of patients were confirmed with CE by immunohistochemical staining of CD138+ plasma cells. After treatment with antibiotics, the endometrium of 14.9% (39/261) of persistent positive patients was taken again at the next luteal stage for immunohistochemical detection of CD138+ plasma cells. The results showed that 84.6% (33/39) of patients remained CE persistently positive, and 15.4% (6/39) of them became CE negative after treatment. Finally, 33 persistent CE patients have received PRP treatment. 60.6% (20/33) of patients with persistent CE converted to negative after treatment, and 39.4% (13/33) remained CE persistently positive.

[image: Flowchart depicting the outcomes of 964 patients who underwent an IVF-ET cycle. 72.9% (703) had negative results, and 27.1% (261) had positive results. After the first antibiotic treatment, 85.1% (222) were negative, and 14.9% (39) were positive. A second antibiotic course followed, resulting in 15.4% (6) negative, and 84.6% (33) positive. After PRP treatment, there were 60.6% (20) negative and 39.4% (13) positive in the treated CE and non-cured CE groups, with RNA-seq performed on subsets. 647 patients were excluded for various reasons. 8% (56) were analyzed, forming the control group.]
Figure 1 | The clinical treatment procedure of persistent CE patients.




Baseline clinical characteristics

The baseline clinical characteristics of patients are shown in Table 1. The number of previous failed embryo transfer cycles was significantly higher in the PRP group than in the control group (P < 0.001). No significant differences in age, body mass index (BMI), level of basal hormones, infertility duration, causes of infertility, number of gravidity and parity were observed between the two groups (P > 0.05 each).



Table 1 | The baseline characteristics of the control group and PRP group.

[image: A table compares variables between a control group of 56 and a PRP group of 33, with associated P-values. Variables include age, BMI, basal FSH, LH, E2, P levels, infertility duration, cause of infertility, number of previous failed embryo transfer cycles, gravidity, and parity. Notable differences include the number of previous failed embryo transfer cycles with a P-value below 0.001, indicating significance. Other variables show no significant differences. Abbreviations: BMI, body mass index; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol; P, progesterone; PRP, platelet-rich plasma.]




Comparison of CD138+ plasma cells before and after PRP treatment in patients with persistent CE

To investigate the effect of PRP on CD138+ plasma cells in patients with consistent CE, the endometrium of 33 patients with persistent CE was retaken at the mid-luteal stage for immunohistochemical detection of CD138+ plasma cells after PRP treatment. As shown in Figure 2, the number of total CD138+ plasma cells (27.6 ± 6.3 vs. 103.4 ± 19.9, P < 0.001) and the number of CD138+ plasma cells per HPF (3.5 ± 0.9 vs. 17.7 ± 2.8, P < 0.001) significantly decreased after PRP treatment compared with before treatment, respectively.

[image: Histological images and graphs showing the effects of PRP treatment on CD138+ plasma cells. Part A displays tissue samples before and after treatment, with stained areas indicating CD138+ cells. Part B presents line graphs illustrating decreased numbers of total CD138+ plasma cells and CD138+ plasma cells per high-power field after treatment, indicating statistical significance (***).]
Figure 2 | The effect of PRP treatment on endometrial CD138+ plasma cells. (A) immunohistochemical staining for CD138+ plasma cells in persistent CE patients (n = 33) before and after PRP treatment. The representative image was taken at a magnification of 200 × field of endometrial cells; Scale bar,100 µm. (B) Quantitative analyses of the number of total CD138+ plasma cells identified across 30 randomly selected HPFs per endometrial tissue section and the number of CD138+ plasma cells per HPF in the endometrial stroma of persistent CE patients before and after PRP treatment. ***P < 0.001.





Effect of PRP treatment on pregnancy outcomes in patients with persistent CE

In Table 2, the analysis results showed that there were no statistical differences in the endometrial thickness on the day of ET, the number of transferred embryos, embryo type, and high-quality embryos between the control group and the PRP group (P > 0.05 each). For the pregnancy outcomes, the positive rate of β-hCG, clinical pregnancy rate, implantation rate, and miscarriage rate were not markedly different between the two groups (P > 0.05 each). Of the 33 patients with PRP treatment, 20 were cured of CE, and 13 were not cured of CE. Next, when comparing the pregnancy outcomes of patients between the cured CE and non-cured CE groups after PRP treatment, we noted that the implantation rate (54.3% vs. 21.1%, P = 0.018) and clinical pregnancy rate (75.0% vs. 38.5%, P = 0.038) were significantly increased in the cured CE group (Table 3). However, there were no significant differences in the positive rate of β-hCG and miscarriage rate between the two groups (P > 0.05 each) (Table 3).



Table 2 | Comparison of the pregnancy outcomes between the control group and the PRP group.

[image: Comparison table of variables between control (n=56) and PRP group (n=33) with corresponding P-values. Variables include endometrial thickness, number of embryos transferred, embryo type, high-quality embryos, β-hCG positive rate, clinical pregnancy rate, implantation rate, and miscarriage rate. PRP stands for platelet-rich plasma, and β-hCG stands for human chorionic gonadotropin-beta.]


Table 3 | Comparison of the pregnancy outcomes between the patients with cured and non-cured CE groups after PRP treatment.

[image: Comparison table of cured and non-cured chronic endometritis (CE) groups. Variables include age, endometrial thickness, number of embryos transferred, embryo type, high-quality embryos, β-hCG positive rate, clinical pregnancy rate, implantation rate, and miscarriage rate. Significant findings (p < 0.05) include higher clinical pregnancy and implantation rates in the cured group.]




Changes of endometrial immune cells in patients with persistent CE after PRP treatment

To evaluate whether the levels of endometrial immune cells were modulated by PRP treatment, the CD56+ NK cells, CD8+ T cells, CD68+ macrophage cells, CD163+ macrophage cells, Foxp3+ Treg cells, T-bet+ Th1 cells, and GATA3+ Th2 cells were examined with the use of IHC staining in persistent CE patients before and after PRP treatment (Figure 3A). We found that the proportions of endometrial CD56+ NK cells (3.5 ± 1.6% vs. 5.1 ± 3.4%, P < 0.001) (Figure 3B), CD8+ T cells (1.6 ± 1.0% vs. 2.0 ± 1.3%, P = 0.019) (Figure 3C), Foxp3+ Treg cells (0.1 ± 0.1% vs. 0.2 ± 0.1%, P = 0.006) (Figure 3F), and T-bet+ Th1 cells (1.1 ± 0.8% vs. 1.5 ± 1.2%, P = 0.015) (Figure 3G) were significantly decreased in patients with persistent CE after PRP treatment. However, there were no significant differences in the CD68+ macrophage cells (1.1 ± 0.6% vs. 1.2 ± 0.6%, P = 0.261) (Figure 3D), CD163+ macrophage cells (1.1 ± 0.5% vs. 1.2 ± 0.5%, P = 0.599) (Figure 3E), GATA3+ Th2 cells (8.5 ± 4.5% vs. 9.0 ± 3.8%, P = 0.500) (Figure 3H), and the ratio of T-bet+/GATA3+ (0.2 ± 0.2% vs. 0.2 ± 0.1%, P = 0.473) (Figure 3I) between the before and after PRP treatment groups.

[image: Histological images and graphs depicting the effects of PRP treatment on cell markers. Panel A shows tissue staining for CD56, CD8, CD68, CD163, Foxp3, T-bet, and GATA3 before and after treatment. Panels B to I are line graphs illustrating changes in the percentage of cells expressing these markers, with statistically significant differences noted in some panels.]
Figure 3 | Endometrial immune cells in persistent CE patients before and after PRP treatment. (A) immunostaining of endometrial CD56+ NK cells, CD8+ T cells, CD68+ macrophages, CD163+ macrophages, Foxp3+ Treg cells, T-bet+ Th1 cells, and GATA3+ Th2 cells in endometrial biopsies from persistent CE patients before and after PRP treatment. The representative image was taken at a magnification of 200 ×field of endometrial cells; Scale bar,100 µm. (B-I) Quantitative analyses of percentages on all endometrial cells of uterine cells were performed by using the HALO Analysis system. CE, chronic endometritis; PRP, platelet-rich plasma; *P < 0.05, **P < 0.01, ***P < 0.001.

Interestingly, the proportions of endometrial CD56+ NK cells (3.1 ± 1.5% vs. 4.9 ± 3.1%, P = 0.002), CD8+ T cells (1.5 ± 0.9% vs. 1.9 ± 1.0%, P = 0.048), Foxp3+ Treg cells (0.1 ± 0.1% vs. 0.1 ± 0.1%, P = 0.013), and T-bet+ Th1 cells (1.1 ± 0.8% vs. 1.8 ± 1.4%, P = 0.040) were significantly decreased in cured CE patients after PRP treatment (Figure 4A). However, no significant differences in non-cured CE patients were observed (Figure 4B).

[image: Graphs comparing immune cell percentages before and after treatment in cured and non-cured chronic endometritis (CE). Panel A shows significant differences in CD56⁺ and CD8⁺ cells, among others, for cured CE. Panel B shows graphs for non-cured CE with no significant differences. Each graph connects individual data points with lines.]
Figure 4 | The endometrial immunological alteration between cured CE and non-cured patients before and after PRP treatment. Quantitative analysis shows the proportions of endometrial CD56+ NK cells, CD8+ T cells, CD68+ macrophages, CD163+ macrophages, Foxp3+ Treg cells, T-bet+ Th1 cells, and GATA3+ Th2 cells in cured CE patients (A) and non-cure CE patients (B) before and after PRP treatment. *P < 0.05, ***P < 0.001.





Endometrial transcriptome suggests that PRP treatment effectively improves the endometrium microenvironment in patients with persistent CE

To unravel the modulatory mechanism of PRP at the molecular level, we conducted RNA sequencing analysis of the endometrial tissues of 3 cured persistent CE patients before (as control) and after PRP treatment. Principal component analysis for all samples and genes showed no obvious separation between the before and after PRP treatment groups (data not shown). To explore before and after PRP treatment changes, we performed differential expression gene (DEGs) analysis of endometrial transcriptional profiles with selection criteria of P-value < 0.05, and log2-transformed fold change value < 1, or > 1. We identified 669 upregulated and 700 downregulated genes (Figure 5A). Notably, GO analysis found that the upregulated DEGs were significantly enriched in the regulation of the endometrial receptivity and antimicrobial processes, such as positive regulation of wound healing, reactive oxygen species biosynthetic process, fatty acid transport, endothelial cell differentiation, epithelial cell development, antimicrobial humoral response, positive regulation of hemostasis, negative regulation of CD4+ αβ T cell proliferation, and toll-like receptor signaling pathway. In contrast, downregulated DEGs were enriched in immune response processes including natural killer cell chemotaxis, T cell chemotaxis, leukocyte chemotaxis, positive regulation of lymphocyte activation, antiviral innate immune response, lymphocyte proliferation, chemokine-mediated signaling pathway and leukocyte mediated immunity (Figure 5B). Interestingly, we also identified 22 candidate genes of immune cell-related and endometrial receptivity-related, including 10 downregulated genes (CCL3, CCL5, CCL21, CXCL12, CCR5, LYN, PIK3CG, RASGRP1, EPHB2, and EFNB1) and 12 upregulated genes (CD36, DUOX1, DUOX2, CLDN1, CLDN3, HPSE, KLF5, MET, TLR4, ARG2, LGALS9C, and DEFB1) (Figure 5C), implying that these genes might be the most critical changes before and after PRP treatment.

[image: Volcano plot, gene ontology chart, and boxplots illustrate changes in gene expression before and after PRP treatment. Panel A shows a volcano plot with genes colored by expression changes (upregulated in red, downregulated in blue). Panel B contains a chart listing representative gene ontology terms affected by treatment, using color coding to denote up or downregulation. Panel C includes multiple boxplots depicting expression levels of selected genes (e.g., CD36, DUOX1, LGALS9C) before and after treatment, with a key indicating colors for different treatment phases.]
Figure 5 | Transcriptome analysis of endometrium in persistent CE patients after PRP treatment using RNA-sequencing. (A) The volcano plot of the differentially expressed genes on the endometrium of patients before and after PRP treatment groups. (B) Significantly enriched GO terms were selected based on a P < 0.05. Downregulated and upregulated GO terms are depicted in blue and red bars, respectively. (C) Boxplot of FPKM expression values for the twenty-two differentially expressed genes (CD36, DUOX1, DUOX2, CLDN1, CLDN3, HPSE, KLF5, MET, TLR4, ARG2, LGALS9C, DEFB1, CCL3, CCL5, CCL21, CXCL12, CCR5, LYN, PIK3CG, RASGRP1, EPHB2, and EFNB1) in RNA-sequencing. The y-axis represents the FPKM expression level. The color of the boxplot represents either the before-PRP treatment group (blue) or the after-PRP treatment group (red). CE, chronic endometritis; PRP, platelet-rich plasma; Go, Gene Ontology.






Discussion

In this study, we sought to determine the effect of autologous intrauterine PRP infusion on persistent CE patients to understand its potential value for clinical applications. Here, the first major finding of our study was the high cure rate in persistent CE patients after PRP treatment. Second, the implantation rate and clinical pregnancy rate were significantly increased in the cured CE patients after PRP treatment, though no significant differences in pregnancy outcomes were observed between the PRP group and the control group. Third, our findings have indicated significantly decreased proportions of endometrial CD56+ NK cells, CD8+ T cells, Fopx3+ Treg cells, and T-bet+ Th1 cells in persistent CE patients after PRP treatment. Fourth, the transcriptome profile in endometrial confirmed that PRP treatment has unique immunomodulatory effects on the endometrium of patients with persistent CE. Taken together, autologous PRP treatment contributes to endometrial receptivity by reconstructing the local immune microenvironment in the uterus of patients with persistent CE.

In recent years, increasing evidence has shown that autologous PRP treatment plays a positive role in endometrium disorders, including thin endometrium (18), intrauterine adhesion (19), and recurrent implantation failure (RIF) (20). With the intrauterine infusion of PRP, numerous proteins, growth factors, and cytokines stored in the platelet interact with the endometrium through the promotion of cell proliferation and angiogenesis, and anti-inflammatory properties, resulting in successful implantation (21). Nevertheless, the available facts concerning the efficacy of PRP in persistent CE are limited. Although a recent study investigated the effects of antibiotics combined with PRP therapy on pregnancy outcomes following FET in RIF patients with CE (14), our research highlighted the efficacy of PRP monotherapy on the expression of endometrial CD138+ plasma cells and the pregnancy outcomes and further unraveled the underlying regulatory mechanisms of PRP in the endometrium of patients with persistent CE. The result of immunohistochemical staining for CD138+ plasma cells showed that 60.6% of patients converted to CE negative after PRP treatment, suggesting that the PRP treatment plays a positive role in treating persistent CE.

It is worth noting that antibiotics can exhibit tissue retention. It is important to consider whether the effectiveness of PRP monotherapy in reducing the presence of endometrial CD138+ plasma cells is due to the retention of antibiotics in endometrial tissue. In this study, patients with persistent CE underwent two rounds of antibiotic treatment. An endometrial biopsy was conducted after 7 days of each treatment. Previous studies have shown that the half-life of doxycycline, metronidazole, and levofloxacin in tissues is 18–22 hours (22, 23), 6–10 hours (24), and 7–8 hours (25), respectively. It is important to note that patients received PRP treatment on days 8–9 of the following menstrual cycle after completing two rounds of antibiotic treatment. This means that the first PRP treatment was approximately 3 weeks after the end of the antibiotic treatment. Furthermore, the endometrial biopsy after PRP treatment was performed 1 month after the last endometrial biopsy. Therefore, it can be concluded that the therapeutic effect of PRP on persistent CE is not affected by the retention of antibiotics in the tissue.

CE is a poorly investigated pathology that has been related to adverse reproductive outcomes, such as RIF and recurrent miscarriage (RM) (26, 27). In our previous study, we found a significantly reduced clinical pregnancy rate in RIF patients with CE compared with RIF women without CE (20.0% vs. 46.9%, P = 0.04) (28). It has been reported that CE affected embryo implantation by altering endometrial receptivity (29). The researchers considered that an abnormal number of plasma cells can be diagnosed as CE, which negatively affects embryo implantation. The mechanism behind this is believed to be related to the presence of microbes in the uterine cavity. These microbes release pathogenic agents, which can cause abnormal levels of immune cells and the expression of chemokines. This disruption of the endometrial microenvironment reduces its receptivity, ultimately leading to the failure of embryo implantation (30). In the present study, although we found no statistically significant difference in the clinical pregnancy rate between the control group and PRP group, there was a trend toward an increased clinical pregnancy rate in persistent CE women with PRP treatment when compared to RIF women with non-CE (57.6% vs. 46.9%) and RIF women with CE (57.6% vs. 20.0%), respectively. Moreover, the implantation rate and clinical pregnancy rate were significantly increased in the cured CE patients compared with non-cured CE patients after PRP treatment. Our data is consistent with a previous study, which has shown that PRP can potentially improve pregnancy outcomes in women with CE (6). Based on these results, we assume that PRP treatment may improve pregnancy outcomes by restoring the endometrial receptivity of women with persistent CE.

Endometrial physiology relies on a dynamic cell-to-cell dialogue between the stroma and epithelium compartments with a mixture of vascular and immune cells (31). The immune environment of the endometrium is closely related to endometrial receptivity (32). Several theories have been proposed to explain the impaired endometrial receptivity associated with CE, including the activation of local inflammatory processes, resulting in altered cytokine and chemokine secretion (33), abnormal infiltration of leukocytes within the endometrium (15), dissociated maturation between epithelial cells and stromal fibroblasts (34), defective decidualization (35), and defective endometrial vascularization (36). Notably, our previous study found a significantly high increase in the proportions of endometrial CD8+ T cells and Foxp3+ Treg cells in CE patients with RIF (15). Meanwhile, another study also reported that the uterine NK cell density in RM women with CE was significantly higher than those without CE (37). These studies indicated that CE is related to the changes in the endometrial immune microenvironment in patients with recurrent reproductive failure. To better understand the mechanisms underlying the immunoregulatory properties of PRP, we investigated whether the uterine infusion of PRP could modulate the local inflammatory response and modify the intrauterine transcriptomic profiles in patients with persistent CE after PRP treatment. Our analysis therefore shows that the proportions of endometrial CD56+ NK cells, CD8+ T cells, Foxp3+ Treg cells, and T-bet+ Th1 cells were significantly decreased in persistent CE patients after PRP treatment compared with those before PRP treatment. Moreover, we verified that the proportions of these endometrial immune cells were also specifically significantly decreased in patients with cured CE compared to those of non-cured CE patients after PRP treatment. This result indicated that the modulation of the endometrial immune cells by autologous PRP treatment appeared to be an important mechanism by which it improves endometrial receptivity.

In addition, we conducted a transcriptome analysis to explore changes in the endometrium before and after PRP treatment. Our results suggested that endometrial receptivity appears to be improved after PRP treatment, as reflected in the expression patterns of endometrial receptivity-related genes CD36, DUOX1, DUOX2, CLDN1, CLDN3, HPSE, KLF5, MET, TLR4, ARG2, LGALS9C, and DEFB1 were significantly upregulated following PRP treatment. The transition into the receptive phase of the endometrium occurs with an abrupt transcriptomic inhibition in the immune-related process to reach a state where immune cell chemotaxis- and activation-associated genes, such as CCL3, CCL5, CCL21, CXCL21, CCR5, LYN, PI3KCG, RASGRP1, EPHB2, and EFNB1 were uniformly and highly downregulated. A recent study identified that 12 immunoglobulin-related genes (IGKC, IGHG1, IGHG4, IGLC3, IGHG3, IGLC2, IGHA1, IGKV3-20, IGLC1, IGHG2, JCHAIN, and IGHA2) were upregulated in the CE endometria (38). However, no significant difference in these immunoglobulin-related genes was observed in the endometrium from patients before and after PRP treatment. Previous animal experiments showed that PRP treatment decreased the expression of inflammatory markers and fibrosis, increased the endometrial proliferation rate, and increased the proliferation gene expression (39). The enrichment analysis of DEGs before and after PRP treatment indicated that the most important effect of PRP treatment on the endometrium was to adjust the immune environment and promote tissue hemostasis of the endometrium. We provide a cross-talk molecular characterization of PRP treatment for improving endometrial receptivity, which can inform future studies.

PRP treatment has achieved encouraging results in clinical practice. By comparing the endometrium of the same patient before and after PRP treatment, the possible mechanism of PRP treatment to improve endometrial receptivity was described. However, this study still had limitations. Firstly, although we used the number of CD138+ cells in the endometrial stroma to provide clinically relevant diagnostic criteria for CE (2), we must acknowledge that optimal threshold values for sensitivity and specificity are not well defined by the CD138+ immunohistochemical staining method to stain plasma cells to diagnose CE (40). Secondly, regarding the experiment on the effect of PRP treatment on endometrial immunological response, the number of patients was 33; thus, the sample size was small to evaluate the effect of PRP treatment correctly. Moreover, the control group selected patients without CE rather than patients with persistent CE without PRP treatment, which did not directly demonstrate the therapeutic effect of PRP on patients with persistent CE. Thus, more powerful studies with a much larger sample size and an ideal control group are needed to elucidate the underlying effect. Thirdly, more abundant immune cell information could not be obtained. This is what we will overcome in further research. Fourthly, although the RNA-seq results provide preliminary mechanistic insights, future studies with a larger sample size are needed to validate the uterine-specific role of PRP in patients with persistent CE. Overall, using PRP may help ensure a better cured rate, favorable pregnancy outcomes, and optimal endometrial receptivity in our study. We found that the critical mechanism by which PRP treatment improves endometrial receptivity lies in the modulation of the endometrial immune microenvironment. Our findings provide evidence underscoring the essential role of autologous PRP as an alternative therapeutic tool for persistent CE. Verifying our findings in larger patient groups through randomized controlled studies would strengthen this finding and secure the role of PRP as a successful therapeutic means for patients with persistent CE, especially for those who fail to respond to conventional antibiotic schemes.
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Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, fibrous elements, and cellular debris in the blood vessels. The response-to-retention hypothesis, the leading theory on the pathogenesis of this cardiovascular disease, describes the initial event in atherosclerosis as when Apolipoprotein B-containing lipoproteins, including endogenous and dietary-derived lipoproteins, bind to the inner arterial wall, the tunica intima. The subsequent lipoprotein modifications trigger an immune response that promotes atherosclerotic plaque formation. Despite the prevalence of atherosclerosis globally, and its vascular nature, therapies directed to the artery wall are limited. Immunotherapies, most notably monoclonal antibodies (mAbs), are of special interest due to their high specificity, reliability and proven success in a variety of diseases. However, current mAbs for atherosclerosis tend to target disease risk factors, notably inflammation and circulating lipoprotein levels, rather than address the root cause of atherosclerosis. These treatments result in a phenomenon known as residual risk, defined by the occurrence of severe cardiovascular events, including myocardial infarction, during treatment. Per the “response to retention” hypothesis, a plausible strategy for atherosclerosis would be blocking cholesterol retention per se at the arterial extracellular matrix level to complement lipid-lowering therapies. One such immunotherapy is the chP3R99 mAb, which can bind to pro-atherogenic proteoglycan sugar branches, thus competitively inhibiting lipid retention at these sites. The aim of this review is twofold: 1) To provide a summary of mAbs and other therapies used for atherosclerosis treatment, focusing on anti-inflammatory and lipid-lowering therapies, and 2) To review data on the structural characteristics, theory, and therapeutic effect of the chP3R99 mAb.
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1 Introduction

Atherosclerosis involves the gradual accumulation of cholesterol and the development of fat-rich fibrous plaques within the tunica intima, the innermost layer of the arterial wall. A crucial feature of atherosclerosis is the presence of low-grade chronic inflammation, which occurs as a protective response to proatherogenic lipoproteins infiltrating the arterial wall (1–3). The response-to-retention hypothesis of atherosclerosis states that atherogenesis is triggered by the subendothelial retention of Apolipoprotein B (ApoB)-containing lipoproteins such as low-density lipoprotein (LDL), lipoprotein (a) (Lp(a)), and, triglyceride-rich lipoproteins, including the dietary-derived chylomicron remnants (1, 4, 5). As the plaque develops, it calcifies, and the fibrous cap is degraded, significantly increasing the risk of rupture or thrombosis. This, in turn, can cause ischemia, myocardial infarction, and death (6). Despite the prevalence of atherosclerosis, there are relatively few effective therapies, most of which are focused on modulating risk factors rather than targeting the artery wall. Immunotherapies are becoming increasingly popular research avenues for atherosclerosis. Monoclonal antibodies (mAbs) are of specific interest due to their high specificity and sensitivity, relatively low side effects, and, history of therapeutic success (7). Currently, commercially available mAbs for atherosclerosis fall into the category of anti-inflammatory or lipid-lowering therapies. Anti-inflammatory mAbs decrease inflammation, thus reducing the burden on the blood vessels and limiting plaque formation. The CANTOS study was a landmark clinical trial that used canakinumab to reduce the levels of interleukin-1β (IL-1β), a critical pro-inflammatory cytokine in atherosclerosis (8–11). However, while inflammation and cardiovascular disease (CVD) incidence were reduced in the treatment group compared to the placebo, there were no significant changes in participant mortality. This phenomenon of life-threatening CVD events during treatment is known as residual risk, which indicates the persistent need for complementary treatments for atherosclerosis (8). Lipid-lowering mAbs function by targeting cholesterol synthesis mediators and LDL directly. However, similar to anti-inflammatory agents, they have encountered challenges in reducing all cardiovascular event incidences across patients (12). Research on mAbs targeting extracellular matrix (ECM) components has attracted significant attention due to the role of the ECM in the early stages of atherogenesis (13, 14). One such example is the chP3R99 mAb, which can bind to proteoglycan side chains and interfere with lipoprotein binding. Through competitive inhibition, the chP3R99 mAb inhibits lipoprotein retention and the subsequent formation of an atherosclerotic plaque, thus acting as a potential new therapy for atherosclerosis (15). Despite strong preclinical evidence supporting the efficacy of chP3R99 mAb in atherosclerosis management, information integrating its structural characteristics, functional basis, challenges, and future prospects are limited in existing literature. Here, we raise essential context and discuss the theoretical underpinnings of the chP3R99 mAb and its potential as an immunotherapy.




2 Pathogenesis and evolution of atherosclerosis

Atherosclerosis is the predominant form of CVD globally (16). Atherogenesis begins in childhood, as lipids and fibrous elements accumulate in medium and large-caliber arteries (17). Atherosclerosis progresses silently for decades until causing clinical events that can be fatal (18, 19). Globally, imaging-based studies estimate that approximately 50% of individuals over the age of 40 exhibit subclinical carotid atherosclerosis, with prevalence rates rising steadily (20). Economic development, rapid urbanization and globalization have promoted atherosclerosis by facilitating dangerous lifestyle choices, such as diets rich in saturated fat or reduced physical activity (21). Several non-modifiable risk factors are linked to atherosclerosis development, such as age, family history, and sex (22). Conversely, modifiable risk factors include hypercholesterolemia, obesity, hypertension, smoking, diabetes, and certain pathogen-related infections such as chlamydia (23). Of these factors, hypercholesterolemia plays a dominant role in the onset and progression of atherosclerosis, the risk of which increases with proatherogenic lipoprotein levels (24, 25).

One of the historical hypotheses describing the pathogenesis of atherosclerosis is the response-to-injury hypothesis (26). According to this theory, atherosclerosis results from endothelial damage caused by higher shear stress at arterial bends and bifurcations, leading to higher permeability to lipoproteins. While endothelial damage and lipoprotein levels are proven to be considerable risk factors for atherosclerosis progression, inconsistent evidence supports this theory. Notably, the lack of atherosclerotic remodeling in areas of endothelial damage and the presence of remodeling in areas void of endothelial damage challenges the response-to-injury hypothesis. Due to these observations, the response-to-retention theory has been established as the most probable mechanism to describe the pathogenesis of atherosclerosis, providing a more active role for the ECM in atherosclerosis onset (1, 27). Thus, the key initiating event of atherosclerosis is the subendothelial retention of LDL and other ApoB-containing lipoproteins like Lp(a) and remnant lipoproteins (1, 28).

ApoB-containing lipoproteins primarily traverse the arterial endothelium via transcytosis, a process governed by particle size and receptor interactions. Seminal studies by Simionescu and colleagues established that particles ≤70 nm in diameter—including LDL, Lp(a), and smaller triglyceride-rich lipoproteins—cross the endothelial barrier into the intima, while larger particles like very-low-density lipoproteins (VLDL) and chylomicrons are excluded due to size constraints (29, 30). Under physiological conditions, LDL (18-25nm) transcytosis occurs through LDL receptor (LDLR)-dependent pathways and caveolae-mediated transport. More recently it was demonstrated that the latter mechanism is facilitated by the activin receptor-like kinase 1 and the scavenger receptor B1 (31–34). Similarly, triglyceride-rich lipoprotein remnants [such as VLDL remnants (35–50 nm), chylomicron remnants (30–80 nm), and intermediate-density lipoproteins (25–35 nm)], can access the intima via scavenger receptor-mediated active transcytosis and updated to include particles of size ≤80nm (35–38). Notably, while Lp(a) (25–70 nm) particles fall within this size range and share structural similarities with LDL, these particles exhibit a weaker binding to LDLR. Therefore, Lp(a) trans-endothelial transport mechanisms remain poorly understood and their interaction with plasminogen receptors and scavenger receptors may play a more significant role in this process (39).

In pathological states, like sustained hypercholesterolemia and inflammation, the endothelial permeability is increased and transcytosis of ApoB-containing lipoproteins other than LDL is enhanced (40). A novel mechanism for triglyceride-rich lipoproteins arterial delivery mediated by the induction of lipid droplet formation in the endothelium has been described recently (41–43). Thus, while LDL dominates intimal delivery, smaller remnants, and particularly the infiltration of chylomicron remnants in metabolic disorders and the postprandial state, further contribute to arterial lipid accumulation (35, 38, 44–46). Although these mechanisms occur without prior endothelial damage, permissive conditions like endothelial dysfunction, inflammation, and structural alterations, such as the absence of a confluent luminal elastin sheet, and exposure of arterial proteoglycans, not only increase ApoB-containing lipoproteins delivery in the intima but also accelerate the subendothelial deposition of lipids and contribute to the onset and progression of atherosclerosis (40, 45, 47, 48).

Lipoprotein retention in the arterial intima is a hallmark of early atherogenesis, driven by electrostatic interactions between glycosaminoglycan (GAGs) chains on proteoglycans and basic residues (arginine/lysine) within ApoB (49–51). This molecule exists as two isoforms: ApoB100 (4536 amino acids) and ApoB48 (N-terminal 2152 amino acids), both of which contribute to atherogenicity despite structural differences (44, 52–55). Although the carboxyl-terminal Site B (residues 3359–3369) of ApoB100 is the primary proteoglycan-binding domain, ApoB48 compensates for the absence of this region via an alternative binding site (Site B-Ib) located at the amino-terminal region (56, 57). In ApoB100, Site B-Ib is masked by the carboxyl terminus, whereas truncation in ApoB48 exposes this region, facilitating proteoglycan binding. This mechanism supports the response-to-retention hypothesis for different classes of lipoproteins, explaining why both isoforms are (at least) equally atherogenic and contribute to lipid accumulation and vascular disease progression (40, 44, 57, 58).

Once retained in the arterial wall, lipoproteins undergo different modifications, including oxidation, enzymatic modifications, and aggregation (1). Oxidized lipoproteins release bioactive molecules, such as oxidized phospholipids, which directly activate endothelial cells (2, 59). Arterial tissue-resident macrophages, derived from embryonic CX3CR1+ precursors, are crucial for detecting modified lipids and maintaining vascular homeostasis. This population is established in the vascular wall during mid-gestational development and possess self-renewing capacity through local proliferation (60). They initiate an inflammatory response when exposed to persistent stimuli, such as oxidized lipids (61, 62) (Figure 1). Macrophages internalize modified lipoproteins via scavenger receptors (e.g., CD36, scavenger receptor-A), leading to intracellular cholesterol accumulation and their transformation into foam cells, a hallmark of atherosclerosis across all stages of the pathology (63). Due to their limited self-renewing capacity, tissue-resident macrophages cannot sustain plaque expansion during disease progression (64). Consequently, activated endothelial cells upregulate adhesion molecules and chemotactic factors, recruiting monocytes and lymphocytes from the bloodstream into the arterial intima (65). Within the artery wall, infiltrating monocytes differentiate into macrophages under the influence of growth factors secreted by endothelial cells and resident macrophages. This differentiation amplifies the expression of pattern recognition receptors, particularly scavenger receptors and toll-like receptors (TLRs), further perpetuating lipid uptake and inflammatory signaling (66, 67).
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Figure 1 | Key steps in the pathogenesis of atherosclerosis. The schematic illustrates the major molecular and cellular events involved in the development of atherosclerosis within the artery wall. (1) As per the response to the retention hypothesis, the process begins with the retention of ApoB-containing lipoproteins in the tunica intima, facilitated by interactions with arterial proteoglycans. (2) Once trapped, these lipoproteins undergo structural modifications, such as oxidation and aggregation. (3) Subsequently, these modifications trigger endothelial activation, leading to (4) the recruitment of monocytes into the intima. Monocyte recruitment is mediated by factors like macrophage-colony stimulating factor, released by endothelial cells. Within the intima, monocytes differentiate into macrophages, (5) which then engulf modified lipoproteins, (6) transforming into lipid-laden foam cells. The effector mechanisms of macrophages contribute to oxidative stress within the vasculature, which in turn (7) promotes the migration of vascular smooth muscle cells (VSMC) from the tunica media to the intima. In the intima, VSMC proliferate and contribute to plaque development by contributing to foam cell formation. (8) Increased size and sulfation of glycosaminoglycans chains within arterial proteoglycans produced by VSMC further enhance ApoB-containing lipoprotein retention accelerating plaque progression.

Vascular smooth muscle cells (VSMCs) are also key players in atherosclerosis. Several growth factors and cytokines produced by macrophages, mainly the platelet-derived growth factor, contribute to the migration of VSMCs and subsequent differentiation in the tunica intima. Hence, VSMCs acquire a synthetic phenotype with increased production of collagen, elastic fibers and fibrous tissue (68). Proliferating VSMCs, along with the production of ECM, generate a fibrous layer that covers the developing atherosclerotic plaque, surrounding the lesion and preventing its rupture (69). However, these cells also produce pro-atherogenic proteoglycans, almost exclusively made up of chondroitin sulfate (CS), characterized by elongated GAGs chains, changes in their sulfation pattern, and increased content of sulfate groups, altogether increasing their affinity and retention to lipoproteins (70, 71). VSMCs also acquire the ability to internalize modified lipoproteins through the expression of several scavenger receptors, accounting for the majority of foam cells in the atheroma (72, 73). Furthermore, VSMCs of the intima express major histocompatibility complex II (MHC-II) molecules and, therefore, can also behave as antigen-presenting cells (APCs) (74). The final development of the atherosclerotic lesion involves the production of several degradative enzymes, which make the fibrous layer prone to rupture due to the destruction of the ECM and lead to the formation of a life-threatening thrombus (19, 75).



2.1 Innate and adaptive immunity



2.1.1 Innate immunity as a key player in atherogenesis

Subendothelial lipid accumulation and the subsequent oxidative and enzymatic modifications further stimulate tissue-resident macrophages and endothelial cells to generate inflammatory mediators like cytokines, chemokines, growth factors, and reactive oxygen/nitrogen species, contributing to the initial steps of atherogenesis (76). These changes increase endothelial damage along with the expression of adhesion molecules (77). As mentioned, the activation of the endothelium leads to the extravasation of monocytes to the intima, which then differentiate into macrophages activated by the monocyte colony-stimulating factor. Macrophages exhibit robust phagocytic activity, secrete a wide range of soluble factors, and are involved in ECM remodeling, actions which are central to their role in atherosclerosis progression. Large numbers of macrophages are found in atherosclerotic plaques, especially at the shoulders of lesions, expressing an inflammatory M1 phenotype (78). Activated macrophages phagocytose modified lipoproteins, as well as large and aggregated particles, in an unregulated manner, leading to the accumulation of cholesterol in its cytoplasm to form the foam cells that characterize this pathology (61, 79).

Additionally, macrophages can internalize modified LDL through receptor-mediated phagocytosis and pinocytosis, among other mechanisms, both actin-dependent and independent (80). Macrophages can also express TLRs that can recognize and internalize oxidized LDL (oxLDL) and, in turn, trigger signaling cascades that activate macrophages themselves (81). Oxidized lipoproteins act as damage-associated molecular patterns, stimulating TLRs in macrophages, which aggravates inflammation in the plaque (82). Macrophages recognize and internalize oxLDL via an array of scavenger receptors, which, unlike LDLR, are not inhibited by high intracellular cholesterol concentrations (83). Cholesterol crystals inside macrophages are the trigger for the assembly and activation of the NOD-like receptor P3 (NLRP3) inflammasome, responsible for activating proinflammatory cytokines such as IL-1β and IL-18 (84). Macrophages account for an essential source of vasoactive molecules, endothelin and various eicosanoids that promote the recruitment of leukocytes to the arterial wall and contribute to inflammation (85). The main soluble factors produced by macrophages include macrophage colony-stimulating factor, platelet-derived growth factor, transforming growth factor-β (TGF-β), tumour necrosis factor-α (TNF-α), and interleukins (IL), IL-1β, IL-6, and IL-8 (86). Likewise, in the presence of interferon-gamma (IFN-γ), macrophages produce other mediators such as monocyte chemoattractant protein-1, IL-12, and IL-18. Together, these molecules recruit and activate more leukocytes, contributing to local inflammation and apoptosis that characterize advanced lesions’ lipid core. Lastly, macrophages secrete ECM-degrading enzymes such as matrix metalloproteinases, lysosomal proteases including cathepsins F and S, collagenases, heparinases, and sulfatases. The production of these enzymes further contributes to the pathophysiology of atherosclerosis by releasing cytokines and growth factors inactively sequestered in the extracellular space (87).




2.1.2 Contribution of adaptive immunity to the development of atherosclerosis

The role of adaptive immunity in atherosclerosis has been extensively studied in animal models and humans, with a particular emphasis on immune responses directed to oxidation-specific epitopes derived from oxLDL (88). The transition to adaptive immunity in the vasculature is initiated when retained or modified lipoproteins are internalized by professional APCs, such as dendritic cells (DCs) and macrophages. Following antigen uptake, DCs migrate to secondary lymphoid organs—including draining lymph nodes and the spleen—where they prime naïve T cells (Figure 2) (89). Vascular antigens are processed by these APCs and the resulting peptides are presented in the context of MHC-I and MHC-II molecules to CD8+ and CD4+ T cell, respectively (90–93). Under homeostatic conditions, DCs in healthy arteries may present self-antigens in the absence of co-stimulatory signals, promoting T cell tolerance or anergy (94). This aligns with studies showing that T cells activated by non-professional APCs fail to upregulate co-stimulatory molecules like CD80/CD86, leading to functional unresponsiveness upon re-stimulation (94). In atherosclerotic plaques, however, DCs undergo maturation triggered by pro-inflammatory mediators such as TLR agonists, danger-associated molecular patterns, and cytokines (e.g., IFN-γ, TNF-α). Mature DCs upregulate MHC-II, co-stimulatory molecules (CD80, CD86, CD83), and chemokine receptors (e.g., CCR7) (95–97). In advanced lesions, the number of DCs is increased compared to early lesions where they accumulate in rupture-prone regions, forming clusters with T cells (98).
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Figure 2 | Simplified model of key immune events in atherosclerosis development. ApoB-containing lipoproteins retained in the intimal layer of the artery wall are modified and subsequently taken up by antigen-presenting cells (APCs), including dendritic cells and macrophages. These APCs then migrate to lymphoid organs, including draining lymph nodes. Within the lymph node, APCs present processed lipoprotein-derived peptides to T cells via MHC-TCR interaction, along with costimulatory signals (CD80/CD86 - CD28), leading to T cell activation and differentiation into effector T cells (Teff) and regulatory T cells (Treg). Following activation, T cells can differentiate into CD4+ T helper subsets, including pro-inflammatory phenotypes like Th1 and Th17 cells, or cytotoxic CD8+ T lymphocytes that contribute to the pathogenesis of atherosclerosis. Also, CD4+ follicular helper T cells interact with B cells (via CD40L-CD40 and TCR-MHC), promoting their activation and antibody production. Anti-lipoprotein antibodies, effector T cells, regulatory T cells and acute-phase inflammatory proteins are recruited to the plaque. Within the plaque, interactions between activated T cells that have homed back to the lesion with APCs create a pro-inflammatory feedback loop, amplifying local inflammation and lesion progression.

While the precise antigen epitopes driving adaptive T-cell responses in atherosclerosis remain under investigation, growing evidence highlights native and oxidized ApoB-derived epitopes as critical contributors (99–101). Oxidation-specific epitopes, such as malondialdehyde and 4-hydroxynonenal-adducted lysine residues on ApoB, have been proposed as key players in T-cell activation across experimental and human studies (88, 91, 102–104). However, recent advances based on peptide-specific tetramer staining and single-cell transcriptomics have identified CD4+ T cells reactive to native ApoB in murine and human atherosclerosis, challenging the exclusivity of modified ApoB in this process (105, 106). Notably, T-cell epitopes shared by ApoB100 and ApoB48 have been identified (107, 108) demonstrating that T-cell activation in atherosclerosis is not restricted to ApoB100-derived antigens (109).

In atherosclerotic plaques, most CD4+ T lymphocytes express αβ T-cell receptors and exhibit an effector memory phenotype, although subpopulations expressing γδ T-cell receptors are also present in smaller numbers (110, 111). Upon antigenic stimulation, CD4+ T lymphocytes differentiate into various T-helper (Th) subsets, each with distinct functional characteristics. These subsets include pro-inflammatory phenotypes such as Th1, Th2, and Th17 cells, as well as follicular helper T (Tfh) cells and regulatory T cells (Tregs) (112). The different Th subsets influence the progression of atherosclerosis through various mechanisms. Notably, Tfh cells promote immune activation by supporting B-cell maturation and high-affinity IgG antibody production within germinal centers (100). In the plaque, a predominant Th1 phenotype is observed, characterized by the secretion of IFN-γ and TNF-α, which drives plaque progression and instability, as demonstrated in mouse models and human studies (113–116). In contrast, Tregs suppress inflammation via IL-10 and TGF-β, though their frequency declines as lesions advance (117, 118). The roles of Th2 (IL-4/IL-5) and Th17 (IL-17) cells remain controversial, with evidence supporting both pro- and anti-atherogenic effects (119, 120). Additionally, natural killer T cells, activated by lipid antigens presented via CD1 molecules, further amplify pro-inflammatory cascades (119, 121).

On the other hand, studies in ApoE−/− mice that depleted CD8+ cytotoxic T lymphocytes (CTLs) found reduced lesion area, lipid content, macrophage infiltration, and necrotic core size (122). This suggests that CTLs also contribute to atherosclerosis progression by promoting necrotic core formation through the induction of apoptosis in macrophages, VSMCs, and endothelial cells (123, 124). Mechanistically, lesional CTLs express perforin and granzyme B, which colocalize with apoptotic vascular cells. Genetic deletion of these cytotoxic molecules further confirmed their role in necrotic core expansion (122). Interestingly, these molecules may also attenuate atherogenesis by suppressing APCs and other effector T cells, a regulatory effect that appears more prominent in the early stages of the disease (124). Beyond direct cytotoxicity, CD8+ T cells exacerbate plaque inflammation by secreting TNF-α (125) and amplifying systemic monocytosis via IFN-γ-mediated bone marrow activation (122). While some lesional CD8+ T cells recognize ApoB-derived peptides, the specific antigen driving their activation remains elusive, as is the case for CD4+ T cells (123, 126). Collectively, these findings underscore CD8+ T cells as central mediators of plaque vulnerability, linking adaptive immune responses to impaired efferocytosis, sustained inflammation, and necrotic core progression (122).

B cells are scarce within atherosclerotic plaques but accumulate in periadventitial lymphoid infiltrates near advanced lesions, indicating localized adaptive immune responses (127, 128). B cell subsets exhibit opposing effects on atherosclerosis progression. B1 cells secrete natural IgM antibodies targeting oxidation-specific epitopes, such as phosphocholine on oxLDL, which reduce inflammation and inhibit foam cell formation (91, 129, 130). Notably, approximately 30% of natural IgM antibodies are directed against those epitopes, which are shared by apoptotic cells, bacterial pathogens, and oxidized lipoproteins (131). Conversely, B2 cells have been shown to promote atherosclerosis through proinflammatory IgG production and T cell activation (122, 132, 133). While there is a consensus that anti-oxLDL IgM antibodies are atheroprotective, the role of IgG subclasses remains ambiguous, with studies implicating both pathogenic and protective effects (129, 134–137). Recent work emphasizes the critical role of T-cell–B-cell interactions in modulating the nature of humoral responses in atherosclerosis. CD4+ Tfh cells play a pivotal role by facilitating B cell maturation and antibody class-switching. Depending on the context, these interactions within germinal centers or tertiary lymphoid structures can drive the production of either pro-atherogenic or atheroprotective antibodies, highlighting their dual role in plaque formation (100).

Following activation in secondary lymphoid organs, T cells enter systemic circulation and home to atherosclerotic plaques through mechanisms described for monocyte extravasation (112, 138). In this case, the process involves interactions of adhesion molecules from the inflamed endothelium like selectins (E- and P-selectins) and integrins (e. g. Vascular Cell Adhesion Molecule-1) with their counterparts expressed in activated T cells (e.g. Very Late Antigen-4) (138). After transmigrating into the lesion, T cells are reactivated by local APCs, which in turn trigger cytokine secretion by CD4+ Th cells, enhance pro-inflammatory macrophage activity, and promote cytotoxic activity by CTLs (139).

It is proposed that antibodies (~12nm) can be recruited to the sub-endothelium by similar pathways that are active for lipoprotein permeability (<80nm). We have shown recently that antibodies can be detected in the vasculature within minutes of infusion using different model species (140–142). As plaques advance, sustained inflammatory signaling disrupts endothelial integrity by opening intercellular junctions and creating transient gaps leading to increased vascular permeability (143, 144). This enables the leakage of large molecules into the atheroma, including antibodies, acute-phase proteins (e.g. C-reactive protein), complement components, and larger lipoprotein particles (145, 146). The influx of these mediators, combined with the ongoing recruitment of immune cells, creates a self-perpetuating cycle of lipid accumulation, inflammation, and plaque destabilization (147).

In summary, adaptive immunity in atherosclerosis is a complex process. T cells, particularly CD4+ and CD8+ subsets, play varied roles, from promoting inflammation to inducing cytotoxicity. B cells and antibodies also exert both pro- and anti-atherogenic effects. A deeper understanding of these mechanisms is crucial for developing targeted therapeutic strategies.




2.1.3 Immune checkpoints as mediating factors in atherosclerosis

Co-stimulatory molecules and immune checkpoint proteins have been reported to be pivotal in modulating atherogenesis (148). Immune checkpoints found on APCs and T cells regulate the immune response and prevent overstimulation of the immune system. The role of immune checkpoints in managing an immune response’s regulation, inhibition, severity, and length has been well documented. As mentioned, T cells become activated through interactions with APCs (149). However, a second signal is needed for T cell activation in addition to antigen presentation. This second signal can occur through the co-stimulation of receptors on T cells and stimulatory molecules on APCs (149), such as the co-stimulation of the CD28 receptor on T cells binding to CD80/86 on APCs. This signal is necessary for the downstream activation of signaling pathways, specifically the PI3K/Akt pathway (149, 150). Activating the PI3K/Akt pathway further stimulates T cells’ differentiation, proliferation and survival, which can have critical effects during atherosclerosis.

Moreover, cytotoxic T-lymphocyte antigen (CTLA)-4 inhibits this co-stimulation, providing another avenue for immune regulation (150). Conversely, the interaction between programmed cell death protein 1 (PD-1) on T cells and the programmed death ligands 1 and 2 (PD-L1, PD-L2) on blood cells and phagocytes, respectively, acts as a significant immune checkpoint that reduces T cell activity (149). This process occurs through dephosphorylation and subsequent inhibition of the PI3K-Akt pathway (149).






3 Therapeutic strategies targeting atherosclerosis



3.1 Anti-inflammatory therapies and monoclonal antibodies

The CANTOS trial was a large-scale clinical trial that described the use of canakinumab, a mAb inhibitor of the pro-inflammatory cytokine IL-1β. Canakinumab directly binds to IL-1β, thereby preventing Il-1β mediated inflammation and reduced the risk of recurrent cardiovascular events (151). The CANTOS trial used a comprehensive randomized, blinded, placebo-controlled study design to follow 10,061 patients across 39 nations with previous reports of myocardial infarction and increased high-sensitivity C-reactive protein (hsCRP) levels from 2011 to 2017 (151, 152). The study found that over 3.7 years, the placebo group experienced 4.50 events per 100 person-years, while the 300 mg canakinumab treatment group experienced 3.90 events per 100 person-years (151). Thus, 300 mg canakinumab administration reduced recurrent major adverse cardiovascular events (MACE) by 0.60 per 100 person-years compared to the placebo cohort (151). Interestingly, however, the canakinumab treatment group reported higher neutropenia cases than the placebo group. Similarly, the canakinumab group also exhibited higher rates of infection or sepsis-related deaths relative to the placebo group. Specifically, the canakinumab group experienced an incidence rate of 0.31 of sepsis and infection-related deaths per 100 person-years versus 0.18 events per 100 person-years for the placebo group (151). Additionally, thrombocytopenia was more frequent among those receiving canakinumab than the placebo group, but there were no notable differences in the incidence of hemorrhages (151). As such, commercial approval for canakinumab and other notable IL-1β therapies, such as gevokizumab and mavrilimumab, has yet to be approved. Similarly, preliminary studies using infliximab and certolizumab anti-TNF-α therapies found reduced monocyte and neutrophil activity and improved endothelial and arterial wall function (153). Moreover, various pro-inflammatory cytokine therapies target the NLRP3 inflammasome, indirectly inhibiting IL-1β and TNF-α activity. A notable example is the synthetic NLRP3 inhibitor, MCC950, described by Coll et al. in 2015 (154). MCC950 works by binding to the NLRP3 protein, thereby preventing inflammasome assembly (154). This interaction suppresses IL-1β activation by inhibiting caspase-1 and caspase-11 pathways (155). A 2021 study by Zeng et al. described the use of MCC950 in atherosclerosis using ApoE-/-mice (156). Following MCC950 administration, the group found evidence of decreases in atherosclerotic plaque size, macrophage levels, and pro-inflammatory cytokines, specifically IL-1β and IL-18 (153). Another prominent NLR3P inflammasome inhibitor, the ketone β-hydroxybutyrate, prevents potassium (K+) efflux, thereby inhibiting apoptosis-associated speck-like protein with a caspase recruitment domain oligomerization, which is necessary for caspase-1 activation. A 2015 investigation reported that β-hydroxybutyrate use in mice with NLRP3-related disorders significantly reduced pro-inflammatory cytokines, specifically ILs (157).

However, anti-inflammatory cytokine therapies are not the only anti-inflammatory therapies for atherosclerosis and CVD management. Similar to the CANTOS trial, the LoDoCo trial was a first-of-its-kind prospective, observer-blinded clinical trial involving 532 participants diagnosed with coronary disease randomized to either a low-dose colchicine of 0.5 mg per day or non-colchicine group with a minimum two-year follow-up (158). However, unlike the CANTOS trial, which used a selective inhibitor of IL-1β, colchicine has broad-scale anti-inflammatory properties, most notably inhibiting neutrophil function (158). Of the LoDoCo participants, 93% were taking aspirin and clopidogrel, and 95% were taking statins. 282 participants were assigned to the colchicine group, while 250 were assigned to the non-colchicine group (158). Overall, the colchicine group had 10.7 percentage points fewer combined occurrences of acute coronary syndrome, out-of-hospital cardiac arrest, or non-cardioembolic ischemic stroke (primary outcomes) compared to the non-colchicine group (158). 15 of the 282 participants in the colchicine group experienced a primary outcome (5.3%) compared to 40 of the 250 patients in the non-colchicine group (16%) (158). However, this trial was open-labelled and moderate-scale, so these results needed further assessment (158). Following the LoDoCo trial, the COLCOT trial was conducted as a large-scale, randomized, parallel-arm, double-blind clinical trial involving 4,745 participants with an average follow-up period of 1.88 years (22.6 months) (159). The COLCOT trial recruited patients who had experienced myocardial infarction within the last 30 days. Of the 4,745 participants, 2,366 received 0.5 mg of colchicine daily, while 2,379 received a placebo. They assessed incidences of cardiovascular-related deaths, instances of resuscitated cardiac arrest, myocardial infarction strokes, and severe angina that ultimately required hospitalization (159). Overall, the colchicine group experienced 1.6 percentage points less of these cardiovascular outcomes than the placebo group. Of the 2,366 participants in the colchicine group, 5.5% experienced a cardiovascular outcome compared to the 7.1% in the placebo group (159).

Lastly, immune checkpoint inhibitors (ICI) are common mAbs used as anti-inflammatory therapies. As expanded on in section 1.2, immune checkpoints act as regulators of the immune response through T cell inhibition and activation. However, despite the success of ICI mAbs in cancer treatment, studies have found a significant link between ICI therapies and atherosclerosis (149). Interestingly, while cancer and atherosclerosis share similarities in their inflammatory-dependent pathophysiology, ICI mAbs, specifically CTLA-4 and PD-1–PD-L1 blocking antibodies, have been shown to increase cardiovascular events associated with atherosclerosis (160). Although, a 2013 study that increased CTLA-4 activity using abatacept in APOE 3-leiden mice found a reduction in the severity of atherosclerosis through a dramatic 78.1% decrease in arterial thickening (161), thus offering a different avenue for ICI therapy in atherosclerosis treatment. However, it is critical to recognize that these anti-inflammatory therapies have negligible effects on circulating lipoproteins, a major contributor to atherogenesis.




3.2 Lipid-lowering therapies and mAbs

Statin therapy has served as the pinnacle of lipid-lowering treatments in Western medicine for over four decades. Statins function by inhibiting the enzyme HMG-CoA reductase in the cholesterol biosynthesis pathway, thereby inducing the synthesis of LDLRs, which can then capture and reduce levels of circulating LDL (162). A plethora of research on statin application has demonstrated its success in LDL reduction. A 2010 meta-analysis including 26 randomized controlled trials with 169,138 participants revealed that a 39 mg/dL reduction in LDL resulted in a 22% decline in MACE over half a decade, independent of initial LDL levels and a 10% reduction in all-cause mortality across diverse clinical cohorts (163). Despite the well-documented lipid profile management of statins, cardiovascular events continue to occur in treated patients (164). This has been largely attributed to the contribution of dietary-derived remnant lipoproteins and Lp(a) to atherogenesis (165). In fact, the impact of statins in reducing Lp(a) remains controversial (166). A meta-analysis of several clinical trials demonstrated that they significantly increased plasma levels of this lipoprotein (167).

On the other hand, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, which are lipid clearance agents that inhibit PCSK9-mediated degradation of LDLR, have been linked to reductions in circulating LDL, reduced myocardial infarction risk and overall decreases in mortality in some populations (13, 168). Prominent PCSK9 inhibitors include mAbs such as evolocumab, bococizumab, and alirocumab (169). Administration of solely evolocumab resulted in a 53% reduction in plasma LDL levels (168) with similar outcomes reported for bococizumab and alirocumab (151). When administered with statins, PCSK9 inhibitors have shown a pronounced reduction in LDL levels relative to statin monotherapy. The GLAGOV and ODYSSEY trials, large-scale randomized, double-blind clinical control studies, assessed the efficacy of evolocumab and alirocumab (with statins) in managing cardiovascular events (13, 169). The GLAGOV trial reported evolocumab therapy mediated plaque progression, and the combined regimen of evolocumab and statins induced regression of the proliferating atheroma (169). In the ODYSSEY trial, 80-88% of patients underwent statin treatment. The ODYSSEY trial found that combining alirocumab and statins reduced MACEs by 1.6 percentage points (9.5% for alirocumab vs 11.1% for placebo) and all-cause mortality by 0.6percentage points (3.5% for alirocumab vs 4.1% for placebo) compared to the placebo + statin treatment (169). A distinct randomized control trial by Pradhan et al. evaluated the combined regimen of bococizumab and statin therapy, involving 9,738 patients, and assessed on-treatment LDL levels 14 weeks post-intervention. The group reported a 60.5% reduction in LDL (170). However, they also acknowledged a significant correlation between patients with high hsCRP levels (>3 mg/L) and MACE. Moreover, even 14 weeks post-treatment, patients experienced residual risk associated with chronic inflammation (170). Pradhan et al. thus concluded that while PCSK9 and statin therapy reduce LDL levels and some MACE, they have minimal effects on inflammation (170).

Anti-PCSK9 mAbs can also reduce Lp(a) levels by 25~30%, at a 2:1 ratio relative to LDL (171). This effect appears to be mediated by a dual mechanism. When these drugs are administered as monotherapy, the decrease in the serum concentration of Lp(a) is associated with the inhibition of its synthesis while it has been suggested that, in combination with statins, anti-PCSK9 causes accelerated Lp(a) lipoprotein catabolism, potentially through increased LDLR activity (172). However, since statins (which increases the abundance of the hepatic LDLR), have limited impact on Lp(a) (167, 172), the exact role of LDLR in Lp(a) catabolism remains a matter of debate (172–174). A direct clinical benefit from the reduction in Lp(a) levels by anti-PCSK9 therapy has not yet been demonstrated (175).

Overall, lipid-lowering therapies, similar to anti-inflammatory approaches, are insufficient in fully modulating CVD risk among all populations, highlighting the need for emerging immunotherapies, including those directed at the arterial ECM.




3.3 Atherogenic lipoproteins and the need for combination therapies

Fasting LDL levels are often used as indicators and targets in the treatment and management of CVD, particularly atherosclerosis (176, 177). Fasting LDL levels are commonly measured in patients to determine their risk of overall CVD and prevent the onset of CVD. Interestingly, however, many patients continue to experience MACE despite reductions in LDL, known as residual risk. Additionally, non-fasting lipid levels have been proven to be an equal indicator of CVD risk compared to fasting lipid levels (178, 179). Non-fasting measurements are generally more representative of a patient’s lipid composition as most of the day is spent in the non-fasting state compared to the fasting state (38, 179–181). Due to the limitations regarding fasting LDL as both a target and assessment tool for CVD, research has shifted towards adopting more overarching approaches for CVD treatment. Recent advancements in our understanding of atherosclerosis have highlighted the critical role of remnant cholesterol in combination with LDL (177, 178, 182). Remnant cholesterol includes the cholesterol contained within remnant lipoproteins. These remnant lipoproteins come from triglyceride-rich lipoproteins such as liver-derived VLDL and intestinal chylomicron remnants (38, 180). Importantly, these remnant lipoproteins have been shown to play a critical role in atherogenesis. During the early stages of atherogenesis, both remnant lipoproteins and LDL infiltrate the inner tunica intima of the arterial wall, where they are digested by phagocytes, contributing to foam cell formation (38). Three extensive Copenhagen cohort studies previously illustrated the link between non-fasting remnant lipoprotein cholesterol and CVD (178, 183, 184).

Similarly, the Alberta tomorrow project (ATP) was a 2000 Canadian longitudinal cohort study that collected blood samples and health-related data. An analysis by Weaver et al. in 2023 using ATP data determined whether non-fasting remnant lipoprotein cholesterol could serve as a suitable indicator of CVD and future cardiovascular events, particularly in individuals with underlying health conditions like diabetes mellitus (177, 182). The group reported that non-fasting remnant lipoprotein cholesterol levels were significantly increased in individuals with CVD compared to the control group. However, this trend was not consistent for the group with diabetes and CVD (182). The diabetes + CVD group and the diabetes alone group had similar LDL levels. Furthermore, in 2023, a comprehensive large-scale investigation conducted by Navarese et al. used Mendelian randomization analysis techniques to determine the relationship between remnant lipoprotein cholesterol and the development of atherosclerosis-related CVD, specifically coronary artery disease, myocardial infarction, and stroke (185). The study used single nucleotide polymorphism associated with remnant lipoprotein cholesterol and LDL found on publicly available genome databases as representative variables for remnant cholesterol and LDL. The group additionally used data from various databases to create a participant pool of 958,434 people (185). Using the single nucleotide polymorphism for remnant cholesterol, the study found evidence of a strong relationship between remnant lipoprotein cholesterol levels and CVD risk. Each remnant lipoprotein cholesterol standard deviation (SD) increase was assigned a corresponding risk level expressed as an odds ratio (OR). For coronary artery disease, the group found that one SD increase in remnant lipoprotein cholesterol resulted in an OR of 1.51; for myocardial infarction, one SD increase resulted in an OR of 1.57; and for stroke, one SD increase resulted in an OR of 1.23 (185). Notably, this relationship between remnant lipoprotein cholesterol, coronary artery disease, myocardial infarction, and stroke was independent of LDL levels.





4 ChP3R99 mAb: emerging strategy for ApoB-containing lipoprotein retention

Advances in the understanding of atherogenesis have broadened the focus of mAbs for CVD, shifting beyond just targeting LDL and inflammatory cytokines to also include key vascular components (Figure 3) (186, 187). A notable example is the mAb chP3R99, which has emerged as a complementary approach to address ApoB-containing lipoprotein retention in the arterial wall (15). By binding to sulfated GAGs chains of arterial proteoglycans, chP3R99 is designed to interfere with lipoprotein retention, thereby mitigating subsequent oxidative stress, inflammation, and other processes central to plaque formation. Extensive preclinical studies using chP3R99 mAb have shown promising results in animal models of the disease, supporting its potential in preventing the early stages of atherosclerosis or halting its progression. Importantly, the therapeutic potential of chP3R99 extends beyond its passive blocking properties, offering a dual mechanism of action (1): as a passive therapy to acutely disrupt lipoprotein retention through direct binding to sulfated GAGs (Figure 4), and (2) as an idiotypic vaccine capable of inducing long-term protection via an anti-idiotypic cascade of antibodies induced in the host (Figure 5).
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Figure 3 | Mechanisms of immune-based therapies for atherosclerosis. The schematic illustrates current therapeutic approaches targeting inflammation (e.g. pro-inflammatory cytokines, immune checkpoints) and lipid lowering (e.g., HMG-CoA reductase and PCSK9 inhibition). The figure introduces emerging anti-extracellular matrix therapies aimed at reducing lipoprotein retention, chiefly the chP3R99 mAb, which targets sugar chains of arterial proteoglycans.



4.1 A historical perspective of the chP3R99 mAb’s development

The chP3R99 mAb was developed by the Centre for Molecular Immunology (CIM) in Havana, Cuba. This is a mouse-to-human chimeric antibody engineered to target the early stages of atherosclerosis within the arterial ECM (15). This antibody originated from the murine P3 mAb, an IgM first described by Vazquez et al. (1995), which was generated using the conventional hybridoma technique. Originally, P3 was intended to target N-glycolyl (NeuGc)–containing gangliosides as a potential tumor-specific immunotherapy (188). However, detailed characterization of its specificity revealed a strong reactivity toward sulfatides, demonstrating its ability to bind negatively charged epitopes on sugar moieties (188, 189). Notably, the polar head group of these glycolipids, composed of sulfated galactose, was identified as a critical structural element for this interaction. Further immunogenetic studies provided initial insights into P3’s binding specificity, suggesting that several basic aminoacidic residues in the variable regions, particularly those within the hypervariable loops, were important for antigen recognition (190).

To enhance its therapeutic potential, P3 was engineered into chP3, a chimeric mAb combining murine variable and human IgG1 constant regions (denoted by the prefix “ch”) that retained the specificity and main immunological properties of the parental mAb (191). Subsequently, site-specific single mutations of arginine residues at heavy chain complementarity determining regions 1 and 3 (HCDR1, HCDR3) of chP3 completely abolished antigen binding, confirming that these regions were crucial for the specificity of the mAb (192, 193). Afterwards, a mutant with a higher affinity for negatively charged sulfated glycolipids was designed. This chP3 mutant, termed chP3R99, was engineered by replacing the glutamic acid residue with an arginine at the 99th position of the immunoglobulin HCDR3 (194). To further refine its therapeutic safety, the Fc region of chP3R99 was engineered with LALA mutations (L234A/L235A), disrupting Fcγ receptor and complement bindings to prevent undesired inflammatory activation while preserving its specificity (15). The current chP3R99-LALA variant is stably expressed in NS0 murine myeloma cells following transfection by electroporation (15, 194). In summary, chP3R99 mAb chimeric design retains the murine-derived variable regions (idiotype), critical for antigen recognition, while incorporating a human IgG1-LALA Fc portion (Figure 4).
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Figure 4 | Structural and functional features of the chP3R99 mAb. The chP3R99 mAb is a mouse-to-human chimeric antibody designed to target sulfated glycosaminoglycans in the arterial extracellular matrix. It combines murine variable regions (VH and VL), essential for antigen recognition, with human IgG1 constant regions engineered with LALA mutations (L234A/L235A) to minimize inflammatory activation.




4.2 Passive anti-atherogenic mechanism of the chP3R99 mAb

The rationale for evaluating chP3R99 mAb as a blocking agent in atherosclerosis emerged from two structural insights. First, the arginine-rich domains in its HCDRs mimic Site B of ApoB100, which mediates LDL retention via electrostatic interactions with arterial proteoglycans (190, 195). Second, sulfated N-acetyl galactosamine residues in CS-GAGs—critical for lipoprotein retention—share structural homology with the sulfated galactose head groups of sulfatides. Those similarities prompted the hypothesis that chP3R99 mAb could also recognize CS-GAGs. Hence, this engineered P3 mAb variant optimized for sulfated sugar epitope binding, could potentially compete with ApoB-containing lipoproteins for CS binding sites on arterial proteoglycans, thereby preventing subendothelial retention.

To test this hypothesis, Soto et al. (2012) characterized the reactivity of chP3R99 mAb to various GAGs. The study found that chP3R99 exhibited higher binding affinity to sulfated GAGs compared to the parental chP3 mAb, with preferential recognition to CS over other GAGs (15). Next, the team evaluated chP3R99’s efficacy in blocking LDL binding to CS. Solid-phase competition assays indicated that chP3R99 inhibited approximately ~70% of LDL binding to this GAG and further reduced ~80% of the LDL oxidation that is potentiated by LDL-CS interaction (15). In vivo, intravenous administration of chP3R99 in Sprague Dawley rats revealed a specific accumulation of the mAb within the aortic wall, associated with a significant decrease in LDL retention and subsequent oxidation 24 hours after LDL inoculation (15).

We have recently extended these findings to the arterial retention of both chylomicron remnants and LDL (the former being mediated by the Site B-Ib motif of ApoB48) (57, 140). In vitro, chP3R99 recognized CS and exhibited dose-dependent binding to ECM derived from rat VSMC. Solid-phase blocking experiments with equivalent concentrations of chP3R99 and ApoB48 demonstrated ~70% reduction of remnant binding to both CS and ECM. For LDL, comparable inhibition was observed for CS binding, while ~50% blocking was achieved for ECM interaction (140). The study further evaluated chP3R99 in obese insulin-resistant JCR: LA-cp rats, a model of vascular remodeling with increased production of CS proteoglycans and enhanced lipoprotein retention (45). Sequential perfusion of carotids from those rats at a physiological rate—first with chP3R99, followed by fluorescently labeled chylomicron remnants—demonstrated dose-dependent inhibition of remnant retention in situ. Notably, these particles displaced only ~35% of the chP3R99 bound to carotid tissue, while cholesterol deposition in the arterial wall was drastically reduced by the treatment by ~80%, underscoring the mAb’s efficacy for chylomicron remnants (140).

In a separate competitive perfusion experiment, carotid arteries were exposed to a preparation containing equivalent particle numbers of LDL and remnants (normalized by ApoB100/ApoB48). Here, insulin-resistant rats exhibited 3.6-fold higher LDL retention and 2.8-fold higher remnant retention compared to lean controls. Despite remnants’ lower particle retention, their cholesterol deposition was 6-fold greater than LDL, aligned with their larger size and a higher cholesterol content per particle. In this setting, chP3R99 reduced LDL retention more effectively by particle count while its overall proportional impact on cholesterol deposition was markedly greater for remnants, highlighting the relevance of targeting both classes of lipoproteins (140).

While chP3R99’s efficacy against Lp(a) has not been tested yet, its specificity for sulfated GAGs suggests potential to reduce ApoB100-mediated retention of Lp(a) by CS proteoglycans (196). However, Lp(a) retention also comprises Apo(a)-specific mechanisms involving other ECM components, including binding to fibronectin (197). These additional mechanisms could limit chP3R99’s efficacy against Lp(a) compared to other ApoB-containing lipoproteins whose retention relies solely on proteoglycan interactions. Definitive evaluation requires competitive binding assays with purified Lp(a) and in vivo validation in LPA-transgenic models to dissect chP3R99’s therapeutic potential for this high-risk lipoprotein.

The previous findings support chP3R99 as a passive therapy for atherosclerosis, relying on direct binding to arterial proteoglycans over secondary immune mechanisms. This strategy is particularly relevant for secondary prevention in patients with advanced plaques requiring acute stabilization, enabled by its Fc-silenced design to minimize inflammatory risks (198). However, its potential in primary prevention—such as high-risk populations with familial hypercholesterolemia or elevated Lp(a)—requires further exploration, given its mechanistic focus on lipoprotein retention. Unlike immunization, which induces long-term protection, passive administration provides immediate, transient blockade at high dose.




4.3 Vaccine-like effects of the chP3R99 mAb

In addition to its blocking properties, chP3R99 exhibits vaccine-like effects mediated by its unique idiotype, which stimulates a robust anti-idiotypic antibody cascade across species (15, 140, 142). This immunogenic trait is inherited from P3, a murine antibody that paradoxically demonstrated high intrinsic immunogenicity in syngeneic BALB/c mice, even without adjuvants or carrier proteins (199). The immunodominance of P3’s idiotype is driven by germline-encoded T-cell epitopes within its murine variable regions, enabling MHC class II presentation by APCs and ultimately the induction of an anti-idiotypic cascade (190, 200). Remarkably, this immunodominance persists in chP3 (191, 192) and chP3R99 (142) despite their chimeric design, where the murine idiotype represents only ~30% of the antibody’s structure, whereas the human IgG1 Fc portion is expected to be immunodominant in mice (15).

This phenomenon aligns with the principles of Jerne’s idiotypic network theory (1974) (201), wherein an antibody (Ab1) induces anti-idiotypic antibodies (Ab2) specific for its idiotype. A subset of these Ab2 (termed Ab2β) structurally mimics the antigen recognized by Ab1, acting as an “internal image” of the antigen—in this case, the sulfated sugar epitopes targeted by chP3R99. This cascade is further amplified through the production of Ab3 (anti-Ab2), which recapitulate the specificity of the original Ab1, thereby enhancing therapeutic efficacy (Figure 5). As a result, both chP3R99 and the induced Ab3 recognize CS, preventing lipoprotein retention and subsequent plaque formation (140, 142).
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Figure 5 | Illustration of the idiotypic cascade in response to chP3R99 mAb. Immunization with the chP3R99 mAb (Ab1) elicits an idiotypic cascade of endogenous antibodies in the host. The host produces anti-idiotypic antibodies (Ab2β) specific for the antigen-binding region of the Ab1. Subsequently, anti-anti-idiotypic antibodies (Ab3) are generated, which mimic Ab1 by binding chondroitin sulfate GAGs.

The vaccine-like effects of chP3R99 mAb are further characterized by dose-dependent immunogenicity and broad applicability across age and gender (202). This response typically reaches a plateau after four mAb administrations (140, 202). Preclinical studies in ApoE mice demonstrated that subcutaneous administration of the mAb induces anti-CS IgG1 antibodies, a Th2-associated subclass in mice, targeting lipoprotein retention without eliciting proinflammatory responses, a critical safety feature for atherosclerosis therapy (202). Notably, mice exhibited comparable anti-CS antibody titers after immunization, regardless of age or sex. A 4-fold increase in chP3R99 dose enhanced both the magnitude and kinetics of the idiotypic cascade, generating significantly higher Ab2 and Ab3 responses while reducing reactivity to the human Fc domain (202).

While chP3R99’s murine idiotype drives robust responses in mice, its immunogenicity in other animal models is subjected to cross-species compatibility of T-cell epitopes and MHC binding affinity. Therefore, original T-cell epitopes may lose immunogenicity in non-murine systems, or model-specific epitopes may emerge (203). However, the idiotype’s foreign nature ensures sustained immunogenicity across diverse animal models, though the human constant regions could potentially shift immunodominance toward the Fc portion. To date, chP3R99 has consistently demonstrated immunogenicity in mice, rats, and rabbits, inducing anti-CS antibodies capable of blocking lipoprotein retention in all tested models (15, 140, 142). Unpublished results have further validated its immunogenicity and idiotype immunodominance in outbred NMRI mice and Landrace pigs, underscoring its efficacy in genetically diverse populations.

On the other hand, translating chP3R99’s immunogenicity into humans requires careful consideration of three factors (1): the HLA polymorphism (204), (2) the need of T-cell epitopes to enable APC antigen presentation (203)—in this case solely restricted to the idiotype, and (3) antibody engineering trade-offs (205). Indeed, the murine idiotype of chP3R99 provides structural diversity for T-cell epitopes, increasing the likelihood of compatibility with different HLA alleles to ensure antigen presentation (204, 206). Although a fully murine format may enhance its immunogenicity, there is a risk of shifting immunodominance toward the Fc region, promoting anti-isotype responses over idiotype-specific immunity critical for vaccination. Conversely, full humanization may alter or disrupt T-cell epitopes within the variable region abolishing anti-idiotype responses (203). Therefore, chP3R99’s chimeric design aims to circumvent these drawbacks: the murine idiotype likely retains its immunogenicity in humans (via preserved T-cell epitopes) (205, 207) while the human IgG1-LALA Fc improve safety, extends half-life for passive immunotherapy, and avoids Fc-driven inflammation (15, 194).




4.4 Preclinical evidence of anti-atherogenic effects of chP3R99 mAb

The chP3R99 mAb has shown compelling anti-atherogenic effects in preclinical models, targeting both early and advanced stages of atherosclerosis. Proof-of-concept was first established in an acute atherosclerosis model using NZW rabbits, where the disease was induced via 8-day intravenous Lipofundin 20% lipid emulsion (208). Prophylactic immunization with chP3R99 (100 µg SC weekly, 3 total doses) prevented atheromatous lesions in 57% of animals, with the remaining rabbits exhibiting only minor intimal thickening (15). Notably, immunization with the parental chP3 mAb lacked this protective effect. Treated rabbits also showed reduced lipid peroxidation and preserved endothelial nitric oxide bioavailability, demonstrating the vaccination capacity to mitigate oxidative stress and vascular dysfunction (15). This preventative effect was further validated in a chronic atherosclerosis model using ApoE−/− mice fed a high-fat, high-cholesterol diet. Biweekly/weekly chP3R99 immunization (50 µg SC, 6 doses), starting at 6 weeks of age, reduced aortic lesion area by 40–43% by week 18 (142). In both models, the protection was associated with host-derived anti-CS antibodies (Ab3) that blocked LDL-CS binding in vitro, supporting the hypothesis of the induction of a protective idiotypic cascade. No lipid-lowering effects were observed in those studies, emphasizing that the mechanism of action relies on antibody-mediated inhibition of LDL retention rather than lipid metabolic modulation (15, 142).

Subsequent studies investigated the therapeutic effects of chP3R99 in established atherosclerosis using the preclinical models described above. In rabbits, weekly subcutaneous administration of chP3R99 (100 µg, 5 weeks) following Lipofundin-induced lesion formation reduced atherosclerotic plaque burden, characterized by a significantly decreased intimal thickening (209). In a parallel study, 18-week-old ApoE−/− mice were placed on a high-fat, high-cholesterol diet for 14 weeks before vaccination and maintained on this atherogenic diet throughout the experiment. In this model, weekly subcutaneous administration of 50 µg of the vaccine over six weeks effectively halted atherosclerotic lesion progression, even in the presence of persistent hyperlipidemia (210). In both models, chP3R99 vaccination reduced aortic oxidative stress, evidenced by decreased levels of malondialdehyde and advanced oxidation protein products, while enhancing antioxidant capacity and nitric oxide bioavailability (209, 210).

Importantly, both male and female ApoE mice fed a hypercholesterolemic diet exhibited comparable reductions in atherosclerotic lesions (~35–40%) when immunized with chP3R99 (202). Further dose-escalation studies in this model revealed that higher doses of chP3R99 (200 µg/week) significantly improved efficacy, achieving a 62% reduction in atherosclerotic lesions compared to a 40% reduction at the dose of 50 µg/week (202). At higher doses, it is plausible that the combined passive effect of the mAb and the induction of anti-CS antibodies operate synergistically to enhance the overall antiatherogenic effect. Supporting this hypothesis, Brito et al. (2017) demonstrated that chP3R99 conjugated to FITC preferentially accumulated within aortic lesions in ApoE mice in vivo (211), while arterial accumulation was similarly observed in rats (15, 140). Additionally, recent studies in insulin-resistant JCR: LA-cp rats fed a lipid-balanced hypercholesterolemic diet showed that anti-CS antibodies induced by immunization specifically accumulated in arterial regions, leading to reduced retention of LDL and chylomicron remnants in carotid arteries (140). In ApoE mice with stablished plaques (11 weeks of disease progression), chP3R99 limited lesion expansion at the aortic level and reduced inflammatory infiltrates highlighting its therapeutic potential. These findings support further investigation into chP3R99’s role in mitigating advanced disease progression and its promise as a candidate for secondary prevention strategies in high-risk patients. Its ability to reduce advanced disease progression positions chP3R99 as a promising candidate for secondary prevention strategies in high-risk patients.

Beyond its therapeutic applications, chP3R99 also exhibits significant diagnostic potential. In rabbits with early atherosclerosis lesions induced by Lipofundin 20%, immunoscintigraphy using radiolabeled 99mTc-chP3R99 demonstrated specific accumulation within carotid lesions compared to healthy vessels (141). Histological studies and biodistribution analyses further confirmed a six-fold higher accumulation in atherosclerosis-prone regions of the aorta in diseased animals compared to controls (141). Similarly, in vivo immunofluorescence studies in ApoE mice demonstrated that FITC-labeled chP3R99 preferentially accumulated in atherosclerotic lesions within the aorta compared to a control mAb (142). These findings highlight the ability of chP3R99 to specifically target atherosclerotic lesions, supporting its potential for non-invasive plaque imaging or site-specific therapeutic delivery.

While sulfated GAGs are physiologically relevant and widely expressed across various tissues, chP3R99 has demonstrated high vascular specificity, a crucial attribute for minimizing off-target effects. Biodistribution studies support that chP3R99 exhibits high selectivity for proteoglycans derived from VSMCs within atherosclerotic lesions (140), with limited accumulation in non-vascular tissues (141). Preclinical evaluations in mice, rats, and rabbits revealed no adverse effects on lipoprotein metabolism or signs of toxicity (15, 140–142). Specifically, in insulin-resistant and wild-type rats, neither passive administration of chP3R99 nor immunization with this mAb affected lipid or glucose metabolism, hepatic or renal function, or blood cell indices (140). Importantly, the Fc-silenced chP3R99-LALA variant further eliminated Fc-mediated risks, reinforcing its safety profile and translational potential for clinical applications (198, 212).

In summary, chP3R99 offers a multifaceted therapeutic approach with potential applications in both primary and secondary prevention of atherosclerotic disease. For primary prevention, particularly in high-risk populations such as those with familial hypercholesterolemia or elevated Lp(a), immunization strategies may offer long-term protection by inducing a sustained anti-atherogenic antibody response (213). Conversely, in secondary prevention scenarios involving patients with advanced plaques requiring acute intervention (214), passive administration of chP3R99 could provide immediate benefits by directly blocking lipoprotein retention. Future clinical trials should prioritize cohorts with high atherogenic burden and those unresponsive to conventional treatments to evaluate chP3R99´s efficacy in addressing refractory lipoprotein retention and its potential to improve outcomes in patients with established CVD.





5 Conclusion

Despite advancements in lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists in atherosclerosis. Existing therapies for CVD, while effective at reducing LDL cholesterol, exhibit limited efficacy against Lp(a) and dietary-derived remnant lipoproteins, the latter contributing significantly to atherogenesis in chronic disease(s). Crucially, most interventions prioritize systemic risk factors over targeting the arterial ECM, where ApoB-containing lipoproteins bind sulfated GAGs chains on proteoglycans, triggering oxidative stress and inflammation. Therefore, the chP3R99 mAb represents a transformative shift in the therapeutic landscape. By targeting arterial lipoprotein retention, it disrupts atherogenesis through dual mechanisms (1): direct blockade of ApoB-GAGs interactions (passive therapy) and (2) induction of anti-idiotypic antibodies that sustain long-term protection against proteoglycan-mediated retention (idiotypic vaccine). Preclinical studies demonstrate that chP3R99 prevents atherosclerosis initiation, arrests disease progression, and exerts efficacy even in advanced lesions, consolidating sulfated GAGs as pivotal mediators across all stages of atherogenesis and highlighting the mAb’s broad therapeutic applicability. While translational validation in humans and efficacy against Lp(a) remain essential, this ECM-centric approach bridges a critical gap in current therapies, offering a strategy to reduce residual risk and redefine atherosclerosis management.
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Non-cured CE

Variables

group (n = 13)
Age (years) 34,5 (31.0, 38.0) 37.0 (35.0, 40.0) 0.080
Endometrial 9.0 (7.3, 10.0) 9.0 (7.5, 10.0) 0.986

thickness (cm)

No. of embryos 2.0 (1.3, 2.0) 2.0 (1.0, 2.0) 0.169
transferred

Embryo type, % 0.710
(n/n)

cleavage 45.0% (9/20) 38.5% (5/13)

blastocyst 55.0% (11/20) 61.5% (8/13)

High-quality 1.0 (1.0, 2.0) 1.0 (0.0, 1.5) 0.353
embryos

B-hCG positive 85.0% (17/20) 53.8% (7/13) 0.060

rate, % (n/n)

Clinical pregnancy 75.0% (15/20) 38.5% (4/13) 0.038
rate, % (n/n)

Implantation rate, 54.3% (19/35) 21.1% (4/19) 0.018
% (n/n)

Miscarriage rate, 0% (0/15) 25.0% (1/4) 0.211
% (n/n)

CE, chronic endometritis; PRP, platelet-rich plasma; B-hCG, human chorionic
gonadotropin-f.
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. Control grou PRP grou

Variables group group
(n = 56) (n = 33)

Endometrial 9.0 (8.0, 10.0) 9.0 (7.5, 10.0) 0225
thickness (cm)
No. of embryos 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 0.817
transferred
Embryo type, % (n/n) 0.164
cleavage 12.5% (7/56) 24.2% (8/33)
blastocyst 87.5% (49/56) 75.8% (25/33)
High-quality embryos 1.0 (0.0, 1.0) 1.0 (1.0, 2.0) 0.113
B-hCG positive rate, 69.6% (39/56) 72.7% (24/33) 0.757
% (n/n)
Clinical pregnancy 62.5% (35/56) 57.6% (19/33) 0.646
rate, % (n/n)
Implantation rate, % 40.9% (38/93) 42.6% (23/54) 0.837
(n/n)
Miscarriage rate, % 8.6% (3/35) 5.3% (1/19) 1.000

(n/n)

PRP, platelet-rich plasma; B-hCG, human chorionic gonadotropin-f.
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Vatiablos Control group = PRP group
(n = 56) (n = 33)
Age (years) 33.5 (31.0, 36.3) 360 (33.0,380) | 0.075
BMI (kg/m?) 21.5 (20.0, 23.7) 218 (197,236) | 0273
Basal FSH (mIU/mL) 6.4 (5.4,7.6) 6.8 (5.3,9.3) 0.699
Basal LH (mIU/mL) 4.6 (3.6, 6.3) 4.7 (3.5, 6.5) 0.554
Basal E2 (pg/mL) 36.4 (29.6, 57.7) 513 (37.1,80.3) | 0.082
Basal P (ng/mL) 03 (0.2, 0.4) 03 (0.2, 0.5) 0913
Infertility duration (years) 4.0 (3.0, 6.0) 4.0 (3.0, 6.0) 0.397
Cause of Infertility, n (%) 0.811
Tubal factor 24 (42.9%) 15 (45.5%)
Unexplained 32 (57.1%) 18 (54.5%)
No. of previous failed 0.0 (0.0, 0.0) 1.0 (10,20) | <0.001
embryo transfer cycles
Gravidity 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.079
Parity 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.000

BMI, body mass index; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2,
estradiol; P, progesterone; PRP, platelet-rich plasma; P < 0.05: PRP group versus

control group.
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Classical AQPs AQPO H,O0, H,0,
(water-channels)

AQP1 H,0, CO,, NH;

AQP2 H,0

AQP4 H,0

AQP5 H,0, CO,

AQP6 H,O (pH dependent), urea,

glycerol, nitrate

Aquaglyceroporins =~ AQP3 H,O0, glycerol, urea, H,O,

AQP7 H,O0, glycerol, urea, ammonia,
arsenite, NH;

AQP9 Glycerol, NH3, urea, lactate,
purine, pyrimdine, H,0,
AQP10 Glycerol, urea, H,O
Superaquaporins AQP11 ’ H,0, H,0,, glycerol
AQP12 Function less well understood,
likely H,O

aquaammoniaporin = AQP8 H,0, ammonia, glycerol, HO,

classical AQPs (green), Aquaglyceroporins (blue), superquaporins (orange) and
aquaammoniaporins (red) are displayed.
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Bone healing miR-451a Target the MIF mRNA 3’UTR, 3)

downregulate MIF expression.
Kidney stones miR-23 Inhibit IRF1 expression. (12)
Fat graft let-7¢ Reduce the expression of C/EBP-5, (11)
survival rate negatively regulate TLR4
Postoperative MFGE8 Activate the integrin B3/SOCS3/ (29)
esophageal STAT3 pathway
strictures
Diabetic lower _ IL-4/IL-13 bind to receptors, (50)
limb ischemia activate the JAK/STAT6 pathway

ALI Acute lung injury; MI, Myocardial infarction; mtDNA, Mitochondrial DNA; miR-451a,
microRNA-451a; miR-23, microRNA-23; MFGES, milk fat globule-epidermal growth factor
8; TLR, Toll-like receptor; MIF, macrophage migration inhibitory factor; IRF1, Interferon
regulatory Factor 1; C/EBP-3, CCAAT/enhancer-binding protein-8; STAT 3, signal
transducer and activator of transcription 3; IL, Interleukin.
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Normal 10 50.20 + 7.30 74.70 £ 5.74 9.91 + 0.59
Model 10 95.70 + 5.36"""" 150.00 + 14.31°% 5.80 +0.76""
DEX 10 57.80 + 828" 76.3.10 £ 9.0%*** 9.57 + 0.75%***
Mus-L 10 71.90 + 10.35" "+t 139.10 + 16,09 6.99 + 1517
Mus-M 10 68.20 + 7.25"* 116.50 + 19.87" ¢ | 7.94 4 126" ¢
Mus-H 10 61.40 £ 10.73*** 79.30 £ 9.45%** 9.16 + 0.80%***

# indicates that compared to the Normal group, ****P < 0.0001, ***P < 0.001, “P < 0.01, *P < 0.5.
* indicates that compared to the COPD group, ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.5.

PEF (ml/s)
738 + 093
432 0327
7.03 £ .81+
430 + 038"
594 + 1037+

6.82 £ 0.96***

429 +£0.57

243 +0.52""
396 %059
2,67 £ 029"
3.24 % 0677

3.79 + 0.420%*

168.80 = 8.24
91.70 + 7.217%*
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GSE214695 RNA-seq GPL18573 Expression profiling by high 6 normal& Colonic mucosal Homo 2023
throughput sequencing 6UC & sapiens
6 CD
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Foxp3 Forward: TCCCTCCACTCCACCTAAA
Reverse: CCTAATGCCTCCCAGAGC

Roryt Forward: GAACTTGGGGAACCAGAAC
Reverse: TGGCATGTCTCTCGGAA

B-actin Forward: GGCTGTATTCCCCTCCATCG
Reverse: CCAGTTGGTAACAATGCCATGT
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Genes Forward Sequences
ACTB Forward Primer CATGTACGTTGCTATCCAGGC
Reverse Primer CTCCTTAATGTCACGCACGAT
GFRA2 Forward Primer GGGCTCTTATGCTGGCATGAT
Reverse Primer AGTCCCTGAGGAACTTCTCAC
LILRA2 Forward Primer

CACTCATCAGAGTACAGTGACCC

Reverse Primer

GTTCGAGTCATAAGCATAGCACC
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